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Preface

ICGT 2006 was the 3rd International Conference on Graph Transformation,
following the previous two in Barcelona (2002) and Rome (2004), and a series
of six international workshops between 1978 and 1998. ICGT 2006 was held in
Natal (Rio Grande do Norte, Brazil) on September 17-23, 2006, co-located with
the Brazilian Symposium on Formal Methods (SBMF 2006), under the auspices
of the Brazilian Computer Society (SBC), the European Association of Software
Science and Technology (EASST), the European Association for Theoretical
Computer Science (EATCS) and the IFIP WG 1.3 on Foundations of Systems
Specification. The conference obtained partial support from Formal Methods
Europe and IFIP TC 1 on Foundations of Computer Science.

The scope of the conference concerned graphical structures of various kinds
(like graphs, diagrams and visual sentences) that are useful when describing
complex structures and systems in a direct and intuitive way. These structures
are often enriched with formalisms that model their evolution via suitable kinds
of transformations. The field of the conference was concerned with the theory,
applications, and implementation issues of such formalisms. Particular emphasis
was put on metamodels which can accommodate a variety of graphical structures
within the same abstract theory.

The theory is strongly related to areas such as graph theory and graph al-
gorithms, formal language and parsing theory, the theory of concurrent and
distributed systems, formal specification and verification, logics, and seman-
tics. The application areas include all those fields of computer science, infor-
mation processing, engineering, biology and the natural sciences where static
and dynamic modelling using graphical structures and graph transformations,
respectively, play important roles. In many of these areas tools based on graph
transformation technology have been implemented and used.

The proceedings of ICGT 2006 consist of two parts. The first part contains
the contributions of the invited speakers followed by 28 accepted papers that
were selected out of 62 carefully reviewed submissions. The topics of the papers
range over a wide spectrum, including graph theory and graph algorithms, theo-
retic and semantic aspects, modelling, contributions to software engineering and
global computing, applications to biology, and tool issues. The second part con-
tains a short description of a tutorial on foundations and applications of graph
transformations, and short presentations of the satellite events of ICGT 2006.

We would like to thank the members of the program committee and the
secondary reviewers for their enormous help in the selection process. Moreover,
we would like to express our gratitude to the local organizers who did a great job,
in particular to the Organizing Committee chair Anamaria Martins Moreira.

July 2006 Andrea Corradini, Hartmut Ehrig, Ugo Montanari (PC co-chair)
Leila Ribeiro (PC co-chair), Grzegorz Rozenberg
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Mauro Pezzè Milan (Italy)
John Pfaltz Charlottesville (Virginia, USA)
Rinus Plasmeijer Nijmegen (The Netherlands)
Detlef Plump York (UK)
Leila Ribeiro (co-chair) Porto Alegre (RS, Brazil)
Grzegorz Rozenberg Leiden (The Netherlands)
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Nested Quantification in Graph Transformation Rules

Arend Rensink

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE, The Netherlands

rensink@cs.utwente.nl�

Abstract. In this paper we describe a way to integrate Taentzer’s rule amalgama-
tion with the recently proposed notions of nested graph conditions. The resulting
so-called quantified graph transformation rules include (universally and existen-
tially) quantified sub-structures in a flexible way. This can be used for instance
to specify a larger-step operational semantics, thus improving the scalability of
graph transformation as a technique for software verification.

1 Introduction

The idea presented in this paper is motivated by the goal to use graph transformation as a
technique for specifying, and eventually verifying, the dynamic behaviour of software
systems. In this setup, each transformation rule corresponds to a single computation
step of the system, in which, for instance, a method is called or a variable is assigned.
We have observed in previous work, e.g., [13], that such a computation step frequently
involves acting upon a structure whose size is not a priori known, but instead involves
sub-structures of which there may be arbitrarily many copies.

A typical example of this is the encoding of parameter transfer from a method caller
to the called method. Obviously this is the same mechanism for all methods, and so we
would like to have a single rule that captures it. Unfortunately, the number of parameters
is not the same for all methods: in fact, the parameters indeed form a sub-structure with
a varying and a priori unknown number of copies.1 For this reason, it is not possible,
using the standard graph transformation formalism, to capture the parameter transfer
mechanism in a single rule. Fig. 1 shows an example rule for two parameters.

Although there are workarounds, typically involving the use of auxiliary edges which
successively mark all copies of the substructure involved, these have undesirable con-
sequences (besides being inelegant). In particular, such a solution results in a number
of small steps that is linear in the number of substructures involved. In particular in a
setting where the system under analysis has parallelism, these steps get interleaved with
independent actions in other parts of the system, contributing to the state space blow-
up (which is the most urgent problem in verification methods in the first place). This,

� The work reported in this paper was carried out in the context of the Dutch NWO project
GROOVE (project number 612.000.314).

1 To be more precise, the number of parameters is fixed and known for each individual method,
but not from the more global perspective of our semantics, in which calls to all methods are to
be treated as instances of the same mechanism.

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 1–13, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Rensink

creator (rhs−only)
eraser (lhs−only)

declared variable
run−time value

new:
del:

Var
Value
Method
Frame
Call

method implementation
run−time method frame
method call statement

Fig. 1. Method call rule for two parameters

in turn, may be alleviated by further modifying the formalism, for instance by impos-
ing priorities or other forms of control on the set of rules, but at the price of increased
complexity of the formalism and hence of the verification task itself.

To make the example even more challenging: if we are interested in a data-flow
analysis, we want the method call rule to be enabled if and only if all the arguments
to the method are available (and not when control has explicitly reached the point in
the program where the method is called). This involves a further condition on the rule,
involving the existence of all relevant substructures — in this case, values for all method
parameters. This is not a standard (positive or negative) application condition, since,
once more, the number of substructures that are required to exist is not a priori known.

The problem described above has been studied before. On the practical side, many
tools for graph transformation (for instance GREAT [6], FuJaBa [4]) have some notion
of graph patterns that may be matched with cardinality greater than 1, i.e., that match
to an a priori unknown number of sub-graphs in the host graph. Furthermore, Taentzer
[18] has developed an elegant theoretical basis for this type of extension, called rule
amalgamation. This is based on the concept of an interaction scheme which essentially
imposes a sub-rule embedding on a set of rules, and a covering condition which imposes
further conditions on the matches to be considered. Taking the above example, there
would be a single so-called elementary rule that takes care of the hand-over of a single
parameter, and a sub-rule that selects the caller Frame node and creates the called Frame
node; the covering condition would be local-all, which gathers as many copies of the
elementary rule as there are suitable combinations of Var- and Value-nodes attached to
the selected Frame-node.

Elegant and natural though this solution is, it does not yet meet all demands. For
instance, the data flow analysis rule proposed above cannot be captured by a simple sub-
rule embedding, even in the presence of (standard) negative application conditions: the
result would be that the rule as a whole is always enabled, with copies of the elementary
rule precisely for those parameters for which an argument value is already available.
More generally, the problem is to enforce, in a covering condition, that elementary rules
are actually enabled for all sub-structures (in the host graph) of a particular kind, i.e.,
satisfying a certain application condition. In other words, there are further gains to be
made in the appropriate combination of covering conditions and application conditions.
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Recently there have been proposals, by ourselves in [16] and independently by Habel
and Pennemann in [9], to extend the power of application conditions, by generalising
the two-level structures originally introduced in [8] to trees of arbitrary nesting depth.
As shown in [16], every further level of nesting effectively corresponds to an additional
level of quantification in terms of logic.

The core contribution of this paper is to recognise that the two principles of sub-
rule embedding on the one hand and condition nesting on the other can be fruitfully
combined, giving rise to a notion of quantified graph transformation rule that is both
natural and powerful, and complements the framework for rule amalgamation so as to
solve the problem outlined above.

Summarising, in this paper we combine two pre-existing ideas:

Rule amalgamation, developed by Taentzer [18] and later applied for, e.g., refactoring
[1], parallel graph transformation [3] and multi-formalism simulation [2].

Nested graph predicates, recently proposed by Rensink [16] and independently by
Habel and Pennemann [9].

In terms of these techniques, a brief explanation of our proposal is that we merge the
nesting structure of the nested graph predicates with the sub-rule embeddings of inter-
action schemes, as used in rule amalgamation, so that the left hand sides of the rules are
part of a nested graph predicate that simultaneously acts as an application condition.
Another way to put it (slightly more loosely) is to say that we present a way to use
nested graph predicates as a language for covering conditions, in the sense of Taentzer
[18].

The paper is structured as follows: Sect. 2 provides the necessary technical concepts,
Sect. 3 illustrates their use on the basis of a number of examples, and Sect. 4 concludes
the paper.

2 Definitions

We first recall the notion of graph predicates from [16] and in passing establish the
connection to [9]. We assume some category of graphs Graph with an initial element ∅,
objects G, H and morphisms f, g etc. For concrete examples, we will take the common
edge-labelled graphs 〈N, E, L, s, t, �〉, with N as set of nodes, E a set of edges, L a set
of labels, and s, t: E → N and �: E → L the source and target mapping and labelling
function, respectively; morphisms will be the homomorphisms over this structure.

We characterise graph predicates as rooted diagrams in the category Graph. Given
such a diagram d and an object G in d, rootd will denote the object at the root of d,
and outd(G) will denote the morphisms in d that originate in G. (Note that a rooted
diagram has a well-defined root even if it has no arrows.) Furthermore, subd(G) will
denote the reachable sub-diagram rooted in G, and for arbitrary f : G→rootd, c = d◦f
is the diagram with rootc = G, initc = {g ◦ f | g ∈ initd} and subc(H) = subd(H)
for all graphs H in d except for rootd. (In other words, d◦f is obtained from d by using
f ’s source as the new root, concatenating f with the initial arrows of d and leaving the
remainder of d unchanged.
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Definition 1 (graph predicate). Let G ∈ Graph be arbitrary. A graph predicate over
G is a tree-shaped diagram p in Graph rooted in G. p is called ground if G = ∅.

Predicate satisfaction is a binary relation |= between predicates and graph mor-
phisms: p |= f expresses that f satisfies p. |= is defined as the smallest relation such
that p |= f whenever the following conditions hold:

– rootp = H;
– There are g: G→K ∈ initp and h: K →H such that f = h◦g and subp(K) �|= h.

Moreover, if we say that a graph G satisfies p, denoted p |= G, if p |= f : ∅ → G. (Note
that this implies that p is ground.)

It might take some getting used to that the subjects are morphisms f rather than graphs.
The intuition is that the source of f , which corresponds to the root of the predicate
diagram, only identifies the common context or pattern; typically a subgraph which is
already known to be present. The predicate itself actually states something about the
target graph of the morphism. This intuition is confirmed by the special case where the
source of f is the empty graph: in that case f really contains only the information in its
target.

Satisfaction as defined in Def. 1 is slightly tricky in that it seems to rely on a smallest
fixpoint construction for a function that is not monotonic, but rather anti-monotonic,
due to the negation in the second bullet above. However, this is only superficially true,
since in the sub-clause the satisfaction predicate is applied to a strictly smaller diagram;
hence we can conduct proofs on the depth of the predicate diagram. (Actually, the above
definition and most of the developments of this paper would still work for dags, and
even for diagrams with cycles, as long as for any arrow in the diagram, the length of
every path from the root to that arrow has the same parity, i.e., either all paths have odd
length or all paths have even length. This implies that, in particular, all cycles must have
even length. However, we restrict to tree-shaped diagrams in this paper.)

Alternatively, and perhaps more understandably, predicate satisfaction can be formu-
lated in terms of two distinct satisfaction relations, |=∃ and |=∀, as follows:

Definition 2. Existential and universal satisfaction are the smallest pair of binary re-
lations |=∃ and |=∀ between graph predicates p and graph morphisms f : G → H such
that

– p |=∃ f whenever the following conditions hold:
• rootp = H;
• There are g: G→K ∈ initp and h: K→H such that f = h◦g and subp(K) |=∀

h.
– p |=∀ f whenever the following conditions hold:

• rootp = H;
• For all g: G→K ∈ initp and all h: K→H such that f = h◦g, subp(K) |=∃ h.

Note that the concept of “smallest pair of binary relations” is indeed well-defined, un-
der a pairwise ordering on sets. Also note that the problem due to the negation in the
inductive definition of Def. 1 is no longer present in this formulation; instead, we can
mark every arrow of a predicate diagram as ∃ or ∀, depending on their distance from
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p |= f

∃

∃

�

∀

Fig. 2. Illustration of a satisfaction relation

the root, to indicate if the arrow should be satisfied existentially or universally. This
is illustrated in Fig. 2, which shows a predicate diagram p and a morphism f , and the
necessary morphisms from the objects of p to the target of f that establish satisfaction.

Obviously we can take this one step further by making the existentiality or univer-
sality a property of the diagram itself rather than of the satisfaction relation. In this
view, graph predicates themselves are either always existentially satisfiable — roughly
corresponding to application conditions in [9], though those may also be negative —
or always universally satisfiable — roughly corresponding to constraints. Further vari-
ations, where individual objects or arrows of a predicate diagram are marked existential
or universal, are also possible; when it comes to usability, rather than extensions to the
theory, these are certainly worth investigating.

The following proposition states that the two definitions of satisfaction given above
are indeed interchangeable.

Proposition 1. For an arbitrary graph predicate p and graph morphism f , p |=∃ f iff
p |= f , whereas p |=∀ f iff p �|= f .

So far we have presented satisfaction as a relation between predicate and subject; in
some cases, we need a concrete proof of satisfaction. This is defined as follows.

Definition 3. Let p be a graph predicate over G and let f : G→H be a graph morphism.

– A proof of existential satisfaction Φ : p |=∃ f is a triple 〈g: G → K, h: K → H, Ψ〉,
where g ∈ initp, f = h ◦ g and Ψ : subp(K) |=∀ h is a proof of universal
satisfaction.

– A proof of universal satisfaction Ψ : p |=∀ f is a partial function such that for
all decompositions f = h ◦ g with g: G → K ∈ initp and h: K → H , the image
Ψ(g)(h) : subp(K) |=∃ h is a proof of existential satisfaction.

For instance, in Fig. 2, the proof of satisfaction consists (loosely speaking) of the (hor-
izontal) arrows on the existential levels, and the mapping from arrows to the proof of
the sub-diagram on the universal levels.

Where satisfaction establishes a relation between predicates and subjects (i.e., mor-
phisms), we can also relate predicates among each other. This is formalised in the fol-
lowing notion of implication.
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⇒⇒
= =

pq1 q2

∃

∀

∃

∀

∃ ∃

∀

∃

Fig. 3. Two illustrative implications

Definition 4. Let p, q be graph predicates over G. A proof of implication φ : p ⇒ q
is a mapping that associates to every initial arrow f : G → H ∈ initp of p a triple
〈if : G → K, ef : K → H, ψf 〉, where

– if ∈ initq is an initial arrow of q;
– f = ef ◦ if , i.e., f is decomposed into if followed by ef ;
– ψf : subq(K) ⇒ subp(H) ◦ ef is a proof of implication.

This is a recursive definition; however, since graph predicates have finite depth there is
no ambiguity in the interpretation. Proofs of implication compose and give rise to a cat-
egory Pred with graph predicates as objects and proofs of implications as morphisms.
An illustration is given in Fig. 3: this shows implications into and from the predicate p
of Fig. 2.

For any predicate diagram p, since it is tree-shaped, every object G has a well-
defined notion of distance from the root, which we will denote distp(G). We call p
non-disjunctive if |outp(G)| ≤ 1 whenever distp(G) is even; in other words, when the
tree does not branch at existential levels. For instance, q1 in Fig. 3 is non-disjunctive
but the other two predicates are not. (In terms of Def. 2, non-disjunctivity means that
when distp(G) is even, either outp(G) is empty, in which case it cannot give rise to a
factorisation of the subject and the sub-diagram rooted at G is essentially equivalent to
false, or the subject can be factored through the unique morphism in outp(G)e. If, on
the other hand, |outp(G)| > 1 then there is a choice of morphisms starting in G, which
acts as a disjunction.)

If q is non-disjunctive, then a proof φ : p ⇒ q closely follows the structure of q and
essentially selects, for every morphism f in the diagram of q, at most one morphism ef

incident with the target of f : tgt(ef ) = tgt(f) if f is existential in q (i.e., dist q(src(f))
is even) or src(ef ) = tgt(f) otherwise. The other end of ef , i.e., the end not incident
with f , is an object in p; in this way φ establishes a mapping from a prefix of the tree
structure of q into the tree structure of p.

A proof of implication φ : p ⇒ q can be used to modify proofs of existential and
universal satisfaction, in the following way: for arbitrary Φ : p |=∃ f and Ψ : q |=∀ f

φ(Φ) = 〈ig, h ◦ eg, ψg(Ψ ′)〉 if Φ = 〈g, h, Ψ ′〉
φ(Ψ) = (g1, h1) → ψg(Ψ(ig1 , h1 ◦ eg1)) for g1 ∈ initp and h1 with f = h1 ◦ g1.
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This gives rise to the following relation between satisfaction and implication proofs:

Proposition 2. Let φ : p ⇒ q, Φ : p |=∃ f and Ψ : q |=∀ f .

– φ(Φ) : q |=∃ f is a proof of existential satisfaction;
– φ(Ψ) : p |=∀ f is a proof of universal satisfaction.

Hence we have the following corollary, which is a property one would expect, essen-
tially stating that implication is sound w.r.t. satisfaction:

Corollary 1. If p ⇒ q then p |=∃ f implies q |=∃ f and q |=∀ f implies p |=∀ f .

Note that we do not have the dual completeness property; i.e., if p |=∃ f implies q |=∃ f
for arbitrary f then it does not follows that there exists a proof of implication p ⇒ q.
However, for our purposes Def. 4 suffices.

We now come to the core definition of this paper, namely that of quantified transfor-
mation rules:

Definition 5 (quantified rule). A quantified rule R = (pL ⇒ pI ⇐ pR) is a cospan
of implication proofs in the category Pred, where pL, pI , pR are non-disjunctive predi-
cates rooted in ∅.

A quantified rule R gives rise to an interaction scheme in a sense slightly extended
from [18]: namely, for every morphism k occurring existentially in pI (i.e., such that
distpI (src(k)) is even), due to the fact that pI is non-disjunctive, there is at most one
span of morphisms rk = (Lk ← Ik → Rk) with Ik = tgt(k), where the two mor-
phisms in the span are part of the proofs of implication in R. Each such rk is a trans-
formation rule of a more ordinary kind. Moreover, R induces a tree structure on the rk,
where the branches of the tree correspond to sub-rule embeddings.

The match of a quantified rule R for a host graph G is a proof of (existential) sat-
isfaction Φ : pL |= G (recall that pL is ground). Φ includes a (possibly empty) set of
matches for each Lk, which (due to the constraints on Φ) overlap in the matches of
sub-rules. By gluing together these individual matches, we obtain an amalgamated rule
in the sense of [18], which transforms G, via some intermediate K , to a target graph H .
It can be shown that (automatically) pI |= K . We consider the transformation valid and

denote G =
R,Φ
==⇒ H if, in addition pR |= H . Together, this gives rise to a transformation

according to the following schema:

(R) L��

Φ

pI�� ��
�� pR��

G K�� �� H

Note that this is not a diagram in any category: the object and arrows on top form
a cospan in Pred and those on the bottom form a span in Graph, whereas the vertical
relations are proofs of satisfaction. We do have some form of commutativity because
(due to Prop. 2) pI |= G and pI |= H , but we currently do not see any universal
characterisation arising out of the above diagram. In other words, quantified rules are
a way to program amalgamated rules. We argue in Sect. 4 that there may be further
interest in extending the notion theoretically.
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1

1.1

1.1.1

1

1.1

1.1.1

1

1.1

1.1.1

∅

∃

∀

∃

1 : ∃

1.1 : ∀

1.1.1 : ∃

Fig. 4. Quantified parameter transfer rule

3 Examples

In this section we demonstrate the use of quantified rules by showing a number of
illustrative examples.

Parameter transfer. First of all we come back to the example mentioned in the intro-
duction (see Fig. 1). A rule that captures parameter transfer for an arbitrary number
of parameters is given in Fig. 4. This involves three levels of quantification: the usual
existentially quantified rule (corresponding to the sub-rule of an interaction scheme),
universal quantification over all Var-nodes connected to the signature of the method in
question, and existential quantification over the Value-node that the caller Frame has
for this method. Thus, the application condition specifies that the rule is enabled if and
only if there is a value for every parameter. The effect of the rule is then to create a
single new Frame (since this is done by the sub-rule) and deleter, respectively create
local-edges to the individual parameter Values.

The figure should be read as follows: the graphs and their hierarchical structure are
identified by vectors of natural numbers, of the form n1.n2 . . . — in this case, 1, 1.1
and 1.1.1. All elements appearing in a box (delineated by a dotted line) labelled n are
considered to be present in all graphs with an identifier extending n. For instance, since
the Method-node of Fig. 4 occurs in the box labelled 1, it is considered to be part of
graphs 1, 1.1 and 1.1.1. The Var-node, on the other hand, only appears in 1.1 and 1.1.1.
Arrows are considered to be part of the graph with the most deeply nested identifier
that they cross — so, the arrows from the Frame-nodes to the Value-node only occur in
graph 1.1.1.

On the right hand side of the figure the structure of the nested predicates is shown
explicitly, with both the nesting morphisms (vertical) and the implication morphisms
(horizontal). The shaded areas are the actual rules of the resulting interaction scheme
— in this case, a single sub-rule and a single elementary rule.

Petri Net transitions. A second example we present is inspired by [2, 3]: the firing
rule of a Petri net. We do this without giving the full definition of Petri nets or their
encoding in terms of graphs; let it suffice that there are three types of nodes, encoding
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1.1.1 : ∃

1.1 : ∀

1 : ∃

1.2 : ∀

1.2.1.1 : ∀

1.2.1 : ∃

∃

1 1

∅

1

∃

∀

1.1 1.1 1.1

1.2.1

1.2 1.2 1.2

1.1.1

1.2.1 1.2.1

1.1.1 1.1.1

∀
1.2.1.1

Fig. 5. Quantified condition/event net firing rule

(respectively) places, transitions and tokens, with edges expressing that a place is in the
in- or out-set of a transition, and that a token is on a place.

To make the example more challenging, we will take a condition/event net, which
carry as an additional restriction that a transition is disabled if one or more of the out-
places already have a token. The corresponding rule is given in Fig. 5. In this case
the sub-rule (1) does nothing; there are two elementary rules (1.1.1 and 1.2.1) to take
care of the in-places and out-places, respectively. The fourth level, 1.2.1.1, encodes
the negative condition on the out-places: it is universally quantified but has no further
sub-conditions, which due to Def. 2 means that, if the graph matches (meaning that the
corresponding out-place already has a token), the LHS predicate is always violated.

Note that, in this example, it is crucial that the token on the in-place is existen-
tially quantified (on level 1.1.1) rather than universally (on level 1.1): otherwise the rule
would not require that all in-places actually have a token, but rather remove all existing
tokens from all in-places.

It is also noteworthy that the only difference with the firing rule for P/T nets is in the
negative condition, 1.2.1.1. In particular, if we remove this condition and apply the rule
to a transition with an in-place with more than one token, the (amalgamated) rule would
have two different matches, each of which removes a single token from that in-place. In
fact, this corresponds to the individual token semantics of Petri nets (cf. [5]).

Gossipping Girls. Finally, we present an example for which we have carried out a small
experiment. It concerns a puzzle described (and solved analytically) in [12], which gives
rise to state spaces so large that no model checking approach without good symmetry
reduction can check cases of size greater than 6. In GROOVE (see [7]) we had so far
been able to tackle cases up to size 8; by using universal quantification we achieve an
improvement of an order of magnitude, so that we are now able to go one higher and
check size 9.
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∃

1 1

∅

1

1.2 1.2

1.3.1

1.3 1.3 1.3
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1.2

1.3.1.1

∀
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∀

∃ 1.3.1

1.11:∃

1.2:∀

1.2.1:∃

1.3.1:∃

1.3.1.1:∀ 1.3:∀

1.1:∀

1.2.1.1:∀

Fig. 6. Half of the quantified gossip rule

The puzzle is the following: given a number of girls, each of which has her own se-
cret, and given a protocol whereby girls repeatedly call each other, at which point both
girls divulge (to each other) all the secrets they know, what is the minimal number of
calls after which all girls can know all secrets? For those interested in studying the puz-
zle without having the answer, we have put it in a footnote.2 To simulate this problem
in a model checker, it is necessary to do a breadth-first search where all states are gener-
ated; the number of those is roughly in the order of the number of partitionings of a set
of size n, which grows super-exponentially with n. However, if the basic step, where
one girl calls another and they exchange all secrets, cannot be modelled atomically,
the simulation problem becomes much worse still. This is a clear case where universal
quantification is required.

The problem can be modelled simply by having Girl and Secret nodes, and know-
edges linking each Girl to the Secrets she knows. However, due to the fact that our
graphs can have parallel edges, we must take care explicitly that there is at most one
edge between each given Girl and Secret: it would make no sense (and make the state
space infinite) if we would allow girls to know secrets “more than once”.

The rule required is shown in Fig. 6. Here the graph 1.1 is once more a negative appli-
cation condition; apart from this, as in the condition/event rule there are two universally
quantified parts, this time completely symmetric, which represent the two directions of
communication.

Table 7 reports the results of the experiments. It clearly shows the gain achieved by
using quantification in the gossip rule: the “plain” version of the problem involves a
smaller-step protocol where each production just divulges a single secret, whereas in
the “quantified” version this is done atomically, using the quantified rule above. The
improvement is by an order of magnitude, both in the number of states and in the time
needed for exploration, although the gain in time is less (relatively speaking) than the
gain in number of states — which was to be expected since, naturally, the quantified
rule itself is more complex to evaluate.

2 The answer is 2n − 4 where n is the number of girls.
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Table 7. Comparison: plain versus quantified gossipping

plain quantified
# girls # states # sec # states # sec

5 381 2 52 1
6 4,448 11 353 4
7 80,394 240 3,684 45
8 2,309,763 13,308 60,990 1,400
9 – – 2,132,210 87,302

4 Conclusions

We briefly summarise the contribution of this paper and discuss related and future work.
In the context of existing work, the theory developed in this paper, and illustrated on

the examples in Sect. 3, can be presented in different ways.

– It is a combination of the ideas of nested graph predicates (or generalised applica-
tion conditions) and rule amalgamation;

– It provides a specification language for the covering conditions of rule amalgama-
tion.

In any case, we think to have found a powerful and new combination of rule amalgama-
tion and application conditions that is both theoretically justified and usable in practice.
As discussed below, we intend to provide tool support in the (near) future. The exper-
iment reported in Table 7 has shown that the ability to specify universal elements in
rules may have a large impact on verification performance.

At the same time, the work reported here raises a new question of a theoretical na-
ture. We have characterised quantified rules as cospans of morphisms in the category of
(nested) graph predicates, but the application of the rules does not use this characteri-
sation — instead it goes via the existing technique for rule amalgamation. Ideally, to fit
into the algebraic approach, we should establish a category where rule application cor-
responds to a double pullback (rather than a double pushout because the direction of the
arrows in the category of nested graph predicates is reversed with respect to graph mor-
phisms). A problem here, as pointed out in Sect. 2, is that the cospans that make up the
rules live in a different category than the objects we want to transform, i.e., the graphs,
and rather than one type of morphism from which we can build a pullback diagram, we
have three: implication morphisms (between predicates), satisfaction morphisms (from
predicates to graphs) and graph morphisms. As far as we are concerned, this issue is
entirely open.

Related work. We have already put this paper in the context of some important related
work in the introduction. Here we restrict ourselves to mentioning some more places
where the desire to formulate rules with more general or “programmable” matching
conditions has been noted or addressed.

Outside the algebraic graph rewriting approach, Schürr in [17] presents a different
type of formalisation for graph rewriting, which also offers the possibility to include
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“set-oriented pattern matching”, as it is called there. The relation between the expressive
power of the approach described there and the one in this paper is not easy to establish,
due to the differences in presentation and the different thrust of the approaches: Schürr’s
work aims at programming on the basis of graph transformation; in contrast, our interest
in modelling and verification imposes different requirements, where a powerful and
uniform theoretical foundation is important even at the price of the heavier machinery
of the algebraic approach.

More recently, Hoffmann in [11] proposes to use variables to capture part of the
unknown structure of a host graph and so make rules more generic. In this way, too, a
single finite structure can stand for a rule schema with a potentially unbounded number
of instances, which in this case differ by the concrete instantiation of the variables. Vari-
ables are proposed for different purposes; one of them, called clone variables, allows
to encode a limited form of universal matching. We conjecture that this corresponds to
a special case of the technique proposed here. This proposal is worked out in a more
application-oriented context in [15].

Also recently, Hausmann in his thesis [10] analyses the problem and proposes a lim-
ited solution based on so-called universally quantified structures, essentially consisting
of specially marked nodes and their adjacent edges. These give rise to an interaction
scheme in the sense of Taentzer [18]. As Hausmann observes, after listing a number
of different scenarios in which universal quantification is useful, “up to date no graph
transformation approach takes [all] these possibilities into account and provides distin-
guishing notations”. We concur with that statement; where we believe that the theory
presented here takes a step towards addressing the first part of this observation, the
second is still open.

Future work. We intend to extend the tool set GROOVE [7] to universally quantified
rules, along the lines described here. As described in Sect. 3, we have already carried
out an experiment, using an ad hoc implementation of a single quantified rule, showing
a speedup, for this particular (selected) case, of an order of magnitude.

For this purpose, as pointed in the above quote from [10], we need “distinguishing
notations”: the input to the GROOVE tools is (currently only) through a graph editor,
so the notation needs to be visual and understandable. In our case this first of all in-
volves developing a notation for nested graph predicates. The initial proposal of [16] is
not usable in practice. An alternative is visually separating the (elements residing on)
different levels of a nested graph condition, as in of Figs. 4–6, but this certainly also has
its limitations.

Acknowledgement. Many thanks to Theo Ruys for suggesting the Gossipping Girls
example, which has been a source of inspiration.
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Most modeling languages embody a particular idiom: the state/invariant/operations 
idiom for VDM and Z; the variable-update/temporal-logic idiom for SMV and Mur-
phi; the imperative-programming idiom for Promela and Zing; and so on. Fixing an 
idiom makes tools easier to build, and helps novice modellers. But it also makes the 
language less flexible. 

Alloy is a modelling language that was designed, in contrast, to support multiple 
idioms. Its core is a simple but expressive relational logic, whose semantics consists 
of a set of bindings of relations to global variables. In other words, an Alloy model is 
a constraint, and its meaning is a set of graphs with labelled edges of varying arity. 
The Alloy Analyzer is a constraint solver that can find a graph satisfying a given 
constraint. 

A variety of idioms can be readily expressed in Alloy, and analyzed using the Al-
loy Analyzer. You can structure the state as a global state variable with multiple com-
ponents, or follow an object-oriented style, where the state is collection of objects, 
each with components whose values vary of time. You can express and analyze indi-
vidual operation executions, using the inductive approach of languages like Z, or 
introduce traces and check them against linear temporal logic properties. Frame con-
ditions can be written as conventional equalities in each operation, or in the style 
invented by Reiter. 

In my talk, I’ll explain the basics of Alloy, show how to express a variety of idi-
oms, and describe some case studies using these idioms, including most recently an 
analysis by Tahina Ramanandro of the Mondex electronic purse (developed by 
NatWest Bank, and originally modelled in Z by Susan Stepney, David Cooper and 
Jim Woodcock). 
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Abstract. Reference counting is a simple and efficient way of performing graph 
transformation and management in which each graph node stores the number 
of pointers to it. Graph operations are performed in such a way to keep this 
property invariant. The major drawback of standard reference counting is its 
inability to work with cyclic structures, which appear ever so often in real 
applications. The author of this talk developed a series of cyclic reference 
counting algorithms whose applicability goes far beyond the implementation of 
garbage collectors in programming languages. This paper presents the 
milestones in the history of cyclic reference counting followed by two new 
applications: the consistent management of Web pages in the Internet and the 
correctly handling of processes in clusters and grids. 

Keywords: cyclic graphs, reference counting, webpage management, process 
management. 

1   Background 

Reference counting is a management technique for oriented graphs in which each 
node has a counter (RC) that stores the number of arcs or edges pointing at it. A node 
B is connected to a node A, (A→B), if and only if there is an oriented edge <A, B>, with 
source A and target B. A cell B is transitively connected to a cell A (A ∗

→B), if and only 

if there is a chain of oriented edges from A to B. Graph operations must keep the 
validity of the reference counter and are generally performed in small steps 
interleaved with computation. The graph has a root to which all nodes in use are 
transitively connected to. Unused nodes (RC=0) are in a free-list. Depending on the 
application, nodes are also known as cells or objects and oriented arcs or edges are 
called pointers or references. These terms are now on used as synonyms. 

Graph transformation and management are generally described by three operations: 

New(R) gets a cell U from the free-list and links it to the graph: 

New (R) = select U from free-list 
                  make_pointer <R, U> 

Copy(R, <S,T>) gets a cell R and a pointer <S, T> to create a pointer <R, T>, incrementing 
the counter of the target cell: 
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Copy(R, <S,T>) = make_pointer <R, T> 
                                              Increment RC(T)  

Delete performs pointer removal: 

Delete (R,S) = Remove <R,S> 
                         If (RC(S) == 1) then 
                             for T in Sons(S) do Delete(S, T); 
                             Link_to_free_list(S); 
                         else Decrement_RC(S); 

A cell T belongs to the bag Sons(S) iff there is a pointer <S,T>. 

Reference counting was developed by G.E.Collins [9] in the context of the 
implementation of programming languages to avoid the suspensions in LISP mark-
scan algorithm [32], the first automatic dynamic memory management algorithm. It 
has several advantages over mark-scan garbage collection (see [16] for a survey of the 
field). The most important of them is that it is a local and non-suspending algorithm It 
is the memory management technique of most widespread use today [1].  

The major drawback of standard reference counting is its inability to reclaim cyclic 
graphs, as reported by J.H.McBeth in [33]. Figure 01 presents the deletion of the last 
pointer that links an island of objects to root in a graph, introducing a space-leak [16]. 

root
root

RC=2 RC=1

RC=1

RC=1 RC=1

RC=1

 

Fig. 1. Isolating a cycle from root causes a space-leak 

In real applications cyclic structures appear very often. For instance, recursion is 
frequently represented by a cyclic graph and web pages have hyperlinks to other web 
pages that frequently point back to themselves. These are two examples that may give 
an account of the importance of being able to handle cycles in reference counting. 
Several researchers looked for solutions for this problem. Friedman and Wise [11] 
present an algorithm which can recover cyclic structures that are created in one 
operation, and never modified thereafter. This is the case for the cyclic representation 
of recursive functions in LISP and functional languages. Bobrow [6] gives an 
algorithm which can, in principle, recover all cyclic structures. His method relies on 
explicit information provided by the programmer. Bobrow collects nodes of the graph 
together to form groups and associates a reference count with a group rather than an 
individual data structure. Hughes’ algorithm [15] is based on Bobrow’s. It has the 
major advantage of not needing extra information provided by the programmer. 
Hughes’ algorithm is suitable for the implementation of referentially transparent 
(pure) functional languages such as Haskell [14]. Another algorithm for cyclic 
reference counting was presented by Brownbridge [7], which as explained by Salkild 
in his thesis [36], was not correct. Corrections to Browbridge’s algorithm were 
suggested independently by Salkild [36], Pepels et al. [35], and Thompson and Lins 
[39], yielding tremendously inefficient similar algorithms.  
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Reference [34] describes the first widely acknowledged general solution for cyclic 
reference counting. The Martinez-Wachenchauzer-Lins algorithm performs a local 
mark-scan whenever a pointer to a shared data structure is deleted. Lins largely 
improved the performance of the algorithm in two different ways. The first 
optimization [23] postpones the mark-scan, as much as possible. The benchmarking 
published in reference [23] showed that delaying the mark-scan by storing a reference 
to a shared deleted pointer in a control structure for later analysis largely increases the 
performance of the algorithm as a whole. This may even reduce the number of calls to 
the mark-scan to only collect cycles in the case of an empty free-list. The second 
optimization [24], presented in the Generational cyclic reference counting algorithm, 
relies on a creation-time stamp to help in cycle detection.   

Another important optimization to cyclic reference counting  [25] was made 
possible by  introducing a data structure, called the Jump_stack, which stores a 
reference to the “critical points” in the graph while performing the local marking (after 
the deletion of a pointer to a shared cell). These nodes are revisited directly, saving a 
whole scanning phase in [23]. The work reported in reference [31] makes the use of the 
Jump_stack more efficient, as the constant of linearity of the algorithm in [23] was 
reduced from 3 (n) to 2 (n), where n is the size of the sub-graph below the deleted 
(shared) pointer. This gain in efficiency was obtained without the need for creation-
time stamps and this lower complexity bound is obtained for all sub-graphs, being 
more general and lower cost in time and space than the generational solution [24]. 

The introduction of the Jump_stack and of the control structure has drastic impact 
in the performance of cyclic reference counting. A recent paper merges the Jump_stack 
and the control structure together in a single data structure called the Status_analyser. 
The introduction of the Status_analyser not only makes the description of the algorithm 
simpler and more uniform, but also brings gains in space-time performance in relation 
to the preceding algorithms.  

The initial attempts to develop concurrent garbage collection architectures [38, 3] 
were based on mark-scan algorithms. Intel even implemented such algorithms in 
hardware, as described in reference [37]. The aforementioned cyclic reference counting 
algorithms served as the basis for several parallel ones suitable for multi-threaded 
uniprocessors and strongly couple architectures. Before those, Wise proposed an on-
board reference count architecture [41] and Kakuta-Nakamura-Iida [17] presented a 
complex architecture based on reference counting, both unable to deal with cyclic data 
structures. The first general concurrent architecture for reference counting was 
presented by Lins in [21], which worked with two processors: one in charge of graph 
rewritings, called mutator, and another dedicated to garbage collection, the collector. 
Reference [22] generalized the previous architecture à la Lamport [18] allowing any 
number of mutators and collectors to work concurrently. Recent work, developed at 
IBM T.J.Watson Research Center, aimed at the efficient implementation of concurrent 
garbage collection [1] in the context of the Jalapeño Java virtual machine [2]. That 
architecture is based on Lins’ concurrent strongly-coupled algorithms [21, 22], which 
on their turn are based on the cyclic reference counting algorithms presented in [23, 
34]. Reference [28] introduces a new concurrent algorithm for cyclic reference 
counting which parallelizes the sequential algorithm presented in reference [27]. The 
architecture introduced is generalised to work with any number of mutators and 
collectors. Besides that, the collaboration between collectors is increased removing a 
criticism made by Blelloch and Cheng [5] to Lins’ previous concurrent architectures. 
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2   Distributed Reference Counting 

Distributed reference counting is a simple extension to uniprocessor reference 
counting. On a loosely coupled system the creation of a new reference to an object 
requires that a message be sent to it in order to increment its reference count. 
Likewise, if a remote reference is discarded then a decrement message must be sent. 
Special care must be taken to avoid an object being reclaimed while references to it 
still exist. This may happen if messages which refer to a certain object arrive in a 
different order than expected, for instance, if the message deleting the last reference to 
an object arrives at it before a copying message. The discard message will set the 
object's count to zero allowing it to be recycled. A solution to these problems appears 
in [19], in which a communication protocol provides a correct distributed reference 
count scheme at the cost of three messages per inter-processor reference. 

Weighted Reference Counting [4, 40] makes reference counting suitable for use in 
loosely-coupled multiprocessor architectures. It has low communication overhead, 
namely one message per inter-processor reference and extra space associated with 
each reference. It is not able to cope with cyclic data structures, however. Reference 
[30] extends Weighted Reference Counting with general algorithms for cyclic 
reference counting for uniprocessors described in references [23]. A new distributed 
concurrent algorithm for cyclic weighted reference counting is presented in reference 
[26]. In what follows we detail the features of weighted reference counting and one of 
its cyclic version taken as the basis for the new applications presented further on in 
his paper. 

2.1   Weighted Reference Counting 

Here, the original weighted reference counting algorithm as presented in references 
[4, 38] is presented. Each object or cell has a count in which its weight is stored. An 
object has fields or slots which store pointers. These pointers reference objects. A 
weight is associated with each pointer. The reference count field of a cell contains the 
total weight of all pointers that refer to it. A pointer from a cell R to a cell S is 
denoted by <R,S>, its weight by Weight(<R,S>) (or W(<R,S>), for short) and the 
reference count of cell S by RC(S). For all cells N, X the following invariant is 
maintained: 

RC(N) = Σ Weight(<X,N>) 
                                                                       N 

For simplicity, it is assumed that the graph formed by the objects in use has a 
starting point, which is called root. All cells in use (active or non-garbage cells) are 
transitively connected to root. For similar reasons all cells not in use are assumed to 
be linked together forming a free-list.  Any cell that is not reachable either from the 
free-list or by tracing pointers from root is garbage. 

The algorithm is described as in standard reference counting, in terms of three 
primitive operations on the graph: 

New(R) gets a cell U from the free-list and creates the pointer <R,U>, where R is a cell 
transitively  connected to root. The reference count of U and the weight of the pointer 
<R,U> are both equal to the maximum weight, say w. This can be expressed as: 
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New (R) = if free_list not empty then  
                          select U from free_list 
                             set RC (U) := w 
                             make pointer <R,U> 
                             set W(<R,U>) := w 
                                 else write_out "No cells available" 

Copy (R,<S,U>) creates the pointer <R,U>, where R and S are cells transitively 
connected to root and the pointer <S,U> exists. The weight of each pointer <R,U> and 
<S,U> is equal to half of the original weight of <S,U>. No communication with T takes 
place. 

 

Algorithmically, one has: 

Copy (R, <S,U>) = make pointer <R,U> 
                               set W(<R,U>) := W(<S,U>)/2 
                               set W(<S,U>) := W(<R,U>) 

Delete (<R,S>) removes the pointer <R,S> from the graph and re-adjusts the graph. Only 
now does inter-processor communication take place. Object R will send S the weight of 
the deleted pointer. This weight is subtracted from the reference count of S.  If its 
reference count is zero then S is free and its sons can also be reclaimed by recursive 
calls to Delete. A cell T belongs to the bag Sons(S) if and only if there is a pointer <S,T>. 

Delete (<R,S>) = send Message_Delete(<R,S>) to S  
     (in processor R) 
                            remove <R,S> 

Handle_Delete(<R,S>) = set RC(S) := RC(S) - W(<R,S>)    
     (in processor S) 
                                         if RC(S) = 0  then 
                                             for T in Sons (S) do 
                                                          Delete (<S,T>) 
                                             link S to free_list 

From this description it can be seen that pointer weights are powers of 2. This permits 
a practical technique for implementation: each pointer stores the logarithm of its 
weight. Indirection cells are used when copying pointers of weight one: to execute 
Copy(R<S,T>) when Weight(<S,T>)=1, an indirection cell U is created (in the same 
processing element as S so that no communication is necessary). The indirection cell 
simply contains a pointer to the target T - the pointer's weight is one so need not be 
stored. R and S are both set to refer to the indirection cell, each pointer weight W/2. 
Notice that the reference count of T need not be changed --- no communication is 
necessary. 
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2.2   Cyclic Weighted Reference Counting 

The algorithm presented in reference [30] merges together weighted reference 
counting and the cyclic reference counting algorithm presented in [23]. In what 
follows a new optimized version of the algorithm is presented based on the sequential 
algorithm presented in [27]. In addition to the weight of a cell, two extra fields are 
needed. The first field holds the color of the cell. Two colors are used: green and red. 
The second field is a secondary weight count. The usual initial condition that every 
cell except root is on the free-list is assumed. For simplicity, all operations are atomic, 
i.e. once an operation is started a processor does not perform any other operation until 
its conclusion. 

New(R) behaves as in Weighted Reference counting, but also sets the color of the new 
cell to green. 

New (R) = if free-list not empty then 
                 select U from free_list set RC (U) := w 
                     set colour (U) := green 
                     make pointer <R,U> 
                     set W(<R,U>) := w 
                 else write_out "No cells available" 

Copy (R,<S,T>) creates the pointer <R,T>, where R and S are cells transitively  
connected to root and the pointer <S,T> exists. The weight of each pointer <R,T> 
and <S,T> is equal to half of the original weight of <S,T>. No communication with 
T takes place. 

Copy (R, <S,T>) = make pointer <R,T> 
                              set W(<R,T>) := W(<S,T>)/2 
                              set W(<S,T>) := W(<R,T>) 

As in the weighted reference counting algorithm Delete forces communication to 
take place. The general idea of the cyclic algorithm here is to perform a local mark-
scan whenever a pointer to a shared structure is deleted. Again for simplicity, the 
condition that all processors suspend computation while the local mark-scan is 
performed is imposed. In fact, this condition can be relaxed substantially below. The 
algorithm works in two phases. First, the graph below the deleted pointer is marked; 
rearranging counts due to internal references and possible connecting points to root 
are stored in a data structure, called the Jump_stack. In phase two, the cells in the 
Jump_stack are visited directly and if external references are found the sub-graph 
below that point is remarked as ordinary cells (green), and have their counts reset. All 
other nodes are garbage cells, thus collected and returned to the free-list. 

Delete (<R,S>) extends the Weighted Reference Counting algorithm by invoking a 
local mark-scan on the sub-graph if S has other references. 

Delete (<R,S>) = send Message_Delete(<R,S>) to S             (in processor R) 
                            remove <R,S> 
Handle_Delete(<R,S>) = set RC(S) := RC(S) - W(<R,S>)       (in processor S) 
                                        if RC(S) = 0  then 
                                           for T in Sons (S) do 
                                                Delete (<S,T>) 
                                                link S to free_list 
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                                        else broadcast Suspend 
                                                mark_red(S) 
                                                scan(S) 
                                                collect(S) 
                                                broadcast Continue 

mark_red(S) is an auxiliary function which paints all the cells in the sub-graph below S 
as red. This indicates that these cells may be garbage. Each cell visited has its 
reference count decremented, leaving only weights which refer to pointers external to 
the sub-graph. 

mark_red (S) =  if colour (S) is green then          (in processor S) 
                             set colour (S) := red 
                             for T in Sons (S) do 
                             send Message_mark_red(<S,T>) to T 

Handle_mark_red (<S,T>) = set RC(T) := RC(T) - W(<S,T>)    
     (in processor T) 
                                   if (RC(T)>0 && T not in Jump_stack) then 
                                                      Jump_stack := T 
                                                      mark_red (T) 

Scan(S) makes processors verify whether the Jump_stack is empty. If so, the algori-
thm sends cells hanging from S to the free-list. If the Jump-stack is not empty then 
there are nodes in the graph to be analysed. If their reference count is greater than 
zero, there are external pointers linking the cell under observation to root and counts 
should be restored from that point on, by calling Scan_green(T). 

    scan (S) = If (Colour(S) == red && RC(S)>0) then  
           (in processor S) 
                         scan_green(T); 
                else For T in Jump_stack do 
                                           send Message_scan(T) 

     Handle_scan(T) = scan(T)    (in processor T)       
      

scan_green (S) paints green all the sub-graph below S. 

scan_green (S) = set colour (S) := green              (in processor S)                    
                              for T in Sons (S) do 
                                     send Message_scan_green(<S,T>) to T 

Handle_scan_green(<S,T>) = set RC(T) := RC(T) - W(<S,T>) 
  (in processor T) 
                                                 if colour (T) is not green then 
                                                        scan_green (T) 

collect(S) recovers all cells in the sub-graph below S (garbage) and links them to the 
free-list. 

collect(S) = if colour (S) is red then           (in processor S) 
                     for T in Sons(S) do 
                              send Message_collect(T) to T 
                              set back_of_control_queue := S 
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3   Webpage Management 

This section explains the scheme for the consistent management of web pages. The 
algorithm is an extension of the algorithm presented in [29] and is based on cyclic 
weighted reference counting as presented in the last section. Some assumptions are 
made to start with: 

• Each webpage at creation has a count in which its weight is stored.  
• Webpages may store hyperlinks, pointers to other webpages.  
• Each hyperlink has also a weight associated with.  
• A hyperlink from a webpage R to a webpage S is denoted by <R,S>, its weight by 

Weight(<R,S>) (or W(<R,S>), for short) and the reference count of webpage S by 
RC(S).  

• A webpage’s reference count field contains the total weight of all hyperlinks 
that refer to the webpage.  

• For all webpages N, X the following invariant is maintained: 
RC(N) = Σ Weight(<X,N>) 

                                                                      N 

• For simplicity, it is assumed that the graph formed by the webpages in use has a 
starting point, which is called root.  

• All webpages in use (active or non-garbage webpages) are transitively 
connected to root.  

• Any webpage that is not reachable by tracing hyperlinks from root are garbage 
and may be deleted.  

The algorithm is described in terms of three primitive operations on the graph: 

New(R) creates a webpage U from makes the hyperlink <R,U>, where R is a webpage 
transitively connected to root. The weighted reference count of U and the weight of 
the hyperlink <R,U> are both equal to the maximum weight, say w. This can be 
expressed as: 

New (R) = create webpage U 
                                 set RC (U) := w 
                                 make hyperlink <R,U> 
                                 set W(<R,U>) := w 

Copy (R,<S,T>) creates the hyperlink <R,T>, where R and S are webpages transitively 
connected to root and the hyperlink <S,T> exists. The weight of each hyperlink 
<R,T> and <S,T> is half of the original weight of <S,T>. No communication with T 
takes place. 

Copy (R, <S,T>) = make hyperlink <R,T> 
                                        set W(<R,T>) := W(<S,T>)/2 
                                        set W(<S,T>) := W(<R,T>) 

Delete (<R,S>) removes the hyperlink <R,S> from the graph and re-adjusts the graph. 
Only now does interhost communication take place. Webpages R will send S the 
weight of the deleted hyperlink. This weight is subtracted from the reference count of 
S.  If its reference count is zero then S is free and its Sons can also be reclaimed by 
recursive calls to Delete. A webpage T belongs to the bag Sons(S) if and only if there 
is a hyperlink <S,T>. 
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Delete (<R,S>) = send Message_Delete(<R,S>) to S            
                           (in the host that stores webpage R) 
                            remove <R,S> 

Handle_Delete(<R,S>) = set RC(S) := RC(S) - W(<R,S>)    
                          (in the host that stores webpage S) 
                                         if RC(S) = 0  then 
                                             for T in Sons (S) do Delete (<S,T>) 
                                             remove webpage S 
                                                          

From this description it can be seen that hyperlink weights are powers of 2. This 
permits a practical technique for implementation: each hyperlink stores the logarithm 
of its weight. Indirection webpages are used when copying hyperlinks of weight one: 
to execute Copy(R<S,T>) when Weight(<S,T>)=1, an indirection webpage U is created (in 
the same processing element as S so that no communication is necessary). The 
indirection webpage simply contains a hyperlink to the target T - the hyperlink's weight 
is one so need not be stored. R and S are both set to refer to the indirection webpage, 
each hyperlink weight W/2. Notice that the reference count of T need not be changed --
- no communication is necessary. One can also observe that the weight of a page lying 
on a cycle never drops to zero, similarly to the situation depicted on Figure 01. 

3.1   Allowing Self-references 

The algorithm presented here adapts the distributed algorithm presented in reference 
[29] for managing self-references in web pages. It may be seen as a cyclic extension 
of the algorithm presented in the last section. In addition to the weight of a webpage, 
two extra fields are needed. The first field holds the color of the webpage. Two colors 
are used: green and red. The second field is a secondary weight count. The usual 
initial condition that every webpage except root is on the free-list is assumed. For 
simplicity, all operations are atomic, i.e. once an operation is started a host does not 
perform any other operation until its conclusion. 
New(R) behaves as in Weighted Reference counting, but also sets the color of the new 
webpage to green. 

New (R) = create webpage 
                    set RC (U) := w 
                     set color (U) := green 
                     make hyperlink  <R,U> 
                     set W(<R,U>) := w     
            
Copy remains unchanged as in the original weighted reference counting algorithm: 

Copy (R, <S,T>) = make hyperlink <R,T> 
                                     set W(<R,T>) := W(<S,T>)/2 
                                     set W(<S,T>) := W(<R,T>) 

As in the weighted reference counting algorithm Delete forces communication to take 
place. The general idea of the cyclic algorithm here is to perform a local mark-scan 
whenever a pointer to a shared structure is deleted. Again for simplicity, the condition 
that all hosts suspend computation while the local mark-scan is performed is imposed. 
In fact, this condition can be relaxed substantially. 
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The algorithm works in two phases. First, the graph below the deleted pointer is 
marked; rearranging counts due to internal references and possible connecting points 
to root are stored in a data structure, called the Jump_stack. In phase two, the 
webpages in the Jump_stack are visited directly and if external references are found 
the sub-graph below that point is remarked as ordinary webpages (green), and have 
their counts reset. All other nodes are garbage webpages, thus removed. 

Delete (<R,S>) extends the conservative scheme above by invoking a local mark-scan 
on the sub-graph if S has other references.        

Delete (<R,S>) =  
       send Message_Delete(<R,S>) to S             (in host R) 
       remove hyperlink  <R,S> 

Handle_Delete(<R,S>) = 
       set RC(S) := RC(S) - W(<R,S>)                    (in host S) 
                                        if RC(S) = 0  then 
                                           for T in Sons (S) do 
                                                Delete (<S,T>) 
                                                     remove webpage S 
                                        else broadcast Suspend 
                                                mark_red(S) 
                                                scan(S) 
                                                collect(S) 
                                                broadcast Continue 
                                         
mark_red(S) is an auxiliary function which paints all the webpages in the sub-graph 
below S as red. This indicates that these webpages may be garbage. Each webpage 
visited has its reference count decremented, leaving only weights which refer to 
hyperlinks external to the sub-graph. 

mark_red (S) =                                                              (in host S) 
                          if colour (S) is green or black then 
                           set colour (S) := red 
                           for T in Sons (S) do 
                           send Message_mark_red(<S,T>) to host T  

Handle_mark_red (<S,T>) =  
                       set RC(T) := RC(T) - W(<S,T>)      (in host T) 
                                   if (RC(T)>0 && T not in Jump_stack) then 
                                                      Jump_stack := T 
                                                      mark_red (T) 

Scan(S) makes hosts verify whether the Jump_stack is empty. If so, the algorithm 
disposes the web pages hanging from S. If the Jump-stack is not empty then there are 
nodes in the graph to be analyzed. If their reference count is greater than zero, there 
are external hyperlinks linking the webpage under observation to root and counts 
should be restored from that point on, by calling Scan_green(T). 

    scan (S) =                                                                    (in host S) 
                   If (Colour(S) == red && RC(S)>0) 
               then  scan_green 
                  else For T in Jump_stack do 
                   send Message_scan(T) 
 
             Handle_scan(T) = scan(T)                                     (in host T)       
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scan_green (S) paints green all the sub-graph below S. 
         scan_green (S) = set colour (S) := green              (in host S)                    
                                        for T in Sons (S) do 
                                        send Message_scan_green(<S,T>) to T 

             Handle_scan_green(<S,T>) =                               (in host T) 
                               set RC(T) := RC(T) - W(<S,T>) 
                               if colour (T) is not green then 
                               scan_green (T) 

collect(S) disposes all garbage webpages in the sub-graph below S. 

collect(S) = if colour (S) is red then                                   (in host S) 
                     for T in Sons(S) do 
                              send Message_collect(T) to host  T 

The algorithm presented is robust with respect to the loss of messages. 

3   Distributed Speculative Process Management 

Computer networks have opened a wide range of new possibilities in parallel 
computation. The recent technological advances have made possible to distribute 
tasks in parallel over processors spread in a network [8]. In general, if these 
processors are either a few meters to kilometers apart forming a LAN (Local Area 
Network) the parallel architecture is called a cluster. In the case of the processors 
being from several kilometers to even continents apart one has a WAN or internet. 
Exploiting parallelism in such network is called a grid. Both clusters and grids are 
part of the technological reality of today [12, 10]. 

Speculative parallelism is a control strategy often used in different architectures. 
Tasks are generated and start running and later on the evaluation process decide 
whether needed or not. Unnecessary tasks either terminated or not, are aborted and the 
resources are allocated into another task. The simplest example of speculative 
parallelism is provided by the parallel execution of an if-then-else statement where 
the conditional clause and both branches are sparkled simultaneously. Once finished 
the evaluation of the clause the process knows that only one of the results is needed, 
and the other should be automatically discarded. This section presents how the cyclic 
weighted algorithm may be used to control processes in a distributed environment 
such as a grid. 

Hudak and Keller [13] were the first to mention the possibility of using a garbage 
collection mechanism for doing process management. They did not go any further 
than saying that cells in memory allocation play a similar role to a process, however. 
Inter-process and inter-processor communication should be kept as low as possible. 
Load balancing and process (or task) granularity are two other issues of paramount 
importance to improve the cluster or grid throughput. These are considered out of the 
scope of the process management. 

The distributed process management algorithm proposed here is based on weighted 
reference counting. In general a processor (or process) may generate another (new) 
process. The algorithm links a weighted reference count to each process and also to each 
inter-process reference. Process creation of a new process U by a process P is done by: 
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New_process (P) = create process U 
                                 set RC (U) := w 
                                 make_reference <P,U> 
                                 set W(<P,U>) := w 

In process management reference copying is an operation of seldom use. Instead of 
copy, fork or process replication is more often used. The simplest way to fork a 
process is to make the original process to work as an indirection node to two new 
processes exactly equal, thus: 

Fork_process (P) = create process U (copy_of_P) 
                                create process V (copy_of_P) 
                                 set RC (U) := w 
                                 set RC (V) := w 
                                 make_reference <P,U> 
                                 set W(<P,U>) := w/2 
                                 make_reference <P,V> 
                                 set W(<P,V>) := w/2 

Processes are killed or deleted only whenever the information they are processing is 
no longer needed. In reality, the global parent process (root) “looses interest” in the 
information the process (or processor) is evaluating and that means that the reference 
is discarded. 

Delete (<R,S>) = process R sends Message_Delete(<R,S>) to S            
                            Remove_reference <R,S> 
 
Receive_Delete(<R,S>) = set RC(S) := RC(S) - W(<R,S>)    
                                          if RC(S) = 0  then 
                                             for T in Sons (S) do Delete (<S,T>) 
                                             kill_process_ S 

In theory, dynamic process creation may form cycles through some form of general 
recursion. No real application so far has made use of such complex process setting. 
The process management algorithm as presented above is unable to work with cycles. 
One may observe that the algorithm above work consistently with process migration 
in a simple way. 

4   Conclusions 

Whenever an application may be modeled by an oriented graph, reference counting is 
an elegant and efficient way of performing the management of operations. The 
problem of being unable to work with cyclic graphs has already been overcome.  

Weighted reference counting is a simple way of working with reference counting 
in a distributed environment. Its cyclic version, opens a wide range of new 
applications, two of them are presented here: webpage and process management in 
distributed environments.  

The webpage management algorithm presented in this paper consistently avoids 
the burden of following hyperlinks to non-existent web pages. Its space overhead is 
minimal: one count to store the number of references to a page and also a similar 
count in each hyperlink. The communication cost of the proposed scheme is only one 
inter-host message per each non-local hyperlink deleted. The algorithm is robust in 
relation to the order messages are dispatch and arrive. The algorithm imposes no 
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suspension at any time and the operations performed to the connectivity of the graph 
involve only repositories that are transitively connected to the webpage under 
analysis. Thus, that is by far more efficient than stop-the-world alternatives that 
would suspend all changes to the connectivity of the World-Wide-Web to be able to 
globally check the status of web pages. The consistent management scheme proposed 
herein is completely orthogonal to web browsing, thus it is transparent to users. 

Very often web pages form cycles as related pages point at each other. This 
severely complicates any scheme for distributed memory management and, in 
particular the management of web pages. Although, they do not form dangling 
references they case space leaks as the web pages are kept unnecessarily. The 
algorithm presented herein is able to recycle web pages that form cycles removing 
such burden. 

Process management in distributed systems is an area of rising importance due to 
the dissemination of cluster and grid computing. A scheme for distributed process 
management based on weighted reference counting is proposed.  
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Abstract. Sesqui-pushout (sqpo) rewriting—“sesqui” means “one and
a half” in Latin—is a new algebraic approach to abstract rewriting in
any category. sqpo rewriting is a deterministic and conservative extension
of double-pushout (dpo) rewriting, which allows to model “deletion in
unknown context”, a typical feature of single-pushout (spo) rewriting,
as well as cloning.

After illustrating the expressiveness of the proposed approach through
a case study modelling an access control system, we discuss sufficient
conditions for the existence of final pullback complements and we analyze
the relationship between sqpo and the classical dpo and spo approaches.

1 Introduction

In the area of graph transformation the two main categorical approaches used to
describe the effect of applying a rule to a graph are the double-pushout approach
(dpo [7,2]) and the single-pushout approach (spo [17,5]). Both approaches use
concepts of category theory to obtain an elegant and compact description of
graph rewriting, but they differ with respect to the kind of morphisms under
consideration, the form of the rules, and the diagrams the rewriting steps are
based on. The aim of this paper is to propose a new categorical approach to
rewriting that combines the good properties of both approaches and improves
them by allowing to model cloning of structures in a natural way.

In the dpo approach [7,2] a rule q is a span q = L α←− K
β−→ R of arrows in

a category of graphs and total graph morphisms. Given an occurrence of q in a
graph G, i.e., a match morphism m : L → G from the left-hand side L to G, to
apply q to G one first deletes from G the part of the occurrence of L which is
not present in the interface K, and then one adds to the resulting graph those
parts of the right-hand side R which are not in the image of K.

This construction is described by a double-
pushout diagram as in (1) which, given q and
m, can be constructed if there exists a pushout
complement of α and m, i.e., arrows A

γ←− D i←−
K making the resulting square a pushout.

L

m
��

K
α�� β ��

i
��

R

c
��

A

��
Dγ

��
δ

�� B

�� (1)
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Since the pushout complement is not characterised by a universal property,
the dpo approach is in general non-deterministic: given a rule and a match,
there could be several (possibly non-isomorphic) resulting graphs. To guarantee
determinism, one usually sticks to left-linear rules, i.e., α must be injective. In
this case, it is known that a pushout complement of α and m exists if and only if
m satisfies the so-called dangling and identification condition with respect to α.

In the spo approach [17,5], instead, a rule is an arrow q : L ⇀ R in a cate-
gory of graphs and partial graph morphisms. The application of the rule q to
a match m is modelled by a single pushout in this category and thus, by the
universal property of pushouts, spo rewriting is instrinsically deterministic. It is
well known that a partial map q : L ⇀ R can be represented, in a category with
total maps as arrows, as a span L ←−� dom(q) q−→ R, where dom(q) is the domain
of definition of q. Given an spo rule and a match, the result of spo rewriting is
isomorphic to the result of dpo rewriting using the corresponding span and the
same match, provided that the pushout complement exists. Thus, as explained
in [17,5], spo rewriting on graphs (or similar structures) subsumes dpo rewrit-
ing: this fact is exploited in practice by the agg system1, which implements spo
rewriting but offers to developers both spo and dpo.

Unlike dpo, spo rewriting is possible even if the match does not satisfy the
dangling or identification condition w.r.t. the rule. The dangling condition re-
quires that if a node of G is to be deleted, then any arc incident to it is deleted
as well. If this condition does not hold, both the node and all incident arcs are
deleted in the graph resulting from spo rewriting. Thus spo rewriting allows to
model deletion in unknown context, and this is recognized as a useful feature in
several applications. The identification condition does not allow the match to
identify in G an item to be preserved by the rule with one to be deleted. If this
condition does not hold, the spo construction deletes that item from G, and thus
the morphism from R to the resulting graph is partial. Most often this feature
(called “precedence of deletion over preservation”) is ruled out by restricting the
class of allowed matches.

The use of categorical machinery made possible, along the years, the gen-
eralization of basic definitions and main results of both the dpo and the spo
approach to a more abstract setting, where the structures on which rewriting is
performed are objects of a generic category satisfying suitable properties. The
characterization of such properties has been the main topic of the theory of
High Level Replacement (hlr) systems [4,6], and recently the definition of ad-
hesive categories [16] (and their variants) provided a more manageable definition
of them for the dpo case. The generalization of the spo approach to suitable
categories of spans has been elaborated in [14,18].

Here we propose a new categorical approach to rewriting, called sesqui-pushout
(sqpo) rewriting. Following the trend described in the last paragraph, the ap-
proach is presented abstractly in an arbitrary category. Rules are dpo-like spans
of arrows, and a rewriting step is defined as for dpo rewriting, but the left
pushout is replaced by a pullback satisfying a certain universal property: the

1 See http://tfs.cs.tu-berlin.de/agg/



32 A. Corradini et al.

role of the pushout complement is played now by the so-called final pullback
complement (pbc).

Since final pullback complements are unique up to isomorphism, sqpo rewrit-
ing is deterministic. For left-linear rules, the final pullback complement coincides
with the pushout complement, if the latter exists, and in this sense sqpo rewrit-
ing subsumes dpo rewriting. When the pushout complement does not exist but
the final pullback complement does, sqpo rewriting models faithfully deletion
in unknown context, like the spo: dangling edges are removed. Strictly speak-
ing, however, sesqui-pushout rewriting does not subsume spo rewriting fully. In
fact, by construction, there is always a total morphism from the right-hand side
of the rule to the result of a sesqui-pushout rewriting step; thus if the match
identifies items to be deleted with items to be preserved then the final pullback
complement does not exist and rewriting is not allowed.

Interestingly, the final pullback complement is unique (if it exists) even for
rules which are not left-linear, unlike the pushout complement. In this case, the
final pullback complement is not a pushout complement in general, but it models
faithfully the effect of cloning, at least for some concrete structures where the
details have been worked out.

Based on the above discussion, we can explain the name we chose for the
proposed approach. “Sesqui” is the latin word for “one and a half” and suggests
that our approach is placed halfway between the single-pushout and the double-
pushout approach. In fact, metodologically, it is based on a construction similar
to the dpo, but it captures essential features of the spo as well.

After introducing the basic definitions and properties of sqpo rewriting in
Sec. 2, we demonstrate the expressiveness of the approach in Sec. 3 by modelling
the access control problem described in [11]. In Sec. 4 we show how to construct
the final pullback complement in some concrete categories, and we discuss its
existence in general. Sec. 5 is dedicated to the comparison of sqpo rewriting
with dpo and spo rewriting, and also presents a Local Church Rosser theorem
for parallel independent direct derivations. A concluding section summarizes the
results of the paper and discusses further topics of investigation.

2 Defining Sesqui-Pushout Rewriting

In this section we present only the fundamentals of sesqui-pushout rewriting: an
example illustrating the expressiveness of this new approach is presented in the
next section.

Let C be a category, about which we do not make any assumption, for the
time being: objects and arrows belong to C if not specified otherwise. As in
the dpo approach, a rule q is a span of arrows q = L α←− K

β−→ R. Now the
general idea of sqpo-rewriting is to replace the left square of a dpo rewriting
diagram by a “most general” pullback complement with respect to the rule and
the matching arrow, called a final pullback complement [18,3]. We will discuss in
Section 4 how the universal property characterizing this construction is related
to the right adjoint to the pullback functor.
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After the general definition, we list some basic properties of final pullback
complements and we present a simpler characterization which is applicable when
the rule q is left-linear, i.e., α is mono.

Definition 1 (Sesqui-pushout rewriting). Let q = L α←− K
β−→ R be a rule,

and m : L → A be an arrow, called a match. Then we write A
〈m,q〉===⇒ B, and

we say that there is a direct derivation from A to B (using m and q) if we can
construct a diagram such as (2) where the following conditions hold:

– the right square is a pushout, and
– the arrows A

γ←− D i←− K form a final pull-
back complement of A m←− L α←− K, (this is
indicated by the sign ��� in Diagram (2))

L

m
��

K���
α�� β ��

i
��

R

c
��

A Dγ
��

δ
�� B

�� (2)

where a final pullback complement of A m←− L α←− K is defined to be a pair of
arrows A

γ←− D i←− K such that

1. the square K α−→ L m−→ A
γ←− D i←− K is a pullback,

and
2. for each pullback K ′ α′−→ L m−→ A

γ′←− D′ i′←− K ′,
and for each f : K ′ → K such that α ◦ f = α′,
there exists a unique f̂ : D′ → D such that γ ◦ f̂ =
γ′ and i ◦ f = f̂ ◦ i′ (see the right hand diagram).

It immediately follows from the defining properties that the final pullback com-
plement of any pair of composable arrows is unique up to isomorphism, if it
exists. Additionally, if the rule is left-linear, i.e., L α←− K is mono, then also γ
is mono, and it can be characterized as the largest pullback complement, where
largest is interpreted in the poset of subobjects of A. These facts are formalized
in the following lemma.

Lemma 2 (Properties of final pullback complements)

In the square on the right let A
γ←− D i←− K be a final

pullback complement. Then the following facts hold.

L
m ��

K���
α��

i��
A Dγ

��

1. If A
γ′←− D′ i′←− K is another final pullback comple-

ment of A m←− L α←− K, then there is a unique isomor-
phism φ : D′ → D such that φ ◦ i′ = i and γ ◦ φ = γ′.
Thus final pullback complements are unique up to iso.

L
m

��

K��
α��

i′
��

i

��
A D′γ′

�� D
∼=

γ

��

2. If additionally α is monic then
(a) the arrow γ is monic
(b) the arrow γ can be characterized as the largest among the subobjects of

A that provide a pullback complement of A m←− L α←−� K, i.e.

for every pullback complement
A

δ←−� E
j←− K there exists a

unique arrow � : E → D such
that i = � ◦ j and δ = γ ◦ �.

L
m

��

K��
��α��

j
��

L
m

��

K��α��

i��
j

		
A E��

δ
��

⇒
A D��γ�� E

���� �


δ

��

K ′

i′

α′

f
L

m

Kα

i

A D
γ

D′γ′
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It is worth stressing that, by the first point of Lemma 2, uniqueness of final
pullback complements holds in any category, even if α is not monic: this fact
guarantees that the result of sqpo rewriting is determined (up to iso), also in
situations where dpo rewriting is “ambiguous” because of the existence of several
pushout complements.

3 Modelling the Access Control Problem

To show the expressive power of sqpo rewriting, we model the basic Access
Control systems of [11]; for this we use simple graphs, i.e., graphs with at most
one edge of each type between two nodes. This category has all pullbacks and
pushouts, and hence a rule is applicable at a match if the relevant final pullback
complement exists. Unlike pullbacks, pushouts are not computed componentwise
on nodes and edges, because multiple parallel edges are not allowed. As discussed
in [16], the category of simple graphs is quasi-adhesive; this implies, among
other things, that pushout complements along regular monos are unique (if they
exists).2

The Discrete Access Control model [11] considers a protection system, which
controls the access of a set of subjects to a set of objects. Moreover suitable com-
mands can change the state of the system. The corresponding decision problem
consists in deciding whether a subject can obtain a certain right after apply-
ing a sequence of commands to a given initial state. Commands are sequences
of primitive operations guarded by a Boolean condition: such operations model
elementary changes of the system. Here we shall model the configurations of a
system and the primitive operations. We also introduce a new operation called
clone, which allows us to show a non-left-linear rule at work.

Definition 3 (Protection system). A protection system P = (R, C) consists
of a finite set of rights R and a finite set of commands C. A configuration
of a protection system is a triple c = (S, O, A), where S is a set of current
subjects, O is a set of current objects and A is an access matrix A[s, o] ⊆ R,
with s ∈ S, o ∈ O.

We model the configurations of a protection system as simple graphs, and the
primitive operations as sqpo-rules. We depict subjects by shaded boxes ,
objects by rounded boxes �� ���� �	�� ���� �	 , and if a subject possesses a right i ∈ R to an
object, we draw a labelled arc between them: . In the examples we
use the common rights for “read” and “write” access, which are labelled by r
and w, respectively.

The transformations of a configuration are defined by six primitive operations.
They are create subject Xs and create object Xo for creating subjects and
objects, destroy subject Xs and destroy object Xo for destroying subjects
and objects, and finally enter i into(Xs, Xo) and delete i from(Xs, Xo) for

2 A regular mono is an arrow which is an equalizer of some pair of parallel arrows. In
the category of simple graphs, an injective morphism is regular if it reflects edges.

i
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©1©1
α
←− ∅

β
−→ ∅

↓m ↓ ↓

©1©1r

r wr ← r → r

(a) Application of destroySubject

enterRightW

α
←−

β
−→ w

deleteRightW

w
α
←−

β
−→

(b) Rules

Fig. 1. Basic rules for transforming an Access Control configuration

entering and deleting rights. Figure 1(a) shows the destruction of a subject
by the application of the rule destroySubject, i.e., how the corresponding node
and its incident edges in the graph are deleted. The morphisms are defined
by mappings according to the numbers within the boxes. The left square is
clearly a final pullback with the bottom right graph being its final pullback
complement object. In fact, the square is a pullback, and it satisfies Condition
2(b) of Lemma 2. Note that the effect of sqpo rewriting is similar to spo, while
dpo rewriting would not be applicable here.

Figure 1(b) depicts the rules which correspond to the operations of establish-
ing and deleting the “write” access to a subject.

©1©1
w

©2©2

α
←−

©1©1

©2©2

β
−→

©1©1

©2©2

↓m ↓ ↓

cPcP staffNurse©1staffNurse©1r

wr
mH©2mH©2

←
cPcP staffNurse©1staffNurse©1r

r
mH©2mH©2

→
cPcP staffNurse©1staffNurse©1r

r
mH©2mH©2

Fig. 2. Application of deleteRightW

Figure 2 shows the application of deleteRightW using sqpo rewriting: the left
square is clearly a final pullback. Notice that in this case the dpo approach
would be non-deterministic, as there are two non-isomorphic pushout comple-
ments for the given α and L m−→ G: the shown final pullback complement and G
itself. Indeed, the category of simple graphs is quasi-adhesive, and uniqueness of
pushout complements is guaranteed along regular monos only, i.e., morphisms
reflecting edges: but α is not regular.

A new and interesting aspect of non-linear rules is used in Figure 3, where a
subject is cloned. The final pullback complement construction automatically gen-
erates copies of the adjacent edges (cf. Construction 5). The rule cloneSubject
is applied to a configuration representing a staff nurse, which has access to two
objects, namely cP (representing contact information of patients) and mH (de-
noting medical history information of patients). When a hospital employs a new
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©1 ©2©1 ©2
α
←−

©1©1

©2©2

β
−→

©1©1

©2©2

↓m ↓ ↓

staffNurse©1 ©2staffNurse©1 ©2
r

r

w

cPcP mHmH ←

staffNurse©1staffNurse©1
r

r

w

cPcP mHmH

newNurse©2newNurse©2
r

r

w

→

staffNurse©1staffNurse©1
r

r

w

cPcP mHmH

newNurse©2newNurse©2
r

r

w

Fig. 3. Application of cloneSubject

nurse, the administrator might not want to define all rights separately again. In
general, in systems with complex configurations, operations which model cloning
are of great help.

The role based model for Access Control rbac described in [8] and [20] is
widely used, and it can be considered as an extension of the model in [11].
Graph transformation is used in [15] for defining and verifying an rbac model:
unlike in our approach, negative application conditions are needed there to avoid
multiple edges.

4 Existence and Construction of Final Pullback
Complements

In this section we first give, as it is usual for algebraic approaches to rewrit-
ing, a concrete set-based description of sqpo-rewriting steps in the category of
graphs; since pushouts are treated as usual, we only provide a construction for
final pullback complements. In the sequel we address the question under which
conditions final pullback complements exist and how they may be constructed
“abstractly” in categories where right adjoints to pullback functors exist (most
of the categories used in practice are of this kind).

4.1 Constructing Final Pullback Complements in Graph

Since in practice one usually works with concrete objects, i.e., with objects that
are represantable by structured sets, it is useful to present a set-theoretical con-
struction of final pullback complements in a sample category of this kind. We
consider here directed (multi-)graphs, but the construction can be generalized
easily to algebras over an arbitrary graph structure, i.e., a signature with unary
operator symbols only [17]. We present explicit constructions of the final pull-
back complement in Graph for the case in which either the left morphism of the
rule or the match are monic, i.e., injective. For left-linear rules, we also provide
a necessary and sufficient condition for its existence.

Recall that a graph is a tuple G = 〈VG, EG, srcG : EG → VG, tgt
G

: EG → VG〉
where VG and EG are disjoint sets, which are called vertices and edges, respec-
tively; the latter are connected according to the source and target functions
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srcG and tgt
G
, respectively. A graph morphism f : G → H is a pair 〈fV : VG →

VH, fE : EG → EH〉 such that srcH ◦ fE = fV ◦ srcG and tgtH ◦ fE = fV ◦ tgtG. The
category of graphs and graph morphisms is denoted by Graph.

Left-linear rules. Given a rule q = L α←−� K
β−→ R with monic α (that we

assume w.l.o.g. to be an inclusion) and a match m : L → A, it is easy to show
that there does not exist any pullback complement (and thus, a fortiori, any
final pbc) of A m←− L α←−� K if the match m is not conflict-free with respect to α.

Definition 4 (Conflict freeness). A match m : L → A is conflict-free with
respect to L

⊇←− K if m(L \ K) ∩ m(K) = ∅.

For example, for the non-conflict-free match m shown
to the right, any graph closing the square and making
it commutative should contain at least one node (the
image of ©1 under the vertical arrow), but in this case
the resulting square would not be a pullback.

{©1 , ©2 }
m 1�→0

2�→0

��

{©1 }�� ⊇ ��

��
{©0 } ?��

It is worth observing that conflict-freeness is weaker than other conditions that
are often imposed on matches in the framework of algebraic graph rewriting. For
example, if the match m is monic, d-injective [17], or it satisfies the identification
condition of dpo rewriting, then it is conflict-free.

Assuming conflict-freeness, the final pullback complement exists in Graph,
and it can be described as follows as a subgraph of A (according to Condition 2(b)
of Lemma 2).

Construction 5 (Final pbc for left-linear rules in Graph). Let be given
a rule L ⊇←−� K

β−→ R and a conflict-free match m : L → A. Then the final pbc
for A m←− L

⊇←−� K is given by A
⊇←−� D

m|K←−−− K, where D is defined as

VD = VA \ m(VL \ VK)
ED = {e ∈ EA \ m(EL \ EK) | srcA(e) ∈ VD ∧ tgt

A
(e) ∈ VD}

It is evident from the construction that all the edges of A that are connected
to deleted nodes are deleted as well, thus D is a well-defined graph; it is easily
shown that it is indeed a pullback complement of the given arrows, and that no
larger subgraph of A would be a pbc.

General rules, monic matches. If the left-hand side of the rule is not monic
but the match is, the final pullback complement exists in Graph and it can be
described as follows.

Construction 6 (Final pbc for monic matches in Graph). Let be given
a rule L α←− K

β−→ R and a monic match m : L �−→ A. Then a final pullback
complement A

γ←− D i←− K can be constructed as follows.
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VD =
(
VA \ m(VL)

) ·∪ VK, γV(u) =
{

m(αV(u)) if u ∈ VK

u if u ∈ VA

ED =
{ 〈e, u, v〉 | e ∈ EA \ m(EL) ∧ u, v ∈ VD ∧

srcA(e) = γV(u) ∧ tgtA(e) = γV(v)

}
·∪ EK

γE(e) =
{

e′ if e = 〈e′, u, v〉
m(αE (e)) otherwise

srcD(e) =
{

u if e = 〈e′, u, v〉
srcK(e) otherwise tgtD(e) =

{
v if e = 〈e′, u, v〉
tgtK(e) otherwise

In words, the resulting graph D contains a copy of K, a copy of the largest
subgraph of A which is not in the image of m, and a suitable number of copies
of each arc of A incident to a node in m(α(K)): this has the effect of “cloning”
part of A. The proof that D is indeed a final pbc is omitted for space reasons.

Example 7 (Final pbc of a non-left-linear rule). According to Construction 6,
the final pullback complement for

�
◦ m←− ◦ α←− ◦ ◦ in Graph is

�

◦��

�
◦ . Notice that

there are four pushout complements of the given arrows: ◦

�

◦ , ◦ �◦, ◦�◦, and ◦
�

◦ ;
hence in this case the final pbc is not a pushout complement. Incidentally, it
can be shown that also in the category of simple graphs

�

◦��

�
◦ is a final pbc of

the given arrows, but in this case it is a pushout complement as well.
Interestingly, note that one can derive from

�

◦ a clique with n nodes by n − 1
consecutive applications of the rule ◦ α←− ◦ ◦ id−→ ◦ ◦.

General rules, general matches. In the case of non-left-linear rules and
non-injective matches, the exact conditions for the existence of final pullback
complements in Graph and the details of its construction are rather involved,
and go beyond the scope of this paper; the interested reader is encouraged to
use the constructions of [9] to specialize the results in Section 4.2 to the cat-
egory of graphs. One of the main issues of this general case is that the fi-
nal pullback construction cannot be performed componentwise on nodes and
edges.

Recall that in the case of dpo-rewriting, restricting to monic matches actually
enhances expressiveness [10], in the sense of modelling power. It is left as future
work to check if a similar result holds for sqpo-rewriting as well.

4.2 Final Pullback Complements in Arbitrary Categories

In this section we provide sufficient conditions for the existence of final pullback
complements in a category. We first need to introduce some categorical concepts.
We assume a fixed category C, to which all mentioned objects and arrows belong
unless we say otherwise.

Definition 8 (Slice category and pullback functor). Let A be an object.
The slice category over A, denoted by C↓A, has all C-arrows (B β−→ A) with



Sesqui-Pushout Rewriting 39

codomain A as objects, and given two objects (B β−→ A) and (C γ−→ A) of C↓A
each C-arrow f : B → C satisfying the equality γ ◦ f = β is an arrow f : β → γ
in C↓A.
A pullback functor along an arrow m : L → A is a
functor m∗ : C↓A → C↓L which maps each object

β ∈ ob(C↓A) to m∗(β) ∈ ob(C↓L)

and provides an additional arrow m′
β : m∗(B) → B

such that the right hand diagram is a pullback.
Further each arrow f : β → γ in C↓A is mapped to the
unique arrow m∗(f) : m∗(β) → m∗(γ) such that the
following is true, by the universal property of pullbacks:

m∗(γ) ◦ m∗(f ) = m∗(β) ∧ m′
γ ◦ m∗(f ) = f ◦ m′

β.

L
m

m∗(B)
m∗(β)

m′
β

A B
β

•

m∗(f)
L

m

•

A C
γ

B
β

f

Given a category C and an arrow m such that the pullback functor m∗ : C↓A →
C↓L exists, the right adjoint to m∗, if it exists, is usually denoted by Πm : C↓L →
C↓A. Even if Πm does not exist, it might exist partially at an object α ∈
ob(C↓L). In this case Πm(α) satisfies a univeral property which can be described
as follows.

Definition 9 (Right adjoints (partial))
Let m : L → A be an arrow, let m∗ : C↓A →
C↓L be a pullback functor, and let (K α−→ L) ∈
ob(C↓L) be an object. Then the right adjoint
Πm : C↓L → C↓A to m∗ exists partially at α if
there is an object Πm(α) ∈ C↓A and an arrow
εα : m∗(Πm(α)

) → α in C↓L such that for ev-
ery (D δ−→ A) ∈ ob(C↓A) and each f : m∗(δ) →
α there exists a unique f̂ : δ → Πm(α) such that
εα ◦ m∗(f̂) = f .

L

m

Kα
•

m∗(bf)

m∗(δ)

f

•

εα

m∗(Πm(α))

A •
Πm(α)

D

δ

bf

To illustrate these definitions we give an example, based on [9], where we talk
about the simpler right adjoint to the preimage functor in Set.

Example 10 (The adjunction m−1 � ∀m) Consider a function m : L→ A and the
pre-image functor m−1 : 〈℘(A),⊆〉 → 〈℘(L),⊆〉 (recall that every poset gives rise
to a category). The functor m−1 is essentially the restriction of a pullback functor
m∗ : Set↓A → Set↓L, since given a subset D ∈ ℘(A), m∗ maps the inclusion
morphism D ⊆�−→ A to some mono m∗(D) �−→ L, such that m∗(D) ∼= m−1(D).
For each subset K ∈ ℘(L) we define the set ∀m(K) ⊆ A by

∀m(K) = {a ∈ A | ∀� ∈ m−1({a}). � ∈ K}.

In fact, this definition of ∀m makes it a functor ∀m : 〈℘(L),⊆〉 → 〈℘(A),⊆〉.
Note that ∀m can be seen as the restriction of Πm : Set↓L → Set↓A to the
subcategory 〈℘(L),⊆〉, since Πm maps monos into L to monos into A.
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Further one verifies that for all subsets D ∈ ℘(A)

m−1(D) ⊆ K if and only if D ⊆ ∀m(K). (3)

To make the link to Definition 9 more precise, note that the co-unit for K
corresponds to the inclusion m−1

(∀m(K)
) ⊆ K; further the Equivalence (3)

implies that for all sets D ∈ ℘(A), if the inclusion m−1(D) ⊆ K holds then
D ⊆ ∀m(K) and hence also m−1(D) ⊆ m−1

(∀m(K)
)

hold.

The above definitions provide a sufficient condition for the existence of final
pullback complements in an arbitrary category, as stated by the following lemma.

Lemma 11 (Existence and construction of final pbc). Let A m←− L α←− K
be a pair of composable arrows. Assume that the pullback functor m∗ : C↓A →
C↓L exists, that the right adjoint Πm to it exists partially at α, and that the
arrow εα : m∗(Πm(α)

)→ α satisfies the conditions of Definition 9. Then

1. There exists a final pullback complement for A m←− L α←− K iff εα is iso.
2. If εα is iso, then the pair of composable arrows 〈Πm(α),m′

Πm(α) ◦ ε−1
α 〉 is a

final pullback complement.

5 Putting sqpo into Context

This section is dedicated to the relation of sesqui-pushout rewriting to the
double- and single-pushout approach, which are the most widely used categor-
ical approaches to rewriting. It should be mentioned that sqpo rewriting can
also be seen as a “conceptual instance” of the very general categorical approach
proposed by Wolfram Kahl [13], which is based on fibred categories, but space
limitations prevent us to discuss the relationship to the latter.

For the case of left-linear rules, we will, in a certain sense, locate sqpo in
between spo and dpo. In fact we will see that sqpo rewriting coincides with dpo
rewriting under mild assumptions, but its deletion mechanism is more general
and closer to the one of spo rewriting.

5.1 Relation Between the sqpo and the dpo Approach

The definition of sqpo rewriting differs from that of dpo rewriting only in the
construction of the left square, which is a final pullback in the former case, and a
pushout in the latter. Therefore, whenever the pushout complement of a match
with respect to (the left-hand side of) a rule exists and it is also a final pullback
complement, then the results of both constructions is the same. This holds in a
very general case, namely for left-regular rules in quasi-adhesive categories.3

3 Hence it also holds for left-linear rules in adhesive categories, which include Set,
Graph, and several categories of graph-like objects. In fact, an adhesive category is
a quasi-adhesive one where all monos are regular (see [16]).
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Proposition 12 (dpo vs. sqpo). Let C be a quasi-adhesive category, let q =
L α←−� K

β−→ R be a left-regular rule (i.e., such that α is regular mono) and let
A m←− L be a match in C. Then any pushout complement A

γ←− D i←− K for
A m←− L

α←−� K is a final pullback complement. As a consequence, the following
hold.

1. If A 〈m,q〉===⇒
dpo

B then also A
〈m,q〉===⇒ B.

2. If A 〈m,q〉===⇒ B and a pushout complement of A m←− L
α←−� K exists, then also

A
〈m,q〉===⇒

dpo
B.

Proof. In [16] it is shown (Lemma 2.3) that in a quasi-adhesive category pushouts
along regular monos are pullbacks.
Furthermore, it is proved (Lemma 2.8) that if the square
to the right is a pushout and α is regular, then γ : D → A
enjoys the universal property of the right adjoint to the
pullback functor m∗ at α, i.e., γ ∼= Πm(α).

L
m ��

K��
α��

i��
A

��
Dγ

��

Thus by Lemma 11 A
γ←− D i←− K is a final pullback complement. ��

For non-left-regular rules, as shown by Example 7, there exist in general several
pushout complements and hence dpo rewriting is ambiguous. In contrast, sqpo
rewriting is always deterministic, and its result models cloning, which cannot be
obtained with dpo.

5.2 Relation Between the sqpo and the spo Approach

We discuss now the relation between the spo and the sqpo approach. First we
concentrate on algebras for a graph structure, where the spo approach coincides
with the sqpo approach when we restrict the first to conflict-free matches and
the latter to left-linear rules. Then we briefly discuss that a similar result holds
for non-left-linear rules, in the context of the categorial generalization of the spo
approach presented in [18].

spo over graph structures. Single-pushout rewriting has been defined in
[17,5] for categories of algebras over graph structures, i.e., over signatures with
unary operator symbols only.4 For example, Graph can be seen as the category
of algebras for the signature including two sorts, V and E, and two operator
symbols, src, tgt : E → V.

For the rest of this subsection let C be the category of algebras and total
homomorphisms of an arbitrary but fixed graph structure, and let Cp be the
category having the same objects and partial morphisms as arrows: that is, an
arrow f : X ⇀ Y of Cp is a total homomorphism f : dom(f) → Y from a sub-
algebra dom(f) ⊆ X .

4 Note that all such categories can be seen as categories of set-valued functors, and
therefore they are adhesive (see [16]).
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As recalled in the introduction, according to the spo approach a rule is an
arrow q : L ⇀ R of Cp, and it is applied to a total match m : L → A by con-
structing a pushout in Cp. This is always possible, because Cp is co-complete.
To simulate such a direct derivation using the sqpo approach, we consider the
rule as a span q̂ = L ←−� dom(q) q−→ R in C, and look for the final pullback
complement of A m←− L ←−� dom(q) in C. Then, as summarized by the next
proposition, it is possible to show that the results of the two constructions are
equal if and only if the final pullback complement exists, i.e., by Construction 5,
if and only if match m is conflict-free with respect to L←−� dom(q).

Proposition 13 (spo vs. sqpo). Let L,K,R and A be objects; let q : L ⇀ R

be an arrow of Cp, and q̂ = L ⊇←−� dom(q) q−→ R be the corresponding span in C,
and let m : L→ A be a total match morphism. Then the following are true

1. If A 〈m,q̂〉===⇒ B then A
〈m,q〉===⇒

spo
B.

2. If A 〈m,q〉===⇒
spo

B and m is conflict-free then A
〈m,q̂〉===⇒ B.

The square to the right shows the result of spo rewriting
with a rule q and a non-conflict-free match m in category
Setp. Note that the function from the right-hand side of
the rule to the resulting set is partial: this effect is often
considered as unintuitive, and it is ruled out by imposing
suitable constraints on the matches.

{©1 ,©2 }
m 1�→0

2�→0
��

q

1�→1
� {©1 }

�
{©0 } � ∅

As shown in [17] the morphism from the right-hand side to the resulting object
is total if and only if the match is conflict-free, thus sqpo rewriting rules out
exactly the spo direct derivations where this unintuitive effect shows up.

spo over arbitrary categories. The spo approach has been lifted to an ab-
stract, categorical setting in [14,18]. Following the approach of [19], in [14] a
partial morphism in a category C is defined as an equivalence class of spans of
C, where the left arrows are monic. Generalizing even further, in [18] rules are
defined as spans like L m←− K h−→ R, where m ∈ M and h ∈ H are required to
belong to two classes of arrows of C satisfying suitable properties: in particular,
it is not required that arrows in M are mono. Even if the technical details of
this analysis are beyond the scope of the present paper, it turns out that for
these classes of rules, every sqpo-derivation is a spo-derivation. Moreover the
reverse holds, whenever there exists a final pullback complement for the involved
matching morphism. In other words, the statement of Proposition 13 holds true
in the more general framework of [18] by replacing in point 2 the condition of
conflict-freeness with that of existence of final pullback complements.

5.3 Parallelism

After having discussed which fragments of the classical algebraic approaches are
subsumed by the new one, we present the local Church-Rosser theorem as ev-
idence that (part of) the existing parallelism theory can be transferred to the
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realm of sqpo rewriting. Also a theorem concerning sequential commutativity
holds true for sqpo rewriting, but we do not present it because of space limita-
tions. We assume here that objects and arrows belong to a fixed quasi-adhesive
category C, and that rules are spans of regular monos.

Definition 14 (Parallel Independence). Let there be two direct derivations
G

〈m1,p1〉
=====⇒ H1 and G

〈m2,p2〉
=====⇒ H2. Then they are parallel independent if there

exist morphisms u : L1 → D2 and v : L2 → D1, such that γ2 ◦ u = m1 and
γ1 ◦ v = m2.

R1

n1

����
��

��
K1

���
��β1��

k1

��

��α1 �� L1

u

��
m1

��

		�
��

L2

v


m2

��

����

K2���
��α2��

k2

��

��β2 �� R2

n2

���
��

��
�

H1

��
D1��

δ1

�� ��
γ1

�� G D2��
γ2

�� ��
δ2

�� H2

��

Definition 14 can be seen as a conservative extension of the definitions given in
the literature for spo and dpo. More precisely, if two spo direct derivations are
also sqpo-derivations, then they are parallel independent in the spo sense if and
only if they are so according to Definition 14. The same holds for dpo-parallel
independence as well, obviously.

Theorem 15 (Local Church-Rosser)
Given two parallel independent direct transforma-
tions G

〈m1,p1〉
=====⇒ H1 and G

〈m2,p2〉
=====⇒ H2, there are an

object G′ and direct transformations H1
〈m′

2,p2〉
=====⇒ G′

and H2
〈m′

1,p1〉
=====⇒ G′.

G〈m1,p1〉
�� ����

��
���

��� 〈m2,p2〉
��			

			
						

H1

〈m′
2,p2〉 ��					

					 H2

〈m′
1,p1〉�� �����

�����

G′

The proof of this theorem is very similar to the one given in [16], the difference
being that we need some additional sqpo-specific lemmas.

6 Conclusion

We have proposed a new algebraic approach to rewriting in arbitrary categories,
called sesqui-pushout rewriting, and we discussed its basic properties. In the
classical case of graphical structures and left-linear rules, its relation to the spo
and dpo approaches is summarized by the following table, where application
conditions are listed below the features of the approaches.

dpo � sqpo � spo

deletion in unknown context - � �
precedence of deletion over preservation - - �
indentification and dangling condition � - -
conflict-free matches � � -
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We have a chain of simulations (indicated by the symbol �): every dpo deriva-
tion is a sqpo derivation, and every sqpo derivation is a spo derivation, by seeing
left-linear rules as partial morphisms. Furthermore, when dpo rewriting is not
possible because the dangling condition is not satisfied, if sqpo rewriting is pos-
sible then spo is possible as well, and both model deletion in unknown context.
Finally, when sqpo rewriting is not possible because the match is not conflict-
free, then dpo rewriting is not possible because the identification condition is
not satisfied, but spo rewriting is possible and the conflict is resolved in favour
of deletion. However, in this case there is no total morphism from the right-
hand side of the rule to the resulting graph: an effect that is often considered as
undesirable, and that is ruled out automatically by the new approach.

Probably the most original and interesting feature of sesqui-pushout rewriting
is the fact that it can be applied to non-left-linear rules as well, and in this case
it models the cloning of structures.

We presented a Local Church Rosser theorem for the new approach. We are
confident that most of the parallelism and concurrency theory of the dpo and
spo approaches can be lifted smoothly to sesqui-pushout rewriting: this is a
topic of ongoing research. Concluding, let us remark that we compared the new
approach only with spo and dpo because they are the most widely used categor-
ical approach to rewriting, but there are several others to which sesqui-pushout
rewriting has to be related as well, including the fibred approach by Kahl [13],
the double-pullback approach by Heckel [12], and the pullback approach by
Bauderon [1].

Acknowledgements. Wewould like to thankPaoloBaldanandPawe�lSobociński
for enlightening discussions about the topic of the paper.
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and Michael Löwe. Algebraic approaches to graph transformation—part I: Basic
concepts and double pushout approach. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 1: Foundations,
chapter 3. World Scientific, 1997.

3. Roy Dyckhoff and Walter Tholen. Exponentiable morphisms, partial products
and pullback complements. Journal of Pure and Applied Algebra, 49(1-2):103–116,
1987.

4. Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco Parisi-
Presicce. Parallelism and concurrency in high level replacement systems. Mathe-
matical Structures in Computer Science, 1:361–404, 1991.

5. Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, Annika
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Abstract. We investigate two models of finite-state automata that op-
erate on rooted directed graphs by marking either vertices (V-automata)
or edges (E-automata). Runs correspond to locally consistent markings
and acceptance is defined by means of regular conditions on the paths
emanating from the root. Comparing the expressive power of these two
notions of graph acceptors, we show that E-automata are more expres-
sive than V-automata. Moreover, we prove that E-automata are at least
as expressive as the μ-calculus. Our main result implies that every MSO-
definable tree language can be recognised by E-automata with uniform
runs, that is, runs that do not distinguish between isomorphic subtrees.

Introduction

Extending the formal language theory of words and trees to general classes of
graphs is a very challenging endeavour. During the last two decades, this topic
has attracted much attention, and several notions of graph-language recognis-
ability have been developed [15, 4, 25, 7, 10, 8, 6].

Over the domain of arbitrary finite graphs, Courcelle [4] proposes a power-
ful algebraic theory of languages recognisable via interpretations of tree-shaped
terms. This characterisation inherits many features from the well-established
theory of tree automata [24]. Thus, the notion of recognisability is closed un-
der Boolean operations and projection, and its expressive power reaches beyond
Monadic Second-Order Logic (MSO).

For directed graphs of bounded degree, Thomas [25] develops an automata-
theoretic approach in terms of tiling systems, or more generally graph acceptors.
These are devices that proceed by marking graph vertices according to local
constraints, tailored to match the expressive power of the existential fragment
of MSO (monadic Σ1). The associated notion of recognisability is closed under
union, intersection, and projection. In general it is not closed under comple-
ment since, on many classes of graphs, monadic Σ1 is not closed under comple-
ment [27].

The most substantial research is, however, focused on the special case of finite
directed acyclic graphs (see [26] for a survey). Robust notions of recognisability
� This research has been partially supported by the EU RTN GAMES: “Games and

Automata for Synthesis and Validation.”

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 46–60, 2006.
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are available, in particular, for partially ordered sets which serve as models for
concurrent computation [7, 17].

In this paper, we are concerned with arbitrary directed graphs of unbounded
degree that may be infinite or contain cycles. Aside from the generic interest,
this framework is fundamental for modelling the behaviour of state-transition
systems. Our point of departure is the notion of a graph acceptor, introduced
by Thomas in [25]. Adapting this notion to graphs of unbounded degree, we
define two kinds of finite-state automata that operate on rooted directed graphs
by marking either vertices (V-automata) or edges (E-automata), starting from
the root and proceeding according to transitions specified by local first-order
formulae. Because we are interested in the infinite behaviour of models, we equip
these automata with ω-regular acceptance conditions over the marking of paths
emanating from the designated root.

The question whether to label edges or vertices is subject to a fundamental
choice in the design of automata that may revisit vertices of their input. The
most common option is to mark vertices, but the alternative to mark edges also
has some tradition, going back to the early 80ies and Kamimura and Slutzki’s
variant of tree-walking automata over planar graphs [15]. In [22], Potthoff, Seib-
ert, and Thomas discuss the expressive power of graph acceptors that mark edges
compared to those that mark vertices and show that, in their specific framework
restricted to ranked acyclic graphs of bounded degree, edge and vertex marking
lead to the same notion of recognisability.

Taking up an analogue investigation for our extended setting, we find that the
situation is radically different over arbitrary graphs, even if global acceptance
conditions are not involved. In a comparative study, we separate the expressive
power of vertex and edge-marking automata and relate it to Monadic Second-
Order Logic and to its bisimulation-invariant fragment, the μ-calculus. Our main
result establishes a correspondence between runs of edge-marking automata over
arbitrary graphs and vertex-marking automata over trees obtained by unravel-
ling these graphs. Besides showing that edge-marking automata capture the
μ-calculus over arbitrary graphs, as vertex-marking automata do on trees, this
result opens a perspective on uniform recognisability of graph languages.

Outline. The paper is structured as follows. After fixing our notation in Sec-
tion 1, we introduce V-automata and E-automata in Section 2, and point out
some elementary properties. Thus, recognisable classes of graphs are closed un-
der conjunction, disjunction and projection, but not under complement. In terms
of MSO, E-automata and V-automata define graph properties in the level Σ3 of
the monadic quantifier-alternation hierarchy, respectively MSO2, the variant of
MSO augmented with edge quantifiers [5].

In Section 3, we show that, over arbitrary directed graphs, E-automata are
strictly more expressive than V-automata. Actually, E-automata can describe
properties like perfect matching that are not yet definable in MSO. However, we
show that even when we restrict to MSO-definable properties, E-automata are
more expressive than V-automata. A separating property is directed reachability.
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In Section 4, we investigate the relation between our automata model and the
(counting) μ-calculus [16, 2], a logic which captures the MSO-definable prop-
erties that are invariant under (counting) bisimulation [14]. These properties
are particularly relevant for the specification of state-transition models, because
they do not distinguish between a model and its behaviour, understood as the
unravelling of its possible computations in a tree-like manner.

Our main technical result is a simulation theorem relating recognisability of
graphs and their unravelling. It states that, for every V-automaton A, there
exists an equivalent E-automaton that recognises precisely the class of graphs
whose unravelling is accepted by A. Intuitively, this means that E-automata can
simulate on their input graph the behaviour of a V-automaton on the unravelling
of this graph. Notice that every element of the input graph may have infinitely
many copies in its unravelling, such that the V-automaton has potentially infinite
“space” to apply his marking. However, we argue that all these copies can be
encoded into a single marking of the original input element.

We discuss three consequences of this theorem.First, it implies that E-automata
subsume theμ-calculus over arbitrary directed graphs, yielding an operative model
that differs substantially from previous automata-theoretic characterisations of
the μ-calculus (see, e.g., [20, 9, 3, 13]), where automata essentially run on a tree
unravelling rather than on the input graph. The model of V-automata is, however,
not strong enough to capture the μ-calculus over arbitrary graphs, since it can-
not express directed reachability, which isμ-definable. Secondly, it follows that our
definition of E-automata, with a universal linear-time condition on infinite com-
putation paths, is fairly robust, as far as expressive power is concerned. In par-
ticular, adding branching-time acceptance condition over the computation trees
of automata, i.e., the unravelling of runs, would not increase their expressiveness.
Finally, when rephrased in terms of automata over infinite trees, our main result
shows that every MSO-definable language of infinite trees can be recognised by
a non-deterministic tree automata with uniform runs, i.e., runs that do not dis-
tinguish between isomorphic subtrees. In other words, shared substructure of the
input can also be shared by the run. This uniformisation result is particularly sur-
prising as it does not incur a decrease in expressiveness, as it is usually the case for
such normalisations [11, 28].

1 Background

1.1 Words

A word over an alphabet A is a partial function α : N → A with prefix-closed
domain. We say that α is finite, when dom(α) is so. The set of finite words over
the alphabet A is denoted by A∗, whereas the set of infinite words is denoted
by Aω; the union of these two sets is A∞. The concatenation of a word α ∈ A∗

with a word β ∈ A∞ is denoted by αβ. This notation naturally extends to sets
of words. We sometimes refer to the element α(i) of a word α by αi.

In the sequel, we will use sets L ⊆ Aω as infinitary acceptance conditions. We
say that L is a ω-regular condition when L a finite union of languages of the
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form LUω where L ⊆ A∗ and U ⊆ A∗ are nonempty and regular. The set L is
called a parity condition, if there exist a priority mapping Ω : A → N of finite
image, such that L = {α ∈ Aω | lim inf Ω(α) ≡ 0 (mod 2)}, i.e., L is the set of
infinite sequences where the least priority that occurs infinitely often is even.

1.2 Graphs

A graph is a structure G = (V,E) over a domain V of vertices with a binary
edge relation E ⊆ V × V . A rooted graph G, u is a graph with a distinguished
root vertex u. Given an edge (v, w) ∈ E, we refer to v as its source and to w
as its target. A (directed) path in the graph G is a finite or infinite non-empty
sequence v1, v2, · · · ∈ V ∞ of vertices such that for any two consecutive elements
vi and vi+1, we have (vi, vi+1) ∈ E. An undirected path in G is a sequence
v1, v2 · · · ∈ V ∞ where, for any two consecutive elements vi and vi+1, either
(vi, vi+1) ∈ E or (vi+1, vi) ∈ E. The distance d(v, v′) between two vertices v, v′

of V , is the least number n such that there exists an undirected path v1, . . . , vn

in G with v1 = v and vn = v′. If no such path exists, we set d(v, v′) =∞.
Fix an alphabet C of colours. For a graph G = (V,E), a vertex colouring

over C is a function λ : V → C; likewise, an edge colouring over C is a function
γ : E → C. We refer to the expansion of a graph by edge and/or vertex colourings
as a coloured graph. When, instead of total functions, we consider partial edge or
vertex colourings, we refer to them as markings. The elements in the domain of
such a partial colouring are said to be marked by the respective function. In addi-
tion to this, we say that a vertex v ∈ V is involved in an edge marking γ : E → C,
if it is either the source or the target of an edge marked by γ. A vertex colouring
λ : V → C is naturally extended to a path π in G by setting λ(π) = λ ◦ π ∈ C∞.
Likewise, for an edge colouring γ : E → C, we define the edge colouring of a path
π = v1, v2, . . . in G to be the word γ(π) ∈ C∞, such that γ(π)(i) = γ(π(i), π(i+
1)) for all indices i with i + 1 ∈ dom(π). For markings, the corresponding defi-
nitions are restricted to paths in G that involve only marked elements.

Besides the functional notation G = (V,E, λ) for vertex-marked graphs, it
is sometimes convenient to use a relational notation G = (V,E, (Pc)c∈C), with
monadic symbols Pc interpreted by PG

c := {v ∈ V | λ(v) = c}, for every c ∈
C. Similarly, for edge-marked graphs G = (V,E, γ), we use the notation G =
(V,E, (Rc)c∈C) with binary relational symbols Rc interpreted by RG

c := {(v, w) ∈
E | γ(v, w) = c}, for every colour c ∈ C.

Bisimulation. The main part of this paper is concerned with devices taking as
input vertex-coloured graphs. For the sake of clarity, the following definitions
are formulated for this setting, the generalisation to edge-coloured graphs being
straightforward.

A counting bisimulation between two vertex-coloured graphs G = (V,E, λ)
and G′ = (V ′, E′, λ′) is a relation Z ⊆ V × V ′ such that, if (v, v′) ∈ Z, then
λ(v) = λ′(v′) and Z contains a bijection between the sets {w | (v, w) ∈ E} and
{w′ | (v′, w′) ∈ E′}. Two rooted graphs G, u and G′, u′ are counting bisimilar,
if there exists a counting bisimulation Z between them with (u, u′) ∈ Z. Two
vertices v, v′ of a graph G are counting bisimilar, if G, v and G, v′ are so.
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The unravelling of a graph G = (V,E, λ) from a vertex u ∈ V is the graph
T (G, u) with domain V T consisting of all directed paths π through G that start
from u, edge relation ET containing all the pairs (π, πv) ∈ V T × V T , and
vertex colouring λT defined by λT (πv) = λ(v). A rooted graph G, u is a tree,
if it is isomorphic to its unravelling T (G, u), u. For trees, and in particular for
unravellings, we will generally not specify the root explicitly. Obviously, the
natural projection which sends every path v1, . . . , v� ∈ V T to its last node v�

defines a counting bisimulation between G and T (G, u). It is well-known (see,
e.g., [12]), that two graphs G, u and G′, u are counting bisimilar if, and only if,
their unravelling T (G, u) and T (G, u) are isomorphic.

1.3 Logic

We consider standard predicate logics, in particular First-Order Logic (FO) and
Monadic Second-Order Logic (MSO) interpreted over coloured graphs. Given
an alphabet C of vertex colours, we write PC for the collection of monadic
symbols (Pc)c∈C . When using edge colours from an alphabet D, we write RD

for the collection of binary relational symbols (Rd)d∈D. Thus, the vocabulary
of formulae is typically (a subset of) E ∪ PC ∪ RD. We refer to any formula
ϕ(x) with precisely one free first-order variable as a predicate, and to a formula
without free first-order variables as a sentence. For any integer k, the k-sphere
around a vertex v of a graph is the set of vertices w such that d(v, w) ≤ k. An
FO-predicate ϕ(x) is called k-local around x, if it is equivalent to the predicate
ϕ′(x) obtained by relativising every quantifier in ϕ to elements of the k-sphere
around x. We say that a predicate ϕ(x) is local around x if it is k-local for
some k.

We also consider MSO2, the extension of MSO where quantification over sets
of edges is provided [5]. The syntax of MSO2 allows binary second-order variables
and quantification over them. Given a graph G = (V,E), the semantics of this
quantification is however relativised to subsets of E. It is well known that, on
arbitrary graphs, MSO2 is strictly more expressive than MSO. Though, on trees
and on graphs of bounded degree, hence in particular on grids, MSO and MSO2
are equally expressive [5].

The monadic quantifier-alternation hierarchy is defined as follows. The first
level, monadic Π0, also called monadic Σ0, is the set of FO-formulae. Then, for
every n, the level monadic Σn+1 (resp. monadic Πn+1) is the closure of the set
of monadic Πn-formulae (respectively monadic Σn-formulae) under existential
quantification (respectively universal quantification). This hierarchy is known to
be strict over arbitrary graphs, i.e., for every n ∈ N, there exists a property ϕn

definable in MSO that is not definable in the level Σn of the monadic hierar-
chy. More recently [18], it has also been shown that the monadic hierarchy is
strict already over finite grids. Since MSO and MSO2 are equally expressive over
grids, and because the translation between the two preserves the quantification
structure, this strictness result carries over to MSO2.

A class K of rooted graphs is counting-bisimulation closed if, for any graph
G, u, we have G, u ∈ K if, and only if, there exists a counting-bisimilar graph
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G′, u′ ∈ K. A sentence ϕ of FO or MSO is counting-bisimulation invariant, if
its model class is counting-bisimulation closed, that is, for any two counting-
bisimilar graphs G, u and G, u′ we have G, u |= ϕ if, and only if, G′, u′ |= ϕ.
The (counting) μ-calculus [16, 2, 12] is an extension of (counting) modal logic
with fixed-point operators that provides an effective syntax for the (counting)
bisimulation-invariant fragment of MSO [14, 12].

2 Vertex and Edge-Marking Automata

Traditionally, automata are finite-state devices that produce a marking of their
input objects with states. The process of marking starts from designated input
elements and propagates locally, depending on the local properties of the input
structure and of the previously produced marking. When the input structures
are homogeneous, these propagation transitions can often be described pictori-
ally. However, as we are concerned with coloured directed graphs of unbounded
branching which are not homogeneous, we choose a more abstract way to de-
scribe transitions using local FO-formulae that refer to both the input structure
and the produced marking.

We introduce automata that take as input graphs with vertex colourings and
produce either edge or vertex markings. Whenever we speak of a Σ-coloured
graph, we mean a graph with a vertex colouring over a finite alphabet Σ.

Definition 1 (V-automaton). Let Σ be a finite alphabet of vertex colours.
A vertex-marking automaton (V-automaton) for Σ-coloured graphs is a tuple

A = (Q,Σ, δ0, δ,Acc)

with a finite set Q of states, two local formulae δ0(x), δ(x) ∈ FO, called root
constraint respectively transition specification, over the vocabulary E ∪PΣ ∪PQ

of Σ-coloured graphs augmented with unary symbols associated to the states of
Q, and an ω-regular acceptance condition Acc ⊆ Qω.

Given a Σ-coloured graph G = (V,E, λ) with a designated root u, a run of
the V-automaton A on G, u is a vertex marking ρ : V → Q with the following
properties:

(i) initial condition: G, ρ |= δ0(u), and
(ii) local consistency: for every vertex v ∈ V marked by ρ, we have G, ρ |= δ(v).

A run ρ is accepting if, for every infinite path π in G that starts from u and
consists of vertices marked by ρ, we have ρ(π) ∈ Acc. A graph G, u is accepted
by A, if there exists an accepting run of A on G, u. We define LV (A) to be the
class of all rooted graphs accepted by the V-automaton A. A class K of rooted
graphs is V-recognisable, if there exists a V-automaton A with LV (A) = K.

We observe that V-automata generalise most of the classical nondeterministic
automata models, such as top-down or bottom-up automata over finite trees,
but also, e.g., Muller-automata over infinite trees.
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Remark 2. Notice that the run of an automaton is independent of the part of the
input graph that is unreachable from the designated root, since local consistency
is enforced just at marked vertices and extends only to a neighbourhood of the
current vertex, so that no marking of an unreachable vertex can be required.
However we may assume, without loss of generality, that accepting runs of a V-
automaton A are total functions. To achieve this, we can add an extra dummy
state ⊥ and modify the transition specification to be P⊥ ∨ δ and the acceptance
condition to include the set Q∗{⊥}(Q ∪ {⊥})ω.

Lemma 3. Every V-recognisable class of graphs is definable in the level Σ3 of
MSO.

Proof. Let A = (Q,Σ, δ0, δ,Acc) be a V-automaton with state set {1, . . . , n}.
We construct an MSO-formula ϕA of the form ∃P1 · · · ∃Pn

(∀xψ(x)∧ϕAcc
)

with
ϕAcc ∈ Π2 and ψ ∈ Σ0 such that, for every graph G with a designated root
u, we have G, u |= ϕA if, and only if, G, u ∈ LV (A). In this formula, the block
of existential quantifiers ∃P1 · · · ∃Pn guesses a vertex marking, the subformula
∀xψ(x) expresses the local constraints,

ψ(x) :=
(
x = u→ δ0(x)

) ∧ (∨
q∈Q

Pq → δ(x)
)
,

and ϕAcc checks the infinitary path condition. To see that ϕAcc can be described
in Σ2, notice that its negation ¬ϕAcc expresses the property that there exists
a marked path starting at u that does not satisfy the ω-regular acceptance
condition Acc. Using the representation of Qω \Acc as a non-deterministic Büchi
word automaton, this property can be defined by a monadic Σ2-formula (more
precisely, a μν-formula of the μ-calculus). ��
Our second automata model differs from V-automata only by its way of applying
state labels to edges rather than to vertices.

Definition 4 (E-automaton). Let Σ be a finite alphabet of vertex colours.
An edge-marking automaton (E-automaton) for Σ-coloured graphs is a tuple

A = (Q,Σ, δ0, δ,Acc),

with a finite set Q of states, two local predicates δ0(x), δ(x) ∈ FO, called root
constraint and transition specification, over the vocabulary E ∪ PΣ ∪ RQ of Σ-
coloured graphs augmented with binary relational symbols associated to the states
of Q, and an ω-regular acceptance condition Acc ⊆ Qω.

Given a Σ-coloured graph G = (V,E, λ) with a designated root u, an accepting
run of the E-automaton A on G, u is now an edge marking ρ : E → Q with the
following properties:

(i) initial condition: G, ρ |= δ0(u), and
(ii) local consistency: for every vertex v ∈ V involved in ρ, we have G, ρ |= δ(v).



Automata on Directed Graphs: Edge Versus Vertex Marking 53

A run ρ is accepting if, for every infinite path π = v0, v1, . . . in G that starts
from the root u = v0 and proceeds along edges (vi, vi+1) marked by ρ, we have
ρ(π) ∈ Acc. As in the case of V-automata, we say that the graph G, u is accepted
by A if there exists an accepting run of A on G, u, and we define LE(A) to be
the class of rooted graphs accepted by the E-automaton A. A class K of rooted
graphs is E-recognisable, if there exists an E-automaton A with LE(A) = K.

We remark that there are E-recognisable classes of graphs that cannot be de-
scribed in MSO. An example is the class of graphs that allow a perfect matching
between the vertices reachable from the root. Essentially, this is because edge
marking corresponds to a quantification over sets of edges which is not available
in MSO. Nevertheless, for every E-automaton, the class LE(A) is definable in
MSO2. The proof is a straightforward adaptation of the proof of Lemma 3.

Lemma 5. Every E-recognisable class of graphs is definable in the level Σ3 of
MSO2.

2.1 Elementary Properties

We survey some elementary properties of our graph automata. An essential fea-
ture is that we can specify grid properties, even without marking edges, by
simulating a grid vocabulary consisting of two functional edge symbols, say RN

and RE , standing for North and East. Towards this, we use two extra monadic
symbols PN and PE , and we require that the root is in both PN and PE , and
every vertex v has exactly two outgoing edges (v, vE) and (v, vN ) such that ei-
ther both or none of v and vE belong to PE whereas they never belong together
to PN and, similarly, either both or none of v and vN belong to PN whereas they
never belong together to PE . The intended grid relations can now be defined by
RN := {(x, y) ∈ E | PN (x) → PN (y)} and RE := {(x, y) ∈ E | PE(x) → PE(y)}.

Lemma 6. E-automata and V-automata with k+1-local transition specifications
are strictly more expressive than E-automata respectively V-automata with k-
local transition specification.

Proof. A corresponding statement for tiling systems is proved in [26]. The argu-
ment carries over to our automata. ��

Lemma 7. Both V-recognisable and E-recognisable classes of graphs are closed
under union, intersection, and projection.

Proof. These properties follow directly from the definition of our automata
model. To show, for instance, closure under union for V-automata, consider
two V-automata A = (Q,Σ, δ0, δ,Acc) and A′ = (Q′, Σ, δ′0, δ

′,Acc′). Then the
automaton over the state set Q ·∪Q′, with root constraint δ0∨δ′0, transition speci-
fication δ∨δ′, and infinitary condition Acc ·∪Acc′ recognises LV (A)∪LV (A′). ��

Lemma 8. Neither V-recognisable nor E-recognisable classes of graphs are
closed under complement. The statement also holds for classes of finite graphs.
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Proof. We have already seen that FO-definable classes of finite grids can be
recognised by V-automata and also by E-automata. If, in addition to being closed
under projection, recognisable classes were closed under complement, any MSO-
definable class of finite grids would be recognisable, and hence Σ3-definable, by
Lemma 3 respectively Lemma 5. This contradicts the infiniteness of the monadic
hierarchy over grids [18]. ��

3 E-Automata Versus V-Automata

In this section, we compare the expressive power of the two notions of automata.
It turns out that E-automata are, even on finite graphs, strictly more expressive
than V-automata.

3.1 Encoding V-Automata into E-Automata

Proposition 9. Every V-recognisable class of graphs is also E-recognisable.

Proof. For simplicity, we assume here that automata are normalised so that
accepting runs are total functions. Given a V-automaton A = (Q,Σ, δ0, δ,Acc),
we construct an E-automaton B = (Q × Q,Σ, δ′0, δ

′,Acc′) that marks edges of
its input graph with pairs of (vertex) states from Q, in such a way that the
marking of a vertex v with a state q in a run of A corresponds to the marking of
all incoming and outgoing edges from v by pairs of the form (q′, q) respectively
(q, q′) in a run of B.

The following one-local formula expresses that the edge marking around a
vertex z encodes a vertex marking of z by q:

ϕq(z) = ∀y
[(

E(y, z)→
∨

q′∈Q

R(q′,q)(y, z)
)
∧
(
E(z, y)→

∨
q′∈Q

R(q,q′)(z, y)
)]

.

Now, we define the root constraint δ′0(x) and the transition specification δ′(x)
for B to be the conjunction of

∨
q∈Q ϕq(x) with the formula obtained from δ0(x)

respectively δ(x) by replacing every atom Pqz with the subformula ϕq(z). The
acceptance condition Acc′ consists of all infinite words β ∈ (Q ×Q)ω for which
there exists a word α ∈ Acc, such that βi = (αi, αi+1), for all indices i.

To verify that the construction is correct in the case of graphs with no isolated
vertices (these need to be treated separately, but pose no great difficulty), let
us consider a rooted graph G, u ∈ LV (A) and let ρ : V → Q be an accepting
run of the V-automaton A. Then, the marking ρ′ : E → Q × Q defined by
ρ′(v, w) = (ρ(v), ρ(w)), for every edge (v, w) ∈ E, is an accepting run of the
E-automaton B on G, u. Conversely, for an accepting run ρ′ : E → Q× Q of B
on a graph G, u, the conditions δ′0 and δ′ ensure that, for every vertex v ∈ V ,
there exists a unique state q ∈ Q such that G, ρ′ |= ϕq(v); the vertex-marking
ρ : V → Q defined by associating to every vertex v ∈ V this unique state, is an
accepting run of the V-automaton A on G. ��
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3.2 E-Automata Are More Expressive Than V-Automata

Next, we prove that edge-marking yields a strict increase in expressiveness over
vertex-marking. Instead of relying on properties from MSO2 \ MSO we show,
moreover, that separating properties exist already in MSO.

Theorem 10. There exists an E-recognisable class of directed graphs that is
MSO-definable, but not V-recognisable.

Proof. We show that directed reachability is definable by an E-automaton, but
not by a V-automaton. Let K be the class of graphs G, u over the alphabet
Σ = {a, b} in which there exists a finite directed path from u to a vertex v
with λ(v) = a. Clearly, this class is definable in MSO, in fact, already in the
μ-calculus by the formula μX.(Pa ∨ ♦X).

To see that K is E-recognisable, consider the automaton B = ({q}, Σ, δ0, δ, ∅)
with only one state q. The root constraint δ0 states that, if the root is not
coloured with a, precisely one outgoing edge is marked,

δ0(x) := ¬Pa → ∃y (Exy ∧Rxy ∧ ∀z(Exy ∧Rxz → z = y)
)
.

The transition specification requires that, if a vertex is not coloured with a and
has an incoming marked edge, then precisely one outgoing edge is marked,

δ(x) :=
(¬Pa ∧ ∃y(Eyx ∧Ryx)

)→ ∃y (Exy ∧Rxy ∧ ∀z(Exz ∧Rxz → z = y)
)
.

In this way, accepting runs of B correspond to markings of a directed path from
the root to some vertex of colour a. Therefore, LV (B) = K.

To show that K is not V-recognisable, we use an idea of Ajtai and Fa-
gin [1]. Towards a contradiction, let A = (Q,Σ, δ0, δ,Acc) be a V-automaton
with LV (A) = K. We fix real number p between 0 and 1. For every integer n,
we construct a random Σ-coloured graph Gn

p = (Vn, En, λn) over the domain
Vn = {0, . . . , n} with the following edge relation:

– for all i < n, the forward-edge (i, i + 1) is contained in En, and
– for every (i, j) with 1 ≤ i < j ≤ n, the back-edge(j, i) is contained in En

with probability p.

The vertices of Gn
p are coloured by λn(i) = b, for all i < n, and λn(n) = a.

Clearly, for every n, the graph Gn
p with root 0 belongs to K. For every element

i < n, let now Gn
p,i be the graph obtained from Gn

p by removing the forward-edge
(i, i + 1). Obviously, Gn

p,i, 0 �∈ K. A technical theorem of [1] implies that, for
every size of a vertex-alphabet C and every quantifier rank r, there exists an
integer n and a value for p, such that the following property holds with positive
probability: for every marking ρ : Vn → Q of Gn

p , there exists an index i < n
such that, for every FO-formula of quantifier rank at most r, if Gn

p , ρ |= ϕ then
Gn

p,i, ρ |= ϕ.
Applying this statement to an accepting run ρ of A on Gn

p , 0, it implies that
there exist values n ∈ N, p ∈ (0, 1), and i < n such that, with positive proba-
bility, ρ is also an accepting run of A on Gn

p,i since the initial condition and the
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local consistency of A cannot distinguish between the graphs Gn
p,i, 0 and Gn

p , 0
when they are marked in the same way. Notice that the path condition cannot
discriminate between these graphs either, since any infinite path in the former
is also an infinite path in the latter. Hence, we have Gn

p,i, 0 ∈ LV (A), in contra-
diction to our assumption that LV (A) = K. ��

4 Simulation and Uniform Recognisability

In this section, we establish a relation between runs of automata on graphs with
runs on their unravelling. This allows us, on the one hand, to conclude that
over arbitrary graphs E-automata capture the counting μ-calculus and, on the
other hand, that V-automata over trees can be normalised to mark isomorphic
subtrees identically.

4.1 E-Automata and the μ-Calculus

Observe that, on trees, the marking of edges can be simply moved to their
targets, and hence the notions of E-recognisability and V -recognisability coin-
cide. Furthermore, V -automata –with one-local root constraint and transition
specification– generalise MSO tree-automata [29, 12]. Accordingly, for classes of
trees, recognisability equals MSO-definability.

Theorem 11 (Rabin [23], Muchnik and Walukiewicz [19, 29]). For every
MSO formula ϕ there exists a one-local V-automaton Aϕ such that, for every
tree T , we have T |= ϕ if, and only if, T ∈ LV (Aϕ).

Proof. This follows from Walukiewicz’s automata-theoretic characterisation of
MSO on trees. As already observed in [12], Walukiewicz’s automata are, in this
case, V-automata with transition specification definable by means of counting
one-local formulae. ��
The following theorem is our main result. Informally, it states that every V-
automaton on trees can be simulated by an E-automaton on graphs that is
equivalent in the sense that a graph is accepted by the E-automata if, and only,
if its unravelling is accepted by the V-automaton.

Theorem 12. For every V-automaton A we can construct an E-automaton B
such that a rooted graph G, u is accepted by B if, and only if, its tree unravelling
T (G, u) is accepted by A.

Proof. Let A = (Q,Σ, δ0, δ,Acc) be a V-automaton. Without loss of gener-
ality [29], we may assume that Acc is a parity condition, and that the root
constraint and the transition specification are one-local formulae.

As in the proof of Proposition 9, we construct an E-automaton that operates
by encoding a vertex-marking run into an edge-marking one. However, in that
setting, the two markings were defined on the same graph. Here, we need to
overlay all the (counting bisimilar) copies of a graph vertex that occur in the
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unravelling. To handle this, we proceed by a power-set construction. Essentially,
we intend to mark every edge (v, w) in G by the set of all pairs of states (q, q′′)
that label copies of v and w connected in T (G, u).

Formally, let B = (Q′, Σ, δ′0, δ
′,Acc′) be an E-automaton with set of states

Q′ = P(Q×Q). The following formula expresses that the edge marking around
a vertex z encodes that a copy of z in the unravelling tree is marked by q:

ϕq(z) := ∀y
[(

E(z, y)→
∨

q′∈Q′

(q,q′′)∈q′

Rq′(z, y)
)
∧
(
E(y, z)→

∨
q′∈Q′

(q′′,q)∈q′

Rq′ (y, z)
)]

.

Observe that the corresponding formulae in the proof of Proposition 9 are mu-
tually exclusive for different states q ∈ Q. Here, several formulae ϕq may hold at
one vertex, as it corresponds to the overlay of several vertices in the unravelling.

The root constraint δ′0(x) and the transition specification δ′(x) for B is ob-
tained from δ0(x) respectively δ(x) by replacing every atom Pqz with the sub-
formula ϕq(z). The infinitary path condition is defined in terms of traces. Given
an infinite word β ∈ (P(Q×Q))ω, we say that a word α ∈ Qω is a trace of β,
if it is the case that (αi, αi+1) ∈ βi for every index i. The acceptance condition
Acc′ consists of all infinite words β ∈ Q′ω for which every trace α belongs to
Acc. Clearly, if Acc is regular, then Acc′ is regular as well. Notice however, that
even when Acc is a parity condition, Acc′ is not a prefix-invariant property.

To verify that the construction is correct, let G = (V,E, λ) be a coloured graph
with a distinguished root u, and let T (G, u) = (V T , ET , λT ) be its unravelling
from u. Recall that T (G, u) is built from G by taking as vertices the finite paths
in G starting from u. Let f : V T → V be the projection that maps every finite
path in V T to its last vertex. Assuming that T (G, u) ∈ LV (A), let ρ : V T → Q
be an accepting run of the automaton A on this unravelling. We define the edge
marking ρ′ : E → Q′ by setting, for every (v, w) ∈ E,

ρ′(v, w)=
{(

ρ(v′), ρ(w′)
) ∈ Q×Q | (v′, w′) ∈ ET with f(v′)=v and f(w′)=w

}
.

It is not difficult to check that ρ′ defined in such a way is an accepting run of
the automaton B on G, u.

Conversely, assume G, u ∈ LE(B) and let ρ′ : E → Q′ be an accepting run of
the E-automaton B on the graph G, u. By induction on the length of paths in V T ,
and exploiting the memoryless determinacy of parity games [9], one can verify
that there exists a vertex marking ρ : V T → Q such that T (G, u), ρ |= δ0(u) and,
for every path of the form πvw in V T , we have (ρ(πv), ρ(πvw)) ∈ ρ′(v, w) and
T (G, u), ρ |= δ(πvw). By definition of B, it follows that ρ is an accepting run of
automaton A on the unravelling T (G, u). ��
Corollary 13. Every class of graphs definable in the counting μ-calculus is
recognisable by an E-automaton.

Proof. Let ϕ be a formula in the counting μ-calculus. By Theorem 11 there exists
a V-automaton Aϕ such that for every tree, T ∈ LV (A) if, and only if T |= ϕ.
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Since ϕ is counting-bisimulation invariant, a graph G, u satisfies ϕ if, and only
if, its unravelling T (G, u) also satisfies ϕ, that is, if T (G, u) ∈ LV (A). Now, the
E-automaton B that simulates A according to Theorem 12 recognises the model
class of ϕ, as G, u ∈ LE(B) if, and only if, T (G, u) ∈ LV (A). ��

4.2 Application to Expressiveness

As a consequence of the above results, it follows that our ω-regular path condi-
tions for E-automata are optimal in the sense that a more general model, where
global acceptance conditions are given by MSO-formulae interpreted over the
unravelling of locally consistent markings, would not be more expressive.

Proposition 14. Consider an E-automaton A = (Q, δ0, δ,Acc), and an MSO-
formula ϕ over infinite trees with edges marked by Q. Then, there exists an
E-automaton Aϕ such that G, u ∈ Aϕ if, and only if, there is a run ρ of A on
G, u such that T (

(G, ρ), u) |= ϕ.

Proof. We refer to a generalisation of our automata model over input graphs
where both edges and vertices are coloured. According to (straighforward gen-
eralisations of) Theorem 11 and 12, there exists an E-automaton B running
on graphs H, u with Q-coloured edges such that, for every such input graph
T (H, u) |= ϕ if, and only if, H, u ∈ LE(B). The desired automaton Aϕ is then
obtained by combining the automata A and B as a wreath product in which B
reads runs of A. �

4.3 Weakly Uniform Tree Automata

A consequence of Gurevich and Shelah’s Non-Uniformisation Theorem [11] for
Monadic Second-Order Logic on the binary tree is that there exist MSO-definable
languages that are not recognised by unambiguous tree-automata [28]. This neg-
ative result suggests that developing a notion of uniform recognisability [27] for
MSO-definable languages of infinite trees could be very difficult. On the other
hand, a success in achieving a notion of uniform recognisability may bear with
itself many decision and classification results as those obtained, e.g., for lan-
guages of infinite words [21]. Our result on E-automata shows that at least a
weak notion of uniformity is available without sacrificing expressiveness.

Definition 15. Given a V-automaton A and a tree T , we say that a run ρ of
A on T is uniform, if any two isomorphic subtrees of T are marked by ρ in the
same way. We say that a V-automaton A is weakly uniform if, for every tree
T ∈ LV (A), there exists an accepting run of A on T that is uniform.

Observe that, in contrast to Thomas’ notion of uniform recognisability, our as-
sertion of weak uniformity is constrained to the particular input tree; runs over
isomorphic subtrees of different trees may be different.

Theorem 16. For every MSO-formula ϕ on trees, there exists a weakly uniform
V-automaton that recognises the models of ϕ.
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Proof. Let A be a V-automaton equivalent to ϕ according to Theorem 11. Fur-
ther, let B = (Q, δ0, δ,Acc) be the E-automaton that simulates A according to
Theorem 12, such that, for every graph, G, u ∈ LE(B) if, and only if, T (G, u) |= ϕ.
For every graph G, u and every accepting run ρ of B on G, u, let ρT be the marking
induced by ρ on the unravelling T (G, u). Since LE(B) is closed under counting
bisimulation, we can modify the transition specification δ, without modifying
LE(B), in such a way that, whenever ρ is an accepting run of B on G, u, the
unravelling ρT of the marking (G, ρ), u is also an accepting run of B on T (G, u).

We conclude by proving that B modified in such a way is weakly uniform.
Given any tree T ∈ LE(B), consider the quotient GT , uε of T under counting
bisimulation, with uε corresponding to the class of the root. Then there exists an
accepting run ρ of B on GT , uε (since T and GT , uε are counting bisimilar). Now,
one can observe that ρT is a uniform accepting run of B on T . We obtain the
desired V-automaton over trees, by pushing the state-marking of B from edges
towards their target. ��

References

[1] M. Ajtai and R. Fagin, Reachability is harder for directed rather than undirected
finite graphs, Journal of Symbolic Logic, 55 (1990), pp. 113–150.
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Abstract. This paper introduces a new theory needed for the purpose
of conflict detection for graph transformation with negative application
conditions (NACs). Main results are the formulation of a conflict no-
tion for graph transformation with NACs and a conflict characterization
derived from it. A critical pair definition is introduced and complete-
ness of the set of all critical pairs is shown. This means that for each
conflict, occuring in a graph transformation system with NACs, there
exists a critical pair expressing the same conflict in a minimal context.
Moreover a necessary and sufficient condition is presented for parallel
independence of graph transformation systems with NACs. In order to
facilitate the implementation of the critical pair construction for a graph
transformation system with NACs a correct construction is formulated.
Finally, it is discussed how to continue with the development of conflict
detection and analysis techniques in the near future.

1 Introduction

Several applications using graph transformation need or already use negative
application conditions (NACs) to express that certain structures at a given time
are forbidden, e.g., [1,2,3,4,5]. In order to allow conflict detection and analysis
for these applications, the theory already worked out for graph transformation
systems (gts) without NACs should be generalized to gts with NACs. The no-
tion of critical pairs is central in this theory, allowing for conflict detection and
analysis. It was developed at first in the area of term rewriting systems (e.g.,
[6]) and, later, introduced in the area of graph transformation for hypergraph
rewriting [7,8] and then for all kinds of transformation systems fitting into the
framework of adhesive high-level replacement categories [9].

This paper now generalizes the critical pair notion and some first important
related results to gts with NACs. We tailored the theory presented in this paper
for gts with NACs and not on other kind of constraints or application conditions,
since NACs are already widely used in practice. It would be subject of future
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work to develop also a critical pair theory for graph transformation with other
kind of constraints as presented in [9]. Subject of future work as well and more
directly related to the subject of this paper is the formulation of a critical pair
lemma which gives a sufficient condition for local confluence of a gts with NACs.

The structure of this paper is as follows. In the first paragraph we repeat the
necessary definitions for graph transformation in the double pushout approach
[10] with NACs. Then we explain carefully what new types of conflicts can occur
because of the NACs by means of a new conflict characterization. This conflict
characterization leads in the next paragraph to a critical pair definition for gts
with NACs. A critical pair describes a conflict in a minimal context. Since now
there occur new types of conflicts we also distinguish other types of critical
pairs. Afterwards we show completeness for this critical pair definition i.e. each
conflict is expressed at least by one critical pair. Moreover we demonstrate,
that if there are no critical pairs at all in the graph transformation system
with NACs then this system is locally confluent or, more exactly, each pair of
direct transformations is parallel independent. In the conclusion and outlook we
explain how to continue with the development of critical pair theory to enable
manageable conflict detection and analysis techniques for gts with NACs.

2 Graph Transformation with NACs

Definition 1 (graph and graph morphism). A graph G = (GE , GV , s, t)
consists of a set GE of edges, a set GV of vertices and two mappings s, t :
GE → GV , assigning to each edge e ∈ GE a source q = s(e) ∈ GV and target
z = t(e) ∈ GV . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,E , Gi,V , si, ti), (i = 1, 2) is a pair f = (fE : GE,1 → GE,2, fV : GV,1 → GV,2)
of mappings, such that fV ◦s1 = s2◦fE and fV ◦t1 = t2◦fE. A graph morphism f :
G1 → G2 is injective (resp.surjective) if fV and fE are injective (resp. surjective)
mappings. Two graph morphisms m1 : L1 → G and m2 : L2 → G are jointly
surjective if m1,V (L1,V )∪m2,V (L2,V ) = GV and m1,E(L1,E)∪m2,E(L2,E) = GE.
A pair of jointly surjective morphisms (m1,m2) is also called an overlapping of
L1 and L2. The category having graphs as objects and graph morphisms as arrows
is called Graph.

Definition 2 (rule). A graph transformation rule p : L l← K
r→ R consists of a

rule name p and a pair of injective graph morphisms l : K → L and r : K → R.
The graphs L,K and R are called the left-hand side (lhs), the interface, and the
right-hand side (rhs) of p, respectively.

Definition 3 (match). Given a rule p : L l← K
r→ R and a graph G, one can

try to apply p to G if there is an occurence of L in G i.e. a graph morphism,
called match m : L→ G.

A negative application condition or NAC as introduced in [11] forbids a certain
graph structure to be present before or after applying the rule.
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Definition 4 (negative application condition)
Let M be the set of all injective graph morphisms.

– A negative application condition or NAC(n) on L is a graph morphism
n : L → N . A graph morphism g : L → G satisfies NAC(n) on L i.e.
g |= NAC(n) if and only if � q : N → G ∈M such that q ◦ n = g.

L

g

��

n �� N

q
X

��G

– A NAC(n) on L (resp. R) for a rule p : L l← K
r→ R is called left (resp.

right) NAC on p. NACp,L (resp. NACp,R) is a set of left (resp. right) NACs
on p. NACp = (NACp,L, NACp,R), consisting of a set of left and a set of
right NACs on p is called a set of NACs on p.

Definition 5 (graph transformation with NACs)

– A graph transformation system with NACs is a set of rules where each rule
p : L l← K

r→ R has a set NACp = (NACp,L, NACp,R) of NACs on p.

– A direct graph transformation G
p,g⇒ H via a rule p : L l← K

r→ R with
NACp = (NACp,L, NACp,R) and a match g : L→ G consists of the double
pushout [10] (DPO)

L

g

��

K
r ��

��

l�� R

h

��
G D ���� H

where g satisfies each NAC in NACp,L, written g |= NACp,L, and h : R→ H
satisfies each NAC in NACp,R, written h |= NACp,R. Since pushouts in
Graph always exist, the DPO can be constructed if the pushout complement
of K → L → G exists. If so, we say that, the match m satisfies the gluing
condition of rule p. A graph transformation, denoted as G0

∗⇒ Gn is a
sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of direct graph transformations.

In the example in Fig. 1 a pair of direct transformations via the rules p1 : L1 ←
K1 → R1, p2 : L2 ← K2 → R2 and matches m1 resp. m2 is depicted. The match
m1 fullfills the negative application condition NAC(n1) since there is no ingoing
edge into node 1 in graph G. The morphism e2 ◦m2 though doesn’t fullfill the
negative application condition NAC(n1) since now there is an edge from node
7 to node 1 in graph H2.
Remark: From now on we consider only gts with rules having an empty set of
right NACs. This is without loss of generality, because each right NAC can be
translated into an equivalent left NAC as explained in [9], where Theorem 7.17
can be specialized to NACs.
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Fig. 1. forbid-produce/delete-use-conflict

3 Conflicts for Graph Transformation with NACs

Confluence conflicts in term rewriting or graph transformation can typically
occur when two rules are applied to the same term or graph in such a way
that the corresponding redexes (i.e. for graph transformation the images of the
corresponding matches) overlap. In particular, the conflict appears when one of
the rules can delete part of the redex of the other rule. We call these conflicts
delete-use (or use-delete) conflicts. As a consequence, this kind of conflicts are
detected by computing the critical pairs of the given system, i.e., such delete-
use or use-delete conflicts induced by the overlappings between any two rules.
However, when dealing with graph transformation with NACs some new forms
of conflict may be present. For instance, an otherwise harmless overlapping (e.g.,
if no deletion happens) may cause a conflict as the following example shows (for
simplicity, in the examples below we will display the rules just in terms of their
left and right-hand sides, leaving the context implicit). Suppose that we have
two rules p1 and p2 with exactly the same left-hand side:

p1 : • �� • �� • �� •��

p2 : • �� • �� • ���� •

It should be clear that if we apply the rule p1 to a given graph, then we can
apply afterwards the rule p2 at the same redex. And, conversely, if we apply p1
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we can apply afterwards p2 at the same redex. However, suppose that the rule
p2 has a left NAC which coincides with the right-hand side of the rule p1. That
is, suppose that the NAC of rule p2 is defined by the inclusion:

NAC(p2) : • �� • �� • �� •��

then, obviously, after applying the rule p1 we would be unable to apply the
rule p2 at the same location because the associated NAC would forbid it. The
problem here is that the application of the first rule produces some additional
structure that is forbidden by the NAC of the second rule. For this reason we call
these new kind of conflicts produce-forbid (or forbid-produce) conflicts. Actually,
these new conflicts may arise even when the possible application of two rules do
not overlap. For instance suppose that p1 and p2 are the rules below:

p1 : • �� • •

p2 : • �� •��

and suppose that the rule p2 includes the left NAC:

NAC(p2) : • �� • • •

meaning that the rule p2 cannot be applied to a graph including at least three
nodes. Now, suppose that we have a graph G including just two nodes a and b.
Obviously, we can apply rule p1 to G at node a and rule p2 at node b without
any overlapping. However, if we first apply rule p1 this causes the creation of a
new node that would now forbid the application of rule p2 at node b.

In what follows, we will first look at the concept of parallel independence
of two direct transformations with NACs, which expresses the condition to be
fulfilled in order to apply two different rules to the same graph in any order with
the same result. This is proven in Theorem 1, the Local Church-Rosser Theorem
with NACs. Afterwards we will provide the conflict notion for gts with NACs
and a characterization of the conflicts as described above.

Definition 6 (parallel independence). Two direct transformations G
(p1,m1)=⇒

H1 with NACp1 and G
(p2,m2)=⇒ H2 with NACp2 are parallel independent if

∃h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

and

∃h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2)
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as in the following diagram:

N1 N2

R1

��

K1 ����

��

L1

n1

��

h12

��
m1

��













 L2

n2

��

h21

��
m2

��
��

��
��

K2�� ��

��

R2

��
H1 D1

d1

��
e1

�� G D2
d2

��
e2

�� H2

Theorem 1 (Local Church-Rosser Theorem with NACs). If a pair of
direct transformations H1

p1⇐ G
p2⇒ H2 with NACs is parallel independent, then

there are two direct transformations H1
p2⇒ H and H2

p1⇒ H with NACs s.t.
H1 p2

��
������

G

p1 �� 

p2 ��
�����

� H

H2
p1

����� ���

Proof. Because of the Local Church-Rosser Theorem for rules without NACs all
necessary pushouts in H1

p2⇒ H and H2
p1⇒ H can be constructed and moreover

the matches e2 ◦ h1 and e1 ◦ h2 satisfy the NACs of rule p1 resp. p2 by the
definition of parallel independence for graph transformation with NACs.

The following lemma describes that, if a match for the potential second trans-
formation exists, it is unique. Moreover this lemma will allow an elegant conflict
characterization in Lemma 2.

Lemma 1 (unique match). Given two direct transformations G
(p1,m1)=⇒ H1

with NACp1 and G
(p2,m2)=⇒ H2 with NACp2 , then the following holds:

– if ∃h12 : L1 → D2 s.t. d2 ◦ h12 = m1 then h12 is unique
– if ∃h21 : L2 → D1 s.t. d1 ◦ h21 = m2 then h21 is unique.

Proof. Since each rule consists of two injective morphisms and pushouts are
closed under injective morphisms, d1 and d2 are injective morphisms as well. If
there would exist h′

12 : L1 → D2 : d2 ◦h′
12 = m1 then because of d2 injective and

d2 ◦ h′
12 = d2 ◦ h12 = m1 it follows that h′

12 = h12. Analogously one can prove
that h21 is unique.

Definition 7 (conflict). Two direct transformations G
(p1,m1)⇒ H1 with NACp1

and G
(p2,m2)⇒ H2 with NACp2 are in conflict if they are not parallel independent

i.e. if

�h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

or
�h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2 ).
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The following lemma characterizes this conflict notion for graph transformation
with NACs s.t. the difference with the conflict notion for graph transformation
without NACs becomes more clear. As described in the introduction of this
section new types of conflicts can occur and the lemma in fact characterizes four
different types of conflicts that can occur partly simultaneously.

Two direct transformations G
(p1,m1)⇒ H1 and G

(p2,m2)⇒ H2 are in delete-use-
conflict (resp.use-delete-conflict) if rule p1 (resp. p2) deletes part of the graph
G, which is used by rule p2 (resp.p1) in the second (resp. first) direct transfor-
mation. This kind of conflict occurs also in gts without NACs [12]. In contrast
a produce-forbid-conflict (resp. forbid-produce-conflict) occurs only in gts with
NACs. Namely, if rule p1 (resp.p2) produces a graph structure which is forbidden
by the NAC of rule p2 (resp. p1).

Lemma 2 (conflict characterizaton). Two direct transformations G
(p1,m1)⇒

H1 with NACp1 and G
(p2,m2)⇒ H2 with NACp2 are in conflict if and only if:

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 (use-delete-conflict)
or

(b) there exists a unique h12 : L1 → D2 : d2◦h12 = m1, but e2◦h12 �|= NACp1

(forbid-produce-conflict)
or

2. (a) �h21 : L2 → D1 : d1 ◦ h21 = m2 (delete-use-conflict)
or

(b) there exists a unique h21 : L2 → D1 : d1◦h21 = m2, but e1◦h21 �|= NACp2

(produce-forbid-conflict).

Proof. G
(p1,m1)⇒ H1 with NACp1 and G

(p2,m2)⇒ H2 with NACp2 are in conflict
if

�h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

or
�h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2)

We consider at first the first line of this disjunction. Let A(h12) := d2◦h12 = m1,
B(h12) := e2 ◦ h12 |= NACp1 , P (h12) := (A(h12) ∧B(h12)) and M12 be the set
of all morphisms from L1 to D2. Then the first line is equivalent to

�h12 ∈M12 : (A(h12) ∧B(h12)) ≡ �h12 ∈M12 : P (h12)

This is equivalent to

∀h12 ∈M12 : ¬P (h12) ≡ (M12 = ∅) ∨ (M12 �= ∅ ∧ ∀h12 ∈M12 : ¬P (h12))

Moreover P ≡ A ∧ B ≡ A ∧ (A⇒ B) and thus ¬P ≡ ¬(A ∧ B) ≡ ¬(A ∧ (A ⇒
B)) ≡ ¬A ∨ ¬(A⇒ B) ≡ ¬A ∨ ¬(¬A ∨B) ≡ ¬A ∨ (A ∧ ¬B). This implies that
(M12 = ∅) ∨ (M12 �= ∅ ∧ ∀h12 ∈M12 : ¬P (h12)) ≡

(M12 = ∅) ∨ (M12 �= ∅ ∧ ∀h12 ∈M12 : ¬A(h12) ∨ (A(h12) ∧ ¬B(h12)))
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Because of Lemma 1 and because the disjunction holding for each morphism in
M12 is an exclusive one this is equivalent to

(M12 =∅)∨(M12 �=∅∧∀h12 ∈M12 : ¬A(h12))∨(∃!h12 ∈M12 : (A(h12)∧¬B(h12)))

Now (M12 = ∅) ∨ (M12 �= ∅ ∧ ∀h12 ∈M12 : ¬A(h12)) ≡ ∀h12 ∈M12 : ¬A(h12) ≡
�h12 ∈ M12 : A(h12). This implies finally that �h12 : L1 → D2 s.t. (d2 ◦ h12 =
m1 and e2 ◦ h12 |= NACp1) is equivalent to

(�h12 ∈M12 : d2◦h12 = m1)∨(∃!h12 ∈M12 : (d2◦h12 = m1∧e2◦h12 �|= NACp1))

is equivalent to

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 (use-delete-conflict)
or

(b) there exists a unique h12 : L1 → D2 : d2◦h12 = m1, but e2◦h12 �|= NACp1

(forbid-produce-conflict)

Analogously we can proceed for the second part of the disjunction.

Note that a use-delete-conflict (resp. delete-use-conflict) cannot occur simultane-
ously to a forbid-produce-conflict (resp. produce-forbid-conflict), since (1.a) ⇒
¬(1.b) (resp. (2.a) ⇒ ¬(2.b)). The following types of conflicts can occur si-
multaneously though: use-delete/delete-use-, use-delete/produce-forbid-, forbid-
produce/delete-use-, forbid-produce/produce-forbid-conflict. In the example in
Fig. 1 a pair of direct transformations in forbid-produce/delete-use-conflict is
shown. In this case the first rule forbids an additional edge pointing to node
(1,3) which is added by the second rule and the first rule deletes the edge (1,3)-
(2,4) which is used by the second rule. Note that the labels express how nodes
and edges are mapped to each other.

4 Critical Pairs for Graph Transformation with NACs

Now that we have a detailed conflict characterization we can look at a conflict in
a minimal context i.e. a critical pair. Basically we exclude from the conflict all the
graph parts that in no way can be responsible for the occurence of the conflict.
In the case of a delete-use-conflict this would be the graph context which is not
reached by any of the matches of the lhs’s of the rules. This is because these
graph parts can not be used nor deleted by any of the rules anyway. Therefore
we consider only jointly surjective matches or overlappings of the lhs’s of both
rules in part (1a) and (2a) of the following critical pair definition. In the case of
a produce-forbid-conflict we can leave out the graph parts which are not affected
by any negative application condition of one rule and reached by a match of the
rhs of the other rule. This is because these graph parts are not forbidden by
a NAC of one rule and can not have been produced by the other rule anyway.
Therefore we only consider overlappings or jointly surjective mappings of the
NAC of one rule with the rhs of the other rule in part (1b) and (2b) of the



Conflict Detection for Graph Transformation with NACs 69

following critical pair definition. Thus in fact in the example in Fig. 1 we obtain
the critical pair by ignoring all unlabelled graph nodes. Remember that in the
following critical pair definition M is the set of all injective graph morphisms as
defined in Def. 4.

Definition 8 (critical pair). A critical pair is a pair of direct transformations

K
(p1,m1)⇒ P1 with NACp1 and K

(p2,m2)⇒ P2 with NACp2 such that:

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 and (m1,m2) jointly surjective
(use-delete-conflict)
or

(b) there exists a h12 : L1 → D2 s.t. d2 ◦ h12 = m1, but for one of the NACs
n1 : L1 → N1 of p1 there exists a morphism q12 : N1 → P2 ∈ M s.t.
q12◦n1 = e2◦h12 and (q12, h2) jointly surjective (forbid-produce-conflict)

or
2. (a) �h21 : L2 → D1 : d1 ◦ h21 = m2 and (m1,m2) jointly surjective

(delete-use-conflict)
or

(b) there exists a h21 : L2 → D1 s.t. d1 ◦ h21 = m2, but for one of the NACs
n2 : L2 → N2 of p2 there exists a morphism q21 : N2 → P1 ∈ M s.t.
q21◦n2 = e1◦h21 and (q21, h1) jointly surjective (produce-forbid-conflict)

N1
q12

��

N2
q21

��

R1

h1

��

K1
l1 ��r1��

��

L1

h12

��

n1

��

m1
���

��
��

��
� L2

h21

��

n2

��

m2
��

��
��

��
K2

��

l2�� r2 �� R2

h2

��
P1 D1

d1

��
e1

�� K D2
d2

��
e2

�� P2

Remarks to related work: Note that the definition in this paper for paral-
lel independence and conflict as well as the Local Church Rosser Theorem for
graph transformation with NACs coincide with their equivalents as introduced
in [11]. Moreover, if the gts doesn’t hold any NAC, then the definition of parallel
independence, conflict and critical pair as given in this paper correspond to the
respective definition in the context of graph transformation without NACs [9].
Leadoff ideas to capture the critical pair notion for graph transformation with
NACs were described in [13] and coincide with the formalization in this paper.
Furthermore in [5] so-called critical conflict pairs for single pushout graph trans-
formation with NACs are defined. The correspondence between this notion and
the critical pair notion as introduced in this paper should be investigated in
more detail.

Now we prove that Definition 8 of critical pairs leads to completeness. This
means, that each occuring conflict in the graph transformation system with
NACs can be expressed by a critical pair i.e. the same kind of conflict but in a
minimal context. Therefore at first we need the following definition and lemma.
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Definition 9 (extension diagram). An extension diagram is a diagram (1),

G0

(1)

∗t ��

k0

��

Gn

kn

��
G′

0
∗t′
�� G′

n

where, k0 : G0 → G′
0 is a morphism, called extension morphism, and t :

G0
∗⇒ Gn and t′ : G′

0
∗⇒ G′

n are transformations via the same productions
(p0, · · · , pn−1) and matches (m0, · · · ,mn−1) and (k0 ◦m0, · · · , kn−1 ◦mn−1) re-
spectively, defined by the following DPO diagrams :

pi : Li

mi

��

Ki

ji

��

ri

��
li

�� Ri

ni

��
Gi

ki

��

Di

di

��

gi

��
fi

�� Gi+1

ki+1

��
G′

i D′
i

g′
i

��
f ′

i

�� G′
i+1

Remark: Since t and t′ are transformations for a gts with NACs, the matches
(m0, · · · ,mn−1) and (k0 ◦m0, · · · , kn−1 ◦mn−1) have to satisfy the NACs of the
rules (p0, · · · , pn−1).

Lemma 3 (induced direct transformation). Given a direct transformation
G

p⇒ H with NACs via the rule p : L l← K
r→ R and match m : L → G and

given an object K ′ with two morphisms L
mlk→ K ′ mkg→ G s.t. m = mkg ◦mlk, with

mkg ∈M , then there exists a direct transformation, the so called induced direct
transformation K ′ p⇒ P via the same rule p and the match mlk, satisfying the
NACs of p as in the following diagram :

N

L

n

��

(1)

m

��

mlk

��

K
k′

��

k

��
(2)

��

l�� r �� R

h′



h

��
K ′

(3)mkg

��

D

(4)f

��

d
��

e
�� P

o

��
G D′

d′
��

e′
�� H

Proof. Given G
p⇒ H with NAC n as shown above. Since d′ ∈ M we can take

pullback (3) of mkg and d′. Since mkg ◦ mlk ◦ l = m ◦ l = d′ ◦ k′ then there
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exists a morphism k : K → D with k′ = f ◦ k and d ◦ k = mlk ◦ l because
of the pullback property of (3). Because of the pushout-pullback-decomposition
lemma [9], l ∈ M and mkg ∈ M diagrams (1) and (3) are both pushouts.
Now we can construct pushout (2) of D ← K → R because of r ∈ M . Since
e′ ◦ f ◦k = e′ ◦k′ = h′ ◦ r there exists a morphism o : P → H with o◦h = h′ and
o ◦ e = e′ ◦ f because of the pushout-property of (2). Because of the pushout-
decomposition property also diagram (4) is a pushout.

It remains to show that mlk satisfies the NACs of p. Suppose that mlk doesn’t
fullfill some NAC(n) of p, then there exists a morphism q : N → K ′ ∈ M s.t.
q ◦n = mlk, but this implies mkg ◦ q ◦n = mkg ◦mlk = m with mkg ◦ q ∈M and
this is a contradiction.

Theorem 2 (completeness of critical pairs). For each pair of direct trans-

formations H1
(p1,m′

1)⇐ G
(p2,m′

2)⇒ H2 in conflict there is a critical pair with exten-
sion diagrams (1) and (2) and m ∈M .

P1

��
(1)

K�� ��

(2)m

��

P2

��
H1 G�� �� H2

Proof. According to Lemma 2 the following reasons are responsible for a pair of

direct transformations G
(p1,m′

1)⇒ H1 with NACp1 and G
(p2,m′

2)⇒ H2 with NACp2

to be in conflict :

1. (a) �h′
12 : L1 → D′

2 : d′2 ◦ h′
12 = m′

1 (use-delete-conflict)
or

(b) there exists a unique h′
12 : L1 → D′

2 : d′2◦h′
12 = m′

1, but e′2◦h′
12 �|= NACp1

(forbid-produce-conflict)
or

2. (a) �h′
21 : L2 → D1 : d′1 ◦ h′

21 = m′
2 (delete-use-conflict)

or
(b) there exists a unique h′

21 : L2 → D1 : d′1◦h′
21 = m′

2, but e′1◦h′
21 �|= NACp2

(produce-forbid-conflict)

It is possible, that (1.b) and (2.b) are both false. In this case, (1.a) or (2.a) have
to be true which corresponds to the usual use-delete-conflict (resp. delete-use-
conflict) and in [9] it is described how to embed a critical pair into this pair of
direct transformations. In the other case (1.b) or (2.b) are true. Let at first (1.b)
be true. This means that there exists a unique h′

12 : L1 → D′
2 : d′2 ◦ h′

12 = m′
1,

but e′2 ◦ h′
12 �|= NACp1 . Thus for one of the NACs n1 : L1 → N1 of p1 there

exists a morphism q′12 : N1 → H2 ∈ M such that q′12 ◦ n1 = e′2 ◦ h′
12. For each

pair of graph morphisms with the same codomain, there exists an E −M pair
factorization [9] with E the set of all jointly surjective morphisms and M the
set of injective graph morphisms as defined in Def. 4. Thus for q′12 : N1 → H2
and h′

2 : R2 → H2 we obtain an object P2 and morphisms h2 : R2 → P2,
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q12 : N1 → P2 and o2 : P2 → H2 with (h2, q12) jointly surjective and o2 ∈ M
such that o2 ◦ h2 = h′

2 and o2 ◦ q12 = q′12. Because of Lemma 3 pushouts (5)
- (8) can be constructed, if we consider the fact that also H2 ⇒ G is a direct
transformation via the inverse rule of p2. Since o2 ∈ M and (7) and (8) are
pushouts also f2 ∈ M and m ∈ M . Because of the same argumentation as in
Lemma 3, since m′

2 fullfills all the NACs of p2 also m2 fullfills them. Now we
have the first half K ⇒ P2 of the critical pair under construction.

We still have to check if this critical pair is in forbid-produce-conflict. Since
(8) is a pullback and o2 ◦ q12 ◦ n1 = q′12 ◦ n1 = e′2 ◦ h′

12 there exists a morphism
h12 : L1 → D2, with e2 ◦ h12 = q12 ◦ n1 and f2 ◦ h12 = h′

12. Because q′12 =
o2 ◦ q12 ∈ M and o2 ∈ M we have q12 ∈ M . This means, that e2 ◦ h12 doesn’t
fullfill the NAC n1 : L1 → N1.

Now we can start constructing the second half of the critical pair. Let m1
be the morphism d2 ◦ h12, then the following holds m ◦ m1 = m ◦ d2 ◦ h12 =
d′2 ◦ f2 ◦ h12 = d′2 ◦ h′

12 = m′
1.

Because of Lemma 3 and m ∈ M pushouts (1) - (4) can be constructed and
m1 satisfies the NACs of p1. Thus finally we obtain a critical pair according to
Def. 8 of type (1.b) because we have h12 with d2 ◦ h12 = m1. Moreover there is
q12 ∈M with (q12, h2) jointly surjective and e2 ◦ h12 = q12 ◦ n1.

N1
q12

��

q′
12

��

N2

R1

(1)h1

��
h′
1

��

K1

(2)

l1 ��r1��

��

L1 h12

��

h′
12

��

m′
1

��

n1

��

m1
��

L2

(5)

m′
2

��

n2

��

m2


K2

(6)
��

l2�� r2 �� R2

h′
2

� 

h2

��
P1

(3)o1

��

D1

(4)f1

��

d1

��
e1

�� K

(7)
m��

D2

(8)f2

��

d2

��
e2

�� P2

o2

��
H1 D′

1
d′
1

��
e′
1

�� G D′
2

d′
2

��
e′
2

�� H2

We can proceed analogously for the case of (2.b) being true leading to a critical
pair of type (2.b) according to Def. 8.

In the example in Fig. 1 the critical pair, obtained by ignoring all unlabelled
nodes, can be embedded into the forbid-produce-delete-use-conflict depicted in
this figure in a bigger context (i.e. two extra nodes).

Fact 3 (necessary and sufficient condition for parallel independence). Each
pair of direct transformations H1 ⇐ G ⇒ H2 in a gts with NACs is parallel
independent if and only if there are no critical pairs for this gts with NACs. A
gts with NACs is locally confluent if there are no critical pairs for this gts with
NACs.

Proof. – Given a gts with NACs with an empty set of critical pairs and let
H1 ⇐ G ⇒ H2 be a pair of non parallel independent direct graph trans-
formations for this gts with NACs. This is a contradiction, since then there



Conflict Detection for Graph Transformation with NACs 73

would exist a critical pair which can be embedded into this pair of direct
transformations as in Theorem 2.

– Given a gts with NACs with only parallel independent pairs of direct trans-
formations H1 ⇐ G ⇒ H2. Then the set of critical pairs has to be empty,
otherwise a critical pair would be a pair of non parallel independent direct
transformations.

– If each pair of direct transformations H1 ⇐ G ⇒ H2 in a gts with NACs
is parallel independent then each pair is also locally confluent and in conse-
quence this gts with NACs is locally confluent.

5 Conflict Detection for Graph Transformation with
NACs

5.1 Construction of Critical Pairs

Critical pairs allow for static conflict detection. Each conflict, occuring at some
moment in the graph transformation, is represented by a critical pair. Thus it is
possible to foresee each conflict by computing the set of all critical pairs before
running the gts as implemented in the graph transformation tool AGG [14]. Each
pair of rules of the gts induces a set of critical pairs. Computing this set for each
pair of rules delivers us in the end the complete set of critical pairs for a gts. Here
a straightforward construction is given to compute the set of critical pairs for a
given pair of rules of the gts with NACs. Note that there exists already a more
efficient construction for critical pairs in delete-use- or use-delete-conflict in step
1 described in [12]. For lack of space we only refer to it here and give instead the
straightforward construction. Moreover we think that, using similar techniques,
we could provide also a more efficient construction for the produce-forbid and
forbid-produce critical pairs, but this is current work.

N1
q12

��

N2
q21

��

R1

(1)h1

��

K1

(2)

l1 ��r1��

��

L1

h12

��

n1

��

m1
���

��
��

��
� L2

(3)h21

��

n2

��

m2
��

��
��

��
K2

(4)
��

l2�� r2 �� R2

h2

��
P1 D1

d1

��
e1

�� K D2
d2

��
e2

�� P2

Given a pair of rules (p1 : L1 ← K1 → R1, p2 : L2 ← K2 → R2) with NACs:

1. Consider any jointly surjective pair (m1 : L1 → K,m2 : L2 → K).
(a) Check gluing condition for (l1,m1) and (l2,m2). If it is satisfied then

construct PO-complements D1,D2 in (2),(3) and PO’s P1,P2 in (1) and
(4).

(b) Check if the pair of direct transformations P1 ⇐ K ⇒ P2 is in delete-use
or use-delete-conflict, leading to critical pair P1 ⇐ K ⇒ P2.
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2. Consider for each NAC n1 : L1 → N1 of p1 any jointly surjective pair of
morphisms (h2 : R2 → P2, q12 : N1 → P2) with q12 injective.
(a) Check gluing condition for (h2, r2). If it is satisfied, then construct PO-

complement D2 in (4).
(b) Construct PO K in (3) and abort, if m2 �|= NACp2 .
(c) Check existence of h12 : L1 → D2 s.t. e2 ◦ h12 = q12 ◦ n1 (e2 injective

implies uniqueness of h12). If not existent, then abort.
(d) Define m1 = d2 ◦ h12 : L1 → K and abort if m1 �|= NACp1 .
(e) Check gluing condition for (m1, l1). If it is satisfied, then construct PO-

complement D1 in (2).
(f) Construct P1 as PO in (1) leading to critical pair P1 ⇐ K ⇒ P2.

3. Consider for each NAC n2 : L2 → N2 of p2 any jointly surjective pair of
morphisms (h1 : R1 → P1, q21 : N2 → P1) with q21 injective and continue
analog to step 2.

5.2 Correctness of This Construction

The construction in the last paragraph is derived quite straightforwardly from
Definition 8 and we are able to show that in fact it yields all critical pairs of a
pair of rules of the gts with NACs.

Theorem 4. The critical pair construction in paragraph 5.1 yields the set of all
critical pairs for a pair of rules (p1, p2) of a gts with NACs.

Proof. – At first we prove that the pair of direct transformations constructed
in steps 1,2 and 3 is really a critical pair. Step 1: Since the matches (m1,m2)
of P1 ⇐ K ⇒ P2 are jointly surjective and this pair is in delete-use- or use-
delete-conflict this is a critical pair. Step 2: Since there exists a morphism
h12 : L1 → D2 with m1 = d2 ◦ h12 and an injective morphism q12 : N1 → P2
with e2 ◦ h12 = q12 ◦ n1 and (h2, q12) jointly surjective, this is a critical pair
in forbid-produce-conflict. Step 3: Analog to Step 2.

– Secondly we prove that each critical pair is constructed by step 1, 2 or
3. Looking at Definition 8 there are three different types of critical pairs.
Given a critical pair P1 ⇐ K ⇒ P2 of type 1a or 2a it is constructed by
step 1. This is because the matches (m1,m2) are jointly surjective, (l1,m1)
and (l2,m2) satisfy the gluing condition, because (2) and (3) are pushouts,
(1) and (4) are also pushouts, pushouts are unique up to isomorphy and
P1 ⇐ K ⇒ P2 are in delete-use- or use-delete-conflict. Given a critical pair
P1 ⇐ K ⇒ P2 of type (1b) it is constructed by step 2. This is because
(h2, q12) are jointly surjective, the gluing condition for (h2, r2) is satisfied
because (4) is a pushout, (3) is a pushout, m2 |= NACp2 , h12 : L1 → D2
exists s.t. e2 ◦h12 = q12 ◦n1, m1 |= NACp1 , the gluing condition for (m1, l1)
holds since (2) is a pushout, (1) is a pushout and pushouts are unique up to
ismorphy. Given a critical pair P1 ⇐ K ⇒ P2 of type (2b) it is constructed
by step 3 analogously to a critical pair of type (1b).
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6 Conclusion and Outlook

We presented the first foundations for a critical pair theory for gts with NACs
which in the end should lead to good conflict detection and analysis algorithms
for all kinds of systems described with means of gts with NACs. Main results in
this paper are a conflict notion and conflict characterization for gts with NACs.
The definition of a critical pair for gts with NACs for which we could prove
completeness. We provided a straightforward and correct construction of the set
of all critical pairs.

The theory presented in this paper can be generalized to adhesive HLR sys-
tems [9] with NACs. It is subject of future work to reformulate in detail all
results and proofs mentioned in this paper on this more abstract level. Note
that we tuned most reasonings in this paper already for this generalization such
that it will be a relatively straightforward step. Once formulated the theory for
adhesive HLR systems with NACs it is possible to instantiate it in particular
for typed attributed graph transformation systems with NACs. This more gen-
eral kind of graph transformation technique is most significant for modeling and
metamodeling in software engineering and visual languages.

The theory of critical pairs consists of an other important part not mentioned
yet in this paper. In gts without NACs the critical pair lemma holds. It gives
a sufficient condition for the gts to be confluent. This is the case if all critical
pairs are strictly confluent [9]. Thus, the critical pair lemma enables us to infer
confluence behaviour of the whole graph transformation system by investigating
the confluence behaviour of the set of all critical pairs. A similar result should
be obtained for gts with NACs. This is work in progress and we are confident to
be on the right path to complete it with the critical pair definition presented in
this paper.

Moreover the results in this paper build a necessary theoretical foundation
to continue with investigations on how to design conflict detection and analysis
for typed, attributed gts with NACs as manageable as possible. For gts without
NACs in [12] a rule analysis was proposed in order to obtain a more efficient
conflict detection as the straightforward one. In [15] this efficiency investigation
was continued by designing the so-called essential critical pairs. They build a
subset of all critical pairs and represent each conflict not only in a minimal
context, but also in a unique way. It should be possible to formulate also for
critical pairs with NACs such a subset of essential critical pairs, by analyzing
the rules and defining the exact conflict reason for each conflict. Finally future
work is not only concerned with optimizations for conflict detection, but also for
conflict analysis or finding a manageable way to investigate the resolvability of
each conflict.
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Abstract. We propose an extension of node and hyperedge replacement
grammars, called adaptive star grammars, and study their basic proper-
ties. A rule in an adaptive star grammar is actually a rule schema which,
via the so-called cloning operation, yields a potentially infinite number of
concrete rules. Adaptive star grammars are motivated by application ar-
eas such as modeling and refactoring object-oriented programs. We prove
that cloning can be applied lazily. Unrestricted adaptive star grammars
are shown to be capable of generating every type-0 string language. How-
ever, we identify a reasonably large subclass for which the membership
problem is decidable.

1 Introduction

Software engineering tools for model transformation or refactoring do often rep-
resent models and programs by graphs. Our earlier research in this area [1] re-
vealed that the structure of such graphs cannot be captured by graph schemas,
because models and programs have a recursive syntactical structure. Graph
grammars are among the most natural candidates for specifying recursively
structured graphs. For example, a graph grammar could be designed to gen-
erate the set of all program graphs as defined in [1].

The purpose of this paper is to introduce adaptive star grammars and to
study their basic properties. Being context-free devices with nice computational
properties, hyperedge and node replacement grammars [2,3,4] have proven par-
ticularly useful for defining graph languages. Unfortunately, these types of graph
grammars turn out to be too weak to generate program graphs in a reasonable
way. Therefore, we propose an extension, called adaptive star grammar, that is
not only able to capture the context-free structure of object-oriented programs,
but also aspects such as scope rules, overriding of methods, and references of
variable and parameter uses to their definitions.

A star rule is a rule which replaces a nonterminal node together with its out-
going edges – a star – with another graph. This graph is glued to the border

� Supported by SeGraVis (www.segravis.org), a European research training network.
�� On leave to Universität Bremen on a SeGraVis grant (October 2005–January 2006).

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 77–91, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



78 F. Drewes et al.

nodes of the star, i.e., to the nodes pointed to by the outgoing edges of the
nonterminal node. The replacement process is similar to the well-known notion
of hyperedge replacement, where the nonterminal node corresponds to the hy-
peredge being replaced. To increase the generative power of the device, border
nodes of the left-hand side of a star rule may be designated as so-called multi-
ple nodes. These nodes can be cloned prior to the application of the star rule.
Cloning simply replicates a multiple node together with its incident edges any
number of times (including 0). Thus, a star rule containing multiple nodes is
actually a rule schema. In fact, even the host graph may contain multiple nodes,
and these can be cloned as well in order to make a rule applicable.

We note here that the set nodes of Progres [5] and Fujaba [6] are similar to
our multiple nodes. In the model transformation language Gmorph [7], a more
general notion of cloning is provided whose collection containers correspond to
the notion of a multiple subgraph. A similar concept is addressed in [8].

As our first main result, we show that cloning can be applied in both an eager
and a lazy manner. Thus, derivations can be carried out effectively. Our second
and third results concern the generative power of adaptive star grammars and
the membership problem. Unrestricted adaptive star grammars can generate all
recursively enumerable string languages (encoded as chain graphs in the usual
way). Thus, these grammars are too powerful if given structures need to be
parsed. However, in our third main result, we identify a reasonably large class
of adaptive star grammars for which membership is decidable.

The structure of this paper is as follows. In the next section, we define the basic
notions regarding stars and star replacement. Section 3 introduces the cloning
operation. Based on this, adaptive star grammars are introduced in Section 4. In
this section we also discuss a nontrivial example that applies adaptive grammars
to generate program graphs. Two derivation strategies, eager and lazy cloning,
are studied in Section 5 and demonstrated on the example. In Section 6, the
generative power and the membership problem of adaptive star grammars are
investigated. Section 7 concludes the paper.

2 Star Replacement

We start by defining the type of graphs considered in this paper. Throughout the
paper, let Σ be a set of labels which is partitioned into two disjoint, countably
infinite sets Σ̇ and Σ̄ of node and edge labels, resp. A finite subset Σ of Σ is
called a labeling alphabet. Its two components are Σ̇ = Σ ∩ Σ̇ and Σ̄ = Σ ∩ Σ̄.

Intuitively, in the type of grammars to be defined later on, stars are the
nonterminal items to be replaced. Therefore, we reserve an infinite supplyN ⊆ Σ̇
of node labels called nonterminals. (We assume that the remaining set Σ̇ \ N
of terminal labels is infinite as well.) In the following definition of graphs, we
prohibit edges that point to nonterminal nodes. In particular, nonterminal nodes
cannot be connected by edges. In this way, stars become a generalised version
of the hyperedges known from hyperedge replacement grammars [2,3].
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Definition 1 (Graph). A graph G = 〈Ġ, Ḡ, sG, tG, �̇G, �̄G〉 consists of finite
sets Ġ of nodes and Ḡ of edges, of source and target functions sG, tG : Ḡ → Ġ,
and of node and edge labeling functions �̇G : Ġ → Σ̇ and �̄G : Ḡ → Σ̄. For all
edges e ∈ Ḡ, it is required that �̇(tG(e)) /∈ N .

The set of all graphs labeled over a labeling alphabet Σ is denoted by GΣ .

We use common terminology regarding graphs. For instance, an edge is said to be
incident with its source and target nodes, and makes these nodes adjacent to each
other. For A ⊆ Ġ, G\A denotes the subgraph of G induced by Ġ\A. Morphisms
and isomorphisms are defined as usual. The notation G ∼=m H denotes the fact
that graphs G and H are isomorphic via the isomorphism m.

Next, we define a central notion of this paper, the star.

Definition 2 (Star). For a graph G and a node x ∈ Ġ, G(x) denotes the
subgraph of G consisting of x, all its incident edges, and all its adjacent nodes.
A graph of the form G(x) is a star if �̇G(x) ∈ N . In this case, G(x) is also called
a star occurrence in G.

Thus, a star is a graph S that consists of a nonterminal node x and its adjacent
nodes. In the following, these will be called the center node of S and the border
nodes of S, resp. The edges are called the arms of x. By Definition 1, each arm
points from the center node to a border node. A star is straight if the target
nodes of its arms are pairwise distinct.

Definition 3 (Star Rule). A star rule S ::= R consists of a star S, called its
left-hand side, and a graph R, called its right-hand side, that share precisely the
border nodes of S. When we modify such a rule, it is considered to be a single
graph, namely the union of S and R.

Example 1 (Star Rules). Two examples of star rules are shown below:

p1 =

N
a b

A A
1 2

::=

N b A

a

A A
1 2

p2 =

N
a a

A A
1 2

::=

N
a

A

a
a

A A

3 4

1 2

Nonterminal nodes are drawn as boxes; they have two border nodes labeled A,
and two arms. For both rules, the border nodes 1 and 2 are drawn twice: they
belong both to the right-hand side and to the left-hand side.

Definition 4 (Star Replacement). Let G be a graph, and p = (S ::= R) a
star rule so that S ∼=m G(x) for some node x ∈ Ġ. The replacement of x by
R yields the graph H which is obtained from the disjoint union of G and R by
removing x and its arms, and identifying every border node b of S in R with its
image m(b) ∈ Ġ. In this situation, we also write G⇒x,p,m H .



80 F. Drewes et al.

Obviously, star replacement is a restricted form of DPO graph transformation [9]
(with injective occurrence morphisms). In fact, star replacement is more or less
equivalent to hyperedge replacement [2,3], because the center node of a star
together with its arms can be seen as a hyperedge.

Star replacement does not cover node replacement [4], as the left-hand side of a
star rule has a fixed number of arms, whereas nonterminals in node-replacement
grammars can be replaced independently of the number of edges incident with
them. The notion of cloning introduced in the next section is a formal mechanism
that makes it possible to overcome this limitation of star replacement. Rules are
specified in a generic way so that they adapt to several contexts of a nonterminal,
but not necessarily to all. Next, we formalize the adaptation process, which we
call cloning, and then we use it to define adaptive star grammars.

3 Cloning

In this section, we formalize the notion of cloning. We use a special set of labels
designating so-called multiple nodes. A similar mechanism can be found in the
Progres graph transformation language [5].

Formally, we assume from now on that Σ̇ \N contains a subset Σ̈ of multiple
node labels. The remaining node labels are said to be singular ones. Further, we
assume that there is a bijection :̈ Σ̇ \ (N ∪ Σ̈) → Σ̈. Thus, every singular node
label l has a copy l̈ among the multiple node labels. A node is said to be singular
or multiple depending on its label. The set of multiple nodes in a graph G is
denoted by G̈, i.e., G̈ = {v ∈ Ġ | �̇G(v) ∈ Σ̈}. In figures, we draw multiple nodes
as nodes with a “shadow”, as is seen in Definition 6.

We can now define the cloning operation. Using this operation, a multiple
node can be turned into any number of singular nodes, its clones. However, we
also want to be able to create clones that are multiple nodes. Thus, we define
G x

(m,n) to be obtained from G by replacing the multiple node x with m clones
which are still multiple, and n singular clones.

Definition 5 (Cloning Operation). Let G be a graph, x ∈ G̈ a multiple node,
and m,n ≥ 0. The clone G x

(m,n) is the graph constructed as follows. Let G′(x)

be obtained from G(x) by replacing the label l̈ of x by l. Then take the disjoint
union of the graph G \ {x}, m copies of G(x), and n copies of G′(x). Finally,
identify the m + n + 1 copies of each node in Ġ(x) \ {x} with each other.

The m + n copies of x in G x
(m,n) are called the clones of x. Obviously, G x

(m,n)
is defined only up to isomorphism. However, G \ {x} is of course isomorphic to
the subgraph of G x

(m,n) induced by the nodes that are not clones of x.
The process of cloning can be described by graph transformation. The rules

in the following definition should be considered as rules in the DPO approach,
where the interface graph is the discrete graph consisting of the nodes 1, . . . , p+q.
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Definition 6 (Cloning Rules). The set Δ of cloning rules consists of all rules
of the form

1 p

· · ·
· · ·

l̈

· · ·
· · ·

p + 1 p + q

::=

1 p

· · ·

· · ·
p + 1 p + q

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p

· · ·
· · ·
l

· · ·
· · ·

p + 1 p + q

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p

· · ·
· · · · · ·
l̈ l̈

· · · · · ·
· · ·

p + 1 p + q

for all l̈ ∈ Σ̈ and all p, q � 0.1 The three rule schemas will be denoted by rem(l̈),
sing(l̈), and copy(l̈), respectively.

The application of a cloning rule performs a cloning operation, in which a mul-
tiple node is either removed, turned into a singular node, or copied. It should
be clear that the cloning rules suffice to describe all clonings. More precisely, let
G be a graph containing a multiple node x. For all m,n � 0, G x

(m,n) is derived
from G using the cloning rules, as follows: G x

(0,0) is obtained by an application

of rem(l̈). Moreover, for m+n > 0, G x
(m,n) is obtained by m+n−1 applications

of copy(l̈) and n applications of sing(l̈).
The result obtained by cloning a number of nodes is independent of the order

in which those nodes are treated.

Lemma 1 (Cloning is Commutative). For a graph G with distinct multiple
nodes x and y, and for m,n,m′, n′ ≥ 0,(

G
x

(m,n)

)
y

(m′, n′)
∼=

(
G

y

(m′, n′)

)
x

(m,n)
.

Proof. Obviously, if two rules in Δ are applied to distinct multiple nodes of G,
the result does not depend on the order of these rule applications. As argued
above, Δ describes cloning correctly. This yields the statement. ��
We define a cloning operation for a set of multiple nodes in a graph. For each
multiple node in the set, the necessary information about the number of desired
clones is given by a so-called multiplicity function.

Definition 7 (Iterated Cloning). Let G be a graph. A multiplicity function
for G is a function μ : G̈ → N2. If G̈ = {x1, x2, . . . , xk} (where x1, . . . , xk are
pairwise distinct), then Gμ is the graph defined by

Gμ =
(
. . .

((
G

x1

μ(x1)

)
x2

μ(x2)

)
. . .

xk

μ(xk)

)
.

By Lemma 1, Gμ is defined uniquely up to isomorphism. In the following, when
defining a multiplicity function μ, we will specify only those multiplicities μ(x)
which are not equal to (1, 0).
1 The labels of the nodes 1, . . . , p + q as well as the edge labels have been omitted to

avoid cluttering the figure. They carry over from the left-hand side to the right-hand
sides in the obvious way. Note also that the nodes 1, . . . , p + q may be multiple.
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4 Adaptive Star Grammars

In this section, we define adaptive star grammars. The rules of these grammars
are star rules which may contain multiple nodes that can be cloned before a rule
is applied. The graphs being derived may contain multiple nodes as well, and so
they may also be cloned in order to make a rule applicable. Let us first define
the cloning of (nodes in) star rules.

Definition 8 (Star Rule Clone). Let p = (S ::= R) be a star rule. A star
rule clone of p is a star rule p′′ such that p ⇒∗

Δ p′ for some p′ from which p′′

can be obtained by taking a quotient, i.e., identifying pairs of border nodes (that
have the same label). The set of all star rule clones of a set P of star rules is
denoted by PΔ.

Note that neither edges nor non-border nodes are identified by taking quotients.
Clearly, every star rule clone is a star rule. We can now define adaptive star
grammars and the graph languages they generate.

Definition 9 (Adaptive Star Grammar). An adaptive star grammar Γ =
〈Σ,N, P, Z〉 consists of

– a labeling alphabet Σ containing only terminal labels,
– a finite set N ⊆ N of nonterminals,
– a finite set P of star rules over Σ ∪N with straight left-hand sides, and
– an initial nonterminal Z ∈ N .

The language generated by Γ is L(Γ ) = {G ∈ GΣ\Σ̈ | Z ⇒+
ΔP G}. Here, Z

denotes the graph consisting of a single node labeled Z, and ΔP = Δ ∪ PΔ.

Thus, derivation steps in adaptive star grammars can be of two different types:
On the one hand, multiple nodes in the host graph can be cloned, and, on the
other hand, star rule clones can be applied.

We now discuss a particular application of star grammars.

Example 2 (A grammar for program graphs). As a nontrivial example we now
discuss a star grammar modeling the structure of object-oriented programs by
generating graphs called program graphs. This type of graphs has been devel-
oped for studying refactoring in [1]. Due to space restrictions, only a simplified
method body specification is considered here, where method bodies contain only
assignments and method calls. The grammar is shown in Fig. 1. A more complete
specification based on star grammars can be found in [10].

We use terminal node labels B,E,V,M that correspond to method body root,
entity occurrence, variable, and method, respectively. Furthermore we have non-
terminal node labels BODY,STS,ST,EXP,ACC,ASS,CALL,APS. The label
BODY is the initial nonterminal. It generates an STS star (statement sequence),
connected to a B node, and to a multiple N node. The latter is a shorthand
covering both V and M. From the modeling point of view, it can be seen as a
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Fig. 1. A star grammar method body syntax tree specification

supertype of nodes of type V and M. Any singular node cloned out of a mul-
tiple N node becomes a node of type V or M. Alternatively, to stay within the
formalism of adaptive star grammars, the rules of the grammar can be modified
by applying copy(N) to each of the N nodes and relabeling the two clones into
a V node and an M node.

The STS star generates recursively a number of statements (ST), each of
which can be rewritten into an assignment (ASS) or a method call (CALL). The
right-hand side of an assignment is an expression (EXP). Expressions are either
calls or variable accesses (ACC). Calls can have actual parameters (generated
by APS) which are expressions.

The edge labels are e, a, u, c, val, ap, def, ref. The first six of these stand for
syntax tree expression, variable access, variable update, method call, assignment
value and actual parameter respectively. The edge labels def and ref are used for
the arms of nonterminal nodes. The body root node B groups a set of E nodes,
connected by e edges (cf. Fig. 2). Each of these nodes represents an occurrence
of a variable, or a method call in the syntax tree. In the first case it is connected
by an outgoing a or u edge to a variable and in the second case by a c edge to
a method. Assignment and call occurrences may have additional val or ap edges
to other E nodes.

Every nonterminal has a ref arm. It is always connected to a multiple node of
type N representing all the referable symbols (visible methods, variables, formal
parameters, types) that can be used in the program part derived from the non-
terminal. The ACC star has three arms: the def arm shows the start node of the
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B E

V
m1

e
val

M

VM

E

E

E

e
u c

a

c
ap

m2

v1 v2

b

{v1 := m1(); m2(v2);}

Fig. 2. Method body graph example

B

M M V V
m1 m2 v1 v2

STS

b

ref ref ref ref

def2
(0,4)

BODY

Fig. 3. Eager cloning derivation

statement. The two others are ref arms. This has the effect of selecting out of
the complete set of referred elements one particular variable that is of particular
relevance, all the other referable elements are represented by the multiple node.
The nonterminal node disappears and an a edge is created between the E node
and the V node (cf. Fig 1). The CALL and ASS rules are similar but create c
and u edges and an additional EXP nonterminal.

An example of a method body graph that can be generated by the grammar
is given in Figure 2, together with its textual equivalent. The node identifiers
relate the program entities with their graphical representations.

By using adaptive star grammars instead of context-free string grammars
for generating models of object-oriented programs, typical properties of object-
oriented languages, such as the fact that every use of an identifier has a matching
declaration, can be modeled. This is realized by the ref arms, which record the
existing entities that can be used in a function. It can also be shown that the use
of adaptive star grammars makes it possible to enforce the visibility constraints
for class attributes, i.e. to ensure that method bodies in derived program graphs
never contain accesses to private attributes of other classes. However, adaptive
star grammars seem to be unable to cope with more complex constraints like the
parameter correspondence. It does not seem to be possible to generate exactly
as many actual parameters as formal parameters and make their types match.

5 Eager and Lazy Cloning

In this section, we will study an important aspect regarding derivations, namely
the interplay between cloning and rule application. Cloning can be performed
eagerly, where cloning on the host graph is done as early as possible. The fol-
lowing lemma shows that when a star replacement is followed by a cloning step
in which one of the nodes of the host graph is cloned, then this results in the
same graph as the one obtained by performing the cloning operation before the
star replacement. If the cloned node is a border node of the star occurrence
that is replaced, then an appropriate cloning of the rule used is needed. The
straightforward proof is omitted.
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Lemma 2 (Eager Cloning). Let G, H be graphs, let p be a star rule, and let
G⇒x,p,m H be a star replacement. Let y ∈ G̈ and let k, l � 0.

1. If y is not a border node of G(x), then G y
(k,l) ⇒x,p,m H y

(k,l) .
2. If y is a border node of G(x), then let ỹ = m−1(y) and p̃ = p ỹ

(k,l) . Let m̃

be an extension of m, mapping the k + l clones of ỹ bijectively to the k + l
clones of y. Then G y

(k,l) ⇒x,p̃,m̃ H y
(k,l) .

Consequently, we obtain a normalform nf (P ) of a set P of star rules, such that
nf (P ) is the subset of all star rule clones in PΔ that do not contain multiple
nodes. In particular, rule application creates only singular nodes.

Example 3 (Eager cloning in program graphs). The example program of Figure 2
can be derived using eager cloning. We consider the STS star in Figure 3. It is
obtained by executing the initial rule being cloned by 2

(0,4) to generate all the
needed variables and methods in advance. From that point, the star rules have
to be cloned by 3

(0,3) for the CALL, ACC and ASS rules and 2
(0,4) for the other

rules.

Corollary 1. For every adaptive star grammar Γ = 〈Σ,N, P, Z〉, it holds that
L(Γ ) = {G ∈ GΣ\Σ̈ | Z ⇒+

nf (P ) G}.
When constructing a derivation of an adaptive star grammar, it would obvi-
ously be desirable to postpone cloning as much as possible: we use incremental
cloning rules to construct derivations so that cloning is kept at a minimum. In
order to characterize which clonings can be postponed until after a given star
replacement, the following auxiliary notion is useful.

Definition 10 (Indistinguishability). Let p̃ = (S̃ ::= R̃) ∈ PΔ be a quotient
of a rule p′ that is obtained by cloning a rule p = (S ::= R) ∈ P . For a border
node y of S̃, its set of precursors is the set of nodes x of S such that y is the
image of either x or a clone of x under the quotient. Two border nodes y1, y2
of S̃ are indistinguishable (in p̃) if they have the same set of precursors in S
and there exists an automorphism of p̃ that interchanges them while leaving the
other nodes invariant.

Definition 11 (Lazy Cloning). Let p̃ = (S̃ ::= R̃) ∈ PΔ. A derivation
G=⇒∗

Δ G̃=⇒x,p̃,m H constitutes a lazy step if only border nodes of G(x) are
cloned in G=⇒∗

Δ G̃, and, moreover, there do not exist distinct border nodes
y1, y2 of S̃ such that y1 and y2 are indistinguishable in p̃, and m(y1) and m(y2)
are clones of the same node of G(x).

Note that p̃ can in general be obtained in different ways from a rule p ∈ P , and
hence the notion of a lazy step is defined only with respect to a fixed choice of
p, p′ and a quotient map. However for our purposes it is sufficient to consider a
step as lazy if there exists such a choice.

The next result shows that lazy cloning is correct: every derivation can be
rearranged into a sequence of lazy steps followed by a number of cloning steps.
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Theorem 1 (Correctness of Lazy Cloning). Let P be a set of star rules.
For every derivation G=⇒∗

ΔP H there is a graph Ĥ that can be derived from G

by a sequence of lazy steps, such that Ĥ =⇒∗
Δ H.

Proof. It suffices to consider a derivation of the form G=⇒n
Δ G̃=⇒x,p̃,m H which

is not a lazy step, and to prove that one of its cloning steps can be postponed
until after the star replacement. For this purpose, assume that p̃ = (S̃ ::= R̃)
is a quotient of some rule obtained from p = (S ::= R) ∈ P by a sequence of
cloning steps.

If G=⇒n
Δ G̃ clones a node that is not a border node of G(x), then we may

assume that the corresponding step is the last step of G=⇒n
Δ G̃ (see Lemma 1).

This step is parallel independent of the star replacement, and thus the de-
sired result follows from well-known results about DPO graph rewriting. So
assume that all steps in G=⇒n

Δ G̃ clone border nodes of G(x). By assumption,
G=⇒n

Δ G̃=⇒x,p̃,m H is not a lazy step. Hence, there exist distinct nodes y1, y2

of S̃, a multiple border node z of G(x) and two clones z1, z2 of z in G̃ such that
y1 and y2 are indistinguishable, m(y1) = z1, and m(y2) = z2. If at least one of
z1, z2 is singular, then it is obtained by an application of sing(l̈), and obviously
this step can be postponed until after the star replacement. So assume that both
z1 and z2 are multiple. Again by Lemma 1 one may assume that the cloning step
that produces z2 is the last step of G=⇒n

Δ G̃. Moreover, since both z1 and z2
are clones of z, z2 can be obtained as a clone of z1. Thus, G=⇒n−1

Δ G′ =⇒Δ G̃,
where G′ is the graph obtained from G̃ by deleting z2 and its incident edges,
and G̃ = G′ z1

(2,0) . Now let p′ = (S′ ::= R′) and H ′ be obtained from p̃ and H

by deleting y2, z2 and their incident edges, respectively. Then G′ =⇒x,p′,m′ H ′,
where m′ is the restriction of m to S′. Moreover, p̃ = p′ y1

(2,0) , because y1 and
y2 are indistinguishable, and it follows from the definition of a star replacement
that H = H ′ z1

(2,0) . The result follows. ��
Example 4 (Lazy cloning in program graphs). A lazy derivation of the first state-
ment v1 := m1() of the method body example would, after applying the initial
rule, immediately apply the STS and ST rule without cloning to arrive at the
ASS nonterminal. The rest of the derivation is shown in Fig. 4. To clarify which
of the possible rules is used for star replacement, rule names carry an index.
Note that all star replacements together with the preceding cloning steps are
lazy steps.

6 The Membership Problem

This section consists of two parts. In the first part, we show that adaptive star
grammars can generate every recursively enumerable string language. We will do
this by sketching how to simulate a slightly modified version of the well-known
counter machines. Hence, in particular, the membership problem is unsolvable.
In the second part of the section, a restriction is studied under which this problem
becomes decidable.
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Fig. 4. A lazy derivation for a call statement

Let us first define a variant of (nondeterministic) counter machines that turns
out to be particularly suitable for our situation. An offline counter machine
(OCM, for short) with k � 1 counters is a system M = (Q,A, I, q0, F ) con-
sisting of a finite set Q of states, a finite input alphabet A, a finite set I of
instructions, an initial state q0 ∈ Q, and a set F ⊆ Q of final states. Each
instruction has the form (q, i, z) �→ (q′, j), where q, q′ ∈ Q, 1 � i � k, and
(z, j) ∈ {(zero,+1), (nonzero,−1), (nonzero,+1)}.

A configuration (q, c1 · · · ck) ∈ Q × Nk consists of a state q and k counter
values c1, . . . , ck. There is a computation step (q, c1 · · · ck) �→M (q′, c′1 · · · c′k) if I
contains an instruction (q, i, z) �→ (q′, j) with z = zero ⇐⇒ ci = 0 and

c′l =
{
cl + j if l = i
cl otherwise.

Suppose A = {a1, . . . , am−1} (using an arbitrary but fixed order on the sym-
bols in A). The initial configuration for an input string w = ai1 · · · ain is given
by initialM (w) = (q0, c 0 · · · 0). Here, c is obtained by interpreting i1 · · · in as
a number written in base-m notation. The OCM M accepts w if a configura-
tion (q, c1 · · · ck) with q ∈ F (called a final configuration) can be reached from
initialM (w). As usual, the recognized language is the set of all strings accepted
by M . It is well known that counter machines recognize all recursively enumer-
able languages (see, e.g., [11]). As the reader may easily check, this holds also
for the variant defined above.

Let us now see how star rules can simulate an OCM. For this, consider an OCM
M as above. We use the states in Q as nonterminals. There is only one further
node label in Σ̇ \ Σ̈. The corresponding nodes and their multiple counterparts
are considered to be unlabelled in the following.
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q

aux 1c1 kck· · ·

v

v′

A configuration C = (q, c1 · · · ck) is represented by the
non-straight star gr(C) shown on the right. It consists of a
nonterminal center node v labelled q, a terminal border node
v′, and 1 +

∑k
i=1 ci parallel edges from v to v′. One of these

edges is labelled with aux, whereas ci edges are labelled with
i, for 1 � i � k. Here, an edge label carrying an exponent abbreviates the
respective number of parallel edges. The edge labelled aux ensures that gr(C) is
a star even if c1 = · · · = ck = 0.

It is now rather easy to define a set PM of star rules which simulate the
instructions of M by removing or adding the appropriate number of arms in each
step. For example, if k = 3 and the instruction in question is (q, 3,nonzero) �→
(q′,+1), the resulting star rule looks like this:

q
aux

1 2 3
3

::=

q′
aux

1 2 3

32

To see that this rule has the desired effect, note that its application to a graph
of the form gr(C) requires taking a quotient which identifies all border nodes.
Intuitively, this means that the arms in the rule are parallel edges in disguise.
Hence, the rule applies to gr(C) if counter 3 has a nonzero value and will in this
case increase the number of edges labelled 3 by one.

By adding terminating rules (which remove the nonterminal node if the non-
terminal is a final state of M), we get the following lemma.

Lemma 3. For every configuration C of M , there is a derivation gr(C) ⇒+
ΔPM

G for some terminal graph G if and only if there exists a computation of M
that turns C into a final configuration. Furthermore, in this case, G is the graph
consisting of a single node and no edges.

Using Lemma 3, we can now prove the promised result. For this, we identify a
string b1 · · · bn ∈ A∗ with the graph consisting of unlabelled nodes v0, . . . , vn and
edges e1, . . . , en, where ei points from vi−1 to vi and is labelled with bi.

Theorem 2. Every recursively enumerable string language can be generated by
an adaptive star grammar.

Sketch of Proof. Consider any recursively enumerable string language L, and let
M be an OCM recognizing L. Without loss of generality, we may assume that L
does not contain the empty string. An adaptive star grammar generating L may
work as follows. In a preprocessing phase, it generates an arbitrary string w ∈ A+

in a nondeterministic fashion. At the same time, the subgraph gr(initialM (w))
is built. In the second phase, the star rules in PM are used to simulate M .

To see that the first phase can really be implemented, note that we can turn
n edges labeled with 1 into nm + j such edges using the rule
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Z
end

aux

11

::=

Z
end

aux 1j

1mbj1

Using such rules, we can generate exactly the graphs G of the form

q0 v
b1 b2 · · · bn

1s

aux

with b1, . . . , bn ∈ A and s the representation of b1 · · · bn in base-m notation
for some n � 1. Thus, the star occurrence G(v) equals gr(initialM (b1 · · · bn)).
Together with Lemma 3, this proves the theorem. ��
If adaptive star grammars shall be practically used, it is necessary to come up
with restrictions that guarantee the decidability of the membership problem.
Therefore, we now study a reasonably restricted class of star grammars that
allows to decide this question. We consider simple adaptive star grammars first.
In the following, let us call an edge e in a graph G terminal if it is not incident
with a nonterminal node (i.e., if �̇G ◦ sG(e) �∈ N); otherwise, e is nonterminal.

Definition 12 (Simple adaptive star grammar). An adaptive star gram-
mar Γ = 〈Σ,N, P, Z〉 and its set P of rules are called simple if P does not
contain any rule whose right-hand side is either just its set of border nodes or
contains a non-straight star.

Following Corollary 1 (p. 85), we restrict derivations to the set nf (P ) of rules
without multiple nodes and to graphs without multiple nodes. Simple adaptive
star grammars cannot produce parallel nonterminal edges as right-hand sides do
not contain non-straight stars. Hence, in the following, we can ignore rules in
nf (P ) that are obtained by taking quotients. Let ñf (P ) be the corresponding
set of rules.

Lemma 4. There is an algorithm that decides whether G ⇒∗
ñf (P )

G′ for every
finite set P of simple star rules and all graphs G and G′ without multiple nodes.

Proof. We measure the size of a graph G by τ(G) = |Ġ|+ |{e ∈ Ḡ | e terminal}|.
Each derivation H ⇒ñf (P ) H ′ removes a nonterminal node, but adds at least
one other node or a terminal edge, i.e., τ(H) � τ(H ′). We prove the lemma by
showing that the set of all graphs G′ with G ⇒∗

ñf (P )
G′′ and τ(G′′) � τ(G′)

is finite. The number of graphs G̃ that can be derived from another graph in a
single step such that τ(G̃) � τ(G) is finite. We, therefore, have to show that there
is no infinite derivation sequence G = G0 ⇒p0 G1 ⇒p1 . . . such that Gi �∼= Gj

for all i �= j and pi ∈ ñf (P ), τ(Gi) � τ(G′) for each i. If we assume that there is
such an infinite derivation sequence, there must be an index s such that, for each
i � s, τ(Gi) = τ(Gs) and pi ∈ ñf (P ) is obtained from a rule whose right-hand
side is a straight star as Γ is simple. Hence, each graph Gi for i � s has the
same number of nodes resp. edges and, as a consequence, there must exist two
indices i, j � s, i �= j such that Gi

∼= Gj . �
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Next, we consider straight adaptive star grammars. An adaptive star grammar
is called straight if its rules are straight, meaning that their right-hand sides
do not contain non-straight stars. Hence, each simple adaptive star grammar is
a straight one, but the converse does not hold. The method body grammar in
Figure 1 is an example of a straight grammar that is not simple. In order to
show that membership is decidable for straight adaptive star grammars, we will
use the following lemma:

Lemma 5. There is an algorithm that decides whether G ⇒∗
ñf (P )

G \ {x} for
every finite set P of straight star rules and all straight stars G without multiple
nodes, where x is the center node of G.

Proof. The existence of a derivation G⇒∗
ñf (P )

G \ {x} requires that no applied
rule adds either a new terminal node or a terminal edge. Hence, the number of
terminal nodes remains constant in the derivation, and the derivation does not
contain graphs containing terminal edges.

Let Pn be the (finite) subset of all rules (S ::= R) ∈ ñf (P ) such that |Ṡ| � n
and R contains neither terminal edges nor terminal nodes that are not border
nodes of S. Obviously, G⇒∗

ñf (P )
G \ {x} iff G⇒∗

Pn
G \ {x} where n = |Ġ|.

Now, G⇒∗
Pn

G \ {x} is equivalent to the (decidable) question whether an ap-
propriately constructed context-free Chomsky grammar G′ generates the empty
string. To see this, construct G′ by using as nonterminals the set of all isomor-
phism classes S such that S is a star occurring in one of the rules in Pn. Now,
let G′ contain the rule [S] → [S1] · · · [Sk] if Pn contains a rule S ::= R, where
S1, . . . , Sk are the stars occurring in R. It should be clear that G′ generates the
empty string if and only if there is a derivation G⇒∗

Pn
G \ {x}. ��

This result allows to prove the following theorem:

Theorem 3. The (uniform) membership problem is decidable for straight adap-
tive star grammars, i.e., there is an algorithm deciding whether G ∈ L(Γ ) for
every straight adaptive star grammar Γ and every graph G.

Proof. For Γ = 〈Σ,N, P, Z〉, we construct a new rule set P ′ iteratively, as fol-
lows. Initially, P ′ is the (finite) set of all rules in ñf (P ) whose left-hand sides
consist of not more than |Ġ|+ 1 nodes. Now, if P ′ contains a rule S ::= R such
that there occurs a star with center node x in R, then the rule S ::= R \ {x}
is added to P ′ provided that R(x) ⇒∗

ñf (P )
R(x) \ {x} (which can be decided

by Lemma 5). This process is repeated until no new rule can be added to P ′.
Finally, each rule is removed from P ′ whose right-hand side is just its set of
border nodes. Obviously, for every nonempty graph G, we have G ∈ L(Γ ) iff
Z ⇒+

P ′ G. The result follows by Lemma 4 if G is not empty (as P ′ is simple),
and from Lemma 5 otherwise. ��

7 Conclusions

Adaptive star grammars are more expressive than context-free graph gram-
mars while retaining a context-free flavour. The extended expressive power is
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indispensable for generating structures such as object-oriented program mod-
els. In this paper the authors have joined their earlier work: The mechanisms
presented here are much simpler than those proposed in [12]. Future work will
investigate how star grammars can be used in graph transformation rules to de-
fine parts of a rule that may be variable, but have a fixed shape. This is useful
for modeling refactorings rules, in which complex, variable structures like syntax
trees are manipulated as atomic parts. All these concepts will be implemented
in the graph transformation language and tool Diaplan [13].
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Abstract. We investigate the narrowing relation in a wide class of
(cyclic) term-graph rewrite systems. We propose a new sound and com-
plete narrowing-based algorithm able to solve goals in presence of data
structures with pointers (e.g., circular lists, doubly linked lists etc.). We
first define the class of rewrite systems we consider. Our rules provide
features such as pointer (edge) redirections, relabeling of existing nodes,
in addition to the creation of new nodes. Moreover, we split the set of
nodes of term-graphs in two (possibly empty) subsets: (i) variables and
(ii) names. Variable nodes can be mapped against any other node whereas
names act as constants and thus they are supposed to match themselves.
This distinction between nodes allows us to synthesize, through the nar-
rowing process, data-structures with circular shapes. In a second step, we
define the rewriting and narrowing relations. We then show the sound-
ness and completeness of narrowing.

1 Introduction

Narrowing is the heart of the operational semantics of declarative languages
which integrate functional and logic programming paradigms [10]. Programs in
these languages are term rewrite systems. Their operational semantics consists
in solving goals. For example, let us consider the following program which defines
the length of a sequence:

length(nil)→ 0 length(cons(x, u)) → s(length(u)).

To solve the goal length(cons(x,nil)) = z, one may normalize the term
length(cons(x,nil)) and gets the unique solution z = s(0). But the following
goal length(u) = s(s(0)) cannot be solved by simple normalization ; instead nar-
rowing can be used to synthesize the answer u = cons(x1, cons(x2,nil)) where
x1 and x2 are fresh variables.

Narrowing has been widely investigated in the framework of first order term
rewrite systems and optimal strategies have been proposed (e.g. [2]). In this
paper, we propose to extend narrowing to a large class of term-graph rewrite
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systems. There are at least two reasons that motivate our work. First, efficient
implementation techniques of declarative languages use dags (directed acyclic
graphs) to implement terms. Second, in recent developments of graph transfor-
mations [3,4,6], it is shown that data-structures with pointers could be handled
by using graph rewrite systems, and thus rule-based languages such as declarative
ones could benefit from such results in order to fully integrate cyclic term-graphs
(with pointers), such as circular lists or doubly linked lists, as first class objects.

In this paper, we consider term-graph rewrite systems composed of rules of
the following shape (see Section 4 for details): L→ A, where L is a (constrained)
term-graph and A is a sequence of actions the aim of which is the construction of
the right hand side. Roughly speaking, A could be split into two parts, say R and
D, where R is a term-graph and D is a sequence of edge (pointer) redirections.
For example, the following rule inserts an element in a circular list (we use
the classical linear [5] notation of term-graphs, where non-connected graphs are
separated by “,”):

γ:insert(a, α:cons(b, u)), β:cons(c, α) → γ:cons(a, α);β.2 � γ.

Applying this rule to the term-graph γ1:insert(a, α1:cons(b, β1:cons(c, α1))) we
get the intermediate term-graph γ1:cons(a, α1:cons(b, β1:cons(c, α1))) before we
perform the action β1.2� γ1. The aim of this action is to redirect the second edge
outgoing of the node β1 in order to point the node γ1. The final result of the appli-
cation of the rule above is then the term γ1:cons(a, α1:cons(b, β1:cons(c, γ1))).

The rewrite rules we consider define a large class of term-graph rewrite systems
(formally defined in Section 4). It includes several useful features. Left-hand
sides could be cyclic with some constraints (disequations) on the nodes. Actions
building the right hand side can execute redirections of pointers (edges) either
locally as in the example above or globally as it happens when rewriting rooted
term graphs. We have no restriction over the cyclic term-graphs to be rewritten.

Solving goals with cyclic term-graphs is certainly not an easy task. Consider
for instance the operation # which computes the number of elements of a cir-
cular list (the complete definition of this operation is given in Section 5). If
we consider the goal #(u) = s(s(0)) then we should get a solution such as
u = α:cons(x, β:cons(y, α)) with the constraint α �≈ β. Note that there is no
published algorithm which is able to synthesize such a solution. Nodes α, β, x
and y are supposed to be fresh variable nodes. The distinction between (con-
stant) nodes and variable nodes is essential in our setting. Variable nodes behave
as classical first order variables in the unification process for example, while the
remaining nodes (constants) could be seen as global variables in imperative lan-
guages.

Defining narrowing in our setting turns out to be trickier than in the previous
works. This is mainly due to the actions we perform on term-graphs such as
pointer redirections and also to the fact that graphs are not considered equal up
to bisimulation. Consider for instance the following term-graph f(δ:a, γ:a) where
δ and γ are variable nodes, to be narrowed by using the rule f(α:a, β) → α:b
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(β denotes a variable). We can get two different narrowing steps

f(δ:a, γ:a) 	{δ=γ} f(δ:b, δ) or f(δ:a, γ:a) 	{δ 
≈γ} f(δ:b, γ:a).

From this simple example, we can see that instantiation of variable nodes
during the narrowing process is not usual. Indeed, in contrast to the usual case,
the computed solutions may include disequations, such as δ �≈ γ in the second
derivation above.

There are very few results in the literature on term-graph narrowing. In
[12,9,11], acyclic term-graph narrowing have been studied and basic narrowing
strategies have been proposed in [11,9]. Cyclic term-graph narrowing was first
studied in [7] in the context of weakly-orthogonal term-graph rewrite systems.
Its extension with graph collapsing could be found in [8]. Optimal term-graph
narrowing strategies have been proposed in [7,8]. Very recently, [1] extended [7]
and proposed efficient term-graph narrowing strategies in the presence of non-
deterministic functions (i.e. non-confluent rewrite systems).

In this paper, we go beyond these results and tackle cyclic term graph nar-
rowing in a very large class of term-graph rewrite systems that subsumes by
far the weakly-orthogonal graph rewrite systems studied in [7]. We define the
narrowing relation induced by the considered term-graph rewrite systems and
prove its soundness and completeness.

The paper is organised as follows. Section 2 gives the precise definition of the
term-graphs we consider as well as some basic definitions we need in the paper.
In Section 3 we give the definitions of different actions we operate on graphs
such as node creation and redefinition, pointer redirections etc. Section 4 defines
the rewrite rules, rewrite steps and the term-graph rewrite systems we consider.
Section 5 is dedicated to the definition of narrowing relation. The soundness and
completeness of the narrowing relation are investigated in Section 6. Finally,
Section 7 concludes the paper. Due to length restrictions, proofs are omitted.

2 Term-Graph

In this section, we describe the class of data structures (i.e. term-graphs) con-
sidered in the paper. The definitions are close to the ones of [5], but some of the
notations are slightly adapted in order to better suit our purposes.

We assume given a set of names A, a set of variables V and a set of function
symbols Σ. We denote by N the set N def= A ∪ V . N is the set of nodes.

Definition 1. (Term-Graph) A reference on a set of nodes N ⊆ N is an ex-
pression of the form f(α1, . . . , αn) where f ∈ Σ, n ≥ 0 and α1, . . . , αn ∈ N (if
n = 0 then f(α1, . . . , αn) should be written f). The set of references on a set
of nodes N is denoted by T (N). A term-graph G is defined by a set of nodes
N (G) ⊆ N and a partial function refG from N (G) to T (N (G)).

For instance, a term-graph consisting in a variable node α without reference may
be seen as a variable (in the usual sense), i.e. denotes an arbitrary term-graph.
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If α is a name, then the graph is partially instantiated : the name of one of its
nodes is known, but its reference and its other nodes remain to be specified.

We denote by headG(α) the head symbol of refG(α) (if it exists, otherwise
headG(α) is undefined). We denote by dom(G) the set of nodes α s.t. refG(α)
is defined. Note that we may have dom(G) �= N (G). A term-graph G is said to
be ground if N (G) ⊆ A1. We write G ⊆ H iff N (G) ⊆ N (H) and if for any
α ∈ dom(G) we have α ∈ dom(H) and refH(α) = refG(α). Intuitively, G ⊆ H
if G is a subgraph of H . The notion of subgraph is the analogue of the notion
of subterm for usual terms. In what follows, we always denote nodes (variables
and names) by Greek letters α, β, . . ., function symbols by f, g, . . . and constant
symbols by a, b, . . ..

Although Definition 1 is useful from a theoretical point of view, in the forth-
coming examples, we adopt a more convenient and readable (commonly used,
see for instance [5]) linear notation for term-graphs. We write a term-graph as a
standard term, but we prefix some of the subterms (those occurring several times
in the considered term-graph) by nodes. Obviously, naming (i.e. prefixing) sub-
terms with nodes allows one to share subterms and to denote infinite (rational)
terms. For instance, the expression α:f(a, g(α)) denotes a (cyclic) term-graph
s.t.: dom(G) = {α, β, γ}, refG(α) = f(β, γ), refG(β) = a, refG(γ) = g(α) (β, γ are
arbitrarily chosen nodes distinct from α). Depending on the context the unnamed
nodes β, γ could be constants or variables. Note that the above term-graph could
also be written α:f(β:a, γ:g(α)), but for the sake of clarity, we prefer to skip use-
less names. Two distinct names necessarily correspond to distinct nodes, whereas
two distinct variables can be made identical by instantiation. For instance, let us
consider the following term-graph G = α:cons(1, β:cons(1, α)). If α, β are vari-
ables, then β may be instantiated by α. Thus the term-graph δ:cons(1, δ) is an
instance of G. More precisely, G denotes a circular list of length either 1 or 2. In
contrast, if α, β are distinct names, G denotes a (specific) circular of length 2.
The possibility of handling abstract nodes allows one to handle partially defined
data-structures, which is absolutely essential for defining narrowing algorithms.
It also allows the programmer to define more general rules, which is capital from
a practical point of view (for instance we could compare two lists of integers
without knowing whether they are physically equal or not).

A substitution σ is a function mapping each variable x in V to a node xσ ∈ N .
The domain of a substitution σ is denoted by dom(σ) and defined as the set of
variables x s.t. xσ �= x. A substitution is said to be ground iff xσ ∈ A for any
x ∈ dom(σ). If σ, θ are two substitutions, then σθ denotes the composition of
σ and θ (i.e. xσθ = θ(σ(x))). σ is said to be more general than θ if there is a
substitution σ′ s.t. σσ′ = θ.

The image of a standard term by a substitution is always a term. However,
in our setting, the image of a term-graph by a substitution is not necessarily
a term-graph. For instance if G = f(α:a, β:b) is a term-graph where α, β are
variables, then the image of G by a substitution σ : {α → γ, β → γ} is not a

1 This is not equivalent to the usual notion of “ground term” because the nodes do
not need to be associated to a reference.
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term-graph. Thus, we can instantiate a term-graph G by a substitution σ only if
σ is compatible with the term-graph in the sense that if two variables are mapped
to the same node then the corresponding references (if they exist) must be the
same. Formally, a substitution σ is said to be compatible with a graph G iff for
any α, β ∈ dom(G) s.t. ασ = βσ we have refG(α)σ = refG(β)σ.

If σ is compatible with G, then we denote by Gσ the graph H s.t.: N (H) =
{ασ | α ∈ N (G)} and for any α ∈ dom(G), refH(ασ) def= refG(α)σ. Note that
Gσ is well-defined if σ is compatible with G, since by definition ασ = βσ ⇒
refG(α)σ = refG(β)σ. H is called an instance of G iff there exists a substitution
σ compatible with G s.t. Gσ ⊆ H .

3 Graph Transformation

We introduce some basic operations on term-graphs: creation of a new node, node
redefinition (i.e. replacement of the reference associated to an existing node by
a new reference) and global redirection (i.e. redirection of all edges pointing to a
node α to a node β). Node redefinition subsumes in particular edge redirection
(i.e. redirection of an existing edge). For every action a, we shall denote by G[a]
the result of the application of the action a on the term-graph G. The actions
and their applications are defined in the following sections.
A node creation is an expression of the form α+ where α is a node in V .
Applying a node creation to a term-graph simply adds a new node in the term-
graph (with no reference).

We assume given an (infinite) subset ofA, denoted by C and a total precedence
≺ among elements of C. Every created node is associated to a name in C. If G
be a graph and α ∈ V then G[α+] denotes the term-graph H s.t.:

– N (H) def= N (G) ∪ {NewNode(G)}, where NewNode(G) denotes the smallest
(according to ≺) node in C not occurring in G.

– For every node β ∈ dom(G), refH(β) def= refG(β).
– refH(NewNode(G)) is undefined.

Note that H does not depend on α. As we shall see, α will be instantiated by
NewNode(G) which is useful only when applying a sequence of actions.

A node redefinition is a pair α:r where α is a node in V and r a reference.
We denote by G[α:r] the term-graph H defined as follows:

– N (H) def= N (G).
– For every node β ∈ dom(G), if β �= α then refH(β) def= refG(β).
– refH(α) def= r.

For instance, β:f(α, δ:a)[α:f(δ,α)] = β:f(α:f(δ:a, α), δ). Note that we may have
α ∈ dom(G) (in this case α is redirected) or α �∈ dom(G) (in this case new edges
and label are created). Note that a node redefinition does not introduce new
nodes in the term-graph(this has to be done before by the node creation action).
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An edge redirection may be seen as a particular case of node redefinition
in which a unique edge is redirected. It is an expression of the form α.i � β,
where i ∈ N, α ∈ N and β ∈ N . Applying an edge redirection to a term-graph
consists in redirecting the i-th argument of the node α to point to the node β.

If G is a term-graph and α, β ∈ N (G), where α ∈ dom(G), then G[α.i�β]

denotes the graph H defined as follows: H def= G[α:f(β1,...,βi−1,β,βi+1,...,βn)] where
f(β1, . . . , βn) = refG(α). Note that if n < i then by convention
f(β1, . . . , βi−1, β, βi+1, . . . , βn) = f(β1, . . . , βn) thus H = G.

For instance, β:f(α:f(δ : a, δ), δ)[α.1�β] = β:f(α:f(β, δ:a), δ).
A global redirection is an expression of the form α� β, where α ∈ N and

β ∈ N . Applying a global redirection to a term-graph consists in redirecting
any edge pointing to α to the node β, i.e. in replacing any occurrence of α in a
reference in G by β.

If G is a term-graph and α, β ∈ N (G) then G[α�β] denotes the graph H

defined as follows: N (H) def= N (G) and for every node γ ∈ dom(G) s.t. refG(γ) =
f(β1, . . . , βn) then refH(γ) def= f(β′

1, . . . , β
′
n) where for every i ∈ [1..n] we have

β′
i

def= βi if βi �= α and β′
i

def= β otherwise (refH(γ) is undefined if refG(γ) is unde-
fined). This action is said to be “global” because it may affect any node in the
term-graph (in the worst case all nodes may be affected). Global redirections are
necessary to express easily collapsing rules of the form f(x)→ x (any occurrence
of f(x) in the term-graph should be replaced by x).

For instance, β:h(δ:g(α:a, δ), α)[α�β] = β:h(δ:g(β, δ), β), α.

An action is either a node creation, or an edge redirection or a node definition
or a global redirection. Substitutions can be extended to sequences of actions
using the following definitions (where ε denotes the empty sequence and τ.τ ′

denotes the concatenation of τ and τ ′).

– εσ
def= ε, (a.τ)σ def= aσ.τσ.

– (α+)σ def= α+ (α is not instantiated since α is a variable denoting the new
node).

– (α:f(β))σ def= ασ:f(βσ), (α� β)σ def= ασ � βσ, (α.i� β)σ def= ασ.i� βσ.

If τ is a sequence of actions, and G is a term-graph, then G[τ ] denotes the
term-graph defined as follows:

– G[ε]
def= G

– If a = α+, G[a.τ ]
def= G[a][τ{α→NewNode(G)}]. Note that α is instantiated by

the new created node in the rest of the sequence (this allows one to “reuse”
this node, hence to create edges starting from or pointing to this node).

– G[a.τ ]
def= G[a][τ ], if a is not a node creation.

Informally, G[τ ] is obtained from G by applying the actions in τ , in the corre-
sponding order. For instance α:f(α, α)[δ+,δ:a,α.1�δ] = α:f(α, α), α′

[α′:a,α.1�α′] =
α:f(α, α), α′:a[α.1�α′] = α:f(α′:a, α), where α′ = NewNode(α:f(α, α)) (commas
are used to separate the actions in the sequence).
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Note that G[τ ] is not defined if τ is an action α.i � β s.t. α �∈ dom(G). For
instance α:a[β.1�α] is undefined because β is not a node in α:a. Otherwise, G[τ ]
is always defined.

If τ is a sequence of actions then we denote by r(τ) the set of nodes α s.t.
τ contains an action of the form α � β or α.i � β or α:f(β). Intuitively, r(τ)
denotes the set of nodes that are affected by the sequence of actions τ .

4 Rewrite Rules

Obviously, rewrite rules operating on term-graphs should be able to check
whether two nodes are equal or not. This is useful for instance when traversing
a circular list: in order to avoid looping, we need to compare the current node
with the initial one before proceeding to the tail of the list. These conditions
correspond to disequality constraints between nodes, that need to be “attached”
to the left-hand side of the rule. More precisely, a node constraint is a finite
conjunction of (possibly none) disequations of the from α �≈ β, where α, β ∈ N .
The empty node constraint is denoted by ".

A disequation α �≈ β is false if α = β and true if α, β are two distinct symbols
in A. More formally, a substitution σ is said to be a solution of a node constraint
φ iff for any (α �≈ β) occurring in φ we have ασ �= βσ and ασ, βσ ∈ A. We denote
by sol(φ) the set of solutions of φ. A substitution σ is said to be a counter-solution
of a node constraint φ iff there exists (α �≈ β) in φ s.t. we have ασ = βσ. We
denote by csol(φ) the set of counter-solutions of φ.

Clearly, if σ ∈ csol(φ) then σθ ∈ csol(φ) for any substitution θ, and σ �∈ sol(φ).
Similarly, if σ ∈ sol(φ) then σθ ∈ sol(φ) for any substitution θ, and σ �∈ csol(φ).
If σ is a ground substitution and dom(σ) contains all the variables occurring in
φ, then we have either σ ∈ sol(φ) or σ ∈ csol(φ).

A constrained term-graph is a pair [[G | φ]] where G a term-graph and φ a
node constraint. For the sake of clarity, [[G | "]] is denoted by G. We are now in
position to introduce our notion of term-graph rewrite rule.

Definition 2. A term-graph rewrite rule is an expression of the form [[L |
φ]] →α R where:

1. [[L | φ]] is a constrained term-graph (the left-hand side of the rule).
2. R is a sequence of actions, s.t. if R contains an action of the form β.i� γ

then β ∈ dom(L)2.
3. α ∈ dom(L) (α is the root of the rule).

Example 1. The following rules insert an element α before a cell β in a doubly
linked list δ. A doubly linked list cell is denoted by a term-graph dll(α, β, δ)
where α denotes the previous cell, β the value of the cell and δ the next cell
(tail).

2 This ensures that the action is always applicable on L.
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– λ:insert(α, β, δ:nil)→λ λ� δ. If δ is nil then the result is δ3

– [[λ:insert(α, β, δ:dll(δ1, δ2, δ3)) | β �≈ δ]] →λ λ.3 � δ3. If β is distinct from δ
then α must be inserted into the tail of δ.

– λ:insert(α, β, β:dll(β1, β2, β3)) →λ λ:dll(β1, α, β), β1.3 � λ, β.1 � λ. Other-
wise, we create a new cell λ:dll(β1, α, β), we redirect the first argument of β
to λ and the last argument of the cell before β to λ.

Note we may have β = β1 = β3 in the last rule (circular list of length 1). Thanks
to the flexibility of our language, we do not need to give any specific rule for this
particular case (this is essential from a practical point of view).

Definition 3. (Rewriting Step) Let G be a ground term-graph. Let ρ = [[L |
φ]] →α R be a rewrite rule. We write G→ρ H iff the following holds:

– There exists a ground substitution σ of the variables occurring in L s.t. Lσ ⊆
G and σ ∈ sol(φ).

– H = G[Rσ].

If R is a set of rewrite rules, then we write G →R H if G →ρ H for some
ρ ∈ R. As usual →∗

R denotes the reflexive and transitive closure of →R.

Remark 1. The substitution σ can be easily computed by using standard unifi-
cation: for any α ∈ dom(L), one has to find a node β ∈ dom(G) s.t. ασ = β and
refL(α)σ = refG(β). Of course, there may be several solutions (as in the usual
case: a term may contain several distinct subterms matched by the left-hand
side of a given rule). An important difference with the usual case is that even
if we fix the value of the root node α in L, there may be still several solutions,
except if all the nodes in L are accessible from α.

Example 2. Let ρ be the following rule: α:f(β, δ:g(γ)) →α α:h(β, δ), δ.1 � α.
This rule transforms a term-graph α:f(β, δ:g(γ)) into α:h(β, g(α)). Let G =
λ1:f(λ2:g(λ4), λ3:g(λ4:a)). We apply the rule ρ on G. We denote by L the left-
hand side of ρ. We try to find a substitution σ s.t. Lσ ⊆ G. Since headL(α) = f ,
we must have headG(ασ) = f , thus ασ = λ1. Since we must have refG(ασ) =
refLσ(ασ) we have βσ = λ2 and δσ = λ3. Then since refG(λ3) = Lσ(λ3), we
have g(λ4) = L(δ)σ = g(γ)σ, thus γσ = λ4.

We obtain the term-graph:

λ1:f(λ2:g(λ4), λ3:g(λ4:a))[λ1:h(λ2,λ3),λ3.1�λ1]

= λ1:h(λ2:g(λ4), λ3:g(λ4:a))[λ3.1�λ1] = λ1:h(λ2:g(λ4), λ3:g(λ1)).

Example 3. We consider the rule ξ defined as follows: α:f(β:a, δ:a) →α β:b, δ:c.
Let G be the term-graph λ1:f(λ2:a, λ2). We apply ξ on G. The only possible
substitution is: σ = {α �→ λ1, β �→ λ2, δ �→ λ2}. We obtain the term-graph:
λ1:f(λ2:a, λ2)[λ2:b,λ2:c] = λ1:f(λ2:b, λ2)[λ2:c] = λ1:f(λ2:c, λ2).

3 For the sake of clarity we write the constrained term-graph [[λ:insert(α, β, δ:nil) | �]]
without brackets since its constraint part is �.
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5 Narrowing

5.1 Term-Graph Substitutions

We need to introduce some further notations. Two term-graphs G and H are
said to be disjoint (written G ‖ H) if dom(G)∩dom(H) = ∅. Two term-graphs G
and H are said to be compatible (written G �� H) iff for any α ∈ N s.t. refG(α)
and refH(α) are defined, we have refG(α) = refH(α) (i.e. G,H coincide on the
intersection of their domains). Obviously, if G ‖ H then G �� H .

If G,H are compatible then G ∪H denotes the minimal term-graph G′ s.t.
G ⊆ G′ and H ⊆ G′ (it is clear that G′ always exists). If G �� H then G \ H
denotes the (minimal) term-graph I s.t. I ‖ H and H ∪ I = G.

The notion of g-substitution is the analogue of the notion of substitution for
terms. When instantiating a term-graph, one has not only to specify the value of
the variables occurring in it, but also to define the references corresponding to
the nodes that are introduced by the substitution. Clearly, these nodes should
be distinct from the ones already occurring in the considered term-graph.

Definition 4. (g-substitution) A g-substitution is a pair ς = (σ,G) where σ is
a substitution and G a term-graph s.t. if x ∈ dom(σ) then xσ ∈ N (G). A g-
substitution of a term-graph H is a g-substitution ς = (σ,G) s.t. σ is compatible
with H and G �� Hσ. In this case, Hς denotes the term-graph: Hσ ∪G.

For instance, if H = α:f(β, δ) and ς = ({β → δ}, δ:g(δ, λ:a)), then Hς =
α:f(δ:g(δ, λ:a), δ). Note that δ cannot have a reference in H distinct from the
one in ς, according to the previous definition, since it is defined in δ:g(δ, λ:a).

(σ,G) is said to be ground if σ,G are ground. If ς = (σ,G) then σς denotes
the substitution σ and Grς denotes the term-graph G. If ϑ is a g-substitution
of Grς , then ςϑ denotes the g-substitution (σςσϑ,Grςθ ∪Grϑ) (composition of ς
and ϑ). ς is said to be more general than ϑ if there is a substitution  s.t. ς = ϑ.

By a slight abuse of notation, we write ς ∈ sol(φ) (resp. ς ∈ csol(φ)) iff
σς ∈ sol(φ) (resp. σς ∈ csol(φ)). Similarly, if φ is a node constraint (resp. a node
or a sequence of actions) then φς denotes the expression φσς (note that if G is
a term-graph, then Gσς is not equal to Gς if Grς is not empty).

5.2 Symbolic Handling of Actions

An s-graph is either a term-graph or an expression of the form apply(G, τ) where
G is a term-graph and τ is a sequence of actions. A g-term is a triple [[G | φ]]τ

where G is an s-graph, φ a node constraint and τ a sequence of actions. τ denotes
in some sense the “history” of G, i.e. the set of actions applied for getting G. φ
imposes additional constraint on the variables occurring in G.

The use of g-terms allows us to handle actions in a symbolic way (i.e. without
performing them explicitly). G[τ ] and apply(G, τ) have very different meanings:
G[τ ] denotes the term-graph obtained by applying τ on G, whereas apply(G, τ) is
merely a syntactic object. We relate these two notions by associating semantics
to g-terms. If G is a g-term, then value(G) is a term-graph defined as follows:
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value([[G | φ]]τ ) def= G if G is term-graph, and value([[apply(G,χ) | φ]]τ ) def= G[χ]
otherwise (note that value([[G | φ]]τ ) does not depend on φ and τ).

5.3 Narrowing Steps

Obviously, an action can be applied on a node α only if every other node β
occurring in the term-graph is known to be distinct from α. Otherwise, we do
not know whether β is to be redirected or not, hence we cannot apply the action.
The next definition formalizes this notion.

Let a be an action s.t. r(a) = {α}. A node β is said to be a-isolated in a
constrained term-graph [[G | φ]] iff either β is syntactically equal to α or if the
application of the action a cannot affect the occurrences of β in [[G | φ]], i.e. iff
one of the following conditions holds: either β = α, or β �∈ dom(G) and a is not a
global redirection, or β �≈ α occurs in φ, or α, β ∈ A. A constrained term-graph
[[G | φ]] is said to be ready for an action a if any node in [[G | φ]] is a-isolated.
Roughly speaking a node β is a-isolated if one has enough information to decide
whether β is affected by a or not. This ensures that a behaves in a similar way
for all possible values of β.

Our narrowing algorithm uses several rules. The first one corresponds to the
usual narrowing step and is defined as follows.

[[G | ψ]]τ 	ρ,ς [[H | ψ′]]τσ

If:

– G is a term-graph, ρ = [[L | φ]] →α R is a rewrite rule.
– σ is a most general substitution compatible with L and G s.t.:

• Lσ 
� Gσ (Lσ and Gσ must be compatible),
• ασ ∈ dom(Gσ) (the root of the rule occurs in the considered term-graph).

– H = apply(Gσ ∪ Lσ, Rσ), G′ def= Lσ \ Gσ, ς
def= (σ, G′).

– ψ′ = ψσ ∧ φσ ∧
β∈r(τσ),δ∈dom(G′) β �≈ δ.

ψ′ inherits from the constraints in ψ and in φ. The additional disequations
β �≈ δ express the fact that every synthesized node δ (i.e. every node occurring
in dom(Lσ) but not in dom(Gσ)) should be distinct from the nodes β that
have been previously redirected. This property is essential for soundness. The g-
substitution (σ,G′) plays a role similar to the one of unifiers in term narrowing.
In contrast to the rewrite step, this first narrowing rule does not explicitly apply
the sequence of actions R on the term-graph Gσ ∪ Lσ but only encodes them
into the g-term. The reason is that the actions are not necessarily applicable at
this point, since the term-graph may not be ready for them.

Example 4. Let ρ be the following rule: α:f(β, δ:g(γ:a, ζ)) →α α:h(β, δ), δ.1 �
α. Let G = [[λ1:f(λ2, λ3) | "]]τ (where λ1, λ2, λ3 are variables). We assume
that τ = λ1:f(λ2, λ3) (hence λ1 has been redirected). We apply the narrowing
rule on G, using the rule ρ. We denote by L the left-hand side of ρ. We try
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to find a substitution σ, compatible with G and L, s.t. ασ occurs in dom(G)
and Gσ �� Lσ. Since headL(α) = f , we must have headG(ασ) = f , thus
ασ = λ1. Since we must have refGσ(ασ) = refLσ(ασ) we have βσ = λ2 and
δσ = λ3.

Obviously, the obtained substitution satisfies the desired conditions. The
term-graph G′ in the definition of the narrowing rule is λ3:g(γ:a, ζ) (γ, ζ are
variables). We obtain:

[[apply( (λ1:f(λ2, λ3), λ3:g(γ:a, ζ)) , λ1:h(λ2, λ3),λ3.1 	 λ1) | λ1 �≈ λ3 ∧ λ1 �≈ γ]]τ .

Note that the disequations λ1 �≈ λ3 ∧ λ1 �≈ γ have been added in the con-
straint part of the g-term. This is due to the fact that since λ1 has already been
redirected, the nodes synthesized during the application of the narrowing rule
should be distinct from λ1. The actions λ1:h(λ2, λ3) and λ3.1 � λ1 are not
performed at this point but only stored into the g-term.

Additional narrowing rules are required to handle g-terms of the form
[[apply(G, τ) | φ]]ξ, i.e. to explicitly apply the actions introduced by the pre-
vious rule. The first one – denoted by T – is trivial: it simply transforms a
g-term into a term-graph in case of empty sequences of actions.

[[apply(G, ε) | φ]]τ 	T,∅ [[G | φ]]τ .

The second and third rules, respectively denoted by A and A+, apply the
first action in the sequence and then proceed to the next ones (assuming that
the considered term-graph is ready for this action). A+ handles node creations,
whereas A handles all other actions.

[[apply(G, a.τ ) | φ]]ξ 	A,∅ [[apply(G[a], τ ) | φ]]ξ.a.

If a is not a node creation, [[G | φ]] is ready for a.

[[apply(G, α+.τ ) | φ]]ξ 	A+
,σ

[[apply(G[α+], τσ) | φ ∧
β∈V∩N (G)

β �≈ γ]]ξ.γ+

If σ = {α → γ} where γ = NewNode(G).

The added disequations ensure that the variables already present in the term-
graph are distinct from the newly created node γ (this is essential to prevent
these variables to be unified with γ afterwards).

The above rules are clearly not sufficient to ensure completeness. Consider for
instance the following rule: λ:f(α:a, β) →λ α:b. Assume we want to apply the
narrowing rule on the g-term f(δ:a, δ′:a), where δ, δ′ denote variables. Then the
narrowing rule cannot apply, because we do not know at this point whether δ = δ′

or not. If δ = δ′ then the term-graph should be reduced to: f(δ:b, δ). Otherwise,
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we should get: f(δ:b, δ′:a). In other words, the considered term-graph is not
ready for the action δ:b because δ′ is not isolated. Since both options are possible
(namely δ = δ′ or δ �= δ′) we need to consider the two possibilities separately,
i.e. in two distinct branches. This is done by the two following branching rules,
denoted by B= and B
= respectively.

[[apply(G, a.τ ) | φ]]ξ 	B=
,σ

[[apply(Gσ, (a.τ )σ) | φσ]]ξσ

If α ∈ r(a), β is a non a-isolated node in G

and σ is a most general substitution compatible with G s.t. ασ = βσ.

[[apply(G, a.τ ) | φ]]ξ 	B�=
,∅ [[apply(G, a.τ ) | φ ∧ α �≈ β]]ξ

If α ∈ r(a), β is a non a-isolated node in G.

In both cases, β becomes a-isolated after application of the rule (either because
it is instantiated by α or because the disequation α �≈ β is added in the con-
straints). Applying these rules on the term-graph [[apply(f(δ:a, δ′:a), δ:b) | "]]∅

yields the two following g-terms: [[apply(f(δ:a, δ), δ:b) | "]]∅ 	 [[f(δ:b, δ) | "]]δ:b

and [[apply(f(δ:a, δ′:a), δ:b) | δ �≈ δ′]]∅ 	 [[f(δ:b, δ′:a) | δ �≈ δ′]]δ:b

Definition 5. If R is a set of rewrite rules, then we write G 	R,ς H if G 	ρ,ς

H for some ρ ∈ R∪ {T,A,A+,B
=,B=}. 	∗
R,ς is inductively defined as follows:

G 	∗
R,ς H iff either ς = ∅ and G = H or G 	R,� G′, G′ 	∗

R,ϑ H,  is a
g-substitution of Grϑ and ς =  ϑ.

We provide a detailed example of application. We define the following func-
tions # and equal computing respectively the length # of a circular list (rules
ρ1, ρ2, ρ3) and the equality on natural numbers (ξ1, ξ2):

α:#(β) →α α:#′(β, β) (ρ1) α:#′(β1:cons(β2, β3), β3) →α α′+, α:s(α′), α′:0 (ρ2)
[[β1:#′(β2:cons(β3, β4), β5) | β4 �≈ β5]] →β1 α′+, β1:s(α′), α′:#′(β4, β5) (ρ3)

α:equal(0, 0) →α α:true (ξ1) α:equal(s(β1), s(β2)) →α α:equal(β1, β2) (ξ2)

Assume we want to solve the goal4: γ:equal(γ′:#(γ′′), s(s(0))) →∗ true (i.e.
to find the circular lists γ′′ of length 2). We assume that γ′′ is a variable and
γ, γ′ are names. The corresponding narrowing derivation is depicted below. We
get the (unique) solution: γ′′:cons(β3, β4:cons(β′

2, γ
′′)) where γ′′ �= β4 (the other

disequations are irrelevant since α′ and α′′ do not occur in the term-graph).
In order to improve the readability we do not specify the sequence of actions
occurring in the g-terms, since they can be easily recovered from the previous
steps. Moreover, we only give the derivation yielding true (the reader can check
that all the other derivations fail).

4 There are many ways to define goals in the literature (equations, booleans, expres-
sions,. . . ). In this paper we focus on the basic narrowing steps.
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γ:equal(γ′:#(γ′′), s(s(0)))
	ρ1 apply(γ:equal(γ′:#(γ′′), s(s(0))), γ′:#′(γ′′, γ′′))
	A apply(γ:equal(γ′:#′(γ′′, γ′′), s(s(0))), ε)
	T γ:equal(γ′:#′(γ′′, γ′′), s(s(0)))
	ρ3 [[apply(γ:equal(γ′:#′(γ′′, γ′′:cons(β3, β4)), s(s(0))),

α′+, γ′:s(α′), α′:#′(β4, γ
′′))

| β4 �= γ′′]]
	A+ [[apply((γ:equal(γ′:#′(γ′′:cons(β3, β4), γ′′), s(s(0))), α′),

γ′:s(α′), α′:#′(β4, γ
′′))

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′]]
	A [[apply((γ:equal(γ′:s(α′), s(s(0))), γ′′:cons(β3, β4), α′),

α′:#′(β4, γ
′′))

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′]]
	A [[apply(γ:equal(γ′:s(α′:#′(β4, γ

′′:cons(β3, β4))), s(s(0))),
ε)
| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′]]

	T [[γ:equal(γ′:s(α′:#′(β4, γ
′′:cons(β3, β4))), s(s(0)))

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′]]
	

ξ1,A [[γ:equal(α′:#′(β4, γ
′′:cons(β3, β4)), s(0))

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′]]
	ρ2 [[apply(γ:equal(α′:#′(β4, γ

′′:cons(β3, β4:cons(β′
2, γ

′′))), s(0)),
α′′+, α′:s(α′′), α′′:0))
| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′]]

	A+ [[apply((γ:equal(α′:#′(β4, γ
′′:cons(β3, β4:cons(β′

2, γ
′′)), s(0)), α′′),

α′:s(α′′), α′′:0)
| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′, γ′′ �≈ α′′, β3 �≈ α′′, β4 �≈ α′′, β′

2 �≈ α′′]]
	A,A,T [[γ:equal(α′:s(α′′:0), s(0)), γ′′:cons(β3, β4:cons(β′

2, γ
′′))

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′, γ′′ �≈ α′′, β3 �≈ α′′, β4 �≈ α′′, β′
2 �≈ α′′]]

	
ξ2,A,T [[γ:equal(α′′:0, 0), γ′′:cons(β3, β4:cons(β′

2, γ
′′))

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′, γ′′ �≈ α′′, β3 �≈ α′′, β4 �≈ α′′, β′
2 �≈ α′′]]

	
ξ1,A,T [[γ:true, γ′′:cons(β3, β4), β4:cons(β′

2, γ
′′)

| β4 �≈ γ′′, β3 �≈ α′, β4 �≈ α′, γ′′ �≈ α′, γ′′ �≈ α′′, β3 �≈ α′′, β4 �≈ α′′, β′
2 �≈ α′′]]

6 The Properties of the Narrowing Relation

Soundness and Completeness are defined w.r.t. the ground rewriting rule intro-
duced in Definition 3. Soundness ensures that every narrowing derivation can
be related to a sequence of rewriting steps, operating at the ground level. More
precisely, if we have [[G | "]]∅ 	R,ς [[H | φ]]τ then for any ground instance ϑ of
H solution of φ, we should have Gςϑ→∗

R Hϑ. Unfortunately, this property does
not hold for all substitutions ϑ. Indeed, if ϑ contains a node α on which a global
redirection is performed during the narrowing derivation, then the term-graph
obtained by rewriting from Gςϑ is different from Hϑ, since any instance of α in
ϑ should be redirected during the rewriting process. Thus we will assume that
ϑ contains no such node (this property is always satisfied if we restrict ourself
to irreducible derivations, see Definition 6). Similarly, ϑ should not contain any
created node.
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Theorem 1. (Soundness) Let R be a set of rewrite rules. Let [[G | ψ]]τ and
[[H | ψ′]]τ

′
be two g-terms s.t. [[G | ψ]]τ 	∗

R,ς [[H | ψ′]]τ
′
. Let ϑ be a ground

g-substitution of H s.t. ϑ ∈ sol(ψ′) and Grϑ contains no node α s.t. α ∈ C or
α � β ∈ τ ′, for some β ∈ N . ςϑ is a g-substitution of G. Moreover value([[G |
ψ]]τ ςϑ)→∗

R value([[H | ψ]]τ
′
ϑ).

In particular, this implies that if G,H are two term-graphs s.t. [[G | "]]ε 	R,ς

[[H | φ]]τ and ϑ is a g-substitution of H satisfying the above conditions, then
Gςϑ→∗

R Hϑ.

Completeness expresses the fact that every rewriting derivation from a ground
instance of a considered term-graph G can be subsumed by narrowing from
[[G | "]]∅. More precisely, if ς is a g-substitution of G s.t. Gς →∗ H then there
should exist a narrowing derivation [[G | "]]∅ 	R,� [[G′ | φ]]τ and a g-substitution
ϑ ∈ sol(φ) s.t. G′ϑ = H and ς =  ϑ. This property does not hold for every
substitution ς, but only for those that are irreducible w.r.t. the considered set of
rewrite rules. The definition of an irreducible substitution is more complicated
than in the usual case (i.e. for standard terms), since we have to take into
account global redirections. Roughly speaking a term-graph G will be considered
as reducible iff a rule can be applied on a node in dom(G) (1) or if a rule can
globally redirect a node in G (2) or if it contains a created node (3). More
formally:

Definition 6. A g-substitution ς = (σ,G) is said to be R-irreducible iff the
following conditions hold:

1. There is no rule L→λ R ∈ R s.t. there exists a substitution θ of the variables
in L s.t. Lθ �� G and λθ ∈ dom(G).

2. There is no rule L→λ R ∈ R s.t. there exists a substitution θ of the variables
in L and a node α ∈ N (L) s.t. Lθ �� G, ασ ∈ N (G), R contains an action
of the form α� β for some β ∈ N .

3. N (G) ∩ C = ∅.
If a constructor based signature is used, then Condition 1 simply states that
ς contains no defined function. Similarly, Condition 2 can be easily guaranteed
if only nodes labeled by defined functions can be globally redirected (this is a
rather natural restriction). Condition 3 simply expresses the fact that ς should
not contain any created node.

Theorem 2. (Completeness) Let R be a set of rewrite rules. Let G,H be two
term-graphs and let ς be an R-irreducible ground substitution of the variables in
G s.t. Gς →∗

R H. For any φ s.t. ς ∈ sol(φ) and for any sequence of actions τ
s.t. r(τ) ⊆ dom(G), there exists  s.t. [[G | φ]]τ 	∗

R,� [[G′ | ψ]]τ ′ and ϑ′ ∈ sol(ψ)
s.t. ς =  ϑ′, G′ is a term-graph, and value([[G′ | ψ]]ϑ′) = H.

In particular, if Gς →∗
R H and ς is R-irreducible, then there exist  s.t. [[G |

"]]ε 	∗
R,� [[G′ | ψ]]τ ′ and ϑ ∈ sol(ψ) s.t. ς =  ϑ, G′ is a term-graph, and

G′ϑ = H .
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7 Conclusion

We have shown that narrowing could be extended to a large class of term-graph
rewrite systems. The considered rewrite rules allow one to fully handle data-
structures with pointers thanks to the actions like pointer redirections, node
redefinition and creation. These results are the first ones concerning the nar-
rowing relation in such a wide class of term-graph rewrite systems. It is also
the first narrowing-based algorithm able to synthesize cyclic data-structures as
answers in a context where bisimilar graphs are considered as equal only if they
are identical. In this paper we were rather interested in the basic definition
of narrowing, its soundness and completeness. Optimal term-graph narrowing
strategies as studied in [7,8,1] are out of the scope of this paper, but a mat-
ter of future work. The considered term-graph rewrite systems are not always
confluent. We proposed in [6] the use of term-graphs with priority in order to re-
cover the confluence property within orthogonal systems. The future narrowing
strategies should certainly integrate the priority over the nodes of a term-graph
in addition to neededness properties.
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Abstract. Metabolic pathway analysis is one of the tools used in biology
and medicine in order to understand reaction cycles in living cells. A
shortcoming of the approach, however, is that reactions are analysed
only at a level corresponding to what is known as the ’collective token
view’ in Petri nets, i.e., summarising the number of atoms of certain
types in a compound, but not keeping track of their identity.

In this paper we propose a refinement of pathway analysis based on hy-
pergraph grammars, modelling reactions at a molecular level. We consider
as an example the citric acid cycle, a classical, but non-trivial reaction for
energy utilisation in living cells. Our approach allows the molecular anal-
ysis of the cycle, tracing the flow of individual carbon atoms based on a
simulation using the graph transformation tool AGG.

1 Introduction

From the beginning biology has been one of the main application areas of graph
transformations [3]. In recent years this line of research has been renewed by
proposals for modelling recombination of DNA sequences in cells [7] and other
biochemical reactions [10,12].

One major argument in favour of graph transformation-based models for bi-
ological systems and chemical reactions is their inherent concurrency, allowing
reactions to take place simultaneously as long as they involve different resources
and to keep track of causal dependencies and conflicts between them. So far, lit-
tle of the concurrency concepts available for graph transformation systems have
actually been applied in this area. This paper can be seen as a first attempt to
identify interesting questions and possible solutions based on a well-known, but
non-trivial case study.

In particular we are interested in the analysis of causal dependencies between
biochemical reactions. Given a metabolic pathway (a sequence of reactions) we
would like to be able to trace the history of particular atoms or molecules. This
is relevant, for example, when trying to anticipate the outcome of experiments
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using radioactive isotopes of such atoms. Such questions have been crucial to
the detailed understanding of the nature of reactions like the citric acid cycle.

To be able to answer them we propose a new hypergraph model for chemi-
cal compounds which refines the classical representation in terms of structural
formulae in two different ways.

– Our representation keeps track of the identity of atoms or molecular com-
ponents by means of the identities of hyperedges. In contrast, when writing
down chemical reactions with structural formulae, the identities of the react-
ing atoms are not explicitly represented in the notation. In situations where
several atoms of the same element are involved, this lack of information leads
to ambiguity as to where a new atom is placed in the resulting molecule. Our
graph transformation-based model allows to track atom identities by graph
homomorphisms between the graphs representing the compounds before and
after the reaction.

This refinement is comparable to the relation of graph transformation
systems and place-transition Petri nets in the collective token view. While the
latter record and change the numbers of tokens on certain places (resulting
in the rewriting of a multiset of places), graph transformation allows the
rewriting of sets of nodes (and edges), each with their individual identity.

– Modelling atoms as hyperedges, each connected to an ordered sequence of
nodes, the relative spatial orientation of different molecular components is
recorded through the ordering of the nodes connected to a hyperedge.

Using this model we are able to trace the dependencies between different steps
in the reaction based on individual atoms and their spatial arrangement. The
approach is illustrated by simulating the (at that time surprising) outcome of a
classical experiment that led to a deeper understanding of the citric acid cycle.
We also provide an encoding of the model in terms of attributed bipartite graphs
that can be implemented in the AGG system for simulation and analysis.

The paper is organised as follows. In the next section, we introduce our run-
ning example, the citric acid cycle, and explain why the exact configuration of
atoms in 3-dimensional space is important for understanding biochemical reac-
tions properly. Our formal model, based on hypergraph transformation systems,
is presented in Section 3. In Section 4, we show that the carbon flow in the
citric acid cycle can be analysed with the graph transformation tool AGG. A
conclusion closes this paper.

2 Molecular Analysis

2.1 Basic Reactions

Metabolic pathway analysis is one of the tools in biology and medicine in order
to understand reaction cycles in living cells. A shortcoming of the approach,
however, is that reactions are analysed at the level of structural formulae, sum-
marising the number of atoms of certain types in a compound without keeping
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track of their identity. Molecular analysis aims at understanding chemical reac-
tions at the level of individual atoms or component molecules.

As an example consider the citric acid cycle (also known as the tricarboxylic
acid cycle, the TCA cycle, or the Krebs cycle) [13]. This cycle is a series of
chemical reactions of central importance in all living cells that utilise oxygen
as part of cellular respiration. Starting with acetyl-CoA, one of the resulting
products of the chemical conversion of carbohydrates, fats and proteins, the
citric acid cycle produces fast usable energy in the form of NADH, GTP, and
FADH2 which are precursors of the well known adenosine-tri-phosphate (ATP).
The citric acid cycle is shown in Fig. 1.

Fig. 2 shows reaction 1 of the citric acid cycle in detail, focussing on the
molecular interactions between oxaloacetate and acetyl-CoA. Acetyl-CoA derived
from pyruvate is the output of the metabolism of glucose known as glycolysis
and therefore of major importance for the energy metabolism in living cells. CoA
known as coenzyme A is just a transport agent for the acetyl group as input for
the critic acid cycle.

But how is the metabolism of the acetyl group in the citric acid cycle? The
pathway analysis in Fig. 1 shows the acetyl group as input of reaction 1 (see
Fig. 2). To analyse the cycle more precisely the first important question is: How
is the acetyl group metabolised in the cycle, i.e. in which output agents can we
find the two C-atoms of the input acetyl group? Taking a first look would provide
the answer: The acetyl group is metabolised into two CO2 molecules. But our
further analysis will show that after one cycle the C-atoms of the acetyl group
are still in the agents of the cycle.

To analyse this problem more precisely, we have to go one step further in the
molecular constitution of the agents. Before we introduce the spatial constitu-
tions of molecules in general in Section 2.2, we would like to introduce this issue
with respect to our example.

The output agent of reaction 1, citrate, has two CH2COO− groups, one on
the top and one on the bottom (see Fig. 2). To fit into the enzyme aconitase
catalysing reaction 2 (see Fig. 3), only the CH2COO− group marked with 3 is
able to fit into the enzyme due to 3-dimensional spatial relations (see Fig. 4).
This utilised CH2COO− group will provide the resulting agent CO2 in reaction
4. But the CH2COO− group provided from the Acetyl-CoA in the beginning of
the cycle is not utilised in this reaction. So the main remaining question for our
molecular analysis is: Where is the acetyl group metabolised in the citric acid
cycle?

This question is important for a deeper analysis of the citric acid cycle and can
not be directly answered with the current pathway analysis techniques. Biological
pathways are like a black box: We can measure the input and output agents but
we know nothing about the reactions in between. To analyse them we have to
go down to the molecular level to observe how input agents are utilised during
the reaction process. As we have seen in reaction 2, reactions in living cells are
more complicated than classical chemical reactions because most of the biological
reactions are catalysed by enzymes accepting only special molecular structures.
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Apart from the structural formula also the 3-dimensional configuration of the
molecules has to be taken into account. To model the configuration we need
suitable techniques that can be provided by graph transformation as shown in
Section 3.
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Fig. 2. Reaction 1 of the citric acid cycle
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Fig. 3. Reaction 2 of the citric acid cycle

2.2 Spatial Configuration

Spatial configuration plays a key role in many chemical reactions. The arrange-
ment of atoms of a molecular entity in space distinguishes enantiomers which
have different chemical properties. They often smell and taste differently, and
the difference with respect to their pharmacological effect can be serious, as re-
ceptors in the human body interact only with drug molecules having the proper
absolute configuration. Chiral molecules are mirror images of each other, but
can not be superimposed by translation and rotation. Figure 5 shows a sam-
ple chiral molecule: glyceraldehyde. The entantiomers L-glyceraldehyde and D-
glyceraldehyde act like left and right hands, which are equal except for their
arrangement in 3-dimensional space.

Chirality plays a role in several of the molecules and enzymes involved in the
citric acid cycle. Isocitrate and malate are chiral molecules, citrate is prochi-
ral, i.e. would become chiral if one of two identical ligands (attached atoms or
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Fig. 4. Binding of the Citrate at the Aconitase Enzyme Surface

groups) is replaced by a new substituent. This also results in asymmetric phe-
nomena when citrate is isomerised to isocitrate with the enzyme aconitase, which
have been explored using radiocarbon to mark individual atoms [13, Chap. 13].
Isocitrate can only be processed as a D-isomer by isocitrate dehydrogenase, while
the L-isomer does not react, or can even stop the entire cycle by bounding to
the enzyme, which happens in the absence of magnesium metal compound, as
was discovered recently [8]. These examples show that a formal representation
of metabolic pathways should always cope with the stereochemical aspects.

In chemistry, there are several naming conventions for the distinction of enan-
tiomers. Notably, there is the classification according to optical activity, (+) or
(-), the D/L- and the R/S-classification scheme. All are used in special areas
of chemistry for either historical or practical reasons, but they are not directly
convertible into each other. So, for instance a molecule with positive optical ac-
tivity (+) can be either D or L, and there is no general rule to determine this.
The D/L-convention is based on relating the molecule to glyceraldehyde, which
is one of the smallest commonly-used chiral molecules.

When writing down structural formulas, lines depict bonds approximately in
the plane of the drawing; bonds to atoms above the plane are shown with a wedge
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Fig. 5. 3-dimensional view of L-glyceraldehyde and D-glyceraldehyde (from left to
right), created with MolSurf www2.chemie.uni-erlangen.de/services/molsurf/.

(starting from an atom in the plane of the drawing at the narrow end of the wedge);
and bonds to atoms below the plane are shown with dashed lines (see Fig. 6).

Fig. 6. Structural formulas with stereochemical information. On the left hand side,
D-glyceraldehyde is shown, on the right hand side, L-glyceraldehyde.

We will establish in the next section a hypergraph approach to model molec-
ular reactions which considers stereochemical configuration by comparing the
molecules to the structure of D-glyceraldehyde.

3 Molecular Reaction Modelling with Graph
Transformation

3.1 Hypergraph Approach

Given a ranked set of labels A = (An)n∈N, an A-labelled hypergraph (V,E, s, l)
consists of a set V of vertices, a set E of edges, a function s : E → V ∗ assigning
each edge a sequence of vertices in V , and an edge-labelling function l : E → A
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such that, if length(s(e)) = n then l(e) = A for A ∈ An, i.e., the rank of the
labels determines the number of nodes the edge is attached to. A morphism of
hypergraphs is a pair of functions φV : V1 → V2 and φE : E1 → E2 that preserve
labels and assignments of nodes, that is, l2 ◦ φE = l1 and φ∗

V ◦ s1 = s2 ◦ φE .
A morphism thus has to respect the atom represented by an edge and also its
chemical valence (number of bonds).

Labelled hypergraphs can be considered as hierarchical graph structures. As
shown by Löwe [6], pushouts can be computed elementwisely for all hierarchical
graph structures and therefore the standard graph transformation approaches
can be applied. A graph transformation rule is a span of injective hypergraph
morphisms p = (L l←− K

r−→ R), called a rule span. The left-hand side L
contains the items that must be present for an application of the rule, the right-
hand side R those that are present afterwards, and the gluing graph K specifies
the “gluing items”, i.e., the objects which are read during application, but are
not consumed.

A direct transformation G
p(o)
=⇒ H is given by a double-pushout (DPO) di-

agram o = 〈oL, oK , oR〉 as shown below, where (1), (2) are pushouts and top
and bottom are rule spans. We assume that the match oL is an injective graph
homomorphism.

L

(1)oL

��

K

(2)

l�� r ��

oK

��

R

oR

��
G Dg

��
h

�� H

If we are not interested in the rule and diagram of the transformation we will
write G

t=⇒ H or just G =⇒ H .

3.2 Structural Modeling with Hypergraphs

We use hypergraphs (V,E, s, l) to model molecules and their reactions, inter-
preting the hyperedges as atoms and the nodes as bonds between them. The
string s(e) of vertices incident to an edge e ∈ E gives the specific order of the
bonds to other atoms, coding also their spatial configuration, as we will see. As
ranked set of labels, we use

A1 = {H, CH3,OH, . . .}
A2 = {O, CH2, S, . . .}
A3 = {CH, N, . . .}
A4 = {C, S, . . .}

...

to denote elements of the periodic system or entire chemical groups. The rank of
a label models the valence of an atom. For instance, a carbon atom with l(e) = C



Molecular Analysis of Metabolic Pathway with Graph Transformation 115

always has s(e) = v1v2v3v4, a word of length 4. Hence, we define C as a label
of rank 4. For elements with more than one possible valence (e.g. sulphur), the
corresponding label can belong to several of the sets An.

Given an organic molecule, we represent the 3-
dimensional configuration of the ligands of a C atom
as a hypergraph by relating it to D-glyceraldehyde,
one of the simplest chiral organic compounds. We
impose a numbering on the ligands of a carbon atom
such that a substitution of ligand 1 by OH, ligand
2 by CHO, ligand 3 by CH2OH, and ligand 4 by H
would result in D-glyceraldehyde.

This convention defines the spatial arrangement of the ligands unambiguously.
Substitution of ligands may change the angles between the ligands, and they
often differ from the regular tetrahedral angle of 109◦28′, but the so called angle
strain [5] does not affect the uniqueness of the molecule represented by our
notation. We will not consider angle deviations in the rest of this paper and
always assume that the tetrahedron surrounding a carbon atom is regular.

As an example, we give the representation of the prochiral molecule citrate as
a hypergraph (see Fig 7):

V = {v1, v2, . . . , v6}, E = {e1, e2, . . . , e7},

s(e1) = v1, s(e2) = v1v2, s(e3) = v3, s(e4) = v2v3v4v5, s(e5) = v4,

s(e6) = v5v6, s(e7) = v6

l(e1) = COO−, l(e2) = CH2, s(e3) = OH, s(e4) = C, s(e5) = COO−,

s(e6) = CH2, s(e7) = COO−

The above representation allows different vertex-labellings for the same
molecule. For instance, changing s(e4) = v5v4v5v3 in the above example, it
would still represent citrate, as the arrangements only differ with respect to a
120◦ rotation around the axis determined by the OH-group.

In order to determine equivalent respresentations, we investigate the symme-
tries of the involved geometric structure. It is known that the symmetry group
Td of the regular polyhedron is isomorphic to the symmetric group S4 which con-
sists of all permutations of a set of cardinality 4. Via this isomorphism, we can
relate different representations to isomorphic polyhedra. The concept of chirality
can be translated into symmetry groups as follows: The normal subgroup T of
Td of order 12 consisting of identity, 4 rotations by 120◦ clockwise (seen from a
vertex), 4 rotations by 120◦ anti-clockwise and 3 rotations by 180◦ (axis through
the centres of two opposite edges) preserves the stereochemistry of a molecule,
whereas the group elements not contained in this subgroup, i.e. 6 reflections and
6 rotoreflections, transform a molecule into its chiral counterpart. The isomor-
phism Td → S4 maps T to the alternating group A4 of all even permutations.
We build the factor group Td/T ∼= S4/T4, yielding Z2, which represents the two
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Fig. 7. Structural formula and hypergraph representation of citrate

variants of configuration. So two 4-letter words are equivalent iff they lie on the
same orbit. Thus, from the 24 different permutations of the four different letters
forming the word s(e) for e ∈ E, any two can be regarded equivalent if they are
related by an even permutation [4].

This leads to the concept of symmetry rules. The group of orientation pre-
serving transformations A4 is generated by a = (123) and b = (12)(34). It
thus suffices to give two symmetry rules as shown in Fig. 8. By applying these
rules repeatedly, every permutation of the ligands which preserves chirality can
be achieved. Normal forms of representations could be introduced following the
standards of applied chemistry where priorities are defined for the most common
organic residue groups.

A common principle in chemistry is to use shortcut notation of standard
groups such as OH, COOH, CH2 as well as of whole residues of a complex
molecule in order to focus on the main structures of interest in a specific reac-
tion. The chemist regards these shortcuts as equivalent with the expanded no-
tation, and so should our formalization do. We therefore introduce rules which
expand and collapse shortcut notations so that molecules can be processed by
the reaction rules regardless of the chosen representation. An example is given
in Fig. 9.

A graph grammar for molecular reaction modelling thus consists of three
classes of rules: symmetry rules, expansion and collapsing rules, and reaction
rules. Examples for the latter will be given in the next section.

As discussed above, prochirality plays a role in the isomerisation of citrate to
isocitrate. Thus, even though citrate is not chiral, the binding of citrate to aconi-
tase fixes its spatial configuration and selects between the two COO− groups
(see Fig. 4). This is important when investigating the way of marked atoms in
molecular reactions, for instance the carbon flow in the citrate cycle. Do the
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Fig. 8. Symmetry Rules
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1 3
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COO–
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Fig. 9. Expansion and collapsing rule

carbon atoms coming from acetyl-CoA in step 1 remain in the cycle or are they
metabolised to another substance? Or, even, does that happen with a certain
probability within one passage through the whole cycle? By marking the atom
with the radioactive isotope 14C, this question can be answered experimentally.
A careful investigation of the reaction and its stereochemical aspects also re-
veals the answer, and we will show how this can be done in an automated way.
A manual tracking is error-prone and not feasible in more complicated situations.

4 Tool Support

For tool support we use the graph transformation tool environment AGG [11,1].
To model the hypergraph representation presented in Section 3, we have to define
a mapping between this approach and a typed attributed graph grammar system
as represented by AGG.

Fig. 10 shows the basic representation of a C atom in AGG: The hyper-
edge labelled with C is represented by the C node in AGG and the nodes are
represented by the four square nodes around the C node. The order of the C
atom bonds is modelled by the edge attribute o:Int. Starting with the bond
on the top with o = 1, the bonds are numbered with increasing numbers with
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Fig. 10. Modelling of a C atom in AGG

oi+1 = (oi + 1) mod n and n number of bindings. The number of bindings is
usually a unique number depending on the atom. The C atom has 4 bindings,
the O atom 2 bindings and the H atom 1 binding.

Fig. 11 shows reaction 2 of the citric acid cycle (see Fig. 3 in Section 2)
modelled in AGG. As shown in Fig. 4, the enzyme aconitase accepts only the
source agent citrate with the indicated o edge attribute order of the 1:C atom
in the left-hand side of Fig. 11. In this reaction the OH group of the 1:C atom
is exchanged with the OH group of the 3:C atom. This leads to the new agent
isocitrate.

Note that unchanged nodes and edges during the reaction have to be mapped
with a unique number from the left-hand side to the right-hand side. Unmapped
nodes and edges of the left-hand side are deleted and unmapped nodes and
edges of the right-hand side are created during the graph transformation step.
The mapping preserves the value of the edge attribute o. Newly created edges
on the right-hand side of the rule have to be assigned with the edge attribute o
in the way described above.

Molecular Analysis in AGG: Modelling the 8 reactions of the citric acid cycle
and a start graph containing the source agents, the whole cycle can be simulated
in AGG. For further analysis it may be also suitable to analyse a specific part
of the cycle by changing the start graph accordingly.

One important question is the metabolism of the acetyl group as source agent
of reaction 1. We would expect that the C atoms of the acetyl group are contained
in the CO2 target agents of reactions 3 and 4. But marking these C atoms with
additional attributes in AGG (which may correspond to radioactive marking in
practice) shows a surprising result: the C atoms are still in the cycle, we can
find them in the oxaloacetate at the end of the cycle. What happened? Further
analysis shows that we can find the marked C atoms in the target CO2 agents
after a second turn of the cycle. This is the result of the special prochiral behavior
of the aconitase enzyme shown in Fig. 4. The C atoms of the acetyl group fit
into the enzyme only in this special three dimensional configuration, modelled
by the o edge attribute in AGG. This results in an exactly defined configuration
of the target agents.
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Fig. 11. Reaction 2 of the citric acid cycle in AGG

5 Related Work

The use of Graph Transformation for biological systems has a long history, as
pointed out in the overview paper [9], but early applications were mostly de-
voted to the field of morphogenesis. Our approach focuses on biochemistry, a
field which gained much importance in the last decades because of the growth
of biotechnology. Providing automated assistance for analyzing biochemical re-
actions can help in understanding the principles which govern the processes in
living cells.

Several formal approaches to chemical and biological systems have been pro-
posed. In [7], graph replacement systems are used to describe DNA processing.
Nucleotides or polynucleotides form the vertices of graphs from which bigger
structures are composed. Reactions are modelled by transformation rules. In
contrast, our hypergraph approach represents the atoms as edges, allowing a
more detailed description of the spatial configuration of the molecules, which
is quite important when tracing atoms in reaction cycles, as we have seen. An-
other difference is that we incorporated symmetry and expansion rules into the
graph grammar, thereby retaining more flexibility for different but equivalent
representations.

Process calculus was also proposed as a modelling technique for biological sys-
tems [2], but aiming a higher level of abstraction than our molecular description.
Issues of concurrency, which also play a role in living cells, were proposed to be
modeled with process calculi. For molecular analysis, concurrent actions are im-
plicitly modeled by specifying the reaction for singular molecules, assuming that
there are e.g. 1023 molecules involved. Classical concurrency questions concern-
ing sharing of resources, deadlocks, etc. are not reasonably investigated on this
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scale of abstraction. Our graph-based model allows for similar extensions with
respect to time or stochastic aspects as other approaches like process calculi and
petri nets, but provides a more direct visual specification of the molecular con-
figuration, making it more feasible for the chemical expert than other computer
science modelling techniques.

6 Conclusion

In this paper we have shown how molecular analysis of metabolic pathway re-
actions could be performed using hypergraph transformation, supported by the
attributed graph grammar tool environment AGG through a representation as
bipartite graphs. With the citric acid cycle we have applied this approach to a
well-known, but non-trivial case study.

It has been shown that metabolic pathway analysis is not just a trivial reaction
system. To understand the reactions it is very important to be able to trace the
history of particular atoms or molecules. In the citric acid cycle we have shown
that at least two turns of the reaction cycle have to be considered to understand
the metabolism of the agents, an insight which can not be obtained at the more
abstract level.

Our approach may also be helpful for further analysis of unknown (or not
well-known) reaction pathways in living cells. Understanding these pathways is
important for the treatment of diseases or the analysis of drug metabolism in
certain situations. Since the genomic code differs slightly in each living cell the
reaction pathways may differ, too.

The traceability of radioactive metabolites is very important in the treatment
of cancer. Since the reaction pathways in cancer cells differ from the normal
behaviour, the traceability of radioactive metabolites is a significant marker for
finding metastases.
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Abstract. In this work we present our approach to (simple di-)graph transforma-
tion based on an algebra of boolean matrices. Rules are represented as boolean
matrices for nodes and edges and derivations can be efficiently characterized
with boolean operations only. Our objective is to analyze properties inherent
to rules themselves (without considering an initial graph), so this information
can be calculated at specification time. We present basic results concerning well-
formedness of rules and derivations (compatibility), as well as concatenation of
rules, the conditions under which they are applicable (coherence) and permuta-
tions. We introduce the match, which permits the identification of a grammar rule
left hand side inside a graph. We follow a similar approach to the single pushout
approach (SPO), where dangling edges are deleted, but we first adapt the rule in
order to take into account any deleted edge. To this end, a notation borrowed from
functional analysis is used. We study the conditions under which the calculated
data at specification time can be used when the match is considered.

1 Introduction

Graph Transformation [11] is becoming increasingly popular in computer science as it
provides a formal basis for graph manipulation. Transformations of this data structure
are central to many application areas, such as visual languages, visual simulation, pic-
ture processing and model transformation (see [5] and [11] vol.2 for some applications).

The classical algebraic approach to graph transformation is based on category the-
ory [3], and provides a rich body of theoretical results(see [11] vol.1). Thus, graph trans-
formations expressed as graph rewriting become not only graphical and intuitive but
also formal, declarative and high-level models, subject themselves to analysis [11] [5]
[6]. Nonetheless, methods to increase efficiency and new analysis techniques that can
be efficiently implemented in tools are needed for real industrial applications.

In contrast to the categorical-algebraic approach, we propose an algebraic characteri-
zation based on boolean matrix algebra. In this way, simple digraphs can be represented
as boolean matrices and productions as matrices for edge and node deletion and addi-
tion, together with a graph L (also represented with matrices) that must be present in the
host graph in order for the rule to be applicable. Therefore, the effects of a production
p : L→ R can be modelled using boolean matrix operations only. This purely algebraic
approach constitutes a different perspective from algebraic-categorical approaches, as
it provides an operational characterization of most concepts (closer to implementation)
and has the potential for efficient implementation and parallelization.

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 122–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In our work [10], most analysis is made independently of the host graph. The advan-
tages of this approach are twofold. First, all properties under study are inherent to the
graph transformation system and second, it has the practical advantage that the analysis
can be performed by a tool in the phase of specification of the grammar, independently
of any host graph. We present concepts such as coherence (potential applicability of
a sequence), minimal initial digraph (smallest graph with enough elements to execute
a sequence), rule permutation coherence and G-congruence (potential sequential inde-
pendence). These concepts provide a rich amount of information about productions and
how they are related to each other, including limitation in their application, dependen-
cies and dynamical behaviour. To the best of our knowledge, some of these results are
new, for example we have studied conditions for coherence of rule advancement and de-
lay an arbitrary number of positions in a sequence. For space limitations, some proofs
are omitted, but can be found in [10].

In addition, we introduce the match as an operator modifying the rule by including
the context in which it is applied. We use a similar approach to SPO [4], where the
dangling edges are deleted. Thus, the rule is adapted to include the edges that would
become dangling and explicitly delete them. Our goal is to use the information calcu-
lated about the grammar at specification time once the initial host graph is considered.
In this work, we study how this information is modified when a host graph is taken
into account. We also introduce a bra-ket operational notation for rules similar to that
of functional analysis for operators (also known as Dirac Notation) [1]. Thus, produc-
tions can be depicted as R = 〈L, p〉, splitting the static part (initial state, L) from the
dynamics (element addition and deletion, p).

The paper is organized as follows. Section 2 presents the characterization of graphs
and productions in our approach, together with rule sequences, minimal initial digraph,
permutation and G-congruence. Section 3 presents our approach to handle the match.
Section 4 revisits the properties calculated for rules in section 2, and study how they are
affected by the match. Section 5 presents the conclusions and future work.

2 Characterization and Basic Properties

This section presents an informal introduction to the basic concepts in our approach. In
subsection 2.1, we start defining simple digraphs, which can be represented as boolean
matrices, introduce basic operations on these matrices and show a characterization of
graph transformation rules using them. We formulate the conditions for a production to
be compatible (i.e. it defines a simple digraph) and the concept of completion, where
matrices representing graphs are modified – arranged – to permit operations between
them. In subsection 2.2, we present production concatenation together with the con-
cept of coherence. We present the minimal initial digraph, the conditions for sequence
permutations to be coherent and the concept of potential sequential independence.

2.1 Simple Digraphs and Productions

A graph G = (V,E) consists of two sets, one of nodes V = {Vi | i ∈ I} and one of
edges E = {(Vi, Vj) ∈ V × V }. In this paper we are concerned with simple digraphs,
“simple” meaning that only two arrows are allowed between two nodes (one in each
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direction), and “di-” because arrows have a direction. A simple digraph G is uniquely
determined by its adjacency matrix AG, whose element aij is one if (i, j) ∈ E, and
zero otherwise. As we will delete and add edges and nodes, a nodes vector VG is also
associated to our digraph G, with its elements equal to one if the corresponding node is
present in G and zero otherwise.

2: C 3: C 4: C

1: S

(a) (b)

Fig. 1. (a) A Simple Digraph Representing a Client-Server System (b) Matrix Representation

Fig. 1(a) shows a digraph representing a client-server system. Links between the
clients and the server represent that the client is connected to a server. Links between
clients represent a directed communication channel, while a loop link represents a mes-
sage. The matrix representation of the previous graph is shown in Fig.1(b).

The boolean product between two adjacency matrices MG = (gij)i,j∈{1,...,n} and

MH = (hij)i,j∈{1,...,n} is defined as (MG $MH)ij =
∨n

k=1 (gik ∧ hkj).
Next, we are interested in formulating the properties (that we call compatibility) that

should be fulfilled by a boolean matrix and a vector of nodes to define a simple digraph.
We want to forbid edges incident to nodes that do not belong to the digraph. We first
define the norm ‖·‖1 of a vector N = (v1, . . . , vn) as ‖N‖1 =

∨n
i=1 vi.

Proposition 1. A pair (M,N), where M is an adjacency matrix and N a vector of
nodes, is compatible if and only if they verify

∥∥(M ∨M t)$N
∥∥

1 = 0. 1

Now we consider productions and their characterization. We define a production as a
morphism – in the sense of category theory – which transforms a simple digraph into
another one, p : L → R. We can describe a production p with two matrices for edges
and two vectors for nodes. Therefore a production can be specified as functions between
boolean matrices and vectors.

Definition 1 (Production). A production p is a morphism between two simple digraphs
L and R, and can be specified by the tuple p =

(
LE , RE;LN , RN

)
where E stands for

edge and N for node. L is the left hand side (LHS) and R is the right hand side (RHS).

A production models deletion and addition of edges and nodes, carried out in the order
just mentioned, i.e., first deletion and then addition. These actions can be represented
with two matrices for edges (eE , rE) and two vectors for nodes (eN , rN ), which can be
calculated as:2e = L (LR) = LR and r = R (LR) = RL.

1 Where t denotes transposition.
2 Superindices E and N shall be omitted if, for example, the formula applies to both cases or if it

is clear from context which we refer to. Moreover, the and operator (∧) will also be omitted.
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Fig. 2 shows a rule that creates a communication channel between two clients con-
nected to the same server. The deletion matrix eE (and vector eN ) is zero, while the
addition matrix rE has a unique non-zero element at position (2, 3) and the addition
vector for nodes is zero. From previous definitions, a number of conditions are immedi-

1: S

channel
create

2: C 3: C

1: S

2: C 3: C

(a) (b)

Fig. 2. (a) Create Channel Rule (b) Matrix Representation of Rule (only for edges)

ate (see next proposition). The first two state that elements cannot be rewritten (erased
and created or vice versa) by a rule application. This is a consequence of the way in
which matrices e and r are calculated.3 The last two conditions say that if an element is
in the RHS, then it is not deleted, and that if the element is in the LHS, it is not created.

Proposition 2. Let p : L → R be a production, the following identities hold for both
edges and nodes: r e = r, e r = e, R e = R, L r = L.

Finally we are ready to characterize a production p : L→ R using deletion and addition
matrices, starting from its LHS: R = r∨ eL (for both edges and nodes). It could be the
case that the production erases a node but leaves some incident edges (dangling edges).
Some conditions have to be imposed on matrices and vectors of nodes and edges to
keep compatibility when a rule is applied (i.e., to avoid dangling edges):

1. An incoming edge cannot be added to a node that is going to be deleted or, using the

norm,
∥∥rE $ eN

∥∥
1 = 0. Similarly, for outgoing edges:

∥∥∥(rE
)t $ eN

∥∥∥
1

= 0. Note

how, vector eN has a 1 in position i, if the node has to be deleted. Row i in matrix
rE depicts the outgoing edges for node i, and has a 1 in column j if edge (i, j) has
to be added. Therefore vector rE $ eN contains elements (∨n

j=1r
E
ij ∧ eN

j )i∈{1,...,n}
with a 1 in position i, if there is some newly added edge from node i to some node
j which is deleted by the production. The transposition of rE checks for new edges
starting from deleted nodes.

2. Deleting a node with some incoming edge is forbidden, if the edge is not deleted as

well:
∥∥∥eE LE $ eN

∥∥∥
1

= 0. For outgoing edges:

∥∥∥∥(eE LE
)t

$ eN

∥∥∥∥
1

= 0. Matrix

eE LE contains the edges in the rule’s LHS that are not deleted, therefore eE LE $
eN results in a vector with a one in position i if some node j is deleted and has
an incident edge coming from i (and the edge is not deleted). The transposition of
eE LE checks for outgoing edges from deleted nodes.

3 This contrasts with the DPO approach, in which edges and nodes can be rewritten in a single
rule. This can be useful to forbid the rule application if the dangling condition is violated.
Section 3 explains how to deal with dangling edges in this approach.
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3. It is not possible to add an incoming edge to a node which is neither present in the

LHS nor added by the production:
∥∥∥rE $

(
rN LN

)∥∥∥
1

= 0. Similarly, for edges

starting in a given node:
∥∥∥(rE

)t $
(
rN LN

)∥∥∥
1

= 0. In this case, rN LN is a vector

containing a 1 in position i if node i does not belong to the LHS and is not going to
be added.

4. It is not possible for an edge to reach a node which does not belong to the LHS

and which is not going to be added:
∥∥∥(eELE

)
$

(
rN LN

)∥∥∥
1

= 0. For outgoing

edges:

∥∥∥∥(eELE
)t

$
(
rN LN

)∥∥∥∥
1

= 0. In this case, eELE is a matrix with a 1 in

the edges that are in the LHS and not deleted.

Thus we arrive naturally at the next proposition:

Proposition 3. Let p : L → R be a production, if previous conditions in items 1-4 are

fulfilled then RE = rE ∨
(
eE LE

)
and RN = rN ∨

(
eN LN

)
are compatible.

which is easily proved, as we have to check that
∥∥(M ∨M t)$N

∥∥
1 = 0, with M =

rE ∨ eELE and N = rN
(
eN ∨ LN

)
. Therefore,

(
M ∨M t

)$N =
[(

rE ∨ eELE
)
∨
(
rE ∨ eELE

)t
]
$

[
rN

(
eN ∨ LN

)]
=

=
[
rE ∨ eELE ∨ (

rE
)t ∨

(
eELE

)t
]
$

(
eN ∨ rN LN

)
(1)

Conditions in items 1-4 are taken from this identity.
For the rule in Fig. 2, it is easy to check that (RE , RN ) are compatible, as vector N

has all elements equal to zero (because eN and LN are zero).
Up to now we have assumed that when operating with matrices and vectors these had

the same size, but in general matrices and vectors represent graphs with different sets of
nodes or edges, although probably with some common subsets. Moreover, the elements
in both matrices can appear in a different order. An operation called completion modifies
matrices (and vectors) to allow some specified operation. Suppose we want to operate
with two matrices representing the edges of two graphs (a similar operation can be
defined for vectors of nodes). In this way, first a common subset C of elements are
identified, and it is moved up in the matrices, maintaining the order. Then, the common
subset is sorted in the second matrix to obtain the same order as in the first one. Then,
the elements present in the first matrix but not in the second one are added to the second
one (i.e. rows and columns of zeros), sorted like in the first one. Similarly, the elements
present in the second matrix but not in the first one are added to the first one (i.e. rows
and columns of zeros), sorted like in the second one.

For example, if we have to operate the graph in Fig. 1 with the LHS of rule in Fig. 2,
then the matrix of edges and the vector of nodes of the rule have to be enlarged. If we
identify nodes and edges with the same label, we get the following result:
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L′E
CC =

⎡⎢⎢⎣
0 0 0 0 1
1 0 0 0 2
1 0 0 0 3
0 0 0 0 4

⎤⎥⎥⎦ ; L′N
CC =

⎡⎢⎢⎣
1 1
1 2
1 3
0 4

⎤⎥⎥⎦
where an additional column and row has been added to the edge matrix and an ad-
ditional element has been added to the nodes vector. In this case, the matrices for
the graph in Fig. 1 remain the same. Note how, if we had assumed other identifica-
tion of nodes in the different graphs, the completion procedure would have produced
a different result. Once the matrices and vectors of the two graphs are completed,
we can define any graph transformation (i.e. any morphism on simple digraphs) as
two boolean functions (for the edges matrix and for the nodes vector, which we have
modelled with e and r). These functions may change arbitrarily 0’s and 1’s in the ma-
trix of edges and vector of nodes (and thus we have to check compatibilty after their
application).

2.2 Concatenation, Permutations and Minimal Initial Digraph

It is possible to define sequences of rules and the order in which they are to be applied.

Definition 2 (Concatenation). Given a set of productions {p1, . . . , pn}, the notation
sn = pn; pn−1; . . . ; p1 defines a sequence of productions establishing an order in their
application, starting with p1 and ending with pn.

A concatenation is said to be coherent if actions carried out by one production do not
prevent4 the application of those coming afterwards. Fig. 3 shows more rules for the ex-
ample. Messages are depicted as self-loops, which can be sent through channels. For ex-
ample sequence remove channel; send;message ready; create channel is coher-
ent, as link (2, 3) is created by the first rule (create channel), used by rule send and
then deleted by the last rule. We assume an identification of nodes in the different rules
having the same numbers, but other combinations could be studied as well.5

The conditions for coherence of a concatenation of two rules s2 = p2; p1 are:

1. The first production – p1 – does not delete any edge used by p2: eE
1 L

E
2 = 0.

2. p2 does not add any edge used, but not deleted, by p1: rE
2 L

E
1 e

E
1 = 0.

3. No common edges are added by both productions: rE
1 r

E
2 = 0.

The first condition is needed because if p1 deletes one edge used by p2, then p2
is not applicable. The last two conditions are needed in order to obtain a simple di-
graph (with at most one edge in each direction between two nodes). Applying the first
two identities in proposition 2, the three previous equalities can be transformed into
RE

1 e
E
2 r

E
2 ∨ LE

2 e
E
1 rE

1 = 0 and similar for nodes.

4 Potentially, because no actual application of productions to a host graph is considered.
5 Hence, completion is not unique – there may exist several ways to identify nodes across pro-

ductions – depending on how rules are defined or the operation to be performed.
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Fig. 3. Additional Rules for the Client-Server Example

Our objective is to obtain a closed formula to represent these conditions for the case
with n productions. For this purpose, we introduce a graphical notation for boolean
equations: a single arrow means ∧, while a fork (more than one arrow starting in the
same node) stands for ∨. These diagrams are useful to understand how the formulas
change depending on the number of productions. As an example, the representation of
coherence equations for two productions (for edges) is shown in Fig. 4(left). The figure
also shows the equations for three and five productions.

Fig. 4. Graph for Sequence of Length 2 (left), 3(middle) and 5(right)

Analysing the graphs for sequences of increasing size, we arrive at the following
theorem concerning sequences of arbitrary size. The proof is not included here, it can
be found at [10].

Theorem 1 (Sequence Coherence). The concatenation sn = pn; . . . ; p1 is coherent if

n∨
i=1

(
Ri %n

i+1 (ex ry) ∨ Li &i−1
1 (ey rx)

)
= 0 (2)

where

&t1
t0 (F (x, y)) =

t1∨
y=t0

(
t1∧

x=y

(F (x, y))

)
;%t1

t0 (G(x, y)) =
t1∨

y=t0

(
y∧

x=t0

(G(x, y))

)

E.g., sequence s1 = remove channel; send;message ready; create channel is co-
herent but send;message ready; remove channel is not, because the first production
(remove channel) deletes edge (2, 3) needed by send one step afterwards. The result-
ing matrix of the coherence formula has a one in such position and zeros elsewhere. In
this way, the resulting matrix of the formula is useful to indicate where the potential
coherence problems are. On the other hand, sequence s2 = remove channel; send;
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create channel is coherent, but it is worth stressing that edge (2, 2) needs to be sup-
plied by the host graph, because rule send needs a self loop representing a message and
we know that such element is not added by any rule before send. Altogether, coherence
allows the grammar designer to check dependencies between rules, and to realize pos-
sible conflicts, some of which can be solved if the initial graph provides enough edges
and nodes. This is related to the notion of minimal initial digraph, which is a graph
containing the necessary nodes and edges for a rule (or sequence) to be applicable.

Theorem 2 (Minimal Initial Digraph). Given a coherent concatenation of produc-
tions sn = pn; . . . ; p1, its minimal initial digraph is defined by: Mn = %n

1 (rxLy).

One graph is easily obtained which contains enough nodes and edges to execute a co-
herent sequence:

∨n
i=1 Li. However, this graph can be made smaller, so for example,

for production p1 we only include in Mn elements which are in the LHS, but not added.
In a similar way, for p2 we include elements in its LHS if they are not added by p2
nor p1. Therefore, we have Mn = (r1L1) ∨ (r1L2)(r2L2) ∨ · · · ∨ (r1Ln) · · · (rnLn),
which is the expanded form of%n

1 (rxLy). Note how, we assume a given identification
of nodes and edges in the different productions of the sequence, that is, a certain way
of completing each matrix. The calculation of the minimal initial digaph for sequence
s2 = remove channel; send; create channel is shown in Fig.5 as an example.

3: C

11

1: S

2: C 3: C
r  L

31
r  L

33
r  L

32r  L
21

r  L
22

1: S

2: C 3: C

1: S

2: C 3: C

1: S

2: C 3: C
=

1: S

2: C 3: C

=
1: S

2: C
r  L

Fig. 5. Minimal Digraph for Sequence s2

The image of a concatenation sn = pn; . . . ; p1 (please, refer to [10]) almost can be
seen as a production sn = (rs, es), where rs = &n

1 (ex ry) and es =
∨n

i=1 ei, i.e.,

sn (Mn) =
n∧

i=1

(eiMn) ∨&n
1 (ex ry) = rs ∨ es Mn (3)

However, in this case, it is not true that rs es = rs, which in particular implies that it
is important to delete elements (apply es) before addition takes place (rs application).

The following result states conditions to keep coherence in case of permuting one
production inside a sequence [10].

Theorem 3 (Production Permutations). Consider coherent productions tn = pα; pn;
pn−1; . . . ; p1 and sn = pn; pn−1; . . . ; p1; pβ and permutations φ and δ.

1. φ (tn) is coherent if: eE
α %n

1

(
rE
x LE

y

)
∨RE

α %n
1

(
eE

x rE
y

)
= 0.

2. δ (sn) is coherent if: LE
β &n

1

(
rE
x eE

y

)
∨ rE

β &n
1

(
eE

x RE
y

)
= 0.
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where φ advances the last production to the front, that is, moves the left-most rule to the
right n− 1 positions in a sequence of n rules. Thus, φ has associated permutation φ =
[ 1 n n−1 . . .3 2 ]. In a similar way, δ delays the first productionn−1 positions in
a sequence of n rules, moving it to the last position. Thus, δ = [ 1 2 . . . n−1 n ]. For
sequence t2 = send; create channel; remove channel, φ(t2) = create channel;
remove channel; send is coherent.

G-congruence guarantees that two coherent and compatible concatenations have the
same output starting with G as minimal initial digraph. The conditions to be fulfilled are
known as Congruence Conditions (CC). A coherent and compatible concatenation sn

and a coherent and compatible permutation of it, σ (sn), which besides have the same
minimal initial digraph G (G-congruent) are potentially sequential independent. For
advancement and delaying of productions, the congruence conditions are (see [10]):

CC (φ, sn) = Ln∇n−1
1 (ex ry) ∨ rn∇n−1

1 (rx Ly) = 0 (4)

CC (δ, sn) = L1∇n
2 (ex ry) ∨ r1∇n

2 (rx Ly) = 0 (5)

For sequence s = send; create channel; remove channel, CC(φ, s) = 0, there-
fore we obtain the same result by advancing send twice. As s and φ(s) have the same
initial digraph (the one in Fig. 5, plus edge (2, 3)), they are potential sequential in-
dependent. Symbol ⊥ denotes potential sequence independence, thus we can write
send⊥(create channel; remove channel) in previous example. Note that it is pos-
sible to check sequential independence between a rule and a sequence, in contrast with
results in the algebraic-categorical approach.

3 Match, Extended Match and Production Transformation

Matching is the operation of identifying the LHS of a rule inside a host graph. This
identification is not necessarily unique, thus becoming a source of non determinism.

Definition 3 (Match). Given a production p : L → R and a simple digraph G, any
m : L→ G total injective morphism is known as a match (for p in G).

Recalling the notion of completion, a match can be interpreted as one of the possible
ways to complete L in G. We do not explicitly care about types or labels in our matrices
(“S” and “C” in the examples), but this can be thought as restrictions for the completion
procedure, which cannot identify elements with different types.

Fig.6(a) displays a production p and a match m for p in G. It is possible to close the
diagram, making it commutative (m∗ ◦ p = p∗ ◦m), using the pushout construction [5]
on category Pfn(Graph) of simple digraphs and partial functions (see [9]). This cate-
gorical construction for relational graph rewiting is carried out in [9] in their Theorem
3.2 and Corollary 3.3. Proposition 3.5 in [9] gives a sufficient condition to decide if a
given rewriting square like the one in Fig.6(a) can be closed.

Definition 4 (Direct Derivation). Given p : L → R and m : L → G as in Fig.6(a),
d = (p,m) is called a direct derivation with result H = p∗ (G).
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Fig. 6. (a) Production plus Match. (b) Neighbourhood. (c) Extended Match and Production.

If a concatenation sn = pn; . . . ; p1 is considered together with the set of matchings
mn = {m1, . . . ,mn}, then dn = (sn,mn) is a derivation.

When applying a rule to a host graph, the main problem to concentrate on is that
of so-called dangling edges, which is differently addressed in SPO and DPO. In DPO,
if an edge comes to be dangling then the rule is not applicable (for that match), while
SPO allows the production to be applied, deleting any dangling edge. In this paper we
propose an SPO-like behaviour. Fig.6(b) shows our strategy to handle dangling edges:

1. Morphism m shall identify rule’s left hand side in the host graph.
2. A neighbourhood of m(L) ⊆ G covering all relevant extra elements is selected

(performed by mε
6), taking into account all dangling edges not considered by

match m with their corresponding source and target nodes.
3. Finally, p is enlarged (through operator Tε, see definition below) erasing any other-

wise dangling edge.

Definition 5 (Extended Match). Given a production p : L → R, a host graph G and
a match m : L→ G, the extended match m̂ : L×G→ G is a morphism whose image
is m (L)

⋃
ε, where ε is the set of dangling edges and their source and target nodes.

Coproduct (see Fig.6(c)) is used for coupling L and G, being the first embedded into

the second by morphism m. We use the notation L
def
= mG (L)

def
= (mε ◦m) (L) i.e.,

extended digraphs are underlined and defined by composing m and mε.

Example. �Consider the digraphL, the host graphG and the morphism match depicted
on the left side of Fig. 7. On the top right side in the same figure, m(L) is drawn, and
mG (L) on the bottom right side. Nodes 2 and 3 and edges (2, 1), (2, 3) and (2, 2) have
been added to mG (L). The edges would become dangling in the image “graph” of G
by p, p (G). Note how this composition is possible, as m and mε are functions between
boolean matrices which have been completed. 

Once we are able to complete the rule’s LHS, we have to do the same for the rest of
the rule. To this end we define an operator Tε : G → G′, where G is the original
grammar and G′ is the grammar transformed once Tε has modified the production. The

6 Recall that morphisms are functions on boolean matrices and vectors.
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Fig. 7. Matching and Extended Match

notation that we use from now on is borrowed from functional analysis [1]. Bringing this
notation to graph grammar rules, a rule is written as R = 〈L, p〉 (separating the static
and dynamic parts of the production) while the grammar rule transformation including
matchings is: R = 〈mG (L) , Tεp〉.
Proposition 4. With notation as above, production p can be extended to consider any
dangling edge, R = 〈mG (L) , Tεp〉.
Proof
�What we do is to split the identity operator in such a way that any problematic element
is taken into account (erased) by the production. In some sense, we first add elements
to p’s LHS and afterwards enlarge p to erase them. Otherwise stated, m∗

G = T−1
ε and

T ∗
ε = m−1

G , so in fact we haveR = 〈L, p〉 =
〈
L,

(
T−1

ε ◦ Tε

)
p
〉

= 〈mG (L) , Tε (p)〉 =
R. The equality R = R is valid strictly for edges. 


The effect of considering a match can be interpreted as a new production concatenated

to the original production. Let pε
def
= T ∗

ε ,

R = 〈mG (L) , Tε (p)〉 = 〈T ∗
ε (mG (L)) , (p)〉 = (6)

= p (T ∗
ε (mG (L))) = p ; pε ; mG (L) = p ; pε (L)

Considering the match can be interpreted as a temporary modification of the grammar,
so it can be said that the grammar modifies the host graph and – temporarily – the host
graph interacts with the grammar.

If we think of mG and T ∗
ε as productions respectively applied to L and mG (L), it is

necessary to specify their erasing and addition matrices. To this end, we introduce matrix
ε, with elements in row i and column i equal to one if node i is to be erased by p, and
zero otherwise (see definition 5). This matrix considers any potential dangling edge.

For mG we have that eN = eE = 0, and r = LL (for both nodes and edges),
as the production has to add the elements in L that are not present in L. Let pε =(
eE

Tε
, rE

Tε
; eN

Tε
, rN

Tε

)
, then eN

Tε
= rE

Tε
= rN

Tε
= 0 and eE

Tε
= ε ∧ LE .

Example. �Consider rules depicted in Fig. 8, in which server down is applied to
model a server failure. We have

eE = rE = LE =
[
0 1

]
eN =

[
1 1

]
; rN =

[
0 1

]
; LN =

[
1 1

]
; RE = RN = ∅
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Fig. 8. Full Production and Application

Once mG and operator Tε have been applied, the resulting matrices are

rE =

⎡⎣0 0 0 1
1 0 0 2
1 0 0 3

⎤⎦ ; LE =

⎡⎣0 0 0 1
1 0 0 2
1 0 0 3

⎤⎦ ; RE =
[

0 0 2
0 0 3

]
; eE

Tε
=

⎡⎣0 0 0 1
1 0 0 2
1 0 0 3

⎤⎦
Matrix rE , besides edges added by the production, specifies those to be added by mG to
the LHS in order to consider any potential dangling edge (in this case (2, 1) and (3, 1)).
As neither mG nor production server down delete any element, eE = 0. Finally, pε

removes all potential dangling edges (check out matrix eE
Tε

) but it does not add any, so
rE
Tε

= 0. Vectors for nodes have been omitted. 


Let T ∗
ε =

(
T ∗

ε
N , T ∗

ε
E
)

be the adjoint operator of Tε. Define eE
ε and rE

ε respectively

as the erasing and addition matrices of Tε (p). It is clear that rE
ε = rE = rE and

eE
ε = eE ∨ εLE , so

RE =
〈
LE , Tε (p)

〉
= rE

ε ∨ eE
ε LE = rE ∨ (

eE ∨ εLE
)
LE =

= rE ∨
(
ε ∨ LE

)
eELE = rE ∨ eE ε LE

The previous identities show that RE =
〈
LE , TE

ε

(
pE

)〉
=

〈
εLE , pE

〉
, which proves

that T ∗
ε =

(
T ∗

ε
N , T ∗

ε
E
)

= (id, ε).
Summarizing, when a given matchm is considered for a production p, the production

itself is first modified in order to consider all potential dangling edges. m is automati-
cally transformed into a match which is free from any dangling element and, in a second
step, a pre-production pε is appended to form the concatenation p̂∗ = p∗ ; p∗ε

4 Revision and Extension of Basic Concepts

In this section we brush over all concepts and theorems introduced in section 2, com-
pleting them by considering matchings.

Let sn = pn; . . . ; p1 be a concatenation. As there is a match for every production
in the sequence, it is eventually transformed into s∗n = pn ; pε,n; . . . ; p1; pε,1. Fig.9
displays the corresponding derivation. For compatibility, the main difference when
considering matchings is that the sequence is increased in the number of productions so
it shall be necessary to check more conditions.
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Fig. 9. Productions and ε-productions in a Concatenation

4.1 Initial Digraph Set

Concerning the minimal initial digraph, one may have different ways of completing the
rule matrices, depending on the matches. Therefore, we no longer have a unique initial
digraph, but a set.

Definition 6 (Initial Digraph Set). Given sn a sequence, its associated initial digraph
set M (sn) is the set of simple digraphs Mi such that

1. Mi has enough nodes and edges for every production of the concatenation to be
applied in the specified order, and

2. Mi has no proper subgraph with previous property

∀Mi ∈ M (sn). Every element Mi ∈ M (sn) is said to be an initial digraph for sn.

It is easy to see that M (sn) �= ∅, ∀sn finite sequence of productions. The initial digraph
set contains all graphs that can potentially be identified by matches in concrete host
graphs. In section 2.1, coherence was used in an absolute way but now, due to matching,
coherence is a property depending on the given initial digraph. Hence, we now say that
sn is coherent with respect to initial digraph Mi.

For the initial digraph set, we can define the maximal initial digraph as the element
Mn ∈ M (sn) which considers all nodes in pi to be different. This element is unique
up to isomorphism, and corresponds to considering the parallel application of every
production in the sequence. In a similar way, Mi ∈ M (sn) in which all possible iden-
tifications are performed are known as minimal initial digraphs, which in general are
not unique. As an example, left of Fig. 10 shows the minimal digraph set for sequence
s2 = remove channel; remove channel, which is not coherent, as the link between
two clients is deleted twice. In this way, the initial digraphs should provide two links.
It is possible to provide some structure T (sn) to set M (sn) (see the right of Fig. 10).
Every node in T represents an element of M, and a directed edge from one node to
another stands for one operation of identification between corresponding nodes in LHS
and RHS of productions of the sequence sn. Node M7 is the maximal initial digraph, as
it only has outgoing edges. The structure T is known as graph-structured stack, in our
case with single root node.

4.2 Coherence

Coherence formulas do not change, except that now there are conditions for all ε-
productions. When considering the match, coherence is similar to conflict detection in
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Fig. 10. Initial Digraph Set for s2 = remove channel; remove channel

critical pairs [5] [6], where an important issue is efficiency [8]. We believe our approach
is a contribution in improving the efficiency in finding this kind of conflicts.

The functional notation introduced so far can be used to re-enunciate Theorem 1
for coherence, deriving conditions which resemble those of perpendicular vectors and
kernel of a function. Let qLi = &n−1

1 (rx ey) and qRi = %n
i+1 (ex ry), then sn =

pn; . . . ; p1 is coherent if 〈Li, qLi〉 = 〈Ri, qRi〉 = 0.
In addition, when the host graph is not considered, if nodes are identified across

rules, it can be the case that some dangling edge appears in the concatenation. For
example, given p2; p1, suppose that rule p1 uses but does not delete edge (4, 1), that
rule p2 specifies the deletion of node 1 and that we have identified both nodes 1. It
is mandatory to add one ε-production pε,2 to the grammar, which conceptually is of
a different nature than those previously discussed. The latter dangling edges appear in
the context where the rule is applied, but not in other rules. We have an unavoidable
problem of coherence between p1 and pε,2 if we wanted to advance the application of
pε,2 to p1. Hence, we split the set of edges deleted by ε-productions into two disjoint
classes:

– External. Any edge not appearing explicitly in the grammar rules, i.e., edges of the
host graph “in the surroundings” of the actual initial digraph. Examples are edges
(2, 1) and (3, 1) in Fig.8.

– Internal. Any edge used or appended by a previous production in the concatena-
tion. One example is the previously mentioned edge (4, 1).

ε-productions can be classified accordingly in internal ε-productions if any of its
edges is internal and external ε-production otherwise. External ε-productions cannot
be considered during rule specification which, in turn, may spoil coherence, compati-
bility, etc. One way to handle this problem is to check the conditions under which all
ε-productions can be advanced to the front of the sequence. Given a host graph G in
which sn – coherent and compatible – is to be applied, and assuming a match which
identifies sn’s actual initial digraph (Mn) in G, we check whether for some m̂ and T̂ε,
which respectively represent all changes to be done to Mn and all modifications to sn,

it is correct to write Hn =
〈
m̂ (Mn) , T̂ε (sn)

〉
, where Hn would be the piece of the

final state graph H corresponding to the image of Mn.

Example. �Let s2 = p2; p1 be a coherent and compatible concatenation. Using oper-
ators we can write H = 〈mG,2 (〈mG,1 (M2) , Tε,1 (p1)〉) , Tε,2 (p2)〉, which is equiva-
lent to H = p2; pε,2; p1; pε,1

(
M2

)
, with actual initial digraph twice modified M2 =

mG,2 (mG,1 (M2)) = (mG,2 ◦mG,1) (M2). 




136 P.P. Pérez Velasco and J. de Lara

Definition 7 (Exact Derivation). Let dn = (sn,mn) be a derivation with actual initial
digraph Mn, concatenation sn = pn; . . . ; p1, matches mn = {mG,1, . . . ,mG,n} and

ε-productions {pε,1, . . . , pε,n}. It is an exact derivation if there exist m̂ and T̂ε such

that Hn = dn (Mn) =
〈
m̂ (Mn) , T̂ε (sn)

〉
.

Previous equation might be satisfied if once all matches are calculated, the following
identity holds: pn; pε,n; . . . ; p1; pε,1 = pn; . . . ; p1; pε,n; . . . ; pε,1. Equation (3) allows
us to consider a concatenation almost as a production, justifying operators T̂ε and m̂ and
our abuse of the notation (recall that brakets apply to productions and not to sequences).

Proposition 5. With notation as before, if pε,j⊥ (pj−1; . . . ; p1), ∀j, then dn is exact.

Proof
�Operator T̂ε modifies the sequence adding a unique ε-production, the composition7

of all ε-productions pε,i. To see this, if one edge is to dangle, it should be eliminated by
the corresponding ε-production, so no other ε-production deletes it unless it is added by
a subsequent production. But by hypothesis there is sequential independence of every
pε,j with respect to all preceeding productions and hence pε,j does not delete any edge
used by pj−1, . . . , p1. In particular no edge added by any of these productions is erased.

In definition 7, m̂ is the extension of the match m which identifies the actual initial
digraph in the host graph, so it adds to m (Mn) all nodes and edges to distance one to
nodes that are going to be erased. A symmetrical reasoning to that of T̂ε shows that m̂
is the composition of all mG,i. 


With definition 7 and proposition 5 it is feasible to get a concatenation where all ε-
productions are applied first, and all grammar rules afterwards, recovering the original
concatenation. Despite some obvious advantages, all dangling edges are deleted at the
beginning, which may be counterintuitive or even undesired. For example, if the dele-
tion of a particular edge is used for synchronization purposes. The following corollary
states that exactness can only be ruined by internal ε-productions. Let sn be a sequence
to be applied to a host graph G and Mk ∈M (sn).

Corollary 1. With notation as above, assume there exists at least one match in G for
Mk that does not add any internal ε-production. Then, dn is exact.

Proof (sketch)
�All potential dangling elements are edges surrounding the actual initial digraph. It
is thus possible to adapt the part of the host graph modified by the sequence at the
beginning, so applying proposition 5 we get exacteness. 


5 Conclusions and Future Work

In this paper we have presented a new approach to simple digraph transformation based
on an algebra of boolean matrices. We have shown some results (coherence, mini-
mal initial digraphs, permutation, G-congruence) that can be calculated on the graph

7 Given a sequence of productions, their composition is one production which performs the same
operations, see [10] for the formal definition.
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transformation system, independent of the host graph. We have introduced the match,
and how to handle dangling edges by generating ε-productions which are applied pre-
vious to the original rule in order to delete dangling edges.

We believe that the main difference of our approach with respect to others is that
we use boolean operators to represent graph manipulations. Other approaches such as
DPO and SPO use a categorical representation of the operations, which, on the one hand
makes the approach more general, but on the other, makes bigger the gap between spec-
ification and implementation on tools. In addition, we believe that concepts like initial
digraph, coherence, arbitrary sequences of finite length are easier to express and study
in our framework than using category theory. Concerning additional related work, the
relational approach of [9] uses also exclusively a categorical approach for operations.
Other approaches such as logic-based [12], algebraic-logic [2], relation-algebraic [7]
are more distant from ours.

With respect to future work, we are working on application conditions, studying the
structure of M(sn), bringing to our framework techinques from Petri nets, considering
more general types of graphs and implementing the current concepts in a tool.
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6. Heckel, R., Küster, J. M., Taentzer, G. 2002. Confluence of Typed Attributed Graph Trans-
formation Systems. Proc. ICGT’2002. LNCS 2505, pp.: 161-176. Springer.

7. Kahl, W. 2002. A Relational Algebraic Approach to Graph Structure Transformation
Tech.Rep. 2002-03. Universität der Bundeswehr München.

8. Lambers, L., Ehrig, H., Orejas, F. 2006. Efficient Conflict Detection in Graph Transformation
Systems by Essential Critical Pairs. Proc. GT-VMT’06, to appear in ENTCS (Elsevier).

9. Mizoguchi, Y., Kuwahara, Y. 1995. Relational Graph Rewritings. Theoretical Computer Sci-
ence, Vol 141, pp. 311-328.
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Abstract. Discontinuous constituents and free word order pose con-
stant problems in natural language parsing. String generating hyper-
graph grammars have been proven useful for handling discontinuous
constituents. In this paper we describe a new notation for hypergraph
productions that allows on-the-fly interconnection of graph parts with
regard to user-defined constraints. These constraints handle the order of
nodes within the string hypergraph. The HyperEarley parser for string
generating hypergraph grammars [1] is adapted to the new formalism.
A German example is used for the explanation of the new notation and
algorithms.

1 Free Word Order in Natural Languages

A prominent difference between natural languages lies the order of words or
constituents (groups of words that belong together on a syntactic level) in the
various types of sentences. E.g. declarative sentences in English have a fixed
word order with the subject first, followed by the verb, the objects and finally
prepositional phrases. There are also languages with nearly no order restrictions
at all: in Hungarian the excessive use of word endings ensures that sentences
can be understood despite the completely free word order. In German, there is
a mixture. Declarative sentences have the finite verb in the second position and
the infinite verb in the last but one position. Other sentence parts, especially
between the finite and infinite part of the verb, can take variable positions. This
is a combination of fixed and free word order.

A German example sentence is given in (1). The first line is in German, the
second a word-by-word translation into English and the third an idiomatically
correct translation:

(1)
was aby

Nachricht wurde durch einen Boten von Marathon nach Athen gebracht der dann starb

news messenger from Marathon to Athens brought who then diedThe

Die

The news was brought from Marathon to Athens by a messenger, who then died.

� This research was done while Ingrid Fischer was employed at the Chair of Computer
Science 2, University of Erlangen-Nuremberg.
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Note that the finite verb “wurde” (“was”) is in the second position and the
infinite verb “gebracht” (“brought”) in the last but one position. In between
these positions, the source “von Marathon” (“from Marathon”), the target “nach
Athen” (“to Athens”) and the agent “durch einen Boten” (“by a messenger”) of
the action are listed. Their positions are not fixed as shown in (2). All of these
variations have the same meaning.

(2) Boten

Marathon

Marathon

Marathon

nach

to

Athen

Athens

by

durch einen

a

brought

gebracht

gebracht

brought

gebracht

brought

Athen

Athens

nach

to

nach

to

Marathon

Marathon

von

from

by

durchNachricht

news

Nachricht

news

Nachricht

news

Die

The

Die

The

Die

The

wurde 

was

wurde 

was

wurde 

was

der

who

der

who

der

who

von

from

von

from

by

durch

Athen

Athens

messenger

Boten

died

starb

died

starb

died

starb

dann

then

dann

then

dann

thena

einen

Boten

messenger

einen

a

messenger

Marathon

Several other combinations of agent, source and target are invalid. The source
“von Marathon” (“from Marathon”) must appear before the target “nach Athen”
(“to Athens”). Otherwise, the meaning of the sentence changes: the messenger
seems to be born in Marathon and it is not clear that the message’s transport
starts there (3).

(3)
brought

gebrachtAthen

Athens

Nachricht

news

wurde 

was

nach

to

Boten

messenger Marathon

Marathon

died.

von

from

einen

a

durch

by

Die

The

der

who

dann starb

then

In addition to word order, the running example (1) demonstrates another prob-
lem of German syntax: “Bote” (“messenger”) is described more closely through
the relative clause “der dann starb” (“who then died”). This relative clause does
not follow the noun “Bote” (“messenger”) directly, but is moved to the last posi-
tion of the sentence (after the infinite verb). Together, the noun and the relative
clause form a discontinuous constituent. Discontinuous constituents are sepa-
rated by one or more other constituents but still belong together on a semantic
or syntactic level. This connection between the two parts cannot be expressed
with general context–free Chomsky grammars [2].

The desired phrase structure tree for example 1 is shown in Fig. 1.1 To shorten
the representation, triangles are used to indicate that several (terminal) words
are generated from one nonterminal symbol. The most important part of the
tree is the derivation of the verb phrase (VP) into an auxiliary verb (Aux), the
prepositional phrases denoting the agent (PP), the source (PPS) and the target
(PPT) of the action and the infinite verb part, the second participle (Part2). The
prepositional phrase (PP) for the agent contains the discontinuous constituent
and is transformed into a preposition (Prep), a noun phrase (NP) and the rela-
tive clause (RelCl) in the last position of the example sentence. The root of the
tree S starts a sentence that is split into a noun phrase (NP) and a verb phrase
(VP).

1 It is possible to construct a weakly equivalent context–free Chomsky grammar to
parse such a sentence, using some workaround for the discontinuous constituent like
attaching one of its parts in another production than the other.
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Prep

PP PPSAux Part2

S

NP VP

RelCl

Die von Marathon Athen gebracht dernach einem Boten Nachricht wurde durch dann starb

NP

PPT

Fig. 1. The phrase structure tree for “Die Nachricht wurde durch einen Boten von
Marathon nach Athen gebracht der dann starb.“ (“The news was brought from
Marathon to Athens by a messenger who then died.”)

In [3] string generating hypergraph grammars were used to construct such
trees based on the the context–free substitution of hyperedges with hypergraphs.
To parse sentences with these grammars, an Earley based algorithm, called Hy-
perEarley, was presented in [4]. The Earley algorithm [5] is a well–known O(n3)
parsing algorithm for context–free grammars that is particularly suited for nat-
ural language processing.

Free word order is possible in example (1) between the three prepositional
phrases denoting agent, source and target as shown in example 2. These phrases
are shaded in Fig. 1. Every variation between the order of PP, PPS, PPT is
possible as long as the source PPS is mentioned before the target PPT.

In this paper, string generating hypergraph grammars and their HyperEarley
parser are extended to allow on-the-fly interconnection of graph parts with con-
straints for free word order and word order variations. In the next section a short
introduction into string generating hypergraph grammars is given. Based on the
example in (1), word order constraints and their notation within the grammar
are introduced in Section 3. The extension of the HyperEarley algorithm is de-
scribed in Section 4. The paper ends with a conclusion and an outlook.

2 String Generating Hypergraph Grammars

Hyperedge replacement grammars have been studied extensively in the last
decades. Introductions and applications can be found in [6,7]. A subset of hy-
pergraph grammars, context–free string generating hypergraph grammars, are
described in detail in [6,8,9]. The definitions used in this paper are briefly sum-
marized:

A labeled hypergraph (E, V, s, t, l, b, f) consists of finite sets of hyperedges
E and of nodes V , a source function s and a target function t : E → V ∗

which assign a sequence of source respectively target nodes to each hyperedge,
a labeling function l : E → Σ where Σ is a finite alphabet, and sequences of
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external source nodes b and external target nodes f . A hypergraph’s type is the
pair (|b|, |f |). A hyperedge’s type is likewise defined as (|s(e)|, |t(e)|) where e ∈ E.
A string (hyper-)graph consists solely of hyperedges of type (1, 1) connected via
nodes being source to one edge and target to one edge. Only the single external
source node and the single external target node re connected to one and not two
hyperedges. A string hypergraph represents a linear sequence 〈s1s2 . . . sn〉 ∈ Σn

of edge labels.
A context–free hyperedge replacement grammar G = (N,T, P, S) consists of

the finite sets T of terminal edge labels, N of non-terminal edge labels, P of
productions and a start graph S called the axiom. A context–free production
or rule p = (L,R), commonly written L → R, is a pair of hypergraphs with
left-hand-side (L) and right-hand-side graph (R). L is a singleton hypergraph,
i.e. a graph consisting of a single hyperedge e with external nodes b and f such
that s(e) = b and t(e) = f . The types of both L and R need to be the same. Each
production describes a replacement of a single hyperedge as described by L with
the graph R. R’s external nodes are merged with L’s nodes, respecting order, so
that are R is added disjointly (except for the external nodes) to the host graph
the production is applied to. A context–free hyperedge replacement grammar is
a string generating hypergraph grammar (SGHG) if the language gener-
ated by the grammar consists only of string hypergraphs. For natural language
processing, the hyperedges of a string hypergraph are labeled with the words of
the sentence they represent. Σ is the union of words (terminals T ) and names
of syntactic units (nonterminals N). A string graph’s hyperedge labels, read in
order from the external source to the external target node, form the underlying
sentence.

Please note that for the rest of this paper we assume that the string generat-
ing hypergraph grammars are reduced, cycle–free and ε–free [2]. If a hyperedge
replacement grammar generates a string language, the start graph must be of
type (1, 1). A prominent property of such SGHG is that each node is source for
at most one hyperedge and target for at most one hyperedge; otherwise no string
language will be generated [4].

3 Word Order Constraints in SGHGs

With the help of SGHG, phenomena of discontinuity in natural language can
be easily modeled by a context–free grammar. However, modeling the syntac-
tic structure of sentences in which some parts may be reordered freely becomes
a tedious task, since the number of productions representing reorderings of n
free parts grows with n!. Though the ID/LP approach [10] developed for alle-
viating this problem in classical (flat) context–free grammars cannot easily be
transferred to hypergraph based linguistic modeling, it has inspired a somewhat
similar notation. The main idea of ID/LP is to distinguish immediate dominance
(ID) constraints from linear precedence (LP) constraints. The left hand side of a
phrase structure rule (i.e. context–free Chomsky rule) dominates the symbols on
its right hand side. The order of the symbols of the right hand side is the linear
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Fig. 2. String generating hyperedge replacement rules with word order constraints for
example (1)

precedence of the rule. Traditional phrase structure rules incorporate immedi-
ate dominance and precedence into a single rule. In contrast ID/LP maintains
separate rule sets. In our approach, we also separate immediate dominance and
linear precedence, but only within one rule.

This method is described with the help of example (1). The main rules to
construct this sentence and its variations are shown in Fig. 2.2 The first rule
replaces S (sentence) with NP (noun phrase) and VP (verb phrase). This rule
is identical to the well known S → NP VP in phrase structure grammars. For
this rule, no hyperedges or word order constraints are necessary. Numerical node
labels indicate the sequence of source and target nodes of the left and right hand
side and map external nodes onto each other. External nodes are drawn larger
than internal nodes.

The second rule handles the discontinuous constituent “durch einen Boten ...
der dann starb“ (“by a messenger who then died”). The prepositional phrase
(PP) has type (2, 2). The rule’s right hand side contains the preposition (Prep)
and the noun phrase (NP) leading to “durch einen Boten“ (“by a messenger”).
These parts have to follow each other in this order.3 Since this is not the case
for the relative clause generated from the symbol RelCl, there is no connection
between the relative clause and the preposition with the noun phrase on the
right hand side. Between both parts other constituents can be inserted.

The third rule has to deal with varying word order. The verb phrase (VP) is
split into the auxiliary (Aux), the second participle (Part2) and three preposi-
tional phrases. The prepositional phrases denoting the grammatical source and
target of the verb (PPS, PPT) as well as Aux and Part2 have one source and
one target node. The prepositional phrase PP for the agent of the verb has two
source and two target nodes. This rule is not an SGHG rule if applied literally,
since there are internal nodes that are either not a source or not a target. These
nodes are drawn in white. Such an “illegal” rule represents a set of legal rules

2 In this paper, hyperedges are drawn as rectangles with their label inside. Nodes are
drawn as circles, the connection between nodes and edges is marked with arrows.

3 Of course in a real world grammar, a rule must be included that splits “einen Boten“
(“a messenger”) into a determiner and a noun. This rule is omitted here, since it
does not offer any new insights.
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with different orderings of their parts based on the white nodes. The additional
information “11 < 13” indicates a constraint on linear precedence of nodes in
the final string graph. To write down constraints on freely attachable nodes, the
node numbers are reused. For the sake of simplicity in this paper, all nodes have
unique numbers even between different rules.

The white nodes are called open nodes, the black nodes are closed nodes. It
is shown in [4] that in SGHG each internal node is source for one hyperedge and
target for one hyperedge and each external node is either source to one hyperedge
or target for one hyperedge. Otherwise no string language is generated. These
nodes are the so–called closed nodes in the remainder of the paper.

For open nodes on the right hand side of productions, these requirements
are not fulfilled immediately but inbound or outbound hyperedges are chosen
during the derivation. Open internal nodes are either source or target node to
exactly one hyperedge. This means that open internal nodes lack an outbound
or an inbound hyperedge. In Fig. 2 in the third rule 10, 11, 12, 13, 14, 15, 16, 18
are open internal nodes. 10, 12, 14, 18 have only an inbound hyperedge whereas
11, 13, 15, 16 have only outbound hyperedges. Open external nodes are not
connected to any hyperedge. External nodes define the type of a graph (the right
hand side and the left hand side of a rule must have the same type). There are
no open external nodes in Fig. 2. All external nodes are closed.

The idea of an open node is to have the possibility to choose between different
hyperedges of the right hand side that might connect to that node by another
open node. When combining open nodes during the derivation, the various string
graph fragments are combined to form a single string graph, i.e. no open nodes
are left and no cycles produced. Different word orders can thus be produced. For
our running example, this means that, if we regard the finally derived string as
a “path” through the intermediate graphs, that the right hand side of the VP–
production is entered through node 9 and the Aux hyperedge. The outbound
node 10 is an open node, so we can choose freely from any open node without
an inbound hyperedge as a possible successor. Here, we can continue with the
nodes 11, 13, 15, 16. This means PPS, PPT, PP or Part2 might follow Aux.

Not all possible word order variations are desirable. In our example, we must
make sure that the source of the action is mentioned before the target of the
action. This is achieved through constraints over node labels. The constraint
11 < 13 in Fig. 2 states that the open node 11 must be entered before the
open node 13. The constraint 12 < 13 would have had the same effect. In the
generative model, constraints are accumulated during derivation and restrain
free combination of string graphs at the end.

In general C is a set of order relations (constraints): Let O be the set
of all open nodes. An order relation between two open nodes o1 < o2 with
o1, o2 ∈ O means that o1 must be before o2 in the final string sequence. The
set of order relations applied to an open string graph can be used to create a
directed acyclic graph (DAG). The nodes of the DAG are the open nodes. If
the set of order relations does not fulfill the criteria of a DAG (e.g. there are
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Fig. 3. Missing rules for the analysis of example (1) leading to the derivation tree in
Fig. 1

cycles inside the graph), the constraints are not well defined. The DAG can be
checked for implicit cyclic dependencies that occur through statically connected
hyperedges by merging nodes that are statically connected in the open graph
[11].

A hypergraph grammar rule with restriction in word–order consists
of a triple (L,R,C), L and R being the actual rule consisting of a left hand side
and a right hand side that may have open nodes, and C being a set of constraints
which restrict reordering of the free parts.

For the real–world application of the rules in Fig. 2 to example (1), several
productions are missing. Fig. 3 contains the complementing rules to build the
example sentence (1). The combination of rules from Fig. 2 and Fig. 3 produces
the derivation tree given in Fig. 4 and together they form the example grammar.
All sentences given in example (2) are also produced by the grammar.4

This section concludes with the definition of the example graph grammar
(N,T, P, S) consisting of nonterminal symbols N , in our example all linguistic
acronyms, terminal symbols T , here the words of example (1), the productions
P given in Fig. 2 and Fig. 3 and the start symbol S, the whole sentence in our
application context.

4 Parsing SGHG with Restriction in Word Order

In [4] an Earley based parser [5] called HyperEarley for string generating
hypergraph grammars was introduced. Its main data structure is called a chart.
For the chart, positions at the beginning of the string, between the words and at
the end of the string of words to be parsed are numbered. This numbering scheme
is easily transferred onto string hypergraphs. The nodes in the hypergraph are
numbered from 0 to 8 as done at the bottom of Fig. 4.5 When parsing a sentence
s0s1 . . . sn−1 consisting of n words, the chart is a (n+ 1)× (n+ 1) table. In our
4 Please note that it is not possible to generate the following sentence without the

discontinuous constituent. Different rules are necessary.
wurde 

The

Nachricht

news was

von

from

Marathon

Marathon

nach

to

Athen

Athens by

durch einen

a

Boten

messanger

der

who

dann

then died.

starb

brought

gebrachtDie

5 Please do not confuse the numbers in Fig. 4 (the chart positions) with the numbers
in Fig. 2 (the node labels for constraints).
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Fig. 4. The derivation tree for the application of the rules given in Fig. 2 to example (1)

running example we have a 9× 9 table. In this table, sets of chart entries are
stored. A chart entry at position (i, j) contains information about the partial
derivation trees constructed for the substring si . . . sj−1.

Entries are never removed from the chart and are immutable after creation.
They consist of information about the currently used grammar production and
the progress made in completing the subtree given by this production. This is
visualized by so–called dotted rules, where the dot marks the parsing progress.
The dot is one special node on the right hand side of the rule that marks which
parts of the right hand side of the rule have already been found. It is also called
current node. If the dot is at an external target node of the rule’s right hand
side, the chart entry is inactive. Otherwise it is active, i.e. ready to accept a
terminal or an inactive chart entry. Note that (different to the classical Earley
algorithm) an inactive chart entry must not necessarily be finished; there might
still be hyperedges to be processed via another external source node.

The HyperEarley algorithm, like the Earley algorithm, consists of three steps
that alternate until the possibilities to apply one of them are exhausted. These
steps are shift handling terminal hyperedges, predict inserting new active chart
entries and complete combining active with inactive chart entries to generate
new entries. When applied to a chart entry e and a hyperedge h that is part of
the rule’s right hand side e, the method parts(e,h) returns either a previously
created chart entry describing a derivation of h or null.

The parsing of grammars with open nodes and word order constraints is in-
spired by [12,13,14] handling ID/LP grammars with Earley–like algorithms.6

The main idea is that possible connections of the right hand side’s parts are
delayed as long as possible. If the connection of an open node cannot be delayed
further, all possible connections are handled in parallel.

6 While it is possible to translate SGHG productions with open nodes and word order
constraints into productions without open nodes and constraints, this leads to an
explosion of rules within the grammar and of chart entries, slowing down the parsing
process considerably [12,13,14].
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Algorithm 4.1 predict
Parameters:
e: active chart entry
grammar: the parser’s current grammar
1: entry–list← {}
2: node–list ← list of nodes that can be connected to the current node or external

source node of start symbol’s rules.
3: for all n in node–list do
4: h = hyperedge following n, h labeled with nonterminal
5: if parts(e,h) is defined then
6: add continuation(parts(e,h), e) to entry–list
7: else
8: for all rules r where label(lefthandside(r))=label(h) do
9: entry–list ← generate–prediction(r,n)

10: end for
11: end if
12: end for
13: for all chart entries c in entry–list do
14: if c is not in chart entry (to(e), to(e)) then
15: add c to chart entry (to(e), to(e))
16: predict(c)
17: end if
18: end for

4.1 Insertion of New Chart Entries: predict

predict (see Alg. 4.1) is called with an active chart entry e and is applied
whenever new active entries are inserted into the chart.

A parse starts with the prediction of the start symbol S. In this case e is
null. node-list is filled with the external source nodes of the start symbol’s
rules as there is no current node yet (line 2). In line 4, h equals the S-hyperedge.
parts(e,h) is not defined, so for all productions with left hand side labeled S,
new predictions are generated in line 9. These predictions are inserted in the
chart as new entries in lines 13–15. to(e) is defined as 0 as e is null. Finally
in line 16 predict is called recursively with the newly generated chart entry.
Recursion stops when terminal rules are reached. In our case, rules for NP have
to be predicted.

This is an example for the second case for predict’s application. A new,
active chart entry is inserted if another active chart entry expects a nonterminal
symbol. In this case, the first inserted chart entry for S has its current node set
to node 1 so that chart entries for the hyperedge labeled with the non–terminal
NP must be predicted. In Fig. 3 two rules for NP are given. In line 2 node-list
is set to 24, 26. Two new entries are inserted into the chart starting at (0, 0) with
current nodes 24 and 26, see Fig 3.

The second case is especially interesting when free word order is possible
within a rule. In Fig. 2 this is the case for the third rule. Let’s assume the
situation given in Fig. 5. Here the current node is at node 10; the auxiliary
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Fig. 5. The large node is the current node in this rule during the parsing process. It
remains open for which hyperedge it will be predicted next.
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Fig. 6. The large node is the current node in this rule during the parsing process.
These chart entries are predicted after Fig. 5.

verb has already been processed. The question is, which new entry is predicted
next. As 10 is an open target node, it may connect to every other open source
node on the right hand side. Open source nodes are 11, 13, 15, 16. But the open
node 13 cannot be used, because otherwise the constraint stating 11 < 13 is
not fulfilled. In Fig. 6 the three rules for the new chart entries are shown. In
Alg. 4.1 in line 2, the possible new current nodes are calculated. In our example,
node-list contains the nodes 11, 15, 16. These new chart entries are inserted in
the lines 13–15.

In the third case, predict inserts continuation entries, active entries that
restart the parsing of an inactive entry through another external source node.
In this case parts(e,h) is not null (line 5) but returns another chart entry,
signifying that the current node has already been moved over this hyperedge
once. In our running example, the second and third rule of Fig. 2 lead to this
situation. The second rule for PP can be predicted twice depending on the
current node in the third rule. For the first prediction it is at node 16, for
the second prediction at node 17.

4.2 Handling Edges Labeled with Terminal Symbols: shift

The task of shift as shown in Alg. 4.2 is to process the ith hyperedge of the
input string graph. In line 2 the main loop over all active chart entries e ending
at position i − 1 starts. In node-list (line 3), all source nodes of the rule’s
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Algorithm 4.2 shift
Parameters:
t, ith-hyperedge in input string graph labeled with terminal
1: entry–list ← {}
2: for all active entries e where to(e)= i − 1) do
3: node–list ← list of source nodes that can be identified with the current node.
4: for all n in node–list, n not external target node do
5: h = hyperedge following n, h labeled with terminal
6: if label(h) = label of hyperedge t then
7: entry-list ← generate–new–chart–entries(e,t,n)
8: end if
9: end for

10: for all chart entries c in entry–list do
11: insert c into chart[from(e),to(t)]
12: if c is inactive then
13: complete(e)
14: else
15: predict(e)
16: end if
17: end for
18: end for

right hand side in chart entry e that can be identified with the current node are
collected. If the current node is a closed node, it is only the current node itself.
For an open node, it might be several different (open) nodes. As for predict,
these nodes are calculated based on the DAG generated from open nodes and
word order constraints. The loop over the collected nodes (line 4) determines for
each node n the hyperedge h following n. If h matches the terminal t in label and
type, e can be extended using t. In line 7 the new chart entry is generated. Finally,
all newly generated chart entries collected in entry-list must be inserted in
the chart (lines 10–17). A chart entry is inserted at the beginning of the active
entry from(e) to the end of the terminal entry to(t). If the newly generated
entry is inactive complete is called, otherwise predict.

In Fig. 7 shifting over “von Marathon” (“from Marathon”) is shown.7

4.3 Combination of Active and Inactive Chart Entries: complete

complete handles inactive chart entries ia. For an inactive chart entry, the dot
is at an external target node. The inactive entry can be used by an active chart
entry to advance its own current node. In line 2 the main loop over all active
chart entries e with to(e) = from(ia) is given. If the current node of the ac-
tive entry is an open node, then (line 3) the nodes that are not external target

7 Please note that in our rules given in Figs. 2, 3 terminal and nonterminal symbols
are not mixed on the right hand side of a rule. There is only one terminal symbol on
the right hand side in Fig. 3. This is often the case in natural language applications
but not necessarily so.
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Fig. 7. Shifting in the rule handling “von Marathon” (“from Marathon”)

Algorithm 4.3 complete
Parameters:
ia, an inactive chart entry
1: entry–list ← {}
2: for all active entries e where to(e)=from(ia) do
3: node–list ← list of nodes in e that can connect to the current node
4: for all n in node–list, n not external target node do
5: h = hyperedge following n
6: if expects(e, ia) then
7: entry–list ← generate–new–chart–entries(e, ia, n)
8: end if
9: end for

10: end for
11: for all chart entries e in entry–list do
12: insert e into chart[from(ia), to(ia)]
13: if e is inactive then
14: complete(e)
15: else
16: predict(e)
17: end if
18: end for

nodes and can be connected to the current node must be calculated. For all
these nodes the following hyperedge h is determined in line 5. The function
expects(e,ia) in line 6 is extended compared to the original Earley algorithm.
expects(e,ia) determines if a given inactive edge ia is accepted for completion
of e. Please note that parsing of an inactive edge is not necessarily finished;
an edge is inactive if the current node, the dot, has reached a target node of
the rule. There might be several external target nodes. If the label or type of
the left hand side of the inactive chart entry’s rule differs from e’s expected
nonterminal edge label or type, expects(e,ia) is false. If the node used to en-
ter ia does not correspond to the current node in e, expects(e,ia) is false.
And if ia is a continuation chart entry, but the inactive entry that has been
continued does not match parts(e,h), ia represents a different derivation of
the hyperedge than the one assumed the last time it was traversed; therefore,
expects(e,ia) is false. It is true otherwise. If expects returns true, a new
chart entry is generated (line 7). As usual in lines 10–16, the newly generated
entries are inserted into the chart. If the new entry is inactive, complete is
called, otherwise predict. Deciding whether a chart entry is active or inactive
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Fig. 8. Completion steps in the running example

is more tricky than for the usual Earley algorithm. If, after completion, an open
internal target node is current, it might be possible to merge it with either an
internal source node or with an external target node (depending on fulfillment
of constraints and similar consistency considerations). In the first case, the entry
would have to be counted as active, in the latter as inactive. Instances of both
variants are therefore generated, if necessary. Furthermore, care must be taken
not to generate a finished entry, i.e. an inactive entry with no unused external
nodes remaining, as long as there are open parts left.

In Fig. 8 two applications of complete are shown. In both situations the
PP–rule is inactive and combined with the active VP–rule. They differ in the
external target nodes used. For Fig. 8, top, it must be first determined which
of the open nodes can be used after node 10. Node 16 is possible. expects then
checks whether the label of the inactive chart entry’s left hand side and the
label of the hyperedge following the current node match. Both are labeled PP.
Additionally it checks whether the rank of both hyperedges match and whether
the same entry node (external source node) is used. In our case it is the first entry
node. After complete as in Fig. 8, top, is used, the PP-rule must be repredicted.
Then the completion as in Fig. 8, bottom, can take place after several steps.

Finally a mainprocedureparse is needed taking sentences to be parsed as input,
and returning all derivation trees. This procedure is similar to the parseprocedure
in [1]. It starts with predict to insert chart entries for the start symbol S. shift
is called each time predict and complete do not lead to new entries.
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5 Conclusion and Future Work

Extending string generating hypergraph grammars with free nodes and word
order constraints has been proven useful to model free word order languages as
German or Hungarian. For phrases with free word order consisting of n words, n!
phrase structure rules are necessary compared to one rule in the new formalism.
Depending on the amount of free word order within a natural language this can
lead to huge savings in grammar size.

The extension of the Earley parsing algorithm was based on the the ID/LP
Earley parser of S. Shieber [12]. Parsing is in the worst case exponentially in
grammar size. The argument in [13,14] for Shieber’s ID/LP parser can easily be
transferred to HyperEarley. Nevertheless using formalisms like ID/LP or Hyper-
Earley is useful. In [15] approaches for Head Driven Phrase Structure Grammar
based on discontinuous constituents and free word order versus continuous con-
stituents are compared. It is shown, that the former generates significantly less
chart entries than the latter approaches. The analysis is based on two large
grammars for German.

Several extensions to the parser described are possible. Especially for German
it is necessary to address positions in a sentence directly. In a German declara-
tive clause the finite verb is always in the second position and the infinite verb
in the last or last but one position. The second position cannot be addressed
yet in opposite to the last position. All other parts of the declarative sentence
can be moved freely around these two fixed positions. Also there might be one
or no element in the last position after the infinite verb. To express this kind
of constraints order lists as used in dependency grammars are necessary [16].
Also the ideas of partially ordered multiset context–free grammars [17] can be
transferred onto SGHG to allow for more descriptive power.
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Abstract. Double-pushout (DPO) transformations with borrowed con-
text extend the standard DPO approach by allowing part of the graph
needed in a transformation to be borrowed from the environment. The
bisimilarity based on the observation of borrowed contexts is a congru-
ence, thus facilitating system analysis. In this paper, focusing on the
situation in which the states of a global system are built out of local
components, we show that DPO transformations with borrowed context
defined on a global system state can be decomposed into corresponding
transformations on the local states and vice versa. Such composition and
decomposition theorems, developed in the framework of adhesive cate-
gories, can be seen as a first step towards an inductive definition, in sos
style, of the labelled transition system associated to a graph transfor-
mation system. As a special case we show how an ordinary DPO trans-
formation on a global system state can be decomposed into local DPO
transformations with borrowed context using the same production.

1 Introduction

Graph transformations [7] have been applied successfully to several areas of
software and system engineering, including syntax and semantics of visual lan-
guages, visual modelling of behaviour and programming, metamodelling and
model transformation, refactoring of models and programs. Almost invariably
the underlying idea is the same: the states of a system are modelled by suit-
able graphs and state changes are represented by graph transformations. Conse-
quently, the behaviour of the system is expressed by a transition system, where
states are reachable graphs and transitions are induced by graph transforma-
tions. The transition system can be the basis for defining various notions of
abstract behavioural equivalences, e.g., trace, failures and bisimulation equiva-
lence. These, in turn, can be used to provide a solid theoretical justification for
various constructions and techniques in the above mentioned areas of system
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engineering, e.g., for the formalisation of behavioural refinement, or to show
semantical correctness of refactoring and model transformation.

The applicability of these techniques generally requires the considered be-
havioural equivalence to be a congruence: two systems—seen as equivalent from
the point of view of an external observer—must be equivalent also in all possible
contexts or environments.

Unfortunately, behavioural equivalences defined over unlabelled transition
systems naively generated by using transformation rules often fail to be con-
gruences. The same problem arises for several other computational formalisms
which can be naturally endowed with an operational semantics based on unla-
belled reductions, such as the λ-calculus [2] or many process calculi with mobility
or name passing, e.g., the π-calculus [11] or the ambient calculus [4].

In order to overcome this problem recently there has been a lot of interest
in the automatic derivation of labelled transition systems where bisimilarity
is a congruence for reactive systems endowed with an (unlabelled) reduction
semantics (see, e.g., [10,8,6,12]). In particular, in the case of double-pushout
(DPO) graph rewriting this has led to an extension of the approach, called
DPO approach with borrowed contexts [6]. Intuitively a label C of a transition
represents the (minimal) context that must be “added” to the current state in
order to allow the transformation or reduction step to be performed.

In this paper, we focus on the situation in which the states of a global system
are built out of local states of the components of the systems. Then we show
that DPO transformations with borrowed context defined on a global system
state can be decomposed into corresponding transformations on the local states.
Vice versa we study the conditions under which local transformations can be
composed to yield global ones. The main results of this paper are composition
and decomposition theorems for DPO transformations with borrowed context
in the framework of rewriting systems over adhesive categories [9]. As a special
case we show how an ordinary DPO transformation on a global system state can
be decomposed into local DPO transformations with borrowed context using the
same production.

These composition and decomposition results can be seen as a first step to-
wards a structural operational semantics for adhesive rewriting systems, i.e.,
towards a framework where the transition system associated to a graph trans-
formation system can be defined inductively, in sos style. Compare for instance
the inductive CCS rule stating that from P

a→ P ′ and Q
ā→ Q′ (where a is an

action and ā its corresponding coaction) one can derive P | Q τ→ P ′ | Q′ (where
the label τ stands for a silent transition). Intuitively P

a→ P ′ means that P can
move to Q′ if the environment performs an output on channel a and, similarly,
Q can move if the environment performs an input on a. The two local moves
can be combined leading to a transition for P | Q where nothing is “borrowed”
from the environment (as expressed by the τ -label).

Having an inductive way of specifying the behaviour of a graph can lead to a new
understanding of system semantics and new proof techniques. E.g., inductive def-
initions can be quite useful when comparing the semantics of two calculi, as in [3].
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The rest of the paper is structured as follows. In Section 2 we introduce the
basics of adhesive categories and of the DPO approach with borrowed contexts.
In Section 3 we introduce a category of transformations with borrowed contexts,
which is the basis for the formalisation of the composition and decomposition
theorems for transformations given in Sections 4 and 5, respectively. Finally, in
Section 6 we conclude and outline directions of future research. Proofs of all
theorems, propositions and lemmas can be found in [1].

2 DPO Transformation with Borrowed Contexts

Adhesive categories have been introduced in [9], as categories where pushouts
along monomorphisms are so-called Van-Kampen squares (see Condition 3 in the
definition below). We will only briefly sketch the theory of adhesive categories.

Definition 1 (Adhesive category). A category C is called adhesive if

1. C has pushouts along monos;
2. C has pullbacks;
3. Given a cube diagram as shown on the right

with: (i) A → C mono, (ii) the bottom square a
pushout and (iii) the left and back squares pull-
backs, we have that the top square is a pushout
iff the front and right squares are pullbacks.

A′ ��

���
��

��

��

C′

���
��

��

��

B′ ��

��

D′

��

A ��

���
��

��
C

���
��

��

B �� D

The category Set of sets and functions is adhesive. Adhesive categories enjoy
closure properties, for instance if C is adhesive then so is any functor category
CX, any slice category C↓C and any co-slice category C↓C. Therefore, since the
category of graphs and graph morphisms is a functor category Graph ∼= Set•⇔•,
it is adhesive.

A subobject of a given object T is an isomorphism class of monomorphisms
to T . Binary intersections of subobjects exist in any category with pullbacks. In
adhesive categories also binary unions of subobjects exist and can be obtained
by taking the pushout over their intersection. Moreover, the lattice of subobjects
is distributive.

Theorem 2 ([9]). For an object T of an adhesive category C, the partially
ordered set Sub(T ) of subobjects of T is a distributive lattice. Given two subobjects
A,B ∈ Sub(T ), the meet A ∩ B is (the isomorphism class of) their pullback,
while the join A∪B is (the isomorphism class of) their pushout in C over their
intersection.
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The following lemma will be useful in the future where we have to show that cer-
tain squares in adhesive categories are pullbacks or pushouts. It follows directly
from Theorem 2.

Lemma 3. Consider the following diagram where all arrows are mono. The
square below is a pullback if and only if A = B ∩ C (all objects are seen as
subobjects of E). Furthermore the square is a pushout if and only if A = B ∩C
and D = B ∪ C.

A

��

�� B

��

C �� D �� E

We next define rewriting with borrowed contexts on objects (e.g., over graphs)
with interfaces, as introduced in [6]. Intuitively, the borrowed context is the
smallest extra context which must be added to the object being rewritten in
order to obtain an occurrence of the left-hand side. The extra context can be
added only using the interface.

Definition 4 (Borrowed contexts, transformations). Let C be a fixed ad-
hesive category and let r = (L ← I → R) be a rewriting rule. A DPO transfor-
mation with borrowed context—short transformation—t (of r) is a diagram in
C of the following form, where all arrows are mono:
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In this case we write (J → G)
r,m
=⇒ (K → H) where m = G ← D → L

is the partial match. If instead we want to focus on the interaction with the
environment we say that J → G makes a transition with borrowed context J →
F ← K and becomes K → H (written: (J → G) J→F←K→ (K → H)).

For a given transformation ti we will denote the objects occurring in the corre-
sponding diagram by Di, Gi, Ji, G+

i , Ci, Hi, Fi, Ki.
The squares in the diagram above have the following meaning: the upper

left-hand square merges the left-hand side L and the object G to be rewritten
according to a partial match G ← D → L of the left-hand side in G. The
resulting object G+ contains a total match of L and can be rewritten as in the
standard DPO approach, which produces the two remaining squares in the upper
row. The pushout in the lower row gives us the borrowed (or minimal) context
F which is missing in order to obtain a total match of L, along with a morphism
J → F indicating how F should be attached to G. Finally, the interface for the
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Fig. 1. Rewriting system Market

resulting object H is obtained by “intersecting” the borrowed context F and the
object C via a pullback. Roughly, the new interface includes what is preserved
of the old interface and of the context borrowed from the environment. The two
pushout complements that are constructed in Definition 4 may not exist. In this
case no rewriting step is possible.

It has been shown in [6] that bisimilarity on the transition system labelled
with borrowed contexts is a congruence with respect to cospan composition.

Example. Consider the category Graph of labelled graphs and label-preserving
morphisms. Take the rewriting system Market in Graph depicted in Fig. 1,
which can be interpreted as a very high-level description of the interactions be-
tween users of an electronic market place. Graph nodes are represented as circles,
with their label inside. Edges are directed and unlabelled. Users, represented as
U -labelled nodes, can possess objects, denoted by O-labelled nodes, and they
can be connected to one (or more) market places, represented by A-labelled
nodes.

A user possessing some objects can autonomously decide to offer one of them
to other users, on a market place, expressed by rule (Offer). A user can also ask
for something to buy on a market he is connected to, expressed by rule (Ask). A
request and an offer, after some negotiation which is not modelled, can meet, the
object is sold and moved from the seller to the buyer, modelled by rule (Buy).

An example of a transformation with borrowed context using production
(Buy) can be found in Fig. 3. It is applied to the graph with interface J1 → G1
in Fig. 2. The graph G1 includes a market place A, with a user U , possessing two
objects and trying to sell one of them. Note that the borrowed context consists
of an additional user playing the role of a buyer. In other words, the existence of
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Fig. 2. The graph with interface J1 → G1
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Fig. 3. A transformation with borrowed context t1 over J1 → G1, using rule (Buy)

the transformation expresses the fact that rule (Buy), can be applied assuming
that the context provides a user which buys the object sold by the user in G1.

Remark: Note that we obtain the well-known case of DPO transformations if we
consider total matches L → G instead of partial matches G ← D → L, which
implies G = G+. In this case we can take any interface object J , for instance
the initial object—if it exists in the category—which implies that F and K are
also initial objects.

3 Transformation Morphisms

A first step towards the composition of transformations is the formalisation of
the intuitive idea of embedding of a transformation into another. This is done
by introducing a suitable notion of transformation morphism.
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Definition 5 (Transformation morphisms). Let t1, t2 be two transforma-
tions for a fixed rewriting rule L← I → R. A transformation morphism θ: t1 →
t2 consists of arrows D1 → D2, G1 → G2, G+

1 → G+
2 , C1 → C2, H1 → H2,

J2 → J1, F2 → F1 and K2 → K1 such that the diagram below commutes. (The
arrows L→ L, I → I, R→ R in the diagram are the identities.)

A transformation morphism is called componentwise mono if it is composed
of monos only.

D2 ��

�������� L

�������� I�� ��

�������� R

��������

G2 �� G2
+ C2�� �� H2

J2 ��

��������

��

F2

��������

��

K2��

��

��������

D1 ��

��������

		

L

��������

		

I�� ��

��������

		

R

��������

		

G1 ��

		

G1
+

		

C1�� ��

		

H1

		

J1 ��

��������

F1

��������

K1��

��������

The intuition—at least if all arrows are mono—is that a morphism “embeds”
transformation t1 into t2. Thus, G1 (the object being rewritten) is mapped into
G2 and the same holds for D1 (the partial match), G+

1 , C1 and H1. Furthermore,
since G1 is contained in G2, it might be necessary to borrow more context from
the environment. Hence F1 can be larger than F2 and the same holds for the inner
and outer interfaces of F1 (denoted by J1 and K1). For instance J1 might have
to be larger than J2 since more context has to be attached. Hence the “squares”
J2, J1, G1, G2 and F2, F1, G

+
1 , G

+
2 and K2,K1, C1, C2 are not real squares, but

will be called horseshoes in the following.
The complexity of our proofs stems from the fact that these horseshoes have

to be taken into account. Otherwise it would be possible to simply work in a
functor category.

Definition 6 (Category of transformations). The category having as ob-
jects transformations and as arrows transformation morphisms is denoted by
Trafo. Composition of transformation morphisms is defined componentwise.

Example. Consider the graph with interface J3 → G3 in Fig. 4. The graph G3
includes a market place with two users. The first one possesses two objects and
is trying to sell one of them. The second user is looking for an object to buy. A
transformation for J3 → G3 , using rule (Buy), can be found in Fig. 5. Observe
that in this case the given graph already includes all what is needed for applying
rule (Buy) and thus nothing is actually borrowed from the context. Thus only
the interface is exposed in the label, i.e., the graph F3 = J3. It is not difficult to
see that there is an obvious transformation morphism θ1 : t1 → t3, where t1 is
the transformation in Fig. 3.
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Fig. 4. The graph with interface J3 → G3.
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Fig. 5. A transformation with borrowed context t3 over J3 → G3, using rule (Buy)

Although the definition of transformation morphisms does not impose any
condition on the vertical squares or horseshoes, we can infer some properties by
taking into account that all horizontal squares are either pullbacks or pushouts
(along monos, and thus also pullbacks).

Lemma 7 (Properties of transformation morphisms). For a transforma-
tion morphism θ as defined in Definition 5 it holds that:

– The squares I, I, L, L and I, I, R, R and C1, C2, G+
1 , G+

2 and C1, C2,
H1, H2 are pushouts.

– If the arrows G+
1 → G+

2 , C1 → C2 and H1 → H2 are mono, the squares L,
L, G+

1 , G+
2 and I, I, C1, C2 and R, R, H1, H2 and K2, K1, F2, F1 and

D1, D2, G1, G2 are pullbacks.



Composition and Decomposition of DPO Transformations 161

4 Composition of Transformations

In this section we study a composition mechanism for transformations. More
precisely we show that given two transformations t1, t2, using the same pro-
duction, with a common subtransformation t0, the two transformations can be
combined via a pushout. We will give sufficient conditions for the existence of
this pushout and show how it can be constructed.

We first consider a simpler category where objects are pushouts and we show
how to construct pushouts in this setting.

Lemma 8 (Pushouts in the category of pushouts). Let C be a fixed adhe-
sive category. Consider the category of pushouts in C, where objects are pushouts
pi of the form

Ai
0

��

��

Ai
2

��

Ai
1

�� Ai
3

and an arrow ϕ: p1 → p2 consists of four arrows (ϕ0, ϕ1, ϕ2, ϕ3) (with ϕi: A1
i →

A2
i ) which connect the corners of the squares such that the full diagram (which

is a cube) commutes.
Given two arrows ϕ1: p0 → p1, ϕ2: p0 → p2 in this category, a pushout

ψ1: p1 → p3, ψ2: p2 → p3 can be computed by constructing four pushouts of the
arrows ϕi, ψi, provided that these pushouts exist. Then the resulting (pushout)
square is composed of the four mediating arrows.

Note that even if the pushouts p0, p1, p2 consist only of monos, the resulting
pushout square p3 does not necessarily consist of monos. Hence in our case this
property has to be shown by different means.

We next introduce a property ensuring the composability of transformations.

D0 ��

��

D1

��

D2 �� L

(a)

t1 θ′
1

����������

t0

θ1
����������

θ2 ���������� t3

t2 θ′
2

����������

(b)

Fig. 6. Composition of transformations

Definition 9 (Composable transformation morphisms). Let θi: t0 → ti
with i ∈ {1, 2} be transformation morphisms. We say that θ1 and θ2 are com-
posable if
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1. θ1, θ2 are componentwise mono and
2. the square in the underlying category C in Fig. 6(a) (where the top and

right arrows appear in θ1 and the left and bottom arrows appear in θ2) is a
pullback.

Intuitively the second condition in the definition above requires that the partial
match for t0 is the intersection of the partial matches for t1, t2.

Theorem 10 (Composition of transformations). Let θi: t0 → ti with i ∈
{1, 2} be two composable transformation morphisms. Then the pushout of θ1, θ2
exists (see Fig. 6(b)) and can be obtained in the following way:

– Construct D3, G3, G
+
3 , C3, H3 by taking pushouts and J3, F3, K3 by taking

pullbacks. For instance D3 is constructed by taking the pushout of D0 → D1,
D0 → D2, where these two arrows are taken from θ1 respectively θ2. This
produces the transformation morphisms θ′i: ti → t3.

– In order to construct the arrows in t3 we proceed as follows:
• Most arrows can be immediately obtained as mediating arrows. This is

the case for D3 → G3, D3 → L, G3 → G+
3 , L → G+

3 , C3 → G+
3 , C3 →

H3, J3 → F3, K3 → F3, I → C3, R → H3.
• Furthermore construct J3 → G3 by composing J3 → J1 → G1 → G3.

Similarly for F3 → G+
3 and K3 → C3.

5 Decomposition of Transformations

In the previous section we have shown how to compose larger transformations
out of smaller ones. Here we are going into the opposite direction and show under
which conditions transformations can be split into smaller ones. That is, given a
transformation of J → G and a decomposition of G into subobjects G1, G2, is it
possible to find transformations for these subobjects, such that the composition
of these transformations yields the original transformation?

5.1 Projecting Transformations

In order to be able to formulate the decomposition of transformations, we will
first show how to project a transformation to a subobject of G, i.e., to a subobject
of the object to be rewritten. We identify some conditions which ensure that
a transformation can be projected over a subobject of the rewritten object.
Roughly, the interface of the subobject must be sufficiently large to guarantee
that the needed context can be actually borrowed.

Definition 11 (Extensibility). Let t2 be a transformation and and let J2 →
J1 → G1 → G2 be a factorisation of the arrow J2 → G2. Then the transforma-
tion is called extensible with respect to this factorisation, whenever there exists
a subobject F1 of U2 (the pushout of G+

2 ← C2 → H2) such that

G1 ∪ L = G1 ∪ F1 G1 ∩ F1 = J1.
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The definition above basically requires (in lattice-theoretic terms) that the push-
out complement F1 of J1 → G1 → G+

1 exists, where G+
1 = G1 ∪ L. Note that in

adhesive categories the pushout complement of monos is unique (if it exists).
The extensibility condition given in Definition 11 can be difficult to work with.

Below we give an alternative handier condition, sufficient for extensibility.

Lemma 12 (Sufficient condition for extensibility). Let t3 be a transfor-
mation and let J3 → J1 → G1 → G3 be a factorisation of the arrow J3 → G3.
Then t3 is extensible with respect to this factorisation if the pushout complement
X13 of J1 → G1 → G3 exists, i.e., there exists an object X13 and morphisms
such that the square below is a pushout.

J1

��

�� G1

��

X13 �� G3

In this case set F1 = (X13 ∪ F3) ∩ (G1 ∪ L).

Essentially, the sufficient condition requires that the interface of the smaller
object G1 is sufficiently large to allow to get the larger object G3 by extending
G1 along its interface.

Now let ti be a transformation over an object with interface Ji → Gi (i ∈
{1, 2}) and let J2 → J1 → G1 → G2 be a factorisation of J2 → G2. We say that
a transformation morphism θ : t1 → t2 is consistent with the factorisation if it
has the arrows J2 → J1 and G1 → G2 as components.

Proposition 13 (Projection of transformations). Let t2 be a transforma-
tion and let J2 → J1 → G1 → G2 be a (mono) factorisation of the morphism
J2 → G2 such that t2 is extensible with respect to this factorisation. Then there
exists a unique transformation t1 of J1 → G1, with a componentwise mono
transformation morphism θ: t1 → t2, consistent with the factorisation.

The objects of this transformation can be constructed as follows:

1. Construct U2 as the pushout of C2 → G+
2 and C2 → H2. Now all objects can

be considered as subobjects of U2.
2. The object F1 is given by the extensibility property above, which requires that

G1 ∪ L = G1 ∪ F1 and G1 ∩ F1 = J1. Set D1 = G1 ∩ D2, G+
1 = G1 ∪ L,

C1 = G+
1 ∩ C2, H1 = C1 ∪R, K1 = F1 ∩ C1.

5.2 Decomposing Transformations

As a first step towards the decomposition of a transformation, we introduce a
suitable decomposition for an object with interface.

Definition 14 (Proper decomposition). Let J3 → G3 be an object with in-
terface. Then a proper decomposition of J3 → G3 is a cube as shown below
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where all arrows are mono, the square G0, G1, G2, G3 is a pushout and and the
square J0, J1, J2, J3 is a pullback. (Note that the four remaining “squares” are
horseshoes.)

J0

��

J2��

��

J1

��������

��

J3��

��������

��

G0 ��

�������� G2

��������

G1 �� G3

Theorem 15 (Decomposition of transformations). Let t3 be a transfor-
mation of an object with interface J3 → G3. Consider a proper decomposi-
tion of J3 → G3 as in Definition 14 and assume that the transformation t3
is extensible with respect to the factorisations J3 → J1 → G1 → G3 and
J3 → J2 → G2 → G3.

Then there are transformations ti for Ji → Gi (where i ∈ {0, 1, 2}) with
componentwise mono transformation morphisms θj : t0 → tj, θ′j : tj → t3 (where
j ∈ {1, 2}) forming a pushout in the category of transformations (see the diagram
in Theorem 10). These transformation morphisms can be obtained via projections
as described in Proposition 13.

Observe that, if in the cube in Theorem 15 above we have the special (but very
typical) case where J0 = J1 = J2 = J3 = G0 (and all arrows between these
objects are the identities), the sufficient extensibility condition of Lemma 12 is
satisfied: in the terminology of this lemma X13 = G2 and X23 = G1.

In a sense, composition and decomposition are inverse to each other up to
isomorphism. The fact that composition is the inverse of decomposition has been
shown directly in Theorem 15. On the other hand, since projections are unique
(by Proposition 13), there is—up to isomorphism—only one way to decompose
a transformation according to a proper decomposition of the rewritten object
(see Definition 14). Hence, also decomposition is the inverse of composition.

Next we discuss the special case where a DPO rewriting step with trivial
borrowed context is decomposed, leading to transformations with possibly non-
empty borrowed contexts. Assume that G = G3 can be split into G0, G1, G2 as
in the pushout diagram below on the left and consider a DPO rewriting step for
G3. Then this step can be extended to a transformation with borrowed context
for G3 (with interface G0) with a total match of the left-hand side.

G0

		��
��

��
��



�
��

��
��

�

G1



�
��

��
��

� PO G2

		��
��

��
��

G3

L

��

�� L

��

I�� ��

��

R

��

G �� G

PO

C

PO
�� �� H

PO

G0

��

�� G0

PO

��

G′
0

PB

��

��

��
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Fig. 7. A transformation with borrowed context t2 over J2 → G2, using rule (Buy)
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Fig. 8. Decomposition of transformations

In this case we can set J0 = J1 = J2 = J3 = G0 and obtain a proper decompo-
sition of J3 → G3 as in Definition 14 (the top square is trivially pullback and
the bottom square is a pushout by assumption). Then, decomposing transfor-
mation t3 as described in Proposition 15 leads to three transformations t0, t1, t2,
with—in general—partial matches D0, D1, D2.
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Example. Consider the graph with interface J3 → G3 in Fig. 4. Note that there
is an obvious factorisation J3 → J1 → G1 → G3 of J3 → G3. Furthermore,
the transformation t3 in Fig. 5, which uses rule (Buy), is extensible along such
factorisation. In fact, the sufficient condition given by Lemma 12 is satisfied.

Therefore we can project the transformation t3 in Fig. 5 along such factori-
sation thus obtaining the transformation t1 over J1 → G1 depicted in Fig. 3.
As already noted, as an effect of projecting the transformation over a smaller
graph, the borrowed context becomes non-trivial (larger than the interface): the
rule can be applied assuming that the context provides a user which buys the
object sold by the user in G1.

More generally, consider the diagram in Fig. 8, where morphisms are the
inclusions suggested by the shapes of the graphs. This is a pushout in Graph.
Moreover, we can imagine all graphs Gi to have an interface given by Ji = G0.
Then the conditions of Proposition 15 are satisfied: we can project the transfor-
mation t3 in Fig. 5 to transformations over Ji → Gi (i ∈ {0, 1, 2}). The projec-
tion over J1 → G1 leads to the transformation t1 in Fig. 3, while the projection
over J2 → G2 leads to the transformation t2 in Fig. 7. Both t1 and t2 project
to the same derivation t0 over J0 → G0. The pushout of the obtained transfor-
mations can be computed, according to Theorem 10 to obtain t3 again.

6 Conclusion and Comparison to Related Work

In this paper, focusing on a setting in which a system is built out of smaller
components, we discussed how derivations with borrowed context over the global
state can be decomposed into transformations over the local state of each single
component using the same rule. Vice versa, we showed that, under suitable
consistency conditions, local transformations can be composed to give rise to a
transformation over the global system state.

We remark that the form of composition described in this paper is quite
different from amalgamation as described for instance in [5]. There two transfor-
mations for different rules are amalgamated producing a transformation for the
amalgamated rule. In our case, instead, the rule is fixed and the transformations
differ with respect to the context that has to be borrowed from the environment.
By composing objects and hence transformations we obtain additional structure
which might reduce the borrowed context.

The composition and decomposition results can be seen as a basic step towards
the possibility of defining transformations only for “atomic objects” and assem-
ble all possible transformations out of these atomic transformations, and thus,
towards an inductive definition, in sos style, of the transition system of a graph
transformation system (more generally an adhesive rewriting system). In addition
to the composition result we will also need the possibility to compose an evolv-
ing object with a passive context and to have rules for handling restrictions of
the interface. This would correspond to the communication, parallel composition
and restriction rules for process calculi. Additionally, composition would be even
more natural and closer to process calculi if performed over so-called rewriting
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steps, hiding the internal details, rather than on full transformations. That is—
in the terminology of Definition 4—we would like to observe only the object with
interface J → G, the resulting object K → H and the label or borrowed con-
text J → F ← K, but not the objects D, G+, C which are only auxiliary or
intermediate objects. We plan to extend our approach to this setting.
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approaches to graph transformation—part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

6. H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach to
graph rewriting. In Proc. of FOSSACS ’04, pages 151–166. Springer, 2004. LNCS
2987.

7. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

8. O. H. Jensen and R. Milner. Bigraphs and transitions. In Proc. of POPL 2003,
pages 38–49. ACM, 2003.
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Abstract. The paper presents a case study on the synthesis of labelled
transition systems (ltss) for process calculi, choosing as testbed Milner’s
Calculus of Communicating System (ccs). The proposal is based on a
graphical encoding: each ccs process is mapped into a graph equipped
with suitable interfaces, such that the denotation is fully abstract with
respect to the usual structural congruence.

Graphs with interfaces are amenable to the synthesis mechanism based
on borrowed contexts (bcs), proposed by Ehrig and König (which are
an instance of relative pushouts, originally introduced by Milner and
Leifer). The bc mechanism allows the effective construction of an lts
that has graphs with interfaces as both states and labels, and such that
the associated bisimilarity is automatically a congruence.

Our paper focuses on the analysis of the lts distilled by exploiting the
encoding of ccs processes: besides offering some technical contributions
towards the simplification of the bc mechanism, the key result of our
work is the proof that the bisimilarity on processes obtained via bcs
coincides with the standard strong bisimilarity for ccs.

1 Introduction

The dynamics of a computational device is often defined by a reduction system
(rs): a set, representing the space of possible states of the device; and a relation
among these states, representing the possible evolutions of the device. This is e.g.
the case of the paradigmatic functional language, the λ-calculus: the β-reduction
rule (λx.M)N ⇒ M [N/x] models the application of a functional process λx.M
to the actual argument N , and the reduction relation is then obtained by freely
instantiating and contextualising the rule.

While rss have the advantage of conveying the semantics with relatively few
compact rules, their main drawback is poor compositionality, in the sense that
the dynamic behaviour of arbitrary standalone terms can be interpreted only by
inserting them in the appropriate context, where a reduction may take place. In
fact, simply using the reduction relation for defining equivalences between com-
ponents fails to obtain a compositional framework, and in order to recover a suit-
able congruence it is often necessary to verify the behaviour of single components
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under any viable execution context. This is the road leading from contextual
equivalences for the λ-calculus to barbed and dynamic equivalences for the π-
calculus. In these approaches, though, proofs of equivalence are often tedious
and involuted, and they are left to the ingenuity of the researcher.

A standard way out of the impasse, reducing the complexity of such analy-
ses, is to express the behaviour of a computational device by a labelled transition
system (lts). Should the label associated to a component evolution faithfully ex-
press how that component might interact with the whole of the system, it would
be possible to analyse in vitro the behaviour of a single component, without
considering all contexts. Thus, a “well-behaved” lts represents a fundamental
step towards a compositional semantics of the computational device. It is not
always straightforward, though, to identify the right “label” that should be dis-
tilled, starting from a previously defined rs. Indeed, after Milner’s proposal of
an alternative semantics for the π-calculus [17] based on reactive rules modulo
a structural congruence on processes, inspired by the cham paradigm [4], an
ongoing stream of research has been investigating the relationship between the
lts semantics for process calculi and their more abstract rs semantics.

Early attempts by Sewell [22] devised a strategy for obtaining an lts from
an rs by adding contexts as labels on transitions. The technique was refined
by Leifer and Milner [15] who introduced relative pushouts (rpos) in order to
capture the notion of minimal context activating a reduction. The generality of
this proposal (and its bicategorical formulation due to Sassone and Sobocinski
[20]) allows it to be applied to a large class of formalisms. More importantly, such
attempts share the basic property of synthesising a congruent bisimulation equiv-
alence, thus ensuring that the resulting lts semantics is compositional. However,
for the time being there are few case studies which either involve rich calculi,
or succeed in making comparisons with standard behavioural equivalences. To
tackle a fully-fledged case study is the main aim of this paper.

Our starting point for the synthesis of an lts are the graphical techniques
proposed for modelling the reduction semantics of nominal calculi in [10,12]: pro-
cesses are encoded in graphs with interfaces, an instance of cospan categories [11],
and process reduction is simulated by double-pushout (dpo) rewriting [1]. Since
the category of cospans over graphs admits rpos [21], its choice as the domain
of the encoding for nominal calculi ensures that the synthesis of an lts can be
performed, and that a compositional observational equivalence is obtained.

The key technical point is the use of the borrowed context (bc) technique [8]
as a tool to equip graph transformation in the dpo style with an lts seman-
tics. Graphs with interfaces are amenable to the synthesis mechanism based
on bcs (which are in turn an instance of rpos): this allows the construction
of an lts that has graphs with interfaces as both states and labels, and such
that the associated bisimilarity is automatically a congruence. Exploiting the
bc technique, also large case studies may be taken into account: until now the
difficulties in the presentation of the ltss obtained via the use of rpos forced to
restrict the analysis to simple case studies, relying either on standard (ground)
term rewriting [15], or on extremely simplified variants of process calculi [20]:
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more elaborated proposals using bigraphs [18,14] result in infinitely branching
ltss, banning recursive processes or failing to capture standard bisimilarity.

Summing up, the aim of our work is straightforward: to present a fully-fledged
case study on the synthesis of ltss for process calculi, choosing as testbed Mil-
ner’s Calculus of Communicating System (ccs). More precisely, the paper fo-
cuses on the analysis of the lts obtained by exploiting the bc technique and the
encoding of ccs (recursive) processes into unstructured graphs, along the lines of
the methodology sketched above. Besides offering some technical contributions
towards the simplification of the bc synthesis mechanism, the key result is the
proof that the bisimilarity on (recursive) processes obtained via bcs coincides
with the standard strong bisimilarity for ccs. We believe that our work may
offer novel insights on the synthesis of ltss, as well as offering further evidence
of the adequacy of graph-based formalisms for system design and verification.

The extended version of the paper [5] contains additional examples, categorical
notations and detailed proofs.

2 Two Operational Semantics for CCS

This section introduces ccs [16] and two alternative operational semantics: the
classical lts semantics and the reduction semantics.

Definition 1 (processes). Let N be a set of names, ranged over by a, b, c, . . .;
τ �∈ N an invisible name; Δ = {a, a | a ∈ N} ( {τ} a set of prefixes, ranged
over by δ; and finally, X a set of agent variables, ranged over by x, y, . . .. An
open process P is a term generated by the (mutually recursive) syntax

P ::= M, (νa)P, P1 | P2, recx.P M ::= 0, δ.P, M1 + M2, δ.x

A process is a term such that each occurrence of an agent variable x is in the
scope of a recx-operator. We let P, Q, R, . . . range over the set P of processes,
and M, N, O . . . range over the set S of summations.
The standard definition for the set of free names of a process P , denoted by
fn(P ), is assumed. Similarly for α-conversion with respect to the restriction
operators (νa)P : the name a is bound in P , and it can be freely α-converted.

The classical observational semantics, bisimilarity, is given over an inductively
defined labelled transition system (lts). We spell out the lts, and denote by
∼CCS the standard strong bisimilarity, without formally introducing it.

Definition 2 (labelled transition system). The transition relation for pro-
cesses is the relation LCCS ⊆ P × Δ × P inductively generated by the set of
axioms and inference rules below (where P

δ−→ Q means that 〈P, δ, Q〉 ∈ LCCS).

δ.P
δ−→ P

P
a−→ Q, R

a−→ S

P | R
τ−→ Q | S

P
δ−→ Q

(νa)P δ−→ (νa)Q
a �∈ fn(δ)

P
δ−→ Q

P | R
δ−→ Q | R

P
δ−→ Q

P + R
δ−→ Q

P [recx.P /x] δ−→ Q

recx.P
δ−→ Q
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As usual, we avoided presenting the symmetric counterparts of those three infer-
ence rules involving the parallel and sum operators; moreover, the substitution
operator is supposed not to capture any name, possibly through α-conversion.

The behavior of a process P can also be described as a relation over abstract
processes, obtained by closing a set of basic rules under structural congruence.

Definition 3 (structural congruence). The structural congruence for pro-
cesses is the relation ≡⊆ P × P, closed under process construction and α-
conversion, inductively generated by the set of axioms below.

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P

M + N = N + M M + (N + O) = (M + N) + O M + 0 = M

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a �∈ fn(P ) (νa)0 = 0

(νa)(M + δ.P ) = M + δ.(νa)P for a �∈ fn(M + δ.0) recx.P = P [recx.P /x]

Definition 4 (reduction semantics). The reduction relation for processes is
the relation RCCS ⊆ P×P, closed under the structural congruence ≡, inductively
generated by the set of axioms and inference rules below (where P → Q means
that 〈P, Q〉 ∈ RCCS).

a.P + M | a.Q + N → P | Q τ.P + M → P

P → Q

(νa)P → (νa)Q
P → Q

P | R → Q | R
There is a main difference with respect to the standard reduction semantics for
ccs, namely, the axiom schema concerning the distributivity of the restriction
operators with respect to the prefix operators, even if they have been already
considered in the literature, see e.g. [9]. These equalities do not change sub-
stantially the reduction semantics, and they indeed hold in all the observational
equivalences we are aware of. In particular, two congruent processes are also
strongly bisimilar. Most importantly, they allow a simplified presentation of the
graphical encoding: we refer the reader to [12] for a more articulate analysis.

The lts semantics specifies how a system, seen as a single component, may
interact with the environment, and it allows the definition of an observational
equivalence by means of bisimilarity. On the other hand, the rs semantics speci-
fies how a system, seen as the whole, evolves. The latter is usually more natural,
but it does not take in account the interactions, and consequently, does not pro-
vide any “good” notion of behavioral equivalence. The main aim of the theory
of reactive systems proposed by Milner in [15] is to systematically derive an lts
from an rs semantics. In this paper, exploiting a graphical encoding of processes,
we derive an lts from a graph rewriting semantics. More precisely, in the next
sections we introduce a graphical encoding of CCS processes which preserves the
reduction semantics. The encoding is then used to distill an lts with pairs of
graph morphisms as labels: the main result of the paper states that the resulting
bisimilarity coincides with the standard strong bisimilarity.
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3 Graphs and Their Extension with Interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension
with interfaces, referring to [6] for a more detailed introduction.

Definition 5 (graphs). A (hyper-)graph is a four-tuple 〈V, E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions. An (hyper-)graph morphism is a pair of functions 〈fV , fE〉 preserving
the source and target functions.

The corresponding category is denoted by Graph. However, we often consider
typed graphs [7], i.e., graphs labelled over a structure that is itself a graph.

Definition 6 (typed graphs). Let T be a graph. A typed graph G over T is
a graph |G|, together with a graph morphism tG : |G| → T . A morphism between
T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent
with the typing, i.e., such that tG1 = tG2 ◦ f .

The category of graphs typed over T is denoted T -Graph: it coincides with the
slice category Graph ↓ T . In the following, a chosen type graph T is assumed.

In order to inductively define the encoding for processes, we need to provide
operations over typed graphs. The first step is to equip them with suitable
“handles” for interacting with an environment.

Definition 7 (graphs with interfaces). Let J, K be typed graphs. A graph
with input interface J and output interface K is a triple G = 〈j, G, k〉, for G a
typed graph and j : J → G, k : K → G the input and output morphisms.

Let G and H be graphs with the same interfaces. An interface graph morphism
f : G ⇒ H is a typed graph morphism f : G→ H between the underlying graphs
that preserves the input and output interface morphisms.

We let J
j−→ G

k← K denote a graph with interfaces J and K.1 If the interfaces
J , K are discrete, i.e., they contain only nodes, we simply represent them by
sets. Moreover, if K is the empty set, we often denote a graph with interfaces
simply as a graph morphism J → G. In order to define our encoding processes,
we introduce two binary operators on graphs with discrete interfaces.

Definition 8 (two composition operators). Let G = I
j−→ G

k← K and

G′ = K
j′
−→ G′ k′

← J be graphs with discrete interfaces. Then, their sequential

composition is the graph with discrete interfaces G ◦G′ = I
j′′
−→ G′′ k′′← J , for G′′

the disjoint union G ( G′, modulo the equivalence on nodes induced by k(x) =
j′(x) for all x ∈ NG′ , and j′′, k′′ the uniquely induced arrows.

1 With an abuse of notation, we sometimes refer to the image of the input and output
morphisms as inputs and outputs, respectively. More importantly, in the following
we often refer implicitly to a graph with interfaces as the representative of its iso-
morphism class, still using the same symbols to denote it and its components.
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Let G = J
j−→ G

k← K and H = J ′ j′
−→ H

k′← K ′ be graphs with discrete
interfaces. Then, their parallel composition is the graph with discrete interfaces

G ⊗ H = (J ∪ J ′)
j′′
−→ V

k′′← (K ∪K ′), for V the disjoint union G ( H, modulo
the equivalence on nodes induced by j(x) = j′(x) for all x ∈ NJ ∩ NJ′ and
k(y) = k′(y) for all y ∈ NK ∩NK′ , and j′′, k′′ the uniquely induced arrows.

Intuitively, the sequential composition G ◦G′ is obtained by taking the disjoint
union of the graphs underlying G and G′, and gluing the outputs of G with
the corresponding inputs of G′. Similarly, the parallel composition G ⊗ H is
obtained by taking the disjoint union of the graphs underlying G and H, and
gluing the inputs (outputs) of G with the corresponding inputs (outputs) of H.
Note that the two operations are defined on “concrete” graphs, even if the result
is independent of the choice of the representatives, up-to isomorphism.

A graph expression is a term over the syntax containing all graphs with dis-
crete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all the occurrences of those operators
are defined for the interfaces of their arguments, according to Definition 8; its
interfaces are computed inductively from the interfaces of the graphs occurring
in it, and its value is the graph obtained by evaluating all operators in it.

4 From Processes to Graphs with Interfaces

This section presents our graphical encoding for ccs processes. After presenting
a suitable type graph, shown in Fig. 1, the composition operators previously
defined are exploited. This corresponds to a variant of the usual construction
of the tree for a term of an algebra: names are interpreted as variables, so that
they are mapped to leaves of the graph and can be safely shared.

go τ


• ��

��

c �� 


��


op

��

�� ◦

Fig. 1. The type graph TCCS (for op ∈ {rcv, snd})

Intuitively, a graph having as root a node of type • (*) corresponds to a
process (to a summation, respectively), while each node of type ◦ basically rep-
resents a name. Note that the edge op stands for a concise representation of
two operators, namely snd and rcv, simulating the two prefixes. There is no
operator for simulating either parallel composition or non-deterministic choice.
Instead, the operator c is a syntactical device for “coercing” the occurrence of
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a summation inside a process context (a standard device from algebraic spec-
ifications). Finally, the operator go is another syntactical device for detecting
the “entry” point of the computation, thus avoiding to perform any reduction
below the outermost prefix operators: it is later needed for modeling the rs
semantics.

The second step is the characterization of a class of graphs, such that all
processes can be encoded into an expression containing only those graphs as
constants, and parallel and sequential composition as binary operators. Let p, s �∈
N : our choice of graphs as constants is depicted in Fig. 2, for all a ∈ N .

• p��

s �� 
 �� op

��

�� ◦ a��

s �� 
 �� τ �� • p��

p �� • p��

a �� ◦ a��

p �� • �� c �� 
 s��

p �� •

a �� ◦

s �� 


◦ a��

go

p �� •

��

Fig. 2. Graphs opa (for op ∈ {rcv, snd}) and τ ; idp, ida, and c; 0p, 0a, and 0s; νa and
go (from left to right and top to bottom)

Finally, let us denote idΓ and 0Γ as a shorthand for
⊗

a∈Γ ida and
⊗

a∈Γ 0a,
respectively, for a finite set of names Γ ⊆ N (since the ordering is immate-
rial). The encoding of processes into graphs with interfaces, mapping each finite
process into a graph expression, is presented below.

Definition 9 (encoding for finite processes). Let P be a finite process, and
let Γ be a set of names, such that fn(P ) ⊆ Γ . The (mutually recursive) encodings
�P �p

Γ and �M�s
Γ , mapping a process P into a graph with interfaces, are defined

by structural induction according to the rules below.

�M�p
Γ =

0p ⊗ 0Γ if fn(M) = ∅
(c ⊗ idΓ ) ◦ �M�s

Γ otherwise

�(νa)P �p
Γ =

�P �p
Γ if a �∈ fn(P )

(idp ⊗ νb ⊗ idΓ ) ◦ �P{b/a}�p
{b}�Γ for b �∈ Γ otherwise

�P | Q�p
Γ = �P �p

Γ ⊗ �Q�p
Γ �M + N�s

Γ = �M�s
Γ ⊗ �N�s

Γ

�0�s
Γ = 0s ⊗ 0Γ �τ.P �s

Γ = (τ ⊗ idΓ ) ◦ �P �p
Γ

�a.P �s
Γ = (rcva ⊗ idΓ ) ◦ �P �p

Γ �a.P �s
Γ = (snda ⊗ idΓ ) ◦ �P �p

Γ

Note the conditional rule for the mapping of �M�p
Γ . This is required by the

use of 0 as the neutral element for both the parallel and the non-deterministic
operator: in fact, the syntactical requirement fn(M) = ∅ coincides with the
semantical constraint M ≡ 0.

The mapping is well-defined, since the resulting graph expression is well-
formed; moreover, the encoding �P �p

Γ is a graph with interfaces ({p} ∪ Γ, ∅).
Our encoding is sound and complete (even if not surjective), as stated by the
proposition below (adapted from [10]).
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Proposition 1. Let P , Q be finite processes, and let Γ be a set of names, such
that fn(P ) ∪ fn(Q) ⊆ Γ . Then, P ≡ Q if and only if �P �p

Γ = �Q�p
Γ .

Note in particular how the lack of restriction operators is dealt with simply by
manipulating the interfaces, even if the price to pay is the presence of “floating”
axioms for prefixes, as shown by Fig. 3.

p �� • �� c �� 
 �� rcv ��

��

• �� c �� 
 �� snd ��

��

•

a �� ◦ ◦

Fig. 3. Encoding for both �(νb)a.b.0�p
{a} and �a.(νb)b.0�p

{a}

4.1 Tackling Recursive Processes

In order to show how recursive processes can be encoded as suitable infinite
graphs, the first step is to consider a complete partial order on graphs.

Definition 10 (graph order). Let G, H be graphs with interfaces (J, K).
Then, G +J,K H if there exists a mono f : G ⇒ H.

Thus, we consider the standard subgraph relationship, partitioned over inter-
faces. These partial orders are complete with respect to ω-chains, and it is note-
worthy that the encoding �0�p

Γ is the bottom of the order for those graphs with
interfaces ({p} ∪ Γ, ∅).
Definition 11. Let P [x] be an open process, such that the single agent variable
x may occur free in P . Let C = {�Pi�p

Γ | i ∈ IlN} be a chain where P0 = P [0/x]
and Pi+1 = P [Pi/x]. Then, �recx.P �p

Γ denotes the least upper bound of C.
In other terms, each open process P [x] defines an ω-chain on the graphs with
interfaces ({p} ∪ Γ, ∅), and �recx.P �p

Γ is the least upper bound of this chain,
computed as the least fixed point starting from the bottom element, i.e., �0�p

Γ .
Of course, two recursive expressions may be mapped to isomorphic graphs

with interfaces, even if they are not structurally congruent, nor can be unfolded
to the same expression. Nevertheless, the extended encoding is clearly still sound.

5 On Graphs with Interfaces and Borrowed Contexts

This section introduces the double-pushout (dpo) approach to the rewriting of
graphs with interfaces and its extension with borrowed contexts (bcs).

Definition 12 (graph production). A T -typed graph production is a span
L

l←− I
r−→ R with l mono in T -Graph. A typed graph transformation system

(gts) G is a tuple 〈T, P, π〉 where T is the type graph, P is a set of production
names and π is a function mapping each name to a T -typed production.
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Definition 13 (derivation of graphs with interfaces)
Let J → G and J → H be two graphs with interfaces. Given
a production p : L

l←− I
r−→ R, a match of p in G is a

morphism m : L → G. A direct derivation from J → G to
J → H via p and m is a diagram as depicted in the right,
where (1) and (2) are pushouts and the bottom triangles com-
mute. In this case we write J → G =⇒ J → H.

L
m

��
(1)

I
r ����l��

��
(2)

R

��

G C ������ H

J

������� k

�� �������

The morphism k : J → C such that the left triangle commutes is unique, when-
ever it exists. If such a morphism does not exists, then the rewriting step is not
feasible. Moreover, note that the canonical dpo derivations can be seen as a
special instance of these, obtained considering as interface J the empty graph.

In these derivations, the left-hand side L of a production must occur com-
pletely in G. On the contrary, in a borrowed context (bc) derivation the graph L
might occur partially in G, since the latter may interact with the environment
through J in order to exactly match L. Those bcs are the “smallest” extra con-
texts needed to obtain the image of L in G. The mechanism was introduced in
[8] in order to derive an lts from direct derivations, using bcs as labels. The
following definition is lifted from [2], extending the original one by including also
morphisms that are not necessarily mono. Note that the labels derived in this
way correspond to the labels derived via relative pushouts in a suitable category.

Definition 14 (rewriting with borrowed contexts). Given a production
p : L

l←− I
r−→ R, a graph with interfaces J → G and a mono d : D � L, we

say that J → G reduces to K → H with transition label J � F ← K via p and
d if there are graphs G+, C and additional morphisms such that the diagram
below commutes and the squares are either pushouts (PO) or pullbacks (PB). In
this case we write J → G

J�F←K−−−−−→ K → H, which is also called rewriting step
with borrowed context.

D
PO

��

��

�� �� L
PO

��

��

I
PO

�� ��
��

��

R��
��

G
PO

�� �� G+

PB

C�� �� H

J

��

�� �� F

��

K

��

��

��

Consider the diagram above. The upper left-hand square merges the left-hand
side L and the graph G to be rewritten according to a partial match G � D �
L. The resulting graph G+ contains a total match of L and can be rewritten
as in the standard dpo approach, producing the two remaining squares in the
upper row. The pushout in the lower row gives us the borrowed (or minimal)
context F which is missing in order to obtain a total match of L, along with a
morphism J � F indicating how F should be pasted to G. Finally, we need an
interface for the resulting graph H , which can be obtained by “intersecting” the
borrowed context F and the graph C via a pullback.

Note that two pushout complements that are needed in Definition 14, namely
C and F , may not exist. In this case, the rewriting step is not feasible.
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6 From Process Reductions to Graph Rewrites

Following [10], this section introduces the rewriting system RCCS , showing how
it simulates the reduction semantics for processes: it is quite simple, since it con-
tains just two rules, depicted in the upper right corner of Fig. 4 (the remaining
graphs in this figure are explained later). The first rule models a τ -transition,
whereas the second models synchronisation. Note that, in order to disable re-
duction inside prefixes, we enrich our encoding, attaching an edge go on the root
of each process. So, let �P �g

Γ = �P �p
Γ ⊗go. Moreover, for any graph G with inter-

faces ({p} ∪ Γ, ∅), let reach(G) be the graph with the same interfaces reachable
from the image of the roots {p} ∪ Γ .

It seems noteworthy that two rules suffice for recasting the reduction semantics
of the calculus. First of all, the structural rules are taken care of by the fact that
graph morphisms allow for embedding a graph into a larger one, thus simulating
the closure of reduction by context. Second, no distinct instance of the rules
is needed, since graph isomorphism takes care of the closure with respect to
structural congruence, as well as of the renaming of the free name.

Proposition 2 (reductions vs. rewrites). Let P be a processes, and let Γ
be a set of actions such that fn(P ) ⊆ Γ . If P → Q, then RCCS entails a
direct derivation �P �g

Γ =⇒ G via an injective match, such that reach(G) =
�Q�g

Γ . Viceversa, if RCCS entails a direct derivation �P �g
Γ =⇒ G via an injective

match, then there exists a process Q such that P → Q and reach(G) = �Q�g
Γ .

The correspondence holds since the go operator forces the match to be applied
only on top, thus forbidding the occurrence of a reduction inside the outermost
prefixes. The condition on reachability is needed since, during the reduction,
some process components may be discarded, in correspondence of the solving
of non-deterministic choices. The restriction to injective matches is necessary in
order to ensure that the two edges labeled by c can never be merged together.
Intuitively, allowing their coalescing would correspond to the synchronization of
two summations, i.e., as allowing a reduction a.P + a.Q → P | Q.

7 The Synthesised Transition System

This section contains the main results of our paper. Its aim is to apply the bc
synthesis mechanism to RCCS , and then to analyse the resulting lts. Proving
along the way a few general results on the technique, we show that the lts
is finitely branching (when quotiented up to isomorphism) and equivalent to a
succinct→C whose transitions have a direct interpretation as process transitions.
The main theorem of the section states that →C induces on (the encoding of)
processes the standard strong bisimilarity.

7.1 Reducing the Borrowing

In order to know all the possible transitions originating from a graph with in-
terfaces J → G, all the subgraphs D’s of Ls and Lτ and all the mono mappings
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FD � JD � D � D ∩ I→ R

go

•1
��

��

c �� �s1
�� τ �� •2

•1
�s1 •2

go

•1

2

��

�s1

0 � 0 � Lτ � Iτ → Rτ

go

•1
��

��

��

c �� �s1
�� rcv

��

�� •2

◦

c �� �s2
�� snd ��

��

•3

•1
�s1 •2

◦

�s2
•3

go

3•
1

2

��

�s1

◦

�s2

0 � 0 � Ls � Is → Rs

•1
�� c �� � �� snd ��

����
� •

◦

•1

◦

go ◦

•1
��

��

c �� �s1
�� rcv ��

������
•2

◦

•1
�s1 •2

go

•1

2

��

�s1

◦

�

FRCV � JRCV � RCV � RCV ∩ Is → Rs

•1
�� c �� � �� rcv ��

����
� •

◦

•1

◦

go ◦

•1
��

��

c �� �s2
�� snd ��

�����
•3

◦

•1
�s2

•3

go

•1

3

��

�s2

◦

�

FSND � JSND � SND � SND ∩ Is → Rs

Fig. 4. Productions synch: Ls � Is → Rs and τ : Lτ � Iτ → Rτ (upper right area).
The table illustrates the derivation rules for the concise lts (0 is the empty graph).

into G should be analysed. To shorten this long and tedious procedure, we show
here two pruning techniques for restricting the space of possible D’s.

First, note that those items of a left-hand side L that are not in D have to
be pasted to G through J . Thus, consider a node n of D corresponding to n′ in
L such that n′ is the source or the target of some edge e that does not occur in
D. Since the edge e is in L but not in D, it must be added to G through J , and
thus n must be also in J . A node such as n is called a boundary node.

Let us now consider SND—as shown in Fig. 4— as a subgraph of Ls. Its root
is a boundary node since it has an ingoing edge that occurs in Ls but not in
SND . Also the name in SND is a boundary node, since in Ls there is an ingoing
edge that does not occur in SND. Hence this node must be mapped to a node
occurring in the interface J of G.

The notion of boundary nodes is formally captured by the categorical notion
of initial pushout (as recalled in [5]). Since our category has initial pushouts, the
previous discussion is formalized by the proposition below.

Proposition 3. Let p : L
l←− I

r−→ R be a production and d : D � L a mono
such that diagram (i) in Fig. 5 is the initial pushout of d. If a graph J → G can
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perform a bc rewriting step via p and d then there exist a mono D � G and a
morphism JD → J such that diagram (ii) in Fig. 5 commutes.

This proposition allows to heavily prune the space of all possible D’s. As far
as our case study is concerned, we can exclude all those D’s having among
boundary nodes a summation node (depicted by *) since these never appear in
the interface J of a graph resulting from the encoding of some process. For the
same reason, we can exclude all those D’s having among their boundary nodes a
continuation process node (any of those two nodes depicted by • that are not the
root) observing that the only process node in the interface J is the root node.

A further pruning—partially based on proof techniques presented in [8]—is
performed by excluding all those D’s which generate a bc transition that is not
relevant for the bisimilarity. In general terms, we may always exclude all the
D’s that contain only nodes, since those D’s can be embedded in every graph
(with the same interface) generating the same transitions. Concerning our case
study, those transitions generated by a D having the root node without the edge
labeled go are also not relevant. In fact, a graph can perform a bc transition
using such a D if and only if it can perform a transition using the same D with
a go edge outgoing from the root. Note indeed that the resulting states of these
two transitions only differ for the number of go edges attached to the root: the
state resulting after the first transition has two go’s, the state resulting after the
second transition only one. These states are bisimilar, since the number of go’s
does not change the behavior.

The previous remarks are summed up by the following lemma.

Lemma 1. Bisimilarity on the lts synthesized by bcs coincides with bisimi-
larity on the lts obtained by considering as partial matches D the graphs Ls,
SND and RCV (shown in Fig. 4) as subgraphs of Ls, and only the graph Lτ as
subgraph of Lτ .

7.2 Strong Bisimilarity vs. bc Bisimilarity

Exploiting the remarks of the previous section, we first introduce a concise lts
containing only those bc transitions that are needed to establish the borrowed
bisimilarity. Then, we use this concise lts to prove our main theorem on the
correspondence between the borrowed and the ccs bisimilarity.

Proposition 4. Let p : L � I → R be a production of RCCS; d : D � L a
mono such that in Fig. 5, diagram (i) is the initial pushout of d and diagram (iii)
is a pullback; and J � G a graph with interfaces. Then J � G

J�F←K−−−−−→ K → H
via p and d if and only if there exists a mono D � G, a graph V and a morphism
JD → J such that the central square of diagram (iv) in Fig. 5 commutes and F
and H are constructed as illustrated there.

The proposition above is a key step in the definition of a concise lts. In fact,
it tells us how to construct the label F and the resulting state H , just starting
from a set of minimal rules of the form R ← D ∩ I � D � JD � FD. Given
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Fig. 5. Diagrams used in the propositions of Section 7

a mono D � G, the resulting state H can be computed in a dpo step, i.e., all
the items of G matched by D and not in D ∩ I are removed and replaced by
R. This transition is possible only if there exists a morphism JD � J such that
the central diagram commutes. In this case, the resulting label F is computed
as the pushout between the minimal label JD � FD and JD � J .

We thus now define a concise transition system, starting from the set of rules,
of the form R ← D∩I � D � JD � FD, that are depicted in Fig. 4. The main
difference with respect to the standard transition system is that the interface J
of a graph is never enlarged by a transition, but always remains the same.

Definition 15 (concise transition system). Let the graph D be either SND,
RCV , Ls or Lτ ; and let JD, FD, D ∩ I and R be the graphs defined according
to Fig. 4. Then, J � G

J�F←J−−−→C J → H if and only if a diagram as the one
illustrated in Fig. 5 (iv) can be constructed, where the morphism J → H is
uniquely induced by H ← V � G � J .

Note that the pushout complement of D ∩ I � D � G always exists because
for each D as in Fig. 4 all the nodes of D ∩ I are in D, and thus we have a
transition for each D � G and for each JD → J such that the central diagram
commutes. Moreover, the morphism J � V always exists (since J is discrete
and V contains all nodes of G) and it is unique (since V � G is mono).

More precisely, consider either SND or RCV as D: the existence of a morphism
JD → J means that the name used in the synchronisation must occur in the
interface. Whenever either Ls or Lτ is D, JD is the empty graph 0 and thus a
morphism always exists. In these two latter cases the label of the transition is
always the span of identities on J and the resulting state is exactly the state
obtained from a dpo direct derivation.

The difference between → and →C can be explained via an analogy to the

CCS-like transition a.0 + b.0
−|b̄.P+M−−−−−→ P . The concise lts forgets about P and

M , and the transition represented in →C is a.0+ b.0
−|b̄.0−−→R 0. This operation is

performed without changing the resulting bisimilarity, as stated below.

Proposition 5. Let ∼ be the bc bisimilarity, and let ∼C be the bisimilarity
defined on →C . Then ∼C and ∼ coincide for all those graphs with discrete
interfaces belonging to the image of our encoding.

The previous proposition allows a simpler proof of the correspondence between
strong bisimilarity for ccs and the one resulting from the bc construction.
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Theorem 1. Let P , Q be processes, and let Γ be a set of names, such that
fn(P ) ∪ fn(Q) ⊆ Γ . Then �P �g

Γ ∼ �Q�g
Γ if and only if P ∼CCS Q.

Proof. Here we give just a brief sketch of the proof. First of all, note that the set
of inference rules below define the same lts of Definition 2, for A ⊆ N a finite
set of names, Q, R and S processes, and M and N summations.

P ≡ (νA)((τ.Q + M) | R)

P
τ−→ (νA)(Q | R)

P ≡ (νA)((ā.Q + M) | (a.R + N) | S)

P
τ−→ (νA)(Q | R | S)

P ≡ (νA)((a.Q + M) | R) a /∈ A

P
a−→ (νA)(Q | R)

P ≡ (νA)((ā.Q + M) | R) a /∈ A

P
ā−→ (νA)(Q | R)

The correspondence between the concise lts →C and the standard lts of ccs
seems then evident, since each of those inference rules above exactly corresponds
to a rule R ← D ∩ I � D � JD � FD in Fig. 4.

For instance the third rule above corresponds to the third row D = RCV in
Fig. 4. Indeed, P ≡ (νA)((a.Q+M) | R) if and only if RCV can be embedded in
G where J � G is �P �g

Γ . The condition a /∈ A is satisfied if and only if a occurs
in the interface J , i.e., if and only if there exists a morphism JRCV → J such
that everything commutes. If such a condition is satisfied a transition in →C is
performed with label J � F � J where J � F is (part of) the pushout between
JRCV � J and JRCV � FRCV . Since the latter morphism is fixed, J � F
depends only JRCV � J , i.e., it depends only on the name of J corresponding
to the unique name of JRCV , that here we have called a. Then, for each graph
with interface J such that RCV occurs inside, and such that the unique name of
RCV occurs in J with name a, a transition is performed with a label depending
only on a. Roughly, this label can be thought of as a context corresponding to
�− | ā.0�g

Γ with J = {p} ∪ Γ . The resulting state (νA)(Q | R) does not exactly
correspond to the state resulting from→C , since the latter contains those graphs
that represent discarded choices. However, these summations are not connected
anymore to the reachable graph, and thus they do not influence in any way the
behavior of the resulting graph.

The second rule corresponds to the second row D = Ls. In fact, P ≡
(νA)((ā.Q + M) | (a.R + N) | S) if and only if Ls can be embedded into G
where J � G is �P �g

Γ . There are no other conditions on this rule and this is
exactly expressed by the fact that JLs is 0. The τ -label exactly corresponds to
the label of →C given by the span of identities on J .

8 Conclusions and Further Work

Our paper presents a case study in the synthesis of ltss for process calculi. A
sound and complete graphical encoding for processes is exploited in order to
apply the bc mechanism for automatically deriving an lts: states are graphs
with interfaces, labels are cospans of graph morphisms, and two (encodings of)
processes are strongly bisimilar in the distilled lts if and only if they are also
strongly bisimilar according to the standard lts.
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We consider our case study to be relevant for the reasons outlined below.
Technically, its importance lies in the pruning techniques that have been de-

veloped in order to cut to a manageable size the borrowed lts: they exploit
abstract categorical definitions, such as initial pushouts, yet resulting in a sim-
plified lts with the same bisimulation relation (see Proposition 3).

Methodologically, its relevance is due to its focussing on a fully-fledged case
study, including also possibly recursive processes: most examples in the literature
restrain themselves to the finite fragment of a calculus, as it happens for the
encoding of ccs processes into bigraphs by Milner in [18].

In order to further illustrate the advantages (and the possibilities for future
developments) of our approach, let us consider the latter proposal, similar in
aim to our work. It is noteworthy that the encoding into graphs with interfaces
allows the use of two rewriting rules only: intuitively, these rules are non-ground
since they can be both contextualized and instantiated. This feature results in
synthetising a finitely branching (also for possibly recursive processes) lts: this
seems one of the key advantages of the borrowed context technique with respect
to the bigraphical approach, where reaction rules must be ground, hence infinite
in number and inducing an infinitely branching lts already for finite processes.

This non-groundness supports our hope to use the bc mechanism for distilling
a set of inference rules, instead of characterizing directly the set of possible
labelled transitions. This should be obtained by extending Proposition 4 and
offering an explicit construction of the interface K for the target state of a
transition: its construction was irrelevant for our purposes here, since the reuse
of the interface J of the starting state does not change the bisimilarity. A related
composition result is already presented in [3].

Finally, we consider promising the combined use of a graphical encoding (into
graphs with interfaces) and of the bc techniques, and we plan to test its expres-
siveness by capturing also nominal calculi. We feel confident that our approach
could be safely extended to those calculi whose distinct feature is name fu-
sion [19], while it might fail for calculi where a more flexible notion of name
scoping is needed, as suggested by preliminary results on the π-calculus in [13].
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Abstract. Adhesive categories have recently been proposed as a cate-
gorical foundation for facets of the theory of graph transformation, and
have also been used to study techniques from process algebra for reason-
ing about concurrency. Here we continue our study of adhesive categories
by showing that toposes are adhesive. The proof relies on exploiting the
relationship between adhesive categories, Brown and Janelidze’s work
on generalised van Kampen theorems as well as Grothendieck’s theory
of descent.

Introduction

Adhesive categories [11, 12] and their generalisations, quasiadhesive categories
[11] and adhesive hlr categories [6], have recently begun to be used as a natu-
ral and relatively simple general foundation for aspects of the theory of graph
transformation, following on from previous work in this direction [5]. By cover-
ing several “graph-like” categories, they serve as a useful framework in which
to prove structural properties. They have also served as a bridge allowing the
introduction of techniques from process algebra to the field of graph transfor-
mation [13, 7].

From a categorical point of view, the work follows in the footsteps of dis-
tributive and extensive categories [4] in the sense that they study a particular
relationship between certain finite limits and finite colimits. Indeed, whereas
distributive categories are concerned with the distributivity of products over co-
products and extensive categories with the relationship between coproducts and
pullbacks, the various flavours of adhesive categories consider the relationship
between certain pushouts and pullbacks.

Adhesive categories are defined to be the categories with pullbacks where
pushouts along monomorphisms are van Kampen [11] and as a consequence such
pushouts can be considered as being well-behaved with respect to pullbacks. As
we shall explain, related work includes Grothendieck’s theory of descent (see [9]
for an overview) and generalised approaches to the van Kampen theorem [1].

As shown in [11], adhesive categories are closed under several categorical con-
structions, thus if C and D are adhesive then so is their product C×D, choosing
any object C ∈ C, the slice category C/C and coslice category C/C are adhe-
sive and, for any category X, the functor category [X,C] is adhesive. It is also
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known that the category of sets and functions Set is adhesive, in particular
this means that any presheaf topos [X,Set] is adhesive. These constructions
are useful because adhesive categories satisfy many of the so-called hlr-axioms,
and as a consequence, several important theorems about the rewriting theory
of double-pushout transformations can be proved at the level of adhesive cate-
gories. Indeed, it is perhaps surprising that so many of the axioms, which were
not known previously to be related, hold automatically in any adhesive category.
One of the original contributions of this paper is a proof that adhesive cate-
gories satisfy the special pullback-pushout property, one of the aforementioned
axioms.

The central part of the paper is devoted to studying the relationship be-
tween toposes and adhesive categories. Topos theory has many different facets
and applications within mathematics and computer science. One of the interest-
ing properties of toposes is that they have finite limits and colimits, and these
behave somewhat as they do in Set. Indeed, while toposes enjoy much more
structure than adhesive categories, adhesive categories themselves have certain
finite colimits (pushouts along monomorphisms) and limits (pullbacks) which
are well-behaved with respect to each other. The question of whether toposes
are adhesive is thus a very natural one.

As we have shown in [11, 12], there are adhesive categories which are not
toposes. Here we prove that the converse is not true – indeed, the main contri-
bution of the paper is Theorem 26, the conclusion of which states that toposes
are adhesive. From a computer science perspective, this means that the the-
ory developed for adhesive categories can be applied to any topos, not just a
presheaf. This is a significant development, since topos theory is a well-estab-
lished mathematical discipline with many important results and wide-reaching
applications.

One interesting example of a category which is a topos and not a presheaf is
the Schanuel topos. It has been used (see [8], for example) to model languages
with name binding, such as the Pi-calculus. Our theorem thus allows us to apply
the rewriting theory developed for adhesive categories to such a setting. While
we do not study this example in detail within the present paper, we plan to
study such systems as part of future work. The Schanuel topos actually arises
as a full subcategory of a presheaf category with objects the (atomic) sheaves.
It is a general fact that any such category of sheaves is a topos.

The proof of our theorem relies on exploiting the connections between adhe-
sive categories (or more generally, van Kampen squares), Brown and Janelidze’s
generalised van Kampen theorems and Grothedieck’s theory of descent. Indeed,
in order to prove that toposes are adhesive, we must show that pushouts along
monomorphisms are van Kampen. To do so, we split such a pushout into two:
one pushout with all morphisms mono, and one with two monomorphisms and
two epimorphisms. The former is also a pullback in any topos, and a theorem of
Brown and Janelidze’s (here recalled as Theorem 23) guarantees that it satisfies
the van Kampen theorem – which implies that the original pushout is a van
Kampen square. Here we also prove that pushouts of the latter kind are van
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C

m

��

f �� B

n

��
A g

�� D

Fig. 1. Pushout diagram

Kampen in a topos, it is the most difficult and technical result of the paper.
This completes the proof because, as we show in Lemma 2, van Kampen squares
compose in categories with pullbacks and pushouts.

Structure of the paper. In Section 1 we recall two equivalent ways of defining
van Kampen squares and show that van Kampen squares compose in categories
with pushouts and pullbacks. We recall the definition of adhesive categories
and prove that adhesive categories enjoy the special pullback-pushout prop-
erty. Section 2 recalls the fragments of descent theory and topos theory nec-
essary for our main result. In Section 3, we recall the theorem of Brown and
Janelidze, which forms one of the ingredients of the proof of our main Theo-
rem 26. Theorem 25 is the other main ingredient, and its proof relies on the
background introduced in Section 2. We conclude in Section 4 with several di-
rections for future work. The paper is relatively self-contained, although we
omit the proofs of well-known results and instead provide references to standard
sources.

1 Van Kampen Squares and Adhesive Categories

Adhesive and quasiadhesive categories are defined using certain pushout dia-
grams which are called van Kampen squares. We refer the reader to [11, 12] for
an introduction to, the enumeration of the basic properties of, and the appli-
cations of adhesive and quasiadhesive categories. Here we shall concentrate on
the definitions of van Kampen squares and derive the properties which will be
needed for the proof of our main result. We shall also prove that adhesive cat-
egories satisfy the so-called special pullback-pushout property, which is one of
the many hlr axioms, the majority of which have already been shown in [11,12]
to hold in any adhesive category.

We shall need both the axiomatic and the “equivalence of categories” versions
of the definitions of van Kampen squares [12]. In particular, using the former,
we shall show that van Kampen squares compose in categories with pushouts
and pullbacks, and that adhesive categories satisfy the special pullback-pushout
property. The fact that van Kampen squares compose, together with the lat-
ter, equivalent, way of defining van Kampen squares will be used in the proof
of our main Theorem 26. The latter definition of van Kampen squares also
makes it possible to establish a relationship between van Kampen squares and
Brown and Janelidze’s generalised van Kampen theorems, as we shall explain
in §3.
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Definition 1. A van Kampen square is a pushout di-
agram as in Fig 1 which satisfies the following condi-
tion:

– for any commutative cube, as illustrated, of which
Fig 1 forms the bottom face and the back faces are
pullbacks: the front faces are pullbacks iff the top
face is a pushout.
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The following lemma shows that, in categories with pushouts and pullbacks, van
Kampen squares paste together to give van Kampen squares.

Lemma 2. Consider the illustrated commutative diagram
in a category with pushouts and pullbacks. If (1) and (2)
are van Kampen then so is (1)+(2).

·
(1)

��

��

·
(2)

��

�� ·

��· �� · �� ·
Proof. Straightforward; in order to show that the combined pushout is stable
under pullback it suffices to break up a cube into two cubes, using the existence
of pullbacks. Conversely, a cube with its top face a pushout, can be split into
two using the existence of pullbacks and pushouts. ��
We shall now recall an equivalent definition of van Kampen squares which will be
useful for the purposes of this paper. The reader is referred to [12] for the proof that
the definitions are equivalent. The alternative definition is stated by saying that a
certain functor, induced by the diagram in Fig 1, is required to be an equivalence
of categories. We begin by defining the codomain category of the functor.

Definition 3. Let C/A ×C/C C/B denote the category
with objects commutative diagrams of pullbacks, as illus-
trated, and arrows the obvious morphisms between such di-
agrams.

A′

a
��

C′m′
�� f ′

��

c
��

B′

b��
A Cm

��
f

�� B

For a morphism u : U → V we shall write u∗ : C/V → C/U for the functor
given by pulling back along u. Referring to Fig 1, the functors n∗ and g∗ induce
a functor

Pb : C/D → C/A×C/C C/B.

Using the functor Pb, we can define the property of square (1) being van
Kampen as follows:

Definition 4. The pushout diagram of Fig 1 is said to be van Kampen whenever
one of the following equivalent conditions holds:

(i) Pb is an equivalence of categories;
(ii) the pushout is stable under pullback, and the functor Pb is essentially

surjective on objects.1

1 A functor F : C → D is said to be essentially surjective on objects when, for every
object D ∈ D, there exists an object C ∈ C such that FC ∼= D.
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Definition 5 (Adhesive categories). A category with pullbacks and pushouts
along monomorphisms is said to be adhesive if any pushout square as in Fig 1, in
which m is a monomorphism, is van Kampen.

Examples of adhesive categories include Set (see [11]) and the category of graphs
Graph. The fact that the latter is adhesive follows from the fact that Set is
adhesive and the fact that the functor category [X,C] is adhesive whenever C is.
Thus, in particular, any presheaf topos is adhesive. In §3 we shall show that any
topos is adhesive, thus providing several new examples of adhesive categories –
for instance, the Schanuel topos [8].

Adhesive categories have found an application as a foundation for parts of
the theory of graph transformation. Indeed, it has been shown in [11, 12] that
adhesive and quasiadhesive categories satisfy many of the previously proposed
HLR-axioms [5]. Here we shall extend this thesis by showing that another of
the aforementioned axioms holds in adhesive categories, the so called special
pullback-pushout property. Actually, we are able to prove a more general prop-
erty by requiring less assumptions about the arrows in the diagram below.

Lemma 6 (Special pullback-pushout property). Sup-
pose that the illustrated commutative diagram in an adhe-
sive category has m, n and l mono. Suppose that (1) is a
pushout and (1)+(2) is a pullback, then (2) is a pullback.

A
(1)m

��

f �� C
(2)n

��

p �� E
l��

B g
�� D q

�� F

Proof. Suppose we have an object X and morphisms α : X → D and β : X → E
such that qα = lβ. We shall show that there exists k : X → C such that nk = α
and pk = β. Notice that it suffices to show the existence of such a morphism,
uniqueness follows since n is mono.

Construct the illustrated cube by taking pullbacks.
Now qgα1 = qαg′ = lβg′, and we use the fact that
(1 )+(2 ) is a pullback to derive the existence of a
unique morphism h : X1 → A such that mh = α1
and pfh = βg′.

Also note that mα3 = α1m
′ = mhm′, and using

the fact that m is mono, α3 = hm′ (†). Also, lpα2 =
qnα2 = qαn′ = lβn′. Since l is mono, we have that
pα2 = βn′ (‡).
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��
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D

We shall use the fact that the top face of the cube is a pushout to derive the
existence of the required morphism. Indeed, we have α2f

′ = fα3 = fhm′ where
we used (†) to derive the last equality. Thus we get a unique k : X → C such
that kg′ = fh and kn′ = α2.

It remains to show that k satisfies the necessary properties, that is, nk = α
and pk = β. Indeed, we have nkg′ = nfh = gmh = gα1 = αg′ and nkn′ =
nα2 = αn′. Using the fact that the top face of the cube is a pushout, and in
particular, the uniqueness of the mediating morphism, we have nk = α.

Similarly, pkg′ = pfh = βg′ and pkn′ = pα2 = βn′, where we used (‡) to
derive the last equality. This implies that pk = β and we are finished. ��



Toposes Are Adhesive 189

2 Toposes and Descent

In order to prove that toposes are adhesive, we shall first recall the necessary
background in this section: basic aspects of descent theory as well as the defini-
tion and several well-known properties of toposes.

We start in §2.1 by recalling a little of Grothendieck’s theory of descent. We
refer the reader to [9], for example, for a more detailed account. Historically, the
theory arose from algebraic geometry and has had an impact on many disciplines
within mathematics and computer science, including algebraic topology, logic
and type theory. Descent theory, as we shall show, is also closely related to van
Kampen squares.

In §2.2 we recall some elementary facts about toposes. See [10] for an overview
of topos theory. Toposes have been widely used by mathematicians and computer
scientists interested in logic, topology, geometry or category theory.

We relate these two topics by recalling that epimorphisms in toposes are
effective for descent. This, in fact, is a consequence of a more general fact that
regular epimorphisms in locally-cartesian closed categories are effective descent
morphisms.

2.1 Descent

Recall that a morphism p : X → D is said to be a regular epimorphism if
it is the coequaliser of some morphisms w1, w2 : W → X . We recall below a
well-known lemma which relates regular epimorphisms and pushout diagrams.

Lemma 7. If p : X → D has a kernel pair p1, p2 : P → X (the
diagram is a pullback square) then p is a regular epimorphism
iff the pullback is also a pushout.

P
p1

��

p2 �� X
p
��

X p
�� D

Proof. (⇐) If the diagram is a pushout square then it follows immediately that
p is a coequaliser of p1 and p2;
(⇒) If p is regular epi then it is the coequaliser of w1, w2 : W → X . Since the
diagram above is a pullback, there exists a unique morphism w : W → P such
that p1w = w1 and p2w = w2. From this it follows that p is the coequaliser of
p1 and p2. Again using the fact that the square is a pullback, there exists an
arrow h : X → P such that p1h = idX and p2h = idX . It follows that for any
α : X → Y and β : X → Y if αp1 = βp2 then α = β. The universal property of
pushouts thus follows from the universal property of coequalisers. ��
The conclusion of the following lemma ensures that the evident induced mor-
phism to the vertex of any pushout diagram is a regular epimorphism.

Lemma 8. Given a pushout diagram as in Fig 1 in a category with coproducts,
[g, n] : A + B → D is a regular epimorphism.

Proof. It is the coequaliser of the pair i1m, i2f : C → A + B. ��
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C/D
K ��


p∗

%&

EM

U
&'��

��
��

�

C/X
p∗

'(

Fig. 2. The adjunction p∗ � p∗ and functor to the Eilenberg-Moore category EM, with
the obvious forgetful functor U .

We shall now recall some basic facts about descent. Let C be a category with
pullbacks and p : X → D a morphism in C. The pullback functor p∗ : C/D →
C/X always has a left adjoint, given by composition with p. Recall that the
right adjoint p∗ : C/D → C/X is said to be monadic if the unique comparison
functor K from C/D to the Eilenberg-Moore category EM generated by the
monad arising from the adjunction is an equivalence of categories (see Fig 2).

The following definition states when a morphism is said to be effective for
descent. The intuitive idea is that, given an effective descent morphism p : X →
D, one can reason about the structure of a category C/D, which may be difficult,
by reasoning about certain algebras over C/X – thus in a sense “descending”
along p. Indeed, referring to the diagram of Fig 2, to say that p is effective for
descent is to say that the comparison functor K : C/D → EM, where EM is the
Eilenberg-Moore category (category of algebras) of the monad with endofunctor
p∗p∗ : C/X → C/X , is an equivalence of categories; ie p∗ is monadic.

Definition 9. If p∗ is monadic, we shall say either that p is effective for descent
or that it is an effective descent morphism.

In the particular case of the monad p∗ � p∗, the Eilenberg-Moore category can
be characterised as a category of certain pullback diagrams in C. This charac-
terisation will prove useful in the proof of our main result.

Lemma 10. The Eilenberg-Moore category EM of the monad induced by the
adjunction p∗ � p∗ is the category whose:

– objects are diagrams of pullbacks, as illustrated in the left diagram of Fig 3,
where p1, p2 : P → X is the kernel pair of p;

– arrows are pairs α, β which combine into a commutative diagram, as illus-
trated in the other diagram of Fig 3.

The comparison functor K : C/D → EM (see Fig 2) takes an object d : D′ → D
of C/D to the rear faces of the cube of pullbacks formed from d and the pullback
diagram of Lemma 7.

Proof. See [9, §3.4]. Note that the category discussed there is the category of
descent data: its objects are pairs 〈x : X ′ → X, ξ : p∗1x→ p∗2x〉 where ξ is an iso
in C/P . This category is clearly isomorphic to the category described above. ��
Remark 11. The category EM is not the same as C/X×C/P C/X of Definition 3.
Indeed, if p is a regular epimorphism and we start with the pushout diagram of
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X ′

x
��

P ′ p′
2 ��p′

1��

y
��

X ′

x
��

X Pp1
��

p2
�� X

X ′′

x′

��

P ′′

y′

��

p′′
1�� p′′

2 �� X ′′

x′

��

X ′

α
()

x ���
��

��
P ′

β
)*

p′
1

��

y ���
��

�� p′
2

�� X ′

α
)*

x

���
��

��

X Pp1
��

p2
�� X

Fig. 3. Objects and morphisms of EM

Lemma 7, then it makes sense to compare the two categories. While the objects
of both are pairs of pullback diagrams, an object of the latter category can
potentially involve two maps X ′ → X rather than one.

The next lemma relates the effective descent morphisms and regular epimor-
phisms. The two classes coincide in any locally cartesian closed category – a
category C in which every slice C/C is cartesian closed.

Lemma 12. In a locally cartesian closed category, a morphism is effective for
descent (cf Definition 9) iff it is a regular epimorphism.

Proof. See [9], for example. ��
We have the following useful fact as a consequence of Lemmas 12 and 8. It
states that, in a category with coproducts, the evident morphism induced by an
arbitrary pushout is effective for descent.

Corollary 13. Given a pushout diagram of Fig 1 in a locally cartesian closed
category with coproducts, the induced arrow [g, n] : A + B → D is an effective
descent morphism. ��

Now letting p = [g, n] and using Corollary 13,
Lemma 10, the comparison functor K : C/D →
EM which takes an object d : D′ → D to the
back faces of the cube of pullbacks, as illus-
trated, is an equivalence of categories. This fact,
and in particular the fact that K is essentially
surjective on objects, will form an important
part of the proof of Theorem 25, the hardest
step of the proof of our main Theorem 26.

P ′p′
1

�#							 p′
2
*+���

�

y

��

A′ + B′

a+b

��

g′ *+��
��

A′ + B′

a+b

��

n′�#							

D′

d
��

Pp1

					
�#			

p2
*+����

A + B

[g,n] *+���� A + B

[g,n]�#								

D

2.2 Toposes

Here we list the properties of toposes which we shall use to prove our main
theorem. We refer the reader to [10] for a more thorough account of topos theory.
We give a standard definition of toposes below; note that the actual statement
of the definition is not important for the purposes of this paper, instead we shall
list the precise properties of toposes we require in the remainder of this section.
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Definition 14. A topos is a category C which:

(i) is cartesian closed and has equalisers (and consequently, all finite limits);
(ii) has a subobject classifier.

It follows from the axioms above that toposes have finite colimits [10, A2.2.9]
and are locally cartesian closed [10, A2.3.4]. In particular, the latter implies that:

Proposition 15. The pullback functors u∗ : C/V → C/U have right adjoints,
and so preserve all colimits. ��
The proof of Theorem 25, the hardest step in the proof of our main result,
relies on the fact that toposes are extensive [4]. Extensive categories can be
said to have well-behaved coproducts, in a similar sense to how pushouts along
monomorphisms can be said to be well-behaved in adhesive categories. Here we
give the (axiomatic) definition and a well-known characterisation.

Definition 16 (Extensive categories). A category C
is said to be extensive if it has finite coproducts, pull-
backs along coproduct injections, and satisfies the fol-
lowing property:

– given a commutative diagram, as illustrated, the top
row is a coproduct diagram iff the two squares are
pullbacks.

X

��

�� Z

��

Y

��

��

A
i1

�� A + B B
i2
��

The following result states two properties of coproducts in extensive categories
which, if they hold in arbitrary categories, are enough to show extensivity. In-
terestingly, it is unknown whether a similar characterisation can be given for
adhesive categories.

Proposition 17. A category with finite coproducts and pullbacks along coprod-
uct injections is extensive iff (1) it has coproducts which are stable under pullback
and (2) pulling back one coproduct injection along the other results in the initial
object.2

Proof. See [4, Proposition 2.14]. ��
We shall now recall some other well-known properties of toposes, one of which
is that toposes are extensive:

Lemma 18. If C is a topos then:

(i) epimorphisms in C are regular and are stable under pullback;
(ii) monomorphisms in C are regular and are stable under pushout;
(iii) pushouts along monomorphisms in C are pullbacks;
2 Coproducts are said to be disjoint if they satisfy property (2) and coproduct injec-

tions are monomorphisms. When coproducts are stable under pullback, the fact that
injections are monomorphisms is derivable from (2) (cf [4, Lemma 2.13]).
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(iv) C is extensive;
(v) all arrows f : A→ B in C can be factorised into an epimorphism e : A→ C

followed by a monomorphism m : C → B with me = f ; moreover, the
factorisation is unique up to isomorphism in the obvious way.

Proof. For the first parts of (i) and (ii) see [10, A1.4.9]. The fact that epimor-
phisms are stable under pullback follows from Proposition 15. For the second
part of (ii) and for (iii) see [10, A2.4.3]. For part (iv), we know from Propo-
sition 17 that it is enough to check for stability of coproducts under pullback
and disjointness. For disjointness see [10, A2.4.4], stability follows from Propo-
sition 15. For part (iv) see [10, A2.3.5]. ��
Using Lemma 12 and part (i) of Lemma 18, we obtain the following well-known
result:

Corollary 19. In a topos, the classes of epimorphisms and effective descent
morphisms coincide. ��
We shall require one technical lemma, which holds in toposes. It concerns cer-
tain diagrams of pullbacks – indeed, it is well known that given a diagram (as
illustrated below) where the right square is a pullback then the left square is
a pullback if and only if the exterior of the diagram is a pullback. The lemma
below gives a sufficient condition for the right square being a pullback when the
exterior of the diagram and the left square are pullbacks.

Lemma 20. Consider in a topos a diagram, as illustrated,
with g an epimorphism. If the left square and the exterior
are pullbacks then so is the right square.

A
s
��

f �� C
t��

p �� E
u
��

B g
�� �� D q

�� F

Proof. This follows immediately from [2, Lemma 4.6] and Corollary 19. Indeed,
as shown in [2], it suffices to require that g is an effective descent morphism. ��
We conclude this section by recalling the notion of an equivalence relation in a
cartesian category, a generalisation of the usual notion of equivalence relation,
and recalling that equivalence relations in toposes are effective.

Definition 21 (Equivalence relation). Suppose that C is a category with
finite products. By a relation, we mean a monomorphism 〈a, b〉 : R → A×A. A
relation is said to be an equivalence relation if all three of the following hold:
– it is reflexive: there exists a morphism r : A → R such that

ar = br = idA;
– it is symmetric: there exists a morphism s : R → R such that

as = b and bs = a;
– it is transitive: referring to the illustrated pullback diagram,

there exists a morphism t : P → R such that at = ap and
bt = bq.

P
p
��

q �� R
a
��

R
b
�� A
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Proposition 22. In a topos, equivalence relations are effective, that is, they are
the kernel pairs of their coequaliser.

Proof. See [10, A2.4.1]. ��

3 Toposes are Adhesive

Having recalled the necessary background theory, in this section we shall prove
that toposes are adhesive (Theorem 26) which is the main technical contribution
of the paper. Recall from [12] that the converse does not hold – indeed there are
adhesive categories which are not toposes (for instance the category of pointed
sets Set∗).

The proof itself relies on the fact that, in a topos, a pushout along a monomor-
phism can be broken up into two pushouts – (1) one with all arrows monomor-
phisms and (2) one with two monomorphisms and two epimorphisms.

Using the fact that van Kampen squares compose (cf Lemma 2), it suffices to
show that, in toposes, pushouts of kinds (1) and (2) are van Kampen squares.
The fact that pushouts of kind (2) are van Kampen (Theorem 25) is the most
difficult and technical part of our proof. The fact that pushouts of kind (1) are
van Kampen squares follows immediately from a well-known theorem of Brown
and Janelidze [1]:

Theorem 23 (Brown and Janelidze). Suppose that C is an ex-
tensive category with finite limits. Given a pullback diagram, as il-
lustrated, with all morphisms mono, the induced (cf paragraph fol-
lowing Definition 3) functor Pb : C/D → C/A ×C/C C/B is an
equivalence of categories if and only if the map [g, n] : A + B → D
induced by g and n is an effective descent morphism.

C
m

��

f �� B
n
��

A g
�� D

Proof. See [1, Proposition 3.2]. ��
As an immediate application of the above theorem, we are able to show that
pushouts in toposes with all arrows monomorphisms are van Kampen.

Corollary 24. A pushout as in Fig 1 in a topos, with all arrows monomorphic,
is van Kampen.

Proof. First note that by Lemma 18(iii), such a pushout is also a pullback, and
by Corollary 13 we know that the arrow [g, n] induced by the pushout is a (regu-
lar) epimorphism. Toposes have finite limits and are extensive (cf Lemma 18(iv)),
thus we can apply Theorem 23 to obtain that Pb is an equivalence of categories
– in other words, the pushout is van Kampen (cf Definition 4). ��
The second class of pushouts we shall consider are pushouts where two of the
morphisms are epimorphisms and two are monomorphisms. The following fact
is the most technical part of our main result:

Theorem 25. A pushout as in Fig 1 in a topos, with f (and so g) epimorphic
and m and n monomorphic, is van Kampen.
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Proof. Using the second part of Definition 4 and the stability of pushouts under
pullback (cf Proposition 15), it will suffice to show that the functor Pb : C/D →
C/A×C/C C/B induced by such a pushout is essentially surjective on objects.
In other words, given a diagram as in Definition 3 with both squares pullbacks,
we must find a map d : D′ → D whose pullbacks along g and n are, respectively,
a and b. By extensivity (cf Lemma 18(iv)), this amounts to finding d whose
pullback along p = [g, n] : A + B → D is a + b : A′ + B′ → A + B.

But, by Corollary 13, p is an effec-

A′ + B′

a+b
��

P ′ p′
2 ��p′

1��

y
��

A′ + B′

a+b
��

A + B Pp1
��

p2
�� A + B

tive descent map. Using the fact that
K : C/D → EM is essentially surjec-
tive on objects (cf paragraph follow-
ing Corollary 13), it suffices to show
that the pullback of a + b along p1
coincides with its pullback along p2,
where p1, p2 : P → A + B are the projections of the kernel pair of p – thus
showing that the diagram is an object of the Eilenberg-Moore category EM. By
extensivity, P is given by A2 + C + C + B, where g1, g2 : A2 → A is the kernel
pair of g : A→ D. It follows that the projections themselves are:

p1 = [g1, m] + [f, idB] : A2 + C + C + B → A + B

p2 = [g2 + f, m + idB] : A2 + C + C + B → A + B.

Using extensivity once more, to show that the pullbacks of a+ b along p1 and p2
agree, it suffices to show that the pullbacks along each of the components of p1
and p2 agree. And since m∗a and f∗b agree, all that remains is to check that g∗1a
and g∗2a agree. To do so, we form the pullback in diagram (i) below and then
show that the squares of diagram (ii) are pullbacks.

A′
2
〈g′

1,g′
2〉 ��

a2
��

A′ × A′

a×a
��

A2 〈g1,g2〉
�� A× A

(i)

A′
2

g′
i ��

a2
��

A′

a
��

A2 gi

�� A

(ii)

A′ g′
id

′
��

a
��

A′

a
��

A
gid

�� A

(iii)

Let d : A → A2 be the unique map satisfying g1d = g2d = idA, and similarly
let d′ : A′ → A′

2 be the unique map satisfying g′1d′ = g′2d′ = idA′ and a2d
′ = da.

Then the squares of diagram (iii) are clearly pullbacks.
Let f1, f2 : C2 → C be the kernel pair of f . Then there are pullback squares

(iv), and so pullback squares (v). Let m2 : C2 → A2 be the unique map satisfying
gim2 = mfi for i = 1 and 2. Similarly, let m′

2 : C′
2 → A′

2 be the unique map
satisfying g′im

′
2 = m′f ′

i for i = 1 and 2 as well as a2m
′
2 = m2c2. Thus we get the

pullback squares (vi).
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C′
2

c2
��

f ′
i �� C′ f ′

��

c
��

B′

b
��

C2
fi

�� C
f
�� B

(iv)

C′
2

c2
��

f ′
i �� C′ m′

��

c
��

A′

a
��

C2
fi

�� C m
�� A

(v)

C′
2

c2
��

g′
im

′
2�� A′

a
��

C2 gim2
�� A

(vi)

A′ + C′
2
[d′,m′

2]��

a+c2 ��

A′
2

g′
i ��

a2
��

A′

a
��

A + C2 [d,m2]
�� A2 gi

�� A

(vii)

Using extensivity and the fact that diagrams (iii) and (vi) are pullbacks, the
exteriors and the left hand squares of diagram (vii) are pullbacks, so that the
right hand squares will be pullbacks, and the proof complete, provided that
[d, m2] : A + C2 → A2 is an epimorphism (cf Lemma 20).

To see that [d, m2] is an epimorphism, consider the map [Δ, 〈g1m2, g2m2〉] :
A+C2 → A×A induced by the diagonal Δ : A→ A×A and 〈g1m2, g2m2〉 : C2 →
A × A, and factorise it as an epimorphism [h1, h2] : A + C2 → R followed by a
monomorphism 〈r1, r2〉 : R → A × A. We shall show that R is A2, with h1 = d
and h2 = m2, so that [d, m2] is an epimorphism, as required.

If we regard R as a relation on A, it is clearly reflexive, since by construction
it contains the diagonal; it is symmetric, since the relations A and C2 are so.
The pullback (A + C2)×A (A + C2) is given by A + C2 + C2 + C3, where C3 =
C×B C×B C, and the “composition” map C3 → C2 sending a triple (c1, c2, c3) of
generalized elements of C to (c1, c3), induces an evident map A+C2 +C2+C3 →
A + C2, which in turn induces a map R ◦R → R showing that the relation R is
transitive and so an equivalence relation.

In a topos, an equivalence relation is the kernel

C2
f2 ��

f1 ��

C

f
��

C
f

�� B

pair of its coequaliser (cf Proposition 22), but the
coequaliser of r1, r2 : R → A is the coequaliser of the
maps r1[h1, h2], r2[h1, h2] : A + C2 → A, since [h1, h2]
is epi. This in turn is the coequaliser of the maps g1m2
and g2m2 and so, using the definition of the gi, it is
the coequaliser of mf1, mf2 : C2 → A.

Using the fact that f is epi, the diagram to the right is a pushout (cf Lemma 7).
Thus a map w : A→W satisfying wmf1 = wmf2 induces a unique map v : B →
W satisfying vf = wm; and so a unique map u : D →W satisfying ug = w and
un = v. Clearly g : A → D coequalises mf1, mf2; using the universal property of
coequalisers we obtain that u is an isomorphism. This proves that the coequaliser
of the projections of R is g : A → D, and so that R is the kernel pair of g; but
the kernel pair of g is A2, and this now proves that [d, m2] : A + C2 → A2 is an
epimorphism, as claimed. ��
We are now able to combine these results in order to deduce our main contribu-
tion:

Theorem 26. Toposes are adhesive.

Proof. Consider the pushout of Fig 1 in a topos C, with m a monomorphism. We
shall show that it is a van Kampen square. As a consequence of Proposition 15,
all pushouts are stable under pullback.
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C

(†)m
��

r �� E

(‡)l
��

j �� B

n
��

A q
�� F

k
�� D

By parts (iii) and (ii) of Lemma 18, such a pushout is
also a pullback and the map n is also a monomorphism.
Factorise g : A → D as a epimorphism q : A → F followed
by a monomorphism k : F → D, and form the pullback
squares as illustrated. It follows immediately that j is a
monomorphism. Using Lemma 18(i), r is an epimorphism.

The exterior of the diagram above is a pushout by assumption. We know by
Proposition 15 that pushouts are stable under pullback – the stability of this
pushout under pullback along k implies that square (†) is also a pushout, and
so square (‡) is also a pushout by the usual cancellation properties of pushouts.

If each of these squares is van Kampen then the conclusion of Lemma 2 implies
that so is the exterior; thus it will suffice to consider separately square (†) with
r and q epimorphisms and m and l monomorphism, and square (‡) with l, n,
j and k all monomorphisms. The fact that the latter is van Kampen follows
from Corollary 24, while the fact that the former is van Kampen follows from
Theorem 25. ��
Remark 27. Recall from [11] that the converse of Theorem 26 does not hold.
Indeed, adhesive categories are closed under the coslice construction and thus in
general are not even extensive.

4 Conclusion

Throughout the paper we have concentrated on the class of adhesive categories
which has many examples of interest to computer scientists, in particular those
interested in the theory of graph transformation. We have shown that adhe-
sive categories satisfy the special pullback-pushout lemma, which was previously
taken as one of the hlr axioms.

Our main result is that toposes are adhesive; the proof relies on exploiting
the relationship between van Kampen squares, descent theory [9] and Brown
and Janelidze’s work [1] on generalised van Kampen theorems. More concretely,
we prove that pushouts along monomorphisms in toposes are van Kampen by
splitting them into two pushouts and proving that each is van Kampen – the fact
that one is van Kampen follows from Brown and Janelidze’s well-known theorem
and the proof of the other relies on the fact that epimorphisms in toposes are
effective for descent.

In future work, we plan to study the ramifications of the fact that toposes
are adhesive by using the rewriting theory developed for adhesive categories
to study languages with name-passing which are modelled using the Schanuel
topos. We also plan to extend our main theorem to show that certain classes of
quasitoposes [14] are quasiadhesive. Such a result would not only prove to be of
theoretical interest, but would also allow us simple proofs of the quasiadhesivity
of many categories of interest to the graph transformation community. This is
because it is possible to show that they arise via so called Artin gluing [3].
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Abstract. Transactional graph transformation systems (t-gtss) have
been recently proposed as a mild extension of the standard dpo approach
to graph transformation, equipping it with a suitable notion of atomic
execution for computations. A typing mechanism induces a distinction
between stable and unstable items, and a transaction is defined as a
shift-equivalence class of computations such that the starting and ending
states are stable and all the intermediate states are unstable.

The paper introduces an equivalent, yet more manageable definition
of transaction based on graph processes. This presentation is used to pro-
vide a universal characterisation for the class of transactions of a given
t-gts. More specifically, we show that the functor mapping a t-gts to
a graph transformation system having as productions exactly the trans-
actions of the original t-gts is the right adjoint to an inclusion functor.

Keywords: Graph processes, refinement, transactions, zero-safe nets.

1 Introduction

Graph transformation systems (gtss) are a flexible formalism for the specifi-
cation of complex systems, that may take into account aspects such as object-
orientation, concurrency, mobility and distribution [9,10]. In fact, graphs can be
naturally used to provide a structured representation of the states of a system,
which highlights its subcomponents and their logical or physical interconnec-
tions. Then, the events occurring in the system, which are responsible for the
evolution from one state into another, are modelled as the application of suitable
transformation rules. Such a representation is precise enough to allow the formal
analysis of the system under scrutiny, as well as amenable of an intuitive, visual
representation, which can be easily understood also by a non-expert audience.

Along the years several enrichments of the original framework have been in-
troduced, extending gtss with structuring concepts that are needed to master
the complexity of large specifications. Several modularity and refinement notions
have been proposed, providing basic mechanisms for encapsulation, abstraction
and information hiding (see, e.g., [11,14,13]).
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In a top-down approach to the specification of a complex system, one can
start describing each operation of the system as a single “abstract” rule. Then,
each abstract rule is refined to a computation, describing in a more concrete way
the activity performed and possibly the use of temporary resources. In order to
guarantee that the behaviour of the refined system is correct with respect to the
abstract specification, each computation corresponding to an abstract rule has
to be executed “atomically”, i.e., either it completes successfully, or the effects
of a partial execution should not be visible at the abstract level: in one word,
the computation refining an abstract rule must be a transaction.

The notion of transaction has been originally defined and studied in the realm
of database management systems, and only later it has been considered in pro-
gramming and specification formalisms, like process calculi, programming lan-
guages and Petri nets. A transaction represents a unit of interaction with the
management system, that is treated in a coherent and reliable way, independently
of other transactions, and that must be either entirely completed or aborted. Ide-
ally, the following ACID properties should be guaranteed for each transaction

– Atomicity: either all of the tasks of a transaction are performed (and the
transaction is committed) or none of them are;

– Consistency: the database is in a legal state when the transaction begins
and when it ends;

– Isolation: no operation outside the transaction can see the data in an inter-
mediate state;

– Durability: the effects of a committed transaction are persistent.

The above properties are also meaningful for characterising transactions in speci-
fication formalisms of concurrent/distributed systems, where the interaction now
occurs with the environment: atomicity, consistency and isolation carry on with
equal relevance, while only durability does not have a clear meaning anymore
since no persistent repository of data is modelled.

Transactions can be introduced in different ways in a modelling, specification
or programming formalism. In control-centered formalisms, like process calculi
and programming languages, where the execution of computations is ruled by
expressive control mechanisms, typically new control structures are introduced
for starting/committing transactions. In data-centered formalisms, like rewriting
formalisms and (possibly High-Level) Petri nets, where the control structures are
typically poor and the emphasis is on the structure of the state that evolves dur-
ing a computation, transactions are more naturally defined indirectly, by iden-
tifying parts of the state which represent temporary (or “unstable”) resources,
only visible within a transaction. This is the approach that has been taken for
zero-safe nets [4], which is a reference model for our work on transactional gtss.

Zero-safe nets are Place/Transition Petri nets equipped with a distinguished
subset of zero places. The places model resources that are consumed or produced
by transitions and the zero places model resources that are invisible to the exte-
rior of a step. A step in a zero-safe net starts at a stable marking (i.e., containing
no zero places), evolves through unstable markings and ends in a stable marking.
Stable tokens produced in a step are “frozen” and delivered at the end.
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Inspired by the work on zero-safe nets, transactional graph transformation
systems (t-gtss), introduced in [1], are a mild extension to the double-pushout
(dpo) approach to graph transformation, providing a simple way of expressing
transactional activities. The basic tool is a typing mechanism for graphs which
induces a distinction between stable and unstable graph items. Given a typed
graph, representing a system state, we can identify a subgraph which represent
its “stable” part, i.e., the fragment of the state which is visible from an external
observer. Transactions in a t-gts are thus abstract, “minimal” computations
starting from a completely stable graph, evolving through graphs with unstable
items and eventually ending up in a new stable state.

In this paper we elaborate further on transactional gtss. At first we obtain
an alternative characterisation of transactions as graph processes, by exploiting
the results in [2]. Next we show how the internal structure of transactions can
be abstracted away, by considering an abstract gts associated to the t-gts:
unstable items disappear and each distinct transaction becomes a single atomic
production, which rewrites the starting stable state to the final stable state.

The main result of the paper shows that the operation mapping each t-gts
to its abstract counterpart is characterised as a universal construction in the
categorical setting. More specifically, such construction is turned into a functor
between the corresponding categories of systems, which is right adjoint to the
inclusion functor in the opposite direction. The result is obtained by equipping
t-gtss with a notion of implementation morphism, allowing to map a single
production to a whole transaction. This provides a solid theoretical justifica-
tion to the notion of abstract gts associated to a t-gts: according to an in-
tuitive interpretation of categorical adjunctions, it states that the constructed
abstract gts is the best approximation of the given t-gts in the class of ordinary
gtss.

2 Double-Pushout Rewriting

This section briefly summarises the basics of double-pushout (dpo) graph rewrit-
ing [8] for directed (multi-)graphs (but definitions and results of the paper gener-
alise easily, for example, to hypergraphs, which are used indeed in the examples).
Without loss of generality, as shown in [12], we consider rewriting with injective
matches only. Graphs are equipped with a typing morphism to a fixed type graph,
which plays an essential role when distinguishing between stable and unstable
items in a given graph.

Formally, a graph is a tuple 〈V, E, s, t〉, where V and E are the (disjoint)
sets of nodes and edges, and s, t: E → V are the source and target functions.
Sometimes, abusing the notation, G denotes the disjoint union VG ( EG; e.g.
writing x ∈ G means that x is either a node or an edge of the graph G. Given a
graph T , a typed graph G over T is a graph |G|, together with a graph morphism
tG: |G| → T . A morphism between T -typed graphs f : G1 → G2 is a graph
morphism f : |G1| → |G2| respecting the typing, i.e., such that tG1 = tG2 ◦f . The
category of T -typed graphs and typed graph morphisms is denoted by T -Graph.
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Rewriting rules, called T -typed productions, are tuples q: Lq
lq← Kq

rq→ Rq,
where q is the name of the production, Lq, Kq and Rq are T -typed graphs
(called the left-hand side, the interface and the right-hand side of the production,
respectively), and lq, rq are injective morphisms. Without loss of generality, we
always assume that lq is an inclusion.

A rule q specifies that an occurrence of the left-hand side Lq in a larger graph
can be rewritten into the right-hand side Rq, preserving the interface Kq.
Formally, given a typed graph G, a production q, and
an injective match g: Lq → G, a direct derivation δ

from G to H using q, g exists, written δ: G
q,g
=⇒ H , if

the diagram to the right can be constructed, where
both squares are pushouts in T -Graph.

Lqq :

g

Kq
lq rq

k

Rq

h

G D
b d

H

A graph transformation system is then defined as a collection of rules, over a
fixed graph of types.

Definition 1 (graph transformation system). A T -typed graph transfor-
mation system (gts) is a tuple G = 〈T, P, π〉, where T is a graph, P is a set
of production names and π is a function mapping production names in P to
T -typed productions.

A derivation in a gts G is a sequence of direct derivations via productions of G
G0

q0,g0=⇒ G1
q1,g1=⇒ . . . . . .

qn,gn=⇒ Gn+1.

A two-steps derivation G
q1,g1=⇒ X

q2,g2=⇒ H as in the diagram below is called
sequential independent [8,12] if there are two morphisms s: L2 → D1 and u: R1 →
D2 such that d1 ◦ s = g2 and b2 ◦ u = h1. Intuitively, the images in X of the
left-hand side of q2 and of the right-hand side of q1 overlap only on items that
are preserved by both derivation steps.

L1

g1

K1
l1 r1

k1

R1

u

h1

L2

s
g2

K2
l2 r2

k2

R2

h2

G D1
b1 d1

X D2
b2 d2

H

In this case, according to the Parallelism Theorem (Theorem 7.8 in [12]), we
can apply to G a suitably defined proper quotient q of the parallel rule q1 + q2,
obtaining an equivalent direct derivation from G to H via an injective match

g. Furthermore, there is an equivalent derivation G
q2,g′

2=⇒ X ′ q1,g′
1=⇒ H where

the two derivation steps are “switched”. The equivalence on derivations in-
duced by switchings of sequential independent direct derivations is called shift-
equivalence [8].

We now equip gtss with a suitable notion of morphism, allowing us to look
at them as objects of a category. This is essential to provide a characterisation of
some interesting constructions with universal properties, as shown in Section 5.
We shall use a variant of the morphisms in [6,3], where the type graphs are
related by a partial morphism rather than by an arbitrary span.
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A partial morphism f : G1 ⇀ G2 is a total morphism from a subgraph of G1,

called dom(f), to G2, and is equivalently depicted as G1
lf←↩ dom(f)

rf→ G2.
Given an object A of a category C, the slice category C↓A has all C-arrows with
target A as obiects; an arrow h: f → g in C↓A is a C-arrow h such that g◦h = f .1

Let m: A → B be an arrow in a category C with
pullbacks. Chosen a pullback square as (1) to the
right for any f : D → B, the pullback functor along
m: A → B, denoted m∗: C↓B → C↓A, maps an ob-
ject (f : D → B) ∈ C↓B to (m∗(f): m∗(D) → A) ∈
C↓A. Given arrows m: A → B and f : D → B of C,
we write g ∼= m∗(f) if there exists an arrow C → D
such that square (2) to the right is a pullback.

m∗(D)
m∗(f) (1)

D

f

A m B

C
g (2)

D
f

A m B

Definition 2 (gts morphism). Let G1 = 〈T1, P1, π1〉 and G2 = 〈T2, P2, π2〉 be
gtss. A gts morphism f :G1 → G2 is a pair f = 〈fT , fP 〉, where

- fT : T1 ⇀ T2 is a partial graph morphism;
- fP : P1 → P2 ∪ {∅} is a total function on production names, where
∅: (∅ ← ∅ → ∅) is the empty production;

such that productions are pre-
served, i.e., for all p ∈ P1, with
fP (p) = q, there are morphisms
fL

ι (p), fK
ι (p) and fR

ι (p) such that
the diagram to the right commutes,
and fX

ι (p) ∼= t∗Xp
(lf T ) for X ∈

{L, K, R}.
The category with gtss as objects
and the corresponding morphisms
as arrows is denoted by GTS.

|Rp|

tRp

|Rq|
fR

ι (p)

tRq

|Kp|

tKp

|Kq|
fK

ι (p)

tKq
|Lp|

tLp

|Lq|fL
ι (p)

tLq

T1 dom(fT )
lfT

rfT
T2

Chosen a pullback functor l∗fT
, the partial morphism fT : T1 ⇀ T2 induces a re-

typing functor f↔
T : T1-Graph→ T2-Graph, defined on objects as f↔

T (tG: |G| →
T1) = rfT ◦ l∗fT

(tG). The condition on morphisms involving the pullback squares
ensures that all the items in Xp whose type is preserved by fT occur in XfP (p).
Thus, gts morphisms are simulations (see e.g. [6,3]), meaning that, for a deriva-
tion ρ in G1, (any choice of) the retyped diagram f↔

T (ρ) is a derivation in G2.

3 Transactional Graph Transformation Systems

In this section we first recall the basics of transactional gtss [1]. Next we intro-
duce the notion of morphism between such systems and we show that morphisms
preserve transactions. The basic idea underlying transactional gtss consists in
distinguishing between stable and unstable resources and defining transactions
as “minimal” computations which start and end in stable states. The distinction
1 Thus, for example, T -Graph = Graph↓T .
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between stable and unstable items in a graph is induced by specifying a subgraph
of the type graph, which is intended to represent the stable types.

Definition 3 (transactional gts). A transactional gts (t-gts) is a pair
Z = 〈G, Ts〉, where G is a T -typed gts (the underlying gts of Z) and is: Ts ↪→ T
is a subgraph of the type graph of G, called the stable type graph.

We denote by S: T -Graph → Ts-Graph the functor that maps each graph G
typed over T to its subgraph consisting of its stably-typed items only, and each
morphism to its restriction to stable items: thus S, called the stabilising functor,
is a concrete choice for the pullback functor i∗s.

The stabilising functor can be applied point-wise to any production of a given
t-gts, thus producing a gts typed over the stable type graph.

Definition 4 (stabilised gts). Given a t-gts Z = 〈〈T, P, π〉, Ts〉, the sta-
bilised gts S(Z) is given by 〈Ts, P, π′〉, where π′(q) = S(π(q)) for any q ∈ P .

By construction, there is an obvious gts morphism from a t-gts Z to its sta-
bilised gts S(Z), given by the pair 〈idTs : T ⇀ Ts, idP 〉. Since gts morphisms
are simulations, the following result trivially holds.

Proposition 1. Let Z be a t-gts and let ρ = G0
q1,g1=⇒ G1

q2,g2=⇒ . . .
qn,gn=⇒ Gn be

a derivation in G. Then S(ρ), defined as below, is a derivation in S(Z).

S(ρ) = S(G0)
q1,S(g1)=⇒ S(G1)

q2,S(g2)=⇒ . . .
qn,S(gn)

=⇒ S(Gn)

Let us come to the definition of transaction in a t-gts. Inspired by the approach
for Petri nets proposed in [4], and extended to nets with read arcs in [5], we
introduce stable steps, transactions and abstract transactions. In the following,
let Z = 〈G, Ts〉 be an arbitrary but fixed t-gts.

Let us first define a graph G as stable if it consists only of stable items, i.e., if
|S(G)| = |G|, and unstable otherwise. A stable step is, intuitively, a computation
which starts and ends in stable states. Moreover, stable items which are gener-
ated are “frozen”, in the sense that they can not be preserved nor consumed by
other productions inside the same step; similarly, stable items which are deleted
cannot be preserved by other productions. Therefore, the dependencies between
productions occurring in a step are induced by unstable items: this implies that
at the abstract level, where unstable items are forgotten, all such productions
are applicable in parallel.

Definition 5 (stable step and transaction). A stable step is a derivation
ρ = G0

q1,g1=⇒ G1
q2,g2=⇒ . . .

qn,gn=⇒ Gn which enjoys the following properties

1. G0 and Gn are stable graphs;
2. the derivation S(ρ) is equivalent in S(G) to a direct derivation via a proper

quotient of the rule q1 + . . . + qn and a suitable match g.
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A transaction is a stable step additionally satisfying

3. the match g is an isomorphism;
4. no intermediate graph Gi (i �= 0, n) is stable.

By condition 3, the start graph contains exactly what the transaction needs to
reach a successful end. Notice that this condition defines what is a transaction,
but then, in a computation, a transaction can be embedded into a larger context.
By condition 4 no sub-derivation of ρ is a transaction.

Actually, since we are considering a concurrent model of computations, the
fact that all the intermediate graphs are not stable should not be related to the
specific order in which productions are applied. Rather, this property should still
hold for any shift-equivalent derivation.

When combining shift-equivalence with an equivalence which abstracts also
with respect to the concrete identities of items in the involved graphs, i.e.,
which considers graphs up to isomorphism, we obtain the so-called abstract truly-
concurrent equivalence [8]. The equivalence class of a derivation ρ with respect
to such equivalence will be denoted by [ρ]a and called an abstract trace.

We are now able to introduce the notion of abstract transaction.

Definition 6 (abstract transaction). An abstract transaction is an abstract
trace [ρ]a such that any derivation ρ′ ∈ [ρ]a is a transaction.

A simple transactional gts, presented in [1], tests the equality between integer ex-
pressions involving natural numbers, represented as sequences S(S(. . . S(0) . . .)),
and a sum operator. Figure 1 shows some of the productions, whose numbering
refers to the original system. The type graph and its stable subgraph, not depicted
here, can be inferred from the labeling observing that dashed items (hyper-edges
depicted as boxed and nodes depicted as circles) are not stable.
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Fig. 1. Some productions of the t-gts testing equality of natural numbers

Figure 2 shows the sequence of graphs of a derivation starting from the stable
graph representing the expression S(0) + 0 = S(0), and using the productions of
Figure 1 in the given order. Intuitively, the derivation starts by making unstable
the top operator =, and then triggering the evaluation of the sum operator. The
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evaluation of + does not modify the stable part of the graph: it builds the result
using unstable items, which are then consumed by the evaluation of the equality
operator. The last graph is stable, and it includes the result of the evalutation
on the node to which the original equality operator was attached.

It is not difficult to check that this derivation is a transaction, as it satisfies
all conditions of Definition 5; furthermore its equivalence class is an abstract
transaction, since all shift-equivalent derivations are transactions as well.
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Fig. 2. A sample derivation evaluating S(0) + 0 = S(0)

We now extend the definition of gts morphisms to transactional gtss, explaining
how morphisms behave with respect to the stable/unstable items.

Definition 7 (t-gts morphism). Let Z1 = 〈G1, T1s〉 and Z2 = 〈G2, T2s〉 be
t-gtss. A t-gts morphism f :Z1 → Z2 is a gts morphism f :G1 → G2 between
the underlying gtss, such that

1. for all z ∈ T1 \ T1s, we have that fT (z) is defined and fT (z) ∈ T2 \ T2s;
2. for all z ∈ T1s, if fT (z) is defined then fT (z) ∈ T2s.

The category having t-gtss as objects and the corresponding morphisms as ar-
rows is denoted by TGTS.

Note that we require that the type graph component of a morphism preserves
both stable and unstable items. Additionally it must be total on unstable items.

In order to ensure that morphisms are simulations in this more general frame-
work, we prove that t-gts morphisms preserve abstract transactions.

Proposition 2 (morphisms preserve transactions). Let f :Z1 → Z2 be a
t-gts morphism and let [ρ]a be an abstract transaction in Z1. Then [f↔

T (ρ)]a
(see the note after Definition 2) is an abstract transaction in Z2.

4 Transactions as Processes

Inspired by the classical non-sequential processes for Petri nets, graph processes
have been proposed in [7,2] as a faithful representation of the derivations of a
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gts up to shift-equivalence. A graph process for a t-gts Z is defined as an “oc-
currence grammar” O, i.e., a grammar satisfying suitable acyclicity constraints,
equipped with a t-gts morphism from O to Z.

The derivations in O are mapped through the morphism to derivations in
Z, which are shown to be shift-equivalent. Vice versa, from each derivation
in Z a process can be obtained by a simple colimit construction, and shift-
equivalent derivations yield isomorphic processes. Since abstract transactions
are defined as abstract traces, the corresponding processes provide a compact,
handier representation for them, that will be exploited in the next section for
the definition of implementation morphisms among t-gtss.

In the present paper a process for a t-gts Z is defined by an explicit colimit
construction for any derivation in Z. A more abstract characterisation based on
structural properties can be provided as well, as in [2], but it is not needed here.

Definition 8 (process from a derivation). Let Z = 〈〈T, P, π〉, Ts〉 be a t-
gts, and let ρ = G0

q1,m1=⇒ G1
q2,m2=⇒ . . .

qn,mn=⇒ Gn be a derivation in Z. A
process φ associated to ρ is a t-gts morphism φ = 〈φT , φP 〉:Oφ → Z, where
Oφ = 〈〈Tφ, Pφ, πφ〉, Tφs〉 is obtained as follows

– 〈Tφ, φT 〉 is a colimit object (in T -Graph) of the diagram representing deriva-
tion ρ, as depicted (for a single derivation step) in the diagram below, where
cXi : Xi → Tφ is the induced injection for X ∈ {D, G, L, K, R};

– Tφs ↪→ Tφ = φ∗
T (Ts ↪→ T );

– Pφ = {〈qi, i〉 | i ∈ {1, . . . , n}};
– πφ(〈qi, i〉) = (〈|Li|, cLi〉 li← 〈|Ki|, cKi〉 ri→
〈|Ri|, cRi〉) (see the diagram to the
right); moreover, φP (〈qi, i〉) = qi, for all
i ∈ {1, . . . , n}.

qi : Li

gi

cLi

Ki
li ri

ki
cKi

Ri

hi

cRi

Gi−1
cGi−1

Di
bi di

cDi

Gi
cGi

〈Tφ, φT 〉

Intuitively, the colimit construction applied to a derivation constructs the graph
Tφ as a copy of the source graph plus the items created during the rewriting.

As an example, we show the type graph of the process associated to the
derivation of Figure 2.

The injections from the graphs of the
derivation are implicitly represented by in-
dexing some edges with a creation index
in the bottom-left corner, and a deletion in-
dex in the bottom-right one. The creation
index is missing in the edges that are not cre-
ated, i.e., that belong to the start graph, and
symmetrically for the deletion index. The
image of graph Gi of the derivation, with
i ∈ {1, . . . , 7}, contains all edges with cre-
ation index, if any, smaller than i, and dele-
tion index, if any, larger than or equal to i.
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Two processes φ and φ′ for a t-gts Z are isomorphic if there exists a t-
gts isomorphism f :Oφ → Oφ′ such that φ′ ◦ f = φ. An abstract process for Z
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is an isomorphism class of processes for Z and it is denoted [φ] where φ is a
representative in the class.

Since in a derivation all matches are assumed to be injective, it can be shown
that in the associated process all rules are injectively typed in Tφ: referring to
the diagram after Definition 8, all the morphisms cXi to Tφ are injective for
X ∈ {G, D, L, K, R}. If x ∈ Tφ and q = 〈qi, i〉, we say that the production q
consumes x if x is in the image of cLi and not in that of cKi ; that q creates x if
x is in the image of cRi and not in that of cKi ; and that q preserves x if it is in
the image of cKi . This leads to the following net-like notation

•q = cLi(|Li| \ li(|Ki|)) q• = cRi(|Ri| \ ri(|Ki|)) q = cKi(|Ki|)
We say that q consumes, creates and preserves items in •q, q• and q, respectively.
Similarly, the sets of productions which consume, create and preserve x ∈ Tφ

are denoted by •x, x• and x, respectively. Min(Oφ) denotes the subgraph of Tφ

consisting of the items x such that •x = ∅, and •φ the same graph typed over T
by the restriction of φT . The graphs Max (Oφ) and φ• are defined by duality.

Definition 9 (causal relation). The causal relation of a process φ is the least
transitive and reflexive relation ≤φ over Tφ (Pφ such that for all x, y ∈ Tφ (Pφ

and q1, q2 ∈ Pφ: i) x ≤φ y if x ∈ •y and ii) q1 ≤φ q2 if ((q1
•∩q2)∪(q1∩•q2)) �= ∅.

It is easy to show that the causal relation is indeed a partial order.

Definition 10 (reachable set). Let φ be a process. For any ≤φ-left-closed
P ′ ⊆ Pφ, the reachable set associated to P ′ is the set SP ′ ⊆ Tφ defined by

x ∈ SP ′ iff ∀q ∈ Pφ  (x ≤φ q ⇒ q �∈ P ′) ∧ (q ≤φ x ⇒ q ∈ P ′).

We now introduce transactional processes, i.e., processes representing abstract
transactions. For technical reasons we consider also a wider class of processes,
the unstable transactional processes, which may start and end in unstable states.

Definition 11 (transactional process). Let Z = 〈〈T, P, π〉, Ts〉 be a t-gts.
An unstable transactional process is a process φ of Z such that

1. for any x ∈ Tφs, at most one of the sets •x, x•, x is not empty;
2. for any x ∈ Min(Oφ), there exists q ∈ Pφ such that either x ∈ •q or x ∈ q;
3. for any reachable set SP ′ associated to a non-empty P ′ ⊂ Pφ, there exists

x ∈ SP ′ such that x �∈ Min(Oφ) ∪Max (Oφ).

If Min(Oφ)∪Max (Oφ) ⊆ Tφs, then φ is called transactional process (t-process).
The family of abstract unstable t-processes of Z is denoted by utProc(Z) and
tProc(Z) ⊆ utProc(Z) denotes the class of all abstract t-processes of Z.

Note that if a representative of an abstract process is a(n unstable) transactional
one, then all the other members of the equivalence class are so.

Condition 1 implies that each stable item is either in the source or in the
target state of the process. Additionally, each stable item that is preserved by
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at least one production cannot be generated nor consumed in the process itself:
this would induce a dependency between productions, violating the defining
requirements for transactions (see Definition 5). By condition 2, any item in the
source state is used in the computation. Condition 3 ensures that the process is
not decomposable into “smaller pieces”. It tells that by executing only an initial,
non-empty subset P ′ of the productions of the process, we end up in a graph SP ′

which is not entirely contained in Min(Oφ) ∪Max (Oφ), i.e., which contains at
least one unstable item. Finally, in a transactional process the source and target
states are required to be stable.

For example, the process described after Definition 8 is transactional.
From the theory of graph processes (see [2]) we know that the abstract

processes of a t-gts Z are in one-to-one correspondence with the abstract traces
of Z. More precisely, if [ρ]a is an abstract trace of Z and ρ′, ρ′′ ∈ [ρ]a are two
derivations, then the processes associated to ρ′ and ρ′′ are isomorphic. This de-
fines a function TPZ mapping the abstract traces of Z to abstract processes for
Z. Vice versa, if φ is a process for Z, and ρ, ρ′ are two derivations of Oφ, then
the retyped derivations φ↔

T (ρ) and φ↔
T (ρ′) of Z (see the observation after Defi-

nition 2) are abstract truly-concurrent equivalent, and thus belong to the same
abstract trace. This defines a function PTZ mapping the abstract processes for
Z to abstract traces of Z. Moreover, it can be proved that functions TPZ and
PTZ are inverse to each other. By the next proposition they establish an iso-
morphism between abstract transactions and abstract t-processes: hence, these
latter provide an alternative, equivalent characterisation of the former ones.

Proposition 3. Let Z be a t-gts. Then [φ] is an abstract t-process of Z iff
PTZ([φ]) is an abstract transaction.

5 The Abstract System of a Transactional GTS

As mentioned in the introduction, a t-gts can be seen at two different levels of
abstraction. It can be viewed as a standard gts, where both stable and unstable
states, and thus also the internal structure of transactions, are visible. But we can
abstract away from the unstable states and observe only complete transactions.
Intuitively, this gives rise to another gts, where abstract transactions of the
original t-gts become productions which rewrite directly the source stable state
into the target stable state. This transformation defines a mapping from the
objects of the category TGTS to those of GTS. Interestingly, equipping the
category of transactional gtss with a more general notion of morphism —called
implementation morphism—, this mapping can be turned into a functor, which
is the right adjoint to the inclusion functor in the opposite direction.

We start by introducing the abstract gts associated to a given t-gts, where
productions are abstract processes of the original t-gts corresponding to transac-
tions. For technical reasons, it is convenient to define productions as equivalence
classes of t-processes which, roughly speaking, are isomorphic when forgetting the
stable preserved part. We first define the span induced by a process.
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Definition 12 (span underlying a process). Given a process φ for a t-gts
Z, the underlying span of φ is Π(φ) = •φ ←↩ •φ∩φ• ↪→ φ• (intersection is taken
component-wise).

Given an ut-process φ, with Oφ = 〈〈Tφ, Pφ, πφ〉, Tφs〉, consider the structure
r(φ), typed over the set of items Tφ − Min(Oφ) ∩ Max (Oφ) ∩ Tφs, where any
component is restricted to such set of types (intuitively, the stable preserved
part is forgotten). Then, two ut-processes φ1 and φ2 are read-equivalent, written
φ1 -r φ2, if Π(φ1) - Π(φ2), i.e., they have the same associated span, and
r(φ1) - r(φ2). A read ut-process (rut-process) is defined as an equivalence class of
ut-processes with respect to read-equivalence, denoted as [φ]r for a representative
φ. The set of rut-processes of a t-gts Z is denoted by rutProc(Z). The set of
read t-processes (rt-processes) rtProc(Z) is defined in an analogous way.

In order to associate a concrete span to an abstract process, we need to assume
a chosen representative for any equivalence class of processes.

Definition 13 (span underlying abstract process). Let us assume for each
t-gts Z a choice function chZ , mapping each rut-process [φ]r to a concrete
representative chZ([φ]r) ∈ [φ]r. The underlying span of a rut-process [φ]r is
defined as ΠZ([φ]r) = Π(chZ([φ]r)).

We are now able to define the abstract system associated with a gts.

Definition 14 (abstract gts). Let Z = 〈G, Ts〉 be a t-gts. The abstract
gts associated to Z, denoted by A(Z), is the gts 〈Ts, rtProc(Z), ΠZ〉 where
rtProc(Z) is the set of rt-processes of Z and ΠZ is as in Definition 13.

For instance, in the abstract gts of the t-gts recalled in Section 3 the rt-process
having the type graph shown after Definition 8 is a production. The correspond-
ing span has graphs G1 and G7 as left- and right-hand side, respectively.

An implementation morphism is a t-gts morphism that maps each given
production of the source system to a read unstable transactional process of the
target system, and also provides a triple of morphisms mapping the production
underlying the process to the given production: this additional information is
needed to compose implementation morphisms correctly.

Definition 15 (t-gts implementation morphisms). For a given t-gts
Z = 〈〈T, P, π〉, Ts〉, let Ẑ = 〈〈T, rutProc(Z), ΠZ〉, Ts〉 be the t-gts having all
read ut-processes as productions. An implementation pre-morphism f :Z1 → Z2
is a triple f = 〈fT , fP , fι〉, where 〈fT , fP 〉:Z1 → Ẑ2 is a t-gts morphism and
fι is a family fι = {fι(p) | p ∈ PZ1} such that for each p ∈ PZ1 , fι(p) =
〈fL

ι (p), fK
ι (p), fR

ι (p)〉 is a given choice of the three arrows whose existence is
required in Definition 2.

Given two pre-morphisms 〈fT , fP , fι〉, 〈fT , fP , gι〉:Z1 → Z2, let p ∈ P1 such
that fP (p) = [φ]r. Then we write gι(p) ≈ fι(p) if there are a process auto-
morphism α: chZ([φ]r) → chZ([φ]r) and a span automorphism η : ΠZ([φ]r) →
ΠZ([φ]r) which restricts to the identity over unstable items, such that gι(p) =
fι(p)◦αΠ ◦η, component-wise (αΠ stands for the restriction of αT to ΠZ([φ]r)).
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An implementation morphism is an equivalence class of pre-morphisms, where
〈fT , fP , fι〉 ≈ 〈fT , fP , gι〉 if gι(p) ≈ fι(p) for all p ∈ PZ1 .

Roughly, implementation morphisms are classes of pre-morphisms up to the
equivalence induced on the third component by process isomorphisms (note that
the type component of an automorphism α : chZ([φ]r) → chZ([φ]r) restricts
to an automorphism over the span ΠZ([φ]r)). The third component is further
quotiented along isomorphisms of the stable subgraph: this is safe because, by the
definition of transaction, stable items are not used in composing computations.

In order to provide a correct definition of the category having t-gtss as
objects and implementation morphisms as arrows, we first have to explain how
implementation morphisms compose. This is summarised by the next lemma.
Given a t-gts Z and a production p in Z, below we denote by φidp the process
associated (see Definition 8) to the one-step derivation which applies p to its
left-hand side Lp with the identity match.

Lemma 1 (composition and identity for implementation morphisms).
Given a t-gts Z, let Ẑ be as in Definition 15. Then, the properties below hold.

1. Any t-gts morphism f :Z1 → Ẑ2 extends to a t-gts morphism f̂ : Ẑ1 → Ẑ2.
2. Given implementation morphisms f :Z1 → Z2 and g:Z2 → Z3, let their

composition g ◦ f : Z1 → Z3 be the t-gts morphism ĝ ◦ f :Z1 → Ẑ3. Then
composition is associative.

3. For each t-gts Z, let idZ = 〈idZT , idZP , idZ ι〉:Z → Ẑ be defined as
– the type graph component idZT is the identity;
– each production p is mapped by idZP to the abstract process [φidp ]r;
– for each production p, idZ ι(p) is a triple of isomorphisms mapping the

span ΠZ([φidp ]r) to Lp ←↩ Kp ↪→ Rp and making the two resulting
squares commute.

Then idZ is well-defined (any choice of idZ ι determines the same implemen-
tation morphism) and it is the identity on Z.

The proof of the lemma is long and involuted, and we give only some hints.
Most interesting is the proof of point 1. Let f :Z1 → Ẑ2 be a t-gts morphism
and φ a process for Z1. Thus φ has a set of productions mapped injectively into
its type graph Tφ. Any such production p is mapped by fP to a process of Z2,
equipped with morphisms from its minimal and maximal graphs to the left- and
right-hand sides of p (given by the component fι). Then the process f̂P (φ) is
obtained by “gluing” (with a colimit construction) all the processes which are
images of productions in φ along the intersections in Tφ determined by the fι

component.
The lemma allows to introduce a category with implementation morphims.

Definition 16 (category TGTSimp). We denote by TGTSimp the category
having transactional gtss as objects and implementation morphisms as arrows.

Additionally, exploiting point 1 in Lemma 1 we can show that the extension
f̂ : Ẑ1 → Ẑ2 maps stable processes to stable processes, i.e., rt-processes of Z1
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are mapped to rt-processes of Z2. This in turn can be used to prove that the
abstraction function for t-gts can be seen as a functor.

Proposition 4 (abstraction functor). Function A, mapping a t-gts to its
abstract gts, can be extended to a functor A:TGTSimp → GTS.

Quite obviously, a gts G = 〈T, P, π〉 can be seen as a t-gts I(G) = 〈〈T, P, π〉, T 〉.
This mapping can be extended to an inclusion functor I:GTS→ TGTSimp in
the following way: if f = 〈fT , fP 〉:G1 → G2 is a gts morphism, then the t-gts
morphism I(f) = 〈gT , gP , gι〉: I(G1)→ Î(G2) is given as

– gT = fT ;
– for each production p ∈ PG1 its image gP (p) is the rt-process [φfP (p)]r, where,

as above, φfP (p) is the process associated to the one-step derivation obtained
by applying fP (p) to its left-hand side;

– for each production p ∈ PG1 , gι(p) is a triple of isomorphisms mapping the
span ΠI(G2)([φfP (p)]r) to Lp ←↩ Kp ↪→ Rp and making the two resulting
squares commute.

We are now ready to present the main result of the paper.

Theorem 1 (universality of abstraction). The abstraction functor
A : TGTSimp → GTS is right adjoint to the inclusion functor I.
Proof (Sketch). For each t-gts Z, we define the component at Z of the counit
εZ : I(A(Z)) → Z. This is an implementation morphism, thus a t-gts morphism
εZ : I(A(Z)) → Ẑ. Its type graph component is simply the inclusion of the stable
type graph into the full type graph, while the component on productions maps
each abstract rt-process of Z to itself. It remains to show that given a gts G and
a t-gts Z, for each implementation morphism f : I(G) → Z, there is a unique
h:G → A(Z) such that εZ ◦ I(h) = f .

Now, observe that morphism f maps each production of G to a rt-process of
Z. Since productions in A(G) are exactly the rt-processes of G, the morphism
h:G → A(G) can be defined identically. The proofs of uniqueness and of the fact
that εZ ◦ I(h) = f are long, but routine. ��

6 Conclusions

The present paper carried on the investigation on transactional graph transfor-
mation systems, introduced in [1], as a tool for expressing transactional activities
in graph transformation. A transaction is defined as a shift-equivalence class of
derivations such that the starting and ending states are stable and all the in-
termediate states are unstable. Thus unstable items are intended to represent
temporary resources, only visible within a transaction, and the distinction be-
tween stable and unstable items is enforced by a typing mechanism.

The “indirect” definition of transactions based on the dichotomy between
stable and unstable items, inspired by the work on zero-safe nets [4], is motivated
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by our understanding of graph transformation as a data-centered formalism,
where the rules of a system are applied non-deterministically, and any form of
control on the application of rules has to be encoded in the graphs.

As far as the realm of graph transformation is concerned, though, also more
traditional notions of transaction have been considered, most importantly in
the design of PROGRES [16]. PROGRES provides a development environment
where basic operations, defined by graph transformation rules, can be combined
using a rich set of control structures, including traditional programming lan-
guage constructs, various kinds of non-deterministic choices, as well as trans-
actions. The PROGRES approach is therefore similiar to the way transactions
are introduced in programming languages and other control-centered formalism,
and as a consequence a direct comparison with our approach is not feasible.

Besides reviewing the basic definitions concerning graph transactions, enrich-
ing and streamlining the original proposal, the main result of the present work is
the characterisation of the abstract system of a t-gts, including all transactions
as productions, in terms of a universal construction, presented as a right adjoint
functor. A key concept introduced in the present paper is that of implemen-
tation morphisms among t-gtss, allowing to map productions to transactional
processes. Such morphisms are similar to the refinement morphisms of [11], where
productions can be mapped to arbitrary derivations: a deeper analysis of the re-
lationships among the two notions will be a topic of future work.

As mentioned in the introduction, the ACID properties are a canonical way
of characterising transactions, even if in our framework only the first three are
relevant. Let us discuss informally how such properties are guaranteed by the no-
tion of transaction presented in this paper. Atomicity is guaranteed by the fact
that computations that do not represent a transaction are forgotten at the ab-
stract level. Consistency is guaranteed because the initial and final states of a
transaction are all stable, and at the abstract level only stable graphs are consid-
ered. Isolation is guaranteed by the fact that a transaction, besides starting and
ending in stable states, is “minimal”, in the sense that all derivations that are
shift-equivalent to it are also transactions. Hence, intermediate unstable states
are only accessible inside the transaction itself. This implies that, if two transac-
tions can be applied in parallel to a stable graph, then all the direct derivations
of either of them are independent of the direct derivations of the other one. Thus,
as desired, the transactions can be interleaved in an arbitrary way.

Currently we are working on the definition of a notion of graph transformation
module, based on the theory presented in this paper. The idea is that a t-gts
can be seen as the implementation of a module, and its abstract gts as the
exported interface. Module composition mechanisms defined as suitable colimits
are under investigation, as well as the study of the precise relationship between
the new notion of module and existing ones in the literature (as in [11,14,13]).

Acknowledgements. We are mostly indebted to Roberto Bruni and Leila
Ribeiro for enlightening discussions about the topic of the paper, as well as to an
anonymous referee for pointing out an inconsistency in the submitted version.
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16. A. Schürr, A. Winter, and A. Zündorf. The PROGRES approach: Language and
environment. In Ehrig et al. [9], chapter 13, pages 487–550.



Categorical Foundations
of Distributed Graph Transformation

Hartmut Ehrig1, Fernando Orejas2, and Ulrike Prange1

1 Technical University of Berlin, Germany
{ehrig, uprange}@cs.tu-berlin.de

2 Technical University of Catalonia, Spain
orejas@lsi.upc.edu

Abstract. A distributed graph (N, D) consists of a network graph N
and a commutative diagram D over the scheme N which associates local
graphs D(ni) and graph morphisms D(e) : D(n1) → D(n2) to nodes
n1, n2 and edges e : n1 → n2 in N .

Although there are several interesting applications of distributed
graphs and transformations, even the basic pushout constructions for
the double pushout approach of distributed graph transformation could
be shown up to now only in very special cases.

In this paper we show that the category of distributed graphs can
be considered as a Grothendieck category over a specific indexed cate-
gory, which assigns to each network N the category of all diagrams D
of shape N . In this framework it is possible to give a free construction
which allows to construct for each diagram D1 over N1 and network mor-
phism h : N1 → N2 a free extension Fh(D1) over N2 and to show that
the Grothendieck category is complete and cocomplete if the underlying
category of local graphs has these properties.

Moreover, an explicit construction for general pushouts of distributed
graphs is given. This pushout construction is based on the free construc-
tion. The non-trivial proofs for free constructions and pushouts are the
main contributions of this paper and they are compared with the special
cases known up to now.

1 Introduction

When modelling computation by means of (standard) graph transformation,
a graph is supposed to denote the (centralized) state of a given system, and
computation steps are modelled as transformations of this graph by means of
some productions. To model distributed computation, where the state of the
given system is not monolithic, G. Taentzer [1] introduced an extension of graph
transformation called distributed graph transformation. The idea is to consider
that, on one hand, a graph N (the network graph) describes the topology of the
given system and, on the other, that the global state is, in some sense, partitioned
along that graph. In particular, this is done associating to every node n in N a
graph Gn that denotes the local state at this node, and to every edge e : n → n′

in N a graph morphism he : Gn → Gn′ . These graph morphisms allow one
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to describe the shared parts of the local states. Formally, then, a distributed
graph is just a functor from the network graph into the category of graphs. In
this context, (distributed) graph transformation is defined adapting the double-
pushout approach to the (functor) category of distributed graphs.

The practical relevance of distributed graph transformation has been demon-
strated in [2, 3], where this approach is used to keep coherence between models
of different views. This allows an integrated management of modifications in the
code and in the global UML model underlying a software artifact. Using dis-
tributed graph transformation we can define in a uniform way different kinds
of computation steps. For instance, we can describe not only computations that
occur in a single location (i.e. in the graph associated to a given node), but com-
putations that occur simultaneously in several locations that are synchronized
through the shared parts of the states involved. Moreover, we can also define
transformations on the network, for instance allowing us some forms of refactor-
ing. In some sense, this approach is related to Community (see, e.g. [4]), where
the local states are tuples rather than graphs, and Goguens General Systems
Theory [5].

Unfortunately, the basic constructions for defining distributed graph trans-
formation as presented in [1] depend on some ad-hoc conditions that, on one
hand, limit the power of the approach and, on the other hand, make it difficult
to generalize the approach to cases where the states are not modelled as ba-
sic graphs, but as attributed graphs or some other kind of arbitrary structures
[6, 7]. In particular, even the basic pushout constructions for the double pushout
approach of distributed graph transformation could be shown up to now only in
very special cases.

In this paper we provide categorical foundations for distributed graph trans-
formation that allow us to provide the basic constructions with full generality.
In particular, we generalize distributed graphs to distributed objects, where the
local diagrams are not necessarily graphs, but consist of objects and morphisms
in a certain category C. Then we show that the category of distributed objects
can be considered as a Grothendieck category over a specific indexed category,
which assigns to each network N the category of all diagrams D of shape N in
C. In this framework it is possible to give a free construction which allows to
construct for each diagram D1 over N1 and network morphism h : N1 → N2 a
free extension Fh(D1) over N2 and to show that the Grothendieck category is
complete and cocomplete if the underlying category of local objects has these
properties. Moreover, an explicit construction for general pushouts of distributed
objects is given. This pushout construction is based on the free construction. The
non-trivial proofs for free constructions and pushouts are the main contributions
of this paper and they are compared with the special cases known up to now.

The paper is organized as follows. In section 2 we study the category of dis-
tributed objects and present the free diagram extensions. Section 3 is dedicated
to the category of distributed objects as a Grothendieck category. In section 4 we
show the explicit construction of pushouts of distributed objects and, through
an example, how these pushouts are used in distributed graph transformation. In
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section 5 we introduce persistent morphisms and discuss their role with respect
to strongly componentwise pushouts as considered in [1]. Finally, in section 6 we
draw some conclusions.

We assume the reader to be familiar with the basic notions of category theory,
as presented in, e.g., [4, 8, 9].

2 The Category DisC and Free Diagram Extensions

A distributed graph representing the distributed state of a system can be de-
scribed, on one hand, by a graph N (the network graph) defining the topology
of the object and, on the other, associating to every node n in N a graph D(n)
that denotes the local state at this node, and to every edge e : n → n′ in N a
graph morphism D(e) : D(n) → D(n′). In particular, it is assumed that these
graph morphisms describe the shared parts of the local states (see example 1).

Formally, in categorical terms, this means that a distributed graph (N, D)
consists of the network graph N and a diagram D : N → Graph which asso-
ciates local graphs D(ni) and graph morphisms D(e) : D(n1) → D(n2) to nodes
n1, n2 and edges e : n1 → n2 in N . However, if we consider that states are not
specifically modelled by basic graphs, but by some other kind of structure (as,
e.g., typed attributed graphs) then we can easily generalize this definition. In
particular, we can consider that a distributed object is a diagram D : N → C,
where C is an arbitrary category. Obviously, we may require C to satisfy some
specific properties.

In addition, we require that a diagram D : N → C is commutative. We believe
that this should be a consequence of assuming that the morphisms associated
to the edges (or to the paths) in N denote the shared parts of the distributed
states. In particular, suppose that we have two paths p1 and p2 from a node n
into n′. According to our intuition, this means that we can consider that for the
state at node n, D(n), there is a (not necessarily injective) image D(p1)(D(n)) of
D(n′), and similarly for D(p2). Now, if D(p1) would denote a different morphism
from D(p2), then, it would mean that we could also identify D(p1)(D(n)) and
D(p2)(D(n)), which are different parts of the state at n′.

A graph G = (V, E, s, t) consists of a set of nodes (or vertices) V and a set
of edges E, with functions s, t : E → V assigning a source and target node to
each edge, respectively. This concept has been extended to many different kinds
of graphs, like hypergraphs, labelled graphs, typed and/or attributed graphs,
which we do not define explicitly. Instead, we assume to have some category C
and present the theory of distributed objects on the categorical level, which can
be instantiated by various graphs and graph-like structures.

Given a graph G = (V, E, s, t), it can be interpreted as the scheme of a
category. This means, the reflexive and transitive closure of G is a category with
objects V . Vice versa, a category C can be seen as a (possibly infinite) graph.
In the following, we switch between both concepts as needed in the particular
context. As a consequence, we use the terms functor and diagram as synonyms
in this context.
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Definition 1 (path morphism and commutative functor). Given a graph
N , a functor D : N → C (interpreting N as a category) and a path p : n

e1→
...

ek→ n′ in N , we define the path morphism D(p) : D(n) → D(n′) of D along p

as D(p) = D(ek) ◦ ... ◦D(e1). For the empty path εn : n
0→ n, D(εn) = idD(n).

A functor D : N → C is commutative, if for any two paths p1, p2 : n
∗→ n′ in

N we have D(p1) = D(p2).

Remark 1. If D is commutative, we obviously have D(c) = idD(n) for each circle

c : n
∗→ n in C. For paths p : n

∗→ n′, p′ : n
∗→ n′ f→ n′′ and p′′ : n′′ f ′

→ n
∗→ n′ it

follows that D(p′) = D(f) ◦D(p) and D(p′′) = D(p) ◦D(f ′).

We can now define the category of distributed objects:

Definition 2 (distributed object and distributed morphism). Given a
category C, a distributed object (N, D) over C (or just a distributed object, if C
is implicit in the given context) consists of a graph N , called network graph, and
a commutative functor D : N → C, called diagram functor.

A distributed morphism over C (or just a distributed morphism, if C is im-
plicit in the given context), f = (fN , fD) : (N1, D1) → (N2, D2), consists of a
graph morphism fN : N1 → N2 and a natural transformation fD : D1 → D2◦fN .

Distributed objects and distributed morphisms over C form the category DisC.

In particular, we may notice that our previous definition implicitly associates to
every network graph N a category consisting of all the commutative functors
from N to C. This construction can be extended to a functor.

Definition 3 (functor Diag). The functor Diag : Graphsop → Cat is de-
fined by

– for a graph N , Diag(N) = comFunct[N,C], the category of commutative
functors (diagrams) D : N → C,

– for a graph morphism f : N → N ′ in Graphs, Diag(f)(D′ : N ′ → C) =
D′ ◦ f : N → C and Diag(f)(t : D′

1 → D′
2) = t ◦ f .

In order to construct pushouts and colimits in DisC in section 3 and 4 we
need to show that each commutative diagram D1 : N1 → C has a free extension
D2 : N2 → C for each network morphism h : N1 → N2. In fact, if C is cocomplete
then each network morphism has an associated free construction (extension),
leading to a free functor left adjoint to Diag(h). Note, that we only need finite
cocompleteness of C if all network graphs N are finite.

Theorem 1. If C is cocomplete then for all network morphisms h : N1 → N2
there is a functor Fh : comFunct[N1,C] → comFunct[N2,C], that is free with
respect to Diag(h).

Construction. We have to show that there is a free construction (D2, u
D1
h ) with

D2 : N2 → C and uD1
h : D1 → Diag(h)(D2) for each diagram D1 : N1 → C.
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For n2 ∈ N2 define N1(n2) as the full subgraph of N1 induced by the node
set V (N1(n2)) = {n1 ∈ N1 | ∃ path p : h(n1)

∗→ n2 ∈ N2}.
The restriction D1|N1(n2) : N1(n2) → C is a functor. Let (Col(n2),

(in2
n1

)n1∈N1(n2)) be the colimit of D1|N1(n2), with in2
n1

: D1(n1) → Col(n2) and
in2
n′

1
◦D1(e1) = in2

n1
for all e1 : n1 → n′

1 ∈ N1(n2).
For an edge e2 : n2 → n′

2 we have N1(n2) ⊆ N1(n′
2) and therefore (Col(n′

2),
(in

′
2

n1)n1∈N1(n2)) is a cocone of D1|N1(n2). This means that there exists a unique

morphism ce2 : Col(n2) → Col(n′
2) with ce2 ◦ in2

n1
= i

n′
2

n1 for all n1 ∈ N1(n2).

D1(n′
1)D1(n1)

Col(n2)

Col(n′
2)

D1(e1)

i
n2
n1

i
n2
n′
1

i
n′
2

n1
i
n′
2

n′
1

ce2

Define Fh(D1) = D2 : N2 → C by D2(n2) = Col(n2) and D2(e2) = ce2 , and
uD1

h = (ih(n1)
n1 )n1∈N1 . ��

Proof idea. From the construction it follows that D2 is a commutative functor
and uD1

h is a well-defined natural transformation.
For a distributed object (N2, D

′
2) and a natural transformation t : D1 → D′

2◦h
we have to show that there is a unique natural transformation t∗ : D2 → D′

2
with (t∗ ◦ h) ◦ uD1

h = t.
For a node n2 ∈ N2 and n1 ∈ N1(n2), by construction there exists a path pn2

n1
:

h(n1)
∗→ n2 in N2. Since D′

2 is commutative, D′
2(p

n2
n1

) is independent from the
chosen path (if there is more than one). Then (D′

2(n2), (D′
2(p

n2
n1

)◦tn1)n1∈N1(n2)) is
a cocone of D1|N1(n2) and there exists a unique morphism t∗n2

: D2(n2)→ D′
2(n2)

with t∗n2
◦ in2

n1
= D′

2(p
n2
n1

) ◦ tn1 for all n1 ∈ N1(n2).
t∗ = (t∗n2

)n2∈N2 is a natural transformation, and the uniqueness follows from
the uniqueness of its components.

D1(n′
1)D1(n1)

Col(n2)

D′
2(h(n1)) D′

2(h(n′
1))

D′
2(n2)

D1(e1)

i
n2
n1

i
n2
n′
1

tn1

D′
2(h(e1))

tn′
1

t∗
n2

D′
2(pn2

n1 ) D′
2(pn2

n′
1
)
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For n1 ∈ N1 we have t∗h(n1) ◦ i
h(n1)
n1 = D′

2(p
h(n1)
n1 ) ◦ tn1 = tn1 , therefore (t∗ ◦ h) ◦

uD1
h = t, because p

h(n1)
n1 : h(n1)

∗→ h(n1) implies D′
2(p

h(n1)
n1 ) = id (see [10] for

more detail). ��
Example 1. Consider the network graphs N1 and N2 shown in Fig. 1 on the left
hand side, the inclusion h : N1 → N2 and the diagram D1 : N1 → Graphs
shown in Fig. 1 on the right hand side. In the figure on the right, the thick lines
represent the network structure, and the diagram morphism is indicated by the
small numbers.

u v

w

u v

w

xe e f

g

N1 N2

1 2 1 2

h
D1(u) D1(v)

D1(w)

Fig. 1. Two network graphs and a diagram

From the construction we get for each node n2 ∈ N2 the corresponding sub-
graphs N1(n2) of N1, where N1(u) contains only the node u, N1(v) contains the
nodes u and v and the edge e, N1(x) = N1(v) and N1(w) contains the nodes u
and w. The corresponding colimit constructions lead to the following free con-
struction diagram D2 : N2 → Graphs over D1 : N1 → Graphs with D2(u) =
Colim(D1|N1(u)) = D1(u), and similarly D2(v) = D1(v), D2(x) = D1(v) and

D2(w) = D1(u)
·∪ D1(w) as shown in Fig. 2.

1 2 1 2

1 2

1 2

D2(u) D2(v) D2(x)

D2(w)

Fig. 2. The corresponding free construction

In section 4 we will use the following decomposition.

Proposition 1. A distributed morphism f = (fN , fD) : (N1, D1) → (N2, D2)
can be decomposed into the following diagram, where f∗

D : FfN (D1)→ D2 is the
adjunction morphism associated to the morphism fD : D1 → Diag(fN)(D2).
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(N2, D2)(N1, D1)

(N2, FfN (D1))

(fN ,fD)

(fN ,u
D1
fN

) (id,f∗
D)

Proof. This follows directly from the free construction (Theorem 1). ��

3 DisC as a Grothendieck Category

In this section we show that the category DisC can be considered as a Grothen-
dieck category, because there are general categorical results how to construct
limits and colimits in Grothedieck categories [4, 11, 12]. We start by defining
indexed categories.

Definition 4 (indexed category). Given a category I, called index category,
an indexed category is a functor F : Iop → CAT, where CAT denotes the
category of all categories.

Definition 5 (Grothendieck category). The Grothendieck category Gr(F)
of an indexed category F has as objects pairs (i, A) with i ∈ I and A ∈ F (i).
A morphism (i, A) → (i′, A′) is a pair (f, g) with f : i → i′ ∈ I and g : A →
F (f)(A′) ∈ F (i).

Given morphisms (f, g) : (i, A)→ (i′, A′) and (f ′, g′) : (i′, A′)→ (i′′, A′′), the
composition is defined by (f ′ ◦ f, F (f)(g′) ◦ g). For an object (i, A), the identity
id(i,A) is given by (idi, idA).

According to [11] we have:

Fact 1. Let F : Iop → CAT be an indexed category with Grothendieck category
Gr(F). If I and F (i) are complete for all i ∈ I, and F (f) is continuous for all
f : i → j ∈ I then also Gr(F) is complete. If I and F (i) are cocomplete for
all i ∈ I, and F (f) has a left adjoint for all f : i → j ∈ I then also Gr(F) is
cocomplete.

Remark 2. As shown in the proof in [11], limits are constructed componentwise
on the index and the functor level. However, this componentwise construction
does not work for colimits, where the free construction has to be taken into
account.

As a consequence, we can also form the category of distributed objects as the
Grothendieck category associated to the indexed category Diag as defined in
Def. 3.

Theorem 2. The category DisC is a Grothendieck category over the indexed
category Diag : Graphsop → Cat.

Proof. This is a direct consequence of the definitions of distributed objects and
morphisms, the given functor Diag and the construction of a Grothendieck cat-
egory. ��
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Theorem 3. If C is (co)complete, then also DisC is (co)complete.

Proof idea. According to Fact 1, if C is (co)complete, DisC being (co)complete
follows from the facts that Graphs is (co)complete, comFunct[G,C] is
(co)complete for all G ∈ Graphs and Diag(h) is continuous (has a left ad-
joint) for all h : G → G′ ∈ Graphs by Theorem 1 (see [10] for more detail).
Note that Theorem 1 shows that Diag(h) has a left adjoint Fh. This means that
Diag(h) is a right adjoint and hence continuous. ��

4 Graph Transformation in DisC

In this section, we define graph transformations on distributed objects in the
double pushout (DPO) approach based on [8]. In particular, we present explicit
pushout and pullback constructions in DisC and discuss the gluing condition.

Definition 6 (distributed transformation system). A distributed transfor-
mation system TS = (DisC, S, P ) consists of a category DisC over some cate-
gory C, a start object S and a set of distributed productions P , where

1. a distributed production p = L
l← K

r→ R consists of distributed objects L,
K and R and distributed morphisms l : K → L and r : K → R,

2. a direct distributed transformation (N, D)
p,m
=⇒ (N ′, D′) of a distributed object

(N, D) via the production p and a match m : L → (N, D) is given by the
following diagram, where (1) and (2) are pushouts in DisC,

L

(N, D)

K

C

R

(N ′, D′)

(1) (2)

l r

m n

3. a distributed transformation is a sequence (N0, D0) ⇒ (N1, D1) ⇒ ... ⇒
(Nn, Dn) of direct distributed transformations, written (N0, D0)

∗⇒ (Nn, Dn),
4. the language L(TS) consists of all distributed objects (N, D) in DisC deriv-

able from the start object S by a transformation, i.e. L(TS) = {(N, D) | S ∗⇒
(N, D)}.

i

c
String name

s
String name

m
String from

String to
String text

i
c1 : c

name=C1
i i

s1 : s
name=S1

i

i
s2 : s

name=S2
ii

c2 : c
name=C2

Fig. 3. The type graph and an example of a distributed network
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p1 :

⇒

c1 : c
name=x

c1 : c
name=x

m1 : m
from=x

to=y
text=z p2 :

⇒

i c1 : c
name=x

m1 : m
from=x

to=y
text=z

i

i s1 : s

i c1 : c
name=x

m1 : m
from=x

to=y
text=z

i

i
s1 : s

m1 : m
from=x

to=y
text=z

p3 :

⇒

i s1 : s m1 : m
from=x

to=y
text=z

i

i
s2 : s

i s1 : s m1 : m
from=x

to=y
text=z

i

i
s2 : s

p4 :

⇒

i s1 : s m1 : m
from=x

to=y
text=z

i

i

c1 : c
name=y

i s1 : s m1 : m
from=x

to=y
text=z

i

i

c1 : c
name=y

Fig. 4. Example communication productions

Example 2. In the following, we model a small client-server system with asyn-
chronous communication using typed attributed graph transformation. In this
case C is the category AGraphsATG of typed attributed graphs (see [8] for more
detail) leading to distributed graphs in DisC over typed attributed graphs. The
type graph of the local graphs is shown in Fig. 3 on the left hand side. Each client
(c) and server (s) has a name and can be connected to an interface connector
(i). Messages (m) can be assigned to clients and servers, and they contain the
sender (from), the receiver (to) and the message itself (text).

On the network level, clients and servers can be connected to other servers
via the interface connectors. An example of a distributed graph is given in Fig.
3 on the right hand side, where two clients c1 and c2 are connected to different
servers s1 and s2, which themselves are connected.

The communication between the clients is modeled by graph transformation
using communication productions p1 - p4 in Fig. 4, that do not change the
structure of the underlying network. As usual, only the left- and the right-hand
side of the productions are shown - the gluing object is their intersection. First,
a client may create a message using the production p1. Then the message is sent
to the server with production p2. Between different servers, the message can be
transmitted using production p3. If the receiver of the message is connected to
the current server where the message is stored, this client can receive the message
using production p4.

Fig. 5 shows some productions for network administration. With production
q1, a new server is added, and q2 adds a new client.

q1 :

⇒

i s1 : s i s1 : s

i

i
s2 : s

name=x q2 :

⇒

i s1 : s i s1 : s

i

i
c1 : c

name=x

Fig. 5. Example network productions
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The result of an application of the production q2 with c1 replaced by x = c3
and s1 = s2 to the distributed graph shown in Fig. 3 is depicted in Fig. 6, where
a new client c3 is added, changing the network graph.

i
c1 : c

name=C1
i i

s1 : s
name=S1

i

i
s2 : s

name=S2
ii

c2 : c
name=C2

i
c3 : c

name=C3
i

Fig. 6. Application of the distributed production q2

From Theorem 3 it follows that if C is cocomplete the pushout over arbi-
trary distributed morphisms f and g exists. Since pushouts are the underly-
ing structure of transformations, we want to characterize them more explicitly.
The following construction has been introduced as generalized amalgamation in
[13, 14].

Theorem 4. Given distributed morphisms f = (fN , fD) : (N0, D0) → (N1, D1)
and g = (gN , gD) : (N0, D0) → (N2, D2) in DisC. According to Proposition 1
these morphisms can be decomposed. Then the diagram in the upper part of Fig.
7 is a pushout over f and g in DisC, where (1′) is a pushout in Graphs with
g′N ◦ fN = hN = f ′

N ◦ gN and (4′) is a pushout in comFunct[N3,C].

Proof idea. It can be shown that the squares (1), (2), (3) and (4) are pushouts
in DisC. Then by pushout composition also the complete diagram is a pushout
in DisC (see [10] for more detail). ��
Remark 3. It may be noted that Prop. 1 and the above Theorem are formulated
for the category DisC, but they hold for any Grothendieck category with free
constructions, as shown for a similar general framework in [13, 14].

Example 3. Fig. 8 shows an example pushout construction, as defined above in
Fig. 7. The network morphisms can be obtained from the relative positions of the
nodes. Square (1) shows the pushout on the network level, and the free exten-
sions of the diagram D0. Squares (2) and (3) show the corresponding extensions
for diagrams (D2) and (D1), respectively. Square (4) gives the componentwise
pushout on the diagram level.

We also have an explicit construction of pullbacks in DisC with complete C.

Theorem 5. Given distributed morphisms f = (fN , fD) : (N1, D1) → (N3, D3)
and g = (gN , gD) : (N2, D2) → (N3, D3) in DisC. Then the diagram (1) is a
pullback over f and g in DisC, where (2) is a pullback in Graphs with gN ◦f ′

N =
hN = fN ◦ g′N and (3) is a pullback in comFunct[N0,C].
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(N2, FgN (D0))(N0, D0)

(N1, FfN (D0)) (N3, FhN (D0))

(gN ,u
D0
gN

)

(fN ,u
D0
fN

)

(g′
N ,u

FfN
(D0)

g′
N

))

(f ′
N ,u

FgN
(D0)

f′
N

))(1) (2)

(N2, D2)

(N3, Ff ′
N

(D2))

(id,g∗
D)

(id,Ff′
N

(g∗
D))

(f ′
N ,u

D2
f′

N

)

(3)

(N1, D1) (N3, Fg′
N

(D1))

(id,f∗
D) (id,Fg′

N
(f∗

D))

(g′
N ,u

D1
g′

N

)

(4)

(N3, D3)(id,s)

(id,t)

Ff ′
N

(D2)FhN (D0)

Fg′
N

(D1) D3

Ff′
N

(g∗
D)

F
g′

N
(f∗

D)

s

t(4′)

N2N0

N1 N3

gN

fN

g′
N

f ′
N(1′)

Fig. 7. Explicit pushout construction in DisC

(N0, D0) (N2, D2)

(N1, D1) (N3, D3)

(f ′
N ,f ′

D)

(g′
N ,g′

D)

(fN ,fD)

(gN ,gD)(1)

N0 N2

N1 N3

f ′
N

g′
N

fN

gN(2)

D0 D2 ◦ f ′
N

D1 ◦ g′N D3 ◦ hN

f ′
D

g′
D

fD◦g′
N

gD◦f ′
N(3)

Proof. Follows from the proof of Fact 1 in [11] and Remark 2.

5 Persistent Morphisms and Componentwise Pushouts

In [1], the author does not study the construction of general pushouts of dis-
tributed graphs. Instead, the paper concentrates on studying when it is possible
to build strongly componentwise pushouts. Intuitively, if the network morphisms
involved are injective, a componentwise pushout of distributed graphs (1) can
be seen as the gluing of two distributed graphs (with respect to the common
subgraph (N0, D0)), where for each node n3 in N3, if n3 = g′N (fN(n0)) then the
graph at this node, D3(n3), is the gluing of the graphs D0(n0), D1(fN (n0)), and
D2(gN (n0)) with respect to the corresponding morphisms defined by fD and
gD. In the following, we call this ”componentwise pushouts”. But in [1], strongly
componentwise pushouts are considered with the following additional property:
if n3 is not the image of any node in N0, but just of a node n1 in N1 (respectively
n2 in N2) then D3(n3) is equal to D1(n1) (respectively D2(n2)).

(N0, D0) (N2, D2)

(N1, D1) (N3, D3)

(gN ,gD)

(fN ,fD)

(g′
N ,g′

D)

(f ′
N ,f ′

D)(1)
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1 2 1 2 3

4

1 2 1 2 3 1 2 3

1 2 4

12 12 3 123 5

124

∅

1 2 1 2 3 4

4
∅

1 2 1 2 3 4 1 2 3 4

1 2 4
∅

12 124 3 1234 5

124

1 2 6 1234

6 4 4

1 2 6 1234 6 1234

1 2 6 4 4

12 6 1234 6 1234 5

6 124 4

D0 D2

D1 D3

FgN (D0)

FfN (D0) FhN (D0) Ff ′
N

(D2)

Fg′
N

(D1)

(1) (2)

(3) (4)

Fig. 8. Example of an explicit pushout construction

This means, in [1], Taentzer provides properties for an if-and-only-if charac-
terization of the existence of strongly componentwise pushouts. Unfortunately,
these properties are quite ad-hoc and depend not only on the span of network
morphisms, but also on the diagrams, and thus are difficult to generalize to
categories of distributed objects over a category C different than Graphs.

We think that it is important for several applications to have componentwise
pushouts, but not necessarily stronlgy componentwise as in [1]. Fig. 8 is an
example of a componentwise pushout, which is not strongly componentwise.
The upper right node in D2 has no preimage in D0, but the local graph is
different from the corresponding local graph in D3. However, in general, arbitrary
pushouts of distributed graphs will not be componentwise. The key property
to ensure in Proposition 4 componentwise pushouts is that the given network
morphisms are persistent in the following sense:

Definition 7 (persistent network morphism). If C is cocomplete, a mor-
phism h : N1 → N2 is persistent if for every D in comFunct[N1,C] the unit of
the adjunction, uD

h : D → Diag(h) ◦ Fh(D), is an isomorphism.

For a characterization of persistent morphisms, we need the following property
of colimits.

Proposition 2. Given a commutative functor D : N → C with colimit object
Col(D) of D, then we have for any n ∈ N :
If for all n′ ∈ N there is a path pn′ : n′ ∗→ n in N then D(n) ∼= Col(D).

Proof idea. Since path morphisms are unique, (D(n), (D(pn′))n′∈N ) is a cocone
of D leading to a unique morphism x : Col(D) → D(n). Using the properties of
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colimit Col(D) and commutative D it can be shown that x is an isomorphism
(see [10] for more detail). ��
Taking into account the construction of free functors in Theorem 1, we are now
able to characterize persistent network morphisms for cocomplete categories C.
Intuitively, a morphism h : N1 → N2 is persistent if for a path from h(n1) to
h(n2) in N2 there is already a path from n1 to n2 in N1.

Proposition 3. A morphism h : N1 → N2 is persistent if we have for all nodes
n1, n

′
1 ∈ N1 the following property:

If there exists a path h(n1)
∗→ h(n′

1) ∈ N2 then there exists a path n1
∗→ n′

1 in
N1.

Proof. Given D : N1 → C. For n1 ∈ N1 we have Diag(h) ◦ Fh(D)(n1) =
Fh(D)(h(n1)) = Col(D|N1(h(n1))) as defined in the construction of Theorem 1.
If n′

1 ∈ N1(h(n1)) then there is a path h(n′
1)

∗→ h(n1) in N2. The above condition
makes sure that there is also a path n′

1
∗→ n1 in N1. Applying Proposition 2 with

F = D|N1(h(n1)), this means that Col(D|N1(h(n1)))
∼= D|N1(h(n1))(n1) = D(n1)

and hence Diag(h) ◦ Fh(D)(n1)
∼= D(n1). ��

Remark 4. This property is also necessary for persistency for all categories C,
where the colimits of an arbitrary F : → C and of its restriction F | :

→ C are in general not isomorphic.

Then, using the construction of pushouts in Theorem 4 we can show that if the
associated network morphisms are persistent then the pushouts of the interface
graphs are componentwise.

Proposition 4. If fN and gN are persistent, then the pushout in DisC is a
componentwise pushout on the interface network, i.e. D3(hN (n0)) is the pushout

of D1(fN (n0))
fD,n0← D0(n0)

gD,n0→ D2(gN (n0)) for all n0 ∈ N0.

Proof idea. In Graphs, pushouts can be shown to be closed under persistent
morphisms. This means that also f ′

N , g′N are persistent and we have Diag(hN) ◦
FhN (D0)

∼= D0, Diag(g′N)◦Fg′
N

(D1)
∼= D1 and Diag(f ′

N)◦Ff ′
N

(D2)
∼= D2. Since

pushouts in functor categories are constructed componentwise, this means that

D3(hN (n0)) is the pushout of D1(fN (n0))
fD,n0← D0(n0)

gD,n0→ D2(gN (n0)) for all
n0 ∈ N0 according to the pushout (4) in Fig. 7. ��

6 Conclusion

In this paper we have presented categorical foundations for distributed graph
transformation that, in our opinion, considerably improve [1]. In particular, we
have seen that the category of distributed objects has free constructions and is
complete and cocomplete (provided that the underlying category is so). More-
over, we have shown how to explicitly build pushouts using the concept of gener-
alized amalgamation introduced in [13, 14] and we have characterized the class of
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morphisms (persistent morphisms) that ensure that in a pushout the interfaces
will be glued componentwisely and discussed the relationship with [1].

6.1 Towards a Theory of Distributed Graph Transformation

We have provided the basic constructions for defining transformations. However,
this is just a first step for fully studying distributed graph transformation in a
general setting.

According to Theorem 3, DisC is complete and cocomplete provided that C is
complete and cocomplete. Since the categories Graphs of graphs, GraphsTG of
typed graphs and AGraphsATG of typed attributed graphs satisfy both prop-
erties [8, Thm. 11.3], DisGraphs, DisGraphsTG and DisAGraphsATG are
complete and cocomplete. This means especially that we are able to construct
pushouts and pullbacks, which are needed in the DPO approach. The key ques-
tion is, whether there is a suitable class M for DisC such that (DisC,M)
becomes a (weak) adhesive HLR category. This would allow to instantiate the
corresponding theory in [8] to distributed graph transformation over C. Unfortu-
nately, for the most obvious choices M1 = Monos×Monos, M2 = Persistent
Monos×Monos andM3 = Persistent Monos×MorC, (DisC,Mi), i = 1, 2, 3
is in general not (weak) adhesive HLR, where persistent morphisms are defined
in section 5. In order to obtain a (weak) adhesive HLR category, M-morphisms
have to be monomorphisms (this rules out choice M3), pushouts along M-
morphisms have to be pullbacks (this rules out choice M1) and M-morphisms
have to be closed under pullbacks (this rules out choice M2).

But we can show that (injective) persistent network morphisms are closed
under pushouts, which implies that at least M3 is closed under pushouts. This
means that we can obtain the Local Church-Rosser Theorem [8, Thm. 5.12] for
(C,M3), provided that we require a stronger notion of independence including
the M3 PO-PB decomposition property for the given pair of direct transforma-
tions in the corresponding proof.

Moreover we obtain a weaker version of the Embedding Theorem [8, Thm.
6.14], which usually requires an initial pushout (1) over a morphism f .

B G

C G′

f(1)

It is an interesting open question under which conditions initial pushouts
over distributed morphisms exist and how they can be constructed for suitable
C. This would immediately lead to a necessary and sufficient gluing condition
[8, Thm. 6.4], which is important for the construction of direct transformations.
If we do not have initial pushouts, we can also take some other pushout (1)
over f , including the trivial case B → C = G → G′, and replace the notion of
consistency based on pullback-constructions and the boundary object B in (1)
by B-consistency depending on the chosen B. In fact, the proof in [8] only uses
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the pushout property of (1) and not the initiality, which, however, is used for
the Extension Theorem [8, Thm. 6.16].
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Abstract. We introduce an extension of Graph Grammars (GGs), called Dy-
namic Graph Grammars (DynGGs), where the right-hand side of a production
can spawn fresh parts of the type graph and fresh productions operating on it.
The features of DynGGs make them suitable for the straightforward modeling of
reflexive mobile systems like dynamic nets and the Join calculus. Our main result
shows that each DynGG can be modeled as a (finite) GG, so that the dynamically
generated structure can be typed statically, still preserving exactly all derivations.

1 Introduction

Graphs can model complex systems at a level of abstraction that is both intuitive and for-
mal. Graph Grammars (GGs) originated in the late 60’s as a suitable extension of string
grammars: string concatenation is replaced by graph gluing and string rewriting by sub-
graph replacing. As a model of concurrency, there is also a close analogy between GGs
and Petri nets (PNs), as a Petri net can be straightforwardly modeled as a particular
GG over discrete graphs. Solid theoretical basis are now available for many different
kinds of graph transformation, ranging from the essential node replacement systems [8]
and edge replacement systems [6] to the more sophisticated synchronized hyperedge
replacement systems [3,11,10] and algebraic approaches to graph rewriting [4,7].

To the best of our knowledge, one extension that has not been deeply investigated
in the literature is the use of reflexive productions that can release new rewrite rules.
Reflexive systems arise naturally in many areas where graph transformation techniques
have been applied with success, like biological and chemical systems and distributed
and mobile computing. Moreover, the reflexive extension of many different kinds of
rewrite systems have been studied in the literature. In particular, dynamic nets are a
mobile extension of PNs, expressive enough to model mobile calculi like π-calculus
and Join calculus [1,2]. Dynamic nets are indeed strictly more expressive than PNs.

Exploiting the analogy between PNs and GGs, we propose a reflexive extension of
GGs, called Dynamic Graph Grammars (DynGGs), whose generality is witnessed by
encodings of dynamic nets and Join calculus. However, when posing the question:

“Are Dynamic Graph Grammars more expressive than ordinary ones?”

our main result provides a negative answer: though DynGGs can offer a more conve-
nient abstraction, computationally speaking they are not more expressive than GGs.

� Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA.

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 230–244, 2006.
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From GGs to DynGGs. To complete this informal introduction, we sketch the design
choices of DynGGs, introduce some terminology and give a minimal example.

Let T denote a type graph and GT a graph typed over T . Ordinary T -typed DPO

productions are spans of the form p : (LT
l← KT

r→ RT ) such that l and r preserve the
typing of items in KT . (We assume that the reader has some familiarity with GGs, and
hence postpone exact formalization to later sections.)

A first simple extension is to consider productions like p : (LT
l← KT

r→ RT ′) where
T ⊆ T ′, so that fresh types can be generated and used for typing RT ′ . This way the fresh
types introduced by p cannot be exploited in the (left-hand side of) productions. The
idea is then to spawn also new productions able to operate on items typed in T ′ \T .

A DynGG is thus a triple (T,GT ,P) where T is a type graph, GT a graph typed over

T and P a set of T -typed dynamic productions that take the form p : (LT
l← KT

r→ GT ′)
where GT ′ is again a (T ′-typed) DynGG and r relates KT to the initial graph of GT ′ .
For example, when P = /0, then the grammar is roughly a T -typed graph GT , which
is statically fixed and cannot change. Such grammars are called static. A production
p is static if its right-hand side GT ′ is a static grammar and T ′ = T . If all productions
are static, then the grammar is called shallow and is essentially an ordinary GGs: the
application of any production can neither change the type graph nor spawn new rules.

Figures 1 and 2 introduce a small ad hoc example whose purpose is to expose a
peculiarity of dynamic rewrites. Let Ta be the singleton type graph with just one node
a. Let Tg ⊃ Ta consisting of nodes a and b and two edges f : a→ b, and g : b→ b.

Take the Ta-typed dynamic grammar Ga with the dynamic production p in Figure 1.
For simplicity, we take the inclusions as legs of the span and draw the typing (dotted
lines) only once for each item. The left-hand side (i) of p consists of a Ta-typed graph
with just one node n1, which is preserved by the context (ii), and the right-hand side
(iii) spawns a shallow Tg-typed grammar Gp whose initial graph has, beside n1, one
additional node n2 and one arc h. The grammar Gp itself has just one static production
q ∈ Pp, illustrated in Figure 2: the left-hand side (i) is a graph with three nodes m0 and
m1,m2, which are all preserved (ii), and two arcs h1,h2, which are deleted, and the right-
hand side (iii) spawns the static Tg-typed grammar Gq (i.e., a graph) with one additional
arc l from m1 to m2 and type g.

Assume the initial graph of Ga is a discrete graph G0 with one node k typed over a.
The application of the production p (with the obvious matching from n1 to k) spawns a
fresh instance G1

p of Gp: the type graph becomes Tg1 and the underlying graph becomes
G1 ⊃ G0 with nodes k (typed a) and k1 (typed b1) connected by an arc h1 (typed f1).
Moreover, a production q1 is now available beside p. A second application of p spawns
another fresh instance G2

p of Gp: the type graph becomes Tg1 ∪Tg2 and the underlying
graph becomes G2 ⊃G1 with a new node k2 and an arc h2 : k→ k2. Again, a production
q2 is now available. Similarly, p can be applied again and again (see Figure 6). However,
no suitable matching can ever be found for the application of q1, q2, etc. In fact, it is
not possible to find two arcs with the same type, say fi, and the identification condition
prevents a non-injective matching of the two arcs in the left-hand side of qi.

Now compare Ga with its static, flattened Tg-typed version, where only two produc-
tions p and q are available at any time: after two derivation steps with p the underlying
graph has two nodes typed over b and two arcs typed over f , and thus q can be applied!
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Fig. 2. A static production q

The difference lies in the separation principle that DynGGs imposes on items pro-
duced as freshly-typed instances by different applications of the same production. We
shall reprise this example to show that incautious encodings of DynGGs intro GGs
would introduce unwanted derivations.

Synopsis. § 2 accounts for some basics of typed GGs [5]. The definition of DynGGs
is original to this contribution and described in § 3, where DynGGs are shown to be a
conservative extension of GGs. § 4 reports some sample encodings of other reflexive
frameworks. The main result of the paper is in § 5, where it is shown that GGs have the
same expressive power as DynGGs. Concluding remarks and future work are in § 6.

2 Typed Graph Grammars

A (directed) graph is a tuple G = 〈NG,EG,sG,tG〉, where NG is a set of nodes, EG is
a set of edges (or arcs), and sG,tG : EG → NG are the source and target functions. We
shall omit subscripts when obvious from the context. A graph morphism f : G→ G′ is
a couple f = 〈 fN : N → N′, fE : E → E ′〉 such that: s′ ◦ fE = fN ◦ s and t ′ ◦ fE = fN ◦ t.

Definition 2.1 (Typed Graph). Given a graph of types T, a T -typed graph is a pair
〈|G|,τG〉, where |G| is the underlying graph and τG : |G| → T is a total morphism.

In GGs the graph |G| defines the configuration of the system and its items (nodes and
edges) model resources, while τG defines the typing of the resources. Hence, the un-
derlying graph |G| evolves dynamically, while the type graph T is statically fixed and
cannot change at run-time. For example, when encoding Petri nets in GGs the places
form the discrete graph of types, while markings form the configurations of the system.
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Fig. 3. DPO and type graph construction

A morphism between T -typed graphs f : G1 → G2 is a graph morphisms f : |G1| →
|G2| such that τG1 = τG2 ◦ f . The category of T -typed graphs and their morphisms is
denoted by T -Graph. Since we work only with typed notions, we will usually omit
the qualification “typed”, and we will not indicate explicitly the typing morphisms. The
following notion of retyping will be used extensively in the context of DynGGs.

Definition 2.2 (Graph Retyping). Given a T-typed graph G = 〈|G|,τG〉 and a mor-
phism σ : T → T ′ we denote by σ ·G the T ′-typed graph σ ·G = 〈|G|,σ◦ τG〉.
The key notion to glue graphs together is that of a categorical pushout. Roughly, a
pushout pastes two graphs by injecting them in a larger graph that is (isomorphic to)
their disjoint union modulo the collapsing of some common part. We recall that a span
is a pair (b,c) of morphisms b : A→ B and c : A→C. A pushout of the span (b,c) is
then an object D together with two (co-final) morphisms f : B→ D and g : C→D such
that: (i) f ◦ b = g ◦ c and (ii) for any other choice of f ′ : B → D′ and g′ : C → D′ s.t.
f ′ ◦ b = g′ ◦ c there is a unique d : D→ D′ s.t. f ′ = d ◦ f and g′ = d ◦ g. If the pushout
is defined, then c and g is called the pushout complement of 〈b, f 〉.

A (T -typed graph) DPO production p : (L l← K
r→ R) is a span of injective graph

morphisms l : K → L and r : K → R. The T -typed graphs L, K, and R are called the
left-hand side, the interface, and the right-hand side of the production, respectively.

Definition 2.3 (DPO graph grammar). A (T -typed) DPO graph grammar G is a tuple
〈T,Gin,P〉, where Gin is the initial (T -typed) graph, P is a set of DPO productions.

Given a graph G, a production p : (L l← K
r→ R), and a match m : L → G, a direct

derivation δ from G to H using p (based on m) exists, written δ : G ⇒p H, if and
only if the diagram in Figure 3(a) can be constructed, where both squares are pushouts
in T -Graph: (1) the rewriting step removes from the graph G the items m(L− l(K)),
yielding the graph D (with k,b as a pushout complement of 〈m, l〉); (2) then, fresh copies
of the items in R−r(K) are added to D yielding H (as a pushout of (k,r)). The interface
K specifies both what is preserved and how fresh items must be glued to the existing
part. The existence of the pushout complement of 〈m, l〉 is subject to the satisfaction of
the following gluing conditions [4]:

– identification condition: ∀x,y ∈ L if x �= y and m(x) = m(y) then x,y ∈ l(K);
– dangling condition: no arc in G\m(L) should be incident to a node in m(L\ l(K)).
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The identification condition is satisfied by valid matches: a match is not valid if it
requires a single item to be consumed twice, or to be both consumed and preserved.

A derivation is a sequence γ = {δi : Gi−1 ⇒pi−1 Gi}i∈{1,...,n} of direct derivations.

3 Dynamic Graph Grammars

As aforementioned, a T -typed dynamic production takes the form: p : (LT
l←KT

r→GT ′)
where GT ′ is a suitable (T ′-typed) dynamic graph grammar. A dynamic graph grammar
can contain any number of such productions. Formally:

Definition 3.1 (Dynamic Graph Grammars). The domain of dynamic graph gram-
mars can be expressed as the least set DGG satisfying the equation:

D = {(T,Gin,P) | Gin ∈GraphT ∧
∀p : (LT

l← KT
r→ GTp) ∈ P.( LT ,KT ∈GraphT ∧ T ⊂ Tp ∧

GTp = (Tp,GTp ,Pp) ∈D ) }
where GraphT is the set of T -typed graphs and r : ι ·KT → GTp is a morphism between
Tp-typed graphs, where ι : T ↪→ Tp denotes the obvious sub-graph injection.

Any element G = (T,Gin,P) ∈ DGG is called a Dynamic Graph Grammar. It is static

if P = /0. It is shallow if T = Tp and GTp is static for all p : (LT
l← KT

r→ GTp) ∈ P.

Note that all Dynamic Graph Grammars are well-founded: since we take DGG as the
least set satisfying the recursive domain equation above, the type graphs syntactically
appearing in G = (T,Gin,P) ∈ DGG form a finite tree T(G) rooted in T , with parent re-
lation given by immediate subsetting (i.e., Ti is parent of Tj iff Ti ⊂ Tj and no Tk appears
in G such that Ti ⊂ Tk ⊂ Tj) and where leaves are associated with static grammars. We
remark that each type graph Tp ⊃ T extends T with local declarations Tp \T , whose
scope is bounded by the specific production p. For simplicity, but without loss of gen-
erality, we assume that all additional items introduced by different type graphs inside
G are named differently (i.e., each additional item occurs only in one type graph). We
let T(G) = Ti∈T(G) Ti denote the overall flat type graph of G, and let ιTi : Ti ↪→ T(G)
denote the obvious sub-graph inclusion. Note that, by the structuring of T(G), the type
graph T(G) is just the union of all the leaves of T(G).

Similarly, all nested productions in G form the tree P(G) rooted in P with parent
relation given by immediate inclusion (i.e., the set of productions Pi is the parent of

Pp iff p : (LT
l← KT

r→ (Tp,GTp ,Pp)) ∈ Pi). Given a T -typed dynamic production p :

(LT
l← KT

r→ GTp) with GTp = (Tp,GTp ,Pp) we say that the ordinary T(G)-typed pro-

duction flat(p) : (ιT · LT
l← ιT ·KT

r→ ιTp ·GTp) is the flattening of p. We let P(G) =
Pi∈P(G){flat(p) | p∈ Pi} denote the overall set of flat productions of G. The T(G)-typed

shallow grammar F(G) = (T(G), ιT ·Gin,P(G)) is called the flattening of G.
To define the dynamics of DynGGs we need a more advanced notion of retyping,

which can be used to generate fresh items in the type graph. In the following, when
considering type graph constructions, we assume that a standard choice of pushout ob-
jects satisfying the following requirements is available: Let T ⊂ T ′′ and σ : T → T ′
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Fig. 4. A direct dynamic derivation

injective, then we denote by Tσ,T ′′ the pushout object of the inclusion ι : T ↪→ T ′′ and σ
such that T ′ embeds in Tσ,T ′′ via set-theoretical inclusion ισ,T ′′ , while T ′′ embeds via an
injection ρσ,T ′′ (see Figure 3(b)) that renames items in T ′′ \T with fresh names. When
T ⊆ T ′ and σ is the inclusion we replace the subscripting (−)σ,T ′′ with (−)T ′,T ′′ .

Definition 3.2 (Fresh Graph Retyping). Let T ⊂ T ′′. Given a T ′′-typed graph G =
〈|G|,τG〉 and an injection σ : T → T ′ we let σ ·G = 〈|G|,ρσ,T ′′ ◦ τG〉.
Definition 3.3 (Dynamic Retyping). Given a T -typed Dynamic Graph Grammar G =
(T,Gin,P) and an injective morphism σ : T → T ′ we denote by σ ·G the T ′-typed gram-
mar defined recursively by letting σ ·G = (T ′,σ ·Gin,σ ·P), with σ ·P = {σ · p | p ∈ P}
where σ · p : (σ ·LT

l← σ ·KT
r→ ρσ,Tp ·GTp) for any p : (LT

l← KT
r→ GTp).

Note that ρσ,Tp ·GTp is a Tσ,Tp -typed grammar and σ · p is a T ′-typed production.
To define the behaviour of DynGGs, note that the type graph and the available pro-

ductions can change over time: as the computation progresses new items and produc-
tions can be spawn. Hence, as it is typical of reflexive systems, the actual configuration
must comprise data (i.e., the underlying graph), their typing and the control (i.e., avail-
able productions). This means that configurations are themselves DynGGs.

In DynGGs, productions are nested inside (the right-hand sides of) other productions,
but only top-level productions can be applied, by finding a matching of their left-hand
sides into the initial graph. When such a production p is applied, then fresh instances
of the productions Pp, nested one level below p, become available at the top-level,
and can be unwound themselves in successive steps. Given a DynGG G = (T,Gin,P),

a production p : (LT
l← KT

r→ GTp) ∈ P with GTp = (Tp,GTp ,Pp), and a matching m :
LT →Gin, we proceed as follows (see Figure 4):

– We check that m and l : KT → LT satisfy the gluing conditions.
– We build the pushout complement of 〈m, l〉, obtaining a T -typed graph D with

morphisms k : KT →D and b : D→ Gin.
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– We build the standard type graph TT,Tp associated with σ = idT : T → T and ιp :
T ↪→ Tp. Note that ιT,Tp = ρT,Tp ◦ ιp. Fresh items of the underlying graph produced
by the application of p must be typed over TT,Tp .

– We build the retyped graphs D′ = ιT,Tp ·D and K′ = ιT,Tp ·KT and take the morphism
k′ : K′ → D′ induced by k.

– We build the retyped DynGG G′p = ρT,Tp ·GTp = (TT,Tp ,G
′
p,P

′) with G′p = ρT,Tp ·GTp

and P′ = ρT,Tp ·Pp and take the morphism r′ : K′ →G′p induced by r : ιp ·KT →GTp .
– We take the pushout of k′ and r′, resulting in a TT,Tp -typed graph H with morphisms

d : D′ → H and h : G′p → H.
– Finally, we build the DynGG G′ = (TT,Tp ,H,P′ ∪ ιT,Tp ·P).

When all the above is applicable, we say that there is a direct dynamic derivation α
from G to G′ using p (based on m) and write α : G⇒p G′. A dynamic derivation is a
sequence of direct dynamic derivations starting from the initial graph.

Example 3.1. Let us consider the Ta-typed grammar Ga presented in the Introduction
(see productions p and q in Figures 1 and 2). The configuration after n applications of p
is shown in Figure 5: the type graph has evolved from Ta to n

i=1 Tgi (with Ta = n
i=1 Tgi)

and there are n + 1 available productions p′,q1, ...,qn at the top level that are suitable
retyped instances of p and q. However, it is not possible to find a valid matching for any
qi, while there is (always) exactly one valid matching for the application of p.

3.1 About Shallow Graph Grammars

In the case of shallow grammars, the definition of derivation boils down to classic DPO
derivation. This can be easily proved by noting that the fresh retyping leads to TT,Tp = T
(i.e., the typing is vacuous) and that P′ = /0 (by definition of shallow grammars).

Proposition 3.1. DynGGs are a conservative extension of GGs.

The proof takes any T -typed graph grammar G = (T,Gin,P) and constructs the corre-
sponding T -typed shallow graph grammar Sh(G). By what said above, it is then imme-
diate to prove that δ : G⇒p G′ iff δ : Sh(T,G,P)⇒p Sh(T,G′,P).

Since the flattening F(G) = (T(G), ιT ·Gin,P(G)) of a DynGG G = (T,Gin,P) is also
shallow, an obvious question is “how are the behaviours of F(G) and G related?”
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Proposition 3.2. Let G0 be a DynGG, then {δi : Gi−1 ⇒pi Gi}i∈{1,..,n} implies {δ′i :
G′i−1 ⇒flat(p′i) G′i}i∈{1,..,n}. where G′0 = F(G0) and each pi is instance of p′i ∈ P(G).

The proof shows that there is a standard mapping from the dynamically evolving type
graph of any G to the static representative T(G) and also a mapping from productions
dynamically originated by G to the productions of F(G). In particular, any two different
freshly-generated instances q′,q′′ of the same production q are mapped to flat(q). We
remind that, contrary to G, all productions in F(G) are always available and cannot
change over time. Thus, any valid match for the dynamic graph remains valid in its
flattening (via the retyping) and any direct derivation using the instance pi of p′i ∈ P(G)
can be simulated using flat(p′i) ∈ P(G).

The counterexample below shows that F(G) has possibly more derivations than G.

Example 3.2. Let us take the flattening F(G) of the Ta-typed DynGG G in Example 3.1.
The configuration after n applications of p is in Figure 6. Note that the type graph
remains Tg = T(G) and that there are only two available productions p,q at any time.
Compare the situation with that in Figure 5: in the flattened version it is now possible
to apply q to any pair of (distinct) arcs hi,h j!

4 Case studies: Dynamic Nets and Join Calculus

Dynamic nets [1,2] are an extension of Petri nets where firings can add fresh places and
transitions. In this sense, any DynGG G = 〈T,Gin,P〉 where T(G) is a discrete graph
can be seen as a dynamic net. Nevertheless, not all dynamic nets can be represented
by DynGGs over discrete type graphs because tokens may be coloured with the names
of places in the net, and transitions may use such colours to designate places where to
spawn new tokens. Since dynamic nets are in one-to-one correspondence with processes
of the Join calculus [2], we present the encoding of the latter. Let N be an infinite set of
names ranged by u,v,x,y,z, . . .. The syntax of Join is given by the grammar

P ::= 0 | x〈y〉 | def D in P | P|Q D ::= J � P | D∧D J ::= x〈y〉 | J|J

The occurrences of x and u in x〈u〉 are free. Differently, x and y occur bound in P =
def x〈u〉|y〈v〉 � P1 in P2, while u and v occur bound in D = x〈u〉|y〈v〉 � P1. The sets of
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free and bound names of P are written respectively f n(P) and bn(P). Moreover, x and
y are the defined names of D (written dn(D)).

The semantics of the Join calculus relies on the reflexive chemical abstract machine
model [9]. In this model a solution is roughly a multiset of active definitions J � P and
messages x〈u〉 (separated by comma). Moves are distinguished between structural �,
which heat or cool processes, and reductions →, which are the basic computational
steps. The multiset rewriting rules for Join are as follows:

0 � P |Q � P,Q D ∧ E � D,E
def D in P � Dσdn(D),Pσdn(D) (range(σdn(D)) globally fresh)

J � P,Jσ → J � P,Pσ

Structural moves allow for the rearrangement of terms inside a solution. Note that
the term denoting a process with local definitions can be represented by two terms (one
for the definitions and other for the process) only when the locally defined ports are
renamed by fresh names (this rule stands for the dynamic generation of new names). A
reduction can take place when the solution contains a rule J � P and an instance Jσ of
the Join pattern J: when such a match is found, Jσ is replaced by Pσ. We write P �→ P′
for P �∗ Q→ Q′ �∗ P′.

Join processes as DynGGs. For simplicity we assume definitions not to share names.
Any process P is encoded as a DynGG GP = 〈TP,Gin,Q〉. Generally speaking, a channel
x will be encoded as node n but the fact that the channel is named x is denoted by an arc
x : n→ n. A message x〈y〉 is represented with the arc m : n1 → n2, where n1 corresponds
to x and n2 to y. Any firing rule J � P will be encoded as a production. More formally,
the initial type graph TP is shown in Figure 7(a), where fn(P)∪bn(P) = {x1, . . . ,xn}. TP

has a unique node n standing for channels, one arc m for denoting messages, and one
arc xi for any free or bound name of P. We call the context of P the TP-typed graph CP

with one node nxi and one arc xi : nxi → nxi for each xi ∈ fn(P)∪bn(P). Then, the initial
graph Gin and the set of productions Q are inductively defined as follows:

– P = 0. Gin = CP is the empty graph and Q = /0.
– P = x〈y〉. If x �= y, then Gin = CP∪{m : nx → ny} is the graph shown in Figure 7(b),

with the typing morphism mapping both nodes to n and being the identity on arcs.
Otherwise, Gin = CP∪{m : nx → nx} is as in Figure 7(c). In both cases Q = /0.

– P = def J1 � P1∧ . . .∧ Jn � Pn in P′. Let GP′ = 〈TP′ ,G
′
in,Q

′〉 be the encoding of P′,
then GP = 〈TP,CP ∪G′in,Q′ ∪ 1≤i≤n{pi}〉, where TP ⊇ TP′ and pi encodes Ji � Pi.
Assuming Ji = x1〈u1〉| . . . |xk〈uk〉, then pi is shown in Figure 7(d), where G′Pi

is the
extension of GPi = 〈Ti,Gini ,Qi〉 over the type graph Ti∪TP and whose initial graph
is the union of Gini with the items preserved by the production. The self-loop arcs
naming the nodes ui are not present in pi because the identities of formal parameters
are not known a priori and they will be provided by valid matchings. Moreover, the
left-hand-side and the interface contain a node nyh and an arc yh for any free name
yh of Pi not in {x1, . . . ,xk,u1, . . . ,uk}. In this way the context of the initial graph of
GPi is bound to the names of the left-hand-side of the production.

– P = P1|P2. Let GP1 = 〈T1,Gin1 ,Q1〉 and GP2 = 〈T2,Gin2 ,Q2〉 be the encoding of P1

and P2, then the initial graph is the pushout object of the span CP∪Gin1 ←↩ CP ↪→
CP∪Gin2 , and Q is the union of Q1 and Q2 (upon production retyping over TP).
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Fig. 7. Join processes as Dynamic Graph Grammars

Example 4.1. Let P = def x〈u〉� (def y〈v〉� v〈y〉 in y〈u〉|x〈y〉) in x〈z〉. The correspond-
ing grammar is GP = 〈TP,Gin,{p}〉, where TP and Gin are shown in Figure 8(a). The
unique top-level production p is in Figure 8(b) (for space reasons we omit the represen-
tation of the typing). The right-hand-side of p is typed over the graph T ′ that adds two
fresh arc types y : n→ n and u : n→ n to TP. Production p describes the consumption of
a message sent to the channel x regardless of the name contained by the message (note
that the particular name of the port nu is not fixed by the production). When fired, p
generates two fresh types y′ : n→ n and u′ : n→ n and modifies the underlying graph
by removing m1 and by adding (i) a new node ny′ , (ii) a new arc of the fresh type y′,
(iii) a new arc of the fresh type u′ that works as an alias for the actual name of the
actual parameter nu, and (iv) two new messages m2 and m3. Moreover, p spawns a new
production q (Figure 8(c)), which handles the messages sent to the fresh port y′.

The encoding of Join processes establishes a tight correspondence between deriva-
tions in the two frameworks. The following results hold up to aliasing of names (i.e., by
removing aliasing from grammars).

Proposition 4.1. For any Join process P we have:

– If P �→ P′ using Ji � Pi, then ∃Q s.t. GP ⇒pi GQ and Q �∗ P′;
– If GP ⇒pi G′, then ∃P′ s.t. P �→ P′ using Ji � Pi and G′ = GP′ .

5 Encoding Dynamic Graph Grammars as Graph Grammars

In this section we show that DynGGs can be encoded back in GGs. The encoding of a
Dynamic Graph Grammar G relies on the definition of a unique type graph expressive
enough for distinguishing all the types generated dynamically by G. As a first step, we
show how to describe a chain of types T ordered by inclusions T1 ⊂ T2 ⊂ . . .⊂ Tn with
a unique type graph {[Tn]}T, called the refined type graph. Informally, any item (i.e.,
node or arc) of Tn is mapped to a node in {[Tn]}T. Every graph Ti in the chain T is also
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represented in {[Tn]}T by a node nTi . Moreover, any node w corresponding to an item k
of Tn has an arc tw to the node nTi if Ti is the minimal type in T that includes k. We call
Ti the type of k in T. Formally, for any k ∈ Tn, the type of k is T(k) = Ti if k ∈ Ti\Ti−1.

Definition 5.1 (Refined type graph). Given a type graph T and a chain of types T =
T1 ⊂ . . .⊂ Tn, with Tn = T , the refined type graph is {[T ]}T = 〈NR,ER,sR,tR〉, where:

– NR = NT ∪ET ∪{nTi |Ti ∈ T} where nTi are fresh names, i.e., the nodes of {[T ]}T

are the nodes and arcs of T plus one extra node for any type in T;
– ER = {e0,e1|e ∈ ET}∪{tw|w ∈ NT ∪ET }∪{si,i+1|0 < 1 < n−1} where all edge

names are fresh. Source and target functions are defined s.t. the following holds:
• e0 : sT (e)→ e and e1 : e→ tT (e), i.e., e0 connects the node e∈NR to its original

source in T while e1 connects e to its target;
• tw : w→ nT(w), i.e., tw connects w to the node representing its type;
• si,i+1 : nTi → nTi+1 denotes the inclusion of types Ti ⊂ Ti+1.

Example 5.1. Consider the type graph Tg depicted in the bottom part of the Figure 9(a).
The refined type graph for the chain Ta = {a} ⊂ Tg = Ta∪{ f ,b,g} is shown at the bot-
tom of Figure 9(b). The original arc f (resp. g) of Tg is represented by the homonymous
node f (resp. g) and the pair of fresh arcs f0 and f1 (resp. g0 and g1). The types Ta and
Tg are represented by the fresh nodes nTa and nTg , while the inclusion relation Ta ⊂ Tg

is denoted by the arc s1,2. Finally, for any item w, tw connects w to its type node.

Definition 5.2 (Refined T -Typed Graph). Given a T-typed graph G = 〈|G|,τG〉 and a
chain T = T1 ⊂ . . .⊂ Tn = T, the {[T ]}T-typed graph {[G]}T = 〈|H|,τH〉 is defined as:

– NH = NG∪EG∪{nTi |Ti ∈ T}, i.e., NH has all items of G plus nodes denoting types;
– EH = {e0,e1|e ∈ EG}∪{tw|w ∈ NG∪EG}∪{si,i+1|0 < 1 < n−1}, where:



Dynamic Graph Transformation Systems 241

•
f ��

��

a
•

��

b1

•
f ��
��

a
Ta

Tg
• g��
b

(a) A Tg-typed Graph.

•
s1,2 ��

��

nTa

•

��

nTg

•
f0

��

ta
�������

��

a
•

f1

��

t f
���������������

��

f
•

tb1

�������

��

b1

•
s1,2 ��

nTa

•

nTg

•
f0

��

ta
�������

a
•

f1

��

t f
���������������

f
• g0

��
tg

�������

b
•

g1

��

tb
		�����

g

(b) Refined Tg-Typed Graph.

Fig. 9. A refined T -Typed Graph

• e0 : sT (e)→ e and e1 : e→ tT (e);
• tw : w → nT(τG(w)), i.e., tw connects w to the node representing its type in T,

which is obtained by using the typing morphism τG(w);
• si,i+1 : nTi → nTi+1 , for the inclusion of types.

– The typing morphism τH is defined as follows

τH(k) = τG(k) if k ∈G τH(nTi) = nTi

τH(ei) = τG(e)i τH(tw) = tτG(w) τH(si,i+1) = si,i+1

Example 5.2. Consider the Tg-typed graph G in Figure 9(a). Its refined version for the
chain Ta = {a}⊂ Tg = Ta∪{ f ,b,g} is shown in Figure 9(b) (we omit the representation
of the obvious typing of arcs).

We refer to the nodes nTi and the arcs tw and si,i+1 of a refined type graph (resp., a
refined T -typed graph) as the location of the type graph (resp., location of the graph).

Definition 5.3 (Refined T -Typed DynGG). Let G = (T,Gin,P) be a DynGG, and T =
T1⊂ . . .⊂ Tn, with Tn = T be a chain of types. Then, the refined version of G is defined as
GT = ({[T ]}T,{[Gin]}T,{[P]}T), where {[P]}T = {{[p]}T|p∈ P} is obtained by encoding

any production p : (L l← K
r→ (T ′,G′in,P

′)) in P as follows:

{[p]}T : ({[L]}T
l′← {[K]}T

r′→ {[(T ′,G′in,P′)]}T⊂T ′)

where morphisms l′ and r′ are the obvious extensions of l and r with the identity over
the location of the graph.

Example 5.3. Consider the production p in Figure 1. Its refined version is in Figure 10.
The type graphs are the refined versions of the original type graphs, while the left-hand-
side, the interface, and the right-hand-side are the refined version of the original ones.
In particular, the left-hand-side is typed over the refined version of Ta, while the right-
hand-side grammar is typed over the refined version of Tg. Moreover, the production
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Fig. 10. A refined production p

{[q]}Ta⊂Tg created by the reduction corresponds to the refined versions of the original q
(for clarity we do not draw the typing morphism, which is the obvious one).

The refined version of a grammar G recreates the static tree of types T(G). In fact,

any production p : (LT
l′← KT

r′→ GT ′) is encoded by considering the path T of T(G)
starting from the root of T(G) to T . Moreover, since previous definitions can be straight-
forwardly extended to consider the whole tree instead of a path, we will use {[ ]}T to
denote also the refined versions obtained by considering the tree of types T. Given any
tree T describing type inclusions, the tree T′ = T,T ↪→ T ′ stands for the tree T with the
addition of the type T ′ as a child of T (if T ′ is already in the tree, then T′ = T).

Remark 5.1. For simplicity, we assume the name of any production to be decorated

with the types of its left and right-hand-sides, i.e., pT ↪→T ′ : (LT
l← KT

r→ GT ′).

The result below shows that a refined grammar behaves like the original one.

Lemma 5.1. Let G0 = (T0,H0,P0) and Gn = (Tn,Hn,Pn) be DynGGs, then

{δi : Gi ⇒piTpi ↪→T ′pi

Gi+1}i∈{0,..,n−1} iff {δ′i : {[Gi]}Ti ⇒pi {[Gi+1]}Ti+1}i∈{0,..,n−1}
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Fig. 11. A flattened, refined derivation

where T0 = T0 and Ti+1 = Ti,Tpi ↪→ T ′pi
for 1≤ i≤ n.

Proof (Sketch). Consider Gi ⇒pT ↪→T ′ Gi+1 and pT ↪→T ′ : (LT
l← KT

r→ GT ′). Then, the
derivation Gi⇒T ↪→T ′ G j is analogous to that one in Figure 4. By construction of {[Gi]}Ti ,
there exists m : LT →Gin iff there exists m′ : {[LT ]}Ti →{[Gin]}Ti in the refined grammar.
Since {[KT ]}Ti preserves the ”same” elements (up-to suitable encoding) as KT plus the
location of the graph, then D′ obtained as the pushout complement of 〈m′, l′〉 coincides
with {[D]}T. Since {[RT ]}Ti preserves the location of already existing items and gener-
ates a new node nT ′ and a new arc s : nT → nT ′ for typing fresh items, then H ′ coincides
with {[H]}Ti,T ↪→T ′ . The correspondence among fresh productions is straightforward.

Definition 5.4 (Encoding). Let G = 〈T,Gin,P〉 be a DynGG. Then, the equivalent
graph grammar {[G]} is defined as {[G]}= F({[G]}T ).

Example 5.4. Consider the DynGG G = 〈Ta,Gin,{p}〉 with Ta and p as in Figures 1
and 2 and its encoding {[G]} = 〈T ′,{[Gin]}Ta ,{p′,q′}〉, where T ′ is the type graph in
Figure 10, and p′ and q′ are analogous to {[p]}Ta and {[q]}Ta⊂Tg in Figure 10. Figure 11
shows a derivation that applies twice the rule p′ over the initial graph consisting of
a unique node typed a. Although the final graph contains two arrows of type f with
same source of type a, there is not a matching for q′, since the left-hand-side of q′ re-
quires the targets of the two arrows to have the same location. Hence, the encoding does
not confuse different instantiations of the same type, as formalised by the following
result.

Theorem 5.1 (Correspondence). Let G0 be a dynamic graph grammar, then

{δi : Gi−1 ⇒pi Gi}i∈{0,..,n} iff {δ′i : G′i−1 ⇒{[pi]} G′i}i∈{0,..,n}

where G′0 = {[G0]} and {[p]} is the encoding of the rule p in F(G0).

Proof. ⇒) Follows immediately by Lemma 5.1 and Proposition 3.2. ⇐) It remains to
prove that the matchings on the encoded version are the same as those of the original
one. In fact, the encoding of a rule assures the location of any graphs to identify items
with the same type while differentiating items with distinct types.
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6 Concluding Remarks

We have proposed the original framework of Dynamic Graph Grammars, as a con-
servative extension of Graph Grammars that offers a convenient level of abstraction for
modeling reflexive systems. Our main result proves that Dynamic Graph Grammars can
be simulated by ordinary Graph Grammars, though a non-trivial encoding is necessary.

When compared to the vast literature of theoretical foundations and applications of
graph transformation systems, our investigation on reflexive productions is still prelim-
inary under many aspects. A fully extensive development and assessment is therefore
a very ambitious programme, along which we foresee several promising directions: (1)
to express suitable notion of independent derivations, parallelism, process semantics,
unfolding semantics and event structure semantics so to fully develop a true concur-
rent semantics of DynGGs; (2) to show that concurrency is preserved by our encoding
of DynGGs in GGs; (3) to consider other flavours of dynamic productions, like the
SPO [12,7]; (4) to exploit the encoding in § 5 to reuse verification tools developed for
GGs for systems modeled using DynGGs.

Acknowledgement. The authors want to thank Ivan Lanese for many helpful discussions
on the encoding of DynGGs back to GGs.
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Abstract. In this paper, we introduce the notion of a community of
autonomous units as a rule-based and graph-transformational device to
model processes that run interactively but independently of each other
in a common environment. The emphasis of the approach is laid on the
study of the formal semantics of a community as a whole and of each
of its member units separately. We concentrate on the sequential case
where only one unit can act at a time and the rule applications of the
involved units are interleaved with each other.

1 Introduction

Data processing of today (like communication networks, multiagent systems,
swarm intelligence, ubiquitous, wearable and mobile computing) is often distrib-
uted and comprises various components that run partially independent of each
other, but may access and update the same information structures, communicate
with each other and interact in various ways. They may cooperate to reach a
common goal or may compete with each other to achieve their individual aims.
Typical examples of this kind are logistic processes and systems like transport
and production networks where many actors from different companies come to-
gether and cooperate to a certain degree. But they are usually still competitors
who are not willing to transfer their control to others or to a central entity.
On the more technical level, transport networks, for example, comprise many
transport vehicles, lots of goods to be shipped, various further components for
storing, loading, reloading, etc. It is not meaningful to model such a network
as a centralized system with a single control. The same applies to production
networks with respect to the involved machines, materials, storage areas, etc.

The main idea of this paper is to provide a formal graph-transformational
and rule-based framework for the modeling of such systems composed of a vari-
ety of highly self-controlled components that make their decisions on their own
depending on the information they get from their environment.
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The basic notion is that of a community of autonomous units which exist in
a common environment (assumed to be a graph). There are initial environments
to start computational processes, and there is an overall goal. Each autonomous
unit in a community has its own individual goal in addition. To reach its goal,
the unit can apply its rules or ask imported units for help. Moreover, each unit
has a control mechanism to decide which rule is applied next or which imported
unit is used next. This establishes the autonomy of a unit.

In this paper, we concentrate on the sequential semantics of communities of
autonomous units. The semantics is given by all sequential processes - finite and
infinite - that start in an initial environment, are composed of rule applications
of autonomous units and calls of imported units, and follow, in each step, the
control of the active unit. From the point of view of a single unit, this means
that its own actions (being rule applications or calls of imported units) take
place interleaved with other changes of the dynamic environment caused by the
coexisting units. Clearly, the sequential semantics is only adequate if one deals
with systems in which activities take place one after the other. Examples of this
kind are card and board games, sequential algorithms, single-processor systems
and such. Moreover, there are many modeling approaches the semantics of which
assumes one action at a time. But even sequential systems may consist of self-
controling components that decide about their own activities independently of
the others like the examples of card and board games with several players show.

Autonomous units generalize our former modeling concept of graph transfor-
mation units (see, e.g., [1]). While the latter apply their rules and call imported
units without any interference from the outside, an autonomous unit works in a
dynamic environment which may change because of the activities of other units
in the community. This makes a tremendous difference because the running of
the system is no longer controlled by a central entity.

The benefit we expect of using autonomous units is to obtain an easy-to-
use and visually well-understandable formal framework with a precise semantics
that allows to model systems of interacting components so that on the one hand
external control structures are set aside and on the other hand string-based
representation is replaced by graph- and rule-based representation that allows to
visualize and specify the systems more like they are. Nevertheless, the presented
concepts are not restricted to graphs and graph transformation but can be used
for any rule-based mechanism where rules modify some kind of configurations
(cf. also [2]).

The paper is organized as follows. In Sect. 2 we briefly recall the notion of a
graph transformation approach. In Sect. 3 autonomous units are introduced and
a sequential semantics for them is given. Section 4 presents communities of au-
tonomous units and how they interact within a common environment. Section 5
compares communities of autonomous units with the original transformation
units introduced and studied in [1]. In Sect. 6 we present a case study modeling
the players of the board game Ludo as autonomous units. The conclusion is given
in Sect. 7. For reasons of space limitations proofs are omitted in this paper.
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2 Graph Transformation Approaches

Whenever one has to do with dynamic graph-like structures, graph transforma-
tion (see also [3]) constitutes an adequate formal specification technique because
it supports the visual and rule-based transformation of such structures in an
intuitive and direct way. The ingredients of graph transformation are provided
by a so-called graph transformation approach. In this section, we recall the no-
tion of a graph transformation approach as introduced in [1] but modified with
respect to the class of control conditions.

Two basic components of every graph transformation approach are a class of
graphs, and a class of rules that can be applied to these graphs. In many cases,
rule application is highly nondeterministic — a property that is not always
desirable. Hence, graph transformation approaches can also provide a class of
control conditions so that the degree of nondeterminism of rule application can
be reduced. Moreover, graph class expressions can be used in order to specify for
example sets of initial and terminal graphs of graph transformation processes.

Formally, a graph transformation approach is a system A = (G,R,X , C) the
components of which are defined as follows.

– G is a class of graphs.
– R is a class of graph transformation rules such that every r ∈ R specifies a

binary relation on graphs SEM (r) ⊆ G × G.
– X is a class of graph class expressions such that each x ∈ X specifies a set

of graphs SEM (x) ⊆ G.
– C is a class of control conditions such that each c ∈ C specifies a set of

sequences SEM E,Change(c) ⊆ SEQ(G) where E: ID → 2SEQ(G), for some set
ID of names and Change ⊆ G × G.1 As we will see later the mapping E
is meant to associate a semantics to rules and imported autonomous units.
The relation Change defines the changes that can occur in the environment
of an autonomous unit. Hence, control conditions have a loose semantics
which depends on the semantics associated to rules and imported units via
the mapping E and on the changes of the environment given by Change .

For technical simplicity we assume in the following that ID is an arbitrary
but fixed set with R ⊆ ID and that A = (G,R,X , C) is an arbitrary but fixed
graph transformation approach.

3 Autonomous Units

Autonomous units act within or interact on a common environment which is
modeled as a graph. An autonomous unit consists of a set of graph transforma-
tion rules, a control condition, and a goal. Moreover, it can import other units to
which it may delegate auxiliary tasks. The graph transformation rules contained

1 For a set A 2A denotes its powerset and SEQ(A) the set of finite and infinite se-
quences over A.
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in an autonomous unit aut and the imported units of aut specify all transfor-
mations the unit aut can perform. Such a transformation comprises for example
a movement of the autonomous unit within the current environment, the ex-
change of information with other units via the environment, or local changes of
the environment. The control condition regulates the application process. For
example, it may require that a sequence of rules be applied as long as possi-
ble or infinitely often. In this first approach the goal of a unit is a graph class
expression determining how the transformed graphs should look like.

Definition 1 (Autonomous unit). An autonomous unit is a system aut =
(g, U, P, c) where g ∈ X is the goal, U is a set of imported autonomous units, P ⊆
R is a set of graph transformation rules, and c ∈ C is a control condition. The
components of aut are also denoted by gaut , Uaut , Paut , and caut , respectively.

In the following we consider only autonomous units with acyclic import struc-
ture. Moreover, for technical simplicity we assume that in addition to the rules
all autonomous units are contained in the set ID .

An autonomous unit modifies an underlying environment while striving for its
goal. Its semantics consists of a set of transformation processes being finite or in-
finite sequences of environment transformations. An environment transformation
comprises the application of a local rule or a transformation process performed
by an imported unit or an environment change typically performed by another
autonomous unit that is working in the same environment. These environment
changes are given as a binary relation of environments. Hence, in this sequen-
tial approach a transformation process of an autonomous unit interleaves local
rule applications with transformation processes of imported units and environ-
ment changes specified by other components. This implies that an environment
transformation of an imported unit cannot be interrupted by changes of the im-
porting unit but it can be interleaved with the change relation induced by other
components. Hence, every autonomous unit has exactly one thread of control.
Autonomous units regulate their transformation processes by choosing in every
step only those rules or imported units that are allowed by its control condition.

The definition of the sequential semantics of autonomous units makes use
of the sequential composition of sequences. Let s = (x0, . . . , xn) and s′ =
(x′

0, x
′
1, . . .) be sequences such that s is finite, s′ is finite or infinite, and x′

0 = xn.
Then the sequential composition of s and s′ is equal to s◦s′ = (x0, . . . xn, x′

1, . . .).
Moreover, the number of elements of a finite sequence s = (x0, . . . , xn) is equal
to n + 1 and is denoted by |s|. For an infinite sequence s its number of elements
is |s| = ∞. The first element of a sequence s is denoted by first(s) and its last
element by last(s) in the case where s is finite.

Definition 2 (Sequential semantics). Let aut = (g, U, P, c) be an autono-
mous unit and let Change ⊆ G×G. Let s ∈ SEQ(G). Then s ∈ SEM Change(aut) if

– there is a sequence seq = (s0, s1, . . .) ∈ SEQ(SEQ(G)) such that
• for 0 ≤ i < |seq| if seq is finite and for all i ∈ N if seq is infinite, si is

finite and last(si) = first(si+1);
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• s = s0 ◦ s1 ◦ · · · ;2
• for i = 0, . . . , |seq| if seq is finite and for all i ∈ N if seq is infinite

si ∈
⋃
p∈P

SEM (p) ∪ Change ∪
⋃

u∈U

SEM Change(u).

– s ∈ SEM E(aut),Change(c) with E(aut)(id)=SEM (id) if id ∈ P , E(aut)(id)=
SEM Change(id) if id ∈ U , and E(aut)(id) = ∅, otherwise.

It is worth noting that the semantics of autonomous units is inductively de-
fined meaning that it covers the case where no unit is imported and in the case
where the set of imported units is not empty the semantics of every imported
unit is recursively computed.

Every autonomous unit induces a set of atomic (i.e. not interruptible) envi-
ronment transformations that consist of the semantic relation of all local rules
plus the atomic transformations of the imported autonomous units.

Definition 3 (Atomic transformations). The set of atomic transformations
of an autonomous transformation unit aut = (g, U, P, c) is defined as AT (aut) =⋃

p∈P SEM (p) ∪⋃
u∈U AT (u).

As one would expect a transformation process of an autonomous unit consists
of a sequence of atomic transformations interleaved with other changes of the
environment.

Observation 1. Let aut = (g, U, P, c) be an autonomous unit and let s =
(G0, G1, . . .) ∈ SEM Change(aut) for some relation Change ⊆ G × G. Then for
i = 1, . . . , |s| if s is finite and for all i ∈ N+ if s is infinite (Gi−1, Gi) ∈ AT (aut)∪
Change.3

4 Communities of Autonomous Units

Autonomous units are meant to work within a community of autonomous units
that modify the common environment together. In the sequential case these
modifications take place in an interleaving manner. Every community is com-
posed of an overall goal that should be achieved, an environment specification
that specifies the set of initial environments the community may start working
with, and a set of autonomous units. The overall goal may be closely related to
the goals of the autonomous units in the community. Typical examples are the
goals admitting only graphs that satisfy the goals of one or all autonomous units
in the community.

Definition 4 (Community). A community is a tripleCOM =(Goal , Init ,Aut),
whereGoal , Init ∈ X are graph class expressions called the overall goal and the ini-
tial environment specification, respectively, and Aut is a set of autonomous units.
2 Please note that s = s0 ◦ s1 ◦ · · · stands for s = s0 ◦ s1 ◦ · · · ◦ s|seq| if seq is finite.
3 N+ denotes the set of all positive natural numbers.
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In a community all units work on the common environment in a self-controlled
way by applying their rules or their imported units. The change relation in-
tegrated in the semantics of autonomous units makes it possible to define an
interleaving semantics of a community in which every autonomous unit may
perform its transformation processes. For this purpose it is necessary to know
for every autonomous unit the set of atomic transformations of all other units
in the community.

Definition 5 (Change relation). Let COM = (Goal , Init ,Aut) be a com-
munity. Then for each aut ∈ Aut the change relation w.r.t. aut is defined as
Change(aut) =

⋃
aut ′∈Aut−{aut} AT (aut ′).

Every transformation process of a community must start with a graph specified
as an initial environment of the community. Moreover, it must be in the sequen-
tial semantics of every autonomous unit participating in the community. A finite
transformation process of a community is successful if its last environment sat-
isfies the overall goal. Every infinite transformation process of a community is
successful if it meets infinitely many environments that satisfy the overall goal.

Definition 6 (Sequential community semantics)

1. Let COM = (Goal , Init ,Aut). Then the sequential community semantics of
COM consists of all finite or infinite sequences s = (G0, G1, . . .) ∈ SEQ(G)
such that G0 ∈ SEM (Init) and s ∈ SEM Change(aut)(aut) for all aut ∈ Aut .

2. The sequence s is called a successful transformation process if s is finite
and G|s| ∈ SEM (Goal ) or if for all j ∈ N there is a finite sequence sj =
(Gj,0, . . . , Gj,nj ) with Gj,nj ∈ SEM (Goal ) such that s = s0 ◦s1 ◦ · · ·. The set
of all successful transformation processes of COM is denoted by STP(COM ).

As the definition of the community semantics shows, there is a strong con-
nection between the semantics of a community COM = (Goal , Init ,Aut) and
the semantics of an autonomous unit aut ∈ Aut . More precisely, the seman-
tics of COM is a subset of the semantics of aut w.r.t. the change relation
Change(aut).

For the community semantics we can also show in a straightforward way
that only atomic transformations of the participating units are applied in every
transformation process.

Observation 2. Let COM = (Goal , Init ,Aut) be a community and let s =
(G0, G1, . . .) ∈ SEM (COM ). Then for i = 1, . . . , |s| if s is finite and for all
i ∈ N+ if s is infinite (Gi−1, Gi) ∈

⋃
aut∈Aut AT (aut).

5 Comparison with Transformation Units

In this section we compare communities of autonomous units with transforma-
tion units that have an acyclic import structure (see e.g. [1]). Autonomous units
are up to a certain degree similar to transformation units because both con-
cepts are graph- and rule-based, use control conditions, import other units, and
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employ graph class expressions. Nevertheless there are some fundamental dif-
ferences: (1) While an autonomous unit interacts with other autonomous units,
an ordinary transformation unit runs its computations without interference of
other units except those imported. Hence the semantics of transformation units
is not defined with respect to possible environment changes. (2) All transforma-
tions are solely controlled by the transformation units whereas an autonomous
unit controls its own actions, but not those of the other units in the community.
(3) The semantics of a transformation unit and consequently also the seman-
tics of control conditions used in transformation units are binary relations on
graphs whereas the semantics of autonomous units consists of finite and infinite
transformation processes, i.e. finite and infinite sequences of graphs. Because of
these differences communities have the advantage that systems such as logistic
processes or games consisting of many automomously and perhaps infinitely long
acting components can be modeled in a more realistic way.

If one considers only the semantic relation induced by all finite transforma-
tion sequences of communities and if there exist appropriate control conditions
in the underlying graph transformation approach, one can translate transfor-
mation units into communities. To this aim we define for every finite sequence
s = (G0, . . . , Gn) its induced pair as pair (s) = (G0, Gn) and for every set S of se-
quences its induced binary relation as rel(S) = {pair (s) | s ∈ S′} where S′ is the
set of all finite sequences in S. Moreover, for a set G, its identity relation is the
set ΔG = {(G, G) | G ∈ G}. Finally, for a binary relation R ⊆ G × G the set R∗

denotes the set of all finite sequences obtained from sequentially composing pairs
of R ∪ΔG, i.e. R∗ = {(r0, . . . , rn) | (ri−1, ri) ∈ R∪ΔG for i = 1, . . . , n, n ≥ 1}.4

5.1 Transformation Units

A transformation unit is a system tu = (I, U, P, C, T ) where I, T ∈ X , U is a set
of imported transformation units, P ⊆ R, and C is a control condition that spec-
ifies for every mapping E: ID → 2G×G a binary relation on graphs. Please note
that analogously to autonomous units, transformation units are also inductively
defined i.e. they have an acyclic import structure.5 The set of directly and indi-
rectly imported transformation units of tu is inductively defined by IMP(tu) =
U ∪⋃

u′∈U IMP(u′). A pair (G, G′) ∈ SEM (I)×SEM (T ) is in the interleaving se-
mantics SEM (tu) of tu if there is a sequence s = (G0, . . . , Gn) of graphs such that
G0 = G, Gn = G′, for i = 1, . . . n (Gi−1, Gi) ∈

⋃
p∈P SEM (p) ∪⋃

u∈U SEM (u),
and (G, G′) ∈ SEM E(tu)(C) where E(tu)(id) = SEM (id) if id ∈ P ∪ U and
E(tu)(id) = ∅, otherwise. Analogously to autonomous units the set of atomic
transformations of tu is defined by AT (tu) =

⋃
p∈P SEM (p) ∪⋃

u∈U AT (u).

5.2 Translating Transformation Units into Communities

For comparing transformation units with communities we first translate every
transformation unit tu into two sets of autonomous units namely TRANS1 (tu)
4 Obviously, rel(R∗) corresponds to the reflexive and transitive closure of R.
5 Transformation units with an arbitrary import structure are studied in [4].



252 K. Hölscher, H.-J. Kreowski, and S. Kuske

and TRANS2 (tu). The units in both sets are inductively defined such that the
rule set of every autonomous unit in TRANS1 (tu) ∪ TRANS2 (tu) is equal to
the rule set of tu, the goal is equal to the terminal graph class expression of tu,
and the control condition can be anyone satisfying a certain property that is
different for TRANS1 (tu) and TRANS2 (tu).

Definition 7 (Translations). Let tu = (I, U, P, C, T ) be a transformation
unit.

1. The first translation of tu is the set TRANS1 (tu) consisting of all au-
tonomous units aut(tu) = (T, {aut(u) | u ∈ U}, P, c) such that for all
s ∈ AT (tu)∗ with pair (s) ∈ SEM E(tu)(C), s ∈ SEM E(aut(tu)),ΔG(c), and
aut(u) ∈ TRANS1 (u) for each u ∈ U .

2. The second translation of tu is the set TRANS2 (tu) consisting of all au-
tonomous units aut(tu) = (T, {aut(u) | u ∈ U}, P, c) such that

rel(SEM E(aut(tu)),ΔG(c)) ⊆ SEM E(tu)(C),

and aut(u) ∈ TRANS2 (u) for each u ∈ U .

It can be shown that the first translation preserves the behaviour of the orig-
inal transformation unit tu (but can do more), and the second only performs
such transformations that can also be done by tu, provided that the graph
class expressions occurring in tu do not restrict the class G to some proper sub-
class. As a consequence we get that every autonomous unit in the intersection
of TRANS1 (tu) and TRANS2 (tu) behaves as tu, if tu satisfies the mentioned
property with respect to the graph class expressions.

These facts imply the following observation that relates transformation units
with communities. In particular, for every autonomous unit aut in TRANS1 (tu)
∪TRANS2 (tu) let COM (aut) be the community with aut as its only autonomous
unit, the initial graph class expression of tu as the initial environment specifi-
cation, and the terminal expression of tu as the goal. Then the interleaving
semantics of tu is contained in the binary relation induced by the transforma-
tion processes of COM (aut) if aut belongs to the first translation of tu. More-
over, the binary relation induced by the successful transformation processes of
COM (aut) are contained in the interleaving semantics of tu if aut belongs to
the second translation of tu. Consequently, the interleaving semantics of tu is
equal to the binary relation induced by the successful transformation processes
of COM if aut belongs to both translations. In the last two cases, the graph
class expressions of all directly and indirectly imported transformation units of
tu must specify the class of all graphs. It is worth noting that this condition
concerning the graph class expressions can be dropped by requiring addition-
ally that the control condition of every aut(tu) in TRANS2 (tu) admits only
sequences from initial into terminal graphs of tu.

Observation 3. Let tu = (I, U, R, C, T ) be a transformation unit and let
COM = (T, I, {aut}). Then the following holds.
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1. SEM (tu) ⊆ rel(SEM (COM )) if aut ∈ TRANS1 (tu).
2. rel(STP(COM )) ⊆ SEM (tu) if aut ∈ TRANS2 (tu) and if SEM (Iu) =

SEM (Tu) = G for all u ∈ IMP(tu).
3. SEM (tu) = rel(STP(COM )) if aut ∈ TRANS1 (tu) ∩ TRANS2 (tu) and if

SEM (Iu) = SEM (Tu) = G for all u ∈ IMP(tu).

6 Modeling Ludo Players as Autonomous Units

Board games are a typical example of communities of autonomous units with
sequential semantics where the board provides the common environment and
the players are the autonomous units. As a concrete example we consider in this
section the game Ludo.6

The graph transformation approach used in this example consists of labeled
directed graphs and double-pushout rules (cf. [5]). The control conditions used
are regular expressions and priorities. As graph class expressions we use subgraph
conditions and the graph class expression specifying the class of all graphs. A
subgraph condition is a graph G that admits all graphs that have (an isomorphic
copy of) G as subgraph. Please note that in order to verify the presented case
study we have implemented it based on the AGG system [5].

A possible environment graph of Ludo is the initial game situation where four
players of different colours have all their tokens at the start place and there
is one die showing an arbitrary number between one and six. This graph is
depicted in Fig. 1. Every player is drawn as a kind of actor labeled with a colour
out of b(lue), y(ellow), r(ed), and g(reen) so that every player has a different
colour. Technically, a player is a labeled node. The players are connected via
some directed edges indicating the playing direction. The game board consists
of a start node and four home nodes for every player and a set of round nodes.
The start node of a c-labeled player is depicted as a c-labeled polygon with six
corners. The home nodes are drawn as rhombuses. Every c-labeled player has
four c-labeled tokens that are all situated at her/his start node at the beginning
of a match. The fact that a token of colour c is situated at a node v is visualized
with a c-labeled token that is connected to v via an undirected edge. Technically,
this can be modeled by means of a c-labeled loop connected to the node v. The
directed edges between the nodes of the game board indicate where and in which
direction the tokens can move around the game board.

Every round node and every directed edge between round and home nodes
are labeled with a set M ⊆ {b, y, g, r}. The label of every round node contains
all colours that can visit this node. Since at the beginning of a game all round
nodes are vacant, i.e. they can be visited by all colours, they are all labeled with
{b, y, g, r}. The labels of the edges connecting home and round nodes contain
also all colours the tokens of which can move via these edges. For example, only
yellow tokens can move to a home node of a yellow player. Moreover, no yellow
token may go over the edge labeled with N y = {b, g, r}, because it has to enter
6 There exist several distinct versions of the game Ludo. In this paper we consider one

of the standard german versions.
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Fig. 1. An environment of Ludo

its home. Please note that the labels of most of the nodes and edges of Fig. 1
are depicted below the graph in order to keep the graph easy to read.

The goal of every player is to have all four tokens at home, one in each home
node. To reach a home place, a token must go from the start place over the round
fields in the indicated direction. To move a token, a die must be thrown. If a
six is thrown the current player must move one of her/his tokens from the start
node to the first round node, i.e. to the round node connected to the start node.
If there is no token left at the start node, the player can take any other of her/his
tokens. A six allows for throwing again. We assume here that the blue player
starts to play. This is why the b-labeled player is holding the die (represented by
the edge from the player to the die). Afterwards it is the turn of the yellow player.

Every player of Ludo can be realized as the autonomous unit depicted in
Fig. 2. The goal of a player is to have all of her/his tokens at home, one at
each home node. The rules and the imported units model all possible actions
of a player. A rule is depicted by an arrow pointing from the left-hand side of
the rule to the right-hand side. The possible values of the variables occurring in
the left- or right-hand side are put under the arrow. If the label of a node or
an edge is not significant it is omitted in the rule, i.e. an item without a label
can be matched to an item with any label. The rule go-to-startpoint of the unit



Autonomous Units and Their Semantics — The Sequential Case 255

againready
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ready turn
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cnm−6:
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rules: 
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conds: go−to−startpoint > (move−6(c),move(c)) > (cnm−6,cnm)

uses: move−6(c), move(c)

goal: 
{c} {c} {c}

Fig. 2. A ludo player

player moves a token that has been kicked out to its home node. As the control
condition prescribes this rule has the highest priority, i.e. it should be always
applied if possible. The rule cnm-6 and the rule set cnm are applied if no token
can be moved by the player, i.e. they have the lowest priority. The rule cnm-6
asks the die to throw again and cnm asks the die to turn to the next player if a
number between one and five was thrown.

Every player imports the two units move-6 and move. The unit move is de-
picted in Fig. 3. It models all moves of a token if no six is thrown. The moves
corresponding to a six are contained in the unit move-6. For reasons of space lim-
itations it is not depicted. The unit move contains four rules. The first, mf moves
a token from the first round node (the one connected to its start node) x nodes
ahead where x ∈ {1, . . . , 5} is the number thrown by the die. This move can only
be performed if the target node is not occupied and if there is still a token at the
start node. Moreover, the token can only be moved if it is the turn of its player.
This is indicated by the arrow pointing from player c to the die. On the left-hand
side the die has a ready-loop which means that the die has already thrown itself.
On the right-hand side the die is asked to turn. The rule mfko is similar to mf.
The difference is that another token is kicked out. The rule go moves from a
round or a home node to another round or home node. The rule goko does the
same but it additionally kicks out another token. The rules go and goko can only
be applied if the first two rules are not applicable. This is why the first round
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Fig. 3. The unit move

node must be left if it is occupied by a token of colour c and if there is still a
token at the start node. If this move is not possible any other token can be taken.

Please note that players select their tokens nondeterministically. More sophis-
ticated rules would allow to decide whether it is appropriate to choose a token
that can kick out another one, etc. The rules for making such decisions possi-
ble are more complicated, because they have to consider a wider context of the
environment (e.g. such a rule could check whether the kicking out of another
token brings the own token into a “dangerous” position). For reasons of space
limitations they are kept simple in this paper.

The last autonomous unit of Ludo models the die and is depicted in Fig. 4.
The unit die has no special goal, i.e. it admits every graph as a goal. The only
functionality of die is to throw itself and to move to the next player. The first



Autonomous Units and Their Semantics — The Sequential Case 257

yx
x,y in {1,..,6}

ready

turn

yx
x,y in {1,..,6}

ready

yagain
6 y in {1,..,6}

ready

rules: 

die

start: 

turn&throw: 

throw−again:

conds:  start ; (throw−again | turn&throw)*

Fig. 4. The unit die

rule throws the die. The second rule throws and turns the die in the case where
the die gets a corresponding turn-message from the player. With the third rule
the die throws itself again without moving to the next player. This can be only
done if a six was thrown before. The control condition requires that the start
rule be applied once at first. Afterwards any of the two remaining rules can be
applied arbitrarily often.

The game Ludo (including the board, up to four players, one die and the
game rules) can be modeled as the community Ludo the goal of which specifies
all graphs in which at least one player unit has reached its goal, the initial
environment specification specifies all possible start situations of Ludo, and the
set autonomous units consists of the unit die and one player unit for every colour.

7 Conclusion

In this paper, we have introduced communities of autonomous units as a means
for modeling systems in which different components interact in a rule-based,
self-controlled, and goal-driven manner within a common environment. We have
compared communities of autonomous units with the original transformation
units and we have illustrated the notion of communities with a case study mod-
eling the board game Ludo in which every player as well as the die can act as
an autonomous unit.

The underlying formal framework for communities of autonomous units has
been graph transformation which is highly adequate if the common environment
can be represented in a natural way as a graph as for example in the case of
board games and logistic applications. Nevertheless, it is worth noting that the
graphs and the graph transformation rules the units are working with are not
further specified in the underlying graph transformation approach so that in
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general, one can take as formal basis any rule-based mechanism that provides
a set of configurations and a set of rules specifying a binary relation on such
configurations.

The presented paper has been concentrated on the sequential semantics of
communities of autonomous units which seems to be suitable for a series of appli-
cations. For applications in which unit actions can happen in parallel or concur-
rently, the semantics can be defined accordingly as is done in a very first attempt
in [6] where one can find also a case study from the area of transport logistics.

There are at least the following interesting points for future work. (1) Commu-
nities of autonomous units should be compared with related approaches such as
agent systems [7,8], swarm intelligence [9] and distributed graph transformation
[10]. (2) Communities of autonomous units should be implemented in order to
be able to elaborate and to verify case-studies of realistic size. In order to verify
the case study presented in Sect. 6 we have implemented it based on the AGG
system. For this pupose the community Ludo had to be translated into a single
flat graph transformation system because AGG does not support the concept of
transformation units or communities. Currently there is being done some work
towards the implementation of communities at the University of Bremen which
has as one aim to allow to plug in other already existing graph transformation
tools (cf. [11]). (3) Up to now, the goal of an autonomous unit is defined as a
graph class expression. Since for some applications this may not be sufficient,
other adequate classes of goals should be studied. It should also be studied which
concrete classes of control conditions are the right ones for autonomous units. In
particular, in the case of games different playing strategies should be employed
for the different units in a communities. (4) More case studies should be specified.
In this context it would be meaningful to elaborate for one application several
case studies with a different degree of control distribution. For example in the
case of the game Ludo one could compare the presented case study with an-
other in which also the tokens are modeled as autonomous units with their own
control and rules. (5) Communities of autonomous units that can perform par-
allel and concurrent transformations should be further investigated taking into
account concepts and results from concurrent, parallel and distributed graph
transformation (cf.,e.g., [12,10]).
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Abstract. Despite the increasing relevance of model transformation
techniques in model-driven software development, research is mainly con-
ducted to the specification and the automation of such transformations.
However, since the transformations themselves may also contain concep-
tual flaws, it is essential to formally analyze them prior to executing
them on user models. In the current paper, we focus on a central val-
idation problem of trusted model transformations, namely, termination
and propose a Petri net based analysis method that provides a sufficient
criterion for the termination problem of model transformations captured
by graph transformation systems.

Keywords: graph transformation, termination, model transformation,
Petri nets.

1 Introduction

Many researchers and practitioners have recently revealed that model driven
software development relies not only on the precise definition of modeling lan-
guages taken from different domains, but also on the unambiguous specification
of transformations between these languages. To provide a standardized support
for capturing queries, views and transformations (QVT) between modeling lan-
guages defined by their standard MOF metamodels, the Object Management
Group (OMG) is soon to issue QVT [17] as a standard. QVT provides a declar-
ative rule-based, model transformation language where control structures are
restricted to embedding transformation rules into each other.

Graph transformation (GT) [8,20] has been applied successfully to many
model transformation (MT) problems. Many success stories were in the field
of model analysis which aim at projecting high-level UML models into mathe-
matical domains by model transformations to carry out formal analysis.
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Dániel Varró was also supported by the János Bolyai Scholarship.

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 260–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Termination Analysis of Model Transformations by Petri Nets 261

As revealed in a recent study [14], graph transformation and QVT-like declar-
ative techniques show a close correspondence. A first precise formulation of this
correspondence has been studied in [19]. As a consequence the theoretical back-
ground of graph transformation is expected to provide useful results for QVT.

Problem statement. A core problem, which is very vaguely addressed by QVT,
is related to the correctness of model transformations, namely, to guarantee that
certain semantic properties hold for a trusted model transformations. For in-
stance, when transforming UML models into mathematical domains, the results
of a formal analysis can be invalidated by erroneous model transformations as
the systems engineers cannot distinguish whether an error is in the design or in
the transformation. In case of QVT, it is possible that the embedded transforma-
tion rules interfere with each other and thus they may cause semantic problems,
which is not acceptable for trusted model transformations.

Most typical correctness properties of a trusted model transformation are ter-
mination, uniqueness (confluence) and behaviour preservation. In [11], we pro-
posed a set of sufficient criteria that guarantees the termination of model trans-
formations specified by so-called layered graph transformation systems (GTS).
While this technique was applicable to various practical model transformation
problems, further experiments have revealed that these sufficient criteria exclude
model transformations where rules are causally dependent on themselves.

Objectives and Approach. In the current paper, we provide a Petri Net based
technique for the termination analysis of model transformations specified by
GTSs. As termination is undecidable for graph grammars in general [18], we
propose a sufficient criterion, which either proves that a GTS is terminating, or
it yields a “maybe nonterminating” (do not know) answer.

The essence of our technique is to derive a simple Petri net which simulates the
original GTS by abstracting from the structure of instance models (graphs) and
only counting the number of elements of a certain type. If we manage to prove
by algebraic techniques that the Petri net runs out of tokens in finitely many
steps regardless of the initial marking, then we can conclude that the original
GTS is terminating due to simulation. In order to handle graph transformation
systems with negative application conditions as well, we introduce the notions
of forbidden and permission patterns, and overapproximate how different rules
influence each other when generating permissions.

As the derived Petri net model is of managable size (comparable to the number
of elements in the metamodels), our technique can yield positive results for
judging the termination of various model transformation problems captured by
graph transformation techniques.

Structure of the paper.The rest of the paper is organized as follows: Sec. 2 presents
a running example where we specify (with graph transformation rules) a trans-
formation from UML class diagrams to relational databases. Sec. 3 provides an
overview on graph transformation systems and Place / Transition (P/T) nets.
Sec. 4 proposes a P/T net abstraction of GTS with rules having negative appli-
cation conditions (NAC). Sec. 5 presents sufficient conditions for termination of
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GTSs by solving algebraic inequalities. Sec. 6 discusses related work and finally
Sec. 7 presents our conclusions and proposals for future work.

2 Motivating Example: The Object-Relational Mapping

As the motivating example of the current paper, we map simple UML class dia-
grams into relational database tables by using one of the standard solutions. This
transformation problem (with several variations) is frequently used as a model
transformation benchmark of high practical relevance [15].

The source and target languages (UML and relational databases, respectively)
are captured by their corresponding metamodels in Fig. 1. In Sec. 3.1, metamodels
will be represented formally by means of type graphs [9], while instance models will
be graphs typed over a type graph.

UML class diagrams in our pa-

Fig. 1. Metamodels (type graphs): Source, ref-
erence, target

per consist of classes arranged into
an inheritance hierarchy (by parent
edges).Classes haveattributes (at-
trs), which are typed over classes
(type). Directed associations are
leading from a source (src) class to
a destination (dst) class.

Relational databases consist of
tables, which are composed of
columns (tcols). Each table has a
single primary key column (pkey).
Foreign key (FKey) constraints
can be assigned to tables (fkeys). A foreign key refers to certain columns (cref )
of a table (tref ), and it is related to the columns kcols of (local) referencing table.

These metamodels (adapted from [15]) are extended by a reference metamodel
to interconnect the elements of the source and the target language. This way it
defines the main guidelines of (this variant of) the object-relational mapping itself,
which can be summarized as follows:

– Each top-level UML class (i.e. a top-most class in the inheritance tree) is pro-
jected into a database table. Two additional columns are derived automati-
cally for each top-level class: one for storing a unique identifier (primary key),
and one for storing the type information of instances.

– Each attribute of a UML class will appear as columns in the table related to
the top-level ancestor of the class. For the sake of simplicity, the type of an at-
tribute is restricted to user-defined classes. The structural consistency of valid
object instances in columns is maintained by foreign key constraints.

– Each UML association is projected into a table with two columns pointing to
the tables related to the source and the target classes of the association by
foreign key constraints.
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3 Introduction to Graph Transformation and Petri Nets

Now we provide a brief overview on the formal background of graph transforma-
tion and Petri nets. Only those concepts will be introduced which are essential for
presenting our main results in Sec. 4 and 5.

3.1 Typed Graph Transformation

Type and Instance Graphs. The metamodels of different modeling languages are
frequently formalized as type graphs and instance models are typed over this type
graph. The traditional instance-of relationship between metamodels and models
is captured formally by a typing morphism.

A graph G = (N, E, src, trg) is a 4-tuple with a set N of nodes, a set E of edges,
a source and a target function src, trg : E → N . A type graph TG is an ordinary
graph. An instance graph G is typed over TG by a typing morphism type : G →
TG. Let card(G, x) denote the cardinality (i.e. the number of graph objects) of a
type x ∈ TG in graph G. Formally, card(G, x)= |{n | n ∈ N ∪ E ∧ type(n)= x}|.

For the current paper, we assume that there is a unique edge of a certain type
between two nodes, i.e., if src(e1) = src(e2) ∧ trg(e1) = trg(e2) ∧ type(e1) =
type(t2) ⇒ e1 = e2, which simplifies the proofs of our theorems.

Graph Transformation. Graph transformation (GT) [8] provides a rule-based ma-
nipulation of graph models. A graph transformation rule r = (L l←− K

r−→ R)
typed over a type graph TG is given by triple where L (left-hand side, LHS), K
(context) and R (right-hand side, RHS) graphs are typed over TG and graph mor-
phisms l, r are injective and assumed to be type preserving.

The negative application conditions (NACs) of a GT rule are a (potentially
empty) set of pairs (N, n) with N being a graph also typed over TG and n : L → N
being an injective graph morphism. A GT rule with NACs is denoted shortly as
r = (L l←− K

r−→ R, {L ni−→ N i}) (i = 1 . . . k). Moreover, we assume that no
rules exist where all L and N are empty.

Application of a Rule. The application of a rule to a host model graph G alters
the model graph by replacing the pattern defined by L with the pattern defined
by R. This is performed by (i) finding an injective matching m : L → G of the
L pattern in model graph G; (ii) checking the negative application conditions N
which prohibit the presence of certain model elements, i.e. for each NAC n : L →
N of a rule no injective graph morphism q : N → G exists with m = q ◦ n; (iii)
removing a part of the model graph M that can be mapped to L but not to R
yielding an intermediate graph D; (iv) adding new elements to the intermediate
graph D which exist in R but not in L yielding the derived graph H . A GT step
is denoted formally as G

r,m
=⇒ H , where r and m denote the applied rule and the

matching along which the rule was applied, respectively. In the paper, we follow
the Double Pushout Approach [8].
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Fig. 2. Model transformation from UML to relational databases

Example 1. A sample graph transformation rule calculating the transitive closure
of the parent relation is depicted in the top rule (parentClosureR) of Fig. 2. The rule
prescribes that if class CP is parent of class CM (i.e. there is a parent edges between
them), and CM is a parent of class CC , but there is no parent edge from CC to CP,
then such an edge should be created.

For a more compact presentation of the rules, we abbreviate the L, N and R graphs
of a rule into one, and we only mark the (images of) graph elements to be removed
(del), or created (new). We assume that all elements in R marked as new are im-
plicitly present in the negative application condition N as well. In case of rule
class2TableR we use crossed lines to denote the second negative application con-
dition (that is not part of R).

Example 2. The object-relational mapping is captured by the set of graph trans-
formation rules in Fig. 2. The entire transformation starts with a preprocessing
phase when the transitive closure of parent relations is calculated (parentClosureR),
and then all attributes and associations are lifted up to the top-level
classes in the inheritance (parent) hierarchy (rules liftXYZ). Then the main model
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transformation (Fig. 2) proceeds as described in Sec. 2 by transforming classes
into tables (class2tableR), associations into tables (assoc2tableR), attributes into
columns (attr2columnR), attribute types and destination class of associations into
foreign key constraints (attr2fkeyR and assoc2fkeyR).

A graph transformation system GTS = (R, TG) consists of a type graph TG and a
finite set R of graph transformation rules typed over TG. A graph grammar GG =
(GTS, G0) consists of a graph transformation system GTS = (R, TG) and a so-
called start (model) graph G0 typed over TG.

The state space Sem(GG) generated by a graph grammar GG = (GTS, G0) is
defined as a graph where nodes are model graphs, and edges are graph transforma-
tion steps G

r,m
=⇒ H such that the source and target nodes of the edge are graphs

G and H , respectively. Starting from G0 the state space (i.e. the reachable model
graphs) of the GG is represented taking into account all applicable rules from a
given model graph for all possible matchings.

A graph grammar GG = (G0, GTS) is terminating if there are no infinite
sequences of rule applications starting from G0. A graph transformation system
GTS = (R, TG) is called terminating if for all G0, the corresponding graph gram-
mar GG = (G0, GTS) is terminating.

3.2 Place/Transition Nets

In the current section we give a short introduction into the theory of Place/
Transition nets based on [16].

A Place/Transition net (or shortly P/T net) is a 4-tuple PN = (P, T, E, w)
where P is a set of places (represented graphically as circles), T is a set of transi-
tions (represented as horizontal bars), E ⊆ (P × T ) ∪ (T × P ) is the set of arcs
(where no arcs connect two places or two transitions), and the weight function
w : E → N+ maps arcs to positive integers.

Placesmay contain tokens.The distribution of tokens at different places is called
a marking M : P → N, which maps places to non-negative integers. The initial
marking is denoted as M0.

The token distribution can be changed in the net by firing transitions. A transi-
tion t is enabled (i.e. it may fire), if each of its input places contain at least as many
tokens as it is specified by the weight function. The firing of an enabled transition
t removes a w(p, t) amount of tokens from the input places, and w(t, p) tokens are
produced on each output place p. As a result, the marking M changes to M ′ (de-
noted as M

t=⇒M ′) according to ∀p ∈ P : M ′(p) = M(p)− w(p, t) + w(t, p).
The incidence matrix W of a (finite) net describes the net token flow (of the

P/T net) when firing a transition. Mathematically, W is a |P | × |T |–dimensional
matrix of non-negative integers N such that wij = w(tj , pi) − w(pi, tj), where
1 ≤ i ≤ |P |, 1 ≤ j ≤ |T |.

After firing a transition t in marking M , the result markingM ′ can be computed
with the incidence matrix: M ′ = M + W · et, where et is a |T |-dimensional unit
vector, where the t-th component is 1 and the others are 0.
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A (transition) firing sequence s = 〈t1, t2, . . . , 〉 is a sequence of transition firings
starting from state M0 such that M0

t1=⇒M1,
t2=⇒ . . . , i.e. for all 1 ≤ j tj is enabled

in Mj−1 and Mj is yielded by the firing of tj in Mj−1.
The marking of the net after executing the first k steps of the firing sequence s

can be calculated by the state equation: Mk = M0 + W · σ, where σ is the transi-
tion occurrence vector or Parikh–vector of the trajectory s counting the number
of occurrences of individual transitions in the firing sequence.

4 A Petri Net Abstraction of Graph Transformation

4.1 Definition of the Core Abstraction

Firstwemapagraphtransformationsystemwithoutnegativeapplication conditions
into a Petri net (which is called cardinality (P/T) net in the sequel) by only keeping
track of the number of objects in the instance graph (separately for each node and
edge in the type graph) but abstracting from the structure of the instance graph.

Informally speaking, since the LHS of a GT rule requires the presence of nodes
and edges of certain types, the derived transition removes tokens from all the places
storing the instances of the corresponding types. Furthermore, the RHS of a GT
rule guarantees the presence of nodes and edges of certain types, thus the derived
transition generates tokens for the places storing the instances of such types. Later
we show that this is a proper abstraction, i.e. the derived P/T net simulates the
original GTS, i.e. when a GT rule is applicable, the corresponding transition in
the P/T net can be fired as well.

This mapping F(GTS) = (FTG,FG,FR) → PN (where GTS = (R, TG) and
PN = (P, T, E, w) with initial marking M0) is formally defined as follows:

– FTG : TG → P : Types into places. For each node and edge y ∈ NTG ∪ ETG

in the type graph TG, a corresponding place py = F(y) is defined in the car-
dinality P/T net.

– FG : G → M0: Instances into tokens. For each node and edge x ∈ NG ∪ EG

in an instance graph G with type y = type(x), a token is generated in the
corresponding marking MG = F(G) of the target P/T net. Formally, for all
places py = F(y), the marking of the net is defined as MG(py) = card(G, y).

– FR : R → (T, E, w): Rules into transitions. For each rule r in the graph trans-
formation system GTS, a transition tr = F(r) is generated in the cardinality
P/T net such that
• Left-hand side: If there is a graph object x in L with y = type(x), then an

incoming arc (py, tr) is generated in the P/T net where py = F(y) and the
weight of the arc w(py , tr) is equal to the number of graph objects in L of
the same type y. Formally, if ∀x, y : x ∈ L ∧ y = type(x) ∧ F(y) = py ⇒
(py, tr) ∈ E ∧ w(py, tr) = card(L, y).

• Right-hand side: If there is a graph object x in R with y = type(x), then
an outgoing arc (tr, p) is generated in the P/T net where py = F(y) and
the weight of the arc w(tr, py) is equal to the number of graph objects in
R of the same type y. Formally, if ∀x, y : x ∈ R ∧ y = type(x) ∧ F(y) =
py ⇒ (tr, py) ∈ E ∧ w(tr, py) = card(R, y).
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Fig. 3. Transition corresponding to rule
liftAssocDstR

In Fig. 3 rule liftAssocDstR of the ex-
ample in Fig. 2 is shown on the left to-
gether with the corresponding transition
liftAssocDstR (on the right) of the P/T net
abstraction of the example. Note that in-
dices ofF() will be omitted for simplicity.

As the GT rule liftAssocDstR contains
two Class nodes, one Association node, one
parent edge and one dst edge, the corre-

sponding transition is enabled if the corresponding type places (with identical la-
bels) contain at least 2, 1, 1, and 1 tokens, respectively. Since the application of
the rule preserves all items and creates one dst edge, the firing of transition liftAs-
socDstR puts 2, 1, 1, and 2 tokens to these places, respectively.

Note, however, that the transition of Fig. 3 is always enabled and thus, it would
directly cause non-termination. Therefore, we now extend our abstraction tech-
nique to handle graph transformation rules with negative application conditions
as well, which are frequently used in model transformation problems.

4.2 Extensions for Negative Conditions

Permission Places. In order to cope with NACs, the P/T net is extended with so-
called permission places to restrict the firing of a transition. We add one permission
place for each NAC in the GTS, and the idea of a permission place is to count how
many times the GT rule can be applied to the current instance graph (such that
the corresponding NAC does not violate these matchings).

– Start graph. The initial marking of permission places shall enable the firing of
a transition as many times as the corresponding GT rule is applicable to the
start graph by giving a permission token.

– Removing permissions. If a new matching of some NAC Ni of a GT rule r is
generated or an existing matching of the LHS of the same rule r is destroyed by
the application of some GT rule r′ then one or more tokens should be removed
from the permission place corresponding to N i

r.
– Creating permissions. If an existing matching of the NAC of a GT rule r is

destroyed or a new matching of the LHS of the same rule r is generated by the
application of some GT rule r′ then one or more tokens should be generated
to the permission place corresponding to N i

r.

Unfortunately, the exact number of tokens created for or removed from a per-
mission place depends on the actual graph structure. Therefore, we cannot derive
a constant weight a priori for the corresponding arcs in the P/T net; instead we
write w(G) on such arcs to denote that the weight of the arc is dependent on graph
G. However, we know that such an arc weight w(G) is finite, i.e. we can only gen-
erate and remove a finite number of new permissions for any permission place.

Overapproximation for Permissions. Therefore, we need to define an overapproxi-
mation of the potential number of rule applications, which still simulates the GTS,
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yet it is precise enough to detect termination for a certain class of model transfor-
mation problems.

– In our proposal, we only remove one token from a permission place when it is
absolutely guaranteed (by analyzing the original GT rule) that a permission
should be destroyed each time the rule is applied. In case of GT rules with NAC,
such a situation is when a GT rule cannot be applied on the same matching
twice due to a NAC.

– In case of generating a permission, we should consider all possible values for
the arc weight wi(G), thus we create a new variable ci which runs over positive
integers.

Permission and Forbidden Patterns. An initial idea for granting permissions is
to consider the causalities of GT rules, i.e. when a rule generates a new matching
for another rule, a new permission is generated as well. However, this solution is
unable to handle cases when GT rules are generating a bounded number of new
matchings for themselves (i.e., when a rule is causally dependent on itself).

For instance, each application of rule liftAssocDstR (in Fig. 3) generates a new
dst, thus a new matching for itself, which seems to be a direct cause for non-
termination. On the other hand, if the meaning of a permission is related to the
number of Class-Association pairs not connected by a dst edge, we notice that this
number is strictly decreasing, thus no new permission is granted by GT rule liftAs-
socDstR for itself. This insight is captured formally by forbidden and permission
patterns.

Definition 1 (Forbidden and permission pattern). Let GTS = (R, TG) be
a graph transformation system . A forbidden pattern fpi

r is defined for each NAC
N i

r of rule r as the smallest subgraph of N i
r that contains N i

r \Lr (also called as the
context of ni : Lr → N i

r).
The permission pattern ppi

r (of the same NAC N i
r) is defined as smallest sub-

graph of fpi
r that contains N i

r \Lr (also called as the boundary of ni
r : Lr → N i

r),
which is defined formally as fpi

r \ (N i
r \ Lr).

Informally, the permission pattern can be interpreted as an LHS pattern having
a NAC with the forbidden pattern. The exact number of permissions for a rule is
calculated as the number of matchings of the permission pattern having the for-
bidden pattern as a NAC.

(a) Rule liftAssocDstR (b) Rule attr2fkeyR

Fig. 4. Forbidden and permission patterns



Termination Analysis of Model Transformations by Petri Nets 269

Example 3. The concepts of forbidden and permission patterns are demonstrated
in Fig. 4(a). The forbidden pattern (FP) of rule liftAssocDstR contains a dst edge
leading from Association A to Class CP. Here N \ L contains the single dst edge
while the two nodes are added to guarantee that the forbidden pattern forms a
graph. In order to obtain the permission pattern (PP), we simply remove this dst
edge from the forbidden pattern.

Definition of cardinality P/T with permission places. The cardinality P/T net
with permission places of GTS is a PN = (P, T, E, w) derived by the mapping
Fpp(GTS) by extending F(GTS) in the following way:

– Variables as weight functions. We extend the weight function of a P/T net to
w : E → N+ ∪ V where V is a set of variables ranging over N+.

– NACs into permission places. For each NAC N i of a rule r a corresponding
permission place prNi = Fpp(rNi) is defined in the cardinality net.

– Matchings of permission patterns into tokens (initial marking). For each NAC
N i of a rule r as many tokens are generated in the corresponding permission
place as the number of injective matchings m of permission pattern ppi

r in the
instance graph G which satisfies the derived NAC ppi

r → fpi
r, (i.e., there is no

injective matching of the forbidden pattern fpi
r to G along m).

– NACs into pre arcs. For each rule r with NACs N1, . . . , Nk, if there is an injec-
tive morphism ki : N i → R compatible with r for some NAC N i (informally,
everything included in the NAC N i exists or it is created by the RHS), an
incoming arc (pr

Ni
, tr) is generated in the P/T net with weight 1.

– Rule actions into post arcs. For each pair of rules r = (Lr
l←− Kr

r−→ Rr) with
NACs N1, . . . , Nk and r′ = (L′

r
l←− K ′

r
r−→ R′

r), an outgoing arc (tr′ , pr
Ni

)
(i : 1 ≤ i ≤ k) is generated in the P/T net (i.e. from the transition of rule r′

to the permission place of rNi) with a variable arc weight vr′,r
Ni

if
1. at least one graph object o is deleted by r′ (from the forbidden pattern

fpi
r of r) such that there exists a graph object o′ ∈ N i \Lr, and type(o) =

type(o′) or
2. at least one graph object o is created by r′ such that there exists a graph

object o′ ∈ ppi
r, and type(o) = type(o′).

Informally, instead of regarding the causality between two rules based upon the
RHS of rule r′ and the LHS of r, we define causality between the effects of a rule
r′ and the permission pattern of r.

Furthermore, in order to overapproximate the graph dependent arc weights
w(G), we introduce variables as weights for such arcs. As a consequence, for each
step of the P/T net, we can substitute the variables with proper values to sim-
ulate the original GTS in a step-wise way. In order to prove termination later in
Sec. 5, we will show that any substitution of these variables fulfill certain algebraic
properties.

The incidence matrix of the P/T net abstraction of GTS with NACs is denoted
as W (v), which notation emphasizes that W contains variables at locations where
new permissions are generated for a rule.
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Fig. 5. Incidence matrix of the P/T net abstraction

The incidence matrix of the example GTS is given in Fig. 5. The places
(columns) refer to the type places corresponding to the type graph of Fig. 1, while
transitions (rows) refer to corresponding rules of Fig. 2. The right-most columns
of the matrix denote permission places. Note that the incidence matrix is indepen-
dent of the initial marking of the cardinality P/T net, thus our termination result
is valid for any initial marking.

It is worth pointing out that the proposed abstraction highly relies on the fact
that a RHS contains at least one of its NACs. Note that this is typical for model
transformation problems where NACs are frequently used to prevent the applica-
tion of a rule multiple times on the same matching.

Example 4 (Cardinality P/T net with permission patterns). Rule parentClosureR
generates new parent edges, which are required for the matching of rule liftAssocD-
stR (see Fig. 2), thus the two rules are causally dependent. However, no new per-
missions are generated for the latter, since rule parentClosureR should remove a dst
edge (see the forbidden pattern) or create new Class or Association nodes (see the
permission pattern) for a new permission to be generated (see the permission and
forbidden patterns in Fig. 4(a)).

On the other hand, rule class2tableR generates new permissions for rule
attr2fkeyR, since the tables created by the former are present in the permission
pattern of the latter (which consists of tables T , TT and columns C1 and C2 , see
Fig. 4(b)). Consequently, a variable v1 is used as the weight of the corresponding
arc leading from the transition of class2table to the permission place of attr2fkeyR.

5 Termination Analysis of Graph Transformation

Now we propose a termination analysis for GTS using a generalization of non-
repetitiveness results from P/T nets [16].

A P/T net is partially repetitive if there exists a marking M0 and a firing se-
quence s from M0 such that some transition occurs infinitely many times in s.
Furthermore, a main result from P/T net theory states that a P/T net with the
incidence matrix W is partially repetitive if and only if there exists a Parikh–vector
σ ≥ 0, σ �= 0 such that WT ·σ ≥ 0. As a consequence, if a P/T net is not partially
repetitive (i.e., no Parikh–vector σ ≥ 0, σ �= 0 exists that satisfies WT · σ ≥ 0),
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then only finite firing sequences exist from any intial marking M0, which proves
termination.

Our generalization lies in the fact we do not require the existence of the inci-
dence matrix W . Instead we state that if sequences of state vectors fulfill the con-
dition that at least one component of the state vector is decreasing (wrt. each pre-
vious state vector in the sequence) in each step it guarantees that the 0 state is
reached in finite steps. Our reason for this generalization is that W may contain
variables at permission places.

Theorem 1. If for all infinite sequences {Mi} = M0, M1, . . . of n-dimensional
(state) vectors of nonnegative integer values with Mj −Mj−1 <∞ for all j

(1) ∀i,∀j : j > i, Mi �≡ 0 ⇒ ∃k : Mj [k]−Mi[k] < 0, and

(2) ∀i,∀j : j > i, Mi ≡ 0 ⇒Mj ≡ 0

then M ≡ 0 in finitelymany steps, i.e. ∃s : Ms ≡ 0 (where Mj[k] denote component
k in vector Mj).

Then, we claim that mapping F() is a proper abstraction in the sense that the
derived P/T net without permission places simulates the original GTS . In other
terms, whenever a rewriting step is executed in the GTS on an instance graph, then
the corresponding transition can always be fired in the corresponding marking in
the P/T net, furthermore, the result marking is an abstraction of the result graph.

Theorem 2 (Cardinality P/T net simulates GTS). Let GTS = (R, TG) be
a graph transformation system and PN = (P, T, E, w) be a cardinality P/T net
derived by the mapping F(GTS). Furthermore, let G, H be instance graphs typed
over TG. Then PN simulates GTS, formally

∀G, H, r, o : (G
r,o
=⇒ H)⇒ (MG

tr=⇒MH),

where F(G) = MG, F(H) = MH, and F(r) = tr.

Finally, as a termination “oracle”, we solve quadratic inequalites based on the in-
cidence matrix of the P/T net with variables as defined in Sec. 4.1-4.2. If there
are no solutions for the inequality for any evaluation of variables in the incidence
matrix, we state that the original GTS is terminating.

Theorem 3 (Termination). Let W (v) be the incidence matrix of a cardinality
P/T net PN = Fpp(GTS) derived as the abstraction of a GTS.

If ∃σ∃v W (v) · σ ≥ 0 has no solutions with v ≥ 1, σ ≥ 0, σ �= 0 (thus
∀σ∀v ∃k : (W (v) · σ)[k] < 0), then GTS is terminating.

In order to show that the quadratic inequality W (v) · σ ≥ 0 has no solutions for
proving the termination of GTSs with negative application conditions, we used
a symbolic optimization toolkit (GAMS [12]) which supports mixed integer non-
linear programming.
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6 Related Work

Relation of Graph Transformation and Petri Nets. The main idea of this paper
is to analyze graph transformation systems via Petri nets. In fact, there is a long
tradition concerning the relationship of both areas. The basic observation is that
a P/T net is essentially a rewriting system on multisets, which allows to encode
the firing of P/T nets as a direct graph transformation in the Double Pushout ap-
proach using discrete graphs and empty interfaces for the productions only (see
[7]). Taking into account general graphs and nonempty interfaces graph transfor-
mation systems are closer to some generalizations of Petri nets, like contextual
nets. This relationship has been used in [2] to model concurrent computations of
graph grammars.

Vice versa the existence of powerful analysis techniques for P/T nets motivates
to simulate graph transformation by P/T nets [3], which allows to conclude cor-
rectness properties of graph grammars from properties of corresponding P/T nets.
The main novelty of this paper wrt. [3] (and subsequent papers of the authors) is
that (i) we take into account also negative application conditions of graph trans-
formations and (ii) the size of the derived P/T is dependent on the type graph and
not to the instance graph. The price we have to pay for a more efficient termination
analysis is that our P/T net can be too abstract to verify all the safety properties
investigated in [3].

Termination of Graph Transformation Systems. Termination of graph transfor-
mation systems is undecidable in general [18], but several approaches have been
considered to restrict a graph transformation system such that termination can
be shown. The classical approach of proving termination is to construct a mono-
tone function that measures graph properties, and to show that the value of such a
function decreases with every rule application. Concrete criteria such as the num-
ber of nodes and edges of certain types have been considered by Aßman in [1].
However, he sticks to these concrete criteria, while Bottoni et.al. [5] developed a
general approach to termination based on measurement functions.

With respect to termination for graph transformation systems, the currentwork
generalizes and formalizes the work begun at [13]. This, in fact, is an extension of
the layering conditions for deleting grammars proposed in [6], which were used
for parsing. A main advantage of our approach with respect to the termination
requirements of this parsing algorithm is that we do not require to partition the
rules (and the alphabet) into layers.

As pointed out already in the introduction, we have presented termination cri-
teria for graph transformation systems in [11], which allow to prove termination
of several practical relevant model transformations. However these criteria are not
applicable to model transformations where rules are causally dependent on them-
selves (e.g. transitive closure) like our motivating example. Since each layer of [11]
can be treated separately by our current techniques, furthermore, the termination
criteria proposed in [11] imposes a special structure on the derived incidence ma-
trix of the P/T net, it is possible to show that our termination analysis technique
based on P/T nets subsumes our former results in [11].
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7 Conclusion

In this paper, we have presented a termination analysis technique for model trans-
formations expressed as graph transformation systems using an abstraction into
Petri nets. This way, the termination problem of (a special class of) graph trans-
formation systems can be proved by its Petri net abstraction using algebraic tech-
niques. Since the termination of graph transformation systems is undecidable in
general, our approach yields a sufficient criterion: either it proves that a GTS is
terminating, or gives a “do not know” answer.

We believe that our results can also be useful for proving the termination of
QVT-based model transformations, which also uses a very limited set of control
structure. For instance, triple graph grammars (TGG) [21] provide a declarative
means to specify model transformations, and show a strong conceptual correspon-
dence with bidirectional QVT mappings. Moreover, a pair of traditional (opera-
tional) graph transformations can be easily derived for each TGG rule, and then
our termination criteria become directly applicable.

Although not mentioned explicitly, the termination criteria presented can also
be used for graph transformation with node type inheritance, since a flattening to
graph transformation without inheritance is available in [4]. Thus, the termination
analysis can always be done and need not be translated back.
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nation Criteria for Model Transformation. In FASE 2005: Internation Conference on
Fundamental Approaches to Software Engineering (Edinburgh, UK), LNCS 3442,
pp. 49-63, Springer, 2005.

12. GAMS: General Algebraic Modeling System. http://www.gams.com.
13. de Lara, J., Taentzer, G. 2004. Automated Model Transformation and its Validation

with AToM3 and AGG. In DIAGRAMS’2004 (Cambridge, UK). Lecture Notes in
Artificial Intelligence 2980, pp.: 182–198. Springer.
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Abstract. In unreliable environments, e.g. wireless networks, often the-
re are messages lost, connection and process crashes, among other un-
desirable fault occurrences. Mechanisms to enhance the dependability
of these systems can be employed, but with a performance cost. An-
alytical approaches are useful to predict performance and dependabil-
ity values, guiding the system developer to adjust bounds for specific
requirements in complex systems. In this paper we use non-functional
analysis of Stochastic Object-Based Graph Grammars (SOBGG) models
considering classical fault behaviors in distributed systems, allowing the
developer to predict performance and dependability values for high per-
formance and resilient systems. The specific contributions of this paper
are: (i) revisit the notion of fault representation to allow non-functional
analysis, more specifically, steady-state analysis; (ii) discuss the specifi-
cation of rates associated to SOBGG rules, describing an adequate ap-
proach to distributed systems; (iii) show the suitability of the proposed
techniques through their application to a case study.

Keywords: Object-based graph grammars, distributed systems, fault-
tolerance, non-functional analysis, dependability.

1 Introduction

In unreliable environments, e.g. wireless networks, often there are messages lost,
connection and processes crashes, network partitions, among other undesirable
fault occurrences. Such deficiencies obligate applications running in these envi-
ronments to use some type of support, like atomic broadcast, fault detection,
reconfiguration, recovery actions, among others.

These mechanisms can lead to some resilience level, but with a performance
cost. Analytical approaches are useful to predict the cost in terms of performance
as well as the dependability levels achieved with the use of such mechanisms,
guiding the system developer to construct high performance or resilient systems.
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In [5] OBGG (Object Based Graph Grammars) were introduced as a spec-
ification language suited for asynchronous distributed systems communicating
via message passing. Validation of functional aspects of the OBGG models has
been accomplished via simulation and model checking [4,7,18]. In [4,7] the func-
tional analysis of OGBB models in the presence of classical fault models in
distributed systems (e.g. crash, omission) was discussed. Nevertheless, performa-
bility and dependability analysis were not addressed in those works. In [15] we
introduced the notion of non-functional analysis of OBGG models, proposing
SOBGG (Stochastic Object-Based Graph Grammars).

In this paper we would like to show the applicability and relevance of join-
ing these results through the use of non-functional analysis of SOBGG models
considering classical fault behaviors in distributed systems, allowing the model
developer to predict performance and dependability values for high performance
and resilient systems. As a case study we start from the Token Ring model pre-
sented in [15] and extend it to consider also fault behaviors. The performance
parameters of the model are based on experimental analysis by [9,19].

The specific contributions of this paper are: (i) revisit the notion of fault
representation to allow non-functional analysis, more specifically, steady-state
analysis; (ii) discuss the specification of rates associated to SOBGG rules, de-
scribing an adequate approach to distributed systems; (iii) show the suitability
of the proposed techniques through their application to a case study.

This work is organized as follows. In Section 2 the SOBGG formalism is
described together with the Token Ring case study which is used in the other
sections of the paper. Section 3 and Section 4 briefly present the SAN (Stochastic
Automata Network) formalism and the translation from SOBGG to SAN. The
fault specification approach is discussed in Section 5 and in Section 6 the Token
Ring model is analysed. Final remarks are in Section 7.

2 Stochastic Object-Based Graph Grammars

In [12] a first step towards the stochastic analysis of graph transformation sys-
tems is given. In that contribution, the authors associate occurrence rates (cor-
responding to exponential distributions of probabilities) to rules. With this, the
transition system obtained from the graph grammar gives raise to a Continuous
Time Markov Chain that can be analysed with existing tools.

In [15] Stochastic OBGG (SOBGG) were proposed. SOBGG is a stochastic ex-
tension to OBGG, where rates, likewise to [12], are associated to rules, allowing
one to derive probabilities associated to the reachable states of the Graph Gram-
mar. OBGG is a restricted form of graph grammar and therefore the results of
[12] apply to OBGG as well. However, due to the state-space explosion problem,
in [15] Markov Chains are avoided and an equivalent method with better scala-
bility is preferred. Stochastic Automata Networks (SAN) [16] - see Section 3 - is a
Markov Chain equivalent formalism having as advantage its modularity in terms
of representation and the compact mathematical solution, allowing the analysis
of models with larger state space, if compared to Markov Chains [10]. Once a
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system is represented in SAN, it is possible derive the probabilities associated to
the states using the PEPS tool (Performance Evaluation of Parallel Systems)[17].
In [15] a translation from SOBGG to SAN is proposed - see Section 4.

SOBGG, as OBGG, is a restricted form of Graph Grammars [8] that offers
objects which communicate through asynchronous message passing as main ab-
stractions. The specifications are done in an object-based style that is quite
familiar to most of the users, and therefore easy to construct, understand and
use. An SOBGG system is modular, once is composed of independent entities
(objects).

In SOBGG, each object may be composed by the vertices and edges shown
in Figure 1(a). The vertices represent classes and ADTs (Abstract Data Types),
whereas messages and attributes of classes are modeled as hyperedges (edges with
one destination and many source vertices). We defined a distinguished graphical
representation for these graphs to increase the readability of the specifications.
This representation is shown in Figure 1(b). Elements of ADTs are allowed as
attributes of classes and/or parameters of messages. Note that the graph in
Figure 1 defines only a scheme of the kinds of vertices and edges that may occur
in a specification, and does not oblige objects or messages to have attributes.
For example, this graph specifies that, if a class has attributes, they must be
either of type ADT or of type Class.

Class

par2Attributes

Class
Message

atr1

atr2:ADT

ADT

Message

atr1 atr2

par1

par2

ADT
(a) (b)

par1

Fig. 1. (a) Object-Based Graph Scheme (b) Graphical Representation of Object-Based
Graphs

A rule will express the reaction of an object to the receipt of a message. A
rule of an object-based graph grammar consists of:

– a left-hand side L: describes the items that must be present in the current
state to enable the application of the rule. The restrictions imposed to left-
hand sides of rules are:
• There must be exactly one message vertex, called trigger message (this

is the message treated by this rule).
• Only attributes of the object that is the target of the trigger message

may appear.
These restrictions represent characteristics of the Object-based style, namely
reaction to messages and encapsulation (only attributes of the instance which
receives the message can be used in the rule application).

– a right-hand side R: describes the items that will be present after the appli-
cation of the rule. It consists of:
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• Objects: all objects and attributes present in the left-hand side of the
rule. Although OBGG does not restrict object creation, the analysis
method presented in this paper does not support dynamic object cre-
ation. The values of attributes may change, but attributes cannot be
deleted;

• Messages created by the rule application.

– a condition: that must be satisfied for the rule to be applied. This condition
is an equation over the attributes of left- and right-hand sides.

– an occurrence rate: each rule has an occurrence rate associated. The inverse of
the occurrence rate is the mean value of the exponential distribution function
that regulates the sojourn time in the state before the rule application. For
instance, let g be a state where rule r may be applied and r has rate t = 5.
Then, the system will stay, in average, 1/5 time units in state g. However,
observing a specific application of r, according to the exponential distribution
the system could stay any time in g.

Formally, we use typed attributed hypergraphs and a rule is a (partial) graph
homomorphism with application conditions. A SOBGG model is composed of: (i)
a Type Graph: a graph containing information about all attributes of all classes
involved in this system and messages sent/received by each kind of object; (ii) a
set of Rules: these rules specify how the objects behave when receiving messages.
For the same kind of message, there may be many rules specifying the intended
behavior. The behavior of an object when receiving a message is not specified
as a series of steps that shall be executed, but rather as an atomic change of
the values of the object attributes together with the creation of new messages
to other (or the same) objects; (iii)an Initial Graph: this graph specifies the
initial values of attributes of the objects, as well as messages that must be sent
to these objects when they are created. The messages in this graph can be seen
as triggers of the execution of the object.

The behavior of an OBGG is given by the state transition system generated
by applying rules of the grammar starting in the initial state. The computations
of a SOBGG are the same as the underlying OBGG (grammar without the
rates associated). Note that since the occurrence rate of a rule is given by an
exponential distribution, we may have any positive value of delay for the rule
application (including ∞). Therefore, the computations of the SOBGG do not
exclude any computation of the underlying OBGG.

Provided that the behavior of a SOBGG is given by a state transition system
which is finite and irreducible, i.e. from any state of the system it is possible
to reach any other one [20], a SOBGG as discussed above defines a discrete
state continuous time stochastic process, and has the memoryless property. This
property is assured by the use of exponential distributions associated to the
transitions, meaning that the time to the transition to the next state depends
only on the current state of the system and not on the previous ones. With this
it is possible to associate a probability to each state, which is the probability of
the system being in that state in a steady state situation.
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2.1 SOBGG Token Ring Model

The token ring protocol is used to control the access of various stations to the
shared transmission medium in a ring topology network [21]. According to the
protocol, a special bit pattern, called token, is transmitted from station to sta-
tion in only one direction. When a station wants to send some content through
the network, it awaits for the token, holding it, and sends the message on the
ring. The message circulates the ring and the destination station may copy its
contents. When the message completes the cycle, it is received by the originating
station. The originating station then removes the it from the ring and sends the
token to the next station, which then may act as already described. Having only
one token, only one station may be transmitting in a given time.

Figure 2(a) is a Type Graph and defines the type Node. Instances of Node
have one boolean attribute called sent and may receive two kinds of messages:
Msg meaning a frame of data and Token meaning the token. The link to the
next Node is given by the object reference next 1.

(a) (b)

Fig. 2. (a) Type Graph for Node and (b) Initial Graph for the Token Ring model

The rules that define the behavior of this model are presented in Figure 3. If
a Node receives the token it may send a Msg (rule Send) or pass the Token (rule
Token Pass). If the Node decides to send a Msg, the attribute sent is assigned
to true. When a Msg is received by a Node and it is the originating Node (if its
attribute sent is true) then rule Complete is applied, removing Msg from the
ring and generating the Token to the (next) Node. If the receiving Node is not
the originating one (its attribute sent is false) then rule Transmit is applied and
Msg is passed to the next Node.

The Initial Graph is shown in Figure 2(b), defining the various instances,
attributes and messages of the start situation. A ring with four nodes is defined,
called Node1, Node2, Node3 and Node4. The attribute next of each instance refers
to the next Node. All sent attributes are initially false and only one Node1 has
the token.

1 Graphical notation: in Figure 2(a) rectangles are vertices and the numbers inside
circles are used to indicate the type of each vertex in Figures 2(b) and 3. The items
within a vertex are the vertex attributes. Messages that appear in Figures 2(a) and
3 are hyperarcs.
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Fig. 3. Rules of class Node

3 Stochastic Automata Networks

In the Stochastic Automata Network (SAN) formalism, a system is modeled by
interacting subsystems which, in turn, are represented by automata that may
behave independently or may have dependencies. According to [1], SAN has
exactly the same application scope as Markov Chains, with the advantage that
models are constructed componentwise [16].

An automaton is composed by states and transitions labeled with event names.
A SAN model is composed by various automata. These automata may evolve
independently with local events (that may affect only the local state of the au-
tomata participating in this event), whereas synchronizing events are used to
model joint evolution of two or more automata. With the association of distri-
bution probabilities to the events, the labeled transition system generated by a
SAN gives raise to a Markov Chain and it is possible to calculate the steady
state probability of each state of a SAN. More concretely, to each event there
is an occurrence rate associated. The inverse of the occurrence rate is the mean
value of the exponential distribution function that regulates the time interval
between two occurrences of the event.
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A SAN defines the set of events that are used to synchronize the different
automata during the execution. The state changes of SANs are possible when
all different automata that may be engaged in some event are in some state
in which a transition labeled with this event is possible. Note that since there
may be different transitions labeled with the same event, there may be different
reachable state starting with the same state and executing the same event.

In this paper we do not present more details about SAN, but the reader may
refer to [1,16] for more information about SAN. In [15] a formal presentation of
the subset of SAN used in [15] and in this paper is provided. As an example,
in Section 4.1 a SAN model representing the translation of the SOBGG Token
Ring model from Section 2.1 is presented.

4 Translation from SOBGG into SAN

To associate probabilities to the states of the behavior semantics of a SOBGG we
have to solve the respective stochastic model. To do this, we translate SOBGG to
SAN and solve the resulting SAN model using the PEPS tool[17]. The translation
is briefly discussed here, but a more complete presentation is done in [15].

According to our translation approach, each object in a SOBGG initial graph
originates a SAN. The composition of the various objects is possible by the
composition of different SANs, resulting again in a SAN. For each object:

– each attribute of the internal state is represented by a separate automaton
in SAN;

– for each input message type for that object:
• for each possible configuration of concrete parameters of the message:

an automaton is generated, representing how many messages of that
type, with that configuration of parameters, is stored in the state of the
system;

– for each rule:
• for each possible occurrence of the rule: a SAN event having the same

rate as the originating SOBGG rule is generated, as well as a series of
transitions associated to that event.
These transitions represent all the possible state changes in a rule ap-
plication and they are synchronized by the same event. Thus the state
changes are made in an atomic way, maintaining the SOBGG semantic.
Due to the encapsulation of object-based systems, these transitions af-
fect only: the automata representing the internal states of the object;
the automaton representing the input message consumed by the rule;
and the automata representing input messages of objects that receive
messages due to this rule application.

From the initial graph the initial state of the SAN is derived. More concretely,
for the PEPS tool the initial graph is translated into a partial reachability func-
tion that specifies the states of all automata of the SAN according to the values
of the attributes, messages and parameters in the initial graph.
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4.1 SAN Token Ring Model

This section presents the SAN model obtained from the Token Ring SOBGG
model in Section 2.1 through the translation.

Figure 4 depicts partially the SAN model. Note that sent Node1 and
next Node1 automata represent the sent and next attributes for the object
Node1 of the Token Ring SOBGG model (the initial state of each automata is
the gray circle). Since the topology is static, the automaton next Node1 is actu-
ally not needed. To represent the possibility of referring to different nodes during
system functioning, such an automaton would be needed. The names of events
used to label transitions are composed of the name of the rule applied, a list of
attribute names and the respective value needed to build the match (in case of at-
tributes that are object references), and the object that receives the message. In
this figure, only the automata corresponding to Node1 are presented. The com-
plete model is composed by automata for all Node instances in the initial graph.

Send_next_Node1_Node4
Transmit_next_Node1_Node4

Complete_next_Node2_Node1
Transmit_next_Node2_Node1

0

1

Msg_Node1

sent_Node1

Send_next_Node2_Node1

Send_next_Node2_Node1

Transmit_next_Node2_Node1

Complete_next_Node2_Node1

false

true

Send_next_Node2_Node1Node2

Node3

Node4

next_Node1

Node1

Complete_next_Node2_Node1

Transmit_next_Node2_Node1
Send_next_Node2_Node1

Token_Pass_next_Node2_Node1

Token_Pass_next_Node1_Node4
Complete_next_Node1_Node4

1

0

Token_Node1

Fig. 4. Token Ring model translated

Token Node1 and Msg Node1 are message automata for object Node1, cor-
responding to messages Token and Msg, respectively. For example, when the
rule Transmit is applied by Node4, a message Msg to Node1 is generated. This
transformation is given by event Transmit next Node1 Node4. When the rule
Transmit is applied by Node1, one message Msg to Node1 is consumed. This
transformation is given by event Transmit next Node2 Node1.

To complete the SAN model, we translate the initial graph depicted in Figure
2(b) into the following partial reachability function in PEPS:

partial reachability =
(st sent_Node1==false) && (st Token_Node1==1) && (st Msg_Node1==0) &&
(st sent_Node2==false) && (st Token_Node2==0) && (st Msg_Node2==0) &&
(st sent_Node3==false) && (st Token_Node3==0) && (st Msg_Node3==0) &&
(st sent_Node4==false) && (st Token_Node4==0) && (st Msg_Node4==0);
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The partial reachability function in PEPS can be used to define one or more
reachable states. Here we use it to define the initial state of the SAN.

A token ring network with four nodes was modeled, having a static topol-
ogy, i.e. a node does not change its neighbors. Due to the static topology of
the example, the automata next Node1 to next Node4, representing the next at-
tribute of the instances are not necessary2. Therefore, each node was modeled
with three automata, one for the attribute sent and two for the possible input
messages. There are two states in each automaton. This results in 12 automata
and a product state space of 4096 states. However, considering the initial state
as described, only 20 states are reachable.

5 Modeling Fault Behavior

In [4,6,7] the specification and analysis, through simulation and model checking,
of OBGG systems in the presence of classical faults were discussed. The types
of faults assumed are benign, such as crash and omission. The representation of
fault behavior is suggested by [3], that states that a system may change its state
based on two event classes: normal system operation and fault occurrences. Based
on this observation a fault can be modelled as an undesired (but possible) state
transition of a system [11], i.e. a fault is just another kind of (programmable)
behavior. [11] further provides a straightforward transformation of a model of
the system into another model, representing the system in the presence of a
selected type of fault.

An interesting observation is that due to the declarative and reactive charac-
teristics of OBGG, the same ideas are applicable to OBGG. A fault behavior F
is thus represented by the transformation of an OBGG model M into an OBGG
model MF and this transformation can be automated. The same results are valid
for SOBGG.

In the crash fault behavior a process fails by halting and processes that main-
tain communication with the halted process are not warned about the fault. This
sectiondescribes how to transformaSOBGGmodelM into amodelMF that incor-
porates the behavior of a crash fault. In order to represent the behavior of a given
object in the presence of a crash fault, a transformation procedure is applied:

– a boolean attribute, called down is inserted in the type graph of the respective
class. Depending on the value of this attribute, the object may exhibit the
fault behavior (down is true) or not (down is false).

– new rules are added to activate the fault behavior and to cease it (chang-
ing the values of the attributes (down). To illustrate, the rules Crash and
Uncrash for the Node class are presented in Figure 5(a).

– for each original rule in M , add in the rule ¬down as condition;
– for each original rule in M , generate a new rule in MF . This rule will have

the same name as the original, but preceded by F , have as condition down,
and will consume the input message but without any effect, i.e. without

2 This and other optimizations on the translation approach are found in [15].
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changing attributes or sending messages. The desired (faulty) effect is that
the input message is simply lost. See for instance Figure 6 where rule F Send
is generated from Send.

– one or more rules specifying the recovery actions are described in reaction to
message Recovery. Note that since the recovery depends on the application,
these rules have to be defined by the system designer.

(a) (b)

Fig. 5. Rules Crash and Uncrash used to activate/deactivate the crash fault behavior:
(a) for qualitative analysis; (b) for quantitative analysis

(a) (b)

Fig. 6. Rule Send : (a) correct behavior; (b) fault behavior

In this work we apply a steady state analysis over the model. Thus, we can
analyse situations where fault occurrence and recovery take place cyclically. Al-
though this is a restriction, the quantification of fault and recovery actions is
typically given in terms of MTBF (Mean Time Between Failures) and MTTR
(Mean Time To Repair), which can be well captured in our model. Thus we
change the rules Crash and Uncrash in order to always generate one message
Uncrash when the rule Crash is applied and generate one message Crash when
the rule Uncrash is applied (Figure 5(b)). The rates to rules Crash and Uncrash
can be assigned to represent MTBF and MTTR, respectively. The resulting
SOBGG with crash representation has 11 rules.

The rules reacting to Recovery describe the actions of the faulty node when it is
correct again. A possible recovery procedure for a node in a Token Ring is to await
for a period, which is enough for the message with maximum length to circulate
the Ring, and, in the meanwhile if a message or token is received, simply follow the
protocol or, if no packet is received, generate a new token in the Ring.

From the SOBGG with crash representation we apply the translation into
SAN. Figure 7 depicts the automata representing down, Crash and Uncrash,
together with the events generated by the rules specifying the fault behavior
(beginning with F ). Note that the attributes are not updated by these rules,
only the original rules (correct behavior) can update attributes. However, the
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messages are consumed by both types of rules (see rules Send Node2 Node1 and
F Send Node2 Node1 ). In addition, Crash and Uncrash messages are alternated,
according to the rules in Figure 5(b).
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Fig. 7. Translated SAN model for crash fault behavior

This approach to fault specification increases the state space of the model due
to new messages (Crash, Uncrash and Recovery) and attributes (down). Each of
these automata has two states, thus the new product state space, to represent
one faulty node in the ring, prod(MF ) = 2 × 2 × 2 × 2 × prod(M). As stated
in Section 2.1, prod(M) = 4096, so prod(MF ) = 65536 states. Considering the
same initial state as in section 2.1, the reachable state space is 16384 states.

6 Model Analysis

This section presents results obtained from the steady state analysis of the Token
Ring translated model. We discuss the representation of rates for the rules and
the quantitative analysis of the fault-free and faulty models, considering crash.

6.1 Representation of Rates

For each rule ri of the model, an occurrence rate rti is associated. The inverse
of the occurrence rate is the mean value of the exponential distribution function
that describes the sojourn time in the state before the rule application. In other
words, ti = 1/rti is the mean value, in time units, that the system stays in the
state before the rule application.

We consider the influence of three different time measures in the model, based
on [19,22], to calculate ti: time to send a message tsend, which is the time spent
on local processing in the node until the message is considered to be posted in the
network; network contention tnet, which is the time spent by the message in the
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path to the destination; and time to receive a message treceive, which is the time
spent since the message arrived at the destination node in the communication
devices until it is processed by the application.

The left-hand side of a rule ri describes the delivery of the activation mes-
sage of this rule. The delivery time consists of tnet + treceivei . The right-hand
side specifies attribute changes and messages sent. If one or more messages are
created, it is necessary to include tsendi in ti in order to represent the time to
send the set of messages sent by ri. When rule ri does not send any message
we consider tsendi = 0 and ti will represent only the time for delivery of the
activation message of ri. In this way, the time ti will be represented as follows:

ti = treceivei + tnet + tsendi

With the analysis so far, each rule ri, having a ti calculated as above, would
have a rate rti = 1/ti. This would model the sojourn time ti in the state before
the rule application. However, when various rules can be applied to a same state,
it is interesting to be able to represent different probabilities to the choice of the
different rules. This allows to study different conditions (e.g. workload) of the
system. For each set of n rules with the same activation message and which
can be enabled by the same states, we assign probabilities p1, . . . , pn, where
p1 + . . . + pn = 1, representing the probability of choice for each rule. The
identification of these sets of rules is left to the designer since it is dependent on
the application.

Consider that in a given state, rules ri with i from 1 to n, can be applied with
respective probabilities pi and sojourn times ti associated. Then, to associate
rates rti to the rules in order to represent this probability of choice, we have to:
– calculate the mean sojourn time mt considering pi and ti as follows:

mt =
∑n

i=1 ti × pi

– calculate the rate to rule ri to represent the probability pi as follows:
rti = pi/mt

For example, in the Token Ring, one can observe that both rule TokenPass and
rule Send can be applied to the same states (see Figure 3) while the other rules
are applied in exclusive situation. Thus, for this case study we define probabilities
associated to TokenPass and Send. Suppose that the ttokenPass = 570μs and
tsend = 630μs. Imagine that we may choose tokenPass and Send in various
configurations of probabilities in order to model various scenarios: 9:1; 7:3, 1:1,
3:7, and 1:9. Thus, the configurations of rates for rules tokenPass and send
would be as in Table 1.

Table 1. Configuration of rates according to probabilities

Properties Scenarios (proportion token:message)
9:1 (tok:msg) 7:3 (tok:msg) 1:1 (tok:msg) 3:7 (tok:msg) 1:9 (tok:msg)

rate tokenPass 0.9/576 0.7/588 0.5/600 0.3/612 0.1/624
rate send 0.1/576 0.3/588 0, 5/600 0.7/612 0.9/624
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6.2 Evaluation of Results

In this section we analyse the Token Ring model presented in Section 2.1 based
on the rates used in [19]. In that work, simulation and measurement of a real
network was performed in order to analyse the performance of failure detection
mechanisms. Since we are considering an analogous environment in this paper
we adopt the measures presented in [19].

We consider that the time spent to receive a token is 230μs, to receive a
message is 260μs, to send a token is 240μs and to send a message is 300μs.
Further, we consider a network latency of 100μs to deliver any type of message.
In Section 6.1 we discussed how to define the rates associate to rules. With the
communication parameters described above we achieve the following time values:
t tok = 570μs or t tok = 230μs+100μs+240μs = 570μs, t send = 630μs, t comp
= 600μs and t trans = 660μs.

In addition, we model the probability of sending a message or a token (rules
Token Pass and Send). We solve the model assuming various configurations
of probabilities: the same probability, i.e. 1:1 (token:msg); representing higher
probabilities of sending data instead of passing the token with 3:7 (token:msg)
and 1:9 (token:msg); and representing situations of lower workloads with 7:3
(token:msg) and 9:1 (token:msg), increasing the network idleness.

Evaluating the Fault-Free Environment. In the fault-free environment
there are no crash occurrences. For this environment we measured the probabil-
ity of the network being busy or idle. The properties are described informally
and as SAN integration functions, as follows:

– busy network: the probability of having a data message in the ring, (i.e.
the probability of any automata Msg Node1 to Msg Node4 being in state 1 )

busy = (nb [Msg Node1 .. Msg Node4] 1) > 0;
– idle network: the probability of having a token message in the ring

idle = (nb [Token Node1 .. Token Node4] 1) > 0;

The operation (nb [list of automatonName] stateName) returns a vector of
probabilities mapping from 0 to the number of listed automata to a probability
of having that number of automata in the state mentioned. Thus, the function
busy determines the probability of more than 0 automata, out of Msg Node1 to
Msg Node4, being in the state 1. Table 2 presents the results achieved.

Table 2. Quantitative analysis of the Token Ring model for a fault-free environment

Properties Scenarios (proportion token:message)
9:1 (tok:msg) 7:3 (tok:msg) 1:1 (tok:msg) 3:7 (tok:msg) 1:9 (tok:msg)

busy 30.93 % 55.82 % 68.25 % 74.69 % 78.81 %
idle 69.06 % 43.17 % 31.74 % 25.31 % 21.18 %

Note that when messages and tokens are sent proportionaly (1:1), the proba-
bility of the network to be busy is higher. This occurs because the time to deliver
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messages is higher than the time to deliver tokens (since messages circulate the
whole ring) so most of the time Msg is being transmitted on the network.

Evaluating Faulty Environment. In this section we solve the Token Ring
model augmented with fault behavior according to changes described in Section
5. To solve models considering fault behavior, we define values for MTBF and
MTTR, representing how often a node will crash and the time to recover a
crashed node. The values of MTBF and MTTR can be configured to represent
and analyse different and limit situations. To exemplify their use here we consider
MTBF of 1s and MTTR of 100μs (see Table 3).

Table 3. Quantitative analysis of the Token Ring model for a faulty environment
(MTBF = 1s and MTTR = 100μs)

Properties Scenarios (proportion token:message)
9:1 (tok:msg) 7:3 (tok:msg) 1:1 (tok:msg) 3:7 (tok:msg) 1:9 (tok:msg)

busy 28.90 % 52.14 % 62.40 % 68.16 % 71.72 %
idle 63.15 % 39.70 % 29.30 % 23.45 % 19.81 %
unavailable 7.95 % 8.16 % 8.30 % 8.39 % 8.47 %
node crashed 9.10 % 9.10 % 9.10 % 9.10 % 9.10 %

Moreover, we can perform other analyses since we have more elements.
For instance, we may compute the probability of having a Node crashed (st
down Node1 == true) 3 and, more interestingly, we can observe that there is a
non zero probability of having the network unavailable, i.e. with no token and
no message in the network. This is described as: unavailable = 1− busy − idle.

Note that the probability of a node being crashed and the network being
unavailable is not the same. This occurs since the communication between non-
crashed nodes remains even some node has failed. The network is unavailable
only when a message is sent to a crashed node and, consequently it is lost. The
network unavailability is dependent on MTBF and MTTR.

7 Final Remarks

In this paper we briefly presented Stochastic Object-Based Graph Grammars
(SOBGG), an extension of Object-Based Graph Grammars (OBGG) to repre-
sent stochastic systems. We also briefly discussed the translation from SOBGG
to Stochastic Automata Network (SAN), allowing one to perform steady state
analysis on the model, associating probabilities to the reachable states [15].

Various stochastic formalisms could have been chosen for the translation, like
Stochastic Process Algebras (SPA) [13] and Generalized Stochastic Petri Nets
(GSPN) [14]. Considering the data driven characteristic of Graph Grammars, it
is more natural to adopt a target formalism with explicit state representation.
3 The function st aut == x returns the probability of an automaton aut being in state

x.
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We consider that this eases both the translation as well as the analysis of the
translated model. Thus SPA were not preferred. As far as GSPN are concerned,
even GSPN representations tend to be more compact than SAN due to the
use of tokens [1,2], we consider that the resulting GSPNs to represent SOBGG
models would have a high number of transitions involving many places, hindering
legibility. Nevertheless, the use of GSPN should be considered in future steps
mainly due to tool support. In the case studies carried out so far, we could
notice that SOBGG models, when translated to SAN, tend to generate a large
product state space but a reduced reachable state space. The PEPS tool, in
the current version, first calculates the product state space and then solves the
system, assigning probabilities to the reachable states. Therefore, using PEPS,
our models are restricted in the product state space. Existing GSPN tools would
not impose such a restriction. A new version of the PEPS tool is being developed
whereby the the reachable state space is calculated directly. With the ideas
presented in [15] and here, this enhancement should allow the stochastic analysis
of SOBGG models with considerable size.

A particular interesting result achieved for OBGG, which is highly desired
to have also in SOBGG is the possibility of representing classical fault models
for distributed systems [4,6,7]. With this it is possible to evaluate important
aspects such as availability and performance impact of fault-tolerance mecha-
nisms. Therefore, in this work we revisited the previous ideas on representing
faults to be used with SOBGG. More concretely, we discussed the crash fault
model and its representation in SOBGG. Moreover, we discussed the assignment
of rates to SOBGG rules in order to represent meaningful performance aspects
of distributed systems using message passing. These ideas were applied to a case
study and the numerical results achieved are coherent with the model analysed.

As could be noticed, in order to analyse the SOBGG model the user has to
know the generated SAN model to extract results. One future work should be
to allow the analysis of the model based on the SOBGG abstractions and not
on the generated SAN, which should be hidden from the user.
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11. F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31(1):1–26, 1999.

12. R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems. In
Proc. 2nd Intl. Conference on Graph Transformations (ICGT 2004), volume 3256
of Lecture Notes in Computer Science, pages 210–225. Springer, 2004.

13. Hermanns, Herzog, and Katoen. Process algebra for performance evaluation. TCS:
Theoretical Computer Science, 274, 2002.

14. M. Ajmone Marsan, G. Balbo, and G. Conte et al. Modelling with Generalized
Stochastic Petri Nets. Wiley series in parallel computing. Wiley, New York, 1995.

15. O. M. Mendizabal, F. L. Dotti, and L. Ribeiro. Stochastic Object-Based Graph
Grammars. In Proceedings of the Brazilian Symposium on Formal Methods (SBMF
2005), pages 128–143, 2005. http://bibliotecadigital.sbc.org.br/?module=Public
&action=PublicationObject& subject=147&publicationobjectid=7.

16. B. Plateau. On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In SIGMETRICS, pages 147–154, 1985.

17. B. Plateau and K. Atif. Peps: a package for solving complex Markov models of
parallel systems. In Proceedings of the 4th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, 1988.

18. O. M Santos, F. L. Dotti, and L. Ribeiro. Verifying object-based graph grammars.
Eletronic Notes in Theoretical Computer Science, 109:125–136, 2004.
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Abstract. Graph transformation techniques have already been used
successfully by several research groups to support re-engineering of large
legacy systems. Where others often aim at transforming the system to
improve it, we advocate an evolutionary approach that embeds trans-
formations within the ordinary development process and provides tool
support to monitor the ongoing progress regularly. In this paper, we dis-
cuss how temporal graph queries based on Fujaba story diagrams can
provide a natural means to express trend-oriented metrics and consis-
tency rules that we identified in our industrial case studies. To this end,
we discuss a first-order logic rather than operational interpretation of
a graph queries and show how well-known temporal logic operators can
be added to express rules over consecutive states of the same instance
graph.

1 Introduction

After successfully developing and enhancing a software intensive product for
many years, developers often realize that it becomes harder and harder to add
new features to the system. Subsequent reverse engineering usually shows that
the software architecture needs some major restructuring of the existing code.
In some cases, these restructurings can be quickly performed by automated re-
engineering tools. In other cases, there are technical obstacles or rigid develop-
ment processes prohibiting the use of transformation tools. Manual restructuring
of the complete system however can delay the development of new features for
several weeks or months, which is not acceptable from an economic point of view.

Under these circumstances, less invasive tool support can provide means to
achieve long-term goals such as restructuring without sacrifying business-critical
short term goals. The idea is to improve the software architecture in small steps
as part of the ordinary development process and monitor the progress towards
long-term goals with specially designed analysis tools. In our approach, such
tools can be generated from domain-specific meta models describing architectural
concepts, design tool data and source code structure as well as appropriate graph
transformations and queries defining metrics and consistency rules.
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Naturally, the initial situation is usually pretty bad in the sense, that it is
quite different from the desired situation. When the existing problems cannot
be solved at once or their dynamics are not yet fully understood, a first goal
might be that things don’t become worse than they already are. In later stages
of the restructuring process, improvements should take place at a certain pace to
ensure that the long-term goals are finally met. Hence, our analysis tools focus
on trends in metric values and rule violations rather than absolute numbers.

Consequently, we came to the conclusion, that it would be beneficial to be
able to specify rules with respect to analysis data of the same system sampled at
different points of time. One could think of the following kind of temporal rules:

– A file with less than 1000 lines of code (LOC) now should have less than
1000 LOC henceforth.

– If a file includes a header file, but its block does not see an adequate exporting
interface now, the block has never seen such an interface.

– After the next milestone (01-05-07), the number of invalid includes must be
reduced by 100 every week.

– Each block must provide at least one interface before the next release.

During our research, we found out that temporal logic provides a means to
express a number of these rules we had in mind. However, we had to investigate,
how temporal logic and graph transformation fit together. As we point out in
Section 5, some work had already be done to bring graph transformation and
time together, but did not fully serve our purposes. The main contribution of
this paper is the definition of a temporal graph query language derived from
story diagrams used by Fujaba [1]. To define the semantics, we construct a pair
grammar [2] mapping temporal graph queries on equivalent temporal first order
logic formulae.

The rest of the paper is structured as follows: In Section 2, we introduce an
example that is referred to throughout the paper. In Section 3, we introduce
a subset of Fujaba story diagrams referred to as graph queries. Next, in Sec-
tion 4, we show how well-established time operators from temporal logic can
be added to graph queries so that they can be interpreted by temporal first
order logic. Section 5 discusses related work with particular emphasis on graph
transformation-based re-engineering and graph transformation considering time.
We summarize our results in Section 6, and provide some insight into ideas to
continue this work.

2 Running Example – Motivated by Case Study

Throughout the paper, we use a simple example motivated by a more complex
industrial case study described in [3]. For this example, we assume that we start
with an existing system programmed in C. The project started quite small more
than a decade ago, with only a couple of developers. Back then, nobody anti-
cipated the growth of the system and hence no-one cared about ”architecture”.
In typical C-style, the system was divided into several libraries with globally
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Fig. 1. Simple Graph Schema for Re-engineering Example

available header files. Over the years, the system has become bigger and now
consists of several million lines of code, which are maintained and improved by
more than 200 developers.

Due to the complexity of the dependencies, it has become more and more
difficult to modify the existing code without breaking something. As a solution,
the software architects defined, in their terms, architecture concepts – actually
a proprietary module interconnection language – consisting of a nested building
blocks and associated export interfaces. Fig. 1 presents a graph schema Γ 1 for
these concepts and shows the dependencies between new architecture and already
existing implementation concepts.

Given the right parsers, which are out of scope of this paper, it is possible
to periodically create an instance graph of this schema representing the archi-
tecture and the related implementation at the time of analysis. Existing Graph
queries (and transformations) can be defined to check (and transform) each sin-
gle instance with respect to certain consistency rules. As one goal was to avoid
new violations in the architecture, we found that we would like to have rules
that enabled us to reason about certain objects in different instance graphs. The
contribution of this paper is to propose the syntax and semantics of a temporal
language extention for graph queries to make this possible. The exact implemen-
tation of these queries is out of the scope of this paper, but some basic ideas are
sketched in Section 4.3.

The case study discussed in [3] involved several metrics and 23 consistency
rules which used to be checked every night. The system consisted of 500 build-
ing blocks, 8000 files and 40000 include relationships. Most of the analysis tool
was hand-coded and implemented with the specific system in mind. The code

1 A formal definition for graph schemas can be found in [4].
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Fig. 2. Consistency Rule for All Included Header Files

for checking consistency rules however, was already generated from Fujaba 3
specifications, with a strong emphasis on changes in metrics and consistency
violations, rather than trying to interpret absolute figures.

Ever since, our research effort has been put into generalizing the approach to
make it easily available to other development projects as well. Recently started
case studies indicate that our approach will be useful in other industrial appli-
cation areas as well. This research is performed as part of the MOFLON project
[5], which is a MOF 2.0-based meta modeling framework on top of the Fujaba
Toolsuite [1]. Hence, our suggestions for temporal graph queries are based on
the Story Driven Modeling (SDM) language, which is the graph transformation
language featured by Fujaba.

3 First Order Logic Interpretation of Graph Queries

In the following, we describe the systax and semantics of a subset of SDM referred
to as ”graph queries”. As we restrict ourselves to queries, the semantics can be
descibed by well-known first order logic (FOL) formulae. First we discuss an
example query that serves as consistency rule and discuss its logic interpretation
in Section 3.1. Then we approach the issue more systematically in Section 3.2 and
show by construction, how any FOL formula can be translated into a normalized
graph query. We omit formulae for non-normalized graph queries, as they would
be too complex considering the size restrictions of a paper. However, we discuss
in Section 3.3, under which conditions more user-friendly story diagrams can be
translated into FOL formula.

3.1 Example Interpretation

Fig. 2 shows a Fujabagraph query representing a consistency rule to check
whether all2 outgoing include relationships between a given file f and header

2 Indicated by the doube-boxed ”forall” activity.
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Fig. 3. Instance Graph for Schema in Fig. 1

files h are correct with respect to the architecture due to an adequate sees rela-
tionship between the related block b and the interface i.

areAllIncludesValid(f)⇔ ∀h(
(type(h, HeaderFile) ∧ ¬(f ≡ h) ∧ rel(f, includes, h))
→ ∃b∃i(type(b, Block) ∧ type(i, Interface)
∧ ¬(b ≡ f) ∧ ¬(b ≡ h) ∧ ¬(b ≡ i) ∧ ¬(f ≡ h) ∧ ¬(f ≡ i) ∧ ¬(h ≡ i)
∧ rel(b, owns, f) ∧ rel(b, sees, i) ∧ rel(i, exports, h))). (1)

Equation 1 is a FOL interpretation of this query, where type, rel and eval are
predicate symbols and attr is a function symbol with the following interpretation:

– type(x,T): object x is an instance of type T .
– rel (x,E,y): between objects x and y exists a link of association E.
– eval (x, a, Ω, e): the value of attribute a of object x compares to expression

e by operator Ω ∈ {=, �=, <,≤,≥, >}.
– x ≡ y: x is the same object as y.

Let GΓ be an instance graph consistent with the schema Γ . A valuation for a
given G is a function AG : Ā −→ {0, 1}, where Ā is the set of FOL formulae. As a
shorthand, we write G |= F forAG(F ) = 1. Fig. 3 represents an instance graph G
consistent with the schema Γ introduced in Fig. 1. As one can easily reproduce,
the following holds: G |= areAllIncludesValid(f), G |= areAllIncludesValid(g),
and G �|= areAllIncludesValid(h).

3.2 From Formulae to Graph Queries

As we have seen, it is possible to interpret the graph query in Fig. 2 as a
FOL formula, but is there an equivalent graph query for any given FOL for-
mula? Indeed, we were able to construct a graph query language comprising
a useful subset of Story Diagrams defined in [1], which essentially are UML
activity diagrams containing visually notated transformation rules of the in-
stance graph. To this end, we defined the pair grammar shown in Fig. 4 and 5.
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Fig. 4. Pair Grammar for First Order Logic Interpretation of Graph Queries

Pair grammars have been invented by Pratt for the precise specification of
text-to-graph and graph-to-text translations [2]. For this purpose, they combine
a string and a graph grammar which derives corresponding string and graph
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Fig. 5. Pair Grammar Right Hand Sides of Atomic Rules

sentences simultaneously. Note, that we define the pair grammar based on the
concrete rather than the abstract syntax of SDM which would be correct, but less
readable.

Each row in Fig. 4 contains one rule that is divided into two sub rules that are
applied simultaneously. The left sub rule describes the construction of the FOL
formula, while the right sub rule describes the construction of the related graph
query. Non-terminals are denoted by angle brackets (e.g. <exp>). Corresponding
non-terminals in both sub rules have the same name.

In the right sub rule, non-terminals are embedded in rounded boxes rep-
resenting activities. We always consider the edge context of the activity ex-
tended by the rule and embed activities on the rule’s right hand side in the
context of the left hand side. Every activity may have any number of incom-
ing transitions with arbitrary labels. The incoming edge context is marked by a
box named a. Apart from forall-activities, each activity has exactly one outgo-
ing success and failure transition. The success edge context is named b and
the failure edge context c. As every word in this grammar is derived from
the first rule, the resulting story diagram has one start activity, exactly one
stop activity marked with true, and exactly one stop activity marked with
false.

Fig 4 contains definitions of formulae containing the classical FOL operators
negation, conjunction, disjunction, universal quantifier and existential quantifier.
Further operators like implication and equivalence can be derived according to
the usual substitutions. The forall activity is used to reflect the universal quan-
tifier and must have exactly one outgoing eachtime and end transition instead
of success and failure.

Fig 5 defines the atomic propositions that might occur in a graph query,
namely node matching, edge matching, attribute evaluation and isomorphism.
Rectangular boxed inside activies represent nodes of the instance graph. Note
that this figure only contains the right hand side of each sub rule with the textual
part in the upper right corner. The missing left-hand sides are the same as in
Fig. 4 as e.g. for the rule ”negation”.



298 T. Rötschke and A. Schürr

To save some space, the rules are already prepared for the temporal extensions
proposed in Section 4. Therefore, each activity carries a temporal expression τ .
In the case of static graph queries, i.e. without temporal operators, the temporal
expression can be ignored.

Using this pair grammar, we can parse any FOL formula3 using the context-
free string grammar rule. We also can compute the equivalent depiction of an
SDM graph using its corresponding graph grammar rules.

3.3 From Graph Queries to Formulae

As we have argued in Section 3.2, we can construct a graph query for every FOL
formula. Obviously, we can do the reverse, and construct a FOL formula for any
graph query that can be constructed by the grammar. However, Story Diagrams
usually contain a relative small number of Story Patterns consisting of multiple
objects, links and attribute-value pairs. We consider these story diagrams as
shorthands for those that can be created by the pair grammar.

Because of size restrictions, we can not provide a tranformation system that
is able to translate each ”nice” story diagram into a normalized graph query to
be able to find the FOL formula. This system would also translate additional
features such as negative nodes, negative edges and optional nodes4.

Though we do not provide the complete transformation, we at least want to
provide an example how the graph query in Fig. 2 looks like in the normalized
form. Fig. 6 represents this equivalent graph query. To keep the diagram layout
clear, we merged some failure transitions using gray circles which are not actu-
ally part of the concrete syntax of our graph queries. The normalized form is
obviously much more complex than the original form. On the other hand, it is
easy to verify that the normalized form corresponds to formula 1.

Note, that the first order logic interpretation of graph queries does only work,
if the operational semantics of story diagrams is modified with respect to the
original definition in [1]: Atomic propositions contained in the same activity
are connected by conjunction. Transitions between activities however effectively
describe a cut as for instance in Prolog. Thus, if the selection of possible matches
is non-deterministic, a story pattern might have different valuations even on the
same instance graph, depending on the actual selection order.

To solve this problem, the operational semantics of the graph queries proposed
in this paper includes backtracking as in PROGRES [4]. Only then all possible
matches are tried if necessary and the graph queries can be fully described by
FOL formulae. Minor changes to the operational semantics are necessary to allow
objects with unspecified type ANY and to permit nesting of forall-activities with
outgoing success and failure transitions from enclosed activities. Syntactically,
our graph queries are distinguished by the attached temporal expressions.
3 Rules for parentheses and precedence have been omitted due to lack of space.
4 Set nodes may not be used in these graph queries, as second order logic is required

to describe their semantics, which would complicate things unnecessarily and are of
little use in graph queries: If a set node can be matched, so can be a single node
from the set and the result of the formula is the same.
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Fig. 6. Equivalent Normalized Graph Query for Fig. 2

4 Adding Time to Graph Queries

Having defined how FOL formulae can be expressed as graph queries, we now
extend the definition to include temporal operators. In Section 4.1, we elaborate
on the concept of time used in our approach. Next, we enhance the pair grammar
from Section 3 with unary temporal operators.

4.1 The Notion of Time

In this paper we have to deal with different concepts of time. As we make use
of temporal logic we need to treat time as an infinitive sequence of states, i. e.
instance graphs in our case. Naturally, these states coincide with measurements
of the system under analysis. However, queries might be expressed in terms
of ”real” time, and the specificator might not be aware of the corresponding
states. In the Unix-world, time is expressed as an 64-bit natural number t ∈ T =
N∩ [0; 264− 1], being the number of seconds that have passed since January 1st,
1970. This concept of time would serve our purpose well.

Fig. 7 provides an overview, how the different concepts of time correspond to
each other. In this example, we assume that the initial measurement takes place
on Monday, March 29th of any given year after January 1st, 1970. Consecutive
measurements are scheduled once for each working day. Thus, the gaps between
April 2nd and April 5th as well as April 9th and April 12th indicate weekends.
On April 8th, there is an exceptional gap, e.g. because of a power failure. On
April 5th, there is an additional measurement, e.g. because some changes had
been applied to the analysis scripts this day.

Let V be a set of atomic propositions as defined in Fig. 5. Each measurement
i taken at a certain point of time ti ∈ T corresponds to a state si, which is a
mapping si : V −→ {0, 1}. The Temporal Structure for V is an arbitrary long,
but finite sequence T = (s0, s1, ... ,sω).

As indicated by the brackets on the time axis, a state si is valid from the
moment of the measurement to the second before the next measurement at ti+1.
The initial state s0 is valid by definition between January 1st, 1970 and t1 − 1.
As queries may refer to any point of time t ∈ T, but the corresponding state
might be unknown a priori, we define a mapping function μ : T −→ T , where
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Fig. 7. Time line for Temporal Graph Queries

μ(t) =

⎧⎨⎩ s0 : t < t0
sω : t ≥ tω
si : ti ≤ t < ti+1

As we are mainly interested in changes of instance graphs over time, pre-
tending that the unknown situation before the first measurement was always
the same as at t0 is more useful than assuming that an empty instance graph
existed before that time. With the same argument, we project the last known
state sω for eternity into the future. As a consequence, queries referring to future
states might produce different results depending on the current sω at query time.

4.2 A Pair Grammar for Temporal Graph Queries

As shown in Fig. 8, we extend the pair grammar with additional rules to cover
unary temporal logic operators. As in Fig. 5, we only provide the right hand
sides of both sub rules. The left column defines future time operators, while the
right column defines past time operators. Binary operators like ”until”, ”unless”,
”atnext”, ”before” are not yet supported but could be added easily. An nice
summary of first order temporal logic and related operators can be found in [6].

When designing the extensions, we tried to keep as close to ordinary story
diagrams as possible. The basic idea is to provide each activity with a time
object, i.e. a state τ ∈ T , where T is the temporal structure defined in Section
4.1. The time object is treated in a way similar to regular objects.

The henceforth and hitherto operators can be seen as universal quantifiers
over unbound time variables and hence are visualized by double boxes around
the time expression. Therefore, we use the same pattern with eachtime and
end transitions as for universal quantifiers. The quantified time variable σ is
successively bound to τ and, depending on the operator, to every state defined
in T before or after τ .

The eventually and once operators are consequently treated as existential
quantifier over unbound time variables. The time variable σ is successively bound
to every state in T . If a consecutive story pattern fails, backtracking is used to
assign another state. If there is no state so that consecutive story patterns match,
the rule finally fails.

The next and previous operators also define a new time variable σ, but im-
mediately assign a value based on the enclosing variable τ . As shown in Fig. 7,
the next and previous operators refer to states rather than points in time. Note
that our temporal structure is not infinite as usual, because there is always a last
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Fig. 8. Pair Grammar Right Hand Sides for Temporal Operators

state σω. The original definition of the weak previous operator, i.e. that •A = 1
at the inital state s0 for any given formula A, is also problematic: The value
”1” means that the related story pattern succeeds, but the new time variable σ
cannot be bound although it is used in consecuting story patterns.

We solve this problem by the following deviations from ordinary temporal
logic: We define strong and weak previous and next operators with symmetric
semantics. To distinguish between weak and strong operators, we adopted the
notation for optional and obligate nodes of Fujaba story diagrams. For instance,
strong next can only be true, if there really is a next state, i.e. sτ �= sω. Weak
next in contrast, is also defined for sτ = sω. In this case, σ is bound to the last
known state ω. Weak operators are visualized by dashed boxes.

For convenience, real time expressions like ”τ = ’01-05-07’” or ”σ = τ +
20 days” may be used. They are implicitly transformed into states using the
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Fig. 9. Example for Temporal Graph Query

mapping function μ defined in Section 4.1. Besides, normalized temporal graph
queries as defined by our pair grammar can be condensed by defining activities
containing more than one atomic proposition. Again, we have to skip the exact
transformation rules.

4.3 Example Revisited

Fig. 9 represents a non-normalized temporal graph query based on the static
query in Fig. 2. Rather than checking whether there is a valid sees relationship
for every include relationship, the rule ensures that valid include relationships
never become invalid. As a result, only changes after the initial measurement
are taken into account and deterioration of the system is detected as soon as it
occurs so that it can be quickly countered.

The temporal graph query contains the equivalent of the future time operator
henceforth and the past time operator once. The free time variable t is sequen-
tially bound to all states in T . For each t, the remaining part of the first story
pattern is evaluated. For every match, the second story pattern is evaluated for
the current state t. If the second story pattern matches for the given t, the next
iteration begins with the following state in T . If the second story pattern fails,
the third story pattern is evaluated. It has the same body as the second, but
represents a once operator. If s can be bound to any state up to the current t
so that the third pattern succeeds, the whole query fails. If there is no possible
match for any s, the outer iteration continues.

Note that this procedure does not necessarily describe the actual implemen-
tation. Our idea is to equip every graph element with a created and deleted
timestamp so that we are able to avoid iterations in many cases. However, a
detailed discussion of the implementation is out of the scope of this paper.
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5 Related Work

The idea of applying graph transformation in the field of software re-engineering
has already been proposed by others. There have been several approaches to re-
engineer industrial software systems based on PROGRES [7]. Another example
is the Varlet project [8] that deals with re-engineering of information systems. To
our knowledge, all graph transformation-based approaches deal with snapshots
of the analyzed systems and hence do not require language features that allow
to consider time.

There are some approaches that add time aspects to graph transformations.
In [9], a notion of time is added to graph transformations which is adapted from
time environment-relationship nets. The approach introduces logical clocks and
allows the user to specify the age of nodes in the instance graph and durations for
transformations so that the age of involved nodes can be updated. Time can be
used to determine the order of productions in transformation sequences so that
the age of related nodes does never increase in the course of its transformations.
However, this approach allows to reason about durations rather than to reason
about multiple instance graphs at different times as we do in this paper. The
same holds for real-time automatons as described for instance in [10].

The contribution related closest to this paper is described in [11,12]. These
documents introduce graphically denoted temporal invariants to graph transfor-
mations. In this approach, states are the result of runs, i.e. sequences of atomic
graph transformations. Among other things, the temporal invariants allow to
specify the correct order of transformations if the choice of transformations is
non-deterministic. The main differences are, that we completely embed tempo-
ral operators into graph queries while they are expressed as constraints in the
context of concrete matches in [11]. Before the extension, the former already
require first order logic to describe. Hence we need to support temporal first
order logic, while propositional logic suffices for the latter. Besides we provide a
more explicit and complete definition of the syntax of temporal graph queries.

There are other approaches that allow to visually define constraints. For in-
stance, [13] provides a visual representation of arbitrary OCL expressions. The
operators ”not”, ”implies”, ”or”, etc. are represented as nested sub diagrams
with the corresponding keywords as attachments, i.e. the structure of OCL ex-
pression (first order logic expression) is preserved, in contrast to our approach
that avoids nesting of boxes in favour of the usage of ”flat” control flow diagrams.
There is no support for temporal logic expressions. An alternative for graphical
FOL constraints are spider diagrams [14] that provide no support for temporal
operators either.

In [15,16], temporal extensions for OCL are described. The former work allows
to specify the behavior of business software components using linear time logic
in OCL syntax including operators such as initially, until, etc. It is a straight-
forward extension of OCL with just the temporal operators added. The latter
provides a computational tree logic extension of OCL used for the definition of
temporal invariants of state charts to model the behavior of real-time systems.
Both approaches rely on a textual definition of temporal logic formulas and could
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not be integrated with story diagrams without destroying the essential property
of story diagrams of being a visual notation.

While many papers deal with textual notations for propositional temporal
logic, there are some that also discuss first order temporal logic. The main prob-
lem is that first order logic might lead to an infinite number of models for the
formulae that have to be considered. In our case, the number of models is al-
ways finite, as our temporal structure is defined by an arbitrary large though
finite sequence of measurements. We would like to mention the work described
in [6], where a normal form for first order temporal logic is suggested. We are
currently investigating, if this normal form provides a better means to reason
about the differences in expressive power of temporal graph queries and first
order temporal logic.

6 Conclusions and Future Work

In this paper, we have motivated why temporal graph queries can be beneficial
in the area of evolutionary software restructuring. As main contributions of this
paper, we provide a temporal first order logic interpretation of a well-defined
subset of temporal graph queries by means of a pair grammar. We further define a
mapping function to translate real time expressions into states of the underlying
temporal structure. Equipped with these new concepts, we are able to specify
visual consistency rules over a temporal sequence of instance graph, i.e. models
of the analyzed system.

There are several possible continuations of the work described in this paper:
First, we need to broaden the set of graph queries, that we are able to construct
FOL formulae for, ideally so that we can support at least all features that are
already available in story diagrams. Next, we have to integrate the temporal
graph queries into our meta modeling framework, MOFLON, and therefore en-
hance our editor and code generator. While doing so, we will have to turn special
attention on the compact representation of graph instances, probably based on
versioned graphs, as we have to deal efficiently with large amounts of data. Fi-
nally, we intend to applying our approach to new industrial case studies and
learn how we can benefit from temporal graph queries in practice.
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9. Gyapay, S., Heckel, R., Varró, D.: Graph Transformation with Time: Causality
and Logical Clocks. Fundamenta Informaticae 58(1) (2003) 1–22

10. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The FUJABA Real-
Time Tool Suite: Model-Driven Development of Safety-Critical Real-Time Systems.
In: Proc. 27th ICSE, ACM Press (2005) 670–671

11. Koch, M.: Integration of Graph Transformation and Temporal Logic for the Spec-
ification of Distributed Systems. PhD thesis, TU Berlin (1999)

12. Gadducci, F., Heckel, R., Koch, M.: A Fully Abstract Model for Graph-Interpreted
Temporal Logic. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Proc.
6th International Workshop on Theory and Application of Graph Transformation
(TAGT’98). Number 1764 in LNCS, Springer (2000) 310–322

13. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A Visualization of OCL
Using Collaborations. LNCS 2185 (2001) 257–271

14. Howse, J., Molina, F., Taylor, J.: On the Completeness and Expressiveness of
Spider Diagram Systems. In: [17]. (2000) 26–41

15. Conrad, S., Turowski, K.: Specification of Business Components Using Temporal
OCL. In Favre, L., ed.: UML and the Unified Process, IRM Press/IDEA Group
Publishing (2003) 48–65

16. Flake, S., Müller, W.: An OCL Extension for Real-Time Constraints. In Clark,
T., Warmer, J., eds.: Object Modeling with the OCL, The Rationale behind the
Object Constraint Language. Volume 2263 of LNCS., Springer (2002) 150–171

17. Anderson, M., Cheng, P., Haarslev, V., eds.: Theory and Application of Diagrams,
First International Conference. In Anderson, M., Cheng, P., Haarslev, V., eds.:
Diagrams 2000. Volume 1889 of LNCS., Springer (2000)



On the Use of Alloy to Analyze Graph
Transformation Systems

Luciano Baresi and Paola Spoletini

Politecnico di Milano
Dipartimento di Elettronica e Informazione

piazza Leonardo da Vinci 32, 20133 Milano, Italy
{baresi, spoleti}@elet.polimi.it

Abstract. This paper proposes a methodology to analyze graph trans-
formation systems by means of Alloy and its supporting tools. Alloy is
a simple structural modeling language, based on first-order logic, that
allows the user to produce models of software systems by abstracting
their key characteristics. The tools can generate instances of invariants,
and check properties of models, on user-constrained representations of
the world under analysis. The paper describes how to render a graph
transformation system —specified using AGG— as an Alloy model and
how to exploit its tools to prove significant properties of the system.
Specifically, it allows the user to decide whether a given configuration
(graph) can be obtained through a finite and bounded sequence of steps
(invocation of rules), whether a given sequence of rules can be applied
on an initial graph, and, given an initial graph and an integer n, which
are the configurations that can be obtained by applying a sequence of n
(particular) rules.

1 Introduction

Graphs provide the underlying structure for many artifacts produced during the
development of software systems. No matter of the actual process we follow,
we always end up with diagrams and models that can easily be conceived as
suitably annotated graphs. For example, graphs provide a sufficiently general
infrastructure to model the topology of object-oriented and component-based
systems, as well as the architecture of distributed applications. This means that
graph transformations are often needed —either explicitly or implicitly— to
specify how these models are built and interpreted, and how they can evolve
over time.

Graph transformation [5] originated in reaction to shortcomings in the ex-
pressiveness of classical approaches to rewriting, like Chomsky grammars and
term rewriting, to deal with non-linear structures. The theory behind it has
been evolving for some thirty years, but only recently there have been attempts
to analyze modeled transformation systems. After many different modeling no-
tations and theoretical approaches for specifying graph transformation systems,
part of the research community is addressing the problem of analyzing such sets
of rules. Besides approaches, like critical pair analysis [1], that provide a means
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to discover conflicts among rules, tools like CheckVML [20] and GROOVE [11]
start from conventional analysis techniques (model checking, in these cases) and
exploit them to prove reachability properties on the modeled sets of rules. Typi-
cally, these proposals allow the designer to understand if a given target graph is
reachable from an initial graph, through a finite number of transformation rules.

The importance of these approaches is twofold. Besides providing interesting
insights from a purely theoretical point of view, they are also valuable for ana-
lyzing and discovering properties in the host domain. For example, if we used a
graph transformation system to model the dynamic behavior of a software ar-
chitectural style [6], or we used it to model the operational semantics of a visual
notation [17], the capability of analyzing the graph transformation system allows
us to discover properties on designed software architectures or on the evolution
of produced models.

When the analysis approach exploits model checking, it must face and cope
with the typical problems of this analysis technique: state explosion and thus
limited capability of rendering the peculiarities of the modeled domain. In con-
trast, Alloy [16] provides a viable compromise between the richness of models
and their analyzability. Alloy is a simple structural modeling language, based
on first-order logic, that allows the user to produce models of software systems
by abstracting their key characteristics. The SAT-based analyzer can generate
instances of invariants, and check properties of models, on user-constrained rep-
resentations of the world under analysis. Alloy does not address infinite words
and it copes with state explosion by asking the user to specify the maximum
cardinality of the worlds under analysis. The interesting features of Alloy led
us to investigate the possibility of encoding a graph transformation system and
use its tools to analyze reachability properties and to study the applicability of
sequences of transformation rules.

This paper presents the first results of this encoding. It highlights the transla-
tion process and exemplifies it on a simple case study, taken from [1]. The paper
also describes the properties on the graph transformation system that can be
checked with Alloy.

The rest of the paper is organized as follows. Section 2 briefly introduces Alloy.
Section 3 explains the translation of graph transformation systems into Alloy
and Section 4 discusses the properties we can check on these models and how
we can verify them. Section 5 surveys similar proposals and Section 6 discusses
the positive and negative aspects of the approach and concludes the paper.

2 Alloy

Alloy is a formal notation based on relational logic, that is, a logic with clear
semantics based on relations. In this section, we only introduce the key charac-
teristics of the notation through an example; interested readers can refer to [15]
for an in-depth presentation. The example models finite state automata and
specifies some basic properties.



308 L. Baresi and P. Spoletini

module Automa

is the module declaration.

sig Event{}
sig State{}

are empty signatures used to introduce the concepts of Event and State, re-
spectively.

sig Transition{
startingState: State,
arrivalState: State,
trigger: Event
}

defines a Transition as three relations: startingState and arrivalState
identify the source and target States, while trigger defines the Event that
triggers the transition. Relations are similar to the fields of an object in the
classical object-oriented paradigm.

sig FiniteStateAutomaton{
states: set State,
transitions: set Transition,
initialState: states,
finalStates: some states,
dangerousStates: set(states-initialState-finalStates)
}

states and transitions are the sets of States and Transitions that belong
to the automaton. initialState is one of the states, while finalStates are a
non-empty subset (some) of the states. The dangerousStates are those states
that are neither initial nor final.

After the signatures, we have the facts that constrain the instantiation of
the signatures previously defined and of their relations. A fact is an explicit
constraint on the model. It is possible to express constraints on the relations of
a signature directly after the signature body without using the keyword fact.

fact Determinism{
all a:FiniteStateAutomaton| no disj t1, t2: a.transitions{
t1.startingState=t2.startingState
t1.trigger=t2.trigger}}

imposes that, for any FiniteStateAutomaton a, there does not exist a pair of
disjoint transitions in a such that they have the same startingState and the
same trigger.

fact CorrectTransition{
all a:FiniteStateAutomaton |
all t: a.transitions |
t.startingState in a.states && t.arrivalState in a.states}
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imposes that for any FiniteStateAutomaton a, the startingState and arri-
valState of its transitions must be contained in its states.

Alloy comes with dedicated analysis tools: a consistency checker and a coun-
terexample extraction tool. Both the analyses are fully automated and based on
SAT solvers1. The Alloy model is translated into a boolean formula, which is
then passed to the SAT solver that tries to find an assignment for all the vari-
ables in the formula to satisfy it. If the assignment exists, it is translated back
into Alloy.

The consistency checker evaluates predicates on defined models. Predicates
are like facts, but they do not affect the structure of the world under analysis;
they impose “temporary” constraints whose validity is limited to the predicate
they belong to.

pred example(){}

If the predicate is empty, as the above example, the Alloy analyzer checks the
consistency of the model itself (with no further constraints).

A predicate is verified through a run, which tries to find an assignment that
satisfies the model, along with the constraints of the predicate under analysis.

run example for 1 FiniteStateAutomaton, 2 Transition, 3 State, 2 Event

When we run a model, we must specify the maximum cardinality of the sets of
the world under analysis. We can supply a unique cardinality for all the sets, but
we can also associate special values with particular sets. In this case, example
considers exactly 1 FiniteStateAutomaton, 2 Transitions, 3 States, and 2
Events.

The identification of counterexamples is performed through asserts, which
claim that something must be true due to the behavior of the model.

assert isolation{
all a:FiniteStateAutomaton| #a.states>1 =>

all s:a.states| some t:Transition|
s = t.startingState || s = t.arrivalState}

check isolation for 5

states that there is no state in any automaton with at least two states that is
not the initial or the final state of a transition of the automaton. Assertions
are checked by searching for counterexamples, using check commands and again
we need to set the upper-bound for the cardinalities of the sets that define the
world under analysis. In this case, we use a single value, and we only consider
sets of five elements. The assertion generates a counterexample since there is no
constraint on the automaton that limits the number of isolated states.

Alloy is targeted to describing and analyzing structural properties of systems,
but Jackson et al. [16] introduce also a mechanism to represent traces. A more

1 Alloy works with different SAT solvers with different characteristics.
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Fig. 1. Graph transformation system to create place-transition nets

general approach to deal with execution traces is presented in [10]: DynAlloy is
a dynamic version of Alloy for modeling the execution of operations and rea-
soning about execution traces. Alloy specifications can also be verified by using
theorem proving techniques: Arkoudas et al. [2] present Prioni, a tool that uses
the semi-automatic theorem prover Athena to prove properties regarding Alloy
specifications.

3 Encoding

This paper uses the notation proposed by AGG [7] to model graph transforma-
tion systems. For example, Fig. 1 shows the simple rules needed to build correct
place-transition nets, a particular instance of finite state automata. More pre-
cisely a place-transition net is a tuple (P, T, π, τ), where P is a set of places,
T is a set of transitions, π : P → T and τ : T → P are functions that associate
a transition to a place and a place to a transition, respectively.

Fig. 1(a) shows the type graph, i.e., the meta-model of the system, and iden-
tifies two components: places, the circle, and transitions, the square; places can
be connected to a finite number of transitions and vice versa. All the other parts
of the figure represent the rules: Fig. 1(b) represents the rule to add a place to
the net, Fig. 1(c) the rule to add a transition, and Fig. 1(d) and Fig. 1(e) the
rules to connect a place to a transition and a transition to a place, respectively.
Since the presented example does not contain negative application conditions,
Fig. 1(f) shows the modification of the rule of Fig. 1(d) to add the constraint
that to add a relation from a place to a transition, we require that no inverse
relations exist.
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Our use of Alloy aims at representing the evolution of a system, described as
a graph, through the application of the rules that compose the transformation
system. To this end, we introduce the following signature —borrowed from [16]—
to represent graph paths:

sig Path{
elem: set Graph,
first, last: elem,
next:(elem-last) one -> one (elem-first)

} {
first!=last

}

The path itself represents the evolution of the system. A path is a set of graphs
that goes from an initial graph, first, to the graph, denoted as last, reached
by applying |elem| − 1 transformation rules.

The relation next assigns exactly one element to each graph different from
the final graph . The fact2 (first!=last) ensures that the path is composed
of at least a transformation, imposing that the initial and final graphs must
be different. This restriction guarantees that all the elements in the path are
connected; in fact if initial and final graphs were the same, the path would be
disconnected.

This signature is independent of the context and it is added to the Alloy model
for any graph transformation system. The composition of the path and the rules
used to build the system, instead, are defined by means of a fixed translation
process that depends on the particular graph transformation system.

Specifically, we introduce a signature Graph along with a signature for all the
elements that compose the meta-model. The newly introduced Graph contains
a relation to each of these signatures. The cardinality of this relation depends
on the cardinalities that the elements have in the type graph. In our example of
Fig. 1(a), the meta-model contains two types of elements, nodes and transitions,
both with multiple cardinality. Hence, the Graph is defined in Alloy as follows:

sig Graph{
places: set Place,
transitions: set Transition

}

The signatures representing the elements are composed of two parts: attributes
and connections. The first contains a unary relation for each attribute of the
element. Appropriate signatures are introduced to render the types ascribed
to the different elements. Particular attention must be paid to integers and
booleans: the former are a built-in concept in Alloy, while the latter can be
represented using a lone (zero or one) relation to a mirror signature with the
empty relation that corresponds to false. The connection part contains a set of
2 Notice that in this case, we use the compact form to represent facts within the

signatures they belong to.
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relations, one for each connection in the type graph. The relations are added only
to the source elements of the associations in the meta-model. The cardinality of
these relations is given based on the cardinality of the target association end.
The cardinality of the source association end is used to constrain the system.
For instance, if the cardinality of the target association end between elements
e1 and e2 is 1, this means that we cannot have two instances of e1 related to the
same instance of e2. These constraints are added as facts.

In our example, the elements have no attributes, but they have outgoing arcs,
and thus each of them has a relation. The arcs (associations) are marked with
an ∗ on both sides, which become sets in the Alloy model, with no constraints
added to the signatures:

sig Place{
enable: set Transition

}
sig Transition{

fireTo: set Place
}

The rules of the graph translation system, which represent the rules to build
the edges in signature Path, are modeled in Alloy as predicates. For each graph
transformation rule, we introduce a predicate with the following parameters: a)
Two graphs, g1 and g2, represents the LHS and the RHS of the production, b)
two parameters for each element that is modified correspond to the old and new
values, c) one parameter for each element that is deleted from the LHS or added
to RHS. The RHS graph g2 is obtained as follows:

g2.ri = g1.ri −ΣjeLHSmod
j −ΣkeLHScanc

k + ΣjeRHSmod
j + ΣheRHSadd

h

where eLHSmod
j , eLHScanc

k , eRHSmod
j , and eRHSadd

h are all the elements of the
predicates of same type of the right-hand side of relation ri. eLHSmod

j represents
the element that has to be modified as it appears in the LHS, eRHSmod

j the
element modified as it appears in the RHS, eLHScanc

k the element in the LHS
that is cancelled in the RHS, and eRHSadd

h the element added in the RHS.
We also add a constraint to ensure that all the elements that appear in the

RHS and not in LHS, are not part of the graph that represents the left hand
side. The predicates also contain the characteristics that the elements have in
terms of attributes and relations, and the connections between eLHSmod

j and
eRHSmod

j .
The representation in Alloy of the AGG rules of Fig. 1 is the following.

pred addP(g1,g2:Graph, p:Place){
g2.transitions=g1.transitions &&
g2.places=g1.places+p &&
p not in g1.places &&
#p.enable=0

}
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Rule AddP adds a place to the RHS, hence it is translated into a predicate
that has the initial and the final graphs and the added place as parameters.
Since this place has no relations with any transition, it is imposed that the
number of elements (#) in relation enable for p is zero. Then, since the only
other parameter, besides the graphs, is place p, the transitions of the two graphs
are the same, while the places of the final graph are the union of those of the
initial graph and p, which must not be present in g1. Rule addT is the same as
addP, but it adds a transition.

pred addT(g1,g2:Graph, t:Transition){
g2.transitions=g1.transitions+t &&
g2.places=g1.places &&
t not in g1.transitions &&
#t.fireTo=0

}

Rules pre and post are more complex.

pred pre(g1,g2:Graph, p1,p2:Place,t:Transition){
g2.transitions=g1.transitions &&
g2.places=g1.places-p1+p2 &&
p2 not in g1.places &&
p2.enable=p1.enable+t

}

pred post(g1,g2:Graph, p:Place, t1,t2:Transition){
g2.transitions=g1.transitions-t1+t2 &&
g2.places=g1.places &&
t2 not in g1.transitions &&
t2.fireTo=t1.fireTo+p

}

Since the two rules are symmetric, we only consider the first one. This rule
involves a place and a transition, the place is modified, while the transition is
not. Hence, the parameters are the two graphs, two places, and a transition.
No particular constraints are imposed on t, while the set of places in the final
graph must differ from the one in the initial graph for a place. In fact, place p1
is replaced by p2, which is related to all the transitions in relation p1.enable,
with the addition of t. Moreover p2 must not appear in the original graph.

When a graph transformation rule has a negative application condition, this
constraint must be represented in the Alloy predicate. The NAC is a precondi-
tion on the elements involved in the transformation. Generally, these elements
are already parameters of the predicate; if not, they are added. Then, for each
element in the negative application condition, we add a formula to constrain
involved elements not to assume the forbidden configuration. As example, we
can consider rule pre of Fig. 1(f), where the NAC imposes that we cannot add a
relation from a place to a transition if the opposite relation already exists. Notice
that this does not mean that place-transition nets are acyclic or they have not
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cycle of length 2 (place – trantition – place), but that, if such a cycle exists, it
was built by creating the association between a place and a transition before its
opposite. The Alloy predicate is modified as follows:

pred pre(g1,g2:Graph, p1,p2:Place, t:Transition){
g2.transitions=g1.transitions &&
g2.places=g1.places-p1+p2 &&
p2 not in g1.places &&
p2.enable=p1.enable+t &&
p1 not in t.fireTo

}

where the formula p1 not in t.fireTo is the representation of the NAC.
After defining the predicates for all the rules of the graph transformation

system, we want to impose that these rules are the only way to move from a
configuration of the graph to another, that is, they are the only way to relate
two elements in the Path with respect to relation next. To model this constraint
in Alloy, we add an additional constraint to the facts regarding signature Path
to impose that for relation next, one of the predicates holds, that is, the edge is
obtained by applying one of the rules of the system. In our example the constraint
is:

all e,e’:elem| (e in e’.next =>
((one p:e.places| addP(e’,e,p))||
(one t:e.transitions| addT(e’,e,t))||
(one p1:e’.places| one p2:e.places|

one t:e.transitions| pre(e’,e,p1,p2,t))||
(one t1:e’.transitions| one t2:e.transitions|

one p:e.places| post(e’,e,p,t1,t2))))

and states that for each pair of adjacent graph configurations, there exists ex-
actly one place that is added to the first configuration to obtain the second
through production addP, or exactly a transition is added to the first configura-
tion to create the second through addT, or the second configuration is obtained
by adding a relation from a place to a transition, or from a transition to a place,
to the first configuration.

Even if presented through an example, the encoding is general and algorith-
mic, and thus can be applied on other and more complex transformation systems.

4 Verification

The tools allow us to check the reachability of given configurations of the host
graph through a finite sequence of steps (invocations of rules), to verify whether
given sequences of rules can be applied on an initial graph, and to show all the
configurations that can be obtained by applying a sequence of n (particular)
rules on a given initial graph. Moreover, particular systems might motivate us
to verify the validity of particular user-defined properties (constraints) on valid
configurations.
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Alloy allows us to try whether a property can be satisfied or to show that it
does not hold. The property is translated into a predicate, in the former case,
or its negation is translated into an assertion, in the latter case.

The reachability of configurations allows us to check whether a given configura-
tion can be reached through a finite set of transformation rules. This property can
be applied to any user-defined configuration; the default one is the empty graph.

(a) (b)
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place

place

transition

transitiontransition

enable enable
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fireTo fireTo
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Place1

Transition0

Transition1 Transition2

Fig. 2. Example initial graph configuration and a solution produced by Alloy

If we consider the graph of Fig. 2(a) and we want to verify that it is reachable
from the the empty graph, we can build the following predicate:

pred reachConfig(){
some p:Path| initialGraph(p.first) && DefConfig(p.last)

}

where initialGraph(p.first)and defConfig(p.last)are two predicates rep-
resenting the initial and desired final configurations, respectively. In our example,
they are defined as follows (but they might be much more complex):

pred initialGraph(g:Graph){
#g.places=0 && #g.transitions=0

}

pred defConfig(g:Graph){
#g.places=3 && #g.transitions=3 &&
one p1,p2,p3:g.places| some disj t1,t2,t3:g.transitions|
p1.enable=t1+t2 && t1.fireTo=p2 && t2.fireTo=p2 &&
p2.enable=t3 && t3.fireTo=p3 && #p3.enable=0

}
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Fig. 2(b) shows an instance of the model that satisfies pred defConfig(). The
model is a set of nodes that represent the different instances of the signature;
edges represent the relations among them. For example, Graph0 embeds place
Place1, which is related, through enable, to Transition1 and Transition2.

If we want to check that a given configuration is not reachable, we must check
the following assertion:

assert unreachConfig(){
no p:Path| initialGraph(p.first) && defConfig(p.last)

}

The validation of a sequence of rules allows us to verify that, starting from an
initial graph, a given sequence of rules is applicable on it. To verify the property,
we have to introduce a predicate with the following structure:

pred validRules(){
some p:Path| some disj t1,...,tk:Type1| ... | some disj f1,...,fh:Typej|
givenConfig(p.first) &&
R1(p.first, p.next[p.first], parR1) &&
...
Rn(p.next[p.next...[p.first]],p.next[p.next[p.next...[p.first]]],parRn)

}

where givenConfig() is a predicate that represents the starting graph, some
disj t1,...,tk:Type1| ... | some disj f1,...,fh:Typej identifies the
variables needed, besides the graph, in the predicates that represent the rules to
be applied and R1, . . ., Rn are the rules of the sequence we want to verify.

As an example, the verification of the sequence addT, addP, pre from the
initial graph is performed through the following predicate:

pred validRules(){
some p:Path| some disj t1,t2:Transition| some disj p1,p2,p3:Place
givenConfig(p.first) &&
addT(p.first, p.next[p.first], t1) &&
addP(p.next[p.first], p.next[p.next[p.first]], p1) &&
pre(p.next[p.nex[p.first]],p.next[p.next[p.next[p.first]]], p2, p3, t2)

}

Finally, to analyze reached configurations, that is, to show all the possible
configurations obtained by means of a generic allowed path of a specified length
from an initial state, we need to use one of the SAT solvers embedded in Alloy
that allows us to find multiple solutions (e.g., MCHAFF). Moreover, since this
SAT solver shows all the possible configurations that satisfy the property, it is
necessary to constrain the assertion we use to obtain “only” the paths we want.
The general structure of this property is the following:

pred configLength_n(){
some p:Path| p.elem=n+1 && givenConfig(p.first) &&
one Path && no(A1-p.elem.a1) && ... &&
no(Am-p.elem.am)

}
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where n is the desired length for the path, a1, . . ., am represent the relations
in Graph that are used for the path, and A1, . . .”, Am are the corresponding
signatures.

initial
configuration

1 2 3 # applied
rules

Fig. 3. All possible paths

Hence, if we wanted to extract all the possible paths of length 3 from the
initial configuration in our example, the predicate is the following:

pred ConfigLength_3(){
some p:Path| #p.elem=4 &&
one Path && initialGraph(p.first) &&
no(Transition-p.elem.transitions) &&
no(Place-p.elem.places)

}

The run of this property allows us to find all the possible paths of length 3 in
the given graph transformation system starting from the empty configuration.
The result is presented in Fig. 3.

5 Related Work

The analysis of graph transformation systems can be performed in different
ways. Heckel in [13] gives the theoretical foundations for the verification of graph
transformation systems through model checking: graphs are interpreted as states
and rule applications as transitions. This idea is exploited both by GROOVE
[18] and by checkVML [20].

GROOVE [18] is based on the idea of using the core concepts of graphs and
graph transformations all the way through during model checking. States are
represented as graphs, while transitions are represented as applications of graph
transformation rules. This way, properties are specified in a graph-based logic to



318 L. Baresi and P. Spoletini

apply graph-specific model checking algorithms. Hence, in this approach, only
some ideas of traditional model checkers can be applied immediately, since the
most basic concept, namely the underlying model, has been extended drastically.

On the other side, CheckVML [20] exploits off-the-shelf model checker tools,
like SPIN [14], to verify graph transformation systems. More thoroughly, Check-
VML takes as input a graph transformation system parameterized with a type
graph and an initial graph (represented by means of an abstract transition sys-
tem) and gives an equivalent model in Promela, the input language of SPIN.
Property graphs are also translated into their temporal logic equivalents.

In [19], Rensink et al. propose a comparison between these two tools, and
conclude that CheckVML always performs better when dynamic allocation and
symmetries are limited, while for dynamic problems GROOVE is preferable.

VIATRA [8] is another graph transformation tool with interesting capabilities
for controlling the transformation and composition of complex transformations.
The graph transformations are driven by abstract state machines, as specifica-
tion formalism; extended hierarchical automata represent the model. In the end,
VIATRA checks statecharts with SPIN.

Baldan and König [4] describe a different theoretical framework. It aims at
analyzing a special class of hypergraph rewriting systems by a static analysis
technique based on approximative foldings and unfoldings of a special class of
Petri nets. Baldan et al. [3] extend this work by providing a precise (McMillan-
style) unfolding strategy. Dotti et al. [9] use object-based graph grammars for
modeling object-oriented systems and define a translation into the input lan-
guage of SPIN to use model checking. The authors allow a restricted structure
for graph transformation rules tailored to the message call mechanism of object-
oriented systems. Even if the chosen representation in SPIN only supports a
restricted problem, the structure of the generated code, in general, results in
better run-time performance.

6 Conclusions and Future Work

The paper presents a proposal for exploiting the formal language Alloy to analyze
graph transformation systems. We present the first ideas behind the encoding
process and we demonstrate them on a simple case study. Besides the example
in the paper, we applied the proposed methodology on the Concurrent Append
example presented in [19], and on the Shopping example shown in [12], and we
obtained encouraging results.

The main drawback of this approach, with respect to GROOVE and Check-
VML, is the need for tailoring the search space. In fact, these methods uti-
lize model checking techniques, and the whole space of the modeled system is
searched automatically —if the model checker does not go out of memory. In
our case, with Alloy, we only analyze the system for a finite scope, whose size
is user-defined. Even if this feature may look like a limitation, it is true that
this way users have much more freedom to tailor the details embedded in the
Alloy models they want to analyze with respect to the size of the spaces they



On the Use of Alloy to Analyze Graph Transformation Systems 319

want to deal with. It is also true that the SAT-based analysis techniques produce
interesting results faster and by using less memory.

We do not want to say that the proposed approach is better than those that
employ model checking; we only want to let the reader know of other options
for analyzing designed graph transformation systems, fostering the capability of
specifying reach models, which are analyzable because of the finite size of the
search space, and the SAT-based techniques.

We think that our method is useful to find instances and counterexamples
for models and graph transformation systems. In general, we are not interested
in infinite paths, but it is interesting to analyze that our properties are verified
by applying a certain number of transformation rules and with a “big enough”
model. Heuristics and practical cases suggest us that it is always possible to
identify a scope that is big enough to let us explore the interesting parts of
systems.

In the future, we plan to improve the approach and implement a component
to automatically translate a graph transformation system described using AGG
into an Alloy model. This would be the natural conclusion of the first phase of
the research, which is investigating the best encoding heuristics. It is the only
way to conduct more significant experiments and refine the properties we are
interested in. We also have plans to integrate our approach with Prioni, and
thus exploit the analysis capabilities of a theorem prover.
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- visual automated transformations for formal verification and validation of uml
models. In Proceedings of ASE, pages 267–270, 2002.

9. F.L. Dotti, L. Foss, L. Ribeiro, and O. Marchi dos Santos. Verification of distributed
object-based systems. In Proceedings of FMOODS, pages 261–275, 2003.



320 L. Baresi and P. Spoletini

10. M. Frias, C. Lopez Pombo, G. Baum, N. Aguirre, and T. Maibaum. Reasoning
about static and dynamic properties in alloy: A purely relational approach. ACM
Trans. Softw. Eng. Methodol., 14(4):478–526, 2005.

11. GROOVE. http://groove.sourceforge.net/groove-index.html.
12. J.H. Hausmann, R. Heckel, and G. Taentzer. Detection of conflicting functional

requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In Proceedings of ICSE, pages 105–115, 2002.

13. R. Heckel. Compositional verification of reactive systems specified by graph trans-
formation. In Proceedings of FASE, pages 138–153, 1998.

14. G.J. Holzmann. The model checker spin. IEEE Trans. Software Eng., 23(5):279–
295, 1997.

15. D. Jackson. Software Abstractions : Logic, Language, and Analysis. The MIT
Press, 2006.

16. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In
Proceedings of the 8th European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations of software engineer-
ing, pages 62–73. ACM Press, 2001.

17. S. Kuske. A formal semantics of UML state machines based on structured graph
transformation. In M. Gogolla and C. Kobryn, editors, Proceedings of UML 2001,
volume 2185 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

18. A. Rensink. The GROOVE simulator: A tool for state space generation. In Ap-
plications of Graph Transformations with Industrial Relevance (AGTIVE), volume
3062 of Lecture Notes in Computer Science, pages 479–485. Springer-Verlag, 2004.
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Abstract. Model-based tool data transformation and integration are
crucial tasks in software and system development relying on model-
driven development (MDD). Since the tool-specific meta models of the
involved system development tools are often too generic and lack the
desired level of abstraction, it is inappropriate to specify model trans-
formation and integration rules on top of them. Domain-specific views
on tool-specific meta models are needed which provide meaningful in-
formation on a higher level of abstraction. Current approaches usually
consider a view as a separate model which has to be kept consistent with
the tool’s model and, thus, duplicate the data. In this paper we discuss
different implementations of our declarative view specification approach
called VTGG that are based on modified triple graph grammars. As a
result we come up with an implementation with non-materialized views
that avoids the duplication of data.

1 Introduction

Typically, software development and system engineering projects involve lots of
tools each specialized in a number of development phases as requirements elicita-
tion, system modeling, coding, testing, etc. Manually keeping the data stored in
these tools consistent is time-consuming and error-prone. Thus, there is a need
for automatic data transformation and integration support. Model transforma-
tions are a powerful way to realize the needed support. Current approaches in-
cluding OMG’s Query/View/Transformation (QVT) [20] standard and our own
triple graph grammar approach [17] allow for the specification and application
of model transformation or model integration rules based on the metamodels
of the considered tools. Most tools are designed for multiple types of projects.
Thus, their APIs and, therefore, their metamodels are rather generic on the one
hand. On the other hand these metamodels reflect tool-specific and technical
details which usually results in quite complex APIs. This makes it difficult and
intricate to specify model transformation or model integration rules based on
tool metamodels. Therefore, it is desirable to define views on tool metamodels
in order to add project-specific information on the one hand and to suppress
technical details on the other hand. In this paper we focus on the latter issue.
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Current model transformation and integration approaches either disregard
views at all or realize them as separate models that are kept consistent with
the viewed model by applying common model transformation techniques. This
results in an awkward duplication of data. In contrast, we want to realize logical
views as functional interface adapter layers that do not replicate any data at all.

To summarize, we propose the following list of requirements that, in our opin-
ion, should be supported by a view specification approach:

– Abstraction of tool-specific data, like mapping of several objects or links to
one object or link (includes the mapping of links to objects).

– Domain-specific modeling; for instance, to define project class specific con-
straints on and adaption for tool metamodels.

– Views on top of views to support different abstraction levels.
– Multiple views for one base model, for example, to realize viewpoint ap-

proaches.
– Metamodel based scheme definition of view and tool data structures.
– Avoiding the duplication of data; view creation should not result in coexist-

ing view and tool data representations.
– Updateable views. Updates should be incrementally propagated in both di-

rections, between a view and its base model.

In this paper we introduce a new view specification approach for MDD that
fulfills the listed requirements. The paper is based on our initial ideas outlined
in [14]. The main enhancements to the latter are the usage of parameters for
attribute value assignments and the definition of an implementation metamodel
on which the implementation of the operational rules are based.

In Section 2 we discuss related view specification approaches. Thereafter, in
Section 3 we present a running example that we use for illustration purposes
in the following. In Section 4 we introduce our declarative view specification
approach called VTGGs. The implementation of view specifications by applying
the class adapter pattern of the Gang of Four [8] is described in Section 5. Finally,
Section 6 concludes this paper, discusses open issues, and future work.

2 Related Work

Within the context of view specification, we have to distinguish different kinds
of views. In the following we distinguish between three main categories.

The first category describes approaches that can be classified as visual rep-
resentations of models. Meta-case tools like Pounamu [25] or MetaEdit [18] use
“model view” as a short-hand for visualization of a model. In the same way the
MViews/JViews [9,10] approach for the construction of design environments sup-
ports a transformation approach that generates visual representations. AToM3

is another approach that is based on metamodeling and a special form of triple
graph grammars to generate environments for visual languages (VLs) supporting
multiple-views [12,13,4]. It mainly supports propagation of updates from a base
model to its materialized views and relies on a single metamodel for all views.
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The animated simulation of a model’s behavior with GenGED [6,7] proposes the
use of animation views instead of simulating the model behavior. Thus, GenGED
defines a view as an incomplete specification of a system like a VL model that is
part of a larger VL model. The relation between the view and the larger system
is captured by graph transformations in the form of materialized views. For our
approach, a visual representation is out of scope. We aim at logical model views
that are again “models” and not just visualizations.

The second category comprises approaches dealing with logical views. Natu-
rally, in respect of having a self-contained view model, this part includes “reg-
ular” model transformation approaches like AGG, VIATRA2, VMTS that are
compared in [5]. Of course, these approaches have other intentions, but they can
also be utilized for view specification purposes with the weakness of generating
materialized views. The OMG’s QVT standard [20] explicitly excludes in its cur-
rent version the part of view specification. However, as far as we know they plan
a definition of view specification that is also based on model transformation. The
viewpoint-oriented approach of [24] also provides an own model transformation
language called ArchiMate with an underlying repository in which the models
and their views are made persistent. A fully materialized view is one of the
main disadvantages of all these related approaches, which results in an intricate
duplication of data together with the inherent view update problem. Another
drawback of the approaches above is the disability of mapping view associations
onto base model objects (or vice versa).

Views in the world of databases either belong to the second category of logical
views or consitute a third category. Usually, database views are defined as query
results for relational databases. Incremental propagation of updates is often not
supported and views for object-oriented data models is usually out-of-scope. For
a more detailed discussion of research related to database views the reader is
referred to [14].

As far as we can estimate, there are no tools or approaches that fulfill our
requirements of view specification.

3 Running Example

In this section we present a running example that we use throughout this pa-
per. On the one hand we aim at integrating the data of a model-based software
development project stored in quite a number of different tools. On the other
hand we aim at manipulating the data of a single tool by applying model trans-
formation rules. Since the tools’ metamodels are too generic and, thus, offer
too little project-specific abstraction on the one hand and reflect unnecessary
tool-specific details on the other hand it is desirable to specify the model inte-
gration and transformation rules on a higher abstraction level. This abstraction
can be realized by creating views on the tools’ data as shown in Figure 1a.
The depicted tool adapter provides a standard compliant interface (e.g. Java
Metadata Interface (JMI) [15]) on the tool’s data by adapting its proprietary
tool interfaces (e.g. APIs). Thereby, the adapter reflects the internal data struc-
ture of the tool, which correspond to the tool-specific metamodel (TMM). On
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Fig. 1. a. Adapter layers, b. Metamodels of view, correspondence graph, and tool

top of these tool-specific interfaces we specify view adapters which provide read
and write access to the tool’s data through view-specific interfaces reflecting the
view-specific metamodels (VMMs)1. Please note that we will introduce later on
an implementation of this 3-layer architecture that avoids duplication of data by
translating all read/write operations on one layer into read/write operations of
the next lower layer.

In the running example we want to perform a model transformfation on a
Matlab/Simulink2 model (cf. Figure 2a). Two Constant blocks carrying the
values 1 and 2 respectively are used as input for a Sum block which calculates
the sum of its inputs. The result as well as a third Constant block carrying the
value 2 are used as input for a Product block which returns the product of its
inputs. We aim at specifying a model transformation rule that substitutes a Sum
block that has two Constant blocks as input by a single Constant block whose
value is set to the sum of the values of the existing Constant blocks.

Figure 2b shows the abstract representation of the Matlab/Simulink model as
an object graph (a model according to OMG’s metamodeling approach). On the
one hand the object graph contains undesirable tool-specific details as the Line,
InPort, or OutPort objects for instance. On the other hand the object graph
lacks preferable abstract information as dedicated Constant, Sum, and Product
objects instead of general Block objects carrying type attributes. The reason
for these deficiencies can be found in the simplified tool-specific graph schema
(metamodel; cf. Figure 1b on the right-hand side) to which the object graph
complies. The graph schema states that a Matlab/Simulink model basically con-
sists of Blocks that carry a type and a text attribute. Furthermore, each Block
is provided with an arbitrary number of InPorts and OutPorts. For identifica-
tion purposes each InPort carries a number attribute. In- and OutPorts can be
connected by Lines.

1 In principle we can specify further view adapters on top of existing view adapters in
order to realize different levels of abstraction.

2 http://www.mathworks.com
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Fig. 2. a. Matlab/Simulink model, b. Tool-specific object graph, c. View-specific ob-
ject graph,d. Model transformation rule

We aim at an object graph without these deficiencies as depicted in Fig-
ure 2c. This graph consists of dedicated Constant, Sum, and Product objects
and omits the low level Line, InPort, and OutPort objects. Therefore, it pro-
vides the desired level of abstraction. The graph complies to the graph schema
shown in Figure 1b on the left-hand side. According to this schema an object
graph consists of components Comp. Components either are binary components
BinComps or constants Const. Each BinComp can be connected with up to two
Comps through its input links inA and inB. Correspondingly, a Comp can be con-
nected with up to one BinComp through either output port outA or outB. This
is expressed by the attached {XOR} constraint. Finally, a BinComp either can be
a sum component SumComp or a product component ProdComp.

Based on the view metamodel, we can easily specify the model transformation
rule as depicted in Figure 2d3. We denote the model transformation rule as a
graph rewriting rule according to the Story Driven Modeling (SDM) language
introduced in [26]. The method substituteSumComp is provided with an input
parameter s of type SumComp. The graph transformation rule checks whether s
is connected to two Const blocks c1 and c2 as input and an BinComp block b
as output. If this pattern is matched on the regarded model the rule destroys
c1 and s as well as their links of type connectsA and connectsB respectively
to connected objects. Furthermore, the rule changes the value of the attribute

3 Due to the consistency of view and tool data, dangling edges are not possible.
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value of c2 to the sum of the value of c1 and c2. Finally, it replaces the link of
type connectsA (or connectsB) between s and b by a link of type connectsA
(or connectsB) between c2 and b. The same graph transformation rule specified
based on Simulink’s tool-specific metamodel is considerably more complex, and,
therefore, less understandable. Due to lack of space we have to omit this rule.

In order to realize the object graph from Figure 2b as a view on the graph from
Figure 2b we have to map them to each other. We declare the needed mapping
dependencies in the graph schema (cf. Figure 1b in the middle - metamodel
of correspondence graph). For clarity reasons we introduce these dependencies
only textually. In fact these dependencies are declared visually as well. Besides
the mapping dependencies we need rules that describe which objects of the one
graph are actually mapped to which objects of the other graph. To this end
we rely on the triple graph grammar approach as pointed out in the following
section.

4 VTGGs

In this section we describe the basics of our model view specification approach
called VTGGs. VTGGs are a special kind of triple graph grammars (TGGs).
TGGs have been introduced in [22] about ten years ago. Hitherto, they only have
been implemented in prototypical ways [2,3,11,16]. Currently, we are working on
an implementation [17] that adopts recent OMG standards as the Meta Object
Facility (MOF) 2.0 [19] and Query/View/Transformation (QVT). Thereby, MOF
2.0 plays the role of a graph schema definition language, whereas QVT acts as
a model integration specification language. Basically, a TGG is a regular graph
grammar consisting of a set of graph rewriting rules taking the empty graph as
the axiom. Each graph that has been derived by applying triple graph grammar
rules can be divided into three related subgraphs. Two subgraphs represent a pair
of corresponding graphs, whereas the third keeps track of correspondences by
means of traceability relationships. In our context one graph represents the tool-
specific object structure. The second graph represents the corresponding view-
specific object structure. Finally, the third graph keeps track of the mapping
dependencies between the first and the second graph. It is one of the main
advantages and, thus, a reason for using TGGs, that a set of regular graph
rewriting rules implementing model integration tasks as forward transformation,
backward transformation, traceability link creation, change propagation, and so
on, can be automatically derived from each triple graph grammar rule. For more
details the reader is referred to [17].

Regular TGGs are used for model integration and transformation purposes.
Thereby, changes on one model are propagated to the other model by apply-
ing forward and backward model transformation rules. In the context of view
creation we want to materialize neither the view nor the correspondence graph.
They should only exist virtually. In the following we present how we modify
TGGs to this end. Thereby, we refer to the running example we introduced in
Section 3. Particularly, we come up with a new rule derivation strategy that
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derives a set of view implementing graph rewriting rules from a declarative view
specification. According to regular TGGs, the creation of new objects or links
are denotated with the {new} tag. The mapping relationships from virtually ex-
isting VMM objects (left-hand side) to really existing TMM objects (right-hand
side) are modeled as links between objects combined with the tag {new}4. Fur-
thermore, we modify TGGs as follows. First of all, we allow that the creation of
a link in one graph simultaneously creates a subgraph in the other graph. Addi-
tionally, a VTGG rule may only create one new object or link on the view side.
Otherwise it would be very difficult to unambiguously propagate changes on the
view to the tool model, i.e. to translate declarative VMM rules into operational
TMM rules automatically.

description = desc
s : PMM::SumComp

type = "SumComp"
text = desc

b : TMM::Block

number = 1
i1 : TMM::InPort

{new} {new} {new}

{new}

{new}

{map}

number = 2
i2 : TMM::InPort

{new}
o : TMM::OutPort

{new}

{new}

{new}

newSumComp(String desc) {

}

view 
border

c : PMM::Comp

b1 : TMM::Block

number
i1 : TMM::InPort

{new}

{map}

{new}

o : TMM::OutPort

{new}

b : PMM::BinComp

l : TMM::Line

b2 : TMM::Block

connectsA

{map}

{new}

connectsA(Comp c, BinComp b) {

}

view 
border

a) b)

: :

:

: :

== 1

Fig. 3. Examples of declarative VTGG rules

Figure 3 depicts examples of declarative VTGG rules. Both rules describe
the simultaneous evolution of the view and the tool object graph. The rule
from Figure 3a simultaneously adds a new SumComp object s to the view and
a new Block object b to the tool graph. Moreover, this rule adds secondary
objects InPort i1, InPort i2, and OutPort o to the tool graph (to match the
tool specific structure) and connects them with b. The rule is provided with
an input parameter desc of type String which is used to set the attributes
description of s and text of b5. The value of the type attribute of b is set to
"SumComp". The values of the number attributes of i1 and i2 are set to 1 and 2,

4 Normally, the mapping dependencies are represented as dedicated objects in declar-
ative rules. We omit these objects for the sake of clarity.

5 In former TGG papers OCL constraints have been used for attribute assignments.
It’s part of ongoing research that this is superseded by input parameters.
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respectively. Finally, s and b are linked by a new mapping dependency to reflect
their correspondence.

Rule 3b depicts a rule that is an enhancement of hitherto existing TGG rules.
It is provided with two input parameters Comp c and BinComp b and connects
both objects on the view side by a new connectsA link. Simultaneously, the rule
connects the OutPort o of the Block b1 that corresponds to c with the InPort
i1 of the Block b2 that corresponds to b with a new Line l object on the tool
side. Thereby, the rule matches if the number attribute of InPort i1 has been set
to 1. In the same way, the rule for adding a new link of association connectsB
matches if the number attribute of an InPort instance has been set to 2.

Rules that create new Const and ProdComp blocks on the view side look similar
to rule 3a. The entire set of rules enables us to simultaneously create the view and
tool object graphs from Figure 2 as well as their mapping dependencies. Actually,
the simultaneous evolution of both object graphs is not intended. Instead, we
want to manipulate a virtually existing view on the tool graph. Therefore, we
derive regular graph rewriting rules based on Fujaba SDM diagrams [23,26].
These rules implement basic operations (e.g. creation and deletion of objects
and links, navigating on links, manipulating attribute values) on the view by
translating them into corresponding operations on the underlying TMM.

5 Implementation

Basically, we have three alternatives how to realize views based on the declarative
view specification we introduced in the preceding section. First of all, we can
use regular model integration/graph transformation approaches. That means
that we realize the view as a fully materialized model (graph) by applying a
model-to-model integration between tool and view model. This approach suffers
from the fact that we duplicate the number of graph objects as well as the
whole data (e.g. attribute values) stored in the tool. Furthermore, changes on
the tool model must be propagated to the materialized view. For this purpose a
regarded tool’s API must offer event notification mechanisms that are not (yet)
supported by a majority of system engineering tools. A better solution is the
view implementation based on the object adapter pattern [8]. This means that
we still duplicate the number of graph objects but do not replicate the tool’s data
anymore. Rather, queries on attributes on the view level are delegated to the tool
level. The most elegant solution is the application of the class adapter pattern [8].
This results in having only one single graph, the resulting view adapter, whose
objects implement the view interfaces as well as the tool interfaces6. Thereby,
we even avoid the duplication of graph objects and do not have to propagate
tool model modifications to a materialized view.

Since we want to adopt the latest OMG standards such as MOF 2.0 and plan
to implement our approach as part of the MOFLON [21] project which is writ-
ten in Java, it is appropriate to rely on Sun’s JMI specification for defining the
view and tool Java interfaces. According to JMI each class in a MOF-compliant

6 Calls to the view interface are internally translated into calls to the tool interface.
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Fig. 4. Parts of the implementation metamodel

class diagram is translated into two Java interfaces. The first interface repre-
sents instances of the regarded class and provides among others methods for
querying and manipulating their attribute values. The second interface is called
the proxy which allows for the creation of new instances and keeps track of the set
of already existing instances. Furthermore, each association in a MOF-compliant
class diagram is translated into one Java interface. This interface represents a
singleton7 which keeps track of linked objects and provides query and manipu-
lation methods on the internally maintained link set.

7 There exists at most one instance at runtime.
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5.1 Implementation Metamodel

In order to realize our view specification approach we have to translate the view
and the tool metamodels into JMI-compliant Java interfaces and come up with
an implementation of them. We assume that the tool’s metamodel has already
been translated into JMI interfaces and implemented as an adapter to the tool’s
API beforehand [1].

Using our MOFLON framework we can automatically generate the needed
JMI interfaces for the view metamodel. As pointed out above we want to im-
plement the resulting interfaces as class adapters [8]. Basically, a class adapter
maps a desired interface (e.g. view interface) to an existing interface (e.g. tool
interface). To this end the class adapter inherits from an implementation of the
existing tool JMI interface. It implements the desired interface by internally
translating calls to the desired interface into calls to the inherited implementa-
tion. Figure 4 depicts parts of the implementation metamodel that results from
the JMI interface generation8. Figure 4a shows the part of the metamodel which
deals with the declaration of the VTGG SumComp class adapter that represents
the mapping of a SumComp object on the view side to a Block object on the
tool side. The top of the figure depicts the JMI interfaces, the bottom shows
their corresponding implementations. The interfaces as well as the implementa-
tion of JMI proxy classes are gray. The left-hand side of the figure shows the
interfaces and implementations of the view side, the right-hand side represents
the tool side. On the tool side there are interfaces and implementations for the
tool-specific classes Block, InPort, and OutPort as well as their corresponding
proxies. According to the class adapter pattern VTGG SumComp implements the
interface of IJMI SumComp and inherits from the Block implementation. There-
fore, a single instance of VTGG SumComp simultaneously represents an instance of
IJMI SumComp as well as of Block without replicating the data. VTGG SumComp
realizes the IJMI SumComp interfaces by delegating method calls to the inherited
Block implementation. For delegation purposes and to support a complete tool
adapter, secondary objects on tool side are inherited by utility classes on view
side (e.g. VTGG InPort).

Correspondingly, Figure 4b introduces the VTGG ConnectsA class adapter.
This class adapter implements the JMI interface of the connectsA association
on the view side and inherits from the proxy of Line since connectsA and
LineClass represent singletons that internally keep track of links and Line in-
stances, respectively.

5.2 Derived Graph Rewriting Rules

We automatically generate implementations of the JMI interfaces by deriving
regular graph rewriting rules from our declarative triple graph grammar rules
from Section 4, which in turn are automatically translated into executable Java

8 It’s just an elaborated scheme that describes the implementation of operational rules.
So, it is not a substitute for the VTGG schema (cf. Figure 1b).
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VTGG_SumComp() {

a)

number = 1
i1 : TMM::InPort

<<create>>

b) c)

   return text;

o : TMM::OutPort

number = 2
i2 : TMM::InPort

setDescription(String desc) {

}

String getDescription() {

<<create>> <<create>> <<create>>

<<create>>

<<create>>

description
this

text:=desc

}}

}

hasInPortshasInPorts hasOutPorts

 type:= “SumComp“

this

Fig. 5. a. VTGG SumComp constructor, b. Write attribute operation, c. Read attribute
operation

code by our MOFLON framework. Thus, the derived graph rewriting rules repre-
sent the methods that are declared by the JMI interfaces. Figure 5 gives examples
of such derived regular graph rewriting rules for VTGG SumComp that correspond
to the declarative rule from Figure 3a. Figure 5a depicts the constructor of
VTGG SumComp which is invoked by the corresponding create method of the
proxy VTGG SumCompClass. According to the declarative rule from Figure 3a the
constructor additionally creates secondary objects i1, i2 of type InPort, and o
of type OutPort and sets their attribute values. Secondary objects are objects
that are only visible on the tool side and have no representation on the view side.
Rule 5b illustrates the implementation of the method setDescription from the

add(IJMI_BinComp _inA, IJMI_Comp _outA) {

a)

}

b)

local_inA:=
(IJMI_Block) _inA

local_outA:=
(IJMI_Block) _outA

number == 1
i:TMM::InPort o:TMM::OutPort

l:TMM::Line

hasInPorts hasOutPorts

outPortToLineinPortToLine
<<create>> <<create>>

<<create>>

IJMI_Comp getOutA(IJMI_Comp _inA) {

}

local_inA:=
(IJMI_Block) _inA b:TMM::Block

number == 1
i:TMM::InPort o:TMM::OutPort

l:TMM::Line

hasInPorts hasOutPorts

outPortToLineinPortToLine

   return (IJMI_BinComp) b;

Fig. 6. a. Add new VTGG ConnectsA link operation, b. Navigate link operation



332 J. Jakob, A. Königs, and A. Schürr

IJMI SumComp interface. The rule sets the value of the text attribute which
has been inherited from the Block implementation to the value of the input
parameter desc. The implementation of the method getDescription from the
IJMI SumComp interface is shown in Figure 5c. This rule just returns the value of
the Block’s attribute text. In general, an attribute reading operation requires
navigation on secondary tool objects resulting in more complex rules.

Figure 6 illustrates some of the methods of VTGG ConnectsA that are derived
from the declarative rule in Figure 3b. The rule from Figure 6a represents the
add method of the IJMI ConnectsA interface. The rule is provided with two
input parameters inA of type IJMI BinComp and outA of type IJMI Comp which
are supposed to be linked to each other. Internally, the rule casts the input
parameters to IJMI Block. This may be done since the view JMI interfaces
are implemented by our VTGG class adapters which implement the tool JMI
interfaces as well. This has to be done in order to access the corresponding

public class VTGG_connectsA extends LineClass implements IJMI_ConnectsA {
public boolean add(IJMI_BinComponent_ inA, IJMI_Component _outA) throws JmiException { 
IJMI_TMMPackage tmmPackage = (IJMI_TMMPackage) super.refImmediatePackage();
IJMI_HasOutPorts hasOutPortsAssoc=  tmmPackage.getHasOutPorts();
IJMI_HasInPortsh asInPortsAssoc = tmmPackage.getHasInPorts();

Collection outports = hasOutPortsAssoc.getOutPort((IJMI_Block) _outA);
IJMI_OutPort outport=  (IJMI_OutPort) outports.iterator().next();

Collection inports=  hasInPortsAssoc.getInPort((IJMI_Block) _inA);
IJMI_InPorti nport=  null;
for(Objectt mpInport : inports) {
if(((IJMI_InPort) tmpInport).getNumber() == 1) {
inport = (IJMI_InPort) tmpInport;
break;

}
}
if(inport! = null && outport! = null) {
this.createLine(outport, inport);
return true;

}
return false;

}
/* Additional methodso mitted duet o lack of space. */

public class VTGG_SumComp extends Block implements IJMI_SumComp {
public VTGG_SumComp(RefObjectm etaObject, RefPackage immediatePackage,

RefPackage outermostPackage) {
super(metaObject, immediatePackage, outermostPackage);
this.setType("SumComp");
this.setDesc("");
IJMI_TMMPackage tmmPackage = (IJMI_TMMPackage) super.refImmediatePackage();
IJMI_HasInPortsh asInPortsAssoc = tmmPackage.getHasInPorts();
IJMI_HasOutPorts hasOutPortsAssoc=  tmmPackage.getHasOutPorts();

IJMI_InPorti 1 = tmmPackage.getInPort().createInPort();
IJMI_InPorti 2 = tmmPackage.getInPort().createInPort();
IJMI_OutPort o = tmmPackage.getOutPort().createOutPort();

i1.setNumber(1); 
i2.setNumber(2);

hasInPortsAssoc.add(i1, this);
hasInPortsAssoc.add(i2, this);
hasOutPortsAssoc.add(o, this);

}
/* Additional methodso mitted duet o lack of space. */

a)

b)

Fig. 7. a. Executable Java code that corresponds to Figure 5a, b. Executable Java
code that corresponds to Figure 6a
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In- and OutPort objects on the tool side. Both Port objects are then linked
to a new Line object on the tool side that represents the desired association
link on the view side. Similarly, the rule 6b returns the IJMI Comp object that is
connected to the given IJMI BinComp inA object by a connectsA link. Again
the rule internally casts the input parameter for the same reasons mentioned
above. Thereafter, the rule identifies the InPort object i of inA. Navigating
via the Line object that is attached to i the rule determines the connected
OutPort object o. Finally, the rule returns the casted Block object b that owns
o. A rule that deletes an existing connection between a given IJMI BinComp
and a IJMI Comp object looks similar to the one depicted in Figure 6a. The
<<create>> tags are just replaced by <<delete>> tags.

5.3 Executable Code

From the regular graph rewriting rules we now generate executable Java code
using our MOFLON framework. Figure 7a illustrates the Java code that re-
sults from the regular graph rewriting rule depicted in Figure 5a. First of all,
the constructor calls the constructor of its superclass Block. Afterwards, the
values of the attributes Type and Desc are initialized. Using the corresponding
proxies the constructor creates two IJMI InPort objects and an IJMI OutPort
object. Finally, the ports are connected to the regarded VTGG SumComp using the
corresponding associations.

The Java code corresponding to the rule presented in Figure 5a is shown in
Figure 7b. Initially, the add method casts the provided input parameter outA of
type IJMI Comp to IJMI Block as demanded by the rule. After this the method
determines the attached OutPort object. Correspondingly, the method deter-
mines the InPort object which number attribute has the value 1 and is con-
nected to inA that also has been cast to IJMI Block beforehand. Finally, add
links both ports by a new Line object.

6 Conclusion

In this paper we have outlined a more detailed definition of our view specification
approach realized by a modified version of triple graph grammars called VTGG.
Based on the initial ideas presented in [14], the paper introduces three possi-
ble solutions on how to implement the automatically derived operational rules
(e.g. for instantiating, read/write access, deleting, ...). The mainly presented re-
alization based on class adapters avoids the creation of two coexisting object
graphs. Furthermore, it reuses MOFLON’s TGG specification and translation
framework as well as its JMI compliant Java code generator backend.

By using our VTGG approach for view specification purposes we are able
to support tool integration, model transformation as well as checking tailored
design rules at various levels of abstraction. VTGGs fulfill all requirements listed
in section 1. Thus, our approach allows for the specification of multiple views
such as complementary or overlapping views to one underlying tool model by
weaving together the metamodels using the class adapter pattern multiple times.
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Furthermore, we are able to create views on top of views while having again
just one object graph . Since our approach is realized as a single object graph,
the resulting adapter, we are not facing the view update problem.

As a drawback while realizing the class adapter layer, we have to know and
access the tool-specific adapter classes. Moreover, applying quite a number of
views on top of views, the resulting class hierarchy becomes quite complex. Due
to the resulting view adapters, an intricate control mechanism is necessary if
multiple complementary views have to exist at the same time.

An implementation of the VTGG approach as well as our regular TGGs are
currently under development. The result will be a plug-in of the MOFLON meta
modeling environment. It is subject of ongoing research activities to adapt the
ideas presented here to the syntax of OMG’s model transformation language
standard QVT. In this context, we will extend our VTGG approach with the
definition of abstract mapping rules. Moreover, we want to make a proposal for
a uniform treatment of model, view, and transformation specifications in QVT.
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Schürr, editors, TIS’03: Workshop on Tool Integration in System Development,
pages 29–32, 2003.

2. S. Becker, T. Haase, and B. Westfechtel. Model-Based A-Posteriori Integration of
Engineering Tools for Incremental Development Processes. SoSym, 4(2):123–140,
2005.

3. S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack, R. Wagner, L. Wen-
dehals, and A. Zündorf. Tool Integration at the Meta-Model Level within the
FUJABA Tool Suite. STTT, 6(3):203–218, August 2004.

4. J. de Lara, E. Guerra, and H. Vangheluwe. A Multi-View Component Modelling
Language for Systems Design: Checking Consistency and Timing Constraints. In
VMSIS’05, 2005.

5. K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange,
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14. J. Jakob and A. Schürr. View Creation of Meta Models by Using Modified Triple
Graph Grammars. In GT-VMT’06, ENTCS, pages 175–185, 2006.

15. SUN JCP: Java Metadata Interface(JMI) Specification, 2002.
16. E. Kindler, V. Rubin, and R. Wagner. An Adaptable TGG Interpreter for In-

Memory Model Transformation. In A. Schürr and A. Zündorf, editors, Fujaba
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Abstract. The model-driven development (MDD) approach for con-
structing software systems advocates a stepwise refinement and trans-
formation process starting from high-level models to concrete program
code. In contrast to numerous research efforts that try to generate exe-
cutable function code from models, we propose a novel approach termed
model-driven monitoring. Here, models are used to specify minimal re-
quirements and are transformed into assertions on the code level for
monitoring hand-coded programs during execution.

We show how well-understood results from the graph transformation
community can be deployed to support this model-driven monitoring ap-
proach. In particular, models in the form of visual contracts are defined
by graph transitions with loose semantics, while the automatic trans-
formation from models to JML assertions on the code level is defined
by strict graph transformation rules. Both aspects are supported and
realized by a dedicated Eclipse plug-in.

1 Introduction

Object-oriented technology provided us with a better handle on complexity than
previous technologies. Nevertheless, the growing size of applications and the
demand for shorter time-to-market entail that many issues remain. In recent
years, the paradigm of a model-driven development (MDD) approach has been
introduced and discussed heavily. In particular, the Object Management Group
(OMG) favored a model-driven approach to software development and pushed
its Model-Driven Architecture (MDA) [1] initiative as well as standards such as
the Unified Modeling Language (UML) that provides the foundation for MDA.

However, model-driven development is still in its infancy compared to its am-
bitious goals of having a (semi-)automatic, tool-supported stepwise refinement

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 336–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



MDM: An Application of Graph Transformation for Design by Contract 337

process from vague requirements specifications to a fully-fledged running pro-
gram. A lot of unresolved questions exist for horizontal modeling tasks as well
as for vertical model transformation tasks.

In principle, models provide an abstraction from the detailed problems of
implementation technologies. They allow software designers to focus on the con-
ceptual task of modeling static as well as behavioral aspects of the envisaged
software system. Unfortunately, abstraction naturally conflicts with the desired
automatic code generation from models. To enable the latter, fairly complete and
low-level models are needed. Today, a complete understanding of the appropriate
level of detail and abstraction of models is still missing.

Horizontal modeling levels are interrelated by vertical model transformations.
Here, too, a complete understanding is missing how such a transformation might
be specified and implemented. A number of model transformation approaches
have been proposed and discussed, in particular, as answer to the Query-View-
Transformation (QVT) RFP of the OMG [2].

The graph transformation community has been investigating and discussing
since years graph-based approaches for specifying structure and behavior of soft-
ware components as well as for specifying transformations.Thus, graph transfor-
mation provides well-defined and well-investigated candidate solutions for the
mentioned open issues in the MDD realm.

In our work, we employ results from research on graph transformation to of-
fer solutions for horizontal modeling as well as vertical model transformation
problems. In particular, we introduce a novel modeling approach. We do not fol-
low the usual approach that models should operate as source for an automatic
code generation step that produces the executable function code of the pro-
gram. Rather, we restrict the modeling task to providing structure information
and minimal requirements towards behavior for the subsequent implementation.
We expect that only structural parts of an implementation are automatically
generated, while the behavior is manually added by a programmer.

As a consequence it can not be guaranteed that the hand-coded implementa-
tion is correct with respect to the modeled requirements. Yet, we will show how
models can be used to generate assertions which monitor the execution of the
hand-coded implementation. Herewith, violations of the modeled requirements
will be detected at runtime and reported to the environment. We call this novel
approach model-driven monitoring.

Model-driven monitoring (MDM) is based on the idea of Design by Contract
(DbC) [3], where so-called contracts are used to specify the desired behavior of
an operation. Contracts consist of pre- and post-conditions. Before an operation
is executed, the pre-condition must hold, and in return, after the execution of
an operation, it has to be guaranteed that the post-condition is satisfied.

The DbC approach has been introduced for textual programming languages
and is supported by appropriate tools, e.g. for the Eiffel language [4]. Recently,
the same approach has been put into effect for the Java programming language.
For instance, the Java Modeling Language (JML) extends Java with Design by
Contract concepts [5]. JML assertions are based on Java expressions and are
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annotated to the source code. During the execution of such an annotated Java
program, any violation of an assertion is monitored. An exception is raised as
soon as a violation is detected.

We lift this idea of contract specifications to the level of visual models and reuse
the concept of graph transformation to specify pre- as well as post-conditions of an
operation in a graphical, UML-like way. As those visual contracts define minimal
requirements towards an operation, the semantic concept of loose graph transi-
tions, formalized by the double-pullback (DPB) approach [6], is deployed to pro-
vide the semantics of the contract-based approach.

Besides this novel modeling approach, we deploy graph transformation results
for defining the automatic transformation step from visual contract specifications
to textual JML assertions. In contrast to the modeling of minimal requirements
illustrated above, we provide a complete specification of this transformation step
here. Thus, the semantic concept of strict graph transformations is deployed
which is formalized by the double-pushout (DPO) approach [7].

The complete approach of contract-based modeling of a software system is
supported by a tool chain that we implemented as Eclipse plug-in. The presented
method for specifying software components by contracts has been studied in an
industrial setting [8, 9].

We give an overview of the model-driven monitoring approach in the following
section. Section 3 explains our method of modeling with visual contracts based
on the concepts of graph transitions. The translation from visual contracts to
JML assertions is described in Sect. 4. There we use graph transformation rules
for specifying the translation. The tools that we provide to support our method
are introduced in Sect. 5. Finally, we summarize the achievements and sketch
future perspectives.

2 Towards Model-Driven Monitoring

Model-driven monitoring (MDM) constitutes a novel strategy for model-driven
software development beyond the classical idea of model-driven development
(MDD) centered upon the automatic generation of function code and model-
driven testing (MDT) focussing on automatically deriving test cases from mod-
els. We enable model-driven monitoring by embedding visual contracts in a
model-driven software development process according to Fig. 1. Visual contracts
are interpreted as models of behavior from which code for testing and runtime as-
sertion checking can be generated. The visual contracts also specify the behavior
which is then manually implemented by programmers.

On the design level, a software designer has to specify a model of the system
under development. This model consists of class diagrams and visual contracts.
The class diagrams describe the static aspects of the system. Each visual contract
specifies the behavior of an operation. The behavior of the operation is given in
terms of data state changes by pre- and post-conditions, which are modeled by
a pair of UML composite structure diagrams as explained in Sect. 3. Both the
pre- and post-condition of a visual contract are typed over the class diagram.
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Fig. 1. Towards Model-Driven Monitoring

In the next step, we generate Java code from the design model. This generation
process consists of two parts. First, we generate Java class skeletons from the
design class diagrams. Second, we generate JML assertions from every visual
contract and annotate each of the corresponding operations with the generated
JML contract. The JML assertions allow us to check the consistency of models
with manually derived code at runtime. The execution of such checks has to be
transparent in that, unless an assertion is violated, the behavior of the original
program remains unchanged. Thus, our transformation rules (see Sect. 4) for
generating JML assertions from the UML design model only generate assertions
that behave accordingly.

Then, a programmer uses the generated Java fragments to fill in the missing
behavioral code in order to build a complete and functional application. Her pro-
gramming task will emanate from the design model of the system. Particularly,
she will use the visual contracts as reference for implementing the behavior of
operations. She has to code the method bodies, and may add new operations to
existing classes or even completely new classes, but she is not allowed to change
the JML contracts. The latter guarantees that the JML contracts remain con-
sistent with the visual contracts. Integrity of visual contracts can be technically
assisted by separating Java class skeletons and JML assertions into two different
files and prohibiting access to the JML assertions file. Programmers do not need
to see the JML annotations; rather they should use the more intuitive visual
contracts as the starting point for their programming.

When a programmer has implemented the behavioral code, she uses the JML
compiler to build executable binary code. This binary code consists of the pro-
grammer’s behavioral code and additional executable runtime checks which are
generated by the JML compiler from the JML assertions. This leads to a runtime
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Fig. 2. Behavior at runtime

behavior as shown in Fig. 2. The manual implementation of a programmer leads
to a system state change. The generated runtime checks monitor the pre- and
post-conditions during the execution of the system. They monitor whether the
manually coded behavior of an operation fulfills its JML specification. Thus,
we indirectly monitor whether the system state change performed by the man-
ual implementation complies with the visual contract specification of the design
model since the JML annotations are purely generated from the visual contracts.
Thus, we support model-driven monitoring of implementations by transforming
our visual contracts into contracts in JML.

Our visual contracts are given in a UML-like notation of graph transforma-
tion rules. However, the classical interpretation of graph transformation rules
based on the double-pushout approach (DPO) [7] is not adequate for the repre-
sentation of a contract. In this approach it is assumed that during the execution
of an operation nothing is changed beyond the specification in the rule. This
would mean that we have to describe the behavior of an operation completely
on the model level, which would lead to the drawbacks mentioned in the intro-
duction. Rather, our method builds upon the loose semantic interpretation of
visual contracts. They are interpreted as a minimal description of the data state
transformation which has to be implemented by the programmer. Thus, a visual
contract specifies only what at least has to happen on a system state, but it al-
lows the programmer to implement additional effects. This loose interpretation is
necessary both to give the programmer the opportunity for optimizing her code,
e.g. by adding new classes or methods, and to generate assertions from partial,
incomplete models. Therefore, we have to interpret our visual contracts as graph
transitions. In the double-pullback (DPB) [6] approach graph transitions allow
additional changes that are not encoded in the transformation rules.

3 Modeling with Visual Contracts

We show how to specify a system with visual contracts by the example of an
online shop. We distinguish between a static and a functional view.
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Fig. 3. Class Diagramm specifying static structure of online shop

UML class diagrams are used to represent the static view of a system spec-
ification. Figure 3 shows the class diagram of the sample online shop. We use
the stereotypes control and entity as introduced in the Unified Process [10].
The stereotype key indicates a unique identifier for each of a set of objects of
the same type. Qualifiers on associations (e.g. productNo on the association
controls between Shop and Product) designate an attribute of the referenced
class and provide direct access to a specific object.

The functional view of the system is described by visual contracts (i.e., graph
transformations) for a selected set of operations. It integrates static and dynamic
aspects to describe the effect of an operation on the data state of the system.
Therefore, visual contracts take an operation-wise view on the internal behavior.

On the functional level a designer has different degrees of freedom to decide
how detailed a model is. At first a designer can decide which of the operations
to specify by visual contracts. If an operation is not detailed by a visual contract
then the only consequence is that the operation is not monitored at runtime.

Further, if a designer describes an operation by a visual contract, she has the
freedom to decide how detailed the specification shall be. The less detailed an
operation is specified by a contract, the more freedom has a developer in imple-
menting an operation. This is possible due to the assumption that the contracts
are an incomplete description of the system state changes by an operation. A
contract only specifies what at least has to happen, but it allows a developer
to implement additional effects. For example, the implementation of the visual
contract of Fig. 4 can additionally calculate the total costs of a cart and assign
this value to the attribute subtotal of Cart. This interpretation is supported
by the loose semantics of open graph transformation systems [6].

Structurally, a visual contract consists of two graphs, representing the pre-
condition and the post-condition, respectively, like the left- and a right-hand
side of a graph transformation rule (compare Fig. 4). The graphs are visualized
by UML composite structure diagrams. Each of the diagrams is typed over the
design class diagram.

Additionally, we may extend the pre- or post-condition of a visual contract by
negative pre-conditions (i.e., negative application conditions [11]) or respectively



342 G. Engels et al.

n
eg

ative
 p

re-co
n

d
itio

n

«control»
this : Shop

«control»
this : Shop

«key» cartId = cid

«entity»
/c : Cart

«key» cartId = cid

«entity»
/c : Cart

«key» cartItemId = cartitemid
productNo = prNo
quantity = quant

«entity»
/citem : CartItem

«key» productNo = prNo

«entity»
/pr : Product

«key» productNo = prNo

«entity»
/pr : Product

productNo = prNo

«entity»
/citemnac : CartItem

«key» cartId = cid

«entity»
/c : Cart

cartAdd(cid, prNo, quant):cartitemid

Fig. 4. Visual contract for operation cartAdd

by negative post-conditions. A slashed ellipse marks them. The negative pre-
condition specifies object structures that are not allowed to be present before the
operation is executed. The negative post-condition identifies object structures
that are not allowed to be present after the execution of the operation.

Beside the different graphs, a visual contract contains the operation name, a
parameter-list and a return-result. The variables of the parameter-list and the
return-result are used in the visual contracts to further qualify the objects.

The visual contract in Fig. 4 specifies the operation cartAdd. This operation
adds a new CartItem, which references an existing Product, to an existing Cart.
The variables of the parameter-list and the return-value are used to determine
values of attributes of different objects. For a successful execution of the opera-
tion, the object this must know two objects: an object of type Cart that has an
attribute cartId with the value cid, and an object of type Product that has an
attribute productNo with the value prNo. The actual argument values are bound
when the client calls the operation. The Cart object is reused in the negative
pre-condition (compare object identifiers). The negative pre-condition extends
the pre-condition by the requirement that the Cart object is not linked to any
object of type CartItem that has an attribute productNo with the value prNo.
This means, it is not permitted that the product is already contained in the cart.
As a result, the operation creates a new object of type CartItem with additional
links to previously identified objects. The return value of the operation is the
content of the attribute cartItemId of the newly created object.

4 Transformation of the Design Model to Java Code with
JML Assertions

After describing the modeling of a software system with visual contracts, we now
present how the model-driven software development process continues from the
design model. A transformation of visual contracts to JML constructs provides
for model-driven monitoring of the contracts. The contracts can be automatically
evaluated for a given state of a system, where the state is given by object con-
figurations. The generation process as well as the kind of code that is generated
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from a class diagram and the structure of a JML assertion that is generated from
a visual contract are described in detail in [12, 13]. Here we describe the trans-
formation more generally and from a methodical perspective and explain the
formalization by graph transformation rules which underlies the transformation.

4.1 Transformation of Class Diagrams to Java

Each UML class is translated to a corresponding Java class. Attributes and
associations are complemented by the corresponding access methods (e.g., get,
set). For multi-valued associations we use classes that implement the Java inter-
face Set. Qualified associations are provided by classes that implement the Java
interface Map. We add methods like getProduct(int productNo) that use the
attributes of the qualified associations as input parameters. Operation signatures
that are specified in the class diagram are translated to method declarations in
the corresponding Java class.

4.2 Transformation of Visual Contracts to JML

For operations that are specified by a visual contract, the transformation of
the contract to JML yields a Java method declaration that is annotated with
a JML assertion. The pre- and post-conditions of the generated JML assertions
are interpretations of the graphical pre- and post-conditions of the visual con-
tract. When any of the JML pre- and post-conditions is evaluated, an optimized
breadth-first search (compare [14]) is applied to find an occurrence of the pat-
tern that is specified by the pre- or post-condition in the current system data
state. The search starts from the object this which is executing the specified
behavior. If the JML pre-condition or post-condition finds a correct pattern, it
returns true, otherwise it returns false.

4.3 Specifying the Contract Transformation

After demonstrating the transformation in principle, we explain in the follow-
ing how we have defined a precise specification of the transformation from visual
contracts to JML. The declarative specification in [12] abstracts from representa-
tion details of the visual contracts and leaves out different details of the mapping
between visual contracts and JML. In contrast, we present an operational speci-
fication of the transformation from visual contracts to JML here. The provision
of the operational model transformation is the prerequisite for an automated
translation of visual contracts to JML as implemented in our development tools.

The operational specification is the second application of graph transforma-
tion concepts in our method towards model-driven monitoring. Other than the
first application for specifying visual contracts that state minimal requirements
on a single horizontal modeling level, we need a complete specification of the
transformation behavior to support the automation of the model transformation
in the vertical direction. The operational specification is based upon an exten-
sion of the UML 2 metamodel for visual contracts. The metamodel represents
the source language of the model transformation and provides the type graph
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on which the graph transformation rules operate, i.e., the graph transformation
rules are specified on the metamodel level, and the concrete models are viewed
as metamodel instances when they are transformed.

4.4 Extended UML 2 Metamodel

Our visual contracts integrate with the UML 2 metamodel. Mainly we use el-
ements from the UML 2 metamodel packages InternalStructures and Collabo-
rations. The InternalStructure subpackage provides mechanisms for specifying
structures of interconnected elements, representing runtime instances, which
collaborate over communication links to achieve some common objectives. A
collaboration represents how elements of the model cooperate to perform some
essential behavior. Among others, the participating elements may include classes
and objects, associations and links as well as attributes and operations. Collab-
orations allow us to describe only the relevant aspects of the cooperation of a
set of instances by identifying the specific roles that the instances will play.

Figure 5 provides a view on the metamodel for our visual contracts. Visual-
Contract specializes Collaboration. A collaboration defines a set of cooperating
entities to be played by instances (its roles) as well as a set of connectors that
define communication paths between the participating instances. The roles are
represented by ConnectableElements, which are referenced by a Collaboration.
ConnectableElement is a TypedElement, which references a Type. Class is a Clas-
sifier, which is a Type. Consequently, the ConnectableElement can define a role
that classes have to play in order to accomplish the behavior of a collaboration
(visual contract, respectively). ConnectableElements are linked by a Connector
with ConnectorEnds. A Connector specifies a link that enables communication
between two or more instances. This link may be an instance of an association.
In contrast to associations, which specify links between any instance of the as-
sociated classifiers, connectors specify links between instances playing the roles
of the connected parts only. Additionally, the UML 2 metamodel offers special-
izations of ConnectableElement for representing parameters and variables.

We also define attribute values that an instance must provide in order to play
one of the defined roles. According to the UML metamodel, you cannot specify
the content of the features (properties) of a role in more detail. Therefore, we
have introduced a specialization of a ConnectableElement named VCElement
and a class Constraint to restrict possible attribute values. The class Constraint
groups a feature (which represents an attribute of a class) and a permitted value.
The permitted value of a feature can be a simple value (ValueSpecification) or
another VCElement. Since the value of a feature can change from the pre- to
the post-condition, we distinguish in the meta-model by association whether the
reference value belongs to the pre- or post-condition.

We have to define whether a VCElement is part of the pre- or post-condition.
To specify the absence of certain structures, both pre- and post-conditions may
contain negative conditions. Therefore, we have added three metamodel classes
to the UML metamodel: Precondition, Postcondition, and NegativeCondition.
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Fig. 5. Extract of the UML 2 metamodel extension for visual contracts

4.5 Operational Transformation with Compound Rules

For the operational specification of our transformation from visual contracts
to JML, we assume that the source model is syntactically correct according to
our metamodel. We define the transformation by a set of compound rules as
introduced in [15].
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rS : LS ::= RS rT : LT ::= RT

#Pre(<op>)# ::=
@ requires
@ this.get#PreConstraint(<co>)#;
#Pre(<op>)#

Fig. 6. Compound rule that starts the generation of JML assertions for checking at-
tribute values of object this

The basic idea of compound rules is that a model transformation from a
source language to a target language can be defined by a synchronized model
transformation on the source and the target language. Such a synchronized model
transformation can be specified by a set of model transformation rules, consisting
of two parts for transforming both the source and target model.

Figure 6 depicts a sample compound rule that starts the generation of the
JML assertions for checking the attribute values of the object this in the pre-
condition. A compound rule r : (rs, rt) consists of two parts, a UML part and a
JML part. Both rs and rt can be viewed as graph transformation rules. In gen-
eral, the source transformation rule rs : LS ::= RS describes the transformation
of the source model, the target transformation rule rt : LT ::= RT specifies the
transformation of the target model. Note that in Fig. 6 rs is an identical transfor-
mation with LS = RS , which is visualized by the left-hand side only. Source and
target rules are coupled by the ability of using shared variables. Such variables
are denoted by #variable#.

When applying a compound rule for the transformation of a source to a target
model, at first an occurrence of the left-hand side Ls of the source transformation
rule is searched within the source model (source match). In Fig. 6 the left-hand
side of the source rule matches, if a VCElement (part of a visual contract added to
an operation) this has a constraint with a value specification. If a source match
is found, the variables are instantiated. This means, that a value is assigned to
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each variable according to the source match. Then, an occurrence of the left-hand
side of the target transformation rule LT (using the instantiated variables—in
our example there is only one variable op) is searched within the target model
(target match). Then the target match is replaced by the right-hand side RT of
the target transformation rule. In our example, the target transformation rule
prepares the code for testing the content of an attribute of the object this.

In order to specify model transformations with control, the approach in [15]
provides support for assembling compound rules into transformation units. Such
units consist of a set of compound rules with control. Each compound rule is
contained in a rule set. The rule sets are then organized in a sequence of rule
sets where each rule set can be considered as a layer. Within a rule set, rules
may be applied non-deterministically. A transformation unit consists of a set of
compound rules together with a control expression specifying the organization
of rules into rule sets, layers and determining whether a rule should be applied
once or as long as possible.

For defining the transformation of our models consisting of class diagrams
and visual contracts to Java classes and JML we need round about 95 com-
pound rules. These compound rules have to be organized in approximately 25
transformation units.

5 Tool Support

In the previous sections, we have shown how to use visual contracts in models of
software systems for specifying operations and how to translate visual contracts
to JML. This enables model-driven monitoring. We can monitor the correctness
of a manual implementation with respect to its specification.

Existing CASE tools or graph transformation tools do not support the use
of visual contracts for specifying software systems as described in our approach.
As a proof of concept and for showing the practical feasibilty of our approach,
we have developed an integrated development environment for using visual con-
tracts in a software development process. This development environment allows
software developers to model class diagrams and specify the behavior of op-
erations by visual contracts. It further supports automatic code generation as
described in Sect. 4, the manual implementation to get a complete application,
and the compilation of the generated assertions by a JML compiler.

Figure 7 shows the user interface of our tool for modeling visual contracts.
The central workspace of the visual contract editor is divided into four sectors.
A software designer can specify the pre- and post-condition in the bottom-left
sector (labeled with LHS ) and the bottom-right sector (labeled with RHS ), re-
spectively. An object this (the active object executing the operation) is added
automatically in both sectors when a new visual contract for an operation is
created. Every object added to the pre- or post-condition must be within reach
of the object this by links. Additionally, the top sector allows for specifying neg-
ative conditions. The top-left sector (labeled with NAC for negative application
condition) is for specifying object structures that are not allowed to be present
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Fig. 7. Tool support for modelling visual contracts

before the operation is executed. The top-right sector (labeled with NPC for
negative post-condition) is for specifying object structures that are not allowed
to be present after the execution of the operation.

The development environment is implemented as an Eclipse plug-in. We mainly
used theGraphicalEditor Framework (GEF) [16] and theEclipseModelingFrame-
work (EMF) [17] for the implementation of the plug-in. The code generation was
implemented using Eclipse JET [18], which is a part of the EMF.
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6 Conclusion

We have shown in this paper, how we have been employing results from research
on graph transformation in model-driven software development processes. Ad-
dressing horizontal modeling issues, we have lifted the Design by Contract idea
to the visual model level. Visual contracts use graph transformation concepts for
the specification of pre- and post-conditions of operations. Since they only define
minimal requirements towards the implementation of an operation, we use the
loose semantics of graph transitions of the double-pullback approach.

For the vertical direction of model transformations, we use compound (graph
transformation) rules to define a transformation of our visual contracts to the
Java Modeling Language JML, a Design by Contract extension for Java. To
automate this model transformation, we need the strict semantic interpretation
of graph transformation rules as formalized by the double-pushout approach.

Altogether, we have introduced model-driven monitoring as a new and prac-
tically useful amalgamation of graph transformation and Design by Contract
concepts. In contrast to the automatic generation of function code, we generate
assertions from contracts that are monitored and automatically checked while
the actual and manually implemented function code is executed.

To support our model-driven monitoring method, we provide an editor that
allows developers to coherently model class diagrams and visual contracts. The
editor is complemented by code generation facilities for Java classes with JML
assertions for their operations.

In an industrial case study [9,8], we have successfully applied visual contracts
for specifying the interfaces of Web services. Our method and tools are currently
considered by an industrial partner software company of the Software Quality
Lab (s-lab) for deployment in their software development projects.
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Abstract. In this paper, we present our approach for model view man-
agement in the context of Multi-View Visual Languages (MVVLs). These
are made of a number of diagram types (or viewpoints) that can be used
for the specification of the different aspects of a system. Therefore, the
user can build different system views conform to the viewpoints, which
are merged in a repository in order to perform consistency checking. In
addition, the user can define derived views by means of graph query pat-
terns in order to extract information from a base model (a system view
or the repository). We have provided automatic mechanisms to keep syn-
chronized the base model and the derived view when the former changes.
Predefined queries by the MVVL designer result in so-called audience-
oriented views. Finally, semantic views are used for analysing the system
by its translation into a semantic domain.

Our approach is based on meta-modelling to describe the syntax of the
MVVL and each viewpoint, and on triple graph transformation systems
to synchronize and maintain correspondences between the system views
and the repository, as well as between the derived, audience-oriented
and semantic views and the base models. We illustrate these concepts by
means of an example in the domain of security for web systems.

1 Introduction

Visual Languages (VLs) are extensively used in many engineering activities for
the specification and design of systems. As these become more complex, there is
a need to split specifications into smaller, more comprehensible parts that use the
most appropriate notation. Thus, there are VLs (such as UML) made of a family
of diagram types, which can be used for the description of the different aspects
of a system. We call such VLs Multi-View Visual Languages (MVVLs) [5]. In
these languages, the user has a need of building models (using the different
diagram types) and check their consistency; of querying models to obtain partial
models; and of transforming models into other formalisms. All these artefacts
can be considered different kinds of views of the system. This necessity has been
recently recognised by the OMG by defining a standard language for expressing
Queries, Views and Transformations (QVT, see [11]).
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Our approach for model view management is based on meta-modelling and
graph transformation. With meta-modelling, we define the syntax of the com-
plete MVVL. Each diagram type (or viewpoint) has its own meta-model too,
which is a part of the complete MVVL meta-model. At the model level, the
user builds different system views conform to a viewpoint meta-model. System
views are merged together in a unique model called repository. Triple Graph
Transformation Systems (TGTSs) automatically derived from the meta-models
perform the merging, allow incremental updates and relate the system views and
the repository. They also provide syntactic consistency and change propagation
from one view to the others (i.e. they are bidirectional). In addition, it is pos-
sible to generate TGTSs modelling different behaviours for view management
(e.g. cascading deletion vs. conservative deletion of elements).

We also present graph query patterns as a declarative visual query language
to obtain derived views (in the sense of QVT [11]) from a base model. Starting
from the patterns, a TGTS is automatically generated to build the derived view
and maintain it consistent with respect to changes in the base model (i.e. derived
views are incremental). If the query is predefined by the MVVL designer and
later used by a specific kind of user, we call it audience-oriented view.

Finally, the system views (or the repository) can be translated into another
formalism for dynamic semantics checking, analysis and simulation. We call the
target model semantic view. The MVVL designer defines the translation by
means of a TGTS that establishes correspondences between the elements in the
source model and its semantic view. Thus, the results of the analysis can be back
annotated and shown in the base model, likely more intuitive for the user.

The main contribution of this paper is the use of a uniform specification of the
different kinds of views by means of meta-modelling and TGTSs. Moreover, we
propose graph query patterns to specify derived views, together with mechanisms
to automatically obtain TGTSs that build the view. In [5] we presented the first
steps towards the definition of MVVLs, where we only considered system views.
We have extended previous work, as we now consider other kinds of views, and
improve system views by allowing configurable behavioural patterns. This work
is founded in an extension of the classical notion of Triple Graph Grammars
(TGGs) by Schürr [13]. In its original sense, a TGG is a grammar that generates
a language of triple graphs, from which triple rules implementing forward or
backward translations are derived. In our case, we generate the TGTSs that
implement translations and propagation of updates from meta-models or queries.
In addition, our TGTSs are formally defined in the double pushout approach
(DPO), and extend triple graphs with inheritance and more flexible morphisms
in the correspondence graph (see [6] for details).

The paper is organized as follows. Section 2 presents an overview of our for-
malization of TGTSs. Section 3 shows our approach for defining the syntax of
MVVLs and handling system views. In subsection 3.1, we describe several ways
of configuring the behaviour of a modelling environment to manage the system
views. Section 4 describes graph query patterns and how TGTSs to build the
derived view are obtained from them. Section 5 shows how to define a semantic
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view. Section 6 compares with related research. Finally, section 7 ends with the
conclusions and further research. In all sections, we illustrate the concepts with
an example of MVVL in the domain of security for web systems.

2 Triple Graph Transformation Systems

TGTSs model transformations of triple graphs, which are made of three separate
graphs: source, target and correspondence. As originally defined [13], nodes in
the correspondence graph had morphisms to nodes in the source and target
graphs. We have extended the notion of triple graph by allowing attributes on
nodes and edges. Moreover, the relation between the source and target graphs
is more flexible, as we allow morphisms from nodes in the correspondence graph
to nodes and edges in the other two graphs, as well as being undefined. Finally,
we also provide triple graphs with a typing by a triple type graph (similar to
a triple meta-model) which may contain inheritance relations between nodes or
edges. We follow the DPO approach [3] for the formalization of triple graph rules
(see [6] for details). Here, for space limitations, we only present a brief summary.

Our triple graphs are based on the notion of E − graph [3], which extends
regular graphs with node and edge attribution. Attribute values are indeed data
nodes, while attributes are edges connecting graph nodes and edges with data
nodes. We define a TriE − graph as three E-graphs (source, correspondence
and target) and two correspondence functions c1 and c2. The correspondence
functions are defined from the nodes in the correspondence graph to nodes and
edges in the other two graphs. In addition, the functions can be undefined.
This is modelled with a special element in the codomain (named “·”). Visually,
this is denoted as a correspondence graph node from which some of the corre-
spondence functions are missing (see for example rules in Fig. 7). TriE-graph
objects and morphisms form category TriEGraph. In order to structure the
data values in sorts and make operations available, TriE-graphs are provided
with an algebra over a suitable signature, resulting in category TriAGraph.
Finally, we provide TriAGraphs with a typing by defining a triple type graph
(similar to a meta-model triple). This is an attributed triple graph where the
algebra is final. The typing is a TriAGraph-morphism from the graph to the
type graph. Indeed, attributed typed triple graphs (short ATT-graphs) can be
modelled as objects in the slice category TriAGraph/TriATG, which we write
as TriAGraphTriATG. In [6] we extend type graphs and triple graph rules with
inheritance for nodes and edges.

Fig. 1 shows an ATT-graph that relates a source Role Based Access Con-
trol model [4] (up) and a target Coloured Petri Net [9] (down). Its meta-model
triple is not shown in the paper for space constraints, although the part that
corresponds to the source type graph is shown on the upper part of Fig. 4.

We manipulate ATT-graphs by means of DPO triple rules. In the DPO ap-
proach, rules are modelled using three components: L, K and R. The L compo-
nent (or left hand side, LHS) contains the elements to be found in the structure
(a graph, a Petri net, etc.) where the rule is applied. K (the kernel) contains
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Fig. 1. An Attributed Typed Triple Graph

the elements preserved by the rule application. Finally, R (the right hand side,
RHS) contains the elements that should replace the part identified by L in the
structure. Therefore, L−K are the elements that should be deleted by the rule
application, while R−K are the elements that should be added. Note that DPO
transformation has been lifted to work not only in the Graph category, but
also with any (weak) adhesive HLR category [3]. In [6] we show that category
TriAGraphTriATG is an adhesive HLR category. Therefore, in our case, L, K
and R are ATT-graphs.

In addition, we provide triple rules with a set of application conditions that
restrict their applicability. An application condition c = (X, X

yi−→ Yi) has
a premise ATT-graph X , a set of consequent ATT-graphs Yi, and morphisms
yi from X to each Yi. In order to apply a rule, if a match of X is found in
the host ATT-graph, then a match of some Yi has also to be found. If the
application condition does not have any consequent ATT-graph, finding a match
of the premise forbids the rule application. This is a special case of condition
called negative application condition (NAC). On the contrary, if the premise is
isomorphic to the LHS, then this is a positive application condition (PAC). We
use a shortcut notation for application conditions: the subgraph of L (resp. X)
that does not have an image in X (resp. Yi) is isomorphically copied into X
(resp. Yi) and appropriately linked with their elements.

Fig. 2 shows a triple rule. It creates a place in the target graph (lower part)
and relates it with an existing node in the source graph (upper part). The NAC
forbids the rule application if the node is related to a place. The K component
is omitted for clarity. It contains the common elements of LHS and RHS (i.e.
node labelled “1”). We will use such notation throughout the paper.

3 Multi-View Visual Languages: System Views

MVVLs are made of a set of diagram types, each one of them defined by its own
meta-model and dealing with a different viewpoint of the system [5]. However,
all these separate definitions are based on a unique meta-model that relates
their abstract syntax concepts. This is for example the approach of UML2.0.
The different viewpoints may overlap in this unique meta-model. It is key to
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identify the overlapping parts for each pair of viewpoints in order to be able
to maintain them coherent through their common elements. Fig. 3 expresses
this situation in categorical terms. Thus, a MVVL is defined by means of an
attributed type graph TGMV V L (i.e. its meta-model). The different viewpoints
TGV P are inclusions of it, although in a more general approach they can be any
function. For each two viewpoints TGV Pi and TGV Pj , the overlapping part Ii,j

is calculated as the pullback of its respective type graphs and TGMV V L. Thus,
idi ◦ oi,j = idj ◦ oj,i. At the model level, the user builds system views conform
to some viewpoint (i.e. a typing morphism exists from each system view to a
viewpoint). Note how there might be more than one system view for the same
viewpoint. In order to guarantee syntactic consistency, a repository model is built
by merging all the system views. The repository is the colimit of the views, and
there is a typing morphism from it to the MVVL type graph.
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Fig. 3. Multi-View Visual Language Definition in Categorical Terms

In our approach, the merging operation is performed by TGTSs automatically
derived from the meta-model information. Note how updating the repository
(because of a system view modification) may leave other views in an incon-
sistent state. At this point, other automatically generated TGTSs update the
rest of the views. The identification of the overlapping of each two viewpoints
helps to minimize the rules that must be tried in this change propagation. In
this way, we have TGTSs that propagate changes in the two directions in con-
secutive steps: first from the views to the repository, and then the other way
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round (if necessary). This is similar to the Model-View-Controller pattern. For
static semantics consistency the MVVL designer may provide additional triple
rules. In this way, both syntax and static semantics can be checked in a uniform
way.

In order to illustrate these concepts, as well as the ones presented in the
following sections, we introduce a case study for modelling a Role Based Access
Control (RBAC) [4] for web systems1. Its meta-model is shown in the upper
part of Fig. 4. Briefly, a web application is made of nodes with a name and a
URL, where one of the nodes is the home page. Navigation between nodes is
modelled by means of relation “link”. In addition, roles can be defined with a
set of permissions for accessing nodes. Roles are nested in hierarchies through
relation “contains”, and inherit all permissions of reachable roles through such
relation. Finally, users can be assigned a set of roles, from which they obtain the
permissions for interacting with the system.

User

+ name: String {keyword}

contains

assigned

User Diagram Meta−Model

Role

+ name: String {keyword}

Node

+ name: String {keyword}

Permission

    {browsing,editing}
+ operation: Enum

Node

Node

+ homePage: Boolean

+ name: String {keyword}
+ URL : String link

Navigation Diagram Meta−Model

Role

+ name: String {keyword}

+ homePage: Boolean

+ name: String {keyword}
+ URL : Stringcontains link

assigned

Viewpoint Viewpoint Viewpoint

Permission Diagram Meta−Model

VL Meta−Model
Complete

Role

+ name: String {keyword}

User

+ name: String {keyword}

Permission

    {browsing,editing}
+ operation: Enum

Fig. 4. Definition of a Role Based Access Control for Web-Based Systems

This meta-model comprises the structure of the web system as well as its
security policy. However, it is more suitable to handle each aspect in separate
diagrams. Thus, we specify three viewpoints on the MVVL meta-model. The
first one (Navigation Diagram) is used for specifying the web structure, and it
only contains nodes and links. The second one (User Diagram) is used for speci-
fying role hierarchies and their assignment to users. It contains roles, users, and
relations “contains” and “assigned”. The third viewpoint (Permission Diagram)
allows assigning permissions to roles. It contains roles, nodes and permissions.
Note how in this view we are only interested in identifying the node, therefore
only its attribute “name” is relevant.

1 We do not consider the internal structure of web pages for simplicity.
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From this definition, a TGTS is automatically generated between each view-
point and the repository. Their purpose is building the repository model from
the system views. The transformation systems contain the rules shown in Fig. 5
for each concrete class and association2 in the viewpoint. We only show the rules
for class “Role”. The first creation rule adds a role to the repository if, given
a new role in a view, it does not exist in the repository yet (NAC1). NAC2 is
needed to prevent creating a new role in the repository when changing the name
of an existing role in the view (i.e. with an associated role in the repository).
The second creation rule relates a new role in a view with the same role in
the repository. This means that the role was previously created and added to
the repository from another view. Attribute “refcount” counts how many times
a role appears in different views. When a role is added to the repository, the
counter is set to 1; each time the same role is added to any view, the counter
is incremented. The first deletion rule detects when a role is removed from a
view (i.e. the correspondence function to the view is undefined for a role in the
repository), and decrements the “refcount” attribute. When the counter reaches
zero, this means that the role does not appear in any view, so it is removed from
the repository by the second deletion rule. Finally, the editing rule propagates
changes in the attributes from the roles in the views to the corresponding roles
in the repository.
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Fig. 5. Triple Graph Rules for Building the Repository

Other TGTSs (one for each viewpoint) are automatically generated which
propagate changes in attribute values from the repository to the other system
views. These are made of just one kind of rule, like the one shown in Fig. 6.
2 An association is not unambiguously identified by its source and target. Thus, we

relate associations in views with the corresponding ones in the repository for change
propagation. This is possible as we allow correspondence functions to edges [6].
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Fig. 6. Triple Graph Rules for Change Propagation

These transformation systems are applied only when the repository has changed
due to the execution of one of the former TGTSs.

3.1 Configurable Behavioural Patterns

The presented TGTSs determine the behaviour of the MVVL modelling tool.
However, a different behaviour can be more appropriate for a given MVVL. For
this reason, we provide a catalogue of different behavioural patterns to configure
the behaviour of the modelling tool. Different sets of automatically generated
rules are added to the consistency TGTSs depending on the desired behaviour.

For example, the deletion rules in Fig. 5 perform a conservative deletion (i.e.
a role is deleted from the repository only when the user has deleted all its
instances from the views). On the contrary, cascading deletion implies that when
an element is removed from a view, it is also removed from any other view and the
repository. Such behaviour can be provided by replacing the previous deletion
rules by the ones shown in Fig. 7. The first two rules belong to the TGTS for
building the repository. The first one detects when a role has been removed
from a view (i.e. the correspondence function to the view for the role in the
repository is undefined), and then removes it from the repository. The dangling
condition forbids the rule application when the role has incoming or outgoing
relations. The second rule handles the deletion of one of such relations. Similar
rules are generated for each possible incoming and outgoing relation to a role.
Note how the rule is applied to the triple graph relating a particular view and the
repository; therefore, correspondence relations from the same node to elements
in other views are not part of the graph.

Other rules propagate the deletion of elements from the repository to the other
views. Some of them are shown to the right of Fig. 7. The first rule deletes a
role from a view if it is not in the repository. The dangling condition forbids the
rule application if the role has some incoming or outgoing relation. The following
rule (and other similar ones for each possible type of relation) handles this. It
can be noted how this behavioural pattern does not need attribute “refcount”.

The presented TGTSs are asynchronous. They are executed when the user
finishes editing a system view and validates the changes. In addition, there are
also synchronous behavioural patterns that execute a TGTS in response to a user
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action (e.g. a creation). One example is the behavioural pattern for intelligent
creation. This creates one rule for each type in the complete MVVL meta-model
that is immediately executed after creating a new element of such type in a view
and specifying its keyword. The rule copies the value of the attributes from the
same element in the repository (if exists) to the element in the view.

4 Derived and Audience-Oriented Views

In addition to adding information to the system, there is a necessity of extracting
information from it. In this way, a derived view is defined as a sub-model that
contains part of another model, called base model. The users of a modelling tool
can define derived views. However, there is also the possibility for the MVVL
designer to predefine derived views oriented to certain type of final user. We
call them audience-oriented views. For both kinds of views, we propose the use
of a kind of declarative, visual queries called graph query patterns. These are
evaluated on a base model G (a system view or the repository) to obtain the
derived view V Q. A query pattern Q = (TGQ, {(PQ

i , Pi)}i∈I , {(NQ
j , Nj)}j∈J ) is

made of:

– a meta-model TGQ. It is a restriction of the base model’s meta-model TG.
– a set of positive restrictions Pi. They are patterns that have to be present

in the base model for an element to be included in the derived view. PQ
i

contains the element of Pi to which the restriction is applied. Whereas Pi is
typed over TG, PQ

i is typed over TGQ. Several positive restrictions applied
on the same type have a meaning of “or”; if the restrictions apply on different
types, they have a meaning of “and”.

– a set of negative restrictions Nj . They are patterns that must not be ful-
filled by the elements included in the derived view. As before, a subgraph
NQ

j contains the element where the restriction is applied. Several negative
restrictions applied on the same or different types have a meaning of “and”
(all have to be fulfilled).

Fig. 8 shows a diagram with a query pattern evaluated on a base model G
(the typing of the restriction graphs has been omitted for clarity). In a first
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step, the pullback object V G of idTGQ : TGQ → TG and typeG : G → TG is
calculated (square (1) in the figure). V G is the restriction of G by meta-model
TGQ. In a second step, graph V G is further restricted to take into account the
restrictions of the query pattern. Thus, for each match pil of a positive restriction
Pi, the element identified by PQ

i has to be included in V Q, such that square (2)
commutes3. Moreover, if a matching nQ

jk from a negative restriction NQ
j is found

on V Q, then no matching njk must be found from Nj to G such that square
idV G ◦ idV Q ◦ nQ

jk = njk ◦ idNQ
j

commutes. Thus, for an element x with type

typeV Q(x) to be included in V Q, it has to fulfill some of the positive restrictions
and all the negative ones defined in the query pattern for such type4.
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Fig. 8. Query Pattern Evaluated on graph G to obtain the Derived View V Q

As an example, Fig. 9(a) shows a graph query pattern to be executed on the
repository model. It defines a derived view, which should contain nodes and links
(modelled by graph TGQ in the query pattern). The derived view should include
nodes for which no role is allowed to access (negative restriction N1), and which
are source or target of a link (positive restrictions P1 and P2). That is, the derived
view contains those nodes that are not isolated in the navigation design but for
which nobody has been granted access permission. On the other hand, Fig. 9(b)
contains a graph query pattern defining an audience-oriented view with the role
hierarchy extracted from the repository. In this case, it is enough to express the
TGQ component, since no additional restriction is imposed.

In order to evaluate a graph query pattern on a base model, a TGTS is
automatically generated from the pattern. This TGTS creates the derived view,
as well as correspondences between its elements and the base model elements.
Afterwards, if the base model changes, the TGTS also propagates the changes
to the derived view, taking into account the negative and positive restrictions.

3 In general, P Q
i is not the pullback object of TGQ, Pi and TG.

4 By now, we only allow subgraphs P Q
i and NQ

j to contain either a node for specifying
restrictions on the node, or an arrow between two nodes for specifying restrictions
on the arrow. Restrictions that apply to more complex graphs are up to future work.
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Fig. 9. Graph Query Patterns for the Example

Formally, given a query pattern Q to be applied on a base model typed over
TG, the triples rules generated for it can be expressed as TGTS(Q, TG) =
{CN , CE , EN , EE , DN , DE}. Set CN (resp. CE) contains the rules that copy
the nodes (resp. edges) of the types in TGQ from the base model to the derived
view. Sets EN and EE contain the rules that copy the attributes from nodes and
edges in the base model to the derived view. Finally, DN and DE contain rules
that delete nodes and edges from the derived view when they are removed from
the base model, or when they (or their context) change and are not consistent
with the query pattern restrictions. Positive restrictions in the query pattern
are transformed into PACs of the rules in Ci, and into NACs of additional
deletion rules in Di. More precisely, an extra deletion rule is added to Di for each
set of positive restrictions applied on the same type. On the contrary, negative
restrictions are transformed into NACs of the rules in Ci, and into PACs of
additional deletion rules in Di. This time one deletion rule is created for each
negative restriction, independently of the type where the restriction is applied.
Due to the simplicity of our rules, we can easily translate the graph constraints
into application conditions [7].

Fig. 10 shows the derived rules for class “Node” from the query pattern in
Fig. 9(a). The lower part of the rules corresponds to the base model, and the
upper part to the derived view to be created. Creation rules, as the one in the
figure, always contain the LHS, RHS and NAC1 by default. In addition, for this
example, the positive restrictions P1 and P2 are transformed into the application
condition (X3, X3 → Y 31, X3 → Y 32). Thus, a node is added to the derived
view only if it is source (Y 31) or target (Y 32) of a link. Besides, the negative
restriction N1 is transformed into the application condition NAC2. Thus, a node
is not added to the view if some role can access it. The editing rule simply copies
the value of the attributes from the nodes in the repository to the nodes in the
derived view.

Creation and editing rules are enough for building the derived view. However,
a subsequent change in the base model may produce the addition of an element
in the view if it fulfills the query pattern; or its deletion if it does not fulfill
the query pattern anymore. The former is taken into account by the creation
and editing rules. The latter is provided by the deletion rules. The first deletion
rule in Fig. 10 removes a node from the view if it does not appear in the base
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Fig. 10. Triple Graph Transformation System Derived from a Graph Query Pattern

model (i.e. the correspondence function to the base model is undefined). The
second rule is derived from the positive restrictions P1 and P2. In this way, if a
node is neither source nor target of a link, but it appears in the view, it has to
be removed from it. The third rule is derived from the negative restriction N1.
Note how a change in any system view is propagated by the consistency TGTSs
(Fig. 5) to the repository, and from there, to the derived view by this TGTS.

Fig. 11 shows the derived view that results from the application of the query
pattern in Figure 9(a) to a repository model. It contains all the repository nodes
except “login” (since it does not satisfy the negative restriction, that is, a role has
an editing permission on it) and “admin” (since it does not satisfy the positive
restrictions, that is, it is neither source nor target of a link). The links between
the nodes are also copied to the view, since they were specified in the TGQ

component of the query pattern. No other types are copied.

5 Semantic Views

Semantic views are parts of the system expressed in other formalism for dynamic
semantics checking, analysis and simulation. With this purpose, the MVVL de-
signer can define a TGTS to generate the target model (or semantic view) from
a source model (usually the repository, but also audience-oriented and system
views). This allows keeping correspondences between the elements of both mod-
els, in such a way that the results of analysing the semantic model could be back
annotated to the source model.
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Fig. 11. Derived View from a Repository Model

For example, rules in Figs. 2 and 12 form a TGTS that generates a semantic
view of the repository by translating it into a Coloured Petri Net (CPN) [9].
Thus, source graphs in the rules (up) have to conform to the complete MVVL
meta-model shown in Fig. 4. Target graphs (down) have to conform to a CPN
meta-model, not shown in the paper for space constraints. This contains places
with a type, transitions with a guard, tokens with a type and data value, and arcs
from places to transitions and the other way round (the former with a binding
of the token data values to variables, and the latter with an expression that is
evaluated on such data values to change its value). There is also a meta-model
for the correspondence graph, which is not shown.

Rule Users2Tokens creates a token for each user. The token has type STRING
×list STRING and stores the user name and a list with its assigned roles
(initially empty). The NAC forbids multiple applications of the rule for the
same user. Next, rule Assignments2DataValues builds such list of assigned roles.
Thus, each role assigned to a user is added to the second component of the data
value of the corresponding token. Rule Nodes2Places in Fig. 2 creates a place for
each node in the source model. Its type is STRING × list STRING, since it
will contain tokens of such type. Rule UsersAtHome puts tokens into the place
that corresponds to the homepage. Rule Links2Transitions translates each link
between two nodes into a transition between the places that correspond to the
nodes. The incoming arc to the transition binds the type of tokens to the variables
id and roles. Their value does not change when the transition is fired. However,
the transition has a guard that forbids tokens without certain permissions to
pass through. Note how, in this rule we associate nodes of type Transition with
edges of type link. Rule Permissions2Guards builds the guard expression. Thus,
each permission given to a role to access a node is transformed into a condition
that is evaluated to true in the guard. If a token has one of the roles allowed by
the transition, it can pass through. Finally, rule InheritedPermissions2Guards
allows inheritance of permissions. Thus, if a role contains another role that can
access certain node, then the former can access it as well. The rule modifies the
guard of the transition in order to allow the container access the place related to
the node. Note how, this TGTS has the potential to be incremental by adding
rules for creation, deletion and edition (as previously done for system views) for
each element in the source model meta-model.
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Fig. 12. Semantic View Definition by means of a Triple Graph Transformation System

Fig. 1 shows the ATT-graph resulting from the application of this TGTS to
the source model in the upper part. Thus, the lower model is its CPN semantic
view. It is possible to analyse the CPN, for example, to check the navigation
paths for a certain user or to find unreachable nodes for any user.

6 Related Work

TGTSs are a natural approach to handle views and model transformations. For
example, [8] proposes TGGs for view creation. They work with views that can
be considered model transformations, similar to our semantic views. They do
not consider neither system nor derived views. Moreover, our formalization of
triple rules [6] is more expressive as we allow attributes on nodes and edges,
more flexible correspondence functions, application conditions and inheritance.

This work is also related to views in database systems [14]. These are virtual
relations over a set of real data that are made visible to the user with the purpose
of hiding information, or presenting such information in a more adequate way.
Such views are defined as the result of a query (in a similar way as our derived
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views), and present problems for updating the real data as a result of a change
in the view [10]. Our work is also related to the problem of consistency of repli-
cated and fragmented data in distributed databases [14]. However, our concept
of repository (i.e. we have a centralized control) and the model view controller
approach we follow permits an easy solution to the consistency problem.

There are other approaches in the literature to express queries with graphs.
For example, in VIATRA [1], queries on graphs can be expressed by generalized
(recursive) graph patterns, which may contain a nesting of positive and negative
patterns of arbitrary depth. Rensink [12] showed that this possibility is indeed
equivalent in expressive power to first order logic. However, incremental trans-
formations are not supported in VIATRA. Other possibility for queries is to use
a textual notation, such as OCL [15]. We believe using a graphical approach
makes the expression of complex structural patterns easier (in OCL it has to be
coded by navigating between the relations), and may be more appropriate for
non-computer scientists (patterns use the graphical notation of the given VL).
On the other hand, OCL is much more expressive than our patterns (with only
one level of nesting), and allows for example to express the absence of cycles.
Graph patterns have been discussed extensively in the literature [3], especially
its connection with application conditions for rules [7].

The QVT [11] specification includes a facility for queries (in addition to OCL),
the helper, which allows combining blocks of expressions in a procedural way.
Besides, it is also possible to define transformation rules to extract a derived
view from a base model in the way we have presented here. Nonetheless, our
approach is higher-level and declarative: starting from visual patterns, the rules
that perform the transformation are automatically generated. By using QVT,
the transformation to extract the view has to be coded by hand. As in our
approach, QVT provides a mechanism (similar to the correspondence graph in
triple graphs) for leaving traces (mappings) between the source and the target
model, which allows a bidirectional update.

7 Conclusions and Future Work

In this paper we have proposed an approach for the uniform specification and
handling of the different kind of views in MVVLs. The approach is based on meta-
modelling for describing the syntax of the MVVL and its different diagram types.
From the meta-models, triple rules are derived in order to build a unique model
from the different system views that the user inputs, and to keep them consistent.
Several alternative rules allow configuring the behaviour of the MVVL modelling
environment. Derived and audience-oriented views are specified through graph
query patterns. From these, a TGTS is generated that builds the derived view
and keeps it consistent with the base model. Semantic views result from the
transformation of a base model into another formalism. Altogether, our approach
makes emphasis on using visual, declarative techniques (meta-models, patterns),
from which TGTSs are derived. However, for the case of semantic views, the
TGTS has to be specified by the MVVL designer.
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There is an ongoing implementation in the meta-modelling tool AToM3 [2] [5].
Up to now, it is possible to define MVVLs and automatically generate the consis-
tency triple rules for several behavioural patterns. Besides, it is also possible for
the MVVL designer to define extra static semantics consistency rules as well as
semantic views. It is up to future work to implement the graph query patterns.
In addition to this, we are studying ways of improving the expressivity of the
graph query patterns, and of DPO rules for model transformation.

Acknowledgements. This work has been sponsored by the Spanish Ministry
of Science and Education, projects TSI2005-08225-C07-06 and TSI2004-03394.
The authors would like to thank the referees for their useful comments.

References
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Graph Transformation in Constant Time

Mike Dodds and Detlef Plump
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Abstract. We present conditions under which graph transformation
rules can be applied in time independent of the size of the input graph:
graphs must contain a unique root label, nodes in the left-hand sides of
rules must be reachable from the root, and nodes must have a bounded
outdegree. We establish a constant upper bound for the time needed to
construct all graphs resulting from an application of a fixed rule to an
input graph. We also give an improved upper bound under the stronger
condition that all edges outgoing from a node must have distinct labels.
Then this result is applied to identify a class of graph reduction systems
that define graph languages with a linear membership test. In a case
study we prove that the (non-context-free) language of balanced binary
trees with backpointers belongs to this class.

1 Introduction

A major obstacle to using graph transformation as a practical computation mech-
anism is its complexity. Finding a match for a rule r in a graph G requires time
O(size(G)size(L)), where L is the left-hand graph of r. This is too expensive for
many applications, even if r is fixed (meaning that size(L) is a constant). For
example, Fradet and Le Metayer [8] and later Dodds and Plump [4] have pro-
posed to extend the C programming language with graph transformation rules
to allow the safe manipulation of pointers. To make such a language acceptable
for programmers, rules must be applicable in constant time.

In [4], constant-time rule application is achieved by using a form of rooted
graph transformation which is characterized by the presence of unique root nodes
in rules and host graphs. These roots serve as entry points for the matching algo-
rithm and ensure, under further assumptions on left-hand sides and host graphs,
that all matches of a rule can be found in time independent of the size of the
host graph. The purpose of this paper is twofold: to develop a general approach
to rooted graph transformation in the setting of the double-pushout approach,
and to demonstrate the expressive power of rooted graph transformation in a
case study on graph recognition.

Our contributions are as follows. In Section 3, we present two axiomatic con-
ditions each of which guarantees that rules can be applied in time independent
of the size of host graphs. The first condition requires that graphs have a unique
root, nodes in left-hand sides of rules are reachable from the root, and nodes
in host graphs have a bounded outdegree. Under this condition, we establish a
constant upper bound for the time needed to construct all graphs resulting from

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 367–382, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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an application of a fixed rule to a host graph. The second condition requires, in
addition, that all edges outgoing from a node have distinct labels. We prove that
this leads to a greatly reduced upper bound. Then, in Section 4, we introduce
rooted graph reduction specifications for defining graph languages. We identify a
class of graph reduction specifications that come with a linear membership test.
In a case study we prove that the non-context-free language of balanced binary
trees with backpointers belongs to this class. This is remarkable as there exist
context-free graph languages (definable by both edge replacement grammars and
node replacement grammars) whose membership problem is NP-complete.

Our approach to rooted graph transformation is similar to Dörr’s approach [5]
in that he also requires unique root nodes to ensure constant-time application
of rules. Instead of limiting outdegree, he aims at avoiding so-called strong V-
structures in host graphs. This makes the approaches incomparable in terms of
the strength of their assumptions. (We mention a few separating properties in
Section 5.) Another major difference is that in [5], all rules are assumed to belong
to a graph grammar which produces all host graphs (which allows to analyse the
grammar for the impossibility of generating V-structures). We don’t require any
generation mechanism for host graphs. A final difference is that [5] is based on
the algorithmic approach to graph transformation while we work in the setting
of the double-pushout approach.

2 Graphs, Rules and Derivations

We review basic notions of the double-pushout approach to graph transforma-
tion, using a version that allows unlabelled nodes [12]. Rules with unlabelled
nodes allow to relabel nodes and, in addition, represent sets of totally labelled
rules because unlabelled nodes in the left-hand side act as placeholders for arbi-
trarily labelled nodes.

A label alphabet is a pair C = 〈CV , CE〉 of finite sets CV and CE . The elements
of CV and CE serve as node labels and edge labels, respectively. For this section
and the next, we assume a fixed alphabet C.

A graph G = 〈VG, EG, sG, tG, lG, mG〉 consists of a finite set VG of nodes (or
vertices), a finite set EG of edges, source and target functions sG, tG : EG → VG,
a partial node labelling function lG : VG → CV

1 and an edge labelling function
mG : EG → CE . The size of G, denoted by |G|, is the number of its nodes
and edges. The degree of a node v, denoted by degG(v), is the number of edges
incident with v. The outdegree of a node v, denoted by outdegG(v), is the number
of edges with source v. We write outlabG(v) for mG(s−1

G (v)), the set of labels of
all edges outgoing from v. A node v′ is reachable from a node v if v = v′ or if there
are edges e1, . . . , en such that sG(e1) = v, tG(en) = v′ and for i = 1, . . . , n− 1,
tG(ei) = sG(ei+1).

A graph morphism g : G → H between two graphs G and H consists of two
functions gV : VG → VH and gE : EG → EH that preserve sources, targets and
1 The domain of lG is denoted by Dom(lG). We write lG(v) = ⊥ to express that node

v is in VG − Dom(lG).
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labels: sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, and lH(gV (v)) = lG(v) for all v
in Dom(lG). A morphism g is injective (surjective) if gV and gE are injective
(surjective); it preserves undefinedness if lH(g(v)) = ⊥ for all v in VG−Dom(lG).
Morphism g is an isomorphism if it is injective, surjective and preserves unde-
finedness. In this case G and H are isomorphic, which is denoted by G ∼= H .
Furthermore, g is an inclusion if g(x) = x for all nodes and edges x in G. (Note
that inclusions need not preserve undefinedness.)

A rule r = 〈L ← K → R〉 consists of two inclusions K → L and K → R such
that (1) for all v ∈ VL, lL(v) = ⊥ implies v ∈ VK and lR(v) = ⊥, and (2) for all
v ∈ VR, lR(v) = ⊥ implies v ∈ VK and lL(v) = ⊥. We call L the left-hand side,
R the right-hand side and K the interface of r.

A direct derivation from a graph G to a graph H via a rule r = 〈L ← K → R〉,
denoted by G ⇒r,g H or just G ⇒r H , consists of two natural pushouts2 as in
Figure 1, where g : L→ G is injective.

L K R

G D H

g (1) (2)

Fig. 1. A direct derivation

In [12] it is shown that for rule r and injective morphism g given, there exists
such a direct derivation if and only if g satisfies the dangling condition: no node
in g(L) − g(K) must be incident to an edge in G − g(L). If this condition is
satisfied, then r and g determine D and H uniquely up to isomorphim and H
can be constructed (up to isomorphism) from G as follows: (1) Remove all nodes
and edges in g(L) − g(K), obtaining a subgraph D′.3 (2) Add disjointly to D′

all nodes and edges from R−K, keeping their labels. For e ∈ ER−EK , sH(e) is
sR(e) if sR(e) ∈ VR −VK , otherwise gV (sR(e)). Targets are defined analogously.
(3) For each node gV (v) in g(K) with lL(v) �= lR(v), lH(gV (v)) becomes lR(v).

To keep the complexity considerations below independent of any type system
imposed on graphs, we introduce abstract graph classes and rules preserving
such classes. A graph class is a set C of graphs over C. A rule r is C-preserving
if for every direct derivation G ⇒ H , G ∈ C implies H ∈ C. We can now state
the basic problem we are interested in.

Graph Transformation Problem (GTP)
Given: A graph class C and a C-preserving rule r = 〈L ← K → R〉.
Input: A graph G in C.
Output: The set {H | G⇒r H}.
2 A pushout is natural if it is a pullback, too [12].
3 D differs from D′ in that nodes are unlabelled if they are the images of unlabelled

nodes in K that are labelled in L. We do not need D to transform G into H though.
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We consider the graphs in {H | G⇒r H} up to isomorphism, which makes this
set finite (as there are only finitely many morphisms L→ G). The time complex-
ity of GTP is dominated by the cost of finding the injective graph morphisms
L→ G. This is because for each of these morphisms, checking the dangling con-
dition and transforming G into H can be done in time independent of the size
of G (assuming a suitable data structure for graphs). This leads us to the core
problem to solve.

Graph Matching Problem (GMP)
Given: A graph class C and a C-preserving rule r = 〈L ← K → R〉.
Input: A graph G in C.
Output: The set {g : L→ G | g is injective}.

To solve the GMP in general requires time |G||L| – better algorithms are not
known. If we consider L as part of the input rather than as given, the GMP
essentially becomes the subgraph isomorphism problem which is NP-complete
[11]. (This is the problem to decide whether there exists an injection from L to
G. In the worst case, if there is none, this is as expensive as finding all injections.)

3 Rooted Graph Transformation

We present two conditions each of which ensures that the problems GTP and
GMP can be solved in time independent of the size of the input graph G. Both
conditions put restrictions on the rule r and the graph class C.

Condition I
There are � ∈ CV and an integer b ≥ 0 such that

(1) L contains a unique �-labelled node from which each node is reachable, and
(2) for every graph G in C,

(i) there is a unique �-labelled node, and
(ii) the outdegree of each node is bounded by b.

We call the distinguished node labelled with � the root. The next condition differs
from Condition I in clause (2)(ii).

Condition II
There exists � ∈ CV such that

(1) L contains a unique �-labelled node from which each node is reachable, and
(2) for every graph G in C,

(i) there is a unique �-labelled node, and
(ii) distinct edges outgoing from the same node have distinct labels.

Remark 1 Condition II implies Condition I, which can be seen by choosing bound
b as the size of CE . The converse does not hold in general.
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Remark 2 The conditions do not guarantee that r preserves the constraints on C.
To preserve property (2) of Condition I, it suffices that the right-hand side R of r
contains a unique �-labelled node, and that for each node v in K, outdegR(v) ≤
outdegL(v). The preservation of property (2) of Condition II is discussed in
Section 4.

Remark 3 Rather than having just one root, one could allow a fixed number
k ≥ 1 of roots. But this approach can be simulated as follows: one adds to every
graph in C a new root with k outgoing edges that point to the old roots, and
every left-hand side of a rule gets a new root with pointers to the old root(s).

Algorithm 1 below is similar to the matching algorithm described in [5]: it solves
the Graph Matching Problem by constructing the set A of all injections between
the left-hand side of a rule and a host graph. The algorithm starts with the set
A0 consisting of the partial injections that are defined for the root only. (Under
Condition I, there exists exactly one such morphism). Each iteration of the loop
extends the injections in the previous working set with a single edge and its
target node, or a single edge, until the injections in the set are total. When an
iteration adds some node or edge to the domain of an injection, we speak of the
node or edge being matched. A pre-processed enumeration of the edges of the
left-hand side ensures that when an edge is matched, its source must have been
matched in some previous iteration.

In defining the algorithm, we use some extra notions. Given partial functions
f, f ′ : S → T , we write f ext f ′ by Z if Dom(f) ⊇ Dom(f ′), Dom(f)−Dom(f ′) =
Z and for each x ∈ Dom(f ′), f(x) = f ′(x). A partial graph morphism f : G

par−−→
H is a graph morphism from some subgraph of G to H . Given a graph L that
contains a unique �-labelled node from which each node is reachable, an edge
enumeration for L is a list of edges e1, . . . , en such that EL = {e1, . . . , en} and
for i = 1, . . . , n, lG(sG(ei)) = � or there is some 1 ≤ j < i with sG(ei) = tG(ej).

Proposition 1 (Correctness of Algorithm 1). Algorithm 1 solves the Graph
Matching Problem.

Proof. We have to show that the returned set A is the set of all total injective
graph morphisms from L to G.

Soundness. We first show that A contains only total injections L → G. By
construction of the sets Ai, it is clear that these consist of partial injections
from L to G, so the same holds for A. It therefore suffices to show that all
morphisms in A are total. Since e1, . . . , en is an edge enumeration for L, each
edge ei in L will be considered in the i-th iteration of the loop. At this point
there are three cases: (1) ei and tL(ei) are added to the domain of one or more
morphisms h in Ai−1, where h is already defined for sL(ei), and Ai becomes
the set of all extended morphisms. (2) ei is added to the domain of one or more
morphisms h in Ai−1, where h is already defined for both sL(ei) and tL(ei), and
Ai becomes the set of all extended morphisms (3) Matching of ei fails because
either Ai−1 is empty or there is no counterpart to ei in G. Then Ai is empty



372 M. Dodds and D. Plump

Algorithm 1 (Graph Matching Algorithm) The algorithm works for a fixed
rule 〈L ← K → R〉 and an input graph G ∈ C, as stated in the Graph Matching
Problem, and it assumes an edge enumeration e1, . . . , en for L.

attach tag to the unique �-labelled node in L

A0 ⇐ {h : L
par−−→ G | Dom(hV ) = l−1

L (�) ∧Dom(hE) = ∅}
for i = 1 to n do

if tL(ei) is not tagged then
attach tag to tL(ei)
Ai ⇐ {h : L

par−−→ G | h is injective ∧ ∃h′ ∈ Ai−1 :
hE exth′

E by{ei} ∧ hV exth′
V by{tL(ei)}}

else
Ai ⇐ {h : L

par−−→ G | h is injective ∧ ∃h′ ∈ Ai−1 :
hE exth′

E by{ei} ∧ hV = h′
V }

end if
end for
return A = An

and hence A will be empty, too. As a consequence, if A is not empty upon
termination of the loop, all its morphisms must be defined for all edges in L and
their incident nodes. Hence, by the structure of L, they are total morphisms.

Completeness. For i = 1, . . . , n, let Li be the subgraph of L consisting of the
edges e1, . . . , ei and their incident nodes. Also, let L0 be the subgraph consisting
of L’s root only. A straightforward induction on i shows that for i = 0, . . . , n,

{h : L
par−−→ G | h is injective and Dom(h) = Li} ⊆ Ai.

Since Ln = L by the structure of L, it follows that A contains all total injections
from L to G. ��

Notational convention. In the rest of this section, n always refers to the number
of edges in the left-hand side L of the given rule r.

Theorem 1 (Complexity of Algorithm 1). Under Condition I, Algorithm
1 requires time Σn

i=0b
i at most. The maximal size for the resulting set A is bn.

Proof. A run of the algorithm involves n iterations of the loop. In each iteration,
one of the cases (1) to (3) of the proof of Proposition 1 applies. In finding the
maximal running time, case (3) can be ignored as Ai is just set to ∅.

Case (1): Both ei and tL(ei) are added to the domain of one or more mor-
phisms h in Ai−1, where h is already defined for sL(e), and Ai becomes the set
of all extended morphisms. By Condition I, there are at most b edges outgoing
from hV (sL(ei)). It follows |Ai| ≤ b|Ai−1|. Hence the maximal time needed to
update Ai−1 to Ai is b|Ai−1|.

Case (2): Only ei is added to the domain of one or more morphisms h in Ai−1,
where h is already defined for both sL(ei) and tL(ei), and Ai becomes the set
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of all extended morphisms. For the same reason as in Case (1), the time needed
to update Ai−1 to Ai is b|Ai−1|.

The initialisation of the algorithm constructs the set A0 which, by Condition
I, contains exactly one morphism and therefore can be constructed in one unit
of time (assuming a suitable data structure for graphs in C). By the above case
analysis, executing the body of the loop takes time b|Ai−1| at most. Thus we
obtain te following bound for the overall running time:

1 + b|A0|+ b|A1|+ · · ·+ b|An−1|.
By recursively expanding each term |Ai| to its maximal size, we arrive at the
expression

1 + b + b2 + · · ·+ bn =
n∑

i=0

bi.

This expansion also shows that maximal size of A is bn. ��
For the rule r = 〈L ← K → R〉 of the GMP and the GTP, we define size by
|r| = max(|L|, |R|).
Corollary 1 (GTP under Condition I). Under Condition I, the Graph Tra-
nsformation Problem can be solved in time Σn

i=0b
i + 4|r|bn.

Proof. Recall from Section 2 that constructing a derivation G⇒r H consists of
four stages: (1) Finding an injective morphism L → G that satisfies the dangling
condition. (2) Removing nodes and edges. (3) Inserting nodes and edges. (4)
Relabelling nodes. To adapt this to the GTP problem, we extend stage (1) to:
Finding the set of all injections L → G that satisfy the dangling condition. We
then perform stages (2) – (4) for all members of this set.

The dangling condition can be decided for an injection h : L → G in time
|VL|. This is because the condition holds if and only if for all nodes v in VL−VK ,
degL(v) = degG(h(v)). We assume a graph representation such that the degree
of any node can be retrieved in one unit of time, so we can compare degL(v)
with degG(h(v)) for all nodes v in L in time |VL|.

We construct the set of all injections L→ G using Algorithm 1 and then com-
plete stage (1) by filtering this set for those morphisms satisfying the dangling
condition.

Given a morphism h, it is obvious that stage (2) can be executed in time
|L| − |K|, and stage (3) can be done in time |R| − |K|. Stage (4) requires time
|VK | at most. In the worst case, stages (2) to (4) must be completed for every
element in the set A of all injections from L to G. Thus, using Theorem 1, we
obtain the time bound

n∑
i=0

bi + bn(|VL|+ |L| − |K|+ |R| − |K|+ |VK |).

As |VL|, |L|, |R|, |K| and |VK | are all bounded by |r|, we can estimate the
expression from above by Σn

i=0b
i + 4|r|bn. ��
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Note that according to the GTP and Condition I, n, |r|, and b are constants and
hence the above time bound is a constant—albeit a possibly large one. The next
theorem and the subsequent corollary show that under Condition II, the constant
time bounds for the GMP and the GTP decrease from being exponential in n
down to being linear in n.

Theorem 2 (Complexity of Algorithm 1 under Condition II). Under
Condition II, Algorithm 1 requires time n|CE| + 1 at most. The resulting set A
contains at most one injection.

Proof. Under Condition II, outgoing edges from a node must be distinctly la-
belled. Hence a partial morphism in Ai can be extended by an edge outgoing
from a matched node in at most one way. Since |A0| = 1, it follows that |Ai| ≤ 1
after the i-th iteration of the loop. So in particular A ≤ 1.

In the time bound 1+ b|A0|+ · · ·+ b|An−1| of the proof of Theorem 1, we can
therefore replace each term |Ai| with 1. We also replace b with |CE |, the number
of edge labels in the given alphabet. This yields the bound n|CE |+ 1. ��
Corollary 2 (GTP under Condition II). Under Condition II, the Graph
Transformation Problem can be solved in time n|CE|+ 4|r|+ 1.

Proof. By Theorem 2, Algorithm 1 will need time at most n|CE |+1 under Con-
dition II. The proof of Corollary 1 shows that applying r for a found morphism
can be done in time |VL|+ |L| − |K|+ |R| − |K|+ |VK |. Similar to the proof of
Corollary 1, this results in the overall bound n|CE |+ 4|r|+ 1. ��

4 Efficient Recognition of Graph Languages

In this section we apply the results of the previous section to show that graph
languages specified by rooted graph reduction systems of a certain form come
with an efficient membership test. This is in sharp contrast to the situation for
graph grammars where even context-free languages can be NP-complete.

We define graph reduction languages by adapting the approach of [2] to the
setting of rooted graph transformation.

Definition 1 (Signature and Σ-graph). A signature Σ = 〈C, �, type〉 con-
sists of a label alphabet C = 〈CV , CE〉, a root label � ∈ CV , and a mapping
type: CV → CE that assigns to each node label a set of edge labels. A graph G
over C is a Σ-graph if it contains a unique �-labelled node, the root of G, and if
for each node v, (1) lV (v) �= ⊥ implies outlabG(v) ⊆ type(lG(v)) and (2) distinct
edges outgoing from v have distinct labels. The set of all Σ-graphs is denoted
by G(Σ).

Next we define a class of rules that preserve Σ-graphs.

Definition 2 (Σ-rule). A rule r = 〈L ← K → R〉 is a Σ-rule if L, K and R
are Σ-graphs and for each node v in K,
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(1) lL(v) = ⊥ = lR(v) implies outlabL(v) = outlabR(v) and
(2) lR(v) �= ⊥ implies (outlabR(v)∩ type(lL(v)))∪ (type(lL(v))− type(lR(v))) ⊆

outlabL(v).

Conditions (1) and (2) ensure that r can add outgoing edges to a node only if
the node is relabelled and the edge labels do not belong to the node’s old type.
Also, outgoing edges of a relabelled node are deleted if their labels do not belong
to the node’s new type.

Proposition 2 (Σ-rules preserve Σ-graphs). Let G⇒r H such that G is a
Σ-graph and r a Σ-rule. Then H is a Σ-graph.

We now define a “rooted” version of the graph reduction specifications of [2].

Definition 3 (Graph reduction specification). A graph reduction specifica-
tion S = 〈Σ, CN ,R,Acc〉 consists of a signature Σ = 〈C, �, type〉, a set CN ⊆ CV

of nonterminal labels, a finite set R of Σ-rules and an R-irreducible4 Σ-graph
Acc, the accepting graph, such that in Acc and in all left-hand sides of rules in
R, each node is reachable from the root. The graph language specified by S is
L(S) = {G ∈ G(Σ) | G⇒∗

R Acc and lG(VG) ∩ CN = ∅}.
We often abbreviate ’graph reduction specification’ by GRS. The following sim-
ple example of a GRS specifies cyclic lists as used in pointer data structures.

Example 1 (Cyclic lists). The GRS CL = 〈ΣCL, ∅,RCL,AccCL〉 has the signa-
ture ΣCL = 〈{�, E}, {p, n}, �, {� �→ {p}, E �→ {n}}〉. The accepting graph AccCL
and the rules RCL are shown in Figure 2, where the unique �-labelled node is
drawn as a small grey node and the label p of its outgoing edge is omitted. Rules
are represented by their left- and right-hand sides, the interface consists of the
numbered nodes and the root node.

The language L(CL) consists of cyclic lists built up from E-labelled nodes
and n-labelled edges, and a distinguished root pointing to any node in the list.
For a proof, we have to show soundness (every graph in L(CL) is a cyclic list)
and completeness (every cyclic list is in L(CL)). Soundness follows from the fact
that for every inverse5 r−1 of a rule r in RCL, and every cyclic list G, G ⇒r−1 H
implies that H is a cyclic list. For, every reduction G ⇒∗ Acc via RCL gives rise
to a derivation Acc ⇒∗ G via R−1

CL and hence G is a cyclic list. Completeness
is shown by induction on the number of E-labelled nodes in cyclic lists. The
cyclic list with one E-labelled node is AccCL, which belongs to L(CL). If G is
a cyclic list with at least two E-labelled nodes, then there is a unique injective
morphism from the left-hand side of either Reduce (if G has more than two
E-labelled nodes) or Finish (if G has exactly two E-labelled nodes) to G. Hence
there is a step G ⇒RCL H , and it is easily seen that H is a cyclic list that is
smaller than G. Hence, by induction, there is a derivation H ⇒∗

RCL
Acc and

thus G ∈ L(CL).
4 A graph G is R-irreducible if there is no step G ⇒R H .
5 The inverse of a rule is obtained by swapping left- and right hand sides together

with the inclusion morphisms.
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AccCL:
E n

Reduce:

E 1

E 2

E

n

n

⇒
E 1

E 2

n

Finish:
E 1

E

nn
⇒

E1 n

Fig. 2. GRS CL for recognising cyclic lists

Two properties of CL allow to test graphs in G(ΣCL) efficiently for membership
in L(CL). Firstly, reduction sequences terminate after a linear number of steps
because both rules reduce the size of a graph. Secondly, reduction is deterministic
as ΣCL-graphs contain a unique root and the left-hand sides of the two rules do
not overlap. ΣCL-graphs can therefore be tested for membership in L(CL) by a
straightforward reduction algorithm: apply the rules of CL as long as possible
and check if the resulting graph is isomorphic to AccCL. ��

The properties of CL allowing efficient membership checking can be generalized
to obtain a class of GRSs whose languages can be recognised in linear time.

Definition 4 (Linear GRS). A GRS 〈Σ, CN ,R,Acc〉 is linearly terminating
if there is a natural number c such that for every derivation G ⇒R G1 ⇒R
. . . ⇒R Gn on Σ-graphs, n ≤ c|G|. It is closed if for every step G ⇒R H on
Σ-graphs, G ⇒∗

R Acc implies H ⇒∗
R Acc. A linearly terminating and closed

GRS is a linear GRS.

The recognition problem (or membership problem) for GRS languages is defined
as follows:
Given: A GRS S = 〈Σ, CN ,R,Acc〉.
Instance: A Σ-graph G.
Question: Does G belong to L(S)?

Theorem 3 (Linear recognition). For linear GRSs, the recognition problem
is decidable in linear time.

Proof. Consider a GRS S = 〈Σ, CN ,R,Acc〉. Membership of a Σ-graph G in
L(S) is tested as follows: (1) Check that G contains no node labels from CN . (2)
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Apply the rules of R (nondeterministically) as long as possible. (3) Check that
the resulting graph is isomorphic to Acc.

Phase (2) of this procedure terminates in a linear number of reduction steps as
S is linearly terminating. By Corollary 2, each step can be performed in constant
time. So the time needed for phases (1) and (2) is linear. Phase (3) amounts to
checking (i) if there is an injective morphism Acc → H , where H is the graph
resulting from the reduction of G, and (ii) if |Acc| = |H |. Part (i) requires the
same time as the Graph Matching Problem under Condition II (note that Acc
is a fixed Σ-graph) and hence, by Theorem 2, can be done in constant time. It
follows that phase (3) requires only constant time.

The procedure is correct by the fact that S is closed: if G ⇒∗
R H such that

H is R-irreducible and H �∼= Acc, then there is no derivation G⇒∗
R Acc. This is

shown by a simple induction on the length of G ⇒∗
R H . ��

To demonstrate the expressive power of linear GRSs, we show that the non-
context-free graph language of balanced binary trees with back-pointers, BBTBs
for short, can be specified by a linear GRS.6 A BBTB consists of a binary tree
built up from nodes labelled B, U and L such that all paths from the tree root to
leaves have the same length. Each node has a back-pointer to its parent node, the
back-pointer of the tree root is a loop. Nodes labelled with B have two children
to which edges labelled l and r are pointing; nodes labelled with U have one
child to which a c-labelled edge points; nodes labelled with L have no children.
In addition to this tree, a BBTB has a unique root node whose outgoing edge
points to any node in the tree.

The GRS BB = 〈ΣBB, {B′, U ′},RBB,AccBB〉 is shown in Figure 3, where
type(B) = type(B′) = {l, r, b}, type(U) = type(U ′) = {c, b} and type(L) = {b}.
Note that B′ and U ′ are nonterminal labels. As in Example 1, we draw the root
of a BBTB (not to be confused with the tree root) as a small grey node and omit
the label of its unique outgoing edge. We also omit the label b of back-pointers
and draw them as dashed edges.

Proposition 3 (Correctness). L(BB) is the set of all balanced binary trees
with back-pointers.

The proof of Proposition 3 is given in the Appendix.

Proposition 4 (Linearity). GRS BB is linearly terminating: the length of any
derivation G ⇒∗

RBB
H on ΣBB-graphs is at most |G| + |VG|. BB is also closed

and hence is a linear GRS.

Proof. For every ΣBB-graph G, define T (G) = |G| + |l−1
G (CV − CN )| where

|l−1
G (CV − CN )| is the number of nodes not labelled with B′ or U ′. We show

that for every step G ⇒RBB H on ΣBB-graphs, T (G) > T (H). This implies the
bound in the proposition since |l−1

G (CV − CN )| ≤ |VG|.
6 The language of BBTBs is not context-free in the sense of either hyperedge replace-

ment grammars [6] or node replacement grammars [7].
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AccBB :
L

Up:

y ∈ {L, U, U ′}

U 1

y 2

c ⇒

U ′ 1

y 2

c

D1:

y ∈ {B, B′}

z ∈ {U, U ′}

y 1

z 2 B 3

4

l r

l

⇒

y 1

z 2 B′ 3

4

l r

l

D2:

B 1

2

l ⇒

B′ 1

2

l
R1:

y ∈ {U, U ′}

y

2

c

⇒

2

R2(l):

x ∈ {B, B′}

x

1

L L

l r ⇒

U

1

L

c

R2(r): as R2(l), but with labels l and r swapped

R3(l):

x ∈ {B, B′}

y ∈ {U, U ′}

z ∈ {U, U ′}

x

1

y z

2 3

l r

c c

⇒

U

1

B

2 3

c

l r

R3(r): as R3(l), but with the left-hand root pointing to the z-node

Fig. 3. GRS BB for recognising balanced binary trees with back-pointers
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Rules Up, D1 and D2 preserve the size of graphs but decrease the number of
terminally labelled nodes, hence they decrease T ’s value. Rules R1, R2(l) and
R2(r) decrease size without increasing the number of terminal node labels, so
they decrease T ’s value too. Rules R3(l) and R3(r) decrease size by three and
increase the number of terminal node labels by at most two, thus they also
decrease T ’s value.

BB is closed because for every ΣBB-graph G, the set

{g : L → G | L is a left-hand side in RBB and g is injective}
contains at most one morphism. This can easily be checked by inspecting the
rules of RBB, keeping in mind that distinct outedges of a node always have
distinct labels. ��
That the non-context-free language of BBTBs is definable by a linear GRS is
remarkable — as there exist context-free graph languages with an NP-complete
membership problem, and these can even have a bounded node degree [13].

5 Related Work

In addition to the remarks made in the Introduction on the relation of our ap-
proach to Dörr’s work [5], we mention a few separating properties resulting from
the different assumptions. While our approach is restricted to graphs of bounded
outdegree, [5] allows an unbounded outdegree as long as outgoing edges form per-
mitted V-structures. On the other hand, we allow parallel edges with the same
label which are forbidden in Dörr’s approach. Moreover, under Condition I, our
only constraint on labels is that there is a uniquely labelled root, while all other
items may have the same label. This is not possible with the V-structure ap-
proach which needs more structure in the labelling of graphs. Another difference
is that rule applications in [5] are always deterministic while rules conforming
to our Condition I may be nondeterministic.

Some authors have considered rooted graph matching under severe structural
restrictions on host graphs, usually resulting from particular application areas.
For example, [9,10] consider graphs representing infinite trees by ‘unrolling’ from
some root. These graphs permit a linear matching algorithm.

There is also work on recognising graph languages which relates to our graph
reduction specifications. For example, in [1] it is shown that a graph language
expressible in monadic second-order logic (MSOL) can be defined by a reduction
system with a linear membership test if the language has bounded treewidth.
But our example of balanced binary trees with back-pointers is not expressible
in MSOL and hence outside the scope of this result. A linear-time algorithm for
recognising graph languages of bounded-treewidth is given in [3]. This algorithm
works for so-called special reduction systems, it records which potential appli-
cation areas for rules in a host graph have already been searched. It is a topic
for future work to investigate the relationship between these special reduction
systems and our linear GRSs.
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Appendix

Proof of Proposition 3. Call a graph an NBBTB if it can be obtained from a
BBTB by relabelling any number of B-nodes into B′-nodes, and any number of
U -nodes into U ′-nodes. Call the single edge with a �-labelled node as its source
the root pointer.

Soundness. We will show that everyΣBB-graph reducible to AccBB is an NBBTB,
implying that every graph in L(BB) is a BBTB. It suffices to show that the
inverses of the rules in RBB preserve NBBTBs, as then a simple induction on
the length of reductions to Acc gives the desired result.
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The inverses of the rules Up, D1 and D2 are clearly NBBTB-preserving as
they only relabel nonterminal into terminal nodes and redirect the root pointer
to some other node in the tree. The inverse of rule R1 can only be applied at the
tree root because this is the only node with a loop attached to it. Hence the rule
adds a new tree root, which preserves balance. The inverses of rules R2(l) and
R2(r) are also NBBTB-preserving: replacing a U -node pointing to a leaf with a
B-node pointing to two leaves preserves balance. Similarly, the inverses of R3(l)
and R3(r) preserve balance and the other NBBTB properties.

Completeness. Given an NBBTB in which the root pointer does not point to the
tree root, call a node a root-pointer-predecessor if it is on the unique path of non-
back-pointer edges from the tree root to the parent of the root-pointer target.
Call a graph an EBBTB if it is an NBBTB satisfying the following conditions:
(1) root-pointer-predecessors are not labelled U ′ and (2) all nodes labelled B′ are
root-pointer-predecessors. Note that every BBTB it is also an EBBTB. We show
that every EBBTB is reducible to AccBB, implying that every BBTB is in L(BB).
In Proposition 4 it is shown that every RBB-derivation sequence terminates, so
it suffices to show that (1) AccBB is the only RBB-irreducible EBBTB and (2)
applying any rule in RBB to an EBBTB results in an EBBTB.

We first show that every non-AccBB EBBTB is reducible by RBB, by enumer-
ating all possible cases. If the root pointer points to a U or U ′-node, we know
from ΣBB that it must have an outgoing edge labelled c. If it has no incoming
edges, it is the treeroot and we can reduce it using rule R1. If this node has
an incoming edge, it must be labelled c, l or r. If c, from the signature and the
definition of an EBBTB we know that the source must be a U node, and so rule
Up applies. If the incoming edge is labelled l or r, its source must be a B or B′

node and it must have a sibling r or l edge. From the graph balance property,
the other edge must point to another node with an outgoing edge – either a U ,
U ′, B, or B′. B′ is excluded by the definition of an EBBTB. If U or U ′ rule
R3(l) or R3(r) applies. If a B, by ΣBB it must have outgoing l and r edges, and
so rule D1 applies.

If the root pointer points to a B-node, by ΣBB it must have an outgoing
edge labelled l, so the D2 rule applies. By the definition of an EBBTB, the root
pointer cannot point to an B′-node.

If the root pointer points to an L-node, either there are no incoming edges
(aside from a backpointer loop) so the graph is AccBB, or it must have a single
incoming edge labelled l, r, or c. If c, by ΣBB and definition of EBBTB the source
must be a U and the graph can be reduced by the Up rule. If the incoming edge
is labelled l or r, its source must be labelled B and it must have a sibling
edge labelled r or l. We know by the balance property that the target of this
edge must be another L-node, so either R2(l), or R2(r) applies. This completes
the proof that every EBBTB apart from AccBB can be reduced.

We now show that all rules preserve EBBTBs, once again by case enumeration.
Rule Up moves the root pointer from its current position to the node’s parent
and relabels this parent from U to U ′. As the rest of the graph is preserved,
this preserves EBBTB condition (1). Rules D1 and D2 move the root pointer
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and relabel a single B-node to B′. In both cases the B′-node is added to the
root-pointer-predecessors, so EBBTB condition (2) is satisfied. No B′ nodes are
added, so EBBTB condition (1) is satisfied. Rules Up, D1 and D2 only relabel
nodes and move the root pointer, so balance is preserved.

Rule R1 deletes a U or U ′-node and moves the root pointer to the child of the
current position. We know from the EBBTB conditions that this child cannot
be labelled B′, and so the EBBTB conditions are satisfied. Rule R1 can only
delete the treeroot, as this is the only non-L-node that can be safely deleted,
and so it preserves balance. Rules R2(l) and R2(r) replace a B or B′-node with
a U -node and move the root pointer. Replacing a B-node and two leaves with a
U -node and one leaf preserves balance. The EBBTB conditions are satisfied, as
the new target of the root pointer is a U -node and the root-pointer-predecessors
are otherwise preserved. Rules R3(l) and R3(r) replace two U or U ′-nodes with
a B node. The rule preserves balance because the distance from the ‘top’ of
the rule to the ‘bottom’ is preserved. These rules replace a single B or B′-node
on the path to the treeroot with a U -node, and the root-pointer-predecessors
are otherwise unaltered. No B′-nodes are added, so both EBBTB conditions are
satisfied. This completes the proof that rules in RBB are EBBTB-preserving. ��
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Abstract. Graph rewriting is a powerful technique that requires graph
pattern matching, which is an NP-complete problem. We present Gr-
Gen, a generative programming system for graph rewriting, which ap-
plies heuristic optimizations. According to Varró’s benchmark it is at
least one order of magnitude faster than any other tool known to us.

Our graph rewriting tool implements the well-founded single-pushout
approach. We define the notion of search plans to represent different
matching strategies and equip these search plans with a cost model,
taking the present host graph into account. The task of selecting a good
search plan is then viewed as an optimization problem.

For the ease of use, GrGen features an expressive specification lan-
guage and generates program code with a convenient interface.

1 Introduction

Over the last 30 years graph rewriting theory has become mature. The constant
rise of applications requires tools that are all theoretically sound, fast and easy
to use. Currently available tools meet these requirements only partially, with
varying emphases. Our tool GrGen, which is presented in this paper, fulfills
these requirements [1].

1.1 Graph Rewriting

The concept of graph rewriting, as implemented by GrGen, follows the single-
pushout (SPO) approach which is a form of rule based graph transformation
(see section 2.4). At a basic level a rewrite rule consists of a pattern graph, a
replacement graph and an instruction on what to delete, preserve or insert during
rewriting. In order to apply a graph rewrite rule to a host graph we have to find
an instance of the pattern graph in the host graph. Finding such a match is
called subgraph matching.

1.2 Our Contributions

For pattern graphs of potentially unbounded size subgraph matching is an NP-
complete problem (see Garey and Johnson, problem GT48 [2]). Hence, the ques-
tion of performance is essential for the practical relevance of graph rewriting.

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 383–397, 2006.
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The multi-purpose graph rewrite generator GrGen allows high-speed graph
rewriting. The main features and concepts of GrGen are:

1. An expressive graph concept.
GrGen uses an extension of labeled directed multigraphs, namely attributed
typed directed multigraphs. The type system features multiple inheritance on
node and edge types (see section 2.1).

2. Separation of meta model and rewrite rules
A meta model defines the allowed node and edge types as well as the at-
tributes associated with each type. To restrict the set of well-formed graphs,
the user can give so called connection assertions. Meta model and rewrite
rules can be specified separately. This enables the developer to utilize differ-
ent rule sets together with the same meta model description (see section 3.1).

3. A notion of rewriting close to theory.
GrGen implements an extension of the SPO approach to graph rewriting.
The differences consist in the use of the extended graph concept, some re-
strictions regarding the allowed matches and the ability of graph rewrite
rules to request the re-labeling (i.e. retyping) of nodes (see section 2.4).

4. Additional matching conditions and attribute computations.
The set of valid matches can be restricted beyond graph patterns by the
assignment of attribute conditions, type constraints and negative application
conditions (NACs) to every rule. Additionally, attribute computations can
be associated with each rule (see section 3).

5. Optimization of the matching process.
Subgraph matching is an NP-complete problem. To deal with this challenge
in practice, the system is able to optimize the matching process at run time
using knowledge about the current host graph (see section 2.2 and 2.3).

6. Convenient user interface.
GrGen features an expressive and concise specification for meta models,
rewrite rules, and rule application strategies (see section 3). The generated
code can be invoked through an interface, which is easy to use.

We compare GrGen with the most prominent tools, namely PROGRES [3],
AGG [4], Fujaba [5], and an approach presented by Varró [6]. Regarding a
benchmark also introduced by Varró [7], our graph rewrite engine outperforms
all of these tools by at least one order of magnitude (see section 5). While being
the fastest graph rewriting system we know, we will show that GrGen is still
one of the most expressive ones (see section 4).

2 Fundamental Problems and Their Solutions

Thinking of graph rewriting raises three major questions:

1. What is a graph?
2. How is an occurrence of a pattern graph found?
3. What does rewriting mean in detail?
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Fig. 1. Named pattern graph L and host graph H together with a match m

2.1 Graphs

The first question concerns two main aspects: which graph concept to use (dis-
cussed in this section) and which abilities to specify a meta model we give to
the user (see section 3).

GrGen features attributed typed directed multigraphs. These are directed
graphs with typed nodes and edges, where between two nodes more than one
edge of the same type and direction is permitted. According to its type, each
node or edge has a defined set of attributes associated with it. Moreover, the
type system features multiple inheritance on node and edge types. A meta model
defines the allowed node and edge types as well as the attributes associated with
each type. Furthermore it allows to restrict the set of well-formed graphs by so
called connection assertions. For an example specification see section 3.1.

Throughout this paper graphs are depicted as follows: Nodes are either dis-
played by rectangles or ellipses. Rectangles are used in pattern graphs, ellipses
are used in host graphs. The directed edges are displayed by arrows. Figure 1
shows a pattern graph L and a host graph H . The types of the nodes and edges
are represented by node and edge labels with a preceding colon. In case a node
or edge is given a name, it is written before the colon.

2.2 Finding a Match

We define a match as a graph homomorphism between the pattern graph L and
the host graph H . A graph homomorphism is a pair of maps m = (mV , mE),
where mV assigns the nodes of L to nodes of H and mE the edges of L to edges
of H . In figure 1 the nodes and edges mapped to each other are connected by
dashed lines.

Subgraph matching is known to be NP-complete [2]. So, we propose a heuris-
tically optimizing approach to subgraph matching. Moreover, the optimization
is done dynamically at runtime depending on the present host graph (see also
section 2.3). The tightest upper bound for the runtime of subgraph matching
known to us is O(|L||H ||L|), where | · | denotes the sum of the numbers of nodes
and edges of a graph. If we consider only fixed size patterns, subgraph matching
can be regarded to as polynomial (possibly with a high polynomial degree). This
seems to be good news, because we do not have to deal with an exponential run-
time. But a runtime of, e.g. O(|H |10), is still not feasible even for small constant
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factors, especially for host graphs H with hundreds or thousands of nodes and
edges. Assuming that many application domains provide sparse graphs and a
rich type system, we expect that our optimizing approach to subgraph matching
leads to acceptable runtimes.

To enable the optimization of the matching process, we perform the subgraph
matching according to a so called search plan. A search plan is a sequence of
primitive search operations. Each such operation represents the matching of a
single node or edge of the pattern graph to an appropriate node or edge of the
host graph. The whole search plan describes the stepwise construction of all (or
one) possible matches between L and H . We call a partly constructed match a
candidate. The runtimes caused by different search plans depend on the present
host graph and can vary significantly. Therefore the key idea for finding a match
fast is to create a preferably good search plan taking the structure of the present
host graph into account. The necessary information is taken from an analysis
of the host graph performed at runtime. GrGen also provides default search
plans. They are statically created according to optional user hints.

Consider a search plan P = 〈s0, . . . , sq〉, i.e., a sequence of primitive search
operations si. We allow two kinds of search operations: At first there are lookup
operations. They are denoted by si = lkp(xi), where xi is a node or edge of
the pattern graph. At second there are extension operations si = ext(vi, ei),
where vi is a pattern node and ei is a pattern edge. A lookup operation lkp(xi)
represents the expansion of a candidate by any node or edge of the host graph,
which is suitable for the given xi. If xi is a pattern node, an appropriate host
graph node must have the same type as xi or a subtype thereof (we call this
an admissible type). If xi is a pattern edge, the incident nodes must also have
admissible types (note that GrGen supports no lookup operations for edges,
yet). An extension operation ext(vi, ei) represents the expansion of a candidate
by an edge ei coming from an already matched node vi. Of course an appropriate
host graph edge and the node at its other end must also have admissible types.

The matching of a node can happen explicitly by the execution of a node
lookup lkp(v) or implicitly by the matching of an edge incident to that node.
An edge e can also be matched in two different ways (both explicitly): by an
edge lookup lkp(e) or by an extension ext(v, e). E.g. consider two possible search
plans for the pattern graph L shown in figure 2.

P0 = 〈lkp(v1), ext(v1, e1), lkp(v3), ext(v2, e2)〉
P1 = 〈lkp(e1), lkp(v3), ext(v3, e2)〉

On the execution of a primitive search operation more than one appropriate
node or edge may be found. In this case a candidate is replaced by several new
candidates, one for every possible node or edge. However, it is not necessary
to materialize all candidates at the same time. If a candidate can be expanded
by more than one host graph element, we process only one of these. The other
alternatives are treated by backtracking.
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Fig. 2. Operation ext(v1, e1) causes an intense needless splitting of candidates

2.3 Generating Good Search Plans

The runtime of different search plans can vary significantly for a given host
graph. For the generation of preferably good search plans, we use an approach
originally presented by Batz [8]. It extends a technique invented by Dörr [9] with
a cost model that directs a heuristic optimization.

The execution of an operation si can cause the splitting of a candidate into
several new candidates. If this is the case for a significant ratio of the operations
of a search plan, this leads to an exponential growth of the set of candidates. So,
if splitting operations could be avoided by a search plan, less runtime would be
needed. If the execution of a search plan causes no splitting at all, linear runtime
for sparse host graphs H is achieved, that is O(|L|).

Consider e.g. the pattern graph L and the host graph H shown in figure 2. In
H a single node of type A is connected to a number of nodes of type B (let’s say
20), each by an edge of type a. Now let us assume that the search plan

P2 = 〈lkp(v1), ext(v1, e1), ext(v2, e2)〉
is executed. The first operation lkp(v1) leads to the creation of one new candi-
date. Now the node of type A is incident to 20 outgoing edges of type a, each
leading to a node of type B, so in the worst case the candidate splits into 20 new
ones. In contrast the execution of the search plan

P3 = 〈lkp(v3), ext(v3, e2), ext(v2, e1)〉
requires no splitting at all. In case of the extension operation for edge e1, the
crucial point is that P3 follows e1 in the opposite direction as P2 does. That is
where Dörr’s approach applies to: The direction an edge is followed can determine
whether a candidate splits or not. In contrast to extension operations, for lookup
operations the splitting depends on the number of present elements having an
admissible type.
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However, for extension operations, splitting cannot always be avoided. In the
following we refer to equally typed edges of equal direction which connect equally
typed nodes as isomorphic. If there are isomorphic edges present on both nodes
incident to an edge, splitting occurs inevitably. In such a situation it only remains
to choose the direction with less splitting. Moreover, we are looking for search
plans which cause a low overall amount of splitting. Therefore, we extend Dörr’s
technique by a cost model to direct the optimization of search plans.

For this purpose we assign a cost to every operation which might possibly
occur in a search plan: An operation ext(v, e) gets assigned the average number of
splittings for a candidate. A lkp(x) gets assigned the number of present elements
of admissible type. Having done this, we compute the costs of a possible search
plan P = 〈s0, . . . , sq〉 by the formula

CP := c0 + c0c1 + c0c1c2 + · · ·+ c0c1c2 · · · cq

where ci is the cost of the operation si.
Essentially the formula estimates the number of host graph elements matched

while executing P . If operation s0 is executed, up to c0 host graph elements will
be matched. This also means that up to c0 new candidates will be created. If
operation s1 is performed, for all these candidates on average c1 further elements
will be matched. Overall this results in an average amount of up to c0c1 matched
elements and newly created candidates. Continuing this, one gets the above
formula. However, if a candidate fails to complete, no further candidates will
be created from it. So, except for constant factors, the above formula yields an
overestimation of the average number of elements processed while executing P .1

We do not know an efficient algorithm yielding a search plan P with minimal
costs CP . So, we use the following heuristic method: In the first step, we minimize
the most significant term occurring in the above formula, namely c0c1c2 · · · cq.
This is done by choosing a possibly cheap selection from the set of all possible
search operations for L. In the second step, we compute an order for the selected
operations, such that the cheap operations appear preferably early and the ex-
pensive operations as late as possible. This exploits the fact, that a splitting
has more impact on CP , the earlier the according operation occurs in P . The
costs of the possible operations are derived from an analysis of H , which can be
performed in time O(|H |). A detailed description of this heuristics is given in a
technical report [10].

2.4 Meaning of Rewriting

In the literature the meaning of rewriting is treated thoroughly [11,12,3]. Despite
this fact it is not a computationally complex problem at all. The approaches differ
substantial in understandability and readability of specifications as well as their
expressiveness. Also, their degree of theoretical foundation is quite different. We
have chosen the well-known SPO approach.

1 This is due to the assumption, that every node of H has O(1) edges.
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Fig. 3. The principle setting of SPO-based graph rewriting

A SPO rewrite rule p : L
r−→ R consists of a pattern graph L, a replacement

graph R and a partial graph homomorphism r between L and R. An application
of a rule p to a host graph H is called a direct derivation (see figure 3). It
requires a partial graph homomorphism m from L to H called a match (GrGen
demands total matches). The direct derivation leads to a result graph H ′, see
figure 3. For each node or edge x in L there exists a corresponding node or
edge in H , namely m(x). Note that m does not need to be injective. The partial
preservation morphism r determines what happens to m(x): It maps all items
from L to R, which are to remain in H during the application of the rule. The
images under m of all items in L which have no image under r are to be deleted.
The others are retained. Items in R which have no pre-image under r are added
to H ′. Note that in general ρ is neither surjective nor total. It is partial, because
nodes from H may be deleted to get H ′. The homomorphism ρ can be non-
surjective, because new nodes may be introduced in H ′—these nodes are not in
the image of ρ but in the image of μ.

The SPO approach is not constructive in a way that it directly gives an
algorithm (as sketched above) for obtaining the result graph H ′. It rather char-
acterizes H ′ in the set of all graphs using a pushout construction in the cat-
egory of graphs and partial graph homomorphisms. For conciseness we omit
the category theoretical foundations of the SPO approach (for an introduction
see [11]). Except for partial matching GrGen implements the SPO approach to
the full extent, but provides additional features not covered by SPO (see also
section 3.2). These are: Attribute conditions, type constraints, NACs, node type
changes and attribute recalculation. Attribute conditions, type constraints and
NACs restrict the set of admissible matches. Retyping and attribute evaluations
are performed after the SPO rewrite is done. A formalization of such exten-
sions based on category theory for the DPO approach is presented by Ehrig
et al. [13].

3 The Tool

In this section, we present the most important features of GrGen along with
its input language which enables the user to define a meta model for graphs, a
set of graph rewrite rules as well as a sequence of rule applications.

The structure of the generated graph rewriters (we call them graph engines)
yielded by GrGen arises from the separation of four concerns: defining the type
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Listing 1.1. A meta model

1 a1 : int;
2 a2 : int;
3 }
4 node class NodeTypeB extends NodeTypeA {
5 a3 :int;
6 }
7 node class NodeTypeC extends NodeTypeA, NodeTypeB;
8

9 edge class EdgeTypeA
10 connect NodeTypeA [0:1] -> NodeTypeA [0:1],
11 NodeTypeA [*] -> NodeTypeB [1:5];
12

13 edge class EdgeTypeB extends EdgeTypeA
14 connect NodeTypeB [4:*] -> NodeTypeA [1] {
15 a1 : string;
16 }

of graph elements, storing the graph data, finding the match, and performing
the rewrite. This gives us the freedom to easily change certain aspects of the
implementation. The GrGen(SP) graph engine uses our search plan approach
to subgraph matching sketched in section 2.2 and 2.3 (for a technical description
see Batz and Szalkowski [8,10,14]). GrGen(PSQL) is a graph engine variant
that uses a Postgres database for storing and matching graphs [15,16].

3.1 Meta Model

The key features of GrGen’s meta model are exemplarily shown in listing 1.1.

Types. Nodes and edges can have types (classes). The syntax is similar to
common programming languages (keywords node class and edge class).

Attributes. Nodes and edges can possess attributes. The set of attributes as-
signed to a node or edge is determined by its type. The attributes itself are
typed, too.

Inheritance. Types (classes) can be composed by multiple inheritance. This
eases the way of specifying patterns and improves the expressiveness of
graphs. Node and Edge are the built-in root types of node and edge types,
respectively. Moreover, inheritance eases the specification of attributes, be-
cause subtypes inherit the attributes of their super types.

Connection Assertions. To specify that certain edge types should only con-
nect specific nodes, we included connection assertions (keyword connect).
Using these, the system is optionally able to check whether a host graph is
well-formed or not. For example, line 12 of listing 1.1 specifies, that nodes of
type NodeTypeA can have arbitrary outgoing edges of type EdgeTypeA. Fur-
thermore these edges must connect to a node of type NodeTypeB, whereas
one to five such edges may be incoming at a single NodeTypeB node.
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Listing 1.2. A rewrite rule specification

1 rule SomeRule {
2 pattern {
3 node (n1 ~ n2) : NodeTypeA;
4 n1 --> n2;
5 n3 : NodeTypeB;
6 negative {
7 n3 -e1:EdgeTypeA-> n1;
8 if { n3.a1 == 42 * n2.a1; }
9 }

10 negative {
11 node n4 : Node \ NodeTypeB;
12 n3 -e1:EdgeTypeB-> n4;
13 }
14 }
15 replace {
16 n5 : NodeTypeC<n1>;
17 n3 -e1:EdgeTypeB-> n5;
18 }
19 eval {
20 n5.a3 = n3.a1 * n1.a2;
21 }
22 }

3.2 Graph Rewrite Rules

For example, consider the graph rewrite rule SomeRule (see listing 1.2). The
keyword pattern marks the beginning of the pattern graph consisting of a node
named n3 of type NodeTypeB as well as two nodes named n1 and n2 of type
NodeTypeA. We denote the preservation morphism r implicitly by using named
nodes and edges: Identical names in pattern and replacement graph (keyword
replace) indicate that this nodes or edges are mapped to each other by r. Anony-
mous edges are denoted by an arrow (-->). Additionally, we can specify named
edges of certain types by annotating the arrows (-EdgeName:EdgeType->). The
semantics of the example rule is sketched in the following.

Isomorphic/Homomorphic Matching. The tilde operator (~) between the
nodes n1 and n2 specifies that these nodes may be matched homomorphically.
In contrast to the default isomorphic matching of morphism m the nodes n1
and n2 may be mapped to the same node in the host graph.

Negative Application Conditions (NACs). With negative application con-
ditions (keyword negative) we can specify graph patterns which forbid the
application of a rule if any of them is present in the host graph (cf. [4]).

Attribute Conditions. The Java-like attribute conditions (keyword if) in the
pattern part allows for further restriction of the applicability of a rule.

Type Constraints. In general set theoretical operations on types are allowed.
By writing n4 : Node \ NodeTypeB we declare a node that is a subtype of
Node but not of NodeTypeB.
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Replace Part. Because node instances n1 and n3 (declared in the pattern part)
are used in the replace part (denoting the replacement graph), these nodes
are kept. The anonymous edge instance between n1 and n2 only occurs in
the pattern and therefore gets deleted. The edge e1 is only declared in the
replace part, thus it has to be created. Note that edge e1 from the replace
part and the negative parts are all different, because of their scopes.

Retyping. Node n5 is a retyped node stemming from node n1. This enables us
to keep all edges and all attributes stemming from common super types of
a node while changing its type.

Eval Part. If a rule is applied, then the attributes of matched and inserted
nodes and edges may be recalculated.

3.3 Rule Application

To control the application of rules, we define the set R of regular graph rewrite
sequences (RGS), where P is a set of rewrite rules:

p ∈ P ⇒ p ∈ R p ∈ P ⇒ [p] ∈ R
R1, R2 ∈ R ⇒ R1R2 ∈ R R ∈ R ⇒ (R) ∈ R

R ∈ R ⇒ R∗ ∈ R R ∈ R, n ∈ N ⇒ R{n} ∈ R
The syntax of RGSs is largely borrowed from regular expressions, but its se-
mantics are only related. The main difference is: Determined and undetermined
iteration expressions R{n} and R∗ cause an execution of R until no rule contained
in R can be applied (or the iteration count exceeds n, respectively).2 A subse-
quence R2 of a sequence R1R2 is executed even if R1 is not applicable. A single
rule application can fail or succeed. In the case of failure nothing happens, ex-
cept that we carry on with the next step. Please observe that the execution of
an RGS does not involve backtracking in any kind. [p] denotes the simultane-
ous application of all matches of rule p. For the [·] operator GrGen (or a user
supplied application) can sort out overlapping matches or rewrites to maintain
desired semantic properties.

E.g. we can express Varró’s STS mutex benchmark of size 1000 by the follow-
ing RGS:

newRule{998} mountRule requestRule{1000}
(takeRule releaseRule giveRule){1000}

4 Related Work

Over three decades, graph rewrite theory has evolved well. Amongst others, there
are two major schools: Firstly, the algebraic rewriting school, which considers
graphs as algebraic objects and defines rewriting via mappings. Algebraic rewrit-
ing itself has a rich variety of approaches: There is the single-pushout approach
(SPO, see section 1.1 and 2.4), the double-pushout approach (DPO) and the
2 The semantics of the RGS is declared operational, starting at the innermost nesting:

The execution of (R∗)∗ is always well-defined, but maybe non-terminating.



GrGen: A Fast SPO-Based Graph Rewriting Tool 393

Table 1. Features of graph rewriting tools

Tool Semantics Storage Matching Mode Language
PROGRES programmed GRAS planned LS int.&comp. C/C
AGG SPO&NAC memory CSP interpreted Java
Fujaba programmed memory LS compiled Java/Java
VarróDB SPO&NAC RDBMS SQL interpreted Java
GrGen(PSQL) SPO&NAC RDBMS SQL compiled Java/C
GrGen(SP) SPO&NAC memory planned LS compiled Java/C

pullback approach. These approaches are all based on category theory and differ
mostly in the fashion of defining the rewrite rules and the behavior when deleting
nodes. Regarding the latter, SPO is more powerful then DPO.3 Secondly, there
is the programmed approach. It defines rules and rewrites in a more operational
style. Its semantics is more complex and hard to define, which on the other hand
eases the integration of special application driven needs to the tool. For example,
consider the formal definition of a part of PROGRES [17].

In table 1 the most prominent graph rewriting tools are compared. For this
purpose we consider five key properties, which give a coarse-grained insight in
the theory and implementation of each tool.

Semantics. How is the rewriting described theoretically and how powerful is a
single rewriting step? SPO refers to single-pushout approach (see section 1.1
and 2.4). If the tool uses negative application conditions to enhance its ex-
pressiveness then we write NAC. By programmed we mean that semantics
is rather defined through an operational sequence than a theory.

Storage. The storage property describes how the graph is stored and whether
it is persistent: In-memory storage is not necessary persistent. RDBMS and
GRAS are both database backed graph storages where the first stands for of
the shelf relational database system, the latter is a special graph database
implementation.

Matching. The tools vary significantly in the handling of the matching prob-
lem. Some transform the matching problem into another well understood
and tool supported domain, like constraint satisfaction (CSP) or relational
algebra (SQL). Others perform a local search (LS) on the graph structure
to find the matchings. This search process can be driven by chance or be
planned ahead.

Mode. Does the tool generate code in a conventional programming language,
which has to be compiled to perform the matching? Or are the graph rewrite
rules just interpreted by the tool, hence no code is generated.

Language. This refers to the implementation languages. For example, GrGen
is implemented in Java and generates matchers implemented in C. For tools
with interpreted matching there is only one entry.

3 SPO can delete nodes without specifying its whole context whereas DPO cannot.
Moreover, SPO in conjunction with NACs can simulate the dangling edge conditions
of DPO.
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Table 2. Runtime for several of the Varró benchmarks (in milliseconds)

Benchmark → STS ALAP ALAP simult. LTS
Tool ↓ 10 100 1000 10 100 1000 10 100 1000 1000,1
PROGRES 12 946 459,000 21 1,267 610,600 8 471 2,361 942,100
AGG 330 8,300 6,881,000 270 8,027 13,654,000 – – – > 107

Fujaba 40 305 4,927 32 203 2,821 20 69 344 3,875
VarróDB 4,697 19,825 593,500 893 14,088 596,800 153 537 3,130 593,200
GrGen(PSQL) 30 760 27,715 24 1,180 406,000 – – – 96,486
GrGen(SP) < 1 8 79 < 1 5 64 < 1 < 1 5 99

One of the first graph rewrite tools is PROGRES and it is still amongst the
most expressive ones [3]. As described by Zündorf [18], its matching algorithm
is based on planned local search. A more contemporary tool is AGG, which
also has the desirable property to rely closely on the theoretical foundations of
the SPO approach [4]. The matching of AGG is done by reducing the problem
to a constraint satisfaction problem [19]. To call Fujaba a graph rewrite tool
is a kind of an understatement [5]. Fujaba is a tool for software visualization
and two-way transformation based on UML. Some of its functionality relies on
graph transformations. These parts can be utilized to perform general graph
rewriting. The graph rewriting rules are programmed story diagrams in the sense
of extended UML use case diagrams. Varró describes a technique for performing
graph rewriting based on relational algebra [6]. Up to now, this tool is not
accessible, but we have some example runs available [20].

The Optimix system proposed by Uwe Assmann has a limited expressiveness
[21]. It would be impossible to perform the benchmarks of our choice without
significant simplifications. Therefore it is not included in our closer examination.
But nevertheless Optimix is interesting; because of its limitations it is possible
to get some strong theoretical results, such as confluence and guaranteed termi-
nation. In general, this is not possible for the other tools mentioned above.

Dörr developed an idea for matching certain graphs in linear time [9]. His
technique fails for graphs which contain edges that cause inevitably splitting
of candidates. To our knowledge no actual tool was built using this approach.
By defining a cost model, we extended this approach to all graphs, but had
to sacrifice the linear runtime guarantee (see section 2.3). Independently Varro
et al. proposed a quite similar method [22] which is not implemented, yet.

5 Performance

The benchmark uses various sizes of graphs and patterns as well as long and
short transformation sequences. The example used as a benchmark by Varró was
originally proposed to serve as distributed mutual exclusion algorithm. Varró has
changed the algorithm slightly for benchmarking.

Our own measurements (for AGG and GrGen) were carried out on an AMD
Athlon XP 3000+ with 1GB main memory. Measurements by Varró (for PRO-
GRES, Fujaba and VarróDB) were performed on a Intel Pentium 4 at 1.5 GHz
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Fig. 4. Runtime of STS mutex benchmark (multiplicity optimizations off, parameter
passing off, simultaneous execution off; for parameter details see [7])

with 768 MB main memory [20]. To reuse his results we multiplied Varró’s fig-
ures by 0.68 which is the speed difference of both processors according to the
SPEC organization [23].

Figure 4 shows the runtime of two GrGen instances compared with the most
prominent tools, namely AGG [4], Fujaba [5], PROGRES [3] and an approach
presented by Varró [6], which we call VarróDB. GrGen(SP) uses our most ad-
vanced graph engine, whereas GrGen(PSQL) is based on a Postgres database for
storing and matching graphs (see section 3). Further benchmark results, shown
in table 2, support the overall impression. The other benchmarks proposed by
Varró show analogous results and are omitted here (see [1]).

The memory usage of GrGen(SP) for the largest mutex benchmark was below
1.6 MByte. In any benchmark we conducted GrGen(SP) outperformed the next
fastest tool at least by a factor of 40. Regarding the STS mutex benchmark
GrGen(SP) achieves even linear runtime in terms of benchmark size, i.e., the
average runtime for a single rewrite rule is constant regardless the host graph size.
This implies, that we have reached the speedup limit for the Varró benchmark;
better tools can only lower the constant factor. The spread between GrGen(SP)
and the slowest tool is more than 6 orders of magnitude.

6 Conclusion

Graph rewriting has complex theoretical and practical aspects. We meet the com-
putational challenge of finding a match with a heuristically optimizing approach
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based on search plans. The definition of the rewrite semantics closely follows the
well-established SPO approach and provides some extensions.

We still have to answer the most important question: Can the user actually
put the power of the theory to work? Therefore, let us consider what users might
expect from GrGen. The user wants to: define elements of a domain as graph
elements, get expressive and concise rewrite specifications, get the results fast
without excessive memory consumption, and easily integrate the graph rewriting
into his applications.

GrGen meets all those needs: In the meta model attributes and types can
be defined both for nodes and edges. It is possible to check graphs against given
connection assertions, but graphs not conforming to these assertions can also
be processed. The specification language is expressive and concise. The type hi-
erarchy defined by the meta model helps to express graph rewrite rules easily.
GrGen supports different rule application strategies: interactive application,
regular graph rewrite sequences (RGS), and a low level selection by user sup-
plied program code. An interactive environment for stepwise execution of graph
rewrite rules and graph inspections is also provided. The performance of a rule
application, especially of the potentially expensive pattern matching, is at least
one order of magnitude faster than of any other tested system. The memory
consumption of our search plan based graph engine is low, too. 10 million graph
elements can be handled in 1 GB main memory. In other words: On average
about 100 bytes were consumed per node or edge (without attributes assigned)
including all administration overhead. The integration effort of the dynamically
linked graph engines produced by GrGen is small.

Thus, tool supported graph rewriting can be done both, fast and easy to
use, based on the well established theoretical foundations of SPO built into the
declarative graph rewrite language of GrGen.
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20. Varró, G.: Graph transformation benchmarks page. http://www.cs.bme.hu/
~gervarro/benchmark/2.0/ (2005)

21. Assmann, U.: Graph rewrite systems for program optimization. ACM Trans.
Program. Lang. Syst. 22(4) (2000) 583–637
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Abstract. This paper studies two realizations of graph transformations
which are based on a UML class diagram. The first realization achieves a
representation in terms of descriptive pre- and postconditions. The sec-
ond one yields an operationally executable command sequence in terms of
basic commands for object and link creation, attribute modification, and
object and link destruction. Our aim for realizing graph transformations
in terms of target languages offering different views, i.e., descriptive or
operational, is to take advantage of both views and to utilize the benefits
which both views provide.

1 Introduction

This paper discusses model behavior. Under the notion model we understand a
collection of UML descriptions [OMG04, RBJ05]. The paper focuses on a special
kind of model behavior, namely behavior of operations. Behavior of operations
is described graphically by a set of graph transformation rules having the aim
of achieving understandable and intuitive but strictly formalizable characteriza-
tions. These behavior descriptions are realized in two different target languages.
The first target language is given by OCL pre- and postconditions [WK03].
The second target language is determined by sequences of basic commands for
object and link creation, attribute modification, and object and link destruc-
tion [OMG04, RBJ05].

We see several advantages in realizing the same source language, in our case
graph transformations, in different target languages which possess quite differ-
ent nature and complement each other: OCL pre- and postconditions have a
descriptive nature, i.e., it is stated what properties have to hold before resp. af-
ter operation execution; the command sequences into which we translate have an
operational nature, i.e., it is expressed how the operation is to be executed. De-
scriptive OCL pre- and postconditions can be analyzed with theorem prover like
tools and approaches [BW02, GBR05]. Such tools and approaches aim to deduce
new properties from the ones stated explicitly. Operational UML descriptions can
be executed and are thus a basis for animating the behavior [OMG04, RBJ05].
Understanding the effect of a complex operation is supported by tracing the
single execution steps. Deduction and reasoning as well as animation and pro-
totypical execution is particularly useful is early software development phases.
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Realization in different target languages helps to better understand graph trans-
formations insofar that the different target representations emphasize different
aspects which are inherently and implicitly present. Realizing graph transforma-
tions in the two formalisms can help (1) to formally inspect properties of the
graph transformations by checking the achieved OCL constraints with an OCL
tool and (2) to understand and test the effects of the graph transformations by
executing the achieved command sequences with a UML execution engine. For-
mal inspection subsumes proving properties of the graph transformation system
as a whole.

Our starting point is a set of graph transformations which may be seen as
a graphical description of operation behavior in terms of a UML collaboration.
The UML Language Reference Manual [RBJ05, page 228] explains the notion
collaboration as follows:

A collaboration describes the context for an operation [...] in which the
implementation of an operation [...] executes — this is, the arrangements
of objects and links that exist when the execution begins, and the [objects
and links] that are created or destroyed during execution.

Thus, a UML collaboration involves the objects and links existing before op-
eration execution and the ones existing after operation execution. We distinguish
between these two parts of a collaboration and denote a collaboration as a graph
transformation rule possessing a left side showing the situation before operation
execution and a right side presenting the scenario after execution. Rules are com-
mon instruments to describe steps within complex processes, and collaborations
are the right mechanism to denote them in the UML. In our view, central aspects
of graph transformations rules can be expressed in terms of UML diagrams. Uti-
lizing this relationship helps to broaden the audience of graph transformations.

The structure of the rest of this paper is as follows. Section 2 forwards the
basic idea of the paper by means of a simple example. Section 3 summarizes
the language features in rules which our approach supports. Section 4 discusses
the details of the first realization targeting OCL pre- and postconditions. Sec-
tion 5 shows the details of the second realization targeting command sequences.
Section 6 ends the paper with concluding remarks. Both realizations have been
prototypically implemented in an extended version of USE [GBR05]. All exam-
ples have been checked and executed by the tool.

2 The Basic Idea

Figure 1 shows five example graph transformation rules. The rule fireManager
is shown also in the textual rule representation we actually use in our imple-
mentation. The rules depend on the upper part of the UML class diagram in
Fig. 2 (using the worksFor association for representing bi-directional access and
the object-valued attribute staffCar for uni-directional access). They have a
left and right side and name, and offer to employ OCL expressions: (A) In the
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Fig. 1. Example Graph Transformation Rules

Fig. 2. Example Class Diagram
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context newPerson(aString:StringClass)
pre newPerson_pre: aString.isDefined
post newPerson_post: StringClass.allInstances->includes(aString) and

Person.allInstances->exists( thePerson | thePerson.oclIsNew and
thePerson.name=aString.value )

context hireManager(thePerson:Person, theCompany:Company, theCar:Car)
pre hireManager_pre: thePerson.isDefined and theCompany.isDefined and

theCar.isDefined and theCompany.employee->excludes(thePerson)
post hireManager_post: Person.allInstances->includes(thePerson) and

Company.allInstances->includes(theCompany) and
Car.allInstances->includes(theCar) and
theCompany.employee->includes(thePerson) and
thePerson.staffCar=theCar

context fireManager(thePerson:Person, theCompany:Company)
pre fireManager_pre: thePerson.isDefined and theCompany.isDefined and

theCompany.employee->includes(thePerson) and
thePerson.staffCar<>oclUndefined(Car)

post fireManager_post: Person.allInstances->includes(thePerson) and
Company.allInstances->includes(theCompany) and
theCompany.employee->excludes(thePerson) and
thePerson.staffCar=oclUndefined(Car)

-- newPerson(aString:StringClass)
-- assume parameter:Seq(OclAny)=Seq{aString}
let _aString = parameter->at(1);
openter rc newPerson(_aString); assign _thePerson := create Person;
set _thePerson.name := _aString.value;
opexit;

-- hireManager(thePerson:Person, theCompany:Company, theCar:Car)
-- assume parameter:Seq(OclAny)=Seq{thePerson,theCompany,theCar}
let _thePerson = parameter->at(1); let _theCompany = parameter->at(2);
let _theCar = parameter->at(3);
openter rc hireManager(_thePerson,_theCompany,_theCar);
insert(_thePerson,_theCompany) into worksFor;
set _thePerson.staffCar := _theCar;
opexit;

-- fireManager(thePerson:Person, theCompany:Company)
-- assume parameter:Seq(OclAny)=Seq{thePerson,theCompany}
let _thePerson = parameter->at(1); let _theCompany = parameter->at(2);
openter rc fireManager(_thePerson,_theCompany);
set _thePerson.staffCar := oclUndefined(Car);
delete(_thePerson,_theCompany) from worksFor;
opexit;

Fig. 3. Conditions and Commands Generated from Graph Transformations
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Fig. 4. Example Sequence Diagram

left side to restrict the rule applicability with a precondition, (B) in the ob-
ject boxes to modify attributes with OCL expressions (like aString.value or
theCar), and (C) in the right side to restrict applicability with a postcondition.
This latter feature is not used in the example. The five rules are typical insofar
that they cover atomic graph modifications: (A) Create an object, (B) create a
link, (C) delete a link, (D) modify an attribute, and (E) delete an object.

Let us assume that each rule describes one operation. These generated op-
erations are shown in the lower part of Fig. 2 in the class RuleCollection. The
rule name determines the operation name, and the left side objects become the
operation parameters. We have assigned the operations to a new class, but, if
we indicate in the rule to which class the rule belongs, we could distribute the
operations to given classes.

The central point we want to make is that we automatically generate an
operation specification and an operation implementation from the graph trans-
formations: The upper part of Fig. 3 shows the OCL pre- and postconditions
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Fig. 5. Example Object Diagrams from Sequence Diagram

generated for the first three rules, and the lower part of Fig. 3 pictures the gen-
erated command sequences for executing the first three graph transformations.
Details of the generation process will be discussed in the next section.

Figure 4 shows a sequence of rule applications resp. operation calls in form of a
UML sequence diagram. The sequence diagram uses the operations newCompany
and newCar not mentioned before, which are completely analogous to newPerson.
Figure 5 traces the resulting working graph sequence for these rule applications
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with object diagrams. The sequence diagram can be regarded as an abbreviation
of a command line protocol where the evaluation of all pre- and postconditions
is given in full detail (which we do not show). The form of the arrows in the
sequence diagram indicates that (A) the preconditions evaluate to true, i.e., it is
allowed to apply the respective graph transformations at the redex determined
by the actual parameter, and (B) the postconditions evaluate to true, i.e., the
generated implementation with command sequences satisfies its specification. If
a pre- or postcondition would have failed, the shape of the arrows would have
been different indicating this failure.

To summarize: Our UML tool USE can be employed to execute the graph
transformations and can give feedback on their properties. Let us now turn to
some details of the conditions and commands in Fig. 3.

Variable ‘parameter’: Considering the command sequences, each operation
is implemented by a command sequence which is called in the sequence dia-
gram. Parameter passing currently works by letting the variable parameter
hold the sequence of objects which are to be delivered as actual parameters.

Variable ‘rc’: In the example, we have decided that the new class RuleCollec-
tion is the container for the operations. Thus operation calls must be directed
to an object rc of this class.

Parameters of the Operation: We have said that all objects of the left side
become parameters of the operation. We might relax this: The necessity for
being a parameter may be dropped, if the parameter is uniquely determined
by another parameter, for example, because a *..1 multiplicity is present in
the class diagram.

Data Type Valued Parameters: In the example, we had to introduce an
auxiliary class StringClass which is essentially there only to pass a String-
valued parameter to the operation. If the rule allows to explicitly identify
data type valued parameters, such auxiliary classes can be avoided.

Advantage of Using OCL as a Target Language: The advantage that we
see in our approach is that it provides full OCL support. For example, at any
stage of the execution sequence, the current working graph can be inspected
with arbitrary complex OCL queries. Additionally, OCL can be employed
in the formulation of graph transformation for expressing rule application
restrictions and attribute assignments. Traditional OCL invariants can be
incorporated as well. Executing the graph transformation rules, displaying
the result with object diagrams, and inspecting the resulting working graph
with OCL gives support for checking whether the rules exactly perform the
task which the rule designer expected from them.

3 Related Work

Rules have already been successfully applied to (meta-)modeling, for example,
in [EHHS00] with a focus on UML 2.0 communication diagrams, but not on OCL
on which we concentrate. Our mechanism of executing graph transformation with
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a UML engine supports checking and validating of graph transformations. We
see our approach as an alternative mechanism to existing well tried graph trans-
formation engines like AGG [dLT04], FUJABA [BGN+04], GREAT [KASS03],
GROOVE [KR06] or PROGRES [SWZ96]. Our approach is similar to [VFV06]
which realizes graph transformations operationally by translating them into ba-
sic database commands. [LSE05] proposes to specify contracts for software (pre-
and postconditions) in a graphical way with graph transformations. The work
concentrates on generating JML (Java Modeling Language) whereas we use OCL
offering features not conceptually present in JML, e.g., allInstances. [Baa06]
discusses in connection with OCL the so-called frame problem dealing with the
parts of the system that should remain unchanged when a specific operation is
executed. The work proposes a hybrid language with OCL and graph transfor-
mation features to handle that problem whereas we keep these two approaches
distinct. A constraint language was already part of the graph transformation tool
PROGRES. A nice comparison between that language and OCL can be found
in [Sch01]. Due to this paper format an in-depth comparison is out of scope.

4 Language Features in Rules

Let us summarize how the rule language which we use for operation description
looks like. We explain the language features with the schematic example in Fig. 6.
We start with the simplified view that an operation is described by one rule

Fig. 6. Language Features in Rules

consisting of a pair of object diagrams where the left side of the rule shows the
situation before operation execution and the right side the one after it.

– The connection between the two sides is established through common objects
and links occurring in both sides (in Fig. 6 objects b and c and link (b,c)).

– Objects and links may only appear in the left side (in Fig. 6 object a and
link (a,b)), whereas other objects and links only show up in the right side (in
Fig. 6 object d and link (c,d)).
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– The left and the right side may each contain one boolean OCL expression
which allows to express an additional rule precondition (in Fig. 6 OCL ex-
pression p) and an additional rule postcondition (in Fig. 6 OCL expression q).

– The left side may contain attribute assertions permitting operation execution
only if the given attribute values are present (in Fig. 6 attribute assertion
att=v with att being an attribute and v being an OCL value expression).

– The right side may contain attribute assignments where the expressions to
be assigned are evaluated in the state before operation execution (in Fig. 6
attribute assignment btt=w with btt being an attribute and w being an OCL
value expression).

The object diagrams for the left and right side are not proper object diagrams,
but they are generic object diagrams in the sense that the objects occurring in
the diagram are substituted by concrete objects when the operation is executed
and the parameters are passed.

Above we have assumed that one rule describes one operation. This may be
generalized: One operation may be characterized by more than one rule with-
out any difficulty if mutually exclusive preconditions are specified in the rules
or if mutually exclusive object, link or attribute configurations are stated for
different rules of a single operation in the left side. Then the operation can be
seen as a larger case distinction which is reflected both in the pre- and post-
conditions and the command sequences. In future work, we want to allow more
powerful operations by allowing for iteration and operation calling in rules as
in [ZHG04, GBR05]. Rules would then have similar features like UML 1 collab-
oration diagrams.

5 Realization by OCL Pre- and Postconditions

The realization of rules by OCL pre- and postconditions is structured into 11
steps: (A) A single step for Initialization, (B) 3 steps handling objects (Ob-
ject Creation, Object Preservation, Object Destruction), (C) 3 steps handling
links (Link Creation, Link Preservation, Link Destruction), (D) 2 steps handling

Modification of

fact

D’

+−

R

R’

D

Emerging OCL description

L

L’

rule

Fig. 7. Structure of Realization Steps for OCL
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 Step Attribute Assignment
 Step Object Creation

as long as possible

apply

apply each of
Step Object Preservation
Step Object Destruction
Step Attribute Assertion

Step Precondition
as long as possible

Step Link Creation
 Step Link Preservation

apply each of

Step Link Destruction
Step Postcondition
as long as possible

Initialization
Stepapply

Fig. 8. Order of Realization Steps for OCL

a1:X1, a2:X2, ... an:Xn

p : Precondition

rn

rn

]
[r.params := 
[p.expr :=    

true ][q.expr := ][r.name := rn

r : Operation... ...

... ...

q : Postcondition

a1:X1 a2:X2 an:Xn

a1:X1 a2:X2 an:Xn

a1, ..., an are the objects on the left side
a1.isDefined and ... and an.isDefined

]

Fig. 9. Step Initialization

[r.name = 

q : Postcondition

q : Postcondition

a : X b : Ya : X b : Y

a : X b : Ya : X b : Y

p : Precondition

p : Precondition

: A : A

rn

rn

[q.expr := q.expr.and(
[p.expr := p.expr.and(a.y−>includes(b)

a.y−>includes(b) )]
)]

]rn

r : Operation

r : Operation

Fig. 10. Step Link Preservation

[r.name = 

q : Postconditionp : Precondition

a : X b : Y

a : X b : Y
r : Operation

...

: A
...

rn

rn

link does not exist

p : Precondition q : Postcondition

[q.expr := q.expr.and(
[p.expr := p.expr.and(a.y−>excludes(b)

a.y−>includes(b)
)]
)]

]rn

r : Operation

Fig. 11. Step Link Creation
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[r.name = 

q : Postcondition

q : Postcondition

p : Precondition

p : Precondition

a : X b : Ya : X b : Y

a : X b : Y
: A

a : X b : Y
rn

rn

]rn

[p.expr := p.expr.and(
[q.expr := q.expr.and(

a.y−>includes(b)
a.y−>excludes(b))]

)]

r : Operation

r : Operation

Fig. 12. Step Link Destruction

[r.name = 

q : Postcondition

q : Postcondition

[expr]rn

rn

r : Operation

r : Operation

[q.expr := q.expr.and(

]rn

expr)]

Fig. 13. Step Postcondition

attributes (Attribute Assertion, Attribute Assignment), and (E) 2 steps han-
dling the additional pre- and postcondition (Precondition, Postcondition). Each
step treats a particular aspect in the rule and, as depicted in Fig. 7, builds up
the OCL description by removing a particular fact from the rule (L,R) and by
adding this fact to the OCL description D. By this, one achieves an adapted
rule (L’,R’) and a new OCL description D’. The process stops, if rules are not
applicable any more. We show in the following figures the details of the central
steps. We will refer to the process of modifying the rule as rule adaption.

The order in which the steps have to be applied is restricted as shown in
Fig. 8. Within the respective block, the order is not significant, e.g., in the step
Object Creation, it does not matter in which order the created objects of the
rule are treated.

– The step Initialization in Fig. 9 identifies the objects of the left side as
parameters of a newly established operation having a precondition requiring
the actual parameters to be different from undefined. The step does not
adapt the rule (no rule adaption).

– The step Link Preservation in Fig. 10 extends the already constructed pre-
and postcondition by requirements for link existence at the start of the
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operation as well as at the end of the operation. The step removes the con-
sidered link and thus indicates that this link has been completely handled.

– The step Link Creation in Fig. 11 guarantees in the precondition that the
link is not existent and in the postcondition that the link exists. The step
removes the link (rule adaption).

[r.name = 

q : Postcondition

q : Postcondition

a : X
p : Precondition

p : Preconditionrn

rn

[
X.allInstances−>exists(a|
q.expr := 

q.expr

]rn

and a.oclIsNew) ]

r : Operation

r : Operation

Fig. 14. Step Object Creation

) ]

q : Postcondition

q : Postcondition

a : X a : X
p : Precondition

p : Precondition

rn

rn

]rn

r : Operation

r : Operation

[r.name = 

[q.expr :=q.expr.and( X.allInstances−>includes(a)

Fig. 15. Step Object Preservation

r : Operation

q : Postcondition

q : Postcondition

a : X
p : Precondition

p : Precondition
rn

rn

[q.expr := q.expr.and(X.allInstances−>excludes(a) )]

][r.name := rn

r : Operation

Fig. 16. Step Object Destruction
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– The step Link Destruction in Fig. 12 guarantees in the precondition the
existence of the link and in the postcondition the link’s non-existence. The
step removes the link (rule adaption).

– The step Postcondition in Fig. 13 adds the given OCL expression to the
postcondition and removes the OCL expression.

– The step Object Creation in Fig. 14 guarantees in the postcondition that a
new object is created and that the postcondition constructed so far is valid
for this new object. The step removes the object (rule adaption).

– The step Object Preservation in Fig. 15 introduces the requirement that a
preserved object still exists at postcondition time. Please recall, that all left
side objects become operation parameters and are required in the initializa-
tion step to be defined, i.e., to be existent. The step removes the object (rule
adaption).

– The step Object Destruction in Fig. 16 requires in the postcondition that the
object does not belong to the current objects any more. The step removes
the object (rule adaption).

We do not show the details of the steps Precondition, Attribute Assertion, and
Attribute Assignment. Precondition works analogously to step Postcondition,
Attribute Assertion is similar to step Precondition (because an assertion is basi-
cally a precondition), and Attribute Assignment resembles step Precondition (be-
cause an assignment is basically a postcondition).

6 Realization by Command Sequences

The realization of the rules by command sequences is structured into 5 steps as
pictured in Fig. 17. The 5 steps and their order are as follows.

– Object Creation: The objects introduced by the right side of the rule are
created.

– Link Creation: The links introduced by the right side of the rule are created
by insertion into the link set of the association.

– Attribute Assignment: The attributes are modified according to the details
given in the rule.

– Link Destruction: The links occurring only in the left side of the rule are
destroyed by removing them from the link set of the association.

– Object Destruction: The objects occurring only the left side of the rule are
destroyed.

– Steps Link Creation and Link Destruction may alternatively and equivalently
be realized by modifying an object- and set-valued attribute on either side
of the association (Steps 2b and 4b).

We do not cover handling of rule pre- or postconditions or attribute assertions.
Basically, these features can be realized by allowing conditional execution of the
commands already shown.
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att := v

: A

: A

(2a)

(2b)

(4b)

(4a)

Process all attribute assignments

Process all objects occurring only on the

Process all links occurring only on the

Process all links occurring only on the

Process all objects occurring only on the

or

or

: A

Step 1: Object Creation

Step 2: Link Creation

Step 4: Link Destruction

Step 5: Object Destruction

Step 3: Attribute Assignment

right side of the rule

right side of the rule

left side of the rule

left side of the rule

a : X

assign a := create X

a : X b : Y a : X b : Y

insert (a,b) into A

set a.y := a.y−>including(b)

a : X a : X
set a.att := v

a : X b : Y a : X b : Y

remove (a,b) from A

set a.y := a.y−>excluding(b)

a : X

destroy a

Fig. 17. Realization Steps for Command Sequence Generation

7 Conclusion

This paper proposes to translate graph transformations rules into two different
formalisms: (A) A descriptive language expressing the effect of a rule in form
of pre- and postconditions, and (B) a procedural language describing the effect
of a rule in terms of basic imperative manipulation commands. The procedural
realization can be employed to execute the graph transformations. The descrip-
tive realization can be checked against the procedural one, i.e., the pre- and
postconditions are evaluated during the execution. The pre- and postconditions
can further be used for deduction and verification purposes. Both realizations
give feedback to graph transformation designers for their development process.
This feedback is in particular needed when the graph transformations work on a
metamodel, e.g., the UML metamodel. We think that translating graph transfor-
mation into a standard software engineering language like UML including OCL
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broadens the audience of graph transformations, because standard UML and
OCL tools are familiar for many developers. We have made double use of graph
transformation rules: Firstly, we have used rules as the source language which
we translate and realize in the two formalisms; secondly, we have described our
translation in form of graph transformations.

We have used OCL as a vehicle, but we think that the basic idea behind the
translation is independent of OCL. We could have used other languages like SQL
achieving similar results.

Our approach enables us to automatically compute for a given set of rules and
a given working graph, the redexes where rules could be applied. Multiplicities
in the underlying class diagram can help to dramatically reduce the search space
for the redexes. Due to space limitations we have not described this in detail.
Other future work includes the following topics.

– There are several transformation alternatives to the decisions we have
taken. For example, instead of using oclIsNew we could use explicitly
Class.allInstances->excludes and includes in the pre- resp. postcon-
dition. By this we would reduce the number of used OCL features. Another
variation point concerns the parameters of the generated operations, which
not necessarily have to be all objects of the left side. But the parameter list
should be reduced only if the redex afterwards still uniquely determines the
rule application.

– We want to improve the expressiveness of operation descriptions by allowing
iteration and operation calling in the rules and plan to group rules into larger
structuring units, so-called transformation units.

– A fundamental treatment of the relationship between the generated pre- and
postcondition pair and the generated command sequence is needed, i.e., a
study of the relationship between the descriptive and the operational view on
rules. Such a study would ideally be inspired by the equivalence relationships
between relational algebra and relational calculus from the database field.
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Abstract. Graphs are suitable modeling formalisms for software and
hardware systems involving aspects such as communication, object ori-
entation, concurrency, mobility and distribution. State spaces of such
systems can be represented by graph transition systems, which are ba-
sically transition systems whose states and transitions represent graphs
and graph morphisms. Heuristic search is a successful Artificial Intel-
ligence technique for solving exploration problems implicitly present in
games, planning, and formal verification. Heuristic search exploits infor-
mation about the problem being solved to guide the exploration process.
The main benefits are significant reductions in the search effort and the
size of solutions. We propose the application of heuristic search for the
analysis of graph transition systems. We define algorithms and heuristics
and present experimental results.

1 Introduction

Graphs are a suitable formalism for software and hardware systems involving
issues such as communication, object orientation, concurrency, distribution and
mobility. The graphical nature of such systems appears explicitly in approaches
like graph transformation systems [31] and implicitly in other modeling for-
malisms like algebras for communicating processes [26]. The properties of such
systems mainly regard aspects such as temporal behavior and structural prop-
erties. They can be expressed, for instance, by logics used as a basis for a formal
verification method, like model checking [5], whose success is mainly due to the
ability to find and report errors.

Finding and reporting errors in model checking and many other analysis prob-
lems can be reduced to state space exploration problems. In most cases, the main
drawback is the state explosion problem. In practice, the size of state spaces can
be large enough (even infinite) to exhaust the available space and time resources.
Heuristic search has been proposed as a solution in many fields, including model
checking [13], planning [2] and games [24]. Basically, the idea is to apply algo-
rithms that exploit the information about the problem being solved in order to
guide the exploration process. The benefits are twofold: the search effort is re-
duced, for instance, errors are found faster and by consuming less memory, and
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the solution quality is improved, i.e., counterexamples are shorter and thus may
be more useful.

In cases like wide area networks with Quality of Service (QoS), one might not
be interested in short paths, but in cheap or optimal ones according to a certain
notion of cost. Typical examples are algebra defined on Reals, on Booleans, on
Probabilities, or on any other system. To cover such a diversity, we generalize
our approach by considering an abstract notion of cost.

Our work is mainly inspired by approaches to directed model checking [13],
logics for graphs (like the monadic second order logic [8]), spatial logics used to
reason about the behavior and structure of processes calculi [3] and graphs [4],
approaches for the analysis of graph transformation systems [1,15,28,33], and
cost-algebraic search algorithms [12,32].

The goal of our approach is to formalize a framework for the application of
heuristic search in order to analyze structural properties of systems modeled by
graph transition systems. We believe that our work additionally illustrates the
benefits of applying heuristic search for state space exploration. Heuristic search
is intended to reduce the analysis effort and, in addition, to deliver shorter solu-
tions, which in our case means shorter paths in graph transition systems. Such
paths might represent errors of a system or examples of interesting correct behav-
iours. It is worth saying that our approach offers no benefit if one is interested in
exhaustively exploring a states space, like is usual when one needs to correctnes
of a graph transition system.

Section 2 introduces a running example that is used along the paper to illus-
trate some of the concepts and methods. Section 3 defines our modeling formal-
ism, namely graph transition systems. Section 4 defines the kind of properties
we are interested in verifying. Section 5 summarizes the analysis algorithms
and discusses their correctness. Section 6 proposes heuristics for the analysis of
properties in graph transition systems. Abstraction is one of the most successful
techniques in model checking. In Section 7, we discuss the role of abstraction to
define useful heuristic estimates. Section 8 presents experimental results. Sec-
tion 9 concludes the paper and outlines future research avenues.

2 The Arrow Distributed Directory Protocol

The arrow distributed directory protocol [9] is a solution to ensure exclusive access
to mobile objects in a distributed system. The protocol induces a distributed
queue structure on a distributed system. The distributed system is given as an
undirected graph G, where vertices and edges respectively represent nodes and
communication links. Costs are associated with the links in the usual way, and
a mechanism for optimal routing is assumed.

The protocol works with a minimal spanning tree T of G. Each node has an
arrow which either indicates the direction in which the object lies or is going to
be. If a node owns the object or is requesting it, the arrow points to itself; we
say that the node is a terminal. The directed graph induced by the arrows is
called L. The protocol works by propagating requests and updating arrows such
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Fig. 1. Three states of the directory

that at any moment the paths induced by arrows, called arrow paths, lead to a
terminal either owning the object or waiting for it.

Fig. 1 illustrates three states of a protocol instance with six nodes v0,. . . ,v5.
For the sake of simplicity only L is depicted. The state on the left is the initial
one: node v0 has the object and all paths in L lead to it. The state on the right
of the figure is the result of two steps: 1) node v4 sends a request for the object
through its arrow; and 2) v3 processes it, making its arrow points to v4. Request
propagation should end by making all paths in L pointing towards v4, where
the object will be transfered once v0 is finished with it. Each propagation step
comprises of two transitions: deleting its out-going edge, and adding the new
edge in the direction, where the request came from.

One could be interested in properties like: Can a certain node v be terminal?
(Property 1), Can a certain node v be terminal and all arrow paths end at v?
(Property 2), Can some node be terminal? (Property 3), Can some node be
terminal and all arrow paths end at it? (Property 4).

3 Graph Transition Systems

This section presents our algebraic notion of costs. It shall be used as an abstrac-
tion of costs or weights associated to edges of graphs or transitions of transition
systems. For a deeper treatment of the cost algebra, we refer to [12].

Definition 1. A cost algebra is a 5-tuple 〈A,×,3,0,1〉, such that 1) 〈A,×〉
is a monoid with 1 as identity element and 0 as its absorbing element, i.e.,
a×0 = 0× a = 0; 2) 3⊆ A×A is a total ordering with 0 =

�
A and 1 =

⊔
A;

A is isotone, i.e., a 3 b implies both a × c 3 b × c and 3) c× a 3 c× b for all
a, b, c ∈ A [32].

In the rest of the paper a ≺ b abbreviates a 3 b and a �= b. Moreover, a 4 b
abbreviates b 3 a, and a 5 b abbreviates a 4 b and a �= b.

Intuitively, A is the domain set of cost values, which is linearly ordered by 3
and has �, � as least and greatest operations, and × is the operation used to
cumulate values. Consider, for example, the following instances of cost algebras,
typically used as cost or QoS formalisms: 〈{true, false},∧,⇒,false, true〉 (Net-
work and service availability), 〈R+ ∪ {+∞}, +,≤,+∞, 0〉 (Price, propagation
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delay) or 〈R+∪{+∞}, min,≥, 0, +∞〉 (Bandwidth). In the rest of the paper, we
consider a fixed cost algebra 〈A,×,3,0,1〉.
Definition 2. A graph G is a tuple 〈VG, EG, srcG, tgtG, ωG〉 where VG is a set
of nodes, EG is a set of edges, srcG, tgtG : EG → VG are source and target
functions, and ωG : EG → A is a weighting function.

Graphs usually have a particular start state sG
0 ∈ VG, which we sometimes denote

with s0 if G is clear from the context.

Definition 3. A path in a graph G is a alternating sequence of nodes and edges
represented as u0

e0→ u1 . . . such that for each i ≥ 0, we have ui ∈ VG, ei ∈ EG,
srcG(ei) = ui and tgtG(ei) = ui+1, or, shortly ui

ei→ ui+1.

An initial path is a path starting at sG
0 . Finite paths are required to end at

states. The length of a finite path p is denoted by |p|. The concatenation of two
paths p, q is denoted by pq, where we require p to be finite and end at the initial
state of q. The cost of a path is the cumulative cost of its edges. Formally,

Definition 4. Let p = u0
e0→ . . .

ek−1→ uk be a finite path in a graph G. The path
cost ωG(p) is ωG(e)× ωG(q) if p = (u e→ v)q and 1 otherwise.

Let γ(u) denote the set of all paths starting at node u. We shall use ω∗
G(u, V )

to denote the cost of the optimal path starting at a node u and reaching a node
v in a set V ⊆ VG. For ease of notation, we write ω∗

G(u, {v}) as ω∗
G(u, v).

Graph transition systems are suitable representations for software and hard-
ware systems and extend traditional transition systems by relating states with
graphs and transitions with partial graph morphisms. Intuitively, a partial graph
morphism associated to a transition represents the relation between the graphs
associated to the source and the target state of the transition, i.e., it models
the merging, insertion, addition and renaming of graph items, where the cost of
merged edges is the least one amongst the edges involved in the merging.

Definition 5. A graph morphism ψ : G1 → G2 is a pair of mappings ψV :
VG1 → VG2 , ψE : EG1 → EG2 such that we have ψV ◦ srcG1 = srcG2 ◦ ψE,
ψV ◦ tgtG1

= tgtG2
◦ ψE, and for each e ∈ EG2 such that {e′ | ψE(e′) = e} = ∅

we have, ωG2(e) =
⊔{ωG1(e′) | ψE(e′) = e}. A graph morphism ψ : G1 → G2 is

called injective if so are ψV and ψE; identity if both ψV and ψE are identities,
and isomorphism if both ψE and ψV are bijective. A graph G′ is a subgraph of
graph G, if VG′ ⊆ VG and EG′ ⊆ EG, and the inclusions form a graph morphism.
A partial graph morphism ψ : G1 → G2 is a pair 〈G′

1, ψm〉 where G′
1 is a

subgraph of G1, and ψm : G′
1 → G2 is a graph morphism.

The composition of (partial) graph morphisms results in (partial) graph mor-
phisms. Now, we extend transition systems with weights.

Definition 6. A transition system is a graph M = 〈SM , TM , inM , outM , ωM 〉
whose nodes and edges are called states and transitions, with inM , outM repre-
senting the source and target of an edge.
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Finally, we are ready to define graph transition systems, which are transition
systems together with morphisms mapping states into graphs and transitions
into partial graph morphisms.

Definition 7. A graph transition system (GTS) is a pair 〈M, g〉, where M is a
weighted transition system and g : M → U(Gp) is a graph morphism from M to
the graph underlying Gp, the category of graphs with partial graph morphisms.
Therefore g = 〈gS , gT 〉, and the component on states gS maps each state s ∈ SM

to a graph gS(s), while the component on transitions gT maps each transitions
t ∈ TM to a partial graph morphism gT (t) : gS(inM (t)) ⇒ gS(outM (t)).

In the rest of the paper, we shall consider a GTS 〈M, g〉 modeling the state space
of our running example, where g maps states to L, i.e., the graph induced by the
arrows, and transitions to the corresponding partial graph morphisms. Consider
Fig. 1, each of the three graphs depicted, say G1, G2 and G3 corresponds to
three states s1,s2,s3, meaning that g(s1) = G1, g(s2) = G2 and g(s3) = G3.
The figure illustrates a path s1

t1→ s2
t2→ s3, where g(t1) is the identity restricted

to all items but edge e4. Similarly, g(t2) is the identity restricted to all items
but edge e3. Thus, in both transitions all other items are preserved (with their
identity) except the edges mentioned.

4 Properties of Graph Transition Systems

The properties of a graph transition system can be expressed using different
formalisms. One can use, for instance, a temporal graph logic like the ones pro-
posed in [1,28], which combine temporal and graph logics. A similar alternative
are spatial logics [3], which combine temporal and structural aspects. In graph
transformation systems [7], one can use rules to find certain graphs: the goal
might be to find a match for a certain transformation rule. For the sake of
simplicity, however, we consider that the problem of satisfying or falsifying a
property is reduced to the problem of finding a set of goal states characterized
by a goal graph and the existence of an injective morphism.

Definition 8. Given a GTS 〈M, g〉 and a graph G, the goal function goalG :
SM → {true, false} is defined such that goalG(s) = true iff there is a partial
injective graph morphism ψ : G→ g(s).

Intuitively, goalG maps a state s to true, if and only if G can be injectively
matched with a subgraph of g(s). It is worth mentioning that most graph trans-
formations approaches consider injective rules, for which a match is precisely
given by injective graph morphisms, and that the most prominent graph logic,
namely the Monadic Second-Order (MSO) logic by Courcelle [8] and its first-
order fragment (FO) can be used to express injective graph morphisms. The
graph G will be called goal graph. It is of practical interest identifying particular
cases of goal functions as the following goal types:
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Fig. 2. Three graphs illustrating various goal criteria

1. ψ is an identity - the exact graph G is looked for. In our running example,
this corresponds to Property 2 mentioned in Section 2. For instance, we look
for the exact graph depicted to the left of Fig. 2.

2. ψ is a restricted identity - an exact subgraph of G is looked for. This is
precisely Property 1. For instance, we look for a subgraph of the graph
depicted to the left of Fig. 2. The graph in the center of Fig. 2 satisfies this.

3. ψ is an isomorphism - a graph isomorphic to G is looked for. This is precisely
Property 4. For instance, we look for a graph isomorphic to the one depicted
to the left of Fig. 2. The graph to the right of Fig. 2 satisfies this.

4. ψ is any injective graph morphism - we have the general case. This is precisely
Property 3. For instance, we look for an injective match of the graph depicted
in the center of Fig. 2. The graph to the right of Fig. 2 satisfies this.

Note that there is a type hierarchy, since goal type 1 is a subtype of goal types
2 and 3, which are subtypes of the most general goal type 4.

The computational complexity of the goal function varies according to the
above cases. For goals of type 1 and 2, the computational efforts needed are just
O(|G|) and O(|ψ(G)|), respectively. Unfortunately, for goal types 3 and 4, due
to the search for isomorphisms, the complexity increases to a term exponential
in |G| for the graph isomorphism case and to a term exponential in |ψ(G)|
for the subgraph isomorphism case. The problem of graph isomorphism is not
completely classified. It is expected not to be NP-complete [34].

Now we state the two analysis problems we consider.

Definition 9. Given a GTS 〈M, g〉 and a graph G (the goal graph), the reach-
ability problem consists of finding a state s ∈ SM such that goal(s) is true.
The optimality problem of our approach consists of finding a finite initial path
p ending at a state s ∈ SM such that goalG(s) is true and ω(p) = ω∗

M (sM
0 , S′),

where S′ = {s ∈ SM | goalG(s) = true}.

For the sake of brevity, in the following, ω∗
M (s) abbreviates ω∗

M (s, S′) with S′ =
{s ∈ SM | goalG(s) = true}, when goalG is clear from the context.

5 The Analysis of Graph Transition Systems

The two problems defined in the previous section can be solved with traditional
graph exploration and shortest-path algorithms. For the reachability problem, for
instance, one can use, amongst others, depth-first search, hill climbing, best-first
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search, Dijkstra’s algorithm (and its simplest version breadth-first search) or A*.
For the optimality problem, only the last two are suited.

Recall that Dijkstra’s algorithm [6] maintains a set of nodes as search horizon
and iteratively explores the (currently optimal) node in the horizon. A* [18]
basically improves Dijkstra’s algorithm by selecting the most promising node
for expansion by considering not only the weight of the current optimal path
to a node but also a heuristic estimate of its distance to the set of goal nodes.
Contrarily, best-first search takes into account the heuristic only. For a deeper
treatment of both algorithms, we refer to [6,18,27].

Dijkstra’s algorithm and A* are traditionally defined over a simple instance of
our cost algebra A, namely cost algebra 〈R+∪{+∞}, +,≤, +∞, 0〉. Fortunately,
the results that ensure the admissibility of Dijkstra’s algorithm or A*, i.e., the
fact that both algorithms correctly solve the optimality problem, have been
generalized for the cost algebra [12]:

Proposition 1. Dijkstra’s algorithm solves the optimality problem.

Definition 10. Given a GTS 〈M, g〉 and a goal function goalG, a heuristic h :
SM → A is admissible, if for all s ∈ SM we have h(s) 3 ω∗

M (s), and have h(s) =
1 whenever goalG(s); consistent, if for each s

t→ s′, we have h(s) 3 ω(t)×h(s′).

A consistent heuristic is admissible if for all s such that goalG(s), h(s) = 1, even
for our cost algebra [12].

It is worth saying that in some practical cases non-admissible strategies, like
A* with non-admissible heuristics or best-first, find near-to-optimal solutions
efficiently.

Proposition 2. For an admissible heuristic A* solves the optimality problem.

6 Heuristics for Graph Transition Systems

Now we propose various heuristics for the analysis of graph transition systems.

Items to Remove and Insert. Consider Fig. 1 and suppose we want to
estimate the number of transitions necessary to transform the leftmost graph to
the rightmost one. We need to remove e3 and e4, and to add e6 and e7. Since
we know that each transition removes and adds at most one edge, we conclude
that at least two transitions are necessary. We can generalize them as follows.

First, recall that partial graph morphisms are induced by system transitions.
In the case of graph transformation systems, for instance, graph morphisms are
induced by graph transformation rules, while in communication protocols by the
operations of the processes. In most cases, such transitions are usually local and
involve a few insertion/deletion/merging of items. We can thus determine, prior
to the analysis, the number of items deleted and erased by graph morphisms.

Let ni
m and nd

m respectively be the maximum number of inserted and deleted
nodes in any transition, and ei

m and ed
m respectively be the maximum number
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of inserted and deleted edges in any transition, where the merging of n items is
interpreted as the deletion of n− 1 items. Let G be the goal graph. In addition,
let cm be the least cost associated to transitions. On the other hand, for goals
of type 2, only the number of items to add are relevant. When considering goals
of type 3, we cannot rely on the identity of edges as in previous heuristics and
have thus to base our heuristic on the number of items to be added or deleted.
Finally, for type 4, only the number of items to be added is taken into account
because we have use item identities.

Definition 11. Heuristics h1
n, h2

n, h3
n, h4

n are defined as follows:

h1
n(s) = c

max{�|VG\Vg(s)|/ni
m�,�|EG\Eg(s)|/ei

m�,�|Vg(s)\VG|/nd
m�,�|Eg(s)\EG|/ed

m�}
m

h2
n(s) = c

max{�|VG\Vg(s)|/ni
m�,�|EG\Eg(s)|/ei

m�}
m

h3
n(s) = c

max{(�|VG|−|Vg(s)|)/ni
m�,(�|EG|−|Eg(s)|)/ei

m�,(�|Vg(s)|−|VG|)/nd
m�,(�|Eg(s)|−|EG|)/ed

m�}
m

h4
n(s) = c

max{(�|VG|−|Vg(s)|)/ni
m�,(�|EG|−|Eg(s)|)/ei

m�}
m

Proposition 3. Heuristic h1
n (resp. h2

n,h3
n,h4

n) is consistent and, for goals of
type 1 (resp. 2,3,4), admissible.

Isomorphism Heuristics. The main drawback of the previously presented
heuristics for goals of type 4 is evident. If state graphs have more edges and nodes
than the goal graph, the resulting heuristic is completely blind, i.e., it returns
1 for all states. Thus A* degenerates into Dijkstra and best-first into a random
search. Thus, we propose functions inspired by heuristics to decide isomorphism
or sub-graph isomorphism. For instance, if one has to decide whether two graphs
are isomorphic one would check first whether the two graphs have the same
number of items. If so, one could continue trying to match nodes with the same
in- and out-degrees.

First, let din(u) and dout (u) denote the in- and out-degree of a node u in a
graph G, i.e., din(u) = |{e ∈ EG | tgt(e) = u}| and dout(u) = |{e ∈ EG | src(e) =
u}|. Let further DG be the set of pairs of in- and out-degrees of all nodes of G,
i.e., DG =

⋃
u∈VG

〈in(u), out(u)〉, and D̂G be a vector with all elements of DG

ordered according to the first component of the tuples. Finally, let dM denote
the Manhattan distance between two vectors, i.e., dM (u, v) =

∑
i |ui − vi|.

Definition 12. Let G be the goal graph. We define h4
c as

h4
c(s) = c

max{|D̂G|,|D̂g(s)|}
i=0 dM(D̂G[i],D̂g(s)[i])

m ,

where D̂G′ [i] is 〈0, 0〉 if i ≥ |D̂G′ |. In words, we compute for each graph G and
g(s) a node degree-ordered vector. Then we compute the Manhattan distances of
elements in the same rank. Intuitively, we decide a match of nodes and establish
how many in- and out-going edges have to be removed or inserted.

Note that if one graph has more nodes than the other, we consider that the
graph with less nodes has extra nodes with no degree at all. If the goal type is
3, we can refine the heuristic by trying different matches of the two vectors, as
formalized in the following heuristic:
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Definition 13. Let G be the goal graph. We define h3
c as

h3
c(s) =

⎧⎨⎩h4
c(s) if |D̂G| ≥ |D̂g(s)|

c
|D̂G|−|D̂g(s)|
j=0 { |D̂G|

i=0 dM(D̂G[i+j],D̂g(s)[i])}
m otherwise

Obviously, none of the two heuristics presented in this section is consistent or
admissible in general, and one could define other versions of the heuristics by
changing some of the parameters used: the order criteria, the distance between
vectors, etc. The idea of these heuristics is, indeed, to illustrate the wide variety
of non-admissible heuristics one could define.

Formula-Based Heuristic. Based on the original formula-based heuristic [13]
we define a heuristic that exploits the specification of goal states by graph for-
mulae. The details on how to transform the goal function as a goal graph and
a requirement on the injective morphism into a corresponding closed negation-
free FO graph formula is out of the scope of the paper. A simple example for
Property 3 is to find out if there is an edge with the same source and target, i.e.,
∃e.src(e) = tgt(e).

In addition to boolean connectives, FO ingredients include first-order node and
edge quantifiers, and node and edge comparison. For a detailed description of
the logic we refer to [8]. The idea of the formula-based heuristic is that each false
predicate contributes to an increase to the value. In other words, FO formulae
are interpreted over the domain of the cost algebra in the spirit of quantitative
logics [20]. Thus, true is interpreted as 1, false as cm, disjunction as selection
and conjunction as cumulation.

Definition 14. Let G be a graph and f, g be closed negation-free FO formulae.
The interpretation of FO formulae over the cost algebra is given by

�true�G = 1 �false�G = cm

�f ∨ g�G = �f�G � �g�G �f ∧ g�G = �f�G × �g�G

�∃x.f�G =
⊔

u∈VG
�f{u/x}�G �∀x.f�G =

∏
u∈VG

�f{u/x}�G

�∃y.f�G =
⊔

e∈EG
�f{e/y}�G �∀y.f�G =

∏
e∈EG

�f{e/y}�G

�u = u′�G = 1 if u = u′, cm otherwise �e = e′�G = 1 if e = e′, cm otherwise

where
∏

denotes the iterated application of operator ×, x and y are node and
edge variables, respectively, and u, u′ and e, e′ are node and edge constants.

Finally, we define the formula-based heuristic as the interpretation of the formula
described over the cost algebra.

Definition 15. Heuristic hf is defined as hf (s) = �f�g(s).

The formula-based heuristic is neither consistent nor admissible in general as
one transition can change the falsehood of more than one predicate.
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Hamming Distance. The Hamming distance of two bit vectors is the number
of vector indices on which the bits differ. As there are many different encodings of
a graph, we choose a simple one based on the image of the state representation.

Definition 16. If binG denotes the bit-vector representation of G, and if we
interpret false as 0, and true as 1, we obtain

hh(s) = c
||binG|−|bing(s)||+

min{|binG|,|bing(s)|}
i=0 binG[i] ⇐⇒ bing(s)[i]

m

As more than one bit can change within one transition (e.g. the last one before
reaching the goal) heuristic hh is neither admissible nor consistent.

Tool-specific Heuristics. Finally, one can profit from specific heuristics avail-
able in the concrete tool that performs the analysis. For example, if the system is
implemented and analyzed with HSF-SPIN [13], one can benefit from heuristics
like the FSM Distance, which takes into account the finite automata representa-
tion of processes. If the Java Pathfinder [16] is used structural heuristics based on
coverage metrics and interleavings are available. If planning tools like MIPS [11]
are used, one can apply variants of the relaxed planning heuristic [21].

7 Abstraction and Heuristic Search

Abstraction is one of the most important issues to cope with large and infinite
state spaces and to reduce the exploration efforts. Abstracted systems should be
significantly smaller than the original one and while preserve some properties
of concrete systems. The study of abstraction formalisms for graph transition
systems is, however, out of the scope of this paper. We refer to [1] for an example
of such a formalism. We assume that abstractions are available, state the prop-
erties necessary for abstractions to preserve our two problems (reachability and
optimization) and propose how to use abstraction to define informed heuristics.

The preservation of the reachability problem means that the existence of an
initial goal path in the concrete system must entail the existence of a corre-
sponding initial goal path in the abstract system. Note that this does not mean
the existence of spurious initial goal paths in the abstract system, i.e., abstract
paths that do no not correspond to any concrete path. Similarly, the preserva-
tion of the optimization problem means that the cost of the optimal initial goal
path in the concrete system should be greater than or equal to the cost of the
optimal initial goal path in the abstract system.

Abstractions have been applied in combination with heuristic search both
in model checking [14] and planning [10] approaches. The main idea is that
the abstract system is explored in order to create a database that stores the
exact distances from abstract states to the set of abstract goal states. The exact
distance between abstract states is an admissible and consistent estimate of the
distance between the corresponding concrete states. The distance database is
thus used as heuristics for analyzing the concrete system.

We recall the notion of 〈α, γ〉-simulations [25] typically used in model checking
abstraction approaches.
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Definition 17. Let S, S′ be two set of states. A Galois connection from 2S to
2S′

is a pair of monotonic functions 〈α, γ〉, with α : 2S → 2S′
(abstraction) and

γ : 2S′ → 2S (concretization) such that id2S ⊆ γ ◦ α and α ◦ γ ⊆ id2S′ .

Definition 18. Let 〈M, g〉 and 〈M ′, g′〉 be two GTSs and 〈α, γ〉 be a Galois con-
nection from 2SM to 2SM′ . We say that 〈M ′, g′〉 〈α, γ〉-simulates 〈M, g〉, written
〈M, g〉 +〈α,γ〉 〈M ′, g′〉, if α ◦ pre ◦ γ ⊆ pre′, where pre : SM → SM is defined by

pre(S) = {s ∈ S | s t→ s′} and pre′ is defined similarly for 〈M ′, g′〉.
We say that a simulation 〈M, g〉 +〈α,γ〉 〈M ′, g′〉 preserves a goal function goalG
whenever s′ ∈ α(s′) implies goalG(s) ⇒ goalG(s′), and we call it cost consistent

if for any transition s1
t→ s2 in M there is a transition s′1

t′→ s′2 with s′1 ∈ α(s1),
s′2 ∈ α(s2) and ω(t′) 3 ω(t).

Proposition 4. Let 〈M, g〉, 〈M ′, g′〉 be two GTSs such that〈M, g〉 +〈α,γ〉 〈M ′, g′〉
and goalG is preserved. Then, there is a solution to the reachability problem in
〈M ′, g′〉 if there is a solution to the reachability problem in 〈M, g〉.
As a consequence, if there is no solution to the reachability problem in the
abstract graph transition system, there is no solution in the concrete system.
Recall that the contrary is not true: there might be initial goal paths in the
abstract system, but not in the concrete one. Such spurious solutions are usually
eliminated by refining the abstractions [19]. Now we state that the optimality
problem is preserved for cost consistent simulations.

Proposition 5. Let 〈M, g〉, 〈M ′, g′〉 be two GTSs such that〈M, g〉 +〈α,γ〉 〈M ′, g′〉
is cost consistent and goalG is preserved. Then ω∗

M ′(sM ′
0 ) 3 ω∗

M (sM
0 ).

We now describe how to use abstraction to define informed heuristics.

Definition 19. Let 〈M, g〉, 〈M ′, g′〉 be two GTSs such that〈M, g〉 +〈α,γ〉〈M ′, g′〉
is cost consistent and goalG is preserved. Heuristic ha is defined as ha(s) =
ω∗

M ′(s′), for any s′ ∈ SM ′ such that s′ ∈ α(s).

Proposition 6. Heuristic ha is consistent and admissible.

When different abstractions are available, we can combine the different data-
bases in various ways to obtain better heuristics. The first way is to trivially
select the best value delivered by two heuristic databases, which trivially results
in a consistent and admissible heuristic.

Definition 20. Given two different abstraction database heuristics ha and ha′

we define ha	a′ as ha	a′(s) = ha(s) � ha′(s).

In some cases, however, it is possible to take their cumulative values using
×, which provides a much better guidance for the search process. The corre-
sponding abstraction databases are called disjoint. Intuitively the idea is that
each (non self-)transition in the concrete system either has a corresponding (non
self-)transition in one of the abstracted systems but not in both.
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Fig. 3. A transition system (leftmost) with three different abstractions

Definition 21. Let 〈M, g〉 be a GTS and 〈M ′, g′〉, 〈M ′′, g′′〉 be two abstracted
GTS such that 〈M, g〉 +〈α,γ〉 〈M ′, g′〉, 〈M, g〉 +〈α′,γ′〉 〈M ′′, g′′〉 are cost consis-
tent and goalG is preserved by both simulations. We say that 〈M ′, g′〉, 〈M ′′, g′′〉
are disjoint abstractions whenever for any transition s1

t→ s2 in M such that
s1 �= s2 either there is a transition s′1

t→ s′2 with s′1 �= s′2 and s′1 ∈ α(s1),
s′2 ∈ α(s2), or s′′1

t→ s′′2 with s′′1 �= s′′2 and s′′1 ∈ α′(s1), s′′2 ∈ α′(s2).

Fig. 3 depicts a concrete transition system (left) with three abstractions (given
by node mergings). The center-left and center-right abstractions are mutually
disjoint. However any of these together with the rightmost abstraction is not
disjoint. For instance, the concrete transition from s0 to s3 in the leftmost graph
has a corresponding abstract (non self-)transition in the center-left abstraction
and in the rightmost one. As a result the distance from s0 to s3 would be
estimated as 3 which is clearly not a lower bound.

Definition 22. Given two different abstraction database heuristics ha and ha′ ,
we define ha	a′ as ha	a′(s) = ha(s)× ha′(s).

Proposition 7. Let 〈M, g〉 be a GTS and 〈M ′, g′〉, 〈M ′′, g′′〉 be two disjoint
abstracted GTS. Let 〈M, g〉 be a GTS and 〈M ′, g′〉, 〈M ′′, g′′〉 be two abstracted
GTS such that 〈M, g〉 +〈α,γ〉 〈M ′, g′〉, 〈M, g〉 +〈α′,γ′〉 〈M ′′, g′′〉 are cost consis-
tent and goalG is preserved by both simulations. Let further ha and ha′ be the
database heuristics constructed from 〈M ′, g′〉 and 〈M ′′, g′′〉, respectively. Then
ha	a′ is consistent and admissible.

8 Experimental Results

We validate our approach by presenting experimental results obtained with
HSF-SPIN [13], a heuristic model checker compatible with the successful model
checker SPIN [22]. The analysis we perform regards Property 2, i.e., Can a cer-
tain node vi be a terminal and no other requests are queued over the network?.
We have implemented the Arrow Distributed Directory Protocol in Promela, the
specification language of both SPIN and HSF-SPIN. The implemented model al-
lows for an easy definition of the minimal spanning tree underlying the protocol.
A node is modeled as a non-deterministic process that can request an object,
accept the request as a non-terminal node, accept the request as a terminal node,
send the object if it has finished working on it, or receive the object sent directly
over the network. We choose three different topologies: star, where all nodes
are connected to one common node, chain, nodes forming a connected chain,
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Table 1. Reachability experiments in the arrow distributed directory protocol

star DJK DFS BF+h1
n BF+hh BF+hf

expanded nodes 38,701 6,253 30 6,334 30
solution cost 20 134 58 32 58
chain DJK DFS BF+h1

n BF+hh BF+hf

expanded nodes 413,466 78,112 38 1,49 38
solution cost 28 118 74 74 74
tree DJK DFS BF+h1

n BF+hh BF+hf

expanded nodes 126,579 24,875 34 24,727 34
solution cost 24 126 66 44 66

and tree, where nodes are arranged in the form of a binary tree. Each instance
consists of 10 nodes. In all our experiments, we set a memory bound of 512 MB.

The results in Table 1 correspond to the first phase of the goal-finding process,
namely when one is interested in finding a goal state as quick as possible. The
table shows the number of expanded nodes and solution length for Dijkstra’s
algorithm (DJK), depth-first search (DFS) and best-first search with heuristics
h1

n (BF+h1
n), hh (BF+hh) and hf (BF+hf).

As expected, Dijkstra’s algorithm offers the optimal path to the desired state
graph though requiring the greatest number of state expansions. Best-first offers
the best performance in terms of node expansions with heuristics h1

n and hf . It
is worth mentioning that in this particular example hf amounts to (h1

n)5. When
applying the Hamming distance, the number of expanded nodes increases, still
the solution length decreases.

Table 2 regards the second phase of the bug-finding process, namely when one
is interested in finding optimal paths to a given goal state. The table shows the
number of expanded nodes and solution length for Dijkstra’s algorithm (DJK)
and A* with heuristics h1

n (A*+h1
n), hh (A*+hh) and hf (A*+hf). In addition,

we used the Hamming distance applied to the whole state vector representation
(A*+Hh), where sb and sd indicate that the goal state used for the heuristic was
the one obtained with breadth- and depth-first search, respectively.

The first thing to observe is that h1
n, being admissible, always delivers optimal

paths and requires less search effort than Dijkstra’s algorithm. The performance
of the Hamming distance is not regular. Version hh that takes into account the
graph representation and Hh(sb) based on the whole bit-vector of the state ob-
tained with Dijkstra’s algorithm outperform heuristic h1

n. On the other hand,
the Hamming distance that takes into account the bit-vector representation of
the state obtained with the depth-first search exploration shows poor perfor-
mances by delivering non-optimal counterexamples and running out of memory.
The reason is that the state vectors corresponding to states sb and sd are very
different (though both representing the goal state). The bits representing data,
not involving the goal graph items, result in rich information in one case and
fuzzy in the other. Heuristic hf performs the best, both in terms of the expanded
nodes and the path length.
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Table 2. Optimality experiments in the arrow distributed directory protocol

star DJK A*+Hh(sd) A*+Hh(sb) A*+h1
n A*+hh A*+hf

expanded nodes 38,701 o.m. 1,255 13,447 117 206
solution cost 20 o.m. 20 20 20 20
chain DJK A*+Hh(sd) A*+Hh(sb) A*+h1

n A*+hh A*+hf

expanded nodes 413,466 26,622 1,245 106,629 1,620 198
solution cost 28 42 28 28 28 28
tree DJK A*+Hh(sd) A*+Hh(sb) A*+h1

n A*+hh A*+hf

expanded nodes 126,579 o.m 1,481 33,720 6,197 224
solution cost 24 o.m. 24 24 24 24

9 Conclusion

We have presented an abstract approach for the analysis of graph transitions
systems, which are traditional transition systems where states and transitions
respectively represent graphs and partial graph morphisms. It is a useful formal-
ism to represent the state space of systems involving graphs, like communication
protocols, graph transformations, and visually described systems.

The analysis of such systems is reduced to exploration problems consisting of
finding certain states reachable from the initial one. We analyze two problems:
finding just one path and finding the optimal one, according to a certain no-
tion of optimality. As algorithms, we propose the use of heuristic search. They
use heuristic functions that lead the exploration to the set of goal states. We
have proposed different such functions proving some of their properties. In ad-
dition, we have proposed the use of abstraction-based heuristics which exploit
abstraction techniques in order to obtain informed heuristics.

We have illustrated our approach with a scenario in which one is interested in
analyzing structural properties of communication protocols. As a concrete exam-
ple we used the arrow distributed directory protocol [9], which ensures exclusive
access to a mobile service in a distributed system. We implemented our approach
in the heuristic model checker HSF-SPIN, an extension of the well-known model
checker SPIN and presented promising preliminary experiments. In future work,
we plan to realize a richer empirical evaluation of our approach, focusing on
abstraction database heuristics and possibly profiting from existing approaches
for the abstraction of graph transformation systems [1,30].
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Abstract. In this paper, we consider high-level structures like graphs,
Petri nets, and algebraic specifications and investigate two kinds of sat-
isfiability of conditions and two kinds of rule matching over these struc-
tures. We show that, for weak adhesive HLR categories with class A of
all morphisms and a class M of monomorphisms, strictly closed under
decompositions, A- and M-satisfiability and A- and M-matching are ex-
pressively equivalent. The results are applied to the category of graphs,
where M is the class of all injective graph morphisms.

1 Introduction

Conditions are most important for high-level systems in a large variety of applica-
tion areas, especially in the area of safety-critical systems e.g. the specification
of railroad control systems [8] and access control policies [11]. Conditions are
properties on morphisms or objects which have to be satisfied.

Adhesive HLR systems, introduced in [6] are a new version of high-level re-
placement systems, combining HLR systems in the sense of [5] and adhesive
categories [12]. Weak adhesive HLR categories consist of a category and a class
M of monomorphisms and can be applied to all kinds of graphs, Petri nets, and
algebraic specifications.

In this paper, we investigate rules and conditions on high-level structures and
speak on A-matching if the match of the rule is arbitrary and on M-matching
if the match is in M. Accordingly, we speak on A-satisfiability of a condition if
the required morphisms are arbitrary and on M-satisfiability if they are in M.
In the literature, nearly every combination of matching and satisfiability occurs.
The different concepts have their advantages and disadvantages: A-matching
and A-satisfiability allow a compact representation of a set of similar rules and
conditions, but this might be a source of error.M-matching andM-satisfiability
restrict the allowed morphisms, allow counting, are flexible and intuitive, but one
may need sets of similar rules and conditions.

We systematically investigate the matching and satisfiability notions with the
aim to find a simple transformation for switching from one notion to the other.
We show how to transform conditions from A- to M-satisfiability such that a
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A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 430–444, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Satisfiability of High-Level Conditions 431

morphism A-satisfies a condition if and only if it M-satisfies the transformed
condition and from M- to A-satisfiability such that a morphism M-satisfies
a condition if and only if it A-satisfies the transformed condition, provided
that the class M is strictly closed under decompositions. This is an important
step for connecting conditions traditionally considered withM-satisfiability with
Rensink’s graph predicates [13] and first order formulas, whose satisfiability no-
tions have to be classified as A-satisfiability: E.g., the semantics of formulas is
concerned with arbitrary assignments of variables to values, i.e. an assignment
is a not necessarily injective function from variables to the domain.

Moreover, we investigate M-matching of rules in the framework of weak ad-
hesive HLR categories and present two Simulation Theorems, saying that direct
derivations can be simulated by direct derivations with M-matching and vice
versa. The transformations are illustrated by examples in the category of graphs
where M is the class of all injective graph morphisms.

A-satisfiability

M-satisfiability

M A

A-matching

M-matching

Q R

The paper is organized as follows. In Section 2, we recall the notions of con-
ditions, rules, and direct derivations in the framework of weak adhesive HLR
categories. In Section 3, we show that, for weak adhesive HLR categories with
M-initial object and M strictly closed under decompositions, A-satisfiability
and M-satisfiability are expressively equivalent. In Section 4, we distinguish be-
tween A-matching, where the match is allowed to be arbitrary, andM-matching,
where the match must be inM, and show that, for weak adhesive HLR categories
with M strictly closed under decompositions, A-matching and M-matching are
expressively equivalent. A conclusion including further work is given in Section 5.

2 Conditions and Rules

In this section, we review the definitions of conditions and rules for high-level
structures like graphs, Petri nets, and algebraic specifications. We use the frame-
work of weak adhesive HLR categories. For a detailed introduction see [6,4].

Assumption. We assume that 〈C,M〉 is a weak adhesive HLR category.

Example 1. The category 〈Graphs,M〉 of directed graphs, whereM is the class
of all injective graph morphisms, is a weak adhesive HLR category.

Definition 1 (conditions). A condition over an object P is of the form ∃a or
∃(a, c) where a: P → C is a morphism and c is a condition over C. Moreover,
Boolean formulas over conditions [over P ] are conditions [over P ]. A morphism
p: P → G satisfies a condition ∃a [∃(a, c)] if there exists a morphism q: C → G
in M with q ◦ a = p [satisfying c]. An object G satisfies a condition ∃a [∃(a, c)]
if all morphisms p: P → G in M satisfy the condition.



432 A. Habel and K.-H. Pennemann

P C

G

a

p q
=

The satisfaction of conditions is extended onto Boolean conditions in the usual
way. We write p |=M c or p |= c [G |= c] to denote that morphism p [object G]
satisfies c. Two conditions c and c′ over P are equivalent on morphisms, denoted
by c ≡ c′, if, for all morphisms p: P → G, p |= c if and only if p |= c′.

Remark 1. The conditions in Definition 1 correspond to nested constraints and
application conditions in [8] and they subsume the previous notions of constraints
and application conditions in [3].

In the definition, the required morphisms have to be in M. We sometimes
speak ofM-satisfiability. BesidesM-satisfiability, one may investigate A-satisfi-
ability, where the required morphisms are allowed to be arbitrary, i.e. in A,
where A denotes the class of all morphisms. The definition is obtained from the
one of M-satisfiability, by replacing all occurrences of M by A resp. deleting all
occurrences of “in M”. We write |=A to denote A-satisfiability.

Conditions of the form ∃ id and ¬∃ id with identity id:P → P are abbre-
viated by true and false, respectively. It turns out that, for every condition c,
∃(id, c) ≡ c.

Example 2. In the category of graphs, the meaning of the following conditions
for a graph morphism w.r.t. M-satisfiability is:

¬∃(
1 2

→
1 2

) There do not exist parallel edges between the images of 1, 2.
∃(

1
→ Sn) The image of 1 has n outgoing edges to different nodes.

Sn denotes a star with n outgoing edges.
¬∃(

1
→ Sn+1) The image of 1 does not haven+1 outg. edges to diff. nodes.

∃(
1 2

→ Pn) There is a simple path of lengthn connecting the im. of 1, 2.
Pn denotes a simple path of length nbetween the im. of 1, 2.

M-satisfiability restricts the kind of morphisms: no identification of nodes and
edges is allowed. If one wants to have a condition c with arbitrary satisfia-
bility, one has to add the so-called quotient conditions of c to the system.
M-satisfiability allows to express explicit counting such as the existence/non-
existence of n nodes or edges or a simple path of length n.

The meaning of the condition for a graph morphism w.r.t. A-satisfiability is:

∃(
1
→

1
) There exists an outgoing edge (proper edge or loop).

A-satisfiability allows a compact representation of a set of similar conditions. On
the other hand, A- satisfiability may lead to misinterpretations of conditions.
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The meaning of the condition ∃(
1
→

1
) for a graph morphism w.r.t.M-,

X - (class of all edge-injective graph morphisms), and A-satisfiability is:

There exist at least two proper outgoing edges to different nodes.
There exist at least two outgoing edges (proper edges and/or loops).
There exists at least one outgoing edge (proper edge or loop).

A-satisfiability may be seen as the complement to M-satisfiability. Both notions
have their advantages as well as their disadvantages: E.g.M-satisfiability allows
explicit counting, but conditions get complex, if it is undesired to distinguish
elements. For each notion there exist examples of properties, for which the con-
ditions get complex when expressed by the other notion, so none is better than
the other.

We consider rules with application conditions [3,8]. Examples and pointers to
the literature can be found in [2,1,7].

Definition 2 (rules). A plain rule q = 〈L ← K → R〉 consists of two morphisms
in M with a common domain K. L is called the left-hand side, R the right-hand
side, and K the interface. An application condition ac = 〈acL, acR〉 for q consists
of two conditions over L and R, respectively. A rule p = 〈q, ac〉 consists of a plain
rule q and an application condition ac for q.

L K R

G D H

m m∗(1) (2)

Given a plain rule q and a morphism K → D, a direct derivation consists of two
pushouts (1) and (2). We write G⇒q,m,m∗ H , G ⇒q H , or short G⇒ H and say
that m is the match and m∗ is the comatch of q in H . We speak of an A-match
(A-matching) if m is arbitrary and of an M-match (M-matching) if m is in M.
Given a rule p = 〈q, ac〉, there is a direct derivation G ⇒p,m,m∗ H in 〈X, Y 〉 with
X, Y in {A,M} if G⇒q,m,m∗ H , m ∈ X , m |=Y acL, and m∗ |=Y acR. Given a
set of rules R, we write G⇒R H if there is a rule p in R such that G⇒p H .

Example 3. The meaning of the following rules w.r.t. M-matching is:

Add = 〈 ← → 〉 Addition of a proper edge.
Delete = 〈 ← → 〉 Deletion of a proper edge.
Delete2 = 〈 ← → 〉 Deletion of two parallel proper edges.

where an edge is proper if its source and target are different.
M-matching restricts the applicability of the rule: no identification of nodes

and edges is allowed. The addition and deletion of a loop, for example, requires to
explicitly consider the corresponding quotient rules of Add and Delete. Moreover,
M-matching allows explicit counting such as the deletion of n nodes or edges.
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The meaning of the following rules w.r.t. A-matching is:

Add = 〈 ← → 〉 Addition of an edge (proper edge or loop).
Delete = 〈 ← → 〉 Deletion of an edge (proper edge or loop).
Delete2 = 〈 ← → 〉 Deletion of two edges (proper or loops).

A-matching allows a compact representation of a set of similar rules. Every rule
represents a finite set of quotient rules; the quotient rules are implicitly in the
system. This advantage may become a disadvantage whenever one forgets that
the rules may be applied non-injective. Additionally, identifications of elements
may only take place, if all elements involved are preserved. This corresponds to
an additional implicit application condition and which is often forgotten.

In general, there are several cases where M-matching is useful, e.g. no identi-
fication, several cases where A-matching is desired, e.g. arbitrary identification
of preserved elements, several important “mixed” cases, e.g. certain elements are
possibly identified, others are not, and cases which are covered by neither M-
nor A-matching, e.g. arbitrary identification of all elements.

3 A-Satisfiability Versus M-Satisfiability

In this section, we investigate the different satisfiability notions. One may ask
whether A-satisfiability and M-satisfiability are expressively equivalent.

Assumption. We assume that 〈C,M〉 is a weak adhesive HLR category with
epi-M-factorizations, that is, for every morphism there is an epi-mono-factori-
zation with monomorphism in M.

There is a transformation from A- to M-satisfiability for morphisms. The con-
struction is a quotient construction on conditions and similar to the transforma-
tion of constraints into application conditions in [3,8].

Theorem 1 (for morphisms: from A- to M-satisfiability). There is a
transformation M on conditions such that, for every condition c over P and
every morphism p: P → G, p |= M(c) ⇔ p |=A c.

Construction. Let M(c) = ∨e∈E∃(e, Me(c)) where the disjunction ∨e ranges
over all epimorphisms e: P → P ′ and, for every epimorphism e: P → P ′, the
transformation Me is defined inductively on the structure of the conditions:

P ′

C′

D

P

C

a′

d

b

a

e

e′

f

(1)

Me(∃a) = ∨d∃b
Me(∃(a, c)) = ∨d∃(b, Mf (c))

where (1) is the pushout of the morphisms a: P → C and
e: P → P ′ leading to morphisms a′: P ′ → C′ and e′: C →
C′ and the disjunction ∨d ranges over all epimorphisms
d: C′ → D such that b = d◦a′ is inM and f = d◦e′. For
Boolean conditions, the transformations are extended in
the usual way.
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Proof. By structural induction, we show: For every condition c over P and every
morphism p: P → G, p′ |= Me(c) ⇔ p |=A c for some epi-M-factorization
p = p′ ◦ e with epimorphism e: P → P ′ and monomorphism p′: P ′ → G in
M. For conditions of the form ∃(a, c) the statement is proved as follows: If. Let
p′ |= Mf (∃(a, c)). Then there is some epimorphism d: C′ → D with b = d◦a′ inM
and f = d◦e′ such that p′ |= ∃(b, Mf (c)). By definition of M-satisfiability, there
is some q′: D → G in M such that q′ ◦ b = p′ and q′ |= Me(c). Define q = q′ ◦ f .
Then q◦a = p and, by inductive hypothesis, q |=A c. Consequently, p |=A ∃(a, c).

P ′ P

C′ C

D

G

e

e′

f

a′

d

q′

a

p′

u

p

q

(1)

Only if. Let p |=A ∃(a, c). Then there is some q: C → G
such that q ◦ a = p and q |=A c. By the universal
property of pushouts, there is some u: C′ → G with
u ◦ a′ = p′ and u ◦ e′ = q. Let u = q′ ◦ d be an epi-M-
factorization of u with epimorphism d and monomor-
phism q′ in M. Then q′ ◦ b = p′. Since M is closed
under decompositions, p′ and q′ in M imply b in M.
By inductive hypothesis, q′ |= Mf (c). Consequently,
p′ |= ∨d∃(b, Mf (c)) = Me(∃(a, c)). For conditions of the
form ∃a, the proof is similar. For Boolean conditions,
the statement follows from the definitions and the in-
ductive hypothesis. Consequently, the statement holds
for all conditions.

The statement implies that, for every morphism p: P → G, p |= M(c) iff
p′ |= Me(c) for some epi-M-factorization p = p′ ◦ e of p with epimorphism e and
monomorphism p′ in M. This completes the proof.

Remark 2. The transformation M in Theorem 1 on conditions is very similar
to the transformation of constraints into application conditions in [3,8] and the
original paper of [10].

Example 4. In the category of graphs, the condition c = ¬∃(
1
→

1
)

with meaning for graph morphisms w.r.t. A-satisfiability “There does not ex-
ist an outgoing edge” is transformed into the condition M(c) meaning w.r.t.
M-satisfiability “There does not exist a proper outgoing edge or a loop”.

M(c) = M(¬∃(
1
→

1
)) = ¬M(∃(

1
→

1
)) = ¬ ∨e∈E ∃(e, Me(c))

= ¬∃(id, Mid(c)) = ¬∃(id, ∃(
1
→

1
) ∨ ∃( → ))

≡ ¬(∃(
1
→

1
) ∨ ∃( → ))

As corollary, we obtain a transformation from A- to M-satisfiability for objects.

Corollary 1 (for objects: from A- to M-satisfiability). There is a trans-
formation M∗ on conditions such that, for every condition c over P and every
object G, G |= M∗(c)⇔ G |=A c.

Proof. Let M∗(c) = ∧e∈EMe(c) where E denotes the set of all epimorphisms
starting from P and Me(c) is as in the construction of Theorem 1. By the defini-
tion of A-satisfiability of objects, epi-M-factorization of morphisms, the proof of
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Theorem 1, and the definition of M-satisfiability of objects, we have G |=A c iff
for all p: P → G, p |=A c iff for all p: P → G with epi-M-factorization p = p′ ◦ e,
p′ |= Me(c) iff for all p′ ∈ M, p′ |= ∧e∈EMe(c) iff G |= M∗(c).

Example 5. The condition c = ∃(
1
→

1
) with meaning for graphs w.r.t.

A-satisfiability “For every node, there exists an outgoing edge” is transformed
into the condition M∗(c) = ∃(

1
→

1
) ∨ ∃( → ) meaning w.r.t. M-

satisfiability “For every node, there exists a proper outgoing edge or a loop”. The
condition c = ∃( → ) with meaning for graphs w.r.t. A-satisfiability
“For every pair of nodes, there exists a connecting edge” is transformed into the
condition M∗(c) = ∃( → )∧∃( → ) meaning w.r.t.M-satisfiability
“For every pair of distinct nodes, there exists a connecting edge and, for every
node, there exists a loop”.

There is a transformation from M- to A-satisfiability for morphisms, provided
that M is strictly closed under decompositions, i.e. g ◦ f ∈M implies f ∈M.

Theorem 2 (for morphisms: from M- to A-satisfiability). Let M be
strictly closed under decompositions. Then there is a transformation A on con-
ditions such that, for every condition c over an object P and every morphism
p: P → G, p |=A A(c) ⇔ p |= c.

Construction. The transformation A is defined inductively on the structure of
the conditions: For a morphism a: P → C and a condition c over C,

A(∃a) = ∃(a, inMC)
A(∃(a, c)) = ∃(a, inMC ∧A(c))

where inMC = ¬∨e∃e is a condition over C and the disjunction ∨e ranges over all
epimorphisms e: C → C′ not in M. For Boolean conditions, the transformation
is as usual.

Proof. The property “the match is in M” can be expressed by an application
condition inMC : For every morphism q: C → G, q ∈ M ⇔ q |=A inMC . This
may be seen as follows: If q �|=A inMC , then q |=A ∃e for some epimorphism
e: C → C′ not in M. Then there is some q′: C′ → G such that q′ ◦ e = q. Then
q is not in M. Otherwise, by the strict closure of M under decompositions, q in
M would imply e in M. If q is not in M, we consider an epi-M factorization
q = q′ ◦ e of q with epimorphism e and monomorphism q′ in M. Then e is not in
M. Otherwise, by closure of M under compositions, e and q′ in M would imply
q in M.
By structural induction, we show the statement of the theorem. For conditions
of the form ∃(a, c) we have the following. Only if. Let p |= ∃(a, c). Then there
is a morphism q: C → G in M such that q ◦ a = p and q |= c. By the inductive
hypothesis and the application condition inMC being equivalent to ”match is
in M”, q |=A inMC and q |=A A(c). Consequently, p |=A ∃(a, inMC ∧ A(c)) =
A(∃(a, c)). If. Let p |=A A(∃(a, c)). Then there is some q: C → G such that
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q ◦ a = p, q |=A inMC , and q |=A A(c). By the inductive hypothesis, q ∈ M and
q |= c. Thus, p |= ∃(a, c). For conditions of the form ∃a the proof is similar. For
Boolean conditions, the statement follows from the definitions and the inductive
hypothesis. This completes the inductive proof.

Example 6. The class M of injective graph morphisms is strictly closed under
decompositions. The condition c = ∃( → ) with meaning for graph
morphisms w.r.t. M-satisfiability “For the two nodes, there exists a connecting
edge” is transformed into the condition A(c) = ∃( → ,¬∃( → ))
meaning w.r.t. A-satisfiability “For the nodes, there exists a connecting edge and
the endpoints are distinct”.

There is a transformation from M- to A-satisfiability for objects, provided that
M is strictly closed under decompositions and the category has an M-initial
object: In a category C, an object I is initial, if for every object G in C, there
exists a unique initial morphism i: I → G. In a weak adhesive category 〈C,M〉,
an object I is M-initial if I is initial in C and the initial morphisms are in M.

Corollary 2 (for objects: from M- to A-satisfiability). For weak adhesive
HLR categories with M-initial object and M strictly closed under decomposi-
tions, there is a transformation A∗ on conditions such that, for every condition
c over an object P and every object G, G |=A A∗(c)⇔ G |= c.

Proof. Let A∗(c) = ∀(i, inMP ⇒ A(c)) where ∀(a, d) abbreviates the condition
¬∃(a,¬d) and i denotes the unique morphism from the initial object I to P in
M. By the definition of M-satisfiability, Theorem 2, the property of inMP , and
the definition of A-satisfiability for objects, we have G |= c iff for all p: P → G
in M, p |= c iff for all p: P → G, p |=A inMP implies p |=A A(c) iff for all
p: P → G, p |=A inMP ⇒ A(c) iff for j: I → G in M, j |=A ∀(i, inMP ⇒ A(c))
iff G |=A ∀(i, inMP ⇒ A(c)) iff G |=A A∗(c).

Example 7. The category 〈Graphs,M〉 has an M-initial object: the empty
graph, denoted by ∅. The condition c = ∃( → ) with the meaning for
graph morphisms w.r.t. M-satisfiability “Every pair of distinct nodes is con-
nected by an edge” is transformed into the condition

A∗(c) = ∀(∅ → ,¬∃( → ) ⇒ ∃( → ,¬∃( → ))

meaning w.r.t. A-satisfiability “For every pair of nodes, whenever the nodes are
distinct, then there is a connecting edge (and the endpoints are distinct)”.

By Theorems 1 and 2 and Corollaries 1 and 2 we obtain the following corollary.

Corollary 3. For weak adhesive HLR categories with epi-M-factorizations,M-
initial object, and M strictly closed under decompositions, A-satisfiability and
M-satisfiability are expressively equivalent.

Remark 3. The equivalence result is valid for nested constraints and application
conditions [8]; it is not valid for plain constraints in the sense of [3].
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Finally, we present two transformations of conditions over morphisms, i.e. given
a morphism e: P → P ′, then the transformation transforms conditions over P
into conditions over P ′.

Lemma 1 (from A- to A-satisfiability). For every (epi)morphism e: P → P ′,
there is a transformation AAe such that, for every condition c over P and every
morphism p′: P ′ → G, p′ |=A AAe(c) ⇔ p′ ◦ e |=A c.

Construction. For a morphism e: P → P ′, the transformation AAe is defined
inductively on the structure of the conditions:

AAe(∃a) = ∃a′

AAe(∃(a, c)) = ∃(a′, AAe′ (c))

where (1) is the pushout of the morphisms a and e leading to the morphisms
a′: P ′ → C′ and e′: C → C′. For Boolean conditions, the transformation is
extended in the usual way.

Proof. By structural induction. For conditions of the form ∃(a, c), the statement
is proved as follows: If. Let p′ |=A AAe(∃(a, c)). Then there is some q′: C′ → G
such that q′ ◦ a′ = p′ and q′ |=A AAe′(c). By inductive hypothesis, q′ ◦ e′ |=A c
Then q′ ◦ e′ ◦ a = p′ ◦ e. Consequently, p′ ◦ e |=A ∃(a, c).

P

C

P ′

C′

G

aa′

e

e′
p′

q′
p

q

(1)

Only if. Let p′ ◦ e |=A ∃(a, c). Then there is some
q: C → G such that q ◦ a = p′ ◦ e and q |=A c. By
the universal property of pushouts, there is a morphism
q′: C′ → G such that q′ ◦ a′ = p′ and q′ ◦ e′ = q.
By inductive hypothesis, q′ |=A AAe′(c). Consequently,
p′ |=A ∃(a′, AAe′ (c)) = AAe(∃(a, c)). For conditions of
the form ∃a, the proof is similar.

For Boolean conditions, the statement follows from the definitions and the in-
ductive hypothesis. Consequently, the statement holds for all conditions.

Example 8. Given the condition c = ¬∃( → ) with the meaning for
graph morphisms w.r.t. A-satisfiability “There does not exist a connecting edge”
and the epimorphism e: → , AAe(c) = ¬∃( → ) is the condition with
the meaning “There does not exist an attached loop”.

Lemma 2 (fromM- toM-satisfiability). For every epimorphism e: P → P ′,
there is a transformation MMe such that, for every condition c over P and every
morphism p′: P ′ → G in M, p′ |= MMe(c)⇔ p′ ◦ e |= c.

Construction. For every epimorphism e, the transformation MMe is defined in-
ductively on the structure of the conditions: MMe(∃a) = ∃a′ and MMe(∃(a, c))
= ∃(a′, c) if e is the epimorphism of an epi-M-factorization e ◦ a′ = a and
MMe(∃a) = MMe(∃(a, c)) = false otherwise. For Boolean conditions, the trans-
formation is extended in the usual way.
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Proof. By structural induction. For conditions of the form ∃(a, c), the statement
is proved as follows: If. Let p′ |= ∃(a′, c) for some epi-M-factorization a = a′◦e of
a. Then there is some q′: C → G inM such that q′◦a′ = p′ and q′ |= c. Moreover,
q′ ◦ a = p′ ◦ e. Consequently, p′ ◦ e |= ∃(a, c). If e is not the epimorphism of an
epi-M-factorization of a, we have p′ �|= MMe(∃(a, c)) = false and p′ ◦e �|= ∃(a, c).

P

C

P ′

G

e

a′ a

p′ p

q′

P

C

P ′

P ′′

G

e

e′

a′ a

p′
p

q

Only if. Let p′ ◦ e |= ∃(a, c). Then there is some morphism q: C → G in M such
that q ◦ a = p and q |= c and some morphism q′: P ′′ → G in M with q′ = q ◦ a′.
Whenever a′ ◦ e′ is an epi-M-factorization of a, q′ ◦ e′ is an epi-M-factorization
of p = p′ ◦ e. By the uniqueness of epi-M-factorizations, we have e = e′ and
p′ = q′ (up to isomorphism). Then p′ = q′ |= ∃(a′, c). For conditions of the form
∃a, the proof is similar. For Boolean conditions, the statement follows from the
definitions and the inductive hypothesis. Consequently, the statement holds for
all conditions.
Example 9. The condition c = ∃( → ) with the meaning for graph mor-
phisms w.r.t.M-satisfiability “One of the nodes is connected by a loop” is trans-
formed over the surjective graph morphism e: → into the condition
MMe(c) = ∃( → ) with the meaning “The node has an attached loop”. The
condition c′ = ∃( → ) with the meaning for graph morphisms w.r.t.M-
satisfiability “For the two nodes, there exists a connecting edge” is transformed
into the condition MMe(c′) = false with the meaning “Not satisfiable”.
By Lemmas 1 and 2 and Theorems 1 and 2 we obtain the following corollary.

Corollary 4 (from A- to M and M- to A-satisfiability). For every epi-
morphism e: P → P ′, there are transformations AMe and MAe such that, for
every condition c over P and every morphism p′: P ′ → G in M, p′ |= AMe(c) ⇔
p′ ◦ e |=A c and p′ |=A MAe(c)⇔ p′ ◦ e |= c.

Construction. For every epimorphism e: P → P ′, let AMe = M ◦ AAe and
MAe = A ◦MMe.

4 A-Matching Versus M-Matching

The definition of a direct derivation allows A-matching as well as M-matching.
One may ask whether A-matching and M-matching are expressively equiva-
lent. We establish a Simulation Theorem saying that any direct derivation with
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arbitrary matching can be simulated by a direct derivation with M-matching.
This extends the Simulation Theorem in [7] to weak adhesive HLR categories
with epi-M-factorizations and makes use of so-called quotient rules and epi-M-
factorizations of morphisms and direct derivations.

Recall that a direct derivation G ⇒〈q,ac〉,m,m∗ H in 〈X, Y 〉 with X, Y in
{A,M} is a direct derivation G ⇒q,m,m∗ H with m ∈ X , m |=Y acL, and
m∗ |=Y acR.

Theorem 3 (from A- to M-matching). For every Y ∈ {A,M}, there is a
transformation QY from rules into sets of rules such that, for every rule p,

G ⇒p H in 〈A, Y 〉 if and only if G ⇒QY (p) H in 〈M, Y 〉.
Construction. For a rule q = 〈L ← K → R〉, the rule q′ = 〈L′ ← K ′ → R′〉 is
a quotient rule of q if there are two pushouts of the form

L K R

L′ K ′ R′

e e∗(1) (2)

where the vertical morphisms are epimorphisms. For a rule p = 〈q, ac〉 with
application condition, QA(p) is the set of rules p′ = 〈q′, ac′〉 where q′ is a quotient
rule of q, ac′L = AAe(acL) and ac′R = AAe∗(acR). QM(p) is the set of rules p′ =
〈q′, ac′〉 where q′ is a quotient rule of q, ac′L = MMe(acL), and ac′R = MMe∗(acR).

Proof. Let G ⇒p′,n,n∗ H be a direct derivation in 〈M, Y 〉 through p′ = 〈q′, ac′〉
in QY (p) with q′ = 〈L′ ← K ′ → R′〉 and ac′ as in the construction. Then the dia-
grams (1), (2), (1’) and (2’) in the figure below are pushouts. By the Composition
Lemma of pushouts valid in every category, the composed diagrams (1)+(1’) and
(2)+(2’) are pushouts as well. Hence, there is a direct derivation G ⇒q,m,m∗ H in
〈A, Y 〉. By assumption, n |=Y ac′L and n∗ |=Y ac′R. By Lemma 1 [2], m |=Y acL

and m∗ |=Y acR. Thus, G⇒p,m,m∗ H is a direct derivation in 〈A, Y 〉.

L K R

L′ K ′ R′

G D H

e e∗

n n∗

m m∗

(1) (2)

(1’) (2’)

Vice versa, let G⇒p,m,m∗ H be a direct derivation in 〈A, Y 〉 through p = 〈q, ac〉
with q = 〈L ← K → R〉. Let m = n ◦ e an epi-M factorization of m with
epimorphism e: L → L′ and monomorphism n: L′ → G in M. Then there is a
decomposition of the original diagrams into diagrams (1) and (1’), (2) and (2’) as
follows: Construct K ′ as a pullback object of L′ → G ← D and denote the dia-
gram by (1’). By the universal property of pullbacks, there is a unique morphism
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e′: K → K ′ such that K → K ′ → D = K → D and diagram (1) commutes. By
the pushout-pullback decomposition, (1’) and (1) are pushouts. Now construct
R′ as the pushout object of K ′ ← K → R and denote the diagram by (2). By
the universal property of pushouts, there is a unique morphism n∗: R′ → H such
that R → R′ → H = R → H and diagram (2’) commutes. By the Decomposition
Lemma for pushouts valid in every category, diagram (2’) is a pushout. Since
epimorphisms and M-morphisms are closed under pullbacks and pushouts, the
vertical morphisms e, e′, and e∗ are epimorphisms and the vertical morphisms
n, n′, and n∗ are in M. Then q′ = 〈L′ ← K ′ → R′〉 is a quotient rule of q and
p′ = 〈q′, ac′〉 with ac′ = 〈AAe(acL), AAe∗(acR)〉 [〈MMe(acL), MMe∗(acR)〉] is a
quotient rule or p in QA(p) [QM(p)]. By Lemma 1 [2], G ⇒p′,n,n∗ H is a direct
derivation in 〈M,A〉 [〈M,M〉]. This completes the proof.

Remark 4. The construction and proof for the transformation Q of rules in
Theorem 3 is very similar to transformation of right- to left application condi-
tions in [3,8].

Example 10. Consider the rule p = 〈q, ac〉 with q = 〈 ← → 〉 and
acL = ¬∃( → ) with 〈A, Y 〉-meaning “Add a connecting edge, provided
there does not exist one”. Then p′ = 〈q′, ac′L)〉 with q′ = 〈 ← → 〉 and
ac′L = ¬∃( → ) is a rule in QA(p) with 〈M,A〉-meaning “Add a loop at the
node, provided there does not exist one”. Furthermore, p′′ = 〈q′, ac′′L〉 with ac′′L =
false is a rule in QM(p) with 〈M,M〉-meaning “Never add a loop at the node”.

We can simulate M-matching by A-matching by using the application condition
inM which is satisfied iff the match is in M.

Theorem 4 (from M- to A-matching). Let M be strictly closed under de-
compositions and Y ∈ {A,M}. Then there is a transformation R on rules such
that, for every rule p, G⇒p H in 〈M, Y 〉 iff G⇒R(p) H in 〈A, Y 〉.
Construction. For every rule p = 〈q, ac〉, let R(p) = 〈q, ac′〉 with

ac′ = 〈inML ∧ acL, inMR ∧ acR〉.
Proof. By the proof of Theorem 2, the property “the match is in M” can be
expressed by the application condition inM. Thus, for every rule p, G ⇒p H in
〈M, Y 〉 if and only if G ⇒R(p) H in 〈A, Y 〉.

Example 11. Consider the rule p = 〈q, ac〉 with q = 〈 ← → 〉
and acL = ¬∃( → ) with 〈M, Y 〉-meaning “Add an edge between
distinct nodes, provided there does not exist a connecting edge”. Then R(p) =
〈q,¬∃( → ) ∧ acL〉 is a rule with 〈A, Y 〉-meaning “Add an edge between
the nodes, provided the nodes are distinct and there does not exist a connecting
edge”.

As a consequence, we obtain transformations for all possible kinds of direct
derivations.
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Corollary 5. For weak adhesive HLR categories with epi-M-factorizations
and M strictly closed under decompositions and tuples t = 〈X, Y, X ′, Y ′〉 ∈
{A,M}4, there is a transformation Qt such that, for every rule p,

G⇒p H in 〈X, Y 〉 if and only if G ⇒Qt(p) H in 〈X ′, Y ′〉.

Proof. The transformation results follow directly from the transformation results
on matching and satisfiability.

Finally, we obtain the following corollary.

Corollary 6. For weak adhesive HLR categories with epi-M-factorizations and
M strictly closed under decompositions, A-matching and M-matching are ex-
pressively equivalent.

5 Conclusion

We have shown that all notions of matching and satisfiability have their advan-
tages and disadvantages and, for weak adhesive HLR categories with epi-M-
factorizations, M-initial object, and M strictly closed under decompositions,

– A-matching and M-matching
– A-satisfiability and M-satisfiability

are expressively equivalent. The equivalence results are valid for nested con-
straints and application conditions in the sense of [8]; they are not valid for
(basic) constraints in the sense of [3]. We have presented some transforma-
tion results for application conditions, plain rules, and rules with application
conditions.

For application conditions:
M from A- to M-satisfiability Theorem 1
A from M- to A-satisfiability Theorem 2
AAe from A- to A-satisfiability Lemma 1
AMe from A- to M-satisfiability Corollary 4
MAe from M- to A-satisfiability Corollary 4
MMe from M- to M-satisfiability Lemma 2

For plain rules:
Q from A- to M-matching Theorem 3
R from M- to A-matching Theorem 4

For rules:
from 〈X, Y 〉 to 〈X ′, Y ′〉 Corollary 5

This allows to switch from every combination of X-matching and Y -satisfiability
to every other combination of X ′-matching and Y ′-satisfiability and may be the
basis of a converter.
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Converter

rule

X-matching

Y -satisfiability

rules
for X ′-matching

& Y ′-satisfiability

Summarizing, A-matching as well as M-matching are adequate matching
notions and A-satisfiability as well as M-satisfiability are adequate satisfia-
bility notions. Nevertheless, we propose to consider either A-matching and A-
satisfiability or M-matching and M-satisfiability.

– The combination A-matching andM-satisfiability does not fit well together:
Conditions of the form c = ∃a or ∃(a, c) are only satisfiable by morphisms
with a certain degree of identifaction that depends on a. In fact, if a is an
M-morphism, m |= c implies m in M.

– In the case of A-matching and A-satisfiability, the transformation from con-
straints to application conditions is more simple and natural than the one
for A-matching and M-satisfiability. The same holds for a transformation
from application conditions to constraints. However, no direct transforma-
tion from right into left application conditions (L) is known, just the junction
of A ◦ L ◦M requiring that the category has an M-initial object and M is
strictly closed under decomposition.

– In the case of M-matching and M-satisfiability, the transformations from
constraints to application conditions, from application conditions to con-
straints, and, consequently, the construction of weakest preconditions for
high-level programs [9], are simpler and more intuitive than the one of A-
matching and M-satisfiability.

Considering the above and the fact thatM-matching is the more explicit match-
ing notion, our choice is M-matching and M-satisfiability.

Further topics will be the followings.

(1) Comparison of notions: A comparison of conditions – as considered in this
paper – and first-order formulas on graphs and high-level structures.

(2) Extensions of the theory: The investigation of weak adhesive high-level re-
placement systems with merging similar to the investigation of graph re-
placement systems with merging as in [7].

(3) Implementation: A system for converting conditions and rules with one kind
of matching and satisfiability into conditions and rules with the implemented
kind of matching and satisfiability.
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Abstract. In proof theory, a standard method for showing the correct-
ness of a program w.r.t. given pre- and postconditions is to construct
a weakest precondition and to show that the precondition implies the
weakest precondition. In this paper, graph programs in the sense of Ha-
bel and Plump 2001 are extended to programs over high-level rules with
application conditions, a formal definition of weakest preconditions for
high-level programs in the sense of Dijkstra 1975 is given, and a con-
struction of weakest preconditions is presented.

1 Introduction

Graphs and related structures are associated with an accessible graphical rep-
resentation. Transformation rules exploit this advantage, as they describe local
change by relating a left- and a right-hand side. Nondeterministic choice, se-
quential composition and iteration give rise to rule-based programs [19].

Formal methods like verification with respect to a formal specification are im-
portant for the development of trustworthy systems. We use a graphical notion of
conditions to specify valid objects as well as morphisms, e.g. matches for trans-
formation rules. We distinguish the use of conditions by speaking of constraints
in the first case, and application conditions for rules in the latter. Conditions
seem to be adequate for describing requirements as well as for reasoning about
the behavior of a system.

A well-known method for showing the correctness of a program with respect to
a pre- and a postcondition (see e.g. [7,8]) is to construct a weakest precondition
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of the program relative to the postcondition and to prove that the precondition
implies the weakest precondition.

In this paper, we use the framework of weak adhesive HLR categories to
construct weakest preconditions for high-level rules and programs, using two
known transformations from constraints to right application conditions, and from
right to left application conditions, and additionally, a new transformation from
application conditions to constraints.

left appl cond right appl cond

constraint constraint
precondition postcondition

A

L

C

Wp

The paper is organized as follows. In Section 2, high-level conditions, rules and
programs are defined and an access control for computer systems is introduced as
a running example. In Section 3, two basic transformations of [16] are reviewed
and, additionally, an essential transformation from application conditions into
constraints is presented. In Section 4, weakest preconditions for high-level pro-
grams are formally defined and a transformation of programs and postconditions
into weakest preconditions is given. In Section 5, related concepts and results
are discussed. A conclusion including further work is given in Section 6. A long
version of this paper including properties of weakest preconditions and detailed
proofs of some results is available as a technical report [18].

2 Conditions and Programs

In this section, we will review the definitions of conditions, rules, and programs
for high-level structures, e.g. graphs. We use the framework of weak adhesive
HLR categories introduced as combination of HLR systems and adhesive cate-
gories. A detail introduction introduction can be found in [14,15]. As a running
example, we consider a simple graph transformation system consisting of rules
and programs. We demonstrate that programs are necessary extensions of rules
for certain tasks and conditions can be used to describe a wide range of system
properties, e.g. security properties.

Assumption. We assume that 〈C,M〉 is a weak adhesive HLR category with
a category C, a class M of monomorphisms, a M-initial object, i.e. an object I
in C such that there exists a unique morphism I → G in M for every object G
in C; binary coproducts and epi-M-factorization, i.e. for every morphism there
is an epi-mono-factorization with monomorphism in M.

For illustration, we consider the category Graph of all directed, labeled graphs,
which together with the class M of all injective graph morphisms constitutes
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a weak adhesive HLR category with binary coproducts and epi-M-factorization
and the empty graph ∅ as the M-initial object.

Example 1 (access control graphs). In the following, we introduce state graphs of
a simple access control for computer systems, which abstracts authentication and
models user and session management in a simple way. We use this example solely
for illustrative purposes. A more elaborated, role-based access control model is
considered in [22]. The basic items of our model are users , sessions , logs ,
computer systems , and directed edges between those items. An edge between
a user and a system represents that the user has the right to access the system,
i.e. establish a session with the system. Every user node is connected with one
log, while an edge from a log to the system represents a failed (logged) login
attempt. Every session is connected to a user and a system. The direction of the
latter edge differentiates between sessions that have been proposed (an outgoing
edge from a session node to a system) and sessions that have been established (an
incoming edge to a session node from a system). Self-loops may occur in graphs
during the execution of programs to select certain elements, but not beyond. An
example of an access control graph is given in Figure 1.

Fig. 1. A state graph of the access control system

Conditions are nested constraints and application conditions in the sense of [16]
generalizing the corresponding notions in [13] along the lines of [30].

Definition 1 (conditions). A condition over an object P is of the form ∃a or
∃(a, c), where a: P → C is a morphism and c is a condition over C. Moreover,
Boolean formulas over conditions [over P ] are conditions [over P ]. Additionally,
∀(a, c) abbreviates ¬∃(a,¬c). A morphism p: P → G satisfies a condition ∃a
[∃(a, c)] over P if there exists a morphism q: C → G in M with q ◦ a = p
[satisfying c]. An object G satisfies a condition ∃a [∃(a, c)] if all morphisms
p: P → G in M satisfy the condition. The satisfaction of conditions [over P ]
by objects [by morphisms with domain P ] is extended onto Boolean conditions
[over P ] in the usual way. We write p |= c [G |= c] to denote that morphism p
[object G] satisfies c. Two conditions c and c′ over P are equivalent on objects,
denoted by c ≡ c′, if, for all objects G, G |= c if and only if G |= c′.

We allow infinite conjunctions and disjunctions of conditions. In the context of
objects, conditions are also called constraints, in the context of rules, they are
called application conditions. As the required morphisms of the semantics are to
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be in M, we sometimes speak of M-satisfiability as opposed to A-satisfiability,
where A is the class of all morphisms (see [17]).

Notation. For a morphism a: P → C in a condition, we just depict C, if P can
be unambiguously inferred, i.e. for conditions over some left- or right-hand side
and for constraints over the M-initial object I. Note, that for every constraint
over P , there is an equivalent constraint over I, i.e. d ≡ ∀(I → P, d), for d = ∃a
or ∃(a, c) (see [18]).

Example 2 (access control conditions). Consider the access control graphs intro-
duced in Example 1. Conditions allow to formulate statements on the graphs of
the access control and can be combined to form more complex statements. The
following conditions are over the empty graph:

∃( ) A user is logged into a system.

∃( ) A user has an access right to a system.

∃( ) A user is connected with a log.

¬∃( ) There are not more than three failed, logged
login attempts for any system and any user.

∃( ) A session is proposed.

∀( , ∃( ) ∨ ∃( )) Every session is either established or proposed.

∀( , ∃( )) Every user is connected with a log.

∀( , ∃( )) Every user that is logged into a system, has an
access right.

Fig. 2. Conditions on access control graphs

We consider rules with application conditions [13,16]. Examples and pointers to
the literature can be found in [11,6].

Definition 2 (rules). A plain rule p = 〈L ← K → R〉 consists of two mor-
phisms in M with a common domain K. L is called the left-hand side, R the
right-hand side, and K the interface. An application condition ac = 〈acL, acR〉
for p consists of two application conditions over L and R, respectively. A rule
p̂ = 〈p, ac〉 consists of a plain rule p and an application condition ac for p.

L K R

G D H

m m∗(1) (2)

Given a plain rule p and a morphism K → D, a direct derivation consists of
two pushouts (1) and (2). We write G ⇒p,m,m∗ H , G ⇒p H , or short G ⇒ H
and say that m is the match and m∗ is the comatch of p in H . Given a rule
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p̂ = 〈p, ac〉 and a morphism K → D, there is a direct derivation G ⇒p̂,m,m∗ H if
G⇒p,m,m∗ H , m |= acL, and m∗ |= acR. Let A be the class of all morphisms in
C. We distinguish between A-matching, i.e. the general case, and M-matching,
i.e. if the match and the comatch are required to be in M.

Notation. For the category Graph, we write 〈L ⇒ R〉 to abbreviate the rule
〈L ← K → R〉, where K consists of all nodes common to L and R.

Example 3 (access control rules). Consider the access control graphs introduced
in Example 1. The rules in Figure 3 are used to formalize the dynamic behavior
of the access control system, i.e. are the basis of the access control programs.

Note, for every rule, every match is inM. AddUser is a plain rule to introduce
a user (and the associated log) to the system. Grant is a rule with application

AddUser : 〈∅ ⇒ 〉

Grant : 〈〈 ⇒ 〉, 〈¬∃( ), true〉〉
Login : 〈 ⇒ 〉

Logout1 : 〈 ⇒ 〉

Logout2 : 〈 ⇒ 〉

SelectS : 〈 ⇒ 〉

AccessS : 〈 ⇒ 〉

LogS : 〈 ⇒ 〉

ClearLogS : 〈ClearLog, 〈∃( ), true〉〉
ClearLog : 〈 ⇒ 〉

DeselectS : 〈 ⇒ 〉

SelectUS : 〈 ⇒ 〉

LogoutUS1 : 〈Logout1, 〈∃( ), true〉〉
LogoutUS2 : 〈Logout2, 〈∃( ), true〉〉
RevokeUS : 〈Revoke, 〈∃( ), true〉〉
Revoke : 〈 ⇒ 〉

DeselectUS : 〈 ⇒ 〉

SelectU : 〈 ⇒ 〉

LogoutU1 : 〈Logout1, 〈∃( ), true〉〉
LogoutU2 : 〈Logout2, 〈∃( ), true〉〉
RevokeU 〈Revoke, 〈∃( ), true〉〉
ClearLogU : 〈ClearLog, 〈∃( ), true〉〉
DeleteU : 〈 ⇒ ∅〉

Fig. 3. Rules of the access control system
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conditions: It grants a user the right to access a system, unless the user already
has access. Login models a user proposing a session to a system, while Logout1
and Logout2 cancel an established or a proposed session, respectively. Rules
with suffix S, US and U concern selected sessions (S), user and systems (US) and
user (U) and are combined to programs in Figure 4. A description of each rule
is given in [18].

We generalize the notions of programs on linear structures [7,8] and graph pro-
grams [19,27]) to high-level programs on rules.

Definition 3 (programs). (High-level) Programs are inductively defined:

(1) Skip and every rule p are programs.
(2) Every finite set S of programs is a program.
(3) Given programs P and Q, then (P ; Q), P ∗ and P↓ are programs.

The semantics of a program P is a binary relation �P � ⊆ C×C on objects which
is inductively defined as follows:

(1) �Skip� = {〈G, G〉 | G ∈ C} and for every rule p, �p� = {〈G, H〉 | G ⇒p H}.
(2) For a finite set S of programs, �S� = ∪P∈S�P �.
(3) For programs P and Q, �(P ; Q)� = �Q� ◦ �P �, �P ∗� = �P �∗ and

�P↓� = {〈G, H〉 | 〈G, H〉 ∈ �P �∗ and ¬∃M. 〈H, M〉 ∈ �P �}.
Programs according to (1) are elementary; a program according (2) describes
the nondeterministic choice of a program; a program (P ; Q) is the sequential
composition of P and Q, P ∗ is the reflexive, transitive closure of P , and P↓ is
the iteration of P as long as possible.

Example 4 (access control programs). Consider the access control graphs in Ex-
ample 1. The dynamic part of the control system Control∗ is the reflexive,
transitive closure of the programs Control = {AddUser, Grant, Login, Logout,
ProcessLogin, Revoke, DeleteUser}, depicted in Figure 3 and Figure 4, respec-
tively. Logout cancels a session (established or proposed). ProcessLogin models

Logout = {Logout1, Logout2}
ProcessLogin = SelectS; AccessS↓; LogS↓; ClearLogS↓; DeselectS↓
Revoke = SelectUS; LogoutUS↓; RevokeUS; DeselectUS
LogoutU = {LogoutU1, LogoutU2}
DeleteUser = SelectU; LogoutU↓; RevokeU↓; ClearLogU↓; DeleteU

Fig. 4. Programs of the access control system

the reaction of a system towards a session proposal, which, dependent on the
user’s right, leads to an established session and the clearing of the user’s log of
failed attempts, or the denial and removal of that session and the logging of the
failed attempt. Revoke removes a user’s right to access a system, but not be-
fore closing the user’s sessions to that system. Finally, DeleteUser is a program
to delete a user and his/her associated log by canceling the user’s sessions, by
removing the user’s access rights and by clearing the user’s log.
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Note, that there is no way to model certain actions like DeleteUser by a single
rule, as a user, in principle, may have an arbitrary number of sessions or log
entries. However, user deletion should be a transaction always applicable for
every user.

Definition 4 (termination). A program P applied to an input object G ter-
minates properly, if PDer(P, G) is finite, i.e. ∃k ∈ N. |PDer(P, G)| ≤ k, where
PDer(P, G) denotes the set of all partial derivations within the execution of a
program P , starting with G (see [18]).

Remark 1. Execution of high-level programs requires backtracking, therefore the
above definition of termination is more suitable than the classical one, i.e. the
nonexistence of infinite derivations. This may be seen as follows: An infinite
derivation implies infinitely many partial derivations. The other direction holds
only if the number of matches is finite. By the uniqueness of pushouts, PDer(p, G)
is finite and there cannot be infinitely many derivations of finite length for any
program P .

3 Basic Transformations of Conditions

In the following, we recall two known transformations from constraints to ap-
plication conditions and from right- to left application conditions [21,13,16] and
present a new transformation from application conditions to constraints. Com-
bining these basic transformations, we obtain a transformation from a post-
condition over the rule to a precondition. First, there is a transformation from
constraints to application conditions such that a morphism satisfies the applica-
tion condition if and only if the codomain satisfies the constraint.

Theorem 1 (transformation of constraints into application conditions).
There is a transformation A such that, for every constraint c and every rule
p = 〈L ← K → R〉, and all morphisms m∗: R → H, m∗ |= A(p, c)⇔ H |= c.

Second, there is a transformation from right to left application conditions such
that a comatch satisfies an application condition if and only if the match satisfies
the transformed application condition.

Theorem 2 (transformation of application conditions). There is a trans-
formation L such that, for every rule p, every right application condition ac for
p, and all direct derivations G ⇒p,m,m∗ H, m |= L(p, ac) ⇔ m∗ |= ac.

We consider a transformation of application conditions to constraints, which
correspond to the universal closure of application conditions. For A-matching
however, the closure is over arbitrary morphisms and does not fit to the notion
of M-satisfiability. This is why a part of the application condition has to be
transformed accordingly.
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Theorem 3 (transformation of application conditions into constraints).
For weak adhesive HLR categories with M-initial object, there is a transforma-
tion C such that, for every application condition ac over L and for all objects G,

G |= C(ac) ⇔ ∀m: L → G. m |= ac

Construction. Define C(ac) =
∧

e∈E ∀(e◦i, Ce(ac)) where the junction ranges
over all epimorphisms e: L → L′ and i: I → L is the unique morphism from
the M-initial object to L. The transformation Ce is defined inductively on the
structure of the conditions: Ce(∃a) = ∃a′ and Ce(∃(a, c)) = ∃(a′, c) if a = a′ ◦ e
is some epi-M-factorization of a and Ce(∃a) = Ce(∃(a, c)) = false if there is
no epi-M-factorization of a with epimorphism e. For Boolean conditions, the
transformation Ce is extended in the usual way.

Example 5. The application condition ac = ¬∃( )∧¬∃( )∧¬∃( )
over expresses that there is no edge between two given session nodes.

C(ac) = ∀( , Cid(ac)) ∧ ∀( , Ce(ac))
= ∀( , ¬Cid(∃( )) ∧ ¬Cid(∃( )) ∧ ¬Cid(∃( )))

∧ ∀( , ¬Ce(∃( )) ∧ ¬Ce(∃( )) ∧ ¬Ce(∃( )))
= ∀( , ac) ∧ ∀( , ¬false ∧ ¬false ∧ ¬∃( ))
≡ ∀( , ¬∃( ) ∧ ¬∃( ) ∧ true) ∧ ∀( , true ∧ ¬∃( ))
≡ ∀( , ¬∃( ) ∧ ¬∃( )) ∧ ∀( , ¬∃( ))

with id: → and e: → .

Proof. In [17] is shown: For all m′: L′ → G inM and all epimorphisms e: L→ L′,

m′ |= Ce(ac′) ⇔ m′ ◦ e |= ac′ (∗)

We show: ∀m: L → G, m |= ac if and only if G |= C(ac). “Only if”. Assume
∀m: L → G, m |= ac. For G |= C(ac) to hold, G has to satisfy Ce(ac) for all
epimorphisms e: L → L′, i.e. for all epimorphisms e: L → L′ and all morphisms
m′: L′ → G in M holds m′ |= Ce(ac). Given such morphisms e and m′, define
m = m′ ◦ e. By assumption, m |= ac, and by (∗) we have m′ |= Ce(ac), hence
G |= C(ac). “If”. Assume G |= C(ac), i.e. G satisfies Ce(ac) for all epimorphisms
e: L → L′, i.e. for all epimorphisms e: L → L′ and all morphisms m′: L′ → G in
M holds m′ |= Ce(ac). Given an arbitrary morphism m: L → G, consider the epi-
M-factorization m′◦e. By assumption, m′ |= Ce(ac), and by (∗) we have m |= ac.

Remark 2. The uniqueness of epi-M-factorizations (up to isomorphism) fol-
lows immediately from the uniqueness of epi-mono-factorizations, as every M-
morphism is a monomorphism.

Remark 3. For weak adhesive HLR categories with M-initial object and M-
matching, there is a simplified transformation C such that, for every application
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condition ac over L and for all objects G, G |= C(ac)⇔∀m: L→G∈M. m |= ac.
For an application condition ac over L and i: I → L, let C(ac) = ∀(i, ac). For
all M-morphisms m: L → G, m |= ac iff there exists an M-morphism p: I → G
such that for all M-morphisms m: L → G holds m |= ac iff there exists an M-
morphism p: I → G such that for all M-morphisms m: L → G with p = m ◦ i
holds m |= ac iff G |= ∀(i, ac) (Def.1).

Finally, the applicability of a rule can be expressed by a left application condition
for the matching morphism.

Theorem 4 (applicability of a rule). There is a transformation Def from
rules into application conditions such that, for every rule p and every morphism
m: L → G,

m |= Def(p) ⇔ ∃H.G ⇒p,m,m∗ H.

Construction. For a rule p = 〈q, ac〉, let Def(p) = Appl(q) ∧ acL ∧ L(p, acR),
where, for a rule q = 〈L ←l K →r R〉, Appl(q) = ∧a∈A¬∃a and the index set A
ranges over all morphisms a: L → L′ such that the pair 〈l, a〉 has no pushout
complement and there is no decomposition a = a′′◦a′ of a with proper morphism
a′′ in M (a′′ not an isomorphism) such that 〈l, a′〉 has no pushout complement.

Example 6. An example of Appl is given below for DeleteSys = 〈 ← ∅ → ∅〉.
Intuitively, the application of DeleteSys requires the absence of additional edges
adjacent to the system node. Therefore, DeleteSys may only be the last step in
program deleting a system node. Appl(DeleteSys) is a condition over .

Appl(DeleteSys) = ¬∃( ) ∧ ¬∃( ) ∧ ¬∃( ) ∧ ¬∃( )
∧ ¬∃( ) ∧ ¬∃( ) ∧ ¬∃( ) ∧ ¬∃( )
∧ ¬∃( )

Proof. For plain rules, we show that, for every morphism m: L → G,

m |= Appl(q) ⇔ ∃H.G ⇒q,m,m∗ H.

“Only if” Let m |= Appl(q). Assume there is no direct derivation G ⇒q,m,m∗ H .
Then the pair 〈l, m〉 has no pushout complement and there is a morphism a: L →
L′ such that 〈l, a〉 has no pushout complement and m |= ∃a. Then m �|= Appl(q).
A contradiction. Consequently, there is a direct derivation G ⇒q,m,m∗ H .

“If” Let G ⇒q,m,m∗ H . Then, for every morphism a: L →
L′, m |= ∃a iff there is some m′: L′ → G in M such that
m′ ◦ a = m. By the pushout-pullback decomposition, the
pushout has a decomposition into two pushouts (1) and
(2) and, in particular, 〈l, a〉 has a pushout complement.
Consequently, for every morphism a ∈ A, m |= ¬∃a, i.e.
m |= Appl(q).

L K

L′ K ′

G D

l

m

(1)

(2)
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By the definition of Def and |=, Theorem 4, the statement above, and the def-
inition of ⇒, for every morphism m: L → G, m |= Def(p) iff m |= Appl(q) ∧
m |= acL ∧ m |= L(p, acR) iff ∃H.G ⇒q,m,m∗ H ∧ m |= acL ∧ m∗ |= acR iff
∃H.G ⇒p,m,m∗ H . This completes the proof.

4 Weakest Preconditions

In the following, we define weakest preconditions for high-level programs sim-
ilar to the ones for Dijkstra’s guarded commands in [7,8], show how to con-
struct weakest preconditions for high-level programs and demonstrate the use
of weakest preconditions to reduce problems on programs, e.g. the invariance of
conditions, onto tautology problems of conditions.

Definition 5 (weakest preconditions). For a program P relative to a condi-
tion d we define: A condition c is a precondition, if for all objects G satisfying c,
(1) 〈G, H〉 ∈ �P � implies H |= d for all H , (2) 〈G, H〉 ∈ �P � for some H , and
(3) P terminates for G. A precondition c is a weakest precondition, denoted by
wp(P, d), if for all other preconditions c′ of P relative to d, c′ implies c. A condi-
tion c is a liberal precondition, if for all objects G |= c at least (1) is satisfied, and
a weakest liberal precondition, denoted by wlp(P, d), if all other liberal precondi-
tions c′ of P relative to d imply c. A condition c is a termination precondition,
if for all objects G |= c properties (1) and (3) are satisfied, and a weakest termi-
nation precondition, denoted by wtp(P, d), if all other termination preconditions
c′ of P relative to d imply c.

The following fact points out a simple proof scheme for weakest preconditions.

Fact 1 (weakest preconditions). A condition c is a weakest precondition if,
for all objects G, G |= c if and only if properties (1)-(3) are satisfied.

For the construction of weakest preconditions, we make use of the fact that
wp(P, d) is a conjunction of three properties and treat properties (1) and (3),
and property (2) separately. We observe property (2) is equivalent to the negation
of property (1) for d = ¬true, hence we state:

Fact 2 (existence of results). G |= ¬wlp(P, false) ⇔ property (2) is satisfied.

Assumption. We assume that 〈C, M〉 is a weak adhesive HLR category with
finite number of matches, i.e. for every morphism l: K → L and every object G,
there exist only a finite number of morphisms m: L → G s.t. 〈l, m〉 has a pushout
complement.

Theorem 5 (weakest preconditions). For weak adhesive HLR categories
with finite number of matches, there are transformations Wlp, Wtp and Wp such
that for every program P and every condition d, Wlp(P, d) is a weakest liberal
precondition, Wtp(P, d) is a weakest termination precondition and Wp(P, d) is
a weakest precondition of P relative to d.

Construction. The transformations are defined inductively over the structure
of programs. For every rule p, let
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Wlp(p, d) = Wtp(p, d) = C(Def(p) ⇒ L(p, A(p, d))).

For any program P , Wp(P, d) = Wtp(P, d) ∧ ¬Wlp(P, false).
For any set S of programs and programs P, Q,

Wlp(Skip, d) = d
Wlp(S, d) =

∧
P∈S Wlp(P, d)

Wlp((P ; Q), d) = Wlp(P, Wlp(Q, d))
Wlp(P ∗, d) =

∧∞
i=0 Wlp(P i, d)

Wlp(P↓, d) = Wlp(P ∗, Wlp(P, false) ⇒ d)

Wtp(Skip, d) = d
Wtp(S, d) =

∧
P∈S Wtp(P, d)

Wtp((P ; Q), d) = Wtp(P, Wtp(Q, d))
Wtp(P ∗, d) =

∧∞
i=0 Wlp(P i, d ∧ Wtp(P, true)) ∧ ∨∞

k=0 Wlp(P k+1, false)
Wtp(P↓, d) = Wtp(P ∗, Wlp(P, false) ⇒ d)

where for i ≥ 0, P i is inductively defined by Skip for i = 0 and by P i+1 =(P i; P ).

Proof. We show Wlp(P, d) ≡ wlp(P, d), Wtp(P, d) ≡ wtp(P, d), and Wp(P, d) ≡
wp(P, d). The first two proofs are done by induction over the structure of pro-
grams. First we consider elementary programs consisting of a single rule p. For
all objects G, we have:

G |= Wlp(p, d)
⇔ G |= C(Def(p) ⇒ L(p, A(p, d))) (Def. Wlp)
⇔ ∀L

m→ G. m |= (Def(p) ⇒ L(p, A(p, d))) (Thm. 3)
⇔ ∀L

m→ G. m |= Def(p) ⇒ m |= L(p, A(p, d)) (Def. |=)

⇔ ∀L
m→ G, R

m∗
→ H. m |= Def(p) ⇒ m∗ |= A(p, d) (Thm. 2)

⇔ ∀L
m→ G, R

m∗→ H. (G ⇒p,m,m∗ H) ⇒ H |= d (Thms. 4 & 1)
⇔ ∀H. 〈G, H〉 ∈ �p� ⇒ H |= d (Def. �p�)
⇔ G |= wlp(p, d) (Def. wlp)

Thus, Wlp(p, d) is a weakest liberal precondition of p relative to d. Furthermore,

G |= Wtp(p, d) if and only if G |= Wlp(p, d), as every rule application terminates
by the finiteness assumption and wtp reduces to wlp for single rules p. For
composed programs, the statement follows by structural induction (see [18].)

For Wp, we now show for every program P , Wp(P, d) ≡ wp(P, d): Wp(P, d) is
defined as ¬Wlp(P, false)∧Wtp(P, d), which is, by the first two equations, equiv-
alent to ¬wlp(P, false) ∧ wtp(P, d), which is equivalent to wp(P, d) (see [18].)

Example 7 (access control system). Consider the access control for computer
systems, presented in Examples 1-4. For the system, one might want to ensure
the validity of certain properties, e.g.:

(1) Always, every user logged into a system, has an access right to the system:
secure implies wlp(Control, secure), where

secure = ∀( , ∃( )).
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(2) Every user can always be deleted: ∃( ) implies wp(DeleteUser, true)
(3) Every user can always have his access right to a system revoked:

∃( ) implies wp(Revoke, true)

By calculating weakest [liberal] preconditions, the problem to decide these prop-
erties can be reduced onto the tautology problem for conditions. The meaning
of secure implies wlp(Control, secure) can be seen as follows: The constraint
secure is an invariant, i.e. given a state satisfying secure, every next state will
also satisfy secure. For a proof, we have to show secure implies Wlp(P, secure)
for every program P ∈ Control.

We give explicit proof of property (1) for the programs AddUser and Grant.
For the program AddUser, secure implies Wlp(AddUser, secure), which can be
proved as follows:

A(AddUser, secure) = ∀( , ∃( ))
∧ ∀( , ∃( ))

L(AddUser, A(AddUser, secure)) = ∀( , ∃( )) = secure

Wlp(AddUser, secure) = C(Def(AddUser) ⇒ L(AddUser, A(AddUser, secure)))
= C((Appl(AddUser) ∧ true ∧ true) ⇒ secure)
≡ C(true ⇒ secure) ≡ C(secure)
= ∀(∅, secure)
≡ secure

This is no surprise as we could also have argued that a newly added user cannot
have an established session with a system, hence every application of AddUser
preserves the satisfaction of secure. For the program Grant, secure implies
Wlp(Grant, secure), even without the additional application condition.

L(Grant, A(Grant, secure))
= ∀( , ∃( ))

∧ ∀( , ∃( ))
∧ ∀( , ∃( ))
∧ ∀( , ∃( ))

Wlp(Grant, secure)
= C(Def(Grant) ⇒ L(Grant, A(Grant, secure)))
= C((Appl(Grant) ∧ ¬∃( ) ∧ true) ⇒ L(Grant, A(Grant, secure)))
≡ C(¬∃( ) ⇒ L(Grant, A(Grant, secure)))
if C(L(Grant, A(Grant, secure)))
if L(Grant, A(Grant, secure))

Note, secure implies L(Grant, A(Grant, secure)) and thus Wlp(Grant, secure).
We also have secure implies Wlp(Login, secure), the proof of which is similar to
secure implies Wlp(Grant, secure), as L(Grant, A(Grant, secure)) ≡ L(Login,
A(Login, secure)).

For Logout, ProcessLogin, Revoke and DeleteUser, we shall only sketch the
proofs. It is easy to see that Logout1 as well as Logout2 preserve the satisfaction
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of secure, hence we can assume secure implies Wlp(Logout, secure). Concerning
ProcessLogin, one can prove the invariance of secure for every used rule, i.e.
SelectS, AccessS, LogS, ClearLogS and DeselectS, and moreover, for every
subprogram of ProcessLogin. Intuitively the only interesting part is the proof
of secure implies Wlp(AccessS, secure), while the validity of this claim is quite
obvious. Concerning Revoke, one can show that LogoutUS↓ leaves no sessions
for any selected user and system (see property (4)). As a consequence, RevokeUS
will preserve the satisfaction of secure, as do all other parts of Revoke, hence
secure implies Wlp(Revoke, secure). The proof of DeleteUser is similar.

(4) After execution of LogoutUS↓, there is no established session left for any
selected user and system: wlp(LogoutUS↓, ¬∃( )) ≡ true.

(5) C(Appl(Logout1))∧C(Appl(Logout2)) is an invariant for all programs P in
Control, and all subprograms and rules of Revoke and DeleteUser.

One can show property (4) by using (5) as one observesWlp(LogoutUS↓, secure) ≡
Wlp(LogoutU∗, true) ≡ true. Property (5) expresses that certain edges adjacent
to a session node do not exist, while others have a multiplicity of at most 1.
Proving property (5) for all rules used in Control is tedious, but nonetheless
straightforward, as every subcondition may handled separately. Intuitively only
subprograms and rules have to be considered that contain a session node, and
moreover, that create or delete edges adjacent to session nodes.

5 Related Concepts

In this section we briefly review other work on using graph transformation for
verification. Before we do so, however, we wish to point out one important global
difference between this related work and the approach of this paper.

– The approach of this paper is based on the principle of assertional reasoning,
and inherits both the advantage and the disadvantage of that principle. The
advantage is that the approach is general where it can be made to apply,
meaning that it provides a method to verify finite-state and infinite-state
systems alike. The disadvantage is that finding invariants is hard and cannot
be automated in general.

– Existing approaches are typically based on the principle of model check-
ing, which essentially involves exhaustive exploration, either of the concrete
states (which are often too numerous to cover completely) or on some level of
abstraction (in which case the results become either unsound or incomplete).
On the positive side, model checking is a push-button approach, meaning
that it requires no human intervention.

In other words, there is a dividing line between the work in this paper and the
related work reported below, which is parallel to the division between theorem
proving and model checking in “mainstream” verification (see [20] for an early
discussion). Since current wisdom holds that these approaches can actually be
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combined to join strengths (e.g., [5,25]), we expect that the same will turn out
to hold in the context of graph transformation.

The first paper in which it was put forward that graph transformation sys-
tems can serve as a suitable specification formalism on the basis of which model
checking can be performed was Varró [32]; this was followed up by [33] which
describes a tool chain by which graph transformation systems are translated
to Promela, and then model checked by SPIN. We pursued a similar approach
independently in [28,29], though relying on dedicated (graph transformation-
based) state space generation rather than an existing tool. The two strands were
compared in [31]. Again independently, Dotti et al. [10,9] also describe a transla-
tion from a graph transformation-based specification formalism (which they call
object-based graph grammars) to Promela.

Another model checking-related approach, based on the idea of McMillan un-
foldings for Petri Nets (see [24]), has been pursued by Baldan, König et al.
in, e.g., [2,1], and in combination with abstraction in [3,23]. The latter avoids
the generation of complete (concrete) state spaces, at the price of being ap-
proximative, in other words, admitting either false positives (unsoundness) or
false negatives (incompleteness) in the analysis. The (pure) model checking and
abstraction-based techniques were briefly compared in [4].

Termination. In addition to the general verification methods discussed above, a
lot of research has been carried out on more specific properties of graph gram-
mars. Especially relevant in our context is the work on termination of graph
grammars. This is known to be undecidable in general (see [26]), but under spe-
cial circumstances may be shown to hold; for instance, Ehrig et al. discuss such
a special case for model transformation in [12].

6 Conclusion

This paper extends graph programs to programs over high-level rules with ap-
plication conditions, and defines weakest preconditions over high-level programs
similar to the ones for Dijkstra’s guarded commands in [7,8]. It presents trans-
formations from application conditions to constraints, which, combined with two
known transformations over constraints and application conditions, can be used
to construct weakest preconditions for high-level rules as well as programs.

A known proof technique for showing the correctness of a program with respect
to a pre- and a postcondition is to construct a weakest precondition and to show
that the precondition implies the weakest precondition. We demonstrate the
applicability of this method on our access control for computer systems.

Further topics could be the followings.
(1) Consideration of strongest postconditions.
(2) Comparison of notions: A comparison of conditions – as considered in this

paper – and first-order formulas on graphs and high-level structures.
(3) Generalization of notions: The generalization of conditions to capture mona-

dic second order properties.
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(4) An investigation of the tautology problem for conditions with the aim to
find a suitable class of conditions, for which the problem is decidable.

(5) Implementation: A system for computing/approximating weakest precondi-
tions and for deciding/semideciding correctness of program specifications.
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Abstract. This tutorial is intended as a general introduction to graph
transformation for scientists who are not familiar with the field. The
tutorial will start with an informal introduction to the basic concepts
like graph, rule, transformation, etc., discussing semantic choices like
which notion of graph to use; how to put labels, attributes, or types; or
what to do with dangling links during rewriting, etc., and mentioning
different ways to formalise the basic concepts.

In the second part, the tutorial will give a survey of typical appli-
cations of graph transformation in software engineering, e.g., as a spec-
ification language and semantic model for concurrent and distributed
systems, as a meta language for defining the syntax, semantics, and ma-
nipulation of diagrams, etc.

Finally, the tutorial will go into some details about the algebraic ap-
proach to graph transformation, its formal foundations and relevant the-
ory and tools. This shall enable the participants to better appreciate the
conference and its satellite events.

1 Motivation

Graphs and diagrams provide a simple and powerful approach to a variety of
problems that are typical to computer science in general, and software engineer-
ing in particular. In fact, for most activities in the software process, a variety of
visual notations have been proposed, including state diagrams, Structured Anal-
ysis, control flow graphs, architectural description languages, function block dia-
grams, and the UML family of languages. These notations produce models that
can be easily seen as graphs and thus graph transformations are involved, either
explicitly or behind the scenes, when specifying how these models should be built
and interpreted, and how they evolve over time and are mapped to implemen-
tations. At the same time, graphs provide a universally adopted data structure,
as well as a model for the topology of object-oriented, component-based and
distributed systems. Computations in such systems are therefore naturally mod-
elled as graph transformations, too.
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2 Content

In this tutorial, we will introduce the basic concepts and approaches to graph
transformation, demonstrate their application to software engineering problems,
and provide a high-level survey of graph transformation theory and tools.

We start by introducing a simple set-theoretic presentation of the double-
pushout approach [2] whose features are common to most graph transformation
approaches and which provides the foundation for further elaboration. Then,
we discuss alternatives and extensions, like multi objects, programmed transfor-
mations concerned with controlling the (otherwise non-deterministic) rewriting
process, as well as application conditions, restricting the applicability of individ-
ual rules.

Typical applications of graph transformation to software engineering problems
are presented in terms of examples. They include

– model and program transformation;
– syntax and semantics of visual languages;
– visual behaviour modelling and programming.

In particular, we distinguish between the use of graph transformation as a mod-
elling notation (and semantic model) to reason on particular problems, like func-
tional requirements or architectural reconfigurations of individual applications,
and its use as a meta language to specify the syntax, semantics, and manipula-
tion of visual modelling languages, like the UML.

The last part of the tutorial is dedicated to a survey on the algebraic approach
to graph transformation, its formal foundations and relevant theory. This shall
enable attendees to work their way through the relevant literature and to benefit
from the presentations at the conference.

Previous versions of this tutorial together with accompanying papers have
been presented in [1,3].
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A variety of computation models have been developed using graphs and graph
transformations. These include models for sequential, distributed, parallel or
mobile computation. A graph may represent, in an abstract way, the underly-
ing structure of a computer system, or it may stand for the computation steps
running on such a system. In the former, the computation can be carried on the
corresponding graph, implying a simplification of the complexity of the system.
The aim of the workshop is to bring together researchers interested in all aspects
of computation models based on graphs, and their applications. A particular
emphasis will be made for models and tools describing general solutions. The
workshop will include contributed papers, tutorials and tool demonstrations.

The tutorials will introduce many types of graph transformations and their
use to study computation models. These graph transformations include graph
relabeling systems, graph grammars, term graph rewritings. The computation
models, on the other hand, will include mobile computing, programming, data
transformations, concurrent and distributed computing. For instance, graph re-
labeling systems have been successfully used as a suitable tool for encoding
distributed algorithms, for proving their correctness and for understanding their
power. In this model, a network is represented by a graph whose vertices denote
processors, and edges denote communication links. The local state of a processor
(resp. link) is encoded by the label attached to the corresponding vertex (resp.
edge). A rule is a local transformation of labels. A relabeling system is defined by
a finite set of such rules. The application of the rules are asynchronous: there is
no global clock available, and two conflict-free applications of rewriting rules may
occur simultaneously, provided they do not attempt to modify the same local
context in the host graph. Thus, the behaviour of the network is defined by its ini-
tial labeling and the rule base of the associated local rewriting calculus. Problems
of interest in distributed computing include node election, node enumeration,
spanning tree construction, termination detection, synchronisation, inter-node
agreements, or local recognition of global properties. These studies rely on rule-
based local computations on network graphs on the one hand, and the recognition
and classification of certain initial network configurations on the other hand. The
non-existence of deterministic distributed solutions to certain problems leads to
propose also the investigation of probabilistic distributed algorithms, the for-
mulation of which seems rather simple, but their analysis is difficult. Another
important aspect is the relationship between the three principal paradigms of
distributed computing — local computations, message passing, shared memory
— and the comparison of their expressive powers. Similar questions arise where
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those three paradigms are compared with mobile agent systems. The selected
papers are still not yet known, but they will mainly be concerned with the ap-
plications of graph transformations as suitable and convenient tools to model
some (computation) applications.

The workshop includes also a session of software and tool demonstrations
based on graph computation models. They can be related to the tutorials or
to the presented papers and can therefore be useful to illustrate the presented
concepts. Tools can range from alpha-versions to fully developed products that
are used in education, research or being prepared for commercialisation.

WORKSHOP CHAIRS AND ORGANISERS

• Yves Métivier, University of Bordeaux 1
• Mohamed Mosbah, University of Bordeaux 1

PROGRAMME COMMITTEE
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• Annegret Habel, University of Oldenburg, Germany
• Hans-Jörg Kreowski, University of Bremen, Germany
• Detlef Plump, University of York, UK
• Stefan Gruner, University Bordeaux 1, France
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Abstract. The International Workshop on Graph Based Tools (Gra-
BaTs 2006) is the third workshop of a series that serves as a forum for
researchers and practitioners interested in the development and applica-
tion of graph-based tools. Based upon mathematically solid underlying
concepts, graph-based tools are frequently used in various application
areas in software and systems engineering.

1 Motivation and History

Graphs are well-known means to capture structural aspects in various fields of
computer science. Based upon mathematically solid underlying concepts, graph-
based tools are frequently used in various application areas in software and
systems engineering. Successful application areas include (but not limited to)
compiler construction, constraint solving, CASE tool generation, software en-
gineering, pattern recognition techniques, program analysis, software evolution,
software visualization and animation, visual languages, and many more. A com-
monality in all these areas is that tools heavily rely on graphs as an underlying
data structure.

The International Workshop on Graph Based Tools (GraBaTs 2006) is a forum
for researchers and practitioners interested in the development and application
of graph-based tools. The current event is already the third in a series which
is traditionally organized bi-annually as a satellite event of the International
Conference on Graph Transformation (ICGT) [3]. The first workshop on this
topic [4] took place in 2002 in Barcelona, Spain, while the second workshop [5]
was organized in 2004 in Rome, Italy.

Both events have demonstrated that the GraBaTs workshop is of special rel-
evance for a conference on graph transformation. Frequently, the application of
graph transformation technology requires the existence of reliable, user-friendly
and efficient tool support.

Moreover, these tools are frequently built on top of basic services or frame-
works provided by popular open development environments such as Eclipse [1]
or NetBeans [2] which significantly reduce development efforts, and provide a
professional look-and-feel of the tools thus facilitating industrial acceptance.
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2 Aims and Scope

This year, the GraBaTs workshop focused on attracting submissions mainly on
the following topics:

– Tools for model-driven systems development, Meta CASE tools & generators;
– Tools for Visual languages: UML, Domain-specific languages, etc.
– Model transformation tools; Tool integration techniques; Animation and sim-

ulation tools
– Analysis tools (verification & validation, static analysis techniques, testing)
– Efficient algorithms (pattern matching, manipulation of large graph models)
– Case studies, empirical and experimental results on tool scalability, novel

application areas

Furthermore, this year’s workshop has a special focus on tool presentations
organized as a separate session of the workshop. Authors were encouraged to
submit tool papers which report on new features of existing tools or completely
novel tools having graph-based foundations. The presentations of tools papers
will contain a mandatory live demonstration part during the workshop.

The mission of the tool demonstration part is to provide an overview on the
state-of-the-art of tools for the graph transformation community and to local
participants as well.

3 Workshop Organization

The program committee of this workshop consists of Luciano Baresi, David
Déharbe, Holger Giese, Gabor Karsai, Mark Minas, Arend Rensink, Andy Schürr,
Gabriele Taentzer, Dániel Varró, Pieter Van Gorp, Hans Vangheluwe, Andreas
Winter, and Albert Zündorf.

Altogether, 13 papers have been submitted for GraBaTs. More information
about the workshop including its program and an electronic version of all ac-
cepted papers appearing the new electronic journal ”Electronic Communications
of EASST”. can be found on the workshop web page:
http://www.inf.mit.bme.hu/GRABATS2006.
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The Workshop on Petri Nets and Graph Transformations, which is currently at
its second edition, is focussed on the mutual relationship between two prominent
specification formalisms for concurrency and distribution, namely Petri nets and
graph transformation systems. It belongs to the folklore that Petri nets can be
seen as rewriting systems over (multi)sets, the rewriting rules being the transi-
tions, and, as such, they can be seen as special graph transformation systems,
acting over labelled discrete graphs. The basic notions of Petri nets like mark-
ing, enabling, firing, steps and step sequences can be naturally “translated” to
corresponding notions of graph transformation systems. Due to this close corre-
spondence there has been a mutual influence between the two fields, which has
lead to a fruitful cross-fertilisation.

Several approaches to the concurrent semantics of graph transformation sys-
tems as well as techniques for their analysis and verification have been strongly
influenced by the corresponding theories and constructions for Petri nets (see,
e.g., [10]). For instance, the truly concurrent semantics of algebraic graph trans-
formations presented in [3,2] can be seen as a generalisation to of the correspond-
ing semantical constructions developed for Petri nets in [21,14]. Similarly, the
concurrent semantics for EMS systems in [12] is partly inspired by the Goltz-
Reisig process semantics for Petri nets. More recently, several approaches to the
analysis and verification of graph transformation systems properties have been
proposed (see, e.g., [18,4,20,6,17]) and also in this case the relation with Petri
nets has been often a source of inspiration. In particular, some approaches are
inspired by analogous techniques previously developed in the domain of Petri
nets, e.g., based on invariants or on finite prefixes of the unfolding, and some
others reduce the verification of a graph transformation systems to the analysis
of a suitable abstraction expressed in the form of a Petri net.

Classical Petri nets models have been integrated with graph transformation
systems in order to define rule-based changes in the Petri net structure. This can
serve for a stepwise refinement of Petri net models, which leads from an abstract
description of the system to the desired model. Alternatively, transformations
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over Petri nets can be used to define dynamically reconfiguring Petri nets, i.e.,
extended Petri net models where the standard behaviour, expressed by the token
game over a fixed structure, is enriched with the possibility of altering the net
structure (see, e.g., reconfigurable nets of [1] and high-level replacement systems
applied to Petri nets in [16,7]).

As mentioned above, the theory of rewriting over categories of Petri falls into
the realm of high-level replacement systems, a generalisation of graph transfor-
mation systems to general categories, the so-called called HLR categories [8],
including, e.g., algebraic specifications. The HLR approach has been recently
generalised with the introduction of adhesive categories [13] and adhesive HLR
systems [9], which provide a quite elegant and general framework where (double-
pushout) rewriting can be developed. The view of Petri nets as rewriting systems
over adhesive categories [19] or as bigraphical reactive systems [15] has been re-
cently used to automatically derive compositional behavioural equivalences for
Petri nets.

As a further link between the two models, recall that graph transformation
systems are also used for the development, the simulation, or animation of vari-
ous types of Petri nets, e.g., via the the definition of visual languages and envi-
ronments [5,11].

With the aim of favouring the cross-fertilisation and the exchange between the
areas of Petri nets and of graph transformation, the workshop gathers researchers
working in the field of low- and high-level Petri nets, and researchersworking in the
field of rewriting, including graph transformation, high-level replacement systems,
rewriting systems over adhesive categories and rewriting logic. The contributions
to the workshop will touch all the issues mentioned above: transfer of concepts and
techniques from Petri nets to graph transformation, verification of graph transfor-
mation based on Petri net abstractions, theory and application of rewriting over
Petri nets and encoding of (extensions) of Petri nets as rewrite theories.
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Abstract. Transformation-based techniques such as refactoring, model
transformation and model-driven development, architectural reconfigura-
tion, etc. are at the heart of many software engineering activities, making
it possible to cope with an ever changing environment.

This workshop provides a forum for discussing these techniques, their
formal foundations and applications.

1 Motivation and Objectives

Since its birth as a discipline in the late 60ies Software Engineering had to cope
with the breakdown of many of its original assumptions. Today we know that

– it is impossible to fix requirements up front;
– the design of the system is changing while it is being developed;
– the distinction between design time and run-time is increasingly blurred;
– a system’s architecture will change or degrade while it is in use;
– technology will change more rapidly than it is possible to re-implement crit-

ical applications;

This recognition of lack of stability in software means that we have to cope
with change, rather than defending against it. Processes, methods, languages,
and tools have to be geared towards making change possible and cheap.

Transformations of development artifacts like specifications, designs, code, or
run-time architectures are at the heart of many software engineering activities.
Their systematic specification and implementation are the basis for a wide range
of tools, from compilers and refactoring tools to model-driven CASE tools and
formal verification environments. The workshop provides a forum for the discus-
sion transformation-based techniques in software evolution.
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2 Topics

Submissions to the workshop are based on a wide range of transformation for-
malisms like

– program transformation (over Java, C, or C++, etc.);
– model transformation (over UML and other visual languages);
– graph transformation;
– term rewriting;
– category theory, algebra, and logic;

discussing their application to software evolution activities like

– model-driven development;
– model and code refactoring, redesign and code optimisation;
– requirements evolution;
– reverse engineering, pattern detection, architecture recovery;
– architectural reconfiguration, self-organising or self-healing systems, service-

oriented architectures;
– consistency management, co-evolution of models and code;
– merging of models, specifications, ontologies, etc;

The program will combine presentations of position and technical papers with
discussions on selected topics. The nomination of papers for presentation is de-
termined through a formal review process.

Accepted contributions will appear in the Electronic Communications of
EASST, the European Association of Software Science and Technology. A pre-
liminary version of the issue will be available at the workshop.

3 Program Committee

The following program committee is responsible for the selection of papers.

– Luciano Baresi, Politecnico di Milano, Italy
– Tháıs Batista, Federal University of Rio Grande do Norte, Brazil
– Paulo Borba, Universidade Federal de Pernambuco, Recife, Brazil
– Artur Boronat, Universidad Politécnica de Valencia, Spain
– Christiano de Oliveira Braga, Universidad Complutense de Madrid, Spain
– Andrea Corradini, Università di Pisa, Italy
– Mohammad El-Ramly, University of Leicester, UK
– Jean-Marie Favre, Universite Grenoble 1, France [co-chair]
– Reiko Heckel, University of Leicester, UK [co-chair]
– Dirk Janssens, University of Antwerp, Belgium
– Tom Mens, Université de Mons-Hainaut, Belgium [co-chair]
– Anamaria Martins Moreira, Universidade Federal do Rio Grande do Norte,

Natal, Brazil
– Leila Silva, Universidade Federal de Segipe, Brazil
– German Vega, Universite Grenoble 1, France
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