
A Hybrid Approach for Generating
Compatible WS-BPEL Partner Processes

Simon Moser1, Axel Martens2, Marc Häbich1,3, and Jutta Mülle3

1 IBM Böblingen Lab, Business Process Solutions,
Böblingen, Germany
smoser@de.ibm.com

2 IBM TJ Watson Center, Component Systems Group,
Hawthorne (NY), USA
amarten@us.ibm.com

3 University of Karlsruhe, Information Systems Group,
Karlsruhe, Germany
muelle@ipd.uka.de

Abstract. The Business Process Execution Language for Web Services
provides an technology to aggregate encapsulated functionalities for
defining high-value Web services. For a distributed application in a B2B
interaction, the partners simply need to expose their behavior as BPEL
processes and compose them. Still, modeling and composing BPEL pro-
cesses can be complex and error-prone. With formal methods like Petri
nets, it is possible to analyze crucial properties (e.g. compatibility) effec-
tively. In this paper, we present a method that automatically generates
compatible partner BPEL processes for a given BPEL processes. Our
hybrid approach makes use of formal methods, but also incorporates the
structure of the original BPEL process model, such that the generated
partner process is easier to understand and manage.

Keywords: Business Process Modeling, Web Service, WS-BPEL, Be-
havioral Compatibility, Tool based Verification, Petri nets.

1 Introduction

The Business Process Execution Language for Web Services BPEL4WS [7] is
becoming the standard for modeling Web Service based business processes. A
BPEL process implements one Web Service by specifying its interactions with
other Web Services (which might be BPEL processes, too). BPEL processes con-
sist of two kinds of activities: Basic activities to communicate to the outside, to
manipulate data or to interfere with the control flow and structured activities to
aggregate other activities, i. e. to build the control structures of the process.

For two BPEL processes to interact, interfaces with operations and message
types have to be defined separately in WSDL [2] and included into a partner link
which specifies the interfaces of any given set of interacting BPEL processes. In
the online shop example (Figure 1), the client process provides two interfaces:
the StartUp Interface towards the initiating component and the Order Client Interface

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 458–464, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes 459

Receive Login

Premium customer Otherwise

Invoke Delivery

Complex Order Service

Decision on server side

Client-Server
PartnerLink

Receive OrderReceive ToP

Invoke ConfirmInvoke Discount

Receive Payment Receive Order

Invoke Confirm Invoke SBC

Complex Order Client

Reply to Invocation

Receice InvocationInvocation
Invocation

PartnerLink

Invoke Specials

Receive Response

Invoke Login

Premium customer Otherwise

Receive Delivery

Decision on client side

Invoke OrderInvoke ToP

Receive ConfirmReceive Discount

Invoke Payment Invoke Order

Receive Confirm Receive SBC

Receive Specials

Invoke Response

Login

Order

Response

ToP

Payment

Specials

Confirm

Discount

SBC

DeliveryO
rd

er
 C

lie
nt

 In
te

rf
ac

e

O
rder S

erver Interface

S
ta

rt
 u

p
In

te
rf

ac
e

Fig. 1. Online shop example – incompatible BPEL processes of client and server

towards the shop’s service. Moreover, the client requires the online shop’s Web
service to provide the Order Server Interface. Obviously, two BPEL processes can
only be composed iff the provided interface of each process equals the required
interface of the other. But this syntactic compatibility between the interfaces is
not sufficient for the successful interaction of two BPEL processes.

An additional requirement – called behavioral compatibility [6] – is needed to
ensure successful composition. In our example, the client process transmits the
login data and makes a decision whether to act as a premium customer or as a
regular customer, but its decision is not synchronized with that of the server pro-
cess, although it is crucial to the further interaction. In case the client acts as a
premium customer, it sends its order along with its terms of payment (ToP), and
awaits discount information and confirmation. However, the server process might
treat him like a regular customer because his last order was too long ago. In that
case, the server process will acknowledge the order with the standard business
conditions (SBC) and await payment. The concurrent conversation (Invoke Spe-
cials) happens regardless of either party’s decision. In the end, both processes
are waiting and neither can continue on its own - a classic deadlock situation.
Obviously, the behavior of these two BPEL processes is not compatible.

Handing out an abstract process model to the partner so he can model his
process accordingly is one solution to ensure behavioral compatibility, cf. [6].
However, modeling is time consuming and error-prone, and the partner might
need many attempts to build a process that is actually compatible. A more
elegant solution is to create a template of the partner’s process (PP for short)
out of the original process (OP) and to hand out this template instead . Thus, the
partner only needs to refine the template according to his needs while behavioral
compatibility is guaranteed. Similar ideas have been proposed for example in
[4]. In this article, we will present a new approach to automatically generating
guaranteed compatible BPEL PP in a hybrid approach, which combines the
structural and behavioral approaches described in the following.

460 S. Moser et al.

2 Structural Approach

This approach uses the interaction patterns and control structures defined in
BPEL processes. It parses the structure of the OP and reflects it using the du-
ality between two BPEL activities (Table 1). The partner generation aims to
deliver a process template that interacts correctly with the OP, and that has to
be further refined by the partner. Hence, the generation focusses on communi-
cating and structuring activities only, while internal activities of the OP (wait,
assign, empty, . . .) are ignored/mapped to empty. Communication between BPEL
processes is either asynchronous or synchronous, in which case the activity that
calls is blocked until a response has been sent. Structured activities define the
control flow of a BPEL process. Generally, sequential activities in one process can
be mapped to sequential execution within the other. Sometimes the blocking in
synchronous communication requires multiple parallel threads in the generated
PP (cf. [3]). So the most general approach is to map each sequence into a flow
and to express the precedence constraints with flow links. Parallel execution in
one process can always be mapped to parallel execution within the other.

Mapping choices is more complicated. An externally determined choice within
the OP (pick) can be mapped into an internal choice of the PP (switch), where
each case branch exchanges messages w. r. t. the communication style – although
the mapping of onAlarm branches is not clear. The mapping of a switch activity
into pick activity, however, is not possible in general, because there might be no
distinguished messages sent in the case branches at all. Mapping instead a switch
into a switch might lead to unsynchronized decisions of both BPEL processes, cf.
Figure 1. A switch without communicating activities is just an internal activity.
If we see a while activity as a kind of switch that loops in one case and does
nothing in the otherwise case, the same problems apply to while (cf. [3]).

The client process shown in Figure 1 was generated using this approach. Since
the approach is based on static mapping rules, it is very fast, and the generated

Table 1. Conceptual dualities between BPEL activities

Basic process activity partner activity
receive with/without reply synchronous/asynchronous invoke
synchronous/asynchronous invoke receive with/without reply
wait, assign, empty, . . . empty or ignored

Structured process activity partner activity
sequence sequence (flow)
flow flow (sequence)
pick switch

onMessage with/without reply case branch with sync/async invoke
onAlarm N/A

switch pick, switch or empty
while while
scope scope

handler N/A

A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes 461

BPEL to Petri

net mapping

Original
Process
Model

Formal
Process

Model

Formal
Behavior

Model

Formal
Controller

Model

Partner
Process
Model

Hybrid
approach

Behavioral approach

S
tr

u
ct

u
ra

l a
p

p
ro

ac
h

Controllability

analysis

R
ef

le
ct

in
g

of
 B

P
E

L
ac

tiv
iti

es

State machine to BPEL mapping

P
ro

je
ct

io
n

of
 s

ou
nd

 b
eh

av
io

r
(a) Partner generation approaches (b) Communication graph of server process

Fig. 2. Wombat4ws’s formal background

PP’s structure is as simple (or complex) as the OP. In general, this makes the PP
easily manageable/understandable to humans. These are two major advantages.
But a major drawback is that compatibility is not guaranteed if internal decisions
within the OP influence the communication between the parties. Moreover, the
approach does not cover timers, handlers and complex flow link structures.

3 Behavioral Approach

The behavioral approach uses a formal mathematical analysis of the OP model.
It consists of four steps, as shown in Figure 2(a). In the first step, the BPEL OP
is transformed into a formal Petri Net representation, see also [5,1,8]. To keep
the relation to the BPEL process, all Petri net elements are grouped into block
structures, each representing exactly one element of the process. The resulting
formal process model is called BPEL-annotated Petri net (BPN) [6].

However, the BPN is intermediary: In the second step, the communication
behavior of the BPN is analyzed. Martens [1] presents an algorithm for analyzing
the controllability of a BPEL process that generates a communication graph of
the BPN model. This graph is the external, i. e. the partners’, view on the process.
Figure 2(b) shows a subset of the communication graph of the server process from
the initial example. Formally, it is a state machine with two different kinds of
states. A visible state (drawn as a white ellipse) refers to reachable states of the
BPN in which input messages are expected. Each outgoing edge of such a state
is labeled with a message which the BPN is able to receive in this state. A hidden
state (drawn as a filled circle) is of intermediary nature. Each outgoing edge is
labeled with a message the BPN can send in response to the consumed input.

With all possible sequences of input/output messages of the OP, the third step
eliminates those sequences that may produce unwanted situations like deadlocks.
The described behavior of the initial client process, for example, is one such
communication sequence. The projection yields a sub-graph that contains only
sound communication sequences and that represents the controller model for

462 S. Moser et al.

Parse source
structure tree

End

Analyze behavior ,
extract behavioral sub-graph

Treat node in
behavioral mode

Treat node in
structural mode

Start

Structure tree
has more nodes

Node can be mirrored
with model language
means

Sub-graph has
more nodes

Node can be mirrored
with model language
means

Y

N

Y N

N

N

Y

Y

ST
R

U
C

T
U

R
A

L
 C

Y
C

L
E

B
E

H
A

V
IO

R
A

L
 C

Y
C

L
E

(a) The Hybrid Algorithm

Invoke Login

Receive Delivery

Complex Order Client

Invoke ToP

Receive Discount

Invoke Payment

Receive Confirm

OnMessage Confirm OnMessage SBC

Pick decision on server side

Invoke Order

Receive Start

Reply Start

Invocation

Invocation
PartnerLink

Client-Server
PartnerLink

Login

Order

Response

ToP

Payment

Specials

Confirm

Discount

SBC

Delivery

Receive Specials

Invoke Response

O
rd

e
r

C
lie

n
t
In

te
rf

a
c
e

O
rd

e
r S

e
rv

e
r In

te
rfa

c
e

S
ta

rt
 u

p
In

te
rf

a
c
e

(b) Generated compatible client processes

Fig. 3. Hybrid approach for generating behaviorally compatible partner processes

the BPEL OP. Figure 2(b) shows that sub-graph for the server process of the
online shop example. The controller model is transformed into the BPEL PP
model, by mapping each edge to a communicating BPEL activity while the con-
trol flow is built around them w. r. t. the causal order [3]. In contrast to the
structural approach, the behavioral method has been proven to produce a be-
haviorally compatible PP, if there is one possible at all. Still, the main drawback
of this method is that it is computationally expensive and will actually con-
sider all possible sequences of communication activities, e. g. for 12 concurrent
communication activities in the OP, there are 12! = 47, 900, 1600 possibilities to
order them. Hence, the method will often yield a PP that is too complex and
rather hard for the partner to refine, as Figure 2(b) shows. The generation of
the communication graph alone is exponential w. r. t. the size of the OP (cf. [1]).

4 Hybrid Approach

In isolation, both approach have strengths but also drawbacks. The hybrid ap-
proach combines their advantages without inheriting their deficits: it uses the
structural approach whenever possible, to make the transformation fast and the
result less complex, and the behavioral approach whenever necessary, to guaran-
tee behavioral compatibility. The approach combines the hierarchical, tree-like
structure gained by parsing the OP into a structure tree (so structured activities
form intermediate nodes and basic activities form leaf nodes) with the formal
controller model of the OP gained with the behavioral approach.

The hybrid algorithm shown in Figure 3(a) always starts in the structural
mode (Structural Cycle): It parses the structure tree as defined by the OP.
Then, it enters a loop visiting all nodes of that tree. In the so-called mirror
decision, it decides for each node in the structure tree whether it can be mirrored
with BPEL means. If this is true, then on the basis of the conceptual dualities,

A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes 463

a corresponding BPEL activity for the current node is generated, named and
inserted into the result structure tree. If it is false, i. e. if the activity cannot
be reflected by structural means, then the node has to be decomposed into
sub-structures, i. e. the behavior of the current activity is analyzed by zooming
into it and dissecting it into a sub-tree of connected sub-activities. Now, in the
Behavioral Cycle, each node of that sub-graph is classified in a decision: If the
activity can be reflected with structural means, is handed over to the structural
cycle. Else, it is treated in turn according to the formal controller model. Once the
sub-graph has been processed completely, the algorithm loops back to the initial
mirror decision to continue with the next ordinary node. The client process
shown in Figure 3(b) was generated using the hybrid approach.

In short, whenever a pattern occurs that cannot be transformed by simply
reflecting it, e. g. the internal Decision on Server side (cf. Figure 1), the algorithm
switches into behavioral mode to extract information about the pattern’s be-
havior from the communication graph and generates receive or pick, and reply
or invoke activities for all messages in that sub-graph. Finally, it connects these
generated activities by control flow links and/or embeds them into structured
activities. Since the structure tree may impose different operation modes, the
algorithm will switch back and forth between the two modes depending on the
patterns it encounters. For more details see [3].

5 Conclusion

In this paper, a method to automatically generate compatible BPEL partner pro-
cesses was presented. This method had to satisfy three major requirements: (i)
the generated PP had to be a valid BPEL process, (ii) it had to be behaviorally
compatible to the OP, and (iii) it had to be sufficiently compact and simple
enough to be understood and refined by a human process modeler. Neither a
pure structural approach, nor a pure behavioral approach meet those require-
ments completely. On detailed examination of the two approaches, a third, hybrid
approach, was developed, which coupled the advantages while overcoming their
drawbacks. The hybrid approach connects the structural process elements, as
defined by BPEL, with the formal mathematical analysis result (represented by
the communication graph). As demonstrated in this paper, the hybrid approach
couples behavioral compatibility with human readability and manipulability. A
different solution to overcome behavioral incompatibility between two BPEL pro-
cess models is trying to generate a third one which acts as an adapter between
those two. This is the topic of a currently conducted research project.

References

1. A.Martens. Analyzing Web Service based Business Processes. In Maura Cerioli,
editor, Proc. of FASE’05, LNCS 3442, Edinburgh, Scotland, April 2005. Springer.

2. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL – Web
Services Description Language. W3C, Standard, Version 1.1, March 2001.

464 S. Moser et al.

3. M. Häbich. Reverse Transformation of Petri Net-Based Communication Graphs to
BPEL4WS in Distributed Web Service Environments. Master’s thesis, 2005.

4. S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Modelling Web Services
Interoperability. In Proc. of ICEIS04, 2004.

5. R. Hamadi and B. Benatallah. A Petri Net based Model for Web Service Composi-
tion. In Proc. of ADC 2003. Australian Computer Society, Inc., 2003.

6. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compatibility of BPEL
Processes. February 2006.

7. T.Andrews, F.Curbera, H.Dholakia, Y.Goland, J.Klein, F.Leymann, K.Liu,
D.Roller, D.Smith, S.Thatte, I.Trickovic, and S.Weerawarana. BPEL4WS – Busi-
ness Process Execution Language for Web Services. Version 1.1, July 2002.

8. W.M.P. van der Aalst. Modeling and Analyzing Interorganizational Workflows. In
Proc. of CSD’98. IEEE Computer Society Press, 1998.

	Introduction
	Structural Approach
	Behavioral Approach
	Hybrid Approach
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

