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Abstract. We describe a new reference implementation of the web services secu-
rity specifications. The implementation is structured as a library in the functional
programming language F#. Applications written using this library can interop-
erate with other compliant web services, such as those written using Microsoft
WSE and WCF frameworks. Moreover, the security of such applications can be
automatically verified by translating them to the applied pi calculus and using
an automated theorem prover. We illustrate the use of our reference implementa-
tion through examples drawn from the sample applications included with WSE
and WCF. We formally verify their security properties. We also experimentally
evaluate their interoperability and performance.

1 Introduction

XML web services offer a standards-based framework for deploying secure networked
applications. Using SOAP [16] to serialize data, WS-Addressing [10] to identify end-
points, WS-Security [24] to protect messages, and HTTP or TCP as transport, program-
mers can deploy clients and servers that can operate across different platforms.

To this end, the WS-Security standard defines a security header for SOAP messages
that may include signatures, ciphertexts, key identifiers, and tokens identifying par-
ticular principals. Environments such as Apache WSS4J [3], IBM WebSphere [17],
and Microsoft Web Services Enhancements (WSE) [20] and Windows Communication
Foundation (WCF) [21], provide tools and libraries for building web services that are
secured via the mechanisms of WS-Security and related specifications.

In general, even if an attacker is unable to compromise the underlying cryptographic
algorithms used in a protocol, there may be successful attacks based on intercepting,
rewriting, and sending messages, as noted by Needham and Schroeder [25] and later
formalized by Dolev and Yao [11]. Due to the flexibility of composable specifications
and the semi-structured nature of the XML message format, WS-Security protocols
are actually more prone to message rewriting attacks than protocols based on binary
formats. In particular, studies of the usage of WS-Security reveal a wide range of vul-
nerabilities to message rewriting attacks [5,6,4,18,19]. Hence, it is essential to verify
the security of WS-Security protocol implementations before deployment.

Almost all verification tools for cryptographic protocols analyze abstract models
rather than implementations. For instance, the ProVerif [9,8] theorem prover takes a pro-
tocol model written in a variant of the pi calculus [23,2] plus target authentication and
secrecy goals, and attempts to prove that the model satisfies these goals. So, to verify
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the security of a web services protocol implementation, one may write a detailed formal
model for the protocol by studying the standards, by carefully observing the messages
it sends, or by reading its source code. Using such models, previous analyses establish
correctness theorems [14,5,4,18,19] and report attacks [5,6] on many WS-Security pro-
tocols. Still, writing formal models remains difficult and time-consuming; hence, this
approach is typically applied only to common protocols. Even for these protocols, a
precise and detailed formal model is lengthy, and its fidelity to the implementation is
difficult to maintain.

In earlier work [7], we present an automated verification method for security proto-
col implementations written in F# [26], a dialect of ML. Our tool, named fs2pv, relies
on the ProVerif theorem prover to verify that an F# program meets its security goals
in the presence of an active attacker. The capabilities of the active attacker can be flex-
ibly defined as a programming interface that lists all the values and functions of the
protocol that the attacker may access. Our earlier work demonstrates the effectiveness
of these tools on several protocol implementations, including protocol implementations
based on WS-Security, and establishes a general theorem stating the correctness of our
method.

The present paper complements and extends this work by elaborating the details
of our verifiable programming style for WS-Security. We propose to build reference
implementations for WS-Security protocols in F#. We develop a verified library that
partially implements WS-Security and its related specifications. With this library, we
can quickly implement, test, and verify new protocol implementations. Our reference
implementations are readable, succinct, and verified.

The contributions of this paper are as follows:

1. A description of the design and architecture of a reusable library for building web
services and verifying their security. Our library supports a significant subset of
the specifications for web services security and can interoperate with other web
services implementations.

2. A detailed case study of the implementation and verification of a WS-Security se-
curity protocol. To the best of our knowledge, the thousand line pi calculus process
we verify is the largest model of a cryptographic protocol to be extracted from code.
We provide interoperability results and performance comparisons; as a benchmark,
our implementations pass interoperability tests with at least two production im-
plementations, Microsoft WSE and WCF. We also give formal security guarantees
for this protocol, established by running verification tools and instantiating general
theorems that justify our method.

Our earlier paper discusses related work, including tools that derive implementa-
tion code from models. We are aware of only one other tool that extracts models from
cryptographic protocol implementations, Goubault-Larrecq and Parrenne’s Csur [15].
Their tool extracts Horn clauses from C code; it has been applied successfully to the
Needham-Schroeder protocol.

The structure of the rest of the paper is as follows. Section 2 recalls the verification
method developed in our previous work. Section 3 details the implementation and veri-
fication of a WS-Security X.509 mutual authentication protocol. Section 4 presents ver-
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ification results for some WS-Security protocol implementations. Section 5 describes
the structure of our WS-Security library. Section 6 concludes.

2 Verifying Security Protocol Implementations in F# (Review)

The F# programming language [26] is a dialect of ML that executes on the Common
Language Runtime (CLR). The figure above shows the structure of our formal method
for verifying protocol models that are derived from the F# code of security protocols.
This section outlines our method; the description draws in part on material included in
our earlier paper [7].

Our tool fs2pv captures the semantics of an expressive subset of F# by translating
F# implementation code to the dialect of the applied pi calculus [2] analyzed by the
ProVerif theorem prover [8]. The core of our translation is Milner’s interpretation of
functions as pi calculus processes [22]. Still, we implement many optimizations to take
advantage of features of ProVerif and to facilitate automated verification. Our transla-
tion, and the analysis performed by ProVerif, rely on a symbolic, algebraic represen-
tation of cryptography, as first proposed by Dolev and Yao [11]. We conjecture that
our method could be adapted to other source languages whose semantics can be di-
rectly represented in the pi calculus, and that other tools could be used to analyze the
translated pi calculus processes.

Dual Implementations for Trusted Libraries. Each of our protocol implementations is
a composition of typed F# modules. Each module exports types, values, and functions,
and may depend on other modules. We write standard F# interface files to describe the
types and the typed values and functions provided by a module.

Ideally, we would construct our pi calculus model of a protocol entirely from the
actual source code of its modules. For a few, trusted libraries, however, we instead
write a dual, symbolic implementation. We assume (but do not formally verify) that
the symbolic implementation of a library is an appropriate abstraction of its concrete
implementation. These symbolic abstractions correspond to Dolev and Yao’s algebraic
treatment of cryptography and networking. For example, our protocols depend on an
interface crypto.fsi, shown in Table 1, to perform cryptographic algorithms used for
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Table 1. The Attacker’s Interface to the Trusted Libraries

crypto.fsi (excerpt)type keybytes
val rsa encrypt: keybytes → bytes → bytes
val rsa decrypt: keybytes → bytes → bytes
val sha1: bytes → bytes
val rsa sign: keybytes → bytes → bytes
val rsa verify: keybytes → bytes → bytes → unit

prins.fsi (excerpt)
type principalX =

{subject:str;
cert: bytes;
pubkey: keybytes;
privkey: keybytes;}

val genX509: str → unit
val getX509Cert: str → bytes
val leakX509: str → principalX

net.fsi
val request: (str → str → item → item)
val accept: (str → item)
val respond: (item → unit)

web services security. The concrete library implements the abstract type bytes as actual
byte arrays, and the various functions as actual cryptographic algorithms, as provided
by CLR libraries. The symbolic library implements bytes as an algebraic data type; a
function such as rsa encrypt becomes a constructor of this datatype, while the func-
tion rsa decrypt is defined by pattern-matching on the datatype. We also define dual
implementations for an interface prins.fsi, that provides access to the operating system
security context, and an interface net.fsi, that provides networking capabilities.

We write S for the symbolic implementation of a protocol in F#: the composition
of all the modules of a protocol, but with the symbolic code instead of the concrete
code for those trusted libraries with dual implementations. This is the code that fs2pv
translates to the pi calculus. Our method does not verify the concrete code of the library
modules with dual implementations, it is not included in S; it is trusted, not verified.

As well as verifying S, we can build a symbolic version of the protocol imple-
mentation by compiling S. Running this symbolic implementation generates readable
messages, containing symbolic representations of cryptographic materials, useful for
prototyping and debugging.

The Attacker Interface. The aim of the analysis is to prove security properties such as
message authentication and secrecy in the face of an attacker able to monitor, rewrite,
and substitute messages sent between the machines playing a role in a protocol.
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We envisage the attacker as a top-level F# module that can call some but not all of
the modules making up a protocol implementation. The attacker interface, Ipub, models
the capabilities of the attacker; it is expressed as the concatenation of the interfaces for
the modules that are deemed accessible by the attacker. (The list of these modules is
an input of our verification tool; their selection is an important step of our method,
and should reflect the informal threat model for the protocol.) This attacker interface
typically includes the three interfaces in Table 1—to allow the attacker communication
and cryptographic facilities—plus functions representing protocol roles—to allow the
attacker to start arbitrary numbers of initiators and responders, for example. We write
S :: Ipub to mean that the symbolic implementation S correctly exports (at least) the
types, values, and functions in Ipub. We can check S :: Ipub with the F# typechecker.

Queries for Authentication and Secrecy. We express authentication properties as cor-
respondences between protocol events, in the style of Woo and Lam [27]. For instance,
suppose a principal A begins a protocol with some parameters P; before sending the
first message, it logs an event Begin(P). Then, if a principal B ends the protocol, log-
ging the event End(P′), an authentication goal would be that A and B agree on these
parameters (P = P′). In particular, P may include the name of principal A (to ensure
sender authentication), the contents of the message (to ensure message authentication),
and the content of related messages (to ensure correlation and session integrity).

Similarly, we express syntactic secrecy properties as correspondences: whenever the
attacker obtains a value s marked as secret, the attacker can trigger the logging of the
event NotSecret(s); hence, s remains secret only if this event is not reachable.

In ProVerif syntax, these correspondences are represented by queries:

query ev:End(P) =⇒ ev:Begin(P).
query ev:NotSecret(s) =⇒ ev:Unreachable().

The first query says that in any run of the program, if event End(P) occurs, then event
Begin(P) must have occurred before. The second query says that NotSecret(s) is un-
reachable. (We arrange that ev:Unreachable() occurs in no run of the program.) In gen-
eral, queries may include conjunctions (&) and disjunctions (|) of events on the right
hand side of the implication.

We say that S is robustly safe for q and Ipub to mean that, for every attacker mod-
ule O that is well-typed against Ipub, the query q holds in all runs of the symbolic
implementation S composed with the top-level module O. The attacker interface Ipub

typically excludes the function for logging events, so the attacker O cannot log events
itself. The formal details are elsewhere [7].

Automated Verification of Authentication and Secrecy. For any symbolic implementa-
tion S with attacker interface Ipub, our verification method consists of the following
steps. First, we identify the attacker interface Ipub and represent our authentication and
secrecy goals as ProVerif queries. Second, we run fs2pv to generate a ProVerif script,
written [[S :: Ipub]]. Third, we run ProVerif to check the script for each query q.

The following theorem states the correctness of our method. It follows as a corollary
of the correctness of ProVerif [1] and the correctness of fs2pv [7]. The proof of the
latter involves defining a direct semantics for the F# programs S accepted by fs2pv, and
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proving a correspondence between the direct semantics of each S and its pi calculus
translation [[S :: Ipub]].

Theorem 1. Suppose that S :: Ipub and that [[S :: Ipub]] is the ProVerif script generated
by fs2pv from S and Ipub. If ProVerif terminates having proved that [[S :: Ipub]] satisfies
the query q, then S is robustly safe for q and Ipub.

3 X.509 Mutual Authentication

As our main case study, we consider a mutual authentication protocol based on X.509
public key certificates. Both WSE and WCF already implement this protocol as part of
their sample code.

We begin with an informal narration of the protocol, then provide a complete im-
plementation in F#. The code is quite short, as it mostly relies on our WS-Security
libraries. We describe executions of the protocol, both symbolically (to produce read-
able message traces) and concretely (to evaluate its performance). We also report on
interoperability testing with the WSE and WCF implementations. Finally, we present
verification results for this implementation.

Protocol Narration. The protocol has two roles, a client and a server. Every session of
the protocol involves a principal A acting as client and a principal B acting as server.
Each principal is associated with an RSA key-pair, consisting of a private key and a
corresponding public key; A’s key-pair is written (skA, pkA), and B’s key-pair is writ-
ten (skB, pkB). We assume that the principals have already exchanged their public key
certificates. Hence, the principals can identify one another using their public keys.

The goal of the protocol is to exchange two XML messages: a request and a re-
sponse, such that both the client and server can authenticate the two-message session
and keep the messages secret, even in the presence of an active attacker. To accomplish
this goal, we rely on XML digital signatures and XML Encryption. The abstract mes-
sage sequence of the protocol can be written as follows (where | denotes concatenation):

A → B : TS |
RSA-SHA1{skA}[request | TS ] |
RSA-Encrypt{pkB}[symkey1] |
AES-Encrypt{symkey1}[request ]

B → A : RSA-SHA1{skB}[response | RSA-SHA1{skA}[request | TS ]] |
RSA-Encrypt{pkB}[symkey2] |
AES-Encrypt{symkey2}[response]

The client acting for principal A sends a message request at time TS to the server acting
for B. To support message authentication, the client jointly signs request and TS using
the signature algorithm RSA-SHA1 keyed with A’s private key skA. To protect the se-
crecy of the message, the client uses AES-Encrypt to encrypt it under a fresh symmetric
key symkey1. The symmetric key is in turn encrypted using RSA-Encrypt under pkB .
(This standard, two-step encryption is motivated by the relative costs of symmetric and
asymmetric encryptions for large messages.)
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The server repeatedly processes request messages. After accepting a request, the
server returns a response to the client. Like the request, the response is signed (using
skB) then encrypted (using a fresh symkey2 encrypted under pkA). To correlate requests
and responses, the server jointly signs the response and the signature value of the re-
quest. (Otherwise, since clients and servers may run several sessions in parallel, an at-
tacker may confuse the client by swapping two responses.) This correlation mechanism
is called signature confirmation.

The security goals of the protocol are:

Request Authentication: B accepts a request from A with timestamp TS only if A
sent such a request with timestamp TS.

Response Authentication and Correlation: A accepts a response to its request only
if B sent response on receiving A’s request.

Secrecy: The message payloads request and response are kept secret from all principals
other than A and B.

Implementation. Our protocol implementation is listed as X509MutualAuth.fs. The
module consists of four functions: mkEnvelope and isEnvelope generate and check the
protocol messages, while client and server implement the two protocol roles.

To parse and generate standards-compliant SOAP envelopes, and to sign and encrypt
XML elements, we rely on functions of the web services security library. As an exam-
ple, consider the mkEnvelope function. Depending on its arguments, mkEnvelope con-
structs either a request message or a response message. To construct a request, it takes a
message body containing the request, the X.509 entry snd for the sending principal A,
the X.509 certificate rcvcert for the receiving principal B, and an empty list corr. (When
constructing a response, snd is the X.509 entry for B, rcvcert is the X.509 certificate
for A, and corr contains the signature value of the request.) The code for mkEnvelope
successively calls the following library functions, defined in modules wssecurity.fs and
soap.fs:

– mkTimestamp and genTimestamp create a new timestamp and serialize it to XML;
– mkX509Signature generates the XML digital signature for the message;
– mkX509Encdatakey generates the two encrypted components;
– mkX509SecurityHeader generates the security header;
– genEnvelope generates the whole SOAP envelope for the message.

Finally, the function returns the envelope (for sending) paired with its signature value
(kept for correlating the response).

Unlike mkEnvelope and isEnvelope, the client and server functions are part of the at-
tacker interface; both these functions are included in the interface X509MutualAuth.fsi
for the protocol module X509MutualAuth.fs. Hence, an attacker can call these functions
to initiate sessions and instantiate roles.

The four arguments to client are the name of the client and server principals (clPrin,
srvPrin), and the HTTP URI and SOAP action (servUri, servAction) that identify the
server location. The client first calls the request function from the service.fs module
(described in the next subsection) to compute the XML request payload (req). It then in-
stantiates both principals; it gets the X.509 entry (cl) for clPrin from a private database;
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X509MutualAuth.fs
(∗ Opening Library Modules ∗)
open Data (∗ Standard datatypes: str, bytes, item ∗)
open Events (∗ Protocol Events ∗)

(∗ Constructing Messages ∗)
let mkEnvelope (body:item) (snd:Prins.principalX) (rcvcert:bytes)

(corr:item list) : item∗bytes =
let ts = Wssecurity.genTimestamp(Wssecurity.mkTimestamp()) in
let (dsig,sv) = Wssecurity.mkX509Signature snd (body::ts::corr) in
let (ed,ek) = Wssecurity.mkX509Encdatakey rcvcert body in
let sec = Wssecurity.mkX509SecurityHeader (Prins.cert snd) ek ts dsig in
let envXml = Soap.genEnvelope {Soap.header=[sec]; Soap.body=ed} in
(envXml,sv)

(∗ Checking Messages ∗)
let isEnvelope (envXml:item) (sndcert:bytes) (rcv:Prins.principalX)

(corr:item list) : item∗bytes =
let env = Soap.parseEnvelope envXml in
let ([sec],ed) = (env.header,env.body) in
let (ts,ek,dsig) = Wssecurity.isX509SecurityHeader sec in
let body = Wssecurity.isX509Encdatakey rcv ek ed in
let sv = Wssecurity.isX509Signature dsig sndcert (body::ts::corr) in
(body,sv)

(∗ Client Role ∗)
let client (clPrin: str) (srvPrin:str) (servUri:str) (servAction:str) =

let req = Service.request() in
let cl = Prins.getX509 clPrin in
let srvCert = Prins.getX509Cert srvPrin in
let (reqXml,sv) = mkEnvelope req cl srvCert [] in
log (ClientSend(clPrin,srvPrin,req));
let respXml = Net.request servUri servAction reqXml in
let sc = Wssecurity.genSigConf sv in
let (resp, ) = isEnvelope respXml srvCert cl [sc] in
log (ClientCorr(clPrin,srvPrin,req,resp))

(∗ Server Role ∗)
let server (clPrin:str) (srvPrin:str) (servUri:str) =

let clCert = Prins.getX509Cert clPrin in
let srv = Prins.getX509 srvPrin in
let reqXml = Net.accept servUri in
let (req,sv) = isEnvelope reqXml clCert srv [] in
log (ServerRecv(clPrin,srvPrin,req));
let resp = Service.response(req) in
let sc = Wssecurity.genSigConf sv in
let (respXml, ) = mkEnvelope resp srv clCert [sc] in
log (ServerCorr(clPrin,srvPrin,req,resp));
Net.respond respXml
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the entry consists of an X.509 certificate and its associated private key; it then extracts
the certificate (srvCert) for the server principal srvPrin. Next, it prepares the request
message (reqXml), using mkEnvelope, logs an event ClientSend(clPrin,srvPrin,req) to
indicate that it is sending the first message, and makes an HTTP request to the server,
using Net.request. The client remembers the signature value (sv) of the request for cor-
relating the response. When the client receives a response (respXml), it uses isEnvelope
to check that the response message is valid and that it includes a signature confirma-
tion (sc) echoing sv. It then logs the event ClientCorr(clPrin,srvPrin,req,resp) indicating
that a valid response has been received and correlated with the request.

The server proceeds symmetrically: it uses the client certificate and the server X.509
entry to check requests and issue responses. After accepting a request, the server logs
an event ServerRecv(clPrin,srvPrin,req); it then calls Service.response(req) to compute
the response resp, and logs the event ServerCorr(clPrin,srvPrin,req,resp) before issuing
the response.

Protocol Execution. To run the protocol, we write a main module X509Main.fs, listed
below. (This module is not used for verification; formally, it is just a simple instance of
the attackers considered in our theorems.)

let clntPrin = S "client.com"
let srvPrin = S "localhost"
do match Sys.argv.(1) with
| "client"→ client clntPrin srvPrin Service.uri Service.action;
| "server"→ server clntPrin srvPrin Service.uri;
| "local"→ Pi.fork (fun () → server clntPrin srvPrin Service.uri);

client clntPrin srvPrin Service.uri Service.action

This module first instantiates the client and server principals (identified by their X.509
common names “client.com” and “localhost”), and then runs either the client, or the
server, or both, depending on the command-line argument. The X509Main.fs module is
used only for executing the protocol; they are not used for verification.

We also write a module service.fs to encode an exemplary addition service. The mod-
ule consists of two functions: Service.request extracts two numbers from the command
line and returns them in a request body; Service.response computes the sum of the two
numbers in a request and returns it in a response body.

For verification, we write a dual, symbolic implementation of this module that gener-
alizes the two functions by allowing the attacker to choose some payloads: the symbolic
version of Service.request (Service.response) returns a request (response) body that it
either received from the attacker or it computed from a secret value. Hence, our security
goals require request and response authentication even when the attacker is allowed to
choose arbitrary payloads, and require secrecy of the secret payloads.

Symbolic runs. To run the protocol symbolically, we compile the X509MutualAuth.fs
and X509Main.fs modules with the web services library and the symbolic version of the
modules crypto.fs, net.fs, prins.fs, and service.fs to generate an executable run.exe. We
can then execute the command run local 100 15.99, for example. Our implementation
pretty-prints the communicated messages, using an abbreviated XML-like format with
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embedded symbolic expressions. The first message has 304 symbols while the second
has 531. Both messages are listed and described in the appendix.

Concrete Runs and Performance. To run the protocol concretely, we compile
X509MutualAuth.fs, X509Main.fs, and the web services library with the concrete ver-
sions of crypto.fs, net.fs, prins.fs, and service.fs to generate a new run.exe. We can then
execute the command run server on one machine, and execute run client 100 15.99 on
another. The resulting 4-kilobyte messages are instances of the symbolic messages,
where each symbol expression is replaced by a concrete, string-encoded value.

To test our concrete implementation for interoperability, we run our client with
servers implemented with WSE and WCF. The response message generated by the
WCF server does not include the X.509 certificate of the server, since the client is
expected to have it already. We easily modify our client to ignore this difference and it
successfully executes the protocol with WCF. The WSE server, however, does not sup-
port the <SignatureConfirmation> mechanism. Moreover, the key-sizes and encryption
algorithms supported by WSE are different from and more limited than WCF. After
disabling correlation and using WSE’s key sizes and algorithms, our client successfully
executes the protocol with the WSE server.

Each session of our implementation takes 1.2 seconds to complete the protocol. We
expect that this is comparable to the performance of the WSE and WCF implemen-
tations because all three implementations use the same .NET cryptography libraries,
XML parsers, and X.509 certificate stores. Indeed, in the default configuration, both
WSE and WCF take around one second per session for our protocol. A direct compar-
ison of the performance of the three protocol implementations has little significance,
because WCF, and to a lesser extent WSE, is a full web services implementation run-
ning within a web server, whereas ours is a partial implementation focusing on security.
The WSE implementation consists of around 185 lines of C# code, while the WCF im-
plementation consists of around 70 lines of C# code and 160 lines of security-related
XML configuration. In contrast, our implementation consists of 104 lines of F# code
that can be executed concretely or symbolically, as well as automatically verified.

Security Goals and Theorem. We use the fs2pv/ProVerif tool chain to verify our pro-
tocol implementation against its security goals. Recall the three security goals for our
protocol. Let G be these security goals expressed as ProVerif queries:

query ev:ServerRecv(u,s,x) =⇒ ev:ClientSend(u, ,x) | ev:Leak(u).
query ev:ClientCorr(u,s,x,y) =⇒ ev:ServerCorr(u,s,x,y) | ev:Leak(s).
query ev:NotSecret(v) =⇒

(ev:ClientSend(u,s,DataTxt(DataBase64(DataFresh(v)))) & ev:Leak(s))
| (ev:ServerCorr(u,s,r,DataTxt(DataBase64(DataFresh(v)))) & ev:Leak(u)).

The first query formalizes request authentication: it says that, if the server principal s
accepts a request x from a client principal u (ServerRecv(u,s,x)), then u has sent the re-
quest x (ClientSend(u, ,x)) or else u has been compromised. The second query formal-
izes response authentication and correlation: if the client principal u accepts a response
y for request x from server principal s (ClientCorr(u,s,x,y)), then s must have sent the
response y to u for request x (ServerCorr(u,s,x,y)).
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The third query expresses the secrecy of the request and response. It says that the
only secrets v available to the attacker (NotSecret(v)) are those that have been sent
within requests or responses to compromised servers or clients, respectively.

Let S be the F# system consisting of the X509MutualAuth.fs module, the web
services library, and the symbolic implementations for the modules crypto.fs, net.fs,
prins.fs, and service.fs. Let Ipub be the attacker interface from Table 1 extended with
the protocol interface X509MutualAuth.fsi. We use fs2pv to compile S to a script con-
sisting of 988 lines of pi calculus code. Then we run ProVerif to verify all three queries
in G above. By Theorem 1, we obtain:

Theorem 2. For each q ∈ G, the system S is robustly safe for q and Ipub.

Hence, we verify the security of our protocol implementation and all the functions it
uses from the web services library against a powerful attacker model. The only modules
we trust to be correct, and do not verify, are crypto.fs, net.fs, prins.fs, and service.fs.

Vulnerabilities and Attacks. Theorem 2 applies to our protocol implementation before
modifying it for interoperation with WCF or WSE. The modification for WCF makes
no difference to protocol correctness: we automatically establish Theorem 2 for the
modified implementation.

The modification for WSE, however, weakens the protocol: the second query (re-
sponse authentication) fails and ProVerif reports an attack. Indeed, since the modified
protocol does not use signature confirmation, an attacker can forward to the client a
response generated by the server in reply to another request by the same client. As
a result, requests and responses are not securely correlated—this is a known issue in
WS-Security 1.0, which led to the design of signature confirmation in WS-Security 1.1.
More precisely, we can still capture a weaker notion of response authentication that
holds for WSE, using the following, weaker variant of the second query:

query ev:ClientCorr(u,s,x,y) =⇒ ev:ServerCorr( ,s, ,y) | ev:Leak(s).

We then verify that all variants of our protocol implementation satisfy this query.
The X.509 mutual authentication protocol presented in this section meets our specific

set of authentication and secrecy goals, but is not unconditionally secure. We discuss
two of its limitations.

– The protocol fails to guarantee certain other security properties. For instance, it
fails to protect (stronger variants of) secrecy of request or response against guessing
attacks, when these messages have low entropy. If such protection is required, we
can either encrypt the signature in addition to the message content, or we can add a
nonce to the message content.

– The protocol also fails to prevent certain replay attacks on the server. If the client
produces a new timestamp for each request and if the server maintains a cache of
these timestamps, then replays can be detected and discarded. Indeed, our formal
model generates fresh timestamps for each message. Alternatively, we can include
a unique message identifier in each request.

We also coded stronger variants of the protocol that meet at least the requirements of
Theorem 2 and also address these limitations, and verified their implementation using
additional queries. We omit the details for simplicity.
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4 Other Protocols and Verification Results

In addition to the X.509 Mutual Authentication protocol, we have implemented several
other sample WSE and WCF protocols in F# and verified them. Table 2 reports our
experimental results. For each protocol, Table 2 states the program size for the imple-
mentation (in lines of F# code, excluding interfaces and code for shared libraries), the
number of messages exchanged, and the size of each message, measured both in bytes
for concrete runs and in number of constructors for symbolic runs. Concerning verifi-
cation, it gives the number of queries and the kinds of security properties they express.
A secrecy query requires that the message body be protected. An authentication query
requires that a message, its sender, or the whole session be authentic. All queries are
verified assuming that the attacker controls some corrupted principals, and thereby has
access to their keys and passwords. Finally, the table gives the total running time for
ProVerif to verify all queries for the protocol.

Table 2. Verification results for example protocols

Protocol Implementation Security Goals and Verification
LoC msgs bytes symbols queries secrecy authentication time

Password-based auth 85 1 3835 394 5 no msg, sender 5.3 s
X.509 auth 85 1 4650 389 5 no msg, sender 2.6 s
Pwd-X.509 mutual auth 149 2 6206; 3187 486; 542 15 no session 44m
X.509 mutual auth 117 2 4533; 4836 304; 531 18 msg session 51m

Table 3. Comparative sizes of implementation modules

Trusted Library Verified Web Services Library Protocol Module
Modules Concrete LoC Symbolic LoC Modules LoC LoC

4 793 + CLR 575 5 1648 85-149

Table 3 lists the sizes (in lines of F# code) of the modules in the protocol implemen-
tation, classified as trusted library code, verified web services code, and protocol code.
The concrete implementations of the trusted library modules rely on CLR libraries, such
as System.Cryptography for cryptographic functions; so, their size cannot be precisely
determined.

5 Implementing the Verified WS-Security Library

Programming a security protocol based on WS-Security is an exercise in modular-
ity. The messages of the protocol include elements, such as timestamps, addresses,
encrypted keys, and signatures, that are defined by different specifications. Many of
these elements eventually rely on low-level cryptographic computations. To assemble
the complete SOAP message, each element must be encoded in some XML format.
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To support this kind of programming, we structure our WS-Security library as fol-
lows. For each specification, we define an F# module Spec.fs and an interface Spec.fsi.
Within a module, each high-level message component is defined as a datatype T. Opera-
tions to generate and check elements of type T (typically using cryptographic functions)
are written as functions mkT and isT. Finally, for each datatype T, the module defines
functions genT and parseT to translate elements of T to and from XML items. In this
way, users of the library can ignore the XML representation and instead program with
the more abstract representation T and its corresponding functions.

For instance, the soap.fs module partially implements the SOAP standard [16]. It has
the following interface:

type envelope = { header: item list; body: item }
val parseEnvelope: item → envelope
val genEnvelope: envelope → item

A SOAP envelope is abstractly represented as a record that contains a list of headers
and a body. The functions parseEnvelope and genEnvelope translate such records to and
from XML items. Since there is no cryptography involved in constructing an envelope,
there are no other functions in the interface.

Similarly, the wsaddressing.fs module implements the headers defined in the WS-
Addressing specification [10]; it has a record type that abstractly represents optional
headers and it has functions to translate records to and from SOAP header elements.

The full WS-Security library consists of five F# modules, including soap.fs and
wsaddressing.fs, with a total of 1648 lines of code. We believe that these modules are
usable not only by programmers aiming to write verifiable web services security proto-
cols, but also by protocol designers looking for precise executable specifications for the
web services standards. In the rest of this section, we look in more detail at the modules
that implement the security mechanisms of WS-Security.

XML Signature. The XML Signature standard “specifies XML syntax and processing
rules for creating and representing digital signatures.” [13] An XML signature, as de-
fined in the standard, cryptographically attests to the integrity and authenticity of a set
of XML items. An example is the <Signature> element in the protocol messages in
the appendix. It includes metadata describing the computation of the signature value:
each signed element is first transformed using the specified canonicalization method
(xml−exc−c14n), then hashed using the specified digest method (SHA1); the digests
and metadata are finally signed using the specified signature method (RSA−SHA1).
The recipient of such a signature recomputes the digests and checks the received signa-
ture value before accepting the signed elements as authentic.

In our library, the xmldsig.fs module implements XML signatures. The datatype for
an XML signature is a record dsig that includes the relevant contents of the <Signature>

element as well as additional values needed for computing and checking the signature:

type dsig = {
siginfo: item;
sigval: bytes;
keyinfo: item;
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signkey: keybytes option;
verifkey: keybytes option;
targets: item list }

The field siginfo corresponds to the <SignedInfo> element containing the metadata and
all the digests; sigval contains the signature value; keyinfo identifies the signing key.
The module contains auxiliary functions for generating siginfo from the list of signed
elements (targets). To compute the sigval, we use a signing key (signkey); to check a
received sigval, we use the corresponding verification key (verifkey).

The module provides functions for constructing and checking signatures using both
symmetricand asymmetric signing algorithms,such as HMAC−SHA1and RSA−SHA1:

val mkSignature: item list → item → keybytes → str → dsig
val isSignature: item list → keybytes → dsig → bytes

The function call, mkSignature targets keyinfo signkey alg, constructs a dsig element
for the elements listed in targets, using signature key signkey and signing algorithm alg.
Conversely, isSignature targets verifkey dsig uses verifkey to check that dsig is a valid
XML signature computed from targets. The full module consists of 307 lines of code.

There are several challenges in implementing XML Signature. First, our functions
must correctly implement the low-level details of the signature. This includes not only
the details of the XML format such as namespaces and attributes, but also the use
of the canonicalization, digest, and signature algorithms. In xmldsig.fs, the functions
parseSignature and genSignature translate records of type dsig to and from XML. We
test these functions by inspecting the message traces as well as by extensive interoper-
ability testing with other implementations. Our datatype and functions hide these details
from the programmer, so all programs using these functions are guaranteed to generate
standards-conformant XML signatures.

Second, the standard offers several options for each step of signature computation
and an implementation is expected to support a subset. In our implementaion, we choose
one canonicalization and one digest algorithm, but allow two signature algorithms and
several ways of referring to signing keys. These choices do not affect the module inter-
face: the types and functions remain the same. Hence, we can easily add implementa-
tions for additional algorithms as the need arises and rely on the F# module and type
system to integrate them.

XML Encryption. The XML Encryption standard “specifies a process for encrypting
data and representing the result in XML” [12]. When parts of a message are to be en-
crypted using a symmetric key, the encrypted data mechanism can be used; when only
an asymmetric key is available for encryption, one first generates a fresh symmetric key,
uses it to encrypt data, and then protects the symmetric key using the encrypted key
mechanism. Both these mechanisms are depicted in the protocol messages in the ap-
pendix; the <EncryptedData> element contains a cipher value computed by applying a
symmetric encryption algorithm (AES−128) to the message body using a key encrypted
within an <EncryptedKey> element using an asymmetric algorithm (RSA−1.5).

The xmlenc.fs module implements XML encryption, in a similar style to xmldsig.fs.
It defines two record types encdata and encrkey representing encrypted data and en-
crypted keys. It provides functions to construct (encrypt) and decrypt records of these
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types and functions to translate them to and from XML. It also provides functions to
combine common encryption tasks; for instance, the function call, mkEncDatakey ek str
plain, generates a fresh symmetric key, uses it to encrypt the plain-text plain as an en-
crypted data block, uses the public-key ek to in turn encrypt the symmetric key, and
returns both the encrypted data and the encrypted key.

The module xmlenc.fs is implemented in 419 lines of code. It implements two sym-
metric algorithms for encrypting data, AES−128 and AES−256, and two asymmetric
algorithms for encrypting keys, RSA−1.5 and RSA−OAEP. Our choices are motivated
by the default settings in WSE and WCF; WSE supports AES−128 and RSA−1.5,
while WCF uses AES−256 and RSA−OAEP.

WS-Security. The wssecurity.fs module implements the content of the security header,
as specified in the WS-Security standard [24]. The security header contains several
optional elements, such as a message timestamp, tokens identifying principals, XML
signatures, and encrypted keys. The record representing this header is as follows:

type security = {
timestamp: ts;
utoks: utok list;
xtoks: xtok list;
ekeys: encrkey list;
dsigs: dsig list }

It consists of a timestamp (ts), generated using the mkTimeStamp function, username
tokens (utoks) identifying users and passwords, X.509 tokens (xtoks) containing public-
key certificates, encrypted keys (ekeys), and XML signatures (dsigs).

The module offers functions for constructing different kinds of tokens and for gen-
erating signatures and encrypted blocks using them. For instance, the function call,
mkX509Signature prin targets, generates an X.509 token corresponding to principal
prin and uses its private key to compute an XML signature for the element list targets.
The module also provides functions for translating security headers to and from XML.
For instance, the function genX509SecurityHeader takes a certificate, an encrypted key,
a timestamp, and a signature and generates the corresponding XML security header;
parseX509SecurityHeader does the reverse.

The wssecurity.fs module consists of 538 lines of F# code. It does not yet support
several token types defined in WS-Security, such as Kerberos and SAML tokens.

6 Conclusions

This paper demonstrates a new programming method for developing verified WS-Secu-
rity protocol implementations. Our implementations rely on a reusable library that
implements a significant subset of the web services security specifications. We demon-
strate the effectiveness of our method on a detailed example of a WS-Security mutual
authentication protocol. We verify a series of security properties, and discover some
vulnerabilities. Verification depends on our custom optimizing compiler from a subset
of F# into the pi calculus, and on ProVerif, a resolution-based prover for the pi calculus.
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Although the bulk of our code is verified, we assume the correctness of a few core
libraries, such as those implementing cryptographic algorithms and networking. The
combination of our compiler and ProVerif is effective, but in case of failure the user
does need to interpret rather low-level error messages in source language terms.

In future, we aim to improve the usability of our tools, and to extend our work to
more complicated protocols and protocol compositions.

Acknowledgements. Stephen Tse, co-author of our previous paper [7], participated in
the design of fs2pv, and completed its original implementation, during his internship at
Microsoft Research.
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Appendix

This appendix presents and describes the protocol messages for the X.509 mutual au-
thentication protocol of Section 3.

Symbolic Messages. The listing X509MutualAuthMsg1.xml shows the first message
as printed out by a symbolic run of the protocol; X509MutualAuthMsg2.xml shows the
second message.

In X509MutualAuthMsg1.xml, ts1 is the symbolic timestamp, and req is the serial-
ized request. The message has a security header that contains ts1, an encrypted symmet-
ric key key1, and an XML digital signature for req and ts1. The key key1 is encrypted
using the public key certificate for the server; in this message the certificate is issued
by Root and has a serial number guid4 and public key PK(rsa secret3). The XML sig-
nature value sv1 is computed as the RSA−SHA1 signature of the element si, which in
turn contains the SHA1 hashes of req and ts1. Finally, the body of the message is the
request req encrypted under the symmetric key key5.

The second message can be read similarly; the main difference is that the signature
includes a new <SignatureConfirmation> element containing the signature value sv1
from the first message.

Concrete Messages. The XML messages printed our in concrete runs of the protocol
are instances of the symbolic messages, where each symbol expression is replaced by a
concrete, string-encoded value.

For instance, the timestamp ts1 is now the concrete XML element

<Timestamp Id=”Timestamp” xmlns=”http://...wss−wssecurity−utility−1.0.xsd”>
<Created>2006−04−27T09:12:17Z</Created>

http://www.ibm.com/software/websphere/
http://www.ibm.com/software/websphere/
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://windowscommunication.net
http://windowscommunication.net
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<Expires>2006−04−27T09:13:17Z</Expires>
</Timestamp>

and the signature value sv1 is now the 172-character base64-encoded string

4Bpd7K+2n6eW+brpEwYO9hdwHrcNPOAoK+Bqn4........KCstFrZQ24=

X509MutualAuthMsg1.xml
<Envelope>

<Header>
<Security>

ts1 = <Timestamp Id=’Timestamp’>
<Created>Now1</>
<Expires>PlusOneMinute</></>

<BinarySecurityToken EncodingType=’Base64Binary’ ValueType=’X509v3’
Id=’X509Token-client.com’>

X509(Root,client . com,sha1RSA,PK(rsa secret1))</>
<EncryptedKey Id=’Encrkey’>

<EncryptionMethod Algorithm=’rsa-1_5’ />
<KeyInfo>

<SecurityTokenReference>
<X509Data>

<X509IssuerSerial>
<X509IssuerName>Root</>
<X509SerialNumber>guid4</></></></></>

<CipherData>
<CipherValue>RSA−Enc{PK(rsa secret3)}[key5]</></>

<ReferenceList>
<DataReference URI=’guid6’ /></></>

<Signature>
si1 = <SignedInfo>

<CanonicalizationMethod Algorithm=’xml-exc-c14n#’ />
<SignatureMethod Algorithm=’rsa-sha1’ />
<Reference URI=’Body’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<Body Id=’Body’>req</>)</></>
<Reference URI=’Timestamp’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(ts)</></></>

<SignatureValue>
sv1 = RSA−SHA1{rsa secret1}[si]

</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI=’X509Token-client.com’ ValueType=’X509v3’ />

</></></></></>
<Body Id=’Body’>

<EncryptedData Id=’guid6’ Type=’Content’>
<EncryptionMethod Algorithm=’aes128-cbc’ />
<CipherData>

<CipherValue>AES−Enc{key5}[
req = <Add>

<n1>100</>
<n2>15.99</></></>]</></></></></>
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X509MutualAuthMsg2.xml
<Envelope>

<Header>
<Security>

ts2 = <Timestamp Id=’Timestamp’>
<Created>Now2</>
<Expires>PlusOneMinute</></>

<BinarySecurityToken EncodingType=’Base64Binary’ ValueType=’X509v3’
Id=’X509Token-localhost’>

X509(Root,localhost , sha1RSA,PK(rsa secret3)) </>
<EncryptedKey Id=’Encrkey’>

<EncryptionMethod Algorithm=’rsa-1_5’ />
<KeyInfo>

<SecurityTokenReference>
<X509Data>

<X509IssuerSerial>
<X509IssuerName>Root</>
<X509SerialNumber>guid2</></></></></>

<CipherData>
<CipherValue>RSA−Enc{PK(rsa secret1)}[key7]</></>

<ReferenceList>
<DataReference URI=’guid8’ /></></>

<Signature>
si2 = <SignedInfo>

<CanonicalizationMethod Algorithm=’xml-exc-c14n#’ />
<SignatureMethod Algorithm=’rsa-sha1’ />
<Reference URI=’Body’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<Body Id=’Body’>resp</>)</></>
<Reference URI=’Timestamp’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(ts)</></>

<Reference URI=’SigConf’>
<Transforms>

<Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<SignatureConfirmation Value=’sv1’ Id=’SigConf’ />
)</></></>

<SignatureValue>
sv2 = RSA−SHA1{rsa secret3}[si2]

</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI=’X509Token-localhost’ ValueType=’X509v3’ />

</></></></></>
<Body Id=’Body’>

<EncryptedData Id=’guid8’ Type=’Content’>
<EncryptionMethod Algorithm=’aes128-cbc’ />
<CipherData>

<CipherValue>AES−Enc{key7}[
resp = <AddResponse>

<n>115.99</></></>]</></></></></>
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