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Abstract. This paper describes a semantic extension to the Mathemati-
cal Services Query Language (MSQL). MSQL is a language for querying
registry-published mathematical Web service descriptions expressed in
the Mathematical Services Description Language (MSDL). The seman-
tic extension allows queries in MSQL to be based on the underlying se-
mantics of service descriptions; the MSQL engine processes these queries
with the help of an automated reasoner.

1 Introduction

Semantic-based discovery of Web services is one of the crucial issues that are
currently receiving considerable attention in the field of the Semantic Web. In
the case of mathematical Web services, this issue is more subtle due to the fact
that they operate within semantically rich domains on objects that need proper
encoding and specification.

A mathematical Web service is a Web service that offers the solution to a
mathematical problem (based on e.g. a computer algebra system or on an au-
tomated theorem prover). In the MathBroker project [12], we have developed a
framework for mathematical services based on standards such as XML, SOAP,
WSDL, and OpenMath. We have developed the XML-based Mathematical Ser-
vices Description Language (MSDL) [8] to adequately describe mathematical
services and their constituent entities. The description of a mathematical ser-
vice in MSDL may contain information related to the type of the problem, the
algorithm(s) used to solve the problem, related problems, machines executing the
problem, etc. A skeleton of a service description in MSDL is shown in Figure 1.

To facilitate the process of publishing and discovering mathematical services,
we have developed an ebXML-based mathematical registry [3] where MSDL de-
scriptions of services are published such that clients can discover them by brows-
ing or querying the registry (and consequently receive corresponding WSDL
descriptions). Since the querying facilities of the registry do not support content-
based querying, we have developed the content-based Mathematical Services
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M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 73–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



74 R. Baraka and W. Schreiner

<monet:definitions>

<mathb:machine_hardware name="perseus">

...

</mathb:machine_hardware>

<monet:problem name="integration">

...

</monet:problem>

<monet:algorithm name="RischAlg">

...

</monet:algorithm>

<monet:implementation name="RImpl">

...

<monet:hardware href=".../perseus"/>

<monet:algorithm href=".../RischAlg"/>

</monet:implementation>

<monet:service name="RRISC">

...

<monet:problem href=".../integration"/>

<monet:implementation href=".../RImpl"/>

</monet:service>

</monet:definitions>

Fig. 1. A Skeleton of a Service Description

Query Language (MSQL) [1,4] which is able to perform queries at the syntac-
tical structure of a MSDL service description. However, mathematical objects
respectively their MSDL descriptions are semantically rich and MSQL does not
capture these semantic structures and their relations. This limits the effective-
ness of service discovery since it is not based on the semantic information con-
tained in MSDL descriptions. In this paper we present an extension to MSQL
that addresses the semantic information contained in service descriptions. This
extension adds a number of constructs to the language in order to express predi-
cate logic formulas and adds a semantic evaluator to the MSQL engine to process
these formulas with the help of an automated reasoner. The rest of this paper
briefly describes the syntactic structure of MSQL (Section 2), the semantic ex-
tension to MSQL (Section 3), the MSQL engine architecture and implementation
(Section 4), and finally reviews related work (Section 5).

2 The MSQL Syntactic Structure

The Mathematical Services Query Language is a language designed and imple-
mented to query registry-published services based on the contents of their MSDL
descriptions. It provides the functionality to interface to a registry and retrieve
service descriptions on which queries are performed. Its implementation is based
on a formally defined semantics [1].
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A query in MSQL conforms to the following syntax:

SELECT EVERY|SOME <entity>
FROM <classificationConcept>
WHERE <expression>
ORDERBY <expression> ASCENDING|DESCENDING

The query has four main clauses:

– The SELECT clause selects EVERY or SOME description of the type spec-
ified by entity from a given classification scheme in the registry. The entity
types defined by MSDL are problem, algorithm, implementation, realization
(including a WSDL service description), and machine.

– The FROM clause determines the classification scheme from which the spec-
ified description is to be selected. Every service respectively its description in
the registry is classified according to predefined classification schemes in the
registry. The FROM clause limits the range of descriptions to be retrieved
for querying to those classified under ClassificationConcept.

– The WHERE clause applies its expression parts to each candidate document
retrieved from the registry. The expression of the WHERE clause is a logical
condition: if it is evaluated to true, the document is considered as (part of)
the result of the query.

– The ORDERBY clause sorts the resulting documents in ASCENDING or
DESCENDING order based on the comparison criteria resulting from the
evaluation of its expression on each document.

MSQL is designed such that it has a minimal set of expressions that are
sufficient to construct logical statements on the contents of the target MSDL
descriptions and that it is able to address the structure of such descriptions.
MSQL expressions include: path expressions that can access every part of an
MSDL document; expressions involving logical, arithmetic, and comparative op-
erators; conditional expressions; quantified expressions; functions; and variable
bindings. The following is a sample MSQL query that illustrates the usage of
some of these expressions.

Example 1. Find every service in “/GAMS/Symbolic Computation” such that,
if it has an implementation, it runs on a machine called “perseus”, otherwise its
interface is on this machine.

SELECT EVERY service
FROM /GAMS/Symbolic Computation
WHERE
if not (/service[empty(//implementation)])
then
let $d := doc(//implementation/@href) in
$d/hardware[contains(@name, "perseus")]

else
//service-interface-description[contains(@href, "perseus")]

ORDERBY /service/@name descending
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This query asks for every service description classified under “/GAMS/Symb-
olic Computation” that satisfies the WHERE expression. The resulting doc-
uments are to be sorted in descending order according to their names. The
conditional expression (if .. then .. else) is used to decide if the current service
document node has an implementation. If this is the case, it takes from the ser-
vice document the URI of such implementation document, retrieves it from the
registry (let $d := doc(//implementation/@href)), and checks if this imple-
mentation is related to the machine perseus. If this is not the case, it checks in
the else branch, if the service has its interface on the said machine. The let
clause is used to assign a document to the variable d which is then used as part
of the path expression. The doc function returns the root node of the document
whose name appears as its argument. Its argument is a URI that is used as the
address of the required document in the registry. The contains function returns
true if its first argument value contains as part of it its second argument value.

Although MSQL provides the functionality to express and perform queries
on the syntactic structure of MSDL descriptions, it does not provide the func-
tionality to express and perform queries on their semantic content. In the next
section, we present an extension to MSQL that addresses this limitation.

3 A Semantic Extension to MSQL

The Mathematical Services Description Language (MSDL) is capable of repre-
senting not only syntactic structures, but also semantic information. This in-
formation is expressed in OpenMath [6], an XML-based standard format for
representing mathematical objects in a semantics-preserving way. To illustrate
this approach, we first present a sample description to show the underlying se-
mantics of MSDL and then show how a query that operates on this semantics
can be constructed .

Consider a description of the mathematical problem of indefinite integration
(Figure 2). It consists of the following pieces of semantic information:

– Input: f : R → R (lines 3 to 13) which expresses the type R → R of the
input and gives it the local name f .

– Output: i : R → R which expresses the type R → R of the output and gives
it the local name i.

– Post-condition: i = indefint(f) (lines 17 to 28) which states that the output
i equals the indefinite integral of the input f .

The semantic information expressed in this problem description can be used as
a basis for discovering suitable services published in the mathematical registry.
Suppose a client wants to solve a problem with the following specification:

– Input: a : R → R

– Output: b : R → R

– Post-condition: diff (b) = a (which states that the differentiated output
equals the input).
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1 <problem name="indefinite-integration">

2 <body>

3 <input name="f">

4 <signature>

5 <OMOBJ>

6 <OMA>

7 <OMS cd="sts" name="mapsto"/>

8 <OMS cd="setname1" name="R"/>

9 <OMS cd="setname1" name="R"/>

10 </OMA>

11 </OMOBJ>

12 </signature>

13 </input>

14 <output name="i">

15 ...

16 </output>

17 <post-condition>

18 <OMOBJ>

19 <OMA>

20 <OMS cd="relation1" name="eq"/>

21 <OMV name="i"/>

22 <OMA>

23 <OMS cd="calculus1" name="indefint"/>

24 <OMV name="f"/>

25 </OMA>

26 </OMA>

27 </OMOBJ>

28 </post-condition>

29 </body>

30 </problem>

Fig. 2. An MSDL Problem Description

The client would thus like to find some service which solves a problem p such
that

type(inputp) = R → R ∧ (1)
type(outputp) = R → R ∧ (2)

∀ a ∈ R → R, b ∈ R → R (postp(a, b) ⇒ diff (b) = a) (3)

where formulas (1) and (2) state that the types of the input and output shall
be R → R and the universally quantified subformula (3) states that the post-
condition postp of the problem p implies that the differentiation of the output
b equals the input a. The truth of this statement depends on knowledge avail-
able about the operation diff, e.g. a knowledge base may contain the formula
diff (indefint(a)) = a which semantically relates the operators diff and indefint.

To express such a formula in MSQL, we extended the grammar of MSQL as
shown in Figure 3 by adding two clauses:
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<msqlQuery> ::= ’SELECT’ ( ’EVERY’ | ’SOME’ ) <entity>

( ’FROM’ <classification> )?

( ’WHERE’ <msqlExpr> )?

( ’ORDERBY’ <msqlExpr )?;

...

<msqlExpr> ::= ... | <typematch> | <semanticExpr>;

<typematch> ::= ’typematch’ (omObjExpr, omObjExpr);

<semanticExpr> ::= ’satisfy’ ( <omObjExpr> );

<omObjExpr> ::= <omApplication> | <omAttribution> | <omBinding>

| <omInt> | <omVar> | <omString> | <omSymbol>

| <var>;

<omApplication> ::= ’oma’ ’(’ <omObjExpr> (, <omObjExpr> )* (

<varReplacement> )? ’)’;

<omAttribution> ::= ’omattr’ ’(’ <omObjExpr>, ( <omObjExpr>

<omObjExpr> )(, ( <omObjExpr> <omObjExpr> ))*

( <varReplacement> )? ’)’ ;

<omBinding> ::= ’ombind’ ’(’ <omObjExpr> ’[’ <omBoundVariable>

(, omBoundVariable )* ’]’ <omObjExpr>

( <varReplacement> )? ’)’;

<omBoundVariable> ::= ’omvar’ ’:’ ( <var> | <omVar> ) ’@’ ’(’<omObjExpr>,

<omObjExpr> ( <varReplacement> )? ’)’;

<varReplacement> ::= ’[’ <omObjExpr> ’/’ <var> (, <omObjExpr> ’/’

<var> )* ’]’;

<omInt> ::= ’omi’ ’:’ <number>;

<omVar> ::= ’omv’ ’:’ ( <letter> | <var> );

<omString> ::= ’omstr’ ’:’ <letter> ;

<omSymbol> ::= ’oms’ ’:’ <letter> ’:’ <letter>;

<var> ::= ’$’ <letter>;

...

Fig. 3. The MSQL Semantic Extension Grammar

– The clause ‘typematch(a,b)’ states that type a matches (i.e. equals or is a
special version of) type b.

– The clause ‘satisfy e’ states that the semantic interpretation of the predicate
logic formula e (encoded as an OpenMath expression) yields true.

The <semanticExpr> rule and its subrules define the grammar of predicate
logic formulas based on the classification of OpenMath objects into basic objects
and compound objects [6]. Basic objects include Integers, Strings, Variables, and
Symbols. Compound objects include Application, Attribution, and Binding. The
syntax is defined such that expressions are written in a prefix notation which
is internally transformed to OpenMath syntax. For instance the <omBinding>
subrule (see also Example 2) expresses an OpenMath Binding object which is
constructed from an OpenMath object (the binder), and from zero or more vari-
ables (the bound variables) followed by another OpenMath object (the body).
The MSQL expression
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oma(oms:relation1:eq, oma(oms:calculus1:diff, omv:b), omv:a)

is thus transformed to the OpenMath XML object

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="diff" cd="calculus1"/>
<OMV name="b"/>

</OMA>
<OMV name="a"/>

</OMA>

Example 2. Our request to find some service with problem p such that the type
checks (1) and (2) and the subformula (3) are satisfied can be expressed by the
following MSQL query:

SELECT SOME service
FROM /GAMS/Symbolic Computation
WHERE let $p:= doc(//problem/@href) in

$a:= $p//input/@name,
$b:= $p//output/@name,

$ta:= $p//input/signature/OMOBJ,
$tb:= $p//output/signature/OMOBJ,

$post:= $p//post-condition/OMOBJ in
(typematch(oma(oms:sts:mapsto(oms:setname1:R,

oms:setname1:R)), $ta)) and
(typematch($tb, oma(oms:sts:mapsto(oms:setname1:R,

oms:setname1:R)))) and
(satisfy(ombind(oms:quant1:forall
[omvar:$a@(oms:sts:type, $ta),
omvar:$b@(oms:sts:type, $tb)]

oma(oms:logic1:implies, $post,
oma(oms:relation1:eq,

oma(oms:calculus1:diff, omv:$b), omv:$a)))))

Variable $p represents the problem description of the service retrieved from
the registry by the doc function according to the problem href provided as part
of the service description. Variables $a and $b represent the names of the input
and the output of the problem. Variables $ta and $tb represent the types of
the input and the output of the problem. Variable $post represents the post-
condition of the problem.

The two typematch expressions correspond to formulas (1) and (2). They
check if type R → R matches the type $ta of the input and if the type $tb of
the output matches type R → R.

The satisfy expression corresponds to the universally quantified subfor-
mula (3).

In the next section, we explain how the query is handled by the MSQL engine.
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4 The MSQL Architecture and Implementation

MSQL including its semantic extension has been implemented as MSQL en-
gine [1,4] and has been incorporated into the MathBroker framework [12] for
service publication and discovery.

4.1 Architecture

Figure 4 illustrates the architecture of the MSQL engine which consists of the
following components:

Fig. 4. The MSQL Engine Architecture

– The MSQL Engine which has the MSQL query functionality. It consists of
the following components:
• The Query Processor which receives the query from the client, decom-

poses it into processable parts, and hands each part to the corresponding
component.

• The Parser receives the query from the processor and parses it according
to the MSQL syntax. If the query does not comply with the syntax, an
error message is returned to the processor which forwards the message
to the client.

• The Registry Handler receives from the processor the entity and clas-
sificationConcept parts of the query. It composes a registry query to
retrieve EVERY /SOME description document of the given entity type
classified under the given classificationConcept.



Semantic Querying of Mathematical Web Service Descriptions 81

• The Syntactic Expression Evaluator receives from the Query Proces-
sor the syntactic expression part of the query and evaluates it against
each description document retrieved from the registry. It returns to
Query Processor those documents for which the expression evaluates
to true.

• The Semantic Expression Evaluator receives from the Query Proces-
sor the semantic expression part of the query and evaluates it against
each description document retrieved from the registry. It returns to the
Query Processor those documents for which the expression evaluates to
true. Unlike the Syntactic Expression Evaluator, the Semantic Expres-
sion Evaluator does not perform the whole evaluation by itself. It rather
takes the semantic expression, converts it into OpenMath format (see
Figure 5), retrieves from the Knowledge Base the axiom(s) and type dec-
laration(s) needed to reason about the semantic expression and sends all
of them to the Reasoner Interface. As required by the Reasoner Interface,
the axioms are represented in OpenMath format and the declarations are
represented in OMDoc [16] format.

• The Result Quantifier and Sorter receives from the Query Proces-
sor SOME/EVERY document filtered by the two evaluators, orders (if
needed) the documents according to the ORDERBY expression, and
returns them as the query result to the Client.

– The Registry which stores a collection of published MSDL documents of dif-
ferent entity types and classifies them according to some registry-predefined
classification schemes. Query requests to the registry are handled by the
Query Manager of the registry.

– The Reasoner Interface receives from the Semantic Expression Evaluator
the semantic expression part of the query in OpenMath, the axiom(s) in
OpenMath, and the declaration(s) in OMDoc and converts each one to the
format required by the Automated Reasoner and hands them to the rea-
soner. It gets the answer from the reasoner and sends it to the Semantic
Expression Evaluator. The Reasoner Interface used is a component of the
RISC ProofNavigator [19].

– The Automated Reasoner reasons about semantic expressions based on
the axiom(s) and declaration(s) given and returns the answer to the Rea-
soner Interface. The Automated Reasoner currently used is the Cooperating
Validity Checker Lite (CVCL) [5].

– The Knowledge Base holds declarations of OpenMath symbols that may
be used in semantic queries together with axioms that describe the semantics
of that symbols.

4.2 Performing the Semantic Query

Based on this architecture, we summarize the actions taken to perform the query
in Example 2:

– The MSQL Engine receives the query from the Client and hands it to the
Query Processor
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– The Query Processor asks the Parser to parse the query according to the
MSQL syntax. If the query does not comply with the MSQL syntax, an error
message is returned to the user.

– The Query Processor decomposes the query to processable parts. It hands
the registry-related part (the entity service and the classificationConcept
“/GAMS/Symbolic Computation”) to the registry handler.

– The Registry Handler forms a registry query based on the entity and the
classificationConcept, connects to the Registry and hands the registry query
to the Query Manager of the Registry which performs the query and returns
a set of candidate service documents to the Registry Handler.

– The Query Processor asks the Syntactic Expression Evaluator to evaluate
the syntactic expression part on the current service document. The Syntactic
Expression part consists of a let expression which has six assignment subex-
pressions. The evaluations of these subexpressions assign values to variables
$a, $b, $ta, $tb, and $post representing input, output, input type, output
type, and post-condition respectively. These variables are used in the se-
mantic expression of the query.

– The Query Processor asks the Semantic Expression Evaluator to evaluate
the semantics expression against the (same) current service document. The
Semantic Evaluator performs the following steps:
• It performs the type checking required by the two typematch expressions.

If the result of the check is true it proceeds to the next step. Otherwise
it returns false and the Query Processor proceeds to perform the query
on the next candidate document.

• It converts the satisfy expression to OpenMath format. The Open-
Math representation of the satisfy expression is shown in Figure 5. The
conversion also takes care of variable substitution (e.g., variable $a is
substituted by the input name f ).

• It retrieves from the Knowledge Base the declarations of the symbols
diff and indefint represented in OMDoc. The two symbols occur in the
OpenMath representation of the satisfy formula after variable substi-
tution. The declaration of the diff symbol is shown in Figure 6. The
indefint symbol has a similar declaration.

• It retrieves from the Knowledge Base the axiom diff (indefint(a)) = a.
This axiom is represented by the following quantified formula in Open-
Math format (similar to the OpenMath format of the satisfy expression)

∀ f ∈ R → R (indefint(diff (f)) = f)

• It hands the satisfy expression (in OpenMath), the declarations (in OM-
Doc), and the axiom (in OpenMath) to the Reasoner Interface which
converts each of them to the syntax required by the reasoner. The rea-
soner decides about the truth value of the expression based on the given
axiom and declarations and returns the answer to the RISC ProofNavi-
gator which in turn returns the answer to the Semantic Expression Eval-
uator.
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1 <OMOBJ>
2 <OMBIND>
3 <OMS name="forall" cd="quant1"/>
4 <OMBVAR>
5 <OMATTR>
6 <OMATP>
7 <OMS name="type" cd="sts"/>
8 <OMA>
9 <OMS name="mapsto" cd="sts"/>
10 <OMS name="R" cd="setname1"/>
11 <OMS name="R" cd="setname1"/>
12 </OMA>
13 </OMATP>
14 <OMV name="f"/>
15 </OMATTR>
16 <OMATTR>
17 ...
18 <OMV name="i"/>
19 </OMATTR>
20 </OMBVAR>
21 <OMA>
22 <OMS name="implies" cd="logic1"/>
23 <OMA>
24 <OMS name="eq" cd="relation1"/>
25 <OMV name="i"/>
26 <OMA>
27 <OMV name="indefint" cd="calculus1"/>
28 <OMV name="f"/>
29 </OMA>
30 </OMA>
31 <OMA>
32 <OMS name="eq" cd="relation1"/>
33 <OMA>
34 <OMV name="diff" cd="calculus1"/>
35 <OMV name="i"/>
36 </OMA>
37 <OMV name="f"/>
38 </OMA>
39 </OMA>
40 </OMBIND>
41 </OMOBJ>

Lines 5 to 15 represent the conversion of
the binder expression

omvar:$a@(oms:sts:type, $ta)

with the variables $a and $b substituted
by their values. It represents the declaration

f : R → R

Lines 21 to 39 represent the conversion of
the satisfy subexpression

oma(oms:logic1:implies, $post,

oma(oms:relation1:eq,

oma(oms:calculus1:diff,

omv:$b), omv:$a))

with the variables $post, $a, and $b ap-
propriately substituted by their values. It
represents the implication

i = indefint(f) ⇒ diff (i) = f .

Fig. 5. OpenMath Representation of the satisfy Expression in Example 2

– If the evaluation of the semantic expression yields true, the Query Processor
returns the current service document to the Result Quantifier and Sorter
which returns it to the Client as the ultimate result (because of the SOME
clause) of the query. If the evaluation is false the Query Processor proceeds to
process the query on the next candidate service document. If the evaluation
is false for all candidate documents, then no document is returned as a result
of the query.

4.3 A Prototype Implementation

A prototype of the architecture has been implemented in Java making use of
the registry [3] for publishing service descriptions, a component of the RISC
ProofNavigator [19] as the Reasoner Interface, and the Cooperating Validity
Checker Lite (CVCL) [5] as the Automated Reasoner.

The implementation of the MSQL engine is based on a formal definition [1]
using denotational semantics [18]. The implementation consists of a set of
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<omdoc:omgroup>

<omdoc:symbol kind="object" name="calculus1_diff">

<omdoc:type system="simply_typed"

xml:id="calculus1_diff_type">

<om:OMA>

<om:OMS cd="sts" name="mapsto"/>

<om:OMA>

<om:OMS cd="sts" name="mapsto"/>

<om:OMS cd="setname1" name="R"/>

<om:OMS cd="setname1" name="R"/>

</om:OMA>

<om:OMA>

<om:OMS cd="sts" name="mapsto"/>

<om:OMS cd="setname1" name="R"/>

<om:OMS cd="setname1" name="R"/>

</om:OMA>

</om:OMA>

</omdoc:type>

</omdoc:symbol>

</omdoc:omgroup>

Fig. 6. The declaration of variable diff in OMDoc Format

evaluation classes each of which corresponds to one component of the MSQL
engine with a set of methods each of which corresponds to one equation in the
denotational semantics. The signature of a method corresponds to the signature
of the semantic function. For example, the equation

E�V � d n r = lookup(d, �V �)

with the semantic function

E : Expression × Declaration × Node × Registry → V alue

is implemented by the Java method with the signature

evaluateVariableExpr(ChildAST expression, Declaration declaration,
Node node, Registry registry)

The prototype implementation of the MSQL engine including its API can be
found in [2].

5 Related Work

The semantic-based discovery of Web services has recently received growing
interest. The METEOR-S Web Service Discovery Infrastructure (MWSDI) [20]
aims to provide efficient publication and discovery mechanisms in a federation
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of registries. It uses an ontology-based approach to organize registries, enabling
semantic classification of services based on domains. Registries support semantic
publication of services which is used during the discovery process.

The Ontology Web Language for Services (OWL-S) [17] allows Semantic Web
tools to process Web services in order to enable software agents to automatically
discover, invoke, compose, and monitor Web services. In [11], OWL-S is used in
conjunction with WSDL to add semantic descriptions to a Web service. When
a registry is used for the publication and discovery of a service, OWL-S is used
in this respect to add capability matching to the registry.

The Web Service Modeling Ontology (WSMO) [21] is a formal language for
semantically describing Web services to facilitate the automation of discovering,
composing, and invoking such services. WSMO uses a formal logic for describing
its own elements such as ontologies, descriptions, goals, and mediators.

Few approaches have focused on the semantic description and discovery of
mathematical Web services. In the MONET project [14], ontologies [7] are used
to model service descriptions as well as queries on these descriptions. These
ontologies are ontological conversions of MSDL descriptions written in OWL [13]
and are used by a component within the MONET architecture called Instance
Store [10] which uses the Description Logic reasoner RACER [9] for matching
queries to appropriate services. The reasoning process in the case of MONET
is based on a restricted form of first order logic which is more tractable for
automated reasoning but strictly less expressive. In our semantic queries, we use
full predicate logic which is a highly expressive language.

A matching-based discovery approach [15] to registry-published mathematical
services performs matchmaking between representations of tasks (client requests)
and capabilities (service descriptions). The approach applies a normalization
process on a task. It then compares the normalized task with a registered ca-
pability calculating a similarity value that is used in the matchmaking process.
Task normalization amounts to carrying out a sequence of transformations on the
task description rewriting all logical parts in disjunctive normal form, flattening
arguments of n-associative operations, and consistent variable renaming.

The similarity value is calculated based on the matching of the capability
precondition (or the task postcondition) and the capability postcondition (or the
task precondition). Matchmaking is performed by: registering capabilities in the
database, taking a description of a task normalizes it, and returns an ordered list
of the capabilities from the registry database based on their calculated similarity.

The matching process used in the discovery is ultimately based on the syn-
tactic similarity traced between tasks and capabilities. In our case, the decision
is based on logical implications between statements extracted from descriptions,
which is strictly more general.

6 Conclusion and Future Work

The semantic extension of MSQL supports semantic-based discovery of registry
published mathematical services. Semantic queries formed in predicate logic
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capture the underlying semantical structures of mathematical service specifi-
cations. The MSQL engine performs semantic-based queries with the help of an
automated reasoner which takes predicate logic formulas, decides their validity,
and returns the answer to the engine.

The syntax of MSQL and the presented query examples reveal an apparent
difficulty in forming queries on target documents. Such a difficulty is alleviated
partly by the fact that MSQL has a relatively small number of constructs for
forming queries and by the fact that its queries operate on documents that
possess common structures imposed by a schema. Thus, a user-friendly tool for
forming queries on target MSDL documents should be developed.

A future extension to the presented framework may involve service composi-
tions: when a client submits a service request, a broker agent determines suitable
service compositions satisfying the client request and returns the description of
a composition rather than that of a single service. To find the suitable candidate
services, the agent might form MSQL queries based on information contained
in the client request, send them to the MSQL engine, and make composition
decisions based on the results returned by the MSQL engine.
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