
Towards a Unifying Theory for

Web Services Composition�

Manuel Mazzara1 and Ivan Lanese2

1 Faculty of Computer Science
Free University of Bozen-Bolzano, Italy

manuel.mazzara@unibz.it
2 Computer Science Department

University of Bologna, Italy
lanese@cs.unibo.it

Abstract. Recently the term orchestration has been introduced to ad-
dress composition and coordination of web services. Several languages
used to describe business processes using this approach have been pre-
sented, and most of them use the concepts of long-running transactions
and compensations to cope with error handling. WS-BPEL, which is
currently the most used orchestration language, also provides a Recov-
ery Framework. However its complexity hinders rigorous treatment. In
this paper, we address the notion of orchestration from a formal point
of view with particular attention to transactions and compensations. In
particular, we introduce webπ∞, an untimed version of webπ, and the re-
lated theory, as a foundational unifying framework for orchestration able
to meet composition requirements and to encode the whole BPEL itself.

1 Web Services

Service Oriented Computing (SOC) [7] is an emerging paradigm for distributed
computing and e-business processing that finds its origin in object-oriented and
component computing [17]. One of the main goals of SOC is enabling developers
to build networks of integrated and collaborative applications, regardless of both
the platform where the applications or services run (e.g., the operating system)
and the programming language used to develop them.

Web services are a set of technologies supporting SOC. They provide a plat-
form on which applications can be developed by taking advantage of the Internet
infrastructure. A web service makes its functionalities available over the network
through specific access points, in such a way that they can be exploited, in turn,
by other services. Web services are an evolutionary technology, they did not just
exist suddenly. There is no revolution about them, this technology has to be seen
as an evolution based on the already existing Internet protocols.

1.1 Web Services Composition

The interesting thing in the web services programming model is that a service
can itself use several other services and all of them are based on the same model.
� Research partially supported by the Project FET-GC II IST-2005-16004 Sensoria.

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 257–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

258 M. Mazzara and I. Lanese

This means that a composite business process can itself be exposed as a web ser-
vice, enabling business processes to be aggregated to form higher-level processes.
There is, indeed, a recursive use of the model where, notably, the overall scenario
will be transparent to the final consumer. In this way, web services technologies
provide a mechanism to build complex services out of simpler ones: this practice
is called web services composition. A composition consists in the aggregation of
services by programming the relative interactions and has the ability to make the
created aggregations reusable [5]. To program a complex cross-enterprise task or
a business transaction, for example, it is possible to logically chain discrete web
service activities into inter-enterprise business processes.

Different organizations are presently working on additional layers which have
to deal with the new approach of composing web services on a workflow base for
business automation purposes. Two examples of past proposals for describing
service compositions are IBM’s WSFL (Web Services Flow Language) [9] and
Microsoft’s XLANG [18]. XLANG is a block-structured language with basic
control flow structures such as sequence, switch (conditional), while (looping),
all (parallel) and pick (choice based on timing or external events). Unlike
XLANG, WSFL is not limited to block structures and it allows for arbitrary
directed acyclic graphs. Iteration is only supported through exit conditions -
that is, an activity iterates until its exit condition is met.

A more recent proposal (presently a working draft by OASIS), which aims
at integrating WSFL and XLANG, is the Web Services Business Process Ex-
ecution Language [2] (WS-BPEL or BPEL for short). It combines WSFL’s
graph-oriented process representation and XLANG’s structural construct-based
processes into a unified language for composition. However, while the graph
based model used in WSFL has largely not evolved, block-structured program-
ming, similar to the method of describing workflow in XLANG, has evolved in-
credibly in the last decades to encapsulate complexity and allow for greater man-
ageability and maintainability. Some of the lessons learned from programming
could improve business modeling using workflow. The use of block-structured
programming can be cited as one of the main points in favor of the approach
taken by XLANG and the BizTalk Orchestration framework [12], and in this
paper we will focus on it.

Business process orchestration has to meet several requirements, including
a way to address concurrency and asynchronous message passing, which form
the basic paradigm of the distributed computation on the Internet. Another
relevant aspect is the management of exceptions and transactional integrity [15].
BPEL covers all these aspects, but its current specification is rather involved.
As far as error handling is concerned, for instance, it provides three different
mechanisms for coping with abnormal situations: fault handling, compensation
handling and event handling1 . Documentation is informal and in many points it
is not very clear, in particular when interactions among the different mechanisms
are required. Therefore the language is difficult to use, and it is relevant to

1 The BPEL event handling mechanism was not designed for error handling only.
However, it can be used for this purpose and we concentrate here on this aspect.

Towards a Unifying Theory for Web Services Composition 259

address the issue of error recovering in a formal way to clarify all the controversial
aspects.

In order to formally deal with the requirements, we start from the π-calculus
[14,16] because the definition of XLANG (and then BPEL) has been strongly
influenced by it. Unfortunately, the original π-calculus does not provide any
transactional mechanism. For this reason, we consider an extension of the calcu-
lus called webπ [8], which extends the basic calculus with transactional facilities.
In particular, we will present an untimed variant (while one of the main con-
cerns of webπ is time) of it, that we call webπ∞, and we analyze its semantic
properties. We concentrate, in particular, on the weak behavioral equivalence,
which abstracts from internal steps, and which is not meaningful in the webπ
scenario, since time allows to find out internal steps anyway. In fact, internal
steps make time to progress, and timeouts to trigger. The most common formal-
ization of behavioral equivalence is through barbed congruence, which guarantees
that equated processes are indistinguishable by external observers, even when
put in arbitrary contexts. For instance equivalent web services remain indistin-
guishable also when composed to form complex business transactions. As main
contributions we show that barbed congruence can be characterized via a labeled
semantics that is easier to compute, and we show some examples on how this
framework can be used to prove interesting properties about compensations and
web services composition. The first author exploited webπ∞ to formalize a sim-
plification of the BPEL Recovery Framework unifying all the mechanisms (fault,
compensation and event handling), as can be found in [10]. Thus the results
therein can be used to derive also properties of BPEL. Further results in this
sense and all the complete proofs just sketched in the paper can be found in the
Ph.D. thesis of the first author [11].

2 The Orchestration Calculus webπ∞

In this section we present webπ∞, introducing its syntax and both a reduction
semantics and a weak barbed congruence. Notably, webπ∞ semantics is not just
a simplification of webπ semantics, since, in the last one, time is used also for
transaction commit, while here we have to deal with it differently. Also, we add
input-guarded choice to the calculus, which was not present in [8].

The syntax of webπ∞ processes relies on a countable set of channel names,
ranged over by x, y, z, u, Tuples of names (possibly empty) are written ũ,
and |ũ| is the length of tuple ũ. When we write i ∈ I we intend, if nothing is
said, that I is a finite non-empty set of indexes.

P ::= 0 (nil)
| x �u (output)
|�i∈I xi(�ui).Pi (guarded choice)
| (x)P (restriction)
| P |P (parallel composition)
| !x(�u).P (guarded replication)
| 〈|P ; P |〉x (workunit)

260 M. Mazzara and I. Lanese

A process can be the inert process 0, an output x ũ sent on a name x that carries
a tuple of names ũ (if ũ is empty we may write simply x), a choice among input-
guarded processes that consumes a message xi w̃i and then behaves like Pi

{

w̃i

/ũi

}

, a restriction (x)P that behaves as P except that inputs and messages on
x are prohibited, a parallel composition of processes, a replicated input !x(ũ).P
that consumes a message x w̃ and then behaves like P

{

w̃ /ũ
} | !x(ũ).P , or a

workunit (or simply a unit) 〈|P ; Q|〉x that behaves as the body P until an abort
x is signaled (either by P or from the outside) and then behaves as the event
handler Q.

We avoid to mix replication and choice since this simplifies the presentation
and since this is not necessary for our aims (and notably to model BPEL seman-
tics). The extension is however easy.

We use + to denote binary choice. We use
∏

i∈I Pi to denote the parallel
composition of processes Pi for each i ∈ I. Names x in outputs, inputs, and
replicated inputs are called subjects. It is worth to notice that the syntax of
webπ∞ processes essentially adds the workunit construct to the asynchronous
π-calculus.

The input x(ũ).P , restriction (x)P and replicated input !x(ũ).P are binders
of names ũ, x and ũ respectively. The scope of these binders is the process P .
We use the standard notions of free and bound names of processes, denoted as
fn(P) and bn(P) respectively, and of α-equivalence.

2.1 The Reduction Semantics

We present here the reduction semantics for our calculus. We give it in two steps,
following the approach of Milner [13], separating the structural congruence that
governs the static relations among processes from the reductions that rule their
interactions. A structural congruence relation equates all the processes we do not
want to distinguish. It is introduced as a small collection of axioms that allow to
manipulate the structure of processes. This relation is intended to express some
basic facts about the operators, such as commutativity of parallel composition.
The second step is defining the way in which processes evolve dynamically by
means of an operational semantics. We simplify the second step by closing the
allowed transitions w.r.t. the structural congruence.

Definition 1 (Structural congruence). The structural congruence ≡ is the
least congruence satisfying the abelian monoid laws for parallel composition (as-
sociativity, commutativity and 0 as identity) and commutativity of choice, and
which is closed under α-renaming and under the following axioms:

1. Scope laws:
(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,

P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P)
〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z �∈ {x} ∪ fn(Q)

2. Workunit laws:

〈|0 ; Q|〉x ≡ 0
〈|〈|P ; Q|〉y |R ; S|〉x ≡ 〈|P ; Q|〉y | 〈|R ; S|〉x

Towards a Unifying Theory for Web Services Composition 261

3. Floating law:

〈|z �u |P ; Q|〉x ≡ z �u | 〈|P ; Q|〉x

The scope laws are standard while novelties regard workunit and floating laws.
The law 〈|0 ; Q|〉x ≡ 0 defines a committed workunit, namely a workunit with 0
as body. Such a workunit cannot fail anymore and thus it is equivalent to 0. The
law 〈|〈|P ; Q|〉y |R ; S|〉x ≡ 〈|P ; Q|〉y | 〈|R ; S|〉x moves workunits outside parents,
thus flattening the nesting. Notwithstanding this flattening, parent workunits
may still affect children, but this has to be programmed explicitly, exploiting
the available communication primitives. The law 〈|z ũ |P ; Q|〉x ≡ z ũ | 〈|P ; Q|〉x
floats messages outside workunit boundaries. By this law, messages are particles
that independently move towards their inputs. The intended semantics is the
following: if a process emits a message, this message traverses the surrounding
workunit boundaries until it reaches the corresponding input. In case an outer
workunit fails, recovery for this message may be detailed inside the handler
process. When a workunit fails we will take care of messages and other workunits
inside it (which may also have been included by applying the structural axioms
above in the opposite direction), and preserve them.

The dynamic behavior of processes is defined by the reduction relation below,
where we use the shortcut:

〈|P ; Q|〉 def= (z)〈|P ; Q|〉z where z �∈ fn(P) ∪ fn(Q)

Definition 2 (Reduction semantics). The reduction relation → is the least
relation satisfying the axioms below, and closed under ≡ and under the contexts
(x) , |R, and 〈| ; R|〉z:

(r-com)

xi �v | �i∈I xi(�ui).Pi → Pi

��v/ �ui

�
(r-rep)

x �v | !x(�u).P → P
��v/�u� | !x(�u).P

(r-fail)

x | 〈|�i∈I

�
s∈Si

xi,s(�ui,s).Pi,s|�j∈J !xj(�uj).Pj ; Q|〉x → 〈|Q ; 0|〉
where J �= ∅ ∨ I �= ∅, Si �= ∅

Rules (R-COM) and (R-REP) are standard in process calculi and they model
input-output interaction and lazy replication. Rule (R-FAIL) models workunit
failures: when a unit aborts (receiving an empty message on its abort port), the
corresponding body is terminated and the handler activated. On the contrary,
aborts are not possible if the transaction is already terminated (namely every
thread in the body has completed its own work). For this reason, when the
handler is activated, we close the workunit by restricting its name. The reason
to maintain the structure will be clear in the section relative to the labeled
semantics (Section 3).

262 M. Mazzara and I. Lanese

2.2 The Extensional Semantics

The extensional semantics of webπ∞ relies on the notions of barb and context.
We say that P has a barb at x, and write P ↓ x, if P manifests an output on
the free name x.

Definition 3. We define P ↓ x as the least relation satisfying the rules:

x ũ ↓ x
(z)P ↓ x if P ↓ x and x �= z
P |Q ↓ x if P ↓ x or Q ↓ x

〈|P ; Q|〉z ↓ x if P ↓ x

It is worth to notice that inputs (both simple and replicated) have no barb. This
is standard in asynchronous calculi and represents the fact that an observer has
no direct way of knowing whether the message (s)he has sent has been received.

Definition 4. Process contexts, noted Cπ[·], are defined by the following gram-
mar:

Cπ[·] ::= [·] | (x)Cπ [·] | Cπ[·]|P | ∑

i∈I xi(ũi).Pi + x(ũ).Cπ[·] | !x(ũ).Cπ[·] |
〈|Cπ[·] ; P |〉x | 〈|P ; Cπ[·]|〉x

Barbed bisimilarity is usually defined as the largest bisimulation on the reduction
relation such that the equated terms have the same barbs. Usually, such a relation
is not a congruence and the barbed congruence is defined as the maximal barbed

bisimulation that is also a congruence. In the following →n stands for
→ . . . →
︸ ︷︷ ︸

n .
We write ⇒ to denote →n for some n ≥ 0. We also write P ⇓ x for ∃P ′.P ⇒
P ′ ∧ P ′ ↓ x.

Definition 5 (Barbed congruence). A barbed bisimulation is a symmetric
binary relation S between processes such that P S Q implies

1. if P ↓ x then Q ⇓ x;
2. if P → P ′ then Q ⇒ Q′ and P ′ S Q′.

Barbed congruence, denoted as ≈, is the largest barbed bisimulation that is also
a congruence.

3 The Labeled Semantics

Barbed congruence requires quantification over all contexts, thus making direct
proofs particularly difficult. A standard device to avoid such a quantification
consists in introducing a labeled operational model and equipping it with a
weak (asynchronous) bisimulation. If one can prove that bisimulation implies
barbed congruence, then it can be used as a useful proof technique for behavioral
equivalence.

Towards a Unifying Theory for Web Services Composition 263

We use some auxiliary machineries: the extraction function xtr(P), that ex-
tracts messages and units out of the process P , and is needed to define the abort
of a unit:

xtr(0) = 0
xtr(x ṽ) = x ṽ

xtr(
∑

i∈I xi(ũi).Pi) = 0
xtr((x)P) = (x)xtr(P)
xtr(P |Q) = xtr(P) | xtr(Q)

xtr(!x(ũ).P) = 0
xtr(〈|P ; Q|〉x) = 〈|P ; Q|〉x

and the input predicate inp(P), which verifies whether a process contains an
input that is not inside a workunit, which is used to find out whether a unit is
still active. It is the least relation such that:

inp(
∑

i∈I xi(ũi).Pi)
inp((x)P) if inp(P)
inp(P |Q) if inp(P) or inp(Q)
inp(!x(ũ).P)

In this section it will be useful to have clear the following property:

Proposition 1. The extraction function is idempotent, i.e., if P is a webπ∞
process then xtr(P) = xtr(xtr(P)).

Proof. The proof is by structural induction on P . All the cases are straightfor-
ward. ��
We can now define the labeled semantics. Let μ range over input labels x(ũ),
bound output labels (z̃)x ũ where z̃ ⊆ ũ, and the label τ . Let also fn(τ) = ∅,
fn(x(ũ)) = {x}, fn(x ũ) = {x}∪ ũ, and fn((z̃)x ũ) = {x}∪ ũ\ z̃. Finally, let bn(μ)
be z̃ if μ = (z̃)x ũ, ũ if μ = x(ũ), and ∅ otherwise. We implicitly identify terms
up to α-renaming ≡α, that is, if P ≡α Q, P ′ ≡α Q′ and P

μ−→ P ′ then Q
μ−→ Q′.

In the following we will use again the shortcut:

〈|P ; Q|〉 def= (z)〈|P ; Q|〉z where z �∈ fn(P) ∪ fn(Q)

Definition 6 (Labeled semantics).The transition relation of webπ∞ processes,
noted

μ−→, is the least relation satisfying the rules:

(in)

∑

i∈I xi(ũi).Pi
xi(�ui)−−−−→ Pi

(out)

x ũ
x �u−−→ 0

(repin)

!x(ũ).P
x(�u)−−−→ P | !x(ũ).P

(res)

P
μ−→ P ′ x �∈ fn(μ) ∪ bn(μ)

(x)P
μ−→ (x)P ′

(open)

P
(�v)x �u−−−−→ P ′ w �= x w ∈ ũ\ṽ

(w)P
(w�v)x �u−−−−−→ P ′

(par)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P |Q μ−→ P ′ |Q

264 M. Mazzara and I. Lanese

(com)

P
(�w)x�v−−−−→ P ′ Q

x(�u)−−−→ Q′ w̃ ∩ fn(Q) = ∅ |ṽ| = |ũ|
P |Q τ−→ (w̃)(P ′ |Q′{ṽ/ũ

}

)
(abort)

inp(P)

〈|P ; Q|〉x
x()−−→ 〈|xtr(P) |Q ; 0|〉

(self)

P
x−→ P ′ inp(P)

〈|P ; Q|〉x τ−→ 〈|xtr(P ′) |Q ; 0|〉
(wunit)

P
μ−→ P ′ bn(μ) ∩ (fn(Q) ∪ {x}) = ∅

〈|P ; Q|〉x
μ−→ 〈|P ′ ; Q|〉x

Rules involving parallel composition have mirror cases that we have omitted.

The first seven rules are standard in π-calculus. We just remind the role of the

bound output (u)xu in P
(u)x u−−−−→ Q. This kind of action means that P emits a

private name u (a name bound in P) on the port x. Bound output actions arise
from free output actions which carry names out of their scope as in the process
(u)xu. Let us discuss the rules related to workunits. Rule (WUNIT) is the
simplest one: it lifts transitions to workunit contexts modeling the evolution of
the body. In this sense it is very similar, for instance, to rules (PAR) and (RES).
Rule (ABORT) models transaction termination due to an abort message. The
premise checks that the unit body is still alive – it contains an active input –
and, in this case, the compensation Q is triggered. We carefully do not erase
the messages and the units in the body, which are extracted using the function
xtr(·). We remark that abort is not possible if the unit body P has completed,
namely inp(P) is false. Rule (SELF) is similar to (ABORT), taking into account
the case when the abort message is raised by the body of the unit. In this case,
the handler Q can be spawned only if the body P cannot commit, i.e. if some
input-guarded process is still waiting inside the process after the signaling of x.

Finally, two remarks deserve to be made: the first one concerns the shortcut
〈|P ; Q|〉. This shortcut is used in rules (ABORT) and (SELF) to preserve the
workunit structure after its abort. This could appear to be a strange design
choice because this structure could be considered a redundant information once
the workunit has aborted. Instead, it is important to retain it to have the input
predicate falsity stable w.r.t. the transition relation. Indeed, it is not reasonable
that if ¬inp(P) and P

μ−→ P ′ then inp(P ′), since this corresponds to undo a
commit. Note that the opposite instead makes sense, i.e., if inp(P) and P

μ−→ P ′

then ¬inp(P ′) (for example in x |x().0), since this models a commit. However,
the proposition below shows that the input predicate is stable under output
transitions, i.e., a process can never commit via an output.

The second remark regards the side condition inp(P) in the rule (SELF). It
should be written inp(P ′), referring to the pending state of some input in the
process P ′ after the x signal. Usually, it is not very elegant and it is not a
common practice in transition systems to write down a side condition related to

Towards a Unifying Theory for Web Services Composition 265

the right side of a premise. Anyway, it is safe to write inp(P) instead of inp(P ′).
We will prove this fact with the following:

Proposition 2. Let P be a webπ∞ process:

1. if P
x �u−−→ Q and inp(P) then inp(Q)

2. if ¬inp(P) and P
μ−→ Q then ¬inp(Q).

Proof. We give just a brief sketch of the proof because of space constraints. Both
the parts of the proof are by structural induction on P . In the first case one just
has to consider the cases where inp(P), while in the second one the other cases
have to be considered. ��

3.1 Weak Asynchronous Bisimilarity

Recalling the weak asynchronous bisimilarity presented in [1] we define a weak
asynchronous bisimilarity for webπ∞. We then find a suitable variant, that we call
closed bisimilarity, which can be used as a tool to prove weak barbed congruence.

Definition 7 (Weak asynchronous bisimilarity). We define τ=⇒ as the re-
flexive and transitive closure of τ−→ and

μ
=⇒ as τ=⇒ μ−→ τ=⇒.

A weak asynchronous bisimulation is a symmetric binary relation R such
that P RQ implies:

1. if P
τ−→ P ′, then Q

τ=⇒ Q′ and P ′ RQ′;
2. if P

(�z)x �u−−−−→ P ′ and z̃ ∩ fn(Q) = ∅, then Q
(�z)x �u
===⇒ Q′ and P ′ RQ′;

3. if P
x(�u)−−−→ P ′ then

(a) either Q
x(�u)
==⇒ Q′, and P ′ RQ′;

(b) or Q
τ=⇒ Q′, and P ′ R (Q′|x ũ).

Weak asynchronous bisimilarity
�≈a is the largest weak asynchronous bisimula-

tion.

Unfortunately
�≈a is not a congruence as it is instead in asynchronous π-calculus

[16]. To show this fact consider the following counterexample. Let

P
def= 0

Q
def= (z)z()

then P
�≈a Q because they both cannot move. As you can easily see inp(Q)

holds but inp(P) does not, so if you consider the context 〈|Cπ[·] ; y |〉x and the
rule (ABORT) you can see that the processes

〈|0 ; y |〉x
〈|(z)z(); y |〉x

behave differently with respect to the asynchronous bisimilarity definition given
above. To solve this problem and have an equivalence which is also a congruence
it is necessary to close it under the input predicate according to the following
definition:

266 M. Mazzara and I. Lanese

Definition 8. A binary relation R over processes is input predicate-closed if
P RQ implies inp(P) = inp(Q).

Unfortunately this is not enough to get a congruence. Consider now the coun-
terexample:

P
def= !x().y() | 〈|z().u() ; 0|〉

Q
def= z().u() | 〈|!x().y() ; 0|〉

P and Q behave in the same way in the sense that P
�≈a Q. Also it is easy to

see that inp(P) = inp(Q) but, unfortunately, xtr(P) and xtr(Q) are not bisimilar,
since xtr(P) = 〈|z().u() ; 0|〉 and xtr(Q) = 〈|x().y() ; 0|〉, thus the two processes
behave differently when inserted, e.g., in the context 〈|· ; 0|〉x. To solve this
problem we also need an additional definition:

Definition 9. A binary relation R over processes is extract-closed if P RQ
implies xtr(P)R xtr(Q).

Now, we can define a labeled bisimilarity, that we call closed bisimilarity, and
prove that it is a congruence.

Definition 10 (Closed bisimilarity). Closed bisimilarity ≈a is the largest
weak asynchronous bisimulation that is input predicate-closed and extract-closed.

We study now some properties of closed bisimilarity.

Theorem 1. Closed bisimilarity ≈a is a congruence, i.e. given two processes P
and Q such that P ≈a Q then Cπ[P] ≈a Cπ[Q] for each context Cπ[·].
Proof. The proof is by structural induction over contexts, and each case requires
a coinduction. Because of space constraints we give only the proof for workunit
body and handler, the other cases being anyway similar to the corresponding
cases of the analogous theorem for the asynchronous π-calculus (see [16]).

For the body we have to prove that P ≈a Q implies 〈|P ; R|〉x ≈a 〈|Q ; R|〉x.
Let us consider the three relevant cases of the definition. In the first case (rule

(ABORT)), if 〈|P ; R|〉x
x()−−→ 〈|xtr(P) |R ; 0|〉 we must have inp(P) and, for

the input closure, also inp(Q). Thus 〈|Q ; R|〉x
x()−−→ 〈|xtr(Q) |R ; 0|〉 and the

statement follows from the coinductive hypothesis and the extract closure. The
second case (rule (SELF)) is 〈|P ; R|〉x τ−→ 〈|xtr(P ′) |R ; 0|〉 if P

x−→ P ′. This also
requires inp(P). This implies inp(Q) because of the input closure. Thus, since
P ≈a Q we have Q

x=⇒ Q′ and P ′ ≈a Q′. Using rule (WUNIT) to lift the τ steps
and rule (SELF) for the x step we get 〈|Q ; R|〉x τ=⇒ 〈|xtr(Q′) |R ; 0|〉. Note, in
fact, that, since outputs are asynchronous, we can always suppose that all the τ
actions are performed before the output, that is when the workunit is still able
to participate to the interaction. The statement follows from the coinductive
hypothesis and the extract closure. For the last case (rule (WUNIT)) the proof
is trivial because we simply lift the behavior of the body to the workunit context.

Towards a Unifying Theory for Web Services Composition 267

For the handler we have to prove that P ≈a Q implies 〈|R ; P |〉x ≈a 〈|R ; Q|〉x.
In this case P and Q can move only when shifted to the body part, as it happens
in rule (ABORT) and rule (SELF). Since they are moved without being changed,
then the thesis follows by coinduction. ��
We prove now some auxiliary lemmas that will bring us nearer to our main goal.

Lemma 1. Let P be a webπ∞ process. Then the following holds:

1. P can always be written in the form:

P ≡ (z̃)(
∏

i∈I

∑

s∈Si

xi,s(ũi,s).Pi,s |
∏

l∈L

!xl(ũl).Pl |
∏

j∈J

〈|Pj ; Qj|〉xj
|

∏

k∈K

xk ũk)

2. xtr(P) can always be written in the form:

xtr(P) ≡ (z̃)(
∏

j∈J

〈|Pj ; Qj |〉xj
|

∏

k∈K

xk ũk)

Proof. For the first part it is necessary to apply structural congruence rules:
in particular workunit laws to flatten the workunit structure, floating laws to
extract output particles outside of workunits, parallel and summation laws to
rearrange the order of processes and scope laws to factorize names in z̃. For the
second part, notice that all the structural axioms commute with function xtr(·),
thus it is enough to put P in the normal form above and then apply the extract
function. ��
Lemma 2. Let P be a webπ∞ process. Then the following holds:

1. P
x �u−−→ P ′ only if xtr(P) �= 0

2. P
x �u−−→ P ′ if and only if xtr(P) x �u−−→ xtr(P ′)

Proof. Both the parts are by induction on the structure of P . The first part
is trivial, let us consider the second one. Thanks to Lemma 1, we can always
divide a process in two parallel components P1 and P2, such that P1 can not
perform outputs and xtr(P1) = 0, and P2 can perform outputs (unless it is 0)
and xtr(P2) = P2. The thesis follows trivially. ��
Now we need to define a new concept of input context which is auxiliary to the
next lemma.

Definition 11. Input contexts, noted N[·], are defined by the following gram-
mar:

N[·] ::=
∑

i∈I xi(ũi).Pi + [·](ṽ).P
![·](ṽ).P
N[·] |P
(z)N[·]
〈|N[·] ; P |〉z
〈|P ; Q|〉[·]

268 M. Mazzara and I. Lanese

Lemma 3. Let P be a webπ∞ process. Then

1. P
(�z)x �u−−−−→ P ′ implies P ≡ (z̃)(P ′ |x ũ)

2. P
x(�u)−−−→ P ′ implies P ≡ N[x]

Proof. For the first part the proof is by induction on the proof tree of P
(�z)x �u−−−−→

P ′. The base case is when x ũ
x �u−−→ 0 by the (OUT) rule and is trivial. The

inductive cases are related to the rules (WUNIT), (PAR), (RES) and (OPEN).
The proof is similar in all the cases. We just show the case of rule (WUNIT).
By inductive hypothesis we know that P ≡ (z̃)(P ′ |x ũ). Then 〈|P ; Q|〉y ≡
(z̃)(〈|P ′ ; Q|〉y |x ũ) using the floating law, as required.

For the second part the proof is by induction on the proof tree of P
x(�u)−−−→ P ′.

We have three base cases related to the rules (IN), (REPIN) and (ABORT).
The cases follows directly by definition. The inductive cases are related to rules
(RES), (PAR) and (WUNIT) and are trivial too. ��
The next lemma analyzes the relations between reduction semantics and barbs
on one side, and labeled transitions on the other side.

Lemma 4. Let P be a webπ∞ process. Then

1. P ↓ x if and only if P
(�z)x �u−−−−→ Q for some Q, z̃ and ũ

2. P
τ−→ Q implies P → Q

3. P → Q implies that there is R such that R ≡ Q and P
τ−→ R

Proof. We prove the three statements in the lemma separately.

1. Since barbs are preserved by structural congruence, the first part follows
from Lemma 3.

2. We have to prove that P
τ−→ Q implies P → Q. The proof is by induction

on the proof tree of P
τ−→ Q. The base cases are two and they are related

to rules (SELF) and (COM), i.e., the rules that introduce the label τ in the
tree. The inductive cases are instead related to all those rules that move the
τ label from the premise to the conclusion of the inference, i.e. (WUNIT),
(PAR) and (RES). For space reasons we describe only the workunit part.
The base case follows from the first part of Lemma 3. For the inductive case
we have to prove that 〈|P ; Q|〉z τ−→ R implies 〈|P ; Q|〉z → R. The inductive
case is when P

τ−→ P ′ and 〈|P ; Q|〉z τ−→ 〈|P ′ ; Q|〉z for the (WUNIT) rule. In
this case we can apply the inductive hypothesis obtaining P → P ′ and, since
the reduction relation is closed under the workunit context, 〈|P ; Q|〉z →
〈|P ′ ; Q|〉z .

3. We have to prove that P → Q implies that there is R such that R ≡ Q and
P

τ−→ R. The proof is by induction on the proof tree of P → Q. The base cases
are three and they are related to rules (R-COM), (R-REP) and (R-FAIL).
The inductive cases are instead related to the closures under contexts and

Towards a Unifying Theory for Web Services Composition 269

structural congruence. We show only the workunit case: if P → P ′ we have
〈|P ; Q|〉z → 〈|P ′ ; Q|〉z for the the context closure of the reduction relation.
By inductive hypothesis we also have P

τ−→ R with R ≡ P ′. From this fact,
using rule (WUNIT) of the labeled semantics, we get 〈|P ; Q|〉z τ−→ 〈|R ; Q|〉z
where 〈|R ; Q|〉z ≡ 〈|P ′ ; Q|〉z. ��

Now we are ready to prove our main result, which shows that closed bisimilarity
can be used as a tool to prove weak barbed congruence.

Theorem 2. For each pair of webπ∞ processes P and Q, P ≈a Q implies
P ≈ Q.

Proof. Lemma 4 proved that ≈a is a weak barbed bisimulation. We have also
proved (Theorem 1) that ≈a is a congruence. Since ≈ is the largest barbed
bisimulation that is a congruence then the thesis follows. ��

4 Relevant Examples

The theory developed so far allows us to prove interesting properties about
webπ∞ processes. In this section we show some examples of pattern reducibility
proving them correct as far as weak barbed congruence is concerned, and using
closed bisimilarity as technical tool. This also shows that closed bisimilarity,
whose completeness has not been proved yet, can be applied in many interesting
cases.

Handlers Reducibility. Let us consider the following processes where x′ �∈
fn(P) ∪ fn(Q), x′ �= x.

〈|P ; Q|〉x
(x′)(〈|P ; x′ |〉x | 〈|x′().Q ; 0|〉)

The following theorem states that any workunit can be rewritten in another unit
where the handler consists of a single asynchronous output and all the remaining
parts of the process are moved in a separate unit and activated when necessary.

Theorem 3. 〈|P ; Q|〉x ≈ (x′)(〈|P ; x′ |〉x | 〈|x′().Q ; 0|〉)
Proof. The relation φ on webπ∞ processes defined as follows is a closed bisim-
ulation. Below we intend P and Q to range over all processes, and x, x′ range
over all the names such that x′ �∈ fn(P) ∪ fn(Q), x′ �= x.

φ = {(P, P)} ∪ {(〈|P ; Q|〉x, (x′)(〈|P ; x′ |〉x | 〈|x′().Q ; 0|〉))}
∪ {(〈|xtr(P) |Q ; 0|〉, (x′)(〈|xtr(P) ; 0|〉 | 〈|Q ; 0|〉))}

The full proof requires to show that the three conditions for closed bisimilarity
are satisfied. This is quite easy, and the interested reader can refer to [11]. The
thesis then follows thanks to Theorem 2. ��

270 M. Mazzara and I. Lanese

Decoupling of Service and Recovery Logics. Let us consider another cou-
ple of processes where y �∈ fn(!z(u).P |Q) ∪ {v}:

〈|!z(u).P |Q ; v |〉x
(y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)

The following theorem shows the way in which a pattern expressing the service
logic !z(u).P |Q and the recovery logic for that service (intended as a single
asynchronous output because of the previous theorem) can be decoupled and
written separately by means of two different workunits. The property can be
read also in the opposite sense, showing how two different workunits can be
coupled in a single one.

Theorem 4. 〈|!z(u).P |Q ; v |〉x ≈ (y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)

Proof. The proof is similar to the one above, considering now as φ:

φ = {(P, P)} ∪ {〈|!z(u).P |Q ; v |〉x, (y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)}

where we intend P and Q to range over all processes, and z, u, v, x and y range
over all the names such that y �∈ fn(!z(u).P |Q) ∪ {v}. The only trick is that
the addition of the deadlocked component (w)w(u) is needed to ensure that the
input predicate is true on the right hand side, as necessary to simulate the left
hand side. ��
The applications above show that in some cases of interest closed bisimilarity
allows to use quite easily writable relations, while using weak barbed congruence
directly is far more complex.

5 Conclusion

In this paper we analyzed some semantic issues in the framework of webπ∞,
a simple extension of the π-calculus with untimed long running transactions.
A timed extension of webπ∞, called webπ, has been presented in [8] to meet
the challenge of time in composition. There webπ has been equipped with an
explicit mechanism for time elapsing and timeout handling. Adding time allows
to express another interesting aspect of systems. Remember however that if one is
not interested in the timing details, timeouts can be simply expressed as choices
between the normal behavior and the timeout behavior. Discussing the notion
of orchestration without considering time constraints makes it possible to focus
on information flow, message passing, concurrency and resource mobility. Also,
it allows to have a more abstract view using the weak semantics, which does not
make sense in the timed framework, and which is the desired level of abstraction
in many cases. Notice for instance that processes in our sample applications are
not equivalent according to a strong equivalence.

Another related calculus is c-join [3], which extends join calculus [6] with long
running transactions and compensations. The main difference between webπ∞

Towards a Unifying Theory for Web Services Composition 271

and c-join is that in the latter the nesting of transactions matters, since when
the external transaction is aborted all the internal transactions are aborted too.
This forces a particular way to deal with related transactions, while in our case
this decision can be taken in a case by case way, by explicit sending abort signals
to the other transactions. Note that in c-join instead a process can only abort the
innermost transaction containing it (but the compensation can be programmed
to propagate the abort to the upper level). Finally, in c-join, communication
between processes in different transactions causes the transactions to be merged.

Long running transactions have been analyzed also using Compensating
CSP [4], but this approach is more focused on the definition of compensations for
large processes starting from definitions of compensations for their components,
and it provides neither synchronization (apart from sequential composition) nor
mobility.

This work contributes with a powerful and expressive language, with a solid
semantics, that allows formal reasoning. The language shows a clear relation
with the π-calculus and the actual encoding is a feasible task, while it would
be quite harder to get such an encoding for XLANG and other web services
composition languages. Future developments building on the results achieved
in this paper include software tools for static analysis of programs based on
composition of services. A useful result we achieved in [11] that stem from this
work is a streamlined definitions of syntax and semantics of BPEL, to get a
simpler way to model involved transaction behaviors. The overall goal of these
works is to allow for improvement of quality and applicability of real composition
languages.

Acknowledgments. The authors would like to strongly acknowledge Cosimo
Laneve for his huge support and contribution and Luiz Olavo Bonino Da Silva
Santos, Roberto Bruni and Hernán Melgratti for theirs comments.

References

1. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchro-
nous pi-calculus. Theoret. Comput. Sci., 195(2):291–324, 1998.

2. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
V. Mehta, S. Thatte, P. Yendluri, A. Yiu, and A Alves. Web services business
process execution language version 2.0. Technical report, Oasis, December 2005.
Working draft.

3. R. Bruni, H. C. Melgratti, and U. Montanari. Nested commits for mobile calculi:
Extending join. In Proc. of IFIP TCS’04, pages 563–576. Kluwer Academics, 2004.

4. M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In 25 Years Communicating Sequential Processes, volume 3525 of
Lect. Notes in Comput. Sci., pages 133–150. Springer, 2004.

5. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in
web services. Commun. ACM, 46(10):29–34, 2003.

6. C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proc.
of POPL’96, pages 372–385. ACM Press, 1996.

272 M. Mazzara and I. Lanese

7. M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing, 9(1):75–81, 2005.

8. C. Laneve and G. Zavattaro. Foundations of web transactions. In Proc. of FoS-
SaCS’05, volume 3441 of Lect. Notes in Comput. Sci., pages 282–298. Springer,
2005.

9. F. Leymann. Web services flow language (WSFL 1.0). Technical report, IBM, May
2001.

10. R. Lucchi and M. Mazzara. A π-calculus based semantics for WS-BPEL. J. Log.
Algebr. Program., 2006. To appear.

11. M. Mazzara. Towards Abstractions for Web Services Composition. PhD thesis,
Department of Computer Science, University of Bologna, 2006. Also available as
Technical Report UBLCS-2006-08.

12. Microsoft BizTalk. http://www.microsoft.com/biztalk/default.mspx.
13. R. Milner. Functions as processes. Math. Struct. in Comput. Sci., 2(2):119–141,

1992.
14. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.

Inform. and Comput., 100(1):1–40,41–77, 1992.
15. C. Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–

52, 2003.
16. D. Sangiorgi and D. Walker. The π-calculus: A theory of Mobile Processes. Cam-

bridge University Press, 2001.
17. C. Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd

Ed. Addison-Wesley/ACM Press, 2002.
18. S. Thatte. XLANG: Web services for businnes process design. Technical report,

Microsoft Corporation, 2001. Downloadable from www.gotdotnet.com/team/xml/

wsspecs/xlang-c.

http://www.microsoft.com/biztalk/default.mspx

	Web Services
	Web Services Composition

	The Orchestration Calculus $\tt{web}\pi_{\infinity}$
	The Reduction Semantics
	The Extensional Semantics

	The Labeled Semantics
	Weak Asynchronous Bisimilarity

	Relevant Examples
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

