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Preface

This volume contains the proceedings of the international workshop WS-FM
(Web Services and Formal Methods) held at Vienna University of Technology,
Vienna, Austria, during September 8-9, 2006.

The International Workshop on Web Services and Formal Methods aims to
bring together researchers working on Web services and formal methods in or-
der to activate a fruitful collaboration in this direction of research. This, poten-
tially, could also have a great impact on the current standardization phase of
Web service technologies. The main topics of the conference include: protocols
and standards for WS (SOAP, WSDL, UDDI, etc.); languages and descripion
methodologies for Choreography/Orchestration/Workflow (BPML, XLANG
and BizTalk, WSFL, WS-BPEL, etc.); coordination techniques for WS (trans-
actions, agreement, coordination services, etc.); semantics-based dynamic WS
discovery services (based on Semantic Web/ontology techniques or other se-
mantic theories); security, performance evaluation and quality of service of WS;
semi-structured data and XML related technologies; comparisons with different
related technologies/approaches.

This third edition of the workshop (WS-FM 2006) featured 15 papers se-
lected among 40 submissions after a rigorous review process by international
reviewers and three invited talks by Wil van der Aalst (Eindhoven University
of Technology, The Netherlands), Roberto Bruni (University of Pisa, Italy) and
Schahram Dustdar (Vienna University of Technology, Austria). These contribu-
tions brought an additional dimension to the technical and the scientific merit
of the workshop. This volume of the proceedings contains the 15 selected papers
and three papers related to the invited talks.

WS-FM 2006 was held as an official event of “The Process Modelling Group”
(a resarch group which promotes study and experimentation in business processes
whose members mainly work in academia, for software companies or as part of
standards bodies) and in conjunction with the 4th International Conference on
Business Process Management (BPM 2006).

We owe special thanks to all members of the Program Committee of WS-FM
2006 and their sub-referees for their work. Finally, our thanks go to the University
of Technology of Vienna for hosting the workshop and for their support in the
workshop organization.

September 2006 Mario Bravetti
Manuel Núñez

Gianluigi Zavattaro
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DecSerFlow: Towards a Truly Declarative

Service Flow Language

W.M.P. van der Aalst and M. Pesic

Department of Information Systems, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl, m.pesic@tm.tue.nl

Abstract. The need for process support in the context of web services
has triggered the development of many languages, systems, and stan-
dards. Industry has been developing software solutions and proposing
standards such as BPEL, while researchers have been advocating the
use of formal methods such as Petri nets and π-calculus. The languages
developed for service flows, i.e., process specification languages for web
services, have adopted many concepts from classical workflow manage-
ment systems. As a result, these languages are rather procedural and
this does not fit well with the autonomous nature of services. Therefore,
we propose DecSerFlow as a Declarative Service Flow Language. Dec-
SerFlow can be used to specify, enact, and monitor service flows. The
language is extendible (i.e., constructs can be added without changing
the engine or semantical basis) and can be used to enforce or to check the
conformance of service flows. Although the language has an appealing
graphical representation, it is grounded in temporal logic.

Keywords: Service flows, web services, workflow management, flexibil-
ity, temporal logic.

1 Introduction

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL for short) has become the de-facto standard for implementing processes
based on web services [7]. Systems such as Oracle BPEL Process Manager,
IBM WebSphere Application Server Enterprise, IBM WebSphere Studio Appli-
cation Developer Integration Edition, and Microsoft BizTalk Server 2004 support
BPEL, thus illustrating the practical relevance of this language. Although in-
tended as a language for connecting web services, its application is not limited
to cross-organizational processes. It is expected that in the near future a wide
variety of process-aware information systems [8] will be realized using BPEL.
Whilst being a powerful language, BPEL is of a procedural nature and not very
different from classical workflow languages e.g., the languages used by systems
such as Staffware, COSA, SAP Workflow, and IBM WebSphere MQ Workflow
(formerly know as FlowMark). Also other languages proposed in the context of
web services are of a procedural nature, e.g., the Web Services Choreography

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 1–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 W.M.P. van der Aalst and M. Pesic

Description Language (WS-CDL) [16]. In this paper, we will not discuss these
languages in detail. The interested reader is referred to [2,3,20] for a critical
review of languages like BPEL. Instead, we will demonstrate that it is possible
to use a more declarative style of specification by introducing DecSerFlow : a
Declarative Service Flow Language.

To explain the difference between a procedural style and a declarative style
of modeling, we use a simple example. Suppose that there are two activities
A and B. Both can be executed multiple times but they exclude each other,
i.e., after the first occurrence of A it is not allowed to do B anymore and after
the first occurrence of B it is not allowed to do A. The following execution se-
quences are possible based on this verbal description: [ ] (the empty execution
sequence), [A], [B], [A,A], [B,B], etc. In a procedural language it is difficult to
specify the above process without implicitly introducing additional assumptions
and constraints. In a procedural language one typically needs to make a choice
with respect to whether no activities are to be executed, only A activities are
to be executed, or only B activities are to be executed. Moreover, the num-
ber of times A or B needs to be executed also has to be decided. This means
that one or more decision activities need to be executed before the execution
of “real” activities can start. (Note that this is related to the Deferred Choice
pattern described in [4].) The introduction of these decision activities typically
leads to an over-specification of the process. Designers may be tempted to make
this decision before the actual execution of the first A or B. This triggers the
following two questions: (1) “How is this decision made?” and (2) “When is
this decision made?”. The designer may even remove the choice altogether and
simply state that one can only do A activities. Using a more declarative style
can avoid this over-specification. For example, in Linear Temporal Logic (LTL)
[11,12,13] one can write ¬(�A ∧ �B). This means that it cannot be the case
that eventually A is executed and that eventually B is executed. This shows
that a very compact LTL expression (¬(�A ∧ �B)) can describe exactly what
is needed without forcing the designer to specify more than strictly needed. Un-
fortunately, languages like LTL are difficult to use for non-experts. Therefore,
we have developed a graphical language (DecSerFlow) that allows for the easy
specification of processes in a declarative manner. DecSerFlow is mapped onto
LTL. The innovative aspects of our approach based on DecSerFlow are:

– DecSerFlow allows for a declarative style of modeling which is highly relevant
in the context of service flows (unlike languages like BPEL).

– Through the graphical representation of DecSerFlow this language is easy
to use and we avoid the problems of textual languages like LTL.

– We use LTL not only for the verification of model properties: we also use
the LTL formulas generated by DecSerFlow to dynamically monitor services
and to realize an enactment engine.

– DecSerFlow is an extendible language (i.e., we supply an editor to extend the
language with user-defined graphical constructs without the need to modify
any part of the system).
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– DecSerFlow can be used to specify two types of constraints: hard constraints
and soft constraints. Hard constraints are enforced by the engine while soft
constraints are only used to warn before the violation takes place and to
monitor observed violations.

A

C

B

D

DecSerFlow
model containing

four activities

hard constraint
(response)

hard constraint
(not co-existence)

soft constraint
(responded

existence)

[](A -> <>C)

not(<>A and  <>B)

<>D ->  <>B

hard LTL
constraints

...

...

soft LTL
constraints

enactment
engine

monitoring
tool

web
services/

SOAP
messages

offer
enable
disable

start
complete

warn

register

design-time mapping run-time

instance data
and states

Fig. 1. Overview of the role played by DecSerFlow in supporting services flows

Figure 1 provides an overview of the way we envision DecSerFlow to be used.
At design-time, a graphical model is made using the DecSerFlow notation. (Note
that at design-time users can also add new modeling elements - types of con-
straints.) The left-hand side of Figure 1 shows a process composed of four ac-
tivities, A, B, C, and D. Moreover, three constraints are shown. The connection
between A and C means that any occurrence of A should eventually be followed
by at least one occurrence of C (i.e., �(A → �C) in LTL terms). The con-
nection between A and B means that it cannot be the case that eventually A
is executed and that eventually B is executed. This is the constraint described
before, i.e., ¬(�A ∧ �B) in LTL terms. The last constraint connecting D and
B is a soft constraint. This constraint states that any occurrence of D implies
also the occurrence of B (before or after the occurrence of D), e.g., [B,D,D,D,D],
[D,D,D,B], and [B,B,B] are valid executions. The LTL formulation of this con-
straint is �D → �B.

As Figure 1 shows, it is possible to automatically map the graphical model
onto LTL formulas. These formulas can be used by the enactment engine to
control the service flow, e.g., on the basis of hard constraints the engine can
allow or prohibit certain activities and on the basis of soft constraints warnings
can be issued. The soft constraints can also be used by the monitoring tool to
detect and analyze violations.
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Currently, we have implemented a graphical editor and the mapping of the
editor to LTL. This editor supports user-defined notations as described before.
We are currently investigating different ways to enact LTL formulas and in this
paper we described our current efforts. Although we do not elaborate this this in
this paper, our implementation will also incorporate data as is show in Figure 1.
Data is used for routing purposes by making constraints data dependent, i.e., a
constraint only applies if its guard evaluates to true. Moreover, in the context of
the ProM (Process Mining) framework [6,18] we have developed an LTL checker
[1] to compare actual behavior with specified behavior. The actual behavior can
be recorded by a dedicated process engine. However, it can also be obtained by
monitoring SOAP messages as described in [3].

The approach described in Figure 1 is not limited to service flows. It can
be applied in any context where autonomous entities are executing activities.
These autonomous entities can be other organizations but also people or groups
of people. This is the reason that DecSerFlow has a “sister language” named
ConDec which aims at supporting teamwork and workflow flexibility [17]. Both
languages/applications share the same concepts and tools.

The remainder of this paper is organized as follows. Section 2 introduces
the DecSerFlow language. Then, a non-trivial example is given in Section 3.
Section 4 discusses different ways to construct an enactment (and monitoring)
engine based on DecSerFlow. Finally, Section 5 concludes the paper by discussing
different research directions.

2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [11,12,13] allow for the a more
declarative style of modeling. These languages include temporal operators such
as next-time (©F ), eventually (�F ), always (�F ), and until (F �G). However,
such languages are difficult to read. Therefore, we define an extendible graphical
syntax for some typical constraints encountered in service flows. The combina-
tion of this graphical language and the mapping of this graphical language to
LTL forms the Declarative Service Flow (DecSerFlow) Language . We propose
DecSerFlow for the specification of a single service, simple service compositions,
and more complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of the
relations between activities in DecSerFlow can be quite different than in tradi-
tional procedural workflow languages (like Petri nets and BPEL). For example,
places between activities in a Petri net describe causal dependencies and can
be used to specify sequential, parallel, alternative, and iterative routing. Using
such mechanisms it is both possible and necessary to strictly define how the
flow will be executed. We refer to relations between activities in DecSerFlow as
constraints. Each of the constraints represents a policy (or a business rule). At
any point in time during the execution of a service, each constraint evaluates to
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true or false. This value can change during the execution. If a constraint has the
value true, the referring policy is fulfilled. If a constraint has the value false, the
policy is violated. The execution of a service is correct (according to the Dec-
SerFlow model) at some point in time if all constraints (from the DecSerFlow
model) evaluate to true. Similarly, a service has completed correctly if at the end
of the execution all constraints evaluate to true. The goal of the execution of
any DecSerFlow model is not to keep the values of all constraints true at all
times during the execution. A constraint which has the value false during the
execution is not considered an error. Consider for example the LTL expression
�(A −→ �B) where A and B are activities, i.e., each execution of A is eventually
followed by B. Initially (before any activity is executed), this LTL expression
evaluates to true. After executing A the LTL expression evaluates to false and
this value remains false until B is executed. This illustrates that a constraint
may be temporarily violated. However, the goal is to end the service execution
in a state where all constraints evaluate to true.

To create constraints in DecSerFlow we use constraint templates. Each con-
straint template consists of a formula written in LTL and a graphical represen-
tation of the formula. An example is the “response constraint”, which is denoted
by a special arc connecting two activities A and B. The semantics of such an arc
connecting A and B are given by the LTL expression �(A −→ �B), i.e., any
execution of A is eventually followed by (at least one) execution of B. We have
developed a starting set of constraint templates and we will use these templates
to create a DecSerFlow model. This set of templates is inspired by a collection
of specification patterns for model checking and other finite-state verification
tools [9]. Constraint templates define various types of dependencies between ac-
tivities at an abstract level. Once defined, a template can be reused to specify
constraints between activities in various DecSerFlow models. It is fairly easy
to change, remove and add templates, which makes DecSerFlow an “open lan-
guage” that can evolve and be extended according to the demands from different
domains.1 In the initial set of constraint templates we distinguish three groups:
(1) “existence”, (2) “relation”, and (3) “negation” templates. Because a tem-
plate assigns a graphical representation to an LTL formula, we will refer to such
a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 2 shows a DecSerFlow
model consisting of four activities: A, B, C, and D. Each activity is tagged with a
constraint describing the number of times the activity should be executed, these
are the so-called “existence formulas”. The arc between A and B is an example
of a “relation formula” and corresponds to the LTL expression discussed before:
�( A −→ � B ). The connection between C and D denotes another “relation
formula”: � D −→ � C, i.e., if D is executed at least once, C is also executed
at least once. The connection between B and C denotes a “negation formula”

1 Note that we have developed a graphical editor for DecSerFlow that supports the
creation of user defined templates, i.e., the user can define the graphical representa-
tion of a generic constraint and give its corresponding semantics in terms of LTL.
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A B

C

 [](A -> <> B),
i.e., every A is

eventually
followed by B

D

1..*

20..*

0..*

B is executed
twice

<> D, i.e., D is
executed at least

once

<D> -> <>C, i.e.,
if D is executed
at least once, C
is also executed

at least once.
if A is executed
at least once, C

is never
executed and

vice versa.

A can be
executed an

arbitrary number
of times

Fig. 2. A DecSerFlow model showing some example notations

(the LTL expression is not show here). Note that it is not easy to provide a clas-
sical procedural model (e.g., a Petri net) that allows for all behaviour modeled
Figure 2.

Existence Formulas. Figure 3 shows the so-called “existence formulas”. These
formulas define the possible number of executions (cardinality) of an activity. For
example, the first formula is called existence. The name and the formula heading
are shown in the first column. From this, we can see that it takes one parameter
(A), which is the name of an activity. The body of the formula is written in LTL
and can be seen in the second column. In this case the LTL expression �(activity
== A) ensures that the activity given as the parameter A will execute at least
once. Note that we write �(activity == A) rather than �(A). The reason is that
in a state we also want to access other properties, i.e., not just the activity name
but also information on data, time, and resources. Therefore, we need to use a
slightly more verbose notation (activity == A). The diagram in the third column
is the graphical representation of the formula, which is assigned to the template.
Parameter A is an activity and it is represented as a square with the name of
the activity. The constraint is represented by a cardinality annotation above the
square. In this case the cardinality is at least one, which is represented by 1..*.
The first group of existence formulas are of the cardinality “N or more”, denoted
by N..*. Next, the formula absence ensures that the activity should never execute
in the service. The group of formulas with names absence N uses negations of
existence N to specify that an activity can be executed at most N-1 times. The
last group of existence formulas defines an exact number of executions of an
activity. For example, if a constraint is defined based on the formula exactly 2,
the referring activity has to be executed exactly two times in the service.

Relation Formulas. Figure 4 shows the so-called “relations formulas”. While an
“existence formula” describes the cardinality of one activity, a “relation formula”
defines relation(s) (dependencies) between two activities. All relation formulas
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have two activities as parameters and two activities in the graphical representa-
tion. The line between the two activities in the graphical representation should
be unique for the formula, and reflect the semantics of the relation. The re-
sponded existence formula specifies that if activity A is executed, activity B also
has to be executed either before or after the activity A. According to the co-
existence formula, if one of the activities A or B is executed, the other one has
to be executed also.

While the previous formulas do not consider the order of activities, formulas
response, precedence and succession do consider the ordering of activities. For-
mula response requires that every time activity A executes, activity B has to be
executed after it. Note that this is a very relaxed relation of response, because B
does not have to execute immediately after A, and another A can be executed
between the first A and the subsequent B. For example, the execution sequence
[B,A,A,A,C,B] satisfies the formula response. The formula precedence requires
that activity B is preceded by activity A. i.e., it specifies that if activity B was
executed, it could not have been executed until the activity A was executed.
According to this formula, the execution sequence [A,C,B,B,A] is correct. The
combination of the response and precedence formulas defines a bi-directional ex-
ecution order of two activities and is called succession. In this formula, both
response and precedence relations have to hold between the activities A and B.
Thus, this formula specifies that every activity A has to be followed by an ac-
tivity B and there has to be an activity A before every activity B. For example,
the execution sequence [A,C,A,B,B] satisfies the succession formula.

Formulas alternate response, alternate precedence and alternate succession
strengthen the response, precedence and succession formulas, respectively. If ac-
tivity B is alternate response of the activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each two
activities A at least one activity B has to be executed. In other words, after
activity A there must be an activity B, and before that activity B there can not
be another activity A. The execution sequence [B,A,C,B,A,B] satisfies the al-
ternate response. Similarly, in the alternate precedence every instance of activity
B has to be preceded by an instance of activity A and the next instance of ac-
tivity B can not be executed before the next instance of activity A is executed.
According to the alternate precedence, the execution sequence [A,C,B,A,B,A]
is correct. The alternate succession is a combination of the alternate response
and alternate precedence and the sequence [A,C,B,A,B,A,B] would satisfy this
formula.

Even more strict ordering relations formulas are chain response, chain prece-
dence and chain succession, which require that the executions of the two activ-
ities (A and B) are next to each other. In the chain response the next activity
after the activity A has to be activity B and the execution [B,A,B,C,A,B] would
be correct. The chain precedence formula requires that the activity A is the first
preceding activity before B and, hence, the sequence [A,B,C,A,B,A] is correct.
Since the chain succession formula is the combination of the chain response
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and chain precedence formulas, it requires that activities A and B are always
executed next to each other. The execution sequence [A,B,C,A,B,A,B] is correct
with respect to this formula.

Negation Formulas. Figure 5 shows the “negation formulas”, which are the
negated versions of the “relation formulas”. The first two formulas negate the
responded existence and co-existence formulas. The responded absence formula
specifies that if activity A is executed activity B must never be executed (not
before nor after the activity A). The not co-existence formula applies responded
absence from A to B and from B to A. However, if we look at the responded
absence formula we can see that if existence of A implies the absence of B and
we first execute activity B, it will not be possible to execute activity A anymore
because the formula will become permanently incorrect. This means that the for-
mula responded absence is symmetric with respect to the input, i.e., we can swap
the roles of A and B without changing the outcome. Therefore formula responded
absence will be skipped and we will use only the not co-existence formula. The
graphical representation is a modified representation of the co-existence formula
with the negation symbol in the middle of the line. An example of a correct exe-
cution sequence for the formula not co-existence is [A,C,A,A], while the sequence
[A,C,A,A,B] would not be correct.

The negation response formula specifies that after the execution of activity A,
activity B can not be executed. According to the formula negation precedence
activity B can not be preceded by activity A. These two formulas have the same
effect because if it is not possible to have activity B executed after activity
A, then it is not possible to have activity A executed before activity B. Since
the formula negation succession combines these two formulas, it also has the
same effect and we will use only the negation succession formula. The graphical
representation of this formula is a modified representation of the succession
formula with a negation symbol in the middle of the line. The execution sequence
[B,B,C,A,C,A,A] is an example of a correct sequence, while [A,C,B] would be
an incorrect execution.

Formulas negation alternate response, negation alternate precedence and nega-
tion alternate succession are easy to understand. The formula negation alternate
response specifies that the activity B can not be executed between the two sub-
sequent executions of the activity A. According to this formula the execution
sequence [B,A,C,A,B] is correct. In the case of the negation alternate prece-
dence activity A can not be executed between two subsequent executions of the
activity B. The execution sequence [A,B,C,B,A] is correct for negation alternate
precedence. The formula negation alternate succession requires both negation al-
ternate response and negation alternate precedence to be satisfied. An example
of a correct execution sequence for the negation alternate succession formula
is [B,C,B,A,C,A]. Graphical representations of these three formulas are similar
to the representations of alternate response, alternate precedence and alternate
succession with the negation symbol in the middle of the line.
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The last three formulas are negations of formulas chain response, chain prece-
dence and chain succession. According to the formula negation chain response,
activity B can not be executed directly after the activity A. Formula negation
chain precedence specifies that activity B can never be directly preceded by
activity A. These two formulas have the same effect because they forbid the
activities A and B to be executed directly next to each other. Since the formula
negation chain succession requires both negation chain response and negation
chain precedence to be executed, these three formulas all have the same effect and
we will use only negation chain succession. The graphical representation of this
formula is a modified version of the representation of the chain succession for-
mula with the negation symbol in the middle of the line. The execution sequence
[B,A,C,B,A] is correct according to the negation chain succession formula, while
the sequence [B,A,B,A] would not be correct.

Figures 4 and 5 only show binary relationships. However, these can easily
be extended to deal with more activities. Consider for example the response
relationship, i.e., �(A −→ �B). We will allow multiple arcs to start from the
same dot, e.g., an arc to B, C, and D. The meaning is �(A −→ �(B ∨C ∨D)),
i.e., every occurrence of A is eventually followed by an occurrence of B, C, or D.
Moreover, as indicated before, the set of formulas is not fixed and we also aim
at supporting data. In fact, we have defined more formulas than the ones shown
in figures 3, 4, and 5. For example, the mutual substitution relation formula
specifies that at least one of two activities should occur (i.e., �(A ∨B)).

After this introduction to DecSerFlow we specify a concrete example. The
interested reader is referred to a technical report with more information about
DecSerFlow [5]. Moreover, for more information on ConDec, the sister language
of DecSerFlow aiming a teamwork and workflow flexibility, we refer to [17].

3 Modelling Services With DecSerFlow: The Acme
Travel Example

In this section we use the “Acme Travel Company case” to illustrate DecSerFlow.
The description of the business process of the Acme Travel service is adopted
from [19] is as follows:

1. Acme Travel receives an itinerary from Karla, the customer.
2. After checking the itinerary for errors, the process determines which

reservations to make, sending simultaneous requests to the appropri-
ate airline and hotel agencies to make the appropriate reservations 2.

3. If any of the reservation activities fails, the itinerary is cancelled by
performing the “compensate” activity and Karla is notified of the
problem.

4. Acme Travel waits for confirmation of the two reservation requests.
2 The original Acme Travel service business process consists of three possible book-

ings: airline, hotel and vehicle. However, for the simplicity, we consider only the
possibilities to book airline and hotel.
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5. Upon receipt of confirmation, Acme Travel notifies Karla of the suc-
cessful completion of the process and sends her the reservation con-
firmation numbers and the final itinerary details.

6. Once Karla is notified of either the success or failure of her requested
itinerary, she may submit another travel request.

Fig. 6. DecSerFlow - Acme Travel Company

Figure 6 shows the DecSerFlow model of the Acme business process. We first
define the possible activities within the service to model the business process of
Acme. In this case, we define eleven activities:

receive - A request for booking is received from the customer;
airline - A request for booking is sent to an airline reservation service;
hotel - A request for booking is sent to a hotel reservation service;
booked hotel - A hotel reservation service sends a positive response for a re-

quested booking, i.e., the hotel can be booked;
failed hotel - A hotel reservation service sends a negative response for a re-

quested booking, i.e., the hotel cannot be booked;
booked airline - An airline reservation service sends a positive response for a

requested booking, i.e., the airline can be booked;
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failed airline - An airline reservation service sends a negative response for a
requested booking, i.e., the airline cannot be booked;

compensation - The whole booking has failed;
notify failure - Notify the customer that the booking has failed;
credit card - Register and charge a successful booking; and
notify booked - Notify the customer that the booking was successful.

In principle, a DecSerFlow model consisting only of a set of activities is a correct
model. If a DecSerFlow model consisting only of eleven activities would be im-
plemented in the Acme service, it would be possible that the service executes any
of the eleven activities, an arbitrary number of times, in an arbitrary order. It
would also be possible not to execute any activity. To prevent such an “chaotic”
behavior of the service, we can add constraints to the service process model. A
constraint in service represents a rule that the service execution has to fulfill.
The Acme DecSerFlow model shown in Figure 6 uses two of the three types of
constraint formulas mentioned before: “existence” and “relation” constraints.

In Section 2, we presented several standard “existence” constraints. These
constraints define the possible number of executions of an activity in a service.
We refer to the possible number of executions of an activity in a service as the
cardinality of that activity. Without any constraints in the service model, an
activity can be executed an arbitrary number of times - the activity has the
cardinality of (0..*). The “existence” constraints are graphically represented as
cardinalities above activities (cf. Figure 6). Activity receive has the constraint
exactly 1 (cf. Section 2), and specifies that this activity will be executed exactly
once in one instance (per one customer request) of the Acme service. Because the
booking request can succeed or fail, but not both, activities compensation, notify
failure, credit card, and notify booking have the constraint “absence 2”, which
specifies that each of these activities will be executed at most once. We do not
define any “existence” constraints on activities hotel and airline and thus allow
these two activities to execute an arbitrary number of times in the Acme service.
If the customer does not wish to book a hotel or an airline, the Acme service will
not execute the corresponding activity. In case that a booking of a hotel or an
airline is requested, the booking request might be sent multiple times until the
booking succeeds or fails. A booking of a hotel or an airline will be followed with
a positive activity (i.e., booked hotel or booked airline) or a negative activity (i.e.,
failed hotel or failed airline). Therefore, activities booked hotel, booked airline,
failed hotel and failed airline also can be executed an arbitrary number of times
in the service.

The Acme DecSerFlow model as defined so far - only consisting of a set of
activities and “existence” constraints - is a correct model. If this model would
be implemented in the Acme service, the service could execute its activities in
an arbitrary order, complying with the execution cardinality of each activity, as
defined with “existence” constraints.

To define relations between activities in the service (and implicitly their pos-
sible order) we use the so-called “relation” constraints as defined in Section 2.
Unlike “existence” constraints that were defined for single activities (unary),
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“relation” constraints define relations between two or more activities (e.g., a
binary relationship).

After receiving the booking request from the customer, the request is checked.
The customer can request to book a hotel and an airline for a destination, or
only one of these. The constraint response from the activity receive is a so-called
branched constraint. It has two branches: one to the activity hotel and the other
to the activity airline. This branched response specifies that after the activity
receive is executed, eventually there will be at least one execution of one of the
activities hotel and airline. It is still possible that both of the activities hotel
and airline execute an arbitrary number of times, as long as at least one of them
executes after the activity receive. However, since it would not be desirable to
execute any of the activities hotel and airline before the activity receive, we
add two precedence constraints: (1) the precedence constraint between activities
receive and hotel specifies that the activity hotel cannot execute before the activ-
ity receive executes, and (2) the precedence constraint between activities receive
and airline specifies that the activity airline cannot execute before the activity
receive executes. The branched constraint response and the two precedence con-
straints between activities receive, hotel and airline specify that activities hotel
and airline will not execute until the activity receive executes, and that after
the activity receive executes, at least one of the activities hotel an airline will
execute. Activities hotel and airline can an arbitrary number of times and in an
arbitrary order.

Activities booked hotel and failed hotel handle the possible responses of a hotel
reservation service on the request of Acme service to book a hotel (which is sent
when the activity hotel is executed). With the branched response constraint
from the activity hotel we specify that after every execution of this activity, at
least one of the activities booked hotel and failed hotel will execute. Note that,
due to errors, this constraint allows for some requests for the hotel reservation to
remain without response. Logically, with the two precedence constraints between
the activity hotel and activities booked hotel and failed hotel we prevent that
either of the activities booked hotel and failed hotel execute before the activity
hotel executes. This is necessary, since the response from the hotel reservation
service can not arrive before a reservation request is sent. The same constraints
are added between activities airline, booked airline and failed airline, because
the communication of the Acme service with the airline service is the same like
the communication with the hotel reservation service.

Only after receiving at least one of the two negative responses (activities
failed hotel and failed airline), the Acme service can cancel the whole booking
by executing the activity compensation. This is specified by the branched prece-
dence constraint between the activity compensation and activities failed hotel
and failed booking. After the compensation activity is executed, activities hotel
and airline can not execute again in the service, because the whole booking is
cancelled. The two not-response constraints between the activity compensation
and activities hotel and airline, make sure that after the activity compensation
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executes, none of the activities hotel and airline can execute. The precedence
constraint between activities notify failure and compensation specifies that the
activity notify failure cannot execute before the activity compensate. Note that
after the activity compensation executes, there might still be some responses
arriving from the reservation services. If an satisfactory booking response ar-
rives after the activity compensate is executed, the Acme service can still decide
to accept the booking. This is why the activity notify failure does not always
necessarily execute after the activity compensate.

After at least one positive reservation response arrives, the Acme service
can decide to accept and finalize the whole booking. This is specified with the
branched precedence constraint between the activity credit card and activities
booked hotel and booked airline. After the booking is charged, the new requests
will not be sent to the hotel and airline reservation services, i.e., the activities ho-
tel and airline cannot execute after the activity credit card. This is achieved with
the two not-response constraints between the activity credit card and activities
hotel and airline. Only and always after the booking is charged, the customer
will be notified about the successful booking. The succession constraint between
activities credit card and notify booked specifies that the activity notify booked
cannot execute before the activity credit card and that it will have to execute
after the activity credit card.

To conclude the booking of a customer, the Acme service will either accept or
decline the requested booking. This means that in the service either one of the
taks notify failure and credit card will execute. Note that even after the activity
compensation, Acme can still receive an positive reservation response and accept
the booking. The not co-existence constraint between activities credit card and
notify failure specifies that only one of these two activities can execute in the
service because it is not possible to both charge the booking and notify the
customer about failure. However, eventually one of the activities credit card or
notify failure will execute, as specified with the mutual substitution constraint
between these two activities.

Note that the Acme service model in Figure 6 allows for many alternative
executions of the service. For example, it is possible to handle the both late and
lost reposes of reservation services. It is also possible to send requests to different
reservation services regardless the order of the reception of responses. Even after
the cancellation has started by executing the activity consumption, it is still
possible to receive a positive response and successfully finalize the requested
booking.

It is important to note that Figure 6 uses a declarative style of modelling. The
DecSerFlow model allows for much more variability than a typical procedural
process model (e.g., a BPEL specification). However, because the language is
extendible it is possible to add constructs one can find in traditional languages,
e.g., it is relatively easy to add the “place concept” from Petri nets or the
“sequence concept” from BPEL. As a result, DecSerFlow can be applied using
different styles ranging from highly procedural to highly declarative.
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4 Enacting DecSerFlow Models of Web Services

Every DecSerFlow model consists of a set of activities and constraints. Con-
straints define rules that the service has to fulfill. At the end of the service
execution all constraints should be fulfilled. The semantics of a constraint is
defined with the LTL formula that is assigned to it. We use these LTL formu-
las to execute a DecSerFlow model. Every LTL formula can be translated into
an Buchi automaton [10]. There are several algorithms for translating LTL ex-
pressions into Buchi automata. Different algorithms have been studied in the
field of model checking [15]. The SPIN tool [14] is one of the most widely used
tools for model checking. Using SPIN, one can develop a model of a system in
Promela (PROcess MEta LAnguage) [14]. To check the model with respect to
some requirements, we can write these requirements as LTL expressions. SPIN
can automatically verify the correctness of the specified LTL requirements in the
developed Promela model. For verification purposes, SPIN uses an algorithm for
translating LTL expressions to Buchi automata [10].

A DecSerFlow model typically has multiple constraints. All of the constraints
need to be taken into account at any moment of the service execution. For this
purpose we can take one of the two strategies: (1) we can construct an automaton
for each of the LTL expressions and then execute these automatons in parallel, or
(2) construct and execute a single automaton for the whole model (i.e., construct
an automaton for the conjunction of all LTL expressions).

When executing a service by executing referring Buchi automaton(s), we have
to deal with two problems. First, the standard algorithms (e.g., the one presented
in [10]) construct a non-deterministic finite automaton. A nondeterministic finite
automaton is a finite state machine where for each pair (state, input symbol)
there may be several possible next states. This means that for each pair (state
of a DecSerFlow model, executed activity) there may be several possible next
states of the DecSerFlow model. This is a problem because, given a execution
history, it is not always possible to pinpoint the current state in the automaton.
Second, algorithms such as the one presented in [10] construct a finite automaton
for infinite words. Because we assume that a service will eventually finish with
the execution, we have to use an automaton that can read finite words.

4.1 Executing a Non-deterministic Automaton

In this section we describe a simple algorithm that can be used to successfully
execute a non-deterministic automaton in the context of the execution of a Dec-
SerFlow model. We use a simple example of a model with three activities, as
shown in Figure 7(a). This model consists of activities curse, pray, and bless
and a constraint response between activities curse and pray. All three activities
can be executed an arbitrary number of times because there are no “existence”
constraints to specify cardinalities of activities. Constraint response between ac-
tivities curse and pray specifies that, every time a person curses, (s)he should
eventually pray after this.
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(a)  model (b) automaton

p2p1 p2

!curse

pray pray

true true

curse pray

bless

response

Fig. 7. A simple DecSerFlow model

For this model we construct the automaton [10], as shown in Figure 7(b). This
automaton consists of two states: p1 (accepting and initial state) and p2. In the
beginning we assume the automaton to be in the initial state p1. There are three
transitions possible from this state: (1) transition with the label pray is applied
when the activity pray is executed, (2) transition with the label !curse is applied
when activities pray or bless are executed, and (3) transition true leads to the
state p2 and is applied when any of the activities is executed. In the state p2
two transitions are possible: (1) transition with the label true is applied when
any of the three activities are executed and (2) transition pray leads to the state
p1 and is applied when the activity pray executes.

In a simplified case of a deterministic automaton, we would execute the model
by checking at which state the automaton currently is, i.e., we would constantly
store the information about the current state of the automaton. If the automaton
is in an accepting state, the constraint(s) are fulfilled and vice versa. When
executing an activity, the automaton would simply move to the next state by a
transition that can be applied for that activity. When executing an activity in
the case of a non-deterministic automaton, there can be multiple possible next
states to move to. The automaton shown in Figure 7(b) is a non-deterministic
automaton. Take, for example, the situation when the automaton is in the state
p1 and the activity pray executes. In this case (at the state p1 ), we could apply
any of the transitions pray (the automaton remains in the state p1 ), !curse (the
automaton remains in the state p1 ), or true (the automaton changes the state
to p2 ) - this is a non-deterministic situation. Because we use the current state of
the automaton to determine if the constraint(s) are fulfilled or not and the next
possible activities, the information about the current state of the automaton is
important.

A simple solution for the execution of a non-deterministic automaton is to
consider a set of possible current states3 instead of a single current state. In
the situation described above (when the activity pray is executed in the state
p1 ) we would consider the automaton to transfer to the set of possible states
{p1,p2}. We take the optimistic approach and consider an automaton to be in
an accepting state if any of the states in the set of current possible states is an
accepting state of the automaton. Figure 8 shows the algorithm for the execu-
tion of a non-deterministic automaton. We use two data types: (1) state consists

3 This set can have at most all states of the automaton.
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of an array of incoming transitions and an array of outgoing transitions and
(2) transition has a label (e.g., !curse), source state and target state. Function
nextState generates an array of states (a set of possible next states) given the
array (set) of current possible states and the activity name. This function loops
through the array of current states. For each current state it loops through all
the outgoing transitions. For each of the outgoing transitions it checks is the
label of the transition complies with the activity name. If (1) the activity is
accepted by the transition label and (2) the target state of the transition is not
in the array of the next states, the target state of the transition is added to the
array of the next states.

1  State[] nextState(State[] current, String activity){
2     State[] next;
3      for i = 0 to current.length - 1 do{         // Look at all current possible states.
4          State curr = current[i];                   // For every current state
5          for j = 0 to curr.out.length - 1 {       // look at all out-transitions.
6              Transition out = curr.out[j];         // For every out-transition,
7              if (out.label parses activity)          // if the out-transition suits the activity,
8               then if ( out.target not in  next )    // if the target state is not already in the set of new possible states
9                            then next = next +  out.target; // add the target state to the set of new possible states.
10          }
11      }
12     return next;
13  }

Transition{
    String label;
    State source;
    State target; 
}

State {
   Transition[] in;
   Transition[] out; 
}

Fig. 8. Execution of a non-deterministic automaton

Table 1 shows the execution of the automaton shown in Figure 7 (b). At the
beginning, the set of possible states contains all initial states, which is in this
case {p1}. For example, if activity bless is executed in the initial state, then
the automaton could apply transition !curse (and stay in the state p1 ) or it
could apply transition true (and move to the state p2 ). Thus, if the activity
bless is executed when the automaton is in a state in {p1} (i.e., the initial set
of possible states), the automaton can move to any state in the the set of new
possible states {p1,p2}. If the automaton is, for example, in the set of possible
states {p1,p2} and activity bless is executed, the automaton transfers to the
set of possible states {p1,p2} that is formed as intersection of sets of possible
states for each of the starting states p1 ({p1,p2}) and p2 ({p2}). Since p1 is
the accepting state of the automaton in Figure 7 (b), we consider the execution
of the DecSerFlow model from Figure 7 (a) to be correct (i.e., all constraints
are fulfilled) if the set of current possible states contains the state p1. Thus, we
consider the model to be executed correctly, if the set of current possible states
of the automaton is either {p1} or {p1,p2}.
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Table 1. Execution of the non-deterministic automaton in Figure 7

automaton automaton

possible states possible states

nr. from activity to

1 {p1} bless {p1,p2}
2 {p1} curse {p2}
3 {p1} pray {p1,p2}
4 {p2} bless {p2}
5 {p2} curse {p2}
6 {p2} pray {p1}
7 {p1,p2} bless {p1,p2}
8 {p1,p2} curse {p2}
9 {p1,p2} pray {p1,p2}

4.2 Executing Finite Traces

The algorithm presented in [10] is originally dedicated for model checking of con-
current systems. Because these systems are not designed to halt during normal
execution, the resulting automaton is an automaton over infinite words (traces,
runs). An infinite trace is accepted by the automaton [10] iff it visits an accept-
ing state infinitely often. This type of acceptance cannot be applied for the case
of service execution, because we require that such an execution will eventually
complete.

There are two strategies that can enable checking of the acceptance of an finite
trace in an automaton generated by [10]: (1) we can introduce special invisible
“end” activity and constraint in a DecSerFlow model before the automaton is
created or (2) we can adopt a modified version of this algorithm, which reads
finite words (traces, runs) [11].

In the first strategy we use the original algorithm for the generation of au-
tomata, but we slightly change the DecSerFlow model before creating the au-
tomaton. To be able to check if a finite trace is accepting, we add one “invisible”
activity and one “invisible” constraint to every DecSerFlow model and then
construct the automaton. With this we specify that each execution of the model
will eventually end. We introduce an “invisible” activity e, which represents
the ending activity in the model. We use this activity to specify that the ser-
vice will end - the termination constraint. This constraint has the LTL formula
�e ∧ (�(e −→ ©e)), and it specifies that: (1) the service will eventually end -
the “invisible” activity e will eventually be executed, and (2) after this activity,
no other activity will be executed but the activity e itself, infinitely often. Take,
for example, a simple DecSerFlow model with one constraint existence(receive),
(i.e., �receive), which specifies that the activity receive will execute at least
once. To execute this model we first add the termination constraint and con-
sider a conjunction of these two constraints: �receive ∧ �e ∧ (�(e −→ ©e)).
This conjunction ensures that the trace will have the prefix required by the
original DecSerFlow model and an infinite suffix containing only the “ending”
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activity e. The whole conjunction is then translated into an automaton using the
original algorithm [10]. We check the acceptance of the finite trace (prefix) of
the original DecSerFlow model by checking if the automaton is in a so-called end
state: (1) if the automaton is in an accepting state and (2) if from this moment
an accepting state can be visited infinitely often only by executing the “ending”
activity e. To prevent deadlocks, the automaton is purged (before the execution)
from the states from which none of the end states is reachable.

As the second strategy, we can use a modification of the original algorithm.
The original algorithm for translating LTL formulas to Buchi automatons [10] is
modified to be used for verification of finite executions of software programs [11].
The algorithm for translating LTL formulas into automatons over finite words
introduces a change into the acceptance criteria of the original algorithm [11].
However, this algorithm assumes that any program would have to start exe-
cuting, i.e., it does not consider empty traces. Therefore, an initial state is not
accepting in some cases where it should be accenting for an empty trace. How-
ever, we assume that an “empty” execution of a DecSerFlow model (that does
not violate any constraint) is in principle an accepting execution. Therefore, we
introduce an “invisible” initial activity init. Using LTL we require this to be the
first activity. Moreover, to any execution sequence we add a prefix containing
one init activity, i.e., before the service can start, activity init is automatically
executed. After this, it is possible to determine if the state where no activities
have been executed (empty trace) is in an accepting state or not.

After completing the DecSerFlow editor, we are currently experimenting with
different ways in which we can build useful automatons for enactment. Since we
are using LTL not just for analysis but as the care technology for the engine, we
also have to address issues such as performance and reliability.

5 Conclusion

This paper advocated a more declarative style of modeling in the context of web
services. Therefore, we proposed a new, more declarative language: DecSerFlow.
Although DecSerFlow is graphical, it is grounded in temporal logic. It can be
used for the enactment of processes, but it is also suited for the specification of
a single service or a complete choreography.

Besides being declarative, the language is also extendible, i.e., it is possible to
add new constructs without changing the core of the language. We have devel-
oped a graphical editor to support DecSerFlow. This editor allows users to spec-
ify service flows. Moreover, the user can add user-defined constraint templates
by simply selecting a graphical representation and providing parameterized se-
mantics in terms of LTL. Currently, we are working on an engine that is able to
support enactment and monitoring. If a constraint is used for enactment, it is
impossible to permanently violate a constraint because the system will not allow
activities that violate this constraint. If a constraint is used for monitoring, the
system will allow the violation of this constraint. However, the engine will issue
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a warning and log the violation. The automatic construction of an automaton
suitable for enactment and on-the-fly monitoring is far from trivial as shown in
Section 4.

There is also a very interesting link between DecSerFlow and process mining
[6]. In [3] we showed that it is possible to translate abstract BPEL into Petri nets
and SOAP messages exchanged between services into event logs represented us-
ing our MXML format (i.e., the format used by ProM www.processmining.org).
As a result, we could compare the modeled behavior (in terms of a Petri net)
and the observed behavior (in some event log) using the conformance checker
[18]. A similar approach can be followed by using the LTL checker in ProM [1].
Using the LTL checker it is possible to check LTL formulas over event logs (e.g.,
monitored SOAP messages). In principle it is possible to use the LTL formulas
generated based on the DecSerFlow specification and load them into the LTL
checker in ProM. This allows the users of ProM to specify constraints graphically
rather than using the textual language that is used now.
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Abstract. The cornerstone for the success of Service-Oriented Com-
puting lies in its promise to allow fast and easy composition of services
to create added-value applications. Compositions need to be described
in terms of their desired functional properties, but the non-functional
properties are of paramount importance as well. Inspired by the Web
service challenge we propose a new model for describing the Quality
of Service (QoS) of a composition which considers the information flow
and describes basic service qualities at the granularity level of service
part names, that is, operations comprised in service invocation/response
messages. In this initial investigation, we overview a number of formal
methods techniques that allow to reason with QoS composition based on
the proposed model, and propose an algorithm for determining the QoS
of a composition given the QoS associated with the individual services.
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1 Introduction

Service-Oriented Computing (SOC) is an emerging computing paradigm for
building distributed information systems in which the concepts of distribution,
openness, asynchronous messaging and loose coupling take a leading role. In
this context, applications are built out of individual services that expose func-
tionalities by publishing their interfaces into appropriate repositories, abstract-
ing entirely from the underlying implementation. Published interfaces may be
searched by other services or users and subsequently be invoked. The interest
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in Service-Oriented Computing is a consequence of the shift from a vision of a
Web based on the presentation of information to a vision of the Web as com-
putational infrastructure, where systems and services can interact in order to
fulfill user’s requests. Web services (WS), the best-known example, are the real-
ization of service-oriented systems based on open standards and infrastructures,
extending the XML syntax [4].

Web service technology is being increasingly adopted. Particularly successful
are the protocols for the transport of messages (SOAP)1 and for the description
of basic service operations (the Web service Description Language WSDL).2 The
latter protocol describes messages to be exchanged with a remote Web service.
Exchanged messages are a set of part names, that is, operation name and input
and output types. The description of functional Web service properties is thus
covered by the WSDL standard. But functional properties are not enough. In
fact, non-functional properties of any information systems are as important as
the functional ones. Having to wait too long for the output of a system can
make it as useless as not having the system at all. This is even more true when
considering loosely coupled distributed systems such as those designed following
the SOC paradigm.

Quality of Service is the set of properties of a service which have to do with
‘how’ a service is delivered rather than ‘what’ is delivered. There is no shared
agreement on what QoS is and what is not, but generally properties such as re-
sponse time, latency, availability, and costs are regarded as QoS. Classifications
of QoS features in the context of Web services have been proposed by several
authors [13,10,17]. For instance, Ran [15] proposed a QoS model and a UDDI
extension for associating QoS to a specific Web service. An approach for defining
QoS requirements is QML [9]: a language for QoS description using XML. QoS
aspects are qualified by characteristics as direction and value type. A set of mea-
sures for reliability and performance are proposed. Atzeni and Lioy [5] overview
security system assessment methods and metrics. A number of approaches to
QoS description of services rely on extensions of WSDL, e.g., [10,18]. The main
idea is simple: provide syntax to define terms which refer to non-functional prop-
erties of operations. Given such description, one can then build a framework for
the dynamic selection of Web services based on QoS requirements. In [20,1], the
description of elementary service qualities as a quality vector each component of
which is a quality parameter for the service is proposed. In [11] Lin, Xie, Guo
and Wang use fuzzy logic techniques to handle QoS requirements. The descrip-
tion of QoS of services can also be the object of the negotiation of services in
long running-transactions or repeated interactions. QoS become then the ob-
ject of Service-Level Agreement, see e.g. [12]. We investigated the use of formal
methods to describe service level agreements in [2].

In this paper we focus on the composition of services especially considering
Quality of Service aspects. A service composition is a set of services together with
rules specifying how the various service work together to perform a common

1 http://www.w3.org/TR/soap
2 http://www.w3.org/TR/wsdl
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task. There are various issues related to QoS composition. One could have a
design of a composition with information regarding QoS of individual elements
and wish to know the resulting QoS of the composition. One could have an
abstract composition and might need to decide which services to select when
implementing the composition in order to fulfill some QoS desiderata, e.g., [14].
In [20,19], the authors propose a QoS model and a middleware approach for
dynamic QoS-driven service composition. They investigate a global planning
approach to determine optimal service execution plans for composite service
based on QoS criteria. Another interesting question is that of determining the
QoS of a composition given basic QoS information of single service operations.
In [6], a method is proposed to assess the QoS of a workflow, given the QoS
of the individual tasks of the workflow. The methodology consists of a set of
rewrite rules for the workflow aiming at arriving at the description of the QoS
of the whole workflow.

In this paper, we consider the problem of QoS composition from a different per-
spective. Instead of resorting to a state based representation giving emphasis to
tasks and the flow of control, as e.g. in [6], we take a stateless representation of
composition, with individual services as elementary components, and WSDL mes-
sage part names to represent the data flow. This choice is motivated by the Web
service challenge (see http://www.comp.hkbu.edu.hk/∼ctr/wschallenge/and
http://insel.flp.cs.tu-berlin.de/wsc06/) that consists in finding a compo-
sition of services which satisfies a given query. The granularity level of the query is
at the level of message part names and the composition is modeled as a multigraph
of services with part names as edges. In the present work, we generalize the simple
model of the Web service challenge to include Quality of Service attributes, but
also to allow defining different patterns in the composition by introducing input
service expressions, built using logical operators. The resulting model turns out to
be a compact form in which services have a central role and one can appreciate the
message exchanged among services.

The rest of the paper is organized as follows. In Section 2, we introduce a
simple running example of an application to know the temperature at a given
location based on several services. In Section 3, we introduce the QoS model.
Formal methods to reason about the QoS of the composition are discussed
in Section 4, where we also give an algorithm for establishing the QoS of a
composition. Concluding remarks and open research issues are summarized in
Section 5.

2 A Service Composition Example

Suppose one wants to build an application for knowing the temperature at a
given location. The application should be built using existing services. The non-
functional requirements of the application consider the response time and cost
of each run of the system. A design of the application is having a program in-
voking three services: Google to find out the longitude and latitude of the desired
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location,3 a weather service to find the temperature,4 and a temperature con-
verter for having the temperature in either Fahrenheit or Celsius.5 In addition,
some processing will be done internally, e.g., extracting the coordinate infor-
mation from Google result snippets. The example services should be considered
only as motivation for the present work, for the ease of presentation we take the
liberty of simplifying part names and messages of the services. We also assume
that part names of services match, e.g., the output name of Google matches
the input part name of Weather.org, even though this is not true in practice.
Matching can be achieved resorting to semantic web, or more generally, ontology
techniques (see for instance [1]) or by syntactic matching (see for instance [8]).

The input of the application is a text string identifying the location and a
date. The output is a temperature in Celsius. Next, we consider how this simple
example is formally modeled taking into account both the functional and the
non-functional properties of the services, of the composition and the query.

3 Service Model

Web services standards originated from the industrial need for loosely coupled
interprocess communication, there is very little formality beyond the mere XML
schema definitions. Here we provide a formalization which allows us to represent
both the functional and non-functional properties of services, of service compo-
sitions and of queries. Let us begin by the domain of our information system.

Definition 1 (functional service model). A functional service model is a
tuple 〈S, P, M, in, out〉 defined in the following way:

– S is a set of services,
– P is a set of part names,
– M ∈ P(P ) is a set of messages consisting of part names
– in is a function S → P(P ), the set of input part names of a service,
– out is a function S → P(P ), the set of output part names of a service.

By this definition, a service is thus a collection of input and output part names
grouped into messages. In the present treatment, we do not consider part types
and we use the message information to classify part names into input and output
for the various services.

Example 1. Considering the weather example of Section 2, S consists of the ser-
vices {Google, Weather.org, IT empConverter}, P consists of many part names,
such as the following ones:

Google:
<xsd:element name="searchQuery" type="xsd:string"/>
<xsd:element name="searchTime" type="xsd:double"/>

3 http://www.Google.com/apis/
4 http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl
5 http://developerdays.com/cgi-bin/tempconverter.exe/soap/ITempConverter
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Fig. 1. The weather example modeled

Weather.org:
<xsd:element name="temp" type="xsd:boolean"/>
<part name="dwmlOut" type="xsd:string" />

ITempConverter:
<part name="temp" type="xs:int"/>

an example of a message in M is given by the message of Google consisting of
an input and an output message

<operation name="doGoogleSearch">
<input message="typens:doGoogleSearch"/>
<output message="typens:doGoogleSearchResponse"/>

</operation>
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Finally, an example of an output function for the Google Web service is, omitting
the XML syntactic sugar, out(Google)={searchQuery, searchTime}.

Let us now consider the non-functional properties by introducing our QoS model.

Definition 2 (QoS service model). A Quality of Service model is an or-
dered set of groupoids 〈(Gi, �̌i�̂i)i=1,...,n〉, where each groupoid i consist of a
set Gi with two operations �̂i and �̌i. A QoS element with respect to a QoS
model is a vector 〈q1 . . . qn〉 were qi ∈ Gi, for each i = 1, . . . , n. We denote
by �̌(qa, qb) and �̂(qa, qb) the componentwise operations (qa1 �̌1 qb1 . . . qan �̌n qbn)
and (qa1 �̂1 qb1 . . . qan �̂n qbn) among two services a and b with QoS elements qa =
〈qa1 . . . qan〉 and qb = 〈qb1 . . . qbn〉.

Notice that each groupoid models a QoS requirement and the groupoid oper-
ations, interpreting the operators in Definition 4, will be used to compute the
QoS of a given composition.

Example 2. The weather example presented in Section 2 considers two QoS re-
quirements. One tied to execution time and one to costs. Therefore, the QoS
service model consists of two groupoids, e.g., the real numbers with the addition
and the average for considering time and the integers with addition and max for
the cost. Then we have that any part name associated with Google has a qual-
ity cost which is zero, while an execution time which is in the range of the few
seconds. The latter can be modeled in various ways. One can take the average of
the execution times experienced in the past, one can consider the value returned
by Google itself as output in searchTime for a given request. One may even look
at a finer granularity of the execution time as we do in [16]. The choice is not
relevant for the present treatment.

Having defined what a service is from a functional and a from a non-functional
point of view, let us consider collections of services populating the same network
which can be invoked as parts of a same composition process. Such a composition
can be the result of a design process or of a search to satisfy a service query. Let
us define the latter concept formally.

Definition 3 (service query). A service query over a set of services S is an
expression of the form i∗, o+ where i ∈ P are the optional input query part
names, o ∈ P are the query output part names, and ∗,+ are the usual Kleene
string operators.

Example 3. The service query SearchText Date, Temp means that the requester
provides a text and a date, and desires to get a temperature.

Definition 4 (input service expressions). An input service expression as-
sociated to a service S1 is a string built over the input part names of S1 (called
atoms) using the binary, associative, and commutative operators ∧̄ and ∨̄ and
the auxiliary symbols (, ).
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Example 4. An input service expression associated to a “transform address into
zip code” service which has in ={address, city, zip code}, out ={zip code,time}
is (address∧̄city)∨̄zip code whose intended semantics is that either a zip code or
an address and a city are provided.

We are now in the position of defining a service composition.

Definition 5 (service composition). A service composition over a service
collection C = 〈S, P, M, in, out〉 and QoS model 〈(Gi, �̌i�̂i)i=1,...,n〉, is a labeled
multigraph 〈V, E, ExpI, QV 〉 with the following properties:

1. each element v ∈ V , is either in S or ∃ v′ ∈ V ∩ S such that the services v
and v′ differ only for their names.

2. E ⊆ V × V × P , and e = 〈v1, v2, p〉 ∈ E if out(v1) = in(v2) = p ∈ P

3. ExpI is a function associating to each element v ∈ V an input service ex-
pression associated to v.

4. QV is a function associating to each element v ∈ V a QoS element.

Condition 1. in the above definition says that multiple occurrences of a service
in the multigraph are identified using different node names. Condition 2. says
that there is an edge in the graph connecting two services only if a part name is
output and input of the two services, respectively. Condition 3. and 4. specify the
labels assigned to each node v: an input expression (ExpI(v)) and an element
of QoS (QV (v)) that is, the quality of the individual service.

Example 5. Following the above definition, the composition presented in Sec-
tion 2 is then modeled as shown in Figure 1. Where the query is SearchText
Date, Temp. Consider the service Weather.org: its associated input expression can
be SearchQuery∧̄Date ”meaning” that both a SearchQuery and a Date must be
provided while (23ms,2cent) stands for its QoS values of time and cost.

4 Model Inspection, Checking, Construction

Having a formal model of services and their compositions from a functional and
non-functional point of view enables the use of a number of formal methods
techniques to reason about services. The main methods to be used range from
the simple model inspection to determine the QoS of a given composition, to
the model checking of a composition, up to the more complex task of model
construction. Figure 2 summarizes the most interesting methods and the tasks
they address. In the present treatment we take a closer look at the first one, that
is, the model inspection for determining the QoS of a given composition.

In [3], we provided algorithms for dealing with the model construction problem
where we do not consider input expressions for QoS. The same problem is solved
using a partial order planner in [7].
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method input task output

model inspection a composition
and a query

know the QoS for
the query

an element of the
QoS model

model checking a composition, a
query, and a QoS
property

find if the query
satisfies the QoS

yes/no

(directed) model
checking

a composition, a
query, and a QoS
property

find, if it exists,
the proof which
is optimal w.r.t.
QoS

optimal proof

model construction a query, a func-
tional and QoS
service models

create a compo-
sition

the composition,
if it exists, satis-
fying the query

Fig. 2. Methods to reason about QoS service composition

4.1 Modeling at the Level of Part Names

Given a composition of services (that is, a multigraph like the one in Figure 1
together with input, and QoS values) and a query stating which part names are
available and which are the desired ones, we want to arrive at the determination
of the QoS of the composition for the given query. But first we need to lift the
QV function, that associates qualities of services with services (nodes v in the
labeled multigraph) in the composition, to input service expressions. We do so
using the following recursive definition.

Definition 6. (input expression QoS) Given a service composition 〈V, E, ExpI,
QV 〉, let v ∈ V and e, e1, e2 ∈ ExpI(v), then the input expression QoS function
Q over an input service expression e is defined in the following way:

– if e is an atom, Q(e) = QV (w), where 〈w, v, e〉 is in E;
– Q(e1∧̄e2) = �̂(Q(e1), Q(e2)) where e1, e2 are input expressions and � are the

first operators of the respective QoS groupoids;
– Q(e1∨̄e2) = �̌(Q(e1), Q(e2)) where e1, e2 are input expressions and �̂ are the

second operators of the respective QoS groupoids.

We remark that the �̂ and �̌ operators are chosen when designing the
composition.

Example 6. If we are interested in QoS time, then it could be modeled by a
groupoid whose universe is the set of real numbers and whose operations �̂ and �̌
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could be the addition and the max function. The operations’s choice depends
on the considered web service composition and on the goal of the QoS model as
defined by the composition designer or user. E.g., addition and max allow both
sequential and parallel arcs to be modeled in the service composition graph. On
the other hand, when parallel arcs do not occur in the service composition graph
and we are interested in the average QoS of the composition, then the function
max could be replaced by the function average.

Notice that in our model, the information on how services relate/interact are con-
tained both in the arcs and in the input service expressions associated to nodes
of the labeled multigraphs. This renders the modeling of composition provided a
more compact and flexible form for representing Web service compositions than,
e.g., workflows. For instance, the sequential composition at the task level of Fig. 3
(assume the operations between S1 and S2 consist of the three part names pa, pb

and pc and the considered QoS is time) can be represented by the labeled compo-
sition multigraph of Fig. 4. in which ExpI(S2) = pa∧̄pb∧̄pc and the operator ∧̄

Fig. 3. Sequential flow

is interpreted as real numbers addition. Taking however ExpI(S2) = pa∨̄pb∨̄pc,
where ∨̄ is interpreted as the maximum between real numbers, the composition
multigraph of Fig. 4 . would then correspond to the parallel composition at the
task level of Fig. 5.

Therefore, by changing the input service expressions associated to S2 (while
the interpretations of ∧̄ and ∨̄ remain the same), the composition multigraph of
Fig. 4 would correspond to 23 different workflows.

Of course, there are other differences among the modeling we propose at
the part name level and workflows beside the compact representation of the
former with respect to the latter. The most notable differences include: stateless
vs. statefull representation and data centered representation vs. control flow
representation, respectively.

4.2 Model Inspection

In the following we assume there are no loops and that the compositions are cor-
rectly designed with respect to the queries. Relaxing the former assumption
requires appropriate algorithms in the spirit of [6], while relaxing the latter as-
sumption brings us to the terrain of model checking, rather than model inspection.
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Fig. 4. Composition at the part name level

Algorithm 1. Model Inspection(composition 〈V, E, ExpI, QV 〉, query i, o)

V = V {query QuI , QuO nodes created using i, o}
active parts = i
QoS associated with QuI set to the default value
loop

consider a node v ∈ V such that in(v) ∈active parts
active parts = active parts out(v)
Q(v) = �̂(Q(v),Q(ExpI(v))) according to Definition 6
if v = QuO return Q(QuO)

end loop

The algorithm (Algorithm 1) for model inspection works by traversing the
composition graph and computing the QoS of the composition. The algorithm
takes a composition graph and a query. It uses the query for determining the set
of initial active parts and builds two extra nodes to represent the query input
QI and output QO. Active parts are the messages which are available for the
composition. The vector QoS keeps the value of the QoS during the computation
and is initially set to the default values (for instance cost is set to 0). The loop
of the algorithm takes nondeterministically a node for which all input parts are
active. Given the assumption of correct design there is always such a node, or we
have reached the end of the computation. Then the output part of the considered
node are added to the set of active parts. We are now in the position of computing
the new QoS for the considered node. The computation of the service QoS in the
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Fig. 5. Parallel flow

given composition is performed by computing the QoS of its input expression
and ‘adding’ �̂ the QoS of the service. Of the two groupoid operation sets �̂
and �̌, the former is in the algorithm as this is the one which should model the
logical and, i.e., the addition of the quality of service computed so far and the
quality of service of the specific service. Given the absence of loops we notice
that the non-deterministic choice of a node does not affect the correctness of the
algorithm. Finally, if the node considered was the final node of the composition
we exit the loop returning the computed QoS.

4.3 A Run on the Weather Example

Let us consider again the weather example of Section 2, shown in Figure 1, and
apply Algorithm 1. We start by setting the active parts to the query SearchText
and Date, adding the node QI to which we associate the default quality of service
of (0,0): no time and no costs. We also add the node QO to represent the end
of the query which has as input parts the queried Temp, its input expression is
simply Temp. Then the loop begins.

At the first iteration we can only consider the Google service. In fact, its
input part names are all active, on the other hand Weather.org has one input
part name active (Date) but not the other one (SearchQuery). We then add the
output part (SearchQuery) of Google to the active part names and update its
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quality of service. The quality of service associated with this service was (3,0)—
it takes Google 3 milliseconds and it is for free—which is combined with the
evaluation of the input expression of SearchText which is (0,0). In this case, the
quality of service does not change.

At the following iteration we can choose the Weather.org service. We add
its output part to the active part names and then we compute the quality of
service for its two inputs. We have (3,0) and (0,0), respectively. Supposing that
the input expression is SearchQuery∧̄Date, that �̂ is modeled as real numbers
addition and integer addition, and that its QoS is (23,2), then we update the
QoS of Weather org with (26,2). At the final iteration iTempConverter is chosen
yielding a final QoS associated with it of (40,3). We then conclude that the QoS
of the composition is 40 milliseconds and 3 cents. Again these could be minimum,
maximal, average values or something else, depending on the choice made in the
composition design.

5 Concluding Remarks

We have presented preliminary work aimed at modeling Web service composi-
tions from a functional and non-functional point of view at the granularity level
of the part names. Following this modeling, we overview a number of formal
methods techniques that allow to reason with QoS composition based on the
proposed model, and propose an algorithm for determining the QoS of a given
composition given the QoS associated with the individual services.

In this initial work, we made a number of simplifying assumptions which we
will remove in future work. In particular, we have not considered loops in the
compositions while these could be present and need to be modeled. We have
not presented output expressions (the natural counterpart of input expressions
for services), and we have not considered limitations on the use of part names
(for instance, one could impose that a part name is used only once by any
service). Furthermore, we have only provided an algorithm for the case of model
inspection, leaving open the challenge of finding algorithms for model checking
and model constructions.
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Abstract. We seek for a small set of primitives that might serve as a
basis for formalising and programming service oriented applications over
global computers. As an outcome of this study we introduce here SCC,
a process calculus that features explicit notions of service definition, ser-
vice invocation and session handling. Our proposal has been influenced
by Orc, a programming model for structured orchestration of services,
but the SCC’s session handling mechanism allows for the definition of
structured interaction protocols, more complex than the basic request-
response provided by Orc. We present syntax and operational semantics
of SCC and a number of simple but nontrivial programming examples
that demonstrate flexibility of the chosen set of primitives. A few encod-
ings are also provided to relate our proposal with existing ones.

1 Introduction

The Sensoria project [17], funded by the European Union, aims at develop-
ing a novel, comprehensive approach to the engineering of software systems for
service-oriented overlay computers. Specifically, Sensoria focuses on methods
and tools for the development of global services that are context adaptive, per-
sonalisable, possibly with different constraints on resources and performance,
and to be deployed on significatively different global computers. Sensoria seeks
for full integration of foundational theories, techniques and methods in a prag-
matic software engineering approach.

A crucial role in the project will be played by formalisms for service de-
scription that lay the mathematical basis for analysing and experimenting with
components interactions, for combining services and formalising crucial aspects
of service level agreements.

Industrial consortia are developing orchestration languages, targeting the
standardization of Web services and xml-centric technologies. However, exist-
ing standards lack clear semantic foundations. We aim at developing a general
theory of services that should lead to calculi based on process algebras but en-
riched with primitives for manipulating semi-structured data (such as pattern
matching or unification). The theory should encompass techniques for deriving
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contracts, tools for querying and discovery of service specifications, transactional
mechanisms to aggregate unreliable services. The calculi will be equipped with
rigorous semantic foundations and analytical tools to prove correctness of system
specifications and enable formal verification of properties.

Herewith we present a name passing process calculus with explicit notions
of service definition, service invocation and bi-directional sessioning. During
the first year of the project a few other work-in-progress proposals emerged
[8,10,14,4], and their comparison, refinement and integration will constitute a
prominent research activity for the prosecution of the project. Our proposal has
been influenced by Cook and Misra’s Orc [16], a basic programming model for
structured orchestration of services, for which we show a rather natural encod-
ing. In particular, Orc is particularly appealing because of its simplicity and yet
great generality: its three basic composition operators can be used to model the
most common workflow patterns, identified by van der Aalst et al. in [18].

Our calculus, called SCC (for Service Centered Calculus), has novel features
for programming and composing services, while taking into account their dy-
namic behaviour. In particular, SCC supports explicit modeling of sessions both
on client- and on service-side, including protocols executed by each side dur-
ing an interaction and mechanisms for session naming and scoping, the latter
inspired by the π-calculus. Sessions allow us to describe and reason about inter-
action modalities more structured than the simple one-way and request-response
modalities provided by Orc and typical of a producer / consumer pattern. More-
over, in SCC sessions can be closed thus providing a mechanism for process
interruption and service cancellation and update which has no counterpart in
most process calculi.

Summarising, SCC combines the service oriented flavour of Orc with the name
passing communication mechanism of the π-calculus. One may argue that we
could, in our analysis of service oriented computing, exploit directly π-calculus
instead of introducing yet another process calculus. It can be easily seen, from the
encoding of a fragment of our calculus in the π-calculus reported in Figure 5, that
all the information pertaining to sessioning and client-service protocols get mixed
up (if not lost) with the other communication primitives, making it difficult to
reason on the resulting process. The motivation behind the introduction of a
new calculus is that a small set of well-disciplined primitives will favor and make
more scalable the development of typing systems and proof techniques centered
around the notions of service and session, for ensuring, e.g., compatibility of
client and service behaviour, or the absence of deadlock in service composition.

Within SCC, services are seen as sort of interacting functions (and even stream
processing functions) that can be invoked by clients. Service definitions take the
form s ⇒ (x)P , where s is the service name, x is a formal parameter, and P is
the actual implementation of the service. For instance, succ⇒ (x)x + 1 models
a service that, received an integer returns its successor. Service invocations are
written as s{(x)P} ⇐ Q: each new value v produced by the client Q will trigger a
new invocation of service s; for each invocation, an instance of the process P , with
x bound to the actual invocation value v, implements the client-side protocol for
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interacting with the new instance of s. As an example, a client for the simple
service described above will be written in SCC as succ{(x)(y)return y} ⇐ 5:
after the invocation x is bound to the argument 5, the client waits for a value
from the server and the received value is substituted for y and hence returned
as the result of the service invocation.

A service invocation causes activation of a new session. A pair of dual fresh
names, r and r, identifies the two sides of the session. Client and service protocols
are instantiated each at the proper side of the session. For instance, interaction
of the client and of the service described above triggers the session

(νr)
(
r � 5 + 1 | r � (y)return y

)
(in this case, the client side makes no use of the formal parameter). The value 6
is computed on the service-side and then received at the client side, that reduces
first to r � return 6 and then to 6 | r � 0 (where 0 denotes the nil process).

More generally, within sessions communication is bi-directional, in the sense
that the interacting protocols can exchange data in both directions. Values re-
turned outside the session to the enclosing environment can be used for invoking
other services. For instance, what follows is a client that invokes the service succ
and then prints the obtained result:

print{(z)0} ⇐ ( succ{(x)(y)return y} ⇐ 5 ) .

(in this case, the service print is invoked with vacuous protocol (z)0).
A protocol, both on client-side and on service-side, can be interrupted (e.g.

due to the occurrence of an unexpected event), and interruption can be notified
to the environment. More generally, the keyword close can be used to terminate
a protocol on one side and to notify the termination status to a suitable handler
at the partner site. For example, the above client is extended below for exploiting
a suitable service fault that can handle printer failures:

print{(z)0} ⇐fault ( succ{(x)(y)return y} ⇐ 5 ) .

The formal presentation of SCC involves some key notational and technical
solutions that must be well motivated and explained. For this reason, our choice
is to give a gentle, step-by-step presentation of the various ingredients.

Synopsis. The paper is organized as follows. Syntax and reduction semantics of
the close -free fragment of SCC are presented in Section 2, together with a few
motivating examples and encodings. The full calculus is discussed in Section 3.
In Section 4 we show how to encode Orc programs into SCC. Some concluding
remarks are in Section 5.

2 Persistent Sessions: The Close-Free Fragment of SCC

We start by presenting the close -free fragment of SCC, based on three main
concepts: (i) service definition, (ii) service invocation, and (iii) bi-directional
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P, Q ::= 0 Nil
| a.P Concretion
| (x)P Abstraction
| return a.P Return Value
| a ⇒ (x)P Service Definition
| a{(x)P} ⇐ Q Service Invocation
| a � P Session
|P |Q Parallel Composition
| (νa)P New Name

Fig. 1. Syntax of processes

(P |Q)|R ≡ P |(Q|R) P |0 ≡ P P |Q ≡ Q|P
(νx)(νy)P ≡ (νy)(νx)P (νx)0 ≡ 0 a � 0 ≡ 0

P |(νx)Q ≡ (νx)(P |Q) if x /∈ fn(P ) a � (νx)P ≡ (νx)(a � P ) if x �= a, a
a{(x)P} ⇐ (νy)Q ≡ (νy)(a{(x)P} ⇐ Q) if y /∈ fn((x)P ) ∪ {a, a}

Fig. 2. Structural congruence

sessioning. We call it PSC for persistent session calculus: sessions can be estab-
lished and garbage collected when the protocol has run entirely, but can neither
be aborted nor closed by one of the parties.

Syntax. We presuppose a countable set N of names a, b, c, ..., r, s, ..., x, y, .... A
bijection · on N is presupposed s.t. a = a for each name a. Note that contrary
to common use of the notation, a for input and a denoting output, in SCC a and
a denote dual session names, that can be used for communicating in both direc-
tions. The syntax of PSC is in Figure 1, with the operators listed in decreasing
order of precedence. Free occurrences of x in P (including x) are bound in (νx)P
and (x)P . Capture-avoiding substitution of the free occurrences of x with v (and
of x with v) in P is denoted by P [v/x]. Moreover, we identify processes up to
alpha-equivalence and we omit trailing 0.

Structural Congruence. Structural congruence ≡ is defined as the least congru-
ence relation induced by the rules in Figure 2. We include the expected structural
laws for parallel composition and restriction, and one rule for garbage collection
of completed sessions (a�0 ≡ 0). Note that scope extrusion for restriction comes
in three different forms.

Well-Formedness. Assuming by alpha conversion that all bound names in a
process P are different from each other and from the free names, the process
P is well-formed if each session name a occurs only once (occurrences that can
be deleted using structural congruence do not count), but it is allowed to have
both sessions a � Q and a � Q′. In the remainder of this paper, all processes
are well-formed. It is straightforward to check that the semantic rules preserve
well-formedness. Note that, for the economy of this paper, it is not stricly
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C� s ⇒ (x)P � |
D� s{(y)P ′} ⇐ (Q|u.R) �

→ (νr)
C� r � P [u/x] | s ⇒ (x)P � |
D� r � P ′[u/y] | s{(y)P ′} ⇐ (Q|R) �

if r is fresh and u, s not bound by C,D

C� r � (P |u.Q) � | D� r � (R|(z)S) � → C� r � (P |Q) � | D� r � (R|S[u/z]) �

if u, r not bound by C,D

r � (P |returnu.Q) → u | r � (P |Q)

C�P � → C�P ′� if P ≡ Q, Q → Q′, Q′ ≡ P ′

where C, D ::= �·� | C|P | a{(x)P} ⇐ C | a � C | (νa)C

Fig. 3. Reduction semantics

necessary to introduce dual names, but we prefer to keep this distinction to
make evident that once the protocol is started there might still be some reasons
for distinguishing the two side ends (e.g., when typing is considered).

Operational Semantics. Restriction and parallel composition have the standard
meaning. Informally, the meaning of the other primitives listed in Figure 1 can
be explained as follows. Service definitions take the form s ⇒ (x)P , where s
is the name of the service and (x)P is the body of the service: a (service-side)
interaction protocol with formal parameter x. Service definitions are persistent,
i.e., each new invocation is served by a fresh instance of the protocol (process
calculists may think of an implicit replication prefixing each service definition). A
service invocation s{(x)P ′} ⇐ Q invokes s for any concretion (value) u produced
by the execution of Q. The process (x)P ′ is the client-side protocol for interacting
with (the instance of) s. For example if after some steps Q reduces to Q′|u, then
a fresh session can be established, that takes the form

(νr)(r � P [u/x] | r � P ′[u/x])

and that runs in parallel with s{(x)P ′} ⇐ Q′ and s ⇒ (x)P . The session r has
two sides: one for the client and one for the service. Note that value u serves as
the actual parameter of both P and P ′. Within the session r, the protocols P [u/x]
and P ′[u/x] can communicate whenever a concretion a is available on one side and
an abstraction (z)R′ is ready on the other side, i.e., abstractions and concretions
model input and output, respectively. For example, r � (a|R) | r � (z)R′ would
reduce to r � R | r � R′[a/z]. The primitive return a can then be used to return a
value outside the current session (just one level up, not to the top level). Sessions,
service definitions and service invocations can be nested at arbitrary depth, but
in any interaction just the innermost service or session name counts.

Formally, the reduction semantics is defined in Figure 3. The reduction rules
are defined using the active contexts C, D that specify where the processes that
interact can be located. An active context is simply a process with a hole in an
active position, i.e., a place where a process can execute. With C�P � we denote
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the process obtained by filling the hole in C with P . In PSC only two kinds of
interactions are permitted: service invocation and session communication mod-
eled by the first two rules, respectively. A third rule models returned values, that
are made available outside the session. Finally, the last rule simply closes the
reduction semantics with respect to structural congruence and active contexts.

2.1 Toy Examples

We present in this section a few simple examples. Some of them are also used to
introduce some shorthand notation for syntax of frequent use.

Precisely, the notations that we introduce are:

s ⇐ P Example 1
(−)P Example 2

a{} ⇐ P Example 3

Also, we presuppose a distinct name • to be used as a unit value.
The examples are chosen so to evaluate the expressiveness and usability of

PSC as a language for service orchestration, challenging its ability of encoding
some frequently used service composition patterns. A library of basic patterns,
called the workflow patterns, has been identified by van der Aalst et al. in [18].
It will be shown in Section 4 that full SCC can encode Orc [16], a script language
for service orchestration able to model the workflow patterns [9].

Example 1 (Functional flavour). A simple example of service invocation is

s{(x)(y)return y} ⇐ v

where the service s is invoked with just one value v. The client-side protocol
(x)(y)return y has the following meaning: the name x is bound to the invocation
value v at invocation time, thus the actual protocol run after service invocation
is ((y)return y)[v/x] = (y)return y that simply waits for a value as the result of
the service invocation and then publishes it locally (outside the private session
started upon invocation).

This example reports a typical pattern of service invocation for which we
introduce the specific notation s ⇐ P which stands for s{(x)(y)return y} ⇐ P .
In order to show the advantages of this abbreviation, consider e.g. the functional
composition of services: a service f is invoked first (with argument v) and the
returned value (if any) is then given as an argument to another service g. With
the shorthand notation, then the process can be written as

g ⇐ (f ⇐ v)

or simply g ⇐ f ⇐ v, stipulating that ⇐ is right-associative. For example,
succ⇐ succ⇐ 5 will return 7. Without abbreviations, one should write some-
thing like succ{(z)(w)return w} ⇐ (succ{(x)(y)return y} ⇐ v).
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Example 2 (Pairing service). Starting from this example, to shorten the nota-
tion, we use tuples of values 〈v1, . . . , vn〉 and polyadic abstractions (a1, . . . , an)P .
As an example of service definition consider the following pairing service

pair ⇒ (z)(x)(y)〈x, y〉

Note that the invocation value z is not used, and the two values to be paired
are passed to the protocol executed on service-side from the protocol run on
client-side (after service invocation) and bound to x and y respectively. Binding
occurrences of names that are not subsequently used (like z above) are abbrevi-
ated with −. Hence the pairing service can be written as pair ⇒ (−)(x)(y)〈x, y〉.

A sample usage of the pairing service is

pair
{
(−)
(
P |Q | (p)return p

)}
⇐ •

where P and Q give results to be paired. The pair produced by the service is
bound to p and returned as the result. This example also shows that client-side
and service-side protocols can exchange values bi-directionally.

Though for the sake of simplicity, this example (and other examples discussed
later) might suggest that an instantiation value for starting the session is not
always necessary, we have wired its presence in the syntax as a guidance to
a uniform style of service programming: in practice it is often the case that
sessions can be established only upon authentication checks or that different
kinds of sessions are selected based on the kind of the request (e.g. for balancing
the load of different servers).

Another point to notice is that inside a session it is possible not only to
exchange data with the partner and return values to the environment, but also
to input data from outside source (in the example above, this can be achieved
by using service invocations within P and Q).

Example 3 (Blind invocation). Sometimes no reply is expected from a service,
thus the client employs a vacuous protocol, in which case we just write

a{} ⇐ P

for a{(−)0} ⇐ P . As an example combining the notational conventions seen so
far, assume that there are the following available services: service emailMe that
expects a value msg and then sends the message msg to your email address;
services ANSA, BBC and CNN that return the latest news. Then the process

emailMe{} ⇐ pair
{
(−)
(
ANSA ⇐ • |BBC ⇐ • |CNN ⇐ • | (p)return p

)}
⇐ •

will send you only the first two news items collected from ANSA, BBC and
CNN .

Example 4 (Recursion). Service invocations can be nested recursively inside a
service definition. For example

clock ⇒ (−)
(
return tick | clock{} ⇐ •

)
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defines a service that, when invoked with clock{} ⇐ •, produces an infinite number
of tick values on the service-side. To produce the tick values on a specific location
different from the service-side, the service to be invoked can be written as

remoteClock ⇒ (s)
(
s{} ⇐ tick | remoteClock{} ⇐ s

)
and a local publishing service

pub ⇒ (s)return s

should be located where the tick is to be produced. The name pub should
be passed to remoteClock as argument: remoteClock{} ⇐ pub. This is also an
example of service-name passing. The service pub (or alike) can be useful in
many applications, because it allows to publish values in the location where
it is placed. In fact, in PSC sessions cannot be closed and therefore recursive
invocations on the client-side are nested at increasing depth (while the return
instruction can move values only one level up).

Similarly to the last example, a recursive process that receives the name of a
service s and a value x and then repeatedly invokes s (the first time on x, then
on the last value computed by previous invocations) is shown below:

rec ⇒ (s, x)
(
s
{
(−)(y)(return y | rec{} ⇐ 〈s, y〉)

}
⇐ x
)
.

Again, if the computed values have to be published on the client-side, then the
service can carry the name of the publishing service p located on the client-side
as an additional parameter:

remoteRec ⇒ (s, x, p)
(
s
{
(−)(y)(p{} ⇐ y | remoteRec{} ⇐ 〈s, y, p〉)

}
⇐ x
)
.

As an example of invocation of the service remoteRec, consider the client

remoteRec{} ⇐ 〈succ, 0, pub〉 | pub ⇒ (x)return x

that returns (at the client-side) the stream of positive integers.

Example 5 (Pipeline and forwarder). The process seen at the end of the previous
example produces an unbound stream of values. More generally, it should be
possible to deploy some sort of pipeline between two services p and q in such
a way that q is invoked for each value produced by p. If P is a process that
produces a stream of values then the composition q ⇐ P already achieves the
aim. Thus to compose p and q in a pipeline it suffices to design a client-side
protocol for collecting all the values returned by p. If the calculus included a
π-calculus like replicator !P or even just abstraction guarded like !(x)P , then
the protocol could be written just as

pipe = (−)!(x)return x.

Another possibility is to extend the return prefix so to return an arbitrary
process, with syntax return P.Q and semantics:

r � (R|return P.Q) → P | r � (R|Q).
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Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)( return P | rec{} ⇐ • ) | rec{} ⇐ •
)
.

In absence of replicator, one might think to exploit recursion to deploy local
receivers of the form (x)return x, but unfortunately the implicit nesting of ses-
sions would cause all such receivers to collect values only from different sessions
than the original one.

Without extending the syntax of the calculus, a solution is to exploit a pub-
lishing service like pub above, which must be passed to p (and properly used
therein). For instance, if EATCS and EAPLS return streams of conference an-
nouncements on the received service name, then the process

emailMe{} ⇐
(
pub ⇒ (s)return s | EATCS{} ⇐ pub | EAPLS{} ⇐ pub

)
will send you all the announcements collected from EATCS and EAPLS , one
by one. More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe .

Example 6 (Structured protocols). As an example that requires a more elabo-
rated client-side protocol than those examined so far, let us consider the room
reservation service

bookRoom ⇒ (d)
(

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

)

that must be invoked with the dates d for the reservation, then proposes to
the client the set of available rooms for that dates (obtained by invoking the
local service avail with d), then waits for the client selection cs and sends a
fresh reservation code to the client, then waits for the credit card number cc
and debits the price of the selection to the credit card by exploiting a suitable
electronic payment service epay , and finally, if everything is ok, communicates
to the client the confirmation id i obtained from epay . Note that we suppose a
service price that computes the price of the chosen room.

The corresponding client can can be written as:

bookRoom
{
(−)(r)(select ⇐ r | (c)myCCnum.(cid)return 〈c, cid〉)

}
⇐ dates

It invokes the room reservation service, then waits for the available rooms r,
then selects a suitable room (assume the local service select is exploited e.g.
for interacting with the user) and communicates the choice to the service-side
protocol, then waits for the reservation code c before sending the credit card
number, and finally waits for the payment confirmation id cid, which is returned
outside the session together with the reservation code c.

Example 7 (Encoding of the lazy λ-calculus). As a last example, we analyse the
expressive power of the PSC in a more traditional manner by discussing the en-
coding of a typical computational model such as the lazy λ-calculus [3,1]. We
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�x�p = x{} ⇐ p

�λx.M�p = p ⇒ (x)(q)�M�q

�M N�p = (νm)(νn) ( �M�m | n ⇒ (s)�N�s | m{(−)p} ⇐ n )

Fig. 4. Encoding of the lazy λ-calculus

recall that the λ expressions M, N, ... can be either a variable x, the abstrac-
tion λx.M or the application M N , and that the β-reduction rules for the lazy
semantics are:

(λx.M)N → M [N/x]
M → M ′

M N → M ′ N

The translation is much in the spirit of Milner’s encoding of λ-calculus in
π-calculus [15]: agents can represent both “functions” and “arguments” which
are composed in parallel and interact to β-reduce. Likewise [15], during commu-
nication we just transmit access points to terms instead of terms themselves.

The encoding is in Figure 4. We use a translation �M�p, with p representing
the port to be used for interaction between M and the environment. From the
point of view of syntax, the main differences w.r.t. the π-calculus encoding are:
(i) service definitions replace input and replicated input prefixes; (ii) service
invocations (with empty protocol) replace output particles. From the point of
view of semantics, the more important differences are: (i) each service invocation
opens a new session where the computation can progress (remind that sessions
cannot be closed in PSC); (ii) all service definitions will remain available even
when no further invocation will be possible!

If on one hand, the encoding witnesses the expressive power of PSC, on the
other hand, it also motivates the introduction of some mechanism for closing
sessions, like the one available in the full calculus.

2.2 Encoding of PSC into π-Calculus

In this subsection we aim to show that PSC can be seen as a disciplined frag-
ment of the π-calculus, where processes can communicate only according to the
interaction mechanisms provided by the service oriented metaphor. This strong
relationship between PSC and the π-calculus does not hold any longer for the full
SCC due to the session interruption mechanism (discussed in the next section)
that has no direct couterpart in the π-calculus.

In Figure 5 we define the translation �−�in,out,ret from PSC to π-calculus
(all the operators not treated in Figure 5 are mapped homomorphically). The
encoding is parametric on three names used to receive values from (in), send
values to (out), and return values to the enclosing session (ret). These channels
mimic the structure of sessions, which is lost in the π-calculus, and must be
different w.r.t. service names. To avoid confusion with the use of overline in the
π-calculus, in this mapping we use ã instead of a in the syntax of PSC. Moreover,
we assume that the two operators are unrelated, namely, for any name a we have
that ã and a are two distinct names.
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�a{(x)P} ⇐ Q�in,out,ret = (νz) �Q�in,z,ret | !z(x).(νr, r̃)a〈r, r̃, x〉.�P �r,r̃,out

�a ⇒ (x)P �in,out,ret = !a(r, r̃, x).(�P �r̃,r,out)

�a � P �in,out,ret = �P �a,ã,out

�a.P �in,out,ret = out a.�P �in,out,ret

�(x)P �in,out,ret = in(x).�P �in,out,ret

�return a.P �in,out,ret = ret a | �P �in,out,ret

Fig. 5. Encoding PSC into π-calculus

The most interesting part is the translation of service invocation. Outputs on
channel z where process Q produces the parameters for service invocation are
intercepted, and each value v triggers an output on the service name a. The
output extrudes two new names r and r̃ to be used for communication between
the two sessions to be created, it also carries the parameter v (substituted for
x) of the invocation. Note that the client protocol uses the channels r and r̃
above for communication and out for returning values. On the service-side, an
instance of service protocol is started, using the same channels but swapped (so
that input of client is connected to output of service and vice versa).

3 The Full Service Centered Calculus

Even though PSC is expressive enough to model service definitions and invoca-
tions, it does not provide operators for explicit closing of sessions. Namely, once
the two protocols r� P1 at client-side and r� P2 at service-side are instantiated
(as the effect of a service invocation), the session r (resp. r) is garbage collected
by the structural congruence only if the protocol P1 (resp. P2) reduces to 0.
However, many sessions can never reduce to 0, e.g., those containing service
definitions. Also, one may want to explicit program session termination, for in-
stance in order to implement cancellation workflow patterns [18], or to manage
abnormal events, or to use timeouts.

The full SCC comprises a mechanism for closing sessions that can be roughly
described as follows. Let us consider the session r running the protocol P ; we
associate to this session a service name k which identifies a termination handler
service, the first time the protocol P invokes such a service, the session r is
closed. The notation that we consider is

r �k P

where the name of the termination handler service appears in subscript position.
In case P contains an invocation to k, like k{(x)P ′} ⇐ (Q|v.R), the overall
session r may be closed, formally

r �k

(
k{(x)P ′} ⇐ (Q|v.R) | S

)
may evolve to k{} ⇐ v

where only the invocation to the termination handler service is kept and the
session r (thus also the processes Q, R and S) is removed.
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The termination handler service is associated to sessions on their instantiation.
The intuition that we follow is that the termination of the session on one side,
should be communicated to the opposite side. To achieve this, the clients indicate
the name of the termination handler service for the session on the service-side,
while services manage the termination handler service for the session on the
client-side. Nevertheless, an asymmetric approach among the client- and the
service-side is adopted, that reflects the asymmetry in the modeling of clients
and services that we have already discussed in the previous section.

The syntax of clients becomes a{(x)P} ⇐k Q where, besides the explicit
indication of the service a to be invoked, we add the name k of the termination
handler service to be associated to the session instantiated on the service-side.
We usually omit the subscript k when it is not relevant. On the other hand,
services are now specified with the process a ⇒ (x)P : (y)T where, besides the
service protocol (x)P , an additional protocol (y)T is specified which represents
the body of a termination handler service that will be instantiated on service
invocation; this fresh service will be included in the corresponding session on the
client-side.

Finally, the full calculus has a special name close that can be used in the
specification of session protocols; this name is replaced by the name of the cor-
responding termination handler on session instantiation.

Remark 1. A first alternative would be to use close as a primitive for terminat-
ing instantaneously both the client-side and service-side sessions. This strategy
conflicts with parties being in charge for the closing of their own sessions. A sec-
ond alternative would be to use close as a synchronization primitive, so that the
client-side and service-side sessions are terminated when close is encountered on
one side and close on the other side. This strategy conflicts with parties being
able to decide autonomously when to end their own sessions. The use of termi-
nation handler services looks a reasonable compromise: each party can exit a
session autonomously but it is obliged to inform the other party.

Example 8. In order to become more familiar with the new service invocation
mechanism that includes also the termination handler services, let us consider
the following process composed (from left to right) by a termination handler
service k, a client willing to invoke service a with value v, and the definition of
the service a:

(
k ⇒ (x)S : (−)0

)
|
(
a{(x)P} ⇐k (v|Q)

)
|
(
a ⇒ (x)P ′ : (y)T

)
This process can start a new session. This happens as soon as the value v is
passed to the corresponding service a. The new session is assigned a fresh session
name r, identifying the service- and the client-sides with r and r, respectively.
As discussed in the previous section, the protocols (x)P and (x)P ′ specified
by the client and the service, will be installed on the respective sides upon
session creation. Moreover, a fresh service name k′ is associated to the newly
installed termination handler service specified on the service-side. Notice that
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the new service k′ has an associated empty second protocol (−)0. Thus, the
freshly activated processes will look like:

(νr, k′)
(
r �k′ P [v/x][k′

/close ] | r �k (P ′[v/x][k/close ] | k′ ⇒ (y)T [k/close ] : (−)0)
)

The process P [v/x][k′
/close ] is the instance of the client session protocol that will

exchange values with the instance P ′[v/x][k/close ] of the service protocol. Note
that the session on the client-side has associated the name k′, while the session on
the service-side has associated the name k. Moreover, note that the termination
handler service on service side is included inside the instantiated session and the
name close occurring in its protocol is replaced by k, the name that permits to
close the overall session on the service-side.

Example 9 (Closure protocol). A typical usage of termination handler services
is to program them to close the current session. This can be achieved on the
service-side with the service definition

s ⇒ (x)P ′ : (y)close {} ⇐ y

and on the client-side with the process

(ν end)s{(y)
(
P | close {} ⇐ (end ⇒ (x)return x : (−)0)

)
} ⇐end v

Indeed, after invocation of service s with value v, the instantiated sessions will
be of the form

r �end

(
P ′[v/x][end/close ] | k′ ⇒ (y) (end{} ⇐ y) : (−)0

)
r �k′
(
P [v/y][k′

/close ] | k′{} ⇐ (end ⇒ (x)return x : (−)0)
)

Note that in case one of the two session closes, the corresponding notification
will cause the closure of the session on the opposite side.

We are now ready to formally define the syntax and semantics of the full SCC.
To be complete, we report also some auxiliary definitions already discussed for
PSC.

Syntax. We presuppose a countable set N of names a, b, c, ..., r, s, ..., x, y, .... A
distinct name close belongs to this set. A bijection · on N is presupposed s.t.
a = a for each name a.

The syntax of processes P, Q, ... is given in Figure 6 with the operators listed
in decreasing order of precedence. All operators have been discussed either in
the previous section or in the initial part of this section.

Abstraction (x)P and restriction (νx)P act as binders for the name x (and
also x) with scope P . Given a process a ⇒ (x)P : (y)T , the name close is bound
in P and T ; given a process a{(x)P} ⇐k Q, the name close is bound in P .
Notions of free names fn(·) and alpha-equivalence arise as expected. We identify
processes up to alpha-equivalence.
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P, Q, T, . . . ::= 0 Nil
| a.P Concretion
| (x)P Abstraction
| return a.P Return Value
| a ⇒ (x)P : (y)T Service Definition
| a{(x)P} ⇐k Q Service Invocation
| a �k P Session
|P |Q Parallel Composition
| (νa)P New Name

Fig. 6. Syntax of processes

Notational Conventions. We omit trailing 0. Also, in service invocation we write
a{} ⇐k Q for a{(x)0} ⇐k Q. In service definition we write a ⇒ (x)P for
a ⇒ (x)P : (y)0. We also omit k in a{(x)P} ⇐k Q and a ⇐k Q when it is
not relevant. Under these conventions and exploiting operator precedences, the
process in the Example 8 would be written

k ⇒ (x)S | a{(x)P} ⇐k (v|Q) | a ⇒ (x)P ′ : (y)T

and the instantiated session is

(νr)(νk′)
(
r �k′ P [v/x][k′

/close ] | r �k (P ′[v/x][k/close ] : k′ ⇒ (y)T [k/close ])
)

Operational Semantics. As for PSC, the operational semantics is defined in terms
of a structural congruence and a reduction relation. The rules for structural
congruence are as in Figure 2 where occurrences of the symbols � and ⇐ are
replaced by �k and ⇐k, respectively.

The rules for the reduction semantics of the full calculus are reported in
Figure 7.

An auxiliary function tn is defined on active contexts that keeps track of the
termination names associated to sessions in which the hole of the context is
enclosed. This function is used to check whether a service invocation should be
interpreted as a closing signal for some of the enclosing sessions. For instance, in
the first rule (which is an adaptation of the corresponding first rule in Figure 3)
the function tn is used to check whether the invocation of the service s must be
interpreted as a termination signal or not. The second is a novel rule; in the case
the name s of the service to be invoked is a termination name for an enclosing
session, the closest of these sessions is closed. The remaining rules are trivial
adaptations of the corresponding last three rules of Figure 3.

Example 10 (Service update). Another example where session closing is needed
is service update. Consider, for instance, the service

soccerWorldChampion ⇒ (−)brasil

that returns the name of the last winner of the soccer world championship. The
service must be updated as soon as a new team becomes the new world champion.
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C� s ⇒ (x)P : (z)T � |
D� s{(y)P ′} ⇐k (Q|u.R) �

→ (νr)(νk′)

C� s ⇒ (x)P : (z)T |
r �k (k′ ⇒ (z)T [k/close ] |

P [u/x][k/close ]) �

| D� r �k′ P ′[u/y][k
′
/close ] |

s{(y)P ′} ⇐k (Q|R) �

if s �∈ tn(D), r, k′ are fresh and u, s, k not bound by C,D

r �s D� s{(y)P} ⇐k (Q|u.R) � → s{} ⇐k u

if s �∈ tn(D) and u, k not bound by D

C� r �k (P |u.Q) � | D� r �k′ (R|(z)S) � → C� r �k (P |Q) � | D� r �k′ (S[u/z] |R) �

if u, r not bound by C,D

r �k (P |returnu.Q) → u | r �k (P |Q)

C� P � → C� P ′ � if P ≡ Q, Q → Q′, Q′ ≡ P ′

where C, D ::= �·� | C|P | a{(x)P} ⇐k C | a �k C | (νa)C

and tn(�·�) = ∅ tn(C|P ) = tn(a{(x)P} ⇐k C) = tn(C)
tn(a �k C) = tn(C) ∪ {s} tn((νa)C) = tn(C) \ {a}

Fig. 7. Reduction semantics

In PSC there is no way to cancel a definition and replace it with a new one. By
contrast, in the full calculus, we can exploit session closing in order to remove
services and the termination handler service can be used to instantiate a new
version of the same service. Consider, for instance,

r �new

(
soccerWorldChampion ⇒ (−)brasil |
new{} ⇐new (update ⇒ (y)return y)

)
|

new ⇒ (z)
(

soccerWorldChampion ⇒ (−)z |
new{} ⇐new (update ⇒ (y)return y)

)

The service update, when invoked with a new name z, permits to cancel the
currently available service soccerWorldChampion and replace it with a new in-
stance that returns the name z. Notice that the service update is located within
the same session r of the service soccerWorldChampion ; this ensures that when
it invokes the termination handler service new the initial instance of the service
soccerWorldChampion is removed.

Example 11 (A blog service). We consider a service that implements a blog, i.e.
a web page used by a web client to log personal annotations. A blog provides
two services get and set , the former to read the current contents of the blog and
the latter to modify them. The close -free fragment is not expressive enough to
faithfully model such a service because it does not support service update, here
needed to update the blog contents.
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We use the service newBlog as a factory of blogs; this receives three names,
the initial content v, the name for the new get service, and the name for the new
set service. Upon invocation, the factory forwards the three received values to
the blog service which is the responsible for the actual instantiation of the get
and set services:

newBlog ⇒ (v, get, set)
(
blog{} ⇐newBlog 〈v, get, set〉

)
|

blog ⇒ (v, get, set)
(

get ⇒ (−)v |
close {} ⇐ (set ⇒ (v′)return 〈v′, get, set〉)

)
Note that the update of the blog contents is achieved by invoking the service
close which is bound to newBlog ; this invocation cancels the currently available
get and set services and delegates to newBlog the creation of their new instances
passing also the new contents v′.

As an example of a client of the blog service, we consider a process that installs
a wiki page with initial contents v, then it adds some new contents v′.

newBlog{} ⇐ 〈v, get, set〉 |
set{} ⇐

(
concat{(−)v′.get ⇐ •|(x)return x} ⇐ •

)
The service concat simply computes the new contents appending v′ to v, that
are received in this order after service invocation:

concat ⇒ (−)(v′)(v).v ◦ v′

Here ◦ denotes juxtaposition of blog contents.

4 Encoding Orc in SCC

Orc [16,9] is one of the emerging basic programming models for service orches-
tration. In this section we show that SCC is expressive enough to model in a
natural manner the Orc language.

We start by a brief overview of Orc. Orc is centered on the idea of service
orchestration, and it assumes that basic services, able to perform computations,
are available on primitive sites. Orc concentrates on invoking and orchestrating
those services to reach some goal. Services may publish streams of values.

Orc uses the following syntax categories: site names, ranged by a, b, c, ..., vari-
ables, ranged by x, y, ..., values (including site names), ranged by u, v, .... Actual
parameters, ranged by p, q, ..., can be either values or variables. We use P, Q, ... to
range over expressions (since they correspond to processes in SCC) and E, F, ...
to range over expression names.

An Orc expression can be either a site call, an expression call or a composition
of expressions according to one of the three basic orchestration patterns.

Site call: a site call can have either the form a(p) or x(p). In the first case the
site name is known statically, in the other case it is computed dynamically.
In both the cases p is the parameter of the call. If p is a variable, then it
must be instantiated before the call is made. A site call may publish a value
(but it is not obliged to do so).
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Expression call: an expression call has the form E(p), and it executes the
expression defined by E(x) � P after having replaced x by p. Here p is
passed by reference. Note that expression definitions can be recursive.

Symmetric parallel composition: the composition P |Q executes both P and
Q concurrently, assuming that there is no interaction between them. It pub-
lishes the interleaving of the two streams of values published by P and Q,
in temporal order.

Sequential composition: the composition P > x > Q executes P , and, for
each value v returned by P , it executes an instance of Q with v assigned to
x. It publishes the interleaving (in temporal order) of the streams of values
published by the different instances of Q.

Asymmetric parallel composition: the composition Q wherex :∈ P starts
in parallel both P and the parts of Q that do not need x. When P publishes
the first value, let say v, it is killed and v is assigned to x. The composition
publishes the stream obtained from Q (instantiated with v).

An Orc program is composed by an expression and a set of expression defini-
tions. The encoding of an Orc program in SCC is the parallel composition of the
expression and of the expression definitions.

We define now the different cases of the encoding [[-]]. A value is trivially
encoded as itself, i.e., [[u]] = u. For variables (and thus for actual parameters) we
need two different encodings, depending on whether they are passed by name or
evaluated. We distinguish the two encodings by different subscripts:

[[x]]n = x [[x]]v = x ⇐ •

The evaluation of a variable x is encoded as a request for the current value to
the variable manager of x. Variable managers are created by both sequential
composition and asymmetric parallel composition.

In general, both site calls and expression calls are encoded as service invo-
cations returning the published results. Expressions too return their published
results. Thus the encoding of an expression definition is simply:

[[E(x) � P ]] = E ⇒ (x)[[P ]]

The encoding of Orc expressions is detailed in Figure 8 and explained below:

[[a(p)]]: a call to a statically-known site a with argument p is encoded as a service
invocation of service a with arguments from [[p]]v;

[[x(p)]]: in case the name of the site is stored in a variable x, we first ask the
variable manager for x to get its current value v, and then make the site
invocation through the auxiliary service forw ; the result from the site v is
received in an inner session, in order to pass the value at top level we use
another auxiliary service pub;

[[E(p)]]: an expression call is simply a service call; just notice that variables are
passed by name;

[[P |Q]]: obvious;
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[[a(p)]] = a ⇐ [[p]]v

[[x(p)]] = (νforw , pub) forw{} ⇐ [[x]]v |
forw ⇒ (a)pub{} ⇐ [[a(p)]] |
pub ⇒ (y)return y

[[E(p)]] = E ⇐ [[p]]n

[[P |Q]] = [[P ]]|[[Q]]

[[P > x > Q]] = (νz, pub) z{} ⇐ [[P ]] |
z ⇒ (y)(νx)(x ⇒ (−)y | pub{} ⇐ [[Q]]) |
pub ⇒ (y)return y

[[Q where x :∈ P ]] = (νx, z, s) [[Q]] | (z ⇒ (y)(x ⇒ (−)y)) |
(s{} ⇐z •) | s ⇒ (−)(close {} ⇐ [[P ]])

Fig. 8. Encoding of Orc expressions in SCC

[[P > x > Q]]: a private service z is created, where [[P ]] will send all computed
values; at each invocation service z will activate fresh instances of [[Q]] in
parallel with fresh variable managers for x that will serve value requests in
[[Q]]; in this case too, a service pub is used to pass the results at top level;

[[Q wherex :∈ P ]]: both P and Q are executed (the parts of Q requiring the
value of x are stopped since there is no manager for x available yet), but
P is executed inside a session: the first value v published by P is used to
terminate the session. Also, the termination handler will take the value and
create a variable manager for x with this value.

Our encoding allows to simulate Orc orchestration policies inside SCC as far
as the asynchronous semantics [16] is concerned (the synchronous semantics is
mainly used to deal with timing issues, thus it is left for future extensions of
SCC with time). We give here a simple example, inspired by [16], to show how
the encoding actually works.

Example 12 (Emailing news in Orc). Let us consider the Orc expression

CNN (d)|BBC (d) > x > emailMe(x)

which invokes the news services of both CNN and BBC asking for news of day
d. For each reply it sends to me an email with the received news. Thus this
expression can send from zero up to two emails.

The encoding is as follows:

(νz, pub)
(
z{} ⇐ (CNN ⇐ d|BBC ⇐ d) |
z ⇒ (y)(νx)(x ⇒ (−)y | pub{} ⇐ emailMe ⇐ x ⇐ •) |
pub ⇒ (y)return y

)
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We have supposed here to have CNN , BBC and emailMe available as services.
When the expression is executed, both CNN and BBC are invoked. For each

returned value y, z is invoked with that value, a new variable manager is created
for it and the email protocol is called with the value taken from the variable, i.e.,
y. If some acknowledgment is returned by emailMe , then it is returned using the
auxiliary service pub.

5 Conclusions and Future Work

We have presented SCC, a core calculus for service-oriented applications. SCC
draws inspiration from different sources, primarily the π-calculus and Cook and
Misra’s service orchestration language [16], but enhances them with a mechanism
for handling sessions. Sessions permit to model interaction modalities between
clients and services which are more structured than the simple one-way and
request-response modalities. Moreover, sessions can be explicitly closed, thus
providing for a mechanism of process interruption.

Some features that naturally fall within the scope of service oriented comput-
ing have been left out of (well-formed processes in) the present version of the
calculus. While distribution of processes over sites is certainly a needed issue in
our agenda, the development of a type system is a major goal for future work.
Specifically, it seems natural to associate service names with types describing the
expected behaviour of clients and services, possibly along the lines of the session
type systems in [12] or [11]. We believe that this type system would show the
benefits of the concept of session even more clearly. Moreover, typing could be
used in a prescriptive way to refine and redesign certain aspects and primitives
of our calculus, whenever necessary for rendering their use more natural and
smooth. The impact of adding a mechanism of delegation deserves further inves-
tigation. In fact, delegation could be simply achieved by enabling session-name
passing, forbidden in the present version; consequences of this choice at the level
of semantics and (prospect) type systems are at the moment not clear, though.
For example, while many-party sessions have not been considered here, they
could be modeled by passing the name of the current session as an argument to
a third invoked service. We also plan to investigate the use of the session-closing
mechanism for programming long-running transactions and related compensa-
tion policies in the context of web applications, in the vein e.g. of [7,13], and its
relationship with the cCSP and the sagas-calculi discussed in [6]. Finally, inte-
gration of xml documents querying, in the vein of e.g. [2,5], and related typing
issues, deserve further consideration.
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Facoltà di Ingegneria, Università di Bologna
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Abstract. In this work, we investigate the feasibility of using a framework based
on computational logic, and mainly defined in the context of Multi-Agent Sys-
tems for Global Computing (SOCS UE Project), for modeling choreographies of
Web Services with respect to the conversational aspect.

One of the fundamental motivations of using computational logic, beside its
declarative and highly expressive nature, is given by its operational counterpart,
that can provide a proof-theoretic framework able to verify the consistency of
services designed in a cooperative and incremental manner.

In particular, in this paper we show that suitable “Social Integrity Constraints”,
introduced in the SOCS social model, can be used for specifying global protocols
at the choreography level. In this way, we can use a suitable tool, derived from
the proof-procedure defined in the context of the SOCS project, to check at run-
time whether a set of existing services behave in a conformant manner w.r.t. the
defined choreography.

1 Introduction

Service Oriented Architectures (SOA) have recently emerged as a new paradigm for
structuring inter-/intra- business information processes. While SOA is indeed a set of
principles, methodologies and architectural patterns, a more practical instance of SOA
can be identified in the Web Services technology, where the business functionalities are
encapsulated in software components, and can be invoked through a stack of Internet
Standards.

The standardization process of the Web Service technology is at a good maturation
point: in particular, the W3C Consortium has proposed standards for developing ba-
sic services and for interconnecting them on a point-to-point basis. These standards
have been widely accepted; vendors like Microsoft and IBM are supporting the tech-
nology within their development tools; private firms are already developing solutions
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for their business customer, based on the web services paradigm. However, the needs
for more sophisticated standards for service composition have not yet fully satisfied.
Several attempts have been made (WSFL, XLang, BPML, WSCL, WSCI), leading to
two dominant initiatives: BPEL [1] and WS-CDL [2].

Both these initiatives however have missed to tackle some important issues. We agree
with the view [3,4] that both BPEL and WS-CDL languages lack of declarativeness,
and more dangerous, they both lack an underlying formal model and semantics. Hence,
issues like run-time conformance testing, composition verification, verification of prop-
erties are not fully addressed by the current proposals. Also semantics issues, needed
in order to verify more complex properties (besides properties like livelock, deadlock,
leak freedom, etc.), have been left behind.

Some of these issues have been already subject of research: generally, a mapping be-
tween choreographed/orchestrated models to specific formalisms is proposed, and then
single issues are solved in the transformed model. E.g., the composition verification is
addressed in [5,6]; process mining and a-posteriori conformance testing are addressed
in [7]; livelock, deadlock, etc. properties are tackled in [8,9].

In this paper, we focus on a particular issue: the conformance testing (also called
run-time behaviour conformance in [3]). Once a global protocol (or choreography) has
been defined, a question arises: how is it possible to check if the actors play in a con-
formant manner w.r.t the defined choreography? Any solution should take into account
answering the question by analyzing only the external, observable behaviour of the
peers, without assuming any hypothesis or knowledge on their internals (in order to not
undermine the heterogeneity).

Taking inspiration by the many analogies between the Web Services research field
and the Multi Agent System (MAS) field [5], we exploit a framework, namely SCIFF,
for verifying at run-time (or a-posteriori using an event log) if the peers behave in a
conformant manner w.r.t. a given choreography. Within the SCIFF framework, a lan-
guage suitable for specifying global choreographies is provided: a formal semantics
is provided too, based on abductive logic programming [10]. We defined the SCIFF
framework in the SOCS european project [11], where we addressed the issue of pro-
viding a formal language to define multi agent protocols. Its operational counterpart
is an abductive proof procedure, called SCIFF, exploited to check the compliance of
agents to protocols. Moreover, a tool (namely SOCS-SI [12]) has been developed for
automatically analyzing and verifying peers interactions, w.r.t. a protocol expressed in
the language above.

In this paper we show that suitable ”Social Integrity Constraints”, introduced in the
SOCS social model, can be used for specifying global protocols at the choreography
level. In this way, we can use a suitable tool, derived from the proof-procedure defined
in the context of the SOCS project, to check at run-time whether a set of existing ser-
vices behave in a conformant manner w.r.t. the defined choreography.

The paper is organized as follows: in Section 2 we introduce the SCIFF framework
and provide its declarative semantics. Then, in Section 3 we sketch how a simple chore-
ography can be modeled within the framework. In Section 4 we show how the run-time
conformance testing issue can be addressed in our framework, grounding our proposal
to a practical example. Discussion and conclusions follow in Section 5.
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2 The SCIFF Framework

In this section, we present the SCIFF framework, describing how the conversational
part of a choreography as well as its static knowledge can be suitably expressed within
the framework. Moreover, we provide a formal definition of fulfillment (i.e., a run-time
behaviour of some peers respects a given choreography) and violation (i.e., when the
peers does not behave in a conformant manner).

2.1 Events, Happened Events and Expected Events

The definition of Event greatly varies, depending on the application domain. For exam-
ple, in the Web Service domain, an event could be the fact that a certain web method
has been invoked; in a Semantic Web scenario instead, an event could be the fact that
some information available on a site has been updated. Moreover, within the same ap-
plication domain there could be several different notions of events, depending on the
assumed perspective, the granularity, etc.

The SCIFF language abstracts completely from the problem of deciding “what is an
event”, and rather lets the developers decide which are the important events for model-
ing the domain, at the desired level. Each event that can be described by a Term, can be
used in SCIFF. For example, in a peer-to-peer communication system, an event could
be the fact that someone communicates something to someone else (i.e., a communica-
tive action has been performed):

tell(alice, bob, msgContent)

Another event could be the fact that a web service has updated some information stored
into an external database, or that a bank clerk, upon the request of a customer, has
provided him/her some money (like in Eq. 2). Of course, in order to perform some rea-
soning about such events, accessibility to such information is a mandatory requirement.

In the SCIFF framework, similarly to what has been done in [13], we distinguish
between the description of the event, and the fact that the event has happened. Typically,
an event happens at a certain time instant; moreover the same event could happen many
times 1 . Happened events are represented as an atom H(Event, T ime), where Event
is a Term, and T ime is an integer, representing the discrete time point in which the
event happened.

One innovative contribution of the SCIFF framework is the introduction of expecta-
tions about events. Indeed, beside the explicit representation of “what” happened and
“when”, it is possible to explicitly represent also “what” is expected, and “when” it is
expected. The notion of expectation plays a key role when defining global interaction
protocols, choreographies, and more in general any dynamically evolving process: it
is quite natural, in fact, to think of such processes in terms of rules of the form “if A
happened, then B should be expected to happen”. Expectations about events come with
form

E(Event, T ime)
1 In our approach the happening of identical events at the same time instant are considered as

if only one event happens; if the same event happens more than once, but at different time
instants, then they are indeed considered as different happenings.
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where Event and T ime can be a variable, or they could be grounded to a particular
term/value. Constraints, like T ime > 10, can be specified over the variables: in the
given example, the expectation is about an event to happen at a time greater than 10
(hence the event is expected to happen after the time instant 10).

Given the notions of happened event and of expected event, two fundamental issues
arise: first, how it is possible to specify the link between these two notions. Second,
how it is possible to verify if all the expectations have been effectively satisfied. The
first issue is fundamental in order to easy the definition of a choreography, and it will be
addressed in the rest of this section. The second issue, instead, is inherently related to
the problem of establishing if a web service is indeed behaving in a compliant manner
w.r.t. a given choreography: the solution proposed by the SCIFF framework is presented
in Section 4.1.

2.2 Choreography Integrity Constraints

Choreography Integrity Constraints ICchor are forward rules, of the form

Body → Head

whose Body can contain literals and (happened and expected) events, and whose Head
can contain (disjunctions of) conjunctions of expectations. In Eq. (1) we report the for-
mal definition of the grammar, where Atom and Term have the usual meaning in Logic
Programming [14] and Constraint is interpreted as in Constraint Logic Programming
[15].

ICchor ::= [IC]�

IC ::= Body → Head
Body ::= (HapEvent|Expect) [∧BodyLit]�

BodyLit ::= HapEvent|Expect|Literal|Constraint
Head ::= Disjunct [ ∨Disjunct ]�|false

Disjunct ::= Expect [ ∧ (Expect|Literal|Constraint)]�

Expect ::= E(Term [, T ])
HapEvent ::= H(Term [, T ])

Literal ::= Atom | ¬Atom

(1)

The syntax of ICchor is a simplified version of that one defined for the SOCS In-
tegrity Constraints [16]. In particular, in the context of choreographies, we do not
consider negative expectations (informally, expectations about prohibited events) and
explicit negation. In fact, we assume that choreographies completely specify all the
events that must happen (by means of expectations), and that not expected events are
indeed forbidden. This assumption is formally specified by the definition of violation
of a choreography, that we provide later in the paper (see Def. 2).

CLP constraints [15] can be used to impose relations or restrictions on any of
the variables that occur in an expectation, like imposing conditions on the role of
the participants, or on the time instants the events are expected to happen. For
example, time conditions might define orderings between the messages, or enforce
deadlines.
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ICchor allows the user to define how an interaction should evolve, given some pre-
vious situation, that can be represented in terms of happened events. Rules like:

“if a customer requests the withdrawal of X euros from the bank account, the
bank should give the requested money within 24 hours from the request, or
should explicitly notify the user of the impossibility”

can be translated straightforward, e.g. in the corresponding ICchor:

H(request(User, Bank, withdraw(X)), Tr)
→E(give(Bank, User, money(X)), Ta) ∧ Ta < Tr + 24
∨E(tell(Bank, User, not possible, reason(. . .)), Tp)

(2)

2.3 The Choreography Knowledge Base

The Integrity Constraints are a suitable tool for effectively defining the desired behav-
iour of the participants to an interaction, as well as the evolution of the interaction
itself. However, they mostly capture the “dynamic” aspects of the interactions, while
more static information is not so easily tackled by these rules. For example, a common
situation is the one where, before giving the money requested, the bank could check if
the customer’s deposit contains enough money to cover the withdrawal. Or, if the cus-
tomer indeed has a bank account with that bank, and hence if he/she is entailed to ask
for a withdrawal.

Such type of knowledge is independent of the single instance of interaction, but is
often referred during the interaction. The SCIFF framework allows to define such
knowledge in the Choreography Knowledge Base KBchor. The KBchor specifies
declaratively pieces of knowledge of the choreography, such as roles descriptions, list
of participants, etc. KBchor is expressed in the form of clauses (a logic program); the
clauses may contain in their body expectations about the behaviour of participants, de-
fined literals, and constraints, while their heads are atoms. The syntax is reported in
Equation (3).

KBchor ::= [Clause]�

Clause ::= Atom ← Cond
Cond ::= ExtLiteral [ ∧ ExtLiteral ]�

ExtLiteral ::= Literal|Expectation|Constraint
Expectation ::= E(Term [, T ])

Literal ::= Atom | ¬Atom | true

(3)

Moreover, in our vision, a choreography can be goal directed, i.e. a specific goal
Gchor can be specified. E.g., a choreography used in an electronic auction system could
have the goal of selling all the goods in the store. Another goal could be instead to sell
at least n items at a price higher than a given threshold. Hence, the same auction mech-
anism described by the same rules (integrity constraints), can be used seamlessly for
achieving different goals. Such goals can be defined like the clauses of the KBchor, as
specified in Eq. 3. Typically, a goal is defined as expectations about the outcomes of the
choreography, i.e. in terms of messages (and their contents) that should be exchanged.
If no particular goal is required to be achieved, Gchor is bound to true.
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2.4 Declarative Semantics of the SCIFF Framework

In the SCIFF framework, a choreography is interpreted in terms of an Abductive Logic
Program (ALP). In general, an ALP [10] is a triple 〈P, A, IC〉, where P is a logic pro-
gram, A is a set of predicates named abducibles, and IC is a set of integrity constraints.
Roughly speaking, the role of P is to define predicates, the role of A is to fill-in the
parts of P which are unknown, and the role if IC is to control the ways elements of A
are hypothesised, or “abduced”. Reasoning in abductive logic programming is usually
goal-directed (being G a goal), and it accounts to finding a set of abduced hypotheses
Δ built from predicates in A such that P ∪ Δ |= G and P ∪ Δ |= IC. In the
past, a number of proof-procedures have been proposed to compute Δ (see Kakas and
Mancarella [17], Fung and Kowalski [18], Denecker and De Schreye [19], etc.).

The idea we exploited in the SCIFF framework is to adopt abduction to dynami-
cally generate the expectations and to perform the conformance check. Expectations
are defined as abducibles, and are hypothesised by the abductive proof procedure, i.e.
the proof procedure makes hypotheses about the behaviour of the peers. A confirmation
step, where these hypotheses must be confirmed by happened events, is then performed:
if no set of hypotheses can be fulfilled, a violation is detected. In this paper, we also re-
quire that all the happened events are indeed expected.

A choreography specification C is defined by the triple:

C ≡ 〈KBchor, Echor, ICchor〉

where:

– KBchor is the Knowledge Base,
– Echor is the set of abducible predicates (i.e. expectations), and
– ICchor is the set of Choreography Integrity Constraints.

A choreography instance CHAP is a choreography specification grounded on a set
HAP of happened events. We give semantics to a choreography instance by defining
those sets PEND (Δ in the abductive framework) of expectations which, together with
the choreography’s knowledge base and the happened events HAP, imply an instance
of the goal (Eq. 4) - if any - and satisfy the integrity constraints (Eq. 5).

KBchor ∪HAP ∪PEND |= Gchor (4)

KBchor ∪HAP ∪PEND |= ICchor (5)

At this point it is possible to define the concepts of fulfillment and violation of a set
PEND of expectations. Fulfillment requires all the E expectations to have a matching
happened event, and that all the happened event were indeed expected:

Definition 1. (Fulfillment) Given a choreography instance CHAP, a set of expecta-
tions PEND is fulfilled if and only if for all (ground) terms p:

HAP ∪PEND ∪ {E(p) ↔ H(p)} �|= false (6)
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Symmetrically, we define violation as follows:

Definition 2. (Violation) Given a choreography instance CHAP, a set of expectations
PEND is violated if and only if there exists a (ground) term p such that:

HAP ∪PEND ∪ {E(p) ↔ H(p)} |= false (7)

Notice that, w.r.t. the original SCIFF framework defined for the MAS scenario, the
definitions of fulfillment and violation are slightly different. In fact in the Web Services
scenario we consider as a violation all the events that happen without being expected.
Notice that two different kinds of violation are detected by SCIFF: i) an expected event
does not have a corresponding happened event, and therefore the expectation is not
fulfilled; ii) an event happens without an explicit corresponding expectation.

The operational counterpart of this declarative semantics is the SCIFF proof proce-
dure described in Section 4. SCIFF has been proven sound and complete in relevant
cases [20].

3 Specifying a Choreography in the SCIFF Framework

In this section we develop a simple example in the SCIFF framework. To our purposes,
let us consider a revised version of the choreography proposed in [3]. The choreography
(shown in Figure 1) models a 3-party interaction, in which a supplier coordinates with
its warehouse in order to sell and ship electronic devices. Due to some laws, the supplier
should trade only with customers who do not belong to a publicly known list of banned
countries.

The choreography starts when a Customer communicates a purchase order to the
Supplier. Supplier reacts to this request asking the Warehouse about the availabil-
ity of the ordered item. Once Supplier has received the response, it decides to can-
cel or confirm the order, basing this choice upon Item’s availability and Customer’s
country. In the former case, the choreography terminates, whereas in the latter one a
concurrent phase is performed: Customer sends an order payment, while Warehouse
handles the item’s shipment. When both the payment and the shipment confirmation
are received by Supplier, it delivers a final receipt to the Customer. The specification
of this choreography is given in Spec. 3.1 2 . The events are represented in the form
msgType(sender, receiver, content1, . . . , contentn), where the msgType, sender,
receiver and contenti retain their intuitive meaning.

(IC1) specifies that, when Customer sends to Supplier the purchase order, includ-
ing the requested Item and his/her Country, Supplier should request Item’s avail-
ability to Warehouse. Warehouse should respond within 10 minutes to Supplier’s
request giving the corresponding quantity Qty (IC2). The deadline is imposed as a
CLP constraint over the variable Tqty , that represents the time in which the response is
sent.

2 For the sake of clarity, we omit roles specification, which may be simply expressed in the
KBchor . Moreover, although it is possible to introduce expectations also in the body of the
ICchor, here we show an example where the bodies of the rules contain only happened events.
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Specification 3.1 ICchor specification of the example in figure 1

H(purchase order(Customer, Supplier, Item, Country), Tpo)

→E(check availability(Supplier, Warehouse, Item), Tca) ∧ Tca > Tpo

(IC1)

H(check availability(Supplier, Warehouse, Item), Tca)

→E(inform(Warehouse, Supplier, Item, Qty), Tqty)

∧ Tqty > Tca ∧ Tqty < Tca + 10

(IC2)

H(purchase order(Customer, Supplier, Item, Country), Tpo)

∧ H(inform(Warehouse, Supplier, Item, Qty), Tqty)

→E(accept order(Supplier, Customer, Item), Tao)

∧ ok(Qty, Country) ∧ Tao > Tpo ∧ Tao > Tqty

∨E(reject order(Supplier, Customer, Item), Tro)

∧ ¬ok(Qty, Country) ∧ Tro > Tpo ∧ Tro > Tqty

(IC3)

H(accept order(Supplier, Customer, Item), Tao)

→E(shipment order(Supplier, Warehouse, Item, Customer), Tso)

∧ E(payment(Customer, Supplier, Item), Tp) ∧ Tso > Tao ∧ Tp > Tao

(IC4)

H(shipment order(Supplier, Warehouse, Item, Customer), Tso)

→E(request details(Warehouse, Customer), Trd) ∧ Trd > Tso

(IC5)

H(request details(Warehouse, Customer), Trd)

→E(inform(Customer, Warehouse, Details), Tdet) ∧ Tdet > Trd

(IC6)

H(shipment order(Supplier, Warehouse, Item, Customer), Tso)

∧ H(inform(Customer, Warehouse, Details), Tdet)

→E(confirm shipment(Warehouse, Supplier, Item), Tcs) ∧ Tcs > Tso ∧ Tcs > Tdet

(IC7)

H(payment(Customer, Supplier, Item), Tp)

∧ H(confirm shipment(Warehouse, Supplier, Item), Tcs)

→E(delivery(Supplier, Customer, Item, Receipt), Tdel) ∧ Tdel > Tcs ∧ Tdel > Tp

(IC8)

Specification 3.2 KBchor with some banned countries
ok( Qty, Country):-

Qty>0,
not banned_country( Country).

banned_country( shackLand).
banned_country( badLand).
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Customer Supplier

Order Item
send PO to Supplier

Confirm Order
send PO acceptance 
to Customer

Warehouse

Check Stock
send ordered item to Warehouse
receive availability from Warehouse

OK not(OK)

Cancel Order
send PO rejection 
to Customer

Order Shipment
send shipment order to Warehouse

Make Payment
send payment info to Supplier

Get Shipment Details
send request to Customer
receive details from Customer

Confirm Shipment
send shipment confirmation to 

Supplier

Receipt Delivery
send receipt to Customer

Fig. 1. A simple choreography example

After having received the requested quantity, Supplier decides whether to accept or
reject Customer’s order (IC3). As we have pointed out, the decision depends upon the
quantity and the Country the Customer belongs to; Supplier may accept the order
only when Qty is positive and customer’s Country is not in the list of banned coun-
tries. This last condition has been expressed using a predicate defined in the KBchor,
showed in Spec. 3.2. If Supplier has accepted the purchase order, then Customer is
expected to pay for the requested Item and, at the same time, Supplier will send a
shipment order to Warehouse, communicating the involved Item and Customer’s
identity (IC4). Warehouse will use Customer’s identity in order to communicate
with him/her and asking for shipment details (IC5). 3

When Customer receives the request for details, then he/she is expected to respond
giving his/her own Details (IC6). After having received them, Warehouse should
sends to Supplier a shipment confirmation (IC7). Finally, (IC8) states that when both
the payment and the shipment confirmation actually happen Supplier is expected to
deliver a Receipt to Customer.

3 This could be viewed, at a higher level, as a channel passing mechanism, since Customer is
used as a content part of the first message, and as receiver of the second one.
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4 Run-Time Conformance Verification of Web Services
Interactions

In Section 2 we have introduced some key concepts of our approach, in particular hap-
pened events and expectations, and a declarative semantics, together with the notion of
fulfillment and violation of a choreography specification. In this section we show how,
by exploiting these concepts, it is possible to perform the run-time conformance check,
by the operational counterpart of the declarative semantics, represented by the SCIFF
proof procedure. We also show how SCIFF operates on a concrete interaction example.

4.1 Detecting Fulfilment and Violation: The SCIFF Proof Procedure and the
SOCS-SI Tool

We developed the SCIFF proof procedure for the automatic verification of compliance
of interactions w.r.t. a given choreography. Then, we developed a Java-based applica-
tion, SOCS-SI, that receives as input the specification of a choreography and the happen-
ing events, and provides as output the answer about the conformance issue. SOCS-SI
uses the SCIFF proof procedure as inference engine, and provides a Graphical User
Interface for accessing the results of the conformance task.

Fig. 2. The SOCS-SI tool

The SCIFF proof procedure considers the H events as predicates defined by a set
of incoming atoms, and is devoted to generate expectations corresponding to a given
set of happened events and to check that expectations indeed match with those events.
The proof procedure is based on a rewriting system transforming one node to another
(or to others) as specified by rewriting steps called transitions. A node can be either the
special node false, or defined by the following tuple

T ≡ 〈R, CS, PSIC,PEND,HAP,FULF,VIOL〉
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where

– R is the resolvent (initially set to the goal G);
– CS is the constraint store (à la CLP [15]);
– PSIC is a set of implications, derived from the ICchor;
– PEND is the set of (pending) expectations (i.e., expectations have not been ful-

filled (yet), nor they have been violated=;
– HAP is the history of happened events;
– FULF and VIOL are the sets of fulfilled and violated expectations, respectively.

We cannot report here all the transitions, due to lack of space; the interested reader can
refer to [21]. As an example, the fulfilment transition is devoted to prove that an expec-
tation E(X, Tx) has been fulfilled by an event H(Y, Ty). Two nodes are generated: in
the first, X and Tx are unified respectively with Y and Ty , and the expectation is ful-
filled (i.e., it is moved to the set FULF); in the second a new constraint that imposes
disunification between (X, Tx) and (Y, Ty) is added to the constraint store CS. At the
end of the computation, a closure transition is applied, and all the expectations remain-
ing in the set PEND are considered as violated. The SCIFF proof procedure can be
downloaded at http://lia.deis.unibo.it/research/sciff/.

The SOCS-SI software tool is a Java-based application, that provides to the user
a GUI to access the outcomes of the SCIFF proof procedure. It has been developed
to accept events that happen dynamically, from various events source. It accepts, as
event source, also a log file containing the log of the relevant events. In this way, it is
possible to perform the conformance verification i) at run-time, by checking immedi-
ately the incoming happened events (possibly raising violations as soon as possible),
and ii) a posteriori, analyzing log files. When performing run-time verification, if time
events (i.e., events that represent the current time instant) are provided (possibly by
an external source, e.g. a clock), SOCS-SI is able to use such information to detect
deadline expirations with a discrete approximation to the nearest greater time instant.
A snapshot of SOCS-SI GUI is shown in Figure 2. SOCS-SI can be downloaded at
http://www.lia.deis.unibo.it/research/socs si/socs si.shtml.

4.2 Example of Run-Time Conformance Verification

In our scenario, the criminal bankJob beagle wants to buy a device from the on-
line shop devOnline, whose warehouse is devWare. devOnline is quite greedy, and
therefore trades with everyone, without checking if the customer comes from one of
the banned countries. As a consequence, even if bankJob comes from shackLand,
one of the banned countries, devOnline sells him the requested device, thus violat-
ing the choreography. Table 1 contains the log of the scenario from the viewpoint of
devOnline; note that messages are expressed in high level way, abstracting from the
SOAP exchange format.

When the first event (labeled m1 in Table 1) happens, (IC1) is triggered, and an
expectation about devOnline’s behaviour is consequently generated:

PEND = { E(check availability(devOnline, Warehouse, device), Tca) ∧ Tca > 2}
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Table 1. Log of messages exchanged by devOnline in our scenario

Id message sender receiver content time

m1 purchase order bankJob devOnline [device,shackLand] 2
m2 check availability devOnline devWare [device] 3
m3 inform devWare devOnline [device,3] 10
m4 accept order devOnline bankJob [device] 12
m5 shipment order devOnline devWare [device,bankJob] 13
m6 confirm shipment devWare devOnline [device] 16
m7 payment bankJob devOnline [device] 19
m8 delivery devOnline bankJob [device,receipt] 21

The happening of m2 fullfills the pending expectation and matches with the body of
(IC2), generating a new one:

FULF = { E(check availability(devOnline, devWare, device), 3)}
PEND = { E(inform(devWare, devOnline, device, Qty), TQty)

∧Tqty > 3 ∧ Tqty < 13}

The happening of m3 fulfills the current pending expectation respecting the deadline.
Moreover, it triggers (IC3), and two different hypotheses are considered (acceptance
and rejection of the order). However, since the predicate ok(3,shackLand) is eval-
uated by SCIFF to false, only the expectation about the order rejection is considered:

FULF = { E(check availability(devOnline, devWare, device), 3),

E(inform(devWare, devOnline, device, 3), 10)}
PEND = { E(reject order(devOnline, bankJob, device), Tro)

∧Tro > 3 ∧ Tro > 10}

As a consequence, when devOnline accepts the purchase order of bankJob sending
the message m4, the SCIFF proof procedure detects a violation, since m4 is not explic-
itly expected.

5 Discussion and Conclusion

In this paper, we have addressed the run-time conformance verification issue w.r.t. web
services interaction. We propose to use the SCIFF framework and the SOCS-SI tool,
and to adapt them to the Web Services peculiar features. Indeed, the presented proposal
is part of a bigger and complex framework, sketched in Figure 3. We envisage two
major research directions:

1. a translation issue, where a choreography specification is automatically translated
to its corresponding ICchor and KBchor, together with its Gchor;

2. a verification issue, that consists in three different types of verification (each one
addressed by its own proof-theoretic verification tool).
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Fig. 3. Global view of our ongoing research

With respect to the translation issue, currently the link between known and widely
accepted formalisms, such as BPEL and WS-CDL, and our model, is missing. We are
aware that this part is of a fundamental importance, in order to effectively support
our framework. Therefore, we are currently studying a translation algorithm capable
to automatically convert a WS-BPEL/WS-CDL specification to our formalism. We are
also working on the automatic translation of graphical specifications, like for example
BPMN [22]. A first algorithm, that translates a simple graphical workflow language,
has been presented in [23].

With respect to the verification issue, we envisage three possible types of verification.
The first type has been addressed in this work, and is tackled by the SOCS-SI tool
and the SCIFF proof-procedure. Noticeably, SCIFF operates indifferently off-line on a
complete log or at run-time on events as soon as they happen. Therefore, the same tool
is able to perform the conformance verification at run-time or a-posteriori. To support
this type of verification, however, a low-level mechanism for capturing the interaction
events is needed. We do not address this issue, but we recognize it is an important one,
to the end of developing a real system.

The second type of verification is about the proof of “high level” properties: in fact,
besides control-flow properties (like deadlock, liveness, etc.), it is interesting to check if
a group of peers, whose interaction follows a given choreography, can benefit of particu-
lar properties. E.g., in a e-commerce scenario, a buyer is guaranteed to receive the good
he paid for, and the seller is guaranteed to be paid. Assuming the peers behave correctly
(w.r.t. the choreography), the fact that a property holds or not is a consequence of how
the choreography has been specified. To this end, we have developed the g-SCIFF, an
extension of the SCIFF proof procedure, and we applied it to verify some properties of
a security protocol [24]. Other approaches tackle this issue by means of model checking
techniques: e.g., in [25], the authors use model checking techniques to formally verify
that requirements are met by web service systems, and to tackle the property verifi-
cation issue. High level properties are expressed by means of Linear Temporal Logic
formulas, and then verified using model checkers like SPIN or NUSMV.

The third type of verification aims to check if a web service, described by its be-
havioural interface, can play a given role within a choreography. This issue is known
as “A-Priori Conformance Verification”, and it has been tackled by many works in the
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research literature ([5,6], to cite some). We have addressed this problem in [26], com-
bining SCIFF and g-SCIFF: the interested reader can refer to such paper for a compar-
ison of the mentioned approaches.

We would like to clearly state that this is an ongoing work, and that it is far from
being concluded. Several aspects have not yet been exhaustively researched: beside the
automatic translation from other formalisms to our model, we need to test our approach
on significant choreography specifications (currently, we have performed some tests on
global interaction protocols for multi agent systems [27]).

However, we claim that our proposal indeed offers some noticeable advantages. First,
the proposed specification language is declarative, intuitive and of highly expressive na-
ture; ICchor are human readable and clearly represent how the choreography should be
followed by the interacting services. Moreover, a single specification language can be
used to perform several different types of verification. Second, we claim the importance
of modeling messages data and content as well as control flow among them. This kind
of “content awareness” is required to model constraints about the content of messages
and to formalize decisions or, more generally, pieces of knowledge of the choreogra-
phy. Moreover, deadline specification is easily performed by means of CLP constraints,
and business rules can be seamlessly expressed in the choreography knowledge base.
Since the knowledge base is defined as an abductive logic program, powerful forms of
reasoning, such as planning and diagnosis, can be easily integrated into the framework.

Acknowledgements. This work has been partially funded by the MIUR Projects PRIN
2005: “Linguaggi per la specifica e la verifica di protocolli di interazione fra agenti”
and “Vincoli e preferenze come formalismo unificante per l’analisi di sistemi infor-
matici e la soluzione di problemi reali”.
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Abstract. This paper describes a semantic extension to the Mathemati-
cal Services Query Language (MSQL). MSQL is a language for querying
registry-published mathematical Web service descriptions expressed in
the Mathematical Services Description Language (MSDL). The seman-
tic extension allows queries in MSQL to be based on the underlying se-
mantics of service descriptions; the MSQL engine processes these queries
with the help of an automated reasoner.

1 Introduction

Semantic-based discovery of Web services is one of the crucial issues that are
currently receiving considerable attention in the field of the Semantic Web. In
the case of mathematical Web services, this issue is more subtle due to the fact
that they operate within semantically rich domains on objects that need proper
encoding and specification.

A mathematical Web service is a Web service that offers the solution to a
mathematical problem (based on e.g. a computer algebra system or on an au-
tomated theorem prover). In the MathBroker project [12], we have developed a
framework for mathematical services based on standards such as XML, SOAP,
WSDL, and OpenMath. We have developed the XML-based Mathematical Ser-
vices Description Language (MSDL) [8] to adequately describe mathematical
services and their constituent entities. The description of a mathematical ser-
vice in MSDL may contain information related to the type of the problem, the
algorithm(s) used to solve the problem, related problems, machines executing the
problem, etc. A skeleton of a service description in MSDL is shown in Figure 1.

To facilitate the process of publishing and discovering mathematical services,
we have developed an ebXML-based mathematical registry [3] where MSDL de-
scriptions of services are published such that clients can discover them by brows-
ing or querying the registry (and consequently receive corresponding WSDL
descriptions). Since the querying facilities of the registry do not support content-
based querying, we have developed the content-based Mathematical Services
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<monet:definitions>

<mathb:machine_hardware name="perseus">

...

</mathb:machine_hardware>

<monet:problem name="integration">

...

</monet:problem>

<monet:algorithm name="RischAlg">

...

</monet:algorithm>

<monet:implementation name="RImpl">

...

<monet:hardware href=".../perseus"/>

<monet:algorithm href=".../RischAlg"/>

</monet:implementation>

<monet:service name="RRISC">

...

<monet:problem href=".../integration"/>

<monet:implementation href=".../RImpl"/>

</monet:service>

</monet:definitions>

Fig. 1. A Skeleton of a Service Description

Query Language (MSQL) [1,4] which is able to perform queries at the syntac-
tical structure of a MSDL service description. However, mathematical objects
respectively their MSDL descriptions are semantically rich and MSQL does not
capture these semantic structures and their relations. This limits the effective-
ness of service discovery since it is not based on the semantic information con-
tained in MSDL descriptions. In this paper we present an extension to MSQL
that addresses the semantic information contained in service descriptions. This
extension adds a number of constructs to the language in order to express predi-
cate logic formulas and adds a semantic evaluator to the MSQL engine to process
these formulas with the help of an automated reasoner. The rest of this paper
briefly describes the syntactic structure of MSQL (Section 2), the semantic ex-
tension to MSQL (Section 3), the MSQL engine architecture and implementation
(Section 4), and finally reviews related work (Section 5).

2 The MSQL Syntactic Structure

The Mathematical Services Query Language is a language designed and imple-
mented to query registry-published services based on the contents of their MSDL
descriptions. It provides the functionality to interface to a registry and retrieve
service descriptions on which queries are performed. Its implementation is based
on a formally defined semantics [1].
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A query in MSQL conforms to the following syntax:

SELECT EVERY|SOME <entity>
FROM <classificationConcept>
WHERE <expression>
ORDERBY <expression> ASCENDING|DESCENDING

The query has four main clauses:

– The SELECT clause selects EVERY or SOME description of the type spec-
ified by entity from a given classification scheme in the registry. The entity
types defined by MSDL are problem, algorithm, implementation, realization
(including a WSDL service description), and machine.

– The FROM clause determines the classification scheme from which the spec-
ified description is to be selected. Every service respectively its description in
the registry is classified according to predefined classification schemes in the
registry. The FROM clause limits the range of descriptions to be retrieved
for querying to those classified under ClassificationConcept.

– The WHERE clause applies its expression parts to each candidate document
retrieved from the registry. The expression of the WHERE clause is a logical
condition: if it is evaluated to true, the document is considered as (part of)
the result of the query.

– The ORDERBY clause sorts the resulting documents in ASCENDING or
DESCENDING order based on the comparison criteria resulting from the
evaluation of its expression on each document.

MSQL is designed such that it has a minimal set of expressions that are
sufficient to construct logical statements on the contents of the target MSDL
descriptions and that it is able to address the structure of such descriptions.
MSQL expressions include: path expressions that can access every part of an
MSDL document; expressions involving logical, arithmetic, and comparative op-
erators; conditional expressions; quantified expressions; functions; and variable
bindings. The following is a sample MSQL query that illustrates the usage of
some of these expressions.

Example 1. Find every service in “/GAMS/Symbolic Computation” such that,
if it has an implementation, it runs on a machine called “perseus”, otherwise its
interface is on this machine.

SELECT EVERY service
FROM /GAMS/Symbolic Computation
WHERE
if not (/service[empty(//implementation)])
then
let $d := doc(//implementation/@href) in
$d/hardware[contains(@name, "perseus")]

else
//service-interface-description[contains(@href, "perseus")]

ORDERBY /service/@name descending
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This query asks for every service description classified under “/GAMS/Symb-
olic Computation” that satisfies the WHERE expression. The resulting doc-
uments are to be sorted in descending order according to their names. The
conditional expression (if .. then .. else) is used to decide if the current service
document node has an implementation. If this is the case, it takes from the ser-
vice document the URI of such implementation document, retrieves it from the
registry (let $d := doc(//implementation/@href)), and checks if this imple-
mentation is related to the machine perseus. If this is not the case, it checks in
the else branch, if the service has its interface on the said machine. The let
clause is used to assign a document to the variable d which is then used as part
of the path expression. The doc function returns the root node of the document
whose name appears as its argument. Its argument is a URI that is used as the
address of the required document in the registry. The contains function returns
true if its first argument value contains as part of it its second argument value.

Although MSQL provides the functionality to express and perform queries
on the syntactic structure of MSDL descriptions, it does not provide the func-
tionality to express and perform queries on their semantic content. In the next
section, we present an extension to MSQL that addresses this limitation.

3 A Semantic Extension to MSQL

The Mathematical Services Description Language (MSDL) is capable of repre-
senting not only syntactic structures, but also semantic information. This in-
formation is expressed in OpenMath [6], an XML-based standard format for
representing mathematical objects in a semantics-preserving way. To illustrate
this approach, we first present a sample description to show the underlying se-
mantics of MSDL and then show how a query that operates on this semantics
can be constructed .

Consider a description of the mathematical problem of indefinite integration
(Figure 2). It consists of the following pieces of semantic information:

– Input: f : R → R (lines 3 to 13) which expresses the type R → R of the
input and gives it the local name f .

– Output: i : R → R which expresses the type R → R of the output and gives
it the local name i.

– Post-condition: i = indefint(f) (lines 17 to 28) which states that the output
i equals the indefinite integral of the input f .

The semantic information expressed in this problem description can be used as
a basis for discovering suitable services published in the mathematical registry.
Suppose a client wants to solve a problem with the following specification:

– Input: a : R → R

– Output: b : R → R

– Post-condition: diff (b) = a (which states that the differentiated output
equals the input).
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1 <problem name="indefinite-integration">

2 <body>

3 <input name="f">

4 <signature>

5 <OMOBJ>

6 <OMA>

7 <OMS cd="sts" name="mapsto"/>

8 <OMS cd="setname1" name="R"/>

9 <OMS cd="setname1" name="R"/>

10 </OMA>

11 </OMOBJ>

12 </signature>

13 </input>

14 <output name="i">

15 ...

16 </output>

17 <post-condition>

18 <OMOBJ>

19 <OMA>

20 <OMS cd="relation1" name="eq"/>

21 <OMV name="i"/>

22 <OMA>

23 <OMS cd="calculus1" name="indefint"/>

24 <OMV name="f"/>

25 </OMA>

26 </OMA>

27 </OMOBJ>

28 </post-condition>

29 </body>

30 </problem>

Fig. 2. An MSDL Problem Description

The client would thus like to find some service which solves a problem p such
that

type(inputp) = R → R ∧ (1)
type(outputp) = R → R ∧ (2)

∀ a ∈ R → R, b ∈ R → R (postp(a, b) ⇒ diff (b) = a) (3)

where formulas (1) and (2) state that the types of the input and output shall
be R → R and the universally quantified subformula (3) states that the post-
condition postp of the problem p implies that the differentiation of the output
b equals the input a. The truth of this statement depends on knowledge avail-
able about the operation diff, e.g. a knowledge base may contain the formula
diff (indefint(a)) = a which semantically relates the operators diff and indefint.

To express such a formula in MSQL, we extended the grammar of MSQL as
shown in Figure 3 by adding two clauses:
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<msqlQuery> ::= ’SELECT’ ( ’EVERY’ | ’SOME’ ) <entity>

( ’FROM’ <classification> )?

( ’WHERE’ <msqlExpr> )?

( ’ORDERBY’ <msqlExpr )?;

...

<msqlExpr> ::= ... | <typematch> | <semanticExpr>;

<typematch> ::= ’typematch’ (omObjExpr, omObjExpr);

<semanticExpr> ::= ’satisfy’ ( <omObjExpr> );

<omObjExpr> ::= <omApplication> | <omAttribution> | <omBinding>

| <omInt> | <omVar> | <omString> | <omSymbol>

| <var>;

<omApplication> ::= ’oma’ ’(’ <omObjExpr> (, <omObjExpr> )* (

<varReplacement> )? ’)’;

<omAttribution> ::= ’omattr’ ’(’ <omObjExpr>, ( <omObjExpr>

<omObjExpr> )(, ( <omObjExpr> <omObjExpr> ))*

( <varReplacement> )? ’)’ ;

<omBinding> ::= ’ombind’ ’(’ <omObjExpr> ’[’ <omBoundVariable>

(, omBoundVariable )* ’]’ <omObjExpr>

( <varReplacement> )? ’)’;

<omBoundVariable> ::= ’omvar’ ’:’ ( <var> | <omVar> ) ’@’ ’(’<omObjExpr>,

<omObjExpr> ( <varReplacement> )? ’)’;

<varReplacement> ::= ’[’ <omObjExpr> ’/’ <var> (, <omObjExpr> ’/’

<var> )* ’]’;

<omInt> ::= ’omi’ ’:’ <number>;

<omVar> ::= ’omv’ ’:’ ( <letter> | <var> );

<omString> ::= ’omstr’ ’:’ <letter> ;

<omSymbol> ::= ’oms’ ’:’ <letter> ’:’ <letter>;

<var> ::= ’$’ <letter>;

...

Fig. 3. The MSQL Semantic Extension Grammar

– The clause ‘typematch(a,b)’ states that type a matches (i.e. equals or is a
special version of) type b.

– The clause ‘satisfy e’ states that the semantic interpretation of the predicate
logic formula e (encoded as an OpenMath expression) yields true.

The <semanticExpr> rule and its subrules define the grammar of predicate
logic formulas based on the classification of OpenMath objects into basic objects
and compound objects [6]. Basic objects include Integers, Strings, Variables, and
Symbols. Compound objects include Application, Attribution, and Binding. The
syntax is defined such that expressions are written in a prefix notation which
is internally transformed to OpenMath syntax. For instance the <omBinding>
subrule (see also Example 2) expresses an OpenMath Binding object which is
constructed from an OpenMath object (the binder), and from zero or more vari-
ables (the bound variables) followed by another OpenMath object (the body).
The MSQL expression
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oma(oms:relation1:eq, oma(oms:calculus1:diff, omv:b), omv:a)

is thus transformed to the OpenMath XML object

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="diff" cd="calculus1"/>
<OMV name="b"/>

</OMA>
<OMV name="a"/>

</OMA>

Example 2. Our request to find some service with problem p such that the type
checks (1) and (2) and the subformula (3) are satisfied can be expressed by the
following MSQL query:

SELECT SOME service
FROM /GAMS/Symbolic Computation
WHERE let $p:= doc(//problem/@href) in

$a:= $p//input/@name,
$b:= $p//output/@name,

$ta:= $p//input/signature/OMOBJ,
$tb:= $p//output/signature/OMOBJ,

$post:= $p//post-condition/OMOBJ in
(typematch(oma(oms:sts:mapsto(oms:setname1:R,

oms:setname1:R)), $ta)) and
(typematch($tb, oma(oms:sts:mapsto(oms:setname1:R,

oms:setname1:R)))) and
(satisfy(ombind(oms:quant1:forall
[omvar:$a@(oms:sts:type, $ta),
omvar:$b@(oms:sts:type, $tb)]

oma(oms:logic1:implies, $post,
oma(oms:relation1:eq,

oma(oms:calculus1:diff, omv:$b), omv:$a)))))

Variable $p represents the problem description of the service retrieved from
the registry by the doc function according to the problem href provided as part
of the service description. Variables $a and $b represent the names of the input
and the output of the problem. Variables $ta and $tb represent the types of
the input and the output of the problem. Variable $post represents the post-
condition of the problem.

The two typematch expressions correspond to formulas (1) and (2). They
check if type R → R matches the type $ta of the input and if the type $tb of
the output matches type R → R.

The satisfy expression corresponds to the universally quantified subfor-
mula (3).

In the next section, we explain how the query is handled by the MSQL engine.
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4 The MSQL Architecture and Implementation

MSQL including its semantic extension has been implemented as MSQL en-
gine [1,4] and has been incorporated into the MathBroker framework [12] for
service publication and discovery.

4.1 Architecture

Figure 4 illustrates the architecture of the MSQL engine which consists of the
following components:

Fig. 4. The MSQL Engine Architecture

– The MSQL Engine which has the MSQL query functionality. It consists of
the following components:
• The Query Processor which receives the query from the client, decom-

poses it into processable parts, and hands each part to the corresponding
component.

• The Parser receives the query from the processor and parses it according
to the MSQL syntax. If the query does not comply with the syntax, an
error message is returned to the processor which forwards the message
to the client.

• The Registry Handler receives from the processor the entity and clas-
sificationConcept parts of the query. It composes a registry query to
retrieve EVERY /SOME description document of the given entity type
classified under the given classificationConcept.
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• The Syntactic Expression Evaluator receives from the Query Proces-
sor the syntactic expression part of the query and evaluates it against
each description document retrieved from the registry. It returns to
Query Processor those documents for which the expression evaluates
to true.

• The Semantic Expression Evaluator receives from the Query Proces-
sor the semantic expression part of the query and evaluates it against
each description document retrieved from the registry. It returns to the
Query Processor those documents for which the expression evaluates to
true. Unlike the Syntactic Expression Evaluator, the Semantic Expres-
sion Evaluator does not perform the whole evaluation by itself. It rather
takes the semantic expression, converts it into OpenMath format (see
Figure 5), retrieves from the Knowledge Base the axiom(s) and type dec-
laration(s) needed to reason about the semantic expression and sends all
of them to the Reasoner Interface. As required by the Reasoner Interface,
the axioms are represented in OpenMath format and the declarations are
represented in OMDoc [16] format.

• The Result Quantifier and Sorter receives from the Query Proces-
sor SOME/EVERY document filtered by the two evaluators, orders (if
needed) the documents according to the ORDERBY expression, and
returns them as the query result to the Client.

– The Registry which stores a collection of published MSDL documents of dif-
ferent entity types and classifies them according to some registry-predefined
classification schemes. Query requests to the registry are handled by the
Query Manager of the registry.

– The Reasoner Interface receives from the Semantic Expression Evaluator
the semantic expression part of the query in OpenMath, the axiom(s) in
OpenMath, and the declaration(s) in OMDoc and converts each one to the
format required by the Automated Reasoner and hands them to the rea-
soner. It gets the answer from the reasoner and sends it to the Semantic
Expression Evaluator. The Reasoner Interface used is a component of the
RISC ProofNavigator [19].

– The Automated Reasoner reasons about semantic expressions based on
the axiom(s) and declaration(s) given and returns the answer to the Rea-
soner Interface. The Automated Reasoner currently used is the Cooperating
Validity Checker Lite (CVCL) [5].

– The Knowledge Base holds declarations of OpenMath symbols that may
be used in semantic queries together with axioms that describe the semantics
of that symbols.

4.2 Performing the Semantic Query

Based on this architecture, we summarize the actions taken to perform the query
in Example 2:

– The MSQL Engine receives the query from the Client and hands it to the
Query Processor
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– The Query Processor asks the Parser to parse the query according to the
MSQL syntax. If the query does not comply with the MSQL syntax, an error
message is returned to the user.

– The Query Processor decomposes the query to processable parts. It hands
the registry-related part (the entity service and the classificationConcept
“/GAMS/Symbolic Computation”) to the registry handler.

– The Registry Handler forms a registry query based on the entity and the
classificationConcept, connects to the Registry and hands the registry query
to the Query Manager of the Registry which performs the query and returns
a set of candidate service documents to the Registry Handler.

– The Query Processor asks the Syntactic Expression Evaluator to evaluate
the syntactic expression part on the current service document. The Syntactic
Expression part consists of a let expression which has six assignment subex-
pressions. The evaluations of these subexpressions assign values to variables
$a, $b, $ta, $tb, and $post representing input, output, input type, output
type, and post-condition respectively. These variables are used in the se-
mantic expression of the query.

– The Query Processor asks the Semantic Expression Evaluator to evaluate
the semantics expression against the (same) current service document. The
Semantic Evaluator performs the following steps:
• It performs the type checking required by the two typematch expressions.

If the result of the check is true it proceeds to the next step. Otherwise
it returns false and the Query Processor proceeds to perform the query
on the next candidate document.

• It converts the satisfy expression to OpenMath format. The Open-
Math representation of the satisfy expression is shown in Figure 5. The
conversion also takes care of variable substitution (e.g., variable $a is
substituted by the input name f ).

• It retrieves from the Knowledge Base the declarations of the symbols
diff and indefint represented in OMDoc. The two symbols occur in the
OpenMath representation of the satisfy formula after variable substi-
tution. The declaration of the diff symbol is shown in Figure 6. The
indefint symbol has a similar declaration.

• It retrieves from the Knowledge Base the axiom diff (indefint(a)) = a.
This axiom is represented by the following quantified formula in Open-
Math format (similar to the OpenMath format of the satisfy expression)

∀ f ∈ R → R (indefint(diff (f)) = f)

• It hands the satisfy expression (in OpenMath), the declarations (in OM-
Doc), and the axiom (in OpenMath) to the Reasoner Interface which
converts each of them to the syntax required by the reasoner. The rea-
soner decides about the truth value of the expression based on the given
axiom and declarations and returns the answer to the RISC ProofNavi-
gator which in turn returns the answer to the Semantic Expression Eval-
uator.
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1 <OMOBJ>
2 <OMBIND>
3 <OMS name="forall" cd="quant1"/>
4 <OMBVAR>
5 <OMATTR>
6 <OMATP>
7 <OMS name="type" cd="sts"/>
8 <OMA>
9 <OMS name="mapsto" cd="sts"/>
10 <OMS name="R" cd="setname1"/>
11 <OMS name="R" cd="setname1"/>
12 </OMA>
13 </OMATP>
14 <OMV name="f"/>
15 </OMATTR>
16 <OMATTR>
17 ...
18 <OMV name="i"/>
19 </OMATTR>
20 </OMBVAR>
21 <OMA>
22 <OMS name="implies" cd="logic1"/>
23 <OMA>
24 <OMS name="eq" cd="relation1"/>
25 <OMV name="i"/>
26 <OMA>
27 <OMV name="indefint" cd="calculus1"/>
28 <OMV name="f"/>
29 </OMA>
30 </OMA>
31 <OMA>
32 <OMS name="eq" cd="relation1"/>
33 <OMA>
34 <OMV name="diff" cd="calculus1"/>
35 <OMV name="i"/>
36 </OMA>
37 <OMV name="f"/>
38 </OMA>
39 </OMA>
40 </OMBIND>
41 </OMOBJ>

Lines 5 to 15 represent the conversion of
the binder expression

omvar:$a@(oms:sts:type, $ta)

with the variables $a and $b substituted
by their values. It represents the declaration

f : R → R

Lines 21 to 39 represent the conversion of
the satisfy subexpression

oma(oms:logic1:implies, $post,

oma(oms:relation1:eq,

oma(oms:calculus1:diff,

omv:$b), omv:$a))

with the variables $post, $a, and $b ap-
propriately substituted by their values. It
represents the implication

i = indefint(f) ⇒ diff (i) = f .

Fig. 5. OpenMath Representation of the satisfy Expression in Example 2

– If the evaluation of the semantic expression yields true, the Query Processor
returns the current service document to the Result Quantifier and Sorter
which returns it to the Client as the ultimate result (because of the SOME
clause) of the query. If the evaluation is false the Query Processor proceeds to
process the query on the next candidate service document. If the evaluation
is false for all candidate documents, then no document is returned as a result
of the query.

4.3 A Prototype Implementation

A prototype of the architecture has been implemented in Java making use of
the registry [3] for publishing service descriptions, a component of the RISC
ProofNavigator [19] as the Reasoner Interface, and the Cooperating Validity
Checker Lite (CVCL) [5] as the Automated Reasoner.

The implementation of the MSQL engine is based on a formal definition [1]
using denotational semantics [18]. The implementation consists of a set of
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<omdoc:omgroup>

<omdoc:symbol kind="object" name="calculus1_diff">

<omdoc:type system="simply_typed"

xml:id="calculus1_diff_type">

<om:OMA>

<om:OMS cd="sts" name="mapsto"/>

<om:OMA>

<om:OMS cd="sts" name="mapsto"/>

<om:OMS cd="setname1" name="R"/>

<om:OMS cd="setname1" name="R"/>

</om:OMA>

<om:OMA>

<om:OMS cd="sts" name="mapsto"/>

<om:OMS cd="setname1" name="R"/>

<om:OMS cd="setname1" name="R"/>

</om:OMA>

</om:OMA>

</omdoc:type>

</omdoc:symbol>

</omdoc:omgroup>

Fig. 6. The declaration of variable diff in OMDoc Format

evaluation classes each of which corresponds to one component of the MSQL
engine with a set of methods each of which corresponds to one equation in the
denotational semantics. The signature of a method corresponds to the signature
of the semantic function. For example, the equation

E�V � d n r = lookup(d, �V �)

with the semantic function

E : Expression×Declaration×Node×Registry → V alue

is implemented by the Java method with the signature

evaluateVariableExpr(ChildAST expression, Declaration declaration,
Node node, Registry registry)

The prototype implementation of the MSQL engine including its API can be
found in [2].

5 Related Work

The semantic-based discovery of Web services has recently received growing
interest. The METEOR-S Web Service Discovery Infrastructure (MWSDI) [20]
aims to provide efficient publication and discovery mechanisms in a federation
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of registries. It uses an ontology-based approach to organize registries, enabling
semantic classification of services based on domains. Registries support semantic
publication of services which is used during the discovery process.

The Ontology Web Language for Services (OWL-S) [17] allows Semantic Web
tools to process Web services in order to enable software agents to automatically
discover, invoke, compose, and monitor Web services. In [11], OWL-S is used in
conjunction with WSDL to add semantic descriptions to a Web service. When
a registry is used for the publication and discovery of a service, OWL-S is used
in this respect to add capability matching to the registry.

The Web Service Modeling Ontology (WSMO) [21] is a formal language for
semantically describing Web services to facilitate the automation of discovering,
composing, and invoking such services. WSMO uses a formal logic for describing
its own elements such as ontologies, descriptions, goals, and mediators.

Few approaches have focused on the semantic description and discovery of
mathematical Web services. In the MONET project [14], ontologies [7] are used
to model service descriptions as well as queries on these descriptions. These
ontologies are ontological conversions of MSDL descriptions written in OWL [13]
and are used by a component within the MONET architecture called Instance
Store [10] which uses the Description Logic reasoner RACER [9] for matching
queries to appropriate services. The reasoning process in the case of MONET
is based on a restricted form of first order logic which is more tractable for
automated reasoning but strictly less expressive. In our semantic queries, we use
full predicate logic which is a highly expressive language.

A matching-based discovery approach [15] to registry-published mathematical
services performs matchmaking between representations of tasks (client requests)
and capabilities (service descriptions). The approach applies a normalization
process on a task. It then compares the normalized task with a registered ca-
pability calculating a similarity value that is used in the matchmaking process.
Task normalization amounts to carrying out a sequence of transformations on the
task description rewriting all logical parts in disjunctive normal form, flattening
arguments of n-associative operations, and consistent variable renaming.

The similarity value is calculated based on the matching of the capability
precondition (or the task postcondition) and the capability postcondition (or the
task precondition). Matchmaking is performed by: registering capabilities in the
database, taking a description of a task normalizes it, and returns an ordered list
of the capabilities from the registry database based on their calculated similarity.

The matching process used in the discovery is ultimately based on the syn-
tactic similarity traced between tasks and capabilities. In our case, the decision
is based on logical implications between statements extracted from descriptions,
which is strictly more general.

6 Conclusion and Future Work

The semantic extension of MSQL supports semantic-based discovery of registry
published mathematical services. Semantic queries formed in predicate logic
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capture the underlying semantical structures of mathematical service specifi-
cations. The MSQL engine performs semantic-based queries with the help of an
automated reasoner which takes predicate logic formulas, decides their validity,
and returns the answer to the engine.

The syntax of MSQL and the presented query examples reveal an apparent
difficulty in forming queries on target documents. Such a difficulty is alleviated
partly by the fact that MSQL has a relatively small number of constructs for
forming queries and by the fact that its queries operate on documents that
possess common structures imposed by a schema. Thus, a user-friendly tool for
forming queries on target MSDL documents should be developed.

A future extension to the presented framework may involve service composi-
tions: when a client submits a service request, a broker agent determines suitable
service compositions satisfying the client request and returns the description of
a composition rather than that of a single service. To find the suitable candidate
services, the agent might form MSQL queries based on information contained
in the client request, send them to the MSQL engine, and make composition
decisions based on the results returned by the MSQL engine.
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Verified Reference Implementations
of WS-Security Protocols

Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon
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Abstract. We describe a new reference implementation of the web services secu-
rity specifications. The implementation is structured as a library in the functional
programming language F#. Applications written using this library can interop-
erate with other compliant web services, such as those written using Microsoft
WSE and WCF frameworks. Moreover, the security of such applications can be
automatically verified by translating them to the applied pi calculus and using
an automated theorem prover. We illustrate the use of our reference implementa-
tion through examples drawn from the sample applications included with WSE
and WCF. We formally verify their security properties. We also experimentally
evaluate their interoperability and performance.

1 Introduction

XML web services offer a standards-based framework for deploying secure networked
applications. Using SOAP [16] to serialize data, WS-Addressing [10] to identify end-
points, WS-Security [24] to protect messages, and HTTP or TCP as transport, program-
mers can deploy clients and servers that can operate across different platforms.

To this end, the WS-Security standard defines a security header for SOAP messages
that may include signatures, ciphertexts, key identifiers, and tokens identifying par-
ticular principals. Environments such as Apache WSS4J [3], IBM WebSphere [17],
and Microsoft Web Services Enhancements (WSE) [20] and Windows Communication
Foundation (WCF) [21], provide tools and libraries for building web services that are
secured via the mechanisms of WS-Security and related specifications.

In general, even if an attacker is unable to compromise the underlying cryptographic
algorithms used in a protocol, there may be successful attacks based on intercepting,
rewriting, and sending messages, as noted by Needham and Schroeder [25] and later
formalized by Dolev and Yao [11]. Due to the flexibility of composable specifications
and the semi-structured nature of the XML message format, WS-Security protocols
are actually more prone to message rewriting attacks than protocols based on binary
formats. In particular, studies of the usage of WS-Security reveal a wide range of vul-
nerabilities to message rewriting attacks [5,6,4,18,19]. Hence, it is essential to verify
the security of WS-Security protocol implementations before deployment.

Almost all verification tools for cryptographic protocols analyze abstract models
rather than implementations. For instance, the ProVerif [9,8] theorem prover takes a pro-
tocol model written in a variant of the pi calculus [23,2] plus target authentication and
secrecy goals, and attempts to prove that the model satisfies these goals. So, to verify
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the security of a web services protocol implementation, one may write a detailed formal
model for the protocol by studying the standards, by carefully observing the messages
it sends, or by reading its source code. Using such models, previous analyses establish
correctness theorems [14,5,4,18,19] and report attacks [5,6] on many WS-Security pro-
tocols. Still, writing formal models remains difficult and time-consuming; hence, this
approach is typically applied only to common protocols. Even for these protocols, a
precise and detailed formal model is lengthy, and its fidelity to the implementation is
difficult to maintain.

In earlier work [7], we present an automated verification method for security proto-
col implementations written in F# [26], a dialect of ML. Our tool, named fs2pv, relies
on the ProVerif theorem prover to verify that an F# program meets its security goals
in the presence of an active attacker. The capabilities of the active attacker can be flex-
ibly defined as a programming interface that lists all the values and functions of the
protocol that the attacker may access. Our earlier work demonstrates the effectiveness
of these tools on several protocol implementations, including protocol implementations
based on WS-Security, and establishes a general theorem stating the correctness of our
method.

The present paper complements and extends this work by elaborating the details
of our verifiable programming style for WS-Security. We propose to build reference
implementations for WS-Security protocols in F#. We develop a verified library that
partially implements WS-Security and its related specifications. With this library, we
can quickly implement, test, and verify new protocol implementations. Our reference
implementations are readable, succinct, and verified.

The contributions of this paper are as follows:

1. A description of the design and architecture of a reusable library for building web
services and verifying their security. Our library supports a significant subset of
the specifications for web services security and can interoperate with other web
services implementations.

2. A detailed case study of the implementation and verification of a WS-Security se-
curity protocol. To the best of our knowledge, the thousand line pi calculus process
we verify is the largest model of a cryptographic protocol to be extracted from code.
We provide interoperability results and performance comparisons; as a benchmark,
our implementations pass interoperability tests with at least two production im-
plementations, Microsoft WSE and WCF. We also give formal security guarantees
for this protocol, established by running verification tools and instantiating general
theorems that justify our method.

Our earlier paper discusses related work, including tools that derive implementa-
tion code from models. We are aware of only one other tool that extracts models from
cryptographic protocol implementations, Goubault-Larrecq and Parrenne’s Csur [15].
Their tool extracts Horn clauses from C code; it has been applied successfully to the
Needham-Schroeder protocol.

The structure of the rest of the paper is as follows. Section 2 recalls the verification
method developed in our previous work. Section 3 details the implementation and veri-
fication of a WS-Security X.509 mutual authentication protocol. Section 4 presents ver-



90 K. Bhargavan, C. Fournet, and A.D. Gordon

ification results for some WS-Security protocol implementations. Section 5 describes
the structure of our WS-Security library. Section 6 concludes.

2 Verifying Security Protocol Implementations in F# (Review)

The F# programming language [26] is a dialect of ML that executes on the Common
Language Runtime (CLR). The figure above shows the structure of our formal method
for verifying protocol models that are derived from the F# code of security protocols.
This section outlines our method; the description draws in part on material included in
our earlier paper [7].

Our tool fs2pv captures the semantics of an expressive subset of F# by translating
F# implementation code to the dialect of the applied pi calculus [2] analyzed by the
ProVerif theorem prover [8]. The core of our translation is Milner’s interpretation of
functions as pi calculus processes [22]. Still, we implement many optimizations to take
advantage of features of ProVerif and to facilitate automated verification. Our transla-
tion, and the analysis performed by ProVerif, rely on a symbolic, algebraic represen-
tation of cryptography, as first proposed by Dolev and Yao [11]. We conjecture that
our method could be adapted to other source languages whose semantics can be di-
rectly represented in the pi calculus, and that other tools could be used to analyze the
translated pi calculus processes.

Dual Implementations for Trusted Libraries. Each of our protocol implementations is
a composition of typed F# modules. Each module exports types, values, and functions,
and may depend on other modules. We write standard F# interface files to describe the
types and the typed values and functions provided by a module.

Ideally, we would construct our pi calculus model of a protocol entirely from the
actual source code of its modules. For a few, trusted libraries, however, we instead
write a dual, symbolic implementation. We assume (but do not formally verify) that
the symbolic implementation of a library is an appropriate abstraction of its concrete
implementation. These symbolic abstractions correspond to Dolev and Yao’s algebraic
treatment of cryptography and networking. For example, our protocols depend on an
interface crypto.fsi, shown in Table 1, to perform cryptographic algorithms used for



Verified Reference Implementations of WS-Security Protocols 91

Table 1. The Attacker’s Interface to the Trusted Libraries

crypto.fsi (excerpt)type keybytes
val rsa encrypt: keybytes → bytes → bytes
val rsa decrypt: keybytes → bytes → bytes
val sha1: bytes → bytes
val rsa sign: keybytes → bytes → bytes
val rsa verify: keybytes → bytes → bytes → unit

prins.fsi (excerpt)
type principalX =

{subject:str;
cert: bytes;
pubkey: keybytes;
privkey: keybytes;}

val genX509: str → unit
val getX509Cert: str → bytes
val leakX509: str → principalX

net.fsi
val request: (str → str → item → item)
val accept: (str → item)
val respond: (item → unit)

web services security. The concrete library implements the abstract type bytes as actual
byte arrays, and the various functions as actual cryptographic algorithms, as provided
by CLR libraries. The symbolic library implements bytes as an algebraic data type; a
function such as rsa encrypt becomes a constructor of this datatype, while the func-
tion rsa decrypt is defined by pattern-matching on the datatype. We also define dual
implementations for an interface prins.fsi, that provides access to the operating system
security context, and an interface net.fsi, that provides networking capabilities.

We write S for the symbolic implementation of a protocol in F#: the composition
of all the modules of a protocol, but with the symbolic code instead of the concrete
code for those trusted libraries with dual implementations. This is the code that fs2pv
translates to the pi calculus. Our method does not verify the concrete code of the library
modules with dual implementations, it is not included in S; it is trusted, not verified.

As well as verifying S, we can build a symbolic version of the protocol imple-
mentation by compiling S. Running this symbolic implementation generates readable
messages, containing symbolic representations of cryptographic materials, useful for
prototyping and debugging.

The Attacker Interface. The aim of the analysis is to prove security properties such as
message authentication and secrecy in the face of an attacker able to monitor, rewrite,
and substitute messages sent between the machines playing a role in a protocol.
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We envisage the attacker as a top-level F# module that can call some but not all of
the modules making up a protocol implementation. The attacker interface, Ipub, models
the capabilities of the attacker; it is expressed as the concatenation of the interfaces for
the modules that are deemed accessible by the attacker. (The list of these modules is
an input of our verification tool; their selection is an important step of our method,
and should reflect the informal threat model for the protocol.) This attacker interface
typically includes the three interfaces in Table 1—to allow the attacker communication
and cryptographic facilities—plus functions representing protocol roles—to allow the
attacker to start arbitrary numbers of initiators and responders, for example. We write
S :: Ipub to mean that the symbolic implementation S correctly exports (at least) the
types, values, and functions in Ipub. We can check S :: Ipub with the F# typechecker.

Queries for Authentication and Secrecy. We express authentication properties as cor-
respondences between protocol events, in the style of Woo and Lam [27]. For instance,
suppose a principal A begins a protocol with some parameters P; before sending the
first message, it logs an event Begin(P). Then, if a principal B ends the protocol, log-
ging the event End(P′), an authentication goal would be that A and B agree on these
parameters (P = P′). In particular, P may include the name of principal A (to ensure
sender authentication), the contents of the message (to ensure message authentication),
and the content of related messages (to ensure correlation and session integrity).

Similarly, we express syntactic secrecy properties as correspondences: whenever the
attacker obtains a value s marked as secret, the attacker can trigger the logging of the
event NotSecret(s); hence, s remains secret only if this event is not reachable.

In ProVerif syntax, these correspondences are represented by queries:

query ev:End(P) =⇒ ev:Begin(P).
query ev:NotSecret(s) =⇒ ev:Unreachable().

The first query says that in any run of the program, if event End(P) occurs, then event
Begin(P) must have occurred before. The second query says that NotSecret(s) is un-
reachable. (We arrange that ev:Unreachable() occurs in no run of the program.) In gen-
eral, queries may include conjunctions (&) and disjunctions (|) of events on the right
hand side of the implication.

We say that S is robustly safe for q and Ipub to mean that, for every attacker mod-
ule O that is well-typed against Ipub, the query q holds in all runs of the symbolic
implementation S composed with the top-level module O. The attacker interface Ipub

typically excludes the function for logging events, so the attacker O cannot log events
itself. The formal details are elsewhere [7].

Automated Verification of Authentication and Secrecy. For any symbolic implementa-
tion S with attacker interface Ipub, our verification method consists of the following
steps. First, we identify the attacker interface Ipub and represent our authentication and
secrecy goals as ProVerif queries. Second, we run fs2pv to generate a ProVerif script,
written [[S :: Ipub]]. Third, we run ProVerif to check the script for each query q.

The following theorem states the correctness of our method. It follows as a corollary
of the correctness of ProVerif [1] and the correctness of fs2pv [7]. The proof of the
latter involves defining a direct semantics for the F# programs S accepted by fs2pv, and
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proving a correspondence between the direct semantics of each S and its pi calculus
translation [[S :: Ipub]].

Theorem 1. Suppose that S :: Ipub and that [[S :: Ipub]] is the ProVerif script generated
by fs2pv from S and Ipub. If ProVerif terminates having proved that [[S :: Ipub]] satisfies
the query q, then S is robustly safe for q and Ipub.

3 X.509 Mutual Authentication

As our main case study, we consider a mutual authentication protocol based on X.509
public key certificates. Both WSE and WCF already implement this protocol as part of
their sample code.

We begin with an informal narration of the protocol, then provide a complete im-
plementation in F#. The code is quite short, as it mostly relies on our WS-Security
libraries. We describe executions of the protocol, both symbolically (to produce read-
able message traces) and concretely (to evaluate its performance). We also report on
interoperability testing with the WSE and WCF implementations. Finally, we present
verification results for this implementation.

Protocol Narration. The protocol has two roles, a client and a server. Every session of
the protocol involves a principal A acting as client and a principal B acting as server.
Each principal is associated with an RSA key-pair, consisting of a private key and a
corresponding public key; A’s key-pair is written (skA, pkA), and B’s key-pair is writ-
ten (skB, pkB). We assume that the principals have already exchanged their public key
certificates. Hence, the principals can identify one another using their public keys.

The goal of the protocol is to exchange two XML messages: a request and a re-
sponse, such that both the client and server can authenticate the two-message session
and keep the messages secret, even in the presence of an active attacker. To accomplish
this goal, we rely on XML digital signatures and XML Encryption. The abstract mes-
sage sequence of the protocol can be written as follows (where | denotes concatenation):

A → B : TS |
RSA-SHA1{skA}[request | TS ] |
RSA-Encrypt{pkB}[symkey1] |
AES-Encrypt{symkey1}[request ]

B → A : RSA-SHA1{skB}[response | RSA-SHA1{skA}[request | TS ]] |
RSA-Encrypt{pkB}[symkey2] |
AES-Encrypt{symkey2}[response]

The client acting for principal A sends a message request at time TS to the server acting
for B. To support message authentication, the client jointly signs request and TS using
the signature algorithm RSA-SHA1 keyed with A’s private key skA. To protect the se-
crecy of the message, the client uses AES-Encrypt to encrypt it under a fresh symmetric
key symkey1. The symmetric key is in turn encrypted using RSA-Encrypt under pkB .
(This standard, two-step encryption is motivated by the relative costs of symmetric and
asymmetric encryptions for large messages.)
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The server repeatedly processes request messages. After accepting a request, the
server returns a response to the client. Like the request, the response is signed (using
skB) then encrypted (using a fresh symkey2 encrypted under pkA). To correlate requests
and responses, the server jointly signs the response and the signature value of the re-
quest. (Otherwise, since clients and servers may run several sessions in parallel, an at-
tacker may confuse the client by swapping two responses.) This correlation mechanism
is called signature confirmation.

The security goals of the protocol are:

Request Authentication: B accepts a request from A with timestamp TS only if A
sent such a request with timestamp TS.

Response Authentication and Correlation: A accepts a response to its request only
if B sent response on receiving A’s request.

Secrecy: The message payloads request and response are kept secret from all principals
other than A and B.

Implementation. Our protocol implementation is listed as X509MutualAuth.fs. The
module consists of four functions: mkEnvelope and isEnvelope generate and check the
protocol messages, while client and server implement the two protocol roles.

To parse and generate standards-compliant SOAP envelopes, and to sign and encrypt
XML elements, we rely on functions of the web services security library. As an exam-
ple, consider the mkEnvelope function. Depending on its arguments, mkEnvelope con-
structs either a request message or a response message. To construct a request, it takes a
message body containing the request, the X.509 entry snd for the sending principal A,
the X.509 certificate rcvcert for the receiving principal B, and an empty list corr. (When
constructing a response, snd is the X.509 entry for B, rcvcert is the X.509 certificate
for A, and corr contains the signature value of the request.) The code for mkEnvelope
successively calls the following library functions, defined in modules wssecurity.fs and
soap.fs:

– mkTimestamp and genTimestamp create a new timestamp and serialize it to XML;
– mkX509Signature generates the XML digital signature for the message;
– mkX509Encdatakey generates the two encrypted components;
– mkX509SecurityHeader generates the security header;
– genEnvelope generates the whole SOAP envelope for the message.

Finally, the function returns the envelope (for sending) paired with its signature value
(kept for correlating the response).

Unlike mkEnvelope and isEnvelope, the client and server functions are part of the at-
tacker interface; both these functions are included in the interface X509MutualAuth.fsi
for the protocol module X509MutualAuth.fs. Hence, an attacker can call these functions
to initiate sessions and instantiate roles.

The four arguments to client are the name of the client and server principals (clPrin,
srvPrin), and the HTTP URI and SOAP action (servUri, servAction) that identify the
server location. The client first calls the request function from the service.fs module
(described in the next subsection) to compute the XML request payload (req). It then in-
stantiates both principals; it gets the X.509 entry (cl) for clPrin from a private database;
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X509MutualAuth.fs
(∗ Opening Library Modules ∗)
open Data (∗ Standard datatypes: str, bytes, item ∗)
open Events (∗ Protocol Events ∗)

(∗ Constructing Messages ∗)
let mkEnvelope (body:item) (snd:Prins.principalX) (rcvcert:bytes)

(corr:item list) : item∗bytes =
let ts = Wssecurity.genTimestamp(Wssecurity.mkTimestamp()) in
let (dsig,sv) = Wssecurity.mkX509Signature snd (body::ts::corr) in
let (ed,ek) = Wssecurity.mkX509Encdatakey rcvcert body in
let sec = Wssecurity.mkX509SecurityHeader (Prins.cert snd) ek ts dsig in
let envXml = Soap.genEnvelope {Soap.header=[sec]; Soap.body=ed} in
(envXml,sv)

(∗ Checking Messages ∗)
let isEnvelope (envXml:item) (sndcert:bytes) (rcv:Prins.principalX)

(corr:item list) : item∗bytes =
let env = Soap.parseEnvelope envXml in
let ([sec],ed) = (env.header,env.body) in
let (ts,ek,dsig) = Wssecurity.isX509SecurityHeader sec in
let body = Wssecurity.isX509Encdatakey rcv ek ed in
let sv = Wssecurity.isX509Signature dsig sndcert (body::ts::corr) in
(body,sv)

(∗ Client Role ∗)
let client (clPrin: str) (srvPrin:str) (servUri:str) (servAction:str) =

let req = Service.request() in
let cl = Prins.getX509 clPrin in
let srvCert = Prins.getX509Cert srvPrin in
let (reqXml,sv) = mkEnvelope req cl srvCert [] in
log (ClientSend(clPrin,srvPrin,req));
let respXml = Net.request servUri servAction reqXml in
let sc = Wssecurity.genSigConf sv in
let (resp, ) = isEnvelope respXml srvCert cl [sc] in
log (ClientCorr(clPrin,srvPrin,req,resp))

(∗ Server Role ∗)
let server (clPrin:str) (srvPrin:str) (servUri:str) =

let clCert = Prins.getX509Cert clPrin in
let srv = Prins.getX509 srvPrin in
let reqXml = Net.accept servUri in
let (req,sv) = isEnvelope reqXml clCert srv [] in
log (ServerRecv(clPrin,srvPrin,req));
let resp = Service.response(req) in
let sc = Wssecurity.genSigConf sv in
let (respXml, ) = mkEnvelope resp srv clCert [sc] in
log (ServerCorr(clPrin,srvPrin,req,resp));
Net.respond respXml
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the entry consists of an X.509 certificate and its associated private key; it then extracts
the certificate (srvCert) for the server principal srvPrin. Next, it prepares the request
message (reqXml), using mkEnvelope, logs an event ClientSend(clPrin,srvPrin,req) to
indicate that it is sending the first message, and makes an HTTP request to the server,
using Net.request. The client remembers the signature value (sv) of the request for cor-
relating the response. When the client receives a response (respXml), it uses isEnvelope
to check that the response message is valid and that it includes a signature confirma-
tion (sc) echoing sv. It then logs the event ClientCorr(clPrin,srvPrin,req,resp) indicating
that a valid response has been received and correlated with the request.

The server proceeds symmetrically: it uses the client certificate and the server X.509
entry to check requests and issue responses. After accepting a request, the server logs
an event ServerRecv(clPrin,srvPrin,req); it then calls Service.response(req) to compute
the response resp, and logs the event ServerCorr(clPrin,srvPrin,req,resp) before issuing
the response.

Protocol Execution. To run the protocol, we write a main module X509Main.fs, listed
below. (This module is not used for verification; formally, it is just a simple instance of
the attackers considered in our theorems.)

let clntPrin = S "client.com"
let srvPrin = S "localhost"
do match Sys.argv.(1) with
| "client"→ client clntPrin srvPrin Service.uri Service.action;
| "server"→ server clntPrin srvPrin Service.uri;
| "local"→ Pi.fork (fun () → server clntPrin srvPrin Service.uri);

client clntPrin srvPrin Service.uri Service.action

This module first instantiates the client and server principals (identified by their X.509
common names “client.com” and “localhost”), and then runs either the client, or the
server, or both, depending on the command-line argument. The X509Main.fs module is
used only for executing the protocol; they are not used for verification.

We also write a module service.fs to encode an exemplary addition service. The mod-
ule consists of two functions: Service.request extracts two numbers from the command
line and returns them in a request body; Service.response computes the sum of the two
numbers in a request and returns it in a response body.

For verification, we write a dual, symbolic implementation of this module that gener-
alizes the two functions by allowing the attacker to choose some payloads: the symbolic
version of Service.request (Service.response) returns a request (response) body that it
either received from the attacker or it computed from a secret value. Hence, our security
goals require request and response authentication even when the attacker is allowed to
choose arbitrary payloads, and require secrecy of the secret payloads.

Symbolic runs. To run the protocol symbolically, we compile the X509MutualAuth.fs
and X509Main.fs modules with the web services library and the symbolic version of the
modules crypto.fs, net.fs, prins.fs, and service.fs to generate an executable run.exe. We
can then execute the command run local 100 15.99, for example. Our implementation
pretty-prints the communicated messages, using an abbreviated XML-like format with
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embedded symbolic expressions. The first message has 304 symbols while the second
has 531. Both messages are listed and described in the appendix.

Concrete Runs and Performance. To run the protocol concretely, we compile
X509MutualAuth.fs, X509Main.fs, and the web services library with the concrete ver-
sions of crypto.fs, net.fs, prins.fs, and service.fs to generate a new run.exe. We can then
execute the command run server on one machine, and execute run client 100 15.99 on
another. The resulting 4-kilobyte messages are instances of the symbolic messages,
where each symbol expression is replaced by a concrete, string-encoded value.

To test our concrete implementation for interoperability, we run our client with
servers implemented with WSE and WCF. The response message generated by the
WCF server does not include the X.509 certificate of the server, since the client is
expected to have it already. We easily modify our client to ignore this difference and it
successfully executes the protocol with WCF. The WSE server, however, does not sup-
port the <SignatureConfirmation> mechanism. Moreover, the key-sizes and encryption
algorithms supported by WSE are different from and more limited than WCF. After
disabling correlation and using WSE’s key sizes and algorithms, our client successfully
executes the protocol with the WSE server.

Each session of our implementation takes 1.2 seconds to complete the protocol. We
expect that this is comparable to the performance of the WSE and WCF implemen-
tations because all three implementations use the same .NET cryptography libraries,
XML parsers, and X.509 certificate stores. Indeed, in the default configuration, both
WSE and WCF take around one second per session for our protocol. A direct compar-
ison of the performance of the three protocol implementations has little significance,
because WCF, and to a lesser extent WSE, is a full web services implementation run-
ning within a web server, whereas ours is a partial implementation focusing on security.
The WSE implementation consists of around 185 lines of C# code, while the WCF im-
plementation consists of around 70 lines of C# code and 160 lines of security-related
XML configuration. In contrast, our implementation consists of 104 lines of F# code
that can be executed concretely or symbolically, as well as automatically verified.

Security Goals and Theorem. We use the fs2pv/ProVerif tool chain to verify our pro-
tocol implementation against its security goals. Recall the three security goals for our
protocol. Let G be these security goals expressed as ProVerif queries:

query ev:ServerRecv(u,s,x) =⇒ ev:ClientSend(u, ,x) | ev:Leak(u).
query ev:ClientCorr(u,s,x,y) =⇒ ev:ServerCorr(u,s,x,y) | ev:Leak(s).
query ev:NotSecret(v) =⇒

(ev:ClientSend(u,s,DataTxt(DataBase64(DataFresh(v)))) & ev:Leak(s))
| (ev:ServerCorr(u,s,r,DataTxt(DataBase64(DataFresh(v)))) & ev:Leak(u)).

The first query formalizes request authentication: it says that, if the server principal s
accepts a request x from a client principal u (ServerRecv(u,s,x)), then u has sent the re-
quest x (ClientSend(u, ,x)) or else u has been compromised. The second query formal-
izes response authentication and correlation: if the client principal u accepts a response
y for request x from server principal s (ClientCorr(u,s,x,y)), then s must have sent the
response y to u for request x (ServerCorr(u,s,x,y)).
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The third query expresses the secrecy of the request and response. It says that the
only secrets v available to the attacker (NotSecret(v)) are those that have been sent
within requests or responses to compromised servers or clients, respectively.

Let S be the F# system consisting of the X509MutualAuth.fs module, the web
services library, and the symbolic implementations for the modules crypto.fs, net.fs,
prins.fs, and service.fs. Let Ipub be the attacker interface from Table 1 extended with
the protocol interface X509MutualAuth.fsi. We use fs2pv to compile S to a script con-
sisting of 988 lines of pi calculus code. Then we run ProVerif to verify all three queries
in G above. By Theorem 1, we obtain:

Theorem 2. For each q ∈ G, the system S is robustly safe for q and Ipub.

Hence, we verify the security of our protocol implementation and all the functions it
uses from the web services library against a powerful attacker model. The only modules
we trust to be correct, and do not verify, are crypto.fs, net.fs, prins.fs, and service.fs.

Vulnerabilities and Attacks. Theorem 2 applies to our protocol implementation before
modifying it for interoperation with WCF or WSE. The modification for WCF makes
no difference to protocol correctness: we automatically establish Theorem 2 for the
modified implementation.

The modification for WSE, however, weakens the protocol: the second query (re-
sponse authentication) fails and ProVerif reports an attack. Indeed, since the modified
protocol does not use signature confirmation, an attacker can forward to the client a
response generated by the server in reply to another request by the same client. As
a result, requests and responses are not securely correlated—this is a known issue in
WS-Security 1.0, which led to the design of signature confirmation in WS-Security 1.1.
More precisely, we can still capture a weaker notion of response authentication that
holds for WSE, using the following, weaker variant of the second query:

query ev:ClientCorr(u,s,x,y) =⇒ ev:ServerCorr( ,s, ,y) | ev:Leak(s).

We then verify that all variants of our protocol implementation satisfy this query.
The X.509 mutual authentication protocol presented in this section meets our specific

set of authentication and secrecy goals, but is not unconditionally secure. We discuss
two of its limitations.

– The protocol fails to guarantee certain other security properties. For instance, it
fails to protect (stronger variants of) secrecy of request or response against guessing
attacks, when these messages have low entropy. If such protection is required, we
can either encrypt the signature in addition to the message content, or we can add a
nonce to the message content.

– The protocol also fails to prevent certain replay attacks on the server. If the client
produces a new timestamp for each request and if the server maintains a cache of
these timestamps, then replays can be detected and discarded. Indeed, our formal
model generates fresh timestamps for each message. Alternatively, we can include
a unique message identifier in each request.

We also coded stronger variants of the protocol that meet at least the requirements of
Theorem 2 and also address these limitations, and verified their implementation using
additional queries. We omit the details for simplicity.
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4 Other Protocols and Verification Results

In addition to the X.509 Mutual Authentication protocol, we have implemented several
other sample WSE and WCF protocols in F# and verified them. Table 2 reports our
experimental results. For each protocol, Table 2 states the program size for the imple-
mentation (in lines of F# code, excluding interfaces and code for shared libraries), the
number of messages exchanged, and the size of each message, measured both in bytes
for concrete runs and in number of constructors for symbolic runs. Concerning verifi-
cation, it gives the number of queries and the kinds of security properties they express.
A secrecy query requires that the message body be protected. An authentication query
requires that a message, its sender, or the whole session be authentic. All queries are
verified assuming that the attacker controls some corrupted principals, and thereby has
access to their keys and passwords. Finally, the table gives the total running time for
ProVerif to verify all queries for the protocol.

Table 2. Verification results for example protocols

Protocol Implementation Security Goals and Verification
LoC msgs bytes symbols queries secrecy authentication time

Password-based auth 85 1 3835 394 5 no msg, sender 5.3 s
X.509 auth 85 1 4650 389 5 no msg, sender 2.6 s
Pwd-X.509 mutual auth 149 2 6206; 3187 486; 542 15 no session 44m
X.509 mutual auth 117 2 4533; 4836 304; 531 18 msg session 51m

Table 3. Comparative sizes of implementation modules

Trusted Library Verified Web Services Library Protocol Module
Modules Concrete LoC Symbolic LoC Modules LoC LoC

4 793 + CLR 575 5 1648 85-149

Table 3 lists the sizes (in lines of F# code) of the modules in the protocol implemen-
tation, classified as trusted library code, verified web services code, and protocol code.
The concrete implementations of the trusted library modules rely on CLR libraries, such
as System.Cryptography for cryptographic functions; so, their size cannot be precisely
determined.

5 Implementing the Verified WS-Security Library

Programming a security protocol based on WS-Security is an exercise in modular-
ity. The messages of the protocol include elements, such as timestamps, addresses,
encrypted keys, and signatures, that are defined by different specifications. Many of
these elements eventually rely on low-level cryptographic computations. To assemble
the complete SOAP message, each element must be encoded in some XML format.
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To support this kind of programming, we structure our WS-Security library as fol-
lows. For each specification, we define an F# module Spec.fs and an interface Spec.fsi.
Within a module, each high-level message component is defined as a datatype T. Opera-
tions to generate and check elements of type T (typically using cryptographic functions)
are written as functions mkT and isT. Finally, for each datatype T, the module defines
functions genT and parseT to translate elements of T to and from XML items. In this
way, users of the library can ignore the XML representation and instead program with
the more abstract representation T and its corresponding functions.

For instance, the soap.fs module partially implements the SOAP standard [16]. It has
the following interface:

type envelope = { header: item list; body: item }
val parseEnvelope: item → envelope
val genEnvelope: envelope → item

A SOAP envelope is abstractly represented as a record that contains a list of headers
and a body. The functions parseEnvelope and genEnvelope translate such records to and
from XML items. Since there is no cryptography involved in constructing an envelope,
there are no other functions in the interface.

Similarly, the wsaddressing.fs module implements the headers defined in the WS-
Addressing specification [10]; it has a record type that abstractly represents optional
headers and it has functions to translate records to and from SOAP header elements.

The full WS-Security library consists of five F# modules, including soap.fs and
wsaddressing.fs, with a total of 1648 lines of code. We believe that these modules are
usable not only by programmers aiming to write verifiable web services security proto-
cols, but also by protocol designers looking for precise executable specifications for the
web services standards. In the rest of this section, we look in more detail at the modules
that implement the security mechanisms of WS-Security.

XML Signature. The XML Signature standard “specifies XML syntax and processing
rules for creating and representing digital signatures.” [13] An XML signature, as de-
fined in the standard, cryptographically attests to the integrity and authenticity of a set
of XML items. An example is the <Signature> element in the protocol messages in
the appendix. It includes metadata describing the computation of the signature value:
each signed element is first transformed using the specified canonicalization method
(xml−exc−c14n), then hashed using the specified digest method (SHA1); the digests
and metadata are finally signed using the specified signature method (RSA−SHA1).
The recipient of such a signature recomputes the digests and checks the received signa-
ture value before accepting the signed elements as authentic.

In our library, the xmldsig.fs module implements XML signatures. The datatype for
an XML signature is a record dsig that includes the relevant contents of the <Signature>

element as well as additional values needed for computing and checking the signature:

type dsig = {
siginfo: item;
sigval: bytes;
keyinfo: item;
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signkey: keybytes option;
verifkey: keybytes option;
targets: item list }

The field siginfo corresponds to the <SignedInfo> element containing the metadata and
all the digests; sigval contains the signature value; keyinfo identifies the signing key.
The module contains auxiliary functions for generating siginfo from the list of signed
elements (targets). To compute the sigval, we use a signing key (signkey); to check a
received sigval, we use the corresponding verification key (verifkey).

The module provides functions for constructing and checking signatures using both
symmetricand asymmetric signing algorithms,such as HMAC−SHA1and RSA−SHA1:

val mkSignature: item list → item → keybytes → str → dsig
val isSignature: item list → keybytes → dsig → bytes

The function call, mkSignature targets keyinfo signkey alg, constructs a dsig element
for the elements listed in targets, using signature key signkey and signing algorithm alg.
Conversely, isSignature targets verifkey dsig uses verifkey to check that dsig is a valid
XML signature computed from targets. The full module consists of 307 lines of code.

There are several challenges in implementing XML Signature. First, our functions
must correctly implement the low-level details of the signature. This includes not only
the details of the XML format such as namespaces and attributes, but also the use
of the canonicalization, digest, and signature algorithms. In xmldsig.fs, the functions
parseSignature and genSignature translate records of type dsig to and from XML. We
test these functions by inspecting the message traces as well as by extensive interoper-
ability testing with other implementations. Our datatype and functions hide these details
from the programmer, so all programs using these functions are guaranteed to generate
standards-conformant XML signatures.

Second, the standard offers several options for each step of signature computation
and an implementation is expected to support a subset. In our implementaion, we choose
one canonicalization and one digest algorithm, but allow two signature algorithms and
several ways of referring to signing keys. These choices do not affect the module inter-
face: the types and functions remain the same. Hence, we can easily add implementa-
tions for additional algorithms as the need arises and rely on the F# module and type
system to integrate them.

XML Encryption. The XML Encryption standard “specifies a process for encrypting
data and representing the result in XML” [12]. When parts of a message are to be en-
crypted using a symmetric key, the encrypted data mechanism can be used; when only
an asymmetric key is available for encryption, one first generates a fresh symmetric key,
uses it to encrypt data, and then protects the symmetric key using the encrypted key
mechanism. Both these mechanisms are depicted in the protocol messages in the ap-
pendix; the <EncryptedData> element contains a cipher value computed by applying a
symmetric encryption algorithm (AES−128) to the message body using a key encrypted
within an <EncryptedKey> element using an asymmetric algorithm (RSA−1.5).

The xmlenc.fs module implements XML encryption, in a similar style to xmldsig.fs.
It defines two record types encdata and encrkey representing encrypted data and en-
crypted keys. It provides functions to construct (encrypt) and decrypt records of these
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types and functions to translate them to and from XML. It also provides functions to
combine common encryption tasks; for instance, the function call, mkEncDatakey ek str
plain, generates a fresh symmetric key, uses it to encrypt the plain-text plain as an en-
crypted data block, uses the public-key ek to in turn encrypt the symmetric key, and
returns both the encrypted data and the encrypted key.

The module xmlenc.fs is implemented in 419 lines of code. It implements two sym-
metric algorithms for encrypting data, AES−128 and AES−256, and two asymmetric
algorithms for encrypting keys, RSA−1.5 and RSA−OAEP. Our choices are motivated
by the default settings in WSE and WCF; WSE supports AES−128 and RSA−1.5,
while WCF uses AES−256 and RSA−OAEP.

WS-Security. The wssecurity.fs module implements the content of the security header,
as specified in the WS-Security standard [24]. The security header contains several
optional elements, such as a message timestamp, tokens identifying principals, XML
signatures, and encrypted keys. The record representing this header is as follows:

type security = {
timestamp: ts;
utoks: utok list;
xtoks: xtok list;
ekeys: encrkey list;
dsigs: dsig list }

It consists of a timestamp (ts), generated using the mkTimeStamp function, username
tokens (utoks) identifying users and passwords, X.509 tokens (xtoks) containing public-
key certificates, encrypted keys (ekeys), and XML signatures (dsigs).

The module offers functions for constructing different kinds of tokens and for gen-
erating signatures and encrypted blocks using them. For instance, the function call,
mkX509Signature prin targets, generates an X.509 token corresponding to principal
prin and uses its private key to compute an XML signature for the element list targets.
The module also provides functions for translating security headers to and from XML.
For instance, the function genX509SecurityHeader takes a certificate, an encrypted key,
a timestamp, and a signature and generates the corresponding XML security header;
parseX509SecurityHeader does the reverse.

The wssecurity.fs module consists of 538 lines of F# code. It does not yet support
several token types defined in WS-Security, such as Kerberos and SAML tokens.

6 Conclusions

This paper demonstrates a new programming method for developing verified WS-Secu-
rity protocol implementations. Our implementations rely on a reusable library that
implements a significant subset of the web services security specifications. We demon-
strate the effectiveness of our method on a detailed example of a WS-Security mutual
authentication protocol. We verify a series of security properties, and discover some
vulnerabilities. Verification depends on our custom optimizing compiler from a subset
of F# into the pi calculus, and on ProVerif, a resolution-based prover for the pi calculus.
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Although the bulk of our code is verified, we assume the correctness of a few core
libraries, such as those implementing cryptographic algorithms and networking. The
combination of our compiler and ProVerif is effective, but in case of failure the user
does need to interpret rather low-level error messages in source language terms.

In future, we aim to improve the usability of our tools, and to extend our work to
more complicated protocols and protocol compositions.

Acknowledgements. Stephen Tse, co-author of our previous paper [7], participated in
the design of fs2pv, and completed its original implementation, during his internship at
Microsoft Research.

References

1. M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic pro-
grams. J. ACM, 52(1):102–146, 2005.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th
ACM Symposium on Principles of Programming Languages (POPL’01), pages 104–115,
2001.

3. Apache Software Foundation. Apache WSS4J, 2006. At http://ws.apache.org/wss4j/.
4. K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure sessions for web services. In

2004 ACM Workshop on Secure Web Services, pages 11–22, October 2004.
5. K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services authentication.

Theoretical Computer Science, 340(1):102–153, June 2005.
6. K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale: A security tool for

web services. In International Symposium on Formal Methods for Components and Objects
(FMCO’03), volume 3188 of LNCS, pages 197–222. Springer, 2004.

7. K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementations
of security protocols. In 19th IEEE Computer Security Foundations Workshop (CSFW’06),
2006. To appear.

8. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th IEEE
Computer Security Foundations Workshop (CSFW’01), pages 82–96, 2001.

9. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for
security protocols. In 20th IEEE Symposium on Logic in Computer Science (LICS’05), pages
331–340, 2005.

10. D. Box, F. Curbera, et al. Web Services Addressing (WS-Addressing), August 2004. W3C
Member Submission.

11. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT–29(2):198–208, 1983.

12. D. Eastlake, J. Reagle, et al. XML Encryption Syntax and Processing, 2002. W3C Recom-
mendation.

13. D. Eastlake, J. Reagle, D. Solo, et al. XML-Signature Syntax and Processing, 2002. W3C
Recommendation.

14. A. D. Gordon and R. Pucella. Validating a web service security abstraction by typing. In
2002 ACM workshop on XML Security, pages 18–29, 2002.

15. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
6th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’05), volume 3385 of LNCS, pages 363–379. Springer, 2005.

16. M. Gudgin et al. SOAP Version 1.2, 2003. W3C Recommendation.



104 K. Bhargavan, C. Fournet, and A.D. Gordon

17. IBM Corporation. IBM WebSphere Application Server, 2006. At http://www.ibm.
com/software/websphere/.

18. E. Kleiner and A. W. Roscoe. Web services security: A preliminary study using Casper and
FDR. In Automated Reasoning for Security Protocol Analysis (ARSPA 04), 2004.

19. E. Kleiner and A. W. Roscoe. On the relationship between web services security and tra-
ditional protocols. In Mathematical Foundations of Programming Semantics (MFPS XXI),
2005.

20. Microsoft Corporation. Web Services Enhancements (WSE) 2.0, 2004. At http://msdn.
microsoft.com/webservices/building/wse/default.aspx.

21. Microsoft Corporation. Windows Communication Foundation (WCF), 2006. At http://
windowscommunication.net.

22. R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–
141, 1992.

23. R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
24. A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. OASIS Web Services Security: SOAP

Message Security 1.0 (WS-Security 2004), March 2004. OASIS Standard 200401.
25. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks

of computers. Communications of the ACM, 21(12):993–999, 1978.
26. D. Syme. F#, 2005. At http://research.microsoft.com/fsharp/fsharp.aspx.
27. T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In IEEE

Computer Society Symposium on Research in Security and Privacy, pages 178–194, 1993.

Appendix

This appendix presents and describes the protocol messages for the X.509 mutual au-
thentication protocol of Section 3.

Symbolic Messages. The listing X509MutualAuthMsg1.xml shows the first message
as printed out by a symbolic run of the protocol; X509MutualAuthMsg2.xml shows the
second message.

In X509MutualAuthMsg1.xml, ts1 is the symbolic timestamp, and req is the serial-
ized request. The message has a security header that contains ts1, an encrypted symmet-
ric key key1, and an XML digital signature for req and ts1. The key key1 is encrypted
using the public key certificate for the server; in this message the certificate is issued
by Root and has a serial number guid4 and public key PK(rsa secret3). The XML sig-
nature value sv1 is computed as the RSA−SHA1 signature of the element si, which in
turn contains the SHA1 hashes of req and ts1. Finally, the body of the message is the
request req encrypted under the symmetric key key5.

The second message can be read similarly; the main difference is that the signature
includes a new <SignatureConfirmation> element containing the signature value sv1
from the first message.

Concrete Messages. The XML messages printed our in concrete runs of the protocol
are instances of the symbolic messages, where each symbol expression is replaced by a
concrete, string-encoded value.

For instance, the timestamp ts1 is now the concrete XML element

<Timestamp Id=”Timestamp” xmlns=”http://...wss−wssecurity−utility−1.0.xsd”>
<Created>2006−04−27T09:12:17Z</Created>



Verified Reference Implementations of WS-Security Protocols 105

<Expires>2006−04−27T09:13:17Z</Expires>
</Timestamp>

and the signature value sv1 is now the 172-character base64-encoded string

4Bpd7K+2n6eW+brpEwYO9hdwHrcNPOAoK+Bqn4........KCstFrZQ24=

X509MutualAuthMsg1.xml
<Envelope>

<Header>
<Security>

ts1 = <Timestamp Id=’Timestamp’>
<Created>Now1</>
<Expires>PlusOneMinute</></>

<BinarySecurityToken EncodingType=’Base64Binary’ ValueType=’X509v3’
Id=’X509Token-client.com’>

X509(Root,client . com,sha1RSA,PK(rsa secret1))</>
<EncryptedKey Id=’Encrkey’>

<EncryptionMethod Algorithm=’rsa-1_5’ />
<KeyInfo>

<SecurityTokenReference>
<X509Data>

<X509IssuerSerial>
<X509IssuerName>Root</>
<X509SerialNumber>guid4</></></></></>

<CipherData>
<CipherValue>RSA−Enc{PK(rsa secret3)}[key5]</></>

<ReferenceList>
<DataReference URI=’guid6’ /></></>

<Signature>
si1 = <SignedInfo>

<CanonicalizationMethod Algorithm=’xml-exc-c14n#’ />
<SignatureMethod Algorithm=’rsa-sha1’ />
<Reference URI=’Body’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<Body Id=’Body’>req</>)</></>
<Reference URI=’Timestamp’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(ts)</></></>

<SignatureValue>
sv1 = RSA−SHA1{rsa secret1}[si]

</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI=’X509Token-client.com’ ValueType=’X509v3’ />

</></></></></>
<Body Id=’Body’>

<EncryptedData Id=’guid6’ Type=’Content’>
<EncryptionMethod Algorithm=’aes128-cbc’ />
<CipherData>

<CipherValue>AES−Enc{key5}[
req = <Add>

<n1>100</>
<n2>15.99</></></>]</></></></></>
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X509MutualAuthMsg2.xml
<Envelope>

<Header>
<Security>

ts2 = <Timestamp Id=’Timestamp’>
<Created>Now2</>
<Expires>PlusOneMinute</></>

<BinarySecurityToken EncodingType=’Base64Binary’ ValueType=’X509v3’
Id=’X509Token-localhost’>

X509(Root,localhost , sha1RSA,PK(rsa secret3)) </>
<EncryptedKey Id=’Encrkey’>

<EncryptionMethod Algorithm=’rsa-1_5’ />
<KeyInfo>

<SecurityTokenReference>
<X509Data>

<X509IssuerSerial>
<X509IssuerName>Root</>
<X509SerialNumber>guid2</></></></></>

<CipherData>
<CipherValue>RSA−Enc{PK(rsa secret1)}[key7]</></>

<ReferenceList>
<DataReference URI=’guid8’ /></></>

<Signature>
si2 = <SignedInfo>

<CanonicalizationMethod Algorithm=’xml-exc-c14n#’ />
<SignatureMethod Algorithm=’rsa-sha1’ />
<Reference URI=’Body’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<Body Id=’Body’>resp</>)</></>
<Reference URI=’Timestamp’>

<Transforms>
<Transform Algorithm=’xml-exc-c14n#’ /></>

<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(ts)</></>

<Reference URI=’SigConf’>
<Transforms>

<Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<SignatureConfirmation Value=’sv1’ Id=’SigConf’ />
)</></></>

<SignatureValue>
sv2 = RSA−SHA1{rsa secret3}[si2]

</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI=’X509Token-localhost’ ValueType=’X509v3’ />

</></></></></>
<Body Id=’Body’>

<EncryptedData Id=’guid8’ Type=’Content’>
<EncryptionMethod Algorithm=’aes128-cbc’ />
<CipherData>

<CipherValue>AES−Enc{key7}[
resp = <AddResponse>

<n>115.99</></></>]</></></></></>
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Abstract. BPEL is currently the most widespread language for com-
posing Web services, but it lacks formal semantics. YAWL is a workflow
language with a well defined formal semantics that implements the most
common workflow patterns. In this paper we provide a methodology for
translating BPEL processes into YAWL workflows, thus paving the way
for the formal analysis, aggregation and adaptation of BPEL processes.
The approach we propose defines a YAWL pattern for each BPEL activ-
ity. The translation of a BPEL process reduces then to suitably instan-
tiating and interconnecting the patterns of its activities.

1 Introduction

The service-oriented computing paradigm [9] uses services as building blocks for
developing future heterogeneous, distributed applications. Two main reasons for
composing (Web) services are the need for rapid application development, and
the need to answer complex queries that cannot be satisfied by one service alone.

WSDL [12] is the current standard for describing Web service interfaces, yet it
provides only a syntactic description of the supported operations. This severely
affects the process of (semi-)automated service composition as composed services
may lock during their interaction.

BPEL [2] has emerged as a language for expressing Web service compositions.
A BPEL process provides the behaviour of a Web service in terms of coordinating
one or more WSDL services. A downside of BPEL is that clients of the business
process are in charge of manually selecting the services to be composed, and of
building the composite service. Furthermore, BPEL lacks a formal semantics and
hence it does not provide suitable means for the analysis of service compositions.

YAWL [10] is a new proposal of a workflow/business processing system that
supports a concise and powerful workflow language and handles complex data
transformations and Web service integrations. As it implements the most com-
mon workflow patterns, YAWL can be used as a lingua franca for expressing the
behaviour of Web services (described using BPEL or OWL-S [8], for example).
Despite its graphical nature, YAWL has a well defined formal semantics. It is a
state-based language and the semantics of a workflow specification is defined as
a transition system. Furthermore, being based on Petri nets, it provides a firm
basis for the formal analysis of real-world services.

Our long-term goal is to provide a methodology for the (semi-)automated ag-
gregation and adaptation of Web services into new heterogeneous applications.
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To cope with the previous issues we argue for the use of service contracts [4]
consisting of (a) a (WSDL) signature, (b) an (OWL) ontological description,
and (c) a (YAWL) behaviour (or protocol). The signature and the ontological
information serve for enhancing the service discovery process and for overcoming
signature mismatches. The protocol information can be employed for generating
the behaviour of the aggregated service and for verifying properties of the aggre-
gate (such as lock freedom), as well as for coping with behavioural mismatches.

In [4] we described a core aggregation process for composing YAWL services.
The core aggregation process inputs a set of service contracts to be aggregated
and it outputs the contract of the aggregated service. The control-flow of the
aggregate is built, on the one hand, from the initial control-flow of the partici-
pant services, and on the other hand, from data-flow dependencies obtained by
semantically matching service parameters. This paper complements [4] by devis-
ing a methodology for translating BPEL processes into YAWL workflows. As a
result, BPEL services can be translated into YAWL workflows, then aggregated,
and finally deployed as a new BPEL service. It is worth stressing the importance
of the last two features. As we will see, handling synchronisation links, scope ac-
tivities, events, faults, and compensations, sensibly complicates the translation.
Probably because of their complexity, these mechanisms have not usually been
considered by the formalisations of BPEL that have been proposed so far (e.g.,
[6,1]). On the other hand, since these features are indeed exploited in real BPEL
descriptions, and do contribute to the expressiveness of “real” BPEL, we argue
that they cannot be ignored.

The translation approach we describe here defines a YAWL pattern for each
BPEL activity, as well as for a whole BPEL process. The role of an activity pat-
tern is twofold – to provide a unique representation of the activity, and to provide
an execution context for it. Given a BPEL process, the approach automatically
generates its YAWL translation by:

1. Instantiating the pattern of each activity defined in the BPEL process, and
2. Suitably connecting the obtained patterns into the final workflow.

The main features of the translation methodology can be summarised as follows:

– It is a pattern-based, compositional approach,
– It copes with all types of BPEL activities, and
– It handles events, faults and (explicit) compensation.

2 A Brief Introduction to BPEL and YAWL

The next two Subsections give a very high-level view of both languages. Some
other details on the two languages will be discussed in the next Section, while
describing the translation methodology. For a complete description of the two
languages, please see [2] for BPEL, and [10] for YAWL.
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2.1 BPEL: Business Process Execution Language

BPEL is a language for expressing the behaviour of a business process. It en-
ables the specification of control and data logic around a set of Web service
interactions. A BPEL process exposes a WSDL interface to its clients.

A BPEL process can be either abstract or executable. An abstract process
hides implementation details (i.e., private information), while an executable
process provides the full interaction behaviour.

BPEL defines the notion of partner link to model the interaction between a
business process and its partners. A partner link refers to at most two WSDL
port types, one of the interface to the business process (viz., operations offered
by the process to the partner), and the other of the interface of a partner (viz.,
operations offered by the partner to the business process).

BPEL is a hybrid language that combines features from both the block-
structured language XLANG and from the graph-based language WSFL. The
former contributed with basic activities (e.g., for sending and receiving mes-
sages, for waiting for a period of time, and so on) as well as with structured ones
(e.g., sequential or parallel execution of activities, activity scoping, and so on)
for combining activities into complex ones. The latter brought the definition of
links to synchronise activities executed in parallel. Other features of BPEL are
instance management through correlation sets, event and fault handling, as well
as compensation capabilities.

The BPEL basic activities are: receive/reply through which a BPEL process
inputs/sends a message from/to a partner service, invoke through which a BPEL
process asynchronously/synchronously invokes an operation of a partner service,
wait for delaying the execution of the process, throw for signalling faults, termi-
nate for explicitly terminating the execution of the process, a dummy empty for
doing a “no-op”, assign for copying values between variables, and compensate
for invoking a compensation handler.

The structured activities are: sequence, switch, and while for sequential, con-
ditional and repeated activity execution, flow for parallel activity execution, pick
for managing the non-deterministic choice of the activity to be executed, and
scope for providing an execution context for an activity.

2.2 YAWL: Yet Another Workflow Language

YAWL is a new proposal of a workflow/business processing system, which sup-
ports a concise and powerful workflow language and handles complex data
transformations and Web service integration. YAWL defines twenty most used
workflow patterns divided in six groups – basic control-flow, advanced branching
and synchronisation, structural, multiple instances, state-based, and cancella-
tion. A thorough description of these patterns may be found in [11].

YAWL extends Petri Nets by introducing some workflow patterns (for mul-
tiple instances, complex synchronisations, and cancellation) that are not easy
to express using (high-level) Petri Nets. Being built on Petri Nets, YAWL is an
easy to understand and to use formalism, which features an intuitive (graph-
ical) representation of services. Moreover, it can benefit from the abundance
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of Petri net analysis techniques. With respect to the other workflow languages
(mostly proposed by industry), YAWL relies on a well-defined formal semantics
based on transition systems. Moreover, not being a commercial language, YAWL
supporting tools (editor, engine) are freely available.

From a control-flow perspective, a YAWL file describes a workflow specification
that consists of a tree-like structure of extended workflow nets (or EWF-nets for
short). An EWF-net is a graph where nodes are tasks or conditions, and edges
define the control-flow relation. Each EWF-net has a single input condition and
a single output condition.

Tasks employ one join and one split construct, which may be one of the
following: AND, OR, XOR, or EMPTY. Intuitively, the join of a task T specifies
“how many” tasks before T are to be terminated in order to execute T, while
the split construct specifies “how many” tasks following T are to be executed.

It is worth noting that YAWL tasks may be interpreted as Petri net transi-
tions, and YAWL conditions can be represented as Petri net places. The control-
flow for tasks with XOR/OR splits is managed through predicates in the form
of logical expressions. When a task finishes its execution, it places tokens in its
output places, depending on its split type. Dually, a task is enabled for execution
depending on its join and on the tokens available in its input places.

Another feature of YAWL is the use of cancellation sets consisting of condi-
tions and tasks. When a task is executed all tokens from its cancellation set (if
any) are removed.

From a data-flow perspective, YAWL uses XMLSchema, XPath and XQuery
for dealing with data. Variables are defined at both EWF-net and task levels,
and bindings between them are realised through XQuery expressions.

3 From BPEL to YAWL

The objective of this paper is to present a methodology for translating BPEL
processes into YAWL workflows. First, we define a YAWL pattern for each BPEL
activity, as well as for the entire business process. Then, the workflow correspond-
ing to a BPEL process is obtained by suitably instantiating and interconnecting
the workflows of all its activities.

Subsections 3.1 and 3.2 introduce the basic pattern template and the struc-
tured pattern template, which are used to define the patterns of the basic and
structured activities, respectively. Subsection 3.3 defines the process pattern and
describes the process of obtaining the final workflow.

In the following we shall use the term pattern template to refer to the pat-
tern of a generic BPEL activity (viz., either basic or structured). The role of
a pattern template is twofold: It provides the necessary elements for uniquely
identifying an activity/process, as well as an execution context for the translated
activity/process.

3.1 The Basic Pattern Template

BPEL uses structured activities to specify the order in which activities have to be
executed. For example, the second activity in a sequence can be executed only
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Fig. 1. The basic pattern template

when the first has finished its execution. Moreover, the flow construct allows
for synchronisation links to be defined among activities. When an activity is
structurally enabled, BPEL waits for the statuses of all its incoming links (if
any) to be determined. At that point BPEL computes the joinCondition (a
logical expression), which guards the execution of the activity. A true value
leads to the execution of the activity, while a false value leads to either raising a
joinFailure fault, or to skipping the entire activity. It is important to note that
a structured activity that is skipped leads to skipping all the activities nested
within it. Skipping an activity leads to propagating negative (viz., false) statuses
on its output links. This process is called dead-path-elimination.

We model the structural relations among BPEL activities through what we
call green lines. A pattern has one or more green inputs, which are used to
enable it from the structural point of view. Dually, it has one or more green
outputs, to be sent upon completion of the pattern, which will be used to enable
other patterns. For example, the patterns translating child activities of a BPEL
sequence have to be linked through green lines. On the other hand, we model the
synchronisation links among BPEL activities using blue lines. A pattern has one
blue input for each synchronisation link that targets the activity it translates.
Analogously, it has one blue output for each link that emerges from the activity it
translates. For example, inside a BPEL flow, a synchronisation link from activity
A to activity B is translated into a blue line from the pattern translating A to
the pattern translating B. Finally, in order to cope with faults we use red lines.
Patterns that treat errors have red inputs, while patterns that generate errors
have red outputs. For example, the translation of the BPEL throw activity has
to have a red line as output, while the translation of the BPEL fault handler
should input a red line.

The basic pattern template is illustrated in Figure 1. It consists of an Execu-
tion Prerequisites Block and of an Execution Logic Block. Green input lines of a



112 A. Brogi and R. Popescu

pattern are denoted by gi, and green outputs by go. Similarly, bi and bo denote
blue inputs and ouputs, and ri and ro red ones.

The Execution Prerequisites Block (EPB). The EPB is in charge of
enabling the pattern. In order to execute, a pattern has to be enabled both from
the structural and from the synchronisation point of view.

The GreenGate task of the EPB is in charge of waiting for the green tokens. It
also inputs a parentSkip boolean variable from its parent1 activity, whose value
indicates whether the latter is skipped or not. Indeed, since each structured
activity could be skipped if it is the target of a synchronisation link, it out-
puts a parentSkip variable to all the patterns corresponding to its nested (child)
activities.

If parentSkip holds true then the pattern must be skipped, as one of its ances-
tors was skipped. In this case GreenGate will immediately enable the Execution
Logic Block, without having to wait for the statuses of its incoming links to
be computed. If instead parentSkip holds false then the pattern is ready to be
executed from the structural viewpoint. In this case, the execution of the EPB
continues with the BlueGate task, which waits for all blue tokens and then it
computes the value of the joinCondition by taking into account the statuses of
its incoming links stored into bi boolean variables. Then, the BlueGate enables
the Execution Logic Block.

The Execution Logic Block (ELB). The ELB has three possible behaviours:
It can execute successfully, it can be silently skipped, or it can raise a fault. The
third behaviour corresponds to a false joinCondition (see next) or to an erroneous
execution of the activity.

The ExecOrSkip task of ELB computes the skipping condition (into the skip
boolean variable) as a logical disjunction between the parentSkip and the nega-
tion of the joinCondition variables. Indeed, an activity is skipped either since
one of its ancestors was skipped (parentSkip=true), or since its joinCondition is
false. If skip evalutes to false then the ActivitySpecificTask is executed, otherwise
the ComputeTransitionConditions task is executed.

The ActivitySpecificTask is the key task of the pattern. It uniquely identifies
the translated activity and it provides the computations needed by the activ-
ity. Instantiating the basic pattern template for a particular activity consists of
equipping the ActivitySpecificTask with a name identifying the activity, and with
the inputs and outputs defined by the activity. For example, the Wait pattern
has an ActivitySpecificTask called Wait that inputs the duration of the wait.

The execution of the ActivitySpecificTask is simlutated through the deferred
choice consisting of the Fault and Success tasks, together with their input place.
The environment (viz., the “client” of the workflow) will determine whether
Fault or Success will be executed. The execution of the Fault task corresponds
to an erroneous execution of the activity (e.g., a receive activity has received an
incorrect message). The Fault task outputs the name and data associated with

1 When an activity A is directly nested within a structured activity S, we also say
that S is the parent of A and that A is a child of S.
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the fault, and it sets the boolean fault flag to true. Dually, Success corresponds
to a successful execution of the activity. It is important to note that the deferred
choice must be defined only for activities whose execution may be erroneous
(e.g., receive, invoke, and so on). Otherwise, the ActivitySpecificTask is directly
connected to the ComputeTransitionConditions task.

BPEL uses the suppressJoinFailure attribute to determine the process be-
haviour when the joinCondition is false. If the suppressJoinFailure attribute
corresponding to an activity (defined by it or by one of its ancestors) is set to
NO, the BPEL engine raises a joinFailure fault. Otherwise, it employs the dead-
path-elimination by propagating negative statuses on all its output links. The
ComputeTransitionConditions task concludes the execution of the ELB and of
the pattern. On the one hand, it computes the status of each output (synchro-
nisation) link, as defined by the transitionCondition attribute of the respective
BPEL link. Link statuses are stored into bo variables, which have to be mapped
onto bi variables of other patterns when constructing the workflow of the busi-
ness process. On the other hand, it signals a joinFailure by setting the fault flag
to true in case of a false joinCondition if the corresponding suppressJoinFailure
attribute is set to NO.

Upon completion, the ELB outputs green and blue tokens if and only if the
pattern was successfully executed. Dually, it outputs a red token if and only if
a fault was raised.

BPEL Basic Activities. Space limitations do not allow us to present the
patterns of all the basic BPEL activities. We shall resume to presenting some
general guidelines for customising and instantiating the basic pattern template.

In order to obtain the pattern of a basic activity, one has to (1) customise the
ActivitySpecificTask, and (2) remove the deferred choice controlling the success of
the activity if the activity cannot have an erroneous execution, as well as (3) set
the (maximum) number of inputs and outputs of the pattern. The customisation
of the ActivitySpecificTask regards the name of the task, which has to identify
the pattern, as well as the inputs and the outputs of the task, which are obtained
from the inputs and the outputs of the BPEL activity. Note that a pattern has
at least one green input and one green output.

The Invoke, Receive and Reply patterns all have one green input. Invoke and
Reply patterns have only one green output (for the pattern of the following
activity, if any), while Receive can have at most two green outputs (the second
to enable the pattern for event handling of the entire business process, if the
createInstance attribute of the BPEL receive is set to yes).

The patterns Throw, Wait, Terminate and Empty have one green input and
one green output, and they do not need the deferred choice block, as their exe-
cution cannot be erroneous. The ActivitySpecificTask will be hence directly con-
nected to the ComputeTransitionConditions task. Note that a fault raised by a
Throw pattern is not considered as an erroneous execution of the throw activity.
Some other particularities are that the ActivitySpecificTask of the Wait pattern
invokes the YAWL TimeService in order to delay the execution of the workflow,
while the successful execution of a Terminate pattern leads to the cancellation
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of all tokens inside the pattern translating the process activity. (Further details
on the latter will be given later on when describing the process pattern.)

The assign and the compensate activities are treated as structured patterns,
as we will see in the next Subsection.

3.2 The Structured Pattern Template

A BPEL structured activity defines one or more activities to be executed in
a certain order. In order to cope with this, we define the structured pattern
template as a tuple consisting of a Begin pattern, an End pattern, as well as of
a PatternTemplate for each child activity.

The purpose of the Begin and End patterns is to provide an identification for
the activity being translated. More importantly, the execution of Begin logically
corresponds to the initiation of the structured activity (as a whole), whereas the
execution of End logically marks the termination of the structured activity.

Both Begin and End patterns are generated from the basic pattern template,
and they are quite similar to the Empty pattern. On the one hand, Begin is in
charge of enabling the structured pattern both from the structural and synchro-
nisation viewpoints. Hence, Begin has to input the green and the blue lines and
to raise a joinFailure in case of a false joinCondition if the corresponding sup-
pressJoinFailure attribute is set to NO. Furthermore, it provides a green output
for each PatternTemplate corresponding to a child activity that can be executed
first. On the other hand, End has to wait for the green tokens from all Pattern-
Templates of the child activities that have to be executed last. Moreover, End
is the source of the blue outputs corresponding to synchronisation links having
as source the structured activity. In general, End cannot lead to any fault being
raised, and hence it does not have a red output.

A structured activity introduces a new nesting level and consequently Begin
has to output a parentSkip variable to the patterns of all the (child) activities
nested inside the structured one, as well as to End. In this way we achieve the
dead-path-elimination inside structured patterns.

Now, the patterns of all structured activities are obtained by adjusting the
Begin and End patterns and by suitably interconnecting them with the Pattern-
Templates. Basically, both processes depend on the way in which the structured
activity enables for execution its child activities. In the following we shall write
Begin(X) and End(X) to refer to the Begin and End patterns of a structured
activity X.

BPEL Structured Activities. Space limitations do not allow us a detailed
description of all the structured patterns. However, we shall try to describe the
most relevant features of each pattern.

The Sequence, Switch, Flow and Pick patterns all share the same structure:
Sequence → Begin(Sequence) PatternTemplate+ End(Sequence)
Switch → Begin(Switch) PatternTemplate+ End(Switch)
Flow → Begin(Flow) PatternTemplate+ End(Flow)
Pick → Begin(Pick) PatternTemplate+ End(Pick)
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The Sequence pattern consists of a Begin and an End pattern, together with at
least one PatternTemplate. Begin(Sequence) must enable the execution of only
the first PatternTemplate in the sequence, each PatternTemplate enables the next
one in the sequence, and End[Sequence] must wait for the last PatternTemplate
to finish its execution.

The Switch pattern includes one PatternTemplate for each conditional branch,
and each PatternTemplate must verify the guard condition of the corresponding
branch. A false guard leads to skipping the corresponding branch and hence to
dead-path-elimination inside the corresponding pattern. The PatternTemplates
are linked in the order in which the conditional branches occur in the switch
activity. If no otherwise branch is defined, a default one with an empty activity
guarded by an (always) true condition is considered.

A flow activity concurrently executes a bag of activities among which syn-
chronisation links can be defined. Begin(Flow) has to enable the patterns of all
its child activities, and hence it has one green output for each PatternTemplate.
Dually, the execution of End(Flow) is delayed until all PatternTemplates finish
their execution.

A pick basically waits for a message or an alarm event to take place. Its pattern
is slightly more complicated due to the fact that the first event that is triggered
causes all other events to be cancelled. Begin(Pick) mainly differs from Be-
gin(Flow) in that its ActivitySpecificTask is a composite task in charge of branch
selection. Moreover, each PatternTemplate of the pick has a guard condition that
checks whether its branch id matches the id of the branch selected in Begin(Pick).
Although only one branch will be actually executed, Begin(Pick) sends green to-
kens to all PatternTemplates in order to perform the dead-path-elimination on
the branches that were not selected. End(Pick), similarly to End(Flow), waits
for the green tokens from all branch patterns.

The While pattern
While → Begin(While) PatternTemplate End(While)

differs from the Sequence pattern as Begin(While) has two green input lines and a
guard condition. A green input token comes either from the pattern structurally
preceding the while, or from End(While) in order to loop. Dually, End(While)
outputs a green token either for the pattern structurally following the while, or
for Begin(While). The guard condition is checked again by End(While) in order
to avoid skipping the whole while in case of a false guard at the end of a cycle.

Although assign is a basic activity, it is translated with a structured pattern
since it can contain several copy tags, each of which requiring a data exchange
which may lead to a fault being raised. The Assign pattern:

Assign → Begin(Assign) Copy+ End(Assign)
has the same structure of the Sequence pattern, but it includes Copy patterns
rather than arbitrary PatternTemplates. A Copy pattern is obtained from the
basic pattern template by replacing the ActivitySpecificTask with a task named
Copy, which inputs the “source” variable and which outputs the “target” vari-
able. In this way, the assignment is achieved through the data mappings of the
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Fig. 2. High level view of the Scope pattern

Copy patterns. Furthermore, the Copy pattern does not have blue inputs and
outputs.

A BPEL scope provides a specific context for an activity. It contains a (pos-
sibly default) fault handler, a (possibly default) compensation handler, as well
as an optional event handler. The fault handler consists of one or more catch
clauses for grabbing faults raised inside the scope. A catch is a container of an
activity, guarded by a fault name and an optional fault variable. A catchAll has
an always true guard and no fault name or variable. The compensation handler
provides a (compensating) activity that can be invoked either explicitly (through
a compensate), or implicitly (in case of a fault). The compensation handler is ac-
tivated only when the scope finished its execution successfully. (In this paper
we deal with explicit compensation only, due to the troublesome default com-
pensation mechanism, e.g., compensating a scope inside a while). Last but not
least, an event handler defines message and alarm events that can be triggered
repeatedly and concurrently during the lifetime of the scope. The Scope pattern
has the structure:

Scope → Begin(Scope) PatternTemplate FaultHandler
[CompensationHandler] [EventHandler] End(Scope)

and the structural dependencies among the various patterns involved are illus-
trated in Figure 2. Begin(Scope) sends green tokens to the PatternTemplate, to
the EventHandler, and to the FaultHandler. The FaultHandler will further re-
ceive either one green token from the PatternTemplate and one green token from
the EventHandler (if any), or one red token from the PatternTemplate or from
the EventHandler. In the former case, the entire FaultHandler will be skipped
either because the PatternTemplate was completed successfully, or because the
entire scope has to be skipped. The latter case corresponds to a fault being raised
(and uncaught) inside the PatternTemplate, or inside the EventHandler. In case
that the fault cannot be processed, the FaultHandler will send a green token to
End(Scope), which has to send a red token further to the FaultHandler of the
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parent scope pattern (if any). Note that only the FaultHandler will forward a
(green) token to End(Scope). End(Scope) is in charge of enabling the Compensa-
tionHandler if the PatternTemplate was successful. It is important to note that
End(Scope) has to save a copy of all the scope variables as required by the Com-
pensationHandler. If the scope is skipped, End(Scope) has to clear the green
tokens received by the FaultHandler from the PatternTemplate and from the
EventHandler as they are redundant. Furthermore, in this case it is unnecessary
to perform the dead-path-elimination inside the EventHandler as links cannot
cross its boundary. However, we do have to perform the dead-path-elimination
inside the FaultHandler.

The FaultHandler pattern has a similar structure to the Sequence pattern:
Begin(FaultHandler) PatternTemplate∗ End(FaultHandler)

except that each PatternTemplate corresponds here to a catch activity and hence
it has a guard condition checking the fault name and data. Furthermore, Be-
gin(FaultHandler) uses a RedGate (instead of a BlueGate) that waits for red
tokens to be sent (viz., faults to be raised) from inside the PatternTemplate (or
from inside the EventHandler) of its scope. In order to interrupt the normal
execution of the scope in case of a fault being raised, the RedGate uses a cancel-
lation set that includes all patterns of the scope’s PatternTemplate and Even-
tHandler except CompensationHandler patterns corresponding to scopes nested
in its scope. If the BPEL process does not define a fault handler, the translator
generates a default FaultHandler pattern consisting of Begin(FaultHandler) and
End(FaultHandler) only. In this way, the faults received by this default Fault-
Handler will be forwarded (through EndScope) to the FaultHandler of the parent
scope (or of the entire process). In the pattern of the EventHandler:

Begin(EventHandler) PatternTemplate+ End(EventHandler)
the PatternTemplates execute concurrently, and each one is placed in a loop
with a guard that checks the end of the PatternTemplate pattern translating
the activity inside the scope. Note that the scope’s PatternTemplate is in charge
of clearing all tokens of the PatternTemplates that implement alarms upon its
completion. Finally, the CompensationHandler pattern is:

Begin(CompensationHandler) PatternTemplate∗ End(CompensationHandler)

If the scope completes successfully, the Begin(CompensationHandler) is acti-
vated and waits for a green token from a Compensate pattern. Upon completion,
the End(CompensationHandler) returns the green token to the Compensate. If
a BPEL scope does not define a compensation handler yet there is a compen-
sate activity targeting the respective scope, the translator generates a default
CompensationHandler consisting only of Begin(CompensationHandler) directly
linked to End(CompensationHandler).

Finally, the BPEL compensate is translated with the pattern:
Begin(Compensate) End(Compensate)

since compensate terminates only when the invoked CompensationHandler fin-
ishes its execution. Recall that we consider only simple explicit compensation,
that is compensate activities specifying the name of the scope to be compensated,
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without considering scopes nested inside while activities. Begin(Compensate)
sends a green token directly to End(Compensate) if the compensate is skipped,
or if the scope to be compensated did not finish its execution. Otherwise, the
green token is sent to the Begin(CompensationHandler) of the scope to be com-
pensated. Dually, End(Compensate) receives a green token either directly from
Begin(Compensate), or from the End(CompensationHandler) of the scope to be
compensated. Then, it forwards it to the pattern structurally following the com-
pensate. Further details on the Scope pattern will be commented in the Section
dedicated to discussing an use case.

3.3 BPEL Processes

A BPEL process encapsulates the process activity and it can further define a
fault handler, a compensation handler, as well as an event handler.

The Process pattern:
Begin(Process) FaultHandler [EventHandler] PatternTemplate End(Process)

resembles the Scope pattern, altohough there are several differences between the
two. For example, Begin(Process) and End(Process) have to be connected to the
input condition and to the output condition, respectively, of the workflow.

Begin(Process) enables the PatternTemplate, the FaultHandler, as well as the
EventHandler (if any). If the BPEL process does not define a FaultHandler, or
if it does but it does not contain a catchAll clause, one (default) FaultHandler
with a default catchAll (viz., an Empty pattern) must be defined in the Process
pattern. This is needed to catch all uncaught faults being raised within the
process. Note that the reception of a fault by the process FaultHandler leads to
an abnormal process termination, even if the fault is processed. Furthermore,
faults being raised (and uncaught) inside the process FaultHandler lead to the
immediate execution of the End(Process) pattern, as in the case of a Terminate
(see next). Differently from the Scope, there are no green tokens being sent from
the PatternTemplate and from the EventHandler to the FaultHandler. This is
due to the fact that the FaultHandler cannot be skipped because neither the
Process can be skipped nor the dead-path-elimination must be employed inside
its FaultHandler pattern. The PatternTemplate and EventHandler forward each
one green token to End(Process).

The EventHandler is active for the entire process lifetime and the Pattern-
Template of the process is in charge of clearing its tokens upon its completion,
similarly to a Scope. In order to minimise the number of cancellation sets defined
in the workflow, all Terminate patterns forward the green token to End(Process),
which is in charge of immediately terminating the entire business process. It does
so by clearing all the tokens of the PatternTemplate corresponding to the activ-
ity defined by the process. Hence, End(Process) is enabled if it receives either
one green token from the process PatternTemplate and another from the Even-
tHandler (if any), or one green token from a Terminate, or from the process
FaultHandler.

The compensation handler can only be invoked by platform-specific means.
Consequently, we do not consider a compensation handler for the entire busi-
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ness process. Furthermore, the process compensation handler would block the
workflow waiting for a green token.

A BPEL process is translated into a YAWL workflow by instantiating the
Process pattern. This leads to recursively instantiating the Begin(Process), Fault-
Handler, EventHandler (if any), and End(Process) patterns, as well as the Pat-
ternTemplate corresponding to the process activity. Note that the instantiation
of a pattern takes into account the context in which the activity is placed inside
the BPEL process. Namely, instantiating a pattern means adjusting the (number
of) input and output lines, setting and mapping the inputs and outputs of the
tasks in the pattern, as well as suitably interconnecting its child patterns. The
instantiating process bottoms-out at basic pattern templates.

4 A Use Case

Consider a simple BPEL process that computes the greatest common divisor
(GCD) of two numbers. Basically, the GCD is computed by repeatedly rais-
ing an exception if one of the two numbers is bigger than the other and by
decreasing its value in the corresponding catch. Due to space limitations we
present hereafter a simplification of the BPEL process. Figure 3 gives the high-
level view of the YAWL workflow obtained from the GCD process. The inter-
ested reader is kindly asked to download the archive containing the full BPEL
process as well as the YAWL workflow of the example from the following address:
http://www.di.unipi.it/∼popescu/GCD Example.zip.

<process name=“S” suppressJoinFailure=“yes”>
<faultHandler><catch fault=”negNum”><reply fault=”negNum”/>< /catch>< /faultHandler>
<flow>

<receive(a,b) createInstance=“yes”>
<source link=“RCV2THR” transitionCondition=“a<=0 or b<=0”/ >
<source link=“RCV2WHL” transitionCondition=“a>0 and b>0”/ >< /receive>

<throw fault=“negNum”><target link=“RCV2THR”/ >< /throw>
<while condition=“a!=b”><source link=“WHL2SEQ”/ ><target link=“RCV2WHL”/ >

<scope>
<faultHandler><catch fault=“dec a”><assign a:=a-b/ >< /catch>

<catch fault=“dec b”><assign b:=b-a/ >< /catch>< /faultHandler>
<switch>

<case condition=“a>b”><throw fault=”dec a”/ >< /case>
<otherwise><throw fault=”dec b”/ >< /otherwise>< /switch>< /scope>< /while>

<sequence><target link=“WHL2SEQ”/ ><assign c:=a/ ><reply(c)/ >< /sequence>
< /flow>< /process>

Consider an execution scenario in which the two input variables a and b take the
values of 2 and 4, respectively. The workflow executes first Begin(Process) (that
outputs two green tokens) followed by Begin(Flow) (that outputs four green
tokens) and by Receive (that outputs one green token). As both numbers are
strictly positive, Receive sends a blue token to Begin(While) and another blue
(skipping) token to Throw. Because the suppressJoinFailure (set for the entire
process only) has a yes value, skipping the Throw does not raise a joinFailure,
but forwards the green token to End(Flow). The execution continues with Be-
gin(While) and then with Begin(Scope) (as a != b) that forwards a green token
to Begin(Switch) and another to the Begin(FaultHandler) of the scope. The first
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Fig. 3. YAWL workflow obtained from the GCD process

Throw in the switch is skipped as a<b, yet the second one (of the otherwise
branch) is executed, and a dec b fault is raised. As a result, only a red token is
sent further to the Begin(FaultHandler) of the scope (that clears all tokens of the
Switch). The first Assign is skipped (as fault=“dec b”), while the second Assign
decreases the value of b by a. The green token will reach next End(FaultHandler)
and then End(Scope) that forwards the green token to End(While) (as the fault
was processed). Because a=b=2, End(While) sends a green token to End(Flow)
and a blue token to Begin(Sequence). The execution of the Assign inside the
Sequence leads to copying the value of a into c and to replying with the lat-
ter to the client. Finally, End(Sequence) outputs a green token that enables
End(Flow), which has now gathered all its input (green) tokens. End(Flow) for-
wards a green token to End(Process) that first clears all input tokens of the
Begin(FaultHandler) of the process, and then it sends the green token to the
output condition, marking in this way the end of the workflow.

5 Concluding Remarks

We have outlined a methodology for translating BPEL processes into YAWL
workflows. Its main strengths are that (1) it defines YAWL patterns for all
BPEL activities, (2) it provides a compositional approach to construct structured
patterns from suitably interconnecting other patterns, and (3) it handles events,
faults and (explicit) compensation.
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Fisteus et al. [1] describe VERBUS, a FSM-based framework for the formal
verification of BPEL processes, but they do not treat synchronisation links, com-
plex fault handling, as well as event and compensation handling. Koshkina and
van Breugel [6] introduce the BPE-calculus in order to formalise the control-flow
of BPEL and build upon it a tool for the analysis (e.g., deadlock freedom) of
business processes. Still, they do not tackle fault and compensation handling.
Hinz et al. [5] give a PN semantics to BPEL processes by defining a pattern for
each BPEL activity. However, they abstract from data and leave out transition
guards. Consequently, control-flow decisions based on the evaluation of data are
replaced by non-deterministic choices. Our approach does not suffer from this
limitation as both BPEL and YAWL use XMLSchema and XPath for data ma-
nipulation, and hence the data translation between the two is straightforward.
Ouyang et al. [7] formalise BPEL in terms of PNs with the purpose of analysing
its control-flow. Although they handle both synchronisation links and excep-
tional behaviour, their focus is on the analysis, and not on the composition of
business processes.

We believe that the translation described in this paper constitutes an impor-
tant brick for the development of formal analysis and transformations of BPEL
processes. It also directly contributes to our long-term goal of aggregating and
adapting heterogeneous Web services [4,3]. In this perspective, our next step will
be the integration of our Java prototype implementation of the BPEL2YAWL
translator with the Java implementation of the core aggregation mechanism of
[4], in order to yield a single tool supporting the disciplined, semi-automated
aggregation of BPEL services. A further line for future work is the development
of other translators to convert other types of Web service descriptions (e.g.,
OWL-S) into YAWL.
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Abstract. Cook and Misra’s Orc is an elegant language for orchestrating distrib-
uted services, able to cover e.g. van der Aalst’s workflow patterns. We aim to
understand the key novel features of Orc by comparing it with variations of Petri
nets. The comparison shows that Orc hides powerful mechanisms for name han-
dling (creation and passing) and for atomic distributed termination. Petri nets with
static topology can encode Orc under severe restrictions while the full language
(up to a more realistic cancellation strategy) can be encoded in Join (that can be
seen as a higher-order extension of Petri nets). As an overall result, we promote
Join calculus as an elegant language embedding orchestration and computation.

1 Introduction

Service Oriented Computing and its most successful current realisation based on Web
Services are challenging science and technology in laying foundations, techniques
and engineered development for supporting just-in-time assembly of complex business
processes according to the publish-find-bind paradigm. Main issues are concerned with,
e.g., security, behavioural description of services with the integration of functional and
non-functional requirements, trade-off between network awareness and network trans-
parency, dynamic binding and reconfiguration, model-driven development.

A common theme to all these aspects is service composition. The difference w.r.t.
classic program or process composition here is that beside answering the question on
“how to compose services”, one has to provide languages and logic for “describing
composite services” and “use composition as a specification requirement for querying
service repositories”. Descriptions should be accurate enough to guarantee that dynam-
ically found and bound composite services behave well.

The terms orchestration and choreography were coined to describe two different fla-
vors of service compositions: orchestration is about describing and executing a single
view point model, while choreography is about specifying and guiding a global model.
Though the difference between the two terms can be sometimes abused or blurred, sub-
stantially orchestration has a more centralised flavor, as opposed to the more distributed
vision of choreography. The typical example is that of a ballet: the choreographer fixes
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the overall scheme for the movements of all dancers, but then each dancer orchestrates
her/his own movements. Roughly, from a formal modelling viewpoint, orchestration is
mainly concerned with the regulation of control and data flow between services, while
choreography is concerned with interaction protocols between single and composite
services. In this paper we focus on orchestration, but with an eye left to choreography.

Cook and Misra’s Orc [20,19] is a basic programming model for structured orches-
tration of services, whose primitives meet simplicity with yet great generality. The basic
computational entities orchestrated by Orc expressions are sites: upon invocation, a site
can publish at most one response value. A site call can be an RMI, a call to a monitor
procedure, to a function or to a web service. A site computation might itself start other
orchestrations, store effects locally and make (or not) such effects visible to clients.

Orc has three composition principles. The first one is the ordinary parallel composi-
tion f |g (e.g., the parallel composition of two site calls can produce zero, one or many
values). The other two, sequencing and asymmetric parallel composition, take inspira-
tion from universal and existential quantification, respectively. In the sequential expres-
sion f > x > g, a fresh copy g[v/x] of g is executed for any value v returned by f , i.e., a
sort of pipeline is established between f and g. The evaluation of the asymmetric paral-
lel expression f where x :∈ g is lazy: f and g start in parallel, but all sub-expressions of
f that depend on the value of x must wait for g to publish one value. When g produces
a value it is assigned to x and that side of the orchestration is cancelled.

As a workflow language, Orc can encode all most common workflow patterns [11].
Contrary to many other process algebras, Orc neatly separates orchestration from com-
putation: Orc expressions should be considered as scripts to be invoked, e.g., within
imperative programming languages using assignments such as z :∈ e, where z is a vari-
able and the Orc expression e can involve wide-area computation over multiple servers.
The assignment symbol :∈ (due to Hoare) makes it explicit that e can return zero or
more results, one of which is assigned to z.

This papers tries to characterise the distinguishing features of Orc by carrying a
comparison with two other main paradigms, namely Petri nets and Join calculus as
suitable representatives of workflow and messaging models, respectively. (The basics
of Orc, Petri nets and Join are recalled in § 2.) Petri nets are a foundational model of
concurrency, hence their choice as a reference model for carrying the comparison is
well justified. The choice of Join instead of, e.g., the maybe more popular pi-calculus,
might appear less obvious, so it is worth giving some explanation.

First, the multiple input prefix of Join looks more suitable than the single pre-
fix of pi-calculus to smoothly model many orchestration patterns. For example, con-
sider the process that must wait for messages on both x and y or in either one of the
two. This is coded in Join as x〈u〉|tok〈〉 � P1 ∧ y〈v〉|tok〈〉 � P2 ∧ x〈u〉|y〈v〉|tok〈〉 � P3

and by assuring there is a unique message tok〈〉, whereas the pi-calculus expression
x(u).P1 + y(v).P2 + x(u).y(v).P3 used, e.g., in [23] is a less faithful encoding, because:
(i) in the third sub-expression multiple inputs must be arbitrarily sequentialised and
(ii) the third alternative can be selected even if a message arrives on x but none ar-
rives on y, causing a deadlock. Of course one can still use the more precise translation
x(u).(P1 + y(v).P3)+ y(v).(x(u).P3 + P2) but it is immediately seen that combinatorial
explosion would make the encoding unreadable when larger groups of actions and more
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complex patterns are considered. Second, Join adheres to a locality principle ensuring
that extruded names cannot be used in input by the process that received them (they
can only output values on such ports). This feature is crucial for deploying distributed
implementations [10,7] and it is not enforced in the full pi-calculus. Third, but not last,
in [9], Join has been envisaged as some kind of higher-order version of Petri nets mak-
ing it easier to reconcile all views analysed here.

Our contribution shows that:

– In absence of mobility, P/T nets can encode Orc expressions when mono-sessions
are considered.

– Serialised multi-sessions require reset nets [6,12] (as shown in § 3).
– The Join calculus encodes Orc primitives in a rather natural way (as shown in § 4,

the only verbosity is due to the encoding of variables, which is also very simple).

The last item shows that Orc primitives can be seen as syntactic sugar for Join
processes. Therefore, as an overall result, we would like to promote Join as an elegant
language integrating workflow orchestration, messaging, and computation (see § 5).

2 Background

2.1 Orc

This section briefly recaps Orc, borrowing definitions from [20] (apart from minor syn-
tactical differences). Orc relies on the notion of a site, an abstraction amenable for
being invoked and for publishing values. Each site invocation to s elicits at most one
value published by s. Sites can be composed (by means of sequential and symmet-
ric/asymmetric parallel composition) to form expressions. The difference between sites
and expressions is that the latter can publish more than one value for each evaluation.

The syntax of Orc is given by the following grammar

D ::= E(x1, . . . ,xn) Δ f

e, f ,g ::= 0
∣∣ M〈p1, . . . , pn〉

∣∣ E〈p1, . . . , pn〉
∣∣ f > x > g

∣∣ f |g
∣∣ f where x :∈ g

where x1, . . . ,xn are variables, M stands for site names and E for expression names. We
consider a set of constants C ranged over by c and the special site let(x1, . . . ,xn) that
publishes the tuple 〈c1, . . . ,cn〉. A value is either a variable, a site name or a constant
(values are ranged over by p1, p2, . . .).

The expressions g where x :∈ f and f > x > g bind the occurrences of x in g (in
g where x :∈ f , the expression g is said to be in the scope of x :∈ f ). The occurrences of
variables not bound are free and the set of free variables of an expression f is denoted by
fn( f ). In the following, all definitions E(x1, . . . ,xn) Δ f are well-formed, i.e., f n( f ) ⊆
{x1, . . . ,xn} and x1, . . . ,xn are pairwise distinct. We write	x for x1, . . . ,xn and f [c/x] for
the expression obtained by replacing the free occurrences of x in f with c.

The operational semantics of Orc is formalised in Figure 1 as a labelled transition
system with four kinds of labels: (1) a site call event M(	c,k), representing a call to site
M with arguments 	c waiting for response on the dedicated handler k; (2) a response
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let(c) !c−→ 0
(LET)

k globally fresh

M〈	c〉 M(	c,k)−→ ?k
(SITECALL)

?k
k?c−→ let(c)

(SITERET)
E(	x) Δ f

E〈	p〉 τ−→ f [	p/	x]
(DEF)

f
!c−→ f ′

f > x > g
τ−→ ( f ′ > x > g) |g[c/x]

(SEQPIPE)
f

l−→ f ′ l �=!c

f > x > g
l−→ f ′ > x > g

(SEQ)

g
l−→ g′

g | f
l−→ g′ | f

(SYML)
f

l−→ f ′

g | f
l−→ g | f ′

(SYMR)
g

l−→ g′

g where x :∈ f
l−→ g′ where x :∈ f

(ASYML)

f
l−→ f ′ l �=!c

g where x :∈ f
l−→ g where x :∈ f ′

(ASYMR)
f

!c−→ f ′

g where x :∈ f
τ−→ g[c/x]

(ASYMPRUNE)

Fig. 1. Operational semantics of Orc

event k?c, sending the response c to the call handler k (there is at most one such event
for each k); (3) a publish event !c; (4) an internal event τ.

A declaration D specifies an expression name E , the formal parameters x1, . . . ,xn

and the body f , like for usual function or procedure declarations. The body f of an
expression declaration can be the expression 0 (i.e., a site which never publishes any
value), the invocation of a site M〈p1, . . . , pn〉, or an expression call E〈p1, . . . , pn〉. Calls
to sites are strict (actual parameters are evaluated before the call) while expression calls
are non-strict. Expressions f and g can be sequentially composed with f > x > g which
first evaluates f and then, for each value v published by f , evaluates a new copy of
g where x is replaced with v (if f never publishes any value, no fresh g will ever be
evaluated). Expressions can be composed with the symmetric and asymmetric parallel
operators. The former is written f |g; it evaluates f and g in parallel and publishes the
values that f and g publish (we remark that there is no interaction between f and g and
that usual monoidal laws for | with 0 as neutral element hold). The latter, called where-
expression, is written g where x :∈ f . The evaluation of g where x :∈ f proceeds by
evaluating f and g in parallel. Expression f is meant to publish a value to be assigned
to x and all the parts of g depending on x must wait until such a value is available.
Evaluation of f stops as soon as any value, say v, is published. Then, v is assigned to x
so that all the parts in g depending of x can execute, but the residual of f is cancelled.

Example 2.1. We borrow from [20] some of interesting examples of Orc declarations.

– Assume that CNN and BBC are two sites that return recent news when invoked
while site Email(a,m) sends an email containing message m to the address a. (No-
tice that an invocation to Email changes the receiver’s mailbox).

– Declaration Notify(a) Δ (CNN|BBC) > x > Email(x,a) specifies a service for no-
tifying last news from CNN and BBC. By rule SEQPIPE, the news from both CNN
and BBC are notified in two different emails.

– Another interesting example is MailOnce(a) Δ Email(x,a) where x :∈ (CNN|BBC)
specifying service MailOnce(a) that notifies address a with only one of the news
selected either from CNN or from BBC.
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An Orc program represents an orchestrator O executed in a host sequential program; O

is a pair 〈D,z :∈ E(	p)〉 where D is a set of definitions, z a variable of the host program,
E〈	c〉 is an Orc expression call where (i) E is an expression name defined in D and (ii)
	c are the actual parameters. The notation z :∈ E〈	c〉 specifies that even if E〈	c〉 might
publish any number of values, z will be bound to just one of them. The types of values
published by E〈	c〉 are left unspecified, however it is assumed that they can be dealt with
in the hosting program (see § 2.2 of [20]).

2.2 Petri Nets

Petri nets, introduced in [21], have become a reference model for studying concur-
rent systems, mainly due to their simplicity and the intrinsic concurrent nature of their
behaviour. They rely on solid theoretical basis that allows for the formalisation of
causality, concurrency, and non-determinism (in terms of non-sequential processes or
unfolding constructions). Petri nets are built up from places (denoting resources types),
which are repositories of tokens (representing instances of resources), and transitions,
which fetch and produce tokens. We assume an infinite set P of resource names is fixed.

Definition 2.1 (Net). A net N is a 4-tuple N = (SN ,TN ,δ0N ,δ1N) where SN ⊆ P is
the (nonempty) set of places, a,a′, . . ., TN is the set of transitions, t,t′, . . . (with
SN ∩ TN = /0), and the functions δ0N ,δ1N : TN →℘f(SN) assign finite sets of places,
called respectively source and target, to each transition.

Place / Transition nets (P/T nets) are the most widespread model of nets. The places of
a P/T net can hold zero, one or more tokens and arcs are weighted. Hence, the state of
the P/T net is described in terms of markings, i.e., multisets of tokens available in the
places of the net. Given a set S, a multiset over S is a function m : S → N (where N is
the set of natural numbers). The set of all finite multisets over S is denoted by MS and
the empty multiset by /0.

Definition 2.2 (P/T net). A marked place / transition Petri net (P/T net) is a tuple N =
(SN ,TN ,δ0N ,δ1N ,m0N) where SN ⊆ P is a set of places, TN is a set of transitions, the
functions δ0N ,δ1N : TN →MSN assign respectively, source and target to each transition,
and m0N ∈MSN is the initial marking.

Given a transition t∈ T , •t= δ0(t) is its preset and t• = δ1(t) is its postset. Let N be a
net and u a marking of N; then a transition t ∈ TN is enabled at u iff •t(a)≤ u(a),∀a∈
SN . We say a marking u evolves to u′ under the firing of the transition t written u[t〉u′,
iff t is enabled at u and u′(a) = u(a)−•t(a)+ t•(a),∀a ∈ S. A firing sequence from
u0 to un is a sequence of markings and firings s.t. u0[t1〉u1 . . .un1 [tn〉un.

Reset nets [6] extend P/T nets with special reset arcs. A reset arc associating a tran-
sition t with a place a causes the place a to reset when t is fired.

Definition 2.3 (Reset net). A reset net is a tuple N = (SN ,TN ,δ0N ,δ1N ,m0N ,RN), where
(SN ,TN ,δ0N ,δ1N ,m0N) is a P/T net and RN : TN →℘f(SN) defines reset arcs.

The condition for the enabling of a reset transition is the same as for ordinary P/T
nets, while their firings are defined as follows: u evolves to u′ under the firing of the
reset transition t, written u[t)u′, if and only if t is enabled at u and ∀a ∈ SN : u′(a) =
u(a)−•t(a)+t•(a) if a �∈ RN(t), and u′(a) = 0 otherwise.
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(OPEN) A,B ::= 0 | x〈	y〉 | defS D in A | A|B D,E ::= J �P | D∧E (DEF)

(PROC) P,Q ::= 0 | x〈	y〉 | def D in P | P|Q J,K ::= x〈	y〉 | J|K (PAT)

(a) Syntax

rn(x〈	y〉) = {	y} dn(x〈	y〉) = {x}
rn(J|K) = rn(J)� rn(K) dn(J|K) = dn(J)�dn(K)

fn(J �P) = dn(J)∪ (fn(P)\rn(J)) dn(J �P) = dn(J)
fn(D∧E) = fn(D)∪ fn(E) dn(D∧E) = dn(D)∪dn(E)

fn(0) = /0 xn(0) = /0
fn(x〈	y〉) = {x}∪{	y} xn(x〈	y〉) = /0

fn(defS D in A) = (fn(D)∪ fn(P))\dn(D) xn(defS D in A) = S� xn(A)
fn(A|B) = (fn(A)\xn(B))∪ (fn(B)\xn(A)) xn(A|B) = xn(A)� xn(B)

(b) Free, Defined, Bound and Received names

(STR-NULL) �S 0 � �S
(STR-JOIN) �S P | Q � �S P,Q
(STR-AND) D ∧ E �S � D,E �S
(STR-DEF) �S defS′ D in P � Dσ �S�S′ Pσ σ a globally fresh renaming of dn(D)\S′

(RED) J �P �S Jσ τ−→ J �P �S Pσ

(EXT) �S x〈	u〉 S′x〈	u〉−→ �S�S′ x is free, and S′ are the local names in 	u not in S

(INT) �{x}�S
x〈	u〉−→ �{x}�S x〈	u〉 	u contains free, extruded and fresh names

(c) Semantics

Fig. 2. Open-join Calculus

2.3 Join Calculus

This section summarises the basics of the Open-join [15], a conservative extension of
Join [14] equipped with the notion of weak bisimulation used in § 4. We rely on an
infinite set of names x,y,u,v, . . . each carrying fixed length tuple of names (denoted as
	u). A sorting discipline that avoids arity mismatch is implicitly assumed and only well-
sorted terms are considered. Open processes A, processes P, definitions D and patterns J
are defined in Figure 2(a). A Join process is either the inert process 0, the asynchronous
emission x〈	y〉 of message on port x that carries a tuple of names	y, the process def D in P
equipped with local ports defined by D, or a parallel composition of processes P|Q. An
open process A is like a Join process, except that it has open definitions at top-level. The
open definition defS D in P exhibits a subset S of names defined by D that are visible
from the environment: the extruded names. Open processes are identified with ordinary
Join processes when the set S of extruded names is empty. A definition is a conjunction
of elementary reactions J � P that associate join-patterns J with guarded processes P.

The sets of defined names dn, received names rn, free names fn and extruded names
xn are shown in Figure 2(b) (� denotes the disjoint union of sets). Note that the extruded
names of two parallel processes are required to be disjoint because they are introduced
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by different definitions. Similarly, the extruded names S of defS D in A are disjoint from
the extruded names of A. As usual, patterns are required to be disjoint.

The semantics of the Open-join calculus relies on the open reflexive chemical abstract
machine model (Open RCHAM) [15]. A solution of an Open RCHAM is a triple (R,S,A),
written R �S A, where A is a multiset of open processes with disjoint sets of extruded
names, R is a multiset of active definitions s.t. dn(R)∩ xn(A) = /0, and S ⊆ dn(R) is
a set of extruded names (fn, dn and xn lift to multisets in the obvious way). Moves are
distinguished between structural � (or heating/cooling), which stand for the syntactical
rearrangement of terms, and reductions →, which are the basic computational steps.
The multiset rewriting rules for Open-join are shown in Figure 2(c). Rule STR-NULL

states that 0 can be added or removed from any solution. Rules STR-JOIN and STR-AND

stand for the associativity and commutativity of | and ∧, because , is such. STR-DEF

denotes the activation of a local definition, which implements a static scoping discipline
by properly renaming defined ports by globally fresh names.

Reduction rules are labelled either by (i) internal reduction τ, (ii) output messages
Sx〈	u〉 on the free port x that extrude the set S of local names, or (iii) x〈	u〉 denoting the
intrusion of a message on the already extruded local name x. Rule RED describes the
use of an active reaction rule (J �P) to consume messages forming an instance of J (for
a suitable substitution σ, with dom(σ) = rn(J)), and to produce a new instance Pσ of its
guarded process P. Rule (EXT) consumes messages sent on free names; these messages
may extrude some names S′ for the first time, thus increasing the set of extruded names.
Rule (INT) stands for the intrusion of a message on a defined-extruded name. We remark
that rules are local and describe only the portion of the solution that actually reacts.
Hence, any rule can be applied in a larger context.

3 Orc vs Petri Nets

In this section we sketch an intuitive explanation of Orc basic orchestration primitives
in terms of Petri nets. At first glance, the composition patterns available in Orc can seem
easily representable using (workflow) Petri nets. Assume that each Orc expression f is
represented by a suitable net Nf with two distinguished places in f (for getting tokens in
input that activate the net) and out f for publishing tokens. A pipeline between the nets
Nf and Ng can be obtained by adding just one transition from out f to ing. Similarly, the
parallel composition of Nf and Ng can be obtained by adding places in f |g and out f |g
with three transitions: (i) from in f |g to in f and ing, (ii) from out f to out f |g, and (iii)
from outg to out f |g. Finally asymmetric parallel composition can be obtained by adding
a place wh f ,g with just one token in it and no incoming arc, together with a transition
from out f and wh f ,g to ing (so that such transition can be fired at most once).

However it is easy to realise that the modelling is not as simple as above. Take Ex-
ample 2.1, where two instances of Email( ,a) can concurrently run when Notify(a) is
invoked. If site invocation is modelled by passing the control-flow token to the net rep-
resenting Email, then the tokens of two different sessions can be mixed! Apart from the
cumbersome solution of representing sessions identifiers within tokens, there are two
possible solutions to the multi-session problem (i.e., the possibility of re-using parts of
the net when for different invocations). The first is to replicate the net corresponding to
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Fig. 3. Net for the invocation of a site M

the body of an expression for each invocation, while the second is using dynamic nets,
where fresh ports of the net can be released during the execution. The first alternative is
considered here, while § 4 provides an encoding of Orc in Join, as a linguistic counter-
part of dynamic nets [9]. Another problem is that expressions can carry arguments, so
that more than one input place can be needed (e.g., one for each variable).

In this section we shall focus on Orc−, a simplified fragment of Orc, where recursion
is avoided and values are not considered. Avoiding recursion is necessary in order to
have finite nets, indeed each invocation will result in a new instance of the body of the
defined expression. Petri nets can encode Orc− expressions in absence of mobility and
when each expression is evaluated at most once (i.e., when mono-session are consid-
ered). Multi-sessions require reset arcs and can only be dealt with by serialising the
accesses to the re-used part of the net. We prefer to keep the presentation of the Petri
net semantics at an informal level. A more technical presentation is postponed to § 4,
where the concurrent multi-session problem is tackled by establishing a strong formal
correspondence between observational semantics of Orc and its encoding in Join.

Since recursion is banned from Orc− programs, invocations to site (resp. expres-
sions) can be enumerated and we write Mj〈x1, . . . ,xn〉 (resp. E j〈x1, . . . ,xn〉) to denote
the j-th invocation to site M (resp. expression E). The main difference w.r.t. Orc, is that
Orc− uses names (i.e., variables) only for passing signals. For instance, the sequential
operator of Orc− is simplified as f >> g. This implies that variables are only required
for site invocations and asymmetric parallel composition, say where z :∈ g. In the for-
mer case, variables are used to render the strict policy of site invocation in the Petri net
encoding. In the latter case, z will be used as the output place for the net representing g.

Let 〈D,z :∈ E(	p)〉 be an Orc− program. The encoding of an Orc− expression f into
Petri nets is denoted as [[ f ]]fi,foD where fi and fo are distinguished places (entry and
exit points of f ). The idea is that fi is the place for the activation of f and fo is the
place for returning the control. Data dependencies/flows due to asymmetric parallelism
are rendered by places associated with variable names, which may coincide with output
places of other parts of the net (to store results).

We first consider the translation [[ Mj〈x1, . . . ,xn〉 ]]Minvocj,MresjD of the j-th invocation
to site M (see Figure 3). The places M and Mlock are shared by all the invocations and
Mlock is meant as a lock mechanism for serialising multiple concurrent invocations to
M. Indeed, Mcallj is enabled only if Mlock contains a token as it initially does. The
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Fig. 4. A schema of net for [[ f where z :∈ g ]]i,oD

invocation takes place when Minvocj and all places x1, . . . ,xn contain a token (i.e., the
actual parameters have been evaluated). Moreover, both Mretj and Mvoidj put a token
into Mlock once they are fired so that the next invocation can proceed. Remarkably,
Mretj and Mvoidj are mutually exclusive: Mretj models the case in which M returns
a value, while Mvoidj the case in which no value is returned to the invoker.

If E〈z1, . . . ,zn〉 Δ f ∈D, the j-th invocation of E , say E j〈x1, . . . ,xn〉, is translated as
[[ E j〈x1, . . . ,xn〉 ]]i,oD = [[ f [x1/z1, . . . ,xn/zn] ]]i,oD . For the remaining constructs of Orc−,
the simplest case is [[ 0 ]]i,oD which is the net with a single transition whose preset is
the place i and whose postset is empty. For the sequential operator, [[ f >> g ]]i,oD =
[[ f ]]i,o

′
D ∪ [[ g ]]o

′,o
D where o′ is a fresh place and where given two nets N1 and N2, we

write N1∪N2 for the net whose set of places (resp. transitions) is the union of the places
(resp. transitions) of N1 and N2 and, for each transition t in N1 and N2, the preset (resp.
postset) of t is the union of the presets (resp. postset) of t in N1 and N2. For the parallel
operator, given two fresh places i1 and i2, [[ f |g ]]i,oD = [[ f ]]i1,oD ∪ [[ g ]]i2,oD ∪N where N
is the net made by a single transition with preset i and postset {i1,i2}.

Where-expressions, say f where z :∈ g, require some subtlety, because their evalu-
ation requires that g terminates when a value for z is available. In our encoding, this is
modelled by resetting all the places of g.

[[ f where z :∈ g ]]i,oD = [[ f ]]i1,oD ∪ [[ g ]]i2,zD ∪R (1)

where i1,i2 are two new places and R is a net for connecting [[ f ]]i1,oD and [[ g ]]i2,zD and
for resetting the places of [[ g ]]i2,zD . More precisely, R contains

1. the place i together with two fresh places s and r and a token in s;
2. a fresh transition t such that •t = {i,s} and t• = {i1,i2,r};
3. a fresh transition tz such that •tz = {z,r} and tz• includes s and the set of all the

places in [[ f ]]i1,oD corresponding to the occurrences of z in f , moreover, for each
place p in [[ g ]]i2,zD (including i2 and z), there is a reset arc from p to tz.

A pictorial representation of [[ f where z :∈ g ]]i,oD is given in Figure 4 where the bold
boxes represent the nets for f and g; the double arrow is the set of arcs described in 3
and the crossed double arrow is the set or reset arcs described in 3. Places s and r
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serialise the activation of f and g. When a token is available on z, then tz can be fired:
it distributes the token to all the occurrences of z in f , resets g and enables further
activation of the net by restoring the token in s.

Reset arcs are not needed if just mono-sessions are considered. As an alternative to
reset arcs, inhibitor arcs [13] could have been used. However, the net R in (1) would
have been more complex.

4 Encoding Orc in the Join Calculus

When encoding Orc− either into reset or inhibitor nets, different evaluations of cer-
tain expressions are computed sequentially (e.g., site calls, where-expressions). Since
in general it is possible to write expressions involving an unbounded number of concur-
rently executing sessions, it is evident that any static net topology will either introduce
some serialisation or mix tokens from different sessions.

In this section, we propose an encoding of full Orc into Join in which different evalu-
ations of the same expression can be computed concurrently. This is achieved by taking
advantage of the reflexive mechanism provided by Join and dynamic nets that allows
for the dynamic creation of places and transitions. The main strategy of the encoding is
to associate a fresh portion of a net to any evaluation of an Orc expression. That is, if the
evaluation of an expression f can be represented by a net Nf , we assure that any evalu-
ation of f is performed by a fresh copy of Nf . In this way confusions among concurrent
evaluations of the same expression are avoided.

Definition 4.1. Let O = 〈D,z :∈E(P)〉 be an Orc orchestrator. Then, the corresponding
Join process is PO = {[O]}, where {[ ]} is inductively defined in Figure 5.

We comment on the definitions in Figure 5. Any Orc definition D ∈ D becomes a lo-
cal definition {[D]} of the corresponding Join process PO, while the initial expression
z :∈ E(p1, . . . , pn) becomes the active process {[E(p1, . . . , pn)]}z. Note that the initial
expression E(p1, . . . , pn) is encoded by considering a context z (i.e., the channel z en-
codes the homonymous variable). In this way, PO will send a message z〈v〉 for any value
v obtained during the evaluation of E(p1, . . . , pn). Any Orc definition E(x1, . . . ,xn) Δ f
is translated as a basic rule E(q1, . . . ,qn,z)� {[ f ]}z, where z is a fresh name used for re-
turning the values produced during the evaluation of f , i.e., z is used for implementing
the usual continuation passing style of Join.

All remaining rules define the translation of expressions. In particular, the inert Orc
expression 0 is translated as the inert Join process 0, while the constant expression c
is encoded as z〈c〉, i.e., as the assignment of the unique value c to z. Differently, the
encoding of an expression consisting of a variable x is translated as a message x〈z〉. In
fact, as we will see later, we associate any Orc variable with a basic Join definition that
answers any message x〈z〉 with z〈v〉 if x has been assigned a value v. Moreover, any
request x〈z〉 will be blocked until a value is assigned to x.

The invocation M(p1, . . . , pn) of a service M is translated as a process that starts by
evaluating all actual parameters pi. Since actual parameters can be only constants or
variables, the evaluation of {[pi]}yi will finish by producing messages yi〈xi〉 on fresh
names yi. Hence, the unique local definition is enabled only when all actual parameters



Translating Orc Features into Petri Nets and the Join Calculus 133

{[O = 〈D,z :∈ E(P)〉]} = def D∈D {[D]} in {[E(P)]}z

{[E(q1, . . . ,qn) Δ f ]} = E(q1, . . . ,qn,z)�{[ f ]}z with z �∈ {q1, . . . ,qn}
{[0]}z = 0
{[c]}z = z〈c〉
{[x]}z = x〈z〉

{[M(p1, . . . , pn)]}z = def y1〈x1〉| . . . |yn〈xn〉�def k〈v〉|tok〈〉� z〈v〉
in M〈x1, . . . ,xn,k〉 | tok〈〉

in {[p1]}y1 | . . . |{[pn]}yn

{[X(p1, . . . , pn)]}z = def y1〈x1〉| . . . |yn〈xn〉|y〈M〉�def k〈v〉|tok〈〉� z〈v〉
in M〈x1, . . . ,xn,k〉 | tok〈〉

in {[p1]}y1| . . . |{[pn]}yn|{[X ]}y
{[E(p1, . . . , pn)]}z = def ∧p∈{p1,...,pn}∩C f wdp〈k〉�k〈p〉

in E(�p1�, . . . ,�pn�,z)
where �pi� = pi if pi �∈ C and �pi� = fwdpi

otherwise
{[ f | g]}z = {[ f ]}z | {[g]}z

{[ f > x > g]}z = def w〈v〉� def x〈y〉 | valx〈u〉�y〈u〉 | valx〈u〉
in {[g]}z | valx〈v〉

in {[ f ]}w

{[g where x :∈ f ]}z = def x〈y〉 | valx〈u〉�y〈u〉 | valx〈u〉
∧ w〈v〉 | tok〈〉�valx〈v〉
in {[g]}z | {[ f ]}w | tok〈〉

Fig. 5. Encoding of an Orc Orchestrator in Join

have been completely evaluated. Moreover, the firing of the local rule creates two fresh
ports: k and tok and a unique firing rule. Channel k indicates the port where the orches-
trator awaits the answers of the invoked service (We assume the definition of any site to
be extended in order to receive this extra parameter.) Channel tok assures that just one
answer is considered for any invocation. In fact, there is only one message tok〈〉, which
is consumed (and it is not generated anymore) when the first message on k is received.

In case the name of the invoked service is the variable X , then X has to be evaluated
before the invocation, just like any other actual parameter. The name of the site M will
be returned as he value of X on port y.

The use of an Orc definition E(p1, . . . , pn) differs from the invocation of a service
in the fact that definitions are called by following a lazy evaluation, i.e., parameters are
not evaluated before the call. Hence, invocations of E can take place even though some
of the formal parameters p1, . . . , pn have not been initialised. The local ports f wdp in-
troduced by the encoding if p ∈ C allow the constant parameters to be used as variables
inside the expression defining E (see Example 4.1).

The encoding of a parallel composition f |g corresponds to the parallel composition
of the encodings of f and g. Note that both encoded expressions produce results on the
same channel z. On the other hand, the sequential composition f > x > g is translated
as a process that starts by evaluating {[ f ]}w (i.e., the encoding of f ) whose values
will be sent as messages to the local port w. Hence, any message on w corresponds to
the activation of a new evaluation of g. In fact, the local definition, which is enabled with
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a message w〈v〉, will create a fresh copy of the encoding of g, which will evaluate g by
considering the particular value v produced by f .

The last rule handles the translation of asymmetric parallel composition. Note that
the encodings of f and g are activated concurrently. Unlike sequential composition,
there is a unique copy of {[g]} and a unique instance of the variable x. In fact, asymmet-
ric composition requires to evaluate g just for one value of f . The unique message tok
assures that only one value produced by {[ f ]} will be set to the variable x.

Example 4.1. Let O = 〈{d},z :∈ Invoke(StockQuote,Sun)〉, with d :
Invoke(m,n)Δ m(n). The corresponding Join process is as follows.

{[O]}= def Invoke〈m,n,z〉 � def y1〈x1〉|y〈M〉 � def k〈v〉 | tok〈〉� z〈v〉
in M〈x1,k〉 | tok〈〉

in n〈y1〉 | m〈y〉
in def f wdStockQuote〈k〉� k〈StockQuote〉

∧ f wdSun〈k〉� k〈Sun〉
in Invoke〈 f wdStockQuote, f wdSun,z〉

Note the difference when calling a local definition (i.e., Invoke) and when invoking a
service (i.e., StockQuote). In particular, actual parameters are not evaluated when call-
ing a local definition. Moreover, a new forwarder is created for any constant parameter.
In this case, the ports f wdStockQuote and f wdSun are introduced and are used as actual
parameters. In this way the definition of Invoke may handle all its parameters as if they
were variables. In fact, when rule Invoke〈m,n,z〉 � . . . is fired by consuming the token
Invoke〈 f wdStockQuote, f wdSun,z〉, then the arguments m and n are evaluated by send-
ing the messages f wdSun〈y1〉 and f wdStockQuote〈y〉, which will return the corresponding
constants, i.e., the messages y1〈Sun〉 and y〈StockQuote〉 will be produced.

The remaining part of this section is devoted to show the correspondence among Orc
processes and their encoded form. The following definition introduces the equivalence
notion we will use to compare Orc processes with their encoded form, which is a kind
of weak bisimulation. In the following, given an Orc label α, the corresponding Join
label is denoted with α and it is defined as Mk(v) = {k}M〈v,k〉, k?v = k〈v〉, !v = /0z〈v〉.

Definition 4.2 (Weak Bisimulation). Let O = 〈D,z :∈ E(p1, . . . , pn)〉 be an orchestra-
tor, and P be a Join process. We call weak bisimulation any relation R satisfying the
following condition: O R P iff

1. O
α−→ O′ and α �= τ then P →∗ α−→ P′ and O′ R P′

2. O
τ−→ O′ then P

τ−→∗P′ and O′ R P′

3. P
α−→ P′ and α �= k〈v〉 then O→∗ α−→ O′ and O′ R P′

4. P
k〈v〉−→ P′ then either (i) O

k?v−→ O′ and O′ R P′, or (ii) O �k?v−→ and O R P′

5. P
τ−→ P′ then O

τ−→∗ O and O R P′

The largest relation R is said the weak bisimilarity and it is written ≈.

All rules but the fourth one are quite standard. In fact, rule 4 handles the case in which
a Join process performs an intrusion on an already extruded name. The only possibil-
ity is when the process receives an answer for a site call. Hence, such step should be
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mimicked by the orchestrator (i.e., the condition O
k?v−→O′). Nevertheless, this situation

may take place only when the first answer is received. In fact, the Join encoding of an
Orc site call ignores all the answers following the first one. On the other end, the open
semantics of Join allows for the intrusion of those messages (even if they cannot be
exploited). Hence, the weak bisimulation says that the intrusion of extra answers does

not change the behaviour of the encoded form (i.e., O �k?v−→ and O R P′).
In the following, we show that there exists a weak bisimulation among Orc orches-

trators and their encoded form when considering a non-killing version of Orc, that is, a
version in which asymmetric composition does not imply the killing of the residual of
f . In fact we consider the following version of the rule (ASYMPRUNE).

f
!c−→ f ′

g where x :∈ f
τ−→ g[c/x] | (0 where z :∈ f ′)

(NOTKILL-WHERE)

Note that g is evaluated as in ordinary Orc just for one value produced by f . Neverthe-
less, the residual f ′ of f is allowed to continue its execution, but the obtained values
are thrown away since 0 appears as the left-hand-side of the clause where. We remark
that (NOTKILL-WHERE) does not significantly alters Orc’s semantics and it can be en-
visaged as an implementation of the g where x :∈ f construct that simply ignores all
values published by f but the first one.

Lemma 4.1 (Correspondence). When considering rule NOTKILL-WHERE, O≈ {[O]}.

Proof (Sketch). The proof follows by coinduction, showing that the following relation
R is a weak bisimulation.

R = {(O,P)|{[O]} τ−→ ∗P}∪{(O′,P′)|O α−→ O′and{[O]} τ−→ ∗ α−→ τ−→ ∗P′}

Actually the proof is up-to strong-bisimulation [15] on Join processes, since we con-
sider terms up-to the relation ≡e defined below

1. if P �∗ Q then P ≡e Q, i.e., P and Q are structural equivalent;
2. P ≡e P|def D in 0, i.e., useless definitions are removed; and
3. if Q≡ defS D in def{k} k〈	v〉|tok〈〉� z〈v〉 in R | k〈	u〉 →∗ Q′ implies Q′ ≡ defS D′ in

def{k} k〈	v〉|tok〈〉� z〈	v〉 in R′ | k〈	u〉 and P≡ defS D in R→∗ defS D′ in R′ and tok �∈
f n(R), then P ≡e Q, i.e., intruded messages that do not alter the behaviour of the
process can be removed.

Note that ≡e is a strong bisimulation (proved by standard coinduction).

Finally, we show that the computed values of ordinary Orc orchestrators corresponds
with the computed values of their encoded form.

Theorem 4.1. O→∗ !v→O′ iff {[O]}→∗ z〈v〉→P

Proof (Sketch). The proof follows by (i) showing that the results computed by Orc and
its not killing version are the same and (ii) by using Lemma 4.1.
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5 Concluding Remarks

Orchestration paradigms can be roughly categorised into three key trends:

– technology-driven languages: all XML dialects and standardisation efforts (e.g.,
WS-BPEL [8], XLANG [27], WSFL [16]);

– model oriented: workflow aspects are prominent (e.g., Petri nets [24,3], YAWL [4]);
– process algebraic or messaging-based: the orchestration is ruled by communication

primitives (e.g., CCS [17], pi-calculus [18], and Join calculus [14]).

A few years ago, when the series of WS-FM Workshop started, each trend contained
several proposals substantially separated from the other two trends, with different back-
ground, scope and applications. For example, a still ongoing debate [25,1,2] adverses
the use of workflow to that of pi-calculus and it has led to the establishment of an
expert forum (the Process Modelling Group [22]) to investigate how the two differ-
ent approaches can solve typical service composition challenges, like van der Aalst et
al.’s workflow patterns [28,5], and compare the solutions. Workflow enthusiasts advo-
cate that name mobility and message passing are not really necessary, while pi-calculus
enthusiasts are confident that mobility aspects play a prominent role in dynamic assem-
bling of services. The discussion has led also to the combined use of ideas from both
world, like in the case of SMAWL [26], a CCS variant.

We have investigated the modelling of the orchestration language Orc in Petri nets
and the Join calculus. Orc is an interesting proposal that can hardly fit in the orches-
tration categories discussed above. Our comparisons have allowed us to identify some
key features of Orc, that are not so evident from its original definition. First, pipelin-
ing, site calls and asymmetric parallel composition involve dynamic creation of names
and links, that cannot find a natural encoding in Petri nets with static topology, unless
seriously restricting Orc. Second, the pruning associated with asymmetric conflict is a
rather peculiar and powerful operation not common in process calculi. In fact, one can
argue that it is also not very realistic to impose atomic cancelling of complex activities
in a distributed setting (especially when side effects due to e.g. name passing and extru-
sion could have taken place). Nevertheless, from the point of view of process calculi,
cancelling can be rendered as equivalent to the disabling of the input ports where the
cancelled activities could send their data. In Petri nets and Join the disabling is mod-
elled by void tokens that enable just one occurrence of certain events, but Join has the
advantage of not introducing cleaning activities and serialisation of site calls, which
are instead necessary for dealing with multiple invocations in the Petri net encodings
of § 3.

Finally, we mention that Join appears to be adequate as coordination language since
it can suitably encode Orc. Remarkably, Join, despite its thinness, also results a re-
spectable language for choreography and computing. Finally, Join is perhaps also more
suitable as coordination/orchestration language than e.g. pi-calculus because its join-
pattern construct yields more flexible and convenient communication patterns.

Acknowledgement. The authors thank the anonymous reviewers for their valuable com-
ments and suggestions that contributed to improve this work.
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Abstract. For an automatic invocation of Web services, concrete plat-
forms allow the client-side generation of stubs by means of suitable prim-
itives of programming languages. In this setting, we propose a framework
that preserves static and dynamic integrity constraints of invocation pa-
rameters. The main ingredients of the framework are: (i) WSDL [16],
a Web services description language that describes the interface, the se-
mantics and the protocol for invoking Web services, (ii) CLiX [10], a lan-
guage for constraints specification in XML that allows the specification
of static and dynamic integrity constraints of Web service parameters by
means of logic formulas; (iii) reflection mechanisms for managing com-
plex user-defined types. The proposed framework is entirely based on
XML-based technologies and allows only provably correct Web services
invocations be forwarded by client-side checking CLiX formulas.

1 A Fast Introduction of Web Services

It is often very hard to guarantee automatic interoperability among different
applications. A typical scenario is the Web, where clients applications may auto-
matically invoke Web services. This is often very difficult to achieve for several
reasons (as, for instance, lack of semantic information exposed by interaction
interfaces or their heterogeneity). Object-oriented programming has suggested
a black-box approach, where the internal working of the system is hidden while
its functionalities are exposed to the environment via a suitable description of
the inputs and outputs. This way of doing has been indeed imported within the
Web Services technology. The functionality of a service over the Web is a special
signature that describes how it can be properly invoked. The Web Services De-
scription Language (WSDL) [16] relies on this technique. It is an XML language
that contains information about the interfaces, the semantics and the proto-
col for invoking Web services. A WSDL document is analogous to a collection
of methods and their signatures, together with information about the syntax
of the inputs and the outputs. In particular, the parameters types are defined
by XML Schema [23]. Unfortunately, only simple static constraints can be ex-
pressed. Regarding communication protocols, one of the main WSDL proposal
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is SOAP HTTP Binding. This allows services to be invoked by merely textual
messages via HTTP protocol.

2 A Constraint-Based Interface

Concrete platforms provide the client-side generation of stubs from WSDL de-
scriptions. Stubs allow Web services to be invoked by programming languages
(e.g. Java). Their basic functionalities are marshalling and unmarshalling of ser-
vice parameters. The former is used to serialize parameters to XML format
while the latter acts as the vice versa; namely, it translates data from the
serialized format (XML format) to the format suitable for the programming
language.

However, a stub has also to allow a service to be properly invoked, e.g. it
has to manage complex (user defined) types, and to respect static and dynamic
integrity constraints of the invocation parameters. For instance, consider a Web
service implementing banking functionalities. Suppose that

a. the input parameters represent a bank account: if the data on which the
service is invoked do not represent a valid account number, then it is difficult
to make proper use of it. This is an example of static constraint, since the
validity of the data can be expressed by a static statement (e.g. the account
number must range over a given numeric set).

b. the input parameters represent birth country and town of a customer: obvi-
ously, only some combinations of values are sound, since the hometown has
to belong to the specified country. This is an example of inter-dependence
constraint, since the parameters are related each other.

c. the input parameters represent an exempt from tax on profit investment,
where the exemption holds only in the case the investment dates back more
than a year ago: this is an example of dynamic constraint, since the soundness
of the data depends on their values.

XML Schema does not allow complex constraints to be expressed: it is impos-
sible to define inter-dependencies (example b) and dynamic constraints (example
c). It follows that stubs, generated only from WSDL descriptions, do not allow
Web services to be properly invoked.

To fill this gap, more expressive technologies have to support XML Schema.
A first approach is based on ontologies. XML metadata can be easily described

as simplified ontologies, for instance in OWL-S language [19]. Numerous works
(e.g. [3]) have shown that, when describing inputs and outputs using ontological
concepts, the inferences supported by the underlying ontology language can be
exploited in order to improve service discovery. However, this approach turns
out to be expensive to express only integrity constraints, since client and service
data structures have to be aligned (i.e. we need a mediator).

A second approach is based on logic languages. Describing parameters, types
and constraints, not just by referencing a specific concept but via either a logic
assertion model or some rule mechanism, is undoubtedly a more flexible tech-
nique, allowing an elaboration independent from the specific ontology. In a logic
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language, constraints can be expressed by logic sentences. RuleML [22], for in-
stance, is an XML-based language that allows rules to be expressed as modular
components in a declarative way. RuleML uses distinct, standard XML tags
to define facts and rules; moreover, it can specify queries, inferences and map-
pings between Web ontologies. However, some inconvenient features have to be
remarked:

- It handles mathematical operators like symbols, making mathematical oper-
ations difficult. We are unable to express rules using > or < operators that
execute properly in the inference engines.

- Getting one RuleML file to execute in multiple languages is difficult, due
to differences in fundamental processing between symbolic reasoning and
Object-oriented programming. The use of variables and individual values in
RuleML can set off a non-uniform execution of the rules.

- Building rules that fire properly is tricky in any inference engine: rules must
be designed so that data can be captured as facts that trigger the firing of
appropriate rules.

We believe that any approach considering XML metadata as simplified on-
tologies tries to merge two incomparable concepts. In fact:

- Ontologies are domain models and XML Schema defines document struc-
tures;

- Ontologies provide a structure and a vocabulary to describe the semantics
contained in on-line information sources, while the purpose of XML Schema
is prescribing the structure of documents and providing a shared vocabulary
for the users of a specific XML application;

- In an ontological setting, the information is defined by means of semi-
structured natural language, while XML Schema allows information to be
expressed in a tabular style.

While a semantic-based approach - as ontologies and logic languages - is not
agile and suitable to only express integrity constraints, a simple syntactic ap-
proach is powerful enough to this purpose.

The UML standard has been already equipped with an Object Constraint
Language (OCL) [21], in order to allow modelers to express unambiguously nu-
ances of meaning that the graphical elements (class diagrams) can not convey
by themselves. It is a declarative language for the specification of functional be-
havior of single software system elements, as well as global constraints on valid
system states. It supports as constraints mainly invariants on class diagrams, as
well as functional specifications of methods by preconditions and postconditions.
An OCL sentence can be written as follows:

context TypeName TypeRule: BooleanExpression

BooleanExpression is any boolean expression with operators, attributes and set
of elements in the scope of TypeName: the result of any OCL sentence interpre-
tation is a boolean value. TypeName denotes a set of either classes or operations
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subject to constraints, and TypeRule denotes the constraint type, namely invari-
ant, precondition and postcondition, denoted by inv, pre and post, respectively.
The keyword context introduces the expression context. Operators forall and
exists can enrich boolean sentences: for this reason OCL can be considered a
First-order logic language.

Unfortunately, OCL is not based on XML syntax: hence, it is not suitable to
integrate WSDL descriptions and to share constraints within a limited scope of
distributed networks.

Schematron [13] and CLiX [10] (Constraint Language in XML) are two of
the most used XML-based constraint languages. However, CLiX turns out to
be better to express constraints in XML, since it overcomes some drawbacks
of the former language (missing hierarchical structure of tests, lacking recursive
expressions, differing degree of expressiveness).

CLiX is a logic language, used both to constrain XML documents internally
and to execute inter-document checks. It allows constraints to be described us-
ing a mixture of First-order logic and XPath expressions [15]. Existential and
universal quantifiers are used to iterate over sets of nodes and boolean operators
allow to build more complex formulas. Every construct in the language makes
use of XPath to retrieve elements from documents for processing.

CLiX formulas can express referential integrity properties among complex
data. For instance, suppose to define a graph in XML as follows:

<graph>

<vertex id="0">

<edge idref="5">

<edge idref="6">

</vertex>

<vertex id="5">

<vertex id="6">

</graph>

XML Schema is not powerful enough to define a semantic property like the
graph must be connex. However, this property can be easily expressed by means
of the following CLiX rule:

<rule id="valid edges">

<forall var="eID" in="/vertex/edge/@to">

<exists var="vID" in="/vertex/@id">

<equal op1="$vID" op2="$eID" />

</exists>

</forall>

</rule>

3 A Constraint-Based XML Framework for Client-Side
Stubs Automatic Generation

In this section, we show in detail an XML-based framework allowing the client-
side automatic generation of stubs, for properly invoking Web services.
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The service WSDL description is enriched with CLiX logic formulas, express-
ing static and dynamic integrity constraints of the invocation parameters. CLiX
formulas are linked to the WSDL document by a namespace: it follows that
CLiX is independent from the service description, i.e. every (XML) formalism
can be freely chosen to describe the service.

The Web service makes available the WSDL description of its signature, the
XML Schema modeling inputs and outputs and the set of its specific CLiX
formulas. On the other side, the client activity consists on two steps:

1. producing a stub by means of a concrete platform, starting from the WSDL
description and the XML Schema;

2. checking the (XML) serialized translation of the generated stub w.r.t. the
set of CLiX formulas, before forwarding the service invocation.

User Dynamic stub

Marshalling Unmarshalling

Clix Validator

Service

Marshalling Unmarshalling

Client Server

SOAP:Request

SOAP:Response

More in details, WSDL2Java [17] is the concrete platform used to translate
any enriched WSDL file in a Java language stub. This phase consists of the
standard XML Schema validation procedure and the management of complex
(user defined) types by means of Java reflection mechanisms; CLiX constraints
are ignored.

Then, the stub is serialized in XML format and checked w.r.t the associated
CLiX formulas by OpenCLiXML [11], an open source CLiX validator.
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Finally, the service invocation is forwarded by the client via SOAP only when
checked correct: as a consequence, client and server need to exchange very few
messages for successfully completing the invocation protocol.

Regarding performance aspects, on the one hand, CLiX constraints do not
noticeably increase the SOAP messages size; on the other hand, the validation
procedure weighs down the client elaboration. However, the considerable mes-
sages decrement over the network cancels out the overhead price.

Regarding semantic aspects, the meaning of parameters and service func-
tionality is ignored: in fact, the framework enables a client to properly invoke
a service, without knowing the semantics of its inputs and outputs. This is
not a real shortcoming. Indeed, we can think of adding an ontological map-
ping, i.e. a semantic function which encodes identifiers into concepts, rather
than a full ontological model, thanks to the fact that both inter-dependencies
and dynamic constraints of the invocation parameters are expressed in XML
syntax.

In the following, we give some more details about how to complex types and
integrity constraints are handled.

3.1 Step 1: How to Handle Complex Types

WSDL2Java [17] is a concrete platform translating WSDL descriptions into stubs
for invoking services by Java language.

A stub is a set of Java classes to set SOAP endpoints, as well as to handle com-
plex types (input and output service parameters). For our purpose, WSDL2Java
has been modified, in order to allow a complex types handling on the fly.

We show the main methods:

getAllOperation: The method returns the set of any available service op-
eration.
getReturnType: The method takes an operation name and returns the
output type name of the given operation.
getParametersType: The method takes an operation name and returns
the set of its input parameters.
getClassParameter: The method takes a parameter name and returns the
Class object of the specified parameter.
invokeMetod: The method takes an operation name (SOAP), a set of Ob-
ject objects (the set of operation parameters) and returns the result of the
Web service invocation in Object format.

3.2 Step 2: How to Handle Integrity Constraints

OpenCLiXML [11] is an open source Java implementation of the freely avail-
able CLiX specification from Systemwire [9]. The validator provides optimized
rules processing against data represented in XML, including inter-document
checks. For our purpose, the marshalling operation has been enriched with
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OpenCLiXML, in order to support the validation of (XML) serialized stubs w.r.t.
both XML Schema and CLiX formulas.

4 An Example: Electric Circuits and Kirchhoff’s First
Law

A lot of computational problems (flow control, GIS, optimization, etc.) make use
of graphs; constraints can be very complex and can involve several parameters.
Consider, for instance, a Web service able to elaborate descriptions of electric
circuits verifying Kirchhoff’s First law. The service models a circuit as an ori-
ented and weighted graph. Vertexes and edges symbolize crossing points and
conductors, respectively. The edges are oriented and weighted, since direction
and intensity are parameters characterizing the electricity.

In this case, a circuit verifies Kirchhoff’s First law if and only if

At any point in it, where charge density is not changing in time, the sum
of currents flowing towards that point is equal to the sum of currents
flowing away from that point.

A sound electric circuit, i.e. an electric circuit verifying Kirchhoff’s First law,
can be modeled by a graph, equipped by the following constraints:

1. There is no loop;
2. There is no source vertex, i.e. vertex having no incoming edge;
3. There is no shaft vertex, i.e. vertex having no outgoing edge;
4. For every vertex, the sum of incoming edges values equals to the sum of

outgoing edges values.

The following figure shows an instance of electric circuit, which verifies the
above items.

A

B

C

D

3

5

3

5
8

To obtain a sound electric circuit XML description, we proceed as follows.
First, we model a graph in a UML Class diagram.

Vertex
id:string

Edge
value:int

from

to

1..*

1..*
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Then, we enrich it with OCL integrity constraints, expressing Kirchhoff’s First
law.

context Vertex

inv:

self.to->forall(n|n <> self) %---------------------------item 1

self.edge[from]->size() > 0 %----------------------------item 2

self.edge[to]->size() > 0 %------------------------------item 3

self.edge[to].value.sum()=self.edge[from].value.sum() %--item 4

Notice that some integrity constraints can not be validated at run time, i.e. on
a partial graph, but only when the graph is completed. It suffices to consider item
4: whenever a vertex is created, the constraint expressed by item 4 does not hold
as long as appropriate edges are added. Even preconditions and postconditions
are not useful to validate this constraint before completing the graph. This fact
justifies the use of a validator after marshalling input and output parameters.

Figure 1 shows graphically the XML Schema, embedded in the service WSDL
document, modeling the input type (e.g. the graph).

Fig. 1. XML Schema

The final step consists of translating each OCL assertion into an equivalent
CLiX rule. The following rules model the constraints expressed in items 1 and
2, respectively:

<clix:rule id="rule-item1">

<clix:forall var="vertex" in="/graph/vertex">

<clix:forall var="edge" in="$vertex/edge" >

<clix:notEqual op1="$vertex/@id" op2="$edge/@to" />

</clix:forall>

</clix:forall>

</clix:rule>
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<clix:rule id="rule-item2">

<clix:forall var="vertex" in="/graph/vertex">

<clix:exists var="edge" in="/graph/vertex/edge" >

<clix:equal op1="$vertex/@id" op2="$edge/@to" />

</clix:exists>

</clix:forall>

</clix:rule>

Regarding item 3, both the constraint expressed by XML Schema (e.g. every
vertex has at least one edge) and CLiX rule-item1 suffice to ensure that there is
no shaft node in the input graph.

Finally, item 4 can be expressed in CLiX as follows:

<clix:rule id="rule-item4">

<clix:forall var="vertex" in="/graph/vertex">

<clix:forall var="edge" in="/graph/vertex/edge">

<clix:equal op1="sum($edge/value)" op2="sum($edge/@to=$vertex@id)"/>

</clix:forall>

</clix:forall>

</clix:rule>

5 Conclusion and Future Work

Web Service Description Language (WSDL) is the most widely language used
for Web service descriptions. In a model where application functionalities are
exposed as a signature, a client can interact with a service only if it knows the
content of the messages that need to be sent out to the service provider (auto-
matic invocation). WSDL descriptions by themselves do not provide sufficient
information to enable a client to properly perform the above activity.

In this scenario, we have proposed a framework for automatically and properly
invoking Web services by means of client-side stubs. The key element is a service
WSDL description, enriched with CLiX logic formulas: reflection mechanisms
on the stubs manage complex (user defined) types, and CLiX logic formulas
express static and dynamic integrity constraints of the invocation parameters.
First, the WSDL description is elaborated to produce a stub; then, the XML
translation of this stub is checked by a CLiX validator, according to CLiX logic
formulas associated to the given description. In this way, a service invocation is
forwarded only after the validator checking it correct w.r.t. service parameters
integrity constraints, i.e. without waiting for either ack or error messages from
the service provider.

As a future work, it is reasonable to think of enriching the model with an onto-
logical description. This extension can be done in a quite natural way: we believe
that an ontological mapping, i.e. a semantic function which encodes identifiers
into concepts - like WSDL-S [24] and OWL-S [19] - can replace a full ontological
model, thanks to the fact that both inter-dependencies and dynamic constraints
of the invocation parameters are expressed in XML syntax.
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Abstract. We define a formal contract language along with subcontract
and compliance relations. We then extrapolate contracts out of processes,
that are a recursion-free fragment of ccs. We finally demonstrate that a
client completes its interactions with a service provided the correspond-
ing contracts comply. Our contract language may be used as a foundation
of Web services technologies, such as wsdl and wscl.

1 Introduction

The recent trend in Web services is fostering a computing scenario where loosely
coupled parties interact in a distributed and dynamic environment. Such in-
teractions are typically sequences of messages that are exchanged between the
parties. The environment, being dynamic, makes it not feasible to define or as-
semble parties statically. In this context, it is fundamental for clients to be able
to search at run-time services with the required capabilities, namely the format
of the exchanged messages, and the protocol – or contract – required to inter-
act successfully with the service. In turn, services are required to publish such
capabilities in some known repository.

The Web Service Description Language (wsdl) [6,5,4] provides a standardized
technology for describing the interface exposed by a service. Such description
includes the service location, the format (or schema) of the exchanged mes-
sages, the transfer mechanism to be used (i.e. soap-rpc, or others), and the
contract. In wsdl, contracts are basically limited to one-way (asynchronous)
and request/response (synchronous) interactions. The Web Service Conversa-
tion Language (wscl) [1] extends wsdl contracts by allowing the description
of arbitrary, possibly cyclic sequences of exchanged messages between commu-
nicating parties.

Both wsdl and wscl documents can be published in repositories [2,7] so
that they can be searched and queried. However, this immediately poses an issue
related to the compatibility between different published contracts. It is necessary
to define precise notions of contract similarity and compatibility and use them
to perform service discovery in the same way as, say, type isomorphisms are
used to perform library searches [18,8]. Unfortunately, neither wsdl nor wscl
can effectively define these notions, for the very simple reason that they do not
provide any formal characterization of their contract languages. This cries out
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for a mathematical foundation of contracts and the formal relationship between
clients and contracts.

In this contribution we define a calculus for contracts along with a subcontract
relation, and we formalize the relationship between contracts and processes (that
is clients and services) exposing a given contract. Contracts are made of actions
to be interpreted as either message types or communication ports. Actions may
be combined by means of two choice operators: + represents the external choice,
meaning that the interacting part decides which one of alternative conversations
to carry on; ⊕ represents the internal choice, meaning that the choice is not left
to the interacting part. As a matter of facts, contracts are behavioral types of
processes that do not manifest internal moves and the parallel structure. They
are acceptance trees in Hennessy’s terminology [11,12].

Then we devise a subcontract relation � such that a contract σ is a subcontract
of σ′ if σ manifests less interacting capabilities than σ′. The subcontract relation
can then be used for querying (Web services) repositories. A query for a service
with contract σ may safely return services with contract σ′ such that σ � σ′. It
is possible that interaction with a service that exposes a contract that is bigger
than the client requires may result into unused capabilities on the server side.
We argue that this is safe, because we are interested in the client’s ability to
complete the interaction. Such client completion property inspires a relationship
between client contracts and service ones – the contract completion – that may be
defined in terms of � and an appropriate complement operation over contracts.

To illustrate our contracts at work we consider a recursion-free fragment of the
Calculus of Communicating Systems (ccs [13]). We define a compliance relation
between processes such that a process – the client – interacting with another –
the service – is guaranteed to complete. For instance the clients (a.b | a) \ a and
(a.b | a.c | a) \ a respectively comply with the services b and b | c; the two clients
do not comply with c. We then extrapolate a contract out of a process by means
of a type system defined using the expansion theorem in [15]. For instance, we
are able to deduce a.b | a � (a.(b.a+ a.b)+ a.(a.b+ b.a)+ b)⊕ b. Finally we prove
our main result: if the contract of a client complies with the contract of a service,
then the client complies with the service.

The expressiveness of our contract language is gauge by encoding wsdl mes-
sage exchange patterns and some wscl conversations into our contract language.
Because of the � relation between contracts, we are able to draw some interest-
ing considerations about similar exchange patterns, and order them according to
the client’s need. As we consider the recursion-free fragment of ccs, we are not
able to deal with cyclic wscl conversations, but we point out in the conclusions
that their support requires well-known extensions to the contract language and
to the subcontract relation.

Related Work. This research was inspired by “ccs without τ” [15] and by Hen-
nessy’s model of acceptance trees [11,12]. In facts, our contracts are an alterna-
tive representation of finite acceptance trees. While the use of formal models to
describe communication protocols is not new (see for instance the exchange pat-
terns in ssdl [19], which are based on csp and the π-calculus), to the best of our
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knowledge the subcontract relation � is original. It is incomparable with may
testing preorder and it is less discriminating than the must testing preorder [14].
The stuck free conformance relation in [10], which is inspired by the theory of
refusal testing [16], is also more demanding than our subcontract relation. For
instance 0 is not related with a in [10] whilst 0 � a.

It is worth noticing that both must testing and stuck free conformance are
preserved by any ccs context without + thus allowing modular refinement. This
is not true for �. For instance a � a + b so one might think that a service with
contract a can be replaced by a service with contract a + b in any context.
However, the context C = b | b.a | [ ] distinguishes the two services (a + b can get
stuck while a cannot). The point is that the context C, representing a client,
does not comply with a, since it performs the actions b and b which are not
allowed by the contract a.

Structure of the Paper. In Section 2 we formally define our language for con-
tracts along with subcontract and compliance relations. In Section 3 we relate
the language with existing technologies to specify service protocols. Our notion
of compliance between contracts is lifted to a notion of compliance between
processes in Section 4. Section 5 draws our conclusion and hints to future work.

2 The Contract Language

The syntax of contracts uses an infinite set of names N ranged over by a, b, c,
. . . , and a disjoint set of co-names N ranged over by a, b, c, . . . . We let a = a.
Contracts σ are defined by the following grammar:

σ ::= contracts
0 (void )
a.σ (input prefix)
a.σ (output prefix )
σ + σ (external choice)
σ ⊕ σ (internal choice)

Contracts are abstract definitions of conversation protocols between commu-
nicating parties. The contract 0 defines the empty conversation; the input prefix
a.σ defines a conversation protocol whose initial activity is to accept a message
on the name a – representing uris – and continuing as σ; the output prefix a.σ
defines a conversation protocol whose initial activity is to send a message to the
name a and continuing as σ. Contracts σ+σ′ and σ⊕σ′ define conversation pro-
tocols that follow either the conversation σ or σ′; in the former ones the choice is
left to the remote party, in the latter ones the choice being made locally. For ex-
ample, Login.(Continue+ End) describes the conversation protocol of a service
that is ready to accept Logins and will Continue or End the conversation accord-
ing to client’s request. This contract is different from Login.(Continue⊕ End)
where the decision whether to continue or to end is taken by the service.

In the rest of the paper, the trailing 0 is always omitted, α is used to range
over names and co-names, and

∑
i∈1..n σi and

⊕
i∈1..n σi abbreviate σ1 + · · ·+σn
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and σ1 ⊕ · · · ⊕ σn, respectively. The language of σ, written L(σ), is the set of
strings on names and co-names inductively defined as follows:

L(0) = {ε}
L(α.σ) = {αs | s ∈ L(σ)}

L(σ1 + σ2) = L(σ1 ⊕ σ2) = L(σ1) ∪ L(σ2)

2.1 Subcontract Relation and Dual Contracts

Contracts retain an obvious compatibility relation that relates the conversation
protocols of two communicating parties: a contract σ of a party complies with
σ′ of another party if the corresponding protocols match when they interact.
Such a definition of subcontract would require the notions of communicating
party, which is a process, and of contract exposed by it. We partially explore
this direction in Section 4; here we give a direct definition by sticking to a
structured operational semantics style. We begin by defining two notions that
are preliminary to compliance: subcontract and dual contract.

Definition 1 (Transition). Let σ �
α�−→ be the least relation such that

0 �
α�−→

β.σ �
α�−→ if α �= β

σ ⊕ σ′ �
α�−→ if σ �

α�−→ and σ′ �
α�−→

σ + σ′ �
α�−→ if σ �

α�−→ and σ′ �
α�−→

The transition relation of contracts, noted α�−→, is the least relation satisfying
the rules:

α.σ
α�−→ σ

σ1
α�−→ σ′

1 σ2
α�−→ σ′

2

σ1 + σ2
α�−→ σ′

1 ⊕ σ′
2

σ1
α�−→ σ′

1 σ2 �
α�−→

σ1 + σ2
α�−→ σ′

1

σ1
α�−→ σ′

1 σ2
α�−→ σ′

2

σ1 ⊕ σ2
α�−→ σ′

1 ⊕ σ′
2

σ1
α�−→ σ′

1 σ2 �
α�−→

σ1 ⊕ σ2
α�−→ σ′

1

and closed under mirror cases for external and internal choices. We write σ
α�−→

if there exists σ′ such that σ
α�−→ σ′.

The relation α�−→ is different from standard transition relations for ccs processes
[13]. For example, there is always at most one contract σ′ such that σ

α�−→ σ′,
while this is not the case in ccs (the process a.b+a.c has two different a-successor
states: b and c). This mismatch is due to the fact that contract transitions define
the evolution of conversation protocols from the perspective of the communicating
parties. Thus a.b + a.c

a�−→ b ⊕ c because, once the activity a has been done,
the communicating party is not aware of which conversation path has been
chosen. On the contrary, ccs transitions define the evolution of processes from
the perspective of the process itself.
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We write σ(α) for the unique continuation of σ after α, that is the contract
σ′ such that σ

α�−→ σ′.

Definition 2 (Ready sets and subcontracts). Let r range over finite sets
of names and co-names, called ready sets.

σ ⇓ r is the least relation such that:

0 ⇓ ∅
α.σ ⇓ {α}
(σ + σ′) ⇓ r ∪ r′ if σ ⇓ r and σ′ ⇓ r′

(σ ⊕ σ′) ⇓ r if either σ ⇓ r or σ′ ⇓ r

The subcontract relation � is the largest relation such that σ1 � σ2 implies:
1. if σ2 ⇓ r2 then σ1 ⇓ r1 with r1 ⊆ r2,
2. if σ1

α�−→ σ′
1 and σ2

α�−→ σ′
2 then σ′

1 � σ′
2.

Let σ1 " σ2, called contract compatibility, if both σ1 � σ2 and σ2 � σ1.

The relation σ � σ′ verifies whether the external non-determinism of σ′ is greater
than the external non-determinism of σ and that this holds for every α-successor
of σ and σ′, provided both have such successors. For example a.(b⊕c) " a.b+a.c "
a.b ⊕ a.c and a.b ⊕ b � b and b � b + a.c. It is worth to remark that � is not
transitive: the last two relations do not entail a.b ⊕ b � b + a.c, which is false.
This transitivity failure is not very problematic because σ and σ′ are intended to
play different roles in σ � σ′, as detailed by the compliance relation. However,
transitivity of � holds under lightweight conditions.

Proposition 1. If σ1 � σ2 and σ2 � σ3 and either L(σ1) ⊆ L(σ2) or L(σ3) ⊆
L(σ2), then σ1 � σ3.

The relation � is incomparable with may testing semantics [12]: we have a⊕0 �
b, while these two processes are unrelated by may testing; conversely, a⊕ b and
a + b are may-testing equivalent, while a + b �� a ⊕ b. The relation � is less
discriminating than must testing semantics [12]: a and a + b are unrelated in
must testing while a � a + b.

The notion of dual contract is used to revert the capabilities of conversation
protocols. Informally, the dual contract is obtained by reverting actions with co-
actions, + with ⊕, and conversely. For example the dual contract of a⊕b is a+b.
However, this näıve transformation is fallible because in the contract language
some external choices are actually internal choices in disguise. For example,
a.b + a.c " a.(b ⊕ c) but their dual contracts are respectively a.b ⊕ a.c and
a.(b + c), and they tell very different things. In the first one, the communicating
party cannot decide which action to perform after a, whereas this possibility is
granted in the second one. To avoid such misbehavior, we define dual contracts
on contracts in normal form. We use the same forms introduced in [12]. Let the
normed contract of σ, noted nc(σ), be

nc(σ) def=
⊕

σ⇓r

∑
α∈r α.nc(σ(α)) .
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For example

nc((a.b⊕ b.c) + (a.b.d⊕ c.b)) = a.b.(0⊕ d)
⊕ (a.b.(0⊕ d) + c.b)
⊕ (a.b.(0⊕ d) + b.c)
⊕ (b.c + c.b)

Lemma 1. σ " nc(σ) and L(σ) = L(nc(σ)).

Definition 3 (Dual contracts). The dual contract of σ, noted σ, is defined
as

σ
def=
∑

σ⇓r

⊕
α∈r α.σ(α)

where, by convention, we have
⊕

σ∈∅ σ = 0.

The dual operator is not contravariant with respect to �. For example, a � a.b,
but a.b = a.b �� a. For similar reasons, contract compatibility is not preserved.
For example, 0 " 0 ⊕ a but 0 = 0 �" 0 + a = 0⊕ a. However a limited form
of contravariance, which will result fundamental in the following, is satisfied by
the dual operator.

Lemma 2. σ � σ ⊕ σ′.

2.2 Contract Compliance

Every preliminary notion has been set for the definition of contract compliance.

Definition 4 (Contract compliance). A contract σ complies with σ′, noted
σ # σ′, if and only if σ � σ′.

The notion of contract compliance is meant to be used for querying a Web service
repository. A client with contract σ will interact successfully with every service
with contract σ′ provided σ # σ′. For example, consider a client whose conver-
sation protocol states that it intends to choose whether to be notified either on
a name a or on a name b. Its contract might be a⊕ b. Querying a repository for
compliant services means returning every service whose conversation protocol is
a + b, or a + b + a, or a.c + b, etc. The guarantee that we provide (see Section 4)
is that, whatever service returned by the repository is chosen, the client will
conclude his conversation. This asymmetry between the left hand side of � (and
of #) and the right hand side is the reason of the failure of transitivity. More
precisely, in a.b⊕ b � b and in b � a.c + b, we are guaranteeing the termination
of clients manifesting the two left hand sides contracts with respect to services
manifesting the two right hand side contracts. This property is not transitive.

3 On the Expressive Power of the Contract Language

In this section we relate our contract language to existing technologies for spec-
ifying service protocols.



154 S. Carpineti et al.

3.1 Message Exchange Patterns in wsdl

The Web Service Description Language (wsdl) Version 1.1 [6] permits to de-
scribe and publish abstract and concrete descriptions of Web services. Such
descriptions include the schema [9] of messages exchanged between client and
server, the name and type of operations that the service exposes, as well as the
locations (urls) where the service can be contacted. In addition, it defines four
interaction patterns determining the order and direction of exchanged messages.
For instance, the request-response pattern is used to describe a synchronous op-
eration where the client issues a request and subsequently receives a response
from the service.

The second version of wsdl [3,4,5] allows users to agree on message exchange
patterns (mep) by specifying in the required pattern attribute of operation el-
ements an absolute uri that identifies the mep. It is important to notice that
these uris act as global identifiers (their content is not important) for meps,
whose semantics is usually given in plain English. In particular, wsdl 2.0 [4]
predefines four message exchange patterns (each pattern being uniquely identi-
fied by a different uri) for describing services where the interaction is initiated
by clients (four further meps are provided for interactions initiated by servers).
Let us shortly discuss how the informal plain English semantics of these pat-
terns can be formally defined in our contract language. Consider the wsdl 2.0
fragment

<operation name="A" pattern="http://www.w3.org/2006/01/wsdl/in-only">

<input messageLabel="In"/>

</operation>

<operation name="B"

pattern="http://www.w3.org/2006/01/wsdl/robust-in-only">

<input messageLabel="In"/>

<outfault messageLabel="Fault"/>

</operation>

<operation name="C" pattern="http://www.w3.org/2006/01/wsdl/in-out">

<input messageLabel="In"/>

<output messageLabel="Out"/>

<outfault messageLabel="Fault"/>

</operation>

<operation name="D" pattern="http://www.w3.org/2006/01/wsdl/in-opt-out">

<input messageLabel="In"/>

<output messageLabel="Out"/>

<outfault messageLabel="Fault"/>

</operation>

which defines four operations named A, B, C, and D. The first two operations
are asynchronous by accepting only an incoming message labeled In. The last
two operations are synchronous by accepting an incoming message labeled In
and replying with a message labeled Out. In the B operation a fault message can
occur after the input. The C operation always produces an output message (see
in-out in its pattern attribute), unless a fault occurs. In the D operation the
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reply is optional, as stated by the in-opt-out exchange pattern attribute, and
again it may fail with Fault.

We can encode the contract of the pattern of the A operation in our contract
language as inOnly = In.End, that is an input action representing the client’s
request followed by a message End that is sent from the service to notify the
client that the interaction has completed.

The B operation can be encoded as

robustInOnly = In.(End⊕ Fault.End)

where after the client’s request, the interaction may follow two paths, represent-
ing successful and faulty computations respectively. In the former case the end
of the interaction is immediately signaled to the client. In the latter case a mes-
sage Fault is sent to the client, followed by End. The use of the internal choice
for combining the two paths states that it is the service that decides whether
the interaction is successful or not. This means that a client compliant with this
service can either stop after the request or it must be able to handle both the
End and Fault messages: the omission of handling, say, Fault would result into
an uncaught exception.

The need for an explicit End message to signal a terminated interaction is not
immediately evident. In principle, the optional fault message could have been
encoded as In.(0 ⊕ Fault). A client compliant with this service must be able
to receive and handle the Fault message, but it must also be able to complete
the interaction without further communication from the service. The point is
that the client cannot distinguish a completed interaction where the service has
internally decided to behave like 0 from an interaction where the service has
internally decided to behave like Fault, but it is taking a long time to respond.
By providing an explicit End message signaling a completed interaction, the
service tells the client not to wait for further messages. By this reasoning, the
End message after Fault is not strictly necessary, but we write it for uniformity.

By similar arguments the contract of the C operation can be encoded as

inOut = In.(Out.End⊕ Fault.End)

and the contract of the D operation as

inOptOut = In.(End⊕ Out.End⊕ Fault.End)

It is worth noticing how these contracts are ordered according to our definition
of �. We have inOptOut � robustInOnly and robustInOnly� inOnly. Indeed,
a client compliant with inOptOut must be able to complete immediately after
the request, but it is also able to handle a Out message and a Fault message. The
robustInOnly can only produce an End message or a Fault message, hence it
is “more deterministic” than inOptOut. Similarly, inOnly is more deterministic
than robustInOnly since it can only send an End message after the client’s
request. Finally, note that inOptOut � inOut also holds.
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3.2 Conversations in wscl

The wsdl message exchange patterns cover only the simplest forms of inter-
action between a client and a service. More involved forms of interactions, in
particular stateful interactions, cannot be captured if not as informal annota-
tion within the wsdl interface. The Web service conversation language wscl [1]
provides a more general specification language for describing complex conversa-
tions between two communicating parties, by means of an activity diagram. The
diagram is basically made of interactions which are connected with each other
by means of transitions. An interaction is a basic one-way or two-way commu-
nication between the client and the server. Two-way communications are just a
shorthand for two sequential one-way interactions. Each interaction has a name
and a list of document types that can be exchanged during its execution. A tran-
sition connects a source interaction with a destination interaction. A transition
may be labeled by a document type if it is active only when a message of that
specific document type was exchanged during the previous interaction.

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

[Accepted]

[OutOfStock]
[InvalidPayment]

[ValidLogin]

[InvalidLogin]

Fig. 1. Contract of a simple e-commerce service as a wscl diagram

Below we encode the contract σ of a simplified e-commerce service (Figure 1)
where the client is required to login before it can issue a query and thus receive
a catalog. From this point on, the client can decide whether to purchase an item
from the catalog or to logout and leave. In case of purchase, the service may
either report that the purchase was successful, or that the item is out-of-stock,
or that the client’s payment was refused:

σ
def= Login.(InvalidLogin.End⊕ ValidLogin.Query.Catalog.(

Logout.End + Purchase.(
Accepted.End⊕ InvalidPayment.End⊕ OutOfStock.End)))

Notice that unlabeled transitions in Figure 1 correspond to external choices
in σ, whereas labeled transitions correspond to internal choices. It is also inter-
esting to notice that wscl explicitly accounts for a termination message (called
“empty” in the wscl specification, the final interaction on the right end in Fig-
ure 1) that is used for modeling the end of a conversation. The presence of this
termination message finds a natural justification in our formal contract language,
as explained above.
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Now assume that the service is extended with a booking capability, so that
after looking at the catalog the client may book an item to be bought at some
later time. The contract of the service would change to σ′ as follows:

σ′ def= . . . Logout.End+ Book.End+ Purchase.(. . . )

We notice that σ � σ′ and L(σ) ⊆ L(σ′), that is σ′ offers more capabilities
than σ.

4 Compliance

Compliance relates a client process with a service process. A client is compliant
with a service if the client terminates (i.e. it has no more interactions to perform)
for every possible interaction with the service. That is, compliance induces a
completion property for the client but not for the service. In order to formalize
compliance we define processes and their dynamics. Then we demonstrate that
it is possible to associate a contract to a process such that (process) compliance
follows by the compliance of the corresponding contracts.

In this contribution, processes are finite ccs terms. The extension to ccs
terms is not trivial and left for future work. For the sake of simplicity we do
not include choice and relabeling operators. The transition relation is standard;
therefore we omit comments.

Definition 5. Processes P are defined by the following grammar:

P ::= 0 | a.P | a.P | P \ a | P |P

Let μ range over N ∪N ∪{τ}. The transition relation of processes, noted
μ−→,

is the least relation satisfying the rules:

(in)

a.P
a−→ P

(out)

a.P
a−→ P

(res)

P
μ−→ Q μ �∈ {a, a}

P \ a
μ−→ Q \ a

(par)

P
μ−→ Q

P |R μ−→ Q |R

(com)

P
α−→ P ′ Q

α−→ Q′

P |Q τ−→ P ′ |Q′

The transitions of P |Q have mirror cases that have been omitted.
We write τ=⇒ for τ−→

∗
and α=⇒ for τ−→

∗ α−→ τ−→
∗
.

The compliance of a client process with a service is defined as follows.

Definition 6 (Compliance). Let P ‖Q −→ P ′ ‖Q′ be the least relation such
that:
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– if P
τ−→ P ′ then P ‖Q −→ P ′ ‖Q;

– if Q
τ−→ Q′ then P ‖Q −→ P ‖Q′;

– if P
α−→ P ′ and Q

α−→ Q′ then P ‖Q −→ P ′ ‖Q′.

Let P # Q, read P complies with Q, if one of the following holds:

1. P �
α−→, or

2. P ‖Q −→ P ′ ‖Q′ and P ′ # Q′.

Process compliance has been noted in the same way as contract compliance
in Section 2. This abuse is justified because the two notions are strongly related,
as we will prove shortly.

Processes expose (principal) contracts. This is defined by an inference system
that uses two auxiliary operators over contracts:

1. σ \ a is defined by induction on the structure of σ:

0 \ a = 0

(α.σ) \ a =
{

0 if α ∈ {a, a}
α.(σ \ a) otherwise

(σ + σ′) \ a = σ \ a + σ′ \ a
(σ ⊕ σ′) \ a = σ \ a⊕ σ′ \ a

2. The operator “ | ” is commutative with 0 as identity, such that σ | (σ′⊕σ′′) =
(σ |σ′)⊕ (σ |σ′′), and σ | (σ′ + (σ′′⊕ σ′′′)) = σ | ((σ′ + σ′′)⊕ (σ′ + σ′′′)). This
allows us to define σ |σ′ when σ and σ′ are external choices of prefixes. Our
definition corresponds to the expansion law in [15]. Let σ =

∑
i∈I αi.σi and

σ′ =
∑

j∈J α′
j .σ

′
j , then

σ |σ′ def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i∈I αi.(σi |σ′) +

∑
j∈J α′

j .(σ |σ′
j)

if αi �= α′
j for every i ∈ I, j ∈ J

(∑
i∈I αi.(σi |σ′) +

∑
j∈J α′

j .(σ |σ′
j) +

⊕
αi=α′

j
(σi |σ′

j)
)

⊕
⊕

αi=α′
j
(σi |σ′

j) otherwise

Definition 7. Let P � σ be the least relation such that

0 � 0
P � σ

a.P � a.σ

P � σ

a.P � a.σ

P � σ

P \ a � σ \ a

P � σ Q � σ′

P |Q � σ |σ′

As anticipated, compliance of processes may be inferred from compliance of the
corresponding contracts. This property, formalized in Theorem 1, requires few
preliminary statements.

Lemma 3. Let P � σ, P
μ−→ P ′, and P ′ � σ′

(a) if μ = τ then σ � σ′, σ′ � σ, and L(σ′) ⊆ L(σ);
(b) if μ = α then σ(α) � σ′, σ′ � σ(α), and L(σ′) ⊆ L(σ(α)).
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Proof. (Sketch) We proceed by induction on the derivation of P
μ−→ P ′.

The base case corresponds to the application of either (in) or (out). Since
P has the form α.P ′ we have σ(α) = σ′. Therefore we conclude σ(α) � σ′,
σ′ � σ(α), and L(σ′) = L(σ(α)).

In the inductive case there are several sub-cases corresponding to the last rule
that has been applied. We discuss (com) and (par).

– (com) implies P = Q |R with Q
α−→ Q′ and R

α−→ R′. Let Q � σ1, Q′ � σ′
1,

R � σ2, and R′ � σ′
2. By definition of “ | ”, we have σ1 |σ2 =

⊕
i∈I σ′′

i with
σ′′

j = σ′
1 |σ′

2 for some j ∈ I. Hence σ1 |σ2 � σ′
1 |σ′

2 follows by definition of
� and σ′

1 |σ′
2 � σ1 |σ2 follows by Lemma 2. It remains to show L(σ′

1 |σ′
2) ⊆

L(σ1 |σ2). This is a straightforward consequence of the definition of “ | ”
and L(·).

– (par) implies P = Q |R with Q
μ−→ Q′ and Q � σ1, R � σ2, and Q′ � σ′

1.
• If μ = τ , by definition of “ | ”, we have σ1 =

⊕
i∈I σ′′

i with σ′′
j = σ′

1

for some j ∈ I. Then σ1 |σ2 = (
⊕

i∈I σ′′
i ) |σ2 =

⊕
i∈I(σ

′′
i |σ2) and

σ1 |σ2 � σ′
1 |σ2 follows by definition of � while σ′

1 |σ2 � σ1 |σ2 follows
by Lemma 2. By definition of L(·) we also conclude that L(σ′

1 |σ2) ⊆
L(σ1 |σ2).

• If μ = α, by the inductive hypothesis we have σ1(α) � σ′
1 and σ′

1 � σ(α).
Since Q

α−→ Q′, by definition of “ | ” we have that σ1 |σ2 has the shape
ρ1⊕(ρ2+α.(σ′

1 |σ2)+ρ3)⊕ρ4 where an arbitrary number of the ρi’s may
be missing. Hence (σ1 |σ2)(α) = · · · ⊕ (σ′

1 |σ2) ⊕ · · · . Then (σ1 |σ2)(α)
� σ′

1 |σ2 follows by definition of � and σ′
1 |σ2 � (σ1 |σ2)(α) by

Lemma 2. By definition of L(·) we also conclude that L(σ′
1 |σ2) ⊆

L((σ1 |σ2)(α)). %�
Theorem 1. If P � σ, Q � σ′, and σ # σ′ then P # Q.

Proof. A maximal computation of the system P ‖Q is a sequence of systems
P1 ‖Q1, . . . , Pn ‖Qn such that P1 = P , Q1 = Q, for every i = {1, . . . , n− 1} we
have Pi ‖Qi −→ Pi+1 ‖Qi+1, and Pn ‖Qn �−→. The proof is by induction on n.

If n = 0, then P ‖Q �−→. We have two possibilities: if P �
α−→ then by definition

P # Q. So let us suppose, by contradiction, that whenever P
α−→ we have Q �

α−→.
Since P � σ and Q � σ′ this means that for any ready set r of σ there is no
ready set s of σ′ such that r ∩ s �= ∅. From P

α−→ and P � σ we know that
σ ⇓ r and α ∈ r for some ready set r. That is, σ has at least one nonempty
ready set. Thus, from the definition of σ, we know that every ready set of σ is
not empty. By definition of contract compliance we know that σ � σ′ and from
the definition of � we have that any ready set s of σ′ shares at least an action
with r for some ready set r of σ, which is absurd.

If n > 0, assume that the theorem is true for any computation of length n−1.
We have three cases:

(P −→ P ′) Assume P ′ � σ′′, then from Lemma 3(a) we know that σ′′ � σ and
L(σ′′) ⊆ L(σ), hence by Proposition 1 we have σ′′ � σ′ that is σ′′ # σ′. By
the induction hypothesis we conclude that P ′ # Q hence P # Q.
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(Q −→ Q′) Assume Q′ � σ′′, then from Lemma 3(a) we know that σ′ � σ′′ and
L(σ′′) ⊆ L(σ′), hence by Proposition 1 we have σ � σ′′ that is σ # σ′′. By
the induction hypothesis we conclude that P # Q′ hence P # Q.

(P α−→P ′ and Q
α−→ Q′) Assume that P ′ � σ′′ and Q′ � σ′′′. From Lemma 3(b)

know that σ′′ � σ(α) and L(σ′′) ⊆ L(σ(α)), and by definition of dual
contract we have σ(α) = σ(α). Again from Lemma 3(b) we know that
σ′(α) � σ′′′ and L(σ′′′) ⊆ L(σ′(α)). By Proposition 1 we have σ′′ � σ′′′

that is σ′′ # σ′′′. The computation starting from P ′ ‖Q′ has length n − 1,
by the induction hypothesis we have P ′ # Q′ so we conclude P # Q. %�

5 Conclusion and Future Work

In this paper we have started an investigation aimed at the definition of a for-
mal contract language suitable for describing interactions of clients with Web
services. We have defined a precise notion of compatibility between services,
called subcontract relation, so that equivalent services can be safely replaced
with each other. This notion of compatibility is immediately applicable in any
query-based system for service discovery, as well as for verifying that a service
implementation respects its interface. To the best of our knowledge, this rela-
tion is original and it does not coincide with either must, or may, or testing
preorders. Based on the subcontract relation, we have provided a formal notion
of compliance, such that clients that are verified to be compliant with a contract
are guaranteed to successfully complete the interaction with any service that
exports that contract.

We have based our investigation on a very simple model of concurrency, the
Calculus of Communicating Systems [13] without recursion, since this is but the
first step of our investigation. Starting from this basis, we plan to pursue several
lines of research. First and foremost we want to explore whether it is possible
to modify our subcontract relation so that it is transitive, while preserving its
main properties. The lack of transitivity has a non negligible impact on the use
our relation. For instance, while it is possible to replace a given service with a
new service whose subcontract is greater than the original service’s contract, it
is not possible to renew this operation without taking into account the original
contract. After that we plan to study the addition of some form of recursion
in order to model protocols whose length is not statically bound, as well as a
better support of optional contracts. While these last points should not pose
any particular problem, the passage from a ccs-like formalism to a π-calculus
one will be much a more challenging task. Nevertheless this passage to a higher
order formalism looks crucial for more than one reason. First it will allow us
to take into account and generalize the forthcoming versions of wsdl. Also, it
will more faithfully mimic wscl protocols which discriminate on the content
of messages. Besides, the type of these parameters could also be used to define
contract isomorphisms to improve service discovery. In particular we will study
provable isomorphisms, that is, isomorphisms for which it is possible to exhibit
a process that “converts” the two contracts: for instance, imagine that we search
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for a service that implements the contract In(Int).In(Int), that is, a service
that sequentially waits twice for an integer on the port In; the query may return
a reference to a service with a contract isomorphic to it, say, In(Int×Int)
together with a process that “proves” that these two contracts are isomorphic,
that is, in the specific case, a process that buffers the two inputs and sends the
pair of them on In: by composing this process with the original client (written
for the first contract) one obtains a client complying with the discovered service.

On the linguistic side we would like to explore new process constructions
that could take into account information available with contracts. For instance
imagine a client that wants to use a service exporting the contract (a + b) ⊕ a;
in the simple language of Section 2 the client cannot specify that it wants to
connect with b if available, and on a otherwise. We want also to devise query
languages for service discovery, in particular we aim to devise a simple set-
theoretic interpretation of contracts as sets of processes, use it to add union,
intersection, and negation operators for contracts, and subsequently use these
as query primitives.

A final issue brought by higher-order and whose exploration looks promising
is that higher-order channels will allow us to use a continuation passing style
(CPS) of programming. It is well-known that CPS can be used for stateless
implementation of interactive web-sessions [17], thus we plan to transpose such
a technique to contracts and resort to CPS to describe stateful interactions of
services.
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Abstract. A service choreography is a model of interactions in which
a set of services engage to achieve a goal, seen from the perspective
of an ideal observer that records all messages exchanged between these
services. Choreographies have been put forward as a starting point for
building service-oriented systems since they provide a global picture of
the system’s behavior. In previous work we presented a language for
service choreography modeling targeting the early phases of the devel-
opment lifecycle. This paper provides an execution semantics for this
language in terms of a mapping to π-calculus. This formal semantics
provides a basis for analyzing choreographies. The paper reports on ex-
periences using the semantics to detect unreachable interactions.

1 Introduction

A trend can be observed in the area of service-oriented architectures towards
increased emphasis on capturing behavioral dependencies between service in-
teractions. This trend is evidenced by the emergence of languages such as the
Business Process Execution Language for Web Services (BPEL) [1] and the Web
Service Choreography Description Language (WS-CDL) [7].

There are two complementary approaches to capture service interaction be-
havior: one where interactions are seen from the perspective of each participating
service, and the other where they are seen from a global perspective. This leads
to two types of models: In a global model (also called a choreography) inter-
actions are described from the viewpoint of an ideal observer who oversees all
interactions between a set of services. Meanwhile, a local model captures only
those interactions that directly involve a given service. Local models are suitable
for implementing individual services while choreographies are useful during the
early phases of system analysis and design.

This paper reports on ongoing work aimed at bridging these two viewpoints
by defining a service interaction modeling language (namely Let’s Dance) as
well as techniques for analyzing and relating global and local models of service
interactions. In previous work [14], we defined this language informally. This
paper introduces a formal execution semantics for the language using π-calculus
and discusses the analysis of models using this semantics.

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 163–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The next section gives an overview of the Let’s Dance language. The semantics
and an example are given in Section 3 while Section 4 discusses the analysis of
choreographies. In Section 5 related work is presented and section 6 concludes.

2 Language Overview

2.1 Language Constructs

A choreography is a set of interrelated service interactions corresponding to mes-
sage exchanges. At the lowest level of abstraction, an interaction is composed of a
message sending action and a message receipt action (referred to as communica-
tion actions). Communication actions are represented by non-regular pentagons
(symbol for send and for receive) that are juxtaposed to form a rectangle
denoting an elementary interaction. A communication action is performed by an
actor playing a role. The role is indicated in the top corner of a communication
action. Role names are written in uppercase while the actor playing this role (or
more specifically: the “actor reference”) is written in lowercase between brackets.

Fig. 1. Relationships in Let’s Dance

Interactions can be inter-related using the constructs depicted in Figure 1.
The relationship on the left-hand side is called “precedes” and is depicted by a
directed edge: the source interaction can only occur after the target interaction
has occurred. That is, after the receipt of a message “M1” by “B”, “B” is able
to send a message “M2” to “C”. The middle relationship is called “inhibits”,
depicted by a crossed directed edge. It denotes that after the source interaction
has taken place, the target interaction can no longer take place. That is, after
“B” has received a message “M1” from “A”, it may not send a message “M2”
to “C”. Finally, the relationship on the right-hand side, called “weak-precedes”,
denotes that “B” is not able to send a message “M2” until “A” has sent a
message “M1” or until this interaction has been inhibited. That is, the target
interaction can only occur after the source interaction has reached a final status,
which may be “completed” or “skipped” (i.e. “inhibited”).

Interactions can be grouped into composite interactions as shown on the left-
hand side of Figure 2. Composite interactions can be related with other interac-
tions through precedes, inhibits and weak-precedes relationships. A composite
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Fig. 2. Constructs of Let’s Dance

interaction is completed if all sub-interactions have been executed or inhibited.
The composite interaction in Figure 2 is completed if “A” has exchanged a mes-
sage “M1” with “B” and a message “M2” with “C”, since there is no way for
the elementary interactions in question to be inhibited. The upper-right corner
of Figure 2 shows a guard attached to an elementary interaction: The respective
interaction is only executed if the guard evaluates to true. The actor evaluating
the guard is named between brackets next to the guard. The last construct is
depicted in the lower-right corner of Figure 2. It corresponds to the repetition of
an interaction. Repetitions can be of type “while”, “repeat until” or “for each”
(the example shown in the figure is a “repeat until”). Repetitions of type “for
each” have an associated “repetition expression” which determines the collec-
tion over which the repetition is performed. A repeated interaction (regardless of
its type) has an associated stop condition. The actor responsible for evaluating
the stop condition (and the repetition expression if applicable) is designated be-
tween brackets. Let’s Dance does not impose a language for writing guards, stop
conditions or repetition expressions. In this paper, we treat these as free-text.

2.2 Example

Figure 3 shows a simple order management choreography involving an actor “b1”
playing the role “Buyer” and an actor “s1” playing the role “Supplier”. Each
interaction has a label assigned to it for identification purposes (e.g. “P” for
exchanging message “PaymentNotice” in the example). The first interaction to
be enabled is “O”, whereby a supplier receives a message from a seller (and thus
these actor references are bound to specific actors). Following this interaction,
two elementary interactions (“OR” and “CO”) are enabled: one where the buyer
receives a number of “Order Responses” from the supplier, and another where
the buyer receives a “Cancel Order” message from the supplier.

Interaction “OR” has an associated stop condition which is evaluated by actor
“s1” (the supplier). This repeated interaction is of type “repeat . . . until” and
it completes once the supplier has no more “Order Response” messages to send
(i.e. once all the line items in the purchase order have been processed). If all
order responses are exchanged before a “Cancel Order” message materializes,
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Fig. 3. Order Management Scenario

interaction “CO” is inhibited. This entails that any interaction that follows it
in the “Precedes” graph can no longer be performed. If on the other hand the
“Cancel Order” message materializes while “Order Response” messages are still
being exchanged, the supplier may either reject or accept the cancellation re-
quest. In case of acceptance, a “Cancel Order Response” is exchanged and all
other potentially active interactions are inhibited (namely “OR” and “P”). If the
cancellation’s is rejected, the supplier notifies it to the buyer (interaction “RCO”)
and all remaining interactions are allowed to complete. The choreography (in-
stance) completes normally after the buyer and the supplier have exchanged a
payment notice (interaction “P”).

3 Formalization

3.1 Abstract Syntax

A choreography is a tuple (I , RI , RT , GI , A, c0, Precedes , WeakPrecedes ,
Inhibits , Parent , Performs , Evaluates , Executes) such that:

– I is a set of Interactions
– RI ⊆ I is a set of Repeated Interactions
– A function RT : RI → {w, r, fs, fc} linking repeated interactions to a rep-

etition type, which is either While, Repeat Until, For-each Sequential or
For-each Concurrent

– GI ⊆ I is a set of Guarded Interactions
– A is a set of Actors
– c0 ∈ I is the top-level interaction of the choreography
– Precedes, WeakPrecedes, Inhibits ⊆ I × I are three binary relations over the

set of interactions I.
– Parent ⊆ I× I is the relation between interactions and their sub-interactions.
– A function Performs: I → ℘(A) linking interactions to actors
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– A function Evaluates : GI → ℘(A) linking guarded interactions to actors
– A function Executes : RI → ℘(A) linking repeated interactions to actors

Not captured in the above definition are the notions of “conditional” and “rep-
etition” expressions since these can be abstracted away when formalizing the
control-flow semantics of the language. However, it is useful to have these in
mind to understand certain choices in the semantics. Each guarded interaction
is associated to a conditional expression (i.e. a boolean function) that determines
whether the interaction is performed or not. In the abstract syntax, we only cap-
ture the actor responsible for evaluating this conditional expression (function
Evaluates) and not the expression itself. Likewise, every repeated interaction is
associated with a conditional expression (called the “stop condition”) that when
evaluated to true implies that the iteration must stop (in the case of “repeat”
and “for each”) or must continue (in the case “while”). Again, the abstract syn-
tax only captures the actor responsible for evaluating this expression (function
Executes). Finally, “for each” repeated interactions have a “repetition expres-
sion” attached to it that, at runtime, is used to compute the ordered collection
over which the iteration is performed. The actor responsible for evaluating the
“repetition expression” is the same that evaluates the “stop condition”.

The constraints below are assumed to be satisfied by any Let’s Dance model.

– Each interaction has one and only one parent: ∀i ∈ I | ∃!j ∈ I[j Parent i]
– No relation crosses the boundary of a repeated (composite) interaction:
∀i, j ∈ I ∀k ∈ RI[(k Ancestor i ∧ (i Precedes j ∨ i WeakPrecedes j ∨
i Inhibits j)) → k Ancestor j ∨ k = j] (where Ancestor = Parent+).

3.2 Background on π-Calculus

The π-calculus is a process algebra for mobile systems [9]. In π-calculus, commu-
nication takes place between different π-processes. Names are a central concept
in π-calculus. Links between processes as well as messages are names. This al-
lows for link passing from one process to another. The scope of a name can be
restricted to a set of processes but may be extruded as soon as the name is
passed to other processes.

We will use the following syntax throughout the paper:

P ::= M | P |P ′ | (ν z)P | !P
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x | x(y) | x | τ

Concurrent execution is denoted as P |P ′, the restriction of the scope of z to
P as (ν z)P and an infinite number of concurrent copies of P as !P . Inaction
of a process is denoted as 0. A non-deterministic choice between M and M ′ as
M + M ′, sending y over x as x〈y〉, sending an empty message over x as x and
receiving an empty message over x as x. The prefix x(y) receives a name over x
and continues as P with y replaced by the received name. τ is the unobservable
action. Communication between two processes can take place in the case of
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matching send- and receive-prefixes. Furthermore, we denote the parallel and
sequential execution of the prefixes πi, i ∈ I as Πi∈I πi and {πi}i∈I , respectively.
To restrict the scope of the set of names zi, i ∈ I we use the abbreviation [zi]i∈I .

3.3 Formalization

We chose π-calculus for the formalization of Let’s Dance since it has proved to be
a suitable formalism for describing interactions in a service-oriented environment
(cf. the formalization of the Service Interaction Patterns [8]). Although we do
not exploit the full power of π-calculus in this paper, we are dependent on the
concept of name passing as soon as correlation issues and actor reference passing
find their way into the formalization. Also, conformance between global and
local models – a central issue for choreographies in practice – calls for advanced
reasoning techniques such as π-calculus’ weak open bi-simulation.

To improve understandability, we decompose the formalization of an interac-
tion into four levels covering different aspects as depicted in figure 4.

Fig. 4. Formalization levels for interactions

– Basic Control Flow covers the coordination between different interac-
tions. The three different relationship types Precedes, WeakPrecedes and
Inhibits and the notion of propagating skipping are formalized here.

– Guard Condition formalizes the possibility to skip an enabled interaction
instance if a guard condition evaluates to false. Since evaluating the condi-
tions themselves is not formalized, we introduced a non-deterministic choice.
Guard Condition only applies to guarded interactions.

– Repetition covers the repetition types “while”, “repeat”, “for each (sequen-
tial)” and “for each (concurrent)”. It only applies to repeated interactions.

– Interaction Behavior contains the formalization for elementary interactions
and composite interactions. In the case of composite interactions enabling
and skipping sub-interactions are formalized in this layer.

A π-process is introduced for each of these levels and for each interaction in
a choreography. Communication between π-processes realizes the coordination
between different interactions as well as between the different layers of each
interaction. For inter-level-communication we introduce the private links enable,
complete and skip. Figure 5 illustrates how these private links are used.

Sending a message over enable indicates that the interaction instance is en-
abled. Sending a message over complete back indicates that the interaction has
executed successfully. skip is used to propagate skipping to sub-level-processes.
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Fig. 5. Inter level communication

Formalization of Basic Control Flow. For every A ∈ I the formalization of the
corresponding interaction instances is:

A = (ν perform , enable, complete, skip)({doA}i∈P . perform (1)
| (perform . (enable . (complete . Acompleted (2)

+skipA . (Askipped | !skipA))) (3)
+skipA . (perform . Askipped | !skipA)) (4)

| InnerProc(enable, complete, skip)) (5)
Acompleted = {skipi}i∈Q . (doneParent(A) | Πi∈R doi) | !skipA (6)

Askipped = skip . {skipi}i∈S . (doneParent(A) | Πi∈R doi) (7)
where P = {x ∈ I | x Precedes A ∨ x WeakPrecedes A ∨ x = Parent(A)}

Q = {x ∈ I | A Inhibits x}
R = {x ∈ I | A Precedes x ∨A WeakPrecedes x}
S = {x ∈ I | A Precedes x}

InnerProc =
{

GuardA if A ∈ GI
NoGuardA if A /∈ GI

The names doA and skipA are introduced for the coordination between A and
all interactions that are the source of a relation where A is the target:

– Precedes: If the source interaction has completed an empty message is sent
over doA. If the source interaction was skipped then first a message is sent
over skipA and then another message over doA. This order is crucial for
ensuring that first skipping is propagated before enabling takes place.

– WeakPrecedes: A message is sent over doA if the source interaction has com-
pleted or was skipped.

– Inhibits: A message is sent over skipA if the source interaction has completed.
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For every Precedes and WeakPrecedes relation a message over doA has to
arrive before anything else can happen inside the interaction instance. That is
why the private name perform was introduced (lines 1, 2, 4). Even if a message
over skipA arrives before all messages over doA have arrived (line 4) the process
has to wait for the remaining messages before sending a message over perform .

When all doA-messages arrive before a skipA-message, the interaction instance
is enabled and an empty message is sent over enable to the process of the layer
below (line 2). Once the interaction instance is enabled, the instance either com-
pletes (a complete-message is received) or a skipA-message arrives. The latter
causes the instance to be skipped immediately without waiting for the comple-
tion of the execution. In the first case, i.e. the instance completes, the follow-up
actions in Acompleted apply which consist of first sending skipA-messages to all
target interactions of outgoing Inhibits-relations. Then do-messages are sent
to all target interactions of outgoing Precedes- and WeakPrecedes-relations.
done-messages will be explained in the section “Interaction behavior”.

In the case where a skipA-message arrives before all doA-messages have ar-
rived, the alternative in line 4 is chosen. After the perform-message has arrived
(i.e. that all doA-messages have arrived) the follow-up actions in Askipped ap-
ply. After skipping is propagated to the lower levels, skip-messages are sent to
all target interactions of Precedes-relations. Finally, do- and done-messages are
sent like it was already the case in Askipped.

!skipA serves as a “garbage collector” for skipA-messages that arrive without
causing any effect: After the instance has already completed (line 6) or after a
skipA-message has already caused skipping the instance (lines 3, 4).

Example. Interaction OR from Figure 3 is not guarded and has one incom-
ing Precedes-relation, one incoming Inhibits-relation, one outgoing Inhibits-
relation and one outgoing WeakPrecedes-relation which leads to the following
π-processes:

OR = !(ν perform , enable, complete, skip)(doOR . perform
| (perform . (enable . (complete . ORcompleted

+skipOR . (ORskipped | !skipOR)))
+skipOR . (perform . ORskipped | !skipOR))

| NoGuardOR(enable, complete, skip))
ORcompleted = skipCO . doP | !skipOR

ORskipped = skip . doP

Interaction Instance Lifecycle. When observing the communication between the
Basic-Control-Flow -layer-process and the process of the level below we can easily
identify the state an interaction instance is in. Figure 6 depicts the life cycle of
an interaction instance.

Each interaction instance starts in the state initialized. Now a message over
either enable or skip can be sent. In the case of skip the interaction instance
is skipped and cannot execute any more. In the case of enable a message over
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Fig. 6. Interaction instance life cycle

complete or skip can be sent. As already mentioned complete indicates that
the interaction has executed successfully. Therefore, the instance changes to the
state completed. A message over skip results in skipping the instance.

Formalization of Guard Conditions

GuardA(e, c, s) = (ν enable, complete, skip)(s . skip (1)
| (e . (τ0 . skipA + τ0 .(enable . complete . c (2)

| InnerProc(enable, complete, skip))))) (3)
NoGuardA(e, c, s) = InnerProc(e, c, s) (4)

where InnerProc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WhileA if A ∈ RI ∧RT (A) = w
RepeatA if A ∈ RI ∧RT (A) = r
ForEachSeqA if A ∈ RI ∧RT (A) = fs
ForEachConcA if A ∈ RI ∧RT (A) = fc
NoRepetitionA if A /∈ RI

The links e, c and s are used for the communication with the Basic Control
Flow layer. The new names enable, complete and skip serve as communication
links to the process of the layer below.

A guard will not be evaluated until the interaction instance is enabled. That is
why a message has to be received over e before the non-deterministic choice can
take place (line 2). If the first alternative is chosen a skip-message is sent back
to the Basic-Control-Flow -layer-process which causes the interaction instance to
be skipped. If the second alternative is chosen the layer below is enabled.

Example. Interaction COR from Figure 3 leads to the following π-process:

GuardCOR(e, c, s) = (ν enable, complete, skip)(s . skip

| (e . (τ0 . skipA + τ0 .(enable . complete . c

| NoRepetitionCOR(enable, complete, skip)))))

Interaction OR from Figure 3 is translated as

NoGuardOR(e, c, s) = RepeatOR(e, c, s)

Formalization of Repetitions. “While” and “For each (sequential)” have identical
semantics at the level of abstraction of control flow. In both cases the interaction
instance is executed an arbitrary number of times. We assume that the repetition
will terminate at some point in time. “Repeat until” repetitions have similar



172 G. Decker, J.M. Zaha, and M. Dumas

semantics as “While” except that in this case the interaction instance is executed
at least once. The formalization below is based on recursion.

WhileA(e, c, s) = ForEachSeqA(e, c, s) = (ν enable, complete, skip)
(s . skip | e . R)

R = τ0 . c + τ0 . (enable . complete . R

| InnerProc(enable, complete, skip))
RepeatA(e, c, s) = (ν enable, complete, skip)(s . skip | e .

(enable . complete . R

| InnerProc(enable, complete, skip)))
R = τ0 . c + τ0 . (enable . complete . R

| InnerProc(enable, complete, skip))

where InnerProc =
{

ElementaryA if A /∈ CI
CompositeA if A ∈ CI

“For each (concurrent)” is the most complex type of repetitions. All interac-
tion instances are executed concurrently. Informally, when a repeated interaction
is performed, one instance of the contained interaction is started for each element
in the collection obtained from the evaluation of the repetition expression. These
instances execute concurrently. Each time that one of these instances completes,
the stop condition is evaluated. If the stop condition evaluates to true, the exe-
cution of the remaining instances is stopped and the execution of the repeated
interaction is considered to be completed.

The formalization of the “For each (concurrent)” construct below is inspired
from the π-formalization for the workflow pattern “Multiple Instances with a-
priori Runtime Knowledge” given in [10]. We introduce a linked list of processes
that use links c for notifying the previous process in the list that the interaction
instance has completed successfully and sk to notify the next process that the
instance has been skipped. Figure 7 illustrates this. There can be cases where
not all instances have to completed before the repetition is considered to be
completed. Arbitrary stop conditions can be defined for a repetition and after a
given instance completes a non-deterministic choice either leads to waiting for
complete or sending a message over st right away. The latter results in propagat-
ing stop-messages that lead to the completion of the repeated interaction. The
formalization of this construct is given below. The Symbol InnerProc is defined
as for “While” repetitions (see above).

ForEachConcA(e, c, s) = (ν comp, sk)(e .R(comp, comp, sk) | comp . c | s . sk)
R(c, st, s) = (ν comp, stop, sk)(τ0 . c + τ0 . (R(comp, stop, sk)

| (ν enable, complete, skip)(s . (sk | skip)
| enable . (stop . (st | skip) + complete .

(τ0 . (comp.c + stop.st) + τ0 . (st | sk)))
| InnerProc(enable, complete, skip))))
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Fig. 7. Linked list of processes realizing three concurrent interaction instances

Example. π-processes for interaction OR from Figure 3:

RepeatOR(e, c, s) = (ν enable, complete, skip)(s.skip | e.(enable.complete.R

| ElementaryOR(enable, complete, skip)))
R = τ0 . c + τ0 . (enable . complete . R

| ElementaryOR(enable, complete, skip))

Formalization of Interaction Behavior. Elementary interactions are assumed to
be atomic. Since we only focus on the control flow aspects of choreographies we
do not incorporate an actual communication between two business partners in
the π-formalization. We simply denote this interaction as τinteract.

ElementaryA(e, c, s) = e . τinteract . c | s

CompositeA(e, c, s) = (ν [doi]i∈Q, [donei]i∈Q, [skipi]i∈Q)(ΠB∈Q B

| e .(Πi∈P doi | {doneA}i∈P . c)
| s . (Πi∈P skipi . doi))

where P = {x ∈ I | A = Parent(x)}
Q = {x ∈ I | A ∈ RI ∧A Ancestor x

∧¬∃y ∈ RI(A Ancestor y ∧ y Ancestor x)}

Sub interactions of composite interactions must not execute until the parent
interaction has been enabled. In the formalization of Basic Control Flow we have
seen that do-messages are expected from all source interactions of Precedes- and
WeakPrecedes-relations as well as from all direct parent interactions.

As soon as an interaction instance has completed or is ready for propagating
skipping a done-message is sent to the direct parent interaction. These done-
messages are collected in the CompositeA process and as soon as all messages
have arrived the complete-message is sent to the super-level-process. This be-
havior guarantees that all sub interaction instances are already in one of the
states completed or skipped before further enabling and skipping takes place for
outgoing relations from A.

In case of the receipt of a skip-message, skip-messages are sent to all sub
interactions. If a sub interaction has already completed or has been skipped,
this message does not have any effect.
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If A is a repeated interaction we have to start executing the π-processes for
all sub interactions at this point in time. That way we create multiple inter-
action instances for each sub interaction (one instance per repetition cycle).
By creating new do- and skip-names we make sure that the inter-interaction-
instance-coordination takes place within the same repetition cycle.

Creating new names only in the case of repeated interactions also implements
the fact that Precedes-, WeakPrecedes- and Inhibits-relations can cross the
boundaries of a composite interaction i if i is not repeated.

Example. Interaction OR from Figure 3 leads to the following formalization:

ElementaryOR(e, c, s) = e . τinteract . c | s

Putting it All Together. We have shown how the behavior of individual interac-
tion instances can be expressed using π-calculus. It now only takes a small step
to come to a π-formalization of a whole choreography C:

C = (ν [doi]i∈P , [donei]i∈P , [skipi]i∈P ) ΠA∈P A

where P = {x ∈ I | ¬∃y ∈ RI(y Ancestor x)}

The π-processes for all interaction instances that are not sub interactions
of repeated interactions are executed in parallel. Sub interactions of repeated
interactions are executed in the CompositeA-process.

4 Reachability Analysis for Choreographies

The translation of Lets Dance choreographies into π-processes as it is shown
in the previous section allows for reasoning on these choreographies. A typi-
cal means to examine π-processes is to use bi-simulation equivalence. The first
definitions for bi-simulation, namely early and late bi-simulation, were intro-
duced by Milner, Parrow and Walker ([9]). However, the most prominent def-
inition for bi-simulation was introduced by Sangiorgi ([11]) and is called open
bi-simulation. Using this bi-simulation equivalence relation ∼o we know whether
two π-processes have the same transition behavior and thus simulate each other.

In the case of weak open bi-simulation the non-observable transitions are
ignored. This bi-simulation definition is suitable for our purposes: We want to
focus on certain interactions in our choreographies and consider everything else
as non-observable to the bi-simulation analysis.

One interesting property of an interaction in a choreography is whether it
is reachable (i.e. it may execute successfully) or if it is not-reachable (i.e. it
never executes). If we examine an elementary interaction it is sufficient to check
whether τinteract may be executed. However, according to the definition given
at the beginning of section 3 this action is unobservable. To change this we can
replace the τinteract of the interaction in question by the send-prefix interact.
The π-process would look like

ElementaryA(e, t, s) = e . interact . t | s



Execution Semantics for Service Choreographies 175

If we now define the link interact to be the only observable part in the chore-
ography then we can compare it to other π-processes. E.g. a comparison to the
π-process 0 tells us whether an interaction is reachable or not. If the chore-
ography is weak open bi-simulation related to 0 the interaction in question is
not-reachable otherwise the interaction must be reachable.

Doing bi-simulation analysis using tools such as the Mobility Workbench ([12])
is not possible if the choreography contains repeated interactions. The formal-
izations in the previous section introduce a non-deterministic choice for the stop
condition of repetitions which causes the tool to run into an infinite loop. How-
ever, we can simply omit the Repetition layer for the reachability analysis while
preserving correct results.

5 Related Work

Industry-driven initiatives have attempted to standardize notations for global
description of service interactions. An early attempt was BPSS [5] where global
models are captured as flows of interactions using flowchart-like constructs.
WSCI [2] represents another approach wherein global service interaction models
are defined as collections of inter-connected local models. Control dependencies
are described within each individual local model. A formal semantics of a sub-
set of WSCI is sketched in [3]. More recently, the WS-CDL initiative [7] led
to a language that follows the line of BPSS insofar as global service behavior
is described as flows of interactions. WS-CDL goes further than BPSS in the
level of details at which interaction flows are described. In fact, WS-CDL can
be seen as a programming-in-the-large language for Web services: it deals with
global interactions as the basic primitive but relies on imperative programming
constructs such as variable assignment, sequence and block-structured choice
and parallel branching. Several formal semantics of WS-CDL or subsets thereof
have been defined. Yang et al. [13] propose a small-step operational semantics
of WS-CDL. It is not clear however that this semantics provides a suitable basis
for reasoning about service choreographies, such as determining whether or not
a local model complies to a choreography, or performing reachability analysis
as discussed above. Other authors have defined subsets of WS-CDL and cap-
tured them in terms of process calculi. Busi et al. [4] define a formal language
corresponding to a subset of WS-CDL and use it as a foundation to capture rela-
tionships between choreographies and local models. It is unclear though that this
formalization provides a suitable basis for automated analysis of choreographies.

Unlike WS-CDL, Let’s Dance does not target application developers, but
rather analysts and designers. Accordingly, it avoids reliance on imperative pro-
gramming constructs with which analysts are usually unfamiliar. Still, Let’s
Dance models can be used for simulation and verification as discussed above.

Several authors have considered the use of communicating state machines as a
basis for modeling global models of service interactions [6]. While state machines
lead to simple models for sequential scenarios, they usually lead to spaghetti-like



176 G. Decker, J.M. Zaha, and M. Dumas

models when used to capture scenarios with parallelism and cancellation. Thus,
state machines may provide a suitable foundation for reasoning about service
interactions, but their suitability for choreography modeling is questionable.

6 Conclusion and Outlook

This paper has introduced a formal semantics for a service interaction mod-
eling language, namely Let’s Dance, which supports the high-level capture of
both global models (i.e. choreographies) and local models of service interactions.
The semantics is defined by translation to π-calculus. At present, the semantics
focuses on control-flow aspects. However, π-calculus is well-suited for captur-
ing actor bindings and passing binding information across actors. Ongoing work
aims at extending the current semantics along this direction.

The presented semantics has been used as a blueprint for the implementation
of a simulation engine and as a basis for analyzing Let’s Dance choreographies.
We have shown in this paper how weak open bisimulation can be used to check
reachability of interactions. Ongoing work aims at applying a similar technique
to compliance checking, i.e. checking whether a local model complies to a chore-
ography. However, when interactions in the choreography and those in the local
models do not map one-to-one, or when a local model implements several chore-
ographies, pure weak open bi-simulation approaches reach their limits.

Another problem that deserves further attention and can be addressed on the
basis of the formalization is that of local enforceability of choreographies [15]. It
turns out that not all choreographies defined as flows of interactions (the par-
adigm adopted in Let’s Dance) can be mapped into local models that satisfy
the following conditions: (i) the local models contain only interactions described
in the choreography; and (ii) they collectively enforce all the constraints in the
choreography. Proposals around WS-CDL skirt this issue. Instead, they assume
the existence of a state (i.e. a set of variables) shared by all participants. Par-
ticipants synchronize with one another to maintain the shared state up-to-date.
Thus, certain interactions take place between services for the sole purpose of
synchronizing their local view on the shared state and these interactions are not
defined in the choreography. In the worst case, this leads to situations where
a business analyst signs off on a choreography, and later it turns out that to
execute this choreography a service provided by one organization must interact
with a service provided by a competitor, unknowingly of the analyst. Thus, it is
desirable to provide tool support to analyze choreographies to determine whether
or not they are enforceable by some set of local models. In [15], we have defined
an algorithm for determining local enforceability of Let’s Dance choreographies.
The formal semantics presented in this paper can provide a basis for validating
the correctness of the transformation rules encoded in this algorithm.
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Abstract. This work presents a new approach to the analysis and veri-
fication of the time requirements of Web Services compositions via goal-
driven models and model checking techniques. The goal-driven model
used is an extension of the goal model KAOS and the model checker
engine is the UPPAAL tool. The goal model specifies the properties
that the system must satisfy and how they should be verified by using
the model checker engine. In order to illustrate this approach, we apply
these techniques to a basic Internet purchase process.

1 Introduction

A basic activity in the design of software system and by extension to Web Ser-
vices is the analysis and verification of the requirements that the system must
satisfy. However, before performing the analysis and verification, the software
engineer must gather these requirements in an standardized specification.

In this work, we have focused our efforts on those systems where time plays
an important role. Thus, in the literature we can find related works for the
specification of software system requirements, as for instance [17]. However, we
have based this work on the work of Lamsweerde et al [1,8,20]. Thus we have
extended this work in order to describe more complex goal-driven requirement
models. Once we have captured the system requirements and implemented the
system by means of Web Services composition [5,4] (concretely by using the Web
Service Choreography Description Language, WS-CDL [12]), these Web Services
are translated into Timed Automata [2] by using the technique presented in [11].
After the translation, we can verify the time requirements by using the model
checker, UPPAAL [9,10,15].

This work is structured in seven sections. In the first section we have al-
ready seen a brief introduction to the work. The second section presents the
methodology approach. The third section specifies the study case that we fol-
low in this work. The fourth section shows a goal-driven model for gathering
time requirements. The fifth section performs a brief summary about WS-CDL,
timed automata and the translation process between them. In the sixth section,
we will see how to perform the verification process. Finally, the seventh section
deals with the conclusions and future works.
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2 The Methodology Approach

The proposed methodology is divided into three phases (Fig. 1): Analysis, design
and verification. The analysis is performed by using an extension of the goal
model KAOS. This goal model allows analysts and specifiers to gather time
requirements of software systems in a hierarchic order, i.e., from general and
strategic goals to concrete requirements.

Fig. 1. The proposed Methodology for Web Services composition

The design is performed via composed specifications written in Web Services
choreographies (WS-CDL), which are known as Web Services choreography spec-
ifications. These specifications appear as a necessary result of composing Web
Services and implement mechanisms to deal with compositional problems, as for
instance concurrency and time aspects.

The verification phase in the literature is useful taken together with the design
phase. However, during the last few years, there has been a growing consensus
that verification is a key instrument for developing software systems, in that
sense Hoare [14], Clarke [7] together with a large number of authors have agreed
in its importance [13]. Thus, we have considered that the verification is sub-
stantial enough to be taken apart from previous phases, although, we should
not forget how close this phase is to the design. In this phase we have used a
translation algorithm presented in [11] in order to translate the choreographies
specified in the design into timed automata, which are the formalism used by the
model checker UPPAAL. The timed automata captures in a proper manner the
time behaviors of the different Web Services involved in a choreography. Once
this translation is successfully finished, the verifiers can check whether the re-
quirements, now transformed into properties, are fulfilled by the timed automata
or not. If the verifiers find that the timed automata do not satisfy a property,
then they can use the counterexample obtained from the verification to locate
where exactly the error lies. This error can occur for several reasons, in which
are included: Requirement specification errors, choreography specification errors
and, the most desirable case, errors in the real system.

ANALYSIS

DESIGN

CHOREOGRAPHIES

WS-CDL

VERIFICATION
VIA

MODEL CHECKING
(UPPAAL)

TIMED
AUTOMATA

+
KAOS PROPT.

GOAL MODEL
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3 The Study Case: An Internet Purchase Process

This example is based upon a typical purchase process that uses Internet as
a business context for a transaction. There are three actors in this example:
a customer, a seller and a carrier. The Internet purchase works as follows: “A
customer wants to buy a product by using Internet. There are several sellers
that offer different products in Internet Servers based on Web-pages. The cus-
tomer contacts a seller in order to buy the desired product. The seller checks the
stock and contacts with a carrier. Finally, the carrier delivers the product to the
customer.”

Fig. 2. The diagram for a purchase process by Internet

Figure 2 depicts the diagram that represents this purchase process. This
process consists of three participants: the customer, the seller and the carrier.
The behavior of each participant is defined as follows:
– Customer: He contacts the seller to buy a product. He must send the seller

the information about the product and the payment method. After the pay-
ment, he waits to receive the product from a carrier within the agreed time,
twenty four hours.

– Seller: He receives the customer order and the payment method. The seller
checks if there is enough stock to deliver the order and sends an acceptance
notification to the customer . If there is stock to deliver the order, then he
contacts with a carrier to deliver the product.

– Carrier: He picks up the order and the customer information in order to
deliver the product to the customer. The interval to deliver the product is
the time that the seller has stipulated, one day, which is the main temporal
constraint.

4 The Analysis Phase

The requirements, properties and characteristics of the system must be gathered
in order to be checked. However, they must be expressed in a formalized man-
ner. There are several languages, graphical diagrams, etc. to perform this, but
we apply those in which time requirements are well captured. In this sense, goal-
oriented requirements engineering emerges as a natural choice. The key activity
in goal-oriented requirements engineering is the construction of the goal model.
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Goals are objectives the system under construction must achieve. Goal formu-
lations thus refer to intended properties to be ensured. They are formulated
at different levels of abstraction from high-level, strategic concerns to low-level
technical concerns. Goal models also allow analysts to capture and explore al-
ternative refinements for a given goal. The resulting structure of the goal model
is an AND-OR graph. The specific goal-oriented framework considered here is
an extension of KAOS methodology [1,6,8,20] which has a two-level language:
(1) an outer semi-formal layer for capturing, structuring and presenting require-
ments engineering concepts; (2) an inner formal assertion layer for their precise
definition and for reasoning about them.

4.1 The Inner Formal Assertions Layer: TCTL Style Requirements

The formal assertions, in which the goals are written, use the UPPAAL language
for specifying properties. This language is a subset of timed computation tree
logic (TCTL) [19,18], where atomic expressions are location names, variables
and clocks from the modeled system. The properties are defined using local
properties that are either true or false depending on a specific configuration.

Definition 1. (Local Property) Given an UPPAAL model 〈A, V ars, Clocks,
Chan, T ype〉. A formula ϕ is a local property iff it is formed according to the
following syntactical rules:

ϕ ::= deadlock
| A.l for A ∈ A and l ∈ LA

| x �� c for x ∈ Clocks, ��∈ {<, <=, ==, >=>}, c ∈ Z

| x− y �� c for x, y ∈ Clocks, ��∈ {<, <=, ==, >=>}, c ∈ Z

| a �� b for a, b ∈ V ars
⋃

Z, ��∈ {<, <=, ! =, ==, >=>}
| (ϕ1) for ϕ1 a local property
| not ϕ1 for ϕ1 a local property
| ϕ1 or ϕ2 for ϕ1, ϕ2 logical properties (logical OR)
| ϕ1 and ϕ2 for ϕ1, ϕ2 logical properties (logical AND)
| ϕ1 imply ϕ2 for ϕ1, ϕ2 logical properties (logical implication)

In Definition 1 we have expressed the syntaxis of the temporal logic that UP-
PAAL uses. Now, let us see the definition of the five different property classes
that UPPAAL may check.

Definition 2. (Temporal Properties) let M = 〈A, V ars, Clocks, Chan, T ype〉
be an UPPAAL model and let ϕ and ψ be local properties. The correctness of
temporal properties is defined for the classes A[ ], A <> and −− > as follows:

M � A[ ] ϕ iff ∀{(l, e, v)}K ∈ τ(M). ∀k ≤ K. (l, e, v)k �loc ϕ
M � A <> ϕ iff ∀{(l, e, v)}K ∈ τ(M). ∃k ≤ K. (l, e, v)k �loc ϕ
M � ϕ−− > ψ iff ∀{(l, e, v)}K ∈ τ(M). ∀k ≤ K

(l, e, v)k �loc ϕ ⇒ ∃k′ ≥ k. (l, e, v)k′ �loc ψ

The two temporal property classes dual to A[ ] and A <> are defined as follows:
M � E <> ϕ iff ¬(M �loc A[ ] not(ϕ))
M � E[ ] ϕ iff ¬(M �loc A <> not(ϕ))
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Fig. 3. And-refinement and Or-refinement goal models

4.2 The Outer Semi-formal Layer: The Goal-Driven Model

Two key elements are used as building elements for the definition of a goal
model: goals and requirements. A goal prescribes intended behaviors of the sys-
tem. It may refer to services to be provided (functional goals) or to the quality
of service (non-functional goals). A requirement is a leaf goal that requires co-
operation between different parties, which are called agents. Agents are active
components that play a role in achieving goal satisfaction. To build Goal Mod-
els, goals are organized in an AND/OR refinement - abstraction hierarchy where
higher-level goals are, in general, strategic, coarse-grained and involve multiple
agents whereas lower-level goals are, in general, technical, fine-grained and in-
volve fewer agents. In such structures, AND-refinement links relate a goal to a
set of subgoals (called refinement) possibly conjoined with domain properties;
this means that satisfying all subgoals in the refinement is a sufficient condition
in the domain for satisfying the goal, as seen in the left-hand side of Figure 3.
OR-refinement links may relate a goal to a set of alternative refinements, as seen
in right-hand side of Figure 3.

Requirements must be checked by the model checker and are formalized in a
real-time temporal logic that we have shown above. Keywords such as Achieve
(reachability), Avoid (not safety), Maintain (safety), possibly always, inevitably
and unbounded response, are used to name goals according to the temporal be-
havior pattern they prescribe. They are depicted in the goal model as follows:

Temporal Behavior Goal Model Representation

Maintain (Safety) A[ ] ϕ
Requirement

Achieve (Reachability) E <> ϕ
Requirement

Possibly Always E[ ] ϕ
Requirement

Inevitably A <> ϕ
Requirement

Unbounded Response ϕ−− > ψ
Requirement

Once we have defined the goal model, we can apply this technique to our
example. We must identify the crucial requirements for the Internet purchase
process that we have described above. For this we have identified two different

Requirement

SubReq1 SubReq2

And-refinement

Requirement

SubReq1 SubReq2

Or-refinement
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kinds of requirements. One kind refers to the obligation that both the seller and
carrier have agreed to deliver the product on time, while the other refers to the
quality of service. The time restriction establishes that the seller and carrier
have twenty four hours to deliver the product. So, the seller must prepare the
order for the carrier to send the product within the interval. The service quality
is determined by two different requirements that are closely linked. The service
must be rapid and also efficient. Due to this close relationship between these two
requirements, if one of them is fulfilled then the other is fulfilled too.

Fig. 4. The goal-model for the Internet Purchase Process

Figure 4 depicts the goal-model that we have developed for this example. The
root goal “CorrectInternetPurchase” is decomposed into two subgoals by an
And-refinement, which means that each one must be fulfilled in order to achieve
the root goal. The first one, “NoDelays”, that is of type “maintain”, is refined by
another And-refinement with two leaf goals that inherit the maintain character.
The first leaf goal “PickupOnTime” is of type “Unbound Respond”. This goal
represents the situation that the carrier must pick up the order on time and is
formalized as follows:

Customer.WaitOrder −− >

(Carrier.P ickUp ∧Clockdeliver < 24hours) (1)

The second leaf goal “DeliverOnTime” is of type “Inevitably” and specifies
that the carrier must deliver the order on time. The goal is defined as follows:

A <> (Carrier.Deliver ∧ Clockdeliver < 24hours) (2)

The second one, “SatisfiedCustomer”, of type “Achieve”, is formed by two leaf
goals. These leaf goals refine the parent goal by an Or-refinement, which means
that if one of them is satisfied then the parent goal is satisfied too. The leaf
goal “RapidService”, that determines that the customer will receive the order
on time, is specified as follows:

E <> (Customer.ReceiveOrder ∧ Clockdeliver < 24hours) (3)

The leaf goal “EfficientService” has the behavior of an ”Unbounded Re-
sponse” requirement. This goal indicates that when the seller accepts the order,

CorrectInternetPurchase

NoDelays SatisfiedCustomer

DeliverOnTime

And-refinement

AchieveMaintain

Inevitably

Efficient
Service

Unbound
Respond

PickUpOnTime RapidService

Or-refinement
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then in the future, the customer will receive the order. This goal is formalized
as follows:

Seller.AcceptOrder −− > Customer.ReceiveOrder (4)

5 The Design Phase

In the design phase, designers must specify the system by implementing it with
the Web Service Choreography Description Language. Once we have this chore-
ography specification, we can use the work presented in [11] in order to obtain
the equivalent timed automata.

5.1 Designing Web Services Composition with WS-CDL

WS-CDL describes interoperable collaborations between parties. In order to fa-
cilitate these collaborations, services commit to mutual responsibilities by es-
tablishing Relationships. Their collaboration takes place in a jointly agreed set
of ordering and constraint rules, whereby information is exchanged between the
parties. The WS-CDL model consists of the following entities:

– Participant Types, Role Types and Relationship Types within a
Choreography. Information is always exchanged between parties within or
across trust boundaries. A Role Type enumerates the observable behavior a
party exhibits in order to collaborate with other parties. A Relationship Type
identifies the mutual commitments that must be made between two parties
for them to collaborate successfully. A Participant Type groups together
those parts of the observable behavior that must be implemented by the
same logical entity or organization.

– Information Types, Variables and Tokens. Variables contain informa-
tion about commonly observable objects in a collaboration, such as the in-
formation exchanged or the observable information of the Roles involved.
Tokens are aliases that can be used to reference parts of a Variable. Both
Variables and Tokens have Types that define the structure of what the Vari-
able contains or the Token references.

– Choreographies define collaborations between interacting parties:
• Choreography Life-line: This shows the progression of a collabora-

tion. Initially, the collaboration is established between the parties; then,
some work is performed within it, and finally it completes either normally
or abnormally.

• Choreography Exception Block: This specifies the additional inter-
actions that should occur when a Choreography behaves in an abnormal
way.

• Choreography Finalizer Block: This describes how to specify addi-
tional interactions that should occur to modify the effect of an earlier
successfully completed Choreography (for instance to confirm or undo
the effect).
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– Channels establish a point of collaboration between parties by specifying
where and how information is exchanged.

– Work Units prescribe the constraints that must be fulfilled for making
progress and thus performing actual work within a Choreography.

– Activities and Ordering Structures. Activities are the lowest level com-
ponents of the Choreography that perform the actual work. Ordering Struc-
tures combine activities with other Ordering Structures in a nested structure
to express the ordering conditions in which information within the Choreog-
raphy is exchanged.

– Interaction Activity is the basic building block of a Choreography, which
results in an exchange of information between parties and possible synchro-
nizations of their observable information changes, and the actual values of
the exchanged information.

Figure 5 shows a piece of the WS-CDL specification corresponding to this
purchase process.

5.2 Timed Automata

By definition, a timed automaton is a standard finite-state automaton extended
with a finite collection of real valued clocks. The clocks are assumed to proceed at
the same rate and their values may be compared with natural numbers or reset
to 0. UPPAAL extends the notion of timed automata to include integer vari-
ables, i.e. integer valued variables that may appear freely in general arithmetic
expression used in guards as well as in assignments.

The model also allows clocks not only to be reset, but also to be set to any
non-negative integer value.

Definition 3. (Atomic Constraints) Let C be a set of real valued clocks and I a
set of integer valued variables. An atomic clock constraint over C is a constraint
of the form: x ∼ n or x − y ∼ n, for x, y ∈ C, ∼∈ {≤,≥, =}and n ∈ N.
An atomic constraint over I is a constraint of the form: i ∼ n, for i ∈ I,
∼∈ {≤,≥, =}and n ∈ Z.

By Cc(C) we will denote the set of all clock constraints over C, and by Ci(I) we
will denote the set of all integer constraints over I.

Definition 4. (Guards) Let C be a set of real valued clocks, and I a set of
integer valued variables. A guard g over C and I is a formula generated by the
following syntax: g ::= c|g ∧ g, where c ∈ (Cc(C)

⋃
Ci(I)).

B(C, I) will stand for the set of all guards over C and I.

Definition 5. (Assignments) Let C be a set of real valued clocks and I a set
of integer valued variables. A clock assignment over C is a tuple 〈v, c〉, where
v ∈ C and c ∈ N. An integer assignment over I is a tuple 〈w, d〉 representing
the assignment w = d, where w ∈ I and d ∈ Z.

We will use A(C, I) to denote the power-set of all assignments over I and C.
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<interaction name="createPO" channelVariable="tns:seller-channel"
operation="handlePurchaseOrder" align="true" initiate="true">

<participate relationshipType="tns:CostIntSellCarrRS"
fromRole="tns:Customer" toRole="tns:Seller"/>

<exchange name="request" informationType="tns:purchaseOrderType"
action="request">

<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>
<exchange name="response" informationType="purchaseOrderAccepted"

action="respond">
<send variable="cdl:getVariable("tns:purchaseOrderAcceted","","")"/>
<receive variable="cdl:getVariable("tns:purchaseOrderAccepted","","")"/>

</exchange>
<exchange name="NoStockAckException" informationType="NoStockAckType"

action="respond">
<send variable="cdl:getVariable(’tns:NoStockAck’, ’’, ’’)"

causeException="true" />
<receive variable="cdl:getVariable("tns:NoStockAck","","")"

causeException="true"/>
</exchange>
<record name="record-the-channel-info" when="after">

<source variable="cdl:
getVariable("tns:purchaseOrder,"","PO/CustomerRef")"/>

<target variable="cdl:getVariable("tns:customer-channel", "", "")"/>
</record>
<record name="reset-clock" when="after">

<source variable="00:00"/>
<target variable="cdl:getVariable("tns:Clock1", "", "")"/>

</record>
</interaction>
<interaction name="PickUpProductPO" channelVariable="tns:deliver-channel"

operation="PickUpPurchaseOrder" align="true" initiate="true">
<participate relationshipType="tns:CustIntSellCarrRS"

fromRole="tns:Seller" toRole="tns:Carrier"/>
<exchange name="request"

informationType="tns:purchaseOrderType" action="request">
<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>

</interaction>
<interaction name="DeliverProductPO" channelVariable="tns:customer-channel"

operation="DeliverProductOrder" align="true" initiate="true">
<participate relationshipType="tns:CostIntSellCarrRS"

fromRole="tns:Carrier" toRole="tns:Customer"/>
<exchange name="request" informationType="tns:purchaseOrderType"

action="request">
<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>
<timeout time-to-complete=

"cdl:minor(cdl:getVariable("tns:Clock1","",""),"48:00")"/>?
</interaction>

Fig. 5. WS-CDL interaction specification of the Internet purchase process

Definition 6. (Timed automata) A timed automaton A over a finite set of
actions Act , clocksC and integer variables I is a tuple 〈L, l0, E, V 〉, where L is
a finite set of nodes (control-nodes), l0 is the initial node, E ⊆ L × B(C, I) ×



Analysis and Verification of Time Requirements 187

Act×A(C, I) × L corresponds to the set of edges, and V : L → B(C, I) assigns
invariants to locations. For a brief notation, we will denote l

g,a,r−−−→ l′ by the edge
〈l, g, a, r, l′〉 ∈ E.

5.3 Translation Process: WS-CDL into Time Automata

For each component of a WS-CDL description we have the following correspon-
dence in timed automata (see Fig. 6 for a schematic presentation of this corre-
spondence):

Role: These are used to describe the behavior of each class of party that we are
using in the choreography. Thus, this definition matches with the definition
of a template in timed automata terminology.

Relation type: These are used to define the communications between two
roles, and the needed channels for these communications. In timed automata
we just need to assign a new channel for each one of these channels, which
are the parameters of the templates that take part in the communication.

Participant type: These define the different parties that participate in the
choreography. In timed automata they are processes participating in the
system.

Channel types: A channel is a point of collaboration between parties, together
with the specification of how the information is exchanged. As stated above,
channels of WS-CDL correspond with channels of timed automata.

Variables: These are easily translated, as timed automata in UPPAAL support
variables, which are used to represent some information.

Now the problem is to define the behavior of each template. This behav-
ior is defined by using the information provided by the flow of choreographies.
Choreographies are sets of workunits or sets of activities. Thus, activities and
workunits are the basic components of the choreographies, and they capture the
behavior of each component. Activities can be obtained as result of a composi-
tion of other activities, by using sequential composition, parallelism and choice.
In terms of timed automata these operators can be easily translated:

– The sequential composition of activities is translated by concatenating the
corresponding timed automata.

– Parallel activities are translated by the cartesian product of the correspond-
ing timed automata.

– Choices are translated by adding a node into the automata which is con-
nected with the initial nodes of the alternatives.

Finally, time restrictions are associated in WS-CDL with workunits and in-
teraction activities. These time restrictions are introduced in timed automata by
means of guards and invariants. Therefore, in the event of a workunit of an ac-
tivity having a time restriction we associate a guard to the edge that corresponds
to the initial point of this workunit in the corresponding timed automaton.

Thus, by applying these rules we obtain three timed automata: one corre-
sponding to the customer (Fig. 7), another one to the seller (left-hand side of
Fig. 8) and the last one to the carrier (right-hand side of Fig. 8).
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Role = Template
Relation Type = Channel+

Participant Type = Process+

Channel Type = Channel
Variables = Variables
Choreography = Choreography+ | Activity
Activity = Work Unit | Sequence | Paralelism | Choice
Sequence = Activity+

Parallelism = Activity+

Choice = Activity+

Work Unit = State & Guard & Invariant

where the symbols +, | are BNF notation, and & is used to join information

Fig. 6. Schematic view of the translation

Start WaitAcceptance

WaitOrderReceiveOrder

custosell!

PurchaseOrderID := 3 custosell?

carrtocus?

purchaseaccepted == true
x := 0

purchaseaccepted==false

Fig. 7. The customer automaton

6 The Verification Phase: Via Model Checking

The model checking algorithm that UPPAAL uses is based on the symbolic
model checking [3,16] that uses constraint solving. The algorithm checks if a state
in a timed automata is reachable from the initial state or not. When searching the
state space we need two buffers that we can call “wait” and “passed” respectively.
The wait buffer holds the states not yet explored and the passed buffer holds
the states explored so far.

Algorithm 1. Forward Reachability Analysis
If we do forward reachability analysis we initially store 〈l0, U0〉 in the wait

buffer. We then repeat the following:

1. Pick a state 〈li, Ui〉 from the wait buffer.
2. Check if li = lf ∧ Ui ⊆ Uf . If that is the case, return the answer yes.
3. If li = lj ∧ Ui ⊆ Uj, for some 〈li, Ui〉 in the passed buffer, drop 〈li, Ui〉 and

go to step 1. Otherwise save 〈li, Ui〉 in the passed buffer. If Uj ⊂ Ui we can
replace the state 〈lj , Uj〉 with 〈li, Ui〉. (To save space)
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Start
CheckStock

AcceptOrder

custosell?

purchaseorder := PurchaseOrderID,
purchaseaccepted := false

purchaseaccepted == true

selltocarr!

Purchaseaccepted
:= true

custosell!

purchaseaccepted == false

Deliver PickUp

x < 24

selltocarr?

carrtocus!

custosell!

Fig. 8. Seller and carrier automata

4. Find all lk that are reachable from li in one step regardless of the assign-
ments, taking only actions into account. Let gk be the set of guards on the
performed transition and ak the set of resets

5. Now set Uk = reset(sp(Ui) ∩ gk, ak). If Uk �= ∅, store 〈lk, Uk〉 in the wait
buffer.

6. If the wait buffer is not empty go to step 1, otherwise return the answer no.
Thus, we can use the verifier of UPPAAL in order to check the properties

that were identified. Notice that these properties must be adapted to consider
the particular names of variables and clocks that are used in UPPAAL. For
instance, the first property “PickupOnTime” (1) is rewritten as follows:

Customer.WaitOrder −− > (Carrier.P ickUp ∧ x < 24) (5)

The second property, “DeliverOnTime” (2) is rewritten as:

A <> (Carrier.Deliverandx < 24) (6)

The third property “SatisfiedCustomer” (3) is rewritten as follows:

E <> (Customer.ReceiveOrderandx < 24) (7)

The fourth property “EfficientService” (4) is rewritten as follows:

Seller.AcceptOrder −− > Customer.ReceiveOrder (8)

Observe that the clocks Clockdeliver is renamed to x.
We find an error in the verification of a property, concretely in Property 5

(Fig. 9). The problem appears when the seller sends the ”acceptorder”, but he
does not send the ”PickUp” message to the carrier within 24 hours. Then the
carrier cannot deliver the product on time and the property is not fulfilled.

In order to correct this problem it is necessary to force the seller to send
the ”PickUp” message on time. For that purpose, we add an invariant to the
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Fig. 9. The Uppaal trace for property 5

seller state ”CheckStock” labeled x < 2. With this invariant the seller must send
the message within 2 hours since he has sent the message ”PurchaseAccepted”.
Thus, the seller automaton would be replaced with the automaton depicted in
Fig. 10 and the WS-CDL interaction that represents it would be rewritten as
shown in Fig. 11.

Start
CheckStock

x < 2

AcceptOrder

custosell?

purchaseorder := PurchaseOrderID,
purchaseaccepted := false

purchaseaccepted == true

selltocarr!

purchaseaccepted := true

custosell!
custosell!

purchaseaccepted := false

Fig. 10. Corrected Seller automaton
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<interaction name="PickUpProductPO" channelVariable="tns:deliver-channel"
operation="PickUpPurchaseOrder" align="true" initiate="true">

<participate relationshipType="tns:CustIntSellCarrRS"
fromRole="tns:Seller" toRole="tns:Carrier"/>

<exchange name="request"
informationType="tns:purchaseOrderType" action="request">

<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>
<timeout time-to-complete=

"cdl:minor(cdl:getVariable("tns:Clock1","",""),"02:00")"/>?
</interaction>

Fig. 11. Corrected interaction

7 Conclusions and Future Work

In this work, we have presented a proposal for the analysis and verification
of Web Services choreographies with time requirements. The gathering of time
requirements via goal-driven diagrams, such as the KAOS extension presented in
the fourth section, is a powerful tool for developing systems where time aspects
determine whether the implementation presents the proper behaviors or not.
However, in order to achieve this conclusion, this technique must be used together
with formal specifications and formal techniques that can perform a verification
process. For this purpose, the model checking technique has shown itself to be,
in a wide range of systems, one of the most feasible formal method techniques.

As future work, we are working on the application of these techniques to other
fields like Web Services orchestrations (WS-BPEL).
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Abstract  We report on a formal framework being developed within the SEN-
SORIA project for supporting service-oriented modelling at high levels of ab-
straction, i.e. independently of the hosting middleware and hardware platforms, 
and the languages in which services are programmed.  More specifically, we 
give an account of the concepts and techniques that support the composition 
model of SENSORIA, i.e. the mechanisms through which complex applications 
can be put together from simpler components, including modelling primitives 
for the orchestration of components and the definition of external interfaces. 

1 Introduction 

One of the goals of SENSORIA – an IST-FET Integrated Project on Software Engi-
neering for Service-Oriented Overlay Computers – is to define a formal framework 
that can support a Reference Modelling Language (SRML) that operates at the higher 
levels of abstraction of “business” or “domain” architectures.  The term “service-
oriented” is taken within SENSORIA in a broad sense that encompasses the general 
principles and techniques either available or envisioned for Web Services [1], as well 
as other manifestations such as Grid Computing [11].  The aim is to develop concepts 
and techniques that are independent of what are sometimes called “global computers”, 
i.e. the technologies that provide the middleware infrastructure over which services 
can be deployed, published and discovered.  In this sense, our aims are in tune with 
the goal of the industrial consortium that is developing the Service Component Archi-
tecture (SCA) [14].  Like in SCA, we are aiming to support ways through which  

[…] relatively coarse-grained business components can be exposed as serv-
ices, with well-defined interfaces and contracts, removing or abstracting mid-
dleware programming model dependencies from business logic.   

* 

, 
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The main concern of SCA in developing this middleware-independent layer is to 
provide an open specification “allowing multiple vendors to implement support for 
SCA in their development tools and runtimes”.  This is why SCA offers specific sup-
port for a variety of component implementation and interface types such as BPEL 
processes with WSDL interfaces, and Java classes with corresponding interfaces.  Our 
work explores a complementary direction: our research aims for a mathematical se-
mantics of a Service Component Architecture that can provide a uniform model of 
service behaviour in a way that is independent of the languages and technologies used 
for programming and deploying services. Besides SCA, we also take into account 
recent advances on Web Services such as [1,6], and stay as close as possible to the 
terminology that is being adopted in the area. 

More specifically, we develop a minimalist formal framework based on a core set 
of primitives and a language that is “small” enough to be formalised relatively easily 
and yet “powerful” enough to capture the essence of a new modelling paradigm cen-
tred on services.  In this paper, we report on some of the efforts made so far in the 
development of this language by presenting fragments of its composition model, what 
we call SRML-P: the techniques through which one can model individual business 
components and interconnect them to build complex applications in a service-oriented 
way.  A more detailed account of our approach is available in [9].   Issues related with 
dynamic configuration, such as service discovery and binding, are also being ad-
dressed over the model that we outline here. 

In Section 2, we provide an overview of the composition model that we support in 
SRML-P.  In Section 3, we present the primitives that we use for describing interac-
tions.  In Section 4, we discuss the modelling of components as orchestrations of 
interactions maintained with other parties.  In Section 5, we show how external inter-
faces can be described in terms of sentences of a formal logic that model conversa-
tions.  In Section 6, we discuss the way components can be wired to each other and to 
external interfaces in order to produce modules.  In the concluding remarks, we point 
to other aspects that are being investigated and discuss the way we are taking this 
programme forwards.  For illustration, we use a typical procurement business process 
involving a supplier, a warehouse and a local stock. 

2 The Composition Model 

SRML-P provides a language for modelling composite services, understood as serv-
ices whose business logic involves a number of interactions among more elementary 
service components as well the invocation of services provided by other parties.  As 
in SCA, interactions are supported on the basis of service interfaces defined in a way 
that is “independent of the hardware platform, the operating system, hosting middle-
ware and the programming language used to implement the service” [14]. 

Central to the composition model is the notion of service component, or component 
for short.  In SRML-P, a component is a computational unit that is modelled by means 
of an execution pattern involving a number of interactions that it can maintain with 
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other parties.  We refer to the execution pattern of a component as an orchestration 
element, or orchestration for short.  The W3C Web Services Glossary1 defines or-
chestration as 

[…] the sequence and conditions in which one Web service invokes other Web 
services in order to realize some useful function.   

In our context, the orchestration of the service provided by a module is the compo-
sition of the orchestrations defined within the components and the way they are wired 
together. 

Each orchestration element is defined independently of the language in which the 
component is programmed and the platform in which it is deployed; it may be a BPEL 
process, a Java program, a wrapped-up legacy system, inter alia.  In addition, the 
orchestration is independent of the specific parties that are actually interconnected 
with the component in any given run-time configuration; a component is totally inde-
pendent in the sense that it does not invoke services of any specific co-party (i.e. an 
external service or another component) – it just offers an interface of two-way interac-
tions in which it can participate.   

As such, service components do not provide any business logic: the units of busi-
ness logic are modules that use such components to provide services when they are 
interconnected with a number of other parties offering a number of required services.  
In a SRML-P module, both the provided services and those required from other par-
ties are modelled as external interfaces, or interfaces for short.  Each such interface 
specifies a stateful interaction between a service component and the corresponding 
party, i.e. SRML-P supports both “syntactic” and “behavioural” interfaces.   

The external interface offered by a module to be used by clients, what in SCA cor-
responds to an “entry point”, specifies constraints on the interactions that the module 
supports as a service provider such as the order in which it expects invocations or 
deadlines for the user to commit; it is the responsibility of the clients to adhere to 
these protocols, meaning that the provider may not be ready to engage in interactions 
that are not according to the specified constraints.  Other properties are specified that 
any client may expect such as pledges on given parameters of the delivered services.  
The external interfaces to services required from other parties, what in SCA corre-
sponds to “external services”, specify the conversations that the module expects rela-
tive to each party.   

Service components and external interfaces are connected to each other within 
modules through internal wires that bind the interactions that both parties declare to 
support.  In SRML-P, all names are local, which implies that any interconnection 
needs to be made explicit through a wire that binds the names used locally in each 
party.  The idea is to support reuse of both service components and external inter-
faces, thus facilitating the process of designing business applications.  The coupling 
of service components within modules can be seen to be tight and performed at design 
time, reflecting the fact that they offer an (atomic) unit of business logic.  

The table below establishes a relationship between the terminology that we use in 
SRML-P and the W3C Web Services Glossary.  However, as already mentioned, in 
                                                             
1 http://www.w3.org/TR/ws-gloss/  
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SRML-P we are aiming for higher-levels of abstraction in service-oriented modelling, 
which explains why this relationship is not a one-to-one mapping. 

W3C SRML-P Relationship 

Service Module 
A module defines how a certain service is provided 
through the coordination of a set of internal components 
and external services. 

Service  
Description 

External Interface 
(Provides/Requires) 

External Interfaces correspond to service descriptions 
that include the interface and the interactive behaviour 
of the services provided/required by a module.  

Orchestration Orchestration 
In SRML-P, orchestration is spread among all the 
components within a module.  

In order to illustrate how applications are modelled in SRML-P, we use a typical 
procurement business process involving a supplier, a warehouse, a local stock, and a 
price look-up facility.  The decision to make the local stock a component of the mod-
ule reflects the tight coupling that exists with the supplier in business terms.  The 
choice of warehouse should probably be made at run-time, for instance taking into 
account properties of the customer like its location, which justifies that it is repre-
sented in the module as an external interface.  The price look-up facility is also a good 
example of an external service that may be shared among several suppliers. 

This module declares two components: SP and LS.  Components are typed by what 
we call business roles, which are discussed in Section 4; in this case, SP plays the 
business role of Supplier and LS of Stock.  Three external interfaces are declared: one 
provides-interface – CR – and two requires-interfaces – WR and CT.  Each such inter-
face is typed by what we call a business protocol as discussed in Section 5; in the 
example, the business protocols are Customer, Warehouse and Costs, respectively.  
Finally, four wires connect components and interfaces: CS, SS, SW and SC.  Each 
wire is labelled by an interaction protocol as discussed in Section 6; the labelling of 
wires is not easily depicted in figures such as above and is normally given in the tex-
tual definition of the module only.  More details on the notion of module, including an 
algebraic semantics, can be found in [9]. 
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3 The Language of Interactions 

In this section, we provide a short account of the primitives that are being defined for 
describing interactions, taking into account proposals that have been made for Web-
Services [4], in orchestration languages such as ORC [13], and in calculi such as 
Sagas [5].  However, because our aim is to support an abstract and declarative style of 
specification, our language will use some of these concepts (e.g. compensations, 
pledges, locking-properties, deadlines and timeouts) in a somewhat different way.  

In SRML, we distinguish several types of interactions as shown in the table below. 
Interactions involve two parties and can be in both directions, i.e. they can be conver-
sational.  Interactions are described from the point of view of the party in which they 
are declared, i.e. “receive” means invocations received by the party and sent by the 
co-party, and “send” means invocations made by the party.  Interactions can be syn-
chronous, implying that the party waits for the co-party to reply or complete, or asyn-
chronous, in which case the party does not block.  The reason for choosing to have 
non-blocking asynchronous interactions is that we can leave it to the orchestration of 
the components to engage or not in other interactions while waiting for a reply.   

r&s The interaction is initiated by the co-party, which expects a reply.  The co-party 
does not block while waiting for the reply. 

s&r The interaction is initiated by the party and expects a reply from its co-party.  
While waiting for the reply, the party does not block. 

rcv The co-party initiates the interaction and does not expect a reply. 

snd The party initiates the interaction and does not expect a reply. 

ask The party synchronises with the co-party to obtain data. 

rpl The party synchronises with the co-party to transmit data. 

tll The party requests the co-party to perform an operation and blocks. 

prf The party performs an operation and frees the co-party that requested it. 

Notice that r&s and s&r interactions are durative/conversational.  We distinguish 
several events that can occur during such interactions: 

interaction  The event of initiating interaction. 

interaction  The reply-event of interaction. 

interaction  The commit-event of interaction. 

interaction  The cancel-event of interaction. 

interaction  The deadline-event of interaction. 

interaction  The revoke-event of interaction. 

Further to these events, each such interaction may have an associated pledge – a 
condition that is guaranteed to hold from the moment a positive reply-event occurs 
until either the commit, the cancel or the deadline-event happens, whichever comes 
first.  We denote this condition by interaction .  A reply-event interaction  is posi-
tive iff the distinguished Boolean parameter Reply is true.  

The sequence diagrams below illustrate the intuitive semantics of these primitives 
when a pledge is offered.  In the case on the left, the initiator commits to the pledge; a 
revoke may occur later on compensating the effects of interaction.  In the case in the 
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middle, there is a cancellation; in this situation, a revoke is not available.  In the case 
on the right, the deadline-event occurs without a commit or cancel having occurred; 
this implies that no further events for that interaction will occur.  In Section 4, we 
give examples of the usage of these primitives. 

Events can be referred to from the point of view of the party that initiate them, in 
which case we use the notation event!, or the party that receives them, in which case 
we use event?.  Events occur during state transitions in both parties involved in the 
interaction and require that the parties are available to perform the event; in other 
words, events are blocking in the sense that a party wishing to issue event! needs to 
wait for its co-party to be able to perform event?. 

   
Interactions can have parameters for transmitting data when they are initiated, de-

clared as , and for carrying a reply, declared as .  Notice that the boolean -
parameter Reply is always available, indicating if the reply is positive  Only the addi-
tional parameters required for carrying data associated with the reply need to be de-
clared.  Key parameters, marked as , can also be declared which are used for gener-
ating different instances of a given class of events. 

We assume that there are a number of “global” interactions provided by “the envi-
ronment” such as time-related activities.  This is necessary for parties to have some 
common understanding of issues like deadlines.  In this paper, we will make use of 
the interaction alertDate, which is initiated by a party with a -parameter – Ref of 
type string, and a -parameter – Interval of type date.  The agreed meaning is that 
the environment publishes alertDate  when Interval units of time have elapsed.  
Any party can subscribe to that event.   

We make use of a number of connectives to formulate behavioural properties, ex-
amples of which are given throughout the paper.  The following table summarises the 
intuitive meaning and the way some of them can be formulated in a branching time 
logic with linear past (see [12]). 

a before b If b holds then a must have been true. AG(b  Pa) 

b exceptif a b can occur iff b and a have never occurred. AG(¬Pa H(¬b)  Eb) 

a enables b b can occur iff a has already occurred but 
not b. 

AG(Pa H(¬b)  Eb) 

a ensures b b will occur after a occurs, but b cannot 
occur without a having occurred. 

AG(b Pa  a Fb) 
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The syntax and semantics of the logic supporting the specification of behavioural 
properties are currently being developed.  In this logic, some properties of the under-
lying computational and interaction model will be fixed, such as: 

• The initiation of an r&s interaction enables and ensures that a reply will be 
issued; we are working on an extension of the language that will provide 
primitives for assigning quality-of-service attributes such as the delay in 
which the reply is sent. 

• A positive reply sets the pledge, which holds until the deadline, the commit 
or the deadline event occurs; the commit and the deadline events are enabled 
until either of them or the deadline occurs. 

• Events occur only once during each “session”, i.e. during each lifetime of an 
instance of a party. 

We should point out that the style of specification that we adopt is quite different 
from recent proposals in the area of Semantic Web-Services (METEOR-S, OWL-S, 
SWSL, WSMF), which go little beyond a black-box, transformational approach based 
on concepts like pre- and post-conditions.  These contribute to some extent towards a 
behavioural description of services but are confined to static/transformational aspects 
of black-box behaviour that only takes into account initial and final states of service 
execution.  Therefore, they are not suitable for reasoning about conversational and 
stateful interactions as modelled in SRML-P.  An exception is [15], which adopts an 
assumption/commitment style of specification as used for concurrent processes. 

4 Components and Business Roles 

In SRML-P, components instantiate business roles, which are specified by declaring a 
set of interactions and the way they are orchestrated.  As an example, consider the 
business role of a supplier.  A supplier can be involved in the following interactions: 

 
INTERACTIONS   

 r&s requestQuote   

   which:product  

   cost:money   

 r&s orderGoods   

   many:nat   

   much:money    

 s&r checkShipAvail   

   which:product, many:nat   

 rcv confirmShip   

 rcv makePayment   

 snd shipOrder   

 ask how(product):money   

 ask checkStock(product,nat):bool   

 tll incStock(product,nat)   

 tll decStock(product,nat) 

Notice that the co-parties of the supplier in these interactions are not named; the 
specification models the business role played by the component independently of the 
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way it is instantiated within any given system.  Components are linked to their co-
parties within modules through explicit wires as described in Section 6. 

The way the declared interactions are orchestrated is specified through a set of 
variables that provide an abstract view of the state of the component, and a set of 
transitions that model the activities performed by the component, including the way it 
interacts with its co-parties.  

A transition has an optional name and a number of possible features.  For instance: 

  transition TQuote 
   triggeredBy requestQuote ? 

  guardedBy s=0 
  effects which’=requestQuote.which 
    much’=how(requestQuote.which)*1.2 
    inStock’=false 

     timeoutQuote’=false 
    s’=1 
  sends requestQuote !  
    requestQuote.cost=much’ 
    requestQuote.Reply=true 
    alertDate ! 
    alertDate.Ref=”quote” 
    alertDate.Interval=7 

• A trigger is a condition: typically, the occurrence of a receive-event. 

• A guard is a condition that identifies the states in which the transition can 
take place – in TQuote, the state in which s=0.  If the guard is false, a com-
ponent that plays the specified role will not engage in the interaction. 

• A sentence specifies the effects of the transition in the local state.  We use 
var’ to denote the value that a state variable var has after the transition.  In 
the case above, we store business data and initialise the state variables much, 
inStock and timeoutQuote.  Notice that, in the example, we use the synchro-
nous interaction how to compute the cost that is going to be quoted.  We will 
see that the co-party in this interaction is an external service that lists the cur-
rent prices of goods.  

• Another sentence specifies the events that are sent, including the values 
taken by their parameters.  In this sentence, we use variables and primed 
variables as in the “effects”-section; the separation between the two sections 
is just logical and there are no dependencies between them.  In the example, 
this consists in issuing the reply quoting the costs computed as mentioned 
and setting an alertDate with a 7-day interval – the period during which the 
quoted price is guaranteed. 

Notice that, even if it is relatively easy to model a state machine in SRML-P, the 
way we model control flow is much more flexible because transitions are decoupled 
from interactions and changes to state variables.  For instance, the transition TAlert 
can occur in any state after the request was issued: 

  transition TAlert 
   triggeredBy alertDate ? 

  guardedBy  
  effects alertDate.Ref=”quote”  timeoutQuote’=true 
    alert.Ref=“goods”  s=2  s’=8 
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  sends alertDate.Ref=”quote”  s=1  requestQuote ! 
    alert.Ref=“goods”  s=2  orderGoods ! 
     incStock(which,many) 

This transition is triggered when the supplier receives a notification from an alert-
Date; if the alert is concerned with the quote, it simply sets an internal timeout state 
variable so that the supplier knows how to calculate the costs of a subsequent order 
and it alerts its co-party that the timeout has occurred; if the alert is concerned with 
the goods and no commitment has been received, the supplier notifies its co-party and 
replenishes the local stock – incStock(which,many).  Notice that the latter is a syn-
chronous interaction. 

5 External Interfaces and Business Protocols 

Besides components, a module in SRML-P may declare a number of (external) inter-
faces.  These provide abstractions (types) of parties that can be interconnected with 
the components declared in the module either to provide or request services; this is 
what, in SCA, corresponds to “Entry Points” and “External Services”.  

External interfaces are specified through business protocols.  Like orchestrations, 
protocols declare the interactions in which the external entities can be involved as 
parties.  The difference is that, instead of an orchestration, we provide a set of proper-
ties that model the protocol that the co-party is expected to adhere to.  For instance, 
the behaviour that a supplier expects from a warehouse is as follows: 

BUSINESS PROTOCOL Warehouse is  

 INTERACTIONS 

  r&s check&lock 
    which:product, many:nat 

  snd confirm 

 BEHAVIOUR  
  check&lock ? exceptif true 
  check&lock !  check&lock.Reply  
   alertDate !  alertDate.Interval=3  
     alertDate.Ref=”goods”  
  check&lock !  alertDate ?  alertDate.Ref=”goods” 
  check&lock   (check&lock ? ensures confirm !) 

   check&lock ?  (check&lock ? exceptif confirm !) 

Notice that the interactions are again named from the point of view of the party 
concerned – the warehouse in the case at hand.  The properties require the following: 

• In the initial state the warehouse is ready to engage in check&lock. 
• The deadline associated with check&lock is a timeout of 3 days with refer-

ence “goods” set when the reply is issued. 
• A positive reply sets the pledge associated with check&lock, which ensures 

that confirm will be issued upon but not before receiving the commit. 
• After the commit, check&lock can be revoked until confirm has been issued. 

Protocols are also used for modelling the behaviour that users can expect from a 
service.  This subsumes what, in [2], are called external specifications: 
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In particular, a trend that is gathering momentum is that of including, 
as part of the service description, not only the service interface, but 
also the business protocol supported by the service, i.e., the specifica-
tion of which message exchange sequences are supported by the serv-
ice, for example expressed in terms of constraints on the order in which 
service operations should be invoked. 

This is the case of customers: 
BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
  s&r howMuch 
    which:product 
    cost:money 
  s&r buy 
    many:nat 
    much:money 
  snd pay 

   rcv ackShip 

  BEHAVIOUR  
   howMuch ? exceptif true 
   howMuch ? enables buy ! 
   howMuch ?  alertDate !  alertDate.Interval=7  
     alertDate.Ref=”quote” 
   howMuch ?  alertDate ?  alertDate.Ref=”quote”  
   howMuch ?  howMuch.Reply 
   howMuch   (buy ! ensures  
    (buy ?  buy.Reply  buy.much=buy.many*howMuch.much)) 
   buy ?  buy.Reply  alertDate !  alertDate.Interval=3  
     alertDate.Ref=”goods”   
   buy ?  alertDate ?  alertDate.Ref=”goods” 
   buy   (pay ! ensures ackShip ?) 
   pay !  buy ! 
   buy !  buy ! exceptif ackShip ? 

The properties offer the following behaviour: 

• A request for howMuch is enabled at the start.  
• A request for buy will be accepted after and only after a reply to howMuch. 
• The deadline associated with howMuch is a timeout of 7 days set when the 

reply is received.  
• A reply to howMuch is always positive; the corresponding pledge ensures 

that the cost associated with a subsequent order placed before the deadline 
will be the quoted one.  

• The deadline associated with buy is a timeout of 3 days.  This is why the 
warehouse is being requested to provide the same timeout. 

• The pledge associated with buy ensures that ackShip will be issued upon and 
never before payment is issued. 

• Payment is a commit to buy. 
• buy can be revoked until ackShip has been issued. 
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Notice again that components and external interfaces are independent entities in 
the sense that they do not name the co-parties involved in the interactions that they 
support.  These entities become connected in modules through internal wires. 

6 Wires and Interaction Protocols 

A module consists of a number of components and external interfaces (pro-
vides/requires) wired to one another.  Wires are labelled by connectors that coordinate 
the interactions in which the parties are jointly involved.  In SRML-P, we model the 
interaction protocols involved in these connectors as separate, reusable entities. 

Just like business roles and protocols, an interaction protocol is specified in terms 
of a number of interactions.  The “semantics” of the protocol is provided through a 
collection of sentences that establish how the interactions are coordinated, which may 
include routing events and transforming sent data to the format expected by the re-
ceiver.  As an example, consider the following protocol: 

INTERACTION PROTOCOL Custom1 is  

 INTERACTIONS 
  ask S1(product,nat):bool 
  tll S2(product,nat)  
  tll S3(product,nat) 
  rpl R1(product):nat 

   prf R2(product,nat) 

 COORDINATION 
 S1(p,n) = R1(p) n 
 S2(p,n)  R2(p,R1(p)+n)  
 R1(p) n  S3(p,n)  R2(p,R1(p)–n)  
 R1(p)<n  ¬S3(p,n) 

This protocol is used by the wire SS that connects Supplier and Stock as follows: 

The name bindings thus declared establish the following protocol: 
 checkStock(p,n)=(get(p) n) 
 incStock(p,n)  set(p,get(p)+n) 
 get(p) n  decStock(p,n)  set(p,get(p)–n)  
 get(p)<n  ¬decStock(p,n) 

That is, the boolean value returned by checkStock(p,n) as invoked by the supplier is 
computed by the local stock by checking if the value returned by get(p) is greater or 
equal to n.  Notice that these are synchronous interactions.  The protocol also stipu-
lates that to a request from the supplier for incStock(p,n) the local stock executes 
set(p,get(p)+n).  Likewise, to a request from the supplier for decStock(p,n) the local 
stock executes set(p,get(p)–n) only if get(p) returns a value greater than or equal to n; 
otherwise, the request is not accepted. 
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The names used in interaction protocols are generic to facilitate reuse.  In fact, 
families of protocols may be defined by parameterising the specification with the data 
sorts involved in the interactions.  For instance, the following protocol is used be-
tween Supplier and Customer:  

INTERACTION PROTOCOL Straight.I(d1)O(d2) is  

 INTERACTIONS 
   s&r S1 

    i1:d1 
    o1:d2 

   r&s R1 

    i1:d1 
     o1:d2 

 COORDINATION 
 S1  R1 
 S1.i1=R1.i1 
 S1.o1=R1.o1 

This is a “standard” protocol that connects directly two entities over two interac-
tions with one – and one -parameter.  This protocol is used twice in the following 
wire to connect different interactions between Supplier and Customer: 

The other protocol used in this wire is an even simpler version involves no parame-
ters: 

INTERACTION PROTOCOL Straight is  

 INTERACTIONS 
  snd S1 

   rcv R1 

 COORDINATION 
 S1  R1 

The name bindings establish straightforward connections such as: 
 howMuch  requestQuote 
 howMuch.which = requestQuote.which 
 howMuch.cost = requestQuote.cost 
 buy  orderGoods 
 buy.which = orderGoods.which 
 buy.much = orderGoods.much 
 pay  makePayment 
 ackShip  shipOrder 

Interaction protocols are considered as first-class objects because we want to use 
them to assign properties to wires that reflect constraints on the underlying run-time 
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environment.  These may concern data transmission, synchronous/asynchronous con-
nectivity, distribution, and other non-functional properties such as security. 

7 Concluding Remarks and Further Work 

In this paper, we have described some of the primitives that are being proposed for 
the SENSORIA Reference Modelling Language in order to support building systems 
in service-oriented architectures using “technology agnostic” terms.  More specifi-
cally, we have focused on the language that supports the underlying composition 
model.  This is a minimalist language that follows a recent proposal for a Service 
Component Architecture [14] that “builds on emerging best practices of removing or 
abstracting middleware programming model dependencies from business logic”.  
However, whereas the SCA-consortium concentrates on the definition of an open 
specification that supports a variety of component implementation and interface types, 
and on the deployment, administration and configuration of SCA-based applications, 
our goal is to development a mathematical framework in which service-modelling 
primitives can be formally defined and application models can be reasoned about.   

This is why we are developing a logic for specifying and reasoning about interac-
tions in the conversational mode that characterises services.  The primitives that we 
are proposing take into account proposals that have been made for Web-Service Con-
versation [4], in other modelling languages such as ORC [13], and in calculi such as 
Sagas [5]; they take into account that interactions are stateful and provide first-class 
notions such as reply, commit, compensation and pledge. 

The core of our paper focused on the notion of module, which we adapted from 
SCA.  Modules in SRML-P are the basic units of composition.  They include external 
interfaces for required and provided services, and a number of components whose 
orchestrations ensure that the properties offered on the provides-external interfaces 
are guaranteed by the connections established by the wires assuming that the services 
requested satisfy the properties declared on the requires-external interfaces.  An alge-
braic formalisation of this notion of module can be found in [9], which includes the 
correctness condition.  We have also added a notion of parameter through which we 
can configure chosen aspects of a module such as timeouts; such parameters can be 
instantiated at run-time as part of a negotiation process. 

Modules can be assembled together to make complex systems in a way that is simi-
lar to SCA, i.e. by linking requires-external interfaces of a module with provides-
external interfaces of other modules via external wires.  External wires carry a proof-
obligation to ensure that the properties offered by the provides-interface imply those 
declared by the requires-interface.  

SRML-P also supports a way of offering a system as a module, i.e. of turning an 
assembly of services into a composite service that can be published and discovered on 
its own.  This can be useful, for instance, when one wants to put together a number of 
services that, individually, offer only partial matches for a given required external 
interface but, in a suitable configuration, can provide a suitable match.  The operation 
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An assembly of modules defining a SRML-P system; EW–external wire 

that collapses a system into a module internalises the external wires and forgets the 
external specifications.  An algebraic semantics of module interconnection and com-
position can be found in [9] based on categorical constructions similar to those used 
in algebraic specification [7] and software architecture [10]. 

Finally, we are also developing a notion of configuration for SRML-P.  A configu-
ration is a collection of components wired together that models a run-time composi-
tion of service components.  A configuration results from having one or more clients 
using the services provided by a given module, possibly resulting from a complex 
system, with no external interfaces, i.e. with all required external interfaces wired-in.  
It is at the level of configurations that we address run-time aspects of service compo-
sition such as sessions, as well as notions of persistence.  Research is under way to 
provide primitives for managing configurations with a semantics based on graph-
transformations [7], as used, for instance, in [3,16]. 
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Appendix  – The rocurement ervice 

In this appendix, we model the procurement business process used in the paper, in-
volving a supplier, a warehouse, a local stock, and a price look-up facility. 

PROCUREMENT consists of:  

• CR – the external interface of the service provided by the module, of type Cus-
tomer; 

• WR – the external interface of a service required for shipping the product if it 
is not available locally, of type Warehouse; 

• CT – the external interface of a service required for quoting the current market 
costs of products, of type Costs; 

• SP – a component that coordinates the business process, of type Supplier;  

• LS – a component that provides local storage of products, of type Stock 

• CS, SS, SW, SC – four internal wires that make explicit the partner relationship 
between CR and SP, SP and LS, SP and WR, and SP and CT, respectively.  

The components, external interfaces and protocols required for the definition of PRO-

CUREMENT are collected at the end of the appendix. 
 
MODULE Procurement is  

COMPONENTS 

 SP: Supplier 

 LS: Stock 

PROVIDES 

 CR: Customer 

REQUIRES 

 WR: Warehouse 

 CT: Costs 

P S
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WIRES 

 

 

 

END MODULE 

 

SPECIFICATIONS 

 

BUSINESS ROLE Stock is  

 INTERACTIONS 

   rpl get(product):nat 

  prf set(product,nat) 

 ORCHESTRATION 
 local qoh:product nat   

  transition  
   triggeredBy get(p) 

  sends qoh(p)  

  transition  
   triggeredBy set(p,n) 

  effects qoh(p)’=n 
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BUSINESS ROLE Supplier is  

 INTERACTIONS 
  r&s requestQuote 
    which:product 
    cost:money 

   r&s orderGoods 
     many:nat 
     much:money 
   rcv makePayment 
   snd shipOrder  
   s&r checkShipAvail 
     which:product, many:nat 
   rcv confirmShip 
   ask how(product):money 
   ask checkStock(product,nat):bool 
   tll incStock(product,nat)  

  tll decStock(product,nat) 

 ORCHESTRATION 
 local s:[0..8], inStock:bool, which:product, many:nat,  

      much:money, timeoutQuote:bool 

  initialisation  
  s=0 

  termination  
  s=8 

  transition TQuote 
triggeredBy requestQuote ? 
guardedBy s=0 
effects which’=requestQuote.which 
  much’=how(requestQuote.which)*1.2 
  inStock’=false 
  timeoutQuote’=false 
  s’=1 
sends requestQuote !  
  requestQuote.cost=much’ 
  requestQuote.Reply=true 
  alertDate ! 
  alertDate.Ref=”quote” 
  alertDate.Interval=7 

  transition TAlert 
triggeredBy alertDate ? 
guardedBy  
effects alert.Ref=”quote”  s=1  timeoutQuote’=true 
  alert.Ref=“goods”  s=2  s’=8 
sends alert.Ref=”quote”  s=1  requestQuote ! 
  alert.Ref=“goods”  s=2  orderGoods ! 
   incStock(which,many) 

  transition TimeoutOrder 
triggeredBy checkShipAvail ? 
guardedBy  
effects s=4  s’=8  
sends s=4  orderGoods !  
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transition TOrder 
triggeredBy orderGoods ? 
guardedBy s=1  
effects many’=orderGoods .many  
  timeoutQuote   
  much’=orderGoods.many*how(requestQuote.which)*1.2 
  ¬timeoutQuote  much’=orderGoods.many*much 
  checkStock(which,orderGoods.many)  s’=2  
    inStock’=true 
  ¬checkStock(which,orderGoods.many)  s’=3  
    inStock’=false 
sends inStock’  decStock(which,many) 
    orderGoods ! 
    orderGoods.much=much’ 
    orderGoods.Reply=true 
    alertDate ! 
    alertDate.Ref=”goods” 
    alertDate.Interval=3   
  ¬inStock’  checkShipAvail !  
    checkShipAvail.which=which 
    checkShipAvail.many=many’ 

   transition TWare 
triggeredBy checkShipAvail ? 
guardedBy s=3 
effects checkShipAvail.Reply  s’=4  
  ¬checkShipAvail.Reply  s’=8 
sends checkShipAvail.Reply  orderGoods ! 
    orderGoods.Reply=true 
    orderGoods.much=much 
  ¬checkShipAvail.Reply  orderGoods ! 
    orderGoods.Reply=false 

   transition TPay 
triggeredBy makePayment ? 
guardedBy (s=2  s=4) 
effects s=2  s’=5 
  s=4  s’=6 
sends s=4  checkShipAvail ! 

   transition TConfirm 
triggeredBy confirmShip ? 
guardedBy s=6 
effects s’=7 

   transition TShip 
triggeredBy  
guardedBy s=5  s=7 
effects s’=8 
sends shipOrder !  

   transition TAbort 
triggeredBy orderGoods ? 
guardedBy (s=5  s=6)  
effects s’=8 
sends s=5  incStock(which,many) 
  s=6  checkShipAvail ! 
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BUSINESS PROTOCOL Warehouse is  

 INTERACTIONS 

  r&s check&lock 
    which:product, many:nat 

  snd confirm 

 BEHAVIOUR  
  check&lock ? exceptif true 
  check&lock !  check&lock.Reply  
   alertDate !  alertDate.Interval=3  
     alertDate.Ref=”goods”  
  check&lock !  alertDate ?  alertDate.Ref=”goods” 
  check&lock   (check&lock ? ensures confirm !) 

   check&lock ?  (check&lock ? exceptif confirm !) 

BUSINESS PROTOCOL Costs is 

 INTERACTIONS 

   rpl much(product):money 

BUSINESS PROTOCOL Customer is  

 INTERACTIONS 

  s&r howMuch 
    which:product 
    cost:money 

  s&r buy 
    many:nat 
    much:money 

  snd pay 

   rcv ackShip 

  BEHAVIOUR  
   howMuch ? exceptif true 
   howMuch ? enables buy ! 
   howMuch ?  alertDate !  alertDate.Interval=7  
     alertDate.Ref=”quote” 
   howMuch ?  alertDate ?  alertDate.Ref=”quote”  
   howMuch ?  howMuch.Reply 
   howMuch   (buy ! ensures  
    (buy ?  buy.Reply  buy.much=buy.many*howMuch.much)) 
   buy ?  buy.Reply  alertDate !  alertDate.Interval=3  
     alertDate.Ref=”goods”   
   buy ?  alertDate ?  alertDate.Ref=”goods” 
   buy   (pay ! ensures ackShip ?) 
   pay !  buy ! 
   buy !  buy ! exceptif ackShip ? 
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INTERACTION PROTOCOL Straight is  

 INTERACTIONS 
  snd S1 

   rcv R1 

 COORDINATION 
 S1  R1 



INTERACTION PROTOCOL Straight.I(d1)O(d2) is  

 INTERACTIONS 
   s&r S1 

    i1:d1 
    o1:d2 

   r&s R1 

    i1:d1 
     o1:d2 

 COORDINATION 
 S1  R1 
 S1.i1=R1.i1 
 S1.o1=R1.o1 

INTERACTION PROTOCOL Straight.I(d1,d2) is  

 INTERACTIONS 
   s&r S1 

    i1:d1, i2:d2 
   r&s R1 

    i1:d1, i2:d2 

 COORDINATION 
 S1  R1 
 S1.i1=R1.i1 
 S1.i2=R1.i2 

INTERACTION PROTOCOL Custom1 is  

 INTERACTIONS 

  ask S1(product,nat):bool 
  tll S2(product,nat)  
  tll S3(product,nat) 
  rpl R1(product):nat 

   prf R2(product,nat) 

 COORDINATION 
 S1(p,n) = R1(p) n 
 S2(p,n)  R2(p,R1(p)+n)  
 R1(p) n  S3(p,n)  R2(p,R1(p)–n)  
 R1(p)<n  ¬S3(p,n) 

INTERACTION PROTOCOL AskTll(d1,d2) is  

 INTERACTIONS 
  ask S1(d1):d2 

   tll R1(d1):d2 

 COORDINATION 
 S1(x) = R1(x) 
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Abstract. A growing concern of Web service providers is scalability. An
implementation of a Web service may be able at present to support its
user base, but how can a provider judge what will happen if that user
base grows? We present a modelling approach based on process algebra
which allows service providers to investigate how models of Web service
execution scale with increasing client population sizes. The method has
the benefit of allowing a simple model of the service to be scaled to
realistic population sizes without the modeller needing to aggregate or
re-model the system.

1 Introduction

Web Services are gaining more and more popularity as an approach to distributed
computing. This flourishing is in part due to the use of well-known standard
protocols for message exchange such as HTTP [1], XML [2], SOAP [3], and
WSDL (Web Service Description Language) [4], as well as a large number of
frameworks to improve developer’s productivity (e.g. Apache AXIS [5], and Java
WSDP [6]). Web Services are also being supported by businesses (e.g., [7]) to
provide programmer-friendly interfaces for their services.

This paper addresses scalability performance aspects of e-Learning oriented
Web Services. We present a scenario in which Web Service technology is used to
implement a Distributed Course Management System (DCMS). One of the most
severe problems a DCMS has to deal with is the performance degradation occur-
ring when many users are requesting the service simultaneously. Let us imagine
a DCMS is available for collecting final course projects of a class. Teaching staff
usually put a deadline on those activities, and students are likely to get their
projects ready very close to the due date. The DCMS has to cope with a flash
crowd-like effect, as server resources (i.e. memory, CPU and bandwidth) have
to be shared among a large number of users, thus paving the way for perfor-
mance penalties experienced by users. In order to assess scalability properties of
the system, we first develop a simple analytical model of the request/response
message exchange pattern in SOAP, the Web Service communication protocol.
This model constitutes the basis for the DCMS model where concurrent clients
performing SOAP requests are taken into account.

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 214–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Related Work

Performance issues of traditional Web servers have been extensively investigated
(for example, [8,9]). Research on performance evaluation of Web Services has
been primarily focused on comparing SOAP implementations [10,11] or investi-
gating performance of SOAP approaches to scientific computing [12,13].

In comparison to this, less effort has been invested in modelling the newer
technology of Web Services. In [14] a profile-driver model for cluster-based web
services is presented. Application profiles are obtained by mapping workload
characteristics to resource (i.e. CPU, disk, memory) utilisation using linear fit-
ting. Results shows that remote invocation overhead is important for the accu-
racy of the model; however, in our work we disregard method call overhead as in
our scenario we focus on the most constrained system activity occurring at rate
which turns out to be several order of magnitudes slower than SOAP processing.
[15] propose an analytical model for a multi-tier web service based on a network
of queues, where each queue represents an application tier. Although this work
shares some common ideas (chain multi-tier approach), we propose a much sim-
pler model where server overload, tier replication and multiple session classes
are not taken into account. A general account of Web Service scalability is found
in [16].

Structure of This Paper: The remainder of this paper is structured as follows. In
Section 3 we briefly introduce PEPA, the stochastic process algebra employed for
our modelling. In Section 4 we develop the model of request/response message
exchange for Web Services. In Section 5 we discuss methodology and numerical
results of parameter estimation. In Section 6 the DCMS case study is shown and
a preliminary model is given. Stiffness problems in model evaluation are solved
by means of the simplified model which is presented in Section 7. Numerical
results are presented in Section 8. Section 9 concludes the paper.

3 Overview of Performance Evaluation Process Algebra

In Performance Evaluation Process Algebra (PEPA) [17], a system is viewed as
a set of components which carry out activities either individually or in coop-
eration with other components. Activities which are private to the component
in which they occur are represented by the distinguished action type, τ . Each
activity is characterized by an action type and a duration which is exponentially
distributed. This is written as a pair such as (α, r) where α is the action type
and r is the activity rate. This parameter may be any positive real number, or
may be unspecified. We use the distinguished symbol ( to indicate that the
rate is not specified by this component. This component is said to be passive
with respect to this action type and the rate of the shared activity is defined by
another component.



216 S. Gilmore and M. Tribastone

3.1 Combinators of the Language

PEPA provides a set of combinators which allow expressions to be built which
define the behaviour of components via the activities that they engage in. These
combinators are presented below.

Prefix: (α, r).P : Prefix is the basic mechanism by which the behaviours of com-
ponents are constructed. This combinator implies that after the component has
carried out activity (α, r), it behaves as component P .

In this paper we will make use of functional rates [18] which allow the rate at
which an activity is performed to depend on the current state of the model. (In
Petri nets terms, a “marking-dependent” rate.)

Choice: P1+P2: This combinator represents a competition between components.
The system may behave either as component P1 or as P2. All current activities
of the two components are enabled. The first activity to complete distinguishes
one of these components and the other is then discarded.

Cooperation: P1 ��
L

P2: This describes the synchronization of components P1

and P2 over the activities in the cooperation set L. The components may proceed
independently with activities whose types do not belong to this set. A particular
case of the cooperation is when L = ∅. In this case, components proceed with
all activities independently. The notation P1 ‖ P2 is used as a shorthand for
P1 ��

∅ P2. In a cooperation, the rate of a shared activity is defined as the rate of
the slowest component.

Hiding: P/L This component behaves like P except that any activities of types
within the set L are hidden, i.e. such an activity exhibits the unknown type τ
and the activity can be regarded as an internal delay by the component. Such
an activity cannot be carried out in cooperation with any other component: the
original action type of a hidden activity is no longer externally accessible, to an
observer or to another component; the duration is unaffected.

Constant: A
def= P Constants are components whose meaning is given by a

defining equation: A def= P gives the constant A the behaviour of the component P .
This is how we assign names to components (behaviours). An explicit recursion
operator is not provided but components of infinite behaviour may be readily
described using sets of mutually recursive defining equations.

One process constant is pre-defined. The deadlocked process named Stop en-
ables no activities [19].

3.2 Formal Semantics of the Language

Process algebras are concise formally-defined modelling languages for the pre-
cise description of concurrent, communicating systems. The PEPA process alge-
bra benefits from formal semantic descriptions of different characters which are
appropriate for different uses. The structured operational semantics presented
in [17] maps the PEPA language to a Continuous-Time Markov Chain (CTMC)
representation. A denotational semantics for the language maps PEPA models
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to elements of metric spaces [20]. A continuous-space semantics maps PEPA
models to a system of ordinary differential equations (ODEs) [21], admitting
different solution procedures. We use both the CTMC and ODE semantics in
the present paper.

3.3 Analysis Tools for PEPA

The reason to have a formally-defined high-level language for performance mod-
elling is that it is possible to implement software tools which evaluate models
according to the formal semantics of the language. In the present study we used
the PRISM probabilistic model-checker [22], which accepts PEPA as one of its
input languages, to perform transient analysis of the CTMC. We used the PEPA
Workbench [23] to compile the PEPA model to a differential equation form which
we could solve using a fifth-order Runge Kutta numerical integrator.

Because we are modelling in a high-level language it is possible to apply these
very different numerical evaluation procedures to compute performance results
from the same model. This is a freedom which we would not have if we had
coded a Markov chain or differential equation-based representation of the model
directly in a numerical computing platform such as Matlab.

4 Model of a Request/Response SOAP Exchange

Web Services use SOAP as the underlying protocol for inter-process communi-
cation. Being based on XML, it requires more resources than traditional binary-
based RPC protocols such as, e.g. CORBA or RMI. Moreover, sending binary
data over XML-based protocol is a critical performance issue.

Several approaches have been presented so far to allow efficient transmission
of binary data over SOAP. SOAP with Attachments (SwA) [24] uses the MIME
mechanism [25] to send MultiPart/Related messages. DIME [26] is a specification
from Microsoft which encapsulates SOAP messages and attachments into binary
records. DIME is no longer supported and has been replaced by MTOM [27],
a WC3 Recommendation which enables optimised MIME serialisation of SOAP
messages.

4.1 Message Life Cycle

We describe a fair approximation of a SOAP message life cycle, as we used
to model the system. Although SOAP also supports asynchronous (one-way)
messages, we focus on the Request/Response exchange pattern. Moreover, let us
suppose that the client may transmit a binary file with the request. We assume
the attachment is being sent according to the SwA specification, though our
model is consistent with other mechanisms as well.

The client is the originator of the request. We may describe it as a process
which evolves through the following series of activities:

1. Message creation. This involves XML formatting activities.
2. File attachment. This phase depends on the mechanism employed (e.g. SwA,

DIME, MTOM, Base64 Encoding) and the file size.
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3. Message sending. Key factors are message size and network bandwidth.
4. Response awaiting. Performance issues are related to the server throughput

and network available bandwidth.
5. Response processing. HTTP and XML parsing are taken into account.

The server performs the following activities:

1. Request processing. This involves both HTTP and XML parsing.
2. Attachment processing. This depends on how many processing resources are

needed by the server in order to deal with the attachment.
3. Response creation. This phase includes server’s method invocation and XML

response message formatting.
4. Response sending. This is dependent on the available network bandwidth.

Setup of the Model. We consider the model in the optimistic scenario where
hardware and software failures are assumed to occur sufficiently infrequently that
we will not represent them. Further, the server is sufficiently well-provisioned
that we may also neglect the possibility failures caused by out-of-memory errors
or overrunning the thread limit on the JVM hosting the Web container. We will
return to review these optimistic assumptions after we compute performance
results from our model.

4.2 PEPA Model of the System

It is straightforward to obtain a PEPA representation from the system
description presented in Section 4.1. Figure 1 shows the model of a request/
response message exchange. The system here is made up of only two compo-
nents that perform a single exchange by synchronising on all of their common
activities.

ClientA
def
= (create , α).ClientB

ClientB
def
= (attach , β).ClientC

ClientC
def
= (queue , λ).ClientD

ClientD
def
= (request ,�).ClientE

ClientE
def
= (response ,�).ClientF

ClientF
def
= (processResponse , γ).Stop

ServerA
def
= (queue ,�).ServerB

ServerB
def
= (request , μ).ServerC

ServerC
def
= (save , θ).ServerD

ServerD
def
= (processRequest , η).ServerE

ServerE
def
= (response , φ).Stop

ClientA ��
{queue,request,response} ServerA

Fig. 1. PEPA model of request/response message exchange
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5 Parameter Estimation

5.1 Experimental Design

We conducted experiments to estimate the appropriate numerical values for the
parameters used in our model. We implemented a simple Web Service in which
SwA was enabled to allow it to save a binary file attached by the client. The
implementation of the server interface as well as the method for processing at-
tachments are timed methods, in order to let us gather measurement data on
their invocation.

The client makes a designer-tunable number of service calls, the attachment
file size being passed as application argument. The designer may also set an
inter-message idle period; however, our results were not affected by changes in
this parameter.

5.2 Test Environment

We performed our tests with both client and server running on the same host,
although our Web Services was implemented to be remotely accessible. We used
a desktop with the following configuration: Intel Dual Xeon 3.2GHz processor
and 2 GB RAM running Microsoft Windows XP 64bit Edition. Our Web Ser-
vice framework uses Sun Java Application Server Platform Edition 8.2, Java
2 Platform Standard Edition 5.0, Java WSDP 1.6 and JavaBeans Application
Framework 1.0.2. Class binding, automatic WSDL file generation and applica-
tion deployment were supported by NetBeans IDE 5.0.

We used 200ms inter-message idle period and 1000 service invocations for
each experiment; file size was 20MB. Table 1 shows experimental results we
obtained in our tests.

Table 1. Experimental results

Activity Name Mean (ms)

create 0.592
attach 0.040
processResponse 0.154
save 81.100
processRequest 0.775

6 Distributed Course Management System Model

In order to assess the scalability issues of a Web Service-based distributed ap-
plication we consider the following scenario. A Web Service is implemented for
distributed e-Learning and Course Management System. We restrict our analysis
to a case where one single course is being managed. We assume that no other
services simultaneously run on the server; thus, the server download capacity cs

as well as server upload capacity μs are fully available for the Web Service.
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The clients’ (i.e. students) arrival process is assumed to be well-described by
a Poisson distribution with rate λ. The system allows a maximum number of
students (course size) N . We assume that all students have the same values
for download capacity cc and upload capacity μc. Like the server, we also sup-
pose that no other process but the Web Service client-side application consumes
network resources.

When multiple clients are involved, the server has to share its bandwidth
among them. A model of the behaviour of the network is therefore necessary.
We address this issue by developing a simple model for characterising service
performance of the system. In this model we assume an ideal network in which
no loss occurs and network nominal capacity means available bandwidth. We also
suppose that transmissions are established on top of TCP connections where
fairness against concurrent requests is perfect.

Given the above assumptions, if we denote i (i > 0) as the number of uploading
clients at any point in time, the uploading rate of each connection request is:

request = min
{cs

i
, μc

}
(1)

Similarly, if j is the number of downloading clients (i.e., clients who are receiving
the response message), the downloading rate of each connection response is:

response = min
{μs

j
, cc

}
(2)

6.1 PEPA Model of the System

We present the model of the DCMS by taking into account the behaviour of
server bandwidth when multiple connections are allowed. Local activities are
unaffected by concurrent requests. Thus, the model of the client is the same as
in Fig. 1. As for the server, we need to distinguish each of the possible number
of clients which upload to him simultaneously. Let Serveri be the process de-
scription of the server downloading from i concurrent clients. The model of the
server as well as the description of the system are described in Fig. 2.

Model analysis has been carried out by setting local activity rates as they were
obtained in our experimental tests (cfr. Tab. 1). Table 2 shows the complete
parameter set. It is worthwhile to observe that network parameters represent
bandwidths normalised by the message size being sent. For instance, cs = 0.001
means that the server is able to get the entire message completed in 1000 s; this
value resembles a realistic situation where a server equipped with a 10Mbps
connection has to download a file about 1GB long. We also would like to point
out that server upload capacity is much faster than its download capacity because
of the size of the message being transmitted: here we have assumed 1KB long
SOAP response messages in our parameter set. The value of λ is to consider
flash crowd-like effect, such that triggered for instance by simultaneous service
requests when a deadline is due.

As our model considers client components which perform only one request,
transient analysis has to be carried out for evaluating the performance of the
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Server0
def
= (queue,�).Server1

Serveri
def
= (queue,�).Serveri+1 + (request , min{ cs

i
, μc}).(save , θ).

(processRequest , η).(response , min{μs
i

, cc}).Serveri−1

(0 < i < N)

ServerN
def
= (request , min{ cs

N
, μc}).(save , θ).(processRequest , η).

(response , min{μs
N

, cc}).ServerN−1

ClientA ‖ ClientA ‖ . . . ‖ ClientA

N

��
queue,request,response

Server0

Fig. 2. Model of the server in DCMS

system. In the following we describe some preliminary studies which have been
conducted in order to assess scalability issues of the model.

Table 2. Parameter set for model analysis

Parameter Meaning Rate (s−1)

α create 1689.20
β attach 25000.00
γ processResponse 6493.50
θ save 12.33
η processRequest 1290.32
λ queue 20.00
N Population size 100
cs Server download bandwidth 0.001
μs Server upload bandwidth cs/3
cc Client download bandwidth (cs/10) · 106

μc Client upload bandwidth cc/30

We mapped the PEPA model to CTMC representation. We found the un-
derlying Markov chain does not scale with the number of model components.
We calculated different state space sizes by varying N , as shown in Tab.3. We
argue that the CTMC representation highlights lack of scalability which makes
performance analysis intractable even for unrealistic values of N .

It is well known that the ODE-based representation of the model offers better
scalability, as the size of the space vector does not change for N varying. How-
ever, we encountered stiffness problems when running time-series analysis, as
the expected time to obtain model results was high (i.e., 108 s) even if the state
vector size would suggest easy computability. We conjecture these problems are
due to the differences of several order of magnitude between some activity rates
(e.g., μc against β). We actually modified the parameter set by imposing unreal-
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Table 3. CTMC State space sizes for N varying

N State space size

1 9
2 72
3 540
4 3888
5 27216
6 186624

istic values (all close to 1) which made the running much faster, as we obtained
results in 10−2 s.

7 A Simplified Model

The scalability problems discussed above lead us to a simplified model where all
activities which occur at fast rate have been disregarded. The model is shown in
Fig. 3.

ClientIdle
def
= (queue , λ).ClientUploading

ClientUploading
def
= (request ,�).Stop

Server0
def
= (queue ,�).Server1

Serveri
def
= (queue ,�).Serveri+1 + (request , min{ cs

i
, μc}).Serveri−1

(0 < i < N)

ServerN
def
= (request , min{ cs

N
, μc}).ServerN−1

ClientIdle ‖ ClientIdle ‖ . . . ‖ ClientIdle

N

��
{queue,request,response} Server0

Fig. 3. Simplified PEPA model of the DCMS

When mapping the PEPA model to CTMC representation, we found that
the model is still not scalable as the space state size is 3N . In the continuous-
space representation the rates are separated by fewer orders of magnitude and
performance results could be evaluated at low computational cost. In particular,
we required only 0.03 seconds of compute time to obtain a 106 seconds time series
analysis.

8 Numerical Results

We obtained numerical results using the parameter set as follows. We considered
a maximum number of users N = 100, requesting service according to a flash
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Fig. 5. Flash crowd effect in DCMS

crowd-like effect at rate λ = 20. Server download capacity cs was set to 0.001,
and client upload capacity μc = cs/30.

Figure 4 shows a time series plot of the number of client uploading to the
server. The initial burstiness of requests is shown in Figure 5.

Figure 6 plots service durations for different server bandwidths (i.e., cs =
0.01, 0.02, and 0.1). Finally, Figure 7 shows service durations for different values
of N , when cs = 0.1 and μc = cs/30.
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Commentary on the Results: We note that the system requires a significant
amount of time to get every client request completed. Earlier we outlined a series
of assumptions about the model setup which included the optimistic assumptions
of absence of failure of various kinds, and did not include the possibility of
users aborting long-running file uploads only to restart them again later. Since
unsuccessful file transfers (of whatever kind) will only tend to delay things more
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we can safely interpret the results presented above as saying that even in this
very optimistic setting the system is impractical for use.

9 Conclusions

This paper has assessed the scalability of a Web service which supports secure
distributed file upload using the Web service attachments API. The issue of scal-
ability extends basic evaluation of performance: a service may have acceptable
performance at present, but the question is how this performance will be likely
to change as greater numbers of service subscribers are added.

Models of distributed systems which are based on a discrete-state interleaving
semantics are limited by the well-known state-space explosion problem: the size
of the system as a whole is bounded by the product of the state space size of the
individual components which it contains. Markovian models (whether obtained
from process algebras, Petri nets or another modelling formalism) are victims of
this problem. By mapping to a continuous-state differential equation represen-
tation the PEPA language allows modellers to assess scalability. The state-space
is never constructed, making it possible to have a scalable analysis process. We
move directly from the model with parameters fitted from measurement data
to time series plots showing the changes in the number of each kind of compo-
nent over time. The solution to a system of differential equations is definitive,
as the solution of a Markov chain is, thus there is no repetition cost as found in
other modelling approaches used to assess scalability (such as simulation). The
numerical procedures used have low computational cost.

Acknowledgements. This work was supported by the EU IST-3-016004-IP-09
project SENSORIA.
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Università di Torino, CLUT, July 1996.

21. J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, pages
33–43, Torino, Italy, September 2005. IEEE Computer Society Press.

22. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for
automatic verification of probabilistic systems. In Proceedings 12th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’06), 2006. To appear.

23. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh
International Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, number 794 in Lecture Notes in Computer Science, pages
353–368, Vienna, May 1994. Springer-Verlag.

24. W3C. SOAP with Attachments. http://www.w3.org/TR/SOAP-attachments.
25. MIME Multipart/Related Content-type RFC. http://www.ietf.org/rfc/

rfc2387.txt.
26. DIME protocol specification. msdn.microsoft.com/library/en-us/dnglobspec/

html/draft-nielsen-dime-02.txt.
27. W3C. MTOM. http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.



Choreography Conformance Analysis:

Asynchronous Communications and Information
Alignment�

Raman Kazhamiakin and Marco Pistore

DIT, University of Trento
via Sommarive 14, 38050, Trento, Italy

{raman, pistore}@dit.unitn.it

Abstract. Web service choreography languages provide a way to de-
scribe the collaboration protocol of multiple services that exchange in-
formation in order to achieve a common goal. This description may be
seen as a specification that should be respected by the joint behavior
of the set of services implementing the choreography. Such a confor-
mance requires that (i) the observable behavior of the implementation
corresponds to the behavior described by the protocol specification, and
(ii) the business information is properly managed, guaranteeing that
the participants have a shared knowledge about it, according to what is
specified in the choreography. In this paper we present a choreography
conformance analysis approach that addresses both the behavioral corre-
spondence and the business information management. The key features
of the approach are the capability to deal with asynchronous interactions
and the ability to model and analyse the data managed and exchanged in
the protocol, thus providing more accurate verification results. We also
present symbolic techniques based on these formalizations that can be
used for model checking of the choreography conformance.

1 Introduction

Web service technology enables the development of complex heterogeneous, dis-
tributed applications, facilitating the specification, deployment, and enactment
of remote software components accessible on the web via standardized proto-
cols. The ability to integrate the existing services owned and managed by dis-
tinct stakeholders, obtaining new composite business applications, is one of the
fundamental ideas underlying the Web service technology paradigm. Among the
various aspects that need to be specified to fully describe a Web service composi-
tion, the representation of a stateful and coordinated behavior of the composition
plays a prominent role. A wide range of Web service standards and languages has
been proposed for these purposes [1,2,3]. The Web Services Choreography De-
scription Language (WS-CDL, [3]) is particularly relevant for the specification
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of the compositions, as it provides a way to describe the observable behavior
of the collaboration from the global point of view. One of the main goals of
the choreography description is to define a reference model of the composition
that the real service implementations should conform to. Conformance testing
refers to the verification that the joint behavior of the composition of the service
implementations corresponds to that described in the choreography.

The conformance analysis, however, does not amount only to check the cor-
respondence between the sequences of externally observable message exchanges
generated by the composition of service implementations and the collaboration
protocol specification. It is also necessary to verify that the information of the
protocol is being managed and distributed accordingly, and that the partici-
pants have a common view of the business data described in the choreography.
The management of business information in conformance testing is complicated
by the fact that WS-CDL allows for specifying in a declarative way that cer-
tain pieces of information should be synchronized either as a result of a certain
data exchange (interaction alignment) or of the protocol execution as a whole
(choreography coordination), without explicitly describing and constraining the
mechanisms that should implement them.

In this paper we present a formal analysis framework that allows for the
verification of the conformance between the collaboration specification and the
composition of service implementations. The presented framework is based on
our previous work [4] that provides a formal model for the compositions of local
participants implementations. The key feature of this framework is the ability to
model and analyse compositions, where the interactions are asynchronous, and
the messages may be reordered and stored in unbounded queues.

In this work, we extend the approach of [4] in two ways. First, we enrich the
model with the capability to represent and manage data-related constructs (e.g.,
variables, conditions, assignments), thus providing a way to model the data-flow
of the compositions. Second, we introduce a formalism for the global model that
allows for the choreographic description of the compositions. Based on these
formalisations, we define the choreography conformance as a kind of bisimula-
tion relation, emphasizing the asynchrony of the message communications. We
also present formal definitions for the most common information alignment re-
quirements, such as the interaction coordination alignment rules presented by
WS-CDL. Furthermore, we define a symbolic representation of the underlying
models, and propose finite-state model checking techniques for verifying the con-
formance between the implementing composition and the choreography specifi-
cations.

The paper is structured as follows. Section 2 introduces the conformance prob-
lem using variants of a simple example. Section 3 defines the formal models for
the data- and control-flow of the underlying systems from the global perspective
and as a composition of interacting local services. In Sect. 4 we present the no-
tions of the asynchronous conformance relation and the information alignment
rules, and discuss the symbolic analysis techniques suitable for the conformance
verification. Concluding remarks and related works are discussed in Sect. 5.
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2 Modelling Web Services Compositions

In order to illustrate the problems related to the conformance between the speci-
fication of a Web service composition and its implementation, we consider several
variants of the Request For Quotation (RFQ) case study. The goal of the compo-
sition is to combine purchasing and delivery functionalities in a single business
process, involving several participants. Thus, the composition describes the in-
teractions of three independent services, namely a buyer, a seller, and a shipper.

We model the scenario using a WS-CDL [3] specification that describes the
collaborations between the participants from the global perspective. WS-CDL
specifications identify the participants of the composition, their variables, the
interactions between the partners, and the dependencies between these inter-
actions, such as control-flow and data-flow dependencies, transactional require-
ments etc. An example of the choreography specification is represented as a UML
activity diagram in Fig. 1(a). The elementary actions in the diagram represent
message exchanges, like request or offer; the decisions points, like the choice
to accept or reject the offer; the silent internal activities, like the verify activity
used to check the presence of the product.

The composition implementation is represented as a set of local specifications,
one for each participant of the collaboration, defined in an appropriate language,
e.g. BPEL [1]. These local models may represent either the real services, or rather
the behavioral interfaces of the participants, to which the real implementations
should conform [5]. Each local specification describes the (stateful) behavior of a
particular service. It defines the operations that are triggered upon the invocation
of the service. These operations include variables assignments, invoking other
services and receiving responses, and structured activities like sequences, loops,
conditional choices, etc. Examples of the local protocols, as those of the buyer
and the seller, are represented as UML diagrams in Fig. 1(b).

It is important to note that the implementation description may include sig-
nificantly more activities and even participants than is specified in the chore-
ography description. These auxiliary elements are used to ensure the protocol,
coordinating and aligning the main parts of the system.

2.1 Behavioral Correctness

The choreography model represented in Fig. 1(a) describes the following business
scenario. First, the buyer asks the seller for a particular good, sending a request
for quote. The offer is prepared and sent back to the buyer. In this moment two
situations are possible: either the buyer accepts the message and the process
continues with the confirmation and a shipment engagement; or the acceptance
does not happen within a certain time limit, the offer is considered invalid, and
the whole procedure terminates.

This choreography specification defines the requirements to the implementing
compositions. That is, an implementation should satisfy all the control-flow and
data-flow requirements of the model. Consider the BPEL processes that are sup-
posed to implement the participants of the above scenario (Fig. 1(b)). It is easy
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Fig. 1. RFQ case study

to see that these processes, when composed together, satisfy the specified chore-
ography only under the assumption that the interactions are synchronous, i.e.,
a message emission is possible only if it is immediately followed by a reception.
This assumption, often used in modelling of Web service compositions, may be
violated in real settings due to the asynchronous nature of Web service interac-
tions. Indeed, since the buyer and the seller are independent, it is possible that
the former emits the acceptance message simultaneously with the timeout of the
seller. This leads to a state, where the seller has terminated the execution, while
the buyer waits for the offer confirmation. This scenario may not be detected if
the assumption on synchronous interactions is applied.

In order to satisfy the choreography specification, some auxiliary activities
should be performed. In particular, the accept message should follow some avail-
ability checking interaction, where the the buyer asks for the possibility to accept
the order. In case of positive response, the acceptance is invoked, otherwise the
buyer terminates. On the other side, the seller waits for this availability checking
message, and responds negatively only if the timeout has expired.

2.2 Information Alignment

Figure 2(a) represents a modified choreography specification of the RFQ case
study. Here, instead of termination on timeout, the seller iteratively provides the
buyer with the updated information about the requested product (interaction
refresh), until the latter does not accept the offer.

The process implementations of the participants are presented in Fig. 2(b). In
the buyer process the decision to accept the offer is performed in parallel with
the loop, where the offer information is continuously updated on the reception
of refresh message. Analogously, the seller repeatedly waits for either an ac-
ceptance message or for a timeout expiration. The boolean variables (done and
accepted) are used to control termination of the loops.
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Fig. 2. RFQ case study: iterative quoting

The most relevant property that this choreography should satisfy is the in-
formation alignment between the participants. In particular, when the offer is
accepted after several updates, both the buyer and the seller should have a com-
mon knowledge on the current offer instance. Such a requirement is modelled
in a declarative way in WS-CDL, by marking certain interactions (e.g. refresh
and accept), as aligned interactions.

It is easy to see that the given implementation may violate this requirement.
Since the partners are independent, the timeout and acceptance invocations may
happen simultaneously. As a result, the local values of the accepted offer may be
different. Another negative scenario happens when the acceptance is performed
after several updates. If the message queue of the buyer service is not ordered,
there is no guarantee that the accepted offer is the last emitted by the seller. The
necessity to guarantee the correctness on the information alignment requires the
analysis techniques that go beyond the verification of the behavioral correctness.

2.3 Composition Coordination

Apart from the alignment of a particular interaction, it is often required that
the participants of the choreography agree on the final state of the collabora-
tion activity. This requirement, referred in WS-CDL as choreography coordina-
tion, states that either all the participants suffered an exception, or all of them
completed successfully (and, consequently, their finalization is also agreed). In
WS-CDL notation it is allowed to declare a coordination requirement without ex-
plicitly modelling the corresponding coordination interactions. A choreography
implementation, however, should satisfy this requirement by providing special
coordination message exchanges.

Consider the choreography model represented in Fig. 3(a). After the confir-
mation of the availability of the product, the seller interacts with a new actor,
namely Credit Card Agency (CCA), in order to verify the payment information
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Fig. 3. RFQ case study: coordination management

of the buyer. This verification may result in a fault message, and the seller enters
its exception state. In order to guarantee that the exception is propagated to the
buyer, an auxiliary communication should be instantiated between these actors.
The corresponding implementation is presented in Fig. 3(b). After the reception
of the order confirmation the buyer waits for the additional messages that allow
to distinguish the resulting state of the protocol. If the credit check failed, the
seller sends the rejectOrder message to the buyer, and the latter knows that
the exception occurred and the composition terminated abnormally.

These examples illustrate two important problems that should be addressed
by a formal framework for validation of choreography specifications against com-
positions of service implementations. First, it is necessary to check the confor-
mance of the behavior of the composition of services to the behavior, described
in the choreography model. Doing this, it is important to take into account the
asynchronous nature of the Web service communications, i.e., the possibility
of message intersections and reorderings, variety of the implementations of the
queueing mechanisms. Second, it is necessary to validate that the implementa-
tion satisfies the alignment requirements, declared in the choreography model,
as those reflecting the interaction alignment and the choreography coordination.

3 Formalization

The formal model we use as a basis for the required analysis techniques consists
of three parts, namely the data model, the choreography model, and the imple-
mentation model. The data model provides a formalisation of the data manipu-
lated by the services and is used to reason on the data flow of the compositions.
The control flow on the other hand, is defined by the choreography model, used
to represent a behavior of the WS-CDL specification, and by the implementa-
tion model, used to represent a behavior of the composition of several existing
services, specified, e.g., in BPEL [1].
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3.1 Data Model

We model the data manipulation in Web service compositions using the following
notations. Given a set of typed variables V and a set of typed functions F , the
expressions and terms over the variables and functions are defined as follows:

– E ≡ (t1 = t2) | ¬e | (e1 ∧ e2) that is equality between terms, negation or
disjunction of expressions;

– T ≡ v | f(t1, . . . , tn), with v ∈ V and f ∈ F , that is a variable or function
call on terms.

We assume a fixed interpretation of typed functions. For the interpretation
of variables, instead, we use valuation functions g that map variables v ∈ V to
their values. We write g |= e to denote that the expression e evaluates to true
under the valuation g. A condition φ ∈ Φ is an expression of the form presented
above. An assignment ω ∈ Ω has the form (v := t). We denote an update of the
valuation g with the assignment ω as upd(g, ω).

3.2 Choreography Model

The formal model of choreography is based on the notion of roles and actions. A
role represents the behavior of a particular participant of the composed system.
During the protocol execution, the role can be in one of its possible states and
can evolve to new states as a result of performing some actions. Moreover, each
role is possibly equipped with a set of typed variables.

We model message communications actions as interactions defined on a set
of service operations (or message types) M. The signature of the interaction
has the form (rs, rd, μ, v̄s, v̄d), where rs and rd are the roles of the sender and
receiver respectively, μ is the service operation, and variables v̄d of the receiver
are populated with the values of the corresponding variables v̄s of the sender.
Set of interactions is denoted as AO.

We also define internal actions Aτ , which are used to represent evolutions of
the system that do note involve interactions between services. An internal action
aτ has the form (Rτ , τ), where Rτ ⊆ R denotes a subset of roles that perform an
action, and τ is used to denote the internal action itself1. The set of all actions
is denoted as A.

We model a choreography behavior as a Global Transition System (GTS).
Informally, we represent a global state of the choreography as a vector s̄ =
〈s1, . . . , sn〉, where si is a local state of the role ri. We denote a vector with
component si updated to s′i as s̄[s′i/si]. The behavior of the choreography is
defined by the global transition relation T . The relation defines conditions, under
which the action can be performed, and effects of these executions, which specify
the modification of the states and variables of the participants.

1 The possibility of a group of participants to participate to an internal action is used
in WS-CDL to model that the branching condition may be evaluated simultaneously
by a group of roles.



234 R. Kazhamiakin and M. Pistore

Definition 1 (GTS). A global transition system representing the choreography
of n roles is a tuple Σp = 〈V ,S,S0,A, T 〉, where

– V =
⋃

i Vi is a set of all the role variables;
– S ⊆ Si × · · · ×Sn is a finite set of global states and S0 ⊆ S is a set of initial

states;
– A = Aτ ∪ AO is a set of actions;
– T ⊆ S × Φ × A × Ω∗ × S is a global transition relation. A transition

(s̄, φ, a, Ω, s̄′) ∈ T if
• a = (ra, rb, μ, v̄s, v̄d) and s̄′ = s̄[s′a/sa, s′b/sb], or
• a = (Rτ , τ) and s̄′ = s̄[s′i/si] for each ri ∈ Rτ .

Let γ = 〈s̄, g〉 be a configuration of the choreography. The transition of GTS
(s̄, φ, a, Ω, s̄′) is fireable in γ only if g |= φ. The resulting configuration is defined
as 〈s̄′, upd(g, Ω)〉. We write γ

μ→ γ′, if the action a has the form (rs, rd, μ, v̄s, v̄d),
and γ

τ→ γ′ otherwise. We denote a set of transitions, fireable in γ, as out(γ).

3.3 Implementation Model

We model a system that implements a given choreography specification as a com-
position of local transition systems (LTSs). Each LTS represents the behavior
of one of the participants. The implementation model may include more par-
ticipants, interactions and operations than those declared in the choreography
specification. In particular, these participants and/or operations may describe
the low-level mechanisms that are used to implement the coordination require-
ments, declared in the choreography specification.

The behavior of the participant is defined using set of local variables and local
actions. The local actions of the ith participant are divided into input actions
Ii, representing the reception of message α, denoted as ←−α ; output actions Oi,
representing the emission of message α, denoted as −→α ; and internal actions Ai

τ .
A message α ∈ Mα has the form μ(x̄), where μ is the service operation, and x̄
denotes a message content.

Definition 2 (LTS). A local transition system representing the ith participant
of the implementation model is a tuple 〈V i,Si,Si

0,Ai, T i〉, where

– V i is a set of local variables;
– Si and Si

0 are the finite sets of local states and initial local states respectively;
– Ai = Ii ∪ Oi ∪ Ai

τ is a set of local actions;
– T i ⊆ Si × Φ×Ai ×Ω∗ × Si is a local transition relation.

We define a composition of local participants as follows. During the execution,
the composition participants evolve independently, exchanging messages with
other participants through a certain communication medium, represented as a
set of queues. We refer to this medium as communication model. The behav-
ior of the composition strongly depends on the structure of the communication
model: the number of queues, queue ordering, queue bounds etc. An example
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of this dependency is illustrated in Sect. 2.1, where the composition of ser-
vice implementations conforms to the specification behavior under the synchro-
nous communication model, but violates it under a more realistic asynchronous
model. Therefore, the implementation model should be correct with respect to
the choreography specification regardless to the communication model applied
for the composition representation.

In our previous work [4], we present a hierarchy of communication models and
introduce the notion of the most general communication model (MG-model). We
show that under this model any composition of LTSs exhibits more behaviors
than the composition under any other communication model. The MG-model is
defined as a structure with one unbounded and unordered queue. That is, all
the exchanged messages are stored in and consumed from this queue regardless
their ordering2. We will use this model to represent and analyse the composition
of the local transition systems.

Let NMα be a set of multisets of Mα, i.e. set of mappings from Mα to natural
number N. Given two elements w and w′, we write w.w′ to denote the multiset
union, if w, w′ ∈ N

Mα . Thus, the queue content is defined as a multiset w.

Definition 3 (CTS). A composition transition system representing the com-
position of n participants is a tuple Σc = 〈Vc,Sc,Sc

0 ,Ac, T c〉, where

– Vc =
⋃

i Vi is a set of all local variables;
– Sc is a set of composition states of the form 〈s̄, w〉;
– Sc

0 ⊆ Sc is a set of initial composition states with empty queue w = ε;
– Ac =

⋃
i Ai is a set of actions;

– T c ⊆ Sc × Φ × Ac × Ω∗ × Sc is a composition transition relation. The
transition (〈s̄, w〉, φ, a, Ω, 〈s̄′, w′〉) ∈ T c if for some i there exists a transition
(si, φ, a, Ω, s′i) ∈ T i such that s̄′ = s̄[s′i/si] and
• if a = −→α , then w′ = w.α;
• if a = ←−α , then w = α.w′;
• if a = τ , then w′ = w.

The behavior of the composition is defined analogously. Let us denote the con-
figuration of the composition as a triple γ = 〈s̄, g, w〉. The transition of CTS
(〈s̄, w〉, φ, a, Ω, 〈s̄′, w′〉) is fireable in γ only if g |= φ. The resulting configuration

is defined as 〈s̄′, upd(g, Ω), w′〉. We write γ
−→μ→ γ′, if the action a has the form

−→μ (x̄), γ
←−μ→ γ′, if the action a has the form ←−μ (x̄), and γ

τ→ γ′ otherwise.
A (possibly infinite) sequence π = γ0, a0, γ1, a1, . . . is a run of the CTS, if

γ0 ∈ Sc
0 , and for any i ≥ 0 γi

ai→ γi+1.

4 Choreography Validation

An important issue in the analysis of Web service specification is verifying that
the given composition of existing services satisfies the requirements of the spec-
2 If certain interaction constraints (e.g., synchronizability, message ordering) should

be satisfied by the composition, a corresponding communication model may be used
instead of MG-model. See [4] for the details on the analysis and implementation.
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ified global choreography protocol. This analysis has to address the following
problems. First, it has to check that the behavior exhibited by the composition
corresponds to those described in the choreography document. This problem
is referred to as conformance checking [6]. Second, it is often needed that the
participants agree on the state of the protocol as a result of its execution. In
other words, they expect to have a common knowledge on certain variables that
describe the state of the protocol. This problem is referred to as information
alignment.

4.1 Choreography Conformance

In [7] the notion of conformance between choreography and orchestration (i.e. im-
plementation specification) was introduced as a bisimulation-like relation. How-
ever, some crucial aspects are ignored in that framework. The model of the
composition, adopted in this framework, relies on the assumption that the mes-
sage exchanges are synchronous, which is often not realistic in the Web service
environments. As a consequence, it is not always possible to reveal the imple-
mentation problems like, e.g., the message losses, queue unboundedness, message
intersections and disorder.

We extend the presented approach in the following way. Given an implementa-
tion specification, we model the composition of participants in the most “liberal”
(i.e., with respect to the possible behaviors) settings, that is, under the most gen-
eral communication model. We require that the following properties hold on the
resulting composition:

– the composition specification is complete, i.e. all the messages send by any
participant should be eventually consumed by the recipient;

– the composition is bounded, that is there exists such a constant K that in
every reachable configuration of the composition the number of messages in
the queue is less than this constant: |w| ≤ K;

– the (relevant part of) observable behavior of the implementation is similar
to the behavior of the choreography specification.

More formally, we define the notion of conformance as follows. Let Mp be
a set of service operations of the choreography specification. In order to hide
irrelevant operations of the implementation, we use the operator [·]. That is,
given an action a ∈ Ac, we write [a] = μ, if a = −→μ (x̄) and μ ∈ Mp, and [a] = τ

otherwise. We write γc τ→∗γc
1 to denote that γc

1 is reachable from γc through
(zero or more) irrelevant operations. Analogously, γp τ→ ∗γp

1 means that γp
1 is

reachable from γp through (zero or more) internal actions.
The conformance relation requires that conversations of the implementing

composition reflects all and only the conversations of the choreography.

Definition 4 (Conformance Relation). Let γp and γc be configurations of
Σp and Σc respectively. We say that the relation R(γp, γc) is a conformance
relation if for any transition label a

– if γp a→ γp
1 ∧ a = μ, then γc τ→∗γc

2 ∧ γc
2

−→μ→ γc
1 ∧ R(γp

1 , γc
1);
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– if γc a→ γc
1 ∧ [a] = μ, then γp τ→∗γp

2 ∧ γp
2

μ→ γp
1 ∧ R(γc

1, γ
p
1 );

– if γp a→ γp
1 ∧ a = τ , then γc τ→∗γc

1 ∧ R(γp
1 , γc

1);
– if γc a→ γc

1 ∧ [a] = τ , then γp τ→∗γp
1 ∧ R(γc

1, γ
p
1 ).

We write Σp ≈ Σc if there exists a conformance relation R, such that any initial
configuration of Σp conforms to some initial configuration of Σc, and vice versa.

Definition 5 (Asynchronous Choreography Conformance). An imple-
menting composition Σc is asynchronously conformant to the choreography Σp,
if Σc is complete, bounded, and Σc ≈ Σp.

4.2 Information Alignment

An interesting property being modelled in the choreography specifications is
the information alignment, i.e. the ability to control that the participating roles
agree on the outcome of the interactions or even of the execution of the whole
protocol [3]. In particular, in the scenario in Fig. 2(a) it is required that both
the buyer and the seller have a have a common view on the offer value. That
is, the partners may need to have a common knowledge on the information they
exchange (interaction based alignment). As a result of such an alignment the
participants act on the basis of their shared knowledge. In other cases, like those
illustrated in Fig. 3(a), this property expresses a requirement that the partici-
pant will agree on the way the choreography ended, regardless the alignment of
intermediate interactions (choreography coordination). In either case, the imple-
menting system should ensure that the specified requirements are satisfied (i.e.,
the interaction complete and the partner have the same information understand-
ing, or choreography termination state is agreed).

Following the above patterns, we distinguish two kinds of properties to be
modelled and validated on the implementing composition. The properties of
the first group are used to check the proper interaction completion and the
corresponding data alignment. The property of the second group are used to
verify that the participants have a common view on the termination state.

More formally, let a = (rs, rr, μ, v̄s, v̄r) ∈ AO be an interaction action whose
alignment has to be ensured. Let also φ be an expression over the variables of the
partners that is expected to evaluate to true on the completion of the interaction.
The interaction alignment rule requires that any emitted message should be
eventually consumed, a new message can not be emitted until the previous is
consumed, and the values of the variables should satisfy the expression on the
interaction.

Definition 6 (Interaction Alignment Rule). An interaction alignment rule
〈(rs, rr, μ, v̄s, v̄r), φ〉 requires that for any run π = γ0, a0, γ1, a1, . . . of Σc, if

γi

−→μ→ γi+1 for some i ≥ 0, then

– there exists j > i, such that γj

←−μ→ γj+1, and
– for any i < k < j ak �= −→μ , and
– γj+1 |= φ.
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Consider an example choreography and implementation in Fig. 2(a) and 2(b)
respectively. The interaction alignment rule for the refresh interaction has the
form 〈(s , b, refresh, sOffer , bOffer), (sOffer = bOffer)〉. It is easy to see that the
rule is violated by the implementation.

The coordination alignment rule requires that the participants agree on the
information in a termination state of the choreography. Given some termination
state s̄, let φs̄ = φ1

s̄ ∧ · · · ∧ φn
s̄ be an expression over the implementation that

evaluates to true if and only if the participants are in the required state. Let E
be a set of the all the expressions of the terminating states: E = {φs̄}.

Definition 7 (Coordination Alignment Rule). A coordination alignment
rule E = {φs̄} requires that

– for each γc of Σc, with out(γc) = ∅, there exists φs̄ ∈ E, such that γc |= φs̄;
– for each φs̄ ∈ E, there exists γc of Σc, such that out(γc) = ∅ and γc |= φs̄.

The coordination requires that each termination state of the implementation
should correspond to some termination state of the choreography, and every
termination state of the choreography is also a termination state of the imple-
mentation.

For the protocol represented in Fig. 3(a) the coordination alignment rule is
formulated as follows:

E =
{

(b.state = done ∧ s.state = done ∧ c.state = ok ∧ h.state = done),
(b.state = fail ∧ s.state = fail ∧ c.state = fail ∧ h.state = init)

}

That is, either all the partners are in their successful states, or the buyer the
seller and the CCA services fail, and the shipper is not initiated.

4.3 Choreography Analysis

The formal model represented above allows for the definition of systems with
potentially infinite number of reachable configurations. This makes the applica-
tion of formal analysis techniques very complex, if at all possible. In order to be
able to perform the choreography conformance validation, the model should be
made finite. For these purposes, we recall the approach of [8,9], and for the lack
of space we only sketch the formalization here.

Symbolic Representation. We represent the composition models using an
abstraction-based approach [8,9]. In this model the variables and their valuations
are given in terms of valuations of the set of propositions. These propositions may
express certain facts about the composition states, variables, relations between
them, function values, etc. More formally, we allow the proposition to have a
form of expression: p ≡ (t1 = t2) | ¬p | p1 ∧ p2. We will refer to the set of
propositions as PA.

We define an abstract model corresponding to the concrete one, based on the
set PA. An abstract valuation gA is simply a mapping from PA to {true, false}.
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Since the set PA is finite, a set of concrete valuations corresponds to an abstract
valuation gA: {g | for each p ∈ PA, g |= p iff gA(p) = true}. We denote such
set as a interpretation of the abstract valuation, written as I(gA).

According to the definition3, the transition (s̄, φ, a, Ω, s̄′) of Σp is fireable in a
(concrete) configuration γ = 〈s̄, g〉, if the valuation satisfies the transition guard.
The resulting valuation is defined as upd(g, Ω). Given an abstract configuration
γA = 〈s̄, gA〉, the transition is fireable in γA, if gA |= φ. Analogously, the result of
the transition is some valuation updA(gA, Ω), such that there exists g ∈ I(gA),
for which upd(γ, Ω) ∈ I(updA(γA, Ω)). The run of the abstract model as defined
in the same way. It is easy to see that the abstract model is finite.

Symbolic Analysis Techniques. As we discussed above, the analysis of the
correspondence between the choreography and the implementation requires that
the following three properties are satisfied: the implementation is complete (i.e.,
all the messages are received), bounded, and the asynchronous conformance rela-
tion is satisfied. The algorithm that allows for the boundedness and completeness
analysis of the above implementation model is presented in [4]. The verification
of the asynchronous conformance relation between Σp and Σc models may be
done symbolically, based on the abstractions for these models. The symbolic al-
gorithm, adopted for the conformance checking analysis is presented in [10]. In
particular, it is shown how the equivalence relation may be represented symbol-
ically, and verified using BDD-based model checking algorithm.

Symbolic model checking algorithms may be used also for the verification of
the alignment rules. We exploit the Computational Tree Logic (CTL, [11]) for
this purposes. Given an alignment rule, a corresponding CTL formula φR is
constructed, which holds when the implementation satisfies the rule.

More formally, let IR = 〈(rs, rr, μ, v̄s, v̄r), eIR〉 be an interaction alignment
rule. Let φ−→μ (respectively, φ←−μ ) be an expression, which is true if and only if the
message μ is emitted (resp. received). A CTL formula φIR is defined as follows:

φIR = AG(φ−→μ ⇒ ((AF(φ←−μ ∧ φIR)) ∧ A(¬φ−→μ Uφ←−μ ))) .

In other words, from each state, where the aligned interaction is started, (i) the
state, where the interaction is complete, should be always reachable, (ii) the
information alignment condition should be satisfied, and (iii) there should not
be any intermediate emissions.

Analogously, let CR = {φs̄} be a coordination alignment rule. The corre-
sponding CTL formula is defined as follows:

φCR = (AF
∨
s̄

AGφs̄) ∧ (
∧
s̄

EF AGφs̄) .

The formula states that some of the allowed termination states is always reach-
able, and each of them may be reached by some execution of the composition.

3 The abstraction of CTS may be defined analogously.
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5 Conclusions and Related Work

In this paper we presented a formal framework for the verification of the con-
formance between the choreography specification and the composition of service
implementations. The formalism allows for modelling the data- and control-flow
of the Web service compositions, defined as a global protocol and as a set of
interacting local services. The key feature of the framework is the asynchro-
nous message exchange, where the messages may be reordered and stored in
unbounded queues. We exploit this feature for the definition of asynchronous
choreography conformance, thus allowing for more accurate analysis of a wider
class of compositions. We also formalize advanced declarative synchronization
requirements exploited by WS-CDL, such as the interaction alignment and the
coordination alignment rules. Finally, we presented symbolic reasoning tech-
niques for model checking choreography specifications against the implementing
compositions.

The work close to ours is presented in [7]. The choreography and the or-
chestration languages are formalized, and the notion of conformance between
the specifications is presented. Here we extends the model of [7] in several
directions. First, our approach allows for representation and management of
data. Second, we adopt asynchronous communication model, while the inter-
actions are defined in [7] as synchronous. Third, we also aim at addressing the
information alignment problem, thus covering more essential choreography
properties.

The problem of verification of the global protocol specification against the
implementing composition is also discussed in [12,13,14]. In [12] the notion of
conformance is defined by means of automata and is restricted only to composi-
tions of two services. In [13] the choreography specifications are used to represent
the service obligations rules, and then are verified against the implementations
defined as compositions of interacting BPEL processes. Again, the analysis does
not consider the data-flow of the composition, and relies on the synchronous com-
munication model, which is not realistic for a wide class of composition scenarios.
The work of [14] concentrates on checking that the choreography specification is
respected by the implementing services at run time. The formalisation is given
in terms of Petri Nets.

The formalization of the Web service choreography models are also presented
in [15,16,17]. In particular, in [17] the global and the local (end-point) calculi are
introduces to describe the choreography and the behavior of compositions of local
implementations. The work discusses the relation between the two paradigms,
and presents the potential problems related to the asynchronous exchanges and
message reorderings. The problem of synchronous versus asynchronous interac-
tions in global models is also discussed in [18], where the notion of the protocol
synchronizability is presented together with the sufficient conditions. The re-
sults of [4] extend this approach and provide a way to determine an appropriate
level of asynchronism and a suitable communication model for the given com-
position.
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Abstract. An Active XML (AXML in short) has been developed to
provide efficient data management and integration by allowing Web ser-
vices calls to be embedded in XML document. AXML documents have
new security issues due to the possibility of malicious documents and
attackers. To solve this security problem, document-level security with
embedded service calls has been proposed to overcome the limitation of
traditional security protocols.

The aim of this paper is to show how existing model checking tech-
nique, with CSP and FDR, used for traditional message-based security
protocols, can be adapted to specify and verify AXML document-based
security. To illustrate our approach, we present the framework for mod-
elling and analyzing AXML document’s security. Then, we demonstrate
how this technique can be applied to analyze electronic patient record
taken from [13]. Finally, we show the possible vulnerabilities due to del-
egated query and malicious service call.

1 Introduction

In the context of Web services and XML, data integration and management have
been an important issue, due to the heterogeneity and autonomy of data sources.
Active XML (AXML in short) has been developed to provide efficient data man-
agement and integration by allowing Web services calls to be embedded in XML
document[1][3]. For example, the possibility of intensional data(embedded ser-
vice calls) in AXML document leads to powerful data management by allowing
dynamic collaboration with distributed systems and discovering new relevant
data sources at run-time.

However, AXML has also brought the following security issues: 1) it is nec-
essary to protect peers from malicious AXML documents, and 2) it is required
to protect AXML documents from malicious peers. To solve the above security
problems, document-level security with embedded service calls as well as XML
Encryption and XML Signature has been studied[6][13].

Over the last decade, great attention has been paid to the question of de-
veloping formal methods for analyzing security protocols over the last decade.
While some methods have been successfully applied to verify security properties
∗
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of traditional message-based security protocols, they have not yet been applied
to analyze security problems specific to AXML document-based systems. For
example, AXML documents support query delegation by invoking embedded
service calls, which are not considered in SOAP message security. In addition, it
is worth noting that the formal specification and verification issues related with
AXML documents include new types of security aspects not considered in tradi-
tional message-based protocols. For example, an AXML document is basically an
XML document and service calls. As such, it is necessary to develop an abstract
model by analyzing XML tagging and embedded service calls. AXML document
invokes embedded security-related service calls in order to obtain a key and gen-
erate encrypted or signed document. This means that an abstract model could
be extracted from two viewpoints: 1) before invoking a security service call, and
2) after invoking a security service call. Besides, it also needs to reflect the fact
that there would be more security threats in addition to traditional one such
as overhearing and modifying transmitted messages. For example, an intruder
could embed enormous amount of false data or additional service calls in the re-
turned AXML document to the intended recipient after intercepting the original
document.

In this paper, we show how existing model checking technique, generally used
for analyzing message-based protocols, can be adapted to verify new vulnerabil-
ities of AXML systems. To do this, we have chosen formal analysis techniques
based on Casper/CSP and FDR because it has already been proven to be very
successful for verifying traditional protocols[20] as well as SOAP message-based
protocols[14][16].

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of AXML and its security services. In Section 3, we show how to specify
and analyze AXML documents by invoking security service calls. In Section 4,
we describe how AXML documents encrypted or signed with XML Encryption
and XML Signature could be translated systematically to an abstract security
notation. In Section 5, we demonstrate the case study of analyzing electronic
patient record. Section 6 describes some related works. Finally, we conclude in
Section 7.

2 Overview of AXML Document and Security Service
Calls

AXML documents are basically XML documents where some parts of data are
explicitly denoted and other parts are given intensionally, by embedded service
calls within the documents. The <sc></sc> tags in an AXML document rep-
resents a service call and its children subtrees denote the parameters of the Web
service calls. After invoking an embedded service call on the document, a cor-
responding Web service is executed. Then the results of invoking the embedded
service calls are appended at the location of the service call in the document.
We use the terminology materialization, which means that the associated Web
service is invoked, and its result is returned to the location of the service call.
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Thus, an AXML system consists of a set of AXML documents plus the services
in those documents.

The corresponding security services consist of a tuple (p, s), where p ∈ P is
the identity of a peer providing the service, and s ∈ S is the name for a security
service such as encryption. The algebraic expressions for an AXML document(in
short, a document), tree, function node, Web service, and service evaluation on
peers are simply expressed as below[2] :

– d@p : a document d at peer p
– q@p : a query q at peer p
– s@p : a service s provided by peer p
– f(para1,...,paran )@p : a function node f to invoke a corresponding security

service s defined on peer p, with parameters, para1,...,paran

– Result(Z) : evaluation result Z of service s (defined on p) on peer p

In the rest of this paper, the above algebraic expressions will be used to describe
the document exchange between peers and the document d represents all or
some forest of AXML documents. For more details about AXML syntax and
semantics, see [3].

3 Modelling and Analyzing AXML Document Embedded
with Security Service Call

3.1 Framework for Modelling and Analysis

In Fig. 1(a), the framework for modelling and analyzing security services in
AXML system is illustrated. In this framework, Casper[18] (Compiler for the
Analysis of Security Protocols) is a compiler that converts a high level descrip-
tion of a protocol into CSP (Communicating Sequential Processes) code that
can be run in a model checker FDR (Failure-Divergence Refinement). CSP[9] is
a process algebra language to describe systems as a number of processes which
operate independently and communicate with each other over well-defined chan-
nels. FDR[11] is a model checking tool for state machines, with foundations in
the theory of concurrency based on CSP.

Given an AXML system, its model can be considered from two viewpoints: 1)
an AXML document before invoking a service call, and 2) an AXML document
after invoking a service call. We denote the former as ‘d1’ and the latter as
‘d2’. These two models(‘d1’ and ‘d2’) are transformed into a high-level security
notation according to derivation rules of the δ mapping function.

First, the common security notation of Casper input is created(δ(d1) = δ(d2)),
after applying the δ functions to d1 and d2. Next, CSP code is generated au-
tomatically using Casper’s compilation function. Then, the FDR model checker
shows the possible attacker scenarios if the CSP code doesn’t hold any given
security property. Thus, the verification results will be helpful for a designer to
modify an AXML system to be robust against security vulnerabilities.
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Fig. 1. Model-based verification of security services in an AXML system

Fig. 1(b) shows the process of encryption and decryption in AXML docu-
ments. P1 is an AXML peer and it invokes a local service call, encrypt(denoted
by a square), and d1 refers to a subtree including a service call node and data to
be encrypted. d2 is the materialized result after evaluating the encrypt service
call and it is encoded based on XML Signature and XML Encryption stan-
dards. For example, P1 could obtain the shared key by using the function node
getSharedKey, then it could invoke the encrypt service call, encrypt(Data, En-
cryptedData), to encrypt the data with the shared key. Then encrypted AXML
document is encoded according to the standard format defined in XML Encryp-
tion(see Fig. 1(c)). Similarly, if the function node related with signature(e.g.,
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sign(Data, getPrivateKey())) is called, the AXML document would be signed
according to the standard format defined in XML Signature.

The main advantages of using the proposed framework for analyzing secu-
rity and constructing the δ mapping function to generate Casper input can be
summarized as follows:

– Using the δ mapping functions enables us to generate Casper input system-
atically.

– If an attack is found on δ(d1) and δ(d2), then the corresponding attack exists
on a real AXML system as well.

– If an attack is found on a real AXML system, then the corresponding attack
exists on δ(d1) and δ(d2) as well.

– If an attack is found on an AXML document before invoking a service call,
then the corresponding attack still exists in the AXML document after ma-
terialization of the service call.

3.2 Extending CSP Model for AXML Documents

Document Datatype. Analogous to the Message type defined in [17],
AXML document datatype could be based on the Atom set where security
function nodes are such as getSharedKey()@p ⊆ Atom, getPublicKey()@p ⊆
Atom, getPrivateKey()@p ⊆ Atom, Hash(data)@d ⊆ Atom, encrypt(data, get-
SharedKey()@p)@p ⊆ Atom, encrypt(data, getPublicKey()@p)@p ⊆ Atom, and
sign(data, getPrivateKey()@p)@p ⊆ Atom. Simple definition of the Document
datatype by the BNF(Backus-Naur Form) expression could be similar to the
Message type as shown below:

Definition 1. A document d or data value v ∈ Document might be an atom
(Atom), concatenated data(v.v), data encrypted with a key({v}K ), or a digested
message with hash function h.

a ∈ Atom ::= P | N | K
f(para1,...,paran )@p ::= a
d ∈ Document ::= v | d.d | {d}K | h(d)
v ∈ Data ::= a | v.v | {v}K | h(v)

where P ranges over the set Agent of agent names, K over the set Key of
keys(e.g., PK(p) : public key of agent p, SK(p) : private key of agent p), and N
over the nonce(random number) set. The concatenation notation ‘.’ is associa-
tive.

AXML document security allows selective encryption which means that it is
possible to encrypt all or a specific part of an AXML document(denoted by
{d}K and {v}K , respectively). Here, the expression f(para1,...,paran )@p could
be considered as all or some parts of an AXML document before or after invoking
a service call(see d1 or d2 in Fig. 1).
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Intruder Model. In the classical CSP model for an attacker, it is generally
assumed that an intruder has the following abilities to attack honest agents:

– overhear or intercept all messages flowing through the network
– construct and deliver spurious messages disguised as a trusted peer
– forward intercepted messages to another peer
– decrypt messages that are encrypted with his own public key

In addition to the above attack abilities, we assume that an intruder pI could
have the following new abilities : 1) manipulate the XML-based elements and 2)
return falsified document d’ containing other malicious service calls and fabri-
cated data.

Because of the addition of two attack abilities in the CSP model, we also
need to modify the traditional CSP model, based on the five basic deduction
rules[17], that allow an intruder to construct new data or document. In the
classical inference model, B � m represents that the intruder may derive message
m from the set of messages B. For example, if the intruder can produce an
encrypted message and the corresponding decrypting key, then he could decrypt
the message. This sample decryption rule instance for an intruder can be adapted
as follows:

decryption rule : B � {d}k ∧ B � k =⇒B � d
AXML system’s decryption :
B � <EncryptedData>

<EncryptionMethod. . ./ >
<KeyInfo><KeyName> shared key k < /KeyName>< /KeyInfo>
<CipherData><CipherValue>A12D23E< /CipherValue>< /CipherData>

< /EncryptedData>
∧ B � <KeyInfo><KeyName> shared key k < /KeyName>< /KeyInfo>
=⇒ B � <document>. . . < /document>

The intruder CSP process in an AXML system consists of three main channels:
1)send to intercept every document or data sent by the honest peers, 2) receive
to forward intercepted document or data disguised as an honest peer, and 3)
leak to decrypt secret information and create falsified document d’.

Intruder(B) =̂ �
d∈Document

send?P1?P2!d → Intruder(close(B ∪ {d}))
�

�
d∈Document,Bd

receive?P1?P2!d → Intruder(B)
�

�
d∈Document,Bd

leak.d → Intruder(B)

The initial state of the intruder is Intruder(IK) containing initial knowledge
IK which is a member of facts(such as all peer’s identity, all kinds of keys that
peers’ possess). The function close(B) calculates all facts(simply B) that are
deducible or buildable from B under the deduction rules.

The complete AXML system is constructed similarly with a classical CSP
model. For more detail information about CSP model for a traditional security
protocol, see [20].

SYSTEMAXML =̂ (P1 ||| P2 ||| . . . ||| Pn) ‖ INTRUDERP I
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Fault-Preserving Simplifying Transformation. Hui et al.[10] have proved
that if one can verify the transformed protocol, then it will have the same effect as
the verification of the original protocol. Based on this fault-preserving technique,
E. Kleiner et al. have [15] proved that even if automatic translation function is
used to generate Casper input from WS-Security SOAP messages, it preserves
the same inference process of intruder and the corresponding attacks in the real
WS-Security application. We can apply this proof to the AXML system model.
Thus, the abstract CSP model(SYSTEMAXML) for AXML systems satisfies the
following two conditions for fault-preserving as shown in [10],[15]:

1. ∀B∈P(Document);d∈Document•B∪IK � d ⇒δ(B)∪IKAXML � δ(d)
2. δ(IK) ⊆ IKAXML

The first condition means that if an intruder can deduce the document or data
in the original SYSTEM, he would be able to deduce the equivalent one d in the
transformed SYSTEMAXML. The second condition represents that all the corre-
sponding facts of an intruder’s initial knowledge IK in the original SYSTEM is
a subset of the transformed SYSTEMAXML.

Therefore, we can say that if an attack is found on the abstract SYSTEMAXML,
then the corresponding attack can also be found on the original SYSTEM and
vice versa.

4 Case Study: Electronic Patient Record

Step 1: Dr. Kim(p1) sends query q1 to Paris hospital(p2) by invoking the
service call “diagnosis@p2” in order to look into the patient record of the
patient Suzzanne before diagnosing her.

PatientRecord

doctor

name department

medical

date sc1 : diagnosis@p2

"Kim" "Spine"  "March 20, 2006"  
query 

 q1

 

S2@P2 S3@P3

sc2 : diagnosis@p3

query 

 q2

 

patient_document

dsde
des

change change

1 2 3 4

D1@P1

Fig. 2. Service call steps of AXML document in peer p1
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Step 2: Paris hospital(p2) performs access control by enforcing the relevant
access control rules(denoted “AC”) and the query “q1” gets rewritten into
“q2” . In this example, we assume that a corresponding access control rule
for Dr. Kim is defined in the access control systems of Paris hospital :

AC: Dr. Kim, /PatientRecord/(name ∪ ssn ∪ visit/(medical doctor ∪ di-
agnosis ∪ xray))

Now, suppose the query q1 and the filtered query q2 are :
q1 : /PatientRecord[name=“Suzzanne”, ssn=“123-45-6789”]
q2 : /PatientRecord[name=“Suzzanne”, ssn=“123-45-6789”]/(name ∪
ssn ∪ visit/(medical doctor ∪ diagnosis ∪ xray))

For details of the access control mechanism proposed for AXML systems,
the reader is referred to [5].

Paris hospital filters the query q1 as q2 and it finds that there is no patient
related after evaluating the query q2. Given this, let us assume that the Paris
hospital(p2) finds out that Rennes hospital(p3) has related a patient record.
Paris hospital also subscribes to regular patient record updates from other
hospitals such as Rennes hospital. Then, it returns a query signed by itself
for delegating Dr. Kim to invoke a service provided by Rennes hospital(query
delegation).
Step 3: Dr. Kim invokes the service call “diagnosis@p3” with the parameter
of “q2” signed by Paris hospital so that the query will be evaluated by Rennes
hospital.
Step 4: Rennes hospital verifies the query q2 using its own public key and
assures itself that Dr. Kim has been delegated to invoke the service call
“diagnosis@p3” and use q2. After evaluating the service call, Rennes hospital
returns the diagnosis record for Suzzanne, encrypted with a shared key k and
signed by Rennes hospital (the shared key k itself is encrypted by the public
key of Dr. Kim). It is extremely important that a patient record should be
protected from any unauthorized modification, whether accidental or not.

4.1 Model Construction from d1

As mentioned in Section 4, we show how to construct an AXML system model
from d1 which is the document before invoking a security service call. First, we
describe a model in AXML algebraic expression(see Section 2), then we write it
in Casper notation(see Section 4.3).

AXML Expression

1. p1 → p2 : q1@p1 [p2 computes : q2]
2. p2 → p1 : encrypt(q2@p2, getPrivateKey()@p2)@p2

3. p1 → p3 : Result(Z)
4a. p3 → p1 : encrypt(d@p3, getSharedKey(random()@p3)@p3)@p3,

encrypt(getSharedKey()@p3, getPublicKey()@p1)@p3

4b. p3 → p1 : encrypt(digest(d@p3)@p3, getPrivateKey()@p3)@p3
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The message sequences listed above represent exchanges of queries, data, or
documents. p1, p2, and p3 are Dr. Kim, Paris hospital, and Rennes hospital peers,
respectively. In step 3, Result(Z) represents the result document of evaluating
the service call in step 2. The messages 4a and 4b show the nested service calls to
generate encrypted and signed patient records, where d@p3 is the document of
patient diagnosis d on peer p3. The first encrypt call and the second one are used
to transform the d encrypted with a random shared key and generate the shared
key encrypted with the public key of p1, respectively. The two materialized
results are combined into the XML Encryption encoded document, de . Similarly,
the encrypt service in message 4b is used to generate the XML Signature encoded
document, ds . After finishing all the data exchanges, p1 invokes the decrypt local
service calls related to de and ds .

4.2 Model Construction from d2

We demonstrate how to construct an AXML system model from d2(see Section
3) by showing the translation process from the materialization results of the
patient document δ(des) to Casper input. The de and the ds in des are encoded
in XML based on the XML Encryption and XML Signature standards.

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod

Algorithm="http://www.w3.org/2000/09/xmlenc#3des-cbc"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptedMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:KeyName>
Dr. Kim’s Public Key

</ds:KeyName>
</ds:KeyInfo>
<CipherData>

<CipherValue>A23B45C56 ... </CipherValue>
</CipherData>
<CarriedKeyName>

Symmetric Key with Dr. Kim
</CarriedKeyName>

</EncryptedKey>
<ds:KeyName> Symmetric Key with Dr. Kim </ds:KeyName>

</ds:KeyInfo>
<CipherData>

<CipherValue>ErBGCQHKJOOaqbmiibhGk ... </CipherValue>
</CipherData>

</EncryptedData>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

<SignatureMethod
Algorithm="http://www.w3.org/2000/07/xmldsig#rsa-sha1"/>

<Reference URI="">
<DigestMethod

Algorithm="http://www.w3.org/2000/07/xmldsig#sha1"/>
<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>
<SignedInfo>
<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
<KeyInfo>

<KeyName>Rennes Hospital’s Integrity Key</KeyName>
</KeyInfo>

</Signature>
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We use ‘⇒’ to represent the message derivation process from δ(de) and δ(ds)
to Casper input. The derivation rule for generating a Casper input is similar to
[14], but our approach is different from it because the former is focused towards
SOAP messages based on WS-Security.

δ(des) = δ(de), δ(ds )

δ(de)
⇒ δ(<EncryptedData>.. .</EncryptedData>)
⇒ δ(<CipherData>. . .</CipherData>)
⇒ δ(<KeyInfo>. . .</KeyInfo>), δ(<EncryptedMethod. . ./>)
⇒ δ(<KeyName>. . .</KeyName>, R), δ(<EncryptedKey>.. .</EncryptedKey>),

δ(<EncryptedMethod Algorithm=”http://www.w3.org.2001/04/xmlenc�3des-cbc”/ >)
⇒ {d}k , δ(<CipherData>. . .</CipherData>)
⇒ {d}k , δ(<KeyInfo>. . .</KeyInfo>), δ(<EncryptedMethod. . ./>)
⇒ {d}k , δ(<KeyName>. . .</KeyName>, R),

δ(<EncryptedMethod Algorithm=”http://www.w3.org.2001/04/xmlenc�rsa-1 5”/ >)
⇒ {d}k , {k}PK(p3)

δ(ds )
⇒ δ(<Signature>. . .</Signature>)
⇒ δ(<SignatureValue>.. .</SignatureValue>)
⇒ {δ(<SignedInfo>.. .</SignedInfo>)}δ(<KeyInfo>.. .</KeyInfo>)
⇒ {δ(<SignatureMethod. . .>. . .</SignatureMethod. . .>),δ(<Reference. . .>. . .</Reference. . .>)}
δ(<KeyInfo>. . .</KeyInfo>)
⇒ {δ(<SignatureMethod Algorithm = ”http://www.w3.org/2000/07/xmldsig�rsa-sha1”/>),
δ(<Reference URI=””>)} δ(<KeyInfo>. . .</KeyInfo>)
⇒ {δ(<DigestMethod>. . .<DigestMethod>)} δ(<KeyName>. . .</KeyName>, Sig)
⇒ {δ(<DigestValue>. . .<DigestValue>))} SK(p3)
⇒ {sha(d)}SK(p3)

∴ des = δ(de), δ(ds ) = {d}k , {k}PK(p1), {sha(d)}SK(p3)

4.3 Analysis of Security Services

The design of security protocol using document-level security would be error-
prone when considering security requirements in new emerging applications,
complex communication steps with many peers, and a powerful attacker. In this
subsection, we use Casper notation to model sequences of exchanging queries
or documents depicted in Fig. 2. Then we analyze some security requirements
(confidentiality and authentication) using FDR model checker:

security requirements:
– authentication

• Dr. Kim(p1) must be sure that it received a patient record document
from Rennes hospital(p3).

– confidentiality
• A confidential document of patient record d must not be leaked by

an unauthorized peer.

For a security analysis, we assume that all encryption algorithms are secure
and an intruder cannot perform any cryptanalysis. We also assume that an
intruder pI has the following initial knowledge set:

intruder knowledge:
{p1, p2, p3, PK(P), SK(pI ), KI } ∈ Intruder(IK) where KI is an intruder’s
share key, and {p1, p2, p3, pI } ∈ P.
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Here, we translate a protocol description into Casper syntax based on se-
quences for exchanging documents in Fig. 2. In addition, we generate Casper
input systematically from AXML documents denoted in XML Encryption and
XML Signature in a similar way to [14].

Sequences for exchanging queries or documents:
1. p1 −→ p2 : q1

2. p2 −→ p1 : {q2}SK (p2)

3. p1 −→ p3 : {q2}SK (p2)

4. p3 −→ p1 : {d}k , {k}PK (p1), {sha(d)}SK (p3)

In casper notation, we use the expression {d}k to represent the data or docu-
ment d encrypted with key k. The public key function is represented as PK and
the private key function is expressed as SK. For example, a pair of public key and
private key of peer ‘p1’ is written in PK(p1) and SK(p1), respectively. The hash
function SHA-1 in XML Signature is denoted as sha in protocol description. For
example, the message 4 means that p3 sends the messages of the patient record
d encrypted with shared key k, encrypted shared key with the public key of p1,
and signed message digest with a hash function.

Secret(p3, d, [p1])
Secret(p1, d, [p3])
Secret(p3, k, [p1])
Secret(p1, k, [p3])
Agreement(p3, p1, [d, k])

We verified the confidentiality and authentication properties, which are de-
fined in the above. The lines beginning with Secret represent the confidentiality
property. For example, the statement ‘Secret(p3, d, [p1])’ is interpreted as “p3

believes that the confidential information d is a secret that should be known
only to p1”.

The line starting with Agreement defines the authentication property. The au-
thentication property represents the establishment guarantees when it has com-
pleted, concerning the party it has apparently been running with. For example,
the fourth one means that “p3 is authenticated to p1 with d and k”.

In particular, we assume that the intruder could generate the falsified docu-
ment d’ containing other embedded service calls in the materialization result.
Then, this may lead to DoS(Denial-of-Service) attack in a peer if the following
two properties of secrecy and authentication are not satisfied in CSP trace event
sets tr of SYSTEMAXML.

1. signal.Claim Secret.pa .pb .d in tr ∧ pa ∈ Honest ∧ pb ∈ Honest ⇒ ¬(leak.d
in tr)

2. pb ε Honest ⇒ signal.Running.RESPONDER.pb.pa

precedes signal.Commit.INITIATOR.pa .pb
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where:

– signal.Claim Secret.pa .pb .d means that pa thinks that the patient document
d is a secret which should be known only to pb .

– signal.Running.RESPONDER.pb.pa represents that the responder pb thinks
he started a protocol run apparently with the initiator pa .

– signal.Commit.INITIATOR.pa .pb represents that the initiator pa thinks
that he has completed a protocol run apparently with the responder pb .

After analyzing the property statements of ‘Secret(p3, d, [p1])’ and ‘Secret(p3,
k, [p1])’, the FDR tool shows no counterexample about them. However, when
the FDR is applied to other property statements, we found that the following
attack scenario could be derived from its counterexample:

Fig. 3. Attack scenarios on the electronic patient record

Security Vulnerabilities. In Fig. 3, an intruder could monitor query q1 and
intercept the filtered query q2 delegated by p2. Then, the intruder could send
the intercepted delegation query to p3 disguised as an honest peer p1. Here we
can consider two different kinds of attack scenarios:

In the first case, p3 might regard an attacker pI as an honest peer because it
has already been authorized and possesses q2 delegated by p2. This disguise is
possible in a real Web service world because p3 may not know who the original
initiator of the service transaction is. Then, the intruder can successfully decrypt
the encrypted patient record d and create the falsified patient record d’. A more
intelligent intruder may return an original patient document without modifica-
tion and instead he can embed other recursive service calls inside the document
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itself. Although p1 uses lazy query evaluation1 to filter irrelevant service calls, it
must spend important resources wastefully such as CPU processor and memory
space. Even in the worst case, this result might be linked to denial-of-service
attack.

In the second case, (assumption) p3 exactly knows p1 as the initiator of Web
Service transaction . Through the man-in-the middle attack, the intruder can in-
tercept the encrypted signed documents({d}k , {k}PK (p1), {sha(d)}SK (p3)) from
p3. Even if the intruder can not decrypt the patient’s record due to non posses-
sion of the private key of p1, there might be potential attack that the received
documents could be reused for a different patient next time. Eventually, mis-
matched patient records may has a dangerous effect on the patient’s health.

The main vulnerability in this example is based on the insecure usage of
query delegation, not the vulnerability of the document-level security itself. As
such, the intruder could intercept the delegation query ‘{q2}SK (p2)’ that bypasses
access control in p2 and disguises as an honest p1, even if the intruder has no
proper right to request a patient record document of p2. A simple solution to
this attack scenario is to add the identity p1 and the filtered query q2 signed by
itself in message 3, as p1, {{q2}SK (p2)}SK (p1). This countermeasure prevents the
intruder from generating a modified message and sending it to p3, because p3

checks who would be the intended responder for d through p1’s identity in the
signed message. Another solution is to use a time-stamp with a short validity
period against replay attack. More detailed information related to using a time-
stamp against replay attack can be found in [20].

5 Related Works

Model checking with FDR has proved to be very successful for modelling and
analyzing security aspects in traditional protocols[17],[18]. Relatively, few stud-
ies have been devoted to analyze Web services security with model checking
technology.

Eldar Kleiner et al.[14] showed how the WS-Security specification[12] could
be mapped to Casper and analyzed with FDR. Llanos Tobarra et al.[16] also
used Casper/FDR tools and illustrated how to analyze some security properties
of a Web service application as a licence server, developed by Microsoft Web
Services Enhancement (WSE)[19]. Karthikeyan Bhargavan et al.[4] developed a
tool called TulaFale to specify SOAP-based security protocols in pi-calculus and
analyze its vulnerabilities.

The above approaches analyzed some vulnerabilities in existing XML-based
Web service messages focusing only on the SOAP communication channel con-
structed by WS-Security. They do consider document-level security. To the best
of our knowledge, there is no research to describe how to model AXML docu-
ments combined with embedded security service calls and analyze the vulnera-

1 Lazy query evaluation was proposed to detect which calls may bring relevant data
for query execution and to avoid the materialization of irrelevant information[1].
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bilities due to delegated query and malicious service calls in the document. In
this regard, we believe our approach to be different from the above related works.

6 Conclusion

Active XML (AXML) has been evolving as one of the new challenging researches
in distributed, autonomous Web Services paradigm, by combining XML data and
embedded Web services calls to allow simple and dynamic data management.
Furthermore, security is one of the most vital topics in Web services development
today and will in the foreseeable future.

In this paper, we have shown how existing model checking techniques with
Casper/CSP and FDR, used for the verification of classical security protocols,
could be applied to analyze vulnerabilities of AXML documents as well. To the
best of our knowledge, this is the first approach to analyze the security of AXML
documents using model checking.

We have explained the framework for adapting a classical CSP model to
AXML systems and have shown how to build a Casper input from two mod-
els: 1) the document before invoking a service call, and 2) the document after
invoking a service call.

Finally, we have demonstrated the usefulness of our approach by modelling
and analyzing an electronic patient record. We found that a careless usage of del-
egated query could lead to security weakness and this vulnerability may induce
falsification of data or DoS attacks by malicious document from an untrusted
peer.

The analysis results also provide a hint that security services based on XML
Encryption and XML Signature between AXML peers do not provide a com-
plete security solution by themselves. The combination of other complementary
security standards such as SAML and XACML would make an AXML system
more robust against powerful, intellectual attacks in distributed networks.
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Abstract. Recently the term orchestration has been introduced to ad-
dress composition and coordination of web services. Several languages
used to describe business processes using this approach have been pre-
sented, and most of them use the concepts of long-running transactions
and compensations to cope with error handling. WS-BPEL, which is
currently the most used orchestration language, also provides a Recov-
ery Framework. However its complexity hinders rigorous treatment. In
this paper, we address the notion of orchestration from a formal point
of view with particular attention to transactions and compensations. In
particular, we introduce webπ∞, an untimed version of webπ, and the re-
lated theory, as a foundational unifying framework for orchestration able
to meet composition requirements and to encode the whole BPEL itself.

1 Web Services

Service Oriented Computing (SOC) [7] is an emerging paradigm for distributed
computing and e-business processing that finds its origin in object-oriented and
component computing [17]. One of the main goals of SOC is enabling developers
to build networks of integrated and collaborative applications, regardless of both
the platform where the applications or services run (e.g., the operating system)
and the programming language used to develop them.

Web services are a set of technologies supporting SOC. They provide a plat-
form on which applications can be developed by taking advantage of the Internet
infrastructure. A web service makes its functionalities available over the network
through specific access points, in such a way that they can be exploited, in turn,
by other services. Web services are an evolutionary technology, they did not just
exist suddenly. There is no revolution about them, this technology has to be seen
as an evolution based on the already existing Internet protocols.

1.1 Web Services Composition

The interesting thing in the web services programming model is that a service
can itself use several other services and all of them are based on the same model.
� Research partially supported by the Project FET-GC II IST-2005-16004 Sensoria.
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This means that a composite business process can itself be exposed as a web ser-
vice, enabling business processes to be aggregated to form higher-level processes.
There is, indeed, a recursive use of the model where, notably, the overall scenario
will be transparent to the final consumer. In this way, web services technologies
provide a mechanism to build complex services out of simpler ones: this practice
is called web services composition. A composition consists in the aggregation of
services by programming the relative interactions and has the ability to make the
created aggregations reusable [5]. To program a complex cross-enterprise task or
a business transaction, for example, it is possible to logically chain discrete web
service activities into inter-enterprise business processes.

Different organizations are presently working on additional layers which have
to deal with the new approach of composing web services on a workflow base for
business automation purposes. Two examples of past proposals for describing
service compositions are IBM’s WSFL (Web Services Flow Language) [9] and
Microsoft’s XLANG [18]. XLANG is a block-structured language with basic
control flow structures such as sequence, switch (conditional), while (looping),
all (parallel) and pick (choice based on timing or external events). Unlike
XLANG, WSFL is not limited to block structures and it allows for arbitrary
directed acyclic graphs. Iteration is only supported through exit conditions -
that is, an activity iterates until its exit condition is met.

A more recent proposal (presently a working draft by OASIS), which aims
at integrating WSFL and XLANG, is the Web Services Business Process Ex-
ecution Language [2] (WS-BPEL or BPEL for short). It combines WSFL’s
graph-oriented process representation and XLANG’s structural construct-based
processes into a unified language for composition. However, while the graph
based model used in WSFL has largely not evolved, block-structured program-
ming, similar to the method of describing workflow in XLANG, has evolved in-
credibly in the last decades to encapsulate complexity and allow for greater man-
ageability and maintainability. Some of the lessons learned from programming
could improve business modeling using workflow. The use of block-structured
programming can be cited as one of the main points in favor of the approach
taken by XLANG and the BizTalk Orchestration framework [12], and in this
paper we will focus on it.

Business process orchestration has to meet several requirements, including
a way to address concurrency and asynchronous message passing, which form
the basic paradigm of the distributed computation on the Internet. Another
relevant aspect is the management of exceptions and transactional integrity [15].
BPEL covers all these aspects, but its current specification is rather involved.
As far as error handling is concerned, for instance, it provides three different
mechanisms for coping with abnormal situations: fault handling, compensation
handling and event handling1 . Documentation is informal and in many points it
is not very clear, in particular when interactions among the different mechanisms
are required. Therefore the language is difficult to use, and it is relevant to

1 The BPEL event handling mechanism was not designed for error handling only.
However, it can be used for this purpose and we concentrate here on this aspect.



Towards a Unifying Theory for Web Services Composition 259

address the issue of error recovering in a formal way to clarify all the controversial
aspects.

In order to formally deal with the requirements, we start from the π-calculus
[14,16] because the definition of XLANG (and then BPEL) has been strongly
influenced by it. Unfortunately, the original π-calculus does not provide any
transactional mechanism. For this reason, we consider an extension of the calcu-
lus called webπ [8], which extends the basic calculus with transactional facilities.
In particular, we will present an untimed variant (while one of the main con-
cerns of webπ is time) of it, that we call webπ∞, and we analyze its semantic
properties. We concentrate, in particular, on the weak behavioral equivalence,
which abstracts from internal steps, and which is not meaningful in the webπ
scenario, since time allows to find out internal steps anyway. In fact, internal
steps make time to progress, and timeouts to trigger. The most common formal-
ization of behavioral equivalence is through barbed congruence, which guarantees
that equated processes are indistinguishable by external observers, even when
put in arbitrary contexts. For instance equivalent web services remain indistin-
guishable also when composed to form complex business transactions. As main
contributions we show that barbed congruence can be characterized via a labeled
semantics that is easier to compute, and we show some examples on how this
framework can be used to prove interesting properties about compensations and
web services composition. The first author exploited webπ∞ to formalize a sim-
plification of the BPEL Recovery Framework unifying all the mechanisms (fault,
compensation and event handling), as can be found in [10]. Thus the results
therein can be used to derive also properties of BPEL. Further results in this
sense and all the complete proofs just sketched in the paper can be found in the
Ph.D. thesis of the first author [11].

2 The Orchestration Calculus webπ∞

In this section we present webπ∞, introducing its syntax and both a reduction
semantics and a weak barbed congruence. Notably, webπ∞ semantics is not just
a simplification of webπ semantics, since, in the last one, time is used also for
transaction commit, while here we have to deal with it differently. Also, we add
input-guarded choice to the calculus, which was not present in [8].

The syntax of webπ∞ processes relies on a countable set of channel names,
ranged over by x, y, z, u, . . . . Tuples of names (possibly empty) are written ũ,
and |ũ| is the length of tuple ũ. When we write i ∈ I we intend, if nothing is
said, that I is a finite non-empty set of indexes.

P ::= 0 (nil)
| x u (output)
| i∈I xi(ui).Pi (guarded choice)
| (x)P (restriction)
| P |P (parallel composition)
| !x(u).P (guarded replication)
| 〈|P ; P |〉x (workunit)
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A process can be the inert process 0, an output x ũ sent on a name x that carries
a tuple of names ũ (if ũ is empty we may write simply x ), a choice among input-
guarded processes that consumes a message xi w̃i and then behaves like Pi

{
w̃i

/ũi

}
, a restriction (x)P that behaves as P except that inputs and messages on

x are prohibited, a parallel composition of processes, a replicated input !x(ũ).P
that consumes a message x w̃ and then behaves like P

{
w̃ /ũ
}
| !x(ũ).P , or a

workunit (or simply a unit) 〈|P ; Q|〉x that behaves as the body P until an abort
x is signaled (either by P or from the outside) and then behaves as the event
handler Q.

We avoid to mix replication and choice since this simplifies the presentation
and since this is not necessary for our aims (and notably to model BPEL seman-
tics). The extension is however easy.

We use + to denote binary choice. We use
∏

i∈I Pi to denote the parallel
composition of processes Pi for each i ∈ I. Names x in outputs, inputs, and
replicated inputs are called subjects. It is worth to notice that the syntax of
webπ∞ processes essentially adds the workunit construct to the asynchronous
π-calculus.

The input x(ũ).P , restriction (x)P and replicated input !x(ũ).P are binders
of names ũ, x and ũ respectively. The scope of these binders is the process P .
We use the standard notions of free and bound names of processes, denoted as
fn(P ) and bn(P ) respectively, and of α-equivalence.

2.1 The Reduction Semantics

We present here the reduction semantics for our calculus. We give it in two steps,
following the approach of Milner [13], separating the structural congruence that
governs the static relations among processes from the reductions that rule their
interactions. A structural congruence relation equates all the processes we do not
want to distinguish. It is introduced as a small collection of axioms that allow to
manipulate the structure of processes. This relation is intended to express some
basic facts about the operators, such as commutativity of parallel composition.
The second step is defining the way in which processes evolve dynamically by
means of an operational semantics. We simplify the second step by closing the
allowed transitions w.r.t. the structural congruence.

Definition 1 (Structural congruence). The structural congruence ≡ is the
least congruence satisfying the abelian monoid laws for parallel composition (as-
sociativity, commutativity and 0 as identity) and commutativity of choice, and
which is closed under α-renaming and under the following axioms:

1. Scope laws:
(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,

P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P )
〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z �∈ {x} ∪ fn(Q)

2. Workunit laws:

〈|0 ; Q|〉x ≡ 0
〈|〈|P ; Q|〉y |R ; S|〉x ≡ 〈|P ; Q|〉y | 〈|R ; S|〉x
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3. Floating law:

〈|z u |P ; Q|〉x ≡ z u | 〈|P ; Q|〉x

The scope laws are standard while novelties regard workunit and floating laws.
The law 〈|0 ; Q|〉x ≡ 0 defines a committed workunit, namely a workunit with 0
as body. Such a workunit cannot fail anymore and thus it is equivalent to 0. The
law 〈|〈|P ; Q|〉y |R ; S|〉x ≡ 〈|P ; Q|〉y | 〈|R ; S|〉x moves workunits outside parents,
thus flattening the nesting. Notwithstanding this flattening, parent workunits
may still affect children, but this has to be programmed explicitly, exploiting
the available communication primitives. The law 〈|z ũ |P ; Q|〉x ≡ z ũ | 〈|P ; Q|〉x
floats messages outside workunit boundaries. By this law, messages are particles
that independently move towards their inputs. The intended semantics is the
following: if a process emits a message, this message traverses the surrounding
workunit boundaries until it reaches the corresponding input. In case an outer
workunit fails, recovery for this message may be detailed inside the handler
process. When a workunit fails we will take care of messages and other workunits
inside it (which may also have been included by applying the structural axioms
above in the opposite direction), and preserve them.

The dynamic behavior of processes is defined by the reduction relation below,
where we use the shortcut:

〈|P ; Q|〉 def= (z)〈|P ; Q|〉z where z �∈ fn(P ) ∪ fn(Q)

Definition 2 (Reduction semantics). The reduction relation → is the least
relation satisfying the axioms below, and closed under ≡ and under the contexts
(x) , |R, and 〈| ; R|〉z:

(r-com)

xi v | i∈I xi(ui).Pi → Pi
v/ui

(r-rep)

x v | !x(u).P → P v/u | !x(u).P
(r-fail)

x | 〈| i∈I s∈Si
xi,s(ui,s).Pi,s| j∈J !xj(uj).Pj ; Q|〉x → 〈|Q ; 0|〉

where J �= ∅ ∨ I �= ∅, Si �= ∅

Rules (R-COM) and (R-REP) are standard in process calculi and they model
input-output interaction and lazy replication. Rule (R-FAIL) models workunit
failures: when a unit aborts (receiving an empty message on its abort port), the
corresponding body is terminated and the handler activated. On the contrary,
aborts are not possible if the transaction is already terminated (namely every
thread in the body has completed its own work). For this reason, when the
handler is activated, we close the workunit by restricting its name. The reason
to maintain the structure will be clear in the section relative to the labeled
semantics (Section 3).
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2.2 The Extensional Semantics

The extensional semantics of webπ∞ relies on the notions of barb and context.
We say that P has a barb at x, and write P ↓ x, if P manifests an output on
the free name x.

Definition 3. We define P ↓ x as the least relation satisfying the rules:

x ũ ↓ x
(z)P ↓ x if P ↓ x and x �= z
P |Q ↓ x if P ↓ x or Q ↓ x

〈|P ; Q|〉z ↓ x if P ↓ x

It is worth to notice that inputs (both simple and replicated) have no barb. This
is standard in asynchronous calculi and represents the fact that an observer has
no direct way of knowing whether the message (s)he has sent has been received.

Definition 4. Process contexts, noted Cπ[·], are defined by the following gram-
mar:

Cπ[·] ::= [·] | (x)Cπ [·] | Cπ[·]|P |
∑

i∈I xi(ũi).Pi + x(ũ).Cπ[·] | !x(ũ).Cπ[·] |
〈|Cπ[·] ; P |〉x | 〈|P ; Cπ[·]|〉x

Barbed bisimilarity is usually defined as the largest bisimulation on the reduction
relation such that the equated terms have the same barbs. Usually, such a relation
is not a congruence and the barbed congruence is defined as the maximal barbed

bisimulation that is also a congruence. In the following →n stands for
→ . . . →︸ ︷︷ ︸

n .
We write ⇒ to denote →n for some n ≥ 0. We also write P ⇓ x for ∃P ′.P ⇒
P ′ ∧ P ′ ↓ x.

Definition 5 (Barbed congruence). A barbed bisimulation is a symmetric
binary relation S between processes such that P S Q implies

1. if P ↓ x then Q ⇓ x;
2. if P → P ′ then Q ⇒ Q′ and P ′ S Q′.

Barbed congruence, denoted as ≈, is the largest barbed bisimulation that is also
a congruence.

3 The Labeled Semantics

Barbed congruence requires quantification over all contexts, thus making direct
proofs particularly difficult. A standard device to avoid such a quantification
consists in introducing a labeled operational model and equipping it with a
weak (asynchronous) bisimulation. If one can prove that bisimulation implies
barbed congruence, then it can be used as a useful proof technique for behavioral
equivalence.
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We use some auxiliary machineries: the extraction function xtr(P ), that ex-
tracts messages and units out of the process P , and is needed to define the abort
of a unit:

xtr(0) = 0
xtr(x ṽ) = x ṽ

xtr(
∑

i∈I xi(ũi).Pi) = 0
xtr((x)P ) = (x)xtr(P )
xtr(P |Q) = xtr(P ) | xtr(Q)

xtr(!x(ũ).P ) = 0
xtr(〈|P ; Q|〉x) = 〈|P ; Q|〉x

and the input predicate inp(P ), which verifies whether a process contains an
input that is not inside a workunit, which is used to find out whether a unit is
still active. It is the least relation such that:

inp(
∑

i∈I xi(ũi).Pi)
inp((x)P ) if inp(P )
inp(P |Q) if inp(P ) or inp(Q)
inp(!x(ũ).P )

In this section it will be useful to have clear the following property:

Proposition 1. The extraction function is idempotent, i.e., if P is a webπ∞
process then xtr(P ) = xtr(xtr(P )).

Proof. The proof is by structural induction on P . All the cases are straightfor-
ward. %�

We can now define the labeled semantics. Let μ range over input labels x(ũ),
bound output labels (z̃)x ũ where z̃ ⊆ ũ, and the label τ . Let also fn(τ) = ∅,
fn(x(ũ)) = {x}, fn(x ũ) = {x}∪ ũ, and fn((z̃)x ũ) = {x}∪ ũ\ z̃. Finally, let bn(μ)
be z̃ if μ = (z̃)x ũ, ũ if μ = x(ũ), and ∅ otherwise. We implicitly identify terms
up to α-renaming ≡α, that is, if P ≡α Q, P ′ ≡α Q′ and P

μ−→ P ′ then Q
μ−→ Q′.

In the following we will use again the shortcut:

〈|P ; Q|〉 def= (z)〈|P ; Q|〉z where z �∈ fn(P ) ∪ fn(Q)

Definition 6 (Labeled semantics).The transition relation of webπ∞ processes,
noted

μ−→, is the least relation satisfying the rules:

(in)∑
i∈I xi(ũi).Pi

xi(ui)−−−−→ Pi

(out)

x ũ
x u−−→ 0

(repin)

!x(ũ).P
x(u)−−−→ P | !x(ũ).P

(res)

P
μ−→ P ′ x �∈ fn(μ) ∪ bn(μ)

(x)P
μ−→ (x)P ′

(open)

P
(v)x u−−−−→ P ′ w �= x w ∈ ũ\ṽ

(w)P
(wv)x u−−−−−→ P ′

(par)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P |Q μ−→ P ′ |Q
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(com)

P
(w)x v−−−−→ P ′ Q

x(u)−−−→ Q′ w̃ ∩ fn(Q) = ∅ |ṽ| = |ũ|

P |Q τ−→ (w̃)(P ′ |Q′{ṽ/ũ
}
)

(abort)

inp(P )

〈|P ; Q|〉x
x()−−→ 〈|xtr(P ) |Q ; 0|〉

(self)

P
x−→ P ′ inp(P )

〈|P ; Q|〉x
τ−→ 〈|xtr(P ′) |Q ; 0|〉

(wunit)

P
μ−→ P ′ bn(μ) ∩ (fn(Q) ∪ {x}) = ∅

〈|P ; Q|〉x
μ−→ 〈|P ′ ; Q|〉x

Rules involving parallel composition have mirror cases that we have omitted.

The first seven rules are standard in π-calculus. We just remind the role of the

bound output (u)xu in P
(u)x u−−−−→ Q. This kind of action means that P emits a

private name u (a name bound in P) on the port x. Bound output actions arise
from free output actions which carry names out of their scope as in the process
(u)xu. Let us discuss the rules related to workunits. Rule (WUNIT) is the
simplest one: it lifts transitions to workunit contexts modeling the evolution of
the body. In this sense it is very similar, for instance, to rules (PAR) and (RES).
Rule (ABORT) models transaction termination due to an abort message. The
premise checks that the unit body is still alive – it contains an active input –
and, in this case, the compensation Q is triggered. We carefully do not erase
the messages and the units in the body, which are extracted using the function
xtr(·). We remark that abort is not possible if the unit body P has completed,
namely inp(P ) is false. Rule (SELF) is similar to (ABORT), taking into account
the case when the abort message is raised by the body of the unit. In this case,
the handler Q can be spawned only if the body P cannot commit, i.e. if some
input-guarded process is still waiting inside the process after the signaling of x.

Finally, two remarks deserve to be made: the first one concerns the shortcut
〈|P ; Q|〉. This shortcut is used in rules (ABORT) and (SELF) to preserve the
workunit structure after its abort. This could appear to be a strange design
choice because this structure could be considered a redundant information once
the workunit has aborted. Instead, it is important to retain it to have the input
predicate falsity stable w.r.t. the transition relation. Indeed, it is not reasonable
that if ¬inp(P ) and P

μ−→ P ′ then inp(P ′), since this corresponds to undo a
commit. Note that the opposite instead makes sense, i.e., if inp(P ) and P

μ−→ P ′

then ¬inp(P ′) (for example in x |x().0), since this models a commit. However,
the proposition below shows that the input predicate is stable under output
transitions, i.e., a process can never commit via an output.

The second remark regards the side condition inp(P ) in the rule (SELF). It
should be written inp(P ′), referring to the pending state of some input in the
process P ′ after the x signal. Usually, it is not very elegant and it is not a
common practice in transition systems to write down a side condition related to
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the right side of a premise. Anyway, it is safe to write inp(P ) instead of inp(P ′).
We will prove this fact with the following:

Proposition 2. Let P be a webπ∞ process:

1. if P
x u−−→ Q and inp(P ) then inp(Q)

2. if ¬inp(P ) and P
μ−→ Q then ¬inp(Q).

Proof. We give just a brief sketch of the proof because of space constraints. Both
the parts of the proof are by structural induction on P . In the first case one just
has to consider the cases where inp(P ), while in the second one the other cases
have to be considered. %�

3.1 Weak Asynchronous Bisimilarity

Recalling the weak asynchronous bisimilarity presented in [1] we define a weak
asynchronous bisimilarity for webπ∞. We then find a suitable variant, that we call
closed bisimilarity, which can be used as a tool to prove weak barbed congruence.

Definition 7 (Weak asynchronous bisimilarity). We define τ=⇒ as the re-
flexive and transitive closure of τ−→ and

μ
=⇒ as τ=⇒ μ−→ τ=⇒.

A weak asynchronous bisimulation is a symmetric binary relation R such
that P RQ implies:

1. if P
τ−→ P ′, then Q

τ=⇒ Q′ and P ′RQ′;
2. if P

(z)x u−−−−→ P ′ and z̃ ∩ fn(Q) = ∅, then Q
(z)x u
===⇒ Q′ and P ′RQ′;

3. if P
x(u)−−−→ P ′ then

(a) either Q
x(u)
==⇒ Q′, and P ′RQ′;

(b) or Q
τ=⇒ Q′, and P ′R (Q′|x ũ).

Weak asynchronous bisimilarity
�≈a is the largest weak asynchronous bisimula-

tion.

Unfortunately
�≈a is not a congruence as it is instead in asynchronous π-calculus

[16]. To show this fact consider the following counterexample. Let

P
def= 0

Q
def= (z)z()

then P
�≈a Q because they both cannot move. As you can easily see inp(Q)

holds but inp(P ) does not, so if you consider the context 〈|Cπ[·] ; y |〉x and the
rule (ABORT) you can see that the processes

〈|0 ; y |〉x
〈|(z)z( ); y |〉x

behave differently with respect to the asynchronous bisimilarity definition given
above. To solve this problem and have an equivalence which is also a congruence
it is necessary to close it under the input predicate according to the following
definition:
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Definition 8. A binary relation R over processes is input predicate-closed if
P RQ implies inp(P ) = inp(Q).

Unfortunately this is not enough to get a congruence. Consider now the coun-
terexample:

P
def= !x().y() | 〈|z().u() ; 0|〉

Q
def= z().u() | 〈|!x().y() ; 0|〉

P and Q behave in the same way in the sense that P
�≈a Q. Also it is easy to

see that inp(P ) = inp(Q) but, unfortunately, xtr(P ) and xtr(Q) are not bisimilar,
since xtr(P ) = 〈|z().u() ; 0|〉 and xtr(Q) = 〈|x().y() ; 0|〉, thus the two processes
behave differently when inserted, e.g., in the context 〈|· ; 0|〉x. To solve this
problem we also need an additional definition:

Definition 9. A binary relation R over processes is extract-closed if P RQ
implies xtr(P )R xtr(Q).

Now, we can define a labeled bisimilarity, that we call closed bisimilarity, and
prove that it is a congruence.

Definition 10 (Closed bisimilarity). Closed bisimilarity ≈a is the largest
weak asynchronous bisimulation that is input predicate-closed and extract-closed.

We study now some properties of closed bisimilarity.

Theorem 1. Closed bisimilarity ≈a is a congruence, i.e. given two processes P
and Q such that P ≈a Q then Cπ[P ] ≈a Cπ[Q] for each context Cπ[·].

Proof. The proof is by structural induction over contexts, and each case requires
a coinduction. Because of space constraints we give only the proof for workunit
body and handler, the other cases being anyway similar to the corresponding
cases of the analogous theorem for the asynchronous π-calculus (see [16]).

For the body we have to prove that P ≈a Q implies 〈|P ; R|〉x ≈a 〈|Q ; R|〉x.
Let us consider the three relevant cases of the definition. In the first case (rule

(ABORT)), if 〈|P ; R|〉x
x()−−→ 〈|xtr(P ) |R ; 0|〉 we must have inp(P ) and, for

the input closure, also inp(Q). Thus 〈|Q ; R|〉x
x()−−→ 〈|xtr(Q) |R ; 0|〉 and the

statement follows from the coinductive hypothesis and the extract closure. The
second case (rule (SELF)) is 〈|P ; R|〉x

τ−→ 〈|xtr(P ′) |R ; 0|〉 if P
x−→ P ′. This also

requires inp(P ). This implies inp(Q) because of the input closure. Thus, since
P ≈a Q we have Q

x=⇒ Q′ and P ′ ≈a Q′. Using rule (WUNIT) to lift the τ steps
and rule (SELF) for the x step we get 〈|Q ; R|〉x

τ=⇒ 〈|xtr(Q′) |R ; 0|〉. Note, in
fact, that, since outputs are asynchronous, we can always suppose that all the τ
actions are performed before the output, that is when the workunit is still able
to participate to the interaction. The statement follows from the coinductive
hypothesis and the extract closure. For the last case (rule (WUNIT)) the proof
is trivial because we simply lift the behavior of the body to the workunit context.
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For the handler we have to prove that P ≈a Q implies 〈|R ; P |〉x ≈a 〈|R ; Q|〉x.
In this case P and Q can move only when shifted to the body part, as it happens
in rule (ABORT) and rule (SELF). Since they are moved without being changed,
then the thesis follows by coinduction. %�

We prove now some auxiliary lemmas that will bring us nearer to our main goal.

Lemma 1. Let P be a webπ∞ process. Then the following holds:

1. P can always be written in the form:

P ≡ (z̃)(
∏
i∈I

∑
s∈Si

xi,s(ũi,s).Pi,s |
∏
l∈L

!xl(ũl).Pl |
∏
j∈J

〈|Pj ; Qj|〉xj
|
∏
k∈K

xk ũk)

2. xtr(P ) can always be written in the form:

xtr(P ) ≡ (z̃)(
∏
j∈J

〈|Pj ; Qj |〉xj
|
∏
k∈K

xk ũk)

Proof. For the first part it is necessary to apply structural congruence rules:
in particular workunit laws to flatten the workunit structure, floating laws to
extract output particles outside of workunits, parallel and summation laws to
rearrange the order of processes and scope laws to factorize names in z̃. For the
second part, notice that all the structural axioms commute with function xtr(·),
thus it is enough to put P in the normal form above and then apply the extract
function. %�

Lemma 2. Let P be a webπ∞ process. Then the following holds:

1. P
x u−−→ P ′ only if xtr(P ) �= 0

2. P
x u−−→ P ′ if and only if xtr(P ) x u−−→ xtr(P ′)

Proof. Both the parts are by induction on the structure of P . The first part
is trivial, let us consider the second one. Thanks to Lemma 1, we can always
divide a process in two parallel components P1 and P2, such that P1 can not
perform outputs and xtr(P1) = 0, and P2 can perform outputs (unless it is 0)
and xtr(P2) = P2. The thesis follows trivially. %�

Now we need to define a new concept of input context which is auxiliary to the
next lemma.

Definition 11. Input contexts, noted N[·], are defined by the following gram-
mar:

N[·] ::=
∑

i∈I xi(ũi).Pi + [·](ṽ).P
![·](ṽ).P
N[·] |P
(z)N[·]
〈|N[·] ; P |〉z
〈|P ; Q|〉[·]
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Lemma 3. Let P be a webπ∞ process. Then

1. P
(z)x u−−−−→ P ′ implies P ≡ (z̃)(P ′ |x ũ)

2. P
x(u)−−−→ P ′ implies P ≡ N[x]

Proof. For the first part the proof is by induction on the proof tree of P
(z)x u−−−−→

P ′. The base case is when x ũ
x u−−→ 0 by the (OUT) rule and is trivial. The

inductive cases are related to the rules (WUNIT), (PAR), (RES) and (OPEN).
The proof is similar in all the cases. We just show the case of rule (WUNIT).
By inductive hypothesis we know that P ≡ (z̃)(P ′ |x ũ). Then 〈|P ; Q|〉y ≡
(z̃)(〈|P ′ ; Q|〉y |x ũ) using the floating law, as required.

For the second part the proof is by induction on the proof tree of P
x(u)−−−→ P ′.

We have three base cases related to the rules (IN), (REPIN) and (ABORT).
The cases follows directly by definition. The inductive cases are related to rules
(RES), (PAR) and (WUNIT) and are trivial too. %�

The next lemma analyzes the relations between reduction semantics and barbs
on one side, and labeled transitions on the other side.

Lemma 4. Let P be a webπ∞ process. Then

1. P ↓ x if and only if P
(z)x u−−−−→ Q for some Q, z̃ and ũ

2. P
τ−→ Q implies P → Q

3. P → Q implies that there is R such that R ≡ Q and P
τ−→ R

Proof. We prove the three statements in the lemma separately.

1. Since barbs are preserved by structural congruence, the first part follows
from Lemma 3.

2. We have to prove that P
τ−→ Q implies P → Q. The proof is by induction

on the proof tree of P
τ−→ Q. The base cases are two and they are related

to rules (SELF) and (COM), i.e., the rules that introduce the label τ in the
tree. The inductive cases are instead related to all those rules that move the
τ label from the premise to the conclusion of the inference, i.e. (WUNIT),
(PAR) and (RES). For space reasons we describe only the workunit part.
The base case follows from the first part of Lemma 3. For the inductive case
we have to prove that 〈|P ; Q|〉z

τ−→ R implies 〈|P ; Q|〉z → R. The inductive
case is when P

τ−→ P ′ and 〈|P ; Q|〉z
τ−→ 〈|P ′ ; Q|〉z for the (WUNIT) rule. In

this case we can apply the inductive hypothesis obtaining P → P ′ and, since
the reduction relation is closed under the workunit context, 〈|P ; Q|〉z →
〈|P ′ ; Q|〉z .

3. We have to prove that P → Q implies that there is R such that R ≡ Q and
P

τ−→ R. The proof is by induction on the proof tree of P → Q. The base cases
are three and they are related to rules (R-COM), (R-REP) and (R-FAIL).
The inductive cases are instead related to the closures under contexts and
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structural congruence. We show only the workunit case: if P → P ′ we have
〈|P ; Q|〉z → 〈|P ′ ; Q|〉z for the the context closure of the reduction relation.
By inductive hypothesis we also have P

τ−→ R with R ≡ P ′. From this fact,
using rule (WUNIT) of the labeled semantics, we get 〈|P ; Q|〉z

τ−→ 〈|R ; Q|〉z
where 〈|R ; Q|〉z ≡ 〈|P ′ ; Q|〉z. %�

Now we are ready to prove our main result, which shows that closed bisimilarity
can be used as a tool to prove weak barbed congruence.

Theorem 2. For each pair of webπ∞ processes P and Q, P ≈a Q implies
P ≈ Q.

Proof. Lemma 4 proved that ≈a is a weak barbed bisimulation. We have also
proved (Theorem 1) that ≈a is a congruence. Since ≈ is the largest barbed
bisimulation that is a congruence then the thesis follows. %�

4 Relevant Examples

The theory developed so far allows us to prove interesting properties about
webπ∞ processes. In this section we show some examples of pattern reducibility
proving them correct as far as weak barbed congruence is concerned, and using
closed bisimilarity as technical tool. This also shows that closed bisimilarity,
whose completeness has not been proved yet, can be applied in many interesting
cases.

Handlers Reducibility. Let us consider the following processes where x′ �∈
fn(P ) ∪ fn(Q), x′ �= x.

〈|P ; Q|〉x
(x′)(〈|P ; x′ |〉x | 〈|x′().Q ; 0|〉)

The following theorem states that any workunit can be rewritten in another unit
where the handler consists of a single asynchronous output and all the remaining
parts of the process are moved in a separate unit and activated when necessary.

Theorem 3. 〈|P ; Q|〉x ≈ (x′)(〈|P ; x′ |〉x | 〈|x′().Q ; 0|〉)

Proof. The relation φ on webπ∞ processes defined as follows is a closed bisim-
ulation. Below we intend P and Q to range over all processes, and x, x′ range
over all the names such that x′ �∈ fn(P ) ∪ fn(Q), x′ �= x.

φ = {(P, P )} ∪ {(〈|P ; Q|〉x, (x′)(〈|P ; x′ |〉x | 〈|x′().Q ; 0|〉))}
∪ {(〈|xtr(P ) |Q ; 0|〉, (x′)(〈|xtr(P ) ; 0|〉 | 〈|Q ; 0|〉))}

The full proof requires to show that the three conditions for closed bisimilarity
are satisfied. This is quite easy, and the interested reader can refer to [11]. The
thesis then follows thanks to Theorem 2. %�
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Decoupling of Service and Recovery Logics. Let us consider another cou-
ple of processes where y �∈ fn(!z(u).P |Q) ∪ {v}:

〈|!z(u).P |Q ; v |〉x
(y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)

The following theorem shows the way in which a pattern expressing the service
logic !z(u).P |Q and the recovery logic for that service (intended as a single
asynchronous output because of the previous theorem) can be decoupled and
written separately by means of two different workunits. The property can be
read also in the opposite sense, showing how two different workunits can be
coupled in a single one.

Theorem 4. 〈|!z(u).P |Q ; v |〉x ≈ (y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)

Proof. The proof is similar to the one above, considering now as φ:

φ = {(P, P )} ∪ {〈|!z(u).P |Q ; v |〉x, (y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)}

where we intend P and Q to range over all processes, and z, u, v, x and y range
over all the names such that y �∈ fn(!z(u).P |Q) ∪ {v}. The only trick is that
the addition of the deadlocked component (w)w(u) is needed to ensure that the
input predicate is true on the right hand side, as necessary to simulate the left
hand side. %�

The applications above show that in some cases of interest closed bisimilarity
allows to use quite easily writable relations, while using weak barbed congruence
directly is far more complex.

5 Conclusion

In this paper we analyzed some semantic issues in the framework of webπ∞,
a simple extension of the π-calculus with untimed long running transactions.
A timed extension of webπ∞, called webπ, has been presented in [8] to meet
the challenge of time in composition. There webπ has been equipped with an
explicit mechanism for time elapsing and timeout handling. Adding time allows
to express another interesting aspect of systems. Remember however that if one is
not interested in the timing details, timeouts can be simply expressed as choices
between the normal behavior and the timeout behavior. Discussing the notion
of orchestration without considering time constraints makes it possible to focus
on information flow, message passing, concurrency and resource mobility. Also,
it allows to have a more abstract view using the weak semantics, which does not
make sense in the timed framework, and which is the desired level of abstraction
in many cases. Notice for instance that processes in our sample applications are
not equivalent according to a strong equivalence.

Another related calculus is c-join [3], which extends join calculus [6] with long
running transactions and compensations. The main difference between webπ∞
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and c-join is that in the latter the nesting of transactions matters, since when
the external transaction is aborted all the internal transactions are aborted too.
This forces a particular way to deal with related transactions, while in our case
this decision can be taken in a case by case way, by explicit sending abort signals
to the other transactions. Note that in c-join instead a process can only abort the
innermost transaction containing it (but the compensation can be programmed
to propagate the abort to the upper level). Finally, in c-join, communication
between processes in different transactions causes the transactions to be merged.

Long running transactions have been analyzed also using Compensating
CSP [4], but this approach is more focused on the definition of compensations for
large processes starting from definitions of compensations for their components,
and it provides neither synchronization (apart from sequential composition) nor
mobility.

This work contributes with a powerful and expressive language, with a solid
semantics, that allows formal reasoning. The language shows a clear relation
with the π-calculus and the actual encoding is a feasible task, while it would
be quite harder to get such an encoding for XLANG and other web services
composition languages. Future developments building on the results achieved
in this paper include software tools for static analysis of programs based on
composition of services. A useful result we achieved in [11] that stem from this
work is a streamlined definitions of syntax and semantics of BPEL, to get a
simpler way to model involved transaction behaviors. The overall goal of these
works is to allow for improvement of quality and applicability of real composition
languages.
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Abstract. The Web Services Choreography Description Language (WS-CDL) is
a W3C specification for the description of peer-to-peer collaborations of partic-
ipants from a global viewpoint. For the rigorous development and tools support
for the language, the formal semantics of WS-CDL is worth investigating. This
paper proposes a small language CDL as a formal model of the simplified WS-
CDL, which includes important concepts related to participant roles and collabo-
rations among them in a choreography. The formal operational semantics of CDL
is given. Based on the formal model, we discuss further: 1) project a given chore-
ography to orchestration views, which provides a basis for the implementation of
the choreography by code generation; 2) translate WS-CDL to the input language
of the model-checker SPIN, which allows us to automatically verify the correct-
ness of a given choreography. An automatic translator has been implemented.

1 Introduction

Web services promise the interoperability of various applications running on heteroge-
neous platforms. Web service composition refers to the process of combining several
web services to provide a value-added service, which has received much interest to sup-
port enterprise application integration. Two levels of view to the composition of web
services exist, namely orchestration and choreography. The choreography view focuses
on the composition of Web services from a global perspective, and it differs from the
orchestration view which focuses on the interactions among one party and others.

The recently released web service choreography description language (WS-CDL)
is a W3C [2] candidate recommendation for web service composition. WS-CDL is an
XML-based language for the describing peer-to-peer collaborations of participants by
defining, based on a global viewpoint, from their common and complementary observ-
able behavior [15]. WS-CDL is neither an “executable business process description
language” nor an implementation language. The execution logic of the application is
covered by languages at another level, such as XLANG [19], BPEL [3], BPML [5],
etc. WS-CDL focuses on describing the business protocol among different participant
roles. All the behaviors are performed by the participants, and WS-CDL gives a global
observation.

As discussed in [6], WS-CDL lacks the separation between its meta-model and its
syntax, and lacks of a formal grounding. Due to the message-passing nature of web
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services interaction, many subtle errors can occur (e.g., message not received, dead-
locks, incompatible behaviour, etc.) when a number of parties are collaborated with
each other. To guarantee the correct interaction of independent, communicating web
services becomes even more critical in the open-end world of web services [18]. As a
language aimed to become a standard for the web service choreography, formal studies
may clear the opaque points or inconsistencies in the language definition, and provide
a grounding for tools development.

In this paper, we propose a small language called CDL as a formal model of the
simplified WS-CDL. CDL includes many important concepts related to the participant
roles and the collaborations among them in a choreography. The aim of this model is to
focus on the core features of WS-CDL. Based on the formal model, it is possible 1) to
generate orchestration views from a given choreography; 2) to reason about the proper-
ties that should be satisfied by the specified system. We propose a projection function
for orchestration generation and discussed the correctness issue of the projection. We
also provide an automatic translation tool which can convert a choreography into the
input language of the model checker SPIN [11]. Afterwards, we can either simulate or
verify the choreography automatically. Besides, manual reasoning based on our model
is also possible, as discussed in our previous report [12].

This paper is organized as follows: Section 2 is an informal overview of WS-CDL.
We present the formal model of CDL in Section 3, including its syntax and operational
semantics. In Section 4 we discuss the projection from choreography to orchestration,
while in Section 5 we discuss how to model-check WS-CDL specification using our
automatic translator. Some related work is discussed in Section 6, and section 7 con-
cludes.

2 Overview of WS-CDL

This section provides an overview of WS-CDL, as defined in WS-CDL specification
[15] released on 9th November 2005. A choreography defines collaborations among
interacting participants. It can be recognized as a container for a collection of activities
that may be performed by the participants. There are two types of activities in WS-CDL:
basic activities and control-flow activities.

Basic activities include a noAction action, which does not do anything; an assign ac-
tivity, which assigns, within one role, the value of one variable or an expression to an-
other variable; and an interaction activity, which results in an exchange of information
between participant roles and possible synchronization of their observable information
changes and the actual values of the exchanged information.

An interaction activity is composed of: 1) the participant roles involved; 2) the ex-
changed information and the corresponding direction(s); 3) the observable information
changes; 4) the operation performed by the recipient. The information exchange type
of interactions is described by the possible actions on the WS-CDL channel, which
falls into three types: request, respond, or request-respond. According to the exchange
type, there are three kinds of interactions. The operation in an interaction activity is
performed after the request (if there is one) and before the response (if there is one).

The example below shows an interaction between two roles Consumer and Retailer
as a request/response exchange on the channel retailer-channel. The message po is sent
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from Consumer to Retailer as a request; and the message poAck is sent back from Re-
tailer to Consumer as a response. After the message exchange, the variable Consumer-
poState is assigned by the value sent at Consumer, and Retailer-poState by received at
Retailer, as specified in the record elements.

<interaction name="createPO" channelVariable="retailer-channel"
operation="handlePurchaseOrder">

<participate relationshipType="tn:ConsumerRetailer
fromRoleTypeRef="tn:Consumer" toRoleTypeRef="tn:Retailer"/>

<exchange name="request" informationType="tn:POType" action="request">
<send variable="cdl:getVariable(’tn:po’,’’,’’)" recordReference="Consumer-poState" />
<receive variable="cdl:getVariable(’tn:po’,’’,’’)" recordReference="Retailer-poState" />

</exchange>
<exchange name="response" informationType="POAckType" action="respond">
<send variable="cdl:getVariable(’tn:poAck’,’’,’’)"/>
<receive variable="cdl:getVariable(’tn:poAck’,’’,’’)"/>

</exchange>
<record name="Consumer-poState" when="after">
<source expression="sent"/>
<target variable="cdl:getVariable(’tn:poState’,’’,’’)"/>

</record>
<record name="Retailer-poState" when="after">
<source expression="received"/>
<target variable="cdl:getVariable(’tn:poState’,’’,’’)"/>

</record>
</interaction>

The control-flow activities include sequence, parallel, choice and workunit. The se-
quence, parallel and choice activities have similar meanings as in the other program-
ming languages. A workunit describes the conditional and repeated execution of an
activity [6].

A role type enumerates the potential observable behaviors that a participant can ex-
hibit in order to interact. Variables in WS-CDL are used to represent different types
of information such as the exchanged information or the observable state information
of the role involved. Unlike most programming languages, there are no independent
variables in WS-CDL, i.e. each variable must belong to some role.

3 CDL: A Formal Model for WS-CDL

In this section we define a small language CDL, which can be viewed as a subset of
WS-CDL. It models choreography with a set of participant roles and the collaboration
among them. We give the syntax and an operational semantics here.

3.1 Syntax

In the definitions below, the meta-variable R ranges over role declarations; A and B
range over activity declarations; r, f and t range over role names; x, y, u and v range
over variable names; e, e1 and e2 ranges over XPath expressions; g, g1, g2 and p range
over XPath boolean expressions; op ranges over the operations offered by the roles. We
will use R as a shorthand for R1, · · · , Rn, for some n. (Similarly, for x, op, e, etc.) We
use r.x to refer to the variable x in role r, and r.x := e for r.x1 := e1, · · · , r.xn := en.

A choreography declaration includes a name C, some participant roles R, and an
activity A, with the form:

C[R , A]
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Each participant role R has some local variables x and observable behaviors repre-
sented as a set of operations op. The signature and function of the operations are defined
elsewhere and omitted here. A role with name r is defined as:

R ::= r[ x , op ]

The basic activities in CDL are the follows:

BA ::= skip (skip)
| r.x := e (assign)
| comm (f.x

c→ t.y, rec, op) (request)
| comm (f.x

c← t.y, rec, op) (response)

| comm (f.x
ct→ t.y, f.u

cf← t.v, rec, op) (req-resp)

The skip activity does nothing. The assignment activity r.x := e assigns, within the
role r, the values of expressions e to the variables x. Note that e must only contain vari-
ables that belong to the same role r. For remote assignments (i.e. assign some variable
of one role to some variable of another role), we must use the interaction activity, which
is either:

– a request interaction with the form comm (f.x → t.y, rec, op) in which the mes-
sage is sent from f.x to t.y;

– a response interaction with the form comm (f.x ← t.y, rec, op) in which the re-
sponse message is sent from t.y to f.x;

– a request-response interaction comm (f.x → t.y, f.u ← t.v, rec, op) with a re-
quest message from f.x to t.y and a response message from t.v to f.u.

In an interaction, the operation op specifies what the recipient should do when it receives
the message. After the operation, some state change will be performed by rec, which is
the shorthand for the assignments f.x := e1, t.y := e2. Here x and y are two lists of
state variables on the roles f and t respectively.

The syntax of the control-flow activities is listed here:

A, B ::= BA (basic)
|p?A (condition)
|p ∗ A (repeat)
|g :A :p (workunit)
|A; B (sequence)
|A � B (non-deterministic)
|g1 ⇒ A [] g2 ⇒ B (general-choice)
|A ‖ B (parallel)

An activity is either a basic activity BA, a workunit, or a control-flow activity. The
workunit introduced in WS-CDL is separately defined as three constructs here. Two of
them are the condition construct p?A and the repeat construct p∗A, that work normally.
The other is the workunit (g : A : p), which will blocked until the guard g evaluates to
“true”. When the guard is trigged, the activity A is performed. If A terminates success-
fully, and if the repetition condition p evaluates to “true”, the workunit will be consid-
ered again; otherwise, the workunit finishes. A control-flow activity is either a sequence
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activity A; B, a non-deterministic activity A %B, a general choice g1 ⇒ A [] g2 ⇒ B,
or a parallel activity A ‖ B.

The WS-CDL specification includes many well-formedness and typing rules, such as
“In an interaction, each information exchange variable has the same type on the sender
and the receiver”. We are developing a type system for CDL to statically verify the
validity of all these rules. In this paper we do not consider well-formnedness problems,
and assume that the CDL program under consideration is always well-formed.

3.2 Operational Semantics of CDL

In this section, a small-step operational semantics for CDL is presented. We define
the configuration as a tuple 〈A, σ〉, where A is an activity, and σ is the state of the
choreography which is a composition of each participant role’s state. A role state, σri ,
i = 1, · · · , n, is a function from the variable names of the role ri to their values. We
suppose that each variable name is decorated with the role name on which it resides,
the values of variables are unknown initially. The state of the choreography

σ
def
= σr1 ∪ σr2 ∪ · · · ∪ σrn

is the composition of all the role states in the choreography.
For convenience, we use the form σ ⊕ {r.x �→ e} to denote the global state σ with

some variable assignments on given role r. Moreover, we use 〈ε, σ〉 to denote the ter-
minal configuration.

Basic Activity. The semantics of the basic activities are defined as follows:
The execution of skip activity always terminates successfully, leaving everything

unchanged.
〈skip, σ〉 −→ 〈ε, σ〉 (SKIP)

The assign activity is a multiple assignment. The values of the variables r.x do not
change until all the evaluations e are completed. Note that every variable appearing in
e should belong to r, i.e. remote value fetch is not allowed.

〈r.x := e, σ〉 −→ 〈ε, σ ⊕ {r.x �→ e}〉 (ASS)

In an interaction activity, some information may exchange between two participant
roles, namely a “from” role f and a “to” role t. After the operation op is accomplished,
there may be some variable updates on both roles according to the assignments in rec.
The semantics for op is not defined here; we can view op as an external atomic activity.
As a result, we can define the trace of a choreography as the sequence of operations it
performs.

〈comm (f.x
c→ t.y, rec, op), σ〉 −→ 〈rec, σ ⊕ {t.y �→ f.x}〉 (REQ)

〈comm (f.x
c← t.y, rec, op), σ〉 −→ 〈rec, σ ⊕ {f.x �→ t.y}〉 (RESP)

〈comm (f.x
ct→ t.y, f.u

cf← t.v, rec, op), σ〉 −→ 〈rec, σ ⊕ {t.y �→ f.x, f.u �→ t.v}〉
(REQ-RESP)
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Control-Flow Activity. The behavior of the condition activity (p?A) is the same as
A when the boolean expression p evaluates to true. Otherwise, it does nothing and
terminates successfully.

σ(p) = false
〈p?A, σ〉 −→ 〈ε, σ〉 (IF-FALSE)

σ(p) = true
〈p?A, σ〉 −→ 〈A, σ〉 (IF-TRUE)

The repeat activity (p∗A) is executed by first evaluating p. When p is false, the activity
terminates and nothing is changed. When p is true, the sequential composition (A; (p ∗
A)) will be executed.

σ(p) = false
〈p ∗ A, σ〉 −→ 〈ε, σ〉 (REP-FALSE)

σ(p) = true
〈p ∗ A,σ〉 −→ 〈A; p ∗ A, σ〉 (REP-TRUE)

The workunit activity (g : A : p) is blocked when the guard condition g evaluates to
false. When g evaluates to true, A is executed. After the execution, repetition condition
p is tested. If p evaluates to false, then the activity terminates; if true, then the workunit
restarts. In the WS-CDL syntax, g and p can be omitted. An omitted condition means
that it is always true.

σ(g) = true
〈g :A :p,σ〉 −→ 〈A; p?(g :A :p), σ〉 (BLOCK)

The sequential composition (A; B) first behaves like A; when A terminates success-
fully, (A; B) continues by behaving like B. If A never terminates successfully, neither
does A; B.

〈A, σ〉 −→ 〈A′, σ′〉
〈A; B, σ〉 −→ 〈A′; B, σ′〉 (SEQ)

〈ε; B, σ〉 −→ 〈B,σ〉 (SEQ-ELIM)

The non-deterministic choice A %B behaves like either A or B, where the selection
between them is non-deterministic, without referring the knowledge or control of the
external environment.

〈A, σ〉 −→ 〈A′, σ′〉
〈A � B, σ〉 −→ 〈A′, σ′〉 (NON-DET)

〈B, σ〉 −→ 〈B′, σ′〉
〈A � B, σ〉 −→ 〈B′, σ′〉 (NON-DET)

The general choice (g1 ⇒ A [] g2 ⇒ B) behaves like A if the guard g1 is matched,
otherwise behaves like B if g2 is matched, where each guard is a boolean expression. If
both g1 and g2 are matched, then the first is selected.

σ(g1) = true, σ(g2) = false
〈g1 ⇒ A [] g2 ⇒ B, σ〉 −→ 〈A, σ〉 (CHOICE)

σ(g1) = false, σ(g2) = true
〈g1 ⇒ A [] g2 ⇒ B, σ〉 −→ 〈B, σ〉 (CHOICE)

σ(g1) = true, σ(g2) = true
〈g1 ⇒ A [] g2 ⇒ B, σ〉 −→ 〈A, σ〉 (CHOICE)
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We use interleaving semantics for the parallel composition:

〈A, σ〉 −→ 〈A′, σ′〉
〈A ‖ B, σ〉 −→ 〈A′ ‖ B,σ′〉 (PARA)

〈B, σ〉 −→ 〈B′, σ′〉
〈A ‖ B, σ〉 −→ 〈A ‖ B′, σ′〉 (PARA)

〈ε ‖ B, σ〉 −→ 〈B, σ〉 (PARA-ELIM)

〈A ‖ ε, σ〉 −→ 〈A, σ〉 (PARA-ELIM)

Based on the formal semantics, we can do manual reasoning about the properties that
should be satisfied by a given choreography. A purchase order choreography example is
given in our previous work [12]. In this paper, we focus on automatic verification using
model-checking, as described in Section 5.

4 Projection from CDL to Orchestration Views

As we have described, CDL provides a choreographical view of the interacting web ser-
vices, which involves the interaction of many parties. For code generation, simulation
and verification purposes, it is meaningful to generate orchestration views from a given
choreography view, while each of them describes only the interaction behavior of one
party with its related partners. In our example, the credit checker only deals with the
seller, not the buyer nor the inventory. An orchestration view for the credit checker is a
projection from the choreography that hides the behavior of all the unrelated parties.

In choreography, as at a higher level of view, we can always let the two-party inter-
action start without waiting, as explained informally by the following:

comm (f.x
ch→ t.y, rec, op) ≈ (ch!f.x ‖ ch?t.y) ≈ t.y := f.x

In other words, the data transportation through channels is implicit under a choreogra-
phy view. This explains the reason that we use variable assignment for the semantics
of interaction. At the local view level, we remove the interaction activities from our
syntax, while adding the channel communication activities:

BAorc ::= skip | f.x := t.y | ch!f.x | ch?t.y

The semantics of an orchestration is similar to a process in an ordinary process algebra,
and we do not want to discuss the details here. Note that according to WS-CDL spec-
ification, we can only send some variable through a channel, rather than an arbitrary
expression. Also, we suppose that the channel communications are all synchronous,
since asynchronous channels may bring some difficulty in both modelling and verifica-
tion [8].

We define a set of projection rules from a given choreography to a process of a given
target role rt as a function Pr, which maps an activity in choreography to an activity
in the local view. For a choreography C[r , A] that has a root activity A and n roles
r1, · · · , rn, we define the projection from C to role ri as Pr(A, ri).

Pr(skip, rt)
def
= skip
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Pr(r.x := e, rt)
def
=
{

r.x := e if rt = r
skip otherwise

Pr(comm (f.x
c→ t.y, rec, op), rt)

def
=

⎧⎨
⎩

c!f.x; Pr(rec, rt) if rt = f
c?t.y; op; Pr(rec, rt) if rt = t
skip otherwise

Pr(comm (f.x
c← t.y, rec, op), rt)

def
=

⎧⎨
⎩

c?t.y; op; Pr(rec, rt) if rt = f
c!f.x; Pr(rec, rt) if rt = t
skip otherwise

Pr(comm (f.x
ct→ t.y, f.u

cf← t.v, rec, op), rt)

def
=

⎧⎨
⎩

ct!f.x; cf?t.y; Pr(rec, rt) if rt = f
ct?f.x; op; cf !t.y; Pr(rec, rt) if rt = t
skip otherwise

Pr(A; B, rt)
def
= Pr(A, rt); Pr(B, rt)

Pr(p?A, rt)
def
= prt?Pr(A, rt)

Pr(p ∗A, rt)
def
= prt ∗ Pr(A, rt)

Pr(g :A :p, rt)
def
= grt :Pr(A, rt) :prt

Pr(A %B, rt)
def
= Pr(A, rt) % Pr(B, rt)

Pr(g1 ⇒ A [] g2 ⇒ B, rt)
def
= g1rt

⇒ Pr(A, rt) [] g2rt
⇒ Pr(B, rt)

Pr(A ‖ B, rt)
def
= Pr(A, rt) ‖ Pr(B, rt)

Intuitively, if some activity is not related to the given role and should be hidden, we
simply replace it with skip. For interaction activities, we will replace them with channel
communications according to the direction of the interaction. The control-flow activities
that do not have guards are not modified.

For those those activities that involve guards, there could be a problem of uncon-
nectedness. For example, in (A.x > 0)?(B.y := 1), we say the guard’s role is uncon-
nected with the assignment activity’s role; while (A.x > 0)?(A.z := 1) is connected.
Although this is allowed by the WS-CDL specification, it is not possible to directly im-
plement an unconnected specification, because B cannot remotely access the variable
x on role A. We do not intend to address the unconnectedness problem in this paper.
To simplify the definition, we add a requirement that every guard must have the form
of e1 ∧ · · · ∧ en, where ei is a term which only involves role ri. In the projection of the
guards, the projected guard grt on role rt has only a part of the original guard g that
is related to the role, i.e. grt = et. For example, a guard A.x > 0 ∧ B.y > 0 will be
projected to A.x > 0 in the projected orchestration for role A, and B.x > 0 for B.
This is rooted from the function globalizedTrigger(e1, r1, · · · , en, rn) defined
in WS-CDL specification.

Given a choreography, we can project it to each involved role r ∈ R with the rules
above. After that, we can consider implementation, simulation or verification. Note that
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the generated orchestration may contain a lot of redundant skip, and some redundant
structured activities. We have removed most of the redundancy in our automatic trans-
lator which is described in the next section.

5 Model-Checking CDL Specification

In this section we discuss how to verify a given WS-CDL specification using the SPIN
model checker. The input language of SPIN is called Promela [11], which is a language
for modeling finite-state concurrent processes. SPIN can verify or falsify (by generat-
ing counterexamples) LTL (Linear Temporal Logic) properties of Promela specifica-
tions using an exhaustive state space search. Given the XML specification of a CDL
choreography, we generate a Promela specification, which consists of some communi-
cating concurrent processes denoting different parties. We implement the translation in
two steps: (1) from WS-CDL specification to projected orchestration specifications; (2)
from the orchestration specifications to Promela processes with communication chan-
nels. The first phase has been discussed in the previous section, and we will focus on
the second phase in this section.

5.1 Translation to Promela

We discuss our translation procedure using the annual tax statement example taken
from [13]. In the choreography, the client asks an advisor to help him pay tax to the
municipality according to the annual statement he provides. The client’s request may
be rejected directly by the advisor, or forwarded to the municipality, which will return a
notification that either accepts the statement or rejects it. The WS-CDL source code is
300-lines-long and is difficult to read. An abridged version of the source code is shown
in Figure 1.

We give the translated Promela code of this example in Figure 2. The first part of
the code consists of some type declarations and variable declarations. We introduce a
variable named r_x for each variable x under role r. Each information type variable
is converted into a mtype variable; while each channel variable is converted into a
channel chan. Although model-checkers have proved to be powerful in verifying the
control flow of a system, it performance is quite poor when we allow the variables to
have a wide range of possible values. As a prototype system, we only consider two
states nil and something of each information variable, which denotes whether the
variable has been assigned by some value or not. We also introduce some auxiliary
boolean variables to implement parallelism, which are discussed later.

The second part of the code consists of several processes that denotes roles in the
choreography. The init process instantiates three processes corresponding to each
role. Based on the projection technique introduced in Section 4 we can give the execu-
tion logic of each process. Assuming the projection has been done, in Table 1 we give
a mapping from orchestration specification of role r to Promela code. Since Promela
supports most of the activities defined in our CDL semantics, most translation is quite
straightforward.

In Promela, if statement is a blocking guarded choice. The system can proceed only
if at least one guard is satisfied. If more than one guards are satisfied, then the system
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<package name="AnnualStatementService " ...>
<informationType 

name="correlationId "
 type="string"/>

<informationType 
name="annualStatement " 
type="annualStatement .xsd"/>

  …
  <roleType name="ServiceProviderRole ">
    <behavior name="ReceiveAnnualStatement " 

interface="TaxAdvisor.wsdl"/>
  </roleType>
  <roleType name="ServiceRequesterRole">
    <behavior name="ReceiveTaxAssessment" 

interface="TaxAdvisor.wsdl"/>
  </roleType>
…
  <relationshipType name ="ClientTaxAdvisor">
    <role type="ClientRole" />
    <role type="ServiceProviderRole "/>
  </relationshipType >
…
  <participantType name ="TaxAdvisor">
    <role type="ServiceProviderRole "/>
    <role type="ServiceRequesterRole "/>
  </participantType>
...
  <channelType 

name="SubmitAnnualStatementChannel " 
action="request ">

    <passing 
action= "respond"
channel= "ReturnProcessedTaxAssessmentChannel "/>

    <reference>
      <token name="taxAdvisorRef"/>
    </reference >
    <identity>
      <token name="processId"/>
    </identity>
  </channelType>
...
  <choreography > ...</choreography >
</package>

1
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Package Information Choreography Definition

<choreography name="AnnualStatementSubmission " 
root="true">

  <relationship type="tns:ClientTaxAdvisor"/>
  <relationship type="tns:TaxAdvisorMunicipality "/>
...                      
  <variableDefinitions >
    <variable name= "AS" 

mutable= "true" 
free= "false"
informationType = "annualStatement "
silent= "false"/>
roleTypes =“Client , TaxAdvisor^“

  ...
  </variableDefinitions >

  <sequence>
    <interaction name="AnnualStatementSubmission " 

channelVariable ="tns:SubmitAnnualStatementChannel " 
operation ="ReceiveAnnualStatement " initiate="true">

      <participate relationshipType ="ClientTaxAdvisor" 
fromRole="tns:ClientRole"
toRole="ServiceProviderRole "/>

       <exchange name = "AnnualStatementSubmissionExchange "
action= "request"
informationType = "annualStatement " >

         <send variable = "AS"/>
         <receive  variable= "AS"/>
       </exchange>
    </interaction>
…
  </sequence>
...
</choreography >
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Fig. 1. WS-CDL Specification Example

will make a non-deterministic choice. The do statement is used for repeating, and is
similar with if. For parallel activities, we first introduce some auxiliary processes with
the prefix “para” for each block in the parallel activity, and then call the processes to
start by a run statement. Since run is an asynchronous call in Promela, we need some
extra mechanism to make the calling process wait until all the called processes have fin-
ished running. The auxiliary variables with prefix r_para_aux are introduced for this
purpose. We use conditional expressions such as r_para_aux_A == true to block
the execution of the calling process. The auxiliary variables such as r_para_aux_A
are assigned by true only at the end of each called process, thus achieving the syn-
chronous calling mechanism.

Finally, we add a label such as TaxAdvisor_end: at the end of each process, which
is useful for expressing properties during verification.

5.2 Simulation and Verification

We have implemented an automatic translator1 according to the translation rules using
the XSLT (eXtensible Stylesheet Language Transformation) language. In the imple-
mentation, we reuse some source codes provided in [13]. We have also implemented a

1 The tool can be downloaded at http://www.is.pku.edu.cn/~fmows/
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/* Choreography: AnnualStatementSubmission */
mtype = {nil, something, };
chan SubmitAnnualStatementChannel = [0] of { mtype };
chan ReturnNotificationChannel ...
mtype ServiceProviderRole_AS = nil;
mtype ClientRole_AS = nil; ...
mtype ServiceProviderRole_RN = nil; ...
bool Client_para_aux_1 = false;
...
proctype TaxAdvisor() {

SubmitAnnualStatementChannel ? ServiceProviderRole_AS;
if
:: ReturnNotificationChannel ! ServiceProviderRole_RN;
:: {run TaxAdvisor_para_1(); /* parallel begin */

run TaxAdvisor_para_2();
TaxAdvisor_para_aux_1 == true;
TaxAdvisor_para_aux_2 == true; /* parallel end */
ReturnTaxAssessmentChannel ? ServiceRequesterRole_TA;
ReturnProcessedTaxAssessmentChannel ! ServiceProviderRole_PTA; }

fi;
ServiceProviderRole_AS = something;
TaxAdvisor_end: skip; /* ending label */

}
proctype Client() {...}
proctype Municipality() {...}
/* parallel auxiliary proctypes*/
proctype TaxAdvisor_para_1() {

ReturnNotificationChannel ! ServiceProviderRole_AC;
TaxAdvisor_para_aux_1 = true;

}
proctype Client_para_1() ...
init { atomic {

run Client();
run TaxAdvisor();
run Municipality();

}}

Fig. 2. Promela Code Snippet

Java based user interface as the front-end of the translator. The user can easily translate
a WS-CDL specification into a Promela file, and then simulate or verify the Promela
processes with SPIN.

With our translator, the user can view the choreography in a graphical and interactive
way in the simulator provided in SPIN. A simple simulation scenario of the buyer-seller
example given in the WS-CDL specification [15] is shown in Figure 3.

Using LTL (Linear Temporal Logic), we can automatically verify or falsify useful
properties of the choreography, such as:

– Every role will always reach the ending state eventually.

<> (Client@Client_End && TaxAdvisor@TaxAdvisor_End &&
Municipality@Municipality_End)

– The client can always finish running while receiving the processed tax assessment (PTA)
from the municipality. This property is not satisfied by the choreography, since the advisor
may refuse the request. SPIN can detect the false property, and generate a counter example
to illustrate the reason for the failure in a graphical way.

<> (Client@Client_End && ClientRole_PTA != nil)
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Table 1. Translation to Promela for Role r

skip skip
r.x := e r_x = e

ch!e ch ! e
ch?r.x ch ? r_x

p?A

if
:: p -> A
:: !p-> skip
fi

p ∗ A

do
:: p -> A
:: !p-> break
od

g :A :p

do
:: g -> A; if :: p->skip :: !p->break fi
:: !g-> break
od

A; B A; B

g1 ⇒ A [] g2 ⇒ B

if
:: g1 -> A
:: g2 -> B
fi

A � B

if
:: A
:: B
fi

A ‖ B

atomic {
run r_paraA();
run r_paraB();
};
r_para_aux_A == true;
r_para_aux_B == true;

– If the processed annual statement (PAS) is forwarded to the municipality, then the client
will always receive the processed tax assessment eventually. Such acknowledgement is very
useful in designing protocols.

[] (ServiceRequesterRole_PAS != nil -> (<> ClientRole_PTA != nil)

We have translated and verified several examples, including the buyer-seller example
given in the WS-CDL specification [15], the purchase order process given in [12], and
the annual tax statement process proposed in [13]. The verification procedure is speedy;
for each example, it only costs several seconds on a Pentium 4 machine with 512MB
memory.

6 Related Work and Discussion

Formal approaches are useful in analyzing and verifying properties of web services.
There are some existing work on specifying and verifying web service compositions.
Foster et al. [10] discussed a model-based approach to verify web service composi-
tions and developed the tool LTSA that translates BPEL or WS-CDL specification to
the FSP process algebra model. Salaun et al. developed a process algebra to derive the
interactive behavior of a business process out from a BPEL specification [18]. Brogi et
al. presented the formalization of Web Service Choreography Interface (WSCI) using
a process algebra approach(CCS), and discussed the benefits of such formalization [4].
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DegenerateChoreography_Buyer:2

3

DegenerateChoreography_Seller:1

3

1!nil

:init::0

3

Fig. 3. A Simple Simulation Scenario

Fu et al. gave a translation from BPEL to Promela [8]. Aalst et al. discussed the differ-
ent approaches of formalizing BPEL, and listed some challenges including defining a
“real” choreography language [20]. Pi4SOA [1] is a tool for designing WS-CDL chore-
ography with a nice graphical user interface, and supports projection from WS-CDL
to BPEL or Java. It has a text-based simulator which is relatively difficult to use, and
does not provide verification mechanism. There are also works on the formal semantics
of web services languages. In our previous work, we presented an operational seman-
tics to a simplified version of BPEL with some important concepts related to fault and
compensation handling [9,16].

N.Busi et al. [7] proposed a simple choreography language and a simple orchestra-
tion language, and defined the concept conformance as a bi-simulation. It is a theoretical
work and does not consider tool-based verification. Misra [14] proposed a new program-
ming model for the orchestration of web services. It is relatively far from practice and
needs further investigation. Mendling and Hafner [13] proposed a translation algorithm
from BPEL to WS-CDL. Since they did not provide a formal model, the correctness of
the translation remained to be proved.

The choreography working group of W3C has also recognized the importance of
providing a formal grounding for WS-CDL language. Although WS-CDL appears to
borrow terminologies from Pi-Calculus, the link to this or any other formalism is not
clearly established [17].

We have noticed some debatable issues about the guard expressions during our inves-
tigation of WS-CDL. As discussed in Section 4, the semantics for the guards can bring
the problem of unconnectedness. A workunit with the form of r1.x = 1:comm (r1.x

c→
r2.y, rec, op) : true may be troublesome, since r1 may send a few messages and then
terminate according to the guard r1.x = 1, while r2 will wait for infinite number of
messages because it does not have a guard. Therefore, a deadlock is inevitable. More-
over, even if we define the guard as r1.x = 1 ∧ r2.y = 2, we are still not sure
whether the choreography is deadlock-free, because r1.x = 1 and r2.y = 2 may
not become true (or false) simultaneously. Similarly, although the conditional activ-
ity (r1.x = 1)?(r2.y := 1) is permitted by the specification, it is usually not a desirable
choreography. In [1,13], after automatic projection to BPEL, blank guards for those un-
mentioned roles are generated for the user to fill in, which is obviously not a simple
task.

In this paper, we have simplified the problem by adding a requirement that each
variable appearing in the guard must be accessible by each role. Some clearer and more
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understandable structures should be investigated and designed in the future, which is a
very interesting future work.

7 Conclusion and Future Work

The goal of the WS-CDL language is to propose a declarative, XML-based language
that concerns about global, multi-party, peer-to-peer collaborations in the web services
area. One of the important problems related to WS-CDL is the lack of separation be-
tween its meta-model and its syntax. A formal semantics can provide validation capa-
bilities for WS-CDL.

In this paper, we define a simple language CDL which covers the features of WS-
CDL related to the participant roles and the collaborations among roles. A formal oper-
ational semantics for the language is presented. Based on the semantics, we discussed
how to 1) project a given choreography to orchestration views, which provides a ba-
sis for the implementation of the choreography by code generation; 2) apply model-
checking technique to automatically verify the correctness of a given choreography.
Given a system, we might check its consistency, and various properties (e.g. no dead-
lock), and the satisfaction with business constraints. We have developed an automatic
translation tool from WS-CDL to the input language of the model checker SPIN. The
user only needs to provide a WS-CDL specification, and then do simulation or verifica-
tion automatically. We have tried several cases using our translation tool, and managed
to verify some useful properties.

Towards the semantics and verification of full WS-CDL, CDL focuses on just a few
key issues related to web service choreography. The goal in the designing of CDL is to
make the proof of its properties as concise as possible, while still capturing the core fea-
tures of WS-CDL. The features of WS-CDL that CDL does model include roles, vari-
ables, activities (control-flow, workunit, skip, assignment, interaction) and choreogra-
phy. CDL omits some advanced features such as some details of the channel, exception
and finalize blocks. Other features missing from CDL include base types (relationship
type, participant type, information type), token, token locator, expressions and some
basic activities such as silent and perform. Extending CDL to include more features of
WS-CDL will be one direction of our further work.

For future work, we want to integrate the exception handling and finalize block
mechanisms into our model, which are important facilities to support long-running in-
teraction in WS-CDL. The conformance problem between orchestration and choreog-
raphy, i.e. whether some given BPEL orchestration processes are consistent with the
given WS-CDL choreography model, also needs further investigation.

Acknowledgements. We would like to thank Cai Chao, Dai Xiwu and Pu Geguang for
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