
Greedy in Approximation Algorithms�

Julián Mestre

Department of Computer Science
University of Maryland, College Park, MD 20742

Abstract. The objective of this paper is to characterize classes of prob-
lems for which a greedy algorithm finds solutions provably close to op-
timum. To that end, we introduce the notion of k-extendible systems, a
natural generalization of matroids, and show that a greedy algorithm is a
1
k
-factor approximation for these systems. Many seemly unrelated prob-

lems fit in our framework, e.g.: b-matching, maximum profit scheduling
and maximum asymmetric TSP.

In the second half of the paper we focus on the maximum weight b-
matching problem. The problem forms a 2-extendible system, so greedy
gives us a 1

2 -factor solution which runs in O(m log n) time. We improve
this by providing two linear time approximation algorithms for the prob-
lem: a 1

2 -factor algorithm that runs in O(bm) time, and a
(2

3 − ε
)
-factor

algorithm which runs in expected O
(
bm log 1

ε

)
time.

1 Introduction

Perhaps the most natural first attempt at solving any combinatorial optimization
problem is to design a greedy algorithm. The underlying idea is simple: we make
locally optimal choices hoping that this will lead us to a globally optimal solution.
Needless to say that such an algorithm may not always work, therefore a natural
question to ask is: for which class of problems does this approach work? A
classical theorem due to Edmonds and Rado answers this question; to state this
result we first need to define our problem more rigorously.

A subset system is a pair (E, L), where E is a finite set of elements and L

is a collection of subsets of E such that if A ∈ L and A′ ⊆ A then A′ ∈ L.
Sets in L are called independent, and should be regarded as feasible solutions of
our problem. Given a positive weight function w : E → R

+ there is a natural
optimization problem associated with (E, L) and w, namely that of finding an
independent set of maximum weight. We want to study the following algorithm,
which from now on we simply refer to as Greedy: start from the empty solution
and process the elements in decreasing weight order, add an element to the
current solution only if its addition preserves independence.

A matroid is a subset system (E, L) for which the following property holds:

∀ A, B ∈ L and |A| < |B| then ∃ z ∈ B \ A such that A + z1 ∈ L

� Research supported by NSF Awards CCR-01-05413 and CCF-04-30650, and the
University of Maryland Dean’s Dissertation Fellowship.

1 The notation A + z means A ∪ {z}, likewise A − z means A \ {z}.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 528–539, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Greedy in Approximation Algorithms 529

Matroids were first introduced by Whitney [24] as an abstraction of the notion
of independence from linear algebra and graph theory. Rado [21] showed that if
a given problem has the matroid property then Greedy always finds an optimal
solution. In turn, Edmonds [11] proved the other direction of the implication,
i.e., if Greedy finds an optimal solution for any weight function defined on the
elements then the problem must have the matroid property.

A rich theory of matroids exists, see [22, 18] for a thorough treatment of the
subject. Many generalizations along two main directions have been proposed.
One approach is to define a more general class of problems. Greedy no longer
works, therefore alternative algorithms must be designed; examples of this are
greedoids [15], two-matroid intersection [10], and matroid matching [17]. Another
approach is to study structures where Greedy finds optimal solutions for some,
but not all weight functions; symmetric matroids [7], sympletic matroids [6] and
the work of Vince [23] are along these lines.

Although different in nature, both approaches have the same objective in
mind: exact solutions. In this paper we study Greedy from the point of view
of approximation algorithms. Our main contribution is the introduction of k-
extendible systems, a natural generalization of matroids. We show that Greedy
is a 1

k -factor approximation for k-extendible systems.
Given a subset system (E, L), Korte and Hausman [14] showed that for the

maximization problem defined by (E, L), Greedy achieves its worst approxi-
mation ratio on 0-1 weight functions. Consider the 0-1 function wA defined as
wA(x) = 1 for x ∈ A and 0 otherwise. The cost of the solution Greedy finds,
comes from the elements in A the algorithm happens to pick, these elements
form an independent set which is maximal with respect to A. Let γA be the
ratio between the smallest and the largest maximal independent subsets of A.
Notice that γA is the worst greedy can do on wA. Let γ = minA⊆E γA. Korte
and Hausman showed that Greedy is a γ-factor approximation for (E, L).

While this result tells us how well Greedy performs on a particular system, in
some cases it may be difficult to establish γ for a given combinatorial problem—
which can be regarded as a class of systems, as every instance of the problem
defines a system. Our k-extendible framework better highlights the structure
of the problem and allows us to easily explain the performance of Greedy on
seemingly unrelated problems such as b-matching, maximum profit scheduling
and maximum asymmetric TSP. For some of these, an algorithm tailored to the
specific problem yields a better approximation ratio than that offered by Greedy.
This should not come as a surprise, after all Greedy is a generic algorithm that we
can try on nearly every problem. The goal of this paper is to characterize those
problems for which a simple greedy strategy produces nearly optimal solutions
and to better understand its shortcomings. Along these lines is the recent work by
Borodin et al. [5], who introduced the paradigm of priority algorithms, a formal
class of algorithms that captures most greedy-like algorithms. Lower bounds
on the approximation ratio any priority algorithm can achieve were derived for
scheduling [5], set cover, and facility location problems [1].

530 J. Mestre

In particular, our framework explains why Greedy produces 1
2 -approximate

solutions for b-matching. Given a graph G = (V, E) with n vertices and m
edges and degree constraints b : V → N for the vertices, a b-matching is a set of
edges M such that for all v ∈ V the number of edges in M incident to v, de-
noted by degM (v), is at most b(v). Polynomial time algorithms exist to solve the
problem optimally: A maximum size b-matching can be found in O(nm log n)
time and maximum weight in O

(∑
b(v)min(m log n, n2)

)
time; both results

are due to Gabow [12]. Greedy on the other hand produces approximate so-
lutions but has the advantage of being simple and much faster, running in just
O(m log n) time. This time savings can be further improved. For instance, for
maximum weight matching (the case where b(v) = 1 for all v) Preis [20] proposed
a 1

2 -approximation algorithm which runs in linear time. Drake et al. [9] designed
an alternative simpler algorithm that greedily finds disjoint heavy paths and
keeps the best of the two matchings defined on the path; the same authors in
later work [8] designed an algorithm with an approximation factor of 2

3 −ε which
runs in O

(
m
ε

)
time. Finally, Pettie and Sanders [19] gave randomized and deter-

ministic algorithms with the same approximation guarantee of 2
3 − ε which run

in O(m log 1
ε) time. We note that a better approximation ratio can be obtained

using local search [2] or the limited-backtrack greedy scheme of Arora et at [3],
albeit at a very high running time. The challenge here is to get a fast algorithm
with a good approximation guarantee.

In the second half of the paper we explore this tradeoff for b-matching and pro-
vide a 1

2 -approximation which runs in O(bm) time and a
(2

3 − ε
)
-factor random-

ized algorithm that runs in expected O
(
bm log 1

ε

)
time, where b = maxu b(u).

Our algorithms build upon the work of [9] and [19]. The main difficulty in ex-
tending previous results to b-matching is the way the optimal solution and the
one produced by the algorithm are compared in the analysis. This was done by
taking the symmetric difference of the two, which for matchings yields a collec-
tion of simple paths and cycles. Unfortunately this does not work for b-matching,
a more careful pairing argument must be provided.

2 k-Extendible Systems

The following definitions are with respect to a given system (E, L) and a par-
ticular weight function. Let A ∈ L, we say B is an extension of A if A ⊆ B
and B ∈ L. We denote by OPT(A) an extension of A with maximum weight.
Note that OPT(∅) is an independent set with maximum weight.

Definition 1. The subset system (E, L) is k-extendible if for all C ∈ L and x /∈
C such that C +x ∈ L and for every extension D of C there exists a subset Y ⊆
D \ C with |Y | ≤ k such that D \ Y + x ∈ L.

Notice that if x ∈ D or C = D then the property holds trivially by letting Y = ∅,
therefore we do not need to consider these two cases in our proofs.

Our goal is to characterize problems for which a greedy algorithm will produce
good solutions. In Section 2.1 we show that Greedy is a 1

k -factor approximation

Greedy in Approximation Algorithms 531

for k-extendible systems. We also show a close relation between k-extendible
systems and matroids, starting with the following theorem:

Theorem 1. The system (E, L) is a matroid if and only if is 1-extendible.

Proof. First we prove the ⇒ direction: given sets C ⊂ D ∈ L and an element
x /∈ D we need to find Y such that D \ Y + x is independent. Set A = C + x
and B = D. If |A| = |B| then the two sets differ by one element, by setting
Y = B \A we get the k-extendible property. Otherwise we can repeatedly apply
the matroid property to add an element from B \ A to A until |A| = |B|.
Again Y = D \ A has cardinality 1. Since D \ Y + x = A ∈ L we get that (E, L)
is 1-extendible.

Let us show the other direction. Given two independent sets A and B such
that |A| < |B|, we need to find z. Notice that if A ⊆ B we are done, any z ∈ B\A
will do, this is because any subset of B ∈ L is independent, in particular A + z.
Suppose then that A �⊆ B. The idea is to pick x ∈ A\B and then find, if needed,
an element y in B \ A such that B − y + x ∈ L. Remove y from B, add x, and
repeat until A ⊆ B, at this point return any element z ∈ B \ A.

Pick any x in A \ B, if B + x ∈ L we are done since we do not need to pick
a y. Otherwise, set C = A ∩ B and D = B, since the system is 1-extendible
there exists Y such that D \ Y + x ∈ L. Moreover Y consists of exactly one
element y ∈ D \ C = B \ A, which is exactly what we were looking for. �

2.1 Greedy

Given (E, L) and w : E → R
+ a natu-

ral first attempt at finding a maximum
weight independent set is to use the
greedy algorithm on the right. Start-
ing from an empty solution S, we try
to add elements to S one at a time, in
decreasing weight order. We add x to
S only if S + x is independent.

greedy(G, w)
1 sort edges in decreasing weight
2 S ← ∅
3 for x ∈ E in order
4 do if S + x ∈ L

5 then S ← S + x
6 return S

Corollary 1. Greedy solves the optimization problem defined by (E, L) for any
weight function if and only if (E, L) is 1-extendible.

This follows from Theorem 1 and the work of Rado [21] and Edmonds [11]. Now
we generalize one direction of this result for arbitrary k.

Theorem 2. Let (E, L) be k-extendible, Greedy is a 1
k -factor approximation for

the optimization problem defined by (E, L) and any weight function w.

Let x1, x2, . . . xl be the elements picked by greedy, also let S0 = ∅, . . . Sl be the
successive solutions, that is Si = Si−1 + xi. To prove Theorem 2 we need the
following lemma whose proof we defer for a moment.

Lemma 1. If (E, L) is k-extendible then the ith element xi picked by Greedy is
such that w(OPT(Si−1)) ≤ w(OPT(Si)) + (k − 1)w(xi).

532 J. Mestre

Remember that we can express the optimal solution as OPT(∅). Starting from S0
we can apply Lemma 1 l times to get:

w(OPT(S0)) ≤ w(OPT(Sl)) + (k − 1)
l∑

i=1

w(xi)

= w(Sl) + (k − 1)w(Sl)
= k w(Sl).

We can replace w(OPT(Sl)) with w(Sl) because the set Sl is maximal. Hence
Greedy returns a solution Sl with cost at least 1

k that of the optimal solution.
Now it all boils down to proving Lemma 1.

Notice that OPT(Si−1) is an extension of Si−1. Since Si−1 + xi ∈ L, we can
find Y ⊆ OPT(Si−1) \ Si−1 such that OPT(Si−1) \ Y + xi ∈ L. Thus,

w(OPT(Si−1)) = w(OPT(Si−1) \ Y + xi) + w(Y) − w(xi),

≤ w(OPT(Si)) + w(Y) − w(xi).

The second line follows because OPT(Si−1)\Y +xi is an extension of Si−1 + xi

and OPT(Si) is one with maximum weight. Now let us look at an element y ∈ Y ,
we claim that w(y) ≤ w(xi). Suppose for the sake of contradiction that w(y) >
w(xi). Since y /∈ Si−1 this means that y was considered by Greedy before xi and
was dropped. Therefore there exist j ≤ i such that Sj + y /∈ L, but Sj + y ⊆
OPT(Si−1) ∈ L, a contradiction. All weights are positive, therefore w(Y) ≤
kw(xi), and the lemma follows.

2.2 Examples of k-Extendible Systems

Now we show that many natural problems fall in our k-extendible framework.

Maximum weight b-matching: Given a graph G = (V, E) and degree con-
straints b : V → N for the vertices, a b-matching is a set of edges M such that
for all v ∈ V the number of edges in M incident to v, denoted by degM (v), is at
most b(v).

Theorem 3. The subset system associated with b-matching is 2-extendible.

Proof. Let C + (u, v) and D be valid solutions, where C ⊆ D and (u, v) /∈ D.
We know that degC(u) < b(u) and degC(v) < b(v), otherwise C + (u, v) would
not be a valid solution. Now if degD(u) = b(u) we can find an edge in D \ C
incident to u, add this edge to Y and do the same for the other endpoint.
Clearly D \ Y + (u, v) ∈ L and |Y | ≤ 2, therefore the system is 2-extendible. �

Maximum profit scheduling: We are to schedule n jobs on a single machine.
Each job i has release time ri, deadline di, and profit wi, all positive integers.
Every job takes the same amount of time L ∈ Z+ to process. (See [4] for a
2-approximation algorithm when the job lengths are arbitrary.) Our objective is
to find a non-preemptive schedule that maximizes the weight of the jobs done
on time. A job i is done on time if it starts and finishes in the interval [ri, di].

Greedy in Approximation Algorithms 533

Theorem 4. The subset system associated with maximum profit scheduling is
1-extendible when L = 1.

Proof. Let C + i be a feasible set of jobs, and D and extension of C. A schedule
for a certain set of jobs can be regarded as matching between those jobs and
time slots. Let M1 and M2 be the matchings for C + i and D respectively. The
set M1 ∪ M2 contains a path starting on i ending on a job j ∈ D \ C or a time
slot t. Alternating the edges of M2 along the path we get a schedule for D+ i− j
in the first case, and for D + i in the latter. �

For L > 1 we model the problem with a slightly different subset system. Let
the elements of E be pairs (i, t) where t denotes the time job i is scheduled, and
ri ≤ t ≤ di−L. A set of elements is independent if it specifies a feasible schedule.
Greedy considers the jobs in decreasing weight and adds the job being processed
somewhere in the current schedule, if no place is available the job is dropped.

Theorem 5. The subset system described above for maximum profit scheduling
is 2-extendible for any L > 1.

Proof. Let C + (i, t) be a feasible schedule and D and extension of C. Adding i
at time t to D may create some conflicts, which can be fixed by removing the
jobs i overlaps with. Since all jobs have the same length, job i overlaps with at
most two other jobs. �

Maximum asymmetric traveling salesman problem: We are given a com-
plete directed graph with non-negative weights and we must find a maximum
weight tour that visits every city exactly once. The problem is NP-hard; the best
known approximation factor for it is 5

8 [16].
The elements of our subset system are the directed edges of the complete

graph; a set is independent if its edges form a collection of vertex disjoint paths
or a cycle that visits every vertex exactly once.

Theorem 6 ([13]). The subset system for maximum ATSP is 3-extendible.

Proof. As usual let C +(x, y) be independent, and D be an extension of C. First
remove from D the edges (if any) out of x and into y, these are clearly at most
two and not in C. If we add (x, y) to D then every vertex has in-degree and
out-degree at most one, but there may be a non-Hamiltonian cycle which uses
(x, y). There must be an edge in the cycle, not in C, that we can remove to break
it. Therefore we need to remove at most three edges in total. �

Matroid intersection: This last theorem shows a nice relationship between
matroids and k-extendible systems.

Theorem 7. The intersection of k matroids is k-extendible

Proof. Let (E, Li) for 1 ≤ i ≤ k be our k matroids and let L = ∩i Li. We need
to show that for every C ⊆ D ∈ L and x /∈ C such that C + x ∈ L there
exist Y ⊆ D \ C with at most k element such that D \ Y + x ∈ L.

534 J. Mestre

Since the above sets are in L they are also in Li. By Theorem 1 these individual
matroids are 1-extendible, therefore we can find Yi with at most one element such
D\Yi+x ∈ Li. Set Y = ∪i Yi, clearly |Y | ≤ k and for all i we have D\Y +x ∈ Li,
which implies independence with respect to L. �

3 A Linear Time 1
2-Approximation for b-Matching

Because maximum weight b-matching can be solved exactly in
O

(∑
b(v)min(m log n, n2)

)
time [12], Greedy should be regarded as a

tradeoff: we sacrifice optimality in order to get a much simpler algorithm which
runs in O(m log n) time. This tradeoff can be further improved to obtain a
linear time 1

2 -approximation, our solution builds upon the work of Drake and
Hougardy [9]. Let b = maxv∈V b(v), in this section we show:

Theorem 8. There is a O(bm) time 1
2 -approximation algorithm for b-matching.

The main procedure of our algorithm, linear-main, iteratively calls find-walk,
which greedily finds a heavy walk. Starting at some vertex u we take the heaviest
edge (u, v) out of u, delete it from the graph, reduce b(u) by one, and repeat
for v. If at some point the b(·) value of a vertex becomes zero we delete all the
remaining edges incident to it.

As we construct the walk we decrease the b(·) value of the vertices in the walk.
Except for the endpoints every node will have its b(·) value decreased by 1 for
every two edges in the walk incident to it. This means that M , the set of all
walks, is not a valid solution as we can only guarantee that degM (u) ≤ 2b(u) for
every vertex u.

Now consider choosing every other edge in a walk starting with the first edge.
For any vertex the number of chosen edges incident to it is at most how much
its b(·) value was decreased while finding this walk. The same holds for the
complement of this set, that is, picking every other edge starting with the second
edge. We can therefore split M into two sets M1 and M2 by taking alternating
edges of individual walks. These are valid solutions to our problem since for every
vertex u we have degMi

(u) ≤ b(u). Because M = M1 ∪M2, picking the one with

linear-main(G, w)
1 M ← ∅
2 while ∃ u ∈ V such that

b(u) > 0 and deg(u) > 0
3 do M ← M + find-walk(u)
4 split M into M1 and M2

5 return argmax{w(Mi)}

find-walk(u)
1 b(u) ← b(u) − 1
2 if deg(u) = 0
3 then return ∅
4 let (u, v) be the heaviest edge out of u
5 remove (u, v) from G
6 if b(u) = 0
7 then remove all edges incident to u
8 return (u, v) + find-walk(v)

Fig. 1. A linear time 1
2 approximation for b-matching

Greedy in Approximation Algorithms 535

maximum weight we are guaranteed a solution with weight at least w(M)
2 . We

now concentrate our effort in showing that w(M) is an upper bound on the cost
of the optimal solution.

Let MOPT be the optimal solution. We can imagine including an additional
step in the find-walk(u) function in which an edge e ∈ MOPT is assigned to
the heavy edge (u, v): If (u, v) ∈ MOPT then we assign it to itself, otherwise
we pick any edge e ∈ MOPT incident to u. In either case after e is assigned we
remove it from MOPT , so that it is not later assigned to a different edge.

It may be that some edges in M do not receive any edge from MOPT , but can
an edge in MOPT be left unassigned? The following lemma answers this question
and relates the cost of the two edges.

Lemma 2. The modified find-walk procedure assigns every edge e ∈ MOPT

to a unique edge (u, v) ∈ M , furthermore w(e) ≤ w(u, v).

Proof. Suppose, for the sake of contradiction, that (x, y) ∈ MOPT was not as-
signed. It is easy to see that if the b(·) value of some vertex u becomes 0 then
all edges in MOPT incident to u must be assigned. Thus when the algorithm
terminated b(x), b(y) > 0 and deg(x) = deg(y) = 0. Therefore the edge (x, y)
must have been deleted from the graph because it was traversed (chosen in M).
In this case we should have assigned (x, y) to itself. We reached a contradiction,
therefore all edges in MOPT are assigned a unique edge in M .

If (x, y) was assigned to itself then the lemma follows, suppose then that it
got assigned to (x, v) in the call find-walk(x). Notice that at the moment the
call was made b(x), b(y) > 0. If at this moment (x, y) was present in the graph
the lemma follows as (x, v) is the heaviest edge out of x. We claim this is the
only alternative. If (x, y) had been deleted before it would be because it was
traversed and thus it should have been assigned to itself. �

An immediate corollary of Lemma 2 is that w(MOPT) ≤ w(M), which as men-
tioned implies the algorithm returns a solution with cost at least w(MOP T)

2 . Now
we turn our attention to the time complexity.

The running time is dominated by the time spent finding heavy edges. This
is done by scanning the adjacency list of the appropriate vertex. An edge (x, y)
may be considered several times while looking for a heavy edge out of x and y.
The key observation is that this can happen at most b(x) + b(y) times. Each
time we reduce the value of either endpoint by one, when one of them reaches
0 all edges incident to that endpoint are deleted and after that (x, y) is never
considered again. Adding up over all edges we get a total time of O(bm).

4 A Randomized
(2

3 − ε
)
-Factor Algorithm

In this section we generalize ideas from Pettie and Sander [19] to improve the
approximation ratio of our linear time algorithm. We will develop a randomized
algorithm that returns a solution with expected weight at least

(2
3 − ε

)
w(MOPT)

and runs in expected O
(
bm log 1

ε

)
time.

536 J. Mestre

linear-random(G, w)
1 M ← ∅
2 do
3 pick a vertex u uniformly at random
4 with prob degM (u)

b
do

5 pick (u, v) ∈ M uniformly at random
6 find max-benefit compatible piece P about (u, v)
7 M ← M ⊕ P
8 with prob b(u)−degM (u)

b
do

9 find max-benefit compatible arm A out of u
10 M ← M ⊕ A
11 repeat k times

Fig. 2. A linear time
(2

3 − ε
)
-factor algorithm for b-matching

Before describing the algorithm we need to define a few terms, all of which
are with respect to a given solution M . An edge e is matched if e ∈ M otherwise
we say e is free. A set of edges S can be used to update the matching by taking
the symetric difference of M and S denoted by M ⊕ S = (M ∪ S) \ (M ∩ S).
The set S is said to be compatible with M if M ⊕ S is a valid b-matching.

Our algorithm works by iteratively finding a compatible set of edges and
updating our current solution M with it. To keep the running time low we only
look for arms and pieces. An arm A out of a vertex u consists of a free edge
(u, x) followed, maybe, by a matched edge (x, y). The benefit of A is defined as
w(u, x) − w(x, y), note that benefit(A) = w(M ⊕ A) − w(M). Let (u, v) ∈ M ,
a piece P about (u, v) consists of the edge (u, v), and, possibly, of arms Au

and Av out of u and v. The benefit of the piece is defined as benefit(Au) +
benefit(Av) − w(u, v). Notice that if Au and Av use the same matched edge
then benefit(P) < w(M ⊕ P) − w(M), otherwise these two quantities are the
same.

We now describe in detail an iteration of our algorithm. First we pick a vertex
u uniformly at random. Then we probabilistically decide to either: choose an edge
(u, v) ∈ M and augment M using a max-benefit compatible piece about (u, v),
augment M with a max-benefit compatible arm out of u, or simply do nothing.
See Fig. 2 for the exact probabilities of these events. This is repeated k times,
the parameter k will be determined later to obtain:

Theorem 9. The procedure linear-random finds a b-matching in
O

(
bm log 1

ε

)
time with expected weight at least

(2
3 − ε

)
w(MOPT).

Let us first prove the approximation ratio of linear-random. Our plan is to
construct a set Q of pieces and arms with benefit at least 2w(MOPT) − 3w(M)
and then argue that the expected gain of each iteration is a good fraction of
this. Note that if 2w(MOPT) − 3w(M) ≤ 0 then M is already a 2

3 -approximate
solution. In what follows we assume without loss of generality that MOPT and
M are disjoint—any overlap only makes our bounds stronger.

Greedy in Approximation Algorithms 537

In order to construct Q we need to pair edges of MOPT and M . Every edge
(u, v) ∈ MOPT is paired with (u, x) ∈ M via u and (v, y) ∈ M via v in such a way
that every edge in M is paired with at most two edges, one via each endpoint.
If degMOP T

(u) > degM (u) then the excess of MOPT edges are assigned to u.
Thus every edge (u, v) ∈ MOPT is paired/assigned exactly twice, once via each
endpoint.

For every edge (u, x) ∈ M we build a piece P by finding arms Au and Ax out
of u and x. To construct Au follow, if any, the edge (u, y) ∈ MOPT paired with
(u, x) via u, then take, if any, the edge (y, z) ∈ M paired with (u, y) via y. A
similar procedure is used to construct Ax. Finally we assign P to vertex u and
add it to Q. Also for every u ∈ V which has been assigned edges (u, v) ∈ MOPT

we grow an arm A out of u using (u, v). These arms are assigned to u and added
to Q.

Every edge in MOPT appears in exactly two of the pieces and arms in Q,
on the other hand every edge in M appears at most three times. Therefore the
benefit of Q is at least 2w(MOPT) − 3w(M).

How many pieces/arms can be assigned to a single vertex u? At most degM (u)
pieces, one per (u, x) ∈ M , and at most b(u) − degM (u) arms, one per (u, v) ∈
MOPT which did not get paired up with M edges via u. A simple case analysis
shows that all these pieces and arms are compatible with M . Therefore the
expected benefit of the piece or arm picked in any given iteration is:

E[benefit] =
1
n

∑

u∈V

b(u) − degM (u)
b

max-arm(u) +
∑

(u,v)∈M

1
b
max-piece(u, v)

≥ 1
bn

∑

u∈V

benefit of pieces/arms assigned to u

≥ 1
bn

benefit(Q)

≥ 3
bn

(
2
3
w(MOPT) − w(M)

)

From this inequality we can derive the following lemma which is very similar
to Lemma 3.3 from [19], we include its proof for completeness.

Lemma 3. After running linear-random for k iterations M has an expected
weight of at least 2

3w(MOPT)(1 − e−
3k
bn)

Proof. Let Xi = 2
3w(MOPT) − w(Mi), where Mi is the matching we get at the

end of the ith iteration. From the above inequality and the fact that the gain of
each iteration is at least as much as the benefit of the piece/arm found we can
infer that E[Xi+1|Xi] ≤ Xi − 3

bnXi. Thus E[Xi+1] ≤ E[Xi]
(
1 − 3

bn

)
, and

E[Xk] ≤ E[X0]
(

1 − 3
bn

)k

≤ 2
3
w(MOPT) e−

3k
bn .

538 J. Mestre

By setting k = bn
3 log 1

ε we get a matching with expected cost at least(2
3 − ε

)
w(MOPT). Let us now turn our attention to the running time.

To compute a max benefit arm out of a vertex u we follow free edges (u, v)
and if degM (v) = b(v) we scan the list of matched edges incident to v to find
the lightest such edge; among the arms found we return the best. Notice that
this can take as much as O(b deg(v)) time. Suppose now, that we already had
computed for every vertex which is the lightest matched edge incident to it, then
the task can be carried out in just O(deg(v)) time.

To produce a max benefit piece about (u, v) we can try finding max bene-
fit arms out of u and v in O(deg(u) + deg(v)) time. This unfortunately does
not always work as the resulting piece may not be compatible, consider find-
ing arms {(u, x)} and {(v, x)} with degM (x) = b(x) − 1, or {(u, x), (x, z)} and
{(v, x), (x, z)} with degM (x) = b(x); both arms are compatible by themselves,
but x cannot take both at once. If this problem arises, it can be solved by taking
the best arm for u and the second best arm for v, or the other way around, and
keeping the best pair. To find the second best arm we need to have access to the
second lightest matched edge incident to any vertex.

Once we found our piece/arm we have to update the matching. This may
change the lightest matched edges incident to vertices on the piece/arm. Since
there are most 6 such vertices the update can be carried out in O(b) time. The
expected work done in a single iteration is given by:

E[work] ≤ 1
n

∑

u∈V

b(u) − degM (u)
b

(deg(u) + b) +
∑

(u,v)∈M

1
b
(deg(u) + deg(v) + b)

≤ 1
n

∑

v∈V

deg(u) + b(u) +
∑

(u,v)∈M

1
b

deg(v) ≤ 3
n

∑

u∈V

deg(u) =
6m

n

The third inequality assumes b(u) ≤ deg(u). If this is not the case we can just
set b(u) to be deg(u) which does not change the optimal solution.

There are k = bn
3 log 1

ε iterations each taking O(m
n) time, by linearity of

expectation the total expected running time is O(bm log 1
ε).

5 Conclusion

We introduced the notion of k-extendible systems which allowed us to explain
the performance of the greedy algorithm on seemingly disconnected problems.
We also provided better approximation algorithms for b-matching, a specific
problem that falls in our framework. It would be interesting to improve the
approximation factor of other problems in this class beyond 1

k .

Acknowledgments. Thanks to Hal Gabow and Allan Borodin for their en-
couraging words and for providing references to recent work on approximating
maximum weight matching and priority algorithms. Special thanks to Samir
Khuller for pointing out the problem and providing comments on earlier drafts.

Greedy in Approximation Algorithms 539

References

1. S. Angelopoulos and A. Borodin. The power of priority algorithms for facility
location and set cover. Algorithmica, 40(4):271–291, 2004.

2. E. M. Arkin and R. Hassin. On local search for weighted k-set packing. Mathematics
of Operations Research, 23(3):640–648, 1998.

3. V. Arora, S. Vempala, H. Saran, and V. V. Vazirani. A limited-backtrack greedy
schema for approximation algorithms. In FSTTCS, pages 318–329, 1994.

4. A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. S. Naor, and B. Schieber. A unified
approach to approximating resource allocation and scheduling. Journal of the
ACM, 48(5):1069–1090, 2001.

5. A. Borodin, M. N. Nielsen, and C. Rockoff. (Incremental) Priority algorithms.
Algorithmica, 37(4):295–326, 2003.

6. A. V. Borovik, I. Gelfand, and N. White. Symplectic matroid. Journal of Algebraic
Combinatorics, 8:235–252, 1998.

7. A. Bouchet. Greedy algorithm and symmetric matroids. Mathematical Program-
ming, 38:147–159, 1987.

8. D. E. Drake and S. Hougardy. Improved linear time approximation algorithms for
weighted matchings. In APPROX, pages 14–23, 2003.

9. D. E. Drake and S. Hougardy. A simple approximation algorithm for the weighted
matching problem. Information Processing Letters, 85:211–213, 2003.

10. J. Edmonds. Minimum partition of a matroid into independent subsets. J. of
Research National Bureau of Standards, 69B:67–77, 1965.

11. J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming,
1:127–36, 1971.

12. H. N. Gabow. An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In STOC, pages 448–456, 1983.

13. T. A. Jenkyns. The greedy travelling salesman’s problem”. Networks, 9:363–373,
1979.

14. B. Korte and D. Hausmann. An analysis of the greedy algorithm for independence
systems. Ann. Disc. Math., 2:65–74, 1978.

15. B. Korte and L. Lovász. Greedoids—a structural framework for the greedy algo-
rithm. In Progress in Combinatorial Optimization, pages 221–243, 1984.

16. M. Lewenstein and M. Sviridenko. Approximating asymmetric maximum TSP. In
SODA, pages 646–654, 2003.

17. L. Lovász. The matroid matching problem. In Algebraic Methods in Graph Theory,
Colloquia Mathematica Societatis Janos Bolyai, 1978.

18. J. G. Oxley. Matroid Theory. Oxford University Press, 1992.
19. S. Pettie and P. Sanders. A simpler linear time 2/3−ε approximation to maximum

weight matching. Information Processing Letters, 91(6):271–276, 2004.
20. R. Preis. Linear time 1/2-approximation algorithm for maximum weighted match-

ing in general graphs. In STACS, pages 259–269, 1999.
21. R. Rado. A theorem on independence relations. Quart. J. Math., 13:83–89, 1942.
22. A. Schrijver. Combinatorial Optimization. Springer, 2003.
23. A. Vince. A framework for the greedy algorithm. Discrete Applied Mathematics,

121(1-3):247–260, 2002.
24. H. Whitney. On the abstract properties of linear dependence. American Journal

of Mathematic, 57:509–533, 1935.

	Introduction
	k-Extendible Systems
	Greedy
	Examples of k-Extendible Systems

	A Linear Time $\frac{1}{2}$-Approximation for b-Matching
	A Randomized $\left(\frac{2}{3} - \epsilon\right)$-Factor Algorithm
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

