
Less Hashing, Same Performance: Building a
Better Bloom Filter

Adam Kirsch� and Michael Mitzenmacher��

Division of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138
{kirsch, michaelm}@eecs.harvard.edu

Abstract. A standard technique from the hashing literature is to use
two hash functions h1(x) and h2(x) to simulate additional hash functions
of the form gi(x) = h1(x) + ih2(x). We demonstrate that this technique
can be usefully applied to Bloom filters and related data structures.
Specifically, only two hash functions are necessary to effectively imple-
ment a Bloom filter without any loss in the asymptotic false positive
probability. This leads to less computation and potentially less need for
randomness in practice.

1 Introduction

A Bloom filter is a simple space-efficient randomized data structure for repre-
senting a set in order to support membership queries. Although Bloom filters
allow false positives, the space savings often outweigh this drawback. The Bloom
filter and its many variations have proven increasingly important for many ap-
plications (see, for example, the survey [3]). Although potential alternatives have
been proposed [15], the Bloom filter’s simplicity, ease of use, and excellent per-
formance make it a standard data structure that is and will continue to be of
great use in many applications. For space reasons, we do not review the standard
Bloom filter results; for more background, see [3].

In this paper, we show that applying a standard technique from the hash-
ing literature can simplify the implementation of Bloom filters significantly. The
idea is the following: two hash functions h1(x) and h2(x) can simulate more
than two hash functions of the form gi(x) = h1(x) + ih2(x). (See, for example,
Knuth’s discussion of open addressing with double hashing [11].) In our con-
text i will range from 0 up to some number k − 1 to give k hash functions,
and the hash values are taken modulo the size of the relevant hash table. We
demonstrate that this technique can be usefully applied to Bloom filters and
related data structures. Specifically, only two hash functions are necessary to ef-
fectively implement a Bloom filter without any increase in the asymptotic false
positive probability. This leads to less computation and potentially less need
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for randomness in practice. Specifically, in query-intensive applications where
computationally non-trivial hash functions are used (such as in [5, 6]), hashing
can be a potential bottleneck in using Bloom filters, and reducing the number
of required hashes can yield an effective speedup. This improvement was found
empirically in the work of Dillinger and Manolios [5, 6], who suggested using the
hash functions gi(x) = h1(x) + ih2(x) + i2 mod m, where m is the size of the
hash table.

Here we provide a full theoretical analysis that holds for a wide class of vari-
ations of this technique, justifies and gives insight into the previous empirical
observations, and is interesting in its own right. In particular, our methodology
generalizes the standard asymptotic analysis of a Bloom filter, exposing a new
convergence result that provides a common unifying intuition for the asymptotic
false positive probabilities of the standard Bloom filter and the generalized class
of Bloom filter variants that we analyze in this paper. We obtain this result by a
surprisingly simple approach; rather than attempt to directly analyze the asymp-
totic false positive probability, we formulate the initialization of the Bloom filter
as a balls-and-bins experiment, prove a convergence result for that experiment,
and then obtain the asymptotic false positive probability as a corollary.

We start by analyzing a specific, somewhat idealized Bloom filter variation
that provides the main insights and intuition for deeper results. We then move
to a more general setting that covers several issues that might arise in practice,
such as when the size of the hash table is a power of two as opposed to a prime.

Because of space limitations, we leave some results in the full version of this
paper [10]. For example, rate of convergence results appear in the full version
[10], although in Section 6 we provide some experimental results showing that the
asymptotics kick in quickly enough for this technique to be effective in practice.
Also, in the full version we demonstrate the utility of this approach beyond the
simple Bloom filter by showing how it can be used to reduce the number of hash
functions required for Count-Min sketches [4], a variation of the Bloom filter
idea used for keeping approximate counts of frequent items in data streams.

Before beginning, we note that Luecker and Molodowitch [12] and Schmidt
and Siegel [17] have shown that in the setting of open addressed hash tables,
the double hashing technique gives the same performance as uniform hashing.
These results are similar in spirit to ours, but the Bloom filter setting is suffi-
ciently different from that of an open addressed hash table that we do not see
a direct connection. We also note that our use of hash functions of the form
gi(x) = h1(x) + ih2(x) may appear similar to the use of pairwise independent
hash functions, and that one might wonder whether there is any formal con-
nection between the two techniques in the Bloom filter setting. Unfortunately,
this is not the case; a straightforward modification of the standard Bloom filter
analysis yields that if pairwise independent hash functions are used instead of
fully random hash functions, then the space required to retain the same bound
on the false positive probability increases by a constant factor. In contrast, we
show that using the gi’s causes no increase in the false positive probability, so
they can truly be used as a replacement for fully random hash functions.
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2 A Simple Construction Using Two Hash Functions

As an instructive example case, we consider a specific application of the general
technique described in the introduction. We devise a Bloom filter that uses
k fully random hash functions on some universe U of items, each with range
{0, 1, 2, . . . , p − 1} for a prime p. Our hash table consists of m = kp bits; each
hash function is assigned a disjoint subarray of p bits in the filter, that we
treat as numbered {0, 1, 2, . . . , p − 1}. Our k hash functions will be of the form
gi(x) = h1(x) + ih2(x) mod p, where h1(x) and h2(x) are two independent,
uniform random hash functions on the universe with range {0, 1, 2, . . . , p − 1},
and throughout we assume that i ranges from 0 to k − 1.

As with a standard partitioned Bloom filter, we fix some set S ⊆ U and
initialize the filter with S by first setting all of the bits to 0 and then, for each
x ∈ S and i, setting the gi(x)-th bit of the i-th subarray to 1. For any y ∈ U , we
answer a query of the form “Is y ∈ S?” with “Yes” if and only if the gi(y)-th bit
of the i-th subarray is 1 for every i. Thus, an item z �∈ S generates a false positive
if and only if each of its hash locations in the array is also a hash location for
some x ∈ S.

The advantage of our simplified setting is that for any two elements x, y ∈
U , exactly one of the following three cases occurs: gi(x) �= gi(y) for all i, or
gi(x) = gi(y) for exactly one i, or gi(x) = gi(y) for all i. That is, because we
have partitioned the bit array into disjoint hash tables, each hash function can
be considered separately. Moreover, by working modulo p, we have arranged that
if gi(x) = gi(y) for at least two values of i, then we must have h1(x) = h1(y) and
h2(x) = h2(y), so all hash values are the same. This codifies the intuition behind
our result: the most likely way for a false positive to occur is when each element
in the Bloom filter set S collides with at most one array bit corresponding to
the element generating the false positive; other events that cause an element to
generate a false positive occur with vanishing probability. It is this intuition that
motivates our analysis; in Section 3, we consider more general cases where other
non-trivial collisions can occur.

Proceeding formally, we fix a set S = {x1, x2, . . . , xn} of n elements from U
and another element z /∈ S, and compute the probability that z yields a false
positive. A false positive corresponds to the event F that for each i there is (at
least) one j such that gi(z) = gi(xj). Obviously, one way this can occur is if
h1(xj) = h1(z) and h2(xj) = h2(z) for some j. The probability of this event E is

Pr(E) = 1 −
(
1 − 1/p2)n

= 1 −
(
1 − k2/m2)n

.

Notice that when m/n = c is a constant and k is a constant, as is standard for
a Bloom filter, we have Pr(E) = o(1). Now since

Pr(F) = Pr(F | E)Pr(E) + Pr(F | ¬E)Pr(¬E)
= o(1) + Pr(F | ¬E)(1 − o(1)),

it suffices to consider Pr(F | ¬E) to obtain the (constant) asymptotic false
positive probability.
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Conditioned on ¬E and (h1(z), h2(z)), the pair (h1(xj), h2(xj)) is uniformly
distributed over the p2 − 1 values in V = {0, . . . , p − 1}2 − {(h1(z), h2(z))}. Of
these, for each i∗ ∈ {0, . . . , k − 1}, the p − 1 pairs in

Vi∗ = {(a, b) ∈ V : a ≡ i∗(h2(z) − b) + h1(z) mod p, b �≡ h2(z) mod p}

are the ones such that if (h1(xj), h2(xj)) ∈ Vi∗ , then i∗ is the unique value of i
such that gi(xj) = gi(z). We can therefore view the conditional probability as
a variant of a balls-and-bins problem. There are n balls (each corresponding to
some xj ∈ S), and k bins (each corresponding to some i∗ ∈ {0, . . . , k−1}). With
probability k(p − 1)/(p2 − 1) = k/(p + 1) a ball lands in a bin, and with the
remaining probability it is discarded; when a ball lands in a bin, the bin it lands
in is chosen uniformly at random. What is the probability that all of the bins
have at least one ball?

This question is surprisingly easy to answer. By the Poisson approximation,
the total number of balls that are not discarded has distribution Bin(n, k/(p +
1)) ≈ Po(k2/c), where Bin(·, ·) and Po(·) denote the binomial and Poisson distri-
butions, respectively. Since each ball that is not discarded lands in a bin chosen
at random, the joint distribution of the number of balls in the bins is asymp-
totically the same as the joint distribution of k independent Po(k/c) random
variables, by a standard property of Poisson random variables. The probability
that each bin has a least one ball now clearly converges to

Pr(Po(k/c) > 0)k = (1 − exp[−k/c])k ,

which is the asymptotic false positive probability for a standard Bloom filter,
completing the analysis.

We make the above argument much more general and rigorous in Section 3,
but for now we emphasize that we have actually characterized much more than
just the false positive probability of our Bloom filter variant. In fact, we have
characterized the asymptotic joint distribution of the number of items in S hash-
ing to the locations used by some z �∈ S as being independent Po(k/c) random
variables. Furthermore, from a technical perspective, this approach appears fairly
robust. In particular, the above analysis uses only the facts that the probability
that some x ∈ S shares more than one of z’s hash locations is o(1), and that
if some x ∈ S shares exactly one of z’s hash locations, then that hash loca-
tion is nearly uniformly distributed over z’s hash locations. These observations
suggest that the techniques used in this section can be generalized to handle a
much wider class of Bloom filter variants, and form the intuitive basis for the
arguments in Section 3.

3 A General Framework

In this section, we introduce a general framework for analyzing Bloom filter vari-
ants, such as the one examined in Section 2. We start with some new notation.
For any integer �, we define the set [�] = {0, 1, . . . , � − 1} (note that this defini-
tion is slightly non-standard). We denote the support of a random variable X
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by Supp(X). For a multi-set M , we use |M | to denote the number of distinct
elements of M , and ‖M‖ to denote the number of elements of M with multi-
plicity. For two multi-sets M and M ′, we define M ∩ M ′ and M ∪ M ′ to be,
respectively, the intersection and union of M ′ as multi-sets. Furthermore, in an
abuse of standard notation, we define the statement i, i ∈ M as meaning that i
is an element of M of multiplicity at least 2.

We are now ready to define the framework. As before, U denotes the universe
of items and S ⊆ U denotes the set of n items for which the Bloom filter will
answer membership queries. We define a scheme to be a method of assigning
hash locations to every element of U . Formally, a scheme is specified by a joint
distribution of discrete random variables {H(u) : u ∈ U} (implicitly parameter-
ized by n), where for u ∈ U , H(u) represents the multi-set of hash-locations
assigned to u by the scheme. We do not require a scheme to be defined for
every value of n, but we do insist that it be defined for infinitely many val-
ues of n, so that we may take limits as n → ∞. For example, for the class
of schemes discussed in Section 2, we think of the constants k and c as being
fixed to give a particular scheme that is defined for those values of n such that
p

def= m/k is a prime, where m
def= cn. Since there are infinitely many primes, the

asymptotic behavior of this scheme as n → ∞ is well-defined and is the same
as in Section 2, where we let m be a free parameter and analyzed the behav-
ior as n, m → ∞ subject to m/n and k being fixed constants, and m/k being
prime.

Having defined the notion of a scheme, we may now formalize some important
concepts with new notation (all of which is implicitly parameterized by n). We
define H to be the set of all hash locations that can be assigned by the scheme
(formally, H is the set of elements that appear in some multi-set in the support
of H(u), for some u ∈ U). For x ∈ S and z ∈ U −S, define C(x, z) = H(x)∩H(z)
to be the multi-set of hash collisions of x with z. We let F(z) denote the false
positive event for z ∈ U − S, which occurs when each of z’s hash locations is
also a hash location for some x ∈ S.

In the schemes that we consider, {H(u) : u ∈ U} will always be independent
and identically distributed. In this case, Pr(F(z)) is the same for all z ∈ U − S,
as is the joint distribution of {C(x, z) : x ∈ S}. Thus, to simplify the notation,
we may fix an arbitrary z ∈ U −S and simply use Pr(F) instead of Pr(F(z)) to
denote the false positive probability, and we may use {C(x) : x ∈ S} instead of
{C(x, z) : x ∈ S} to denote the joint probability distribution of the multi-sets
of hash collisions of elements of S with z.

The main technical result of this section is the following key theorem, which
is a formalization and generalization of the analysis in Section 2.

Theorem 1. Fix a scheme. Suppose that there are constants λ and k such that:

1. {H(u) : u ∈ U} are independent and identically distributed.
2. For u ∈ U , ‖H(u)‖ = k.
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3. For x ∈ S, Pr(‖C(x)‖ = i) =

⎧
⎨

⎩

1 − λ
n + o(1/n) i = 0

λ
n + o(1/n) i = 1

o(1/n) i > 1
.

4. For x ∈ S, maxi∈H

∣
∣Pr(i ∈ C(x) | ‖C(x)‖ = 1, i ∈ H(z)) − 1

k

∣
∣ = o(1).

Then limn→∞ Pr(F) =
(
1 − e−λ/k

)k
.

Proof. For ease of exposition, we assign every element of H(z) a unique number
in [k] (treating multiple instances of the same hash location as distinct elements).
More formally, we define an arbitrary bijection fM from M to [k] for every multi-
set M ⊆ H with ‖M‖ = k (where fM treats multiple instances of the same hash
location in M as distinct elements), and label the elements of H(z) according
to fH(z). This convention allows us to identify the elements of H(z) by numbers
i ∈ [k], rather than hash locations i ∈ H .

For i ∈ [k] and x ∈ S, define Xi(x) = 1 if i ∈ C(x) and 0 otherwise, and
define Xi

def=
∑

x∈S Xi(x). Note that i ∈ C(x) is an abuse of notation; what
we really mean is f−1

H(z)(i) ∈ C(x), although we will continue using the for-

mer since it is much less cumbersome. We show that Xn def= (X0, . . . , Xk−1)
converges in distribution to a vector P

def= (P0, . . . , Pk−1) of k independent
Po(λ/k) random variables as n → ∞. To do this, we make use of moment
generating functions. For a random variable R, the moment generating func-
tion of R is defined by MR(t) def= E[exp(tR)]. We show that for any t0, . . . , tk,
limn→∞ M∑k−1

i=0 tiXi
(tk) = M∑k−1

i=0 tiPi
(tk), which is sufficient by [1, Theorem 29.4

and p. 390], since M∑ k−1
i=0 tiPi

(tk) = exp
[

λ
k

(∑
i∈k etkti − 1

)]
< ∞, by an easy

calculation. Proceeding, we write

M∑
i∈[k] tiXi

(tk) = M∑
i∈[k] ti

∑
x∈S Xi(x)(tk) = M∑

x∈S

∑
i∈[k] tiXi(x)(tk)

=
(
M∑

i∈[k] tiXi(x)(tk)
)n

,

where the first two steps are obvious, and the third step follows from the fact that
the H(x)’s are independent and identically distributed (for x ∈ S) conditioned on
H(z), so the

∑
i∈[k] tiXi(x)’s are too, since each is a function of the corresponding

H(x). Continuing, we have (as n → ∞)
(
M∑

i∈[k] tiXi(x)(tk)
)n

=
(

Pr(‖C(x)‖ = 0) +
k∑

j=1

Pr(‖C(x)‖ = j)

×
∑

T⊆[k]:|T |=j

Pr(C(x) = f−1
H(z)(T ) | ‖C(x)‖ = j)etk

∑
i∈T ti

)n

=

(

1 − λ

n
+

λ
∑

i∈[k] e
tkti

kn
+ o(1/n)

)n

→ e−λ+ λ
k

∑
i∈[k] etkti = e

λ
k (∑

i∈[k](etkti−1)) = M∑
i∈[k] tiPoi(λk)(tk).
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The first step follows from the definition of the moment generating function.
The second step follows from the assumptions on the distribution of C(x) (the
conditioning on i ∈ H(z) is implicit in our convention that associates integers
in [k] with the elements of H(z)). The next two steps are obvious, and the last
step follows from a previous computation.

We have now established that Xn converges to P in distribution as n → ∞.
Standard facts from probability theory [1] now imply that as n → ∞,

Pr(F) = Pr(∀i ∈ [k], Xi > 0) → Pr(∀i ∈ [k], Pi > 0) =
(
1 − e−λ/k

)k

.


�
It turns out that the conditions of Theorem 1 can be verified very easily in many
cases.

Lemma 1. Fix a scheme. Suppose that there are constants λ and k such that:

1. {H(u) : u ∈ U} are independent and identically distributed.
2. For u ∈ U , ‖H(u)‖ = k.
3. For u ∈ U , maxi∈H

∣
∣Pr(i ∈ H(u)) − λ

kn

∣
∣ = o(1/n).

4. For u ∈ U , maxi1,i2∈H Pr(i1, i2 ∈ H(u)) = o(1/n).
5. The set of all possible hash locations H satisfies |H | = O(n).

Then the conditions of Theorem 1 hold (with the same values for λ and k), and
so the conclusion does as well.

Remark 1. Recall that, under our notation, the statement i, i ∈ H(u) is true if
and only if i is an element of H(u) of multiplicity at least 2.

Proof. The proof is essentially just a number of applications of the first two
Boole-Bonferroni inequalities. For details, see [10].

4 Some Specific Schemes

We are now ready to analyze some specific schemes. In particular, we examine
a natural generalization of the scheme described in Section 2, as well as the
double hashing and extended double hashing schemes introduced in [5, 6]. In
both of these cases, we consider a Bloom filter consisting of an array of m = cn
bits and k hash functions, where c > 0 and k ≥ 1 are fixed constants. The nature
of the hash functions depends on the particular scheme under consideration.

4.1 Partition Schemes

First, we consider the class of partition schemes, where the Bloom filter is defined
by an array of m bits that is partitioned into k disjoint arrays of m′ = m/k bits
(we require that m be divisible by k), and an item u ∈ U is hashed to location

h1(u) + ih2(u) mod m′
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of array i, for i ∈ [k], where h1 and h2 are independent fully random hash
functions with codomain [m′]. Note that the scheme analyzed in Section 2 is a
partition scheme where m′ is prime (and so is denoted by p in Section 2).

Unless otherwise stated, henceforth we do all arithmetic involving h1 and h2
modulo m′. We prove the following theorem concerning partition schemes.

Theorem 2. For a partition scheme, limn→∞ Pr(F) =
(
1 − e−k/c

)k
.

Proof. We show that the H(u)’s satisfy the conditions of Lemma 1 with λ =
k2/c. For i ∈ [k] and u ∈ U , define gi(u) = (i, h1(u) + ih2(u)) and H(u) =
(gi(u) : i ∈ [k]). That is, gi(u) is u’s ith hash location, and H(u) is the multi-set
of u’s hash locations. This notation is obviously consistent with the definitions
required by Lemma 1.

Since h1 and h2 are independent and fully random, the first two conditions
are trivial. The last condition is also trivial, since there are m = cn possible
hash locations. For the remaining two conditions, fix u ∈ U . Observe that for
(i, r) ∈ [k] × [m′],

Pr((i, r) ∈ H(u)) = Pr(h1(u) = r − ih2(u)) = 1/m′ = (k2/c)/kn,

and that for distinct (i1, r1), (i2, r2) ∈ [k] × [m′], we have

Pr((i1, r1), (i2, r2) ∈ H(u))
= Pr(i1 ∈ H(u))Pr(i2 ∈ H(u) | i1 ∈ H(u))

=
1

m′ Pr(h1(u) = r2 − i2h2(u) | h1(u) = r1 − i1h2(u))

=
1

m′ Pr((i1 − i2)h2(u) = r1 − r2)

≤ 1
m′ · gcd(|i2 − i1|, m′)

m′ ≤ k

(m′)2
= o(1/n),

where the fourth step is the only nontrivial step, and it follows from the standard
fact that for any r, s ∈ [m], there are at most gcd(r, m) values t ∈ [m] such that
rt ≡ s mod m (see, for example, [9, Proposition 3.3.1]). Finally, since it is clear
that from the definition of the scheme that |H(u)| = k for all u ∈ U , we have
that for any (i, r) ∈ [k] × [m′], Pr((i, r), (i, r) ∈ H(u)) = 0. 
�

4.2 (Extended) Double Hashing Schemes

Next, we consider the class of double hashing and extended double hashing
schemes, which are analyzed empirically in [5, 6]. In these schemes, an item
u ∈ U is hashed to location

h1(u) + ih2(u) + f(i) mod m

of the array of m bits, for i ∈ [k], where h1 and h2 are independent fully random
hash functions with codomain [m], and f : [k] → [m] is an arbitrary function.
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When f(i) ≡ 0, the scheme is called a double hashing scheme. Otherwise, it is
called an extended double hashing scheme (with f). We show that the asymptotic
false positive probability for an (extended) double hashing scheme is the same
as for a standard Bloom filter. The proof is analogous to the proof of Theorem 2.
For details, see the technical report version of this paper [10].

Theorem 3. For any (extended) double hashing scheme,

lim
n→∞Pr(F) =

(
1 − e−k/c

)k

.

5 Multiple Queries

In the previous sections, we analyzed the behavior of Pr(F(z)) for some fixed z
and moderately sized n. Unfortunately, this quantity is not directly of interest
in most applications. Instead, one is usually concerned with certain character-
istics of the distribution of the number of elements in a sequence (of distinct
elements) z1, . . . , z� ∈ U − S for which F(z) occurs. In other words, rather than
being interested in the probability that a particular false positive occurs, we are
concerned with, for example, the fraction of distinct queries on elements of U −S
posed to the filter for which it returns false positives. Since {F(z) : z ∈ U − S}
are not independent, the behavior of Pr(F) alone does not directly imply results
of this form. This section is devoted to overcoming this difficulty.

We start with a definition.

Definition 1. Consider any scheme where {H(u) : u∈U} are independent and
identically distributed. Write S = {x1, . . . , xn}. The false positive rate is defined
to be the random variable R = Pr(F | H(x1), . . . , H(xn)).

The false positive rate gets its name from the fact that, conditioned on R, the
events {F(z) : z ∈ U − S} are independent with common probability R. Thus,
the fraction of a large number of queries on elements of U −S posed to the filter
for which it returns false positives is very likely to be close to R. In this sense,
R, while a random variable, acts like a rate for {F(z) : z ∈ U − S}.

It is important to note that in much of literature concerning standard Bloom
filters, the false positive rate is not defined as above. Instead the term is often
used as a synonym for the false positive probability. Indeed, for a standard
Bloom filter, the distinction between the two concepts as we have defined them
is unimportant in practice, since one can easily show that R is very close to
Pr(F) with extremely high probability (see, for example, [13]). It turns out that
this result generalizes very naturally to the framework presented in this paper,
and so the practical difference between the two concepts is largely unimportant
even in our very general setting. However, the proof is more complicated than in
the case of a standard Bloom filter, and so we must be careful to use the terms
as we have defined them.

We give only an outline of our results here, deferring the details to [10]. First,
we use a standard Doob martingale argument to apply the Azuma-Hoeffding
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inequality to R, which tells us that R is concentrated around E[R] = Pr(F).
We then use that result to prove versions of the strong law of large numbers, the
weak law of large numbers, Hoeffding’s inequality, and the central limit theorem.

6 Experiments

In this section, we evaluate the theoretical results of the previous sections empiri-
cally for small values of n. We are interested in the following specific schemes: the
standard Bloom filter scheme, the partition scheme, the double hashing scheme,
and the extended double hashing schemes where f(i) = i2 and f(i) = i3.

For c ∈ {4, 8, 12, 16}, we do the following. First, compute the value of k ∈
{�c ln 2�, �c ln 2�} that minimizes p = (1 − exp[−k/c])k. Next, for each of the
schemes under consideration, repeat the following procedure 10, 000 times: in-
stantiate the filter with the specified values of n, c, and k, populate the filter
with a set S of n items, and then query �10/p� elements not in S, recording
the number Q of those queries for which the filter returns a false positive. We
then approximate the false positive probability of the scheme by averaging the
results over all 10, 000 trials. We use the standard Java pseudorandom number
generator to simulate independent hash values.
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Fig. 1. Estimates of the false positive probability for various schemes and parameters

The results are shown in Figure 1. In Figure 1, we see that for small values
of c, the different schemes are essentially indistinguishable from each other, and
simultaneously have a false positive probability/rate close to p. This result is
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particularly significant since the filters that we are experimenting with are fairly
small, supporting our claim that these schemes are useful even in settings with
very limited space. However, we also see that for the slightly larger values of
c ∈ {12, 16}, the partition scheme is no longer particularly useful for small values
of n, while the other schemes are. This result is not particularly surprising, since
we know from [10, Section 6] that all of these schemes are unsuitable for small
values of n and large values of c. Furthermore, we expect that the partition
scheme is the least suited to these conditions, given the standard fact that the
partitioned version of a standard Bloom filter never performs better than the
original version. Nevertheless, the partition scheme might still be useful in certain
settings, since it gives a substantial reduction in the range of the hash functions.

7 Conclusion

Bloom filters are simple randomized data structures that are extremely useful
in practice. In fact, they are so useful that any significant reduction in the
time required to perform a Bloom filter operation immediately translates to a
substantial speedup for many practical applications. Unfortunately, Bloom filters
are so simple that they do not leave much room for optimization.

This paper focuses on modifying Bloom filters to use less of the only re-
source that they traditionally use liberally: (pseudo)randomness. Since the only
nontrivial computations performed by a Bloom filter are the constructions and
evaluations of pseudorandom hash functions, any reduction in the required num-
ber of pseudorandom hash functions yields a nearly equivalent reduction in the
time required to perform a Bloom filter operation (assuming, of course, that
the Bloom filter is stored entirely in memory, so that random accesses can be
performed very quickly).

We have shown that a Bloom filter can be implemented with only two pseu-
dorandom hash functions without any increase in the asymptotic false positive
probability. We have also shown that the asymptotic false positive probability
acts, for all practical purposes and reasonable settings of a Bloom filter’s param-
eters, like a false positive rate. This result has enormous practical significance,
since the analogous result for standard Bloom filters is essentially the theoretical
justification for their extensive use.

More generally, we have given a framework for analyzing modified Bloom
filters, which we expect will be used in the future to refine the specific schemes
that we analyzed in this paper. We also expect that the techniques used in this
paper will be usefully applied to other data structures, as demonstrated by our
modification to the Count-Min sketch (in [10]).
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