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Preface

This volume contains the 70 contributed papers and abstracts of 3 of the 5
invited talks presented at the 14th Annual Symposium on Algorithms (ESA
2006), held at ETH Zurich in Zurich, Switzerland, September 11–13, 2006. The
papers in each section of the proceedings are arranged alphabetically. The five
distinguished invited speakers were Erik Demaine, Lisa Fleischer, László Lovász,
Kurt Mehlhorn, and Ron Shamir.

Since 2002, ESA has consisted of two tracks, with separate Program Com-
mittees, which deal respectively with:

– The design and mathematical analysis of algorithms (the “Design and Anal-
ysis” track)

– Real-world applications, engineering, and experimental analysis of algorithms
(the “Engineering and Applications” track)

Previous ESAs in the current two-track format were held in Rome, Italy (2002);
Budapest, Hungary (2003); Bergen, Norway (2004); and Palma de Mallorca,
Spain (2005). The proceedings of these symposia were published as Springer’s
LNCS volumes 2461, 2832, 3221 and 3669, respectively.

Papers were solicited in all areas of algorithmic research, including but not
limited to algorithmic aspects of networks, approximation and on-line algo-
rithms, computational biology, computational finance and algorithmic game
theory, computational geometry, data structures, databases and information re-
trieval, external-memory algorithms, graph and network algorithms, graph draw-
ing, machine learning, mobile and distributed computing, pattern matching and
data compression, quantum computing, and randomized algorithms. The algo-
rithms could be sequential, distributed or parallel. Submissions were especially
encouraged in the area of mathematical programming and operations research,
including combinatorial optimization, integer programming, polyhedral combi-
natorics and network optimization.

Each extended abstract was submitted to one of the two tracks. The extended
abstracts were read by at least three referees each, and evaluated on their quality,
originality, and relevance to the symposium. The Program Committees of both
tracks met at ETH Zurich on May 27–28, 2006. The Design and Analysis track
selected 52 out of 215 submissions. The Engineering and Applications track
selected 18 out of 72 submissions.

ESA 2006 was sponsored by the EATCS (European Association for Theoret-
ical Computer Science). The EATCS sponsorship included an award of euro 500
for the authors of the best student paper. The award was shared by Frederic
Dorn for his paper “Dynamic Programming and Fast Matrix Multiplication”
and Michal Meyerovitch for her paper “Robust, Generic and Efficient Construc-
tion of Envelopes of Surfaces in Three-Dimensional Space.”



VI Preface

The Program Committees of the two tracks of ESA 2006 consisted of:

Design and Analysis Track

Pankaj Agarwal Duke University
Lars Arge University of Aarhus
Yossi Azar (Chair) Tel-Aviv University
Nikhil Bansal IBM T.J. Watson Research Center
Allan Borodin University of Toronto
Martin Dyer University of Leeds
Dimitris Fotakis University of the Aegean
Magnus M. Halldorsson University of Iceland
Monika Henzinger Google and ETH Lausanne
Tibor Jordan Eotvos University, Budapest
Jan Karel Lenstra CWI, Amsterdam
Yishay Mansour Tel-Aviv University
Friedhelm Meyer auf der Heide University of Paderborn
Alessandro Panconesi La Sapienza University, Rome
Rob van Stee Karlsruhe University
Mariette Yvinec INRIA Sophia Antipolis

Engineering and Applications Track

Edoardo Amaldi Politecnico di Milano
Leah Epstein University of Haifa
Thomas Erlebach (Chair) University of Leicester
Lene Favrholdt University of Southern Denmark
Alexander Hall ETH Zurich
Dan Halperin Tel-Aviv University
Ulrich Meyer MPI-INF Saarbrücken
Rolf Niedermeier University of Jena
Cliff Stein Columbia University
Roberto Tamassia Brown University
Suresh Venkatasubramanian AT&T

ESA 2006 was held along with the 6th Workshop on Algorithms in Bioin-
formatics (WABI), the 4th Workshop on Approximation and Online Algorithms
(WAOA), the Second International Workshop on Parameterized and Exact Com-
putation (IWPEC), and the 6th Workshop on Algorithmic meThods and Models
for Optimization of railwayS (ATMOS) in the context of the combined confer-
ence ALGO 2006. The Organizing Committee of ALGO 2006 consisted of, all
from ETH Zurich:

Franziska Hefti
Michael Hoffmann (Chair)
Angelika Steger
Emo Welzl
Peter Widmayer



Preface VII

We would like to thank ETH Zurich, in particular Michael Hoffmann and
Emo Welzl, for the hospitality at the Program Committee meeting.

We hope that this volume offers the reader a representative selection of some
of the best current research on algorithms.

June 2006 Yossi Azar and Thomas Erlebach
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Marcin Bienkowski
Dan Bienstock
Davide Bilo

Johannes Blömer
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Origami, Linkages, and Polyhedra:
Folding with Algorithms

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

edemaine@mit.edu

Abstract. What forms of origami can be designed automatically by al-
gorithms? What shapes can result by folding a piece of paper flat and
making one complete straight cut? What polyhedra can be cut along
their surface and unfolded into a flat piece of paper without overlap?
When can a linkage of rigid bars be untangled or folded into a desired
configuration? Folding and unfolding is a branch of discrete and compu-
tational geometry that addresses these and many other intriguing ques-
tions. I will give a taste of the many results that have been proved in
the past few years, as well as the several exciting open problems that re-
main open. Many folding problems have applications in areas including
manufacturing, robotics, graphics, and protein folding.
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Reliable and Efficient Geometric Computing

Kurt Mehlhorn

Max-Planck-Institut für Informatik

Computing with geometric objects (points, curves, and surfaces) is central for many
engineering disciplines and lies at the heart of computer aided design systems. Imple-
menting geometric algorithms is notoriously difficult and most actual implementations
are incomplete: they are known to crash or deliver the wrong result on some instances.

In the introductory part of the talk, we illustrate the pitfalls of geometric comput-
ing [5] and explain for one algorithm in detail where the problem lies and what goes
wrong.

In the main part of the talk I discuss approaches to reliable and efficient geometric
computing, in particular, the exact computation paradigm [3, 9, 7] and controlled per-
turbation [4, 8]. In both cases, I report about recent theoretical advances and the use of
the paradigms in systems LEDA [6], CGAL [1], and EXACUS [2]. The research com-
bines techniques from computational geometry, solid modeling, computer algebra, and
numerical analysis.
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Some Computational Challenges
in Today’s Bio-medicine

Ron Shamir
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Abstract. Over the last decade, biology has been rapidly transformed
into an information science. Novel high-throughput technologies provide
information in a scope that was unimaginable not long ago, and with
these data a plethora of computational riddles are emerging. The chal-
lenge of deep and integrated computational analysis of diverse biological
data, providing meaningful understanding of life processes and principles,
is still very far from being answered. If met, this could help improve the
quality of life of this and future generations.

We shall discuss several such challenges arising in diverse areas of
biology and medicine, including analysis and evolution of genetic regu-
latory networks, disease association, and genome rearrangements. The
tension between elegant algorithmics and useful practical solutions will
be a common theme in this story.
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Abstract. We design compact and responsive kinetic data structures
for detecting collisions between n convex fat objects in 3-dimensional
space that can have arbitrary sizes. Our main results are:

(i) If the objects are 3-dimensional balls that roll on a plane, then we
can detect collisions with a KDS of size O(n log n) that can handle
events in O(log n) time. This structure processes O(n2) events in
the worst case, assuming that the objects follow constant-degree
algebraic trajectories.

(ii) If the objects are convex fat 3-dimensional objects of constant com-
plexity that are free-flying in R3, then we can detect collisions with
a KDS of O(n log6 n) size that can handle events in O(log6 n) time.
This structure processes O(n2) events in the worst case, assuming
that the objects follow constant-degree algebraic trajectories. If the
objects have similar sizes then the size of the KDS becomes O(n)
and events can be handled in O(1) time.

1 Introduction

Collision detection is a basic computational problem arising in all areas of com-
puter science involving objects in motion—motion planning, animated figure
articulation, computer-simulated environments, or virtual prototyping, to name
a few. Very often the problem of detecting collisions is broken down into two
phases: a broad phase and a narrow phase. The broad phase determines pairs
of objects that might possibly collide, frequently using (hierarchies of) bound-
ing volumes to speed up the process. The narrow phase then uses specialized
techniques to test each candidate pair, often by tracking closest features of the
objects in question, a process that can be sped up significantly by exploiting
spatial and temporal coherence. See [19] for a detailed overview of algorithms
for such collision and proximity queries.

Algorithms that deal with objects in motion traditionally discretize the time
axis and compute or update their structures based on the position of the objects

� M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Re-
search (NWO) under project no. 612.065.307. M.d.B. was supported by the Nether-
lands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 4–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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at every time step. But since collisions tend to occur rather irregularly it is
nearly impossible to choose the perfect time-step: too large an interval between
sampled times will result in missed collisions, too small an interval will result in
unnecessary computations (and still there is no guarantee that no collisions are
missed). Event-driven methods, on the other hand, compute the event times of
significant changes to a system of moving objects, store those in a priority queue
sorted by time, and advance the system to the event at the front of the queue.
The kinetic-data-structure framework initially introduced by Basch et al. [4]
presents a systematic way to design and analyze event-driven data structures
for moving objects.

A kinetic data structure (KDS) is designed to maintain or monitor a discrete
attribute of a set of moving objects, where each object has a known motion
trajectory or flight plan. A KDS contains a set of certificates that constitutes
a proof of the property of interest. These certificates are inserted in a priority
queue (event queue) based on their time of expiration. The KDS then performs
an event-driven simulation of the motion of the objects, updating the structure
whenever a certificate fails. A KDS for collision detection finds a set of geomet-
ric tests (elementary certificates) that together provide a proof that the input
objects are disjoint—see the survey by Guibas [11, 12] for more details.

Kinetic data structures and their accompanying maintenance algorithms can
be evaluated and compared with respect to four desired characteristics. A good
KDS is compact if it uses little space in addition to the input, responsive if the
data structure invariants can be restored quickly after the failure of a certificate,
local if it can be updated easily when the flight plan for an object changes, and
efficient if the worst-case number of events handled by the data structure for a
given motion is small compared to some worst-case number of “external events”
that must be handled for that motion.

Kinetic data structures for collision detection. One of the first papers on kinetic
collision detection was published by Basch et al. [3], who designed a KDS for
collision detection between two simple polygons in the plane. Their work was
extended to an arbitrary number of polygons by Agarwal et al. [1]. Kirkpatrick
et al. [17] and Kirkpatrick and Speckmann [18] also described KDS’s for kinetic
collision detection between multiple polygons in the plane. These solutions all
maintain a decomposition of the free space between the polygons into “easy”
pieces (usually pseudo-triangles). Unfortunately it seems quite hard to define a
suitable decomposition of the free space for objects in 3D, let alone maintain it
while the objects move—the main problem being, that all standard decomposi-
tion schemes in 3D can have quadratic complexity. Hence, even though collision
detection is the obvious application for kinetic data structures, there has hardly
been any work on kinetic collision detection in 3D.

There are only a few papers that deal directly with (specialized versions of)
kinetic 3D collision detection. Guibas et al. [13], extending work by Erickson et
al. [10] in the plane, show how to certify the separation of two convex polyhedra
moving rigidly in 3D using certain outer hierarchies. Basch et al. [5] describe
a structure for collision detection among multiple convex fat objects that have
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almost the same size. The structure of Basch et al. uses O(n log2 n) storage and
events can be processed in O(log3 n) time. Coming and Staadt [9] kineticize the
sweep-and-prune approach to find candidate pairs of objects that might collide.
Their method has a quadratic worst-case bound and they give only experimental
evidence for its performance. If all objects are spheres of similar sizes Kim et
al. [15] present an event-driven approach that subdivides space into cells and
processes events whenever a sphere enters or leaves a cell. This approach was
later extended [16] to accommodate spheres with unknown trajectories but still
similar sizes. There is only experimental evidence for the performance of this
method. Finally, Guibas et al. [13] use the power diagram of a set of arbitrary
balls in 3D to kinetically maintain the closest pair among them. The worst-
case complexity of this structure is quadratic and it might undergo more than
cubically many changes.

Results. The main goal of our paper is to develop KDS’s for 3D collision detection
that have a near-linear number of certificates for multiple convex fat objects of
varying sizes. As discussed above, none of the existing solutions achieves all these
goals simultaneously. Our KDS’s can be viewed as structures that perform the
broad phase of the global collision-detection approach sketched above; one still
has to detect collisions between the candidate pairs of objects produced by the
KDS. Assuming the objects have constant complexity, this can trivially be done
in constant time per pair; how to do this for complex objects is beyond the scope
of this paper. Thus the challenge is to get a near-linear number of certificates,
so that the number of candidate pairs is reduced from quadratic to near-linear.

We start in Section 2 with the special case of n balls of arbitrary sizes rolling on
a plane. Here we present an elegant and simple KDS that uses O(n log n) storage
and processes O(n2) events in the worst case if the objects follow constant-degree
algebraic1 trajectories. Processing an event takes O(log n) time.

In Section 3 we turn our attention to free-flying convex fat objects. Note
that we do not assume the objects to be polyhedral. We first study fat objects
that have similar sizes. We give an almost trivial KDS that has O(n) size and
processes O(n2) events; handling an event takes O(1) time. This improves both
the storage and the event-handling time of the KDS of Basch et al. [5] by several
logarithmic factors. Next we consider the much more difficult general case, where
the fat objects can have vastly different sizes. Here we present a KDS that
uses O(n log6 n) storage and processes O(n2) events; handling an event takes
O(log6 n) time. This is the first collision-detection KDS for multiple objects
in 3D that has a near-linear number of certificates and does not require the
1 In fact, the bound on the number of events holds in a more general setting: We

maintain lists of certain x- and y-coordinates—for instance the coordinates of the
tangency points of the disks with the plane on which they roll—whose values change
according to the motions of the objects. The number of events is bounded by the
number of changes (swaps) in these sorted lists. The O(n2) bound thus holds if we
assume that any pair of coordinates swaps O(1) times (which is for example the case
if the motions are constant-degree algebraic). A similar remark holds for the other
KDS’s that we develop.
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objects to have similar sizes. Even though our KDS for this case uses O(n log6 n)
storage, it maintains only a linear number of candidate pairs of objects to test for
collisions; the additional storage is used in various supporting data structures.
Our structure is based on the following idea: we put a number of points—we
call them guards—around each object in such a way that if two objects collide,
one must contain a guard from the other. Because the objects are fat, we can
show that a constant number of guards per object suffices. The idea of reducing
problems on fat objects to problems on suitably chosen points has been used
before. In our context, however, it is far from straightforward to apply since
detecting collisions between objects and guards is nearly as difficult as detecting
collisions between the objects themselves. Nevertheless, using several additional
ideas, we show how to make this approach work.

In the reminder of the paper we present the main idea behind our results. For
lack of space, most of the proofs are omitted.

2 Balls Rolling on a Plane

Assume that we are given a set B of n 3-dimensional balls which are rolling on a
2-dimensional plane T , that is, the balls in B move continuously while remaining
tangent to T . In this section we describe a responsive and compact KDS that
detects collisions between the balls in B.

The basic idea behind our KDS is to construct a collision tree recursively as
follows:

– If |B| = 1, then there are obviously no collisions and the collision tree is just
a single leaf.

– If |B| > 1, then we partition B into two subsets, BS and BL. The subset
BS contains the �n/2� smallest balls and the subset BL contains the �n/2�
largest balls from B, where ties are broken arbitrarily. The collision tree now
consists of a root node that has an associated structure to detect collisions
between any ball from BS and any ball from BL, and two subtrees that are
collision trees for the sets BS and BL, respectively.

To detect all collisions between the balls in B it suffices to detect collisions
between the two subsets maintained at every node of the collision tree. Let BS

and BL denote the two subsets maintained at a particular node. The remainder
of this section focusses on detecting collisions between the balls in BS and those
in BL. In particular, we describe a KDS of size O(|BS | + |BL|) that can handle
events in O(1) time—see Lemma 4. The structure processes O((|BS | + |BL|)2)
events in the worst case, assuming that the balls follow constant-degree algebraic
trajectories. Since the same event can occur simultaneously at O(log n) nodes of
the collision tree, we obtain the following theorem:

Theorem 1. For any set B of n 3-dimensional balls that roll on a plane, there
is a KDS for collision detection that uses O(n log n) space and processes O(n2)
events in the worst case, assuming that the balls follow constant-degree algebraic
trajectories. Each event can be handled in O(log n) time.
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2.1 Detecting Collisions Between Small and Large Balls

As mentioned above, we can restrict ourselves to detecting collisions between
balls from two disjoint sets BS and BL where the balls in BL are at least as
large as the balls in BS. Recall that all balls are rolling on a plane T . Our ba-
sic strategy is the following: we associate a region Di on T with each Bi ∈ BL

such that if the point of tangency of a ball Bj ∈ BS and T is not contained
in Di, then Bj cannot collide with Bi. The regions associated with the balls
in BL need to have two important properties: (i) each point in T is contained
in a constant number of regions and (ii) we can efficiently detect whenever a
region starts or stops to contain a tangency point when the balls in BL and BS

move. We first deal with the first requirement, that is, we consider BL to be
static. For a ball Bi let ri denote its radius and let ti be the point of tangency
of Bi and T .

The threshold disk. We define the distance of a point q in the plane T to a ball
Bi as follows. Imagine that we place a ball B(q) of initial radius 0 at point q. We
then inflate B(q) while keeping it tangent to T at q, until it collides with Bi. We
define the distance of q and Bi, which we denote by dist(q, Bi), to be the radius
of B(q). More precisely, dist(q, Bi) is the radius of the unique ball that is tangent
to T at q and tangent to Bi. It is easy to show that dist(q, Bi) = d(q, ti)2/4ri

where d(q, ti) denotes the Euclidean distance between q and ti.
Since we have to detect collisions only with balls from BS we can stop inflating

when B(q) is as large as the smallest ball in BL. Based on this, we define the
threshold disk Di of a ball Bi ∈ BL as follows: a point q ∈ T belongs to Di if
and only if dist(q, Bi) ≤ rmin where rmin is the radius of the smallest ball in BL.
It is straightforward to show that Di is a disk whose radius is 2

√
ri · rmin and

whose center is ti.
Clearly a ball Bj ∈ BS cannot collide with a ball Bi ∈ BL as long as tj is

outside Di. In the following, we prove that a point q ∈ T can be contained
in at most a constant number of threshold disks. We start by proving a more
general result, which we will need later when we replace the threshold disks by
threshold boxes. For a given constant c ≥ 0, let c ·Di denote the disk with radius
c · radius(Di) and center ti.

Lemma 1. The number of threshold disks Dj that are at least as large as a given
threshold disk Di and for which c ·Di ∩ c ·Dj �= ∅, is at most (8 c2 +2 c+1)2 +1.

Proof. Let D(i) be the set of all threshold disks Dj that are at least as large
as Di and for which c · Di ∩ c · Dj �= ∅. First we prove that there are no two
balls Bj and Bk such that rk ≥ rj > 16 c2 ri and Dj , Dk ∈ D(i). Assume, for
contradiction, that there are two balls Bj and Bk such that rk ≥ rj > 16 c2 ri

and Dj, Dk ∈ D(i). Since Bj and Bk are disjoint, we have d(tj , tk) ≥ 2√
rj · rk >

8 c
√

rk · ri . We also know that d(tj , tk) ≤ d(tj , ti) + d(ti, tk) ≤ 8 c
√

rk · ri which
is a contradiction. Hence, there is at most one ball Bj such that rj > 16 c2 ri

and Dj ∈ D(i).
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It remains to show that the number of balls Bj whose radii are not greater
than 16 c2 ri and for which Dj ∈ D(i) is at most (8 c2 + 2 c + 1)2. Let Bj be one
of these balls and let x be a point in c · Dj ∩ c · Di. Since

d(ti, tj) ≤ d(ti, x) + d(tj , x) ≤ 2 c
√

ri · rmin + 2 c
√

rj · rmin ≤ (2 c + 8 c2) ri ,

tj must lie in a disk whose center is ti and whose radius is (2 c + 8 c2) ri. We
also know that d(tj , tk) ≥ 2√

rj · rk ≥ 2 ri for any two such balls Bj and Bk.
Thus the set D′(i) of disks centered at tj with radius ri for all Dj ∈ D(i) are
disjoint. Note that any disk in D′(i) lies inside the disk centered at ti with radius
((2 c + 8 c2) + 1) ri. Thus |D(i)| = |D′(i)| ≤ (2 c + 8 c2 + 1)2. �

Lemma 2. Each point q ∈ T is contained in at most a constant number of
threshold disks.

The threshold box. The threshold disks have the important property that each
point in T is contained in a constant number of disks. But unfortunately, as the
balls in BL and BS move, it is difficult to detect efficiently whenever a tangency
point enters or leaves a threshold disk. Hence we replace each threshold disk
by its axis-aligned bounding box. The bounding box of a threshold disk Di

associated with a Bi ∈ BL is called a threshold box and is denoted by TB(Bi).
The following lemma states that the threshold boxes retain the crucial property
of the threshold disks, namely, that each point q ∈ T is contained in at most a
constant number of threshold boxes. It follows fairly easily from Lemma 1.

Lemma 3. Each point q ∈ T is contained in at most a constant number of
threshold boxes.

Kinetic maintenance. Recall that to detect collisions between BS and BL, for
each ball Bj ∈ BS we determine which threshold boxes of balls in BL contain the
tangency point tj . Note that according to Lemma 3, tj is contained in a constant
number of threshold boxes. For each Bj ∈ BS we maintain the set of threshold
boxes that contain tj and certificates that guarantees disjointness of Bj and the
balls from BL whose threshold boxes contain tj .

To maintain our structure we only need to detect when a tangency point tj
enters or leaves a threshold box. To do so, we maintain two sorted lists on the x-
and y-coordinates of the tangency points of BS and the extremal points of the
threshold boxes associated with the balls in BL. If the objects follow constant-
degree algebraic trajectories, the number of events processed by our structure is
quadratic in the size of of BS and BL. Moreover, each event can be processed in
constant time.

Lemma 4. Let BS and BL be two disjoint sets of balls that roll on a plane where
the balls in BL are at least as large as the balls in BS. There is a KDS for collision
detection between the balls of BS and those of BL that uses O(|BS |+ |BL|) space,
and that processes O((|BS | + |BL|)2) events if the balls follow constant-degree
algebraic trajectories. Each event can be handled in O(1) time.



10 M.A. Abam et al.

3 Free-Flying Fat Objects in 3-Space

We now turn our attention to collision detection for a set K of n free-flying
objects in 3-space. We will show how to obtain a compact and responsive KDS
when K consists of convex, constant-complexity ρ-fat objects. Note that we do
not require the objects to be polyhedral.

We will use the following definition of fatness [14]. An object K is called ρ-fat,
for some ρ ≥ 1, if there are two concentric balls B−(K) and B+(K) such that
B−(K) ⊂ K ⊂ B+(K) and

radius(B+(K))/ radius(B−(K)) ≤ ρ .

Since we are dealing with convex objects, this definition is equivalent up to
constant factors to other definitions of fatness that have been used [7]. We call
radius(B−(K)) and radius(B+(K)) the inner radius and outer radius of K,
respectively, and we call the common center of B−(K) and B+(K) the center
of K. We say that an object K is larger than another object K ′ if the inner
radius of K is larger than the inner radius of K ′.

Unfortunately the approach of the previous section does not work for free-
flying objects, not even if we are dealing with balls. The problem is that the ra-
dius of the threshold ball of a ball Bi will now be ri + rmin instead of 2

√
ri · rmin

and this invalidates the proof of Lemma 1 for c > 1 and thus invalidates
Lemma 3.

3.1 Similarly Sized Objects

We first consider the case where the objects have similar sizes. More precisely,
let σ be the scale factor of the scene, that is, the ratio between the sizes of the
largest and the smallest inner ball:

σ =
maxK∈K radius(B−(K))
minK∈K radius(B−(K))

It follows from the results of Zhou and Suri [21] that the number of pairs of
intersecting bounding boxes of the objects in K is at most O(ρ

√
ρ3σ3n) =

O(ρ2σ
√

ρσn). (A similar but slightly weaker result also follows directly from
results in Van der Stappen’s thesis [20].) Hence, if σ is a constant, we can simply
maintain the set of pairs of intersecting bounding boxes, and for each such pair
add a certificate to test for disjointness of the corresponding objects.

To maintain the pairs of intersecting bounding boxes, we maintain three sorted
lists: one on the minimum and maximum x-coordinates of the boxes, one on the
minimum and maximum y-coordinates of the boxes, and one on the minimum
and maximum z-coordinates of the boxes. Whenever there is a swap in one of
these lists, two boxes may intersect or become apart. If two boxes intersect, we
add a certificate for the corresponding objects. If they become apart, we remove
the corresponding certificate. This leads to the following theorem.
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Theorem 2. For any set K of n convex, constant-complexity ρ-fat objects with
scale factor σ, there is a KDS for collision detection that uses O(ρ2σ

√
ρσn)

storage and processes O(n2) events in the worst case, assuming the objects follow
constant-degree algebraic trajectories. Each event can be handled in O(1) time.

3.2 Arbitrarily Sized Objects

When the sizes of the objects vary greatly, then there can be a quadratic number
of intersecting bounding boxes even when the objects are fat. Hence, a more
sophisticated approach is needed. Our global strategy for this case is as follows.
We place a number of so-called guarding points—or guards, for short—around
each object K ∈ K. The guards for K are defined in a local reference frame for
K, so they follow the motion of K. We choose the guards in such a way that
when two objects collide, the larger object must contain at least one guard from
the smaller object. This reduces the collision-detection problem to maintaining
for each guard which object contains it. The next lemma states that we can
always find a small guarding set because the objects are fat.

Lemma 5. For any ρ-fat object K, there is a set G(K) of O(ρ6) guarding points
such that any ρ-fat object K ′ that collides with K and is at least as large as K
contains a point from G(K).

Our KDS for collision detection thus works as follows. For each object K ∈ K
we compute a set G(K) of guards according to Lemma 5. Our goal is now to
maintain for each g ∈ G(K) the object K(g) containing g (if such an object
exists). Let Cand(K) := {K(g) : g ∈ G(K)}; the set Cand(K) contains the
candidates with which we check for collisions. More precisely, for each object
K(g) ∈ Cand(K), our KDS has a certificate testing for the disjointness of K
and K(g).

Fig. 1. A guard can be contained in many
bounding boxes

Unfortunately, it seems difficult to
maintain the set Cand(K) directly.
This would require us to detect when
an object K ′ starts to contain a guard
g, which is difficult to do efficiently.
Hence, we replace the objects by their
bounding boxes. Because the bounding
boxes are axis-aligned, it will be easier
to check whether any of them starts (or
stops) to contain a guard of some other
object. This introduces a new problem,
however; a guard can be contained in
many bounding boxes—see Figure 1. Clearly, we cannot afford to maintain for
each guard g all the bounding boxes that contain it. Next we describe how to
deal with this problem.

Consider a guard g. As noted earlier, there can be many disjoint objects whose
bounding boxes contain g. When this happens, however, the objects must become
larger and larger, as shown in Figure 1, with the larger objects being “behind” the
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smaller ones. Thus the smaller objects are the candidates for containing g. Hence,
the idea is to maintain for g not all objects whose bounding boxes contain g,
but only the smallest k such objects for some suitable constant k.

To make this idea work, we first partition the space around g into cones, as
follows. Let U be the unit cube, centered at the origin. Draw a grid on each
face of U , such that the grid cells have edge length 1/(2

√
2ρ). Triangulate each

grid cell. We have now partitioned the surface of U into O(ρ2) triangles. Each
triangle defines, together with the origin, an (infinite) cone γ. The set of cones
for a guard g is obtained by translating these cones such that their apices—the
origin in the construction—coincide with g. We denote this set by Γ (g).

The next lemma implies that we can indeed restrict our attention to the
smallest objects whose bounding box contains a guard g. For an object K, let
bb(K) denote its (axis-aligned) bounding box.

Lemma 6. Let K(γ) be the set of all objects K whose centers lie in a cone γ
and such that bb(K) contains the apex g of the cone. Suppose that one of these
objects, K(g), contains g. Then K(g) must be among the 8ρ3(

√
3ρ+1)3 smallest

objects in K(γ).

To summarize, our KDS works as follows. For each object K ∈ K we compute
a set G(K) of guards according to Lemma 5. For each guard g we construct a
collection Γ (g) of infinite cones with apex g. For each cone γ ∈ Γ (g) we maintain
the 8ρ3(

√
3ρ+1)3 smallest objects whose center is inside γ and whose bounding

box contains g, and we have a certificate testing for disjointness for each such
object with the object for which g is a guard. Next we describe a KDS that
maintains all this information efficiently.

Details of the KDS. Let G(K) := {G(K) : K ∈ K} denote the set of all
guards over all objects, let Γ (K) denote the collection of all the cones, that is,
Γ (K) := {Γ (g) : g ∈ G(K)}, and let bb(K) denote the set of bounding boxes of
the objects.

Detecting events. We wish to maintain for each γ ∈ Γ (g) the collection K∗(γ)
of the 8ρ3(

√
3ρ + 1)3 smallest objects whose centers are inside γ and whose

bounding boxes contain g. Such a collection can change only when one of the
following two events happens:

Box event: a bounding box starts or stops to contain a guard.
Center event: a center moves into or out of a cone.

To detect box events, we maintain three sorted lists. The first list is sorted on
x-coordinate and contains the guards in G(K) as well as the bounding boxes,
where each bounding box occurs twice (according to its maximum and minimum
x-coordinates). We have similar lists sorted on y- and z-coordinates.

To detect center events, we observe that each cone is a translate of one
of the O(ρ2) cones defined for the unit cube. Hence, the facets of the cones
have only O(ρ2) distinct orientations. In fact, it is not difficult to see that there
are only O(ρ) orientations, because many orientations are re-used. Hence, we
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can detect center events using O(ρ) sorted lists, each containing the object cen-
ters and the guards according to one of those orientations. Since we have O(ρ6)
guards per object, we get the following lemma.

Lemma 7. The box and center events can be detected with a KDS that uses
O(ρ7n) storage and that processes O(ρ13n2) events in total, assuming the objects
follow constant-degree algebraic trajectories. Updating the KDS at such an event
takes O(1) time.

Handling events. When we have detected a center event, we may have to update
the set K∗(γ) of at most two cones. Next we describe how to handle the event
involving an object K and some cone γ defined for a guard g.

When bb(K) starts to contain g, or when the center of K moves into γ, things
are easy: When K∗(γ) contains less than 8ρ3(

√
3ρ + 1)3 objects, we add K to

K∗(γ); otherwise, we check whether K is smaller than the largest object in K∗(γ)
and, if so, let it replace that object.

Handling the case where bb(K) stops to contain g, or when the center of K
moves out of γ, is more difficult. For this we need a supporting data structure
that can answer the following query:

Given a cone γ with apex g, report the k smallest objects whose centers
are in γ and whose bounding boxes contain g, where k := 8ρ3(

√
3ρ+1)3.

Recall that the set of cones can be partitioned into O(ρ2) subsets, where the
cones in each subset are translates of some “standard” cone. We construct a
data structure for each subset separately. Because the facets of the cones in a
subset have only three distinct orientations, we can find all centers inside a query
cone in with a three-level range tree. Finding the bounding boxes containing the
apex of the query cone can be done with a three-level segment tree, and filtering
out the k smallest objects requires a sorted list on the size of the objects. Hence,
our total data structure will be a seven-level tree. Answering a query can be done
in O(log6 n + k) time—the query time is not O(log7 n + k) because in the last
level we only need to report the k smallest objects—and the amount of storage
is O(n log6 n). To kinetize the structure, we simply use the kinetic variants of
range trees [5] and segment trees [6]. The number of events processed is O(n2).

Lemma 8. When a center or box event occurs, we can update the collections
K∗(γ) in O(log6 n + ρ6) time, using a supporting KDS that uses O(ρ2n log6 n)
storage. The supporting KDS processes O(n2) events in the worst case, assuming
the objects follow constant-degree algebraic trajectories.

This leads to our main result.

Theorem 3. For any set K of n convex, constant-complexity ρ-fat objects,
there is a KDS for collision detection that uses O(ρ2n log6 n + ρ7n) storage and
that processes O(ρ13n2) events in the worst case, assuming the objects follow
constant-degree algebraic trajectories. Each event can be handled in O(log6 n+ρ6)
time.
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Our KDS is compact and responsive, but unfortunately it is not local: a large
object K with many small objects around can be involved in many certificates,
because it may contain guards for each of the small objects. However, we can
show that the locality of our KDS depends on the ratio of the size of the biggest
object and the smallest object in K.

Lemma 9. Each object in the KDS of Theorem 3 is involved in O(ρ14 + ρ9σ3)
certificates, where σ is the ratio of the largest inner radius to the smallest inner
radius of the objects in K.

4 Conclusion

We presented the first KDS’s for collision detection between multiple convex fat
3D objects that use a near-linear number of certificates and do not require the
objects to have similar sizes. We believe that this is an important step forward
in the theoretical investigation of KDS’s for 3D collision detection. Our KDS
for balls rolling on a plane is simple, and may perform well in practice. Our
general KDS for free-flying objects of varying sizes, however, is complicated and
the dependency on the fatness parameter ρ is large. Thus our result should be
seen as a proof that good bounds are possible in theory—whether a simple and
practical solution exists that achieves similar worst-case bounds is still open.

As remarked above, our structures are not local: a single object can be involved
in a linear number of certificates. Unfortunately, this seems very hard (if not
impossible) to avoid if there is a single large object that is closely surrounded by
many tiny objects. Thus we do not expect to see a local KDS that can deal with
arbitrarily sized objects. (We have shown though that a local KDS is possible
for convex fat objects when their sizes are similar.)

Finally, a challenging open problem is to obtain results on non-convex and/or
non-fat objects.

Acknowledgements. The last author would like to thank David Kirkpatrick for
valuable discussions on the presented subject.
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Abstract. In this paper we give a fully dynamic data structure to main-
tain the connectivity of the intersection graph of n axis-parallel rectan-
gles. The amortized update time (insertion and deletion of rectangles)
is O(n10/11 polylog n) and the query time (deciding whether two given
rectangles are connected) is O(1). It slightly improves the update time
(O(n0.94)) of the previous method while drastically reducing the query
time (near O(n1/3)). Our method does not use fast matrix multiplication
results and supports a wider range of queries.

1 Introduction

Dynamic connectivity for undirected graphs is one of the most basic problems in
data structure design and has been extensively studied [7, 9, 10, 13, 14, 15]. Cur-
rently the best method, due to Thorup [15], supports insertions and deletions
of edges in O(log n log3 log n) randomized amortized time and can determine
whether two vertices are connected in O(log n/ log log log n) time, where n de-
notes the number of vertices in the graph.

In this paper, we investigate geometric versions of the problem. Perhaps the
simplest, and certainly one of the most naturally appealing, version concerns
intersection graphs of orthogonal (horizontal and vertical) line segments. Such
graphs arise in applications from VLSI design, geographic information systems,
and other areas. In the dynamic setting, we want to answer connectivity queries
between any two segments, while supporting insertions and deletions of segments.

Surprisingly, this simple-sounding dynamic geometric problem turns out to
be quite difficult, more so than the original graph problem. For one thing, we
cannot afford to maintain the intersection graph explicitly, because the insertion
or deletion of a single object can bring forth as many as Ω(n) edge updates in
the graph every time.

In STOC 2002, the second author [2] discovered the only nontrivial fully dy-
namic result for the problem known to date: a data structure that has O(n0.939)
amortized update time and Õ(n1/3) query time. The Õ notation hides
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polylogarithmic factors throughout this paper. This data structure more gen-
erally works for connectivity queries for axis-parallel rectangles or boxes in any
fixed dimension.

The approach in the previous paper was to use so-called “bi-clique covers” to
compactify the intersection graph. This process reduces the geometric problem
to a new dynamic graph problem: how to maintain an undirected graph under
not only edge updates but also vertex updates—namely, turning a vertex “on”
or “off”—so that connectivity queries can be answered in the subgraph induced
by the “on” vertices. The paper calls this the dynamic subgraph connectivity
problem. This graph problem was then solved by a combination of techniques,
including the use of Coppersmith and Winograd’s fast matrix multiplication
algorithm [5].

It was observed [2] that connectivity for axis-parallel line segments or boxes
in any fixed dimension d ≥ 3 is equivalent (up to polylogarithmic factors) to
dynamic subgraph connectivity, and that dynamic subgraph connectivity is re-
lated to matrix multiplication. Thus, the approach taken is the “right” one in
higher dimensions. However, the possibility of a different approach that exploits
specifically the geometry of the two-dimensional case was left open.

The main result of this paper is a new fully dynamic data structure for con-
nectivity queries among n axis-parallel line segments, or more generally, axis-
aligned rectangles in two dimensions. The amortized update time is Õ(n10/11) =
O(n0.910), and the query time is O(1).

Although this update time is still fairly large and the improvement may not
seem dramatic, we believe that the result is important for several reasons. First,
the new method does not use overly complicated matrix multiplication algo-
rithms and is entirely based on “elementary” techniques, and is thus actually
implementable. (In the previous method, if Coopersmith and Winograd’s algo-
rithm is replaced by Strassen’s, the update time would increase to O(n0.984).)
Second, the new method supports queries in addition to connectivity between
two objects; for example, we can decide whether the entire intersection graph is
connected, or count the number of connected components. The previous method
inherently cannot deal with such queries of a global nature. Third, our signif-
icantly lower query time is attractive, especially in applications where queries
are more frequent than updates. Finally, the geometric techniques we use are
interesting and original; in particular, we introduce a simple but crucial combi-
natorial lemma about disjoint curves in the plane. This lemma appears new, to
the best of our knowledge. (If not, its algorithmic significance has certainly been
overlooked; for instance, it leads to at least one new intersection-searching result
that cannot be obtained by previous techniques in the area.) We start with this
lemma in the next section and then proceed to describe the main algorithm.

2 A Simple Combinatorial Lemma

In this section we prove a combinatorial lemma which later will be used in the
analysis of the final algorithm. Consider a set R of n disjoint regions with simply
connected boundaries and a set C of disjoint simple curves in the plane. We say
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two curves are equivalent if they cross the exact same set of regions from R.
Generally, there could be up to 2n curves such that no two are equivalent (one
for each subset of R). However, we aim to show that if the curves are disjoint,
then we cannot have too many such curves. In fact, there can be at most Θ(n3)
curves such that no two are equivalent.

We mention that a slightly weaker bound can be obtained by using VC-
dimension techniques [12]. It is possible to show (by a K5-avoidance argument)
that the set system defined by the curves (where the ground set is R and each
curve defines the set of regions it intersects) has VC-dimension four. This implies
that the number of curves is O(n4). We omit the details, as the approach we
now give produces a better bound:

Lemma 1. Assume C is a set of pairwise non-crossing curves with common
endpoints p and q, p �= q. If no two curves are equivalent in C, then |C| = O(n).

Proof. Let c1, c2, . . . , cm be the given curves, ordered clockwise around p. For
every i, consider two adjacent curves ci and ci+1. These two curves are not
equivalent, so they do not pass through the same set of regions. This implies
that there is at least one region r which intersects exactly one of them. We
charge ci to r. Obviously, we have charged m − 1 units in total. In the clockwise
ordering of the curves, consider the first curve ci and the last curve cj which
pass through r. All the curves from ci to cj intersect r and all the curves from
cj to ci do not intersect r. Thus the total charge of r is at most two since only
ci−1 and cj can be charged to r. This proves |V | = O(n). ��

Lemma 2. (The Main Lemma) If C is a set of disjoint curves containing no
pairwise equivalent curves, then |C| = O(n3).

Proof. Consider one curve c ∈ C. Begin from one endpoint of c and start erasing
(or shrinking) the curve from that endpoint. This process can be viewed as
moving the endpoint along the curve. We shrink the curve until the endpoint
of the curve lies on a boundary point p of a region r such that r and c only
intersect at p. We repeat the same process for the other endpoint of c and call
the resulting curve c′. In other words, the curve c′ is a minimal sub-curve of c
which intersects the exact same regions as c; thus this operation preserves the
equivalence relation. (See Figure 1.)

We do this operation on all the curves in C. Let C′ be the set of shrunk
curves. Every curve c ∈ C′ has the property that it starts from (and ends at)
the boundary of a region r and never passes through that region again. For
two regions ri and rj , let Cij be the set of curves that have one endpoint in ri

and another endpoint in rj . If we consider only the curves in Cij , then we can
contract the regions ri and rj to two points and apply Lemma 1. This implies
that Cij contains O(n) curves. (For the special case i = j, we have |Cii| ≤ 1,
since at most one curve is entirely contained in ri.) There are O(n2) different
sets of Cij and thus the total number of curves in C′ and C is O(n3). ��

The above lemma is good enough to lead to new results for dynamic rectangle
connectivity, but the following refinement will lead to a slightly better result:
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Fig. 1. (a) Erasing from the endpoints marked with circle. (b) Erasing from the other
endpoints. (c) The final curves.

Lemma 3. If C is a set of disjoint curves containing no pairwise equivalent
curves and each curve intersects at most k regions, then |C| = O(nk2).

Proof. We adapt a random sampling idea by Clarkson and Shor [4] that was
originally used for the “(≤ k)-set” problem.

Take a random sample Q ⊆ R where each region is included with probability
1/k. We define a planar (multi)graph GQ where vertices are the contracted
regions of Q, as follows. Assume the curves have been shrinked as in the earlier
proof. Fix two regions ri and rj . Let c1, . . . , cm be the curves in Cij in clockwise
order around ri. For m = 1, if ri and rj are in Q and all of the ≤ k regions
intersecting c1 are not in Q, then add c1 to GQ as an edge between ri and
rj . Observe that the probability that c1 is added is at least 1/k2(1 − 1/k)k =
Ω(1/k2). For m > 1, take each consecutive pair (ct, ct+1) and let r(ct, ct+1) be
a region intersected by ct+1 but not ct, or a region intersected by ct but not
ct+1. Color the pair red in the former case, and blue otherwise. Without loss of
generality, assume that at least half of all pairs are red. For a red pair (ct, ct+1), if
ri, rj , and r(ct, ct+1) are in Q and all of the ≤ k regions intersecting ct are not in
Q, then add the curve ct to the graph GQ as an edge between ri and rj . Observe
that the probability that ct is added is at least 1/k3(1−1/k)k = Ω(1/k3). Thus,
E[|E(GQ)|] = Ω(|C|/k3).

On the other hand, E[|V (GQ)|] = O(n/k). By Euler’s formula, every planar
graph with all face lengths at least 3 (in particular, every simple planar graph)
has a linear number of edges. Our graph GQ is planar but not simple. However,
between any 2 parallel edges, there is at least one vertex in GQ: namely, if the
red pairs (ct, ct+1) and (cu, cu+1), t < u, define 2 edges between ri and rj in GQ,
then r(ct, ct+1) would lie entirely between ct and cu. Because of this property, we
may assume that GQ has no faces of length 2 (by adding extra edges to isolated
vertices if necessary). Thus, E[|E(GQ)|] = O(n/k).

We can conclude that |C|/k3 = O(n/k). ��

We apply Lemmas 2 and 3 to the case of connected components formed by a set
of axis-parallel rectangles, or more generally, polygons. Assume we have a set of
polygons which form m connected components and a set R of n disjoint regions
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as before. We say two connected components are equivalent iff the set of regions
they cross is identical.

Corollary 1. Consider a set S of simple polygons forming a set C of connected
components. If C contains no pairwise equivalent components, then |C| = O(n3).
Furthermore, if X is the total number of crossings of the polygons’ boundaries
with the regions, then |C| = O(n + n1/3X2/3).

Proof. If a component ci completely contains a region rj , then we delete both
ci and rj . Since no other component can intersect rj , this operation preserves
the equivalence relation. By repeating this operation, we remove a total of O(n)
components and at the end no region is completely contained in a connected
component. Thus, a region rj intersects ci iff rj intersects the boundary of a
polygon in ci. So, it suffices to consider a set S of line segments rather than
polygons.

Pick one connected component ci and look at the arrangement created by the
line segments of ci. Pick one cell except the outer cell of the arrangement and
cut one bounding segment of this cell at some arbitrary point (as in Figure 2).
This operation connects this cell to its neighboring cell. We repeat this for all the
other remaining cells until only one cell, the outer cell, is left in the arrangement.
Define the curve c′i as the Eulerian tour of this arrangement.

The resulting curves are disjoint and they cross the same set of regions as
their corresponding connected component. Using Lemma 2 we conclude that
|C| = O(n3).

To get a bound sensitive to X , observe that there are at most X/k com-
ponents intersecting more than k regions. Using Lemma 3 we conclude that
|C| = O(nk2 + X/k). We can set k = (X/n)1/3. ��

Fig. 2. Changing a connected component into a closed curve

Remark: The bounds in Lemmas 2 and 3 and Corollary 1 are all tight, as we can
see from the following example of a set R of Θ(n) regions and a set C of Θ(nk2)
curves with X = Θ(nk3), for any given k ≤ n: Let R contain the 2k vertical
segments {i} × [0, n + 1] for i = −k, . . . ,−1 and i = 1, . . . , k, as well as n short
vertical segments {0}× [t−ε, t+ε] for t = 1, . . . , n. Let C contain nk2 horizontal
segments [i, j] × {t} for all i = −k, . . . ,−1, j = 1, . . . , k, and t = 1, . . . , n. Small
perturbations can ensure that the segments in C are disjoint. No two segments
in C are equivalent.
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3 Dynamic Connectivity for Rectangles

We begin with a few preliminaries which will act as building blocks for the
final fully dynamic algorithm. Let S be a set of n axis-parallel rectangles in the
plane. Fix a parameter q and build a q×q grid by drawing vertical (and similarly
horizontal) lines at every 4n/q-th corner point of S. This construction ensures
that each vertical or horizontal slab contains O(n/q) corners. We call this grid
a q-grid. Let the set of regions R be the set of Θ(q2) non-crossing (vertical and
horizontal) line segments which form this grid and let C be the set of connected
components of S. We define equivalence as before and give subroutines that help
in computing and maintaining the corresponding equivalence classes.

3.1 Equivalence-Class Management and Decremental Connectivity

Let c be a connected component of the rectangles. We begin by defining a canon-
ical representation for the set of regions (grid segments) intersected by c, with
the intention that two components are equivalent iff their representations are
identical. (A naive bit-vector representation of size Θ(q2) would be too long for
our purposes.)

First, if a rectangle in c entirely contains a region r, then c is the only com-
ponent of its class. In this case we store r as the representation for c. If this
is not the case, then we proceed to find a representation for the set of regions
intersected by b, the union of all line segments bounding the rectangles in c.
Consider i-th row of the grid (a horizontal slab) and let ri,0, · · · , ri,q be the re-
gions (vertical grid segments) contained in this row, ordered from left to right.
We represent the regions intersected by b in this row by a list of intervals,
(ri,j1 , ri,j′

1
), · · · , (ri,jk

, ri,j′
k
), where j1 ≤ j′1 ≤ · · · ≤ jk ≤ j′k. Here, an interval

(ri,j , ri,j′ ) indicates that b intersects regions ri,j+1 to ri,j′−1 but not the regions
ri,j and ri,j′ . We build a similar representation for the columns of the grid (verti-
cal slabs) and define the representation of c to be the concatenation of these lists
for all the rows and columns of the grid. Note that the size of this representation
is O(min{|c|, q2}), where |c| denotes the number of rectangles in c.

Lemma 4. Given a q-grid and a set of n axis-parallel rectangles, we can find
the connected components and the set of equivalence classes in Õ(n) time.

Proof. The connected components can be found in O(n log n) time by a sweep-
line algorithm [11]. To build the classes, we need to compute the representation
for each connected component c. Within each row, the key subproblem is to
compute the union of the x-intervals of the horizontal segments contained in
the row. By sorting and scanning, the union of any m given (one-dimensional)
intervals can be constructed in O(m log m) time. Within each column, we have
a similar subproblem. The total time to compute the representation for c is
therefore O(|c| log |c|).

If we interpret the representation of the components as long strings, we can
compare the representation of two components c1 and c2 in O(min{|c1|, |c2|})
time using the lexicographical ordering of strings. Since the total size of these
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strings is O(n), we can sort the strings lexicographically in Õ(n) time, for exam-
ple, by mergesort. This will put all the elements of the same class in consecutive
order. Finally, a linear scan can be used to separate the components into classes.

��
Lemma 5. Given a connected component c and a set of classes L sorted lex-
icographically by their representations, in time O(|c| log n) we can find a class
	 ∈ L corresponding to c or conclude that no such class exists.

Proof. We can use binary search on the sorted list of representations to find the
proper component. Just note that each comparison takes O(|c|) time. ��
We need one more subroutine for our final algorithm: a decremental data struc-
ture that maintains connectivity of a set of rectangles under deletions. In [2]
it was noted that by using a compact representation (bi-clique covers) for the
intersection graph of the rectangles, we can obtain a decremental algorithm with
Õ(1) amortized update time. This is achieved by applying a known decremental
connectivity algorithm for graphs, e.g., [14], which can explicitly maintain the
connected components and in particular answer queries in constant time. Thus
we have the following lemma.

Lemma 6. Given a set of n axis-parallel rectangles, we can maintain the con-
nected components under any sequence of deletions in Õ(n) total time and answer
queries in constant time.

3.2 The Fully Dynamic Method

Our overall strategy is similar to the overall strategy of the previous method [2]
(which in turn is based on an idea from [3]): we will be “lazy” about insertions
but periodically rebuild the data structure to limit the “damage” caused by these
insertions. Let r be a parameter which will be determined later. After every r
updates we rebuild the whole data structure so that we can assume at any given
time there have been less than r updates.

The preprocessing and data structure: We build a q-grid and compute the con-
nected components and the corresponding set of classes according to Lemma 4.
The amortized cost of the preprocessing over r updates is Õ(n/r).

Let M be the maximum number of equivalence classes. According to Corol-
lary 1, M = O(|R|3) = O(q6). Noting that the number of crossings of the
rectangles’ boundaries with the q-grid is X = O(nq), we also get an alternative
bound M = O(|R| + |R|1/3X2/3) = O(q2 + q4/3n2/3).

The data structure maintains the connectivity of a graph H that contains
three types of vertices:
1. Rectangle vertex, i.e., a vertex corresponding to a rectangle inserted after

the latest rebuild.
2. Class vertex, i.e., a vertex corresponding to an equivalent class for some

subset of the connected components of the rectangles not represented by the
rectangle vertices.

3. Component vertex, i.e., a vertex corresponding to a connected component
not represented by the class vertices.
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For each class vertex, we store a list of its connected components. The compo-
nents (in both class and component vertices) are maintained in a decremental
connectivity data structure by Lemma 6. For each component, we also keep a
data structure for orthogonal intersection search, e.g., [6].

With a slight abuse of notation we use vertices of H to refer to their corre-
sponding geometric objects as well. The graph H is defined as the intersection
graph of the three types of geometric objects listed above and is stored in a con-
nectivity data structure that supports polylogarithmic edge updates, e.g., [10].
We will ensure the following invariant: whenever there is an edge between a rect-
angle vertex si and a class vertex 	j , the rectangle si intersects all the connected
components in 	j.

Initially, the graph has isolated class vertices and no rectangle or component
vertices. An exception is the class corresponding to components intersecting no
regions; we break down this class into O(q2) class vertices, one vertex for all the
components lying inside a cell.

We will ensure that each update deletes at most O(n/q) vertices of H and
that the number of component vertices at the end is bounded by O(rn/q). We
already know that the number of class vertices at the end is at most M . Thus
the total number of vertices of H created during the r updates is O(M + rn/q).
Now, we describe the update and query algorithms.

Insertion of a rectangle s: Consider the two horizontal slabs and two vertical
slabs of the grid containing the corners of s. These special slabs contain O(n/q)
corners and thus there are O(n/q) components with a corner in these slabs. We
go through each such component ci and remove them from their corresponding
class 	j and add one component vertex ci to the graph H . Since ci was previously
a part of 	j , we add an edge from ci to each vertex of H adjacent to 	j . We delete
all the empty class vertices.

Now we claim that the invariant still holds, i.e., if a connected component c1
of a class vertex 	 intersects s, then any other member c2 of 	 intersects s as well.
We consider two cases. The first case is when s entirely contains c1. Note that if
c1 does not intersects any region then its cell must be contained by S since we
have removed all the components from the special slabs of s. So we can assume
c1 intersects at least one region. Pick any region r1 intersected by c1. Since c1
does not have any corners in the special slabs (otherwise it would be removed),
s entirely contains r1. Since c1 and c2 are equivalent, c2 must also intersect r1,
and thus s. The second case is when c1 intersects a bounding segment s′ of s;
say s′ is horizontal. Since c1 does not have any corners in the special slabs, we
can find a grid cell (rectangle) such that c1 cuts through the cell vertically while
s′ cuts through it horizontally. Since c1 and c2 are equivalent and c2 does not
have any corners in the special slabs either, c2 must cut through the same cell
vertically and must intersect s′, and thus s.

Next we add a rectangle vertex s to H , and add an edge to each vertex it
intersects. We can decide whether a component intersects s in polylogarithmic
time by querying an orthogonal intersection search structure [6]. According to
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the invariant, for a class vertex, we only need to examine one of its components.
Hence insertion can be performed in Õ(|V (H)|) = Õ(M + rn/q) time. Notice
that each insertion deletes O(n/q) vertices and adds O(n/q) new component
vertices to H , which is acceptable.

Deletion of a rectangle s: For deletion, we use a “weighted split” strategy (like
in [2]). We consider two cases.

– s is a rectangle vertex in H : In this case we simply remove the vertex s and
at most O(M + rn/q) incident edges.

– s is a rectangle inside a connected component c (either located inside a class
vertex or a component vertex): In this case we remove s from the component
by the decremental connectivity data structure. The amortized cost of this
operation is Õ(n/r) over r updates. This operation splits c into smaller
connected components, c1, . . . , cz sorted in decreasing order according to
size. Let m = |c2|+ · · ·+ |cz|. We can rebuild the classes corresponding to all
the rectangles in c2, . . . , cz in Õ(m) time according to Lemma 4 and insert
them into the class vertices of H within the same time bound according to
Lemma 5. Components that have a corner in the same slab as one of the
O(r) corners of the rectangle vertices, however, are moved to new component
vertices; the earlier argument implies that this preserves the invariant. Note
that the number of such component vertices at the end is O(rn/q), which is
acceptable. We can obtain intersection-search structures for c1, . . . , cz from
the structure for c by performing O(m) update operations in Õ(m) additional
time.

For each new class/component vertex created in this phase, we add an edge
to each of the O(r) rectangle vertices it intersects. Since the total number of
vertices created during the r updates is O(M + rn/q), the total cost of this
step is Õ(rM + r2n/q), which yields an amortized cost of Õ(M + rn/q).

The size of each ci, 2 ≤ i ≤ z is at most half the size of c. Thus the sum of
all the m values encountered during the entire update sequence is O(n log n).
This implies that the amortized time for processing the smaller components
is Õ(n/r). To take care of c1 we simply remove it from its corresponding
class vertex and add a single component vertex to H and add edges to all
rectangle vertices it intersects, in Õ(r) additional time.

After each update we regenerate the connected components of the graph H
in Õ(M + rn/q) time. We conclude that the overall amortized update time is
Õ(n/r + q2 + q4/3n2/3 + rn/q), which is asymptotically minimized by picking
q = r2 and r = n1/11.

Connectivity query between rectangles u and v: Given pointers to u and v, we
want to determine whether u and v are connected. We first find the compo-
nents containing u and v from the decremental structure in constant time (by
Lemma 6). If u and v are inside the same component (either in a component
vertex or class vertex), we return “yes”. If they are in different components but
inside the same class vertex 	, we return “yes” iff 	 is not an isolated vertex in H .
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Otherwise, we return “yes” iff the vertex containing u and the vertex containing
v are connected in the graph H . Since we know all the connected components
of H , the query time is O(1).

Thus we have proved the following theorem.

Theorem 1. Given n axis-parallel rectangles, there exists a deterministic fully
dynamic data structure which performs updates in Õ(n10/11) = O(n0.910) amor-
tized time and answers connectivity queries in constant time.

Remarks: Note that we can determine the connectivity between two points in
the plane in polylogarithmic time, simply by performing orthogonal range search
queries to find two rectangles containing the two points.

Our method enables us to answer many other types of queries by storing
additional information. For example, the following queries cannot be handled by
the previous method [2].

– We can determine the number of connected components in the given set of
rectangles in O(1) time: we just record the number of components that are in
isolated class vertices of H , as well as the number of connected components
in the graph H itself, after each update.

– We can determine whether the entire set of rectangles is connected in O(1)
time, just by checking whether the number of connected components is 1.

– We can list all rectangles in the same connected component as a given rect-
angle s in time proportional to the output size: if s is in an isolated class
vertex, we just report all rectangles in the component of s from the decre-
mental structure; otherwise, we report all rectangles that appears in the
vertices of the connected component of the graph H containing s.

4 More Results

4.1 An Offline Method

It is possible to improve the update time of the algorithm if the list of insertions
is known in advance. In this case queries and deletions may be online. Let I be
the set of rectangles of the r future insertions. Instead of using a q-grid, we let
the set of regions R be the set of all O(r2) non-crossing line segments in the
arrangement of the bounding segments in I. We build equivalence classes with
respect to this set of regions. We use the bound M = O(r6) on the number of
equivalence classes.

The rest of the method is mostly the same, except that the invariant is more
easily satisfied: when inserting a rectangle s, we know that each of its bounding
segments s′ is covered exactly by regions of R, so obviously if one connected
component c1 ∈ 	 intersects s′, then all other members of 	 intersect s′ as well.
For this reason we can skip the creation of O(rn/q) component vertices. Thus
the number of vertices of H is reduced to O(r6). This implies that the amortized
cost of an update is Õ(r6 + n/r), which is asympotically minimized for r = n1/7

and yields an update time of Õ(n6/7) = O(n0.858).
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4.2 Intersection Searching for Disjoint Rectilinear Polygons

We can also prove the following result by our techniques:

Theorem 2. Given a set of disjoint simple rectilinear polygons in the plane of
total complexity n, we can build a data structure in Õ(n) time and space, so that
we can count the number of polygons intersecting a query rectangle in Õ(n6/7)
time.

Proof. We build a q-grid and the M = O(q6) equivalence classes for the polygons
as in the previous section. For each polygon, we keep an intersection-search data
structure. For each equivalence class 	, we record the number of its components.
As before, we break down the class of components intersecting no regions into
O(q2) smaller classes, one for each cell of the grid.

Given a query rectangle s, we go through the O(n/q) polygons with a corner
in one of the special slabs containing the corners of s and increase the counter
iff it intersects s. This takes Õ(n/q) time. We also mark these components to
prevent double counting in the next step.

By an earlier argument, we know that if an unmarked component of a class 	
intersects s, then any other unmarked member of 	 intersects s as well. So, we
go through each class 	, and if an arbitrary unmarked component in 	 intersects
s, we increase the counter by the number of unmarked components in 	. This
takes Õ(q6) additional time. The total query time Õ(q6 +n/q) is asymptotically
minimized for q = n1/7. ��

Although the above intersection-searching result is somewhat specialized, we
think it is of theoretical interest in view of previous work. For example, by stan-
dard results on orthogonal range/intersection searching [1], we can count the
number of intersections of the polygons with an orthogonal line segment. How-
ever, for our problem, segments from the same polygon should be counted only
once. On the other hand, by simple known techniques for colored intersection
searching [8], we can report (the labels of) the polygons intersecting a rectan-
gle in time O(k polylogn), where k is the number of output polygons. These
techniques do not require disjointness of the given rectilinear polygons; however,
they do not yield results that are independent of k for the counting problem.

5 Conclusion

We have presented a data structure with sublinear update time and constant
query time which has the additional advantage of being able to answer global
connectivity queries. Our work leaves a few open questions. The obvious one is
reducing the update time, but probably the most challenging open problem is
achieving a meaningful lower bound as it seems unlikely that this problem can
be solved in polylogarithmic time.

Another direction is to solve the dynamic connectivity problem for other
classes of geometric graphs, for instance the intersection graph of arbitrary line
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segments. Neither the previous technique [2] nor the new technique can be di-
rectly applied to this class of graphs (because the bi-clique cover of these graphs
does not have linear size, and the management of the equivalent classes also
becomes more difficult).
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Abstract. In this paper we study the single machine precedence con-
strained scheduling problem of minimizing the sum of weighted comple-
tion time. Specifically, we settle an open problem first raised by Chudak
& Hochbaum and whose answer was subsequently conjectured by Correa
& Schulz.

The most significant implication of our result is that the addressed
scheduling problem is a special case of the vertex cover problem. This will
hopefully be an important step towards proving that the two problems
behave identically in terms of approximability.

As a consequence of our result, previous results for the scheduling
problem can be explained, and in some cases improved, by means of
vertex cover theory. For example, our result implies the existence of a
polynomial time algorithm for the special case of two-dimensional partial
orders. This considerably extends Lawler’s result from 1978 for series-
parallel orders.

1 Introduction

We address the problem of scheduling a set N = {1, . . . , n} of n jobs on a single
machine. The machine can process at most one job at a time. Each job j is
specified by its length pj and its weight wj , where pj and wj are nonnegative
integers. We only consider non-preemptive schedules, in which all pj units of job
j must be scheduled consecutively. Jobs have precedence constraints between
them that are specified in the form of a directed acyclic graph G = (N, P ), where
(i, j) ∈ P implies that job i must be completed before job j can be started. We
assume that G is transitively closed, i.e., if (i, j), (j, k) ∈ P then (i, k) ∈ P .
The goal is to find a schedule which minimizes the sum

∑n
j=1 wjCj , where Cj is

the time at which job j completes in the given schedule. In standard scheduling
notation (see e.g. Graham et al. [8]), this problem is known as 1|prec |

∑
wjCj .

The general version of 1|prec |
∑

wjCj was shown to be strongly NP-hard by
Lawler [12] and Lenstra & Rinnooy Kan [14].

Nevertheless, special cases are known to be polynomial-time solvable. In 1956,
Smith [25] showed that, in absence of precedence constraints, an optimal solution
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could be found by sequencing the jobs in non-increasing order of the ratio wi/pi.
Afterwards, several other results for special classes of precedence constraints
were proposed. All of them culminated in the work by Lawler [12], who gave an
O(n log n) time algorithm for solving 1|prec |

∑
wjCj when the given precedence

constraints are series-parallel. Goemans & Williamson [7] provided a nice alter-
native proof for the correctness of Lawler’s algorithm by using a two-dimensional
Gantt chart. The series-parallel precedence constraints represent the most im-
portant class known to be polynomially solvable to date. Several authors worked
on finding larger classes of polynomially solvable instances, mainly by consid-
ering precedence constraints which are lexicographic sums [27] of polynomially
solvable classes (see [13] for a survey).

Two-dimensional partial orders represent an important generalization of the
series-parallel case [16]. However, determining its complexity is a long-standing
open problem. A first attempt [26] dates back to 1984, and the currently best
known approximation factor is 3/2 [5]. Other restricted classes of precedence
constraints, such as interval orders and convex bipartite precedence constraints,
have been studied (see e.g. [16] for a survey, and [5, 11, 28] for more recent re-
sults). Woeginger [28] proved that the general case of 1|prec |

∑
wjCj is not

harder to approximate than some fairly restricted special cases, among them for
example the case of bipartite precedence constraints where all jobs on the first
partition class have processing time 1 and weight 0, and all jobs on the second
partition class have weight 1 and processing time 0.

For the general version of 1|prec |
∑

wjCj , closing the approximability gap
is considered an outstanding open problem in scheduling theory (see e.g. [23]).
While currently no inapproximability result is known (other than the problem
does not admit a fully polynomial time approximation scheme), there are sev-
eral polynomial time 2-approximation algorithms. Pisaruk [20] claims to have
obtained the first of such 2-approximation algorithms. Schulz [22] and Hall,
Schulz, Shmoys & Wein [9] gave 2-approximation algorithms by using a linear
programming relaxation in completion time variables. Chudak & Hochbaum [4]
gave another algorithm based on a relaxation of the linear program studied
by Potts [21]. Independently, Chekuri & Motwani [3] and Margot, Queyranne
& Wang [15], provided identical, extremely simple 2-approximation algorithms
based on Sidney’s decomposition theorem [24] from 1975.

A Sidney decomposition partitions the set N of jobs into sets S1, S2, . . . , Sk

by using a generalization of Smith’s rule [25], such that there exists an opti-
mal schedule where jobs from Si are processed before jobs from Si+1, for any
i = 1, . . . , k−1. Lawler [12] showed that a Sidney decomposition can be computed
in polynomial time by performing a sequence of min-cut computations. Chekuri
& Motwani [3] and Margot, Queyranne & Wang [15] actually proved that every
schedule that complies with a Sidney decomposition is a 2-approximate solu-
tion. Correa & Schulz [5] subsequently showed that all known 2-approximation
algorithms follow a Sidney decomposition, and therefore belong to the class
of algorithms described by Chekuri & Motwani [3] and Margot, Queyranne &
Wang [15].
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This result is rather demoralizing, as it shows that despite of many years of
active research, all the approximation algorithms rely on the Sidney decomposi-
tion dating back to 1975. It should be emphasized that the Sidney decomposition
does not impose any ordering among the jobs within a set Si, and any ordering
will do just fine for a 2-approximation. This shows that we basically have no
clue how to order the jobs within the sets Si.

The current state of 1|prec |
∑

wjCj , in terms of approximation, is very similar
to one of the most famous and best studied NP-hard problems: the vertex cover
problem (see [19] for a survey). Despite considerable efforts, the best known
approximation algorithm still has a ratio of 2 − o(1). Improving this ratio is
generally considered one of the most outstanding open problems in theoretical
computer science. Hochbaum [10] conjectured that it is not possible to obtain a
better factor.

In 1973, Nemhauser & Trotter [17, 18] used the following integer program
to model the minimum vertex cover problem in a weighted graph (V, E) with
weights wi on the vertices.

[VC-IP] min
∑
i∈V

wixi

s.t. xi + xj ≥ 1 {i, j} ∈ E

xi ∈ {0, 1} i ∈ V

They also studied the linear relaxation [VC-LP] of [VC-IP], and proved that any
basic feasible solution for [VC-LP] is half-integral, that is xi ∈ {0, 1

2 , 1} for all
i ∈ V . Moreover, they showed [18] that those variables which assume binary
values in an optimal solution for [VC-LP] retain the same value in an optimal
solution for [VC-IP]. This is known as the persistency property of vertex cover,
and a solution is said to comply with the persistency property if it retains the
binary values of an optimal solution for [VC-LP]. Hochbaum [10] pointed out
that any feasible solution that complies with the persistency property is a 2
approximate solution.

2 Results and Implications

The dominant role the Sidney decomposition plays in 1|prec |
∑

wjCj seems to
be very well reflected by the persistency property for the vertex cover problem.
It was often suspected that there is a strong relationship between vertex cover
and 1|prec |

∑
wjCj [23].

In this paper we show that this speculation is justified. We hope that this re-
sult will be an important step towards a proof that both problems are equivalent
in terms of approximability. Proving this would give a more or less satisfactory
answer to the ninth problem of the famous ten open problems in scheduling
theory [23]. In general terms we prove the following result.
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Theorem 1. 1|prec |
∑

wjCj is a special case of the vertex cover problem.

Given that many people have worked hard on improving the various 2-
approximation algorithms of 1|prec |

∑
wjCj , it seems likely that 1|prec |

∑
wjCj

is as hard to approximate as vertex cover. Certainly people working on approxi-
mation algorithms for vertex cover should try their luck at 1|prec |

∑
wjCj first.

Concerning inapproximability, APX-hardness of 1|prec |
∑

wjCj is still not es-
tablished. Maybe the techniques used for vertex cover will prove helpful here.

Theorem 1 is proved by showing that an optimal solution for Potts’ in-
teger program ([P-IP]) is also optimal for the integer program of Chudak &
Hochbaum ([CH-IP]). This solves an open problem posted in [4] whose answer
was conjectured in [5]. Pott’s IP is known to model 1|prec |

∑
wjCj correctly,

whereas [CH-IP] is a relaxation of [P-IP] obtained by removing a big chunk
of the conditions from [P-IP]. Theorem 1 then follows from the equivalence
of [CH-IP] and the integer program [CS-IP] of Correa & Schulz [5], which is
a special case of [VC-IP]. We prove the same result also for the linear relax-
ations of the three IPs, which are subsequently denoted by [P-LP], [CH-LP],
and [CS-LP].

Apart from the long term consequences of our result, there are a few direct
ones. Since 1|prec |

∑
wjCj is a special case of the vertex cover problem, any

approximation algorithm for vertex cover translates into an approximation al-
gorithm for 1|prec|

∑
wjCj of the same approximation guarantee.

More importantly, our result considerably increases the class of instances that
can be solved optimally in polynomial time to the class of two-dimensional partial
orders. A partial order (N, P ) has dimension two if P can be described as the
intersection of two total orders of N (see [16] for a survey).

In [5] it is proved that the vertex cover graph associated with [CS-LP] is
bipartite if and only if the precedence constraints are of dimension two. This
means that every basic feasible solution to [CS-LP] is integral in this case. They
also give a 3/2-approximation algorithm for the two-dimensional case, which
improves on a previous result [11].

In this paper we show that any integral solution to [CH-LP] can be con-
verted into a feasible solution for [P-IP] without deteriorating the objective
function value. Together with a result of [5], this implies that instances with
two-dimensional precedence constraints are solvable in polynomial time. We
emphasize that series-parallel partial orders have dimension at most two, but
the class of two-dimensional partial orders is substantially larger [2]. Thus, the
polynomial-time solvability of the two-dimensional case considerably extends
Lawler’s result [12] from 1978 for series-parallel orders.

3 Preliminaries

To simplify notation, we implicitly assume hereafter that tuples and sets of jobs
have no multiplicity. Therefore, (a1, a2, . . . , ak) ∈ Nk and {b1, b2, . . . , bk} ⊆ N
denote a tuple and a set, respectively, with k distinct elements.
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In the following, we introduce several linear programming formulations and
relaxations of 1|prec |

∑
wjCj using linear ordering variables δij . The variable δij

has value 1 if job i precedes job j in the corresponding schedule, and 0 otherwise.
The first formulation using linear ordering variables is due to Potts [21], and it
can be stated as follows.

[P-IP] min
∑
j∈N

pjwj +
∑

(i,j)∈N2

δijpiwj (1)

s.t. δij + δji = 1 {i, j} ⊆ N (2)
δij = 1 (i, j) ∈ P (3)

δij + δjk + δki ≤ 2 (i, j, k) ∈ N3 (4)

δij ∈ {0, 1} (i, j) ∈ N2 (5)

Constraint (2) ensures that either job i is scheduled before j or viceversa. If
job i is constrained to precede j in the partial order P , then this is seized by
Constraint (3). The set of Constraints (4) is used to capture the transitivity of
the ordering relations (i.e., if i is scheduled before j and j before k, then i is
scheduled before k). It is easy to see that [P-IP] is indeed a complete formulation
of the problem [21].

Chudak & Hochbaum [4] suggested to study the following relaxation of [P-IP]:

[CH-IP] min (1) s.t. (2), (3), (5)
δjk + δki ≤ 1 (i, j) ∈ P, {i, j, k} ⊆ N (6)

In [CH-IP], Constraints (4) are replaced by Constraints (6). These inequalities
correspond in general to a proper subset of (4), since only those transitivity
Constraints (4) for which two of the participating jobs are already related to
each other by a precedence constraint are kept. If the integrality Constraints (5)
are relaxed and replaced by

δij ≥ 0 (i, j) ∈ N2, (7)

then we will refer to the linear relaxations of [P-IP] and [CH-IP] as [P-LP] and
[CH-LP], respectively. Chudak & Hochbaum’s formulations lead to two natural
open questions, first raised by Chudak & Hochbaum [4] and whose answers were
conjectured by Correa & Schulz [5]:

Conjecture 1. [5] An optimal solution to [P-IP] is optimal for [CH-IP] as well.

Conjecture 2. [5] An optimal solution to [P-LP] is optimal for [CH-LP] as well.

The correctness of these conjectures has several important consequences, the
most prominent being that the addressed problem can be seen as a special case
of the vertex cover problem. Indeed, Correa & Schulz proposed the following
relaxation of [P-IP] that can be interpreted as a vertex cover problem [5]:
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[CS-IP] min
∑
j∈N

pjwj +
∑

(i,j)∈N2

δijpiwj

s.t. δij + δji ≥ 1 {i, j} ⊆ N

δik + δkj ≥ 1 (i, j) ∈ P, {i, j, k} ⊆ N

δi� + δkj ≥ 1 (i, j), (k, 	) ∈ P, {i, j, k, 	} ⊆ N

δij = 1, δji = 0 (i, j) ∈ P

δij ∈ {0, 1} (i, j) ∈ N2

As usual, let us denote by [CS-LP] the linear relaxation of [CS-IP]. The following
result is implied in [5].

Theorem 2. [5] The optimal solutions to [CH-LP] and [CS-LP] coincide. More-
over, any feasible solution to [CS-LP] can be transformed in O(n2) time into a
feasible solution to [CH-LP] without increasing the objective value. Both state-
ments are true for [CH-IP] and [CS-IP] as well.

As [CS-IP] represents an instance of the vertex cover problem, it follows from
the work of Nemhauser & Trotter [17, 18] that [CS-LP] is half-integral, and that
an optimal solution can be obtained via a single min-cut computation. Hence,
the same holds for [CH-LP].

Theorem 3. [4, 5] Linear programs [CH-LP] and [CS-LP] are half-integral.

In order to unify the IP and the LP versions of the conjectures, the following
parameterized setting is considered throughout this paper. We introduce yet
another version of [P] and [CH]. For a parameter Δ = 1/q with q ∈ N, let [CH-Δ]
and [P-Δ] be equal to [CH-LP] and [P-LP], respectively, but with the additional
constraint that all δij are multiples of Δ. For Conjecture 1, it is obvious that
[CH-IP] is equivalent to [CH-1]. The same holds for [P-IP] and [P-1]. As far
as Conjecture 2 is concerned, Theorem 3 implies that any optimal solution for
[CH- 1

2 ] is optimal for [CH-LP] as well. Also, any feasible solution for [P-1
2 ] is

feasible for [P-LP].

4 Main Theorem and Proof Overview

Our main theorem can be stated as follows.

Theorem 4. Any feasible solution for [CH-Δ] can be turned into a feasible so-
lution for [P-Δ] in O

(
n3/Δ2

)
time without increasing the objective value.

Theorem 4 represents the missing link between problem 1|prec |
∑

wjCj and
vertex cover. With Theorem 4 in place, the claim of Theorem 1 directly follows
by using Theorem 2. Moreover, both Conjecture 1 and 2 are proved to be true
as corollaries. The proof of Theorem 4 is given in the following.
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Proof overview. Let vector δ =
(
δij : (i, j) ∈ N2

)
denote a feasible solution to

[CH-Δ] throughout the paper. For any (i, j, k) ∈ N3, let 〈ijk〉 denote the set
{(i, j), (j, k), (k, i)}. Let us call 〈ijk〉 an oriented 3-cycle. Moreover, let C be the
set of all oriented 3-cycles of the set N .1 The following values are used to measure
the infeasibility of δ for [P-Δ].

α〈ijk〉 := max (0, δij + δjk + δki − 2) for all 〈ijk〉 ∈ C (8)

Observe that δ is feasible for [P-Δ] if and only if α〈ijk〉 = 0 for all 〈ijk〉 ∈ C,
otherwise the transitivity Constraint (4) is violated. Let α be the total sum of
all α〈ijk〉 values.

α :=
∑

〈ijk〉∈C
α〈ijk〉 (9)

Let us call α the total infeasibility of solution δ. For any job k and 1 ≤ s ≤
1/Δ, we also define the following set of job pairs that together with k violate
Constraint (4).

B(k)
s :=

{
(i, j) : α〈ijk〉 ≥ sΔ

}
for all k ∈ N and 1 ≤ s ≤ 1/Δ (10)

These sets will be used to alter a feasible solution δ towards [P-Δ] feasibility,
as explained in the following. Note that δ is feasible for [P-Δ] if and only if all
B(k)

s are empty. Let B :=
{
B(k)

s : k ∈ N and 1 ≤ s ≤ 1/Δ
}
. For any set B ∈ B,

consider the vector δB defined as:

δBij :=

⎧⎨⎩
δij − Δ if (i, j) ∈ B;
δij + Δ if (j, i) ∈ B;
δij otherwise;

for all (i, j) ∈ N2. (11)

We will show later in Lemma 4 that it cannot happen that (i, j) ∈ B and (j, i) ∈ B
at the same time, therefore δB is well defined. For any 〈ijk〉 ∈ C, let αB

〈ijk〉 and
αB be the values defined in (8) and in (9), respectively, for δB.

The following lemma plays a fundamental role in the proof of Theorem 4. It
asserts that when δ is not feasible for [P-Δ], it is always possible to choose a
set B ∈ B such that δB has a lower total infeasibility and a not larger objective
value.

Lemma 1. Let δ be a feasible solution to [CH-Δ], which is not feasible for
[P-Δ]. Then

(a) Vector δB is a feasible solution to [CH-Δ] for all B ∈ B.
(b) There exists a nonempty set B ∈ B such that the objective value of δB is

not larger than the objective value of δ.
(c) For any B ∈ B, we have αB ≤ α − |B|Δ.

1 Note that 〈ijk〉 = 〈jki〉 = 〈kij〉 and 〈jik〉 = 〈kji〉 = 〈ikj〉, but 〈ijk〉 �= 〈jik〉. In
contrast to 〈ijk〉 ∈ C, any reordering of the jobs in (i, j, k) ∈ N3 results in a different
triple.
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By using Lemma 1, the proof of Theorem 4 becomes straightforward.

Proof of Theorem 4. The parts (a) and (b) of Lemma 1 ensure that among
all the solutions δB, with B ∈ B and B �= ∅, there is one whose objective value
is not larger than δ.

What is more, part (c) even ensures that the total infeasibility value α de-
creases by |B|Δ when moving from δ to δB. Since |B|Δ ≥ Δ and α〈ijk〉 ≥ 0, for
any 〈ijk〉 ∈ C, repeating this transformation will eventually lead to a solution
for which (9) evaluates to zero, which means that it is feasible for [P-Δ]. It is
not too hard to prove that this task can be accomplished in O

(
n3/Δ2

)
time.

5 A Few Useful Properties

In the following, we provide two properties of the α-values that will prove useful
in the proof of Lemma 1.

Lemma 2. For any 〈ijk〉, 〈j	k〉 ∈ C, if (i, 	) ∈ P or i = 	 then

min
(
α〈ijk〉, α〈j�k〉

)
= 0.

Proof. The proof is by contradiction. Assume α〈ijk〉 > 0 and α〈j�k〉 > 0. Then

δij + δjk + δki > 2 and δj� + δ�k + δkj > 2.

By adding up the previous two inequalities, and using Constraint (2), we obtain

δij + δj� + δ�k + δki > 3,

which is impossible since by Constraints (2), (6) and (7), we have δij + δj� ≤ 2
and δ�k + δki ≤ 1.

Lemma 3. For any 〈ijk〉, 〈	jk〉 ∈ C with (i, 	) ∈ P , if δij = δ�j (or equivalently
δji = δj� by Constraint (2)) then α〈ijk〉 ≤ α〈�jk〉 and α〈jik〉 ≥ α〈j�k〉.

Proof. By Constraints (2) and (6) we have δk� ≥ δki and δik ≥ δ�k, that, by the
assumptions (i.e., δij = δ�j and δji = δj�), imply

δij + δjk + δki ≤ δ�j + δjk + δk�,

δji + δkj + δik ≥ δj� + δkj + δ�k.

The claim follows by (8).

6 Proof of Lemma 1

Lemma 4. For any {i, j} ⊆ N and B ∈ B, at most one pair between (i, j) and
(j, i) belongs to set B.

Proof. Consider any B(k)
s ∈ B. For both (i, j) and (j, i) to be in B(k)

s we need
α〈ijk〉 > 0 and α〈jik〉 > 0, which cannot happen by Lemma 2.
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Proof of Lemma 1(a). To prove that claim, we fix an arbitrary set B(k)
s ∈ B.

To ease notation, we will often write B instead of B(k)
s . The claim follows by

showing that the solution δB satisfies Constraints (2), (3), (6) and (7), and that
all δBij are multiples of Δ. The latter directly follows from the feasibility of δ

and the definition (11) of δB. Constraints (3) hold since for (i, j) ∈ P , we have
α〈ijk〉 = 0 and α〈jik〉 = 0 and therefore neither (i, j) nor (j, i) will be part of the
set B(k)

s , which ensures δBij = δij = 1.
Concerning Constraints (2), it follows from Lemma 4 and the definition of

δB that the following identity holds, which in turn ensures that δB satisfies
Constraints (2).

δBij + δBji = δij + δji

Regarding Constraints (6) we distinguish the two complementary cases. In the
first case, we assume δ�j +δji = 1. We then obviously have δij = δ�j and δji = δj�

by Constraints (2). By definition of δB, in order to violate the constraint, we
need at least one of (i, j) and (j, 	) to be in B(k)

s . If (i, j) ∈ B(k)
s (and therefore

(j, i) �∈ B(k)
s by Lemma 4), then we have α〈ijk〉 ≤ α〈�jk〉 by Lemma 3, that

implies (	, j) ∈ B(k)
s (and (j, 	) �∈ B(k)

s ). Similarly, if (j, 	) ∈ B(k)
s (and therefore

(	, j) �∈ B(k)
s ), then by Lemma 3 we have α〈jik〉 ≥ α〈j�k〉, that implies (j, i) ∈ B(k)

s

(and (i, j) �∈ B(k)
s ). Hence in the case δ�j + δji = 1, Constraints (6) are satisfied

since we have δBij + δBj� ≤ δij + δj�.

In the second case we assume δ�j +δji < 1 and argue as follows. If (i, j) ∈ B(k)
s

then α〈ijk〉 > 0, and by Lemma 2 it is α〈j�k〉 = 0, which implies (j, 	) �∈ B(k)
s .

By these arguments, it is easy to see that δB�j + δBji ≤ δ�j + δji + Δ ≤ 1. This
completes to proof for Constraints (6).

Finally, consider the nonnegativity Constraint (7). Note that (i, j) ∈ B(k)
s

implies α〈ijk〉 ≥ Δ, by the feasibility of δ. This in turn means δij ≥ Δ. The
latter ensures that any δBij satisfies Constraint (7).

Lemma 5. (without proof)∑
(i,j,k)∈N3

α〈ijk〉 · pkpiwj =
∑

(i,j,k)∈N3

α〈ijk〉 · pkpjwi

Proof of Lemma 1(b). We first observe that if we decrease the value of any
δij by Δ and increase δji by Δ, then the difference between the new objective
value and the previous one is equal to Δ · (pjwi − piwj). Now, for any B ∈ B,
let V (B) be defined as follows.

V (B) :=
∑

(i,j)∈B
pjwi −

∑
(i,j)∈B

piwj (12)

If we have a look at Transformation (11), the difference between the objective
values of δB and δ, respectively, is equal to Δ · V (B).
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If solution δ is not feasible for [P-Δ], what we have to show is that there
always exists a set B �= ∅ (with B ∈ B) for which (12) is non-positive. We prove
this by contradiction.

Let us first define the following indicator function.

T (S) :=
{

1 if the statement S is true;
0 otherwise.

Recall that by the definition of B(k)
s in (10), it holds (i, j) ∈ B(k)

s if and only if
α〈ijk〉 ≥ sΔ. This allows to write

α〈ijk〉 = Δ ·
1/Δ∑
s=1

T
(
(i, j) ∈ B(k)

s

)
.

Now, assume that for all B �= ∅ the value V (B) is positive, i.e., the following
inequality holds.∑

(i,j)∈B
piwj <

∑
(i,j)∈B

pjwi for all nonempty B ∈ B (13)

Using Assumption (13), we can conclude

∑
(i,j,k)∈N3

α〈ijk〉 · pkpiwj =
∑

(i,j,k)∈N3

pk

⎛⎝Δ ·
1/Δ∑
s=1

T
(
(i, j) ∈ B(k)

s

)⎞⎠ piwj

=
∑
k∈N

pkΔ

1/Δ∑
s=1

⎛⎝ ∑
(i,j)∈B(k)

s

piwj

⎞⎠
<

∑
k∈N

pkΔ

1/Δ∑
s=1

⎛⎝ ∑
(i,j)∈B(k)

s

pjwi

⎞⎠ (14)

=
∑

(i,j,k)∈N3

pk

⎛⎝Δ ·
1/Δ∑
s=1

T
(
(i, j) ∈ B(k)

s

)⎞⎠ pjwi

=
∑

(i,j,k)∈N3

α〈ijk〉 · pkpjwi,

which clearly contradicts Lemma 5. The interesting line here is the strict In-
equality (14). If we assume px > 0 for all jobs x ∈ N , it just follows from
Assumption (13) and the obvious fact that V (B) = 0 when B is an empty set.

To prove it also for the case with zero processing times, we need to show
that there exists a job x ∈ N and s ∈ {1, . . . , 1/Δ} with px > 0 and B(x)

s �= ∅.
With this aim, consider any nonempty set B(k)

1 . Note that the assumption that
δ is not feasible for [P-Δ] guarantees the existence of set B(k)

1 �= ∅. Because of
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Assumption (13), there must be at least one (i, j) ∈ B(k)
1 with piwj < pjwi,

which implies pj > 0. It also follows from (i, j) ∈ B(k)
1 that (k, i) ∈ B(j)

1 . Hence,
job j meets our requirements since pj > 0 and B(j)

1 �= ∅.

The proof of Lemma 1(c) is omitted due to lack of space.

7 Open Problems

It would be interesting to investigate further connections between the vertex
cover problem and 1|prec |

∑
wjCj . It is known that vertex cover cannot be

approximated in polynomial time within a factor of 10
√

5 − 21 ≈ 1.36067, un-
less P=NP (Dinur & Safra [6]). It would be nice to have a similar result for
1|prec |

∑
wjCj or, as suggested in [23], to prove that a polynomial time ρ-

approximation algorithm for 1|prec |
∑

wjCj implies the existence of a polyno-
mial time ρ-approximation algorithm for the vertex cover problem.
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Abstract. In this paper we introduce and study cooperative variants
of the Traveling Salesperson Problem. In these problems a salesperson
has to make deliveries to customers who are willing to help in the pro-
cess. Customer cooperativeness may be manifested in several modes: they
may assist by approaching the salesperson, by reselling the goods they
purchased to other customers, or by doing both.

Several objectives are of interest: minimizing the total distance trav-
eled by all the participants, minimizing the maximal distance traveled
by a participant and minimizing the total time until all the deliveries are
made.

All the combinations of cooperation-modes and objective functions
are considered, both in weighted undirected graphs and in Euclidean
space. We show that most of the problems have a constant approximation
algorithm, many of the others admit a PTAS, and a few are solvable
in polynomial time. On the intractability side we provide NP-hardness
proofs and inapproximability factors, some of which are tight.

1 Introduction

The Traveling Salesperson Problem (TSP) is a classical problem in combinatorial
optimization, which has been studied extensively in many forms. Cooperative
TSP is a set of variants of TSP in which the customers are allowed to move
in order to assist the selling process. They may move in order to expedite the
deliveries, and may also move after meeting the salesperson in order to help the
distribution of the goods. For example, consider a secret message that has to be
distributed to several people, but is only allowed to be passed in person. Every
person who receives the message may then assist by passing it forward. We may
want to devise a scheme for delivering the secret to all the recipients as fast as
possible. A further illustration is the problem of an ice cream van vendor. The
vendor wishes to sell ice cream to all children in town. The children are eager
to cooperate, by approaching the van in order to buy ice cream. However, in
contrast to the previous example, they are not interested in selling ice cream to
others.

Formally, an instance of Cooperative TSP (cTSP) is a set of agents and a
salesperson, located in a finite metric space or a Euclidean space. A solution is a
synchronized series of move instructions to all participants (i.e., the salesperson

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 40–51, 2006.
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and the agents), such that all the agents eventually receive the delivery. We next
elaborate on the various cooperation modes and the cost of solutions.

Cooperation Modes. We consider three modes of cooperation. In the
Purchase-Cooperation mode the salesperson has to meet all agents, and the
agents are allowed to move towards the salesperson. In the Sales-Cooperation
mode, each agent receiving a delivery becomes capable of making deliveries simi-
larly to the salesperson. However, an agent is not allowed to move before receiving
a delivery. In the Full-Cooperation mode, an agent may cooperate in both
the purchase and sales phases. That is, an agent may move before receiving the
delivery and may make deliveries after receiving it.

Goal Functions. Three objectives are considered for Cooperative TSP: min-
imizing the total length traversed by all participants (Min-Sum), minimizing
the maximal length traversed by a participant (Min-Max), and minimizing the
total time until the sales process ends (Min-Makespan).

We consider Cooperative TSP in a fixed-dimension Euclidean space and in
weighted undirected graphs (note that w.l.o.g, we may assume that the graph is
complete and weights satisfy the triangle inequality). We consider the roundtrip
versions, in which all participants are required to return to their initial location,
and the path versions in which there is no such requirement.

Related Studies. TSP remains NP-hard even in the special planar variant.
However, the latter variant has a PTAS [Aro98, Mit99]. When metric space is as-
sumed, the Christofides [Chr76] approximation algorithm yields a 3

2 -approxima-
tion ratio and an inapproximability factor of 203

202 was shown [EK01].
The Freeze-Tag Problem was first suggested and studied by Arkin et al. in

[ABF+02]. This problem arises in the context of swarm robotics: how to wake a
set of slumbering robots, by having an already awake robot move to their loca-
tions. Once a robot is awake it can assist in waking up other slumbering robots.
The objective is to have all robots awake as early as possible. In our terminology
this is the path version of Min-Makespan Sales cTSP. Arkin et al. [ABF+02]
provided an NP-hardness proof, a PTAS for the Euclidean variant, and a con-
stant approximation for some graph families. A series of studies followed (e.g.,
[SABM02, ABG+03, KLS04]) culminating with an O(

√
log n)-approximation for

the general weighted graph case [KLS04].
TSP with Neighborhoods is a proximity-related variant of TSP. In this problem

each customer is willing to meet the salesperson anywhere within some neighbor-
hood. The problem was first studied by Arkin et al. [AH94], followed by quite a
few papers (e.g., [MM95, DM01, dBGK+05, SS05, Mit06]). This problem seems
quite related to Purchase cTSP, as in both customers are willing to approach
the salesperson. However, in TSP with Neighborhoods the customers’ travel is
not counted in the goal function, while in Cooperative TSP their moves do cost,
and are part of the optimization task.

Other Cooperative Multi-Agents Routing Problems. As noted in [ABF+02], the
Freeze-Tag Problem (and thus the Cooperative TSP problems) bears features of
broadcasting, routing, scheduling and network design. The minimum broadcast
time, the multicast problem and the minimum gossip time problem are all closely
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Table 1. Summary of approximation factors vs. inapproximability ratios in graphs.
The parameter ε stands for an arbitrarily small positive constant, or for a positive func-
tion that tends to zero as the input size increases. (1) is by [KLS04], (2) is by [ABF+02].

Purchase Sales Full
Cooperation Cooperation Cooperation

Goal Approx. Inapprox. Approx. Inapprox.Approx. Inapprox.
Min-Sum 2 + ln 3 NP-hard 2 NP-hard 2 + ln 3 APX-hard

path Min-Max PTAS no FPTAS 3 2− ε 4 2− ε
Min-Makespan Polynomial O(

√
log n) 1 5

3 − ε 2 2 2− ε

Min-Sum 3
2

203
202 − ε 3

2
203
202 − ε 3

2
203
202 − ε

roundMin-Max PTAS no FPTAS 3 3
2 − ε 2 2− ε

trip Min-Makespan Polynomial O(
√

log n) 5
4 − ε 2 2− ε

related to Cooperative TSP (see [HHL88] for a survey and [Rav94, BNGNS98]
for approximation results). Controlling swarms of robots in order to perform
a certain task, has also been studied in various algorithmic aspects, includ-
ing environment exploration, robot formation, searching and recruitment (see
[ABF+02] for a list of relevant papers). Other researches are trying to confront
similar scenarios, but with no central control, where each agent has to make de-
cisions with limited knowledge regarding the environment and the other agents
(for example, the problem of routing autonomous agents in wireless sensor net-
work; and ants behavior inspired algorithms; see [ABF+02] for a list of relevant
papers).

As cTSP is a generalization of both the Freeze-Tag and the TSP with
Neighborhoods problems, the algorithms (and intractability results) achieved for
cTSP apply to similar scenarios, e.g, cooperative robots tasks (see for example
[AH94, ABF+02] for other relevant scenarios).

The Min-Max cost function is suitable, for example, when there is a bound
on the energy that each robot is allowed to spend. The Min-Sum cost function,
on the other hand, is relevant when travel costs of all robots are covered by a
single entity, who is therefore interested in minimizing the sum of these costs.

Our Contribution: We consider all combinations of cooperation modes,
goal functions, path / roundtrip and graph / Euclidean. See Table 1 for the
results on graphs and Table 2 for the results in Euclidean space. We obtain
constant approximations and hardness results for most of the problems, PTAS
for many of the others and polynomial-time exact solutions for a few. On the
intractability side we give NP-hardness and inapproximability factors for all the
graph problems and for some of the Euclidean problems.

Paper Organization. From here on, by cTSP we mean the path (rather
than the roundtrip) version of the corresponding Cooperative TSP problem,
unless otherwise stated.

In Section 2 we present some of the results for Euclidean cTSP. Section 3
contains some of the results for cTSP problems on graphs. The proofs for the
other results are either achieved using similar methods to those presented here,
or are straightforward, and are omitted from this version due to space limitation.
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Table 2. Summary of approximation factors in Euclidean space, for any fixed dimen-
sion. The parameter ε stands for an arbitrarily small positive constant, or for a positive
function that tends to zero as the input size increases. (1) is by [ABF+02].

Purchase Sales Full
Goal Cooperation Cooperation Cooperation

Min-Sum PTAS 5
3 + ε 2 + ε

path Min-Max PTAS 3 4
Min-Makespan Polynomial PTAS 1 PTAS
Min-Sum PTAS PTAS PTAS

round Min-Max PTAS 3 2
trip Min-Makespan Polynomial PTAS PTAS

2 Euclidean cTSP

This section presents some of the results obtained for Euclidean cTSP.

2.1 A PTAS for Min-Sum Purchase Euclidean-cTSP

We next provide a PTAS for Min-Sum Purchase Euclidean-cTSP. The
algorithm and analysis below use Arora’s technique for the PTAS of Euclidean
TSP [Aro98]. Our algorithm differs from Arora’s algorithm in that it has to
consider all the agents’ paths and not just the salesperson’s path. We show how
this can be done while keeping the dynamic programming polynomial. We show:

Theorem 1. Min-Sum Purchase Euclidean-cTSP admits a PTAS.

Note that the problem is NP-hard even for the planar case. This follows, since
an instance of the planar TSP can be reduced to an instance of Min-Sum
Purchase Euclidean-cTSP by simply replacing each costumer with three
agents. This makes an instance where the salesperson is the only participant
who moves.

We next describe the PTAS for the planar case. The extension to any fixed di-
mension is straightforward. Our terminology resembles the one of Arora [Aro98]
and is given here for completeness.

Let ε > 0 be an arbitrary small constant. Denote by n the number of partici-
pants and by OPT the cost of the optimal solution. Let L = 23+�2 log n	. Without
loss of generality, that all the participants are located inside the bounding box
[0, L/2]2 and that OPT > L/4.

Super-pixels. We call each square [j, j + 2] × [j′, j′ + 2], where j, j′ ∈
{0, 2, 4, . . . , L − 2}, a pixel. We name the point (j + 1, j′ + 1) the center of
the pixel [j, j + 2] × [j′, j′ + 2]. For every i = 0, . . . , log L − 1, we call each square
[j, j + L/2i] × [j′, j′ + L/2i], where j, j′ ∈ {0, L/2i, 2 · L/2i . . . , L − L/2i}, a
super-pixel of level i. It is not hard to see that, without loss of generality, we
may consider only instances for which all the participants are located at pixel
centers.
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An (a, b)-shifting. Let 0 ≤ a, b < L/2 be two even integers. For a set A ⊆
[0, L/2]2 we define the (a, b)-shift of A to be the set {(x + a, y + b) | (x, y) ∈ A}.

Portals. Let m ∈ [ 8
√

2 log L
ε , 16

√
2 log L
ε ) be a power of 2. For each super-pixel

we mark each one of its four boundaries with m equidistant points that we refer
to as portals. In particular, the portals include the four corners of the super-pixel.
Note that, as m is a power of 2, each portal of a super-pixel of level i is also a
portal of a smaller super-pixel of level i + 1, for i = 0, . . . , log L − 2.

Portals-limited-solutions. We define a portals-limited-solution as a solution
that satisfies the following four conditions:

1. Each participant may cross the boundary of a super-pixel only at its portals.
2. The salesperson does not cross her own route except on portals, where she

may visit at most twice.
3. A meeting between an agent and the salesperson occurs only at a pixel center.
4. If two (or more) agents happen to reside at a pixel, then they all travel to

(or stay at) the pixel’s center and cease to move.

Therefore, in a portals-limited-solution, the tour of each participant is a col-
lection of segments which connect portals to portals, and centers of pixels to
portals. Additionally, a meeting between an agent and the salesperson occurs
only at a pixel center, and tours of two agents do not cross.

Lemma 1. Let a, b be two even integers chosen uniformly at random from the
set {0, 2, . . . , L/2−2}. Then, the expected cost of a minimal cost portals-limited-
solution of the (a, b)-shifted instance, is at most (1 + ε) · OPT .

Lemma 2. A minimal cost portals-limited-solution can be found in time poly-
nomial in n.

The proof of Lemma 1 mainly follows arguments from the PTAS of Euclidean
TSP and will appear in the full version of the paper. The PTAS enumerates
over all O(L2) values of (a, b) pairs. For each pair it applies Lemma 2 to find a
minimal cost portals-limited-solution. Finally, it outputs the cheapest solution
found, which according to Lemma 1, must have a cost of at most (1 + ε) · OPT .
Clearly, the O(n4) factor in running time, caused by the enumeration over all
(a, b) pairs, can be avoided if only an expected (1 + ε) · OPT cost is desired.

Proof. (of Lemma 2 ) We use dynamic programming to build a polynomial-
size table. For each super-pixel, the table contains 64m = nO(1/ε) entries. For
each entry we store portions of some portals-limited-solutions (the portions of
solutions limited to that super-pixel) together with their contribution to the
overall cost.

The construction of the table is conducted in a bottom-up manner, starting
from the pixels. A minimal value portals-limited-solution for the whole instance
is obtained at the bounding box super-pixel.

The entries of the table for each super-pixel are represented by a list of 4m
elements, one element for each portal of the super-pixel. Each element takes one
of the following six values:
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1. The salesperson enters the super-pixel at this portal
2. The salesperson leaves the super-pixel at this portal
3. The salesperson enters and leaves the super-pixel at this portal
4. One agent enters the super-pixel at this portal
5. One agent leaves the super-pixel at this portal
6. None of the participants uses this portal

Note that the conditions defining a portals-limited-solution guarantee that these
six cases cover all possible tour portions induced by all portals-limited-solutions
(here we use the fact that two agents do not happen to reach the same portal,
as they start at pixel centers, their tours do not cross and they end up at pixel
centers). Also note that not all the 4m-size lists represent a valid portion of some
portals-limited-solution. We use the term valid-list for a list that represents a
collection of tours that can be extended to some portals-limited-solution. Clearly,
there are at most 64m = nO(1/ε) (valid-)lists. Finally, note that the salesperson’s
paths can intersect only at his entrance or exit points. Hence, given a valid-list,
pairings of the participants’ entrance and exit points can be found as in the
algorithm of Arora [Aro98].

We now describe the construction in a bottom-up manner. Consider a pixel.
Each valid-list of the pixel falls into one of the following three categories:

1. There is no agent in the pixel and the salesperson may visit the pixel one or
more times.

2. There is one agent in the pixel. If the salesperson visits the pixel they meet
at the pixel’s center.

3. Two or more agents pass through the pixel. The salesperson also visits the
pixel. In one of the visits she arrives at the center of the pixel. In this case,
each agent travels along a straight line from a portal of the pixel to the
center of the pixel. Alternatively, an agent’s route may be an empty route if
the agent is already located at the center of the pixel.

In each case, the computation of the cost for each valid-list of the pixel can be
done in polynomial time.

We now turn to the computation of the table’s entries for the super-pixels of
level i, assuming all valid-lists of super-pixels of level i + 1 were computed. Let
S be a level i super-pixel and consider a list of 1, . . . , 6 values for its portals.
The list already fixes the entrances and exits on the boundary of S. The super-
pixel S contains four level i+1 super-pixels, which have four boundaries internal
to S, with a total of at most 4m more portals. Each of these portals may be
used in one out of the six ways, giving rise again to nO(1/ε) possibilities. The
cost for each possibility can be computed by using the values for the four i + 1
level super-pixels previously obtained. Thus, we can find the minimal cost that
corresponds to each list in O(nO(1/ε)) time.

For the top-level super-pixel (the bounding-box) we may only consider the
list for which neither the salesperson nor an agent visit a portal. The last table
update of level 0 produces the cost of a minimal portals-limited-solution.
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Makespan-Sales PTAS

1. For each subset S of participants of size up to 3m4, which includes the
salesperson and contains a representative from each non-empty pixel:
(a) Find an optimal solution for S by conducting an exhaustive search.
(b) In each non-empty pixel apply a constant-approximation to all original

participants of the pixel, where the salesperson is a representative of
the pixel.

(c) Extend the partial solution of S to a solution for the original instance:
when all the participants in S return to their pixels - simultaneously
perform the solution found in step 1(b).

2. Return the minimal cost solution found

Fig. 1. A PTAS for the roundtrip version of Min-Makespan Sales Euclidean-
cTSP. The parameter m is assumed to be �1/ε�.

2.2 Min-Makespan Euclidean-cTSP

We next present a simple PTAS for the roundtrip version of Min-Makespan
Sales Euclidean-cTSP. A PTAS for the corresponding Full-Cooperation
problem can be obtained by similar means. We note that the corresponding
Purchase problem is polynomial-time solvable, as there is always an optimal
solution in which all participants meet at a single point.

The PTAS for the two dimensional case appears in Figure 1. The generaliza-
tion to any fixed dimension is straightforward.

Theorem 2. The roundtrip version of Min-Makespan Sales Euclidean-
cTSP admits a PTAS. The running time of the PTAS is O(n + f(ε)), where
ε > 0 is an arbitrarily small constant, f(ε) depends only on ε, and n is the
number of participants.

A constant approximation algorithm for the Path version of this problem ap-
pears in [ABF+02]. The solution found by their algorithm is also O(1) times
the diameter (the maximal distance between any two points) of the input. One
can adapt this approximation to the roundtrip version by returning each par-
ticipant to its origin. The cost of the resulting solution is at most twice the
original solution. Since an optimal solution to the Path version costs less than
an optimal solution for the corresponding roundtrip version, this heuristic is
a constant approximation for the roundtrip version.

We assume, w.l.o.g. that the instance lies inside [0, 1]2 and has an optimal
cost of at least 1/2. Let m = �1/ε�. We divide the unit square [0, 1]2 into m2

pixels. I.e., a pixel is a square of the form [ j
m , j+1

m ] × [ j′
m , j′+1

m ], where j, j′ =
0, 1, . . . , m − 1. The PTAS for the Sales version relies on the next lemma:

Lemma 3. Let I be an instance of n participants with an optimal makespan
of OPT . Then, there exists an instance S ⊆ I with at most 3m4 participants,
in which each non-empty pixel in I is also non-empty in S and the optimal
makespan of S is at most (1 + O(ε))OPT .
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Proof. We may assume, w.l.o.g., that no two participants in I are located at the
same point and that no three participants lie on a straight line. Otherwise, we
can perturb each participant’s location by at most ε/n and obtain an instance
with an optimal cost of at most (1 + O(ε))OPT .

Let π be an optimal solution to I. We define the sales-tree of π to be a
directed graph in which the nodes are the locations of the participants and there
is a directed edge from u to v if a participant traveled from u to v in π. Since no
two participants are located at the same point and no three participants lie on a
straight line the in-degree of every node is one and the out-degree is at most two.
We prune the sales-tree of π by iteratively removing leaves: we remove a leaf u if
there exists another node in the sales-tree which resides in the same pixel as u.
At the end of the process we are left with at most m2/2 leaves, and at most
m2/2 nodes of degree 3 (in-degree plus out-degree). Note that the makespan of
an optimal solution for the new instance, denoted π0, is at most OPT . We now
further decrease the number of participants by pruning some of the degree-2
vertices. We call a maximal set of participants along a path in which all the
nodes are of degree 2 a chain. Clearly, each chain ends with a degree 3 node or a
leaf. Hence, there are at most m2 chains. For each chain, and a pixel it intersects
with, we intend to keep at most two nodes (participants). All the other nodes
are removed from the chain. For a given pixel and a chain, the two participants
that we keep are the first and the last (of this chain, inside the pixel) who receive
the goods. We call such nodes a beginner node and an ender node, respectively.
Note that, we are left with at most 2 · m2 participants per chain, giving rise to
at most 2m4 nodes of degree 2.

The new instance constructed, denoted S has at most 3m4 participants. We
next show that

Claim. There exists a solution πS for S of cost at most OPT + O(ε).

Proof. Recall that π0 (the optimal solution after pruning the leaves) is of cost
at most OPT . We construct the solution πS from π0 as follows: each participant
of a beginner node travels along the corresponding original chain until it reaches
the corresponding ender node, and then travels back to its starting location.
All other participants travel along the same route they travel in π0. Since all
the non-beginner participants travel the way they do in π0, they arrive to their
original location by the time OPT . Beginner participants may be delayed by the
time it takes to travel from the corresponding ender node back to their original
location. This is at most the time it takes to cross a pixel which is at most

√
2ε.

Thus, the cost of an optimal solution to S is at most (1 + O(ε))OPT .

The correctness of the PTAS algorithm for the roundtrip version of Min-
Makespan Sales Euclidean-cTSP can now be deduced:

Proof. (of Theorem 2) Let π be an optimal solution for the instance I and let
S ⊆ I be an instance that satisfies the condition of Lemma 3. Clearly, the subset
of participants S is included in the enumeration of our algorithm. The cost of
an optimal solution to S, which is (1 + ε)OPT is computed at stage 2(b) of
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Hop-visit(G(V, E), v):

1. Let G′ = (V ′, E′) be a weighted complete graph, where V ′ ⊆ V is the
set of vertices which contain participants, and the edge-weights are the
corresponding distances in G.

2. Compute a minimum-spanning-tree T of G′, rooted at the salesperson’s
vertex v.

3. The salesperson visits an arbitrary child, and doesn’t move any further.
4. When an agent receives a delivery:

(a) If the agent has a sibling in T who hasn’t received the delivery, then
the agent visits such a sibling and one of that sibling’s children.

(b) Otherwise, the agent visits a child of the sibling which was visited first
(a child of the “eldest” sibling of that agent), if such a child exists.

Fig. 2. A 3-approximation algorithm for Min-Max Sales cTSP

our algorithm. The additional cost produced at stage 2(c) is at most a constant
times the diameter of the pixel, which is O(ε). Note that this is an additive O(ε)
increase of the makespan, as after all the participants in S return to their pixels
the delivery to the other participants is done in parallel. Hence, the total cost of
the solution produced by our algorithm is at most (1+O(ε)) times the cost of π.

Finally, note that there are less than O(nO(m4)) = O(nO(1/ε4)) sets of partic-
ipants to enumerate on. For each such subset S, a solution is a sequence of at
most 2|S|−1 moves. This follows as in each move either a participant receives the
delivery or a participant returns to its original location. In any case, each move
can be represented as a pair of two of the original input locations. Hence, for a
given subset |S|, the number of solutions the algorithm enumerates on is at most(

|S|
2

)2|S|−1

= O

((
m4

2

)O(m4)
)

=
(

1
ε

)O(1/ε4)

.

Thus, the algorithm is a PTAS and runs in time O
(
n +

( 1
ε

)O( 1
ε4 )

)
.

3 cTSP in Graphs

In this section we present some of the algorithmic results for cTSP in graphs.

3.1 Min-Max Sales cTSP

We present a simple constant approximation algorithm for Min-Max Sales
cTSP in Figure 2.

Theorem 3. Min-Max Sales cTSP is 3-approximable.

Proof. We prove that Algorithm Hop-visit is a 3-approximation algorithm for
this problem. Clearly, all the agents are visited. Each participant traverses at
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Coarse-Path(G(V, E), v, ε):
1. For each ordered subset V ′ ⊆ V of size 1+
1/ε� or less, which starts with v.

(a) For each u /∈ V ′ that contains an agent, find its distance to a closest
vertex in V ′. Denote the maximal distance found by MaxDist(V’).

(b) Compute the sum of distances between pairs of consecutive vertices in
V ′, and denote it by Length(V’).

(c) Let Cost(V’) be the maximum of Length(V’) and MaxDist(V’).
2. Pick the ordered subset V ′ for which Cost(V’) is minimal.
3. Return the following solution: The salesperson follows the shortest paths

between the consecutive vertices of V ′. Each of the agents meets the sales-
person at a closest vertex to that agent in V ′. The salesperson waits for all
the agents who come to a certain vertex before moving to the next vertex.

Fig. 3. A PTAS for Min-Max Purchase cTSP

most three edges of the MST, which means that the cost of the solution is at
most thrice the weight of the heaviest edge of the MST.

On the other hand, consider an optimal solution, and define G′′ = (V ′, E′′),
such that (u1, u2) ∈ E′′ iff the participant from u1 sold the goods to the par-
ticipant from u2, or vice versa. Let the weight of (u1, u2) ∈ E′′ in G′′ be the
distance between u1 and u2 in G. The optimal cost is clearly at least the weight
of the heaviest edge in E′′, since selling to an agent requires traveling to this
agent’s vertex.

Note that G′′ is a connected subgraph of G′. It is well-known that an MST is
lexicographically minimal, i.e., its heaviest edge is not heavier than that of any
other spanning-tree or spanning connected-subgraph. Therefore, the cost of the
solution found by the above algorithm is at most thrice the cost of an optimal
solution.

3.2 Min-Max Purchase cTSP

We next present a simple PTAS, Coarse-Path, described in Figure 3.

Theorem 4. Algorithm Coarse-Path is a PTAS for Min-Max Purchase
cTSP.

Proof. Clearly, the Min-Max cost of the solution returned by the algorithm is
the minimal Cost(V ′) of the subsets it considers. We show that one of these
subsets has Cost(V ′) of at most (1 + ε) times the optimum.

Consider an optimal solution to the problem π, in which the cost is OPT .
Choose a subset of the vertices of the path traveled by the salesperson in the
following way. Start with vertex v, and then choose a vertex iff its distance from
the previous vertex chosen is at least ε · OPT . Clearly, at most 1/ε vertices are
selected. Denote this subset by V ′. Note that Length(V ′) ≤ OPT .

For each vertex u /∈ V ′ that contains an agent, there is a vertex in V ′ at a
distance of at most (1 + ε) · OPT . This holds, since for each vertex w visited
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by the salesperson in π, V ′ contains a vertex at a distance of at most ε · OPT
from w. Thus, Cost(V ′) ≤ MaxDist(V ′) ≤ (1 + ε)OPT . Therefore, Algorithm
Coarse-Path indeed finds a (1+ε)-approximate solution. The running-time of the
algorithm is O((2n)�1/ε�+3), since it enumerates over ordered subsets of vertices
of size at most �1/ε�, and the required computation for each ordered subset takes
at most O(n3) time. Thus, Coarse-Path is a PTAS.

4 Discussion and Open Problems

We obtained quite tight approximation and intractability results for most of the
cTSP problems. Some of the cTSP problems turn out to be easier (in sense of
approximation) than the classical TSP, while others are strictly harder.

The status of Min-Makespan Sales cTSP is not settled, as there is an
O(

√
log n) approximation and a constant inapproximability factor. Improving

the factors of this problem as well as tightening the factors for some others is
yet to be achieved. It is also likely that the running time of some of the PTAS
can be improved.

There are some disturbing asymmetries in the Euclidean results (see
Table 2). For example, while the roundtrip versions of Min-Sum Sales and
Full-Cooperation cTSP have a PTAS, the best approximations for the cor-
responding path-cTSP problems only guarantee some constant factors. We
conjecture that these two path-cTSP versions indeed have a PTAS, but we
suspect that this may not be very easy to prove. This follows since it can be
shown that a PTAS for the first problem implies a (currently unknown) PTAS
for the well-studied 3-bounded-degree-planar Minimum Spanning Tree (e.g.,
[PV84, KRY96, FKK+97, Cha03, AC04]).
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Abstract. We revisit the problem of computing the Fréchet distance be-
tween polygonal curves, focusing on the discrete Fréchet distance, where
only distance between vertices is considered. We develop efficient approx-
imation algorithms for two natural classes of curves: κ-bounded curves
and backbone curves, the latter of which are widely used to model molec-
ular structures. We also propose a pseudo–output-sensitive algorithm for
computing the discrete Fréchet distance exactly. The complexity of the
algorithm is a function of the complexity of the free-space boundary,
which is quadratic in the worst case, but tends to be lower in practice.

1 Introduction

The Fréchet distance is a natural measure of similarity between two curves
[AG95]. An intuitive definition of the Fréchet distance is to imagine that a
dog and its handler are walking on their respective curves. Both can control
their speed but can only go forward. The Fréchet distance of these two curves is
the minimal length of any leash necessary for the dog and the handler to move
from the starting points of the two curves to their respective endpoints. The
Fréchet distance and its variants have been widely used in many applications
such as dynamic time-warping [KP99], speech recognition [KHM+98], signature
verification [PP90], and matching of time series in databases [KKS05].

Alt and Godau [AG95] present an algorithm to compute the Fréchet distance
between two polygonal curves of n and m vertices, respectively, in O(nm log(nm))
time. Improving this roughly quadratic-time solution for general curves seems
to be hard, and so far, no algorithm, exact or approximate, with running time
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Fig. 1. (a) Light and dark curves are close under Hausdorff, but far under Fréchet
distance. (b) π is κ-bounded if and only if for any p, q ∈ π, subchain π(p, q) lies inside
the shaded region: the radius of the two disks (centered at p and q, respectively) is
κd(p, q)/2. (c) The free-space diagram D(π, σ, δ) and a viable path. (d) The directed
graph G corresponds to the white cells in (c).

lower than O(nm) has been found for this problem for general curves. A slightly
simpler version of the Fréchet distance is the discrete Fréchet distance, which
only considers vertices of polygonal curves. Its computation takes Θ(n2) time
and space using dynamic programing [EM94], and no subquadratic algorithm is
known either. Both the continuous and discrete Fréchet distance are related to
the edit distance problem, for which no substantially subquadratic algorithm is
known.

On the other hand, another similarity measure, the Hausdorff distance, can be
computed faster in the plane and approximated efficiently in higher dimensions.
Unfortunately, the Hausdorff distance does not reflect curve similarity well (see
Figure 1(a) for an example). Alt et al. [AKW04] showed that the Hausdorff dis-
tance and the Fréchet distance are the same for a pair of closed convex curves.
They also showed that the two measures are closely related for κ-bounded curves
(see Figure 1(b) for definition). In particular, they showed that the Fréchet dis-
tance between any two κ-bounded curves is bounded by κ+1 times the Hausdorff
distance between them. This leads to a (κ + 1)-approximation algorithm for the
Fréchet distance for any pair of κ-bounded curves that runs in near linear time
in R2. Little is known about computing the Fréchet distance for other types of
curves, including even x-monotone curves.

The problem of minimizing the Fréchet distance under various classes of
transformations has also been studied [AKW01,Wen02,CM05], however the run-
times are very high and practical solutions remain elusive. Fréchet distance has
also been extended to graphs (maps) [AERW03,BPSW05], to piecewise smooth
curves [Rot05], to simple polygons [BBW06], and to surfaces [AB05]. Finally,
Fréchet distance was used for high-dimensional approximate nearest neighbor
search [Ind02], for efficient curve simplification [AHPMW05], and for curve mor-
phing [EGHPM01].

Our results. Given the apparent difficulty of improving the worst-case time com-
plexity of computing the (continuous or discrete) Fréchet distance between two
unrestricted polygonal curves, we aim at developing algorithms for more realistic
cases. First, in Section 3 we consider efficient approximation algorithms for the
discrete Fréchet distance. Most current algorithms for computing the Fréchet
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distance rely on a so-called decision procedure which determines whether the
Fréchet distance between the two given curves is larger or smaller than a given
value. We observe that an approximate solution to the decision problem can lead
to an approximation of the discrete Fréchet distance, and curve simplification
can help us approximate the decision problem efficiently. We apply this idea
to two common families of curves: κ-bounded curves and backbone curves. In
the former case, given an arbitrary polygonal curve π and a κ-bounded polyg-
onal curve σ, of complexity n and m, respectively, we can (1 + ε)-approximate
their discrete Fréchet distance in O((m + nκdε−d) log(nm)) time in d dimen-
sions. In the second case, both curves are so-called backbone curves, used widely
to model molecular structures, such as protein backbones and DNA/RNA. We
(1 + ε)-approximate their discrete Fréchet distance in near linear time in two
dimensions, and in O(nm1/3 log(nm)/ε2) time in three dimensions.

In Section 4, we shift our focus back to the exact computation of the discrete
Fréchet distance. Previously, the problem of deciding whether the Fréchet dis-
tance was smaller than some threshold was cast as finding some viable path in
the so-called free-space diagram. We observe that such a path can be computed
using only a subset S of cells in the free-space diagram. The size of S is nm in
the worst case, but should be smaller in practical settings. Based on this obser-
vation, we present algorithms that compute the discrete Fréchet distance under
the L∞ norm in O(|S| log(nm) + (n + m) log2d(nm)) time in d dimensions. The
case of the L2 norm can be handled as well but with worse performance; running
time and details are omitted from this version.

2 Preliminaries

Fréchet distance. A (parameterized) curve in Rd can be represented as a contin-
uous function f : [0, 1] → Rd. A (monotone) reparametrization α is a continuous
non-decreasing function α : [0, 1] → [0, 1] with α(0) = 0 and α(1) = 1. Given two
curves f, g : [0, 1] → Rd, their Fréchet distance, δF(f, g), is defined as

δF(f, g) := inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))).

where d(x, y) denotes the Euclidean distance between points x and y, and α and
β range over all monotone reparametrizations.

Discrete Fréchet distance. A simpler variant of the Fréchet distance for two
polygonal curves π = 〈p1, p2, . . . , pn〉 and σ = 〈q1, q2, . . . , qm〉 is the discrete
Fréchet distance, denoted by δD(π, σ). Imagine that both the dog and its handler
can only stop at vertices of π and σ, and at any step, each of them can either stay
at their current vertex or jump to the next one. The discrete Fréchet distance is
defined as the minimal leash necessary at these discrete moments.

To formally define the discrete Fréchet distance, we first consider a discrete
analog of (α, β), i.e, the correspondences between continuous reparametrizations.
In particular, an order-preserving complete correspondence between π and σ is a
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set M ⊆ {(p, q) | p ∈ π, q ∈ σ} of pairs of vertices which is (a) order-preserving:
if (pi, qj) ∈ M , then no (ps, qt) ∈ M for s < i and t > j, nor for s > i and
t < j; and (b) complete: for any p ∈ π (respectively, q ∈ σ), there exists some
pair involving p (respectively, q) in M . The discrete Fréchet distance between π
and σ, δD(π, σ), is then

δD(f, g) := min
M

max
(p,q)∈M

d(p, q),

where M range over all order-preserving complete correspondences between π
and σ.

It is well known that discrete and continuous versions of the Fréchet distance
relate to each other as follows:

δF(π, σ) ≤ δD(π, σ) ≤ δF(π, σ) + max{	1, 	2},

where 	1 and 	2 are the lengths of the longest edges in π and σ, respectively. This
suggests using δD to approximate δF. Unfortunately, it seems that computing
δD(π, σ) is asymptotically almost as hard as computing δF(π, σ).

Decision problem. In the original paper [AG95], to compute δF(π, σ), first, the
decision problem “Given a parameter δ ≥ 0, is δF(π, σ) ≤ δ?” is solved by a
dynamic programming algorithm that runs in Θ(nm) time and space. This al-
gorithm is then used as a subroutine to search for δF(π, σ) using the parametric
search paradigm within O(nm log nm) time [AG95,AST94]. Our algorithms fol-
low a similar framework combining decision problem and binary search (instead
of parametric search). Thus we describe below how to solve the decision problem
for the discrete case.

Given two polygonal chains π and σ and a distance threshold δ ≥ 0, we
construct the following free-space diagram D = D(π, σ, δ): D is an n×m matrix
(grid) and a cell D[i, j] has value 1 if d(pi, qj) ≤ δ, and value 0 otherwise. We refer
to 1-cells as white and 0-cells as black. A viable path in D is a path connecting
(1, 1) to (n, m), visiting only white cells of D, and moving in one step from (i, j)
to either (i, j + 1), (i + 1, j), or (i + 1, j + 1). It is easy to check that a complete
order-preserving correspondence M induces a viable path in D and vice versa
(see Figure 1 (c)). Hence the problem of deciding “δD(π, σ) ≤ δ?” is equivalent
to deciding the existence of a viable path in D.

Given D, one can extract a viable path, if it exists, in Θ(nm) time using dy-
namic programming. Alternatively, one can traverse a directed graph G defined
as follows: The nodes of G are the white cells of D. A white cell is connected
to its top, right, and/or top-right neighbor cells by a directed edge, if they are
white. See Figure 1(d). The size of G is O(|W |), where |W | is the number of
white cells of D. Given G, testing “δD(π, σ) ≤ δ?” corresponds to a connectivity
check in G (from (1, 1) to (n, m)) that can be performed in time O(|W |).

Approximations. We say that τ is an (1 + ε)-approximation of δ(π, σ) if

(1 − ε)τ ≤ δ(π, σ) ≤ (1 + ε)τ.



56 B. Aronov et al.

An algorithm (1 + ε)-approximates the decision problem “Is δ(π, σ) ≤ τ?”, if it
returns yes whenever δ(π, σ) < (1 − ε)τ and no whenever δ(π, σ) > (1 + ε)τ . If
τ is a (1 + ε)-approximation of δ(π, σ), the algorithm is allowed to return either
yes or no. We also call such an algorithm a fuzzy decision procedure.

3 Approximation Algorithms Based on Simplification

In this section, we first introduce a general framework for approximating the
discrete Fréchet distance by using a fuzzy decision procedure. Based on this
framework we then develop efficient approximation algorithms, using curve sim-
plification and packing arguments, for two families of common curves: κ-bounded
curves and backbone curves.

3.1 Approximation Via a Fuzzy Decision Procedure

Given a set P of N points in Rd, a well-separated pairs decomposition (WSPD)
of P with separation constant s is a collection {(Ai, Bi)} of pairs of subsets
of P , with the property that (1) for every pair of points x, y ∈ P , there is an
index i, so that x ∈ Ai and y ∈ Bi and (2) the minimum distance between Ai

and Bi is at least s times the diameter of either set. The size of a WSPD is∑
i(|Ai| + |Bi|). For a constant s, a WSPD of size O(N) can be computed in

O(N log N) time [CK95]. For every pair (Ai, Bi) in the WSPD, we choose an
arbitrary pair of points (pi, qi), with pi ∈ Ai and qi ∈ Bi, as its representatives.
We set s = 10. It is easy to check that the distance between any two points
x, y ∈ P is (1 + 1

5 )-approximated by the distance between the representatives of
the corresponding WSPD pair.

Consider an optimization problem whose solution δ∗ is a distance determined
by a pair of points in P . Let X be the set of all distances induced by pairs of
points of P . We now describe how to solve the optimization problem approxi-
mately by using an exact decision procedure. We start by constructing a WSPD
as above and considering the set Y := {d(pi, qi)} of O(N) distances between
representative points of the decomposition pairs. By definition of WSPD, every
distance in X is (1+ 1

5 )-approximated by some distance in Y . Hence some value
in Y is a (1 + 1

5 )-approximation of δ∗, as δ∗ is defined by a pair of points in P .
Next, form a larger set Y ′ of distances by adding to Y ′, for each value y ∈ Y ,
the two values 4

5y and 6
5y. We then perform a binary search on Y ′ using the

decision procedure to identify the smallest interval I = [a, b] that contains δ∗.
(The cost is dominated by O(log N) invocations of the decision procedure and
the O(N log N) time to construct the WSPD.) Notice that b ≤ 3

2a, as by above
discussion, δ∗ is contained in the interval [45y, 6

5y] for some y ∈ Y and we have
included both 4

5y and 6
5y in Y ′. We now perform another (numerical) binary

search on this interval to identify the interval [a′, b′] ⊆ [a, b] containing δ∗ with
b′ ≤ (1 + ε)a′, giving rise to a (1 + ε)-approximation of δ∗. The second binary
search invokes the decision procedure O(log ε−1) times.
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Interestingly, the decision procedure does not have to be exact—the above
binary search can be adapted to work with a fuzzy decision procedure with the
same performance guarantees. We omit the details from current version.

Theorem 1. Let P be a set of N points in Rd, and let Z be any optimization
problem, for which the optimal answer is a distance induced by a pair of points
of P . Given a fuzzy decision procedure for Z, one can (1 + ε)-approximate the
optimal solution in

O(N log N + TFDecision(N, 1/10) logN + TFDecision(N, ε/4) log ε−1)

time, where TFDecision(N, c) is the running time of the fuzzy decision procedure
on N points when the required approximation factor is 1 + c.

Returning to the computation of discrete Fréchet distance, observe that there
must exist some p∗ ∈ π and q∗ ∈ σ such that d(p∗, q∗) = δD(π, σ). Hence, by
applying the above theorem to the set of all vertices from π and σ, we only need
a fuzzy decision procedure for δD(π, σ) in order to approximate δD(π, σ).

3.2 Approximation with Simplifications

The remaining question is how to implement a fuzzy decision procedure effi-
ciently. We show that curve simplification together with a packing argument can
be used to achieve guaranteed efficiency for the two classes of common curves
that we investigate.

Greedy simplification. Given a polygonal chain π = 〈p1, . . . , pn〉, we simplify π
to obtain π̃ = 〈p̂1, . . . , p̂k〉, where vertices of π̃ form a subsequence of π, with
p̂1 = p1 and p̂k = pn. Let Iπ(i) = j if p̂i = pj ∈ π; the subscript π is omitted
when it is clear from context. We say that π̃ μ-simplifies π if (i) I(i) < I(k)
for i < k, and (ii) d(p̂i, pk) ≤ μ for any k such that I(i) ≤ k < I(i + 1).
(This definition is slightly different from the standard one in the literature.) We
construct π̃, a μ-simplification of π, in a greedy manner: Start with p̂1 = p1. At
some stage, suppose we have already computed p̂i = pj . In order to find I(i+1),
we check each vertex of π starting from pj in order, and stop when we reach
the first edge pkpk+1 of π such that d(pj , pk) ≤ μ and d(pj , pk+1) > μ. We set
p̂i+1 = pk+1 and continue, until we reach pn, at which point we add pn as the
final vertex of π̃. The entire procedure takes linear time. By construction, the
following observation is straightforward.

Observation 2. Any edge p̂ip̂i+1 in π̃ other than the last edge, d(p̂i, p̂i+1) > μ.

The following fact follows easily by an explicit construction. We omit the details.

Lemma 1. If π̃ and σ̃ be μ-simplifications of curves π and σ, respectively, then

δD(π, σ) − 2μ ≤ δD(π̃, σ̃) ≤ δD(π, σ) + μ.
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The above lemma implies that if the answer to δD(π̃, σ̃) ≤ δ is yes, then,
δD(π, σ) ≤ δ + 2μ. If it is no, then δD(π, σ) ≥ δ − μ. Thus the decision prob-
lem for δD(π̃, σ̃) (1 + 2μ/δ)-approximates that for δD(π, σ). We next show that
δD(π̃, σ̃) can be answered asymptotically much faster for two special classes of
curves, giving rise to efficient fuzzy decision procedure for them.

3.3 Fréchet Distance for κ-Bounded Curves

As defined by Alt et al. [AKW04], π is κ-bounded if π(x, y) ⊆ B(x, κ
2 d(x, y)) ∪

B(y, κ
2 d(x, y)), for all x, y ∈ π, where π(x, y) is the arc of π between x and y

and B(x, r) is the radius-r Euclidean ball centered at x1. See Figure 1(b) for an
illustration in two dimensions. Examples of κ-bounded curves include κ-straight
curves [AKW04] which in turn include curves with increasing chords [Rot94] and
self-approaching curves [AAI+01].

We now describe how to construct a fuzzy decision procedure for the problem
“δD(π, σ) ≤ δ?” for two polygonal curves π, σ where σ is κ-bounded. We first
μ-simplify π and σ into π̃ and σ̃ respectively, using μ := εδ/2. By Lemma 1, the
decision problem for δD(π̃, σ̃) is an (1+ ε)-approximation decision procedure for
δD(π, σ). Hence we now focus on checking whether δD(π̃, σ̃) ≤ δ. Let n, m, r, s
be the size of π, σ, π̃, and σ̃ respectively; r ≤ n and s ≤ m.

Decision problem for δD(π̃, σ̃). Let D̃ be the free-space diagram for π̃ and σ̃
with respect to δ. Recall that δD(π̃, σ̃) ≤ δ if and only if there exists a viable
path in D̃. This can be tested in O(|W |) time once W , the set of white cells of
D̃, is given. We first bound the size of W .

For every p̂ ∈ π̃, let N(p̂) be the set of vertices from σ̃ contained in B(p̂, δ).
Obviously, |W | =

∑
p̂∈π̃ |N(p̂)|. Consider any two points q1, q2 ∈ σ̃ that lie in

B(p̂, δ) for some p̂ ∈ π̃. If q1q2 is an edge of σ̃, d(q1, q2) ≥ μ by Observation 2.
Otherwise

σ(q1, q2) ⊆ B(q1,
κ

2
d(q1, q2)) ∪ B(q2,

κ

2
d(q1, q2)),

as σ is κ-bounded. Furthermore, in this case, let q1q ⊂ σ̃ be the edge with q ∈
σ(q1, q2); d(q1, q) ≥ μ by Observation 2. It then follows that (1+κ/2)d(q1, q2) ≥ μ
and therefore d(q1, q2) ≥ 2μ/(κ + 2). Hence N(p̂) = O((κδ/μ)d) by a straight-
forward packing argument. This means that the number of white cells is |W | =
O(s(κδ/μ)d) = O(n(κδ/μ)d) given that σ is a κ-bounded curve.

We still need to compute N(p̂) efficiently, that is, to enumerate the set of
vertices of σ̃ contained in B(p̂, δ) for every p̂ ∈ π̃. This can be done by a spherical
range query, which unfortunately, there is no known efficient algorithms. We
hence replace exact spherical range queries by approximate ones by rounding
vertices of σ̃ to vertices of some grid of appropriate size. Overall, the set of white
cells in D̃ can be computed in O(r + s + r(κδ/μ)d) time. Details are omitted
from the conference version.

1 We have slightly abused the notation by treating a curve section as a point set.
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Putting everything together and substituting μ = εδ/2, we have a (1 + ε)-
approximation decision procedure for δD(π, σ) that runs in O(n + m + nκdε−d)
time and space in Rd. An application of Theorem 1 now yields.

Theorem 3. A (1 + ε)-approximation of δD(π, σ) for a polygonal curve π and
a κ-bounded curve σ, of size n and m respectively, can be computed in O((m +
nκdε−d) log(n/ε)) time and O(n + m + nκd/εd) space in d dimensions.

3.4 Fréchet distance for Protein Backbones

In molecular biology, it is common to model a protein backbone by a polygonal
chain, where each Cα atom becomes a vertex, and each edge represents a covalent
bond between two consecutive amino acids. All the bonds have approximately
the same bond length, and no two atoms (thus vertices) can get too close to
each other due to van der Waals interactions. This is the motivation behind the
study of backbone curves, which have the following properties:

P1. For any two non-consecutive vertices u and v of the curve, d(u, v) ≥ 1,
P2. Every edge of the curve has length between c1 and c2, where c2 > c1 > 0

are constants.

Although proteins lie in three-dimensional space, there are simplified models for
protein backbones in both two and three dimensions [GIP99,KS94].

Given backbone curves π and σ in Rd and given a distance threshold δ ≥ 0,
we want to test whether δD(π, σ) ≤ δ. We μ-simplify π and σ to obtain π̃ and
σ̃ as in the previous section, for μ = εδ/2, and construct the free-space diagram
D̃ for π̃ and σ̃ with respect to δ. D̃ is an r × s grid, where by Observation 2 and
property P2, r = |π̃| ≤ c2n/μ and s = |σ̃| ≤ c2m/μ. Given D̃, we can compute
W , the set of white cells in D̃ by the same approach as the one for κ-bounded
curves in O(r + s + |W |) time and space. Once D̃ and W are given, the decision
problem can be solved in time proportional to |W |. Below we present an upper
bound for |W |.

Bounding |W |. A straightforward bound2 for |W | is O(min{rδd, sδd}), as by a
packing argument and property P1, there are at most O(δd) vertices lying in
δ-neighborhood of any vertex of π̃ and σ̃. If δ < 1, then the number of white
cells is O(n + m). Hence we now assume that δ ≥ 1.

We can improve this bound on |W | by a more careful counting analysis. As-
sume without loss of generality that r ≤ s. For any vertex p̂ ∈ π̃ and its δ-
neighborhood B(p̂, δ), let E(p̂) be the set of edges of σ̃ intersecting the ball
B(p̂, δ). The number of vertices of σ̃ in B(p̂, δ) is upper bounded by O(|E(p̂)|).
Furthermore, given any edge e = (q̂i, q̂i+1) ∈ σ̃, let σ(e) = σ(qIq(i), qIq(i+1))
(that is, the subchain σ(e) ⊆ σ that simplified into edge e in chain σ̃). E(p̂)
can be partitioned into two sets: (i) E1 = {e ∈ E(p̂) | σ(e) ⊆ B(p̂, δ)}, and (ii)
E2 = {e ∈ E(p̂) | at least one vertex of σ(e) lies outside B(p̂, δ)}.
2 In what follows, the big-O notation may hide factors depending on constants c1

and c2.
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By property P2, the number of vertices in σ(e) is at least μ/c2 for any e ∈ σ̃.
Therefore |E1| = O(c2δ

d/μ). On the other hand, for every edge e ∈ E2, there is
at least one vertex of σ(e) that lies in the spherical shell of B(p̂, δ + c2)\B(p̂, δ),
as the length of edges in σ is at most c2. Since the volume of this spherical
shell is O(c2(c2 + δ)d−1), the size of E2 is bounded by O((c2(c2 + δ)d−1/(cd−1

1 ))).
Therefore, |E(p̂)| = |E1|+ |E2| = O(δd−1 +δd/μ). Summing over all r vertices of
π̃, we obtain |W | = O(n

μ (δd−1+δd/μ)). As this number cannot exceed the size of

D̃ which is O(rs) = O(nm/μ2), we have |W | = min{nm/μ2, O(n
μ (δd−1 +δd/μ)}.

|W | is maximized when the two balancing terms are equal: nm
ε2δ2 = δd−2

ε2 , that is,
when δ = m1/d. This implies that |W | = O(nm1−2/d/ε2).

Finally, by applying Theorem 1 and putting everything together, we conclude
with the following result. We remark that similar but more involved argument
can also be used to approximate the continuous Fréchet distance for two back-
bone curves. We omit the details from current conference version.

Theorem 4. Given two backbone curves π and σ of n and m ≥ n vertices
respectively, we can compute a (1+ ε)-approximation of δD(π, σ) in time O((n+
m)ε−2 log(nm)) in the plane, and O(nm1/3ε−2 log(nm)) in three dimensions.

4 Pseudo-Output-Sensitive Algorithm

In this section, we present a pseudo-output-sensitive algorithm for computing
δD(π, σ) for general curves π and σ of size n and m, respectively. Although in
the worst-case the runtime may still be Θ(nm) for solving the decision problem,
we believe that our observation should help produce efficient algorithms for the
Fréchet distance in practice. In what follows, we describe results for the L∞
norm (which yield a constant-factor approximation for the L2 norm). The case
of the L2 norm is more involved and the running times are slower; details are
omitted from the conference version.

Binary search. We show how to compute δ∗ = δD(π, σ) using a variant of
binary search. Assume we have algorithms to solve the decision problem “Is
δ∗ = δD(π, σ) ≤ δ?” in time A(n+m) and to answer the distance selection query
“Given a set of N points P and a rank k, what is the kth smallest distance among
all pairwise distances from P?” in B(N) time. Combining the two algorithms
by performing a binary search on the set of all inter-vertex distances, we can
find δ∗ in O((A(n + m) + B(n + m)) log(nm)) time. For the L∞ norm, the
distance-selection problem can be solved in O(dN logd−1 N) in Rd [Sal89]. For
the decision problem, a straightforward bound for the runtime of A is O(|W |)
plus the time to compute W , the set of white cells in the free-space diagram
D = D(π, σ, δ) for a threshold δ > 0. Below we provide a tighter bound for A
although its worst-case complexity is still Θ(nm).

Boundary cells. Given an n × m matrix D representing the free-space diagram
with respect to some threshold δ, a boundary cell is a white cell whose immediate
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neighbor above or below it is black. So if D[i, j] is a boundary cell, then the edge
qjqj+1 ⊂ σ (or qjqj−1) intersects the boundary of B(pi, δ) exactly once (one
endpoint must lie inside and one must be outside); we say that the edge qjqj+1
crosses the boundary of B(pi, δ). Let S = S(π, σ, δ) denote the set of boundary
cells of D(π, σ, δ). Although in the worst case |S| = Ω(|W |) = Ω(nm), we expect
it to be much smaller than |W | in practice. For example, consider the case when
vertices of σ form lines of a cubic lattice of size n1/3×n1/3×n1/3 and δ is roughly
n1/3/2. For a vertex p at the center of this cube, the number of white cells in
the corresponding column in D is Θ(n), while the number of boundary cells is
Θ(n2/3). The remaining questions are (i) how to compute the set of boundary
cells S(π, σ, δ) and (ii) how to solve the decision problem once S is given.

Computing S. Given p ∈ Rd and δ, let S(p, δ) denote the set of edges from
σ crossing the boundary of B(p, δ). Since one endpoint of each edge has to be
inside B(p, δ) and the other endpoint outside, this is different from the standard
segment/ball intersection problem. To compute S, we need to perform n edge/ball
crossing queries, one for each vertex from π. Under the L∞ norm, B(p, δ) is a
cube centered at p, and the basic operation is an edge/cube crossing query, where
all cubes are congruent. We can preprocess the set of edges in σ by building a
standard multi-level data structure for their endpoints (similar to the multi-
level range tree for orthogonal range reporting problem). In particular, there are
altogether 2d levels: the first d levels are used to locate edges with one endpoint
inside the query cube, and the second d levels are used to find those with the
second endpoint outside of the query cube. The entire data structure has size
O(m log2d−1 m) and can be built in O(m log2d m) time. Given any query cube
(in fact, the query can be any orthogonal box), the set of edges crossing it can
be reported in O(log2d m + k) time, where k is the number of such edges. The
query time can be improved to O(log2d−1 m + k) using the fractional-cascading
technique [CG86,Lue78].

Once S is given, we can solve the decision problem using dynamic program-
ming in O(|S|) time and space. The technical details are omitted due to lack of
space. Putting everything together, we conclude with the following theorem:

Theorem 5. Given any two polygonal curves π and σ in Rd, with n and m ver-
tices, respectively, one can compute δD(π, σ) under the L∞-norm in O(Φ log(nm)
+ (n + m) log2d(nm)) time and O(Φ + (n + m) log2d−1(nm)) space, where Φ is
the maximum number of boundary cells for any threshold δ.

5 Conclusion and Discussion

In this paper, we considered the problem of computing the discrete Fréchet
distance between two polygonal curves either approximately or exactly. Our
main contribution is a simple approximation framework that leads to efficient
(1+ ε)-approximation algorithms for two families of common curves: κ-bounded
curves and backbone curves. We also considered the exact algorithm for general
curves, and proposed a pseudo–output-sensitive algorithm by observing that
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only a subset of the white cells from the free-space diagram are necessary for the
decision problem. It will be interesting to investigate whether there are families
of curves that are guaranteed to have small Φ, which is the maximum number
of boundary cells, over all possible values of the threshold δ. We are currently
working on extending the pseudo-output-sensitive algorithms to the continuous
weak Fréchet distance.

It might be hard to develop algorithms that are significantly sub-quadratic in
the worst case, given that no such algorithm exists for the related and widely
studied problem of computing the edit distance for strings. Hence our future di-
rections will focus on practical variants of the Fréchet distance that can handle
outliers, partial matching, and/or efficient multiple-curve alignment. Another
important direction is to develop efficient (approximation) algorithms for mini-
mizing the Fréchet distance under transformations such as rigid motions.
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Abstract. We study the bandwidth allocation problem (bap) in
bounded degree trees. In this problem we are given a tree and a set of con-
nection requests. Each request consists of a path in the tree, a bandwidth
requirement, and a weight. Our goal is to find a maximum weight subset
S of requests such that, for every edge e, the total bandwidth of requests
in S whose path contains e is at most 1. We also consider the storage al-
location problem (sap), in which it is also required that every request in
the solution is given the same contiguous portion of the resource in every
edge in its path. We present a deterministic approximation algorithm for
bap in bounded degree trees with ratio (2

√
e− 1)/(

√
e− 1) + ε < 3.542.

Our algorithm is based on a novel application of the local ratio tech-
nique in which the available bandwidth is divided into narrow strips and
requests with very small bandwidths are allocated in these strips. We
also present a randomized (2 + ε)-approximation algorithm for bap in
bounded degree trees. The best previously known ratio for bap in gen-
eral trees is 5. We present a reduction from sap to bap that works for
instances where the tree is a line and the bandwidths are very small. It
follows that there exists a (2+ε)-approximation algorithm for sap in the
line. The best previously known ratio for this problem is 7.

1 Introduction

The problems. We study the bandwidth allocation problem (bap) in trees. In
this problem we are given a tree T = (V, E), where m = |E|, and a set J of
n connection requests from clients. Each request j is associated with a path in
the tree that is denoted by Pj (Pj is a set of edges), and a weight w(j) that
may be gained by accommodating it. It also has a bandwidth requirement, or
demand, dj ∈ [0, 1]. Given a parameter δ ∈ (0, 1), a request j is called δ-narrow
(or simply narrow) if dj ≤ δ. Otherwise, it is called δ-wide (wide). An instance
in which all requests are narrow is called a narrow instance, and an instance in
which all requests are wide is called a wide instance. A feasible solution, or a
schedule, is a subset S ⊆ J of connection requests such that, for every edge e,
the total demand of requests whose path contains e is at most 1. That is, S is
feasible if

∑
j∈S : e∈Pj

dj ≤ 1, for every edge e. Our goal is to find a schedule with
maximum total weight. When the given tree T is a line (i.e., a tree with two
leaves) it is convenient to use temporal terms. In this case, the path of a request
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becomes a time interval, and our goal is to find a maximum weight subset S ⊆ J
such that at any given time the total bandwidth is bounded by 1.

We also consider the storage allocation problem (sap) which is a variation
of bap with two additional constraints: (i) the specific portion of the resource
allocated to a request cannot change between edges (or over time), and (ii) the
allocation must be contiguous. Hence, given a sap instance, a solution can be
described by a set of requests S ⊆ J and an assignment of every request j ∈ S to a
specific portion of the resource. Formally, a solution consists of the set of requests
S and a height function h : S → [0, 1] such that the following constraints are
satisfied: (i) h(j)+dj ≤ 1 for every j ∈ S, and (ii) for every two requests j, k ∈ S
such that j �= k and Pj ∩ Pk �= ∅ either h(j) + dj ≤ h(k) or h(k) + dk ≤ h(j).
That is, we require that the portion of the resource assigned to j is within the
range [0, 1], and that no two requests occupy the same portion of the resource
on the same edge (or at the same time). Observe that a feasible sap schedule
is a feasible bap schedule, while the converse may not be true. Hence, the bap
optimum is at least as large as the sap optimum of a given problem instance.

In the line topology a request j can be represented by an axis-parallel rect-
angle, whose length is |Pj | (or the duration of the request, in temporal terms),
and whose height is dj . The rectangles are allowed to move vertically but not
horizontally. We wish to select a maximum weight subset of rectangles that can
be placed within a strip of height 1 such that no two rectangles overlap. A natu-
ral application of sap in the line arises in a multi-threaded environment, where
threads require contiguous memory allocations for fixed time intervals.

Related Work. Both bap and sap are NP-hard even in the line since they contain
knapsack as the special case in which the paths of all requests share an edge.
bap in the line with unit demands is the problem of finding an independent set
in a weighted interval graph which is solvable in polynomial time (see, e.g., [1]).
bap in the tree with unit demands is the problem of finding a maximum weight
independent set of paths in a tree. This problem is also solvable in polynomial
time [2]. Notice that bap and sap are equivalent in the case of unit demands.

The special case of bap in the line, where all requests have the same length (or
duration), was studied by Arkin and Silverberg [3]. Bar-Noy et al. [4] considered
an online version of bap in which the weight of a request is proportional to the
area of the rectangle it induces. Phillips et al. [5] developed a 6-approximation
algorithm for bap in the line. Leonardi at al. [6] observed that sap in the line
can be used to model the problem of scheduling requests for remote medical
consulting on a shared satellite channel. They obtained a 12-approximation al-
gorithm for sap in the line. Bar-Noy et al. [7] used the local ratio technique to
improve the ratios for bap and sap in the line to 3 and 7, respectively.

Chen et al. [8] studied the special cases of bap and sap, where all demands
are multiples of 1/K for some integer K. They developed dynamic program-
ming algorithms for both problems that compute optimal solutions for wide
instances. Their algorithm for bap easily extends to general wide instances of
bap. However, in the case of sap, the running time of the algorithm depends on
K that may be exponential in the input size. They presented an approximation
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algorithm for bap with proportional weights. They also presented an approxi-
mation algorithm with ratio e

e−1 + ε, for any ε > 0, for a special case of sap in
which dj = i/K for some i ∈ {1, . . . , q} where q is a constant.

Calinescu et al. [9] developed a randomized approximation algorithm for bap
in the line with expected performance ratio of 2 + ε, for every ε > 0. They
obtained their results by dividing the given instance into a wide instance and
a narrow instance. They use dynamic programming to compute an optimal so-
lution for the wide instance, and a randomized LP-based algorithm to obtain
a (1 + ε)-approximate solution for the narrow instance. They also present a
3-approximation algorithm for bap that is different from the one from [7].

The more general version of bap in which the edge capacities are not uniform
is called the unsplittable flow problem (ufp). Chakrabarti et al. [10] presented the
first O(1)-approximation algorithm for ufp in the line by extending the approach
of [9] to the non-uniform capacity case. However, their 13-approximation algo-
rithm works under the no-bottleneck assumption which states that the maximum
demand is not larger than the minimum edge capacity. Chekuri et al. [11] used an
LP-based deterministic algorithm instead of a randomized algorithm to obtain
a (2 + ε)-approximation algorithm for ufp in the line and a 48-approximation
algorithm for ufp in trees both under the no-bottleneck assumption.

Lewin-Eytan et al. [12] studied the admission control problem in the tree
topology. The problem instance in this case is similar to a bap-instance. However,
each request is also associated with a time interval. A feasible schedule is a set of
connection requests such that at any given time, the total bandwidth requirement
on every edge in the tree is at most 1. The goal is to find a feasible schedule
with maximum total weight. Clearly, the admission control problem in trees is
a generalization of bap. Lewin-Eytan et al. [12] presented a divide and conquer
(5 log n)-approximation algorithm for admission control in trees. It divides the
set of requests using the temporal dimension, and conquers a set of requests
whose time intervals overlap using a local ratio 5-approximation algorithm. This
is in fact a 5-approximation algorithm for bap in the general tree topology.

Our results. We consider bap in the tree topology where the maximum degree
of a vertex in the given tree is a constant. For wide instances of bap we provide
a polynomial time dynamic programming algorithm that extends the algorithms
from [8, 9]. We present an approximation algorithm for narrow instances of bap
in general trees (respectively, in lines) with ratio

√
e√

e−1 +ε (respectively, e
e−1 +ε),

for every ε > 0. This algorithm is based on a novel application of the local ratio
technique in which the available bandwidth is divided into narrow strips, and
requests with very small demands are allocated in these strips. By combining
the two algorithms we get an approximation algorithm for bap in bounded de-
gree trees with ratio 2

√
e−1√
e−1 + ε < 3.542 (respectively, 2e−1

e−1 + ε < 2.582). We
also present a randomized (1 + ε)-approximation algorithm, for every ε > 0,
for narrow instances of bap in bounded degree trees that extends the (1 + ε)-
approximation algorithm for bap in the line from [9]. This implies a randomized
(2 + ε)-approximation algorithm for bap in bounded degree trees.
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For wide instances of sap in bounded degree trees we provide a polynomial
time dynamic programming algorithm that extends the algorithm from [8]. We
present a reduction from sap to bap that works on very narrow instances in the
line topology. The reduction is based on an algorithm for the dynamic storage
allocation problem by Buchsbaum et al. [13]. This reduction implies a (2 + ε)-
approximation algorithm for sap in the line.

2 Preliminaries

Definitions and Notation. We denote the optimum of a given problem in-
stance by opt. Given a schedule S, we denote by w(S) the total weight of S,
i.e., w(S) =

∑
j∈S w(j).

Throughout the paper we assume that the given tree T is rooted, and we
denote the root by r. We also assume that the maximum degree of a vertex in
T is a constant. We denote the maximum degree by Δ, i.e., Δ = maxu deg(u).

The peak of a request j is the vertex in jth path that is closest to the root
r. We denote the peak of j by peak(j). We denote by E(j) the set of edges in
Pj that are incident on peak(j). E(j) contains either two edges or one edge. We
define a partial order on the requests as follows. For requests j and 	 we write
j ≺ 	 if peak(j) is an ancestor of peak(	). We denote by A(	) the set of requests
j such that peak(j) is an ancestor of peak(	), i.e., A(	) = {j : j ≺ 	}.

Henceforth, we assume that the requests are topologically ordered according
to the partial order. That is, we assume that if j < k, then k �≺ j. In other
words, j < k if peak(k) is not found on the path for peak(j) to the root r.

Observation 1. Let 	 be a request, and let S ⊆ J be a feasible solution such
that 	 �≺ j for every j ∈ S. Then, S ∪ {	} is a feasible solution if the load on e
is at most 1 − d� for every e ∈ E(	).

Narrow and Wide Instances. Given a parameter δ ∈ (0, 1), we can divide
a given instance into a narrow instance and a wide instance. We denote the
corresponding sets of requests by RN and RW , respectively.

Lemma 1. Let SN and SW be an r1-approximate solution with respect to RN

and a r2-approximate solution with respect to RW , respectively. Then, the solu-
tion of greater weight is an (r1 + r2)-approximation for the original instance.

Proof. Let S∗ be an optimal solution for the original instance. Either w(S∗ ∩
RN ) ≥ r1

r1+r2
w(S∗) or w(S∗ ∩ RW ) ≥ r2

r1+r2
w(S∗). Hence, either w(SN ) ≥

1
r1

r1
r1+r2

w(S∗) = 1
r1+r2

w(S∗) or w(SW ) ≥ 1
r2

r2
r1+r2

w(S∗) = 1
r1+r2

w(S∗). ��

The Local Ratio Technique. The local ratio technique [14, 15, 16, 7] is based
on the Local Ratio Theorem, which applies to optimization problems of the
following type. The input is a non-negative weight vector w ∈ Rn and a set of
feasibility constraints F . The problem is to find a solution vector x ∈ Rn that
maximizes (or minimizes) the inner product w · x subject to the constraints F .
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Theorem 1 (Local Ratio [7]). Let F be a set of constraints and let w, w1,
and w2 be weight vectors such that w = w1 + w2. Then, if x is r-approximate
both with respect to (F , w1) and with respect to (F , w2), for some r, then x is
also an r-approximate solution with respect to (F , w).

3 Bandwidth Allocation

In this section we consider the bandwidth allocation problem in bounded degree
trees. For the special case of wide instances we present a polynomial time dy-
namic programming algorithm that computes optimal solutions. For the special
case of narrow instances we present a deterministic approximation algorithm
whose ratio is 1/(1 − 1/

√
e − ε) < 2.542. We note that the algorithm for nar-

row instances works even in the case of general trees. In the line topology the
approximation ratio of this algorithm is 1/(1 − 1/e − ε) < 1.582. By Lemma 1
it follows that there is a 3.542-approximation algorithm for bap in bounded de-
gree trees, and a 2.582-approximation algorithm for bap in the line topology. For
narrow instances we also present a randomized LP-based (1 + ε)-approximation
algorithm that extends the (1 + ε)-approximation algorithm by Calinescu et
al. [9] for narrow instances of bap in the line. Using the dynamic programming
algorithm from Section 3 it follows from Lemma 1 that there is a randomized
(2 + ε)-approximation algorithm for bap on bounded degree trees.

3.1 Dynamic Programming Algorithm for Wide Instances

We present a polynomial time dynamic programming algorithm for bap on wide
instances and in bounded degree trees. This algorithm extends the algorithms
for bap in the line topology by Chen et al. [8] and by Calinescu et al. [9].

In order to solve the problem on wide instances we consider a variation of
bap in which we are given a constant L that limits the number of requests
per edge. We present a dynamic programming algorithm whose running time is
O(m ·nΔ·L). Clearly, if S is a feasible solution for a wide instance, then there are
at most 1/δ requests in S that go through e for any edge e. Hence, the running
time of this algorithm is O(m · nΔ/δ).

We use the following notation. Consider a vertex u0 in the tree. Let T0 be the
subtree whose root is u0, and let e0 the edge that is going from u0 to its parent.
u0’s children are denote by u1, . . . , uk. Also, let ei be the edge connecting ui and
u0 for i ∈ {1, . . . , k}. See example in Figure 1. Using this notation, we refer to
a set of requests Si as proper with respect to a vertex ui if (1) ei ∈ Pj for every
j ∈ Si, (2)

∑
j∈Si : ei∈Pj

dj ≤ 1, and (3) |Si| ≤ L. Given a proper set S0 with
respect to u0, the sets S1, . . . , Sk are said to be compatible with S0 if (1) Si is
proper with respect to ui for every i, and (2) for every j and i, i′ ∈ {0, . . . , k}, if
ei, ei′ ∈ Pj , then either j ∈ Si, Si′ or j �∈ Si, Si′ .

The dynamic programming table is of size O(m · nL), and it is defined as
follows. For a vertex u0 and a set of requests S0 that is proper with respect to
u0, the state Π(u0, S0) is the maximum weight of a set S′ ⊆ J(T0), where J(T0)
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Fig. 1. u0 and its children; T0 is marked by the dotted line

contains requests j such that Pj is fully contained in T0, such that S0 ∪ S′ is
feasible. We initialize the table by setting Π(u0, S0) = 0 for every leaf u0 and a
proper set S0. We compute the rest of the entries by using:

Π(u0, S0) = max
S1,...,Sk are compatible with S0

{
w(∪k

i=1Sk \ S0) +
k∑

i=1

Π(ui, Si)

}

when u0 is an internal node. The weight of an optimal solution is Π(r, ∅).
We show that the running time of the dynamic programming algorithm is

O(m · nL·Δ). To compute each entry Π(u0, S0) we need to go through all the
possibilities of sets S1, . . . , Sk that are compatible with S0. There are no more
than

∑L
i=1

(
n
i

)
= O(nL) possibilities of choosing a proper set Si that is compat-

ible with S0, . . . , Si−1. Hence, the number of possibilities is O(nL·(Δ−1)). Hence,
the total running time is O(m · nLnL·(Δ−1)) = O(m · nL·Δ).

Note that the computation of Π(u0, S0) can be modified so as to compute
a corresponding solution. This can be done by keeping track on which option
was taken in the recursive computation. Afterwards an optimal solution can be
reconstructed in a top down manner.

3.2 Local Ratio Algorithm for Narrow Instances

In this section we consider the special case of narrow instances. For this case we
present a deterministic approximation algorithm whose ratio is 1/(1−1/

√
e−ε) <

2.542. In the line topology the ratio is 1/(1 − 1/e − ε) < 1.582.

Scheduling Requests in Layers. Throughout this section we assume that all
the requests in the given instance are δ-narrow for some small constant δ > 0.
Let α be a constant such that δ < α ≤ 1. We assume that α is significantly larger
than δ. In this section we show how to construct an approximate solution that



70 R. Bar-Yehuda et al.

uses at most α of the capacity of every edge in the given tree. Henceforth we
refer to a tree whose edges has capacity α as an α-layer, or simply a layer. (Note
that, in general, α may be larger than one.) Using these terms, in this section
we present an algorithm that computes a solution that resides in an α-layer. We
note that the approximation ratio of the algorithm is with respect to the original
problem in which the capacity of the edges is 1.

Algorithm Layer is a local ratio algorithm that computes a (1 + 2/(α − δ))-
approximate solution S such that the total demand of requests in S on any
edge is at most α. Algorithm Layer is recursive and works as follows. If there
are no requests, then it returns ∅. Otherwise, it chooses a request 	 such that
	 �≺ j for every j �= 	. This can be done by choosing a request whose peak is
furthest away from the root. It constructs a new weight function w1, and solves
the problem recursively on w2 = w −w1 and the set of jobs with positive weight
that is denoted by J+. Note that 	 �∈ J+. Then, it adds 	 to the solution that
was computed recursively only if feasibility is maintained.

Algorithm 1. Layer(J, w)
1: if J = ∅ then return ∅
2: Let � ∈ J be a request such that � �≺ j for every j ∈ J \ {�}

3: Define w1(j) = w(�) ·

⎧⎪⎨⎪⎩
1 j = �,

dj

α−δ
j �= �, Pj ∩ P� �= ∅,

0 otherwise,
and w2 = w − w1

4: Let J+ be the set of positive weighted requests
5: S′ ← Layer(J+, w2)
6: if

∑
j∈S′ : e∈Pj

dj ≤ α− d� for every e ∈ E(�) then S ← S′ ∪ {�}
7: else S ← S′

8: return S

Observe that due to Lines 6–7 and Obs. 1 the total demand of requests from
the computed solution on any edge is at most α. Also, the running time of the
algorithm is clearly polynomial, since the number of recursive calls is at most n.
In fact, using similar arguments to those used in [7] it can be implemented to
run in O(n log n) time.

Lemma 2. Algorithm Layer computes a (1+ 2
α−δ )-approximate solution S that

resides within an α-layer.

Proof. The proof is by induction on the number of recursive calls. In the base
case (J = ∅) the computed solution is optimal. For the inductive step, we assume
that w(S′) is (1 + 2

α−δ )-approximate with respect to J+ and w2. If this is the
case, then S is also (1 + 2

α−δ )-approximate with respect to J and w2, since
w2(	) = 0. We show that S is also (1 + 2

α−δ )-approximate with respect to J
and w1. Due to Lines 6-7 either 	 ∈ S or S ∪ {	} is infeasible. If 	 ∈ S, then
w1(S) ≥ w(	). Otherwise,

∑
j∈S′ : e∈Pj

dj > α − d� for some edge e ∈ E(	),
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and therefore w1(S) ≥ w(	) · α−d�

α−δ ≥ w(	). On the other hand, we show that
w1(T ) ≤ w(	) ·(1+2/(α−δ)), for every solution T . Let j ∈ T be a request whose
path intersects P�. Since 	 �≺ j for every j ∈ J either peak(j) is an ancestor of
peak(	) or peak(j) = peak(	). Hence, Pj contains at least one edge from E(	).
It follows that

w1(T ) ≤ w(	) · max {1 + 2(1 − d�)/(α − δ), 2/(α − δ)} ≤ w(	) · (1 + 2/(α − δ))

which means that S is (1 + 2
α−δ )-approximate with respect to J and w1. This

completes the proof since by the Local Ratio Theorem we get that S is (1+ 2
α−δ )-

approximate with respect to J and w as well. ��

When the given tree is a line we may choose one of the leafs to be the root, and
in this case |E(	)| = 1. Hence, in Lemma 2, it can be shown that S is (1+ 1

α−δ )-
approximate with respect to J and w1. It follows that Algorithm Layer computes
(1 + 1/(α − δ))-approximate solutions that reside within an α-layer.

Iterative Approximation in Layers. Algorithm Multi-Layer iteratively use
Algorithm Layer with α = 1/k to schedule requests in 1/k-layers for some large
constant k, such that δ is significantly smaller than 1/k.

Algorithm 2. Multi-Layer(J, w)
1: J1 ← J
2: for i = 1 to k do
3: Si ← Layer(Ji, w)
4: Ji+1 ← Ji \ Si

5: end for
6: Return ∪k

i=1Si

Algorithm Multi-Layer computes feasible solutions, since Algorithm Layer
computes feasible solutions each residing in a 1/k-layer. The running time is
polynomial, since Algorithm Layer is invoked a constant number of times.

We use the following notation. Let S∗ be an optimal solution to the original
instance. Let opti denote the optimal value with respect to Ji. We denote Fi =
∪i

l=1Sl. Hence, Fk is the computed solution. We also define r
�= 1 + 2

1/k−δ .

Lemma 3. w(Fk) ≥ (1 − (1 − 1/r)k) · opt.

Proof. We show that w(Fi) ≥ (1 − (1 − 1/r)i) · opt for every i. We prove the
claim by induction on i. The base case (i = 0) is trivial. For the inductive step,
we assume that w(Fi−1) ≥ (1 − (1 − 1/r)i−1) · opt. The set S∗ \ Fi−1 is feasible
with respect to Ji = J \ Fi−1, and therefore, opti ≥ w(S∗ \ Fi−1). By Lemma 2
it follows that Si is r-approximate with respect to Ji. Hence,

w(Si) ≥ opti

r
≥ w(S∗ \ Fi−1)

r
≥ w(S∗) − w(Fi−1)

r
=

opt − w(Fi−1)
r

.
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It follows that w(Fi) = w(Fi−1) + w(Si) ≥ (1 − 1/r) · w(Fi−1) + opt/r. Putting
it together with the induction hypothesis we get that

w(Fi) ≥ (1 − 1/r) · (1 − (1 − 1/r)i−1) · opt + opt/r = opt · (1 − (1 − 1/r)i)

and the lemma follows. ��

If δ is significantly smaller than 1/k it follows that limk→∞,δ→0(1−1/r(δ, k))k) =
1/

√
e. Hence, we may choose a sufficiently large constant k and then a sufficiently

small constant δ such that (1−1/r)k ≤ 1/
√

e+ε. Hence, for every constant ε > 0
there exist δ > 0 and k such that Algorithm Multi-Layer computes solutions
that are (1/(1−1/

√
e−ε))-approximate. In the line we get a ratio of 1/(1−1/e−ε)

by setting r
�= 1 + 1

1/k−δ .

3.3 Randomized Algorithm for Narrow Instances

In this section we present a randomized LP-based (1 + ε)-approximation algo-
rithm that extends the (1 + ε)-approximation algorithm by Calinescu et al. [9]
for bap in the line topology.

bap can be formalized as follows:

max
∑

j∈R w(j)xj

s.t.
∑

j : e∈Pj
djxj ≤ 1 ∀e ∈ E

xj ∈ {0, 1} ∀j ∈ J

(ip-bap)

The LP-relaxation of ip-bap is obtained by replacing the integrality constraints
by: 0 ≤ xj ≤ 1 for every j ∈ J , and is denoted by lp-bap.

Next, we present a randomized approximation algorithm for narrow instances
of bap. Specifically, we show that for every ε < 1/6 there exists δ > 0 small
enough such that the algorithm computes 1/(1−6ε)-approximate solutions. The
approximation algorithm is described as follows. First, we solve lp-bap. Denote
by x∗ the computed optimal solution, and let opt∗ =

∑
j∈J w(j)x∗

j . We choose
independently at random the variables Yj ∈ {0, 1}, for j ∈ J , where Pr [Yj = 1] =
(1 − ε)x∗

j . Next we define the random variables Zj ∈ {0, 1}, j ∈ J . The Zjs are
considered in a top down manner. That is, Zj is defined only after Z� was defined
for every 	 ≺ j. The Zjs are defined as follows:

Zj =

{
1 if Yj = 1 and

∑
i : Zi=1∧e∈Pi

di ≤ 1 − dj for every e ∈ E(j),
0 otherwise.

Notice that the Zjs are dependent, and they can be computed in the order
Z1, . . . , Zn since if i < j then j �∈ A(i) (or, j �≺ i).

Let Z = {j : Zj = 1}. Z is a feasible solution, and E [w(Z)] =
∑

j∈J w(j) ·
Pr [Zj = 1]. In the full version of the paper we show that Pr [Zj = 1] ≥ (1−3ε)x∗

i .
It follows that E [w(Z)] ≥

∑
j∈J w(j) · (1 − 3ε)x∗

j = (1 − 3ε)opt∗. Furthermore,
Markov’s inequality implies that Pr [w(Z) ≥ (1 − 6ε) · opt∗] ≥ 1/2. Hence, we
can use repetition in order to amplify the probability of obtaining at least a
weight of (1 − 6ε) · opt∗.
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4 Storage Allocation

In this section we consider sap in the line. For the special case of wide instances
we present polynomial time dynamic programming algorithm that computes
optimal solutions. Note that this algorithm works even in the case of bounded
degree tree. For narrow instances of sap in the line we present a general reduction
from sap to bap. That is, given a narrow sap instance in the line we show how to
find an approximate solution using an algorithm for bap. Thus, using the (1+ε)-
approximation algorithm for narrow instances of bap in the line from [11] we
may obtain a (1 + ε)-approximation algorithm for narrow instances of sap. By
Lemma 1, there exists a (2+ ε)-approximation algorithm for sap, for any ε > 0.

4.1 Storage Allocation on Wide Instances

We show how to extend the dynamic programming algorithm from Sect. 3.1 to
solve wide instances of sap in bounded degree trees. The running time of the
modified algorithm is O(m · n2L·Δ), where L is an upper bound on the number
of requests per edge. If S is a feasible solution for a wide instance of sap, then
there are at most 1/δ requests in S that go through e for any edge e. Hence, the
running time of this algorithm in the line topology is O(m · n4/δ), where m is
the number of edges in the line.

Our algorithm is based on the following simple observation.

Observation 2. There exists an optimal solution such that, for every request
j, either h(j) = 0 or there exists a request j′ �= j such that Pj ∩ Pj′ �= ∅ and
h(j) = h(j′) + dj′ .

Proof. Given an optimal solution S∗, simply apply “gravity” on S∗. ��

Let S∗ be an optimal solution. By Obs. 2 we may assume that the height h(j)
of every request j is the sum of demands of some (possibly empty) subset of
requests. Since S∗ contains at most L requests per edge, the number of possible
heights is bounded by

∑L
i=0

(
n
i

)
= O(nL). Let H be the set of possible heights.

In the full version of the paper we extend the definition of a proper set (see
Sect. 3.1) to a proper pair (Si, hi), where hi is a height function. Since H is of
polynomial size, the number of possible proper pairs with respect to some vertex
is polynomial as well. The rest of the details are given in the full version.

4.2 Reduction for Narrow Instances

Our reduction relies on a closely related problem to sap called the dynamic
storage allocation problem (dsa). Similarly to sap in the line, in dsa we are
given a set of rectangles that can only move vertically. The goal is to minimize
the total height required to pack all rectangles such that no two rectangles
overlap. Formally, a dsa solution is an assignment h : S → R+ such that for
every j �= k and Pj ∩ Pk �= ∅ either h(j) + dj ≤ h(k) or h(k) + dk ≤ h(j). Our
goal is to minimize maxj∈J {h(j) + dj}.
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We use the following result for dsa. Buchsbaum et al. [13] presented a
polynomial time algorithm that computes a solution whose cost is at most
(1+O(( D

load)1/7))·load, where D = maxj {dj}, and load = maxe{
∑

j:e∈Pj
dj}.

Observe that when D = o(load) the cost of the solution is (1 + o(1)) · load.

Lemma 4. For every constant β > 0 there exists δ > 0 such that if S is a
feasible bap solution to some δ-narrow instance, then S can be transformed into
a sap solution that fits into a (1 + β)-layer in polynomial time.

Proof. Let S′ be the solution computed by algorithm of Buchsbaum et al. [13].
It follows that load(S′) ≤ load(S)+C ·D1/7 ·load(S)6/7 for some constant C.
Since load(S) ≤ 1, there exists δ small enough such that load(S′) ≤ 1+β. ��

Our reduction uses the notion of an α-layer. Recall that an α-layer is a tree (or a
line) in which the capacity of the edges is α. In the case of bap, this means that
if a solution fits into an α-layer then the total demand on every edge is at most
α. In the case of sap, such a solution S must satisfy the following constraints:
(i) h(j) + dj ≤ α for every j ∈ S, and (ii) for every two requests j, k ∈ S such
that j �= k and Pj ∩ Pk �= ∅ either h(j) + dj ≤ h(k) or h(k) + dk ≤ h(j).

Let Algorithm BAP be an approximation algorithm for narrow bap instances
in the line such that for every ε′ > 0 there exists δ > 0 such that the algorithm
computes r/(1−ε′)-approximate solutions. Algorithm SAP is our approximation
algorithm for narrow sap instances in the line that uses Algorithm BAP. We
show that for every ε > 0 there exists δ > 0 such that it computes r/(1 − ε)-
approximate solutions for δ-narrow instances. We assume that δ is small enough
such that (i) Algorithm BAP computes r/(1−ε/4)-approximate solutions on δ-
narrow instances, and (ii) the conditions of Lemma 4 are satisfied with β = ε/4.
We also assume that δ < ε/4. Algorithm SAP starts by calling Algorithm BAP
in order to obtain a bap solution. Using Lemma 4, it transforms this solution
into a sap solution that fits into a (1+β)-layer, where β = ε/4. Then, it removes
a small part of it in order to obtain a feasible solution for sap.

Algorithm 3. SAP(J, w)
1: S ← BAP(J, w)
2: Compute an assignment h for S in a (1 + β)-layer using Lemma 4
3: Divide the (1 + β)-layer into β-layers

Let Si be the requests that intersect the ith layer
4: k ← argminiw(Si)
5: S′ ← S \ Sk

6: For j ∈ S′, let h′(j) =

{
h(j) h(j) < (k − 1)β,

h(j) − β h(j) ≥ kβ,

7: Return (S′, h′)

The computed solution is feasible since the removal of Sk leaves one β-layer
empty, and this allows us to condense the assignment h such that the remaining
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requests fit in a layer of height 1. Furthermore, since δ < ε/4 each request j can
be contained in at most two β-layers. Hence,

∑
i w(Si) ≤ 2w(S). It follows that

w(Sk) ≤ 2w(S)/ �1/β� = 2w(S)/ �4/ε� < 3ε · w(S)/4 and therefore w(S′) >
(1 − 3ε/4) · w(S). Since w(S) ≥ opt · (1 − ε/4)/r, it follows that w(S′) >
(1 − 3ε/4)(1 − ε/4)/r · opt ≥ (1 − ε)/r · opt as required. (Recall that the bap
optimum is at least as large as the sap optimum.) Finally, the running time is
polynomial, because given ε all parameters except n are constants.
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Abstract. Let G = (V, E) be an undirected weighted graph on |V | = n
vertices and |E| = m edges. For the graph G, A spanner with stretch
t ∈ N is a subgraph (V, ES), ES ⊆ E, such that the distance between any
pair of vertices in this subgraph is at most t times the distance between
them in the graph G. We present simple and efficient dynamic algorithms
for maintaining spanners with essentially optimal (expected) size versus
stretch trade-off for any given unweighted graph. The main result is a
decremental algorithm that takes expected O(polylog n) time per edge
deletion for maintaining a spanner with arbitrary stretch. This algorithm
easily leads to a fully dynamic algorithm with sublinear (in n) time per
edge insertion or deletion. Quite interestingly, this paper also reports
that for stretch at most 6, it is possible to maintain a spanner fully dy-
namically with expected constant time per update. All these algorithms
use simple randomization techniques on the top of an existing static al-
gorithm [6] for computing spanners, and achieve drastic improvement
over the previous best deterministic dynamic algorithms for spanners.

1 Introduction

A spanner is a (sparse) subgraph of a given graph that preserves approximate
distance between each pair of vertices. More precisely, a t-spanner of a graph
G = (V, E), for any t ≥ 1 is a subgraph (V, ES), ES ⊆ E such that, for any
pair of vertices, their distance in the subgraph is at most t times their distance
in the original graph. The parameter t is called the stretch factor associated
with the t-spanner. The concept of spanners was defined formally by Peleg and
Schäffer [15] though the associated notion was used implicitly by Awerbuch [3]
in the context of network synchronizers. Since then, spanner has found numerous
applications in the area of distributed systems, communication networks and all
pairs approximate shortest paths [3, 7, 16, 17].

Each application of spanners requires, for a specified t ∈ N, a t-spanner of
smallest possible size (the number of edges). Based on the famous girth conjec-
ture by Erdős [11], Bollobás [8], and Bondy and Simonovits [9], it follows that for
any k ∈ N, there are graphs on n vertices whose (2k−1)-spanner or a 2k-spanner
will require Ω(n1+1/k) edges. (The conjecture has been proved for k = 1, 2, 3 and
5). Note that the conjectured lower bound is the same for stretch 2k and (2k−1),
and by definition, a (2k − 1)-spanner is also a 2k-spanner, Therefore, from per-
spective of an algorithmist, the aim would be to design a static (or dynamic)

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 76–87, 2006.
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algorithm to compute (or maintain) a (2k − 1)-spanner of (n1+1/k) size for a
given graph. For unweighted graphs, Halperin and Zwick [13] designed a deter-
ministic O(m) time algorithm to compute a (2k − 1)-spanner of O(n1+1/k) size.
However, for weighted graphs, it took a series of improvements [1, 4, 10, 20, 6, 5]
till an expected O(m) time algorithm for computing a (2k − 1)-spanner could
be designed. This linear time randomized algorithm [6, 5] computes a (2k − 1)-
spanner of size O(kn1+1/k) for a given weighted graph. Recently Roditty et al.
[18] derandomized this algorithm.

In this paper, we consider the problem of efficiently maintaining a (2k − 1)-
spanner in a dynamic environment : Given a graph G = (V, E), we receive an
online sequence of updates which could be insertions or deletions of edges, the
aim is to maintain a data structure which stores a (2k−1)-spanner for the graph
at each moment and is very efficient to handle these updates. It is also desirable
that the algorithm ensures O(n1+1/k) size of the (2k − 1)-spanner after each
update.

Previous work
Ausiello et al. [2] are the first to design dynamic algorithms for spanners. They
present dynamic algorithms for maintaining spanners with stretch at most 6 only.
They first design an O(n) time decremental algorithm, and then employ the idea
of handling insertions in a lazy fashion to design a fully dynamic algorithm with
O(n) time per update. The spanners maintained are of optimal size. However,
the worst case space requirement of the associated data structure is θ(n2). They
extend their algorithm to weighted graphs with at most d different weights by
maintaining separate spanner for the set of edges with the same weight. This
leads to an increase in the size of the spanner and the update time by a factor
of d.

New results

1. Decremental algorithm
We present a partial dynamic algorithm for maintaining a (2k − 1)-spanner
under deletion of edges for any k ∈ N. Our algorithm ensures an expected
O(kn1+1/k) size for the (2k − 1)-spanner and the expected update time re-
quired is O(polylog n) per edge deletion. We employ the static algorithm [6],
and overcome a few subtle problems in dynamizing it by introducing a new
clustering of vertices. Our algorithm also leads to an efficient decremental
algorithm for all-pairs approximate shortest paths (see Corollary 1).

2. Fully dynamic algorithms
We make our decremental algorithm fully dynamic by handling the edge in-
sertions in a lazy fashion and rebuilding the entire data structure after a pe-
riod of kn1+1/k edge insertions. This leads to a fully dynamic algorithm for a
(2k−1)-spanner with amortized Õ( m

n1+1/k ) time per edge insertion/deletion.
The expected size of the (2k − 1)-spanner maintained by the algorithm is
O(kn1+1/k).

We also show that a fully dynamic algorithm for stretch at most 6, can
be maintained with expected constant update time and expected optimal
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size. This algorithm follows by adding additional randomization to the static
algorithm of [6], followed by dynamizing it. However, there are some potential
difficulties in extending the algorithm for arbitrary stretch. Nevertheless, it
is worth exploring whether the result can be extended for arbitrary stretch.

Our algorithms can be extended to weighted graphs with d different weights in
the same way as done by Ausiello et al. [2]. For these graphs, the bounds on the
spanner size and the update time of our algorithm will increase by a factor of
d. All our algorithms require θ(m) space, which is much better than the θ(n2)
space requirement of [2].

2 Preliminaries

Throughout the paper, we deal with graphs which are undirected and unweighted.
We assume that the vertices are numbered from 1 to n. We shall maintain
the set of edges of the graph using a dynamic hash table (see [14]). Using this
hash table, it requires O(1) worst-case time for lookup and O(1) expected time
for any insertion and deletion. The space occupied by the hash table at any
moment will be of the order of the number of edges present in the graph at
that moment. Each edge of the graph will have a field to denote whether or
not it is a spanner edge at that moment of time. We also assume without loss
of generality that m = Ω(kn1+1/k), since otherwise for maintaining a (2k − 1)-
spanner we just keep all the edges in the (2k − 1)-spanner and just update the
hash table for edge insertion or deletion. The distance between any two vertices
in not merely a function of the edges in their local neighborhood. However, the
task of maintaining a spanner - a sparse set of edges that approximates all pairs
distances - can be achieved by ensuring the following somewhat local proposition
for each non-spanner edge (x, y).

Pt(x, y) : the vertices x and y are connected in the subgraph (V, ES) by a
path consisting of at most t edges

In order to maintain a t-spanner in dynamic scenario, it suffices to maintain
Pt for each non-spanner edge. This will be achieved by a careful partitioning of
vertices, called clustering [6].

Definition 1. A cluster is a subset of vertices. A clustering C, is a union of
disjoint clusters. Each cluster will have a unique vertex which will be called its
center. A clustering can be represented by an array C[] such that C[v] for any
v ∈ V is the center of cluster to which v belongs, and C[v] = 0 if v is unclustered
(does not belong to any cluster).

The following notations will be used throughout the paper in the context of a
given graph G = (V, E), and S, Y ⊆ V .

– Su : the set of vertices from S neighboring to u.
– δ(u, v) : distance between u and v in the graph G.
– δ(u, Y ) : min{δ(u, v) | v ∈ Y }.
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3 A Decremental O(polylog n) Time Algorithm

3.1 New Clustering

Definition 2. Given a permutation σ of some set S ⊆ V , and i ∈ N, clustering
C(σ, i) can be defined as follows.

A vertex u ∈ V with distance δ(u, S) ≤ i is assigned to the cluster centered
at the vertex in S nearest to u. In case of a tie, i.e., if there are multiple ver-
tices at distance δ(u, S) from u, it is the nearest vertex that appears first in the
permutation σ.

Note that the clustering C(σ, i) partitions only those vertices of the graph that
are within distance i from S.

Efficient construction and maintenance: Given a permutation σ of some
set S ⊆ V , and i ∈ N, clustering C(σ, i) can be constructed in O(m) time by
algorithm described in Figure 1. A simple proof by induction on the distance
from S shows that C stores the clustering C(σ, i). Moreover, the forest F spans
each cluster by a tree rooted at its center such that for each vertex v ∈ C(σ, i),
there is a path in F of length δ(v, S) connecting v to C[v].

Let Q be a queue initialized to contain
elements of S in the order as defined
by σ.
Initially visited(v)=false ∀v ∈ V ,
C[s] = s ∀s ∈ S, and F ← ∅.
While not empty(Q) do
{ x ← Dequeue(Q);

For all (x, y) ∈ E do
If visited(y)=false
{ visited(y) ← true;

C[y] ← C[x];
F ← F ∪ {(x, y)};
	(y) ← 	(x) + 1;
If 	(y) < i Enqueue(y)}}

Fig. 1. Computing C(σ, i)

The clustering C(σ, i) and the for-
est F can be associated with a
breadth first search (BFS) tree in
an augmented graph in the follow-
ing way. If G′ is a graph formed
by adding a dummy vertex g and
the edges {(g, s)|s ∈ S} in G, then
F ∪ {(g, s)|s ∈ S} is a BFS tree
rooted at g in G′. This BFS tree
(not necessarily a unique one) sat-
isfies the following condition. Every
vertex v ∈ C(σ, i) lies in the sub-
tree rooted at C[v]. Maintaining the
clustering amounts to maintaining
a BFS tree which also satisfies this
condition at all times. An arbitrary
BFS tree of depth i can be main-
tained in total O(mi) cost over any
sequence of edge deletions [12]. The

algorithm involves finding new depth of each vertex v ∈ V whose depth has in-
creased, and then hooking it to any arbitrary neighbor from the level just above
it. To maintain the clustering C(σ, i), we need to maintain a BFS tree wherein
we hook a vertex v to its appropriate neighbor to satisfy the condition stated
above. For this we need to maintain a search data structure for every vertex
storing the centers of the clusters to which its neighbors belong. This will lead
to O(mi log n) total update time over any sequence of edge deletions.
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Lemma 1. Given a graph G = (V, E), an integer i, a permutation σ of a set
S ⊆ V , we can maintain the clustering C(σ, i) and its spanning forest F with
amortized O(i log n) time per edge deletion.

The decremental algorithm employs a k-level hierarchy of clusterings:
{C(σi, i)|i ≤ k} whose defining sets Si’s and the permutations σi’s are computed
as follows.

1. Let S0 ← V , Sk = ∅. For 0 < i < k, let Si contain each element of set Si−1
independently with probability n−1/k.

2. For 0 ≤ i < k let σi be a uniformly random permutation of set Si.

3.2 Decremental Algorithm

Our decremental algorithm for (2k−1)-spanner will maintain the following struc-
tures and functions which can be initialized in Õ(m) time easily.

1. Clustering C(σi, i), i < k: Let Ci stores the clustering at level i, and Fi be
its spanning forest. We maintain arrays Ci’s and the set F = ∪iFi.

2. Highest levels of vertices: Let H [v] be the highest level l such that v is
present in C(σl, l)). We maintain H [v], ∀v ∈ V .

3. Assignment of edges to appropriate levels and endpoints: Each
edge (u, v) ∈ E is kept at level i = max(H [u], H [v]), and belongs to u if
H [u] ≤ H [v] and to v otherwise. Let Ei(u) denote the edges thus assigned
to u at level i.

4. Vertex-cluster Connectivity: Let Ei(u, o) be the set of edges from Ei(u)
which are incident from cluster centered at o ∈ Si. Keep a set E which
contains, for every v ∈ V, i < k, o ∈ Si, one edge from Ei(v, o).

Lemma 2. The set ES = E ∪F is a (2k−1)-spanner of expected size O(n1+1/k)
for the graph at any time.

Proof. We need to ensure that P2k−1 holds for every (u, v) /∈ ES . Let (u, v) ∈
Ei(u, Ci[v]) for some i < k. Vertex-cluster connectivity ensures that there must
be an edge (u, w) satisfying Ci[w] = Ci[v] which is present in E . It follows from
the clustering that v and w are connected in Fi by a path of length at most
2i, so there is a path in ES of length at most 2i + 1 < 2k − 1 joining u and
v. Hence P(2k−1)(u, v) holds. For bounding the size, we bound the expected
number of spanner edges contributed to E by any vertex v at any level i < k.
Consider any clustering C(σi, i). With respect to any arbitrary set E′ ⊆ E, let
c1, ..., c� be the clusters in this clustering which are neighboring to v. The vertex
v will contribute at most one edge per neighboring cluster to E , and a necessary
(though not sufficient) condition for this contribution is that v is not present in
any clustering of level i + 1 or higher. Given any clustering C(σi, i), the vertex
v would appear in the clustering at next level only if the center of at least one
of c1, ..., c� is sampled. Therefore, it follows by elementary probability that the
expected number of edges contributed by v at level i is at most 	·(1−n−1/k)�+1,
which is at most n1/k for any value of 	. It can be observed that this upper bound
is derived for any set E′ ⊆ E.
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Data structures: In addition to the hash table storing all the edges of the
graph and the usual adjacency lists for each vertex, we keep the following data
structures. For each v ∈ V and i, 0 ≤ i < k, let o1, ..., o� be the centers of the
cluster which are adjacent to v through edges Ei(v) allocated to v. Keep a search
tree for the set {o1, ..., o�} and the node associated with oj , 1 ≤ j ≤ 	 in this tree
would store a doubly linked list storing the edges Ei(v, oj) ⊆ Ei(v) incident on v
from cluster centered at oj . Furthermore, each edge in the set Ei(v, o) will keep
a pointer to and from the entry in the hash table storing all the edges of the
graph. These data structures will help in efficient maintenance of the structures
and function mentioned above.

Deletion of an edge may cause two kinds of changes in Ci, i < k : some ver-
tices change their clusters within Ci and/or some vertices cease to belong to
the clustering Ci forever. The former change alters vertex-cluster connectivity
as follows. Let a vertex v move from cluster c to join another cluster c′. Let
w ∈ V be a neighbor of v. As a result of this movement, it might be that c is
no longer adjacent to w, and the cluster c′, which earlier might be non adjacent
to w, has become adjacent to w. Hence vertex-cluster connectivity needs to be
updated. We describe below a subroutine for handling this case. When a vertex
v ceases to belong to a clustering we will reassign all the edges present at level
i which have u as one endpoint to their new levels and endpoints, and update
the vertex-cluster connectivity accordingly.

Change-cluster(v, o, o′)
(when v moves from cluster centered at o to cluster centered at o′ in C(σi, i))
For each neighbor w of v in the graph with (v, w) ∈ Ei(w, o) do
1. Delete (v, w) from Ei(w, o). If (v, w) was in E , choose some other edge from

Ei(w, o) in E (unless Ei(w, o) = ∅ now).
2. Insert edge (v, w) to Ei(w, o′), and choose it in E if Ei(w, o′) was empty

earlier.
——————————————————————————————————–

Decremental algorithm for (2k − 1)-spanner
Deletion of an edge (u, v) is processed as follows. Let (u, v) be present at level i,
and belong to Ei(u, o) where o = Ci[v]. If (u, v) ∈ E delete it from E , and select
some other edge from Ei(u, o) in E (unless Ei(u, o) = ∅ now). The edge (u, v)
could be in F (simultaneously as well). In this case, deletion might cause change
of the clusterings at various levels, and we handle it as follows.
For i = 1 to k − 1 do

1. Update the clustering C(σi, i). Let Δ ⊆ V be the set of vertices that changed
their clusters within Ci, and U ⊆ V be the set of vertices that ceased to be
member of Ci.

2. For each vertex x ∈ Δ do
Let x moved from cluster centered at o to cluster centered at o′ in Ci.
Change-cluster(x, o, o′)

3. For each vertex x ∈ U , reassign all the edges present at level i which
have x as one endpoint to their new levels and endpoints, and update the
vertex-cluster connectivity accordingly.
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Lemma 3. At any level i, a vertex changes its cluster expected O(i log n) times.

Proof. Consider a vertex v ∈ V . On leaving a cluster in C(σi, i) whenever v joins
the same cluster again, its distance from Si must have increased. We shall now
estimate the number of times a vertex changes its cluster within C(σi, i) while
keeping δ(v, Si) = d, for some fixed d ≤ i. Consider the first time when δ(v, Si)
becomes d. Fix any order in which the edges are being deleted. Corresponding to
this order, let o1, ...o� be the sequence of all the vertices of Si at distance d from v
at present, and arranged in the chronological order of their cessation from being
at distance d from v. The number of times v changes its cluster while keeping
δ(v, Si) = d is the same as the number of clusters in this sequence which v joins
during the period for which δ(v, Si) = d. The vertex v will join cluster centered
at oj if and only if oj appears first among {oj, ..., o�} in the permutation σi.
Since σi is a uniformly random permutation of Si, the probability of this event
is 1/(	 − j + 1). Hence the expected number of cluster changes for the vertex v

while remaining at a fixed distance d from Si is
∑�

j=1
1

�−j+1 = O(log n). Since
the vertex v may change δ(v, Si) at most i times before losing membership from
the clustering Ci, the lemma follows.

Analyzing the running time: When an edge is deleted from E , it requires
O(log n) cost to look for a replacement edge using the data structure amounting
to a total of O(m log n) cost over any sequence of edge deletions. It follows
from Lemma 1 that the total cost of maintaining clustering at any level over
any sequence of edge deletions is O(km log n). The remaining cost incurred is
for processing of the edges due to the changes in the clusterings and will be
charged to the respective edges. An edge will be processed at most 2k times
due to cessation of one of its endpoints from being member of clusterings. It
follows from Lemma 3 that an edge will be processed expected O(ki log n) times
due to change of clusters of its endpoints within any clustering since there are
total k levels of clusterings. Using the data structures each processing of an edge
costs O(log n) time. So the total expected cost charged to an edge throughout
the algorithm is of the order of

∑
i<k ik log2 n ≤ k2 log2 n = O(polylog n) since

k ≤ log n. So we can conclude the following theorem.

Theorem 1. Given a graph on n vertices undergoing edge deletions and k ∈ N,
we can maintain its (2k − 1)-spanner of expected O(kn1+1/k) size with expected
O(polylog n) time per edge deletion.

Choosing k = log n, we get the following corollary.

Corollary 1. Given a graph on n vertices undergoing edge deletions, we can
maintain all-pairs O(log n)-approximate shortest paths with O(polylog n) update
time, Õ(n) query time, and O(m) space requirement.

Roditty and Zwick [19] gave a decremental algorithm that maintains all-pairs
O(log n)-approximate shortest paths with O(1)-query time, Õ(n) update time,
and O(m) space. For the scenario, where we want to minimize the update time
at the expense of increased query time, our algorithm offers a better choice.
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4 Fully Dynamic Algorithms

For a given graph (V, E), let D(V, E) be the data structure associated with
our decremental algorithm for maintaining a (2k − 1)-spanner. Our fully dy-
namic algorithm maintains D(V, E) and handles edge insertions in a lazy fashion
by inserting the edge directly into the spanner and rebuilding the data struc-
ture D for the new graph periodically once there are kn1+1/k insertions. In this
manner, cost of each insertion is O(1). Using Theorem 1 the total update cost
(including the initialization cost) for maintaining D is O(m polylog n) for each
interval of rebuilding. So the fully dynamic algorithm achieves an amortized
Õ(m/n1+1/k) cost per edge insertion/deletion. We can thus conclude with the
following theorem.

Theorem 2. Given a graph on n vertices and k ∈ N, we can maintain its
(2k − 1)-spanner of expected O(kn1+1/k) size in fully dynamic environment with
expected Õ( m

n1+1/k ) update time per edge insertion or deletion.

5 A Fully Dynamic Algorithm for Small Stretch Spanners

We present a fully dynamic algorithm for 3-spanner. Our fully dynamic algorithm
for 5-spanner is along similar lines, and we present a sketch of it. First we state
a simple lemma whose proof follows from elementary probability.

Lemma 4. Given a set A of 	 elements, let S be a sample formed by select-
ing each element of set A independently with some probability. The following
assertion holds :

∀a ∈ A, Pr[a ∈ S | |S| = i] =
i

	

The algorithm begins with the following preprocessing. A sample S ⊆ V is
formed by selecting each vertex independently with some probability p. During
the whole algorithm, the set S serves as the set of the centers of clusters, and the
clustering is essentially grouping each vertex v ∈ V satisfying Sv �= ∅ to some
vertex from Sv. We now relabel the vertices of the graph so that the vertices of
set S get labels which are a permutation of 1..S. (This relabeling takes O(m)
time and is required as a minor technicality for sake of clarity of exposition of
the algorithm).
The algorithm will maintain the following three invariants at each moment.

– I1 : Each vertex v ∈ V \S, with Sv �= ∅, belongs to the the cluster centered
at any of the vertex from Sv with equal probability.

– I2 : Each vertex v ∈ V \S contributes all its edge to the spanner.
– I3 : Each clustered vertex v has the edge (v, C[v]) and one edge to

each of its neighboring clusters in the spanner.

The invariants I2 and I3 will ensure that the spanner has stretch 3 and expected
size O(n3/2), whereas the invariant I1 will play a key role in achieving expected
constant time for handling any edge insertion/deletion.
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Fig. 2. For a non spanner edge,
a stretch of 3

Note that all the edges incident on an unclus-
tered vertex are included in the spanner. So let
us consider an edge (u, v) which is not a spanner
edge. In this case both u and v must be clustered.
It follows from invariant I2 that a clustered ver-
tex is connected to the center of its cluster by a
spanner edge. If both u and v belong to the same
cluster, there is a path between them consisting
of two edges, both from the spanner. So consider
the case when u and v belong to different clus-

ters, say c and c′ respectively (see Figure 2). The existence of the edge (u, v) in
E shows that the cluster c′ is neighboring to u, so I3 ensures that there must
be some edge (u, w), w ∈ c′ in the spanner. This implies a path of three spanner
edges between u and v (see Figure 2). Hence the spanner is surely a 3-spanner.

Now let us analyze the expected size of this 3-spanner. An unclustered vertex
will contribute all its edges, whereas a clustered vertex will contribute one edge
per incident cluster. Hence the expected number of edges contributed by a vertex
will be at most deg(v) · (1 − p)deg(v) + np, which is at most 1/p + np. Hence the
expected size of the 3-spanner is O(n/p + n2p), which for p = 1/

√
n, is O(n3/2).

Hence we can conclude that

Lemma 5. Maintaining invariants I2 and I3 for a dynamic graph ensures that
the spanner is a 3-spanner of expected size O(n3/2) at each stage.

5.1 Data Structure

In order to efficiently maintain the invariants, we shall use the following data
structures, which will require O(m + n3/2) space, which is O(m) since we have
assumed that m = Ω(n3/2) (see Preliminaries).

– Let C be the array representing the clustering.
– Each vertex v ∈ V keeps an array Nv of size |S| such that Nv[i] is (or points

to) the head of a doubly linked list storing all those edges incident on v from
a cluster centered at i. A node storing the edge (v, w) in this doubly linked
list will also keep a pointer to (and from) the entry for the same edge in the
hash table storing all the edges.

– Each vertex v maintains the set Sv of all the sampled vertices that are
adjacent to it using a doubly linked list. A node storing w in this list will
have a pointer to (and from) the node storing edge (v, w) in the list (pointed
by) Nv[C[w]]. This will facilitate insertion/deletion of a vertex w from set
Sv in O(1) time whenever the corresponding edge (v, w) is inserted/deleted
from the graph.

We shall employ the subroutine Change-cluster that we designed for our decre-
mental algorithm. In addition, we shall use the following two subroutines.
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Join-clustering(v, i) : (an unclustered vertex v joins a cluster centered at i)
C[v] ← i.
Process each clustered neighbor w of v as follows.
j ← C[w].

Insert edge (v, w) to the lists Nw[i] and Nv[j].
Make (v, w) a non-spanner edge unless it is the only spanner edge present
in either of Nw[i] and Nv[j].

Leave-clustering(v, i) : (a vertex v clustered at i becomes unclustered)
Process each clustered neighbor w of v as follows.

j ← C[w].
Delete (v, w) from the lists Nw[i] and Nv[j], and make (v, w) a spanner edge.

——————————————————————————————————–
Fully dynamic algorithm for 3-spanner

– Deletion of an edge (u, v) :
If the edge (u, v) does not belong to the current spanner, it suffices to delete
the edge from the data structures of u as well as v. So let us consider the
situation when (u, v) is a spanner edge. If either u or v is an unclustered ver-
tex, it also suffices to just delete the edge. Otherwise let u and v belong to
clusters centered at i and j respectively. We process the vertex u as follows
(the vertex v is processed in a similar manner).
If C[u] = v
{ Su ← Su\{v};

If Su = ∅ { C[v] ← 0 ; Leave-clustering(u, v)}
Else
{ let s be uniformly selected vertex from Su;

Make (u, s) a spanner edge;
C[u] ← s ; Change-cluster(u, i, s)}}

Else delete the edge (u, v) from Nu[j], choose another edge from Nu[j] (un-
less Nu[j] = ∅ now), and make that a spanner edge.

– Insertion of an edge (u, v) :
We process the vertex u as follows (the vertex v is processed similarly).
If u is unclustered
{ Make (u, v) a spanner edge;

If v ∈ S { C[u] ← v ; Join-clustering(u, v)}}
Else
{ If v is clustered

{ i ← C[u]; j ← C[v]; Insert the edge (u, v) to Nu[j];
If (i �= j and |Nu[j]| = 1) make (u, v) a spanner edge;
If v ∈ S
{ Su ← Su ∪ {v};

With probability 1/|Su| do
{ C[u] ← v ; Change-cluster(u, i, j)}}}}.
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It is easy to verify that the fully dynamic algorithm described above maintains
the invariants I1, I2 and I3. The invariant I1 combined with Lemma 4 would
imply the following crucial lemma whose proof follows by elementary probability.

Lemma 6. For the graph G undergoing deletion and insertion of edges in any
arbitrary order, our algorithm ensures the following equality at all times.

∀(u, v) ∈ E Pr[C[u] = v | u is clustered] =
1

deg(u)

Analyzing the complexity of the algorithm
Consider deletion of an edge (u, v). It follows from the description of the algo-
rithm that the processing of vertex u will take O(1) time for all the cases except
for the case when C[u] = v, in which case the update time is O(deg(u)). Now
applying Lemma 6 prior to deletion of edge (u, v), it follows that the probability
of the latter case is 1/ deg(u). Hence the expected processing time for vertex
u is O(1) when an edge (u, v) is deleted. Similarly analyzing the vertex v, we
conclude that an edge deletion can be processed in expected O(1) time.

Now consider insertion of edge (u, v). It follows from the description of the
algorithm that the update time is O(1) for all the cases except when u gets
assigned to cluster centered at v, in which case the update time is O(deg(u)).
Applying Lemma 6 just after the insertion (u, v), it follows that the probability
of the latter case is 1/ deg(u). Hence the expected update time for maintaining
a 3-spanner on inserting an edge (u, v) is constant. Combined with Lemma 5,

Theorem 3. Given a graph on n vertices, we can maintain its 3-spanner of
expected size O(n3/2) with expected O(1) time per edge insertion/deletion.

5.2 Fully Dynamic Algorithm for Stretch 5 (or 6)

The algorithm is the same as the algorithm for 3-spanner except with the fol-
lowing modifications.

1. The sampling probability is p = 1/n1/3.
2. The data structure: The data structure is identical to that of 3-spanner

except that each cluster (instead of each vertex) c keeps an array Nc such
that Nc[c′] is a doubly linked list storing the edges incident on c from c′.

3. The invariants: The fully dynamic algorithm will maintain the three in-
variants : The first two are just identical to I1 and I2 for the 3-spanner,
while the invariant I3 is defined as : Each clustered vertex v has the edge
(v, C[v]) in the spanner and each cluster has one spanner edge to each of its
neighboring clusters.

With the slight difference in the data structure and the invariant I3 as described
above, our fully dynamic algorithm for 5-spanner is identical to our fully dynamic
algorithm for 3-spanner which we have described and analyzed in complete de-
tails earlier. Hence, we can state the following theorem.

Theorem 4. Given a graph on n vertices, we can maintain its 5-spanner of
expected size O(n4/3) with expected O(1) time per edge insertion/deletion.
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Abstract. A sensor network consists of sensing devices which may ex-
change data through wireless communication; sensor networks are highly
energy constrained since they are usually battery operated. Data aggre-
gation is a possible way to save energy consumption: nodes may delay
data in order to aggregate them into a single packet before forwarding
them towards some central node (sink). However, many applications im-
pose constraints on data freshness; this translates into latency constraints
for data arriving at the sink.

We study the problem of data aggregation to minimize maximum
energy consumption under latency constraints on sensed data delivery
and we assume unique transmission paths that form a tree rooted at
the sink. We prove that the off-line problem is strongly NP-hard and we
design a 2-approximation algorithm. The latter uses a novel rounding
technique.

Almost all real life sensor networks are managed on-line by simple
distributed algorithms in the nodes. In this context we consider both
the case in which sensor nodes are synchronized or not. We consider
distributed on-line algorithms and use competitive analysis to assess their
performance.

1 Introduction

A sensor network consists of sensor nodes and one or more central nodes or sinks.
Sensor nodes are able to monitor events, to process the sensed information and
to communicate the sensed data. Sinks are powerful base stations which gather
data sensed in the network; sinks either process this data or act as gateways to
other networks. Sensors send data to the sink through multi-hop communication.

A particular feature of sensor nodes is that they are battery powered, making
sensor networks highly energy constrained. Replacing batteries on hundreds of
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nodes, often deployed in inaccessible environments, is infeasible or too costly
and, therefore, the key challenge in a sensor network is the reduction of energy
consumption. Energy consumption can be divided into three domains: sensing,
communication and data processing [1]. Communication is most expensive be-
cause a sensor node spends most of its energy in data transmission and reception
[7]. This motivates the study of techniques to reduce overall data communication,
possibly exploiting processing capabilities available at each node. Data aggre-
gation is one such technique. It consists of aggregating redundant or correlated
data in order to reduce the overall size of sent data, thus decreasing the network
traffic and energy consumption.

Most literature on sensor networks assumes total aggregation, i.e. data pack-
ets are assumed to have the same size and aggregation of two or more incoming
packets at a node results in a single outgoing packet. Observe that even if this
might be considered a simplistic assumption, it allows us to provide an upper
bound on the expected benefits of data aggregation in terms of power consump-
tion. We refer here to a selection of papers, focused on the algorithmic side of
the problem [3, 6, 10, 9, 11, 12]. However, these papers mainly focus on empirical
and technical aspects of the problem.

We concentrate on data aggregation in sensor networks under constraints on
the latency of sensed events; this means that data should be communicated to
the sinks within a specified time after being sensed. Preliminary results are given
in [8, 15]. In both cases formal proofs of the performance are not provided.

Time synchronization, in the sense of the existence of a common clock for the
nodes, may or may not be a requirement of the sensor network. Therefore, we
will consider both the synchronous model and the asynchronous model.

Contributions of the paper. A sensor network is naturally represented by
a graph whose nodes are the sensors and the arcs the wireless communication
links. Data aggregation, latency constraints and energy savings, give rise to a
large variety of graph optimization problems depending on the following issues.

- Transmission energy and time can be seen as functions of the size of the
packet and the transmission arc. Typically, these are concave functions exhibit-
ing economies of scale in the size of the packets sent.
- The latency may depend on the (types of) sensor data or on the sensor nodes.
- Sensor networks can be modelled as synchronous or asynchronous systems.
- Data is delivered to one or more sinks.
- The overlay routing paths connecting nodes to the sinks can be fixed a priori,
(e.g. a tree or a chain) or may also be chosen as part of the optimization process.
- There might be several objective functions; the most natural ones are to min-
imize the maximum energy consumption over all nodes or to maximize the
amount of sensed data arriving at the sinks with a given energy constraint.

By considering the above issues, we formulate the sensor problem in a combi-
natorial optimization setting, which allows us to derive, what we believe to be,
the first results on worst case analysis for on-line algorithms on wireless sensor
networks, as opposed to mainly empirical current results.



90 L. Becchetti et al.

We concentrate here on a basic subclass of latency constrained data aggre-
gation problems. We assume that transit times and transit costs, in terms of
energy consumption, are functions of the arcs only, modeling the situation of
total aggregation, while the objective is to minimize the maximum transit cost
per node over all nodes. There is only one sink and the transmission paths from
the nodes to the sink are unique, forming an intree with the sink as the root.
The tree is a typical routing topology in sensor networks; see [4, 6, 10, 13, 14].

In Section 2 we formalize the problem; for a thorough understanding of the
problem we have studied both the off-line and the on-line version of the problem,
although the latter version is the relevant one in practice.

In Section 3 we show that the off-line problem is NP-hard and we give a 2-
approximate algorithm. We remark that our approximate solution is based on a
new rounding technique of the LP-relaxation of an Integer Linear Programming
formulation of the problem, which might be useful for other applications.

In Section 4 we describe the distributed on-line problem, both in the syn-
chronous and the asynchronous settings. Our main results are:

(a) Distributed synchronous. We present a Θ(log U)-competitive algorithm,
where U is the ratio between the maximum and the minimum time that a packet
can wait in its route toward the sink. We also show an Ω(log U) lower bound,
whence the proposed algorithm is best possible up to a multiplicative constant.
(b) Distributed asynchronous. We give anO(δ log U)-competitive algorithm,where
δ is the depth of the tree, which belongs to a class of algorithms for which we can
prove a lower bound of Ω(δ1−ε) for any ε > 0 on the competitive ratio.

Omitted proofs and more related results can be found in a full version [2] of
this abstract.

Related results. In spirit [4] come closest to our paper. In [4] the authors con-
sider optimization of TCP acknowledgement (ACK) in a multicasting tree. The
problem their work addresses is a data aggregation problem. However, energy
consumption is not an issue in this problem and latency is considered as a cost
instead of a constraint, resulting in an objective of minimizing the sum of the
total number of transmissions and the total latency of the messages.

In [5] the authors studied the optimal aggregation policy in a single-hop sce-
nario (i.e. the graph is a star). Namely an aggregator performs a request and
starts waiting for answers from a set of sources. The time for each source to
return its data to the aggregator is independent and identically distributed ac-
cording to a known distribution F . The main differences with our paper are that
they assume that F is known, and they focus on a single-hop scenario.

2 The Sensor Problem Formalized

We study sensor networks D = (V, A), which are intrees rooted at a sink node
s ∈ V . Nodes represent sensors and arcs represent the possibility of transmission
between two sensors. Given an arc a ∈ A we denote its head and tail nodes by
head(a) and tail(a), respectively.
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Over time, n messages, N := {1, . . . , n}, arrive at nodes and have to be sent
to the sink. Message j arrives at its release node vj at its release date rj and
must arrive at the sink via the unique vj − s-path at or before its due date
dj . Thus, each message is completely defined by the triple (vj , rj , dj). Unless
otherwise stated we assume that messages are indexed by increasing due date,
i.e., d1 ≤ d2 ≤ · · · ≤ dn. We refer to Lj := dj − rj as the latency of message j.

A packet is a set of messages which are sent simultaneously along an arc. More
precisely, each initial message is sent as one packet. Recursively, two packets
j and 	 can be aggregated at a node v. The resulting packet has due date
d = min{dj, d�}. This definition naturally extends to the case of more packets
aggregated together.

Transition of a message along an arc takes time and energy (cost). In this paper
we assume that the transit time τ : A → R�0 and transit cost c : A → R�0 are
independent of packet size. We often refer to the transit cost of a node as the
transit cost of its unique outgoing arc. This models the situation in which all
messages have more or less the same size and where total aggregation is possible,
as discussed in the introduction. For v ∈ V , let τv and cv be, respectively, the
total transit time and total transit cost on the path from v to s. For message
j and node u on the path from vj to s, we define transit interval Ij(u) as the
time interval during which message j can transit at node u: Ij(u) := [rj + τvj −
τu, dj − τu]. In particular, Ij(s) = [r′j , dj ], where r′j := rj + τvj is the earliest
possible arrival time of j at s. We abbreviate Ij for Ij(s) and call it the arrival
interval of message j. We also write |I| for the length of interval I; note that
|Ij(u)| = |Ij | for all j and for all u on the path from vj to u.

Finally, we define δ := maxv τv as the depth of the network in terms of the
transit time.

The objective of the sensor problem is to send all messages to the sink in
such a way as to minimize the maximum transit cost per node, while satisfying
the latency restrictions. Given that transit costs are independent of the size of
packets sent, but linear in the number of packets sent, it is clearly advantageous
to aggregate messages into packets at tail nodes of arcs.

3 The Off-Line Problem

We start by proving some properties of optimal off-line solutions.

Lemma 1. There exists a minimum cost solution such that:

(i) whenever two messages are present together at the same node, they stay
together until they reach the sink;

(ii) a message never waits at an intermediate node, i.e., a node different from
its release node and the sink;

(iii) the time when a packet of messages arrives at the sink is the earliest due
date of any message in that packet.

Proof. (i): Repeatedly apply the argument that whenever two messages are to-
gether at the same node but split up afterwards, keeping the one arriving later
at the sink with the other message does not increase cost.
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(ii): Use (i) and repeatedly apply the following argument. Whenever a packet
of messages arrives at an intermediate node and waits there, changing the solu-
tion by shifting this waiting time to the tail node of the incoming arc does not
increase cost.

(iii): Follows similarly as (ii) by interpreting the time between the arrival of
a packet at the sink and earliest due date as waiting time. ��

Theorem 1. The off-line sensor problem is strongly NP-hard.

The proof of Theorem 1 involves a non-trivial reduction from the Satisfiability
Problem and is deferred to the full version of the paper.

We give an ILP-formulation of the problem, based on Lemma 1, and show that
rounding the optimal solution of the LP-relaxation yields a 2-approximation
algorithm. For every message-arc pair {i, a}, we introduce a binary decision
variable xia, which is set to 1 if and only if arc a is used by some message j
which arrives at s at time di. We use the notation jmin for the smallest index i
such that di ≥ r′j and aj for the first arc on the (unique) vj − s- path.

min z
s.t. z ≥ c(a)

∑n
i=1 xia ∀a ∈ A,∑j

i=jmin
xiaj � 1 ∀ 1 ≤ j ≤ n,

xia � xia′ ∀ 1 ≤ i ≤ n ∀ a, a′ ∈ A with head(a′) = tail(a),
xia ∈ {0, 1} ∀ 1 ≤ i ≤ n ∀ a ∈ A.

(1)

The first set of constraints ensures that z is at least the transit cost of any node.
The second set of constraints forces each message to leave its release node in time
to reach the sink before its due date. By the third set of constraints a message
does not wait at intermediate nodes.

In the following lemma we develop a tool for rounding the corresponding
LP-relaxation, which is obtained by replacing the integrality constraints with
non-negativity constraints xia � 0.

Lemma 2. Let α1, . . . , αn ∈ R�0 and β1, . . . , βn ∈ {0, 1} with∑k
i=j αi � 1 =⇒

∑k
i=j βi � 1 ∀1 ≤ k ≤ n ∀1 ≤ j ≤ k. (2)

By decreasing some of the βi’s from 1 to 0, one can enforce the inequality∑n
i=1 βi � 2

∑n
i=1 αi (3)

while maintaining property (2). Moreover, this can be done in linear time.

Proof. Consider the βi’s in order of increasing index. If βi = 1, then round it
down to 0, unless this yields a violation of (2). It is not difficult to see that this
greedy algorithm can be implemented to run in linear time. It remains to be
proven that inequality (3) holds for the resulting numbers β1, . . . , βn.
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For h ∈ {1, . . . , n}, let h̄ := min{i > h | βi = 1}; if βi = 0 for all i > h or
h = n, then h̄ := n + 1. Similarly, let h := max{i < h | βi = 1}; if βi = 0 for all
i < h or h = 1, then h := 0. We prove the following generalization of (3):

h∑
i=1

βi � 2
h̄−1∑
i=1

αi ∀ 1 ≤ h ≤ n. (4)

By contradiction, consider the smallest index h violating (4). Since h is chosen
minimally, it must hold that βh = 1; rounding βh down to 0 would yield a
violation of (2). In particular this would yield

h̄−1∑
i=h+1

αi � 1 (5)

while
∑h̄−1

i=h+1 βi = 0 . Notice that h � 1, since, by choice of h,

h∑
i=1

βi > 2
h̄−1∑
i=1

αi

(5)
� 2 .

Thus, βh = βh = 1. We get a contradiction to the choice of h:

h∑
i=1

βi =
h−1∑
i=1

βi + 2
(4)
� 2

h−1∑
i=1

αi + 2
(5)
� 2

h−1∑
i=1

αi + 2
h̄−1∑

i=h+1

αi � 2
h̄−1∑
i=1

αi .

The first inequality follows from (4) since (h − 1) = h. ��

Theorem 2. There is a polynomial time 2-approximation algorithm for the sen-
sor problem on intree D = (V, A).

Proof. We round optimal (fractional) solution (x, z) of the LP relaxation of (1) to
an integral solution (x̄, z̄). Consider the arcs in order of non-decreasing distance
from s. For arc a with head(a) = s, set x̂ia = 1 ∀ i = 1, . . . , n. Modify these
values to x̄1a, . . . , x̄na by applying Lemma 2 to x1a, . . . , xna and x̂1a, . . . , x̂na.

For an arc a′ with larger distance to s, take the arc a with head(a′) = tail(a)
and set x̂ia′ := x̄ia ∀i = 1, . . . , n. We also modify these values into x̄1a′ , . . . , x̄na′

by applying Lemma 2 to the values x1a′ , . . . , xna′ and x̂1a′ , . . . , x̂na′ . Premise (2)
of Lemma 2 is satisfied for x1a′ , . . . , xna′ and x̂1a′ , . . . , x̂na′ since (2) holds for
x1a, . . . , xna and x̄1a, . . . , x̄na and since xia′ ≤ xia.

By construction, the final solution (x̄, z̄) is feasible if we choose z̄ = 2z. ��

4 The Distributed On-Line Problem

We consider a class of distributed on-line models, in which nodes communicate
independently of each other, while messages are released over time. Each node
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is equipped with an algorithm, which determines at what times the node sends
its packets to the next node on the path to the sink. The input of each node’s
algorithm at any time t is restricted to the packets that have been released at
or forwarded from that node in the period [0, t].

We assume that all nodes are equipped with a clock to measure the latency
of messages. We distinguish two distributed on-line models: In the synchronous
model all nodes are equipped with a common clock, i.e. the times indicated at all
clocks are identical. A common clock may facilitate synchronization of actions in
various nodes. In the asynchronous model there is no such common clock; still,
the duration of the time unit is assumed to be the same for all nodes.

We also assume in both models that each node v knows its total transit time
τv to the sink. Moreover, for the asynchronous model we assume that all transit
times τ(a) are equal, and without loss of generality we set τ(a) = 1 ∀a ∈ A.

4.1 The Synchronous Model

For the synchronous model we propose an algorithm based on the following
simple result, the obvious proof of which we omit.

Lemma 3. Given any interval [a, b], a, b ∈ N, let i∗ = max{i ∈ N | ∃k ∈
N : k2i ∈ [a, b]}. Then k∗ for which k∗2i∗ ∈ [a, b] is odd and unique. Also,
i∗ ≥ �log2(b − a)�. We use notation t(a, b) = k∗2i∗

. ��

Algorithm:CommonClock (CC) Message j is sent from vj at time
t(r′j , dj) − τvj to arrive at s at time t(r′j , dj) unless some other message
(packet) passes vj in the interval [rj , t(r′j , dj) − τvj ], in which case j is
aggregated and the packet is forwarded directly.

First we derive a bound on the competitive ratio of CC for instances in which
the arrival intervals Ij differ by at most a factor 2 in length.

Lemma 4. If there exists an i ∈ N such that 2i−1 < |Ij | ≤ 2i for all messages
j, then CC has a competitive ratio of at most 3.

Proof. Assume that in an optimal solution packets arrive at s at times t1 < · · · <
t�. Let N∗

h be the packet arriving at th at s. Since th ∈ Ij ∀j ∈ N∗
h and |Ij | ≤ 2i

∀j, we have Ij ⊂ [th−2i, th+2i] =: I ∀j ∈ N∗
h , and |I| = 2 ·2i. If th = k2i then in

the CC-solution all messages in N∗
h may arrive at s at times th, th −2i or th +2i.

If th �= k2i then I contains two different multiples of 2i, say k2i and (k + 1)2i,
such that k2i < th < (k+1)2i. In this case, since |Ij | > 2i−1 ∀j, we have ∀j ∈ N∗

h

that Ij ∩{k2i, k2i +2i−1, (k +1)2i} �= ∅. Lemma 3 implies that in a CC-solution
every message j ∈ N∗

h arrives at s at one of {k2i, k2i + 2i−1, (k + 1)2i}. Hence,
∀h = 1, . . . , 	, all messages in N∗

h arrive at s at at most 3 distinct time instants
in the CC-solution. CC does not delay messages at intermediate nodes. This
implies that the arcs used by messages in N∗

h are traversed by these messages at
most 3 times in the CC-solution, proving the lemma. ��
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Theorem 3. CC is Θ(max{logU, 1})-competitive with U = maxj |Ij |
max{1,minj |Ij |} .

Proof. For each i ∈ N with log(max{1, minj |Ij |}) ≤ i ≤ �log(maxj |Ij |)�, CC
sends the messages in Ni := {j ∈ N | 2i−1 < |Ij | ≤ 2i}, at a cost of no
more than 3 times the optimum, by Lemma 4. This proves O(max{logU, 1})-
competitiveness if minj |Ij | ≥ 1. In case minj |Ij | = 0 we observe that restricted
to the class of messages N0 = {j ∈ N | |Ij | = 0} CC’s cost equals the optimal
cost, because there is no choice for these messages.

To prove Ω(log U) consider a chain of 2n+1 nodes u1, . . . , u2n+1 = s for some
n ∈ N. Take τ(a) = 1 and c(a) = 1 ∀a. For j = 1, . . . , n, vj = u2j , rj = 0, and
dj = 2n+1 −1. Hence r′j = 2n+1 −2j = k2j for some odd k ∈ N and |Ij | = 2j −1.
Therefore, CC makes each message j arrive at s at time r′j , no two messages are
aggregated, and the cost is

∑n
j=1(2

n+1 − 2j) = (n − 1)2n+1 + 2. In an optimal
solution all messages are aggregated into a single packet arriving at s at time
2n+1 − 1 at a cost of 2n+1 − 2. Notice that U = 2n − 1 in this case. ��

The following theorem shows that CC is best possible (up to a multiplicative
constant).

Theorem 4. Any deterministic synchronous algorithm is Ω(log U)-competitive.

Proof. Consider an intree of depth δ = 2n+1 with n the number of messages,
and where each node, except the leaves, has indegree n. We assume τ(a) = 1 for
all a ∈ A. For any on-line algorithm we will construct an adversarial sequence
of n messages all with latency L = δ, such that there exists a node at which the
adversary can aggregate all messages in a single packet, but at which none of
them is aggregated by the on-line algorithm. Using a similar argument as in the
proof of Lemma 1 (i) the fact that all messages can be aggregated in a single
packet implies that there exists a solution such that every node sends at most
one packet, hence the cost of the adversarial solution is 1, whereas the cost of
the on-line algorithm is n.

Fix any on-line algorithm. Given an instance of the problem, let Wj(u) be the
time interval message j spent at node u by application of the algorithm, i.e. the
waiting time interval of message j on u. We denote its length by |Wj(u)|. Note
that

∑
u |Wj(u)| ≤ |Ij | for each message j. We notice that the waiting time of a

message in a node can be influenced by the other messages that are present at
that node or have passed that node before. Since the algorithms are distributed
the waiting time of a message in a node is not influenced by any message that
will pass the node in the future.

The adversary chooses the source node vj with total transit time τvj := δ −2j

from s, for j = 1, . . . , n, so that |Ij | = 2j . Thus, U = 2n−1 = δ/4. The choice
of the exact position of vj and the release time rj is made sequentially and, to
facilitate the exposition, described in a backward way starting with message n.
The proof follows rather directly from the following claim.
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Claim. For any set of messages {k, . . . , n} the adversary can maintain the prop-
erties:

(i) all messages in {k, . . . , n} pass a path pk with 2k nodes;
(ii) Ik(u) =

⋂
j≥k Ij(u) ∀u ∈ pk;

(iii) if k < n, then Wk+1(u)
⋂

Ik(u) = ∅ ∀u ∈ pk;
(iv) if k < n, then Wi(u)

⋂
Wj(u) = ∅ ∀u ∈ pk, i = k, . . . , n, j > i.

We notice that for any message j and any node u on the path from vj to s,
Wj(u) may have length 0 but is never empty; it contains at least the departure
time of message j from node u.

Note that properties (i) and (ii) for k = 1 imply that all messages can indeed
be aggregated into one packet, hence as argued above, the adversarial solution
has a cost of 1. Properties (iv) and (i) for k = 1 imply that the on-line algorithm
sends all messages separately over a common path with 2 nodes, yielding a cost
of n. This proves the theorem.

We prove the claim by induction. The basis of the induction, k = n, is trivially
verified. Suppose the claim holds for message set {k, . . . , n} and pk is the path
between nodes v and v̂. We partition pk into two sub-paths p and p̂ consisting
of 2k−1 nodes each, such that v ∈ p and v̂ ∈ p̂. We denote the last node of p
by u and the first node of p̂ by û. We distinguish two cases with respect to the
waiting times the algorithm has selected for message k in the nodes on pk.

Case a:
∑

u∈p |Wk(u)| ≥ (1/2)|Ik|. The adversary chooses vk−1 with total transit
time τvk−1 = δ−2k−1 such that its path to s traverses p̂ but not p. More precisely,
we ensure that the first node message k−1 has in common with any other message
is û. This is always possible, since the node degree is n. This choice immediately
makes that setting pk−1 = p̂ satisfies property (i). The release time of k − 1 is
chosen so that Ik−1(û) and Ik(û) start at the same time, implying that Ik−1(u)
and Ik(u) start at the same time for every u ∈ p̂. Since |Ik−1(u)| = |Ik(u)|/2 we
have Ik−1(u) ⊂ Ik(u) for all u ∈ p̂, whence property (ii) follows by induction.

Note that, as we consider distributed algorithms, message k − 1 does not
influence the waiting time of j, j > k − 1, on p as û is the first node which both
j and k − 1 traverse. In particular, Wk(u), ∀u ∈ p is not influenced by k − 1.

Now, the equal starting times of Ik−1(û) and Ik(û) together with∑
u∈p |Wk(u)| ≥ (1/2)|Ik| and |Ik−1(û)| = |Ik(û)|/2 imply that k will not reach

û before interval Ik−1(û) ends. This, together with the consideration above, im-
plies property (iii).

To prove (iv), note that by induction it is sufficient to prove that Wk−1(u) ∩
Wj(u) = ∅ ∀j > k − 1 ∀u ∈ p̂. Since, as just proved, Wk(u) ∩ Ik−1(u) = ∅ ∀u ∈ p̂
we have Wk−1(u) ∩ Wk(u) = ∅ ∀u ∈ p̂. We have by induction that, for j > k,
Wj(u) ∩ Ij−1(u) = ∅ ∀u ∈ p̂ and we just proved that Ik−1(u) ⊂ Ij−1(u) ⊂
Ij(u) ∀u ∈ p̂, which together imply Wk−1(u) ∩ Wj(u) = ∅ ∀j > k ∀u ∈ p̂.

Case b:
∑

u∈p |Wk(u)| < (1/2)|Ik|. As in the previous case, the adversary
chooses vk−1 with total transit time τvk−1 = δ − 2k−1 such that its path to
s traverses p (therefore also p̂) but does not intersect any of the paths used by
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messages {k, . . . , n} before it reaches p in v. Again, this is always possible since
the indegree of each node is n. Hence, choosing pk−1 = p satisfies property (i).
The release time of k−1 is chosen so that Ik−1(v) and Ik(v) end at the same time,
implying that Ik−1(u) and Ik(u) end at the same time for every u ∈ p. Since
|Ik−1(u)| = |Ik(u)|/2 we have Ik−1(u) ⊂ Ik(u) for all u ∈ p, whence property
(ii) follows by induction.

The equal ending times of Ik−1(u) and Ik(u) together with
∑

u∈p |Wk(u)| <
1/2|Ik| and |Ik−1(u)| = |Ik(u)|/2 imply that k has left u before Ik−1(u) begins,
implying property (iii). Indeed, this gives Wk−1(u) ∩ Wk(u) = ∅, ∀u ∈ p. It also
implies that k − 1 could not influence the waiting time of k on p.

The proof of (iv) follows the very same lines as in Case a, with the difference
that we now refer to nodes in p instead of p̂. ��
Since in the proof U = δ/4 we also have the following lower bound on the
competitive ratio of any deterministic synchronous algorithm.

Theorem 5. Any deterministic synchronous algorithm is Ω(log δ)-competitive.
��

4.2 The Asynchronous Model

In the asynchronous model nodes are equipped with a clock and a distributed
algorithm. All clocks have the same time unit, but neither the time nor the start
of a new time unit on clocks is synchronized. We assume that τ(a) = 1 for all a,
such that τvj is equal to the number of nodes on the vj − s-path.

We propose algorithm Spread Latency (SL) for this model, which divides the
latency minus transmission time of each message j equally over the nodes on the
vj − s-path: at each node of this path the message is assigned a waiting time
of (Lj − τvj )/τvj time units. As soon as messages appear simultaneously at the
same node they get aggregated into a packet, which is sent over the outgoing
arc as soon as the waiting time of at least one of its messages at that node
has passed. In this way, no message is delayed due to aggregation and thus the
algorithm yields a feasible solution.

Let, as in the previous subsection, U := maxj |Ij |
max{1,minj |Ij |} =

maxj(Lj−τvj
)

max{1,minj(Lj−τvj
)} .

Theorem 6. The algorithm SL is O(δ max{log U, 1})-competitive.

Proof. We prove that for all a ∈ A the number of packets SL sends through a
is at most O(δ max{log U, 1}) times that number in an optimal solution. This
proves the theorem.

Let λ := max{1, minj(Lj − τvj )}. Consider a packet P of messages sent by an
optimal solution through (u, v) at t. To bound the number of packets sent by
SL that contain at least one message from P , define Pk := {j ∈ P | 2k−1λ ≤
Lj−τvj < 2kλ}, for k = 1, . . . , �log U�. We charge any sent packet to the message
that caused the packet to be sent due to its waiting time being over. It suffices
to prove that the number of packets charged to messages in Pk is O(δ).

Since the waiting time of messages j ∈ Pk at node u is at least 2k−1λ/δ, the
delay between any two packets that are charged to messages in Pk is at least
2k−1λ/δ. Since the optimal solution sends packet P at t through (u, v), we get
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t ∈ Ij(u) ∀j ∈ P and thus Ij(u) ⊆ [t − 2kλ, t + 2kλ] ∀j ∈ Pk. Thus, the number
of packets charged to messages in Pk is at most 2 · 2kλ/(2k−1λ/δ) = 4δ. ��

SL determines the waiting time of each message at the nodes it traverses inde-
pendently of all other messages. We call such an algorithm a WI-algorithm. To
be precise, in a WI-algorithm node v determines the waiting time of message
j based only on the message characteristics (vj , rj , dj), transit time to the sink
τv and clock time. The following lower bound shows that the competitive ratio
of SL cannot be beaten by more than a factor max{log U, 1} by any other WI-
algorithm. In the derivation of the lower bound we restrict to WI-algorithms that
employ the same algorithm in all nodes with the same transit time to s. This
is not a severe restriction, given that transit time to s is the only information
about the network that a node has.

Theorem 7. Any deterministic asynchronous WI-algorithm is Ω(δ1−ε)- com-
petitive for any ε > 0.

Proof. Consider a binary intree with root s and all leaves at distance δ from s.
Let 0 ≤ λ < 1 be such that δ1−λ ≥ 3. An adversary releases message 1 with
latency L at time r1 in a leaf v1. Notice that there are at most δλ nodes where
the waiting time is at least (L − τv1)/δλ. Hence, the v1 − s path contains a sub-
path consisting of at least δ1−λ − 2 nodes where in each node message 1 waits
less than (L − τv1)/δλ. Choose such a sub-path and let u be the node on this
sub-path closest to s.

Let V ′ be the set of leaves of the subtree with root u and depth δ1−λ−2. Then
|V ′| ≥ 2δ1−λ−2 ≥ δλ/4 for any fixed λ ∈ [0, 1) and δ large enough. The adversary
releases messages j = 2, . . . , δλ/4 with latency L at times rj = r1 +j(L−τvj)/δλ

in leaf vj , such that each vj − s path passes through a different vertex of V ′.
Because τvj = τv1 ∀j and we assumed that any WI-algorithm applies the same
algorithm in nodes at equal distance, all messages are sent non-aggregated to and
from u, whereas they are aggregated as early as possible in an optimal solution,
in particular at u. ��

The lower bound does not hold for arbitrary algorithms as a node may adjust
the waiting time of subsequent messages that traverse that node. The following
theorem shows that the lower bound remains Ω(δ1−ε) if release nodes do not
delay subsequent messages longer than preceding messages.

Theorem 8. Any asynchronous WI-algorithm for which the waiting time of
message j at its release node is at most

L−τvj

K is Ω(K)-competitive.

Proof. Consider a chain which consists of two nodes v and s. We assume constant
latency L for each message. The adversary releases K − 1 messages with an
interval of (L − τvj )/(K − 1) at v. Since the waiting time of message j at v is at
most (L− τvj )/K, none of these messages are aggregated in the on-line solution,
whereas they are all aggregated in one packet in an optimal solution. ��

The theorem proves that SL is Ω(δ)-competitive. For arbitrary asynchronous
algorithms we do not have any better lower bound than the one in Theorem 5.
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In a full version of the paper [2] we design an algorithm with improved com-
petitive ratio of O(log3 δ) for the asynchronous problem on a chain with s at one
of its ends.
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Abstract. The cells of flash memories can only endure a limited num-
ber of write cycles, usually between 10,000 and 1,000,000. Furthermore,
cells containing data must be erased before they can store new data, and
erasure operations erase large blocks of memory, not individual cells. To
maximize the endurance of the device (the amount of useful data that
can be written to it before one of its cells wears out), flash-based systems
move data around in an attempt to reduce the total number of erasures
and to level the wear of the different erase blocks. This data movement
introduces interesting online problems called wear-leveling problems. We
show that a simple randomized algorithm for one problem is essentially
optimal. For a more difficult problem, we show that clever offline algo-
rithms can improve upon naive approaches, but online algorithms essen-
tially cannot.

1 Introduction

The read/write/erase behaviors of flash memory is radically different than that
of other programmable memories, such as magnetic disks and volatile ram. Most
importantly, flash memory cells can be erased only a limited number of times,
between 10,000 and 1,000,000, after which they wear out and become unusable.

Writing to flash involves two separate operations: erasures and programming.
An erasure sets all the bits in a range of cells to ’1’. These ranges are called erase
units and are usually uniform in size. We denote the number of erase units by
n. The programming operation writes a given bit sequence to an erase unit, or
to a part of an erase unit by clearing some of the 1’s. We assume in this paper
that the computer system always programs fixed-length sequences called blocks.
We denote the number of blocks that fit within an erase unit by k. That is, each
erase unit is divided into k slots that can each store a single block. A slot that
has been programmed cannot be programmed again until the entire erase unit
is erased (there are exceptions to this rule, but they are beyond the scope of this
paper). Both k = 1 and higher values of k occur in practice.

Clever management of a flash device can dramatically extend its functional life
span. Consider a device with n erase units that can each be erased H times, which
are not divided into slots (that is, k = 1). We consider the device useless when
one of the n cells exceeds the wear limit H (our results justify this assumption).
When the device becomes useless, it has been written to between H + 1 and
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n(H + 1) times. Clever management aims to ensure that the device can be
successfully written to as close to n(H + 1) times as possible. Techniques that
aim to achieve this goal are called in the flash literature wear-leveling techniques.

Wear-leveling techniques work by separating the system’s naming of blocks
from the physical location of the slots that contain them. The computer system
views the flash device as a store of m ≤ nk fixed-size blocks named 1 through
m. The system uses the flash by issuing a sequence of read requests and write
requests. Read requests are irrelevant to endurance so we ignore them. Write
requests require the flash memory manager to store the new content of a named
block and to return it in the future. Initially, each data block is stored in some
slot. These slots are occupied. The flash memory manager serves a write re-
quest by performing a sequence of erasure and programming operations. In this
sequence, blocks can only be written to clean slots (slots that have not been
written to since the containing erase unit was erased), not to dirty slots (slots
that contain obsolete data). When a unit is erased, all its contents are lost, and
all its slots become clean. The sequence always needs to achieve one goal, and
in most systems, it needs to achieve two more:

– At the end of the sequence each block must be stored in some slot. This is
always necessary.

– The rearrangement of blocks might also contribute to wear leveling.
– Most systems require that the rearrangement of blocks is carried out such

that no data is lost if the system is shut off in the middle of the sequence.
This is an atomicity requirement with respect to the block-update request.

If atomicity is not an issue, the sequence always has the same structure. The
manager begins the sequence by marking the slot that contains the old copy of
the block as obsolete. If the manager wishes to rearrange additional blocks, it
reads them into volatile memory (ram) and marks the slots that contained them
as obsolete. Next, the manager can erase units that contain no occupied slots,
only clean and dirty ones. Finally, the manager writes all the blocks that are in
volatile memory, including the updated block that initiated the sequence, into
erased slots. If atomicity is required, or if the amount of ram is limited, update
sequences are more complex. The mapping issue (remembering where each block
is stored) is largely orthogonal to the endurance issue, and we ignore it in this
paper.

Starting around 1993, a variety of wear-leveling techniques have been pro-
posed, mostly in patents [1, 4, 5, 6, 7, 9, 10, 11, 12, 13]; for details about these tech-
niques and about other flash-management techniques, see [8]. In this paper,
we present a competitive analysis of online wear-leveling policies, including of
patented randomized policies. No such analysis has ever been published. Some of
our analyses, such as the lower bounds for deterministic policies, apply directly
to algorithms that have been previously proposed.

When the request series begins, we have m occupied slots and nk − m clean
slots. Thus, the manager cannot serve more than (nk − m) + Hnk requests. We
can, therefore, assume that the length of all request sequences is (nk−m)+Hnk.
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The objective of the manager is to serve as many requests as possible before the
device wears out.

We use competitive analysis to quantify the effectiveness of online wear-
leveling policies. Let 	opt(σ) be the number of requests that the optimal offline
algorithm can serve for a given request sequence σ, and let 	α(σ) be the number
of requests that an online algorithm α can serve. The competitive ratio of α is
minσ 	α(σ)/	opt(σ), where the minimization is over all the sequences of length
(nk − m) + Hnk. A good online policy achieves a high competitive ratio. If α is
randomized then we replace 	α(σ) by the expected length that α can serve.

The paper is organized as follows. Section 2 analyzes the case k = 1 and
Section 3 analyzes the case k > 1. It turns out that these two cases are quite
different and are governed by different issues. Each of these sections describes an
effective offline algorithm, bounds on the competitiveness of deterministic and
randomized online algorithms, and online algorithms that match most of the
bounds. Section 4 presents our conclusions. Due to lack of space, most of the
proofs have been omitted; see [3] for the proofs, for additional simulation results,
and for a fuller discussion of implications of the results.

2 Single-Slot Units

We begin the analysis with single-slot erase units (k = 1). This case models at
least two real-world situations: flash devices that limit programming operations
to entire erase units, and flash devices that allow variable-size programming
operations, which usually leads system designers to use single-slot wear-leveling
algorithms.

In this case we can simplify the rules. First, we refer only to (erase) units, not
to slots. Second, units can be in only two states, clean and occupied (and not
dirty): We immediately erase a unit when a block is moved from it. Any result
for this simplified model applies to the full model up to a change of ±1 to H .

2.1 Deriving Atomic Policies from Non-atomic Ones

We present a method that allows us to separate the atomicity concern from the
wear-leveling concern. This method transforms many non-atomic algorithms,
including all the algorithms in this section, into atomic ones with exactly the
same endurance.

We denote by hi(t) the number of erasures that the algorithm already per-
formed on unit i immediately before serving request number t. We call hi(t) the
wear of i at time t. We denote by σt the index of the block requested by the tth
request in the sequence σ.

Theorem 1. Let N be a non-atomic algorithm for n blocks and n units that
serves a request sequence η by either putting ηt back in its unit or by switching
ηt with some other block. We can derive from N an atomic algorithm A for n−1
blocks and n units. For any request sequence σ that A serves, there is another
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sequence η such that h
A(σ)
i (t) = h

N (η)
i (t) for all i and for all t. If N is online

then A is online.

The transformation simulates a fixed trivial online algorithm T on σ and uses
its state (the block-to-unit mapping) to define η. Then N is simulated on η.
The action of N on ηt, which is always one of two possible actions, is used to
deterministically define the action of A on σt. Therefore, if A is randomized,
then N essentially uses the coin tosses of A, and the result h

A(σ)
i (t) = h

N (η)
i (t)

holds for every sequence of coin tosses. Thus, the theorem implies that the en-
durance of A and N is the same, both in the worst-case sense and in probabilistic
senses.

2.2 Offline Algorithms

The best-case endurance (for “easy” sequences) is 	(σ) = nH . Offline algorithms
can achieve almost this best-case endurance.

Theorem 2. There is an atomic offline algorithm for which the wear hi(t) of
any unit i at time t = Hn − n + 1 is at most H, for any sequence σ, even
if m = n − 1. For m = n there is a non-atomic algorithm that achieves this
endurance.

This implies that an offline algorithm can always achieve 	off(σ) ≥ n(H − 1).
Since H > 10, 000, the offline endurance is exceedingly close to the best-case
endurance nH .

The non-atomic offline algorithm works as follows (the atomic one uses The-
orem 1). Normally, the algorithm serves a request to block x stored in unit i by
erasing i and putting x back into i. In some cases, however, the algorithm de-
cides to exchange the contents of i with the contents of another unit j. To decide
whether to switch i with j, the algorithm counts the number of remaining re-
quests to all the blocks, but only up to request number Hn−n. It switches if the
number of remaining requests to some block y stored in unit j matches exactly
the number of erasures left for unit i, or if the number of remaining requests to
x matches exactly the number of erasures left for unit j. The algorithm performs
at most n such switches on a given sequence. Notice that a switch performs two
erasures, while a write in-place performs only one.

2.3 Deterministic Online Algorithms

The endurance of deterministic algorithms depends entirely on the number n−m
of extra erase units. An online algorithm can achieve this endurance by always
putting the requested block in the least-worn out empty unit.

Theorem 3. Under this deterministic online algorithm, the wear of any unit
after (n − m + 1)H requests is at most H.

This is as good as any deterministic algorithm can achieve.
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Theorem 4. For every deterministic algorithm α (even if α is non-atomic)
there exists a sequence σ such that 	α(σ) ≤ (n − m + 1)H.

In spite of this pessimistic competitive result, many flash-based systems use
deterministic algorithms. This is due to the fact that in practice the request
sequence is oblivious to the mapping and such algorithms usually work well.

2.4 Randomized Online Algorithms

We analyze a randomized algorithm called Rp, which was patented by Amir
Ban along with several other wear-leveling algorithms [2]. The algorithm that
we analyze corresponds to Claims 2.c, 3, and 4.II in [2]. It serves a request to
block x using the following rules:

– With probability p, put x in a random unit i chosen uniformly and indepen-
dently, and put the block that was in i in the unit where x was stored (the
algorithm may return x to the unit in which it was stored).

– Otherwise, put x back in the unit from which it was taken out.

This algorithm is not atomic, but it satisfies the conditions of Theorem 1, so we
can easily derive an atomic variant with the same competitive ratio. In the anal-
ysis of the algorithm, we assume that the blocks are initially stored in random
units.

For p = 1, the behavior of this algorithm is fairly simple. Since the block that
was requested is always switched with a random block, uniformly, an adversary
has no useful information about which block is in which unit. Therefore, any
request sequence is equivalent to a random request sequence. For large H , the
wear of all the units under a random request sequence is roughly the same. Since
serving each request usually costs the algorithm two erasures (if m is close to
n), the endurance should be close to nH/2. A full analysis of R1 is not difficult.

However, a small p can improve the endurance and bring it close to nH .
Figure 1 shows the results of simulations of Rp. For given n and H , we simulated
Rp with several values of p, 50 times for each p, with a constant request sequence.
Each cross on the graph indicates the length of the sequence that a particular run
was able to serve. The results clearly show that the simple variant R1 achieves
endurance of roughly nH/2, but for a small p, the algorithm Rp can get close to
nH . The main goal of our analysis, which is more complex than the analysis of
R1, is to fully analyze this phenomenon and to provide guidelines for the choice
of p.

A small p only helps, however, if H is large. If H is small, R1 is optimal.
We begin with results that bound the performance of randomized algorithms for
small H and that show that R1 is optimal in this regime. The results from here
on are asymptotic with respect to a growing n.

Theorem 5. For any randomized online algorithm α (even if α is non-atomic)
and for every constant e such that n = m + e, there exists a sequence σ and a
constant c such that Pr

[
	α(σ) < n1−c/H lnn

]
≥ 1 − o(1). (The constants within

the small-o, as well as c, depend on e).
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Fig. 1. Simulation results for n = 20 erase units and endurance limits of H = 10, 000
(left) and H = 100, 000 (right). Each cross represents one simulation. The x axis shows
the switching probability p that was used in the simulation, the y axis shows the number
of requests that were served before one of the units was erased H + 1 times. The y
axis always extends up to exactly nH erasures, the ideal endurance. Theorem 7 shows
that for switching probabilities far from 1 but significantly larger than p = (ln n/H)1/3

(indicated in the graphs by the vertical line), the endurance is nearly ideal.

Theorem 6. For H in the range

Ω(ln n/ ln lnn) ≤ H ≤ O(ln n) ,

there exists a constant d > 0 such that for every request sequence σ,

Pr
[
	R1(σ) < n1−d/H lnn

]
= o(1) .

When H is large, a good choice for p brings 	Rp(σ) almost to nH .

Theorem 7. When H = ω(lnn), for any (lnn/H)1/3 � p � 1 and for every
request sequence σ,

Pr
[
	Rp(σ) < nH(1 − o(1))

]
= o(1) .

3 Fractional Unit Wear Leveling

Until now, we have analyzed the single-slot case k = 1. Some flash based systems
support fixed-size fractional writes, in which erase units are k times larger than
write blocks.

In this section, we consider the fractional wear-leveling problem, in which
k > 1. In the fractional case, the best-case scenario with a single spare unit (m =
(n − 1)k) is 	 = nHk: all the blocks in a given unit are requested contiguously
and are moved to the spare unit, then the unit with the k dirty slots is erased,
and so on. If the blocks are requested such that the units are emptied cyclically,
we achieve 	 = nHk. On the other hand, an algorithm that always moves all the
blocks in a unit together (and erases an entire unit as soon as one of its slots
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becomes dirty) can achieve at most 	 = nH . Algorithms that behave like this are
essentially single-slot algorithms and the bounds that we presented earlier apply
to them. True fractional algorithms try to achieve endurance close to 	 = nHk.
Clearly, to achieve such endurance, algorithms must avoid greedy movement of
blocks and operate with units that contain some dirty slots.

Achieving high endurance in the fractional case is more difficult than achiev-
ing high endurance in the single-slot case; the two problems are very different.
Consider, for example, a request sequence with random requests. In the single-
slot case, even a naive non-atomic write-in-place deterministic algorithm achieves
high endurance on such a sequence. The whole point of our randomized online
algorithm was to introduce similar randomness into the process of serving an
arbitrary sequence. But in the fractional problem, a random request sequence is
difficult to serve, because it causes slots in many units to become dirty. When
there are no more empty slots, the algorithm must erase some unit. But with
high probability, no unit contains close to k dirty slots. Therefore, the algorithm
will need to erase a unit with a relatively small number of dirty slots, leading to
low endurance.

3.1 An Offline Algorithm for the Fractional Problem

Clearly, 	opt ≤ (nk − m) + nHk. On the other hand, a simple lower bound is
given by the same algorithm that we used in the single-slot unit problem. This
can be done by treating all blocks that are initially in the slots of the same unit
as one big block that moves between units. As seen previously, this algorithm
will achieve 	alg ≥ (H − 1)n.

Obviously, the fractional unit wear leveling problem is only interesting when
there are some spare empty units, since when all the units are full, the problem
is equivalent to the single-slot unit wear leveling problem. First, we describe an
non-atomic algorithm, which for H � 1 achieves

	off(σ) ≥ (1 − o(1))
(

kHn

9

)2/3

= (1 − o(1))

( 1
9k

)2/3

(Hn)1/3 Hn

using a single empty unit. This algorithm is better than the naive algorithm
when k is sufficiently large (specifically, when k ≥ 9

√
Hn). We later describe

two atomic variants, one with the same 	 using k + 2 empty units, and another
which loses a factor of log k but uses only three empty units.

The idea is to split the concerns of the algorithm. We first devise an algorithm
N that attempts to minimize the total wear (the total number of erasures). We
then apply the wear-leveling policy from Section 2.2 to even the wear among the
units.

The algorithm N serves σt as follows. If there is a clean slot, it puts σt in
it. Otherwise, it erases all the units that contain dirty slots, and sorts all the
blocks stored in them in the order of their future arrival time. That is, after
these erasures, there is a unit which is completely clean, and all the other erased
units are completely occupied and sorted.
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For simplicity we assume that initially unit n is the empty unit, and that
whenever erasures are preformed, unit n is always erased and arranged such
that after the arrangement it is the one empty unit (regardless of whether there
are any dirty slots in it). This assures us that unit n is always the empty unit.

Since there are exactly k clean slots, N preforms erasures after each k con-
secutive requests. Thus, we split the executions of N into phases. Each phase
consists of serving k requests and performing subsequent erasures. Phase φ ends
just before serving σφk+1. Let Aφ denote the set of erased units at the end of the
φth phase. Our main objective now is to bound

∑
Aφ. To do this, we define the

following labeling scheme. A block x is associated with a set of labels denoted by
Sx. Initially all these sets are empty. They are updated between phases. After
the φth phase, the only blocks whose sets are updated are the blocks in the units
of Aφ. First, the sets Sσ(φ−1)k+1 , . . . , Sσφk

of the requested blocks becomes empty.
Then, for each of block x within the units of Aφ the label (φ, zx) is added to Sx,
where zx ∈ {1, . . . , k} indicates the unit order of the unit that now contains x
(i.e., if x’s arrival time is the jth shortest one among the blocks in the units of
Aφ, then zx = �j/k�). Observe that a unit that contains blocks with label (φ, z)
is not erased until all the blocks with label (φ, z − 1) are requested. The sets
{Sx} change during the execution; we denote the set Sx before the φth phase
by Sx(φ).

We say that a block x is accessible just before the φth phase begins if, for each
label pair (a, z) ∈ Sx(φ), there is no other set Sy(φ) such that (a, z′) ∈ Sy(φ)
for some z′ < z − 1. A unit i �= n is erasable just before the φth phase if all
the blocks in it at that time are accessible. We denote by Bφ the set of erasable
units before φth phase and define ζφ = |Bφ+1 \ Bφ|.

Lemma 1. Aφ \ {n} ⊆ Bφ.

Lemma 2. |Bφ+1| ≤ |Bφ| − |Aφ| + 3 + ζφ for any φ ≥ 1.

Proof. A unit that is erasable in the φth phase but was not erased (it is not in
Aφ) is surely erasable in the (φ+1)th phase. We now examine the set Aφ. By the
previous lemma, every unit i �= n in Aφ was erasable before just before phase φ.
At the end of the φth phase, the algorithm sorts the blocks in Aφ according to
their next arrival times. Therefore, most of the units in this set are not erasable
in the (φ + 1)th phase: only the two units with the shortest arrival times are.
This adds 2 to the right-hand side of the inequality. Unit n is always erased but
it is not erasable (by definition): this adds 1 to the right-hand side. To bound
|Bφ+1| we only need to add ζφ, the number of units that became erasable during
the φth phase. ��

Lemma 3. Let D1, . . . , DΦ be Φ sets of pairs of integers (a, z), where the first
component in each pair is an integer between 1 and Φ. Suppose that for i �= j,
there is at most one integer a such that (a, z1) ∈ Di and (a, z2) ∈ Dj for some
z1 �= z2 (i.e. a appears as the first component in a pair in Di and in a pair in
Dj). Then

∣∣∣⋃Φ
i=1 Di

∣∣∣ ≤ 3Φ
√

Φ.
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We can now prove a bound on
∑

φ ζφ.

Lemma 4. For any Φ ≥ 1 we have
∑Φ

i=1 ζi ≤ 9Φ
√

Φ .

Proof. We wish to bound the number of events in which a unit changes its state
from non-erasable to erasable. A unit becomes non-erasable when it is erased
and used to store blocks with label (a, z) for some z > 2. (The units that are
used to store blocks with label (a, z) for z = 1, 2 are immediately erasable.) For
such a unit to become erasable again, all the k blocks with labels (a, z −2) must
be requested. Until the label (a, z − 2) disappears, the unit that stores blocks
labeled (a, z) does not become erasable again. Therefore, what we need to count
to bound

∑
ζi is the number of labels that completely disappears.

Only kΦ blocks are requested during the first Φ phases. However, this does not
give a bound of Φ on the number of units that become erasable again during these
Φ phases, because requested blocks with more than one label may contribute to
the erasability of multiple units.

Let Ct = Sσt(�t/k�) be the set of labels that block σt carries at time t. The
number of labels (a, z) that appear exactly k times in the Ct’s is exactly the
number of units that become erasable again. Other labels, the ones that appear
fewer than k times, are irrelevant and we completely ignore them in the rest of
the analysis. Thus, from now on, we assume that each label appears in exactly
k of the Ct’s.

Let D = {D1, . . . , DΦ} be a random sample of the Ct’s, drawn uniformly and
independently (with repetitions). The probability that a particular label appears
in one of the Di’s is exactly 1/Φ, because exactly k of the kΦ sets Ct contain
that label. The probability that a particular label does not appear in any of the
Di’s is, therefore,

(
1 − 1

Φ

)Φ ≤ 1
e < 2

3 . Hence, the probability that the label does
appears in some of the Di’s is bounded from below by a constant. Therefore,
the expected number of labels that appear in ∪iDi is bounded from below by a
1/3 times the number of labels in ∪tCt. This implies that there is some specific
sample D = {D1, . . . , DΦ} in which the number of labels is at least 1/3 fraction
of the labels in the (reduced) Ct’s.

We say that two sets Ct1 and Ct2 are linked by a if (a, z) ∈ Ct1 and (a, z′) ∈ Ct2

for some z′ �= z. We claim that if Ct1 and Ct2 are linked by a, then they cannot be
linked by any other phase-label b �= a. Suppose for contradiction that the claim
is false and that the two sets are also linked by b. Without loss of generality, let
a < b and z′ > z. If time t1 occurs after phase b ends, then (b, ?) �∈ Ct2 , because
until after time t1, the block associated with Ct2 is in a unit in which all the
blocks are labeled by (a, z′). None of these blocks can be requested until after
time t1, so the block associated with Ct2 cannot be labeled with b. On the other
hand, if time t1 occurs before phase b ends, then (b, ?) �∈ Ct1 .

Therefore, the Ct’s satisfy the mutual exclusion assumption of Lemma 3.
This implies that so do the Di’s in the specific set D. Lemma 3 guarantees that∣∣∣⋃Φ

i=1 Di

∣∣∣ ≤ 3Φ
√

Φ. Since
∣∣∣⋃Φ

i=1 Di

∣∣∣ ≥ 1
3

∣∣∣⋃kΦ
i=1 Ci

∣∣∣ we conclude that
∣∣∣⋃kΦ

i=1 Ci

∣∣∣ ≤

9Φ
√

Φ. The lemma follows from the fact that
∑Φ

i=1 ζi =
∣∣∣⋃kΦ

i=1 Ci

∣∣∣. ��
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If the number of units that become erasable is small, the flash endures.

Theorem 8. If H � 1 then for t ≤ (1 − o(1))(kHn/9)2/3 the total number of
erasures under this offline algorithm is

∑n
i=1 hN

i (t) ≤ Hn − n.

Proof. It follows from Lemma 2 (by simple induction, using |B1| ≤ n) that

|BΦ| ≤ n −
Φ−1∑
i=1

|Ai| + 3(Φ − 1) +
Φ∑

i=1

ζi .

From Lemma 1 we know that |BΦ| + 1 ≥ |AΦ|. This implies

Φ∑
i=1

|Ai| ≤ 1 + n + 3(Φ − 1) +
Φ∑

i=1

ζi ≤ 1 + n + 3(Φ − 1) + 9Φ
√

Φ ,

where the last inequality follows from the previous lemma. Since
∑Φ

i=1 |Ai| =∑n
i=1 hN

i (Φk) we get
∑n

i=1 hN
i (Φk) ≤ 1+n+3(Φ−1)+9Φ

√
Φ and conclude that∑n

i=1 hN
i (t) ≤ n + 3(t/k − 1) + 9(t/k)3/2. Thus, for t ≤ (1 − o(1))(kHn/9)2/3 it

holds that
∑n

i=1 hN
i (t) ≤ Hn − n. ��

We now use the algorithm for the single-slot unit wear-leveling problem to create
an algorithm N2 which evens the wear among the units. N2 first simulates N
and generates a new single-slot request sequence η. To avoid confusion, we call
the blocks in η pseudo-blocks. We construct η as follows: whenever N erases unit
i, we add a request for pseudo block i to η (since N may erase many units at
once, we impose an arbitrary order on these erasures). Now N2 runs the offline
algorithm for the single-slot case on η. When the single-slot offline algorithm
switches blocks among two units, N2 switches the corresponding actual units.

Theorem 9. If H � 1 then the wear hN2
i (t) of any unit i at time t = (1 −

o(1))(2kHn/3)2/3 is at most H.

The algorithm N2 is clearly not atomic. We can transform it into an atomic one
in two ways.

Theorem 10. There exist atomic algorithms A1, A2 such that for H � 1 the
wear hA1

i (t1), hA2
i (t2) of any unit i at times t1 = (1 − o(1))(2kHn/3)2/3 and

t2 = Ω
(
(2kHn/3)2/3/ log k

)
is at most H. A1 requires k + 2 empty units and

A2 requires 3 empty units.

The difficult non-atomic part of N is the sorting of the blocks in the dirty units.
A1 uses a straightforward approach that requires k + 1 empty units to preform
this sorting. A2 does it using the merge-sort algorithm, using two extra units to
hold the partial runs of sorted blocks that the algorithm constructs. It is not hard
to see that two extra units are always sufficient, and that the sorting algorithm
performs O(k log k) erasures. The same idea can be used to trade off any number
of extra units for better endurance using multiway merge-sort. Both algorithms
apply the atomic single-slot unit wear leveling algorithm, which requires another
extra unit.
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3.2 The Deterministic Online Fractional Problem

The endurance of any deterministic algorithm for the fractional problem depends
on the number of extra slots, nk − m, just like in the single-slot problem.

Theorem 11. For every deterministic algorithm α (even if α is non-atomic)
there exists a sequence σ such that 	α(σ) ≤ (nk − m + 1)(H + 1). Furthermore,
there exists a deterministic non-atomic algorithm that achieves 	(σ) ≥ (nk−m+
1)(H +1) and an atomic variant that achieves 	(σ) ≥ ((n− 1)k −m+1)(H +1)
using a single empty unit.

3.3 The Randomized Online Fractional Problem

We now present a lower bound for randomized online algorithms for the frac-
tional problem. The main ingredient that we analyze is the number of erasures
preformed by the algorithm. The bound that we prove depends on the number
of empty slots s. In particular, we require that s < nk/2. Otherwise, even a
deterministic algorithm can achieve high endurance.

Theorem 12. For every randomized online algorithm α (even if α is non-
atomic) for the fractional wear leveling problem with s = s(n) empty slots, such
that s � Hn and s < nk/2:

– If s = n1−ε for some constant 0 < ε < 1 then there exists a constant c > 0
and σ such that E [	α(σ)] < cHn.

– If n

polylog(n)
≤ s � n log n then there exists a constant c > 0 and σ such

that
E [	α(σ)] < cHn · log n

log (n log n/s)
.

– If s = Ω(n log n) then there is a constant c > 0 and σ such that E [	α(σ)] <
cHs.

The proof’s idea is to observe a random request sequence and split it into phases
of size 2s. Since there are only s empty slots, the algorithm must clean at least
s slots during each phase. Because the requests are random, during each phase
there is not likely to be a unit with many dirty slots. Thus, the algorithm will
be forced to perform many erasures.

4 Conclusions

Our analysis shows that Ban’s simple randomized algorithm [2] is nearly opti-
mal (both in the competitive sense and in the absolute sense) for the single-slot
wear-leveling problem. The competitive performance of deterministic algorithms
for the same problem is poor, although many flash-based systems do use deter-
ministic algorithms. The effectiveness of deterministic algorithms in practice
is probably due to the fact that request sequences are oblivious to the online
algorithm.
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Our analysis of the fractional wear-leveling problem leads to two conclusions.
First, the fact that offline algorithms outperform online algorithms implies that
in practice, it is advantageous to try to cluster blocks according to the expected
time of their next modification. Second, the analysis justifies the separation of
the erasure-minimization policy from the wear-leveling policy.
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Abstract. We study the problem of contention resolution for different-
sized jobs on a simple channel. When a job makes a run attempt, it
learns only whether the attempt succeeded or failed. We first analyze
binary exponential backoff, and show that it achieves a makespan of
V 2Θ(

√
log n) with high probability, where V is the total work of all n con-

tending jobs. This bound is significantly larger than when jobs are con-
stant sized. A variant of exponential backoff, however, achieves makespan
O(V log V ) with high probability. Finally, we introduce a new protocol,
size-hashed backoff, specifically designed for jobs of multiple sizes that
achieves makespan O(V log3 log V ). The error probability of the first two
bounds is polynomially small in n and the latter is polynomially small
in log V .

1 Introduction

Randomized backoff is a common mechanism for reducing contention on a
shared resource. Processes/jobs make competing attempts to access the resource,
but only one can gain control of the resource at a time. If an access attempt fails
due to contention, then that process waits for a random amount of time before
trying again. On subsequent failed attempts, the waiting time increases, thereby
reducing the probability of a collision and increasing the chance of successful
resource acquisition.

Backoff is used in many contexts, for example, network access (e.g., an
Ethernet bus [1]), wireless communication [2], transactional memory [3], and
speculative-lock elision [4]. In these and other applications of randomized back-
off, the lengths of jobs fluctuate substantially. Most theoretical analyses, however,
assume unit-length jobs. In a transactional shared-memory system, for example,
jobs (transactions) can vary by four to five orders of magnitude [5]. In a wireless
network, jobs (packet transmissions) can vary by over three orders of magni-
tude. The job length is proportional to both transmission length (in bits) and
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the transmission speed; the speed of the transmitters alone varies considerably
(e.g., from roughly 10Kb/s to 10Mb/s).

This paper gives the first theoretical analysis of randomized backoff when jobs
have variable sizes. We analyze a system consisting of jobs 1, . . . , n. Job i has
size ti ≥ 1, which indicates that i must run for ti consecutive units of time in
order to complete. We define the volume of the jobs as V =

∑n
i=1 ti. Each job

knows its own size, but does not know any other job size or the number of other
jobs. For simplicity, we assume that ti is integral and that time is divided into
unit-sized time slots, but our analyses extend to the case of nonintegral sizes.

The jobs are competing for access to a simple channel and have no other
means of communication. Whenever a job of size ti makes a run attempt, it must
execute for the full ti consecutive timeslots. If a job’s run is uncontested, then
the job completes successfully. If multiple jobs make overlapping run attempts,
then all attempts fail and the jobs must retry. A job i learns whether its run
attempt is successful only after the full ti time slots, not instantly when the
collision occurs. A job gains information only by making run attempts—there
is no “listening” on the channel. No other information (e.g., the number of jobs
that made attempts in a time slot) is available to the job. (These assumptions are
roughly the worst case, in terms of information learned when a collision occurs.)

In this paper, we consider the batch problem (also called the control-tower
problem [6] or shopping-cart problem [7,8]), where all jobs arrive at time 0.
We analyze the worst-case makespan of the protocols, which is the maximum
completion time among all the jobs.

This paper discusses windowed backoff protocols in which time is divided
into a sequence of windows 〈W1, W2, W3, . . .〉. A job makes at most one run
attempt in any window. Notice that a job can make a run attempt only if the
window is larger than the job size. Even if a job does fit in a window, it may
choose not to make a run attempt. If the job does choose to execute, it randomly
chooses a position in the window such that there is sufficient time left for the
job to execute fully within the window.

Results

Binary exponential backoff and generalizations. We begin by presenting results
on binary exponential backoff. Since a single large job can slow down many small
jobs, the performance for heterogeneous job sizes is significantly worse than
for unit-sized jobs. We show that it achieves a makespan of V 2Θ(

√
log n) with

error probability polynomially small in n. We next give a variant of exponential
backoff that backs off more slowly and yields a makespan of Θ(V log V ) also
with error probability small in n. A key tool is a tight analysis of “fixed-window
backoff,” where all windows have size Θ(V ). These protocols achieve the specified
makespan with error probability polynomially small in the number of jobs.

Size-hashed backoff. The principle result in this paper is a backoff protocol that
achieves makespan O(V log3 log V ). The main technique is to group jobs by size.
Thus, we “hash” jobs based on their size to specific windows in which they can
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make run attempts. An explicit construction, based on the modulo hash function
results in a makespan of O(V

√
log V log2 log V ). By grouping the job sizes using

specially designed “good” hash functions, we obtain makespan O(V log3 log V ).
We use the probabilistic method to show that such hash functions exist. These
protocols achieve the specified makespans with error probability polynomially
small in log V .

Related Work

The most closely related work is that of Gereb-Graus and Tsantilas [9] (see
also [10]) and Bender et al. [11]. Gereb-Graus and Tsantilas [9] show that for
unit-size jobs in the batch setting, there is a backoff-backon protocol (which is
sometimes called “sawtooth”) that achieves an optimal makespan of O(n); a
similar backoff-backon approach also appears in Greenberg and Leiserson [10]
in the context of routing. Bender et al. [11] analyze fixed backoff, exponen-
tial backoff, polynomial backoff, and optimal monotone backoff in the batch
setting; they analyze exponential backoff in an adversarial queuing-theory set-
ting. For binary exponential backoff (Wi = 2i) with unit-size jobs, they prove
a makespan of Θ(n log n). (With variable-length jobs the situation is quite dif-
ferent; see Theorems 3 and 4.) Batch arrivals have been considered by several
other authors [12, 13, 14, 15] with the goal of routing h-relations, involving mul-
tiple channels.

In the wireless-networking literature, this batch problem is known as the
shopping-cart problem [7, 8] and models a shopping cart full of items with
RFID tags passing through a sensor all at the same time. Currently implemented
protocols are far from achieving the linear makespan described in [9, 10].

2 Traditional Backoff with Variable-Sized Jobs

In this section we analyze classic backoff protocols. We first consider fixed back-
off , where the window size is fixed at Θ(V ). (This models the case where an
estimate of the volume is known in advance.) We then turn to binary expo-
nential backoff , where the window size repeatedly doubles, i.e., Wi+1 = 2Wi.
If a job fits in window, it makes a random run attempt. In both cases the
makespan of these strategies is worse for variable-size jobs than for unit-size
jobs, with binary exponential backoff significantly worse. We end by giving a
faster monotone backoff strategy, whose performance matches fixed backoff to
within constant factors, even when the volume V is not known in advance.

Fixed-Volume Backoff

We first analyze the protocol Fixed-BackoffW , where the volume V of the
jobs is known in advance. Fixed-BackoffW is the windowed protocol in which
Wi = W = Θ(V ), where W is the (unchanging) window size throughout the
protocol. We first show that Fixed-BackoffΘ(V ) has the following lower
bound:
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Theorem 1. Let W = (1 + ε)V for any constant ε ∈ +. There exists n suf-
ficiently large such that the makespan of Fixed-BackoffW is Ω(W log n) with
error probability polynomially small in n.

Proof (sketch). Consider an execution with one large job of size n + 1 and n − 1
small jobs of size 1. As long as a polylogarithmic number of small jobs remain, at
least one small job collides with the large job (w.h.p.); hence the large job does
not complete. As long as the large job remains, only a constant fraction of small
jobs completes (w.h.p.). Applying a Chernoff bound concludes the proof. ��

We now give a matching upper bound for Fixed-BackoffW , when W ≥ 3V .

Theorem 2. Let W = αV , for any α ≥ 3. Then the makespan of Fixed-
BackoffW is O(W log n) with error probability polynomially small in n.

Proof (sketch). In each round, we argue that a constant fraction of the jobs
completes. First, notice that a constant fraction of the jobs are “small,” i.e., less
than twice the average size. Next, notice that a constant fraction of the small
jobs completes: the big jobs can only block 2V of the window; the remaining V
space is sufficient for each small job to complete with constant probability. ��

Notice the difference between fixed backoff in the variable-size and the unit-size
case. If all jobs are unit size, then the makespan is n lg n ± O(n) with high
probability [11]. Moreover, the makespan improves when the window size dips
slightly below the volume V = n, say to W = 3n/ lg lg lg n, at which point
the makespan attains its optimal value of Θ(n log log n/ log log log n) [11]. With
variable-length jobs, the makespan grows arbitrarily large if W = V .

Exponential Backoff

We next analyze binary exponential backoff with variable-size jobs. In binary
exponential backoff, Wi = 2i, for i = 1, 2, . . ., and for any job j in the system, j
must make a run attempt in window Wi, as long as tj ≤ Wi.

Theorem 3. Consider n jobs with total volume V running binary exponential
backoff. The makespan is V 2O(

√
log n) with error probability polynomially small

in n (for sufficiently large n).

Proof (sketch). In each round we divide the jobs into classes of “small” and
“large” jobs. We show that as the window size increases, an increasingly large
fraction of jobs completes (with high probability). Specifically, “small” is defined
to include an increasingly large fraction of all jobs, and an increasingly large
fraction of small jobs complete in each round (with high probability). Within
O(

√
log n) rounds after the window size is W , there are only O(log n) jobs re-

maining. Another argument shows that these O(log n) stragglers complete in the
next O(

√
log n) rounds, with high probability. ��

We now give a lower bound on the performance of binary exponential backoff.
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Theorem 4. There exists an instance of (c + 3)m lnm + 1 jobs for which the
makespan of exponential backoff is Ω(V 2

√
lg V /2) rounds with probability (1 −

1/mc), for any c > 1.

Proof (sketch). Consider an instance with one large job of size m and (c +
3)m lnm small jobs of size 1, resulting in a total volume of V = (c+3)m lnm+m.
There are two regimes, which we analyze separately. While Wi < m, the small-
window regime, only small jobs attempt to execute. When Wi ≥ m, the large-
window regime, the large job also attempts to execute. No job completes in the
small-window regime (w.h.p.) since the small jobs collide with each other. For
the first Ω(

√
log m) windows of the large-window regime, there exists some small

job that collides with the large job in each window (w.h.p.), since the large job
blocks a geometrically decreasing fraction of the window. ��

Optimized Exponential Backoff

We develop a variant of exponential backoff that achieves better performance by
backing off more slowly, nearly matching the performance of fixed backoff.

The idea is to double window sizes (as in exponential backoff) but only after
repeating a window of size W Θ(log W ) times, allowing all jobs to complete
when W is an accurate guess of V . Thus, we effectively back off by a factor of
only 1 + O(1/ log V ) (rather than 2 as with binary exponential backoff). This
algorithm matches the asymptotic performance of Fixed-BackoffΘ(V ):

Theorem 5. There exists a parameter choice for exponential backoff achieving
makespan O(V log V ) with high probability, i.e., error probability polynomially
small in n. ��

3 Size-Hashed Backoff

This section describes more efficient backoff protocols that improve on the tradi-
tional ones analyzed in Section 2. The main difficulty in dealing with different-
sized jobs is that larger jobs are not likely to succeed until enough of the smaller
jobs complete. This fact is exploited in Theorem 1’s proof, where just one large
job interferes with all the other jobs. The approach in this section groups jobs
by size so that jobs with different sizes cannot interfere with each other for too
long. In particular, we divide jobs into �lg V � job classes based on size. Jobs
of size ti belong to the (�lg ti� + 1)th job class.

We first review a “backon” protocol for constant-sized jobs, which forms a sub-
component of our new strategy. We then overview the general strategy for size-
hashed backoff. Next, we discuss the mapping “hash” functions (for which the
protocol is named). We present the detailed protocol and two specific mapping
functions resulting in specific instantiations of size-hashed backoff. Applying our
first mapping yields a protocol with makespan O(V

√
log V log2 log V ). We then

show the existence of a mapping that achieves O(V log3 log V ) makespan. Both
of these versions achieve the specified makespan with probability 1 − 1/ logc V
for any constant c > 1 with a linear dependence on c in the makespan.
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Backon Protocol for Constant-Sized Jobs

A key component of our strategy is the Descend “backon” subprotocol. The
protocol (i.e., the participating jobs) takes three parameters: (1) jclass , the job
class, (2) W , the window size, and (3) r, a number of repetitions. It guarantees
that if m processes in the same job class, having total volume V ′, V ′ < W , all
start Descend at the same time, then within O(rW ) time all the jobs finish
with probability 1 − 1/2r. The main idea is that once the window has size 3V ′,
then a constant fraction of the jobs should complete. At this point, the protocol
can “back on,” using a window that is a constant fraction smaller. The process
continues shrinking the window size until it has decreased to W/ lg W . After
that point, we repeat the W/ lg W -sized window approximately lg W times. In
order to achieve the desired probability, this entire process is repeated r times.

Since a close variant of Descend has been previously analyzed by Gereb-
Graus and Tsantilas [9], we omit the proof here. (It also follows from Lemma 3.)

Overview of Size-Hashed Backoff

As in exponential backoff, size-hashed backoff proceeds by repeated doubling on
the estimated volume. We refer to each iteration as a round . The algorithm com-
pletes in (or before) the first round in which the estimated volume is sufficiently
large (V ′ > V ). Each round of the protocol proceeds in phases. When the esti-
mated volume is sufficiently large, in each phase the number of nonempty job
classes—those with jobs remaining—is reduced by a constant fraction.

In the first phase, each job class runs separately. That is, we take a time
interval of size Θ(rV ), where r = Θ(log log V ) is a number of repetitions for the
Descend protocol, and divide it into lg V size-Θ(rV/ log V ) “buckets,” one for
each job class. Specifically, bucket i is designated for the jobs in job class i (i.e.,
those jobs j with size 2i−2 < tj ≤ 2i−1). During the ith bucket, each job in the
ith job class runs the Descend subprotocol for time Θ(rV/ log V ). If the volume
in the job class is small enough—specifically, O(V/ log V )—then that job class
completes, i.e., becomes empty. Since the volume is distributed among various
job classes, a constant fraction of the job classes have small enough volume to
complete. In particular, a simple counting argument shows that at least 1/2
of the lg V job classes have volume at most 2V/ lg V . We conclude that after
O(rV ) = O(V log log V ) time, at least half the job classes are empty.

It would be ideal if, during a second phase, we could allocate buckets for
only the nonempty job classes. Since at least half the job classes are empty,
we can, in principle, allocate half as many buckets of twice the size and run
Descend for each bucket. Once again, at least half of the job classes have a
small enough volume to complete. After lg lg V phases following this process,
there is a single nonempty job class in a Θ(rV )-size bucket, and hence this
last job class completes. Since each of the phases takes time Θ(V log log V ), the
resulting makespan is O(V log2 log V ).

The problem with this approach is that jobs have no a priori knowledge as to
which job classes become empty during a given phase, and they cannot observe
this information. Surprisingly, we can still resurrect the spirit of this idea.
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To generalize, we create a mapping from lg V job classes to a set of buckets
smaller than lg V . Given any small set of nonempty job classes, the mapping
has the property that a constant fraction are assigned to their own bucket,1 thus
allowing them to complete using Descend. To ensure this property, we use extra
buckets, resulting in a makespan of O(V log3 log V ) for our fastest protocol.

Mapping Job Classes to Buckets

We define the mapping problem more formally. We are given η objects X =
{x1, x2, . . . , xη} and some integer m < η. Consider a mapping Fm,η : X → ℘(B)
of objects to subsets of buckets B = {B1, B2, . . .}. For example, Fm,η(x1) =
{B1, B7, B10} indicates that object x1 maps to buckets B1, B7, and B10.

A mapping is an α-good mapping , with 0 < α ≤ 1, if for all size-m sub-
sets Y = {y1, y2, . . . , ym} ⊆ X , there exists a size-�αm� subset of Y in which
each object is assigned its own bucket. More formally, ∃Z ⊆ Y where |Z| =
αm and ∀z ∈ Z, ∃b ∈ Fm,η(z) s.t. b �∈

⋃
y∈Y \z Fm,η(y).

This “good mapping” property is exactly what we need for size-hashed backoff.
In the backoff setting, η = �lg V � is the number of job classes. In any phase, we
maintain an estimate of the number m of nonempty job classes; we do not,
however, know which classes are nonempty. We want at least a constant fraction
of them to end up assigned to their own buckets. We can then ensure that a
constant fraction of job classes complete. For example, if a phase has buckets
of size 2rV/m (i.e., at most m/2 job classes are “too big” to complete) and the
mapping is a 3/4-good mapping, then at least m/4 of the nonempty job classes
must be small enough to complete in a bucket and be mapped to a unique
bucket.

Our size-hashed backoff algorithm considers good mappings of a simplified
form, making the functions easier to think about. Rather than having arbitrary
functions from objects to bucket sets, we split the buckets into “collections”
of consecutive buckets. Each object is mapped to exactly one bucket in each
collection. We construct our mapping Fm,η as a sequence of functions Fm,η ={
fm,η,1, fm,η,2, . . . , fm,η,sm,η

}
such that fm,η,i : X → B maps an object to a

single bucket in the ith collection. We define sm,η = |Fm,η| to be the size of the
set of functions in our mapping Fm,η. Adding more functions to Fm,η increases
the chance of achieving α-goodness. We define rm,η,i to be the range of, or the
number of buckets used by, the function fm,η,i.

Size-Hashed Protocol

We now give the protocol for size-hashed backoff in more detail, assuming an α-
good mapping Fm,η = {fm,η,i}. (Pseudocode for the size-hashed protocol is given
below.) We argue that all jobs eventually make successful run attempts with
probability at least 1 − 1/ lgc V for any constant c > 1. The makespan, however,

1 This property is similar to the collision property of a hash function. It also appears
to have close connections to expanders, specifically lossless, bipartite expanders.
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Size-Hashed-Backoff(ti) � ti is the job size of process i.
1 V ′ ← 1
2 jclass ← �lg ti�+ 1
3 repeat � Each iteration is a round.
4 V ′ ← 2V ′

5 η ← lg V ′

6 m← η � m bounds the number of nonempty job classes.
7 repeat � Each iteration is a phase.
8 wsize ← c1V

′/m � Window size for Descend.
9 bsize ← c3 wsize lg lg V ′ � Bucket for Descend iteration.

� sm,η is the number of functions in the mapping.
� Iterate over subphases/functions.

10 for i← 1 to sm,η

11 do � rm,η,i is the number of buckets used by fm,η,i.
� Iterate over buckets.

12 for bucket← 1 to rm,η,i

13 do if fm,η,i(jclass) = bucket
14 then Descend(jclass ,wsize, c3 lg lg V ′)
15 else Wait bsize time.
16 m← 
m/c2�
17 until m = 0 � End loop over phases.
18 until job i executes � Ends the loop over rounds.

depends on the size and range of the mapping, so we defer that discussion to the
particular variants later in the section.

Recall that size-hashed backoff executes in rounds (lines 3–18), and we repeat-
edly double the estimated volume in each round (line 4). Each round is divided
into phases (lines 7–17), and in each phase we expect a constant fraction of the
job classes to complete using the α-good mapping Fm,η. Each phase is subdi-
vided into subphases (lines 10–15) which correspond to each function fm,η,i in
the mapping Fm,η, so each job class maps to exactly one bucket in each sub-
phase. The α-goodness property guarantees that at least αm of the m nonempty
job classes are assigned to unique buckets. The buckets use the geometrically-
decreasing Descend protocol to ensure that jobs complete when (1) the buckets
are large enough, and (2) Fm,η assigns a unique bucket (line 14).

Consider the ith phase, during which there should be (at most) m nonempty
job classes remaining. During this phase, the protocol creates sm,η subphases,
where subphase j uses rm,η,j buckets of size bsize = Θ(rV/m) (lines 8–9). Thus,
the total length of the ith phase is

∑sm,η

j=1 rm,η,jΘ(rV/m). To understand what
these numbers mean, consider the “ideal” mapping in which each job knows
exactly which job classes are empty; in this case sm,η = 1 and rm,η,1 = m,
giving a total phase length of Θ(rV ) = Θ(V log log V ).

The following theorem states that Size-Hashed-Backoff completes all the
jobs in lg V +O(1) rounds (i.e., when the window size is Θ(V )). We later analyze
the length of each round—and hence the makespan—in the context of the specific
family of mappings F , which determines the number of buckets.
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Theorem 6. Suppose n jobs with volume V execute Size-Hashed-Backoff,
beginning at the same time. Suppose also that F is an α-good mapping for some
constant α. If we set c1 = 2/α, c2 = 2/(2 − α), and c3 = c + 2, where c1, c2, c3
are the constants from the pseudocode, then all n jobs complete before the (lg V +
O(1))th round with probability at least 1 − 1/ lgc V , for any c ≥ 1.

Proof (sketch). We show the following invariant holds with sufficient probability:
if V ′ > V , then m is an upper bound on the number of nonempty job classes.
Initially, there are ≤ m = η = lg V ′ job classes. We proceed by induction. Since
the total volume of jobs is O(V ′), there can be at most �m/c1� job classes with
volume > Θ(c1V

′/m). Since F is α-good, at most m − �αm� of the nonempty
job classes do not map to their own bucket. Thus, there are at most m−�αm�+
�m/c1� ≤ �m/c2� job classes that are too large or collide. These job classes do not
(necessarily) complete during the phase. Any other job class completes during
the Descend protocol: each job class completes with probability 1−1/ lgc3 V ′ >
1−1/ lgc3 V . Taking a union bound across all �lg V � job classes and Θ(log log V )
phases maintains the invariant with probability at least 1 − 1/ lgc3−2 V . ��

We now provide two α-good mappings, and analyze the resulting performance.

Analysis of a 1-Good Mapping

In this section we present a 1-good mapping based on a simple modulo function,
which results in a makespan of Θ(V

√
log V log2 log V ).

Let gm,η,i be the identity function: gm,η,i(xj) = j. (That is, the jth object
maps to bucket j.) Recall that each function gm,η,i maps objects to exactly
one bucket in collection i. Notice that each collection contains η buckets. Let
fm,η,i(xj) = j (mod i). Notice that the ith collection contains i buckets. We
define a 1-good mapping, parameterized by a variable t (defined later), as follows:

Fm,η =
{

{gm,η,1} : if m > η/t{
fm,η,1, fm,η,2, . . . , fm,η,Θ(m log η)

}
: if m ≤ η/t .

Lemma 1. The functions Fm,η are a 1-good mapping.

Proof (sketch). Notice that if m > η/t, F is the identity mapping, which is
1-good. Assume m ≤ η/t. Consider any two objects xj �= xk ∈ X . Con-
sider C prime numbers p1, p2, . . . , pC , each of which is ≥ m lg η, and suppose
by contradiction they collide everywhere, i.e., fm,η,p�

(xj) = fm,η,p�
(xk) for all

	 ∈ 1, 2, . . . , C. Then the difference between j and k must be divisble by each of
these prime numbers, and hence at least (m lg η)C . Choose C > lg η/ lg(m lg η),
implying (m lg η)C > η. This is a contradiction, since |j − k| can be at most η.
Thus, xj and xk can collide in at most C − 1 of the functions {fm,η,p�

}.
Recall that there are Θ(m log η) functions fm,η,i. Thus for a sufficiently large

constant in the Θ notation, there are at least mC = m lg η/ lg(m lg η) functions
fm,η,i in which i is prime and i ≥ m lg η. For a given set Y of size ≤ m and a
given object xj ∈ Y , there must be one of the mC functions in which xj does
not collide with any of the ≤ m objects in Y , implying that F is 1-good. ��
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We now calculate the running times of each round:

Lemma 2. The running time for a single round of size-hashed backoff, with
1-good mapping F is O(V ′√log V ′ log2 log V ′).

Proof (sketch). First, consider a phase in which the number of job classes m >
η/t. Recall that in this case, the number of collections sm,η = 1 and the number
of buckets in a collection rm,η,1 = η. Thus, the running time of the phase is
rm,η,1 bsize = Θ(ηV ′ log log V ′/m) (lines 8–9). Since m decreases geometrically
(by c2 in each phase), the sum of running times of all phases with m > η/t can
be bounded by the phase with minimum m, which is thus O(tV ′ log log V ′).

Consider a phase where m ≤ η/t. Then the number of collections sm,η =
Θ(m log η) and the number of buckets per collection rm,η,i = i. Thus, a phase
completes in bsize

∑sm,η

i=1 rm,η = bsize O(m2 log2 η) time. Substituting for bsize
and η, we have O(V ′ log log V ′m2 log2 η/m) = O(mV ′ log3 log V ′). Since m de-
creases geometrically, the sum of running times of all phases with m ≤ η/t can
be bounded by the phase with maximum m, which is thus O(V ′ log V ′ log3 V ′/t).

Thus the total duration of a round is Θ(tV ′ log log V ′ + V ′ log V ′ log3 V ′/t).
Setting t =

√
log V ′ log log V ′ yields a time of Θ(V ′√log V ′ log2 log V ′). ��

Theorem 6 shows that size-hashed backoff, when using this 1-good function,
terminates of lg V + O(1) rounds. Together with Lemma 2, we can conclude:

Corollary 1. Assume that n jobs with volume V begin executing size-hashed
backoff with 1-good mapping F at the same time. Then all n jobs make a suc-
cessful run attempt in time O(V

√
log V log2 log V ) with probability at least 1 −

1/ lgc V , for any c ≥ 1 and sufficiently large V . ��

Analysis of a 1/2-Good Mapping

Our final version of size-hashed backoff achieves a makespan of O(V log3 log V ).
This algorithm relies on a more efficient α-good mapping, which we show exists
using the probabilistic method. The goal of this section is to prove the existence
of a 1/2-good mapping where sm,η = Θ(log log V ) and rm,η,i = Θ(m). This
results, as corollary of Theorem 6, in a makespan of O(V log3 log V ).

Notice that there are three log log V factors in the makespan. Two of these
come from the general structure of size-hashed backoff: there are Θ(log log V )
phases reducing the number of nonempty job classes, and Descend runs for
Θ(log log V ) windows. The third log log V factor arises from the number of func-
tions (sm,η). We first present a preliminary “balls and bins” lemma:

Lemma 3. Assume you have m balls thrown uniformly at random into cm bins,
c > 15. Then for some 0 < δ < 1, the probability that fewer than m/2 bins have
exactly one ball is ≤ δcm. ��

We can now show that there exist appropriate 1/2-good functions:

Theorem 7. There exists a set of 1/2-good functions Fm,η = {fm,η,i} where
the range rm,η,i = Θ(m) and the number of subphases sm,η = Θ(lg η).
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Proof (sketch). We show the existence of the functions {fm,η,i} using the prob-
abilistic method. For each η and m ≤ η, for each i ∈ [1, sm,η], choose fm,η,i at
random: choose fm,η,i(j), j ≤ η, uniformly at random from the range [1, rm,η,i].
We show that with probability > 0, the resulting family of functions is 1/2-good.

First, we calculate for a fixed set Y of size at most m and a fixed i ∈
[1 . . . sm,η], the probability that fm,η,i is 1/2-good. We consider each of the
m values fm,η,i(j), j ∈ Y , as a ball that is thrown uniformly at random into
rm,η,i = Θ(m) bins. By Lemma 3, we know that for some δ < 1, the probability
that fewer than 1/2 the “balls” are in their own bin is ≤ δΘ(n). That is, the
probability that |{j ∈ Y | ∃k ∈ Y, fm,η,i(j) = fm,η,i(k)}| > |Y |/2 is ≤ δΘ(m).

Therefore the probability that for all i ∈ [1, sm,η] 1/2-goodness is violated is
≤ δΘ(m)sm,η ≤ δΘ(m lg η), since each function i is selected independently.

Finally, we compute the number of possible sets Y of size m. In particular,
there are

(
m+η

m

)
≤

(2η
m

)
ways to distribute m possible jobs over η job classes.

This reduces to:
(2η

m

)
≤

( 2eη
m

)m ≤ em2m lg η . We apply a union bound over the
possible sets Y : Pr[Fm,η is not 1/2-good] ≤ δΘ(m lg η)em2m lg η < 1. We conclude
that with probability > 0, the randomly chosen Fm,η is 1/2-good. ��

We now conclude by calculating the makespan as a corollary of Theorem 6:

Corollary 2. Assume that n jobs with volume V begin executing size-hashed
backoff at the same time. Suppose also that we use a 1/2-good mapping F with
sizes sm,η = Θ(log η) and ranges rm,η,i = Θ(m). Then all n jobs make successful
run attempts in time O(V log3 log V ) with probability at least 1−1/ lgc V for any
constant c ≥ 1 and sufficiently large V .

Proof (sketch). By Theorem 6, all jobs complete by round lg V + O(1) with
appropriate probability. Each phase in the round takes time bsize

∑sm,η

i=1 rm,η,i =
bsize Θ(m log η). Substituting for bsize and η yields phase length Θ(V log2 log V ).
Summing over Θ(log log V ) phases completes the proof. ��

4 Conclusion

In this paper, we study randomized backoff protocols when jobs differ in size. We
analyze binary exponential backoff and show that it performs poorly, yielding
makespan V 2Θ(

√
log n). A slower rate of backoff achieves makespan Θ(V log V ).

Our main results are size-hashed backoff protocols, where the backoff strategy
depends on the job lengths; we reduce the makespan to only O(V log3 log V ).

These results raise many questions. First, what are the lower bounds? Is a
linear makespan possible? Next, on a simple channel jobs learn about contention
only by making run attempts; what if jobs can listen on the channel without
running? Also, a job i learns that a run attempt has failed only after the full ti
time steps. What if jobs learn of failure as soon as a collision occurs, enabling
them to abort early? Can exponential backoff and its variants perform better?

This paper considers the batch problem, where jobs arrive at time 0. Ulti-
mately we hope to understand the online problem, where jobs arrive over time.
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What can be proved for queuing-theory arrivals? Are there reasonable worst-case
models, similar to those in [11], that apply to backoff with different-size jobs?

Acknowledgments. We would like to thank Martin Farach-Colton, Bradley C.
Kuszmaul, and Jelani Nelson for helpful conversations and feedback.
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Deciding Relaxed Two-Colorability—A
Hardness Jump�
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Abstract. A coloring is proper if each color class induces connected
components of order one (where the order of a graph is its number of
vertices). Here we study relaxations of proper two-colorings, such that
the order of the induced monochromatic components in one (or both) of
the color classes is bounded by a constant. In a (C1, C2)-relaxed coloring
of a graph G every monochromatic component induced by vertices of
the first (second) color is of order at most C1 (C2, resp.). We are mostly
concerned with (1, C)-relaxed colorings, in other words when/how is it
possible to break up a graph into small components with the removal of
an independent set.

We prove that every graph of maximum degree at most three can be
(1, 22)-relaxed colored and we give a quasilinear algorithm which con-
structs such a coloring. We also show that a similar statement cannot
be true for graphs of maximum degree at most 4 in a very strong sense:
we construct 4-regular graphs such that the removal of any independent
set leaves a connected component whose order is linear in the number of
vertices.

Furthermore we investigate the complexity of the decision problem
(Δ, C)-AsymRelCol: Given a graph of maximum degree at most Δ, is
there a (1, C)-relaxed coloring of G? We find a remarkable hardness jump
in the behavior of this problem. We note that there is not even an obvious
monotonicity in the hardness of the problem as C grows, i.e. the hardness
for component order C + 1 does not imply directly the hardness for C.
In fact for C = 1 the problem is obviously polynomial-time decidable,
while it is shown that it is NP-hard for C = 2 and Δ ≥ 3.

For arbitrary Δ ≥ 2 we still establish the monotonicity of hardness of
(Δ, C)-AsymRelCol on the interval 2 ≤ C ≤ ∞ in the following strong
sense. There exists a critical component order f(Δ) ∈ N∪{∞} such that
the problem of deciding (1, C)-relaxed colorability of graphs of maximum
degree at most Δ is NP-complete for every 2 ≤ C < f(Δ), while deciding
(1, f(Δ))-colorability is trivial: every graph of maximum degree Δ is
(1, f(Δ))-colorable. For Δ = 3 the existence of this threshold is shown
despite the fact that we do not know its precise value, only 6 ≤ f(3) ≤ 22.
For any Δ ≥ 4, (Δ, C)-AsymRelCol is NP-complete for arbitrary C ≥ 2,
so f(Δ) =∞.

We also study the symmetric version of the relaxed coloring problem,
and make the first steps towards establishing a similar hardness jump.
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1 Introduction

A function from the vertex set of a graph to a k-element set is called a k-coloring.
The values of the function are referred to as colors. A coloring is called proper if
the value of the function differs on any pair of adjacent vertices. Proper coloring
and the chromatic number of graphs (the smallest number of colors which allow
a proper coloring) are among the most important concepts of graph theory. Nu-
merous problems of pure mathematics and theoretical computer science require
the study of proper colorings and even more real-life problems require the cal-
culation or at least an estimation of the chromatic number. Nevertheless, there
is the discouraging fact that the calculation of the chromatic number of a graph
or the task of finding an optimal proper coloring are both intractable problems,
even fast approximation is probably not possible. This is one of our motivations
to study relaxations of proper coloring, because in some theoretical or practical
situations a small deviation from proper is still acceptable, while the problem
could become tractable. Another reason for the introduction of relaxed colorings
is that in certain problems the use of the full strength of proper coloring is an
“overkill”. Often a weaker concept suffices and provides better overall results.

In this paper we study various relaxations of proper coloring, which allow the
presence of some small level of conflicts in the color assignment. Namely, we will
allow vertices of one or more color classes to participate in one conflict or, more
generally, let each conflicting connected component have at most C vertices,
where C is a fixed integer, not depending on the order of the graph. Most of our
results deal with the case of relaxed two-colorings.

To formalize our problem precisely we say that a two-coloring of a graph is
(C1, C2)-relaxed if every monochromatic component induced by the vertices of
the first color is of order at most C1, while every monochromatic component
induced by the vertices of the second color is of order at most C2. Note that
(1, 1)-relaxed coloring corresponds to proper two-coloring.

In the present paper we deal with the two most natural cases of relaxed two-
colorings. We say symmetric relaxed coloring when C1 = C2 and asymmetric
relaxed coloring when C1 = 1. Symmetric relaxed colorings were first stud-
ied by Alon, Ding, Oporowski and Vertigan [1] and implicitly, even earlier, by
Thomassen [18] who resolved the problem for the line graph of 3-regular graphs
initiated by Akiyama and Chvátal [2]. Asymmetric relaxed colorings were intro-
duced in [5].

Related relaxations of proper colorings. There are several other types of coloring
concepts related to our relaxation of proper coloring.

In a series of papers Škrekovski [17], Havet and Sereni [8], and Havet, Kang,
and Sereni [9] investigated the concept of improper colorings over various families
of graphs. A coloring is called (k, l)-improper if none of the at most k colors
induces a monochromatic component containing vertices of degree larger than l.
Hence in an improper coloring the amount of error is measured in terms of the
maximum degree of monochromatic components rather than in terms of their
order.
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Linial and Saks [15] studied low diameter graph decompositions, where the
quality of the coloring is measured by the diameter of the monochromatic com-
ponents. Their goal was to color graphs with as few colors as possible such that
each monochromatic connected component has a small diameter.

Haxell, Pikhurko and Thomason [11] study the fragmentability of graphs in-
troduced by Edwards and Farr [7], in particular for bounded degree graphs. A
graph is called (α, f)-fragmentable if one can remove α fraction of the vertices
and end up with components of order at most f . For comparison, in a (1, C)-
relaxed coloring one must remove an independent set and end up with small
components.

The problems. We study relaxed colorings from two points of view, extremal
graph theory and complexity theory, and find that these points eventually meet
for asymmetric relaxed colorings. We also make the first steps for a similar
connection in the symmetric case. To demonstrate our problems, in the next
few paragraphs we restrict our attention to asymmetric relaxed colorings; the
corresponding questions are asked and partially answered for symmetric relaxed
colorings, but there our knowledge is much less satisfactory.
On the one hand there is the purely graph theoretic question:

For a given maximum degree Δ what is the smallest component order
f(Δ) ∈ N∪{∞} such that every graph of maximum degree Δ is (1, f(Δ))-
relaxed colorable?

On the other hand, for fixed Δ and C one can study the computational com-
plexity question:

What’s the complexity of the decision problem: Given a graph of maxi-
mum degree Δ, is there a (1, C)-relaxed coloring?

Obviously, for the critical component order f(Δ) which answers the extremal
graph theory question, the answer is trivial for the complexity question: every
instance is a YES-instance. Note also, that for C = 1 the complexity question
is polynomial-time solvable, as it is equivalent to testing whether a graph is
bipartite.

In this paper we investigate the complexity question in the range between 1
and the critical component order f(Δ). We establish the monotonicity of the
hardness of the problem in the interval C ≥ 2 and prove a very sharp “hardness
jump”. By this we mean that the problem is NP-hard for every component order
2 ≤ C < f(Δ), while, of course, the problem becomes trivial (i.e. all instances
are “YES”-instances) for component order f(Δ). It is maybe worthwhile to note
that at the moment we do not see any a priori reason why the hardness of
the decision problem should even be monotone in the component order C, i.e.
why the hardness of the problem for component order C + 1 should imply the
hardness for component order C. In fact the problem is obviously polynomial-
time decidable for C = 1, while for C = 2 we show NP-completeness.

The other main contribution of the paper concerns the extremal graph theory
question and obtains significant improvements over previously known bounds
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and algorithms. This result becomes particularly important in light of our NP-
hardness results, as the exact determination of the place of the jump from NP-
hard to trivial gets within reach.

To formalize our theorems we need further definitions. Let us denote by
(Δ, C)-AsymRelCol the decision problem whether a given graph G of maximum
degree at most Δ allows a (1, C)-relaxed coloring. Analogously, let us denote
by (Δ, C)-SymRelCol the decision problem whether a given graph G of maxi-
mum degree at most Δ allows a (C, C)-relaxed coloring. Note here that both
(Δ, 1)-AsymRelCol and (Δ, 1)-SymRelCol is simply testing whether a graph of
maximum degree Δ is bipartite.

The asymmetric problem. For Δ = 2 already (2, 2)-AsymRelCol is trivial. For
Δ = 3, it was shown in [5] that every cubic graph admits a (1, 189)-relaxed color-
ing, making (3, 189)-AsymRelCol trivial. In the proof the vertex set of the graph
was partitioned into a triangle-free and a triangle-full part, then the parts were
colored separately, finally the two colorings were assembled amid some technical
difficulties. In our first main theorem we greatly improve on this result by using
a different approach, which avoids the separation. Our method also implies a
quasilinear time algorithm (as opposed to the Θ(n7) algorithm implicitly con-
tained in [5]). One still has to deal with the inconveniences of triangles, but the
obtained component order is much smaller.

Theorem 1. Any graph G with Δ(G) ≤ 3 is (1, 22)-relaxed colorable, i.e.

f(3) ≤ 22.

Moreover there is an O(n log4 n) algorithm which finds such a 22-relaxed coloring.

A lower bound of 6 on f(3) was established in [5].
In our next theorem we show that (3, C)-AsymRelCol exhibits the promised

hardness jump.

Theorem 2. For the integer f(3) we have that
(i) (3, C)-AsymRelCol is NP-complete for every 2 ≤ C < f(3);
(ii) any graph G of maximum degree at most 3 is (1, f(3))-relaxed colorable.

In [5] it was shown that for any Δ ≥ 4 and positive C, (Δ, C)-AsymRelCol
never becomes “trivial”, i.e. for every finite C there is a “NO” instance, so
f(4) = ∞. We show here however that the monotonicity of the hardness of
(4, C)-AsymRelCol still exists for C ≥ 2.

Theorem 3. (4, C)-AsymRelCol is NP-complete for every 2 ≤ C < f(4) = ∞.

Obviously, this implies that (Δ, C)-AsymRelCol is NP-complete for every Δ > 4
and 2 ≤ C < f(Δ) = ∞.

Remark. Let f(Δ, n) be the smallest integer f such that every n-vertex graph of
maximum degree Δ is (1, f)-relaxed colorable. Then f(Δ) = sup f(Δ, n). While
f(3) is finite, our graph Gk on Figure 2 provides a simple example for f(4) being
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non-finite in a strong sense: in any asymmetric relaxed coloring of Gk there is
a monochromatic component whose order is linear in the number of vertices.
This is in sharp contrast with the examples of [1, 5] where the monochromatic
component order is only logarithmic in the number of vertices. It would be in-
teresting to determine the exact asymptotics of the function f(4, n); we only
know of the trivial upper bound f(4, n) ≤ 3

4n and the lower bound f(4, n) ≥ 2
3n

because of Gk.

Combining arguments of [5] and the present paper we are able to prove a tight
upper bound on the component order for graphs of maximum degree 3 in which
every vertex is contained in a triangle.

Theorem 4. Let G be a graph of maximum degree 3, in which every vertex is
contained in a triangle. Then G has a (1, 6)-relaxed coloring.

The proof of this theorem will appear in the full version of the paper [4]. An
example in [5] shows that the component order 6 is best possible. We note that
a 6-relaxed coloring of triangle-free graphs was already proved in [5].

The symmetric problem. Investigations about relaxed vertex colorings were orig-
inally initiated for the symmetric case by Alon, Ding, Oporowski and Vertigan
[1]. They showed that any graph of maximum degree 4 has a two-coloring such
that each monochromatic component is of order at most 57. This was improved
by Haxell, Szabó and Tardos [10], who showed that a two-coloring is possible even
with monochromatic component order of 6, and such a (6, 6)-relaxed coloring can
be constructed in polynomial time (the algorithm of [1] is not obviously polyno-
mial). In [10] it is also proved that the family of graphs of maximum degree 5
is (17617, 17617)-relaxed colorable. This coloring is using the Local Lemma and
it is not known whether there is a constant C and a polynomial-time algorithm
which constructs a (C, C)-relaxed coloring of graphs of maximum degree 5. Alon
et al. [1] showed that a similar statement cannot be true for the family of graphs
of maximum degree 6, as for every constant C there exists a 6-regular graph GC

such that in any two-coloring of V (GC) there is a monochromatic component of
order larger than C.

For the problem (Δ, C)-SymRelCol we make progress in the direction of estab-
lishing a sudden jump in hardness. By taking a max-cut one can easily see that
(3, C)-SymRelCol is trivial already for C = 2, so the first interesting maximum
degree is Δ = 4. From the result of [10] mentioned earlier it follows that (4, 6)-
SymRelCol is trivial. Here we show that (4, C)-SymRelCol is NP-complete for
C = 2 and C = 3. We do not know about the hardness of the problem for C = 4
and C = 5. Again, we do not know any direct reason for the monotonicity of the
problem. I.e., at the moment it is in principle possible that (4, 4)-SymRelCol is
in P while (4, 5)-SymRelCol is again NP-complete.

Theorem 5. The problems (4, 2)-SymRelCol and (4, 3)-SymRelCol are
NP-complete.

The proof of the theorem appears in the full version of the paper [4].
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Related work. Similar hardness jumps of the k-SAT problem with limited oc-
currences of each variable were shown by Tovey [19] for k = 3 and Kratochv́ıl,
Savický and Tuza [14] for arbitrary k. Let k, s be positive integers. A Boolean
formula in conjunctive normal form is called a (k, s)-formula if every clause con-
tains exactly k distinct variables and every variable occurs in at most s clauses.
Tovey showed that every (3, 3)-formula is satisfiable while the satisfiability prob-
lem restricted to (3, 4)-formulas is NP-complete. Kratochv́ıl, Savický and Tuza
[14] generalized this by establishing the existence of a function f(k), such that
every (k, f(k))-formula is satisfiable while the satisfiability problem restricted to
(k, f(k) + 1)-CNF formulas is NP-complete. By a standard application of the
Local Lemma they obtained f(k) ≥

⌊
2k

ek

⌋
. After some development [14, 16] the

most recent upper estimate on f(k) is only a log-factor away from the lower
bound and is due to Hoory and Szeider [12]. Recently new bounds were also
obtained on small values of the function f(k) [13]. Observe that the monotonic-
ity of the hardness of the satisfiability problem for (k, s)-formulas is given by
definition.

Notation. The order of a graph G is defined to be the number of vertices of G.
Similarly, the order of a connected component C of G is the number of vertices
contained in C. A graph G is r-regular if all its vertices have degree r. A graph
G is called k-edge-connected if there is no edge-cut (a subset of the edges of G
that disconnects G) of size at most k − 1.

The subgraph of a graph G induced by a vertex set U ⊆ V (G) is denoted
throughout by G[U ]. Connected components in an induced subgraph G[U ] are
called U -components and neighbors of a vertex v ∈ V (G) in the induced sub-
graph G[U ] are called U -neighbors.

2 Trivial (3, C)-AsymRelCol – Bounding f(3)

Proof (of Theorem 1.). In this section and the next one we simplify our notation
by saying C-relaxed coloring instead of (1, C)-relaxed coloring.

All graphs we consider have maximum degree three. The main part of the
proof is to establish the statement for 2-edge-connected 3-regular graphs. One
can then easily extend this argument to arbitrary graphs of maximum degree 3.
More details will be included in the full version of the paper [4].

Lemma 1. Every 2-edge-connected, 3-regular graph has a vertex partition I ∪
X ∪ B = V (G) such that

(i) I ∪X induces a graph where each I-vertex has degree 0 and each X-vertex
has degree 1.

(ii) No triangle contains two vertices from X.
(iii) Every B-component is of order at most 6.

Observe that it is easy to argue that without loss of generality G is diamond-free,
where a diamond is a graph consisting of two triangles sharing an edge. Hence
in the proof we consider only graphs where no two triangles intersect.
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First let us see how Lemma 1 implies Theorem 1 for 2-edge-connected 3-
regular graphs. Let I, X, B be such as promised by Lemma 1. We do a postpro-
cessing in two phases, during which we distribute the vertices of X between I
and B. For each adjacent pair vw of vertices in X we put one of them to B and
the other into I. When this happens we say that we distributed the X-edge vw.
In the first phase some vertices contained in B will be moved to I, but once a
vertex is in I, it stays there during the rest of the postprocessing.

For the first phase let us say that a vertex v is ready for a change if v ∈ B
and all its neighbors are in B ∪ X . Once we find a vertex v ready for a change
we move v to I, and distribute the X-edges it is adjacent to by moving all X-
neighbors of v into B (and their X-neighbors into I). We iteratively make this
change until we find no more vertex ready for a change, at which point the first
phase ends. Property (ii) ensures that the rules of our change are well-defined.
It is not possible that an X-neighbor of v is instructed to be placed in B, while
it could also be the X-neighbor of another X-neighbor of v which would instruct
it to be in I. After each change the property (i) stays true simply because some
of the edges in X had their endpoints distributed one into I and one into B.

Crucially, at the end of the first phase every B-component is a path. As a
result of one change no two B-components are joined, possibly a vertex u from
X which changed its color to B is now stuck to an old B-component. In case
this happens both of the other neighbors of u are in I (and stay there).

Let C be a B-component after the first phase. We claim that all vertices
adjacent to C are in I except possibly two: one-one at each endpoint of C. By
(iii) there is an at most 6-long path C′ in C which used to be in a B-component
before the first phase. So we can distinguish three cases in terms of how many
X-neighbors can C have besides its I-neighbors.

Observations. After the first phase every B-component is one of the following:

(a) C is either a path of length at most 6 with one X-neighbor at each of its
endpoints, or
(b) C is a path of length at most 7 with one X-neighbor at one of its endpoints, or
(c) C is a path of length 8 with no X-neighbors.

In the second phase we distribute the vertices that are still in X between I and
B in such a way that the connected components in G[B] don’t grow too much.
This is done by finding a matching transversal in an auxiliary graph H . The
graph H is defined on the vertices of X , V (H) = X . There is an edge between
two vertices u and v in H iff u and v are incident to the same component of
G[B].

Claim. Δ(H) ≤ 2.

Proof. Let us pick an arbitrary vertex y from X = V (H). We aim to show
that each of the two edges e1, e2 that are not incident to another X-vertex is
”responsible” for at most one neighbor of y in H . That is, the component in
G[B] incident to y via such an e1 or e2 is incident to at most one other vertex
from X .
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Indeed, by the Observation above each B-component is a path, possibly ad-
jacent to X-vertices through its endpoints, but not more than to two.

The following Lemma guarantees a transversal inducing a matching.

Lemma 2 ([10], Corollary 4.3). Let G be a graph with Δ(G) ≤ 2 together
with a vertex partition P = {P1, . . . , Pm} into 2-element subsets. Then there is
a transversal T ((T ∩ Pi) �= ∅, for all i ∈ {1, . . . , m}) with Δ(G[T ]) ≤ 1.

We remark that the proof of this Lemma in [10] involves a linear time algorithm
which constructs the transversal.

We apply Lemma 2 and find such a transversal T of H on the partition defined
by the edges in G[X ], P = E(G[X ]).

Now the second phase of our postprocessing consists of moving all vertices of
T into B and moving X \T into I. Since Δ(H(T )) ≤ 1 we connect at most three
connected components Q1and Q2 and Q3 of G[B] by moving an edge {u, v} of H
into B, with u incident to Q1 and Q2 and v incident to Q2 and Q3. Obviously,
Q1 and Q3 are incident to at least one vertex of H (u and v respectively) and Q2
is incident to at least two vertices from H (u and v) before moving the vertices
of T . According to the Observation above the largest B-component created this
way is of order at most 7 + 1 + 6 + 1 + 7 = 22. Lemma 1(i) guarantees that I is
independent so the defined coloring is 22-relaxed. ��

It remains to show that the partition of V (G), promised in Lemma 1 indeed
exists and can be found in time O(n log4 n). The complete proof of Lemma 1 is
relegated to the full version of this paper [4].

Let us here only informally discuss the main ideas of the algorithm that par-
titions the vertex set of G and denote it by PA(G).

In a first step the algorithm PA(G) finds a perfect matching M in G. Thus
G−M consists of disjoint cycles only. Moreover M is chosen such that G−M is
triangle-free. Such a matching can be found in O(n log4 n) time, see Biedl, Bose,
Demaine and Lubiw [6]. (Note that the algorithm in [6] only yields some perfect
matching. In order to obtain a perfect matching M such that G−M is triangle-
free we first contract all triangles in G yielding a new graph G′. Then we apply
the algorithm to G′ instead and get a perfect matching M ′ of G′. We observe
that this perfect matching M ′ can easily be extended to a perfect matching M
of G where each triangle of G contains exactly one edge of M . Thus G − M is
triangle-free.) This is in fact the bottleneck of our algorithm all other parts are
done in linear time. The unique neighbor of a vertex v in M is called the partner
of v.

Next, PA(G) colors iteratively all vertices of G, one cycle of G − M after
another, by traversing each cycle in a predefined direction. As a default PA(G)
tries to color the vertices of a cycle with the colors I and B alternatingly. Its
original goal is to create a proper two-coloring this way. Of course there are
several reasons which will prevent PA(G) from doing so. One main obstacle is
when the partner of the currently processed vertex v is already colored, and it is
done so with the same color we just gave to v. If the conflict would be in color I
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then the algorithm resolves this by changing both v and its partner to X . The
algorithm generally decides not to care if the conflict is in B.

Of course there is a complication with this rule when the partner is within
the same triangle as v, since Lemma 1 does not allow two X-vertices in the same
triangle. This and other anomalies (like the coloring of the last vertex of a cycle
when the first and next-to-last vertex have distinct colors) are handled in the
full version of this paper [4] by a (hopefully) well-designed set of exceptions in
place.

After having colored cycle C the algorithm immediately proceeds with the
cycle containing the partner v of the last vertex colored in C unless v is already
colored. Otherwise the algorithm looks for vertices in C with an uncolored part-
ner by stepping backwards along the order in which the vertices of C have been
colored and eventually starts to color such a partner. If none of the vertices of
C have an uncolored partner the algorithm starts with a vertex whose partner
is colored.

3 Hard (3, C)-AsymRelCol

Proof (of Theorem 2 and 3). For a C-relaxed coloring we denote the color class
forming an independent set by I and the color class spanning components of
order at most C by B.

Definition 1. Let C ≥ 2 and Δ ≥ 1 be integers. A graph G is called (Δ, C)-
forcing with forced vertex f ∈ V (G) if
(i) Δ(G) ≤ Δ and f has degree at most Δ − 1,
(ii) G is C-relaxed colorable, and
(iii) f is contained in I for every C-relaxed two-coloring of G.

Lemma 3. For any non-negative integer Δ and integer C ≥ 2 the decision prob-
lem (Δ, C)-AsymRelCol is NP-complete provided a (Δ, C)-forcing graph exists.

The proof is detailed in the full version of the paper [4]. In the proof we establish a
reduction from the 3-SAT Problem using appropriate gadgets built from (Δ, C)-
forcing graphs.

3.1 (3, C)-Forcing Graphs

All graphs we consider in this subsection have maximum degree at most three.
Let GC denote the family of graphs of maximum degree at most three that are
not C-relaxed two-colorable.

Lemma 4. For all C ≥ 2, if GC �= ∅ then there is a (3, C)-forcing graph.

Proof. Let us assume first that C ≥ 6. By a lemma of [5] we can assume that
any member of GC contains a triangle.

Lemma 5 ([5]). Any triangle-free graph of maximum degree at most 3 has a
6-relaxed coloring.
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Let us fix a graph G ∈ GC which is minimal with respect to deletion of edges.
Let T be a triangle in G (guaranteed by Lemma 5) with V (T ) = {t1, t2, u} and
e = {u, v} be the unique edge incident to u not contained in T . We split e into
e1, e2 with e1 = {u, f} and e2 = {f, v} and denote this new graph by H . H
is C-relaxed colorable since the minimality of G ensures that G − e has a C-
relaxed coloring while the non-C-relaxed-colorability of G ensures that the colors
of u and v are the same on any C-relaxed coloring of G − e. So any C-relaxed
coloring χ of G − e can be extended to a C-relaxed coloring of H by coloring f
to the opposite of the color of u and v. Moreover any such extension is unique.
If χ(u) = χ(v) = I, then obviously χ(f) = B. If χ(u) = χ(v) = B = χ(f) and χ
is a C-relaxed coloring of H , then χ restricted to V (G) is a C-relaxed coloring
of G, a contradiction.

Thus in any C-relaxed coloring χH of H , (χH(u), χH(f), χH(v)) is either
(I, B, I) or (B, I, B).

We denote by v1, v2 the neighbors of t1 and t2, respectively, not contained in
T (might be t1 = t2). See also Figure 1. Suppose the vertices (u, f, v) of H can
be colored with (I, B, I). But then χH(t1) = χH(t2) = B.

t1
G H

u f vvu

t1

t2 t2

Fig. 1. Splitting e = {u, v} into e1 = {u, f} and e2 = {f, v}

[Case (i):] If χH(v1) = χH(v2) = I then we define a C-relaxed coloring χG for
G as follows:
χG(x) = χH(x) for all x ∈ V (G) \ {u} and χG(u) = B.
[Case (ii):] Without loss of generality χH(v1) = B. We define a C-relaxed
coloring χG for G as follows:
χG(x) = χH(x) for all x ∈ V (G) \ {t1, u}, χG(t1) = I, and χG(u) = B. Indeed,
the B-component containing t2 did not increase, since χG(t1) = χG(v) = I and
in H χH(t1) = B.

This contradicts the fact that G is not C-relaxed two-colorable. Thus in any
C-relaxed coloring of H the vertices (u, f, v) are colored (B, I, B). The vertex
f is contained in I and is of degree 2, hence H is a (3, C)-forcing graph with
forced vertex f .

In the full version of this paper [4] we provide explicit constructions of (3, C)-
forcing graphs with 2 ≤ C ≤ 5. ��

Note that (3, C)-AsymRelCol is obviously trivial for all C with GC = ∅, so
Theorem 2 follows immediately from Lemma 4 and Lemma 3. ��



134 R. Berke and T. Szabó

3.2 (4, C)-Forcing Graphs

Lemma 6. For all Δ ≥ 4 and all C ≥ 2 there is a (Δ, C)-forcing graph.

The graph Gk − {v1,1, v1,2} is (4, 2k − 2)-forcing. A proof can be found in the
full version of this paper [4]. Combining Lemma 6 and Lemma 3 concludes the
proof of Theorem 3. ��

v3,2

v2,3

v1,1

v1,3

v2,1 v3,1 vk−1,1 vk,1

v1,2 v2,2 vk−1,2 vk,2

v3,3 vk−1,3 vk,3

Fig. 2. Gk with one B-component of order 2k

4 Summarizing Overview and Open Problems

It would be interesting to determine exactly the critical monochromatic compo-
nent order f(3) from where the problem (3, C)-AsymRelCol becomes trivial.

We conjecture that there is a sudden jump in the hardness of the problem
(4, C)-SymRelCol. Such a result would particularly be interesting, since here
the determination of the critical component order is even more within reach
(between 4 and 6.) As a first step one could try to prove the monotonicity of the
problem.

The similar problem is wide open for graphs with maximum degree 5: Does
SymRelCol exhibit a monotone behavior for C ≥ 2? Is there a “jump in hard-
ness”? Is there a constant C and a polynomial-time algorithm which finds a
(C, C)-coloring of graphs of maximum degree 5? We only know the existence of
such colorings.

For colorings with more than two colors we know much less. Even the graph
theoretic questions about interesting maximum degrees are open. We list here
three of the most important questions: Is there a constant C such that every
graph with maximum degree 9 can be three-colored such that every monochro-
matic component is of order at most C? The answer is “yes” for graphs with
maximum degree 8 and “no” for graphs of maximum degree 10 (see [10]). Is there
a constant C such that every graph of maximum degree 5 can be red/blue/green-
colored such that the set of red vertices and the set of blue vertices are both
independent while every green monochromatic component is of order at most C?
The answer is “yes” for graphs with maximum degree 4 and “no” for graphs of
maximum degree 6 (see [5]). Determine asymptotically the largest Δk for which
there exists a constant Ck such that every graph of maximum degree Δk can
be k-colored such that every monochromatic component is of order at most Ck.
The current bounds are 3 < Δk/k ≤ 4 (see [10]).
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Abstract. The sequential importance sampling (SIS) algorithm has
gained considerable popularity for its empirical success. One of its noted
applications is to the binary contingency tables problem, an important
problem in statistics, where the goal is to estimate the number of 0/1
matrices with prescribed row and column sums. We give a family of exam-
ples in which the SIS procedure, if run for any subexponential number of
trials, will underestimate the number of tables by an exponential factor.
This result holds for any of the usual design choices in the SIS algorithm,
namely the ordering of the columns and rows. These are apparently the
first theoretical results on the efficiency of the SIS algorithm for binary
contingency tables. Finally, we present experimental evidence that the
SIS algorithm is efficient for row and column sums that are regular. Our
work is a first step in determining rigorously the class of inputs for which
SIS is effective.

1 Introduction

Sequential importance sampling is a widely-used approach for randomly sam-
pling from complex distributions. It has been applied in a variety of fields, such
as protein folding [8], population genetics [5], and signal processing [7]. Binary
contingency tables is an application where the virtues of sequential importance
sampling have been especially highlighted; see Chen et al. [4]. This is the subject
of this note. Given a set of non-negative row sums r = (r1, . . . , rm) and column
sums c = (c1, . . . , cn), let Ω = Ωr,c denote the set of m × n 0/1 tables with row
sums r and column sums c. Our focus is on algorithms for sampling (almost)
uniformly at random from Ω, or estimating |Ω|.
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Sequential importance sampling (SIS) has several purported advantages over
the more classical Markov chain Monte Carlo (MCMC) method, such as:

Speed: Chen et al. [4] claim that SIS is faster than MCMC algorithms. However,
we present a simple example where SIS requires exponential (in n, m) time.
In contrast, a MCMC algorithm was presented in [6, 1] which is guaranteed
to require at most time polynomial in n, m for every input.

Convergence Diagnostic: One of the difficulties in MCMC algorithms is de-
termining when the Markov chain of interest has reached the stationary
distribution, in the absence of analytical bounds on the mixing time. SIS
seemingly avoids such complications since its output is guaranteed to be an
unbiased estimator of |Ω|. Unfortunately, it is unclear how many estimates
from SIS are needed before we have a guaranteed close approximation of
|Ω|. In our example for which SIS requires exponential time, the estimator
appears to converge, but it converges to a quantity that is off from |Ω| by
an exponential factor.

Before formally stating our results, we detail the sequential importance sampling
approach for contingency tables, following [4]. The general importance sampling
paradigm involves sampling from an ‘easy’ distribution μ over Ω that is, ideally,
close to the uniform distribution. At every round, the algorithm outputs a table
T along with μ(T ). Since for any μ whose support is Ω we have

E[1/μ(T )] = |Ω|,

we take many trials of the algorithm and output the average of 1/μ(T ) as our
estimate of |Ω|. More precisely, let T1, . . . , Tt denote the outputs from t trials of
the SIS algorithm. Our final estimate is

Xt =
1
t

∑
i

1
μ(Ti)

. (1)

One typically uses a heuristic to determine how many trials t are needed until
the estimator has converged to the desired quantity.

The sequential importance sampling algorithm of Chen et al. [4] constructs
the table T in a column-by-column manner. It is not clear how to order the
columns optimally, but this will not concern us as our negative results will hold
for any ordering of the columns. Suppose the procedure is assigning column
j. Let r′1, . . . , r

′
m denote the residual row sums after taking into account the

assignments in the first j − 1 columns.
The procedure of Chen et al. chooses column j from the correct probability

distribution conditional on cj , r′1, . . . , r
′
m and the number of columns remaining

(but ignoring the column sums cj+1, . . . , cn). This distribution is easy to describe
in closed form. We assign column j the vector (t1, . . . , tm) ∈ {0, 1}m, where∑

i ti = cj , with probability proportional to

∏
i

(
r′i

n′ − r′i

)ti

, (2)
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where n′ = n − j + 1. If no valid assignment is possible for the j-th column,
then the procedure restarts from the beginning with the first column (and sets

1
μ(Ti)

= 0 in (1) for this trial).1 Sampling from the above distribution over
assignments for column j can be done efficiently by dynamic programming.

We now state our negative result. This is a simple family of examples where
the SIS algorithm will grossly underestimate |Ω| unless the number of trials t
is exponentially large. Our examples will have the form (1, 1, . . . , 1, dr) for row
sums and (1, 1, . . . , 1, dc) for column sums, where the number of rows is m + 1,
the number of columns is n + 1, and we require that m + dr = n + dc.

Theorem 1. Let β > 0, γ ∈ (0, 1) be constants satisfying β �= γ and consider the
input instances r = (1, 1, . . . , 1, �βm�), c = (1, 1, . . . , 1, �γm�) with m + 1 rows.
Fix any order of columns (or rows, if sequential importance sampling constructs
tables row-by-row) and let Xt be the random variable representing the estimate of
the SIS procedure after t trials of the algorithm. There exist constants s1 ∈ (0, 1)
and s2 > 1 such that for every sufficiently large m and for any t ≤ sm

2 ,

Pr
(

Xt ≥ |Ωr,c|
sm
2

)
≤ 3sm

1 .

In contrast, note that there are MCMC algorithms which provably run in time
polynomial in n and m for any row/column sums. In particular, the algorithm
of Jerrum, Sinclair, and Vigoda [6] for the permanent of a non-negative matrix
yields as a corollary a polynomial time algorithm for any row/column sums. The
fastest algorithm for the permanent of a n×n matrix requires O(n7 log4 n) time
[3], which implies a running time of O((nm)7 log4 n) time for binary contingency
tables. More recently, Bezáková, Bhatnagar and Vigoda [1] have presented a
related MCMC algorithm that works directly with binary contingency tables
and has an improved polynomial running time. Their algorithm runs in time
O((nm)2R3smax log5(n + m)) where R =

∑
i ri is the sum of the row sums

and smax is the maximum row and column sum. We note that, in addition
to being formally asymptotically faster than any exponential time algorithm, a
polynomial time algorithm has additional theoretical significance in that it (and
its analysis) implies non-trivial insight into the the structure of the problem.

Some caveats are in order here. Firstly, the above results imply only that
MCMC outperforms SIS asymptotically in the worst case; for many inputs, SIS
may well be much more efficient. Secondly, the rigorous worst case upper bounds
on the running time of the above MCMC algorithms are still far from practical.
Chen et al. [4] showed several examples where SIS outperforms MCMC methods.
We present a more systematic experimental study of the performance of SIS,
focusing on examples where all the row and column sums are identical as well
as on the “bad” examples from Theorem 1. Our experiments suggest that SIS

1 Chen et al. devised a more subtle procedure which guarantees that there will al-
ways be a suitable assignment of every column. We do not describe this interesting
modification of the procedure, as the two procedures are equivalent for the input
instances which we discuss in this paper.
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is extremely fast on the balanced examples, while its performance on the bad
examples confirms our theoretical analysis.

We begin in Section 2 by presenting a few basic lemmas that are used in
the analysis of our negative example. In Section 3 we present our main example
where SIS is off by an exponential factor, thus proving Theorem 1. Finally,
in Section 4 we present some experimental results for SIS that support our
theoretical analysis.

2 Preliminaries

We will continue to let μ(T ) denote the probability that a table T ∈ Ωr,c is
generated by sequential importance sampling algorithm. We let π(T ) denote the
uniform distribution over Ω, which is the desired distribution.

Before beginning our main proofs we present two straightforward technical
lemmas which are used at the end of the proof of the main theorem. The first
lemma claims that if a large set of binary contingency tables gets a very small
probability under SIS, then SIS is likely to output an estimate which is not much
bigger than the size of the complement of this set, and hence very small. Let
S = Ωr,c \ S.

Lemma 1. Let p ≤ 1/2 and let S ⊆ Ωr,c be such that μ(S) ≤ p. Then for any
a > 1, and any t, we have

Pr
(
Xt ≤ aπ(S)|Ω|

)
≥ 1 − 2pt − 1/a.

Proof. The probability that all t SIS trials are not in S is at least

(1 − p)t > e−2pt ≥ 1 − 2pt,

where the first inequality follows from ln(1 − x) > −2x, valid for 0 < x ≤ 1/2,
and the second inequality is the standard e−x ≥ 1 − x for x ≥ 0.

Let T1, . . . , Tt be the t tables constructed by SIS. Then, with probability
> 1 − 2pt, we have Ti ∈ S for all i. Notice that for a table T constructed by SIS
from S, we have

E
(

1
μ(T )

| T ∈ S
)

= |S|.

Let F denote the event that Ti ∈ S for all i, 1 ≤ i ≤ t; hence,

E (Xt | F) = |S|.

We can use Markov’s inequality to estimate the probability that SIS returns
an answer which is more than a factor of a worse than the expected value,
conditioned on the fact that no SIS trial is from S:

Pr
(
X > a|S| | F

)
≤ 1

a
.
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Finally, removing the conditioning we get:

Pr(X ≤ a|S|) ≥ Pr
(
X ≤ a|S| | F

)
Pr (F)

≥
(

1 − 1
a

)
(1 − 2pt)

≥ 1 − 2pt − 1
a
.

The second technical lemma shows that if in a row with large sum (linear in
m) there exists a large number of columns (again linear in m) for which the
SIS probability of placing a 1 at the corresponding position differs significantly
from the correct probability, then in any subexponential number of trials the
SIS estimator will very likely exponentially underestimate the correct answer.

Lemma 2. Let α < β be positive constants. Consider a class of instances of the
binary contingency tables problem, parameterized by m, with m + 1 row sums,
the last of which is �βm�. Let Ai denote the set of all valid assignments of 0/1
to columns 1, . . . , i. Suppose that there exist constants f < g and a set I of
cardinality �αm� such that one of the following statements is true:

(i) for every i ∈ I and any A ∈ Ai−1,

π(Am+1,i = 1 | A) ≤ f < g ≤ μ(Am+1,i = 1 | A),

(ii) for every i ∈ I and any A ∈ Ai−1,

μ(Am+1,i = 1 | A) ≤ f < g ≤ π(Am+1,i = 1 | A).

Then there exists a constant b1 ∈ (0, 1) such that for any constant 1 < b2 < 1/b1
and any sufficiently large m, for any t ≤ bm

2 ,

Pr
(

Xt ≥ |Ωr,c|
bm
2

)
≤ 3(b1b2)m.

In words, in bm
2 trials of sequential importance sampling, with probability at

least 1−3(b1b2)m the output is a number which is at most a b−m
2 fraction of the

total number of corresponding binary contingency tables.

Proof. We will analyze case (i); the other case follows from analogous arguments.
Consider indicator random variables Ui representing the event that the uniform
distribution places 1 in the last row of the i-th column. Similarly, let Vi be
the corresponding indicator variable for the SIS. The random variable Ui is
dependent on Uj for j < i and Vi is dependent on Vj for j < i. However, each
Ui is stochastically dominated by U ′

i which has value 1 with probability f , and
each Vi stochastically dominates the random variable V ′

i which takes value 1
with probability g. Moreover, the U ′

i and V ′
i are respectively i.i.d.

Now we may use the Chernoff bound. Let k = �αm�. Then

Pr

(∑
i∈I

U ′
i − kf ≥ g − f

2
k

)
< e−(g−f)2k/8
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and

Pr

(
kg −

∑
i∈I

V ′
i ≥ g − f

2
k

)
< e−(g−f)2k/8.

Let S be the set of all tables which have less than kf+(g−f)k/2 = kg−(g−f)k/2
ones in the last row of the columns in I. Let b1 := e−(g−f)2α/16 ∈ (0, 1). Then
e−(g−f)2k/8 ≤ bm

1 for m ≥ 1/α. Thus, by the first inequality, under uniform
distribution over all binary contingency tables the probability of the set S is at
least 1 − bm

1 . However, by the second inequality, SIS constructs a table from the
set S with probability at most bm

1 .
We are ready to use Lemma 1 with S = S and p = bm

1 . Since under uniform
distribution the probability of S is at least 1 − bm

1 , we have that |S| ≥ (1 −
bm
1 )|Ωr,c|. Let b2 ∈ (1, 1/b1) be any constant and consider t ≤ bm

2 SIS trials. Let
a = (b1b2)−m. Then, by Lemma 1, with probability at least 1 − 2pt − 1/a ≥
1 − 3(b1b2)m the SIS procedure outputs a value which is at most an abm

1 = b−m
2

fraction of |Ωr,c|.

3 Proof of Main Theorem

In this section we prove Theorem 1. Before we analyze the input instances from
Theorem 1, we first consider the following simpler class of inputs.

3.1 Row Sums (1, 1, . . . , 1, d) and Column Sums (1, 1, . . . , 1)

The row sums are (1, . . . , 1, d) and the number of rows is m + 1. The column
sums are (1, . . . , 1) and the number of columns is n = m + d. We assume that
sequential importance sampling constructs the tables column-by-column. Note
that if SIS constructed the tables row-by-row, starting with the row with sum
d, then it would in fact output the correct number of tables exactly. However, in
the next subsection we will use this simplified case as a tool in our analysis of the
input instances (1, . . . , 1, dr), (1, . . . , 1, dc), for which SIS must necessarily fail
regardless of whether it works row-by-row or column-by-column, and regardless
of the order it chooses.

Lemma 3. Let β > 0, and consider an input of the form (1, . . . , 1, �βm�),
(1, . . . , 1) with m + 1 rows. Then there exist constants s1 ∈ (0, 1) and s2 > 1,
such that for any sufficiently large m, with probability at least 1 − 3sm

1 , column-
wise sequential importance sampling with sm

2 trials outputs an estimate which is
at most a s−m

2 fraction of the total number of corresponding binary contingency
tables. Formally, for any t ≤ sm

2 ,

Pr
(

Xt ≥ |Ωr,c|
sm
2

)
≤ 3sm

1 .

The idea for the proof of the lemma is straightforward. By the symmetry of the
column sums, for large m and d and α ∈ (0, 1) a uniform random table will have
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about αd ones in the first αn cells of the last row, with high probability. We
will show that for some α ∈ (0, 1) and d = βm, sequential importance sampling
is very unlikely to put this many ones in the first αn columns of the last row.
Therefore, since with high probability sequential importance sampling will not
construct any table from a set that is a large fraction of all legal tables, it will
likely drastically underestimate the number of tables.

Before we prove the lemma, let us first compare the column distributions
arising from the uniform distribution over all binary contingency tables with the
SIS distributions. We refer to the column distributions induced by the uniform
distribution over all tables as the true distributions. The true probability of 1 in
the first column and last row can be computed as the number of tables with 1 at
this position divided by the total number of tables. For this particular sequence,
the total number of tables is Z(m, d) =

(
n
d

)
m! =

(
m+d

d

)
m!, since a table is

uniquely specified by the positions of ones in the last row and the permutation
matrix in the remaining rows and corresponding columns. Therefore,

π(Am+1,1 = 1) =
Z(m, d − 1)

Z(m, d)
=

(
m+d−1

d−1

)
m!(

m+d
d

)
m!

=
d

m + d
.

On the other hand, by the definition of sequential importance sampling,
Pr(Ai,1 = 1) ∝ ri/(n − ri), where ri is the row sum in the i-th row. There-
fore,

μ(Am+1,1 = 1) =
d

n−d
d

n−d + m 1
n−1

=
d(m + d − 1)

d(m + d − 1) + m2 .

Observe that if d ≈ βm for some constant β > 0, then for sufficiently large m
we have

μ(Am+1,1 = 1) > π(Am+1,1 = 1).

As we will see, this will be true for a linear number of columns, which turns out
to be enough to prove that in polynomial time sequential importance sampling
exponentially underestimates the total number of binary contingency tables with
high probability.

Proof (Proof of Lemma 3). We will find a constant α such that for every column
i < αm we will be able to derive an upper bound on the true probability and a
lower bound on the SIS probability of 1 appearing at the (m + 1, i) position.

For a partially filled table with columns 1, . . . , i − 1 assigned, let di be the
remaining sum in the last row and let mi be the number of other rows with
remaining row sum 1. Then the true probability of 1 in the i-th column and last
row can be bounded as

π(Am+1,i = 1 | A(m+1)×(i−1)) =
di

mi + di
≤ d

m + d − i
=: f(d, m, i),
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while the probability under SIS can be bounded as

μ(Am+1,i = 1 | A(m+1)×(i−1)) =
di(mi + di − 1)

di(mi + di − 1) + m2
i

≥ (d − i)(m + d − i − 1)
d(m + d − 1) + m2 =: g(d, m, i).

Observe that for fixed m, d, the function f is increasing and the function g is
decreasing in i, for i < d.

Recall that we are considering a family of input instances parameterized by m
with d = �βm�, for a fixed β > 0. We will consider i < αm for some α ∈ (0, β).
Let

f∞(α, β) := lim
m→∞ f(d, m, αm) =

β

1 + β − α
; (3)

g∞(α, β) := lim
m→∞ g(d, m, αm) =

(β − α)(1 + β − α)
β(1 + β) + 1

; (4)

�β := g∞(0, β) − f∞(0, β) =
β2

(1 + β)(β(1 + β) + 1)
> 0, (5)

and recall that for fixed β, f∞ is increasing in α and g∞ is decreasing in α, for
α < β. Let α < β be such that g∞(α, β) − f∞(α, β) = �β/2. Such an α exists
by continuity and the fact that g∞(β, β) < f∞(β, β).

By the above, for any ε > 0 and sufficiently large m, and for any i < αm,
the true probability is upper-bounded by f∞(α, β) + ε and the SIS probability
is lower-bounded by g∞(α, β)− ε. For our purposes it is enough to fix ε = �β/8.
Now we can use Lemma 2 with α and β defined as above, f = f∞(α, β) + ε
and g = g∞(α, β) − ε (notice that all these constants depend only on β), and
I = {1, . . . , �αm�}. This finishes the proof of the lemma with s1 = b1b2 and
s2 = b2.

Note 1. Notice that every contingency table with row sums (1, 1, . . . , 1, d) and
column sums (1, 1, . . . , 1) is binary. Thus, this instance proves that the column-
based SIS procedure for general (non-binary) contingency tables has the same
flaw as the binary SIS procedure. We expect that the negative example used for
Theorem 1 also extends to general (i. e., non-binary) contingency tables, but the
analysis becomes more cumbersome.

3.2 Proof of Theorem 1

Recall that we are working with row sums (1, 1, . . . , 1, dr), where the number of
rows is m + 1, and column sums (1, 1, . . . , 1, dc), where the number of columns
is n + 1 = m + 1 + dr − dc. We will eventually fix dr = �βm� and dc = �γm�,
but to simplify our expressions we work with dr and dc for now.

The theorem claims that the SIS procedure fails for an arbitrary order of
columns with high probability. We first analyze the case when the SIS procedure
starts with columns of sum 1; we shall address the issue of arbitrary column
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order later. As before, under the assumption that the first column has sum 1, we
compute the probabilities of 1 being in the last row for uniform random tables
and for SIS respectively. For the true probability, the total number of tables can
be computed as

(
m
dc

)(
n
dr

)
(m − dc)! +

(
m

dc−1

)(
n

dr−1

)
(m − dc + 1)!, since a table is

uniquely determined by the positions of ones in the dc column and dr row and
a permutation matrix on the remaining rows and columns. Thus we have

π(A(m+1),1) =

(
m
dc

)(
n−1
dr−1

)
(m − dc)! +

(
m

dc−1

)(
n−1
dr−2

)
(m − dc + 1)!(

m
dc

)(
n
dr

)
(m − dc)! +

(
m

dc−1

)(
n

dr−1

)
(m − dc + 1)!

=
dr(n − dr + 1) + dcdr(dr − 1)

n(n − dr + 1) + ndcdr
=: f2(m, dr, dc);

μ(A(m+1),1) =
dr

n−dr

dr

n−dr
+ m 1

n−1

=
dr(n − 1)

dr(n − 1) + m(n − dr)
=: g2(m, dr, dc).

Let dr = �βm� and dc = �γm� for some constants β > 0, γ ∈ (0, 1) (notice that
this choice guarantees that n ≥ dr and m ≥ dc, as required). Then, as m tends
to infinity, f2 approaches

f∞
2 (β, γ) :=

β

1 + β − γ
,

and g2 approaches

g∞2 (β, γ) :=
β(1 + β − γ)

β(1 + β − γ) + 1 − γ
.

Notice that f∞
2 (β, γ) = g∞2 (β, γ) if and only if β = γ. Suppose that f∞

2 (β, γ) <
g∞2 (β, γ) (the opposite case follows analogous arguments and uses the second
part of Lemma 2). As in the proof of Lemma 3, we can define α such that if
the importance sampling does not choose the column with sum dc in its first
αm choices, then in any subexponential number of trials it will exponentially
underestimate the total number of tables with high probability. Formally, we
derive an upper bound on the true probability of 1 being in the last row of
the i-th column, and a lower bound on the SIS probability of the same event
(both conditioned on the fact that the dc column is not among the first i columns
assigned). Let d

(i)
r be the current residual sum in the last row, mi be the number

of rows with sum 1, and ni the remaining number of columns with sum 1. Notice
that ni = n − i + 1, m ≥ mi ≥ m − i + 1, and dr ≥ d

(i)
r ≥ dr − i + 1. Then

π(A(m+1),i | A(m+1)×(i−1)) =
d
(i)
r (ni − d

(i)
r + 1) + dcd

(i)
r (d(i)

r − 1)

ni(ni − d
(i)
r + 1) + nidcd

(i)
r

≤ dr(n − dr + 1) + dcd
2
r

(n − i)(n − i − dr) + (n − i)dc(dr − i)
=: f3(m, dr , dc, i);
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μ(A(m+1),i | A(m+1)×(i−1)) =
d
(i)
r (ni − 1)

d
(i)
r (ni − 1) + mi(ni − d

(i)
r )

≥ (dr − i)(n − i)
drn + m(n − dr)

=: g3(m, dr, dc, i).

As before, notice that if we fix m, dr, dc > 0 satisfying dc < m and dr < n, then
f3 is an increasing function and g3 is a decreasing function in i, for i < min{n−
dr, dr}. Recall that n−dr = m−dc. Suppose that i ≤ αm < min{m−dc, dr} for
some α which we specify shortly. Thus, the upper bound on f3 in this range of i
is f3(m, dr, dc, αm) and the lower bound on g3 is g3(m, dr, dc, αm). If dr = �βm�
and dc = �γm�, then the upper bound on f3 converges to

f∞
3 (α, β, γ) := lim

m→∞ f3(m, dr, dc, αm) =
β2

(1 + β − γ − α)(β − α)

and the lower bound on g3 converges to

g∞3 (α, β, γ) := lim
m→∞ g3(m, dr, dc, αm) =

(β − α)(1 + β − γ − α)
β(1 + β − γ) + 1 − γ

Let
�β,γ := g∞3 (0, β, γ) − f∞

3 (0, β, γ) = g∞2 (β, γ) − f∞
2 (β, γ) > 0.

We set α to satisfy g∞3 (α, β, γ) − f∞
3 (α, β, γ) ≥ �β,γ/2 and α < min{1 − γ, β}.

Now we can conclude this part of the proof identically to the last paragraph of
the proof of Lemma 3.

It remains to deal with the case when sequential importance sampling picks
the dc column within the first �αm� columns. Suppose dc appears as the k-th
column. In this case we focus on the subtable consisting of the last n + 1 − k
columns with sum 1, m′ rows with sum 1, and one row with sum d′, an instance
of the form (1, 1, . . . , 1, d′), (1, . . . , 1). We will use arguments similar to the proof
of Lemma 3.

First we express d′ as a function of m′. We have the bounds (1−α)m ≤ m′ ≤ m
and d − αm ≤ d′ ≤ d where d = �βm� ≥ βm − 1. Let d′ = β′m′. Thus,
β − α − 1/m ≤ β′ ≤ β/(1 − α).

Now we find α′ such that for any i ≤ α′m′ we will be able to derive an upper
bound on the true probability and a lower bound on the SIS probability of 1
appearing at position (m′ +1, i) of the (n+1− k)×m′ subtable, no matter how
the first k columns were assigned. In order to do this, we might need to decrease
α – recall that we are free to do so as long as α is a constant independent of
m. By the derivation in the proof of Lemma 3 (see expressions (3) and (4)), as
m′ (and thus also m) tends to infinity, the upper bound on the true probability
approaches

f∞(α′, β′) = lim
m→∞

β′

1 + β′ − α′

≤ lim
m→∞

β
1−α

1 + β − α − 1
m − α′ =

β
1−α

1 + β − α − α′ =: f∞
4 (α, β, α′)
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and the lower bound on the SIS probability approaches

g∞(α′, β′) = lim
m→∞

(β′ − α′)(1 + β′ − α′)
β′(1 + β′) + 1

≥ lim
m→∞

(β − α − 1
m − α′)(1 + β − α − 1

m − α′)
β

1−α (1 + β
1−α ) + 1

=
(β − α − α′)(1 + β − α − α′)

β
1−α (1 + β

1−α ) + 1

≥ (β − α − α′)(1 + β − α − α′)
β

1−α ( 1
1−α + β

1−α ) + 1
(1−α)2

=: g∞4 (α, β, α′),

where the last inequality holds as long as α < 1. Notice that for fixed α, β
satisfying α < min{1, β}, the function f∞

4 is increasing and g∞4 is decreasing in
α′, for α′ < β − α. Similarly, for fixed α′, β satisfying α′ < β, the function f∞

4
is increasing and g∞4 is decreasing in α, for α < min{1, β − α′}. Therefore, if we
take α = α′ < min{1, β/2}, we will have the bounds

f∞
4 (x, β, y) ≤ f∞

4 (α, β, α) and g∞4 (x, β, y) ≥ g∞4 (α, β, α)

for any x, y ≤ α. Recall that �β = g∞(0, β) − f∞(0, β) = g∞4 (0, β, 0) −
f∞
4 (0, β, 0) > 0. If we choose α so that g∞4 (α, β, α) − f∞

4 (α, β, α) ≥ �β/2,
then in similar fashion to the last paragraph of the proof of Lemma 3, we may
conclude that the SIS procedure likely fails. More precisely, let ε := �β/8 and let
f := f∞

4 (α, β, α)+ε and g := g∞4 (α, β, α)−ε be the upper bound (for sufficiently
large m) on the true probability and the lower bound on the SIS probability of 1
appearing at the position (m+1, i) for i ∈ I := {k+1, . . . , k+�α′m′�}. Therefore
Lemma 2 with parameters α(1 − α), β, I of size |I| = �α′m′� ≥ �α(1 − α)m�, f ,
and g implies the statement of the theorem.

Finally, if the SIS procedure constructs the tables row-by-row instead of
column-by-column, symmetrical arguments hold. This completes the proof of
Theorem 1. �

4 Experiments

We performed several experimental tests which show sequential importance sam-
pling to be a promising approach for certain classes of input instances. We discuss
the experiments in more detail and present supporting figures in the full version
of this paper [2].

Our first set of experiments tested the SIS technique on regular input se-
quences, i.e., ri = cj for all i, j. It appears the approach is very efficient for these
input sequences. We considered input sequences which were 5, 10, �5 logn� and
�n/2�-regular, and n × n matrices with n = 10, 15, 20, . . . , 100. The required
number of SIS trials until the algorithm converged resembled a linear function
of n.
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In contrast, we examined the evolution of SIS on the negative example from
Theorem 1. In our simulations we used the more delicate sampling mentioned in
footnote 1, which guarantees that the assignment in every column is valid, i. e.,
such an assignment can always be extended to a valid table (or, equivalently,
the random variable Xt is always strictly positive). We ran the SIS algorithm
under three different settings: first, we constructed the tables column-by-column
where the columns were ordered in decreasing order of their sums, as suggested
in the paper of Chen et al. [4]; second, we ordered the columns in increasing
order of their sums; and third, we constructed the tables row-by-row where the
rows were ordered in decreasing order of their sums.

The experiments confirmed the poor performance described in Theorem 1.
For m = 300, β = .6 and γ = .7, even the best of the three estimators differed
from the true value by about a factor of 40, while some estimates were off by
more than a factor of 1000.
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Abstract. We present an algorithm for estimating entropy of data
streams consisting of insertion and deletion operations using Õ(1) space.1

1 Introduction

Recently, there has been an emergence of monitoring applications in diverse ar-
eas, including, network traffic monitoring, network topology monitoring, sensor
networks, financial market monitoring, web-log monitoring, etc.. In these appli-
cations, data is generated rapidly and continuously, and must be analyzed very
efficiently, in real-time, to identify large trends, anomalies, user-defined excep-
tion conditions, etc.. The data streaming model [1, 12] has gained popularity
as a computational model for such applications—where, incoming data (or up-
dates) are processed very efficiently and in an online fashion using space that is
much less than what is needed to store the data in its entirety.

A data stream S is viewed as a sequence of arrivals of the form (i, v), where,
i is the identity of an item that is a member of the domain {0, 1, . . . , N − 1},
and v is the update to the frequency of the item. v > 0 indicates an insertion of
multiplicity v, while v < 0 indicates a corresponding deletion. The frequency of
an item i, denoted by fi, is the sum of the updates to i since the inception of
the stream, that is, fi =

∑
(i,v) appears in S v. In the strict update model, deletions

are assumed to correspond to prior insertions, and, therefore the frequency of
an item is always non-negative. In the general update model, item frequencies
may be negative or positive. Let n denote the number of items with non-zero
frequencies in the stream and let m denote the sum of the absolute values of the
item frequencies.

The entropy H of a data stream is defined as H =
∑

i:fi>0
|fi|
m log m

|fi| . We
study the problem of continuously tracking the entropy of a data stream in
low space. The entropy of a data stream, or that of a frequency distribution,
measures its information theoretic randomness and incompressibility. A value
of entropy close to log n, is indicative that the frequencies in the stream are
randomly distributed, whereas, low values are indicative of “patterns” in the
data. Further, monitoring changes in the entropy of a network traffic stream has
been used detect anomalies [8, 14, 15].
1 We use the Õ notation to simplify complexity expressions. If N is the do-

main size of the stream items and m is the sum of the absolute values
of the item frequencies, we say that f(m, N) = Õ(g(m,N)), if f(m, N) =
O

(
1

εO(1) (logO(1) m)(logO(1) n) g(m,N)
)
.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 148–159, 2006.
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Prior Work. The work in [9] presents an algorithm for estimating H over insert-
only streams to within a factor of 1± ε using space Õ(n

1
1+ε ). [9] also presents an

algorithm for estimating H using space Õ(1) bits in a random-streaming model,
in which, the order of arrival of items is assumed to be completely random.
[3] presents an algorithm for estimating entropy H over insert-only streams to
within factors of 1 ± ε using Õ(min(m2/3, m2(1−ε)) space.

Contributions. In this paper we present an algorithm that estimates the entropy
of strict update data streams to within factors of 1 ± ε using space Õ(1). We
also show how the algorithm can be generalized to the general update streaming
model using space Õ(1). We prove the following theorem.

Theorem 1. There exists an algorithm for strict update streams that returns an
estimate Ĥ of the entropy H of a stream such that |Ĥ −H | ≤ εH with probability
1 − δ using O

(
(log4 m)

ε3
(log m+log 1

ε )
(log 1

ε +log log m) (log 1
δ )
)

bits.

Organization. The remainder of the paper is organized as follows. In Section 2,
we present an abstract algorithm called Hss for estimating a class of data stream
metrics and then use it in Section 3 to estimate entropy.

2 The Hss Algorithm

We present a procedure for obtaining a representative sample over the input
stream, which we refer to as Hierarchical Sampling over Sketches (Hss) and use
it for estimating a class of metrics over data-streams of the following form.

Ψ(S) =
∑

i:fi>0

ψ(fi) (1)

Section 3 specializes this procedure to yield a straight forward algorithm for
estimating the entropy of a data stream in Õ(1) space. The algorithm can be
naturally adapted for general update streams. A specialization of the Hss pro-
cedure was used in [2] to give an algorithm for finding the kth frequency moment
Fk =

∑
fk

i .

Preliminaries. Given a data stream, rank(r) returns an item with the rth largest
frequency (ties are broken arbitrarily). We say that an item i has rank r if
rank(r) = i. For a given value of k, 1 ≤ k ≤ N , the set top(k) is the set of
items with rank ≤ k. We use the Count-Min algorithm [6] for estimating the
frequency f̂i of an item i. Its guarantees are summarized in Theorem 2 and are
given in terms of the quantity mres(k) =

∑
i�∈ top(k) fi =

∑
r>k frank(r).

Theorem 2. [6] For 0 < ε < 1, the Count-Min algorithm uses space O(k
ε log 1

δ
log m) bits and time O(log 1

δ ) to process each stream update. It returns an esti-
mate f̂i that satisfies fi ≤ f̂i ≤ fi + εmres(k)

k with probability 1 − δ. ��
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The Hss structure. Let T0 > T1 > . . . > TL (L will be fixed later) be a
sequence of exponentially decreasing thresholds that partition the elements of
the stream into groups G0 . . . GL, where, G0 = {i ∈ S : fi ≥ T0} and Gl =
{i ∈ S : Tl ≤ fi < Tl−1}, 1 ≤ l ≤ L. Intuitively, the Hss algorithm works
as follows. From the input stream S, we create sub-streams S0 . . . SL such that
S0 = S and for 1 ≤ l ≤ L, Sl is obtained from Sl−1 by sub-sampling each
distinct item appearing in Sl−1 independently with probability 1

2 (hence L =
O(log m)). The sub-stream Sl is referred to as the sub-stream at level l, for
l = 0, 1, . . . , L. Let k be a space parameter. At each level l, we keep a data-
structure denoted by Dl, that takes as input the sub-stream Sl, and returns an
approximation to the top(k) items of its input stream and their frequencies. This
data-structure is typically instantiated using standard synopsis structures, such
as, Count-Min (for estimating entropy), Countsketch [4] (for estimating
frequency moments [2] and for estimating entropy when frequencies may be
negative), etc. We posit the following invariant.

C1: All items of Gl present in Sl must be discovered as frequent items
by Dl.

Approximating fi. We assume that frequent items discovery and frequency esti-
mation algorithms have an additive error of at most Δ in the estimated frequen-
cies (usually, with high probability [4, 5, 6]), where Δ is a function of the space
parameter k and some aggregate statistic of the input stream (e.g., mres(k) for
the Count-Min algorithm and Fres

2 (k) for the Countsketch algorithm). We
use Δl = Δl(k) to denote the error incurred by the estimates obtained from Dl

operating on the sub-stream Sl.
Let Ql denote a frequency threshold defined as Ql = Δl

ε̄ and let f̂i,l denote the
estimate of the frequency of i as obtained from the data structure Dl, assuming
that the item i has been sampled at level l. It follows that if f̂i,l > Ql, then,
|f̂i,l − fi| ≤ ε̄fi with high probability. Lemma 1 establishes a relation between
the values Δl for various l for a popular top(k) estimation algorithm, namely
the Count-min sketch 2. This relationship helps us to set the threshold Ql to
Δ0(k)
ε̄·2l = Q0

2l for l > 0.

Lemma 1. For Count-min sketch algorithm, Δl(k) ≤ Δ0(2l−1k)
2l with probabil-

ity ≥ 1 − 2−Ω(k) for l ≥ 1 and k ≥ 36.

Proof. By Theorem 2, Δl(k) = mres(k,l)
k , where, mres(k, l) is the (random) resid-

ual first moment of Sl when the top-k ranked items have been removed from Sl.
The expected number of the top-2l−1k ranked items in S appearing in Sl is
1
2l 2l−1k = k

2 . By Chernoff’s bounds, the number of the top-2lk
2 ranked items in

S appearing in Sl is no more than 3k
4 , with probability at least 1−2−Ω(k). In other

words, the non-top-k elements of Sl only includes the non-top-2l−1k elements
of the original stream, with probability 1 − 2−Ω(k). Therefore, E

[
mres(k, l)

]
≤

2 A similar result can also be shown for CountSketch .
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1
2l m

res(2l−1k). By a similar argument, the largest non-top-k frequency, ul, in Sl

has rank at least 3·2lk
4 in S. Thus, ul ≤ frank(3·2l−2·k) ≤ mres(2l−1s)

2l−2k . Items with
ranks between 3·2lk

4 and 2l−1k have frequencies at least ul, and their sum is at

most mres(2l−1k). That is, (3
4 )(2lk)ul ≤ mres(2l−1k), or that, ul ≤ mres(2l−1k)

3·2l−2k
.

Hence, with probability ≥ 1−δ, mres(k, l) ≤ max(2E
[
mres(k, l)

]
, 3ul log 1

δ )) ≤
max(2mres(2l−1k)

2l , 3mres(2l−1k)
2l−2k

log 1
δ ) (from Hoeffding’s bounds). Let δ = 2−

k
16 .

Since k ≥ 36, we get mres(k, l) ≤ mres(2l−1k)
2l with probability > 1− 2−Ω(k). ��

Disambiguating estimated frequency. It is possible for the estimate f̂i,l of an item
i obtained from the sub-stream Sl to exceed the threshold Ql for multiple l. For
example, consider an item with actual frequency larger than Q0. It crosses the
threshold at level 0 and thus is estimated accurately at level 0. However, it may
be sub-sampled at level 1, and in this case, its frequency estimate also crosses the
threshold Q1 (with high probability). In this manner, this item may get estimated
accurately at all the levels at which it has been successfully sub-sampled. Each
of these estimates f̂i,l may be different, though they are all within factors of 1± ε̄
to the actual value. We therefore apply the “disambiguation-rule” of using the
estimate obtained from the lowest level at which it crosses the threshold for that
level. The estimated frequency after disambiguation is denoted as f̂i.

Setting Tl. As per the invariant C1, all elements in Gl ∩Sl must be discovered as
frequent items by Dl. Since, Ql defines the threshold for “good estimation”, fixing
Tl = Ql might seem a possibility. However, the elements of Gl with frequency
close to Tl(= Ql) might fail to even appear in the sample Ḡl due to errors in
estimation, thereby violating C1. One way to solve this problem is to choose
Tl =

√
Ql · Ql+1 = 21/2 · Ql. Since Ql(1 + ε̄) ≥ Ql + Δl (by definition of Ql),

we choose ε̄ such that (1 + ε̄) < 21/2, and hence Tl ≥ Ql + Δl. Thus, any i ∈ Gl

appearing in Sl will be present in the top(k) set returned by Dl, and hence
included into the sample Ḡl since it can suffer an additive error of at most ±Δl.

2.1 Algorithm

Obtaining hierarchical samples. For every stream update (i, v), we use a hash-
function h : {1 . . .N} → {1 . . .N} to map the item onto level u = lsb(h(i)) 3.
The update (i, v) is then propagated to the frequent items data structures Dl

for 0 ≤ l ≤ u, in effect, i is included in the sub-streams from level 0 to level u.
The hash function is assumed to be chosen randomly from a fully independent
family; later we reduce the number of random bits required.

At inference time, the algorithm collects samples as follows. From each level l,
the set of items whose estimated frequency crosses the threshold Ql are identified,
using the frequent items structure Dl. If an item crosses the threshold at multiple
levels, then, the disambiguation rule is applied that sets f̂i to f̂i,l, where, l is
the smallest of the levels r such that f̂i,r ≥ Qr. Based on their disambiguated
3 lsb(x) is the position of the least significant “1” in binary representation of x.
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frequencies, the sampled items are sorted into their respective groups. In order to
maintain the invariant C1, we include an item i in group Gl only if it hashes to
level l. More, precisely, we form the sampled groups, Ḡ0, Ḡ1, . . . , ḠL, as follows.

Ḡ0 = {i : f̂i ≥ T0} and Ḡl = {i : Tl−1 < f̂i ≤ Tl and i ∈ Sl}, 1 ≤ l ≤ L .

Note that any item belonging to Gl and Sl is “discovered” at level l, with high
probability . However, if fi is close to the right or the left boundary of Gl, the
±ε̄fi estimation error could cause i to be misclassified into its adjacent group.
We consider this issue in the next section.

Estimator. The sample is used to compute the estimate Ψ̂ . We also define an
idealized estimator Ψ̄ that assumes that the frequent items structure is an oracle
that does not make errors.

Ψ̂ =
L∑

l=0

∑
i∈Ḡl

ψ(f̂i) · 2l Ψ̄ =
L∑

l=0

∑
i∈Ḡl

ψ(fi) · 2l (2)

2.2 Analysis

Let xi,r denote a random variable which takes the value 1 iff i ∈ Sr and is also
classified by the algorithm into Ḡr. Thus, equation (2) can be written as follows.

Ψ̄ =
∑
i∈S

ψ(fi)
L∑

r=0

xi,r · 2r, Ψ̂ =
∑
i∈S

ψ(f̂i)
L∑

r=0

xi,r · 2r

Lemma 2 shows that the expected value of Ψ̄ is close to Ψ .

Lemma 2. Suppose that for 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi with
probability ≥ 1 − 2−t. Then |E

[
Ψ̄
]
− Ψ | ≤ Ψ · 2−t+log L.

Proof. E
[
Ψ̄
]

=
∑

i∈S E
[
ψ(fi)

∑L
r=0 xi,r · 2r

]
=

∑
i∈S ψ(fi)

∑L
r=0 E

[
xi,r · 2r

]
,

where,
∑L

r=0 E
[
xi,r · 2r

]
=

∑L
r=0 Pr{xi,r = 1} · 2r.

Consider an item i ∈ Gl. The frequency group (or interval) Gl is partitioned
into three sub-regions, namely, lr(Gl) = [Tl, Tl+ ε̄Ql], rr(Gl) = [Tl−1− ε̄Ql, Tl−1]
and mr(Gl) = [Tl + ε̄Ql, Tl−1 − ε̄Ql], that, respectively denote the left-region,
right-region and middle-region of the group Gl. An item i is said to belong to
one of these regions if its true frequency lies in that region. As seen earlier, if
i ∈ Gl and i ∈ Sl, then f̂i,l > Ql, and hence, it is discovered by Dl (with high
probability). We now consider items that lie in the middle-region and the left-
region respectively (the argument for right-region is analogous to that of the
left-region).

Let i ∈ mr(Gl). Then, Tl ≤ fi − Δl ≤ f̂i,l ≤ fi + Δl ≤ Tl−1, that is, the
error Δl is not large enough to cause f̂i,l to cross either Tl or Tl−1. Hence,
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with probability 1 − 2−t, if i ∈ Sl, then, is correctly classified into group Ḡl.
Therefore 1

2l (1 − 2−t) ≤ Pr{xi,l = 1} ≤ 1
2l , and Pr{xi,r = 1} ≤ 1

2r · 2−t for
r �= l. Thus,

∑L
r=0 E

[
xi,r2r

]
≤ 1

2l · 2l +
∑

r �=l 2
−t · 1

2r · 2r ≤ 1 + L · 2−t, and∑L
r=0 E

[
xi,r2r

]
≥ 1

2l · (1 − 2−t) · 2l. Hence, |
∑L

r=0 E
[
xi,r2r

]
− 1| ≤ 2−t+log L.

Let i ∈ lr(Gl). Then, with high probability, i will not be discovered at any
level l′ < l, since f̂i,l′ ≤ fi+ ε̄Ql′ ≤ (1+ ε̄)Tl+ ε̄Ql′ < Ql′ . Therefore, the estimate
f̂i = f̂i,l is obtained from level l. However, by virtue of its true frequency (fi)
being close to Tl, the estimate f̂i,l might be on either side of Tl causing i to be
classified into either Ḡl or Ḡl+1. Let p be the probability that f̂i,l > Tl, that is,
the item gets “correctly” classified into group Ḡl. Therefore, (1 − 2−t) · p · 1

2l ≤
Pr{xi,l = 1} ≤ p · 1

2l . The probability of the same i getting classified into Ḡl+1 at
Dl is 1−p, resulting in (1−p) ·(1−2−t) ·2−(l+1) ≤ Pr{xi,l+1 = 1} ≤ (1−p) · 1

2l+1 .
Note that this argument assumes that the random sub-sampling choices for
an item are made independent of the choices of the other items. Therefore,∑L

r=0 E
[
xi,r 2r

]
≤ (p 1

2l ) 2l + (1 − p) 1
2l+1 2l+1 +

∑
r/∈{l,l−1}

1
2r 2r 2−t.

Therefore, 1− 2−t ≤
∑L

r=0 E
[
xi,r 2r

]
< 1+L · 2−t. Therefore, |E

[∑L
r=0 xi,r 2r −

1
]
| ≤ 2−t+log L. A similar argument can be made for rr(Gl). Combining, we get

|E
[
Ψ̄
]
− Ψ(S)| =

∑
i∈S

ψ(fi) |E
[
xi,r 2r

]
− 1| ≤ Ψ(S) · 2−t+log L .

��

We now present a bound on the variance of the idealized estimator. For any item
i with non-zero frequency, we denote by l(i) the group index l such that i ∈ Gl.

Lemma 3. Suppose that for all 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi

with probability ≥ 1 − 2−t. Then,

Var
[
Ψ̄
]

≤
∑
i∈S

2−t+L+2 · ψ2(fi) +
∑

i/∈(G0−lm(G0))

ψ2(fi) · 2l(i)+1 .

Proof. The proof, analogous to that of Lemma 2, is given in Appendix A. ��

Corollary 1. If the function ψ(·) is increasing in the interval [0 . . . T0 + Δ0],
then, choosing t = L + log 1

ε2 + 2 we get

Var
[
Ψ̄
]

≤
∑
i∈S

ε2ψ2(fi) +
L∑

l=1

∑
i∈Gl

ψ(Tl−1)ψ(fi)2l+1 + 2
∑

i∈lm(G0)

ψ(Tl + Δ0)ψ(fi)

(3)

Proof. If the monotonicity condition is satisfied, then ψ(Tl−1) > ψ(fi) for all
i ∈ Gl, l ≥ 1 and ψ(fi) ≤ ψ(T0 + Δ0) for i ∈ lm(G0). Therefore, ψ2(fi) ≤
ψ(Tl−1) · ψ(fi), in the first case and ψ2(fi) ≤ ψ(T0 + Δ0) in the second case. By
Lemma 3 and the chosen value for t gives the desired result. ��
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2.3 Error in the Estimate

The error incurred by our estimate Ψ̂ is |Ψ̂ − Ψ |, and can be written as the sum
of two error components using triangle inequality.

|Ψ̂ − Ψ | ≤ |Ψ̂ − Ψ̄ | + |Ψ̄ − Ψ | = E1 + E2

Here, E1 = |Ψ − Ψ̄ | is the error due to sampling and E2 = |Ψ̂ − Ψ̄ | is the error
due to the estimation of the frequencies. By Chebychev’s inequality,

E1 = |Ψ − Ψ̄ | ≤ |E[Ψ̄ ] − Ψ | + 3
√

Var
[
Ψ̄
]

with probability
8
9

.

Using Lemma 2 and Corollary 1, and choosing t = L+ log 1
ε2 +2, the expression

for E1 can be simplified as follows.

E1 ≤ ε2LΨ

m
+3

(∑
i∈S

ε2ψ2(fi)+
∑

i∈Gl,l≥1

ψ(Tl−1)ψ(fi)2l+1+
∑

i∈lm(G0)

2ψ(Tl+Δ0)ψ(fi)
)1/2

(4)
with probability 8

9 . We now present an upper bound on E2.

Lemma 4. Suppose that for 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi with
probability ≥ 1 − 2−t. Then, E2 ≤ 16 · ε̄ · Q0

∑L
l=0

∑
i∈Gl

|ψ′(ξi)|
2l with probability

≥ 9
10 − 2−t, where for an i ∈ Gl, ξi lies between fi and f̂i, and maximizes ψ′().

Proof. Let yi,l denote the indicator random variable that is 1 if i ∈ Sl and is 0
otherwise. Note that yi,l+1 is 1 only if yi,l is 1. Let i ∈ Gl. By arguing similarly
to that of Lemma 2, we have the following cases. Consider the set of items i such
that i ∈ mr(Gl), for some l ≥ 1, or, i ∈ G0 − lr(G0). If r = l, then, xi,r = yi,r,
with probability 1− 2−t, and otherwise, xi,r = 0, with probability at most 2−t.
Therefore, for such an item i ,

∑L
r=0 xi,r2r = yi,l2l, with probability 1− 2−t.

Suppose i ∈ lr(Gl), for some l ≥ 0. Then, xi,l + xi,l+1 = yi,l, with probability
1− 2−t, and xi,r = 0, with probability at most 2−t, for r �∈ {l, l + 1}. Therefore,
for such items i,

∑L
r=0 xi,r2r = xi,l2l +xi,l+12l+1 ≤ (xi,l +xi,l+1)2l+1 = yi,l2l+1,

with probability 1− 2−t.
Finally, consider those items i such that i ∈ rr(Gl) for some l ≥ 1. Using a

similar argument, we can show that xi,l+xi,l−1 = yi,l−1, with probability 1−2−t,
and xi,r = 0, with probability 2−t for r �∈ {l, l − 1}. Therefore,

∑L
r=0 xi,r2r ≤

yi,l−12l. Since, yi,l is 1 only if yi,l−1 = 1, for l ≥ 1, in all cases, we have,

L∑
r=0

xi,r · 2r ≤ yi,l(i)−1 · 2l+1, with probability ≥ 1− 2−t, if l(i) ≥ 1 . (5)

By triangle inequality, E2 ≤
∑L

l=0
∑

i∈Gl
|ψ(f̂i)−ψ(fi)| · (

∑L
r=0 xi,r · 2r). Using

Taylor’s expansion, E2 ≤
∑L

l=0
∑

i∈Gl
|Δl · ψ′(ξi)| · (

∑L
r=0 xi,r · 2r), where ξi is
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the value between fi and f̂i at which ψ′() takes its maximum absolute value.
Using (5)

E2 ≤ 2Δ0

∑
i∈G0

|ψ′(ξi)|yi,0 +
L∑

l=1

Δl

∑
i∈Gl

|ψ′(ξi)| yi,l−1 2l+1.

Since S0 = S, we have yi,0 = 1, ∀i ∈ G0. Applying Hoeffding’s bounds to the
second term above , we obtain with probability ≥ 9

10 − 2−t,

E2 ≤ 2Δ0
(∑
i∈G0

|ψ′(ξi)|
)

+ 2 ·
(
4

L∑
l=1

Δl

∑
i∈Gl

|ψ′(ξi)|+ 4 max
i∈S−G0

|Δl(i) ψ′(ξi)|
)

≤ 16
L∑

l=0

Δl

∑
i∈Gl

|ψ′(ξi)| ≤ 16 · ε̄ ·Q0

L∑
l=0

∑
i∈Gl

|ψ′(ξi)|
2l

, since, Δl =
ε̄Q0

2l
. ��

Reducing random bits. The number of random bits used by the algorithm can
be reduced to O(s log m), where, s is the space used by the Hss structure, by
using a classical result of Nisan [13] on pseudo-generators for space bounded
computation, as adapted for use by data stream algorithms by Indyk [10]. Since,
this approach has been adequately treated in [10] and [11], we do not discuss it
in greater detail.

3 Estimating Entropy

In this section, we apply the Hss algorithm to estimate the entropy H =∑
i:fi>0

fi

m log m
fi

of a data stream. We assume that the stream follows the strict
update model (i.e., fi ≥ 0). Later we remark how the algorithm can be modified
for general update streams. For any 0 ≤ x ≤ m, let h(x) denote x

m log m
x (we

assume that h(0) = 0). In this section, the function ψ(x) = h(x) and the statistic
Ψ =

∑
i h(fi) = H .

We instantiate the Hss algorithm using Count-min sketch [6] as the frequent
items structure Dl with 8k

ε̄ buckets in each hash table, where ε̄ = ε itself. We
also estimate mres(k) to within accuracy factors of 1± ε with probability 1− δ.
This is done using an algorithm similar to that of estimating Fres

2 (k) presented
in [7], and uses space O(k

ε log m
δ log m) bits. For brevity, we state the theorem

without proof.

Theorem 3. For a given integer k ≥ 1 and 0 < ε < 1, there exists an algo-
rithm for strict update streams that returns an estimate m̂res(k) satisfying (1−
ε)mres(k) ≤ m̂res(k) ≤ mres(k) with probability 1− δ using O(k

ε (log k
δ )(log m))

bits. ��
We use the algorithm of Theorem 3 with δ = (20mL)−1 to obtain an estimate
m̂res(k) and use it to compute the thresholds Ql and Tl, for levels l = 0, 1, . . . , L,
as follows, where L = 	log m

k 
: Q0 = m̂res(k)
k , Ql = Q0

2l and Tl = 21/2Ql, for
0 ≤ l ≤ L. We now bound the errors E1 and E2.
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Lemma 5. Let k = 4
√

2 log m
ε2(log 1

ε +log log m) and 0 < ε < 1
2 . Then, E1 ≤ 5εH.

Proof. We use (4) to bound E1. For l ≥ 1, h(Tl−1) · 2l+1 =
(

Tl−1
m log m

Tl−1

)
·

2l+1 =
(√

2m̂res(k)
m·(k·2l−1) log m

Tl

)
· 2l+1 ≤ 4

√
2mres(k)

mk log m. Further, since the frequency
of a non-top k item is at most m

k , we have, m̂res(k) =
∑

i/∈ top(k) fi ≤
1

log k

∑
i/∈top(k) fi · log m

fi
< mH

log k . Therefore, h(Tl) · 2l+1 ≤ 4
√

2H log m
k log k , for

l ≥ 1. Further, 2h(T0 + Δ0) ≤ 2(T0+Δ0)
m log

(
m

T0+Δ0

)
≤ 2(1+ ε√

2
)T0

m (log m) ≤
4mres(k) log m

mk ≤ 4H log m
k log k , by the argument above. Therefore, the following sum-

mation from the expression for E1 in (4) is,∑
i∈Gl,l≥1

h(Tl−1)h(fi)2l+1 +
∑

i∈lm(G0)

2h(Tl + Δ0)h(fi)

≤ 4
√

2H log m

k log k

⎛⎝ ∑
i∈Gl,l≥1

h(fi) +
∑

i∈lm(G0)

h(fi)

⎞⎠ ≤ 4
√

2H log m

k log k

∑
i

h(fi)

≤ 4
√

2H2 log m

k log k
≤ ε2H2

by the choice of k as given in the statement. Substituting in (4), and using
L = log m

k , we obtain that E1 ≤ ε2(log m)H
m + 3(ε2H2 + ε2H2)1/2 < 5εH . ��

Lemma 6. If 0 < ε ≤ 1 and k ≥ 	8e
, then E2 ≤ 8
√

2εH.

Proof. Since, ε̄ = ε, by Lemma 4, E2 ≤ 16εQ0
∑L

l=0
∑

i∈Gl

|h′(ξi)|
2l , with prob-

ability ≥ 9
10 − 2−t. Since we are using Count-min sketch , for an i ∈ Gl, ξi

is the value which maximizes h′() in the interval (fi, fi + Δl). By Theorem 3,
m̂res(k) < mres(k), and therefore, Q0 = m̂res(k)

k < mres(k)
k . Let hi denote h(fi),

that is, the contribution of i to H . Let θi denote the contribution of i to E2, that
is, θi = 16εQ0|h′(ξi)|

2l(i) . Thus, E2 =
∑

i:fi>0 θi.

Case 1: fi ≤ m
e − Δ0. Since h′() is positive and non-increasing in [1, m

e ], the
value of ξi maximizing |h′()| in [fi, fi + Δ0] is fi. Therefore h′(ξi) ≤ h′(fi) =
1
m

(
log m

fi
− 1

)
< 1

m log m
fi

= hi

fi
< hi

Tl(i)
. Therefore, θi ≤ 16εQ0hi

2l(i)Tl(i)
≤ 8
√

2εhi, since,

2l(i)Tl(i) = T0 and T0 = Q0
√

2.

Case 2: m
e − Δ0 < fi ≤ m

e . Since, k ≥ 	8e
, T0 ≤ m
k ≤

m
8e and therefore,

i ∈ G0. In this case, we consider two possibilities. First, if f̂i < m
e , then the

value of ξi ∈ {fi, f̂i} maximizing h′() will be fi, and the analysis proceeds as in
Case 1. The second possibility is: f̂i > m

e . In this case, note that |h′(fi − y)| >
|h′(fi + y)| for 0 < y < Δ0. Hence, h′(ξi) < h′(fi − Δ0) < 1

m log m
fi−Δ0

=
1
m (log m

fi
− log(1 − Δl

fi
)) < hi

fi
+ 2Δ0

mfi
= hi

fi
(1 + 2Δ0

mhi
). Since mhi = fi log m

fi
> fi,

and Δ0
fi

< Δ0
T0

= ε√
2

we can write h′(ξi) < hi

fi
(1 + ε

√
2) ≤ hi(1+

√
2)

fi
, since ε ≤ 1.
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Also, fi ≥ m
e −Δ0 = m

e −
εT0√

2
≥ m

e −T0. Since, T0 ≤ m
k ≤

m
8e , therefore, fi ≥ 7T0.

Thus, h′(ξi) < hi

7T0
(1 +

√
2) ≤ hi

2T0
. Therefore, θi ≤ 8εhi.

Case 3: fi > m
e . As argued in Case 2, i ∈ G0. Also |h′()| is increasing in the

range (m
e , m). Let fi = (1 − αi)m, where, 0 ≤ αi < 1 − 1

e . Therefore hi =
(1− αi) log 1

(1−αi)
> αi(1− αi). Further, |h′(ξi)| < |h′(fi + Δ0)|. Let fi + Δ0 =

(1−α′
i)m, that is, α′

i = αi−Δ0
m . Then, |h′((1−α′

i)m)| = 1
m (1−log 1

1−α′
i
) <

1−α′
i

m .

Further, Q0 ≤ mres(k)√
2k
≤ αim√

2k
, which gives, θi = 16εQ0h

′(ξi) < 16εαim
k

(1−α′
i)

m =
16ε(1−α′

i)αi

k ≤ 32ε(1−αi)αi

k , since, f̂i = (1 − α′)m ≤ fi + Δ0 = fi(1 + Δ0
fi

) =
(1− α)m(1 + εQ0

T0
) < 2(1− α)m. Therefore, θi ≤ 32εhi

k ≤ 2εhi, for the given k.
In all cases, θi ≤ 8

√
2εhi. Therefore, E2 =

∑
i:fi>0 θi ≤ 8

√
2ε

∑
i:fi>0 hi =

8
√

2εH . ��

We can now prove the main theorem.

Proof. [Of Theorem 1] The estimation error is bounded by E1+E2. By Lemmas 5
and 6, the total error is (5 + 8

√
2)εH ≤ 17εH . Replacing ε by ε

17 and returning
the median Ĥmed of O(log 1

δ ) independent estimates gives |Ĥmed − H | ≤ εH
with probability 1− δ.

The space used by the Count-min sketch sub-structure at each level of the
Hss structure is O(k

ε (log m + log 1
ε )(log m)) bits 4. The number of levels is

L = log m
k = O(log m). The use of the pseudo-random generator contributes

an additional factor of log m to the space requirement. A collection of O(log 1
δ )

copies are kept to return the median estimate. Therefore, the total space re-
quirement is O

(
k
ε (log m + log 1

ε )(log3 m)(log 1
δ )
)
, which, for the chosen value of

k, becomes O
(

(log4 m)
ε3

(log m+log 1
ε )

(log 1
ε +log log m) (log 1

δ )
)

bits. ��

Generalizing to streams with negative frequencies. We briefly outline how
the algorithm can be applied to the general update streaming model. First,
the Countsketch algorithm for finding frequent items is used instead of
Count-Min algorithm. The role of mres(k) is replaced by Fres

2 (k); otherwise,
the algorithm and its analysis is quite similar. The space complexity of the al-
gorithm is polynomial in 1

ε and (log F2 + log N).
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A Proof of Lemma 3

Proof.

E
[
Ψ̄
]2 = E

[(∑
i

ψ(fi)
L∑

r=0

xi,r · 2r)2]
= E

[∑
i

ψ2(fi)
( L∑

r=0

xi,r · 2r)2 +
∑
i�=j

ψ(fi) · ψ(fj)
L∑

r1=0

xi,r1 · 2r1

L∑
r2=0

xi,r2 · 2r2
]

= E
[∑

i

ψ2(fi)
( L∑

r=0

xi,r · 2r)2]+E
[∑

i�=j

ψ(fi) · ψ(fj)
L∑

r1=0

xi,r1 · 2r1

L∑
r2=0

xj,r2 · 2r2
]

= E
[∑

i

ψ2(fi)
L∑

r=0

x2
i,r · 22r] + E

[∑
i

ψ2(fi)
∑

r1 �=r2

xi,r1 · xi,r2 · 2r1+r2
]

+ E
[∑

i�=j

ψ(fi) · ψ(fj)
L∑

r1=0

xi,r1 · 2r1

L∑
r2=0

xj,r2 · 2r2
]
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We note that: (a) x2
i,r = xi,r . (b) an item i is classified into a unique group Gr,

and therefore, xi,r1 · xi,r2 = 0, for r1 �= r2, and, (c) for i �= j, xi,r1 and xj,r2 are
independent of each other, regardless of the values of r1 and r2. Thus,

E
[
Ψ̄
]2 =

∑
i

E
[
ψ2(fi)

L∑
r=0

xi,r · 22r]+
∑
i�=j

E
[
ψ(fi)

L∑
r1=0

xi,r1 · 2r1
]
E
[
ψ(fj)

L∑
r2=0

xj,r2 · 2r2
]

As a result, the expression for Var
[
Ψ̄
]

simplifies to

Var
[
Ψ̄
]

= E
[
Ψ̄2]− E

[
Ψ̄
]2 =

∑
i

E
[
ψ2(fi)

L∑
r=0

xi,r · 22r
]−∑

i

E
[
ψ(fi)

L∑
r=0

xi,r · 2r
]2

E
[
ψ(fi)

∑L
r=0 xi,r ·2r

]
is given by Lemma 2. E

[
ψ2(fi)

∑L
r=0 xi,r ·22r

]
is calculated

in an almost similar manner; we briefly outline the calculation. Let i ∈ Gl. We
decompose groups into the left-region (lr), middle-region (mr) and right regions
(rr) as in Lemma 2.

Suppose i ∈ G0 \ lr(G0): Then, 1 − 2−t < Pr{f̂i > T0} ≤ 1 and probability
of i being classified into any other Gr, r �= 0 is at most 2−t · 1

2r . Therefore,∑
r E

[
xi,r22r

]
< 1 +

∑
r>0 2−t · 2r < 1 + 2−t+L+1.

Suppose i ∈ lr(G0): In this case, i can get classified into either Ḡ0 or Ḡ1,
with probability at least 1− 2−t. Given that i is classified into one of Ḡ0 or Ḡ1,
let p be the conditional probability that Pr{i ∈ Ḡ0 | i ∈ Ḡ0 ∪ Ḡ1}. Therefore
Pr{xi,0} ≤ p, Pr{xi,1} ≤ (1−p)

2 and Pr{xi,r} ≤ 2−t for r /∈ {0, 1}. Therefore,∑
r E

[
xi,r22r

]
< p + 1−p

2 · 22 +
∑

r>1 2−t · 2r < 2 + 2−t+L+1.
Suppose i ∈ lr(Gl) for l > 1: The analysis for this case is similar to that of i ∈

lr(G0), except that Pr{xi,l} ≤ p
2l , Pr{xi,l+1} ≤ 1−p

2l+1 . Therefore,
∑

r E
[
xi,r22r

]
<

p
2l · 22l + 1−p

2l+1 · 22(l+1) +
∑

r/∈{l,l+1} 2−t · 2r < 2l+1 + 2−t+L+1.
Suppose i ∈ mr(Gl) for l > 1: Such elements will be classified into Ḡl with

probability ≥ 1 − 2−t, resulting in
∑

r E
[
xi,r22r

]
< 1

2l · 22l +
∑

r �=l 2
−t · 2r <

2l + 2−t+L+1.
Suppose i ∈ rr(Gl) for l > 1: Using an argument similar to that for ll(Gl),

we get
∑

i E
[
xi,r22r

]
< 2l + 2−t+L+1. Combining the above cases, we obtain

∑
i

E
[
ψ2(fi)

L∑
r=0

xi,r · 22r
]
≤

∑
i∈G0\lr(G0)

(1 + 2−t+L+1) · ψ2(fi)

+
∑

i/∈G0\lr(G0)

ψ2(fi) · (2l+1 + 2−t+L+1) .

In conjunction with Lemma 2, we get

Var
[
Ψ̄
] ≤ ∑

i∈G0\lr(G0)

(1 + 2−t+L+1) · ψ2(fi) +
∑

i/∈G0\lr(G0)

ψ2(fi) · (2l+1 + 2−t+L+1)

−
∑

i

(1− 2−t+log L) · ψ2(fi) ≤
∑
i∈S

2−t+L+2 · ψ2(fi) +
∑

i/∈G0\lr(G0)

ψ2(fi) · 2l+1.

��
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1 Introduction

How should we rotate two necklaces, each with n beads at different locations, to
best align the beads? More precisely, each necklace is represented by a set of n
points on the unit-circumference circle, and the goal is to find rotations of the

s = 1

c

y0

y1

y2

y3

x0

x1

x3

x2
y0

x0

x3 x2

y1

y2

x1
y3

Fig. 1. An example of necklace alignment: the input
(left) and one possible output (right)

necklaces, and a perfect
matching between the
beads of the two necklaces,
that minimizes some norm
of the circular distances
between matched beads.
In particular, the 
1 norm
minimizes the average
absolute circular distance
between matched beads,
the 
2 norm minimizes the
average squared circular
distance between matched
beads, and the 
∞ norm
minimizes the maximum circular distance between matched beads. The 
1
version of this necklace alignment problem was introduced by Toussaint [29] in
the context of comparing rhythms in computational music theory, with possible
applications to rhythm phylogeny [14, 30].

Toussaint [29] gave a simple O(n2)-time algorithm for 
1 necklace alignment,
and asked whether the problem could be solved in o(n2) time. In this paper,
we solve this open problem by giving o(n2)-time algorithms for 
1, 
2, and 
∞
necklace alignment, in both the standard real RAM model of computation and
the less realistic nonuniform linear decision tree model of computation.

Our approach is based on reducing the necklace alignment problem to an-
other important problem, convolution, for which we also obtain improved al-
gorithms. The (+, ·) convolution of two vectors x = 〈x0, x1, . . . , xn−1〉 and
y = 〈y0, y1, . . . , yn−1〉, is the vector x ∗y = 〈z0, z1, . . . , zn−1〉 where zk =∑k

i=0 xi · yk−i. While any (⊕,�) convolution with specified addition and mul-

tiplication operators (here denoted x
	∗⊕y) can be computed in O(n2) time, the

(+, ·) convolution can be computed in O(n lg n) time using the Fast Fourier
Transform [10, 21, 22], because the Fourier transform converts convolution into
elementwise multiplication. Indeed, fast (+, ·) convolution was one of the early
breakthroughs in algorithms, with applications to polynomial and integer mul-
tiplication [3], batch polynomial evaluation [11, Problem 30-5], 3SUM [15, 1],
string matching [17, 23, 9], matrix multiplication [7], and even juggling [5].

As we show in Theorems 1, 3, and 11, respectively, 
2 necklace align-
ment reduces to standard (+, ·) convolution, 
∞ necklace alignment reduces
to (min, +) [and (max, +)] convolution, and 
1 necklace alignment reduces
to (median, +) convolution (whose kth entry is mediank

i=0 (xi + yk−i)). The
(min, +) convolution problem has appeared frequently in the literature, already
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appearing in Bellman’s early work on dynamic programming in the early 1960s
[2, 16, 24, 25, 26, 28]. Its name varies among “minimum convolution”, “min-sum
convolution”, “inf-convolution”, “infimal convolution”, and “epigraphical sum”.1

To date, however, no worst-case o(n2)-time algorithms for this convolution, or
the more complex (median, +) convolution, has been obtained. In this paper, we
develop worst-case o(n2)-time algorithms for (min, +) and (median, +) convolu-
tion, in the real RAM and the nonuniform linear decision tree.

Necklace alignment problem. More formally, in the necklace alignment problem,
the input is a number p representing the 
p norm, and two sorted vectors of
n real numbers, x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, representing
the two necklaces. See Figure 1. Canonically, we assume that each number xi

and yi is in the range [0, 1), representing a point on the unit-circumference circle
(parameterized clockwise from some fixed point).

The optimization problem involves two parameters. The first parameter, the
offset c ∈ [0, 1), is the clockwise rotation angle of the first necklace relative to
the second necklace. The second parameter, the shift s ∈ {0, 1, . . . , n}, defines
the perfect matching between beads: bead i of the first necklace matches with
bead (i + s) mod n of the second necklace. (Here we use the property that an
optimal perfect matching between the beads does not cross itself.)

The goal of the 
p necklace alignment problem is to find the offset c ∈ [0, 1)
and the shift s ∈ {0, 1, . . . , n} that minimize

∑n−1
i=0

∣∣xi − y(i+s) mod n + c
∣∣p or, in

the case p =∞, that minimize maxn−1
i=0

∣∣xi − y(i+s) mod n + c
∣∣.

Although not obvious from the definition, the 
1, 
2, and 
∞ necklace align-
ment problems all have trivial O(n2) solutions. In each case, as we show, the
optimal offset c can be computed in linear time for a given shift value s (some-
times even independent of s). The optimization problem is thus effectively over
just s ∈ {0, 1, . . . , n}, and the objective costs O(n) time to compute for each s,
giving an O(n2)-time algorithm.

Related work. Although necklaces are studied throughout mathematics, mainly
in combinatorial settings, we are not aware of any work on the necklace alignment
problem before Toussaint [29]. He introduced 
1 necklace alignment, calling it
the cyclic swap-distance or necklace swap-distance problem, with a restriction
that the beads lie at integer coordinates. Colannino et al. [8] consider some
different distance measures between two sets of points on the real line in which
the matching does not have to match every point. They do not, however, consider
alignment under such distance measures.

The only subquadratic results for (min, +) convolution concern two special
cases. First, the (min, +) convolution of two convex sequences or functions can
be trivially computed in O(n) time by a simple merge, which is the same as
computing the Minkowski sum of two convex polygons [26]. This special case is
already used in image processing and computer vision [16, 24]. Second, Bussieck

1 “Tropical convolution” would also make sense, by direct analogy with tropical ge-
ometry, but we have never seen this terminology used in print.
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et al. [4] proved that the (min, +) convolution of two randomly permuted se-
quences can be computed in O(n lg n) expected time. Our results are the first to
improve the worst-case running time for (min, +) convolution.

Connections to X + Y . The necklace alignment problems, and their corre-
sponding convolution problems, are also intrinsically connected to problems on
X + Y matrices. Given two lists of n numbers, X = 〈x0, x1, . . . , xn−1〉 and
Y = 〈y0, y1, . . . , yn−1〉, X + Y is the matrix of all pairwise sums, whose (i, j)th
entry is xi+yj. A classic unsolved problem [12] is whether the entries of X+Y can
be sorted in o(n2 lg n) time. Fredman [19] showed that O(n2) comparisons suffice
in the nonuniform linear decision tree model, but it remains open whether this
can be converted into an O(n2)-time algorithm in the real RAM model. Steiger
and Streinu [27] gave a simple algorithm that takes O(n2 log n) time while using
only O(n2) comparisons.

The (min, +) convolution is equivalent to finding the minimum element in each
antidiagonal of the X + Y matrix, and similarly the (max, +) convolution finds
the maximum element in each antidiagonal. We show that 
∞ necklace alignment
is equivalent to finding the antidiagonal of X + Y with the smallest range (the
maximum element minus the minimum element). The (median, +) convolution is
equivalent to finding the median element in each antidiagonal of the X + Y ma-
trix. We show that 
1 necklace alignment is equivalent to finding the antidiagonal
of X +Y with the smallest median cost (the total distance between each element
and the median of the elements). Given the apparent difficulty in sorting X +Y ,
it seems natural to believe that the minimum, maximum, and median elements
of every antidiagonal cannot be found, and that the corresponding objectives
cannot be minimized, any faster than O(n2) total time. Figure 2 shows a sample
X +Y matrix with the maximum element in each antidiagonal marked, with no
apparent structure. Nonetheless, we show that o(n2) algorithms are possible.

Our results. In the standard real RAM model, we give subquadratic algorithms
for the 
1, 
2, and 
∞ necklace alignment problems, and for the (min, +) and
(median, +) convolution problems, using techniques of Chan [6]. Despite the
roughly logarithmic factor improvements for 
1 and 
∞, these results do not use
word-level bit tricks of word-RAM fame.
1. O(n lg n)-time algorithm on the real RAM for 
2 necklace alignment (Sec-

tion 2).
2. O(n2/ lg n)-time algorithm on the real RAM for 
∞ necklace alignment and

(min, +) convolution (Section 3).
3. O(n2(lg lg n)2/ lg n)-time algorithm on the real RAM for 
1 necklace align-

ment and (median, +) convolution (Section 4).

In the nonuniform linear decision tree model, we give faster algorithms for the

1 and 
∞ necklace alignment problems, using techniques of Fredman [19, 20]:
4. O(n

√
n)-time algorithm in the nonuniform linear decision tree model for 
∞

necklace alignment and (min, +) convolution (Section 3).
5. O(n

√
n lg n)-time algorithm in the nonuniform linear decision tree model for


1 necklace alignment and (median, +) convolution (Section 4).
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Fig. 2. An X + Y matrix. Each polygonal line denotes an antidiagonal of the matrix,
with a point at coordinates (x, y) denoting the value x+ y for x ∈ X and y ∈ Y . An ×
denotes the maximum element in each antidiagonal.

(Although we state our results here in terms of (min, +) and (median, +) convo-
lution, our results discuss − instead of + for synergy with necklace alignment.)

2 �2 Necklace Alignment and (+, ·) Convolution

In this section, we show how 
2 necklace alignment reduces to standard convo-
lution, leading to an O(n lg n)-time algorithm.

Theorem 1. The 
2 necklace alignment problem can be solved in O(n lg n) time
on a real RAM.

Proof. The objective
∑n−1

i=0

(
xi − y(i+s) mod n + c

)2 expands algebraically to

n−1∑
i=0

(
x2

i + 2cxi + c2) +
n−1∑
i=0

(
y2
(i+s) mod n− 2cy(i+s) mod n

)
− 2

n−1∑
i=0

xiy(i+s) mod n

=

[
n−1∑
i=0

(
x2

i + y2
i

)
+ 2c

n−1∑
i=0

(xi − yi) + nc2

]
− 2

n−1∑
i=0

xiy(i+s) mod n.

The first term depends solely on the inputs and the variable c, while the second
term depends solely on the inputs and the variable s. Thus the two terms can be
optimized separately. The first term can be optimized in O(n) time by solving
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for when the derivative, which is linear in c, is zero. The second term can be
computed, for each s ∈ {0, 1, . . . , n−1}, in O(n lg n) time using (+, ·) convolution
(and therefore optimized in the same time). Specifically, define the vectors

x′ = 〈x0, x1, . . . , xn−1; 0, 0, . . . , 0︸ ︷︷ ︸
n

〉; y′ = 〈yn−1, yn−2, . . . , y0; yn−1, yn−2, . . . , y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the (n + s′)th entry of the convolution x′ ∗y′ is∑n+s′

i=0 x′
iy

′
n+s′−i =

∑n−1
i=0 xiy(i−s′−1) mod n, which is the desired entry if we let

s′ = n − 1 − s. We can compute the entire convolution in O(n lg n) time using
the Fast Fourier Transform. �

3 �∞ Necklace Alignment and (min, +) Convolution

First we show the relation between 
∞ necklace alignment and (min, +) convo-
lution. We need the following basic fact:

Fact 2. For any vector z = 〈z0, z1, . . . , zn−1〉, the minimum value of
maxn−1

i=0 |zi + c| is 1
2

(
maxn−1

i=0 zi −minn−1
i=0 zi

)
, which is achieved when c =

− 1
2

(
minn−1

i=0 zi + maxn−1
i=0 zi

)
.

Instead of using (min, +) convolution directly, we use two equivalent forms,
(min,−) and (max,−) convolution:

Theorem 3. The 
∞ necklace alignment problem can be reduced in O(n) time
to one (min,−) convolution and one (max,−) convolution.

Proof. For two necklaces x and y, we apply the (min,−) convolution to the
following vectors:

x′ = 〈x0, x1, . . . , xn−1;∞, . . . ,∞︸ ︷︷ ︸
n

〉; y′ = 〈yn−1, yn−2, . . . , y0; yn−1, yn−2, . . . , y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the (n + s′)th entry of x′ −∗
mın

y′ is minn+s′
i=0 (x′

i −
y′

n+s′−i) = minn−1
i=0 (xi − y(i−s′−1) mod n), which is minn−1

i=0 (xi − y(i+s) mod n) if
we let s′ = n − 1 − s. By symmetry, we can compute the (max,−) convolution

x′′ −∗
max

y′, where x′′ has−∞’s in place of∞’s, and use it to compute maxn−1
i=0 (xi−

y(i+s) mod n) for each s ∈ {0, 1, . . . , n − 1}. Applying Fact 2, we can therefore
minimize maxn−1

i=0 |xi − y(i+s) mod n + c| over c, for each s ∈ {0, 1, . . . , n− 1}. By
brute force, we can minimize over s as well using O(n) additional comparisons
and time. �

For our nonuniform linear decision tree results, we use the main theorem of
Fredman’s work on sorting X + Y :

Theorem 4. [19] For any fixed set Γ of permutations of N elements, there is
a comparison tree of depth O(N + lg |Γ |) that sorts any sequence whose rank
permutation belongs to Γ .
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Theorem 5. The (min,−) convolution of two vectors of length n can be com-
puted in O(n

√
n) time in the nonuniform linear decision tree model.

Proof. Let x and y denote the two vectors of length n, and let x
−∗

mın
y denote

their (min,−) convolution, whose kth entry is mink
i=0 (xi − yk−i).

First we sort the set D = {xi− xj , yi− yj : |i− j| ≤ d} of pairwise differences
between nearby xi’s and nearby yi’s, where d ≤ n is a value to be determined
later. This set D has N = O(nd) elements. The possible sorted orders of D
correspond to cells in the arrangement of hyperplanes in R2n induced by all

(
N
2

)
possible comparisons between elements in the set, and this hyperplane arrange-
ment has O(N4n) cells. By Theorem 4, there is a comparison tree sorting D of
depth O(N + n lg N) = O(nd + n lg n).

The comparisons we make to sort D enable us to compare xi − yk−i versus
xj − yk−j for free, provided |i− j| ≤ d, because xi− yk−i < xj − yk−j precisely if
xi − xj < yk−i − yk−j . Thus, in particular, we can compute Mk(λ) = min{xi −
yk−i : i = λ, λ + 1, . . . ,min{λ + d, n} − 1} for free (using the outcomes of the
comparisons we have already made).

We can rewrite the kth entry mink
i=0(xi − yk−i) of x

−∗
mın

y as

min{Mk(0), Mk(d), Mk(2d), . . . , Mk(	k/d
d)}, and thus we can compute it in
O(k/d) = O(n/d) comparisons between differences. Therefore all n entries can
be computed in O(nd + n lg n + n2/d) total time.

This asymptotic running time is minimized when nd = Θ(n2/d), i.e., when
d2 = Θ(n). Substituting d =

√
n, we obtain a running time of O(n

√
n) in the

nonuniform linear decision tree model. �

Combining Theorems 3 and 5, we obtain the following result:

Corollary 6. The 
∞ necklace alignment problem can be solved in O(n
√

n) time
in the nonuniform linear decision tree model.

Our results on the real RAM use the following geometric lemma from Chan’s
work on all-pairs shortest paths:

Lemma 7. [6, Lemma 2.1] Given n points p1, p2, . . . , pn in d dimensions, each
colored either red or blue, we can find the P pairs (pi, pj) for which pi is red, pj

is blue, and pi dominates pj (i.e., for all k, the kth coordinate of pi is at least
the kth coordinate of pj), in 2O(d)n1+ε + O(P ) time for arbitrarily small ε > 0.

Theorem 8. The (min,−) convolution of two vectors of length n can be com-
puted in O(n2/ lg n) time on a real RAM.

Proof. Let x and y denote the two vectors of length n, and let x
−∗

max
y denote

their (max,−) convolution. (Symmetrically, we can compute the (min,−) con-
volution.) For each δ ∈ {0, 1, . . . , d− 1}, for each i ∈ {0, d, 2d, . . . , �n/d�d}, and
for each j ∈ {0, 1, . . . , n− 1}, we define the d-dimensional points

pδ,i =(xi+δ − xi, xi+δ − xi+1, . . . , xi+δ − xi+d−1),
qδ,j =(yj−δ − yi, yj−δ − yi−1, . . . , yj−δ − yj−d−1).
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(To handle boundary cases, define xi =∞ and yj = −∞ for indices i, j outside
[0, n − 1].) For each δ ∈ {0, 1, . . . , d − 1}, we apply Lemma 7 to the set of red
points {pδ,i : i = 0, d, 2d, . . . , �n/d�d} and the set of blue points {qδ,j : j =
0, 1, . . . , n− 1}, to obtain all dominating pairs (pδ,i, qδ,j).

Point pδ,i dominates qδ,j precisely if xi+δ − xi+δ′ ≥ yj−δ − yj−δ′ for all
δ′ ∈ {0, 1, . . . , d − 1} (ignoring the indices outside [0, n − 1]). By re-arranging
terms, this condition is equivalent to xi+δ − yj−δ ≥ xi+δ′ − yj−δ′ for all
δ′ ∈ {0, 1, . . . , d− 1}. If we substitute j = k − i, we obtain that (pδ,i, qδ,k−i) is a
dominating pair precisely if xi+δ−yk−i−δ = maxd−1

δ′=1(xi+δ′ −yk−i−δ′). Thus, the
set of dominating pairs gives us the maximum Mk(i) = max{xi − yk−i, xi+1 −
yk−i+1, . . . , xmin{i+d,n}−1 − ymin{k−i+d,n}−1} for each i divisible by d and for
each k. Also, there can be at most O(n2/d) such pairs for all i, j, δ, because
there are O(n/d) choices for i and O(n) choices for j, and if (pδ,i, qδ,j) is a dom-
inating pair, then (pδ′,i, qδ′,j) cannot be a dominating pair for any δ′ �= δ. (Here
we assume that the max is achieved uniquely, which can be arranged by standard
perturbation techniques or by breaking ties consistently [6].) Hence, the running
time of the d executions of Lemma 7 is d2O(d)n1+ε + O(n2/d) time, which is
O(n2/ lg n) if we choose d = α lg n for a sufficiently small constant α > 0. We can

rewrite the kth entry maxk
i=0(xi−yk−i) of x

−∗
max

y as max{Mk(0), Mk(d), Mk(2d),

. . . , Mk(	k/d
d)}, and thus we can compute it in O(k/d) = O(n/d) time. Thus
all n entries can be computed in O(n2/d) = O(n2/ lg n) time on a real RAM. �

Combining Theorems 3 and 8, we obtain the following result:

Corollary 9. The 
∞ necklace alignment problem can be solved in O(n2/ lg n)
time on a real RAM.

This approach likely cannot be improved beyond O(n2/ lg n). Such an improve-
ment would require an improvement to Lemma 7, which would in turn improve
the fastest known algorithm for all-pairs shortest paths in dense graphs, the
O(n3/ lg n)-time algorithm of [6].

4 �1 Necklace Alignment and (median, +) Convolution

First we show the relation between 
1 necklace alignment and (median, +) con-
volution. We need the following basic fact:

Fact 10. For any vector z = 〈z0, z1, . . . , zn−1〉,
∑n−1

i=0 |zi +c| is minimized when
c = −mediann−1

i=0 zi.

Instead of using (median, +) convolution directly, we use the equivalent form,
(median,−) convolution:

Theorem 11. The 
1 necklace alignment problem can be reduced in O(n) time
to one (median,−) convolution.

Proof. For two necklaces x and y, we apply the (median,−) convolution to the
following vectors, as in the proof of Theorem 3:
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x′ = 〈x0, x0, x1, x1, . . . , xn−1, xn−1;∞,−∞,∞,−∞, . . . ,∞,−∞︸ ︷︷ ︸
2n

〉,

y′ = 〈yn−1, yn−1, yn−2, yn−2, . . . , y0, y0; yn−1, yn−1, yn−2, yn−2, . . . , y0, y0〉.

Then, for s′ ∈ {0, 1, . . . , n − 1}, the 2(n + s′) + 1st entry of x′ −∗
med

y′ is

median2(n+s′)+1
i=0 (x′

i − y′
2(n+s′)+1−i) = mediann−1

i=0 (xi − y(i−s′−1) mod n), which
is mediann−1

i=0 (xi − y(i+s) mod n) if we let s′ = n − 1 − s. Applying Fact 10,
we can therefore minimize mediann−1

i=0 |xi − y(i+s) mod n + c| over c, for each
s ∈ {0, 1, . . . , n − 1}. By brute force, we can minimize over s as well using
O(n) additional comparisons and time. �

Our results for (median,−) convolution use the following result of Frederickson
and Johnson:

Theorem 12. [18] The median element of the union of k sorted lists, each of
length n, can be computed in O(k lg n) time and comparisons.

We begin with our results for the nonuniform linear decision tree model:

Theorem 13. The (median,−) convolution of two vectors of length n can be
computed in O(n

√
n lg n) time in the nonuniform linear decision tree model.

Proof. As in the proof of Theorem 6, we sort the set D = {xi − xj , yi − yj :
|i − j| ≤ d} of pairwise differences between nearby xi’s and nearby yi’s, where
d ≤ n is a value to be determined later. By Theorem 4, this step requires
O(nd + n lg n) comparisons between differences. These comparisons enable us
to compare xi − yk−i versus xj − yk−j for free, provided |i − j| ≤ d, because
xi − yk−i < xj − yk−j precisely if xi − xj < yk−i − yk−j . In particular, we
can sort each list Lk(λ) = 〈xi − yk−i : i = λ, λ + 1, . . . ,min{λ + d, n} − 1〉 for
free. By Theorem 12, we can compute the median of Lk(0) ∪ Lk(d) ∪ Lk(2d) ∪
· · · ∪ Lk(	k/d
d), i.e., mediank

i=0(xi − yk−i), in O((k/d) lg d) = O((n/d) lg d)
comparisons. Also, in the same asymptotic number of comparisons, we can binary
search to find where the median fits in each of the Lk(λ) lists, and therefore which
differences are smaller and which differences are larger than the median. This
median is the kth entry of x

−∗
med

y. Therefore, we can compute all n entries of

x
−∗

med
y in O(nd+n lg n+(n2/d) lg d) comparisons. This asymptotic running time

is minimized when nd = Θ((n2/d) lg d), i.e., when d2/ lg d = Θ(n). Substituting
d =
√

n lg n, we obtain a running time of O(n
√

n lg n) in the nonuniform linear
decision tree model. �

Combining Theorems 11 and 13, we obtain the following result:

Corollary 14. The 
1 necklace alignment problem can be solved in O(n
√

n lg n)
time in the nonuniform linear decision tree model.

Now we turn to the analogous results for the real RAM:

Theorem 15. The (median,−) convolution of two vectors of length n can be
computed in O(n2(lg lg n)2/ lg n) time on a real RAM.
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Proof. Let x and y denote the two vectors of length n, and let x
−∗

med
y denote

their (median,−) convolution. For each permutation π on the set {0, 1, . . . , d−1},
for each i ∈ {0, d, 2d, . . . , �n/d�d}, and for each j ∈ {0, 1, . . . , n − 1}, we define
the (d− 1)-dimensional points

pπ,i =(xi+π(0) − xi+π(1), xi+π(1) − xi+π(2), . . . , xi+π(d−2) − xi+π(d−1)),
qπ,j =(yj−π(0) − yj−π(1), yj−π(1) − yj−π(2), . . . , yj−π(d−2) − yj−π(d−1)),

(To handle boundary cases, define xi =∞ and yj = −∞ for indices i, j outside
[0, n− 1].) For each permutation π, we apply Lemma 7 to the set of red points
{pπ,i : i = 0, d, 2d, . . . , �n/d�d} and the set of blue points {qπ,j : j = 0, 1, . . . , n−
1}, to obtain all dominating pairs (pπ,i, qπ,j).

Point pπ,i dominates qπ,j precisely if xi+π(δ)−xi+π(δ+1) ≥ yj−π(δ)−yj−π(δ+1)
for all δ ∈ {0, 1, . . . , d − 2} (ignoring the indices outside [0, n − 1]). By re-
arranging terms, this condition is equivalent to xi+π(δ) − yj−π(δ) ≥ xi+π(δ+1) −
yj−π(δ+1) for all δ ∈ {0, 1, . . . , d − 2}, i.e., π is a sorting permutation of
〈xi − yj, xi+1 − yj−1, . . . , xi+d−1− yj−d+1〉. If we substitute j = k− i, we obtain
that (pπ,i, qπ,k−i) is a dominating pair precisely if π is a sorting permutation of
the list Lk(i) = 〈xi − yk−i, xi+1 − yk−i+1, . . . , xmin{i+d,n}−1 − ymin{k−i+d,n}−1〉.
Thus, the set of dominating pairs gives us the sorted order of Lk(i) for each i di-
visible by d and for each k. Also, there can be at most O(n2/d) total dominating
pairs (pπ,i, qπ,j) over all i, j, π, because there are O(n/d) choices for i and O(n)
choices for j, and if (pπ,i, qπ,j) is a dominating pair, then (pπ′,i, qπ′,j) cannot be
a dominating pair for any permutation π′ �= π. (Here we assume that the sorted
order is unique, which can be arranged by standard perturbation techniques
or by breaking ties consistently [6].) Hence, the running time of the d! execu-
tions of Lemma 7 is d! 2O(d)n1+ε + O(n2/d) time, which is O(n2 lg lg n/ lgn) if
we choose d = α lg n/ lg lg n for a sufficiently small constant α > 0. By Theo-
rem 12, we can compute the median of Lk(0)∪Lk(d)∪Lk(2d)∪· · ·∪Lk(	k/d
d),
i.e., mediank

i=0(xi − yk−i), in O((k/d) lg d) = O((n/d) lg d) comparisons. Also,
in the same asymptotic number of comparisons, we can binary search to find
where the median fits in each of the Lk(λ) lists, and therefore which differ-
ences are smaller and which differences are larger than the median. This me-
dian is the kth entry of x

−∗
med

y. Therefore all n entries can be computed in

O(n2(lg d)/d) = O(n2(lg lg n)2/ lg n) time on a real RAM. �

Combining Theorems 11 and 15, we obtain the following result:

Corollary 16. The 
1 necklace alignment problem can be solved in
O(n2(lg lg n)2/ lg n) time on a real RAM.

As before, this approach likely cannot be improved beyond O(n2/ lg n), because
such an improvement would require an improvement to Lemma 7, which would
in turn improve the fastest known algorithm for all-pairs shortest paths in dense
graphs [6]. In contrast to (median, +) convolution, (mean, +) convolution is triv-
ial to compute in linear time.
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5 Conclusion

The convolution problems we consider here have connections to many classic
problems, and it would be interesting to explore whether the structural infor-
mation extracted by our algorithms could be used to devise faster algorithms
for these classic problems. For example, does the antidiagonal information of the
X + Y matrix lead to a o(n2 lg n)-time algorithm for sorting X + Y ? We be-
lieve that any further improvements to our convolution algorithms would require
progress and/or have interesting implications on all-pairs shortest paths [6].

Our (min,−)-convolution algorithms give subquadratic algorithms for poly-
hedral 3SUM : given three lists, A = 〈a0, a1, . . . , an−1〉, B = 〈b0, b1, . . . , bn−1〉,
and C = 〈c0, c1, . . . , c2n−2〉, such that ai + bj ≤ ci+j for all 0 ≤ i, j < n, decide
whether ai + bj = ci+j for any 0 ≤ i, j < n. This problem is a special case of
3SUM, and this special case has an Ω(n2) lower bound in the 3-linear decision
tree model [15]. Our results solve polyhedral 3SUM in O(n2/ lg n) time in the
4-linear decision tree model, and in O(n

√
n) time in the nonuniform 4-linear

decision tree model, solving an open problem of Erickson [13]. Can these algo-
rithms be extended to solve 3SUM in subquadratic time in the (nonuniform)
decision tree model?
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Abstract. We present a purely functional implementation of search
trees that requires O(log n) time for search and update operations and
supports the join of two trees in worst case constant time. Hence, we solve
an open problem posed by Kaplan and Tarjan as to whether it is possible
to envisage a data structure supporting simultaneously the join opera-
tion in O(1) time and the search and update operations in O(log n) time.

Keywords: data structures, sorted lists, purely functional programming.

1 Introduction

The balanced search tree is one of the most common data structures used in
algorithms and constitutes an elegant solution to the dictionary problem. In
this problem, one needs to maintain a set of elements in order to support the
operations of insertion, deletion and searching for the predecessor of a query
element. In a series of applications [9, 10, 13, 16] search trees are also equipped
with the operations of join and split. The most efficient search trees use linear
space and support insertion, deletion, search, join and split operations in loga-
rithmic time; the most prominent examples of them are: AVL-trees, red-black
trees, (a, b)-trees, BB[α]-trees and Weight Balanced B-trees.

In commonly used data structures, update operations such as insertions and
deletions change the data structure in such a way, that the old version (the ver-
sion before the update) is destroyed. These data structures are called ephemeral.
A data structure that does not destroy its previous versions after updates, is
called a persistent data structure. Depending on the operations allowed by a
persistent structure, the following types of persistence can be distinguished:

– Partial persistence: only the latest version of the structure can be updated
and all the versions can be queried.

– Full persistence: all the versions can be updated and queried.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 172–183, 2006.
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– Confluent persistence: all the versions can be updated and queried and addi-
tionally, two versions can be combined to produce a new version. Note that
in this case it is possible to create in polynomial time an exponentially sized
structure by repeatedly joining it with itself.

The history of a persistent data structure is represented by a version graph
G = (V, E); a node v ∈ V corresponds to a version of the data structure while an
edge e ∈ E between nodes v and v′ denotes that one of the structures involved
in the operation creating v′ was v. For the partial persistence case the version
graph is a linear list, while for the full persistence case it is a tree. In the case
of confluently persistent data structures the version graph is a directed acyclic
graph.

Notably, persistent data structures are also met under the name purely func-
tional data structures. This term indicates data structures built using operations
that correspond to the LISP commands car, cdr, cons. These commands create
nodes which are immutable and hence fully persistent. However, a full persistent
data structure is not necessarily purely functional.

The problem of devising a general framework for turning ephemeral pointer-
based data structures into their partial and full persistent counterparts was
successfully handled in [7]. The proposed construction works for linked data
structures of bounded in-degree and allows the transformation of an ephemeral
structure into a partial or full persistent one with only a constant amortized
time and space cost. The amortized bounds for the partial persistent construc-
tion were turned into worst case in [2]. Additionally, in [16] Okasaki presented
simpler constructions by applying the lazy evaluation technique met in functional
languages.

The aforementioned general techniques fail to apply in the confluent per-
sistence setting; in this setting the version graph becomes a DAG making the
navigation method of [7] to fail. Fiat and Kaplan presented efficient methods
to transform general linked data structures to confluently persistent and have
showed that if the total number of assignments is U then the update creating ver-
sion v will cost O(d(v) + log U) and the space requirement will be O(d(v) log U)
bits, where d(v) is the depth of v in the version graph.

The aforementioned general framework was surpassed in practice by ad hoc
solutions for specific data structures. In particular in [8, 4, 11, 12] a set of so-
lutions for constructing confluent persistent deques was presented leading to
an optimal solution that could handle every operation in worst case constant
time and space cost. The supported set of operations included push, pop, inject,
eject and catenate. One of the most interesting examples of purely functional
data structure is sorted lists implemented as finger trees. Kaplan and Tarjan
described in [13] three implementations, the more efficient of which achieved
logarithmic access, insertion and deletion time, and double-logarithmic catena-
tion time. In fact, they supported the search and update operations in O(log d)
time, where d is the number of elements between the queried element and the
smallest or the largest element in the tree. They asked whether the join opera-
tion can be implemented in O(1) worst-case time even in an ephemeral setting,
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while supporting searches and updates in logarithmic time. They sketched a data
structure supporting the join operation in O(1) time but the time complexity of
search and update operations was O(log n log log n).

In this paper we focus on the problem of efficiently implementing purely func-
tional sorted lists from the perspective of search trees and not finger trees as
in [13]. We present a purely functional implementation of search trees that sup-
ports join operations in worst-case constant time, while simultaneously support-
ing search and update operations in logarithmic time. In Figure 1 we provide
the complexities of our data structure and compare them with previous results.
In Section 2, we introduce the reader to the problem as well as to some basic
notions used throughout the paper. In Section 3, we present the main struc-
tural elements of the construction and depict how to make the structure purely
functional, and finally we conclude in Section 4 with some final remarks.

Traditional Kaplan & Tarjan This Paper
(e.g. AVL, (a, b)-trees) (STOC ’96 [13])

Search O(log n) O(log n) - O(log d) O(log n)
Join O(log n) O(log log n) O(1)

Insert/Delete O(log n) O(log n) - O(log d) O(log n)

Fig. 1. Comparison of the complexities of our data structure with previous results.
Here n denotes the number of stored elements, while d denotes the number of elements
between the queried element (defined by the insert, delete or search operations) and
the smallest or largest element.

2 Definitions

A biased tree T [15], [1] is a leaf-oriented search tree storing elements equipped
with weights. The weight w(v) of a node v in T is the sum of the weights of all
the leaves in its subtree. The weight w(T ) of the tree T is the weight of the root
of T . The left (right) spine of the tree T is the path from the root of T to the
smallest (largest) element of the tree.

In this paper, we consider the problem of maintaining a set of elements each of
weight 1, represented as a collection of trees, subject to the following operations:

1. Insert(Ti,x), inserts element x in the tree Ti.
2. Delete(Ti,x), deletes the element x, if it exists, from tree Ti.
3. Search(Ti,x), returns the position of x in the tree Ti. If x does not exist in

Ti, then it returns the position of its predecessor.
4. CreateTree(Ti,x), creates a new tree Ti with element x. A tree Ti ceases

to exist when it has no elements.
5. Join(Ti,Tj), joins the two trees in one tree. Trees Ti and Tj are ordered

in the sense that all elements of Tj are either smaller or larger than the
smallest or largest element of Ti. Assume without loss of generality that
w(Ti) ≥ w(Tj). In this case, tree Tj is attached to tree Ti, and the result of
this operation is the tree Ti. Tj is attached to a node on the spine of Ti.
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There exist various implementations of biased trees differing in the used bal-
ance criterion; our construction is based on the biased 2, b trees presented in [1]
which are analogous to 2,3 trees and B-trees. A 2, b tree is a search tree with
internal nodes having degree at least 2 and at most b; in a biased 2, b tree the
rank r(v) of a leaf v is equal to �log w(v)�, while the rank of an internal node
is one plus the maximum of the ranks of its children. The rank r(T ) of the tree
is the rank of the root. In [1] it is described how to maintain a 2, b tree so that
accessing a leaf v takes O(log(w(T )/w(v)) query time; inserting an item i takes
O(log(w(T )/(wi− + wi+)) + log(w′(T )/wi)) time and deleting an item i takes
O(log(w′(T )/(wi− + wi+)) + log(w(T )/wi)) time, where w(T ), w′(T ), are the
weights of the tree before and after the operation and i−, i+ are the largest item
smaller than i and the smallest item larger than i respectively. These bounds are
achieved by maintaining a balance criterion termed global bias. A globaly biased
2, b tree is a 2, b tree with the property that any neighboring leaf of a node v
whose parent w has rank larger than r(v) + 1, has rank r(w) − 1.

We will employ in our construction biased 2, 4 trees, using the same definitions
of weights, ranks and balance (global bias) as in [1].

3 The Fast Join-Tree

In this section we provide a description of our structure, called the Fast Join-
tree. Initially we present an overview, introducing the building components of
the structure and the way these various components are linked together. Then,
we discuss how these components are combined when joining trees in order
to produce a worst-case constant time implementation. Finally, we provide the
necessary machinery for the update operations as well as the necessary changes
that have to be performed in the structure in order to make it purely functional.

3.1 An Overview

The main goal of the proposed data structure is to support the join operation in
O(1) worst-case time. The main obstacle in achieving this complexity for the join
operation is the location of the appropriate position on the spine (see Section 2,
definition of Join operation). This problem can be overcome by performing joins
in a lazy manner. In particular, if two trees T and T ′ such that r(T ) ≥ r(T ′) are
joined, then T ′ is inserted in a temporary structure along with other trees that
have been joined with T . This temporary structure is called a tree-collection.
Thus, a tree-collection is a set of elements structured as a forest of trees. During
the insertion of trees in the tree-collection, the spine is traversed so that the
tree-collection is finally inserted in the appropriate position. The tree-collection
is implemented as a simple linked linear list of trees.

A tree-collection can be considered as a weighted element to be inserted in
a tree structure. The weight of a tree-collection x is the number of leaves of
the trees in x. A tree-collection can be inserted in a fast Join tree in worst-case
constant time by employing a preventive top-down rebalancing scheme on the
spines.
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Fig. 2. The structure of the fast Join-tree at one recursive level

The fast Join-tree is better understood as a recursive data structure. A biased
search tree constitutes a recursive level of the fast Join-tree, called henceforth a
J-tree. As a result, the fast Join-tree is a J-tree whose leaves are tree-collections.
A tree-collection, as implied earlier, is a linear list of J-trees. These J-trees con-
stitute the second recursion level. The recursion ends when the tree-collection is
a simple item. Figure 2 depicts an instance of our structure.

3.2 The Biased Tree and the Tree-Collections

The J-tree is a biased 2, 4-tree with top-down rebalancing at its spines. This tree
structure is subject to insertions of weighted elements at its spines as well as
decrements by one of the rank of one of its leaves. A weighted element can be
a simple item equipped with a weight or a tree-collection, which is a forest of
trees on weighted elements.

A tree-collection is structured as a simple linear linked list. The insertions of
new elements in the tree-collection take place always at the tail of the linked list.
The virtual rank vr(x) of a tree-collection x is the number of J-trees contained
in x. Its real rank r(x) is equal to the logarithm of the sum of the weights of the
participating trees. It will become clear below how these quantities are related to
each other. We describe the weighted insertion operation as a one step procedure,
but it will in fact be implemented incrementally.

Assume a weighted element xi with weight w(xi). This element must be in-
serted as a weighted leaf of the last (from top to bottom) node on the spine of
the tree (either left or right) that has rank larger or equal to �log w(xi)�+ 1.

During the traversal of the spine all nodes with 4 children are split, so when
the weighted element is inserted there are no cascading splits on the path to the
root. It may be the case that the spine is too short, meaning that the weighted
element should be inserted at the spine deeper than the length of the spine.
In this case, unary nodes must be created in order to put the new element at
the appropriate level. However, these nodes can be introduced on demand by
attaching the leaf to the last node of the spine. If some other element is inserted
with small weight then we attach it as leaf to the last node or introduce new
nodes if the number of weighted elements attached to this node is 4.
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Consider now an arbitrary leaf l. Our biased tree must support an operation
that decreases the rank of the leaf by one. We call this operation Demote(
,T ).
This decrement by one of the rank of the leaf (which in term of weights is
equivalent to reducing by half its weight) can be implemented by simply moving
from this leaf to the root of the tree, and using similar techniques as those
described in [1].

The following lemma summarizes the properties of the described biased tree.

Lemma 1. There exists an implementation of a biased tree T , such that the tree
has height O(log w(T )) and supports the operations of insertion of a weighted
element at its spines and demotion of a weighted element in O

(
log w(T )

w(xi)

)
time,

where xi is the element inserted or demoted.

Proof. The insert operation places the elements always at the correct level which
is never changed by the insertion operation. Hence by a similar line of arguments
as that in [1] we can conclude that T has height O(log w(T )). From the inser-
tion algorithm an element xi is inserted at a level such that the path from the
root to this level has length at most O(log w(T ) − log w(xi)) which is equal to
O

(
log w(T )

w(xi)

)
. Finally by using the analysis in [1] it is proved that the demote

operation takes the same time complexity. �

3.3 The Join Operation

The fast Join-tree is a biased tree with one tree-collection attached to each of its
spines and tree-collections at its leaves. The tree-collection is a weighted element
that must be inserted at the appropriate position on the spine of the biased tree.
This insertion is incrementally implemented during the future join operations.
When the appropriate node for the tree-collection has been found, it is attached
to this node as a weighted leaf and the process starts again from the root with
a new and possibly empty tree-collection.

The tree-collection xL (for the left spine) maintains a pointer pL that traverses
the spine of the biased tree T starting from its root v. Assume that T is involved
in a join operation with some other tree T ′, such that R = r(T ) ≥ r(T ′). Then,
tree T ′ is inserted in the tree-collection xL and pL is moved one node down
the spine. The choice of moving one node down the spine is arbitrary and any
constant number would do. During the traversal of the spine a simple counter is
maintained, which denotes the ideal rank of each node on the spine. This counter
is initialized to R, and each time we traverse a node on the spine it is reduced
by one. When a node is located such that the counter is equal to r(xL) + 1 the
tree-collection is inserted and the process starts again from the root with a new
tree-collection. The inserted tree-collection is inserted as a weighted leaf of this
node.

Assume that T ′ and T are joined, where r(T ) ≥ r(T ′), and that the tree-
collection xL points to a node u on the spine with rank r(u). There are two
cases as to the relation of r(T ′) and r(u):
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1. �log(w(xL)+w(T ′))�+1 < r(u): in this case the tree-collection xL after the
insertion of T ′ in it must be inserted somewhere down the spine hence the
traversal must be continued.

2. �log(w(xL) + w(T ′))�+ 1 ≥ r(u): in this case the weight of T ′ introduced in
xL is too much and xL should be inserted higher up the spine. If �log(w(xL)+
w(T ′))�+ 1 < r(u) + 1 then xL canbe safely inserted as a child of the father
of node u. Otherwise, the tree-collection xL without T ′ is made a child of u
and a new tree-collection is created and initialized to tree T ′ that starts the
traversal of the spine from the root. We call xL the stepchild of node u.

For the second case the following lemma holds:

Lemma 2. r(T ′) > r(xL).

Proof. (by contradiction) Assume that r(T ′) ≤ r(xL). Then, by the addition
of T ′ the tree-collection will have rank at most r(xL) + 1. However, this is not
possible since xL could have been attached without taken T ′ into account. �

A stepchild is a weighted element that was not inserted in its correct position
but higher on the spine. We assume that the stepchild does not contribute to
the out-degree of its father. The following property is essential:

Property 1. Each internal node of the fast Join-tree has at most one stepchild.

This property is a direct consequence of Lemma 2. Thus, node u is not anymore
part of the spine and the property follows. A similar issue arises in the case
when tree T ′ is merged with the larger tree T . As before, the two non-empty
tree-collections of T ′ are made stepchildren of the nodes they currently point to.
Tree T ′ is not part of the spine of T , thus Property 1 is maintained.

One problem that arises from the use of stepchildren is that Lemma 1 may
not hold anymore. Fortunately, this is not the case because of Property 1 and
the fact that the stepchildren cannot cause any splits on the spine.

The result of this discussion is that the tree-collections move only once the
spine from root to leaf. The following property exploits this fact and relates the
virtual rank vr(x) of a tree-collection x with the corresponding pointer p with
its rank r(x) and the rank R of T :

Property 2. R− r(x) > vr(x)

Proof. We prove that R − vr(x) > r(x). R − vr(x) is the maximum rank of
the node pointed by the pointer p of the tree-collection x. This is because, after
vr(x) insertions of trees in the tree-collection x, the pointer p has traversed vr(x)
nodes down the spine. Since, the tree-collection x has not been attached to any
node yet, its rank must be less than the rank of the node pointed by p. The
inequality follows and the property is proved. �

The join operation is performed in O(1) worst-case number of steps since a
constant number of nodes are traversed on the spine and a single insertion is
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performed in one tree-collection. We now move to the discussion of the search
operation. The search starts from the root of the fast Join-tree T and traverses
a path until a weighted leaf 
 is reached. The search continues in the forest of
J-trees in tree-collection 
. The search in a forest of J-trees is implemented as a
simple scan of a linear linked list from head to tail. Note that the head of the
list is the first element ever inserted in the tree-collection.

The following lemma states that searching in a tree-collection is efficient.

Lemma 3. If the search procedure needs O(p) steps to locate the appropriate
J-tree T ′ in a tree collection in J-tree T , then the rank of T ′ is at most equal to
the rank of T reduced by p.

Proof. Assume that at some recursive level of detail the J-tree T has rank R =
r(T ). In addition, let T ′ be the p-th tree in the tree-collection. Since T ′ is the
p-th tree in the collection, its insertion must occured at the p-th step of the
spine’s traversal. Since when traversing the spine we visit nodes of reduced rank
we get as a result that T ′, being the J-tree in the p-th position has rank smaller
than T by at least p, and the lemma follows. �

The following theorem states the logarithmic complexity of the search operation
by using Lemma 3.

Theorem 1. The search operation in a fast Join-tree T is carried out in
O(log w(T )) steps.

Proof. Assume that the search procedure enters a weighted leaf which is a child
of a node u in the J-tree T . Additionally, assume that in the forest the search
procedure explores the p-th J-tree T ′.

We show that:
r(T ′) ≤ min{r(T )− p, r(u)} (1)

Since the search has reached node u we get that r(T ′) ≤ r(u). This observation
in conjunction with Lemma 3 proves Equation 1.

Equation 1 states that the rank of the search space is decreased by 1 after O(1)
steps. As a result, to find a single element in the J-tree T we need O(log w(T ))
steps. �

3.4 Supporting Update Operations

We now describe how the J-tree supports insertions and deletions of single el-
ements. The update operations may cause the fast Join-tree to become unbal-
anced; thus rebalancing strategies must be employed in order to ensure that this
is not the case. We first show how insertions are implemented and then we move
to the case of deletions.

Insertions. We implement insertions by using a two level data structure. The
first level of the structure is the fast Join-tree while the second one is a tra-
ditional degree balanced (2, 4)-tree as described in [15]. Each leaf of the fast
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Join-tree is a degree balanced (2, 4)-tree. Hence, the structure can be seen as a
forest of (2, 4)-trees over which a secondary structure is built to incorporate join
operations. Consequently, the first level of the structure implements efficiently
the join operation while the second level implements the insertion operation.
Figure 3 depicts the structure.

Forest of 
(2,4)-trees

fast Join-tree T

Leaf of fast 
Join-tree

O(logw(T))

O(logN)

Fig. 3. A high level view of the structure for insertions

When inserting an element we first need to locate its position in the structure.
This is accomplished by searching the fast Join-tree for the appropriate leaf by
using Theorem 1. The leaf represents a (2, 4)-tree in the second level of the
structure, in which the element is inserted without affecting the fast Join-tree.
This means that insertions do not affect the weights of the internal nodes of the
fast Join-tree. The weight of the fast Join-tree is the number of leaves, that is
the number of (2, 4)-trees in the second level.

When the position of the insertion is located in a (2, 4)-tree in the second
level, the element is inserted. Finally, rebalancing operations are performed in
the (2, 4)-tree and the insertion procedure terminates. Thus, the fast Join-tree
is by no means affected by this insertion operation. As a result, there may be
the case that a very light fast Join-tree has very large number of stored elements
because of insertion operations, and we get the following property:

Property 3. The number of leaves of the fast Join-tree is a lower bound for the
number of elements stored in the forest of (2, 4)-trees in the second level of the
structure.

By Theorem 1, a leaf in a fast Join-tree T is located in O(log w(T )) steps.
When the leaf is located a second search operation is initiated in the (2, 4)-tree
attached to this leaf. If the number of elements stored in the forest of (2, 4)-
trees is N , then by Property 3 we get that w(T ) ≤ N . As a result, the total
time complexity for the search operation is bounded by O(log w(T ))+O(log N),
which is equal to O(log N). Consequently, insertion operations are supported
efficiently by applying this two level data structure.
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Deletions. The delete operation cannot be tackled in the same way as the
insertion operation. This is because when a leaf of the fast Join-tree becomes
empty, the weight of internal nodes is reduced by one. We devise a rebalancing
strategy for the fast Join-tree in the case of deletions. Additionally, we introduce
a fix operation, which incrementally joins leaves from the forest of (2, 4)-trees.

As in the case of insertions, first the element must be located. The search
procedure locates the appropriate leaf of the fast Join-tree and then locates the
element in the (2, 4)-tree attached to this leaf. This element is removed from the
(2, 4)-tree by applying standard rebalancing operations (fuse or share). If the
(2, 4)-tree is non-empty after the deletion, then the procedure terminates and
the fix operation is initiated. If it is empty, then rebalancing operations must be
forced on the fast Join-tree.

Since this leaf is empty it is removed from the fast Join-tree. If this leaf
belonged to a tree-collection x then the virtual rank has decreased by one and
potentially the rank of x has decreased by one. By employing a demote operation
on the biased tree whose leaf is this tree-collection the change of the rank is
remedied. This change may propagate up to the J-tree of the first recursive
level. During this traversal, the weight of all nodes on the path to the root is
updated accordingly. When the root of the fast Join-tree is reached, the deletion
operation terminates. Note that this operation does not violate Property 2. This
is because both the rank and the virtual rank of the tree-collection are reduced.

As shown above the deletion operation may reduce by one the virtual rank of
the tree-collection. Thus, a tree-collection may be completely empty after a dele-
tion operation. This means that the leaf is removed and rebalancing operations
(fuse or share) must be performed in the biased tree to maintain its structural
properties.

A final detail is how deletions interact with stepchildren. In this case, when
a tree-collection is demoted then if one of its adjacent brothers is a stepchild,
we also demote the stepchild. If the stepchild reached its correct level then it
ceases to be a stepchild and it is inserted as an ordinary tree-collection. This
procedure may be seen as an insertion of a weighted element in a J-tree, thus
inducing rebalancing operations which may propagate up to the root of the fast
Join-tree. The time complexity of the delete operation remains unaffected.

We now switch to the description of the fix operation. The fix operation is used
as a means of globally correcting the data structure, that is it is not mandatory,
however it is used to give a better shape to the structure. Each time an update
operation is performed, the fix operation picks 4 leaves of the fast Join-tree
and merges them together. Each one of these leaves represents a (2, 4)-tree. The
merge of these trees can be performed in O(log n) time, where n is the number of
elements stored in the forest of (2, 4)-trees. From this merge three leaves of the
fast Join-tree become empty. Thus, rebalancing operations must be employed on
the fast Join-tree for these leaves. All in all, the time complexity for the delete
operation is O(log n).

The problem posed by this delete operation is that Property 2 may be violated.
As a result, the search bounds and consequently the update bounds will not be
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logarithmic anymore. Assume that N is the number of leaves of the fast Join-
tree T before the fix operation is initiated, where n ≥ N . Thus, the rank of T
is R = log N . During the fix operation, until all the leaves are merged into a
single (2, 4)-tree and the fast Join-tree is a single node, the number of elements
in the forest of (2, 4)-trees will never decrease below n

2 . By Theorem 1, the time
complexity for the search will be O(R) + O(log n), and since R = O(log n) the
time complexity for the deletion follows.

By Theorem 1 and the previous discussion, we get the following theorem:

Theorem 2. There exists a search tree supporting search and update operations
in O(log n) worst case time and meld operations in worst case constant time.

3.5 Purely Functional Implementation

The nodes that compose our structure have all degrees that are bounded by
a constant. Hence, in order to make our structure work efficiently in a purely
functional setting we need the following ingredients:

– a purely functional implementation of the linear list with which we imple-
ment the tree collection. This structure is implemented purely functionally
in [3, 16].

– a purely functional implementation of the left and right tree spines. The
presence of the pointer designating the movement of the tree-collection is
quite awkward, since in a functional setting explicitly assigning values is not
permitted. However, the pointer movement can be modeled by partitioning
each spine into two lists the border of which designates the pointer position.
These lists should be implemented purely functionally and should support
both catenation and split operations. Details of such an implementation can
be found in [14].

By Theorem 2 and the previous discussion, we get:

Theorem 3. There exists a purely functional implementation of search trees
supporting search and update operations in O(log n) worst case time and join
operations in worst case constant time.

4 Conclusion

We have presented a purely functional implementation of catenable sorted lists,
supporting the join operation in worst case constant time, the search operation
in O(log n) time and the insertion and deletion operations in O(log n) time. This
is the first purely functional implementation of search trees supporting the join
operation in worst case constant time.

It would be very interesting to implement efficiently the split operation. It
seems quite hard to do this in the proposed structure because of the dependence
of Property 2 on the rank of the tree. Splitting will invalidate this property for
every tree-collection and will lead to (log n log log n) search and update times.
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It would also be interesting to come up with an efficient purely functional im-
plementation of sorted lists, implemented as finger trees (as in [13]) that could
support join in worst case constant time. In this structure, it is quite unlikely to
implement finger searching due to the relaxed structure of the fast Join-tree.
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Abstract. We study congestion games where players aim to access a
set of resources. Each player has a set of possible strategies and each
resource has a function associating the latency it incurs to the players
using it. Players are non–cooperative and each wishes to follow strategies
that minimize her own latency with no regard to the global optimum.
Previous work has studied the impact of this selfish behavior to system
performance. In this paper, we study the question of how much the per-
formance can be improved if players are forced to pay taxes for using
resources. Our objective is to extend the original game so that selfish be-
havior does not deteriorate performance. We consider atomic congestion
games with linear latency functions and present both negative and posi-
tive results. Our negative results show that optimal system performance
cannot be achieved even in very simple games. On the positive side, we
show that there are ways to assign taxes that can improve the perfor-
mance of linear congestion games by forcing players to follow strategies
where the total latency suffered is within a factor of 2 of the minimum
possible; this result is shown to be tight. Furthermore, even in cases
where in the absence of taxes the system behavior may be very poor,
we show that the total disutility of players (latency plus taxes) is not
much larger than the optimal total latency. Besides existential results,
we show how to compute taxes in time polynomial in the size of the game
by solving convex quadratic programs. Similar questions have been ex-
tensively studied in the model of non-atomic congestion games. To the
best of our knowledge, this is the first study of the efficiency of taxes in
atomic congestion games.

1 Introduction

We study the well-known congestion games introduced by Rosenthal [22]. In
a congestion game Π there is a set E of resources and a set N of n players.
Each player i has a positive unsplittable demand (or weight) wi and a set of
actions Pi ⊆ 2E (each action of player i is a set of resources). Each resource
e has a non-negative and non-decreasing latency function fe defined over non-
negative numbers. A resource e used by players with total demand w causes a
latency of fe(w) to each of them. Players are non–cooperative and each wishes
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to minimize her own cost (the cumulative latency experienced at the resource
used) with no regard to the global optimum. Network congestion games can be
used to model non-cooperative users in a communication network, where each
user i aims to communicate an amount of traffic wi through a least congested
single path connecting two particular nodes si and ti. In this setting, resources
correspond to network links and the actions of user i are all the paths connecting
node si to ti.

In general, players follow mixed strategies, i.e., player i selects a probabil-
ity distribution yi = {yip|p ∈ Pi} over her actions. Mixed strategies where
yip ∈ {0, 1} are called pure strategies. Each player is aware of the strategies
selected by all other players. We denote by yie the probability that player i
uses resource e. Clearly, yie =

∑
p∈Pi:e∈p yip. We use the term assignment to

refer to the vector of players’ strategies. In a pure assignment, all players follow
pure strategies. Given an assignment y, we denote by Lip(y; Π) the expected
latency of player i when selecting action p. Then the expected latency of player
i is Li(y; Π) =

∑
p∈Pi

yipLip(y; Π). An assignment y is a (mixed or pure) Nash
equilibrium if no player has an incentive to unilaterally change her strategy, i.e.,
Li(y; Π) ≤ Li(y−i, xi; Π) for any player i and for any probability distribution
xi over the actions in Pi, where y−i, xi denotes the assignment obtained by
y when player i deviates from yi to xi. The weighted total latency defined as
W (y; Π) =

∑
i wiLi(y; Π) has been used as a measure of performance of as-

signment y in game Π . Another natural measure of performance is the total
latency defined as T (y; Π) =

∑
i Li(y; Π). The price of anarchy [17, 21] (with

respect to the weighted total latency) of a game Π is the maximum of the ratio
of W (y; Π)/W (x; Π) where y is a Nash equilibrium and x is any assignment
for Π . Similarly, we may define the price of anarchy with respect to the total
latency. We use the terms unweighted and weighted for congestion games in or-
der to denote whether players have equal weights or not. Clearly, in unweighted
congestion games, the weighted total latency equals the total latency.

[9, 11, 12, 13, 16, 17, 19] study various games which can be thought of as special
cases of congestion games with respect to the complexity of computing equilibria
of best/worst social cost and the price of anarchy when the social cost is defined
as the maximum latency experienced by any player. These include linear con-
gestion games, i.e., games with latency functions of the form fe(w) = αew + be

with non-negative constants αe and be, and load balancing games, i.e., linear
congestion games where the actions of players are singleton sets. In load balanc-
ing terminology, we refer to the resources of a load balancing game as machines.
The performance measure of the weighted total latency has been studied in
[1, 5, 6, 18, 24]. Awerbuch et al. [1] and, independently, Christodoulou and Kout-
soupias [6] prove tight bounds on the price of anarchy of congestion games.
Among other results concerning polynomial latency functions, they show that
the price of anarchy of pure Nash equilibria in unweighted linear congestion
games is 5/2 while for mixed Nash equilibria or pure Nash equilibria of weighted
players it is 2.618. Bounds on the price of anarchy of pure Nash equilibria were
recently proved to be tight even for load balancing games [5] while better bounds
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exist only for load balancing games on machines with identical latency functions
[5, 24]. The authors of [18] study symmetric load balancing games where all
machines are actions for all players.

In order to mitigate the impact of selfish behavior on system performance, we
introduce taxes to the resources. We use a tax function δ : E×Q+ → Q+ that as-
signs a tax δe(w) to each player of weight w that wishes to use e. Assuming selfish
behavior of the players, we obtain a new extended game (Π, δ) where each player
now aims to minimize the expected latency she suffers plus the taxes she pays.
The tax paid by player i when selecting action p is Δip(Π, δ) =

∑
e∈p δe(wi).

Given an assignment y, the expected tax paid by player i is Δi(y; Π, δ) =∑
p∈Pi

yipΔip(Π, δ). Again, y is a Nash equilibrium for the extended game if
no player has an incentive to unilaterally change her strategy, i.e., Li(y; Π) +
Δi(y; Π, δ) ≤ Li(y−i, xi; Π) + Δi(y−i, xi; Π, δ). We use two measures of per-
formance in the extended game (Π, δ) extending the measures of total latency
and weighted total latency in congestion games without taxes. The total cost of
an assignment y is T (y; Π, δ) =

∑
i (Li(y; Π) + Δi(y; Π, δ)), while the weighted

total cost of an assignment y is W (y; Π, δ) =
∑

i wi (Li(y; Π) + Δi(y; Π, δ)).
Motivated by [8], we distinguish between refundable and non-refundable taxes.

In the former case, we assume that the collected taxes can be feasibly returned
(directly or indirectly) to the players (e.g., as a “lump-sum refund”) and there-
fore do not contribute to the overall system disutility. However, refunding the
collected taxes could be logistically or economically infeasible; the latter case
models this scenario.

Definition 1. A function δ : E × Q+ → Q+ is a ρ-mixed-efficient refundable
tax for the congestion game Π with respect to the total latency (resp. weighted
total latency) if T (y; Π, 0) ≤ ρ ·T (x; Π, 0) (resp. W (y; Π, 0) ≤ ρ ·W (x; Π, 0)) for
any mixed Nash equilibrium y in the extended game (Π, δ) and any assignment
x. A function δ : E × Q+ → Q+ is a ρ-mixed-efficient non-refundable tax for
the congestion game Π with respect to the total cost (resp. weighted total cost)
if T (y; Π, δ) ≤ ρ · T (x; Π, 0) (resp. W (y; Π, δ) ≤ ρ ·W (x; Π, 0)) for any mixed
Nash equilibrium y in the extended game (Π, δ) and any assignment x.

Similarly, we define ρ-pure-efficient refundable and non-refundable taxes by con-
straining y to be a pure Nash equilibrium. We use the terms pure-optimal and
mixed-optimal to refer to 1-pure-efficient and 1-mixed-efficient taxes, respec-
tively.

The bounds on the price of anarchy of congestion games with respect to the
weighted total latency can be also expressed using the above definition. Any
tight bound of ρ on the price of anarchy over mixed (resp. pure) Nash equilibria
implies that the trivial tax function that assigns no tax to the resources is ρ-
mixed-efficient (resp. ρ-pure-efficient) and no better in general. Another issue
which is related to our study is that of network design for selfish players (or
resource removal). In this setting, the question is whether the performance of
the game can be improved by removing some of the resources; this is equivalent
to a tax function which assigns to each resource a tax of either 0 or ∞ for all
players. [3] proves that deciding whether resource removal for a weighted linear
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congestion game Π can yield price of anarchy better than 2.618 is NP-complete.
Furthermore, there are games where this is not feasible at all, implying that
taxes of this type are not better than 2.618-pure-efficient.

The problem of computing optimal taxes has been extensively considered in
the model of non-atomic congestion games [23]. The main difference of these
games from the atomic ones we study in this paper is that each player controls
an infinitesimally small demand related to the total demand on the system, thus,
the actions of a single player have negligible effect on the system performance.
This difference is substantial enough so that the related results (see [8, 10, 15]
and the references therein) do not carry over to our model. In fact, even nearly-
optimal taxes do not always exist in our model.

In this paper we show the following results. We first study symmetric load
balancing games, where we show how to compute pure-optimal taxes for un-
weighted players. We present lower bounds stating that optimal taxes may not be
feasible even in very simple games. In particular, there are unweighted load bal-
ancing games on identical machines that do not admit (11/10− ε)-pure-efficient
taxes, weighted load balancing games on identical machines that do not admit
(9/8 − ε)-pure-efficient taxes (note that this bound matches the upper bound
on the price of anarchy for these games [18]), and unweighted load balancing
games on identical machines that do not admit (2 − ε)-mixed-efficient taxes.
Even simple non-load-balancing congestion games with unweighted players may
not admit (6/5−ε)-pure-efficient taxes either. For unweighted congestion games,
we present a universal tax function by showing that, for a particular value of
the parameter τ which is shown to be best possible, the function δe = αeτ is
(1 + 2/

√
3)-pure-efficient, thus beating the lower bound of 5/2 on the price of

anarchy of pure Nash equilibria. This is an interesting result since the tax func-
tion does not depend at all on the game played on the resources; it depends
only on the resources themselves. Next we exploit solutions of convex quadratic
programs to compute 2-mixed-efficient taxes for congestion games with respect
to both the weighted total latency and the total latency. Note that the first re-
sult beats the lower bound of 2.618 on the price of anarchy while when the total
latency is of concern, the price of anarchy is unbounded. Both bounds are tight.

We also consider the case of non-refundable taxes. When considering the
weighted total cost, it seems that there is not much room for beating the lower
bounds on the price of anarchy. However, we show that weighted load balanc-
ing games on identical machines admit (1 +

√
2)-mixed-efficient non-refundable

taxes. This is an existential result since the tax defined uses an optimal assign-
ment (i.e., the pure assignment minimizing the weighted total latency). It can
be made algorithmic and yield a marginally worse 1 +

√
2 + ε bound when the

number of machines is constant exploiting a PTAS from [4] for approximating
the optimal assignment. This result should be compared to the lower bound of
5/2 on the price of anarchy over pure Nash equilibria proved recently in [5].
Recall that the price of anarchy of weighted congestion games is unbounded
when the total latency is of concern. Somehow surprisingly, we show that any
congestion game admits 4-mixed-efficient non-refundable taxes with respect to
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the total latency. Furthermore, 6-mixed-efficient non-refundable taxes for these
games can be computed in polynomial time. Here, we exploit semi-pure assign-
ments with particular properties which are obtained by rounding the fractional
solutions of a convex quadratic program to half-integral ones. The use of convex
quadratic programming is motivated by [2] where integral solutions of such pro-
grams have been used to approximate scheduling on unrelated machines. How-
ever, we rarely need integrality; even fractional or half-integral solutions suffice
in order to compute taxes. For the analysis of the upper bounds we develop and
use two inequalities that characterize Nash equilibria of congestion games with
taxes.

Some details related to the extended game as well as convex quadratic pro-
grams are presented in Section 2. The results on refundable and non-refundable
taxes are presented in Sections 3 and 4, respectively. We conclude with open
problems in Section 5. Due to lack of space, many proofs have been omitted
from this extended abstract.

2 Preliminaries

Properties of the extended game. For a weighted congestion game Π and a
tax function δ, the extended game (Π, δ) can be seen as a congestion game
with player-specific latency functions [14, 20]. Although this is not always true
for such games, we can show that the extended game always has a pure Nash
equilibrium and hence pure-efficient taxes are well defined. In order to prove this
fact, we define a potential function over pure assignments of the extended game
by slightly modifying the potential function of weighted linear congestion games
in [12].

In our proofs, we use the equivalent expressions of the (weighted) total cost
of assignments in the extended game given in the next lemma. The proof easily
follows by the definitions.

Lemma 1. For each assignment y in a weighted congestion game Π with linear
latency functions of the form fe(w) = αe(w) + be and a tax function δ, the
following equations hold

W (y; Π, δ) =
∑

e

⎛⎝αe

⎛⎝(∑
i

yiewi

)2

+
∑

i

yie (1− yie)w2
i

⎞⎠
+be

∑
i

yiewi +
∑

i

yiewiδe(wi)

)

T (y; Π, δ) =
∑

e

(
αe

((∑
i

yie

)(∑
i

yiewi

)
+

∑
i

yie (1− yie)wi

)

+be

∑
i

yie +
∑

i

yieδe(wi)

)
where wi denotes the weight of player i.
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In our analysis, we use the two inequalities stated in the following, which char-
acterize Nash equilibria of the extended game. Although complicated at first
glance, when examined carefully (and together with the expressions in Lemma
1), these inequalities provide insight about what efficient taxes should look like.

Lemma 2. Given a weighted congestion game Π and a tax function δ, consider
a mixed Nash equilibrium y and any assignment x of (Π, δ). Then

W (y; Π, δ) ≤
∑

e

(
αe

((∑
i

xiewi

)(∑
i

yiewi

)
+

∑
i

xie (1− yie)w2
i

)

+be

∑
i

xiewi +
∑

i

xiewiδe(wi)

)
(1)

T (y; Π, δ) ≤
∑

e

(
αe

((∑
i

xie

)(∑
i

yiewi

)
+

∑
i

xie (1− yie)wi

)

+be

∑
i

xie +
∑

i

xieδe(wi)

)
(2)

Computation of taxes. In most cases, in order to compute taxes, we wish to
compute assignments that satisfy some property; these correspond to solutions
of programs of the form:

(QP1) minimize g(x)

subject to xie ≥
∑

p∈Pi:e∈p

xip, i ∈ N, e ∈ E

∑
p∈Pi

xip ≥ 1, i ∈ N

xie, xip ≥ 0, i ∈ N, e ∈ E, p ∈ Pi

where g(x) is a convex quadratic function. Convex quadratic programs can be
solved within any additive error ε in time polynomial in the size of the program
and 1/ε. So, programs like (QP1) are solvable in polynomial time when the total
number of actions is polynomial. In many interesting cases like in network con-
gestion games, actions may be exponentially many. However, we can overcome
this difficulty for these games and efficiently solve (QP1) in time polynomial in
the number of resources and the number of players by considering it as a flow
problem. Details will appear in the final version of the paper.

One would hope to solve (QP1) with the objective functions W (x; Π, 0) or
T (x; Π, 0) and obtain optimal assignments, i.e., mixed assignments of minimum
(weighted) total latency. Unfortunately, these functions are non-convex and, fur-
thermore, they are always optimized at pure assignments. This is not difficult to
see since the (weighted) total latency of a mixed assignment can be seen as the
expectation of the (weighted) total latency of the pure assignments implied by
the corresponding probability distributions. Hence, optimizing these functions
would also contradict hardness results in [4].
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3 Refundable Taxes

We start with an encouraging result concerning pure-optimal refundable taxes.

Theorem 1. Pure-optimal refundable taxes in unweighted symmetric load bal-
ancing games always exist and are computable in polynomial time.

Proof. (Sketch) Consider an unweighted symmetric load balancing game Π with
latency functions fe(w) = αew + be. Let e′ be the machine with the smallest
ae among all machines e with non-zero αe. Let ε = αe′/2. Also, let oe be the
number of players that select machine e in an optimal assignment. Let e∗ be the
machine with maximum αeoe + be among all machines. For each machine e with
αe > 0, we define δe = αe∗oe∗ + be∗ − αeoe − be. Let e0 be the machine with
minimum be among all machines e with αe = 0. We define δe0 = αe∗oe∗ + be∗ + ε
and δe =∞ for all other machines e with αe = 0. We can show that the function
δ is a pure-optimal refundable tax for game Π .

Polynomial time computability follows since optimal assignments are easy to
compute through a reduction to a minimum cost flow problem. We construct
a network F as follows. For each resource e of the game, F has two nodes ue

and ve connected through n parallel directed edges gi
e of unit capacity and cost

αe (2i− 1) + be, for i = {1, · · · , n}. s is connected through directed edges to
nodes ue and all nodes ve are connected through directed edges to t. All edges
adjacent to either s or t have zero cost and capacity n. Then, it easily follows
that an optimal assignment for the original game can be obtained by computing
a minimum cost flow of size n from s to t. ��

Unfortunately, the next theorem rules out the possibility of obtaining optimal
taxes even in simple congestion games.

Theorem 2.
a) There exists a weighted symmetric load balancing game on identical machines
that does not admit ρ–pure–efficient refundable taxes with respect to the weighted
total latency for any ρ < 9/8.
b) For any ε > 0, there exists an unweighted symmetric load balancing game on
identical machines that does not admit (2− ε)–mixed–efficient refundable taxes.
c) There exists an unweighted load balancing game on identical machines that
does not admit ρ–pure–efficient refundable taxes for any ρ < 11/10.
d) There exists an unweighted congestion game that does not admit ρ–pure–
efficient refundable taxes for any ρ < 6/5.

Next, we present a universal tax function for unweighted congestion games in
the sense that it does not depend at all on the congestion game; it depends only
on the resources themselves.

Theorem 3. Let τ = 3
2

√
3 − 2. For any unweighted congestion game Π with

linear latency functions fe(w) = αew+be, the function δe = αeτ is a
(
1 + 2√

3

)
–

pure–efficient refundable tax for Π.
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Our next result indicates that the selection of parameter τ in Theorem 3 is the
best possible.

Theorem 4. For any τ ≥ 0 and ε > 0, there exists an unweighted load balanc-
ing game for which the function δe = αeτ is not

(
1 + 2√

3
− ε

)
–pure–efficient

refundable tax.

In the rest of this section we construct 2-mixed-efficient refundable taxes. Given
a congestion game, we use a particular assignment in order to compute the tax
function. In the case of the weighted total latency, we use the solution of the
quadratic program (QP1) with the convex quadratic objective function

g1(x) =
∑

e

⎛⎝αe

⎛⎝(∑
i

xiewi

)2

+
∑

i

xiw
2
i

⎞⎠ + be

∑
i

xiewi

⎞⎠
Lemma 3. Consider a weighted congestion game Π and let x be an assignment
which is the optimal solution of (QP1) with the objective function g1. Then, the
function δe(w) = αe

∑
i xiewi is a 2–mixed–efficient refundable tax for Π with

respect to the weighted total latency.

Proof. We will apply inequality (1) for a mixed Nash equilibrium y of the ex-
tended game (Π, δ) and assignment x. The last term in the sum at the definition
of W (y; Π, δ) in Lemma 1 becomes αe (

∑
i xiewi) (

∑
i yiewi) and cancels with

the first term in the sum of the right part of (1), while the last term in the sum
at the right part of (1) becomes αe (

∑
i xiewi)

2. So, (1) yields

W (y; Π, 0) ≤
∑

e

αe

∑
i

xie (1− yie)w2
i +

∑
e

αe

(∑
i

xiewi

)2

+
∑

e

be

∑
i

xiewi

≤
∑

e

αe

∑
i

xiew
2
i +

∑
e

αe

(∑
i

xiewi

)2

+
∑

e

be

∑
i

xiewi

≤
∑

e

αe

∑
i

x∗
iew

2
i +

∑
e

αe

(∑
i

x∗
iewi

)2

+
∑

e

be

∑
i

x∗
iewi

≤ 2

⎛⎝∑
e

αe

(∑
i

x∗
iewi

)2

+
∑

e

be

∑
i

x∗
iewi

⎞⎠
= 2 ·W (x∗; Π, 0)

where x∗ denotes the pure assignment minimizing the weighted total latency.
The last inequality follows due to integrality of x∗. ��
In the case of total latency, we use the solution of the quadratic program (QP1)
with the convex quadratic objective function

g2(x) =
∑

e

(
αe

((∑
i

xie

)(∑
i

xiewi

)
+

∑
i

xiwi

)
+ be

∑
i

xie

)
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We can show the following result; the proof is similar to the proof of Lemma 3.

Lemma 4. Consider a weighted congestion game Π and let x be an assignment
which is the optimal solution of (QP1) with the objective function g2. Then, the
function δe(w) = αjw

∑
i xie is a 2–mixed–efficient refundable tax for Π with

respect to the total latency.

In order to make the above two results constructive, there is a subtle point
concerning the validity of the third inequality in the proofs of Lemmas 3 and 4,
since, in practice, the solution of the quadratic program has not perfect accuracy.
As in [2], we can guarantee the validity of this inequality by making the accuracy
parameter sufficiently small. As a corollary we obtain the following statement.

Theorem 5. There exist polynomial time algorithms for computing 2-mixed-
efficient refundable taxes with respect to the total latency and the weighted total
latency in weighted congestion games.

4 Non-refundable Taxes

In this section, we consider non-refundable taxes; we first focus on efficient non–
refundable taxes with respect to the weighted total cost. A recent lower bound
of 5/2 on the price of anarchy of weighted load balancing games on identical
machines [5] implies that the trivial tax function is not (5/2− ε)-pure-efficient
for any ε > 0. This lower bound can be modified so that resource removal
cannot improve the price of anarchy either. We show that better non-refundable
taxes do exist. Here, the corresponding tax function uses an optimal assignment.
Unfortunately, even computing an approximate such assignment is hard [4]. We
can use a PTAS from [4] to show a slightly worse constructive result when the
number of machines is constant. We note that the lower bound in [5] uses a
constant number of machines.

Theorem 6. Any weighted load balancing game on identical machines admits(
1 +
√

2
)
–mixed–efficient non–refundable taxes with respect to the weighted total

cost.

The proof of Theorem 6 uses the tax function

δe(w) =
{∑

i xiewi − w, if
∑

i xiewi ≥ w;
0, otherwise

for a load balancing game Π with latency function of the form f(w) = x + b,
where x denotes a pure assignment for Π that minimizes the weighted total
latency.

In order to compute efficient non-refundable taxes with respect to the total
cost, we use solutions to the quadratic program (QP1) with the objective function

g3(x) =
∑

e

(
αe

(∑
i

xie

)(∑
i

xiewi

)
+ be

∑
i

xie

)
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Ideally, we would like to use optimal pure assignments, i.e., an optimal integral
solution x∗ of (QP1) with the objective function g3. However, even approximate
semi-pure assignments can be used to obtain efficient non-refundable taxes.

Lemma 5. Consider a weighted congestion game Π and let x be a semi–pure
assignment with g3(x) ≤ ρ · g3(x∗). Then, the function

δe(w) =
{

αe (2
∑

i xie − 1)w, if 2
∑

i xie ≥ 1
0, otherwise

is a 4ρ–mixed–efficient non–refundable tax for Π with respect to the total cost.

Hence, by applying Lemma 5 for ρ = 1 we obtain the following existential result.

Corollary 1. Any weighted congestion game admits 4–mixed–efficient non–
refundable taxes with respect to the total cost.

Next, we show how to compute efficient semi–pure assignments to obtain a
slightly worse constructive result. We first solve the quadratic program (QP1)
with the convex quadratic objective function

g4(x) =
∑

e

(
αe

(
1
2

+
∑

i

xie

)(∑
i

xiewi

)
+ be

∑
i

xie

)

Then, we obtain a half–integral solution x̂ by applying randomized rounding to
the solution x as follows. For each i, we use a die with one face for each p ∈ Pi

such that xip > 0 and a probability of xip associated with the face corresponding
to p. We cast the die twice and let p1 and p2 be the actions corresponding to the
outcomes. If p1 = p2, we set x̂ip1 = 1, while if p1 �= p2, we set x̂ip1 = x̂ip2 = 1

2 ;
we also set x̂ip = 0 for each p ∈ Pi \ {p1, p2}. We also set x̂ie =

∑
p∈Pi

x̂ip.

Lemma 6. E [g3(x̂)] ≤ 3
2g3(x∗)

By using standard probabilistic arguments, we can guarantee that g3(x̂) ≤( 3
2 + ε

)
g3(x∗) for any ε > 0 by executing the randomized rounding procedure

polynomially many times. Hence, Lemma 5 yields the following.

Theorem 7. There exists a polynomial time algorithm for computing (6 + ε)-
mixed-efficient non-refundable taxes with respect to the total cost in weighted
congestion games.

5 Open Problems

Our work reveals several interesting open questions. Tightening the bounds for
pure-efficient refundable taxes is a challenging task. In particular, extending the
results of Theorem 1 and determining the subclass of unweighted congestion
games that admit pure-optimal taxes is one of them. The candidate class is
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that of the unweighted symmetric congestion games which include network con-
gestion games with a single source and a single destination. The existence of
efficient non-trivial universal tax functions for weighted congestion games is also
open. We conjecture that such taxes do not exist. For non-refundable taxes, the
question whether efficient non-trivial taxes for congestion games with respect to
the weighted total cost exist is still open. Special cases as simple as unweighted
symmetric load balancing are interesting as well. Here, besides the trivial upper
bound, we have a preliminary statement that better than 27/23-pure-efficient
non-refundable taxes do not exist. We point out that symmetry has not helped
so far, since all our lower bounds are in a sense symmetric constructions. The
impact of symmetry of games to the existence of efficient taxes needs further
investigation. Complexity issues are also very interesting, i.e., given a conges-
tion game Π , how easy is to compute a ρ-mixed/pure-efficient (non)-refundable
tax for this particular game? Our results can be thought of as approximation
algorithms for this optimization problem. Although we have made no attempt
to formally prove this statement, we strongly believe that this problem is com-
putationally hard for some constant ρ > 1. Another open problem is to prove
bounds on the cost of taxes that force at least one nearly-optimal assignment
to become an equilibrium. This is related to the study of the price of stability
[5, 7]. Also, having players with different sensitivities to taxes as in the model
of [8, 10, 15] is another interesting extension of our model. Finally, it is worth
investigating taxes for congestion games with more general (e.g., polynomial)
latency functions.
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Spanners with Slack�

T.-H. Hubert Chan��, Michael Dinitz���, and Anupam Gupta
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Abstract. Given a metric (V, d), a spanner is a sparse graph whose
shortest-path metric approximates the distance d to within a small mul-
tiplicative distortion. In this paper, we study the problem of spanners
with slack : e.g., can we find sparse spanners where we are allowed to
incur an arbitrarily large distortion on a small constant fraction of the
distances, but are then required to incur only a constant (independent
of n) distortion on the remaining distances? We answer this question
in the affirmative, thus complementing similar recent results on embed-
dings with slack into �p spaces. For instance, we show that if we ignore
an ε fraction of the distances, we can get spanners with O(n) edges and
O(log 1

ε
) distortion for the remaining distances.

We also show how to obtain sparse and low-weight spanners with
slack from existing constructions of conventional spanners, and these
techniques allow us to also obtain the best known results for distance
oracles and distance labelings with slack. This paper complements similar
results obtained in recent research on slack embeddings into normed
metric spaces.

1 Introduction

The study of metric embeddings has been a central pursuit in algorithms research
in the past decade: an embedding is a map from a metric space into a “simpler”
metric space so that distances between points are changed by at most a small
factor. More formally, given a target class C of metrics, an embedding of a finite
metric space M = (V, d) into the class C is a new metric space M ′ = (V, d′)
such that M ′ ∈ C. Most of the work on embeddings has used distortion as the
fundamental measure of quality; the distortion of an embedding is the worst
multiplicative factor by which distances are increased by the embedding1. Given
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1 Formally, for an embedding ϕ : (V, d)→ (V, d′), the distortion is the smallest D so

that ∃α, β ≥ 1 with α · β ≤ D such that 1
α

d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ β d(x, y) for
all pairs x, y ∈ V ×V . Note that this definition of distortion is no longer invariant
under arbitrary scaling, since α, β ≥ 1; however, this is merely for notational
convenience, and all our results can be cast in the usual definitions of distortion.
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the metric M = (V, d) and the class C, one natural goal is to find an embedding
ϕ((V, d)) = (V, d′) ∈ C such that the distortion of the map ϕ is minimized. Note
that this notion of embedding is slightly non-standard but very natural, as it not
only captures embeddings of metric spaces into geometric spaces (e.g., when C is
the class of all Euclidean metrics, or the class of all 
1 metrics), but also concepts
such as sparse spanners, where the class C is the class of metrics generated by
sparse graphs. In the rest of the paper, we will talk about metric embeddings
in this general sense, thus including within its purview the results on spanners
as well as those on embeddings into normed spaces, or for that matter, into
distributions over tree metrics [5, 15]. (As an aside, let us note that the concept
of distortion is often called “stretch” in the spanners literature, and we use the
two terms interchangeably.)

In the theoretical community, the popularity of the notion of distortion/stretch
has been driven by its applicability to approximation algorithms: if the embedding
ϕ : (V, d)→ (V, d′) has a distortion of D, then the cost of solutions to some opti-
mization problems on (V, d) and on (V, d′) can only differ by some function of D;
this idea has led to numerous approximation algorithms [20]. Seminal results in
embeddings include the O(log n) distortion embeddings of arbitrary metrics into

p spaces [9], the fact that any metric admits an O(log n) stretch spanner with
O(n) edges [3], and that any metric can be embedded into a distribution of trees
with distortion O(log n) [15]. (All the above three results are known to be tight.)

In parallel to this theoretical work, more applied communities have had much
recent interest in embeddings (and more generally, but also somewhat vaguely, on
problems of finding “simpler representations” of distance spaces). One example
is the networking community, where there is much interest in taking the point-
to-point latencies between nodes in a network, treating it as a metric space M =
(V, d) satisfying the triangle inequality,2 and finding some simpler representation
M ′ = (V, d′) of this resulting metric so that distances between nodes can be
quickly and accurately computed in this “simpler” metric M ′. (E.g., one may
want to assign each node a short label so that the distance between two nodes
can be inferred approximately by merely looking at their labels.)

Despite this similarity of interest, many of the theoretical results mentioned
above have not been used widely in these applications; the logarithmic guarantees
on the distortion are often deemed unacceptable. Indeed, the notion of distortion
turns out to be a demanding and inflexible objective function, and the empirical
works are often happy with guarantees of the following form: they allow some
small fraction of the distances to be distorted by arbitrary amounts, but then
seek very strong guarantees on the distortion incurred by the remaining large
fraction of the distances. E.g., in the networking application above, we would
be happy if most inter-node distances were correct and only a small fraction of
distances would be estimated poorly. (This corresponds to some notion of being
“good on average”; we will revisit this idea in Section 4.)

2 While the triangle inequality can be violated by network latencies, empirical evi-
dence suggests that these violations are small and/or infrequent enough to make
metric methods a useful approach.
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To remedy the situation, Kleinberg et. al. [21] defined the notion of embeddings
with slack : in addition to the metric M = (V, d) and the class C in the initial
formulation above, we are also given a slack parameter ε. We now want to find a
map ϕ(M) = (V, d′) ∈ C whose distortion is bounded by some quantity D(ε) on
all but an ε fraction of the pairs of points in V ×V . Note that we allow the distor-
tion on the remaining εn2 pairs of points to be arbitrarily large. The line of work
starting with their paper, and furthered by Abraham et. al. [2] and [1] showed
that very strong results were indeed possible: in fact, when allowed constant
slack, one could get constant-distortion constant-dimensional embeddings!

Given these results for embeddings into normed spaces, it is natural to ask
whether one can obtain similar results for spanners (and related constructs such
as distance oracles and distance labelings). This paper studies spanners with
slack, and gives strong guarantees that answer the question in the affirmative
and complement the above results for embeddings into normed metric spaces.

1.1 Our Results

In this paper, we look at results on finding spanners when we are allowed to incur
an arbitrary amount of distortion on an ε fraction of the distances. We say that
H = (V, EH) is an ε-slack spanner of a metric (V, d) with distortion D if for each
vertex v ∈ V , the furthest (1−ε)n vertices w from v satisfy d(v, w) ≤ dH(v, w) ≤
D d(v, w), i.e., the graph H maintains distances from each vertex to all but the
closest εn vertices. Our first result is a general transformation procedure to
convert standard constructions of spanners into spanners with slack.

Theorem 1 (General Conversion Theorem). Suppose any metric admits
an α(n)-distortion spanner with T (n) edges. Then given any metric (V, d) and
any ε, we can find an ε-slack spanner Hε for it with O(α(1

ε ))-distortion and
n + T (1

ε ) edges.

Using this, it immediately follows that there are constant-slack spanners with
linear number of edges and constant distortion!

Moreover, if we were given a graph G = (V, E) whose shortest path metric
is (V, d), we show in Section 3.1 how to extend the above theorem to output a
subgraph of G that has slightly more edges. We can also extend Theorem 1 in
another direction and find a spanner that has a small weight in addition to a
small number of edges (see Section 3.2).

Note that in the above results, we are given an ε, and then output a spanner
Hε. We can do better, and output a single graph H such that it is an ε-slack
spanner for all ε simultaneously. Two general conversion procedures are given in
Section 4, which can be used to prove corollaries like:

Theorem 2 (“One Spanner for All Epsilons”). Given any metric of size
n, we can find a graph H with O(n) edges that is an O(log 1

ε )-distortion ε-slack
spanner for each ε. Moreover, if the metric is generated by a graph G, then H
can be made a subgraph of G.
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The spanner H from the previous theorem preserves distances well on average.
We consider two natural notions of average, which are defined in Section 2.

Theorem 3 (“Good on Average”). The spanner H from Theorem 2 has
O(1) average distortion and O(1) distortion-of-the-average, and moreover has
O(log n) distortion in the worst case.

We then turn our attention to the questions of constructing distance labelings
and distance oracles, which are useful for resource-location applications men-
tioned in the introduction. Detailed results that appear in Section 5 include
results like:

Theorem 4 (Labelings and Oracles). Given any integer k, every metric ad-
mits ε-slack distance oracles where the query time and stretch are O(k), and
the space requirement is O(n + k(1

ε )1+1/k) words. Moreover, there are ε-slack
distance labeling schemes that uses O((1

ε )1/k log1−1/k 1
ε ) space and suffer distor-

tion O(k).

1.2 Previous Work

This work builds on a large body of work on spanners dating back to the late
1980’s [24, 3, 11, 4, 27] and still going strong [14, 8, 7, 6, 28]; see, e.g., [23] for many
of the results. Spanners were initially studied for applications in network syn-
chronization, but since then they have found myriad uses in network design and
routing, as well as in many places where it is advisable to compactly store a
graph without changing the distances much, such as in speeding up shortest
path computations. Apart from the literature on finding spanners of general
graphs, there has also been a large body of work on Euclidean spanners (see,
e.g., [11, 4]), as well as work on spanners for doubling metrics [10, 19].

The study of distance labelings of graphs [22, 16, 25] requires assigning “short”
labels to vertices so that the distance between two vertices can be inferred from
their labels alone, without any additional information about the graph. It is
known that if one wants to infer distances exactly, then one may require as
many as n bits for each vertex; however, one can do with far less space if one
just wants to estimate the distances approximately. A closely related concept is
that of a distance oracle, which is a data structure that can be used to estimate
distances between nodes using small space and fast query time. Exact distance
oracles require one to store lots of information (e.g., the entire distance matrix)
or large query time (to run a shortest-path computation), but fast and compact
distance oracles for general graphs were given by Thorup and Zwick [27]; work
on special classes of graphs appears in [26, 12, 18, 17].

As mentioned in the introduction, the work on embeddings with slack was
initiated by Kleinberg et. al. [21], and many of the subsequent results were
improved in Abraham et. al. [2] and [1]. Our techniques and results comple-
ment those in the two aforementioned papers. The notion of slack distance or-
acles has been studied in [1] and we extend some of the results marginally in
Section 5.1.
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Our work is closely related to the work on distance preservers [13] by Cop-
persmith and Elkin. A distance preserver is a subgraph that maintains distances
exactly for a pre-specified subset of pairs of nodes, as opposed to our case in
which the only guarantee is that a large fraction of pairs of nodes have their dis-
tances well-approximated. On the other hand, the work of Elkin and Peleg [14]
shows that there exist sparse spanners such that for large distances that are
at least logarithmically large, the multiplicative stretch can be close to 1. This
agrees with our results in the sense that large distances can be better maintained
than small distances.

2 Preliminaries and Notation

All metric spaces we consider in this paper are finite and the graphs we consider
are undirected. Let (V, d) be a metric space, where n = |V |. The ball B(x, r) =
{y | d(x, y) ≤ r} is the set of points at distance at most r from x. For 0 < ε < 1,
R(x, ε) is the minimum distance r such that |B(x, r)| ≥ εn. The point y is ε-far
away from point x if d(x, y) ≥ R(x, ε). Observe that all spanners H we consider
are non-contracting ; i.e., for any x, y ∈ V , d(x, y) ≤ dH(x, y).

Definition 1 ((Uniform) Slack Spanner). Given a metric (V, d) and 0 <
ε < 1, a weighted graph H = (V, E) with each edge (u, v) ∈ E having weight
d(u, v) is an α-spanner with ε-uniform slack if for all x, y ∈ V such that y is
ε-far away from x, dH(x, y) ≤ α · d(x, y). In general, α can be a function of ε
and |V |. If the metric (V, d) is induced by some weighted graph G, we say that
H is a subgraph spanner if H is a subgraph of G.

In other words, an ε-uniform slack spanner is one such that for each point x, apart
from the εn points closest to x, the distances from x to the rest of the points
are well approximated. We call this concept “uniform slack” to be consistent
with previous notation; all references to “ε-slack” in this paper mean “ε-uniform
slack”.3

Definition 2 (Gracefully degrading spanner). A weighted graph H is an
α(1

ε )-gracefully degrading spanner for the metric (V, d) if for each 0 < ε < 1,
H is an α(1

ε )-spanner with ε-slack. The notion of subgraph spanner also applies
analogously.

We also consider two incomparable notions of “average” distortion; both have
been considered previously in the literature, and we will construct spanners that
are simultaneously good with respect to both these notions.

Definition 3 (Average Distortion). The average distortion of a spanner H

for a metric space (V, d) is 1
(n
2)

∑
{x,y}∈(V

2)
dH(x,y)
d(x,y) .

3 For the record, there is a non-uniform notion of slack; see [2, Defn. 1.1] for details.
Also, readers of [1] should note that ε-uniform slack embeddings are called “coarsely
(1− ε) partial embeddings” in that paper.
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Definition 4 (Distortion of Averages). The distortion of averages of a span-
ner H for a metric space (V, d) is

∑
{x,y}∈(V

2) dH(x, y)/
∑

{x,y}∈(V
2) d(x, y).

Most of our algorithms make use of a small sample of points from the metric
space V such that each point is “close” to some sample point:

Definition 5 (Density Net). Given a metric space (V, d) with n = |V |, and
0 < ε < 1, an ε-density net is a set N ⊆ V such that (1) for all x ∈ V , there
exists y ∈ N such that d(x, y) ≤ 2R(x, ε), and (2) |N | ≤ 1

ε .

We will often refer to the nodes in N as centers. Note that the difference between
an ε-net and an ε-density net is in the notion of “closeness”—here the allowed
distance from x to its closest center depends on the density of points around x.

Lemma 1. Given a metric space (V, d) and 0 < ε < 1, an ε-density net N can
be found in polynomial time.

Proof. For each point x ∈ V , let Bx denote the ball B(x, R(x, ε)). We order the
vertices in a list L by nondecreasing value of R(·, ε), breaking ties arbitrarily,
and initialize the set N to be empty. We remove the first vertex v from list L. If
there exists u ∈ N such that Bv intersects Bu, then we just discard v; otherwise,
we add v to N and remove all vertices in the ball Bv from the list L. We repeat
this process until the list L becomes empty and return N as our ε-density net.

We next show that the subset N returned satisfies the two properties given
in Definition 5. Consider any point x ∈ V . We show that there is a point y ∈
N within distance 2R(x, ε) of x. If x is included in N , this is trivially true.
Otherwise, either x was at some point the first vertex in list L and get discarded,
or x was in some ball Bv and removed from list L. In the former case, there is
some point u ∈ N such that Bu intersects Bx. Since u appears before x in
the initial list, R(u, ε) ≤ R(x, ε) and hence the distance between x and the
density-net point u is d(u, x) ≤ R(u, ε) + R(x, ε) ≤ 2R(x, ε). In the latter case,
as v appear before x in the initial list, we also have R(v, ε) ≤ R(x, ε) and so
d(x, v) ≤ R(v, ε) ≤ R(x, ε) ≤ 2R(x, ε). To show that |N | ≤ 1

ε , observe that the
intersection of Bx and By is empty for any two distinct points x, y ∈ N . Since for
each x ∈ N , the ball Bx contains at least εn points, we conclude that |N | ≤ 1

ε .

3 Slack Spanners

In this section, we give a general transformation technique to convert α(n)-
spanners with T (n) edges into ε-slack spanners with distortion (5 + 6α(1

ε )) and
n + T (1

ε ) edges. Our construction is very simple:

Construction. We first construct an ε-density net N as given in Lemma
1. Since |N | ≤ 1

ε , we can construct an α(1
ε )-spanner Ĥ for the set of

centers N . Then, for each point x ∈ X \N , we add an edge between x

and its closest point in N to Ĥ; this gives us a spanner H for (V, d).
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Theorem 5. The spanner H has n + T (1
ε ) edges, and is a (5 + 6α(1

ε ))-spanner
with ε-uniform slack.

Proof. First we bound the size of H . Since N has at most 1
ε points, the spanner

Ĥ has at most T (1
ε ) edges. Moreover, for each point x ∈ V \N , one extra edge

is added. Hence, H has at most n + T (1
ε ) edges.

Next, we bound the stretch of H . Consider two points u and v such that v
is ε-far away from u, i.e., d(u, v) ≥ R(u, ε). Let u′ be a closest point in N to
which u is connected to in H (or set u′ = u if u is in N), and define v′ similarly
with respect to v. By the properties of the density net, the distance d(u, u′) ≤
2R(u, ε) ≤ 2d(u, v) and d(v, v′) ≤ d(v, u′) ≤ d(v, u) + d(u, u′) ≤ 3d(u, v). Also,
d(u′, v′) ≤ d(u′, u) + d(u, v) + d(v, v′) ≤ 6d(u, v). This implies that

dH(u, v) ≤ d(u, u′) + dH(u′, v′) + d(v′, v) ≤ 5d(u, v) + dH(u′, v′)
≤ 5d(u, v) + α(1

ε )d(u′, v′) ≤ 5d(u, v) + α(1
ε )(6d(u, v)).

As an example of how we apply Theorem 5, let us recall a well-known result
about spanners for general metrics, from which we derive Corollary 1.

Theorem 6 (Spanners for general metrics [24, 3]). For any metric of size
n, there exists a (2k − 1)-spanner with O(n1+1/k) edges.

Corollary 1 (Uniform slack spanners for general metrics). For any met-
ric, for any 0 < ε < 1, for any integer k > 0, there exists a (12k − 1)-spanner
with ε-uniform slack of size n + O((1

ε )1+1/k).

3.1 Subgraph Spanners

Note that if the metric (V, d) was generated by a graph G = (V, E), our previous
construction may result in a spanner that is not a subgraph of the original graph
G. We now give an alternative construction to obtain a subgraph spanner. Let us
first recall a theorem by Coppersmith and Elkin [13] on subgraphs that preserve
distances exactly for a given set P of pairs of vertices in a weighted graph
G = (V, E).

Theorem 7 ([13]). Given a weighted graph G = (V, E) and a set P of pairs of
vertices, there exists a subgraph H of G with O(n +

√
n · |P |) edges such that for

any {u, v} ∈ P , dH(u, v) = dG(u, v).

Construction of the Subgraph Spanner. As before, let N be an
ε-density net, which we know has at most 1

ε elements. We construct an
α(1

ε )-spanner H ′ of size T (1
ε ) on N , which we convert to a subgraph in

the following manner. We take P to be the set of distinct pairs {u, v}
that are edges in H ′ to be the subgraph of G that preserves distances
for all pairs in P in the manner as stated in Theorem 7. Finally, points
in V are connected to N by shortest path trees rooted at the points in
N , using edges in the given graph G.
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Theorem 8 shows that the resulting subgraph spanner H contains a small number
of edges and has small stretch. Applying the theorem to Theorem 6 gives a nice
corollary.

Theorem 8. The subgraph H is a (5+6α(1
ε ))-spanner with ε-uniform slack and

has O(n +
√

n · T (1
ε )) edges.

Corollary 2 (Subgraph uniform slack spanners for general metrics).
For any metric, for any 0 < ε < 1, for any integer k > 0, there exists a subgraph
(12k − 1)-spanner with ε-uniform slack of size O(n +

√
n · (1

ε )1+1/k).

3.2 Low Weight Spanners

In some cases, we would like spanners which are not only sparse, but whose
weight is also comparable to the weight of an MST on the metric (V, d). Due
to lack of space, we merely mention a representative result here, and omit the
details.

Proposition 1 (Low weight uniform slack spanner). For any metric of
size n, there exists an O(log 1

ε )-spanner with ε-uniform slack of size O(n + 1
ε )

and weight O(log2 1
ε ) times that of an MST.

4 Gracefully Degrading Spanners and Notions of Average
Distortion

In this section, we give general procedures to convert ordinary spanners into
gracefully degrading spanners. Suppose we know how to construct ordinary α(n)-
spanners of size T (n) for finite metrics of size n. Observe that typically, α(·) is a
sublinear function, such as O(log n). In particular, we assume that there exists
C, c > 1 such that α(n) ≤ Cα(n1/c).

Construction. Take ε0 = n−1/c (think of c as 2 or 4) and construct a
1-spanner H0 for some ε0-density net N0 that has O(n) edges. We also
construct an α(n)-spanner Ĥ for the entire metric V . The gracefully
degrading spanner consists of the union of Ĥ and H0, together with
edges that connect each point in V to its closest point in N0.

This simple construction gives us the following theorem on gracefully degrad-
ing spanners. Using similar techniques as in Section 3.1, we can obtain subgraph
spanners as well. Applying Theorem 9 to Theorem 6 with k = O(log n), we
obtain the result as promised in the introduction.

Theorem 9. Suppose there exists an α(n)-spanner of size T (n) for any met-
ric of size n, where α(·) is a non-decreasing function such that there exists
exists C > 1 such that α(n) ≤ Cα(n1/2). Then, for any finite metric (V, d)
of size n, there exists an Cα(1

ε )-gracefully degrading spanner of size at most
T (n) + O(n).
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If we have the stronger assumption that α(n) ≤ Cα(n1/4), then the grace-
fully degrading spanner can be made to be a subgraph of the weighted graph that
induces the metric (V, d).

Corollary 3 (Gracefully degrading spanner for general metrics). Any
metric of size n has a O(log 1

ε )-gracefully degrading spanner H of size O(n). If
the metric is induced by some weighted graph G, then H can be made to be a
subgraph of G.

Since the greedy construction given in [24, 3] gives an O(log n)-spanner with
size O(n) for any metric, we can show that any metric has a spanner that has
O(1) “average distortion” for both notions of average distortion given in Defini-
tions 3 and 4 in the following theorem.

Theorem 10 (“Average Distortion”). For any metric (V, d), there exists a
spanner H with size O(n) that has both constant average distortion and constant
distortion of the average, and moreover has O(log n) stretch in the worst case.
If the metric (V, d) is induced by some graph G, then H can be made to be a
subgraph of G.

5 Distance Oracles and Labelings

The techniques that we have developed for slack spanners also turn out to be
useful for developing slack distance oracles and distance labelings. Distance or-
acles and labelings have been widely studied, and distance labelings were in
fact one of the original motivations for the study of slack embeddings by Klein-
berg et. al. [21]. Slack distance oracles and (implicitly) labelings were considered
by Abraham et. al. [1], who gave both slack and gracefully degrading construc-
tions. We give simple constructions with slightly better bounds for distance
oracles, and give the first uniform slack labelings that do not use an embedding
into 
p, allowing us to bypass a lower bound from Abraham et al. [2].

5.1 Distance Oracles

Thorup and Zwick [27] studied the problem of creating distance oracles for metric
spaces. A distance oracle is a small data structure which allows fast queries for
approximate distances. They give an oracle that, for any integer k ≥ 1, takes
O(kn1+1/k) space, has O(k) query time, and has stretch of 2k−1. Slack distance
oracles were first studied by Abraham et. al. [1], whose results we improve on
for both uniform slack and gracefully degrading distance oracles. We first give a
general transformational theorem. By using this transformation on the distance
oracle of Thorup and Zwick [27, Theorem 3.1], we get a uniform slack distance
oracle with the best known guarantee.

Theorem 11. Suppose that there exists some distance oracle with α(n) stretch
and O(q(n)) query time that uses O(f(n)) space. Then there exists a distance
oracle with ε-uniform slack, 5+6α(1

ε ) stretch, and O(q(1
ε )) query time that uses

O(n + f(1
ε )) space.
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Corollary 4 (Uniform slack distance oracle). For every integer k ≥ 1,
there is a distance oracle with ε-uniform slack, O(k) query time, and 12k − 1
stretch that uses O(n + k(1

ε )1+1/k) space.

The uniform slack distance oracle in the full version of Abraham et. al. [1]
has stretch of only 6k − 1 and O(k) query time, but uses O(n log n log 1

ε +
k log n(1

ε log 1
ε )1+1/k) space.

Gracefully Degrading Distance Oracles. The construction of gracefully
degrading spanners in Section 4 can be easily modified to yield gracefully de-
grading distance oracles. Namely, we use two levels of distance oracles instead of
two levels of spanners, where the oracle on the density net is exact. Combining
this transformation theorem with the distance oracles of Thorup and Zwick [27]
and the average case analysis of Theorem 10, we get the following:

Corollary 5 (Gracefully degrading distance oracle). For any integer k
with 1 ≤ k ≤ O(log n), there is a distance oracle with worst case stretch of
2k − 1 and O(k) query time that uses O(kn1+1/k) space such that the average
distortion and the distortion of average is O(1).

The gracefully degrading distance oracle of Abraham et. al. [1, Theorem 14]
gives the same query time, worst case stretch, average distortion, and distortion
of average. However, their construction modifies the standard Thorup and Zwick
[27] construction by sampling the first level with probability 3n−1/k lnn, and thus
they use O(n1+1/k log n) space. This is more than we use if k = o(log n) and the
same if k = Θ(log n).

5.2 Distance Labels

A distance labeling is an assignment of labels to the vertices so that the approx-
imate distance between any two vertices can be computed simply by looking at
the two labels. The goals are to minimize the stretch, the size of the label, and
the time needed to compute the distance given the two labels. We give the first
uniform slack distance labeling that uses space independent of n. Note that any
embedding of a metric into 
p gives a distance labeling where the size of a label
is the dimension of the embedding. Embeddings of this form were considered by
Abraham et al. [2], who proved that the dimension must depend on logn. Thus
any distance labeling that uses a slack embedding into 
p must use space that
depends on log n, whereas our labeling is independent of n.

Theorem 12. Let (V, d) be a metric space with n points. Suppose that there
exists a distance labeling where each label has size O(f(n)) and for any two
points u, v it is possible to compute, in O(q(n)) time, an approximation to the
distance between u and v with a stretch of at most α(n). Then there exists a
distance labeling with ε-uniform slack such that every label has size O(f(1

ε )),
and computing distances up to a stretch of 5 + 6α(1

ε ) can be done in O(q(1
ε ))

time.
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We get the following corollary by simply applying Theorem 12 to the distance
labeling of Thorup and Zwick [27, Theorem 3.4]. Note that the size of the labels
is independent of n.

Corollary 6 (Uniform slack distance labeling). Let (V, d) be a metric space
on n points. Let 0 < ε < 1, and let k be an integer with 1 ≤ k ≤ log 1

ε . Then it
is possible to assign each point a label that uses O((1

ε )1/k log1−1/k 1
ε ) space such

that, given the labels of vertices u, v where v is ε-far from u, the distance d(u, v)
can be computed up to a stretch of 12k − 1 in O(k) time.

We can also get gracefully degrading labelings. These labelings will be larger
than the embeddings into 
p given by Abraham et. al. [1, Theorem 10], but
will have faster time complexity. We get the following result by combining a
standard transformation theorem (which we omit) with the labelings of Thorup
and Zwick [27] and Theorem 10.

Corollary 7 (Gracefully degrading distance labeling). For any integer k
with 1 ≤ k ≤ O(log n), there is a distance labeling of any n point metric such that
each label has size at most O(n1/k log1−1/k n), and given two labels it is possible
to compute the distance between the two points up to a worst case stretch of
2k − 1 in O(k) time. Furthermore, the average distortion and the distortion of
average are O(1).
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Abstract. We revisit the problem of indexing a string S[1..n] to sup-
port searching all substrings in S that match a given pattern P [1..m]
with at most k errors. Previous solutions either require an index of size
exponential in k or need Ω(mk) time for searching. Motivated by the
indexing of DNA sequences, we investigate space efficient indexes that
occupy only O(n) space. For k = 1, we give an index to support matching
in O(m+occ+log n log log n) time. The previously best solution achieving
this time complexity requires an index of size O(n log n). This new index
can be used to improve existing indexes for k ≥ 2 errors. Among others,
it can support matching with k = 2 errors in O(m log n log log n + occ)
time.

1 Introduction

Given a string S[1..n] over a constant-size alphabet Σ and an integer k ≥ 0,
we want to build an index for S, such that for any subsequent query pattern
P [1..m], we can report efficiently all substrings in S that match P with at most
k errors. The primary concern is how to achieve efficient pattern matching given
limited space for indexing. We consider two kinds of errors: In the Hamming
distance case, an error is a character substitution; in the edit distance case, an
error can be a character substitution, insertion or deletion.

For exact string matching (i.e., k = 0), simple and efficient solutions have
been known since the 1970s. Suffix trees [20,14] use O(n) space1 and achieve the
optimal matching time, i.e. O(m + occ), where occ is the number occurrences of
P in S. Suffix arrays [13], also using O(n) space but with a smaller constant, give
an O(m+occ+logn) matching time. Recently, two compressed solutions, namely,
CSA [8] and FM-index [7], have been proposed; they require only O(n)-bit space
and support matching in O(m + occ logε n) time, for any constant ε > 0.

Approximate matching is a more challenging problem even if only one error is
allowed. The simplest solution is to search the suffix tree of S for every 1-error
� This research was supported by Hong Kong RGC Grant HKU 7140/06E.
1 Unless otherwise stated, the space complexity is measured in terms of the number

of words, where a word can store O(log n) bits.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 208–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. A summary of results. Results given in this paper are marked with †.

Space k = 1 k = 2
O(n log2 n) words O(m log n log log n + occ) [1] O(m + log2 n log log n + occ) [5]
O(n log n) words O(m log log n + occ) [2] O(m + log2 n log log n + occ) †

O(m + log n log log n + occ) [5]
O(n) words O(min{n, m2}+ occ) [4] O(min{n, m3}+ occ) [4]

O(m log n + occ) [10] O(m2 log n + occ) [10]
O(m log log n + occ) [11] O(m2 log log n + occ) [11]
O(m + log3 n log log n + occ) [6] O(m + log6 n log log n + occ) [6]
O(m + log n log log n + occ) † O(m log n log log n + occ) †

modification of the query pattern, this requires O(m2 + occ) time2 [4]. The
first non-trivial improvement was due to Amir et al. [1], who showed that the
matching time can be improved to O(m log n log log n + occ) using an index
occupying O(n log2 n) space. Later Buchshaum et al. [2] further improved the
matching time to O(m log log n + occ), as well as reducing the index space to
O(n log n). Huynh et al. [10] and Lam et al. [11] further compressed the index to
O(n) space, while achieving the time complexity of the indexes reported in [1]
and [2], respectively. It has been an open problem whether a time complexity
linear in m and occ can be achieved. Recently, Cole et al. [5] resolved in the
affirmative with an O(n log n)-space index that supports one-error matching in
O(m + log n log log n + occ) time. And more recently, Chan et al. [6] found that
Cole et al.’s index admits a time-space tradeoff, i.e., the space can be reduced to
O(n) space, yet the time complexity increases to O(m+log3 n log log n+occ). In
this paper, we give new techniques for compressing Cole et al.’s index to O(n)
space, while retaining the same time complexity.

To cater for k = O(1) errors, one can perform a brute-force search on a
one-error index (i.e., repeatedly modify the pattern at different k − 1 positions
and search for one-error matches); the matching becomes very slow, involving
a factor of mk in the time complexity. A breakthrough result was given by
Cole et al. [5], who devised a recursive solution to build an index that occupies
O(n logk n) space and supports k-error matching in O(m+logk n log log n+ occ)
time for Hamming distance. The term occ is replaced with occ · 3k for edit dis-
tance. Our new 1-error index is essentially a compressed version of the Cole et
al.’s 1-error index and can replace it as the base case in their recursive solution.
This gives an O(n logk−1 n)-space index for k-error matching with the same time
complexity.

For indexing long sequences like DNA (which contains a few million to a few
billion characters), it is not desirable to have an index whose space complexity
grows exponentially as k increases. Like the case of 1-error, the k-error index
of Cole et al.’s also admits a time-space tradeoff; in particular, Chan et al. [6]
showed that the tree cross product technique by Buchshaum et al. [2] can be

2 Unless otherwise stated, all matching time mentioned applies to both Hamming and
edit distance.
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used to trade time for space in the k-error index by Cole et al., the space can
be reduced to O(n) while the time for k-error matching increases to O(m +
logk(k+1) n log log n + occ). Note that this result is of theoretical interest only
as the time complexity is far from practical. For k = 2, the time complexity
already involves a term log6 n log log n, which is likely to be much bigger than
m in most applications. In this paper, we devise a more practical solution for 2-
error matching. Specifically, we show that our new O(n)-space index for 1-error
matching can readily support 2-error matching in O(m log n log log n+occ) time.
Furthermore, this index can also handle k ≥ 3 errors using a brute force manner,
and the matching time is O(mk−1 log n log log n + occ).

In this paper, we assume the alphabet size |Σ| is a constant and hence
does not affect the asymptotic analysis. If |Σ| is huge or unbounded, we re-
mark that our data structures takes O(n) space (i.e., does not involve |Σ|); the
1-error matching time is O(m + |Σ| logn log log n + occ), the 2-error matching
time is O(|Σ|2m log n log log n + occ), and the k-error matching time, k > 2, is
O(|Σ|kmk−1 log n log log n + occ).

On the technical side, our result is based on a new technique to replace the
tree-like data structure of Cole et al. [5] with simple arrays of integers, which
are basically some kind of lexicographical information about a suffix tree. We
show how approximate string matching can be done by simple range queries
over these arrays, instead of the more complicated tree traversals as in [5]. Fur-
thermore, we show how to compress these arrays by storing the lexicographical
information imprecisely. This simple approximation can save space and can be
verified efficiently. Using the known results on concise representation of increas-
ing sequences and range searching, we reduce the space requirement of Cole et
al. by a factor of O(log n), without increasing the matching time.

We extend our data structure for 1-error matching to support a lazy prepro-
cessing of the input pattern P , which takes O(m) time. Then, for any P ′ formed
by modifying P at one position, we can find the 1-error matches of P ′ in S in
O(log n log log n + occ′) time, where occ′ is the number of 1-error matches for
P ′. There are O(m) possible P ′, so all the 2-error matches of P can be found in
O(m log n log log n + occ) time.

Due to the page limit, we omitted the details about our results on k-error
matching, which will be given in the full paper. We remark that our paper
concerns only worst-case performance. The literature also contains several inter-
esting results on average-case performance, see, e.g., [17, 12, 3].

2 Preliminaries

Let S[1..n] be a string over a constant-size alphabet Σ. The suffix tree T of S is a
compact trie comprising all suffixes of S. Throughout this paper, we assume that
the suffixes are ordered from left to right in increasing lexicographical order. The
suffix array SA[1..n] is an array of integers such that SA[i] = j if S[j..n] is the
lexicographically i-th suffix of S. Note that the inverse suffix array SA−1[1..n]
satisfies that SA−1[j] gives the lexicographical order of the suffix S[j..n]. We
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always store T , SA[1..n] and SA−1[1..n], which take O(n) words, or equivalently,
O(n log n) bits.

2.1 Centroid Path Decomposition

For a suffix tree T , the centroid path decomposition [5] of T is defined as follows.
For every internal node u, let v be the child of u with the most number of leaves
(ties broken arbitrarily). The edge uv is called a core edge. Edges other than
core edges are called side edges. A centroid path C is a maximal path connecting
consecutive core edges. The root of C, denoted r(C), is the top-most node on C.
The level of C is the number of side edges on the path from the root of T to
r(C). We denote Δ(T ) the set of all centroid paths in T .

Denote Tu the subtree of T rooted at a node u and |Tu| be the number of
leaves in Tu. Let TC be Tr(C). A leaf (i.e., a suffix) x of T belongs to a centroid
path C if x is in TC . A node u hangs from C if its parent edge is a side edge
connecting to a node on C, and Tu is called a side tree of C. For any node u
hanging from C, we note that |Tu| ≤ |TC |/2. We highlight some properties of the
decomposition.

Fact 1. (i) For any leaf x in T , the path from root of T to x has at most log n
side edges, and x belongs to at most log n centroid paths. (ii) ΣC∈Δ(T )|TC | ≤
n log n. (iii) For any two centroid paths C1 and C2 of the same level, TC1 and
TC2 are disjoint, i.e., they do not have common leaves.

2.2 The Side-Tree Rank of a Leaf

Consider a centroid path C. The leaves in TC are partitioned among the side
trees, and our compressed index needs the association between the leaves and
the side trees. To save space, we rank the side trees hanging from C in descending
order of their size (i.e., the number of leaves), and we store, for each leaf x, the
rank of the side tree containing x, which is denoted st-rankC(x). To store such
side-tree ranks for all controid paths, we need

∑
C∈Δ(T )

∑
x∈TC 	log st-rankC(x)


bits, which is naively at most n log2 n bits (because ΣC∈Δ(T )|TC | ≤ n log n and
st-rankC(x) ≤ n). Our compressed index actually takes advantage of a better
upper bound.

Lemma 1. (i) Let x be a leaf in T , belonging to centroid paths C1, C2, · · · , Cα.
Then,

∑
1≤i≤α log st-rankCi(x) ≤ log n. (ii)

∑
C∈Δ(T )

∑
x∈TC 	log st-rankC(x)
 ≤

2n logn.

Proof. Let x be any leaf in T . (i) We assume that the α ≥ 1 centroid paths
to which x belongs are labeled in such a way that r(Ci+1) hangs from Ci, for
i = 1, . . . , α− 1. Let ri = st-rankCi(x). We note that |TCi | ≥ |TCi+1 |× ri, because
the ri-th largest side tree has at most 1

ri
of all leaves belonging to Ci. Thus, we

have
∑α

i=1 log ri ≤
∑α−1

i=1 log( |TCi
|

|TCi+1 |)+log rα ≤ log |TC1 |
|TCα | +log |TCα | = log |TC1 | ≤

log n. (ii) It follows directly from (i). �
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2.3 The y-Fast Trie

Let A[1..
] be a sorted array of integers. Given any integer j, the predecessor
query reports the smallest i such that j < A[i]. Willard [21] gave the y-fast trie
data structure with the following performance.

Lemma 2 ( [21]). Let A[1..
] be a sort array of integers in [1, n], we can
build a y-fast trie for A using O(
 log n) bits to support the predecessor query
in O(log log n) time.

2.4 The LCP Data Structure

Let T be the suffix tree for S[1..n]. Let T ′ be a trie for only a subset of suffixes in
T . A location in T ′ is a node in T ′ or a point on an edge some characters below
a node. Given a pattern P [1..m], an integer i ≤ m and a location u in T ′, the
query LCP(P, i, u) asks for the location at which the suffix P [i..m] diverges from
T ′, when P [i..m] is aligned to T ′ starting from u. We are allowed to preprocess
P in O(m) time, and the concern is to efficiently answer subsequent LCP queries
for different suffix P [i..m] and location u.

Let 
 be the number of leaves in T ′. Cole et al. [5] proposed an O(
 log2 n)-bit
LCP data structure to answer each subsequent LCP query in O(log log n) time.
In this paper, we use a simple observation to reduce the space requirement to
O(
 log n) bits.

We first outline the LCP data structure in [5]. Essentially, [5] performs a
centroid path decomposition on T ′. For any C ∈ Δ(T ′), let T ′

C be the subtree
of T ′ rooted at r(C) and let 
C be the number of leaves in T ′

C. The path from
r(C) to a leaf in T ′ is a suffix of S. In [5], an array AC [1..
C] is used to store
the lexicographical order of each such suffix, among all suffixes of S. Note that
AC [1..
C ] is strictly increasing. A y-fast trie [21] of size O(
C log n) bits is built
to answer in O(log log n) time the predecessor query. These A arrays and y-
fast tries over all centroid paths in T ′ take totally O(
 log2 n)-bit space. The
remaining part of the LCP data structure takes only O(
 log n)-bit space. We
use the following observation to reduce the space requirement.

Lemma 3. For any centroid path C in T ′, let hC be the total length of edge label
from root of T ′ to r(C). (i) For i = 1, . . . , 
C, AC [i] can be computed in O(1)
time using hC and the inverse suffix array of S. (ii) The predecessor query can
be supported in O(log log n) time using an O(
C)-bit data structure.

Proof. (i) Consider the i-th leaf in T ′
C and let S[j..n] be its leaf label, i.e., S[j..n]

is the suffix corresponding to the path from root of T ′ to this leaf. By definition,
AC [i] is the lexicographical order of S[j + hC ..n], so AC [i] = SA−1[j + hC ].

(ii) Instead of building a y-fast trie on the complete AC array, we only build
a y-fast trie for AC [log n], AC [2 logn], . . . using O(
C) bits space. The predecessor
query can be done by first querying y-fast trie, then performing a binary search
in AC within an interval of length log n. It takes O(log log n) time. �
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Thus, for each centroid path C, we store an integer hC and an O(
C)-bit
predecessor data structure. It takes totally O(
 log n) bits over all centroid paths
in T ′. Together with the remaining part of the LCP data structure of [5], we
have the following lemma.

Lemma 4. Let T ′ be a compact trie comprising 
 suffixes of S[1..n]. We can
build an O(
 log n)-bit LCP data structure for T ′. Given any pattern P [1..m], we
can preprocess P in O(m) time. Each subsequent LCP query can be answered
in O(log log n) time.

3 An O(n log n)-Bit Index for 1-Error Matching

This section explains how to compress the data structure of Cole et al. [5] in
order to obtain an O(n log n)-bit index for S[1..n], such that for any pattern
P [1..m], it finds the 1-error matches of P in O(m + occ + log n log log n) time.
We consider Hamming distance first. Extension to edit distance is given at the
end of the section.

Let us first consider the suffix tree T of S. We perform a centroid path de-
composition on T and let Δ(T ) be the set of all centroid paths. For any centroid
path C, we define a set of modified suffixes as follows. Let s be a suffix in T
passing through the root of C, and diverging from C at a node u on C. We create
a modified suffix s′ by modifying s at the first character after u, replacing it
with the first character on the core edge out of u. We say that s generates s′

according to C. We assume the suffix corresponding to C itself is also a modified
suffix generated according to C.

To find the 1-error matches of P in S, the core of our algorithm is solving the
following prefix matching problem.

Definition 1 (Prefix matching query for modified suffixes). Let T be
the suffix tree of S and P be a pattern. For any centroid path C of T , let φC
be the set of modified suffixes generated according to C with P as a prefix. The
prefix matching query, denoted prefix(C), reports the set ΦC of suffixes in T that
generate the modified suffixes in φC .

Lemma 5. Let T be the suffix tree of S[1..n]. We can build an O(n log n)-bit
index for T . For any pattern P [1..m], we can preprocess P in O(m) time; then
prefix(C), for any centroid path C in T , can be answered in O(log log n+|ΦC |+eC)
time, where eC is non-negative and the sum of eC over all centroid paths in T is
at most 2 log n.

The following subsections are devoted to the proof of Lemma 5. Then by us-
ing the framework of Cole et al. [5], we can exploit our indexes for the prefix
matching queries and LCP queries to obtain an O(n log n)-bit index for the 1-
error matching problem, and Theorem 1 follows. We leave the details to the full
paper.

Theorem 1. We can build an O(n log n)-bit index for S[1..n] that finds the 1-
error matches of any P [1..m] in O(m + occ + log n log log n) time, where occ is
the number of matches found.
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3.1 The Prefix Matching Query for Modified Suffixes

Cole et al. [5] used the error-tree data structure to support the prefix matching
query in O(m) preprocessing time and O(log log n + |ΦC |) query time. Their
solution takes O(n log2 n)-bits and requires sophisticated tree operations. In this
paper, we uses interesting techniques to replace their tree-like data structure
with simple arrays of integers.

A simple O(n log2 n)-bit solution. Let T be the suffix tree of S. Let U be
the set of all the O(n log n) modified suffixes generated according to all the cen-
troid paths. For each centroid path C, we simply store two arrays of integers.
Let s′1, s

′
2, . . . , s

′

 be the modified suffixes generated according to C, in increasing

lexicographical order. We store (1) lex-orderC , where lex-orderC [i] is the lexico-
graphical order of s′i among all modified suffixes in U . (2) labelC , where labelC [i]
= j if s′i is generated by the suffix S[j..n].

In addition, we store a compact trie M for U . Given any pattern P , we
preprocess P by aligning P with M starting from the root. It determines the
range [d, e] such that all modified suffixes with lexicographical order in [d, e]
(w.r.t. U) have P as a prefix. Given any centroid path C of T , the prefix match-
ing query is done by a range search query on lex-orderC . For each i such that
d ≤ lex-orderC [i] ≤ e, we report labelC [i]. The range search on lex-orderC takes
O(log log n) time by storing a y-fast trie [21] on lex-orderC . Thus, finding the ΦC
takes O(log log n + |ΦC |) time. The total space requirement is O(n log2 n) bits.

An O(n log n)-bit solution. We exploit sophisticated techniques to reduce the
space requirement of the above solution to O(n log n) bits.

1. Sampling. Instead of M , we store a compact trie containing only one in every
log n leaves of M . With this approximation, answering the prefix matching
query on a centroid path C requires extra verification on the suffixes before
reporting it as ΦC . Let eC be the number of suffixes that require verification.
We show that the sum of eC is at most 2 logn over all centroid paths.

2. Constant time verification. Given the pattern P , a centroid path C and a
suffix s = S[j..n], we need to verify whether s generates a modified suffix s′

according to C with P as a prefix. We show how to perform the verification
in O(1) time using the suffix tree, suffix array and the LCP data structure.

3. Concise representation.The lex-orderC and labelC arrays take totallyO(n log2 n)
bits if stored directly. We replace their entries with integers of smaller values,
by exploiting the properties of the centroid path decomposition. Then, we use
variable size encoding to represent the arrays in O(n log n) bits.

Precisely, our O(n log n)-bit solution stores a compact trie N comprising
O(n) modified suffixes in U , namely, the lexicographically (log n)-th, (2 logn)-th,
(3 log n)-th, ... modified suffixes. For a centroid path C, let s′1, s

′
2, . . . , s

′

 be the

modified suffixes generated for C. We store two length-
 arrays for C.
– lex-orderC [1..
]: lex-orderC [i] is the lexicographical order of s′i among all the

O(n) modified suffixes in N .
– labelC [1..
]: Define labelC [i] = j if s′i is generated by S[j..n].
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A naive way to store the rank and label arrays still takes O(n log2 n) bits.
In Section 3.3, we give non-trivial techniques to compress them into O(n log n)
bits. We first proceed to show how to use these two arrays to find ΦC efficiently.

3.2 Answering a Prefix Matching Query

Given a pattern P , we show how to preprocess P in O(m) time such that for
any centroid path C, the prefix matching query prefix(C) can be answered in
O(log log n + |ΦC |+ eC) time, and the sum of eC over all centroid paths C is at
most 2 log n.

Error-bounded candidate generation. We align P with N starting from the
root in O(m) time to find the range [d, e] corresponding to leaves in N with P
as a prefix. Then, for any centroid path C, we can find ΦC as follows.

1. Find the maximal range [p..q] such that d − 1 ≤ lex-orderC [p]
≤ lex-orderC [q] ≤ e + 1 by a range search query on the lex-orderC array.

2. For each i in [p..q], let j = labelC[i]. If lex-orderC [i] is not d − 1 or e + 1,
report S[j..n] in ΦC ; otherwise, call S[j..n] a candidate and verify whether
S[j..n] is in ΦC .

We want the lex-orderC array to support the operation range search(d, e):
given integers d and e, d ≤ e, return p, q such that lex-orderC [p..q] is the largest
interval satisfying d− 1 ≤ lex-orderC [p] ≤ lex-orderC [q] ≤ e + 1. We can build a
y-fast trie [21] on one per log n entries in lex-orderC . Then range search can be
done in O(log log n) time by a query to the y-fast trie and then a binary search
in an interval of length log n. It uses O(n log n) bits over all centroid paths.

Lemma 6. For any centroid path C, let eC be the number of candidates generated
for verification. The sum of eC over all centroid paths is at most 2 logn.

Proof. For any integer i, at most log n entries over all lex-order arrays equal i,
and we verify a suffix only if its lex-order value is d− 1 or e + 1. �

Constant time verification. We need to verify whether a candidate is in ΦC .

Lemma 7. We can preprocess P in O(m) time. Then, for any centroid path C
and candidate S[j..n], we can verify in O(1) time whether S[j..n] is in ΦC, i.e.,
S[j..n] generates a modified suffix according to C with P as a prefix.

Proof. We preprocess P with the suffix tree T , which takes O(m) time: For each
suffix P [r..m], we store the range [dr, er] such that all leaves with lexicographical
order (w.r.t. T ) in [dr, er] have P [r..m] as a prefix.

To verify a suffix S[j..n], let v be the node in T that S[j..n] diverges from the
path of P . v can be found in constant time using an O(n log n)-bit LCA data
structure [9] for T . Let P [1..r] (or equivalently, S[j..j + r− 1]) be the path label
from the root to v. (For each node v in T , we store the path length from the
root to v so that P [1..r] is known in O(1) time.) S[j..n] is in ΦC if (1) v is on C,
(2) the first character on the core edge out of v is P [r+1], and (3) S[j +r+1..n]
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has a prefix matching P [r+2..m]. The last condition can be checked in constant
time by comparing SA−1[j + r + 1] with the range [dr+2, er+2] obtained during
the preprocessing. �

In conclusion, Lemmas 6 and 7 show that we can build O(n log n)-bit data struc-
tures on top of lex-orderC and labelC. Then, we can preprocess P in O(m)
time; for any centroid path C, we can answer the prefix matching query in
O(log log n + |ΦC | + eC) time, where eC is the number of verification performed
and the sum of eC over all centroid path is at most 2 logn.

3.3 Compressed Representation of the Lexicographical Information

We show how to store the lex-order and label arrays in O(n log n)-bit space.

Compressing the lex-order arrays. For any centroid path C, entries in
lex-orderC are monotonic increasing, so efficient compression is possible by
Lemma 8. Proof of Lemma 8 will be given in the full paper.

Lemma 8. Let c1 ≤ c2 ≤ . . . ≤ c
 be a sequence of positive integers. We can
store the sequence in O(log c1 + 
 · max{log( c�−c1


 ), 1}) bits and support O(1)
retrieval time for each ci.

Lemma 9. We can store the lex-order arrays of all centroid paths in O(n log n)-
bit space and support O(1) retrieval time to each entry.

Proof. For any centroid path C, let 
C be the number of modified suffixes gen-
erated according to C. Let hC = lex-orderC [
C ] − lex-orderC [1]. Consider all
C ∈ Δ(T ). By Lemma 8, the total space required for the lex-orderC arrays is∑

O(log lex-orderC [1]+
C ·max{log(hC

C ), 1}) ≤

∑
O(log lex-orderC [1]+
C ·log(2+

hC

C )) = O(n log n)+O(log

∏
(2+ hC


C )
C ) bits. By the AM-GM inequality on
∑


C

numbers, we have
∏(

2+ hC

C

)
C ≤
( 1∑


C

∑

C(2 + hC


C )
)∑ 
C =

( 2
∑


C+
∑

hC∑

C

)∑ 
C .

Note that x1/x ≤ 2 for x ≥ 2. Let x = 2
∑


C+
∑

hC∑

C , we have

( 2
∑


C+
∑

hC∑

C

)∑ 
C =

x
1
x (2

∑

C+

∑
hC) ≤ 2(2

∑

C+

∑
hC). Thus, log

∏
(2 + hC


C
)
C ≤ 2

∑

C +

∑
hC . Let

Lj be the set of all centroid paths with level j, j ≤ log n. For any two centroid
paths in Lj, their lex-order arrays are disjoint, so

∑
C∈Lj

hC ≤ n. There are at
most log n levels, so

∑
C∈Δ(T ) hC ≤ n log n. �

Compressing the label arrays. Unlike lex-order, the label array is not an in-
creasing sequence. To compress label, we simulate it by other “simpler” arrays.
For a centroid path C, let s′1, s

′
2, . . . , s

′

 be the modified suffixes generated ac-

cording to C, in increasing lexicographical order. Assume that t side trees hang
from C. We store the following information.

– st-rankC [1..
]: Suppose s′i is generated by the suffix s in T . Then st-rankC [i]
stores the side-tree-rank of s, i.e., the rank of the side tree containing s.

– tree pointerC [1..t]: tree pointerC [j] points to the j-th largest side tree of C in
T , ties are broken arbitrarily.
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– modified rankC,v[1..|Tv|], for each side-tree Tv of C in T : modified rankC,v[j] =
i if the j-th suffix in Tv generates s′i.

To find labelC [i], note that tree pointerC [st-rankC [i]] returns the side tree Tv

hanging from C which contains the suffix that generates s′i. We perform a rank(i)
query on unmodifed rankC,v, where rank(i) returns j if modified rankC,v[j] = i.
Thus, labelC [i] is the j-th suffix in Tv. Let wv be the number suffixes on the left
of v in T . Then labelC [i] = SA[wv + j].

By Lemma 1, the st-rankC arrays for all centroid paths C can be represented in
O(n log n) bits using variable size encoding. We can build a select data structure
[15] on the arrays, which uses O(n log n) bit, to support O(1) time access to
each entry. The tree pointer arrays contain only n pointers in total and take
O(n log n) bits over all centroid paths.

Lemma 10. We can store modified rankC,v array to support the rank(i) query
in O(1) time: given any integer i, return j if modified rankC,v[j] = i; return null
otherwise. Total space required over all C ∈ Δ(T ) and all side trees Tv hanging
from C is O(n log n) bits.

Proof. Consider any centroid path C and a side tree Tv hanging from C. The
sequence modified rankC,v is strictly increasing and ranges from 1 to |TC |, hence
it can be stored in O(|Tv| log |TC|

|Tv| ) bits while supporting the rank query [18]. Let
f(TC) denote the total space required to store the modified rank arrays for all
centroid paths with root in TC , including C. Let Tv1 , Tv2 , . . . , Tvt be side trees
hanging from C. Note that f(TC) ≤

∑t
i=1

(
O(|Tvi | log |TC|

|Tvi
|) + f(Tvi)

)
. Resolv-

ing this recurrence, we have f(TC) = O(|TC | log |TC|) for any C. Therefore, all
modified rank arrays in T can be stored in O(n log n) bits. �

In conclusion, Lemma 9 and 10 show that the lex-order and label arrays can be
represented in O(n log n) bits and support O(1) time retrieval. Together with
the matching algorithm of Section 3.2, Lemma 5 follows.

Extending to edit distance. We handle each type of edit operations sepa-
rately. Substitution is handled by the above data structure. To find substrings
of S that matches P with one insertion (to the substrings), we generate another
type of modified suffixes, which we called the insertion suffixes. Precisely, let C
be a centroid path in the suffix tree T . Let s be a suffix in T passing through the
root of C, and diverging from C at a node u on C. We create an insertion suffix
s′ by inserting a character c to s after u, where c is the first character on the
core edge out of u. We say that s generates an insertion suffix s′ according to C.
Given a pattern P , finding the 1-error matches can be reduced to a number of
prefix matching queries on the insertion suffixes and LCP queries. By handing
the prefix matching queries using the same techniques as shown, we find all 1-
error matches for insertion in the O(m + occ′ + log n log log n) time, where occ′

is the number of matches found. Handling deletion is identical. The total space
for the data structures is O(n log n) bits.
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4 An O(n log n)-Bit Index for 2-Error

Given a pattern P [1..m], we can find its 2-error matches in S as follows: First
modify P at each position P [i], substituting it with a character c �= P [i]. Denote
the modified pattern as Pi,c[1..m]. Then, find all 1-error matches of Pi,c with the
error in Pi,c[1..i − 1]. By trying all i = 1, . . . , m and each possible c ∈ Σ, each
2-error match of P is found exactly once.

To support the above operations, we store the O(n log n)-bit index for 1-error
matching, as well as some O(n log n)-bit auxiliary data structures (to be defined).
Then, to find all 2-error matches of a pattern P [1..m], we perform the followings
for every i = 1, . . . , m and for every c ∈ Σ.

1. Search Pi,c in T to identify the centroid paths and side edges Pi,c overlaps.
2. Search Pi,c in the sampled 1-error tree N to identify an interval [d, e] corre-

sponding to modified suffixes in N with Pi,c as a prefix.
3. Find the 1-error matches of Pi,c where the error is in P [1..i− 1] and is on a

side edge. This is done by performing an LCP query in T for each side edge
Pi,c overlaps.

4. Find the 1-error matches of Pi,c where the error is in P [1..i− 1] and is on a
centroid path. We follow the approach in Section 3.2, generating candidates
and verifying them for correct matches.

By preprocessing P (but not Pi,c) in O(m) time, we can perform Step 1
in O(log log n + w) time, where w ≤ 2 log n is the number of centroid paths
and side edges Pi,c overlaps. We can also build an O(n log n)-bit LCP data
structure for N so that Step 2 takes O(log log n) time. Step 3 can be done in
O(log n log log n + #output) time.

The main challenge is Step 4. Generating candidates involves range search
queries on the rankC arrays, and the candidates generated may include an un-
bounded number of modified suffixes having Pi,c as a prefix but their modified
position is not in Pi,c[1..i−1]. Thus, for each centroid path C, we store a modifiedC
array storing the location of the modified character of each modified suffix gen-
erated according to C. We then use a Bounded Value Range Query (BVRQ) data
structure [16] to ensure generating candidates with the required error positions,
plus at most 2 log n counterfeits. Finally, we verify each candidate in O(1) time.
We can show that the modifiedC arrays and the BVRQ data structures take to-
tally O(n log n) bits and Step 4 takes O(log n log log n + #output) time. So, we
have the following lemma.

Lemma 11. We can build an O(n log n)-bit index for S[1..n]. Given a pattern
P [1..m], we can preprocess P in O(m) time. For any modified pattern Pi,c, we can
find all 1-error matches of Pi,c with the error in Pi,c[1..i−1] in O(log n log log n+
occi,c) time, where occi,c is the number of matches found.

By repeating the search for each Pi,c, i ≤ m and c ∈ Σ, we can find all 2-error
matches of P in O(m log n log log n+occ) time, where occ is the number of 2-error
matches.
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Abstract. Zigzag pocket machining (or 2D-milling) plays an impor-
tant role in the manufacturing industry. The objective is to minimize
the number of tool retractions in the zigzag machining path for a given
pocket (i.e., a planar domain). We give an optimal linear time dynamic
programming algorithm for simply connected pockets, and a linear plus
O(1)O(h) time optimal algorithm for pockets with h holes. If the dual
graph of the zigzag line segment partition of the given pocket is a par-
tial k-tree of bounded degree or a k-outerplanar graph, for a fixed k,
we solve the problem optimally in time O(n log n). Finally, we propose
a polynomial time algorithm for finding a machining path for a general
pocket with h holes using at most OPT + εh retractions, where OPT is
the smallest possible number of retractions and ε > 0 is any constant.

1 Introduction

2D-milling, or zigzag pocket machining (ZPM), is an important problem in the
manufacturing industry [13, 21, 24]. Either a workpiece is translated under a
spinning milling tool, or a cutter is moved across the workpiece. We model the
workpiece as an arbitrary planar domain, called a pocket. The actual shape of the
pocket is not really important for us, so we may just think of a polygon. Usually,
the cutter (or the workpiece moving below the milling tool) can only cut while
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moving along a fixed direction, for example, parallel to the x-axis (but it can
cut moving in both directions along the line). When it reaches the boundary of
the workpiece, it must either move along the boundary to another line parallel
to the x-axis (usually the lines are assumed to be equally spaced with a zigzag
step-over distance δ > 0; again, this technical requirement is not important to
us), creating a zigzag movement pattern, or it must jump to another part of the
workpiece. A jump requires the cutter to be retracted. Since retractions are time-
consuming (and may have other disadvantages due to technological problems),
the goal is to find a machining path minimizing the number of retractions, under
the additional constraint that the cutter must work on any part of the workpiece
exactly once while it cannot traverse any part of the boundary more than once.

Considerable work has been done on ZPM, see [24] for an extensive survey
of the current state-of-the-art. A few algorithms were given in [9, 16], but they
did not attempt to minimize the number of tool retractions or to optimize any
other criteria. Some heuristic methods were used to reduce the number of tool
retractions for general pockets [12, 13]. For pockets with holes, ZPM was shown
to be NP-hard by Arkin et al. [3] by a reduction from the Planar 3-Satisfiability
Problem [17]. They also presented a linear time approximation algorithm with at
most 5OPT + 6h tool retractions based on a graph model, called the machining
graph, where OPT is the smallest possible number of retractions and h is the
number of holes in the pocket. In the full paper, we will describe how to modify
their algorithm to achieve at most 3OPT + 3h tool retractions in linear time.
Tang et al. [22] studied a special case when the step-over distance is small with
respect to the geometry of the pocket. However, no quantitative measure was
given on how small the step-over distance needs to be in order for the optimal
solution to hold (see [14]).

Tang and Joneja [23] presented a linear time approximation algorithm for ZPM
with at most OPT +h+Nr retractions, where Nr is the number of the so-called
reducible blocks of the pocket. Although the coefficients of OPT and h are both
one, the third parameter Nr can be quite large, depending on the shape of the
given pocket, the step-over distance, the inclination of the reference line, etc. For
example, Nr will usually grow with a larger step-over distance. Thus, the results
in [3] and in [23] are not directly comparable. Some practical implications and
applications of ZPM were discussed in [13, 22].

It is worth pointing out that although ZPM for pockets with holes is NP-hard
[3], for the important case of simply connected pockets (i.e., without holes), only
approximation algorithms were previously known [3, 23]. In fact, it was an open
problem to decide whether the case of a simply connected pocket is NP-hard.

Other optimization criteria for ZPM have also been considered. For example,
multitool retraction minimization was studied in [6]. The problem of minimizing
the total length of the tool path was studied in [2]. Algorithms for determining
a cutting direction in order to minimize the tool retraction length were given in
[15, 19]. Some algorithms were designed to optimize the tool path length and the
number of tool retractions [1, 20]. A survey of the pocketing requirements can
be found in [11].
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In this paper, we present significantly improved algorithms for ZPM. Our tech-
niques are different from the previous ones [3, 23], and our algorithms are superior
in theoretical performance, and may even be interesting for practical applications
(e.g., for k-outerplanar dual graphs, with a small k).

(1) We give an optimal linear time dynamic programming algorithm for simply
connected pockets, settling the open question of the complexity of this case.

(2) For pockets with holes, we introduce the concept of the boundary graph to
remodel the problem, and generalize our dynamic programming approach to
optimally solve in time O(n log n) the cases when the dual planar graph of
the pocket is a partial k-tree of bounded degree or a k-outerplanar graph,
for any fixed k.

(3) Combining the ingredients of (1) and (2) with the approximation scheme
for planar graphs in [7], we develop a polynomial time approximation algo-
rithm for finding a machining path with at most OPT + εh retractions for
a pocket with h holes, for any constant ε > 0. This substantially improves
the previous approximation solutions [3, 23], and in fact gives a best possible
approximation if the output quality is measured in terms of the number of
holes.

(4) We give an exact dynamic programming algorithm running in linear plus
O(1)O(h) time for a pocket with h holes. This implies that, in particular,
ZPM with a logarithmic number of holes is still solvable in polynomial time.

The rest of this paper is organized as follows. In Section 2, we review some
definitions from [3] and state the problem formally. In Section 3, we describe an
optimal linear time dynamic program for simply connected pockets. In Section 4,
we first introduce the concept of a boundary graph and the MRPC problem, and
then present exact polynomial time algorithms if the dual graph of a pocket with
holes is a partial k-tree of bounded degree or a k-outerplanar graph. In Section 5,
we present a “best possible” polynomial time approximation algorithm for the
general problem.

2 Preliminaries

We mainly use the terminology from [3]. A pocket P is a compact connected
planar domain bounded by a contour B. It is simply connected (e.g., a simple
polygon) if it contains no holes, or multiply connected otherwise. For a pocket
with h holes, B consists of h + 1 unconnected loops (the boundary of the outer
face and the boundaries of the h holes). The edges of B can be straight line
segments or any types of simple curves.

Consider an arbitrary set of non-crossing line segments (it could even be
curves) partitioning P into a set of regions. In 2D-milling, the line segments
would all be parallel and equally-spaced. Let N be the set of all endpoints of
the line segments, and let n denote the size of N . On the node set N we define
the undirected machining graph MP = (N, E), with two types of edges: (1)
compulsory edges (c-edges) connecting the two endpoints of a line segment; (2)
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Fig. 1. (a) A simple pocket. (b) Its dual graph is a tree. (c) A face in a simple pocket.

non-compulsory edges (nc-edges) connecting two neighboring nodes on B, if they
are not already connected by a c-edge. Note that every node in N is incident to
exactly one c-edge and at most two nc-edges.

Given a machining graph MP , a tool traversing path (or machining path) is
a collection P of simple vertex-disjoint paths in MP , called no-retraction paths,
such that (1) every c-edge is traversed exactly once, and (2) every nc-edge is
traversed at most once. The machining tool must follow all no-retraction paths of
P . When it reaches the end of a path, it jumps to an unprocessed no-retraction
path. This operation is called a retraction. The number of retractions is one
less than the number of no-retraction paths in P . An optimal (or minimum)
machining path P minimizes the number of retractions (or equivalently, the
number of no-retraction paths in P). If the pocket is multiply connected, then
finding an optimal machining path is NP-hard [3].

The c-edges and nc-edges of a machining graph MP induce a planar partition
PG of the pocket P . The faces F of PG induce the dual graph DP = (F, Ed) of
PG (see Fig. 1(b)).

Throughout this paper, we denote by OPT the minimum number of retrac-
tions of all feasible machining paths for P , the number of holes in P by h, the
number of nodes in MP by n, and the number of edges in MP by m. We also
abuse the notation by calling DP the dual graph of MP .

3 An Optimal Algorithm for Simply Connected Pockets

In this section, we optimally solve ZPM for a simply connected pocket P in linear
time based on dynamic programming. We first discuss some properties of an
optimal traversal of MP and then present our new algorithm. Observe that DP

is a tree if and only if P is a simply connected pocket. Figs. 1(a) and 1(b) show
an example. For a vertex v ∈ F , let face(v) denote the corresponding face in PG.

Lemma 1 [3]. There exists an optimal machining path P such that

1. each no-retraction path in P starts and ends with a c-edge, and
2. no two nc-edges are traversed consecutively. ��

We will compute a machining path satisfying the conditions of Lemma 1. We
treat DP = (F, Ed) as a tree T rooted at an arbitrarily chosen node root ∈ F of
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degree one. For a node v ∈ F , let Tv denote the subtree of T rooted at v, and
PG/v the portion of the partition PG corresponding to Tv. If v �= root, then the
boundary of face(v) contains a c-edge, ec(v), of MP separating face(v) from the
face of v’s parent in T . Let Mv denote the machining subgraph of PG/v, where
we require that ec(v) is a c-edge of Mv. The two endpoints of ec(v) are leftv
and rightv, where the former one is the endpoint we reach first when we walk
counterclockwise along B, starting somewhere in face(root).

We compute optimal machining paths for PG/v for all nodes v of T in a
bottom-up manner, starting at the leaves. This will give us a linear time algo-
rithm. Fig. 1(c) shows the situation for an internal node v with three children. In
general, v may have k children v1, . . . , vk, where we assume that ec(v1), . . . , ec(vk)
appear counterclockwise along the boundary of face(v). Let bridge(vi) denote the
nc-edge connecting ec(vi) and ec(vi+1) for 1 ≤ i < k. Note that we have already
computed the machining paths for the subtrees rooted at v1, . . . , vk, respectively.
Now we must extend these paths to integrate the edge ec(v).

There are a few cases. If leftv1
or rightvk

is the endpoint of a no-retraction
path, we can extend this path to include ec(v). If both these points are endpoints
of two different paths, we can even connect both paths via ec(v), thus saving one
retraction. If both points are not path endpoints, ec(v) will form a new path by
itself. Since we do not know in advance which case can yield an optimal solution
of MP , we must provide for all cases, i.e., we use dynamic programming.

Let Mi,j = ∪j

=iMv�

⋃
∪j−1


=i bridge(v
), for 1 ≤ i ≤ j ≤ k, be the connected
portion of MP formed by Mvi , . . . , Mvj and the bridges connecting the pieces. We
characterize all feasible machining paths for Mi,j into five classes. P 0

i,j contains
all machining paths such that no no-retraction path ends at leftvi

or rightvj
; P l

i,j

contains all paths such that a no-retraction path ends at leftvi
but no such path

ends at rightvj
; P r

i,j contains all paths such that a no-retraction path ends at
rightvj

but no such path ends at leftvi
; finally, P lr

i,j contains all paths such that
some no-retraction paths end at leftvi

and rightvj
; actually, we must divide the

last class further into P lr1
i,j , where the same no-retraction path connects both

points, and P lr2
i,j , where two different no-retraction paths end at the two points.

Let hx(vi, vj), for x ∈ {0, l, r, lr1, lr2}, be the minimum number of retrac-
tions among all machining paths in P x

i,j . Then the optimal value for MP is
min{h0(root, root), hl(root, root), hr(root, root), hlr1(root, root), hlr2(root, root)}.

Initially, for any leaf v of T , hlr1(v, v) = 0 and h0(v, v) = hl(v, v) = hr(v, v) =
hlr2(v, v) = NULL, where NULL means there is no machining path in this class. If a
term NULL appears in an arithmetic expression, the expression has value NULL. It
is straightforward to compute these values iteratively for an internal node v and
all pairs of indices i ≤ j if the values for all children of v are known. For example,
hr(vi, vj+1) = min{hr(vi, vj) + hlr1(vj+1, vj+1) (we use bridge(vj)), hr(vi, vj) +
hr(vj+1, vj+1) + 1 (we cannot use bridge(vj)), h0(vi, vj) + hlr1(vj+1, vj+1) + 1,
h0(vi, vj) + hr(vj+1, vj+1) + 1}.

The other recursive formulas are similar. The values hx(v, v) can be computed
as hlr1(v, v) = 1 + minx∈{0,l,r,lr1,lr2}{hx(v1, vk)}, hlr2(v, v) = NULL, hr(v, v) =
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minx∈{l,lr1,lr2}{hx(v1, vk)}, hl(v, v)=minx∈{r,lr1,lr2}{hx(v1, vk)}, and h0(v, v) =
hlr2(v1, vk)− 1.

Theorem 2. The dynamic program computes an optimal machining path for
simply connected pockets in linear time. ��

If P has h > 0 holes, the dual graph DP is no longer a tree. However, we can
identify O(h) pivot nodes such that the removal of these nodes results in a forest
of trees such that each tree is adjacent to a constant number of pivot nodes (for
details see the full version of the paper). The trees of the forest can be handled
similarly as in Section 3. Since each tree has only a constant size interface with
the pivot nodes, we can test all possible choices for the c-edges of these nodes
in O(1)O(h) time. This implies that the problem is still solvable in polynomial
time for pockets with h = O(log(n + m)) holes.

Theorem 3. We can find an optimal machining path for a pocket with h holes
in time O(n + m) + O(1)O(h). ��

4 The MRPC Problem

Note that even for a pocket with holes, its dual graph is a planar graph embedded
in the plane. In this section, we investigate certain types of planar dual graphs.
These special cases will be a key to our “best possible” approximation algorithm
for the general case in Section 5.

Let the boundary graph BP = (NB , EB) of MP be the graph obtained when we
contract every c-edge into a single node, deleting self-loops and multiple edges.
Note that BP is a planar graph of maximum degree four. Its edges are exactly
the nc-edges of MP . Not every path in BP is a feasible no-retraction path in
MP , because such a path should not use two consecutive nc-edges, i.e., on a
path in BP we cannot leave a node on an arbitrary other edge since some edge is
prohibited. We call a path in BP valid if and only if it corresponds to a feasible
no-retraction path in MP . We call pairs of edges that can lie consecutively on a
valid path consistent. The minimum restricted path cover problem (MRPC) is thus
the problem of finding a set of vertex-disjoint simple valid paths in BP such that
each node of BP lies on exactly one path. Our goal is to minimize the number
of such paths.

We assume that the reader is familiar with the definitions of k-trees and
bounded tree-width (see, for example, [10]). We follow the terminology and the
dynamic programming framework developed in [5]. We will now give an algo-
rithm assuming that the boundary graph BP has bounded tree-width and that
a k-tree is given together with its reduction sequence. We will later relax these
assumptions.

For simplicity, we use the following notation: For a vertex v, K = K(v) is
the set of neighbors of v when v becomes a k-leaf during the k-tree reduction
process. Let K ′ = K ∪ {v} and Ku = K ′ − {u}, for any vertex u ∈ K ′. B(K)
is, at all times, the set of vertices in the currently removed branches on K. R is
the root clique.
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We now extend the simple dynamic program from Section 3, where we worked
bottom-up in a tree, to k-trees. We keep a state for each K. This state infor-
mation for K in some sense represents the equivalence classes of the solutions
(usually for a slight generalization of the original problem) on the subgraph
induced by K and all its descendants. In Section 3 we distinguished between
classes P 0, P l, P r, P lr1, and P lr2. In a k-tree, the interface between a node and
its descendants is more complicated because a k-leaf is connected to a k-clique
instead of a single parent node. Still, for fixed k, the number of possible equiva-
lence classes is a (large) constant.

We use an index set to denote the state. The index set C(K) for K is a set
of solutions to the problem on the subgraph induced by K ∪ B(K). An index
c ∈ C(K) is an equivalence class of the solutions. The value of K with index c,
s(c, K), is the optimum value of the solutions represented by c, and we call this
value the state value. They have a similar meaning as the functions h0, hl, hr, hlr1,
and hlr2 in Section 3.

If a vertex v is removed, we must update the state value s(c, K) for every c ∈
C(K). The update is based on the state values for all Ku (u ∈ K ′) and reflects
each Ku’s influence on the state value of K for a particular index c ∈ C(K). This
procedure is normally called combining removed branches, since the removal of
v means that we need to combine v with the already removed branches on K.

Now we define the index set for our algorithm. Let a ve-pair be a pair (v, e),
where v is an end vertex of an edge e in the boundary graph BP . Let asc(v)
denote the edge e in the ve-pair (v, e). We say that two ve-pairs (v1, e1) and
(v2, e2) are disjoint if v1 �= v2. Intuitively, a no-retraction path can only enter
and then again leave the interface K on a pair of disjoint ve-pairs.

The state of K is indexed by a set of triples (D, S, I), where D is a set of
mutually disjoint (unordered) pairs of ve-pairs (a path enters and leaves K), S
is a set of disjoint ve-pairs (a path ends in K), and I is a set of the ‘touched’
vertices (internal vertices of a path) in K that are disjoint from D and S. Let
D = {((vi1, ei1), (vi2, ei2)) | 1 ≤ i ≤ |D|}, and S = {(vi, ei) | 1 ≤ i ≤ |S|}.
Further, let V (D) = {(vi1, vi2) | 1 ≤ i ≤ |D|}, E(D) = {(ei1, ei2) | 1 ≤ i ≤ |D|},
and V (S) = {vi | 1 ≤ i ≤ |S|}, and E(S) = {ei | 1 ≤ i ≤ |S|}.

A partial solution of index c = (D, S, I) ∈ C(K) means a set of |D| disjoint
simple valid paths with both endpoints in K, a set of |S| disjoint simple valid
paths with only one endpoint in K, and some other simple valid paths with
no endpoint in K in the subgraph induced by K ∪ B(K), such that no two
consecutive internal vertices of a path are both in K and these paths should cover
all vertices of B(K). The state value s((D, S, I), K) is a positive integer that is
the minimum number of valid paths covering K ∪ B(K) under the restrictions
of index (D, S, I), or is NULL if no such valid paths exist.

The state values s(c, K) are initially NULL for all c and K. Upon the removal
of v, we update s((D, S, I), K), where (D, S, I) arises from a set of k + 1 triples
(Du, Su, Iu) ∈ C(Ku), one for every u ∈ K ′, such that the following conditions
(i)–(v) are satisfied. The case for removing the root needs a little more work and
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will be described later separately. Intuitively, satisfying these conditions means
that we can combine the partial solutions for different Ku’s for u ∈ K ′.

(i) Iu∩Iw = ∅ if u �= w, (∪p∈V (Du){p})∩Iw = ∅ for u, w ∈ K ′, and V (Su)∩Iw =
∅ for u, w ∈ K ′.

(ii) A vertex pair d ∈ V (D) occurs at most once.
(iii) Consider the multi-set M =

⋃
u∈K′(∪p∈V (Du){p} ∪ V (Su)) (multiplicity is

counted). Every vertex u ∈ K ′ appears at most twice in M .
(iv) For a vertex v that appears twice in M , consider the two ve-pairs (each

contributing a v to M) (v, e1) and (v, e2); then e1 and e2 must be consistent.
(v) The graph F = (K ′,∪u∈K′V (Du)) has no cycle, i.e., F is a set of paths

and isolated vertices.

We define (D′, S′, I ′) as follows. Consider a path in F . Suppose its two end-
points are v1 and v2. If the multiplicities of v1 and v2 in M are both one, then
((v1, asc(v1)), (v2, asc(v2))) ∈ D′. If only one of v1 and v2 has multiplicity one in
M , say v1, then (v1, asc(v1)) ∈ S′ and v2 ∈ I ′. Moreover, I ′ contains the union
of the Iu’s and the interior vertices of the paths of F .

Next we show how to compute (D, S, I) from (D′, S′, I ′) and update the state
value s((D, S, I), K). It is possible that we obtain more than one (D, S, I) from
a single (D′, S′, I ′), and we update the state value for every (D, S, I) obtained.
Recall that s((D, S, I), K) is initially NULL. Once we obtain a (D, S, I) from
(D′, S′, I ′) and some preliminary state value for it, called a p-value, we replace
the value of s((D, S, I), K) by the p-value if it is smaller than the current value
of s((D, S, I), K). (D, S, I) is obtained from (D′, S′, I ′) in one of the following
ways. Suppose we are currently removing v. Denote the p-value of (D, S, I) by
pv =

∑
u∈K′ s((Du, Su, Iu), K)−#(elements with multiplicity two in M).

We distinguish four cases. (1) If v ∈ I ′, then I = I ′ − {v} and D =
D′, S = S′. (2) If v ∈ V (S′), then S = S′ − {(v, asc(v))}, D = D′, and
I = I ′. There is a vertex v1 ∈ K ′ that is adjacent to v and v1 /∈ I ′. If
v1 ∈ V (S′) and asc(v1) and asc(v) are consistent with (v, v1), then S = S′ −
{(v, asc(v)), (v1, asc(v1))}, and pv = pv− 1. If (v1, v2) ∈ V (D′) and asc(v1) and
asc(v) are consistent with (v, v1), then D = D′ − {((v1, asc(v1)), (v2, asc(v2)))},
S = S − {(v, asc(v))} ∪ {(v2, asc(v2))}, I = I ′ ∪ {v1}, and pv = pv − 1.
If v1 is neither in V (S′) nor in any pair of V (D′) and asc(v) is consistent
with (v, v1), then S = S′ − {(v, asc(v))} ∪ {(v1, (v, v1))}. (3) If (v, v1) ∈
V (D′) for some v1, then D = D′ − {((v, asc(v)), (v1, asc(v1)))}, S = S′ ∪
{(v1, asc(v1))}, and I = I ′. There is a vertex v2 ∈ K ′ that is adjacent to
v and v2 /∈ I ′. If v2 ∈ V (S′) and asc(v2) and asc(v) are consistent with
(v, v2), then D = D′− {((v, asc(v)), (v1, asc(v1)))}, S = S′ ∪ {(v1, asc(v1))},
and pv = pv− 1. If (v2, v3) ∈ V (D′) and asc(v2) and asc(v) are consistent with
(v, v2), then D = D′−{((v, asc(v)), (v1, asc(v1))), ((v2, asc(v2)), (v3, asc(v3)))}∪
{((v1, asc(v1)), (v3, asc(v3)))}, I = I ′ ∪ {v2}, and pv = pv − 1. If v2 is neither
in V (S′) nor in any pair of V (D′) and asc(v) is consistent with (v, v2), then
D = D′ − {((v, asc(v)), (v1, asc(v1)))} ∪ {((v1, asc(v1)), (v2, asc(v2)))}. (4) If
v is neither in I ′ nor in V (S′) nor in any pair of V (D′), then D = D′, S = S′,
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I = I ′, and pv = pv + 1. If v is adjacent to v1 which is in K ′ − I ′, then let
asc(v1) = (v, v1) and I ′ = I ′ ∪ {v}. Add v1 to the multi-set M , test whether
conditions (i)–(v) are all satisfied, obtain (D′, S′, I ′), and then obtain (D, S, I)
and pv from (D′, S′, I ′) in the same way as above. If v is adjacent to v1 and v2
which are both in K ′− I ′, and (v, v1) and (v, v2) are consistent with each other,
then let asc(v1) = (v, v1), asc(v2) = (v, v2), and I ′ = I ′ ∪ {v}. Add v1 and v2
to the multi-set M and augment F with the edge (v1, v2). Further, test whether
conditions (i)–(v) are all satisfied and obtain (D′, S′, I ′) and then (D, S, I) and
pv from (D′, S′, I ′) in the same way as above.

This finishes the discussion of the non-root case of the MRPC algorithm. For the
root clique R we do the same as in the non-root case, but we also perform some
additional steps. For an obtained index (D, S, I), we try all possible combinations
of the unused edges in the subgraph induced by R. We check the validity (i.e., the
consistency of all pairs of adjacent edges) of each path, and decide the final value
of pv. Note that an isolated vertex in R should be treated as one no-retraction
path in the final solution.

Up to now we assumed that BP is a k-tree. Unfortunately, deciding whether
a graph has a tree-decomposition with tree-width at most k is NP-complete [4].
However, for a graph G = (V, E) of (unknown) tree-width k, it is possible to
compute a tree-decomposition of G of tree-width at most 3k + 2 in O((|V | +
|E|) log(|V | + |E|)) time [18]. Thus, we can find a tree-decomposition of the
boundary graph BP of at most three times the optimal tree width in time
O(n log n). Then we can compute a reduction sequence of the k-tree for BP

and apply the dynamic program to obtain an optimal solution of ZPM in linear
time.

Theorem 4. If the boundary graph BP of DP has bounded tree-width, then MRPC
can be solved optimally in time O(n log n). ��
Lemma 5. If DP is a partial k-tree of maximum degree d, then BP is a partial
(kd + d− 1)-tree.

Proof. Suppose DP = (F, ED) has a tree-decomposition (X, T (I, F )) with
maxi∈I |Xi| ≤ k + 1. We construct a tree-decomposition (Y, TB(IB , FB)) of BP .
T and TBP have the same topology. For a node i ∈ I representing Xi ⊆ F ,
the corresponding node Yi ⊆ ED in IB is defined as Yi = {e ∈ ED | e has an
end vertex in Xi}. Then TBP is a tree-decomposition of BP and maxi∈IB |Yi| ≤
(k + 1)d. ��
Theorem 6. If DP has bounded tree-width and bounded degree, then we can
compute an optimal machining path in time O(n log n). ��
Intuitively, a k-outerplanar graph is a planar graph such that nothing remains
after we peel away its outer vertices k times. It is known that a k-outerplanar
graph has tree-width at most 3k − 1 [8]. It is easy to see that BP is (2k)-
outerplanar if DP is k-outerplanar.

Theorem 7. If DP is a k-outerplanar graph, then we can compute an optimal
machining path in time O(n log n). ��
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Fig. 2. (a) An edge-cutting operation. (b) Illustrating the proof of Lemma 8.

5 An Approximation Algorithm for Pockets with Holes

This section gives a “best possible” approximation algorithm for the zigzag
pocket machining problem for a pocket with h holes. On the dual graph DP =
(F, Ed), we define an edge-cutting operation on an edge (v, v1) at v as follows:
Eliminate edge (v, v1), create a new node v′, and add the edge (v′, v1). The cor-
responding operation on the original machining graph is to divide face(v) into
two parts. The boundary of one part will contain the c-edge between face(v) and
face(v1). We denote this new face as face(v′). See Fig. 2(a) for an illustration.
Note that it may happen that the pocket gets divided into two unconnected
regions. Nevertheless, we denote the pocket (or both pockets together) after the
cut as P/{v, v1} and its minimum number of retractions for a machining path
as OPT/{v, v1}.

Lemma 8. If we cut an edge (v, v1) in DP at v, then (1) OPT/{v, v1} ≤ OPT+
1, and (2) from an optimal solution for P/{v, v1} we can obtain a solution for
P with at most OPT/{v, v1}+ 1 retractions. ��

Our approximation algorithm uses a similar approach as the one in [7]. Let k
be a fixed integer. The term “face” below refers to the embedding of DP . We
define the j-th layer Lj as the set of vertices that are removed in the j-th round
of removal if we repeatedly remove the outer vertices of the remaining portion
Dj of DP (initially, D1 = DP ). Let D(Lj) denote the subgraph of Dj induced
by the vertices of Lj with the same embedding as DP , O(Lj) be the outer face
of D(Lj), and I(Lj) be the union of the inner faces of D(Lj). Let hj be the
number of faces in R2−O(Lj)− I(Lj+1) (the portion between layer j and layer
j + 1). Since

⋃
j≥1(R

2 −O(Lj)− I(Lj+1)) = R2 −O(L1), we have
∑

j hj = h.

Lemma 9. We can disconnect the boundary of I(Lj) from the boundary of
I(Lj+1) by breaking at most hj + hj+1 edges.

Proof. W.l.o.g., we assume that I(Lj) is connected. Denote the outer boundary
vertices of I(Lj) by B = {b1, . . . , bl}, in counterclockwise order. We proceed in
two phases. In the first phase, consider a vertex v on the outer boundary of
I(Lj). If no such vertex is adjacent to some vertex in Lj+1, then the lemma
holds. Suppose v is adjacent to v1 ∈ Lj+1. If the edge (v, v1) is shared by two
different faces, we cut (v, v1) at v. Let the newly created vertex be v′ ∈ Li+1. This
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operation merges these two faces into one face. We repeat the above operation
until it cannot be applied anymore, and let the resulting graph be G1. Consider
a connected component C of D(Lj+1). If C is connected to B, then there must
be an edge (bx, vC) such that bx ∈ B and vC ∈ C. Cutting (bx, vC) at bx will
disconnect B and C in G1 because there cannot be a second edge connecting B
to C (otherwise, each of the two edges would be adjacent to two different faces).

In the second phase, we perform the following operation on G1. If B is con-
nected to a connected component C of D(Lj+1) (C contains some nonempty
inner faces) by an edge (bx, vC) with bx ∈ B and vC ∈ C, then we cut (bx, vC)
at bx. We repeat this operation until it cannot be applied anymore on G1. This
disconnect the boundaries of I(Lj) and I(Lj+1). In the first phase at most hj

edges are cut, and in the second phase at most hj+1 edges (at most one edge for
each connected component C of D(Lj+1) with a nonempty inner face). ��
Let q, 0 ≤ q < k, be a constant integer to be chosen later. We disconnect
the boundary of I(Lq) from the boundary of I(Lq+1), the boundary of I(Lk+q)
from the boundary of I(Lk+q+1), the boundary of I(L2k+q) from the boundary
of I(L2k+q+1), . . ., by cutting in total at most

∑
i(hik+q + hik+q+1) edges, by

Lemma 9. Choose q to be the integer that minimizes Hq =
∑

i(hik+q +hik+q+1).
Since

∑k−1
i=0 Hi =

∑k−1
i=1

∑
j(hjk+i +hjk+i+1) ≤ 2

∑
i hi = 2h, we have Hq ≤ 2h

k .
Moreover, it is easy to see that the resulting graph is a series of (k+1)-outerplanar
graphs. Using the techniques developed at the end of Section 4, we compute
in polynomial time an optimal solution for each of these (k + 1)-outerplanar
graphs. The sum of the retractions for all (k + 1)-outerplanar graphs is at most
OPT + Hq ≤ OPT + 2h

k by Lemma 8(1). By Lemma 8(2) we know how to
convert these solutions into a final solution with at most OPT + 4h

k retractions.
Choosing a constant integer value of k = 	 4ε 
, we obtain the following result.

Theorem 10. We can compute in polynomial time a machining path with at
most OPT + εh retractions, for any constant ε > 0. ��
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Abstract. It is known that finding a Nash equilibrium for win-lose bi-
matrix games, i.e., two-player games where the players’ payoffs are zero
and one, is complete for the class PPAD.

We describe a linear time algorithm which computes a Nash equilib-
rium for win-lose bimatrix games where the number of winning positions
per strategy of each of the players is at most two.

The algorithm acts on the directed graph that represents the zero-one
pattern of the payoff matrices describing the game. It is based upon the
efficient detection of certain subgraphs which enable us to determine the
support of a Nash equilibrium.

1 Introduction

In 1951 Nash proved that any n-player game has an equilibrium in the mixed
strategies [10]. The proof was based on a fixed point argument, and left open
the associated computational question of finding such an equilibrium. In 1964,
Lemke and Howson introduced an algorithm for the computation of a Nash equi-
librium in 2-player games. In the worst case, this algorithm has an exponential
running time [12]. It provides us with another, different from Nash’s, proof of
the existence of an equilibrium.

In 1994 Papadimitriou introduced a complexity class, PPAD, which captures
a wealth of equilibrium problems, e.g., the market equilibrium problem as well as
Nash equilibria for n-player games [11]. Problems complete for this class include
a (suitably defined) computational version of the Brouwer Fixed Point Theorem.

In 2005 a flurry of results appeared, where first the PPAD-completeness of
4-player games [6], then of 3-player games [2, 7], and finally of 2-player games [3]
were proven. In particular, the latter hardness result by Chen and Deng came as
a sort of surprise, since the 2-player case was conjectured to be computationally
tractable. Combined with a result by Abbott, Kane, and Valiant [1], it also
implies the PPAD-completeness of win-lose bimatrix games, i.e., 2-player games
where the players’ payoffs are zero and one.

Therefore it seems unlikely that polynomial time algorithms exist for win-lose
bimatrix games. This fact makes it worthwhile to analyze restricted versions of
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the problem which might be endowed with computationally useful structural
properties.

In this paper, we consider some restricted win-lose games, where the zero-one
matrices describing the payoffs of the players have at most two ones per row
and column. Following [5], we cast the problem of computing an equilibrium for
win-lose games in terms of finding a good assignment in a directed graph - see
Section 2 below for proper definitions.

The restriction on the zero-one pattern induces very sparse directed graphs.
We show how to efficiently detect suitable subgraphs of these sparse graphs,
which lead to the discovery of the support of a Nash equilibrium, and to the
actual determination of the equilibrium strategies.

This paper is organized as follows. In Section 2 we introduce the game theo-
retic notions to be used in the paper. After defining the concept of Nash equi-
librium for 2-player games in normal form, we show how the computation of a
Nash equilibrium for a win-lose 2-player game is equivalent to the computation
of a good assignment in a directed graph. In Section 3 we informally describe our
algorithm, with the help of illustrations and examples. In Section 4 we formally
state our main results. Finally in Section 5 we present some conclusions and
open questions.

2 Background

We consider 2-player games in normal form. These games are described by a
pair (A, B) of matrices, whose entries are the payoffs of the two players, called
row and column player. A = (aij) is the payoff matrix of the row player, and
B = (bij) is the payoff matrix of the column player.

The rows (resp. columns) of A and B are indexed by the row (resp. column)
player’s pure strategies.

The entry aij is the payoff to the row player, when she plays her i-th pure
strategy and the opponent plays his j-th pure strategy. Similarly, bij is the payoff
to the column player, when he plays his j-th pure strategy and the opponent
plays her i-th pure strategy.

A mixed strategy is a probability distribution over the set of pure strategies
which indicates how likely it is that each pure strategy is played. More precisely,
in a mixed strategy a player associates to her i-th pure strategy a quantity pi

between 0 and 1, such that
∑

i pi = 1, where the sum ranges over all pure
strategies.

Let us consider the game (A, B), where A and B are m× n matrices. In such
a game the row player has m pure strategies, while the column player has n pure
strategies. Let x (resp. y) be a mixed strategy of the row (resp. column) player.
Strategy x is the m-tuple x = (x1, x2, . . . , xm), where xi ≥ 0, and

∑m
i=1 xi = 1.

Similarly, y = (y1, y2, . . . , yn), where yi ≥ 0, and
∑n

i=1 yi = 1.
When the pair of mixed strategies x and y is played, the entry aij contributes

to the expected payoff of the row player with weight xiyj . The expected payoff
of the row player can be evaluated by adding up all the entries of A weighted
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by the corresponding entries of x and y, i.e.,
∑

ij xiyjaij . This can be rewritten
as

∑
i xi

∑
j aijyj , which can be expressed in matrix terms as1xT Ay. Similarly,

the expected payoff of the column player is xT By.

Definition 1. [Nash Equilibrium] A pair of mixed strategies (x, y) is in Nash
equilibrium if xT Ay ≥ x′T Ay, for all stochastic m-vectors x′, and xT By ≥
xT By′, for all stochastic n-vectors y′.

We say that x (resp. y) is a Nash equilibrium strategy for the row (resp.
column) player.

The set of indices such that xi > 0 (resp. yi > 0) is called the support of the
Nash equilibrium strategy x (resp. y).

The following Lemma shows that it is possible to restrict our attention to bima-
trix games where one of the players’ payoff matrix is the identity.

Lemma 1 ([5]). Let A, B be two m × n matrices with nonnegative entries,
where A (resp., B) has at least one nonzero entry in each row (resp., column).

Let C =
(

0 B
AT 0

)
and let I be the (m+n)× (m+n) identity matrix. The Nash

equilibria of the game (A, B) are in one-to-one correspondence with the Nash
equilibrium strategies of the row player in the game (I, C).

We now consider games of the form (I, C), where C is a square matrix with
zero-one entries.

To avoid trivial pure strategy Nash equilibria, we assume that the matrices I
and C do not have entries equal to 1 in the same position, i.e., we assume that
the entries on the main diagonal of C are all zero.

Following [5], we now define the notion of good assignment in a directed graph
G, and then show (Lemma 2 below) that it is equivalent to the notion of Nash
equilibrium for the game (I, A), where A is the adjacency matrix of G.

Definition 2. [Good Assignment]
Let G = (V, E) be a directed graph. Let x be an assignment of nonnegative

weights to the vertices of G. We can assume that x is normalized, i. e.
∑

i xi = 1.
The income ix(v) of a vertex v is the sum of weights of vertices u which point to
v, i. e. ix(v) =

∑
u:(u,v)∈E xu. A vertex v is happy if it has highest income (i. e.

ix(v) ≥ ix(u) for all u ∈ V ). A vertex v is working if it has nonzero weight (i. e.
x(v) > 0). An assignment x is good if all the working vertices are happy.

Lemma 2 ([5]). Let (I, A) be a bimatrix game, where A is a zero-one matrix
with zero entries along the main diagonal. Let G[A] be the digraph with adjacency
matrix A. The Nash equilibrium strategies of the row player in (I, A) are in one-
to-one correspondence with the good assignments in G[A].

The proof of Lemma 2 is quite simple. For the sake of self-containment, we now
sketch the idea. Consider a good assignment x for G[A]. It has the property that

1 We use the notation xT to denote the transpose of vector x.
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the entries of the row vector xT A are maximal for indices j such that xj > 0. If
needed, we can scale the entries of x so that

∑
i xi = 1. Let k be the size of the

support of x, i.e., k is the number of positive entries of x. Consider the vector y
such that yj = 1

k , if xj > 0, and yj = 0, if xj = 0. It is easy to check that the
pair (x, y) is a Nash equilibrium for the game (I, A).

Based on Lemmas 1 and 2, we can focus on the computation of a good as-
signment.

3 An Informal Description of the Algorithm

In this section we provide an informal description of the algorithm for the compu-
tation of a good assignment. In the next section, we will then give a more formal
presentation, with proper definitions, the pseudocode, the proof of correctness,
and the analysis of the running time.

First of all, notice that we can restrict ourselves to finding a good assignment
in a strongly connected digraph. In fact, if the graph is not connected, we can
find a good assignment in one of its connected components and assign zero
weight to all vertices in the other components. If the graph is connected, but not
strongly connected, then its vertices can be partitioned into two subsets V ′ and
V ′′ such that the graph induced by the vertices in V ′′ is strongly connected, and
the arcs joining vertices from V ′ and vertices from V ′′ are all directed towards
the vertices in V ′′. Therefore a good assignment for the original graph can be
obtained via an extension of a good assignment for V ′′, obtained by setting to
zero the weights of the vertices in V ′.

The reduction outlined above can be computed by standard algorithms in
time linear in the number of vertices plus the number of edges of the graph.

The algorithm is composed of two main phases. The first one partitions the
vertices of the input graph into two subsets, where the vertices of one subset can
be assigned weight zero. The input to the second phase of the algorithm is the
subgraph induced by the second subset of vertices. The output of this phase is a
further smaller set of vertices for which it is easy to assign nonzero weights that
form the support of the good assignment for the original graph.

Our approach thus consists of the decomposition of a strongly connected di-
graph G in two components, the first one with a structure that admits an easy
to compute good assignment with positive weights, and the other one composed
by vertices whose weights can be set to zero.

This idea is illustrated by the example shown in Fig.1 (left). The vertices
belonging to the subgraph G′ (a cycle) are assigned weight 1, while all the other
vertices are assigned weight 0. All vertices with weight 1 have income 1 and all
the vertices with weight 0 have income at most 1.

A major obstacle in the search for such a decomposition is the potential
presence of two arcs exiting from G′ and pointing to the same vertex (w in
Fig.1(right)) not in G′. Indeed, if we add the arc (u, w) to G, then, unless we
change the weights of the nodes in G′, the node w will have income 2, which
prevents the current assignment from being a good assignment.
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Fig. 1. On the left a valid solution, obtained by equating to one the weights of the
vertices belonging to the subgraph G′. On the right, the addition of the edge (u, w)
creates a “bump”, disrupting the previous solution.

We will call a “bump” a configuration given by two arcs exiting a subgraph
G′ and pointing to the same vertex, not belonging to G′.

The goal of the first phase of our algorithm will be that of finding a subgraph
G′ of G with two desirable properties:

– G′ can be represented as a directed cycle C, containing all the vertices of
G′, plus a number of chords, i.e., arcs of G′ not in C.

– G′ has no bumps in G, i.e., there are no vertices u, v ∈ G′ and w ∈ G\G′

such that both edges (u, w) and (u, w) exist in G.

Note that, contrary to what was the case in the example of Fig.1, a subgraph
G′ satisfying the two properties above does not yet allow us to determine a trivial
assignment of weights, because of the presence of chords. In the second phase of
the algorithm we will take care of the chords, by finding a suitable subgraph of
G′ with additional properties.

We now show how to detect such a subgraph G′. Given a graph G, in order
to obtain a cycle C ⊆ G we can start from an arbitrary vertex u in G, and then
just follow one of its outgoing arcs (since G is strongly connected, there is at
least one such arc). Repeating this procedure we will eventually reach an already
visited vertex, thus obtaining a cycle.

However there is no guarantee that such a cycle C will be bump-free, i.e., it
might contain two vertices u and v, and a third vertex w ∈ G\C, where the
edges u→ w ← v belong to G. The easiest way to make sure that such a bump
does not occur during the construction of the cycle C is to follow the arc u→ w
if we are visiting u, and the arc v → w if we are visiting v. Either way w will be
included in the final cycle C if any of u and w is included in C, thus preventing
the adjacency configuration u→ w ← v to be a bump for C.

However, we can end up getting a configuration like the one shown in Fig. 2,
where, if we first follow the arc v → x (to avoid the potential bump with apex
x), and later (to avoid the potential bump with apex y′) we follow u′ → y′, then,
if in the construction of the cycle we reach vertex z, then we are presented with
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↑ ↑ ↑ ↑
x x′ y y′

↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖
· · · u v z u′ v′ · · ·

↑ ↑ ↑

Fig. 2. A configuration preventing the detection of a bump-free cycle

a dilemma with no solution: if we follow z → x′ (resp. z → y) then we generate
a cycle with the bump {z, u′, y} (resp. {z, v, x′}) (see Fig. 3).

Fig. 3. The construction of the cycle introduces either the bump on the left or the one
on the right

To overcome this problem, we use a labeling of the arcs of G, based on G’s
alternating decomposition. This labeling will force us to follow a bump-safe path
during the construction of the cycle C.

An alternating decomposition of G is a partition of the edges of G in alter-
nating paths, of the form u1 ← u2 → u3 ← u4 · · · or u1 → u2 ← u3 → u4 · · ·,
and alternating cycles, which are closed alternating paths with an even num-
ber of edges, like u1 ← u2 → u3 ← u4 → u1. We restrict ourself to maximal
decompositions, in which no path can be further extended.

It is very easy to see that, given the limitation on the in-degree and out-
degree of G, such a maximal decomposition is unique and can be obtained
in a straightforward manner. Figure 4 presents an example of decomposition.
Note that the alternating paths do not need to be simple: a vertex can appear
twice in the same path. Figure 5 lists the alternating paths for the graph of
Figure 4.

Once we have obtained an alternating decomposition, it is quite intuitive how
to avoid the obstacle illustrated in Figs. 2 and 3. For each alternating path or
cycle, we consider only the vertices with two outgoing edges. For instance, in the
first alternating path of Figure 5, we consider vertices {1, 3, 5}. We then choose
a node, say 3, and mark arbitrarily one of its outgoing edges, say 3 → 4. We
proceed by marking every other edge in the alternating path, so that each node
can be reached by one unmarked edge. An example of such labeling is illustrated
in Fig.6. The effect of the labeling is that, if there is a vertex which is the apex of
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Fig. 4. A digraph G with in- and out-degree at most 2, and its five (arc disjoint)
alternating paths whose union includes all the arcs of G

Fig. 5. The alternating decomposition of the graph G of Fig. 4

Fig. 6. The labeling process, for the graph in Figure 4, based on the alternating de-
composition
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a potential bump, say vertex 4, then we can reach it only through an unmarked
edge.

We can now return to our cycle construction. We start from an arbitrary
vertex u, and we construct a cycle by following unmarked edges until we reach
a node we have already visited.

For example, in the case of Figs. 4 and 6, starting from vertex 1, we ob-
tain the cycle C = {1, 6, 7}, while starting from vertex 8, we obtain C =
{8, 10, 5, 4, 9, 3, 2}.

This procedure always obtains a cycle, since the labeling guarantees that at
least an outgoing arc for every vertex is unmarked. It is also easy to see that the
cycle is bump-free. Indeed, suppose that the cycle C obtained by the procedure
above has a bump u → w ← v, with u, v ∈ C and w ∈ G\C. Since w does
not belong to C, while u and v do, then both u and v must have two outgoing
edges, say x← u→ w ← v → y, and during the construction of C we must have
followed edges u→ x and v → y. But this is incompatible with our preliminary
alternating labeling since x ← u → w ← v → y is a fragment of an alternating
path or cycle.

The subgraph G′ to be fed to the second phase of the algorithm will be the
subgraph of G induced by the vertices of the bump-free cycle C. It is easy to
see that the fact that G′ is bump-free implies that we can assign weight 0 to the
nodes in G\G′ and deal with the weight assignment for G′, independently of the
rest of the graph.

In the second phase we will find a subgraph G′′ of G′ such that

– G′′ is induced by a cycle;
– G′′ is bump-free with respect to G′;
– the maximal alternating decomposition of G′′ only consists of alternating

cycles and alternating paths of length 1, i.e., single arcs.

These properties imply a “coupling” in G′′ between out-degree 2 vertices and
in-degree 2 vertices, as shown in Figure 7. What happens is that every in-degree
2 vertex receives its income only from out-degree 2 vertices. It is easy to see
that a good assignment can thus be obtained giving weight 1/2 to vertices with
out-degree 2, weight 1 to the other vertices in G′′ and weight 0 to all the vertices
in G\G′′.

In order to identify a subgraph G′′ with these properties, we use the following
strategy.

The algorithm, which acts on the current bump-free cycle C and its chords, is
divided into a number of stages. At each stage, the algorithm either stops (if the
current cycle C induces a subgraph G′′ with the desired properties), or returns
a shorter cycle C′.

At every stage the algorithm computes an alternating decomposition of the
graph induced by the current cycle C. If C does not have chords, or if all the
chords belong to alternating cycles as it is the case in Fig. 7, then C and its
chords form a subgraph G′′ which satisfies our requirements, and the algorithm
ends.
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Fig. 7. An example of subgraph obtained after phase 2 and the corresponding weight
assignment

Otherwise, we consider any chord (i, j) which is part of an open alternating
path (and thus which does not belong to one of the alternating cycles), as in
Fig. 8 (top), and process such chord with the goal of shrinking the current cycle
without introducing new bumps. If the edge (h, k), where k immediately follows
i along the current cycle, is not present, then we can get a shorter cycle C′ by
following the path from j to i along C and then closing the path along edge
(i, j). The resulting new cycle C′ will be bump-free in G since the only potential
bump for C′ has apex k.

On the other hand, if the edge (h, k) is present, as in the example illustrated
in Fig. 8 (bottom), we proceed as follows. If the edge (u, v) (see Fig. 8 – bottom)
is not present, then we can again return the cycle C′ as shown in the Figure,
since v was the only potential bump for C′.

If (u, v) exists, then we repeat the procedure above. Since we are moving along
an alternating open path, then we will necessarily reach a chord which can be
used to shortcut the cycle without creating a bump.

Since at every stage we either stop or shrink the current bump-free cycle,
the algorithm will always terminate in a finite number of steps, returning a
subgraphs with the desired properties. Recalling the example of Fig. 7 and the
related discussion, we can now assign positive weights to the vertices of G′′, and
obtain a good assignment.

4 Pseudocode and Correctness

For reasons of space, we omit from this extended abstract the formal definitions,
the pseudocode of the algorithm sketched in Section 3, the proof of its correct-
ness, and the analysis of its running time. The reader can find all the details in
[4].
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Fig. 8. Phase 2: an open alternating path induces a reduction of the current cycle

Here we only state the main results.

Definition 3. [Alternating path] Let G = (V, A) be a directed graph. We say
that a sequence of vertices 〈u1, u2, . . . , uk〉 defines an alternating path if and
only if

A ⊇ {(u1, u2), (u3, u2), (u3, u4), (u5, u4), . . .}
or

A ⊇ {(u2, u1), (u2, u3), (u4, u3), (u4, u5), . . .}.

We say that an alternating path is maximal if it cannot be extended.
The paths through a vertex v can be easily computed starting from v and

extending the current path in both directions until no further extension is pos-
sible.

Proposition 1. Let G = (V, A) be a strongly connected digraph with in- and
out-degree at most 2. Then A can be be uniquely described as the disjoint union
AG of the maximal alternating paths through the vertices of G.

The partition AG of Proposition 1 is called the alternating decomposition of G
and can be easily computed in linear time. Starting from the empty set, we
repeatedly pick a node v ∈ G not yet in AG, and add to AG the (at most)
two maximal paths through v until no further node remains. Figure 5 shows an
example of an alternating decomposition.

Proposition 2. Every strongly connected digraph G = (V, A) with in- and out-
degree at most 2 contains a bump free cycle C.
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The results of this section can be summarized as follows.

Theorem 1. Let G be a digraph on n vertices, with in- and out-degree at most
two. A good assignment to G can be computed in O(n) time. Moreover, the
weights can be chosen from the set {0, 1/2, 1}.

Building upon the Lemmas of Section 2, Theorem 1 immediately leads to Corol-
lary 1 below.

Corollary 1. Let A and B be m×n zero-one matrices with at most two nonzero
entries per row and column. A Nash equilibrium for the bimatrix game (A, B)
can be computed in O(n+m) time. Moreover, the entries of the Nash equilibrium
strategies can be chosen from the set {0, 1/2, 1}.

5 Conclusions

The problem of computing a Nash equilibrium for 2-player win-lose games is
complete for the class PPAD, and thus unlikely to be solvable in polynomial
time. The core of the computational difficulty is in finding the support of a Nash
equilibrium. In fact, once the support is known, the problem simplifies to linear
programming.

In this paper we have dealt with a restriction under which the determination
of the support translates into an interesting problem on certain very sparse
directed graphs. By taking advantage of the structural properties that arise
from the sparseness, we have been able to devise an efficient algorithm which
determines the support, and then the actual weights.

Future work includes further exploring and possibly extending the frontier of
tractability of the problem, e.g., by mitigating the sparsity assumptions.
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1 Department of Mathematics and Statistics
Arizona State University

Tempe, AZ 85287-1804, USA
andrzej@math.la.asu.edu

2 Faculty of Mathematics and Computer Science
Adam Mickiewicz University
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Abstract. We give efficient deterministic distributed algorithms which
given a graph G from a proper minor-closed family C find an approxi-
mation of a minimum dominating set in G and a minimum connected
dominating set in G. The algorithms are deterministic and run in a poly-
logarithmic number of rounds. The approximation accomplished differs
from an optimal by a multiplicative factor of (1 + o(1)).

1 Introduction

The most fundamental challenge in theory of distributed algorithms is to deter-
mine how the local structure of a network impacts its global properties. This
leads to a completely different computational paradigm than the sequential
model or the massively parallel PRAM model. Not surprisingly, many prob-
lems which admit efficient sequential protocols, such as the maximum matching
problem or the maximal independent set problem elude efficient distributed so-
lutions. In this paper, we will study distributed approximations for two classical
graph-theoretic problems assuming the underlying graph belongs to a proper
minor-closed family. We will consider the distributed model which was intro-
duced by Linial in [L92]. In this model, the network is represented by an
undirected graph with vertices corresponding to processors, and edges corre-
sponding to communication links between processors. The network is synchro-
nized and computations proceed in discrete rounds. In a single round a vertex
can send and receive messages from its neighbors, and can perform some lo-
cal computations. Neither the amount of local computations nor the lengths
of messages is restricted in any way. Importantly, we will also assume that
nodes in the network have unique identifiers which are positive integers from
{1, . . . , n} where n = poly(|G|) is globally known and |G| is the order of the
graph.
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1.1 Results

Although different possible measures of efficiency of a distributed algorithm can
be considered, traditionally a deterministic distributed algorithm is called effi-
cient in the model if it runs in a poly-logarithmic (in the order of the graph)
number of rounds. Only very few classical graph-theoretic problems are known
to admit an efficient deterministic distributed algorithm. For example, even the
maximal independent set problem, for which an efficient deterministic PRAM al-
gorithm exists [L86], still has an unknown distributed complexity. In this paper,
we shall focus on distributed approximation algorithms for two classical prob-
lems, the minimum dominating set problem and the minimum connected domi-
nating set problem. Let β be a graph-theoretic function to be optimized and let
β∗ denote its optimal value. An almost exact approximation for the optimization
problem is a distributed approximation algorithm which given a positive integer
k, finds in a graph G in a poly-logarithmic number of rounds a solution with value
of at least (1 − O(1/ lnk |G|))β∗(G), where |G| is the order of G. For example,
Kuhn et. al. in [KMNW05b] give almost-exact approximations for the maximum
independent set and minimum dominating set problems in unit-disk graphs.

In this paper we will give efficient distributed approximation algorithms for the
minimum dominating set problem and the minimum connected dominating set
problem for graphs which are from a proper minor-closed family. Let G = (V, E)
be a graph. Graph H is called a minor of G if for some subgraph G′ of G, there
is a partition of V (G′) into V1, . . . , Vl, such that the graph H̄ , with vertex set
{1, . . . , l} and edges between i and j whenever there is an edge in G′ with one
endpoint in Vi, another in Vj , is isomorphic to H . It is well-known (see [D97])
that H is a minor of G if and only if it can be obtained from a subgraph of G be
a series of edge contractions. An infinite family of graphs C is called minor-closed
when for every graph G ∈ C any minor of G is also in C. A family C is called
proper if there exists a graph which is not in C , i.e. C is not the family of all
graphs. Certainly, the most important example of a proper minor-closed family
is the class of planar graphs. For C, let ρC be the infimum of the edge density of
graphs from C. Complexity of algorithms depends on ρC and we will often use
the fact that if C is proper then ρC is finite (see [NM05]).

Distributed approximation algorithms for planar graphs were studied in
[CH04] and [CHS06]. In [CH04], almost exact approximation are obtained for
the maximum-weight independent set problem provided the underlying graph is
planar. In [CHS06], an almost exact approximation for the maximum matching
problem is given in planar graphs and an almost exact approximation for the
minimum dominating set problem is given in planar graphs that do not contain
K2,ln |G| as a subgraph. In this paper we will not only get rid of the annoying
additional assumption on planar graphs from [CHS06] but also we will show how
to solve the problems in any minor closed family C. Finally, we will prove that
the minimum connected dominating set problem can be approached in a very
similar way.

A dominating set in a graph G is a subset D of vertices such that for every
vertex v /∈ D a neighbor u of v belongs to D. By γ(G) we will denote the cardi-
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nality of a smallest dominating set in G. A dominating set D is called a connected
dominating set in G if in addition, the subgraph of G induced by D is connected.
We will denote by γc(G) the cardinality of the smallest connected dominating set
in a connected graph G. For the minimum dominating set problem, we will prove
that there is a distributed algorithm which given positive integer q finds in graph
G ∈ C a dominating set D̄ such that |D̄| ≤

(
1 + O

(
1

lnq |G|
))

γ(G). The algo-

rithm runs in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where r = 6(q+1)ρC ln 3. (The-
orem 1.) For the minimum connected dominating set problem we will show that
there is a distributed algorithm which finds in a connected graph G ∈ C a con-
nected dominating set D̄ such that |D̄| ≤

(
1 + O

(
1

lnq |G|
))

γc(G). The algorithm

runs in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds with r = 6(q+1)ρC ln 3. (Theorem 2.)

1.2 Related Work

We briefly indicate how our contribution compares with other results refering to
Elkin’s survey [E04], for a more comprehensive overview. First let us mention
that efficient distributed algorithms that find an exact solution do not exist for
the minimum dominating set problem even when restricted to cycles [L92]. In
addition, recently, Kuhn et. al. in [KMW04] showed that the number of rounds
required to achieve a poly-logarithmic approximation ratio for minimum dom-
inating set is at least Ω(

√
log |G|/ log log |G|) or Ω(log Δ/ log log Δ), where Δ

denotes the maximum degree of graph G.
On a more positive note, Kutten and Peleg [KP95] gave an efficient distributed

algorithm which finds a dominating set of size at most |G|/2 in an arbitrary
graph G. Not surprisingly, if randomization is allowed, then fast approximations
can be obtained. In particular, a nice algorithm from [KW03] gives a random-
ized O(kΔ2/k log Δ)-approximation in a constant time using an LP relaxation.
As in the case of the minimum dominating set problem, efficient randomized
algorithms for the connected dominating set are known [DPRS03].

It is also worth mentioning that our algorithms share many similarities with
almost-exact approximations for the above problems in unit-disk graphs from
[KMNW05b] and particularly [CH06]. Specifically, algorithms for unit-disk
graphs and graphs from a minor closed families are both attacked by first finding
a cluster graph and then perform computations locally. Clustering from [CH04]
(as well as [KMNW05b]) exploits the bounded-growth property of unit-disk
graphs and is based on the ruling-set technique from [AGLP89]. The clustering
in this paper, generalizes the clustering procedures from [CH04] and [CHS06]
and relies on properties of minor-monotone families.

1.3 Notation and Organization

We will use the standard graph-theoretic notation and terminology. In particular,
following the convention from [D97], for a graph G, |G| will denote the number
of vertices in G and ||G|| the number of edges. In the rest of the paper we
will first give an auxiliary distributed O(ln |G|)-approximation for the minimum
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dominating set problem in a graph G ∈ C (Section 2). Section 2 also contains
a generalization of the clustering from [CH04] to minor-closed families C. In
Section 3, we give our approximation algorithms and give a specification to the
important case when C is the class of planar graphs.

2 Tools

Let C be a proper minor-closed family of graphs. In this section, we will describe
two auxiliary algorithms. The first procedure finds a O(ln |G|)-approximation
of the minimum dominating set in a graph G ∈ C. This is a very simple dis-
tributed greedy algorithm which will be used as an initial procedure that yields
an auxiliary graph which is further clustered by the main algorithm. The second
procedure is a modification of the clustering algorithm from [CH04]. This is our
main tool for finding a clustering of a graph from C.

2.1 Distributed O(ln |G|)-Approximation

For a proper minor-closed family C let ρC be the edge density of C, i.e. ρC is the
infimum of ρ such that for every graph G ∈ C, ||G|| ≤ ρ|G|. Then ρC is finite as
long as C is proper (see [NM05]) and if G is nontrivial (i.e. contains a nonempty
graph) then ρC ≥ 0.5. Let G ∈ C and suppose that V1, V2 is a partition of V . Let

degi(v) = |N(v) ∩ Vi|, Δi = max
v

degi(v)

where N(v) is a set of neighbours of v. In addition for S ⊂ V let Ni(S) denote
the set of vertices in Vi which have a neighbor in S.

Lemma 1. Let C be a proper nontrivial minor closed family. Let G be a nonempty
graph from C, let V1, V2 be a partition of V (G) and let B = {v|deg1(v) ≥ Δ1/2}.
If Δ1 ≥ 4ρC and D is a subset of V which dominates all vertices from V1 then

|D| ≥ |B|
6ρC(2ρC + 1)

.

We will consider the following greedy algorithm.

GreedyDS
Input: Graph G = (V, E) from C.
Output: Dominating set D∗ in G.

(1) D∗ := ∅, V1 := V , V2 := ∅.
(2) for i := 0 to �lg |G|� − 	lg 4ρC
 − 1 do

(a) Let B := {v|deg1(v) ≥ |G|/2i+1}.
(b) If v ∈ V1 and N(v) ∩B �= ∅ then move v from V1 to V2.
(c) D∗ := D∗ ∪B. Delete all vertices in B and all edges incident to B from

G.
(3) Let D∗ := D∗ ∪ V1. Return D∗.
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We shall first make a few preliminary observations about GreedyDS. Let
G(i) be the graph in the ith iteration of the for loop. Similarly let V

(i)
k (B(i)),

be the set Vk (B) in the ith iteration and let Δ
(i)
1 = Δ1(G(i)). We first observe

the following easy lemma.

Lemma 2. Let C be a proper nontrivial minor closed family and let G ∈ C.

– We have Δ
(i)
1 ≤ |G|/2i.

– If B(i) �= ∅ then Δ
(i)
1 ≥ 4ρC.

We can now prove the main property of GreedyDS.

Lemma 3. Let C be a proper nontrivial minor closed family. Let D be a domi-
nating set in graph G = (V, E) from C. Then

|B(i)| ≤ 6ρC(2ρC + 1)|D|.

In addition, if V ∗
1 denotes the set of vertices in V1 in the step (3) of GreedyDS

then
|V ∗

1 | ≤ (4ρC + 2)|D|.

Proof. Let B(<i) := B(0)∪· · ·∪B(i−1). Vertices from V
(i)
1 cannot be dominated

by vertices from B(<i) as all neighbors of B(<i) in G are contained in B(<i)∪V
(i)
2 .

Consequently D∩ (V (i)
1 ∪V

(i)
2 ) is a set which dominates V

(i)
1 in G(i). By Lemma

2, if B(i) �= ∅ then Δ1(G(i)) ≥ 4ρC and we have B(i) ⊆ {v|deg1(v) ≥ Δ
(i)
1 /2}. As

G(i) is a subgraph of G, Lemma 1 implies that

|B(i)| ≤ 6ρC(2ρC + 1)|D ∩ (V (i)
1 ∪ V

(i)
2 )| ≤ 6ρC(2ρC + 1)|D|.

To prove the second part, note that after the iterations from step (2), the maxi-
mum degree Δ1 ≤ 4ρC +2. As a result, to dominate all vertices from V ∗

1 at least
|V ∗

1 |/(4ρC + 2) vertices are needed.

Lemma 4. Let C be a minor closed family with ρC >0 and let G∈C. GreedyDS
finds a dominating set D∗ with

|D∗| = O(ln |G|γ(G)),

where γ(G) is the size of the minimum dominating set in G.

Proof. D∗ is a dominating set as in step (3) all of the remaining vertices from
V1 are added to D∗. There are less than lg |G| = Θ(ln |G|) iteration of step (2)
and so, by Lemma 3, |D∗| = O(ln |G|γ(G)).

2.2 Clustering Algorithm

We will modify the clustering method from [CHS06] (see also [CH04]) which
was applied there to planar graphs. The basic idea of the method is to find



Distributed Almost Exact Approximations for Minor-Closed Families 249

appropriate subgraphs of a graph and contract them. The process is repeated
O(ln ln |G|) times and the vertices of the graph obtained from contractions in all
of the previous iterations give clusters of G. To find appropriate subgraphs it is
neccessary to consider weights on edges. We shall start with the following basic
observation.

Lemma 5. Let C be a proper minor closed family. Let G = (V, E) be a graph
from C and let A = {v|deg(v) ≤ 3ρC}. Then

|A| ≥ |G|/3.

As mentioned before, we will assumme that vertices have unique identifiers which
are positive integers. For v ∈ V (G) the identifier of v will be denoted by ID(v).
Note that if ID(v) ≤ n for every vertex from V (G) then |G| ≤ n.

Decomposition
Input: G ∈ C, number n such that ID(v) ≤ n for v ∈ V (G).
Output: Partition V1, . . . , Vlogk n of G with k = O(1).

1. Let U := V (G), i := 1 and k := (9ρC + 3)/(9ρC + 2).
2. Iterate logk n + 1 times:

(a) Let A be the set of vertices in G[U ] of degree at most 3ρC .
(b) Use the Cole-Vishkin algorithm from [CV86] to find a maximal indepen-

dent set I in the subgraph of G[U ] induced by A.
(c) Vi := I, i := i + 1, U := U \ I.

Lemma 6. [CH04] Let G = (V, E) be a graph from C such that the identifiers
of V are in {1, . . . , n}. Then the procedure Decomposition finds a partition
V1, . . . , Vlogk n of V (G) such that each Vi is an independent set and for every
v ∈ Vi, deg(v,

⋃
j>i Vj) ≤ 3ρC. The algorithm runs in O(ln∗ n lnn) rounds.

We will now describe our clustering algorithm. This is essentially the algorithm
from [CH04] which is here adopted to minor-closed families. Main idea of the
algorithm is to find appropriate subgraphs of G and contract the subgraphs so
that the number of contracted edges is a constant fraction of ||G||. The process
is iterated O(ln lnn) times where |G| ≤ n. We will identify graphs with their
edge sets and if ω is a weight function defined on the edge set of graph H then
for F ⊆ E(H), ω(F ) :=

∑
e∈F ω(e). In addition, N(w) will denote the set of

neighbors of vertex w.

Clustering
Input: Graph G = (V, E) ∈ C, number n such that ID(v) ≤ n for every v ∈ V ,
positive integer c.
Output: Partition of V .

1. H := G and let ω(e) := 1 for every e ∈ H . Let l := 6cρC ln lnn.
2. Iterate l times:
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(a) Call Decomposition to find a partition W1, . . . , WK of H with K =
O(ln n). Set WK+1 := ∅ and let Zi :=

⋃
j>i Wj .

(b) For every vertex w:
(c) If i is such that w ∈Wi and N(w) ∩ Zi �= ∅ then:

– Let u(w) be a vertex in N(w) ∩ Zi such that

ω({w, u(w)}) := max
v∈N(w)∩Zi

ω({w, v}).

– Add {w, u(w)} to the auxiliary graph F .
(d) Each connected component of F is a tree of diameter O(K) = O(ln n).

For each tree T in F , in parallel, find a set of disjoint stars S1 . . . Sk in
T such that ω(S1 ∪ · · · ∪ Sk) ≥ ω(T − (S1 ∪ · · · ∪ Sk)).

(e) Modify H as follows:
– Contract each star Si to a new vertex x(Si).
– For every vertex x(Si) and y ∈ V (H) ∩N(Si) set the weight of

ω({x(Si), y}) :=
∑

u∈V (Si)∩N(y)

ω({u, y})

and set V (H) :=
⋃
{x(Si)} ∪ (V (H)−

⋃
V (Si)).

3. If V (H) = {v1, ..., vL} then for each vi let Vi be the set of vertices of G
contracted to vi in all of the above iterations. Return V1, . . . , VL.

Note that graph H obtained in each iteration of Clustering belongs to C
and so its edge density is at most ρC . We can summarize the performance of
Clustering as follows.

Lemma 7. Let V1, . . . , VL be the clusters in G obtained from Clustering.
Then

1. For every i, G[Vi] is a subgraph of diameter O(lnd n), where

d = 6cρC ln 3.

2. The number of edges connecting different clusters is O(||G||/ lnc n).
3. Clustering runs in O(ln lnn ln∗ n ln1+d n) rounds.

3 Domination Problems

Let C be a proper minor-closed family of graphs. In this section, we will give
almost exact approximations for the minimum dominating set problem and for
the connected minimum dominating set problem in graphs G such that G ∈
C. Instead of finding a clustering directly in graph G, it is very convenient to
work in an auxiliary graph that arises from the O(ln n)-approximation of the
dominating set and perform the clustering in this graph. By virtue of the minor-
closed property of C, the auxiliary graph will also be a member of C.
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3.1 Minimum Dominating Set

We will start with an almost exact approximation for the minimum dominating
set problem.

Definition 1. Let G = (V, E) be a graph and let D = {v1, . . . , vl} ⊆ V be a
dominating set in G. Then let A(D, G) be the graph (V,E) obtained as follows.

– Partition V = V1∪V2∪· · ·∪Vl so that (1) vi ∈ Vi and (2) for every v ∈ V \D,
v ∈ Vi if {v, vi} ∈ E and if {v, vj} ∈ E for j �= i then ID(vj) > ID(vi).

– V := {V1, . . . , Vl} (contract Vi to a vertex) and {Vi, Vj} ∈ E (i �= j) if there
is an edge in G between a vertex from Vi and a vertex from Vj .

In addition, we will call vi the center of Vi. Let U be a subset of V then U
corresponds in a natural way to subset U of V (G) by

U :=
⋃

W∈U

W.

If U1,U2, . . . ,Ul is a partition of V then the corresponding sequence U1, U2, . . . ,
Ul, with Ui :=

⋃
W∈Ui

W , is a partition of V (G). We will then say that U1, U2,
. . . , Ul arises from U1,U2, · · · ,Ul. Finally, for a graph H = (X, F ) if
Y ⊆ X then bd(Y ) will denote the set of all vertices in Y which have a neighbor
in X \ Y .

For a dominating set D obtained by GreedyDS in G let A := A(D, G).
From Lemma 4

|A| = O(γ(G) ln |G|). (1)

Since A is obtained from G be contracting Vi’s, A ∈ C. In addition, identifiers
of vertices from A are bounded from above by n = poly(|G|).

ApproxDS
Input: Graph G = (V, E) from C with ID(v) ≤ n for any v ∈ V (G), a positive
integer q.
Output: Dominating set D̄ in G.

1. Call GreedyDS to find a dominating set D and consider A = (V,E).
2. Call Clustering with c = 1 + q in A.
3. Let U1, . . . ,Ul be a partition of V and let U1, . . . , Ul be a partition of V (G)

that arises from U1, . . . ,Ul.
4. In each Ui in parallel:

(a) Find locally in Ui a set Di ⊆ Ui of the smallest size such that Di domi-
nates Ui \ bd(Ui) in G.

(b) Let Ci be the set of centers of vertices from bd(Ui).
(c) Let D̄i := Di ∪ Ci.

5. Return D̄ :=
⋃l

i=1 D̄i.
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Theorem 1. Let C be a proper minor-closed family of graphs. Algorithm Ap-
proxDS finds in a graph G ∈ C a dominating set D̄ such that

|D̄| ≤
(

1 + O

(
1

lnq |G|

))
γ(G)

in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where r = 6(q + 1)ρC ln 3.

Proof. We will first note that set D̄ returned in step five of ApproxDS is a
dominating set. Indeed let v ∈ V (G) and suppose that v /∈ D̄. If for some i,
v ∈ Ui \ bd(Ui) then v is dominated by a vertex from Di. Otherwise for some i,
v ∈ bd(Ui) and so, by definition of A, v ∈W for some W ∈ bd(Ui). Consequently,
v is dominated by the center of W and the center is in Ci. To establish the bound
for |D̄| let us first recall that A ∈ C and so ||A|| = O(|A|). In addition the
graph induced by border vertices of A, i.e. A [

⋃
i bd(Ui)], has denisty ρC and so

|
⋃

i bd(Ui)| = O (||A [
⋃

i bd(Ui)] ||) and by Lemma 7 part 2 applied with n = |G|,
|
⋃

i bd(Ui)| = O(||A||/ lnq+1 |G|) as |A| ≤ |G|. Consequently, as ||A|| = O(|A|)
and (1) holds, |

⋃
i bd(Ui)| = O(γ(G)/ lnq |G|). Since bd(Ui) are pairwise disjoint

and |bd(Ui)| = |Ci|, we have

l∑
i=1

|Ci| = O(γ(G)/ lnq |G|). (2)

Let D∗ be a dominating set in G with |D∗| = γ(G). Then |D∗∩Ui| ≥ |Di| as every
vertex in Ui \ bd(Ui) must be dominated by a vertex from D∗∩Ui. Consequently
γ(G) = |D∗| =

∑l
i=1 |D∗∩Ui| ≥

∑l
i=1 |Di| and so |D̄| ≤

∑l
i=1 |Di|+

∑l
i=1 |Ci| ≤

γ(G)+
∑l

i=1 |Ci| which in view of (2) gives |D̄| =
(
1 + O

(
1

lnq |G|
))

γ(G). To esti-

mate the running time, note that Clustring runs in O(ln ln |G| ln∗ |G| ln1+r |G|)
rounds in A and every vertex in A has diameter of at most two in G. In ad-
dition for every i, A[Ui] has diameter O(lnr |G|) by Lemma 7 part 1 and so
the diameter of each G[Ui] is also O(lnr |G|). Therefore, finding Di and Ci

can be done in O(lnr |G|) rounds and the time complexity of ApproxDS is
O(ln ln |G| ln∗ |G| ln1+r |G|).

3.2 Minimum Connected Dominating Set

An algorithm for the minimum connected dominating set problem is very similar.
In fact the first three steps are identical and only a very small change must be
made in steps four and five. First note that the auxiliary graph A satisfies

|A| = O(γc(G) ln |G|) (3)

where γc(G) is the size if the smallest connected dominating set as γ(G) ≤
γc(G) ≤ 3γ(G) in any connected graph G.

ApproxCDS
Input: A connected graph G = (V, E) ∈ C, a positive integer q.
Output: A connected dominating set D̄ in G.



Distributed Almost Exact Approximations for Minor-Closed Families 253

1. Call GreedyDS to find a dominating set D and consider A = (V,E).
2. Call Clustering with c = 1 + q in A.
3. Let U1, . . . ,Ul be a partition of V obtained in step 2. Let U1, . . . , Ul be a

partition of V (G) that arises from U1, . . . ,Ul.
4. In each Ui in parallel:

(a) Let Ci be the set of centers of vertices from bd(Ui).
(b) Find locally in Ui a set Di ⊆ Ui of the smallest size such that Di domi-

nates Ui in G, G[Di] is a connected subgraph of G, and Ci ⊆ Di.
(c) For every cluster Uj such that there is an edge in A between Ui and Uj

find the shortest path Pij between a vertex from Di and a vertex from
Dj and let Pi :=

⋃
V (Pij) where the union is taken over all of these

paths.
(d) Let D̄i := Di ∪ Pi.

5. Return D̄ :=
⋃l

i=1 D̄i.

The argument is slightly different than the one given for Theorem 1 as this time
the main part of the argument is to show that that G contains a connected
dominating set D′ such that |D′| ≤ (1 + O(1/ lnq |G|))γc(G), G[D′ ∩ Ui] is a
connected subgraph, D′ ∩ Ui dominates Ui, and Ci ⊆ D′ ∩ Ui.

Lemma 8. Let G ∈ C be a connected graph. Then G contains a connected domi-
nating set D′ such that |D′| ≤ (1+O(1/ lnq |G|))γc(G) and for every i = 1, . . . , l

1. G[D′ ∩ Ui] is a connected subgraph of G,
2. D′ ∩ Ui dominates Ui,
3. Ci ⊆ D′ ∩ Ui.

Theorem 2. Let C be a minor-closed family. Algorithm ApproxDS finds in a
connected graph G ∈ C a connected dominating set D̄ such that

|D̄| ≤
(

1 + O

(
1

lnq |G|

))
γc(G)

in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where r = 6(q + 1)ρC ln 3.

Proof. First note that the running time can be proved in the same way as in
the case of Theorem 1. Also, clearly, D̄ is a dominating set in G. We claim that
G[D̄] is a connected subgraph in G. Clearly G[D̄i] is a connected subgraph and
since G is connected so is A. Consider the graph C(A) obtained from A by
contracting each Ui to a single vertex. C(A) is clearly a connected graph. Since
Ci ⊆ Di, it is enough to note that whenever there is an edge {Ui,Uj} in C(A)
then there is a path Pij in G[D̄] connecting a vertex from Ci with a vertex from
Cj . To estimate |D̄| let us first show that

l∑
i=1

|Pi| = O(γc(G)/ lnq |G|). (4)
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By Lemma 7 part 2, the sum of degrees of vertices in C(A) is O(|E|/ lnq+1 |G|) =
O(|γc(G)|/ lnq |G|). Consequently, the number of Pij ’s is O(|γc(G)|/ lnq |G|). In
addition, |V (Pij)| ≤ 4 as if there is an edge {W, W ′} ∈ E with W ∈ Ui and
W ′ ∈ Uj then there exist w ∈ W and w′ ∈ W ′ such that {w, w′} is the edge in
G. Since the center of W is in Di and the center of W ′ is in Dj, the shortest path
between Di and Dj contains at most four vertices. Consequently,

∑l
i=1 |D̄i| =∑l

i=1 |Di|+ O(γc(G)/ lnq |G|).
Finally from Lemma 8, there exists a connected dominating set D′ in G such

that |D′| ≤ (1 + O(1/ lnq |G|))γc(G), G[D′ ∩ Ui] induces a connected subgraph,
D′∩Ui dominates Ui, and Ci ⊆ D′∩Ui for every i. Since Di, found in the step 4(b),
is a set of the smallest size such that G[Di] is a connected subgraph, Di dominates
Ui and Ci ⊆ Di, we must have |Di| ≤ |D′ ∩ Ui|. As a result, |D̄| =

∑l
i=1 |D̄i| =∑l

i=1 |Di| + O(γc(G)/ lnq |G|) ≤
∑l

i=1 |D′ ∩ Ui| + O(γc(G)/ lnq |G|) = |D′| +
O(γc(G)/ lnq |G|) and so |D̄| ≤

(
1 + O

(
1

lnq |G|
))

γc(G).

3.3 Planar Graphs

Class of planar graphs P has ρP = 3 and so by Theorem 1 and Theorem 2 we
have almost exact approximations for the minimum dominating set problem and
the minimum connected dominating set problem in planar graphs that achieve
the approximation error of O(1/ lnq |G|) and run in O(ln ln |G| ln∗ |G| ln1+r |G|)
rounds where r = 18(q + 1) ln 3. In [CHS06] an approximation algorithm for the
minimum dominating set problem with q = 1 is given for the special subclass of
planar graphs. The algorithm from [CHS06] runs in O(ln ln |G| ln∗ |G| ln1+r |G|)
rounds where r = 27.7 and so it is slightly faster than the algorithms from
Theorem 1 and Theorem 2 which run O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where
r = 36 ln 3. We can however apply techniques from [CHS06] and reduce the time
complexity significantly. Using the SmallCluster procedure from [CHS06] and
the fact that star arboricity of a planar graph is at most five, we can achieve
the approximation error of O(1/ lnq |G|) in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds
where r < 5.54(q + 1). In fact, using Tutte’s Theorem on the tree arboricity
of a graph with a bounded density of any subgraph (see [D97]), we can apply
SmallCluster procedure and reduce the time complexity of our algorithms for
minor-closed families. Due to space limitations, we will not give this refinement
here.
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[CH06] A. Czygrinow, M. Hańćkowiak, Distributed approximation algorithms
in unit disk graphs, manuscript.

[D97] R. Diestel, Graph Theory, Springer, New York, (1997).
[DPRS03] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srini-

vasan, Fast Distributed Algorithms for (Weakly) Connected Dominating
Sets and Linear-Size Skeletons, In Proc. of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 717-724, 2003.

[E04] M. Elkin, An Overview of Distributed Approximation, in ACM SIGACT
News Distributed Computing Column Volume 35, Number 4 (Whole
number 132), Dec. 2004, pp. 40-57.

[KW03] F. Kuhn, R. Wattenhofer, Constant-Time Distributed Dominating Set
Approximation, 22nd ACM Symposium on the Principles of Distributed
Computing (PODC), Boston, Massachusetts, USA, July 2003.

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer, What Cannot Be Com-
puted Locally!, Proceedings of 23rd ACM Symposium on the Principles
of Distributed Computing (PODC), 2004, pp. 300-309.

[KMNW05a] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, Fast De-
terministic Distributed Maximal Independent Set Computation on
Growth-Bounded Graphs, 19th International Symposium on Dis-
tributed Computing (DISC), Cracow, Poland, September (2005).

[KMNW05b] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, Local Ap-
proximation Schemes for Ad Hoc and Sensor Networks, 3rd ACM Joint
Workshop on Foundations of Mobile Computing (DIALM-POMC),
Cologne, Germany, (2005).

[KP95] S. Kutten, D. Peleg, Fast distributed construction of k-dominating sets
and applications, Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing, 1995, pp. 238 - 251.

[L92] N. Linial, Locality in distributed graph algorithms, SIAM Journal on
Computing, 1992, 21(1), pp. 193-201.

[L86] M. Luby, A simple parallel algorithm for the maximal independent set
problem, SIAM J. Comput. 15, no. 4, (1986), 1036–1053.

[NM05] J. Nesetril and P. Ossona de Mendez, Colorings and homomorphisms of
minor closed classes, In B. Aronov, S. Basu, J. Pach, and M. Sharir,
eds., Discrete and Computational Geometry, The Goodman-Pollack
Festschrift, vol. 25 of Algorithms and Combinatorics, pp. 651-664,
Springer, 2003.



Spectral Clustering by Recursive Partitioning

Anirban Dasgupta1,�, John Hopcroft2, Ravi Kannan3, and Pradipta Mitra3,��

1 Yahoo! Research Labs
2 Department of Computer Science, Cornell University

3 Department of Computer Science, Yale University

Abstract. In this paper, we analyze the second eigenvector technique
of spectral partitioning on the planted partition random graph model,
by constructing a recursive algorithm using the second eigenvectors in
order to learn the planted partitions. The correctness of our algorithm is
not based on the ratio-cut interpretation of the second eigenvector, but
exploits instead the stability of the eigenvector subspace. As a result, we
get an improved cluster separation bound in terms of dependence on the
maximum variance. We also extend our results for a clustering problem
in the case of sparse graphs.

1 Introduction

Clustering of graphs is an extremely general framework that captures a number
of important problems on graphs. In a general setting, the clustering problem is
to partition the vertex set of a graph into “clusters”, where each cluster contains
vertices of only “one type”. The exact notion of what the vertex “type” represents
is dependent on the particular application of the clustering framework. We will
deal with the clustering problem on graphs generated by the versatile planted
partition model (See [18, 5]). In this probabilistic model, the vertex set of the
graph is partitioned into k subsets T1, T2, . . . , Tk. Each edge (u, v) is then a
random variable that is independently chosen to be present with a probability
Auv, and absent otherwise. The probabilities Auv depend only on the parts to
which the two endpoints u and v belong. The adjacency matrix Â of the random
graph so generated is presented as input. Our task then is to identify the latent
clusters T1, T2, . . . , Tk from Â.

Spectral methods have been widely used for clustering problems, both for
theoretical analysis as well as empirical and application areas. The underlying
idea is to use information about the eigenvectors of Â to extract structure. There
are different variations to this basic theme of spectral clustering, which can be
essentially divided into 2 classes of algorithms.

1. Projection heuristics, in which the top few eigenvectors of the adjacency
matrix Â are used to construct a low-dimensional representation of the data,
which is then clustered.
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2. The second eigenvector heuristic, in which the coordinates of the second
eigenvector of Â is used to find a split of the vertex set into two parts. This
technique is then applied recursively to each of the parts obtained.

Experimental results claiming the goodness of both spectral heuristics abound.
Relatively fewer are results that strive to demonstrate provable guarantees about
the heuristics. Perhaps more importantly, the worst case guarantees [17] that
have been obtained do not seem to match the stellar performance of spectral
methods on most inputs, and thus it is still an open question to characterize
the class of inputs for which spectral heuristics do work well. In order to be
able to formalize the average case behavior of spectral analysis, researchers have
analyzed its performance on graphs generated by random models with latent
structure [4, 18]. These graphs are generated by zero-one entries from a inde-
pendently chosen according to a low-rank probability matrix. The low rank of
the probability matrix reflects the small number of vertex types present in the
unperturbed data. The intuition developed by Azar et al. [4] is that in such
models, the random perturbations may cause the individual eigenvectors to vary
significantly, but the subspace spanned by the top few eigenvectors remains sta-
ble. From this perspective, however, the second eigenvector technique does not
seem to be well motivated, and it remains an open question as to whether we
can claim anything better than the worst case bounds for the second eigenvector
heuristic in this setting.

In this paper, we prove the goodness of the second eigenvector partitioning for
the planted partition random graph model [11, 4, 18, 10]. We demonstrate that
in spite of the fact that the second eigenvector itself is not stable, we can use it
to recover the embedded structure.

Our main aim in analyzing the planted partition model using the second eigen-
vector technique is to try to bridge the gap between the worst case analysis and
the actual performance. However, in doing so, we achieve a number of other goals
too. The most significant among these is that we can get tighter guarantees than
[18] in terms of the dependence on the maximum variance. The required sepa-
ration between the columns clusters Tr and Ts can now be in terms of σr + σs,
the maximum variances in each of these two clusters, instead of the maximum
variance σmax in the entire matrix. This gain could be significant if the maxi-
mum variance σmax is due to only one cluster, and thus can potentially lead to
identification of a finer structure in the data. Our separation bounds are however
worse than [18, 1] in terms of dependence on the number of clusters. Another
contribution of the paper is to model and solve a restricted clustering problem for
sparse (constant degree) graphs. Graphs clustered in practice are often “sparse”,
even of very low constant degree. A concern about analysis of many heuristics
on random models [18, 10] is that they don’t cover sparse graphs. In this paper,
we propose a model motivated by random regular graphs (see [14, 6], for exam-
ple) for the clustering problem that allows us to use strong concentration results
which are available in that setting. We will use some extra assumptions on the
degrees of the vertices and finally show that expansion properties of the model
will allow us to achieve a clean clustering through a simple algorithm.
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2 Model and Our Results

A is a matrix of probabilities where the entry Auv is the probability of an edge
being present between the vertices u and v. The vertices are partitioned into k
clusters T1, T2, . . . , Tk. The size of the rth cluster Tr is nr and the minimum
size is denoted by nmin = minr{nr}. Let, wmin = nmin/n. We assume that
the minimum size nmin ∈ Ω(n/k). The characteristic vector of the cluster Tr

is denoted by g(r) defined as g(r)(i) = 1/
√

nr for i ∈ Tr and 0 elsewhere.
The probability Auv depends only on the two clusters in which the vertices u
and v belong to. Given the probability matrix A, the random graph Â is then
generated by independently setting each Âuv(= Âvu) to 1 with probability Auv

and 0 otherwise. Thus, the expectation of the random variable Âuv is equal to
Auv. The variance of Âuv is thus Auv(1 − Auv). The maximum variance of any
entry of Â is denoted σ2, and the maximum variance for all vertices belonging to
a cluster Tr as denoted as σ2

r . We usually denote a matrix of random variables
by X̂ and the expectation of X̂ as X = E

[
X̂
]
. We will also denote vectors by

boldface (e.g. x). x has the ith coordinate x(i). For a matrix X , Xi denotes the
column i. The number of vertices is n. We will assume the following separation
condition.

Separation Condition. Each of the variances σr satisfies σ2
r ≥ log6 n/n. Further-

more, there exists a large enough constant c such that for vertices u ∈ Tr and
v ∈ Ts, the columns Au and Av of the probability matrix A corresponding to
different clusters Tr and Ts satisfy

‖Au −Av‖22 ≥ 64c2k5 (σr + σs)
2 log (n)

wmin
(1)

For clarity of exposition, we will make no attempt to optimize the constants
or exponents of k. Similarly, we will ignore the term wmin for the most part.
We say that a partitioning (S1, . . . , Sl), respects the original clustering if the
vertices of each Tr lie wholly in any one of the Sj . We will refer to the parts
Sj as super-clusters, being the union of one or more clusters Tr. We say that a
partitioning (S1, . . . , Sl) agrees with the underlying clusters if each Si is exactly
equal to some Tr (i.e. l = k). The aim is to prove the following theorem.

Theorem 1. Given Â that is generated as above, i.e. A = E
[
Â
]

satisfies con-
dition 1, we can cluster the vertices such that the partitioning agrees with the
underlying clusters with probability at least 1− 1

nδ , for suitably large δ.

3 Related Work

The second eigenvector technique has been analyzed before, but mostly from
the viewpoint of constructing cuts in the graph that have a small ratio of edges
cut to vertices separated. There has been a series of results [13, 2, 5, 19] relating
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the gap between the first and second eigenvalues, known as the Fiedler gap, to
the quality of the cut induced by the second eigenvector. Spielman and Teng
[20] demonstrated that the second eigenvector partitioning heuristic is good for
meshes and planar graphs. Kannan et al. [17] gave a bicriteria approximation for
clustering using the second eigenvector method. Cheng et al. [7] showed how to
use the second eigenvector method combined with a particular cluster objective
function in order to devise a divide and merge algorithm for spectral clustering.
In the random graph setting, there has been results by Alon et al. [3], and Coja-
oghlan [8] in using the coordinates of the second eigenvector in order to perform
coloring, bisection and other problems. In each of these algorithms, however, the
cleanup phase is very specific to the particular clustering task at hand.

Experimental studies done on the relative benefits of the two heuristics often
show that the two techniques outperform each other on different data sets [21]. In
fact results by Meila et al.[21] demonstrate that the recursive methods using the
second eigenvector are actually more stable than the multiway spectral clustering
methods if the noise is high. Anopther paper by Zhao et al. [23] shows that
recursive clustering using the second eigenvector performs better than a number
of other hierarchical clustering algorithms.

4 Algorithm

For the sake of simplicity, in most of the paper, we will be discussing the basic
bipartitioning step that is at the core of of our algorithm. In Section 4.2 we will
describe how to apply it recursively to learn all the k clusters. Define the matrix
J = I − 1

n11T . Note that for any vector z such that
∑

i zi = 0, Jz = z. Given
the original matrix Â we will create Θ(n/(k log n)) submatrices by partitioning
the set of rows into Θ(n/(k log n)) parts randomly. Suppose Ĉ denotes any one
of these parts. Given the matrix Ĉ as input, we will first find the top right
singular vector u of the matrix ĈJ . The coordinates of this vector will induce
a mapping from the columns (vertices) of Ĉ to the real numbers. We will find
a large “gap” such that substantial number of vertices are mapped to both
sides of the gap. This gives us a natural bipartition of the set of vertices of Ĉ.
We will prove that this classifies all vertices correctly, except possibly a small
fraction. This will be shown in Lemmas 2 to 6. We next need to “clean up”
this bi-partitioning, and this will be done using a correlation graph construction
along with a Chernoff bound. The algorithm and a proof will be furnished in
Lemma 7. This completes one stage of recursion in which we create a number
of superclusters all of which respect the original clustering. Subsequent stages
proceed similarly. In what follows, we will be using the terms “column” and
“vertex” interchangeably, noting that vertex x corresponds to column Ĉx.

4.1 Proof

For the standard linear algebraic techniques used in this section, we refer the
reader to [16]. Recall that each Ĉ is a n

2k log n × n matrix where the rows are
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chosen randomly. Denote the expectation of Ĉ by E
[
Ĉ
]

= C, and by u the

top right singular vector of ĈJ , i.e. the top eigenvector of (ĈJ)T ĈJ . In what
follows, we demonstrate that for each of random submatrices Ĉ, we can utilize
the second right singular vector u to create a partitioning of the columns of ĈJ
that respects the original clustering. The following fact is intuitive and will be
proven later in lemma 8, when we illustrate the full algorithm.

Fact 1. Ĉ has at least nr

2k log n rows for each cluster Tr.

Let σ = maxr{σr}, where the maximum is taken only over clusters present in
Ĉ (and therefore, potentially much smaller than σmax). We also denote C(r, s)
for the entries of C corresponding to vertices of Tr and Ts. The following result
is from Furedi-Komlos and more recently, Vu [22, 15] claiming that a matrix of
i.i.d. random variables is close to its expectation in the spectral norm.

Lemma 2. (Furedi, Komlos; Vu) If X̂ is a 0/1 random matrix with expec-
tation X = E

[
X̂
]
, and the maximum variance of the entries of X̂ is σ2 which

satisfies σ2 ≥ log6 n/n,1 then with probability 1− o(1),

‖X − X̂‖2 < 3σ
√

n

In particular, we have ‖C − Ĉ‖2 < 3σ
√

n.

The following lemmas will show that the top right singular vector u of ĈJ gives
us an approximately good bi-partition.

Lemma 3. The first singular value λ1 of the expected matrix CJ satisfies
λ1(CJ) ≥ 2c(σr + σs)k2√n for each pair of clusters r and s that belong to
C. Thus, in particular, λ1(CJ) ≥ 2cσk2√n.

Proof. Suppose Ĉ has the clusters Tr and Ts, r �= s. Assume nr ≤ ns. Consider
the vector z defined as :

zx =

⎧⎪⎨⎪⎩
1√
2nr

if x ∈ Tr

−
√

nr

ns

√
2

if x ∈ Ts

0 otherwise

Now,
∑

x z(x) = nr√
2nr
−

√
nr√
2ns

ns = 0. Also, ‖z‖2 = nr

2nr
+ nrns

2n2
s

= 1
2 + 1

2
nr

ns
≤ 1.

Clearly, ‖z‖ ≤ 1. For any row Cj from a cluster Tt, it can be shown that
Cj ·z =

√
nr

2 (C(r, t)−C(s, t)). We also know from fact 1 that there are at least
nt/(2k log n) such rows. Now,

1 In fact, in light of recent results in [12] this holds for σ2 ≥ C′ log n/n, with a different
constant in the concentration bound.
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‖CJz‖2 ≥
∑

j

(Cj · z)2 =
∑

t

∑
j∈Tt

(Cj · z)2 ≥
∑

t

nt

2k log n

nr

2
(C(r, t) − C(s, t))2

=
nr

4k log n

∑
t

nt(C(r, t)− C(s, t))2
nr

4k log n
‖Cr − Cs‖22

≥ 64
nr

4k log n
c2k5 (σr + σs)

2 log (n)/wmin ≥ 16c2nk4(σr + σs)2

using the separation condition and the fact that nr is at least wminn. And thus
λ1(CJ) is at least 4c(σr + σs)k2√n. Note that the 4th step uses the separation
condition (1). �

The above result, combined with the fact the the spectral norm of the random
perturbation being small immediately implies that the norm of the matrix ĈJ
is large too. Thus,

Lemma 4. The top singular value of ĈJ is at least cσk2√n.

Proof. Proof omitted.

Lemma 5. The vector u, the top right singular vector of ĈJ can be written as
u = v +w where both v, w are orthogonal to 1 and further, v is a linear combi-
nation of the indicator vectors g(1), g(2), . . . for clusters Tr that have vertices in
the columns of Ĉ. Also, w sums to zero on each Tr. Moreover,

‖w‖ ≤ 4
ck2 (2)

Proof. We may define the two vectors v and w as follows: v =
∑

r(g
(r) ·

u)g(r), w = u− v.
It is easy to check that w is orthogonal to v, and that

∑
x∈Tr

w(x) = 0 on
every cluster Tr. Thus both v and w are orthogonal to 1. As v is orthogonal to
w, ‖v‖2 + ‖w‖2 = ‖u‖2 = 1. Now,

λ1(ĈJ) = ‖ĈJu‖ ≤ ‖ĈJv‖+ ‖ĈJw‖ ≤ λ1(ĈJ)‖v‖+ ‖CJw‖+ ‖CJ − ĈJ‖‖w‖
≤ λ1(ĈJ)(1− ‖w‖2/2) + ‖C − Ĉ‖‖w‖

using the fact that (1− x)1/2 ≤ 1− x
2 for 0 ≤ x ≤ 1, and also noting that Jw =

w, and therefore CJw = Cw = 0. Thus, from the above, ‖w‖ ≤ 2‖C−Ĉ‖
λ1(ĈJ)

≤
4σ

√
n

cσk2
√

n
≤ 4

ck2 using Lemma 2 and Lemma 4. �

We now show that in bi-partitioning each Ĉ using the vector u, we only make
mistakes for a small fraction of the columns.

Lemma 6. Given the top right singular vector u of Ĉ, there is a way to bipar-
tition the columns of Ĉ based on u, such that all but nmin

ck columns respect the
underlying clustering of the probability matrix C.
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Proof. Consider the following algorithm. Consider the real values u(x) corre-
sponding to the columns Ĉx.

1. Find β such that at most n
ck2 of the u(x) lies in (β, β + 2

k
√

n
). Moreover,

define L = {x : u(x) < β + 1
k
√

n
}; R = {x : u(x) ≥ β + 1

k
√

n
}. It must be

that both |L| and |R| are at least nmin/2. Note that Ĉ = L∪R. If we cannot
find any such gap, don’t proceed (a cluster has been found that can’t be
partitioned further).

2. Take L ∪R as the bipartition.

We must show that, if the vertices contain at least two clusters, a gap of 2
k
√

n

exists with at least nmin/2 vertices on each side. For simplicity, for this proof we
assume that all clusters are of equal size (the general case will be quite similar).

Let v =
∑k

r=1 αrg
(r). Recall that v is orthogonal to 1, and thus

∑k
r=1 αr

√
k
n =

0. Now note that 1 = ‖u‖2 = ‖v‖2 + ‖w‖2. This and lemma 5 gives us

k∑
r=1

α2
r ≥ 1− 16

c2k
≥ 1

2
(3)

We claim that there is an interval of Θ
(

1
k
√

k

)
on the real line such that no αr

lies in this interval and at least one αr lies on each side of the interval. We will
call such a gap a “proper gap”. Note that a proper gap will partition the set of
vertices into two parts such that there are at least nmin/2 vertices on each side
of it.

The above claim can be proved using basic algebra. We will omit details here.
Thus, it can been seen that for some constant c, there will be a proper gap of

1
ck

√
n

in the vector v. We then argue that most of the coordinates of w are small
and do not spoil the gap. Since the norm of ‖w‖2 is bounded by 16/(c2k4), it is
straightforward to show that at most n

ck2 vertices x can have w(x) over 4
k
√

cn
.

This shows that for most vertices w(x) is small and will not “spoil” the proper
gap in v. Thus, with high probability, the above algorithm of finding a gap in u
always succeeds. Next we have to show that any such gap that is found from u
actually corresponds to a proper gap in v. Since there must be at least nmin/2
vertices on each side of the gap in u, and since the values u(x) and v(x) are
close (i.e. w(x) = u(x)− v(x) is smaller than 1/(2k

√
n)) except for n

ck vertices,
it follows that a proper gap found in u must correspond to a proper gap in v.
Thus the only vertices that can be misclassified using this bi-partition are the
vertices that are either in the gap, or have w(x) larger than 1

k
√

n
. Given this

claim, it can be seen a using a proper gap a bi-partition of the vertices can be
found with at most n

2ck2 ≈ Θ
(

nmin
ck

)
vertices on the wrong side of the gap. �

A natural idea for the “clean up” phase would be to use log n independent
samples of Ĉ (thus requiring the log n factor in the separation) and try to use
a Chernoff bound argument. This argument doesn’t work, unfortunately, the
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reason being that the singular vector can induce different bi-partitions for each
of the Ĉ’s. For instance, if there are 3 clusters in the original data, then in the
first step we could split any one of the three clusters from the other two. This
means a naive approach will need to account for all possible bi-partitionings and
hence require an extra 2k in the separation condition. The following lemma deals
with this problem:

Lemma 7. Suppose we are given set V that is the union of a number of clusters
T1 ∪ . . . ∪ Tt. Given p = ck log n independent bi-partitions of the set of columns
V , such that each bi-partition agrees with the underlying clusters for all but nmin

4ck
vertices, there exists an algorithm that, with high probability, will compute a
partitioning of the set V such that

– The partitioning respects the underlying clusters of the set V .
– The partitioning is non-trivial, that is, if the set V contains at least two

clusters, then the algorithm finds at least two partitions.

Proof. Consider the following algorithm. Denote ε = 1
4ck .

1. Construct a (correlation) graph H over the vertex set V .
2. Two vertices x and y are adjacent if they are on the same L or R for at least

(1− 2ε) fraction of the bi-partitions.
3. Let N1, . . . , Nl be the connected components of this graph. Return

N1, . . . , Nl.

We now need to prove that the following claims hold with high probability : 1.
Nj respects the cluster boundary, i.e. each cluster Tr that is present in V satisfies
Tr ⊆ Njr for some jr; and 2. If there are at least two clusters present in V , i.e.
t ≥ 2, then there are at least two components in H . For two vertices x, y ∈ H ,
let the support s(x, y) equal the fraction of tests such that x and y are on the
same side of the bi-partition. For the first claim, we define a vertex x to be a
“bad” vertex for the ith test if |w(x)| > 1

k
√

cn
. From lemma 6 the number of bad

vertices is clearly at most 1
cknmin. It is clear that a misclassified vertex x must

either lie in the gap (β, β + 2
k
√

n
) or it must be a bad one. So for any vertex x,

the probability that x is misclassified in the ith test is at most ε = 1/(4ck). If
there are p tests, then the expected times that a vertex x is misclassified is at
most εp. Supposing Y i

x is the indicator random variable for the vertex x being
misclassified in the ith test. Thus, Pr

[∑
i Y i

x > 2εp
]

< exp
(
− 16p

ck

)
< 1

n3 since
p = ck log n. Thus, each pair of vertices in a cluster, are on the same side of the
bipartition for at least (1− 2ε) fraction of the tests. Clearly, the components Nj

always obey the cluster partitions.
Next, we have to prove the second claim. For contradiction, assume there is

only one connected component. We know, that if x, y ∈ Tr for some r, the fraction
of tests on which they landed on same side of partition is s(x, y) ≥ (1 − 2ε).
Hence the subgraph induced by each Tr is complete. With at most k clusters in
V , this means that any two vertices x, y (not necessarily in the same cluster) are
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separated by a path of length at most k. Clearly s(x, y) ≥ (1− 2kε). Hence, the
total support of inter-cluster vertex pairs is∑

r �=s

∑
x∈Tr,y∈Ts

s(x, y) ≥ (1− 2kε)
∑
r �=s

nrns ≥
∑
r �=s

nrns − 2kε
∑
r �=s

nrns. (4)

Let us count this same quantity by another method. From Lemma 6, it is
clear that for each test at least one cluster was separated from the rest (apart
from small errors). Since by the above argument, all but ε vertices are good, we
have that, at least nmin (1− ε) vertices were separated from the rest. Hence the
total support is

∑
r �=s

∑
x∈Tr,y∈Ts

s(x, y) ≤
∑
r �=s

nrns − nmin (1− ε) (n− nmin(1− ε)) <
∑
r �=s

nrns − nminn/2

But this contradicts equation 4 if 2kε
∑

r �=s nrns < nminn/2 i.e. ε <
nminn/4

k
∑

r �=s nrns
< nminn/2

kn2 ≤ 1
2ck . With the choice of ε = 1/(4ck), we get a con-

tradiction. Hence the correlation graph satisfies the properties claimed. �

4.2 Final Algorithm

We now describe the complete algorithm. Basically, it is the bi-partitioning tech-
nique presented in the previous section repeated (at most) k times applied to
the matrix Â.

Algorithm 1. Cluster (Â, k)
Partition the set of rows into k random equal parts, each part to be used in the
corresponding step of recursion. Name the ith part to be B̂i.
Let (S1, . . . , Sl) =Bi-Partition (B̂1, k).
Recursively call Bi-Partition on each of Si, and on each of the results, using the
appropriate columns of a separate B̂j for each call. The recursion ends when the
current call returns only one Si. Let T̂1, . . . , T̂k be the final groups.

As the split in every level is “clean”, as we have shown above, the whole
analysis goes through for recursive steps without any problems. In order to
de-condition the steps of the recursion, we have to first create k independent
instances of the data by partitioning the rows of the matrix Â into a k equally
sized randomly chosen sets. This creates a collection of rectangular matrices
B̂1, . . . , B̂k. The module Bi-Partition(X̂, k) on being invoked with the matrix
X̂ and the cluster parameter k consists of two phases: an approximate partition-
ing by the singular vector, followed by a clean-up phase. The rows of matrix X̂
are further subdivided to create a number of rectangular matrices Ĉ(i), which
correspond to C that we used in our analysis of the bi-partitioning phase. One
thing we still need to prove that the fact 1 made for Ĉ in the beginning of section
4.1 is valid for C(i).
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Algorithm 2. Bi-Partition (X̂, k)
Partition the set of rows into c1 log n equal parts randomly. The ith set of rows forms
the matrix Ĉ(i).
For each Ĉ(i), find the right singular vector of Ĉ(i)J and call it ui.
Split:
Find a proper gap β, such that (β, β + 2

k
√

n
) has at most n

c2k
vertices and define

Li = {x : ui(x) < β +
1

k
√

n
}

Ri = {x : ui(x) ≥ β +
1

k
√

n
}

|Li| ≥ nmin/2; |Ri| ≥ nmin/2

Ĉ(i) = Li ∪Ri

If no such gap exists, return.
Cleanup:
Construct a (correlation) graph with the columns of X̂ as the vertices.
Connect two vertices x and y if they are on the same Li or Ri for at least (1− 1

2ck
) log n

times. Let N1, . . . , Nl be the connected components of this graph. Return N1, . . . , Nl.

Lemma 8. Consider each matrix C(i) = E
[
Ĉ(i)

]
. W.h.p. there are at least

nr

2c1k log n rows in C(i) corresponding to Tr.

Proof. In each Ĉ(i), the expected number of rows from each Tr is nj

k×c1 log n .
Using Chernoff bound, the number of rows contributed by each cluster Tr to the
matrix Ĉ(i) is at least nj

2c1k log n with probability 1 − exp[− nj

2c1k log n ] ≥ 1 − 1
n3 .

Thus, over the all random partitions, w.p. 1− 1
n2 , the statement is true.

5 Sparse Graphs

5.1 Our Model and Related Work

The input Â is a n-vertex undirected graph. There will be k clusters in the graph,
with nr = Ω(n) being the size of cluster Tr. Let x ∈ Tr. Then we assume that
the number of edges from x to vertices of Ts:

e(x, Ts) = drs (5)

For some constant drs. We assume that these constants satisfy nrdrs = nsdsr.
Let Â(rs) be the submatrix of Â containing rows corresponding to Tr and

columns corresponding to Ts. Then Â(rs) is a matrix randomly chosen from all
matrices satisfying equation 5 (to account for symmetry Â(rs) = (Â(rs))T ).

Let A = E
[
Â
]
. If vertex x ∈ Tr, let Ax = μr. Note that μr(x) = μs(y) where

y ∈ Ts; x ∈ Tr due to symmetry. Let d be a upper bound for vertex degree in
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the graph. We will assume, for all r, and some constant c0, drr ≥ 1
2d + c0

√
dk

Which will now imply something we need: ‖μr − μs‖22 ≥ c2
0k

2 d
n .

Among previous works on “sparse” graphs are results by Alon and Kahale [3]
(3 coloring) and Coja-Oghlan [8, 9] (bisection, clustering). Our results are not
comparable to theirs as those models are only sparse “on average”. Neverthe-
less, the gap required in [8], improving on [5], is np′ − np = Θ(

√
np′ log np′) in

a G(n, p′) model, which put in our terminology is Θ(
√

d log d), similar to our
separation (in fact we don’t need the log d factor). The separation in [3] is d. It
should be emphasized again that both settings are quite different from ours. A
d-regular model for bisection was studied by Bui et. al. [6]. They present an al-
gorithm that finds bisections of width (cardinality of the bisection) o(n1−1/(d/2))
from a graph that is randomly chosen from d-regular graphs having such a bi-
section. We depend on having different drr’s for different clusters for a notion of
partitioning, and in any case we seek to solve a more general problem.

5.2 Algorithm

For sets (of vertices) U and W , let e(U, W ) be the the number of edges between
U and W . Here we only present the “clean up” phase as everything else remains
essentially the same. Our result is that if the separation condition holds, this
algirthm will successfully cluster the vertices. We omit the proof of this fact
here.

Algorithm 3. SparseCleanup(P1, P2, d)
loop

find a vertex v in P ′
2 such that e(v, P ′

1) > e(v,P ′
2)(1 + 1

2
√

d
)

if no vertex can be found, end loop.
move v to P ′

1

end loop
loop

find a vertex v in P ′
1 such that e(v, P ′

2) > e(v,P ′
1)(1 + 1

2
√

d
)

if no vertex can be found, end loop.
move v to P ′

2

end loop
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Abstract. This paper considers two similar graph algorithms that work
by repeatedly increasing “flow” along “augmenting paths”: the Ford-
Fulkerson algorithm for the maximum flow problem and the Gale-Shapley
algorithm for the stable allocation problem (a many-to-many generaliza-
tion of the stable matching problem). Both algorithms clearly terminate
when given integral input data. For real-valued input data, it was previ-
ously known that the Ford-Fulkerson algorithm runs in polynomial time
if augmenting paths are chosen via breadth-first search, but that the
algorithm might fail to terminate if augmenting paths are chosen in an
arbitrary fashion. However, the performance of the Gale-Shapley algo-
rithm on real-valued data was unresolved. Our main result shows that,
in contrast to the Ford-Fulkerson algorithm, the Gale-Shapley algorithm
always terminates in finite time on real-valued data. Although the Gale-
Shapley algorithm may take exponential time in the worst case, it is
a popular algorithm in practice due to its simplicity and the fact that
it often runs very quickly (even in sublinear time) for many inputs en-
countered in practice. We also study the Ford-Fulkerson algorithm when
augmenting paths are chosen via depth-first search, a common imple-
mentation in practice. We prove that, like breadth-first search, depth-
first search also leads to finite termination (although not necessarily in
polynomial time).

1 Introduction

The Ford-Fulkerson (FF) algorithm for the s-t maximum flow problem [2] is
remarkably simple to describe and implement: as long as we can find an “aug-
menting path” along which additional flow can be sent from a source node s to
a sink node t, send as much flow along the path as possible.

A close relative of the FF algorithm is the Gale-Shapley (GS) algorithm [3]
adapted for the stable allocation problem, a many-to-many generalization of the
stable matching problem. In this problem, we are assigning, say, a set of jobs to
machines, where the jobs have varying processing times and the machines have
varying capacities. Each job submits a ranked preference list over machines on
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Fig. 1. An example instance on which the GS algorithm requires exponential time.
Regardless of the proposal order of the jobs, the algorithm will perform at least C
proposals before converging to the unique stable assignment.

which it may be processed, and each machine submits a ranked preference list
over jobs that it may process. The stable allocation problem involves finding a
feasible (fractional) assignment of jobs to machines in which no job/machine pair
has an incentive to deviate from the assigned solution in a sense to be described
later. The GS algorithm for the stable allocation problem is a generalization of
the original GS algorithm for the simpler stable matching problem (where we are
assigning n unit-sized jobs to n unit-sized machines): each job proceeds down
its preference list issuing “proposals” to machines, and each machine tentatively
accepts the best proposal received thus far. If a machine receives a proposal from
a job it prefers more than its current tentative assignment, it accepts the proposal
and rejects the job to which it is currently assigned, and this job which then
continues issuing proposals to machines further down its preference list. In the
stable allocation problem where jobs and machines have non-unit sizes, the GS
algorithm operates in an identical fashion, except proposals and rejections now
happen in non-unit quantities. When a job proposes to a machine, it proposes
all of its unassigned load, and a machine may chose to “fractionally” accept
only part of this load and reject the rest, depending on its preference among its
current assignments. A sequence of proposals and rejections can be interpreted
as an augmenting path.

When edge capacities are integral in the FF algorithm, or when processing
times and capacities are integral in the GS algorithm, each augmentation pushes
at least 1 unit of flow and so the algorithms clearly terminate. However, in the
FF algorithm, for certain graphs with real-valued edge capacities, if we choose
augmenting paths in a completely arbitrary fashion then we may fail not only to
terminate, but also to converge to an optimum flow [2, 5]. The main contribution
of this paper is to show that, in contrast to the FF algorithm, the GS algorithm
always terminates in finite time for real-valued inputs. This resolves an open
question of Baiou and Balinksi [1].

Unfortunately, convergence of the GS algorithm may take exponential time in
the worst case (Figure 1), whereas an alternative algorithm has been proposed
by Baiou and Balinksi [1] that runs in strongly polynomial time. However, the
GS algorithm is perhaps more common in practice due to its simplicity and the
fact that for many instances in practice, its running time can be significantly
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Fig. 2. Examples of graphs for which the FF algorithm takes exponential time to run,
using DFS to locate augmenting paths. Unlabeled edges have unit capacity. In (a), a
DFS that prioritizes edge e will lead to two augmenting paths that each utilize e (in
alternating directions). In (b), we recursively expand the graph by replacing e with a
copy of the entire graph, leading to four augmenting paths (each of which uses e in
alternating directions). The graph in (c) requires eight augmenting paths, and so on.
Although this example is not bipartite, one can construct bipartite graphs that behave
similarly.

faster than that of the Baiou-Balinski algorithm (in fact, the GS algorithm often
runs in sublinear time). It is therefore reassuring to know that termination of
the GS algorithm is guaranteed for real-valued inputs.

We also study the FF algorithm when augmenting paths are chosen accord-
ing to a depth-first search (DFS). While it is well-known that the selection of
augmenting paths using breadth-first search (BFS) always leads to finite termi-
nation as well as a strongly polynomial running time, the use of DFS is another
regrettably common approach for selecting augmenting paths. Even with integral
capacities, the use of DFS is to be discouraged since it can lead to exponential
worst-case running times (Figure 2); however, our techniques allow us to give
a simple proof that at the very least, the FF algorithm implemented with DFS
always terminates even when edge capacities are real-valued. Our results for the
FF algorithm are primarily of theoretical interest, since there is little reason to
use DFS rather than BFS in practice to locate augmenting paths.

The structure of this paper is as follows. The next section contains our proof
of finite termination for the FF algorithm using DFS to locate augmenting paths.
Following that, we give a more detailed introduction to both the stable allocation
problem and the GS algorithm, and build towards our main result that the GS
algorithm always terminates in finite time.

2 The FF Algorithm with Irrational Capacities

Consider the use of DFS to locate augmenting paths for the FF algorithm. In
this case, every time we visit a node i during an augmenting path search, we
recursively search the outgoing edges from i according to some deterministic



Finite Termination of “Augmenting Path” Algorithms 271

ordering, and we keep using the same outgoing edge as long as this enables us
to find valid augmenting paths to t.

Observation 1. An augmenting path will never include an edge directed into
the source node.

Theorem 1. The Ford-Fulkerson algorithm terminates in finite time, even with
real-valued edge capacities, if we use DFS to find augmenting paths.

Proof. Starting from the source node s at the beginning of the algorithm, let i be
the first neighboring node chosen by the algorithm to visit. All of our augmenting
paths will continue to utilize the edge (s, i) until either (i) the flow along (s, i)
reaches the capacity of (s, i), or (ii) no residual augmenting i � t path exists
that does not include s. We first argue that (i) or (ii) will occur within a finite
amount of time. This follows by induction on the number of edges in our problem
instance, since as long as the FF algorithm is choosing augmenting paths starting
with (s, i), it is essentially performing a recursive maximum flow computation
from node i to node t, in which augmenting paths through s are disallowed,
and which will be terminated prematurely if it manages to accumulate a total
amount of i � t flow equal to the capacity of (s, i). Moreover, this recursive max
flow computation is taking place on a graph that is smaller by one node, since
its augmenting paths never contain s. By induction on the number of nodes in
our instance, the recursive max flow computation therefore terminates in finite
time.

Suppose now that our recursive max flow computation terminates due to
condition (i). In this case, we will never use (s, i) again in any augmenting path,
since to do so we would need to augment along the reverse residual edge (i, s),
and an augmenting path will never utilize such an edge directed into the source.
We can therefore effectively ignore (s, i) and (i, s) henceforth, and this gives us
a smaller problem instance in which (by induction) the remainder of the FF
algorithm will terminate in finite time. On the other hand, suppose condition
(ii) occurs. In this case, we claim that i cannot appear on any future augmenting
path, so again we can reduce the size of our instance by one node and claim by
induction that the rest of the FF algorithm must terminate finitely. The fact
that i cannot be part of any future augmenting path is argued as follows: at
the point in time when condition (ii) occurs, let Si be the set of all nodes that
are reachable from i via a residual augmenting path that does not include s.
All edges leaving Si must be saturated except those directed into s (and those
edges will never be part of any augmenting path). Therefore, in order for any
node in Si to ever again have an augmenting path to t (that doesn’t use s), we
would first need to augment along a path that enters Si (to unsaturate one of
the outgoing edges); however, such a path could never leave Si.

3 The GS Algorithm with Irrational Data

In this section, we study the performance of the GS algorithm for the stable
allocation problem in the presence of real-valued data.
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3.1 The Stable Allocation Problem

The stable allocation problem is a many-to-many extension of the well-studied
classical stable matching problem. Let [n] := {1, 2, . . . , n} denote a set of n jobs
and [m] denote a set of m machines (we will use scheduling terminology and
speak of assigning “jobs” to “machines” since the traditional use of “men” and
“women” for stable matching problems becomes somewhat awkward once we
generalize to the many-to-many case). Job i requires pi units of processing time,
machine j has a capacity of cj units, and at most uij ≤ min(pi, cj) units of job i
can be assigned to machine j. A fractional assignment x ∈ Rm×n between jobs
and machines is feasible if it satisfies∑

j∈[m]
xij ≤ pi ∀i ∈ [n]∑

i∈[n]
xij ≤ cj ∀j ∈ [m]

0 ≤ xij ≤ uij ∀(i, j) ∈ [n]× [m].

(1)

Just as in a stable matching problem, each job i submits a ranked preference list
over all machines, and each machine j submits a ranked preference list over all
jobs. Our goal is to compute a feasible assignment that is stable with respect to
these preference lists, defined as follows.

Definition 1. Job i and machine j form a blocking pair in an assignment x
if xij < uij and both i and j are partially assigned to partners they prefer less
than each-other (in other words, both i and j would be “happier” if xij were
increased).

Definition 2. A job i is saturated if
∑

j xij ≥ pi. A machine j is saturated if∑
i xij ≥ cj.

Definition 3. In an assignment x, we say job i is popular if there exists a
machine j such that xij < uij and j prefers i to one of its current assignments.
Similarly, machine j is popular if there exists some job i such that xij < uij and
i prefers j to one of its current assignments.

Definition 4. An assignment x is stable if (i) it admits no blocking pairs, and
(ii) all popular jobs and machines are saturated.

A feasible stable assignment x is said to be job-optimal (machine-optimal) if
every job (machine) prefers x to any other feasible stable assignment x′.

As a final assumption, we assume that
∑

i pi ≤
∑

j cj . This comes without
loss of generality by introducing a “dummy” machine of large capacity that is
ranked last by every job.

3.2 A Stable Allocation Algorithm

Job-optimal and machine-optimal stable assignments always exist, and one can
compute either one of them using a strongly-polynomial algorithm of Baiou and
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Fig. 3. A simple stable allocation instance where the GS algorithm runs much faster
than the BB algorithm. Each job has unit processing time and each machine has unit
capacity (so this is really an instance of the stable matching problem). Solid lines
indicate the unique job-optimal stable assignment. Dashed lines indicate the unique
job-optimal stable assignment when machine 1 is removed (job n ends up unassigned).

Balinski [1]. The Baiou-Balinski (BB) algorithm (say, applied to computing a
job-optimal solution) operates by introducing one machine at a time. After each
machine is introduced the current assignment is appropriately modified so as to
remain job-optimal with respect to the current set of machines. Unfortunately,
this might involve a significant amount of “thrashing” in some instances, since
the introduction of each new machine can result in significant, or even wholesale
change to the current assignment. An example is shown in Figure 3.

An alternative to the BB algorithm is the Gale-Shapley (GS) algorithm, fa-
miliar to anyone who has studied stable matchings in the past. The GS algorithm
operates as follows. Each job i maintains a sorted list Li of machines, initially
equal to the preference list. Similarly, each machine j maintains an initially
empty list Rj of the jobs currently assigned to j. Again, the list is sorted in or-
der of the preference list. The algorithm iteratively performs the following steps
until all jobs are saturated.

1. Select an unsaturated job i.
2. Let j be the first machine on list Li.
3. Set xij = min(pi−

∑
j′ xij′ , uij) and add job i to list Rj of machine j making

sure to maintain the sorted order. If xij = uij , then remove j from Li.
4. While

∑
i′ xi′j > cj , reject p = min(xi′′j , cj −

∑
i′ xi′j) processing time from

the last job i′′ in Rj (i.e., decrement xi′′j by p). For any such rejected job
i′′, remove j from Li′′ .

The GS algorithm can be viewed as an “augmenting path” algorithm just
like the FF algorithm. In fact, when we apply the FF algorithm to a bipartite
assignment problem, each augmenting path alternates back and forth between
the left-hand and right-hand side of our graph, and we can interpret the meaning
of such a path as a sequence of “proposals” and “rejections”.

In many instances in practice, one expects the GS algorithm to run no slower
and potentially much faster than the BB algorithm. For example, if our capacity
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Fig. 4. The sequence of labelings through which an edge progresses

constraints are reasonably loose such that most jobs receive their first choices
(a very common occurrence in practice), the GS algorithm terminates almost
immediately, in time sublinear in the input size. The BB algorithm, on the other
hand, might take substantially longer due to the need to continually readjust
its solution as new machines are introduced. Figure 3 is a good example —
the GS algorithm makes one proposal for each job, running in only O(n) total
time, and the BB algorithm reassigns each job at least n − 1 times when the
machines are added in the order n, n−1, . . . , 1, for a total running time of Ω(n2).
While in the GS algorithm each job moves down its preference list proposing first
to its must-preferred partner, the BB algorithm moves the opposite direction,
potentially assigning a job to many machines as it moves up the list towards the
most preferred stable partner. If capacity constraints are fairly loose and most
jobs end up with highly-preferred partners, the GS algorithm tends to spend
much less work.

3.3 Termination of the Gale-Shapley Algorithm

A technique for proving termination of graph-based algorithms is as follows.
First, define a finite set of labels for edges and an ordering on this set of labels.
Next, prove that during the course of the algorithm, the labeling of an edge can
only advance according to this ordering and that each advancement is guaranteed
to occur after a finite amount of time. In the rest of this section, we use this
technique to prove termination of the GS algorithm.

Edge Labelings. After every iteration of the GS algorithm, we label the edges
of our bipartite assignment graph as follows:

– The set L contains all edges (i, j) at their lower capacities (xij = 0) along
which a proposal has never been issued. If (i, j) ∈ L, then job i has yet to
reach all the way down to j on its preference list.

– The set LF contains all left fractional edges. An edge (i, j) is left fractional
if 0 < xij < uij and if j has never issued a rejection to i. Among its two end-
points i and j, the left endpoint i was therefore the “responsible party” that
prevented xij from growing any larger (i.e., j would have happily accepted
more load, but i was reluctant so far to offer it).

– The set U contains all edges (i, j) at their upper capacities (xij = uij).
– The set RF contains all right fractional edges. An edge (i, j) is right frac-

tional if 0 < xij < uij and if j has rejected i in the past. Among its two
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endpoints i and j, the right endpoint j is the “responsible party” in this
case for having prevented xij from growing any larger (i might want to send
more load to j, but j refuses).

– The set L′ contains all edges (i, j) at their lower capacities (xij = 0) along
which a proposal has been issued in the past. If (i, j) ∈ L′, then job i has
already exhausted its proposals to j and moved on down its preference list.
Any assignment from i to j has since been completely rejected, and xij will
never become positive again.

We call F = LF ∪RF the set of all fractional edges, since their assignments lie
strictly between their lower and upper bounds.

As we see in Figure 4, during the course of the GS algorithm an edge will
progress monotonically through the labelings in the order L, LF , U , RF , and
L′. It is possible that an edge skips over some of these labels — for example if an
edge (i, j) ∈ U is subject to a massive rejection by j it may become labeled L′.
The monotonicity of this progression is significant. If we look at an edge (i, j)
as the GS algorithm executes, the value of xij may increase as (i, j) moves from
L to LF to U and then it may decrease if (i, j) further proceeds to RF and L′.
By way of contrast, the value of xij can fluctuate up and down many times in
the case of the FF algorithm for a “flow based” assignment problem.

Any time an edge changes its label, we say the edge is promoted. If we can
prove that an iteration of the GS algorithm promotes an edge, then this indicates
significant progress towards termination, since each edge can be promoted at
most 4 times.

Observation 2. If (i, j) ∈ L and i proposes to j, then (i, j) will be promoted.

Observation 3. If (i, j) ∈ L ∪ LF ∪ U and j issues a rejection to i, then (i, j)
will be promoted.

Properties of Edge Labelings. The structure of the GS algorithm becomes
somewhat clearer when we look at properties of edge labelings that hold after
each of its iterations.

Observation 4. For every job i, δLF (i) ≤ 1. That is, i can have at most one
outgoing left fractional edge (we use δS(i) to denote the degree of node i restricted
to the subset S of edges).

Recall in the GS algorithm, each job i maintains a pointer to the “current”
machine j to which it is issuing proposals. Once j starts to reject i or xij reaches
uij , this pointer advances down i’s preference list. Therefore, among all the
machines to which i has ever proposed, there is only at most one that may still
be accepting proposals from i, and this corresponds to the LF edge emanating
from i. We will have (i, j) ∈ U ∪RF ∪L′ for all other machines j to which i has
proposed in the past.

Observation 5. For every machine j, δRF (j) ≤ 1. That is, j can have at most
one incoming right fractional edge.
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To see this, suppose j somehow had two incoming edges (i, j) ∈ RF and (i′, j) ∈
RF where j prefers i to i′. This contradicts the behavior of the GS algorithm,
since j would never have rejected i when it had the opportunity to reject i′

instead.

Lemma 1. Let G′ be any connected subgraph of our assignment graph consisting
only of fractional edges (LF and RF edges). Among the fractional edges in G′

there can be at most one cycle.

Proof. Let A denote the nodes of G′ on the left hand side (the jobs) and B the
nodes of G′ on the right hand side (the machines). If n = |A| + |B| denotes
the total number of nodes in G′ and m is the number of fractional edges, then
m =

∑
i∈A δLF (i) +

∑
j∈B δRF (j) ≤ |A| + |B| = n. So either m = n − 1, in

which case the fractional edges in G′ form a tree, or m = n, in which case the
fractional edges in G′ form a tree plus one additional edge that creates a unique
cycle.

Observation 6. Once a machine becomes saturated, it stays saturated forever.
(The same is not true for jobs)

Observation 7. If (i, j) ∈ RF ∪ L′, then machine j is saturated.

Observation 8. Let C be a cycle of fractional edges after some non-terminal
iteration of the GS algorithm. Then (i) the edges along C alternate between
being labeled LF and RF , and (ii) C cannot contain every node in our bipartite
assignment graph.

The alternating labels are a direct consequence of observations 4 and 5. As a
result of each machine j in C having an incoming RF edge, we know that each
machine j in C must be saturated. Therefore, it cannot be the case that C
contains every machine, due to our assumption that

∑
i pi ≤

∑
j cj (if every

machine were saturated, then
∑

i pi units of total load would be assigned and
the algorithm would have terminated)

Another observation we could make, but that is not crucial to our ensuing
discussion, is that if the GS algorithm terminates, then it does so with no frac-
tional cycles, since we could perform a rotation (see [4]) around such a cycle
to make the assignment more job-optimal, and we know that the GS algorithm
produces a job-optimal assignment. So we could strengthen the preceding ob-
servation to say that even in its terminal iteration, the GS algorithm cannot
produce a fractional cycle containing all nodes.

Transient Configurations. We are now ready to prove the following:

Theorem 2. The GS algorithm terminates after a finite number of iterations,
even with irrational problem data.

Our proof of the theorem rests on analyzing certain types of labeled subgraphs,
which we call transient configurations, that are known to last only a finite num-
ber of iterations before they disappear and never return. As long as the GS
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Fig. 5. Transient configurations. Solid edges represent fractional edges (LF or RF )
and dotted edges represent edges labeled either L, U , or L′.

algorithm has not terminated, we argue that at least one of these configurations
must be present, and since there are only finitely many such configurations, this
implies that the GS algorithm must eventually terminate after a finite number
of iterations.

Definition 5. Consider the labeled edges in our bipartite assignment graph after
some iteration of the GS algorithm. A subset of edges and their associated labels
is called a transient configuration if after a finite number of iterations, either
the GS algorithm must terminate or one of these edges must be promoted.

For example, consider configuration type (i) listed in Figure 5, where simply
every edge in our graph belongs to L∪U ∪L′ (i.e., there are no fractional edges).
This is a transient configuration because, if the GS algorithm has not terminated,
its next proposal will utilize and promote one of the edges in L.

The remaining transient configuration types we consider are, as shown in
Figure 5:

– Type (ii): The set of all edges emanating from a job i, where precisely one
of these edges is in LF and the remaining are in L ∪ U ∪ L′.

– Type (iii): The set of all incoming edges to a machine j into which precisely
one of these edges is in RF and the remaining are in L ∪ U ∪ L′.

– Type (iv): The set of all edges adjacent to the nodes in a fractional cycle,
where edges on the cycle are in LF ∪RF and all other edges are in L∪U∪L′.

Lemma 2. After each iteration of the GS algorithm, we will find at least one
configuration of type (i), (ii), (iii), or (iv).

Proof. If there are no fractional edges then we have a configuration of type (i),
so let us assume that either LF or RF edges exist. Consider only the subgraph of
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our assignment containing edges in LF ∪RF . Due to our previous observations,
we know that each connected component in this subgraph is either a tree or a tree
plus one additional edge (forming a unique cycle). If we have a tree component,
then at one of its leaf edges we must find a configuration of either type (ii) or
(iii). If we have a cycle component, then either it is a “pure” cycle (which is a
configuration of type (iv)), or it consists of a cycle with trees branching off it,
and again in this case we must find configurations of type (ii) or (iii) at the leaf
edges of these trees.

Lemma 3. The type (iii) configuration is transient.

Proof. Consider a machine j whose incoming edges currently form a type (iii)
configuration. If subsequent iterations of the GS algorithm are to avoid promot-
ing edges incoming to j, then there can be no proposals to j. The next proposal j
receives must come from one of its incoming L edges (the others are in RF∪U∪L′

and hence are “spent” and will issue no further proposals). However, as we have
observed, any proposal along an edge in L will promote the edge. Therefore,
the set of edges incoming to j will retain their labeling for exactly as long as j
receives no further proposals.

We argue using induction on the number of jobs and machines in our instance
that the time until j must receive a proposal is finite. Let us form a strictly
smaller problem instance by removing j and all its incident edges, and by sub-
tracting xij from pi for all machines i. Any sequence of iterations in our original
instance with no proposals to j corresponds to an analogous sequence of pro-
posals that is a valid GS sequence for the reduced problem instance. Since the
reduced instance is strictly smaller, we know by applying Theorem 2 inductively
that the GS algorithm terminates finitely on it. Hence, in the original problem
instance we must encounter a proposal to j after a finite number of iterations,
and this will promote one of the edges incoming to j.

Lemma 4. The type (ii) configuration is transient.

Proof. This proof is similar and essentially symmetric to the preceding proof.
Consider a job i whose outgoing edges currently form a type (ii) configuration.
We consider two cases, the first of which involves i being saturated. Here, i will
not issue any proposals until some of its load is rejected, but any such rejection
will result in the promotion of one of i’s outgoing edges. We therefore want to
know how long the GS algorithm can continue to operate before some machine
rejects i, and as before we argue by induction that this amount of time must be
finite. This is done by removing i from the instance and subtracting xij from cj

for each machine j, and (just as before) noting a correspondence between any
sequence of proposals for the GS algorithm in the original instance where no
machine rejects i, and a valid sequence of proposals for the GS algorithm on the
reduced instance.

Next, we consider the case where i is not saturated. Here, we repeat the
argument above twice: once to argue that a finite amount of time must elapse
before i must propose along the edge (i, j) ∈ LF (at which point it becomes



Finite Termination of “Augmenting Path” Algorithms 279

saturated), and again to argue as above that a finite amount of time must elapse
before some machine rejects i.

Lemma 5. The type (iv) configuration is transient.

Proof. Consider a cycle C of fractional edges (alternating between LF and RF )
that forms a configuration of type (iv), and recall that C does not include every
node in the entire graph. When the jobs in C issue proposals, they will use their
outgoing LF edges and hence propose “inside” the cycle rather than to machines
outside the cycle. When such proposals occur, machines inside the cycle will issue
rejections along their incoming RF edges (also within the cycle). This behavior
will finally stop when the cycle “breaks” due to one its edges being promoted (for
example, if one of its RF edges joins L′). We can therefore view the remaining
iterations of the GS algorithm as consisting of 3 types of proposals: (a) proposals
from jobs in C to machines in C, (b) proposals from jobs not in C to machines
in C, and (c) proposals from jobs not in C to machines not in C. A proposal
of type (b) will promote an edge, so we need to determine how long the GS
algorithm can continue to run while only issuing proposals of types (a) and (c).
For this purpose, we can consider the cycle and the rest of the instance as two
independent entities, and since these are both strictly smaller than the main
problem instance, we know by induction that the GS algorithm can spend only
a finite amount of time in both cases.

The proof of Theorem 2 is now complete.
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Abstract. We give a novel general approach for solving NP-hard opti-
mization problems that combines dynamic programming and fast matrix
multiplication. The technique is based on reducing much of the compu-
tation involved to matrix multiplication. We show that our approach
works faster than the usual dynamic programming solution for any ver-
tex subset problem on graphs of bounded branchwidth. In particular, we
obtain the fastest algorithms for Planar Independent Set of runtime
O(22.52

√
n), for Planar Dominating Set of runtime exact O(23.99

√
n)

and parameterized O(211.98
√

k) · nO(1), and for Planar Hamiltonian
Cycle of runtime O(25.58

√
n). The exponent of the running time is de-

pending heavily on the running time of the fastest matrix multiplication
algorithm that is currently o(n2.376).

1 Introduction

Dynamic programming is a useful tool for the fastest algorithms solving NP-hard
problems. We give a new technique for combining dynamic programming and
matrix multiplication and apply this approach to problems like Dominating
Set and Independent Set for improving the best algorithms on graphs of
bounded treewidth.

Fast matrix multiplication gives the currently fastest algorithms for some of
the most fundamental graph problems. The main algorithmic tool for solving the
All Pair Shortest Paths problem for both directed and undirected graphs
with small and large integer weights is to iteratively apply the distance product
on the adjacency matrix of a graph [18],[20],[3],[25]. Next to the distance product,
another variation of matrix multiplication—the boolean matrix multiplication—
is solved via fast matrix multiplication. Boolean matrix multiplication is used to
obtain the fastest algorithm for Recognizing Triangle-Free Graphs [16].
Recently,Vassilevska and Williams [23] applied the distance product to present
the first truly sub-cubic algorithm for finding a Maximum Node-Weighted
Triangle in directed and undirected graphs.

The fastest known matrix multiplication of two n×n-matrices by Coppersmith
and Winograd [6] in time O(nω) for ω < 2.376 is also used for the fastest boolean
matrix multiplication in same time. Rectangular matrix multiplication of an
(n × p)- and (p × n)-matrix with p < n gives the runtime O(n1.85 · p0.54). If
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p > n , we get time O(p · nω−1). The time complexity of the current algorithm
for distance product is O(n3/ log n), but for integer entries less than m, where
m is some small number, there is an Õ(mnω) algorithm [25]. For the arbitrarily
weighted distance product no truly sub-cubic algorithm is known. Though, [23]
show that the most significant bit of the distance product can be computed in
sub-cubic time, and they conjecture that their method may be extended in order
to compute the distance product.

Numerous problems are solved by matrix multiplication. However, for NP-
hard problems the common approaches do not involve fast matrix multiplication.
Williams [24] established new connections between fast matrix multiplication
and hard problems. He reduces the instances of the well-known problems Max-
2-SAT and Max-Cut to exponential size graphs dependent on some parameter
k, arguing that the optimum weight k-clique corresponds to an optimum solution
to the original problem instance.

The idea of applying fast matrix multiplication is basically to use the infor-
mation stored in the adjacency matrix of a graph in order to fast detect special
subgraphs such as shortest paths, small cliques—as in the previous example—
or fixed sized induced subgraphs. Uncommonly—as in [24]—we do not use the
technique on the graph directly. Instead, it facilitates a fast search in the solu-
tion space. In the literature, there has been some approaches speeding up linear
programming using fast matrix multiplication, e.g. see [22]. For our problems,
we consider dynamic programming, which is a method for reducing the runtime
of algorithms exhibiting the properties of overlapping subproblems and optimal
substructure. A standard approach for getting fast exact algorithms for NP-hard
problems is to apply dynamic programming across subsets of the solution space.
We present a novel approach to fast computing these subsets by applying the
distance product on the structure of dynamic programming.

Many NP-complete graph problems turn out to be solvable in polynomial time
or even linear time when restricted to the class of graphs of bounded treewidth.
The tree decomposition detects how “tree-like” a graph is and the graph param-
eter treewidth is a measure of this “tree-likeness”. The corresponding algorithms
typically rely on a dynamic programming strategy. Telle and Proskurowski [21]
gave an algorithm based on tree decompositions having width 
 that computes
the Dominating Set of a graph in time O(9
) · nO(1). Alber et al. [1] not only
improved this bound to O(4
)·nO(1) by using several tricks, but also were the first
to give a subexponential fixed parameter algorithm for Planar Dominating
Set.

Recently there have been several papers [11, 4, 8, 12, 13], showing that for pla-
nar graphs or graphs of bounded genus the base of the exponent in the run-
ning time of these algorithms could be improved by instead doing dynamic
programming along a branch decomposition of optimal branchwidth—both no-
tions are closely related to tree decomposition and treewidth. Fomin and Thi-
likos [11] significantly improved the result of [1] for Planar Dominating Set
to O(215.13

√
kk + n3) where k is the size of the solution. The same authors [13]

achieve small constants in the running time of a branch decomposition based
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exact algorithms for Planar Independent Set and Planar Dominating
Set, namely O(23.182

√
n) and O(25.043

√
n), respectively. Dorn et al. [8] use the

planar structure of sphere cut decompositions to obtain fast algorithms for prob-
lems like Planar Hamiltonian Cycle in time O(26.903

√
n). Dynamic program-

ming along either a branch decomposition or a tree decomposition of a graph
both share the property of traversing a tree bottom-up and combining tables
of solutions to problems on certain subgraphs that overlap in a bounded-size
separator of the original graph.

Our contribution. We introduce a new dynamic programming approach on
branch decompositions. Instead of using tables, it stores the solutions in matrices
that are computed via distance product. Since distance product is not known to
have a fast matrix multiplication in general, we only consider unweighted and
small integer weighted problems with weights of size O(m) = nO(1).

Our approach is fully general. It runs faster than the usual dynamic program-
ming for any vertex subset problem on graphs of bounded branchwidth. It also
can be used for tree decompositions with a structure proposed in [10]. To simplify
matters, we first introduce our technique on the Independent Set problem on
graphs of branchwidth bw and show the improvement from O(21.5 bw) · nO(1) to
O(2

ω
2 bw) ·nO(1) where ω is the exponent of fast matrix multiplication (currently

ω < 2.376).
Next, we give the general technique and show how to apply it to several opti-

mization problems such as Dominating Set, that we improve from O(31.5 bw) ·
nO(1) to O(4bw) · nO(1)—please note that here ω influences the runtime indi-
rectly. Finally, we show the significant improvement of the low constants of the
runtime for the approach on planar graph problems. On Planar Dominating
Set we reduce the time to even O(20.793ω bw) ·nO(1) and hence an improvement
of the fixed parameter algorithm in [11] to O(211.98

√
k) ·nO(1) where k is the size

of the dominating set. For exact subexponential algorithms as on Planar In-
dependent Set and Planar Dominating Set, this means an improvement
to O(21.06ω

√
n) and O(21.679ω

√
n), respectively. We also achieve an improvement

for several variants in [2] and [10].
Since the treewidth tw and branchwidth bw of a graph satisfy the relation

bw ≤ tw +1 ≤ 3
2 bw, it is natural to formulate the following question as done

in [10]: Given a tree decomposition and a branch decomposition, for which graphs
is it better to use a tree decomposition based approach and for which is branch
decomposition the appropriate tool? Table 1 compares our results to [10]. It
illustrates that dynamic programming is almost always faster on branch de-
compositions when using fast matrix multiplication rather than dynamic pro-
gramming on tree decompositions. For Planar Dominating Set it turns out
that our approach is always the better one in comparison to [1], i.e., we achieve
O(3.688bw) < O(4tw). For Planar Hamiltonian Cycle, we preprocess the
matrices in order to apply our method using boolean matrix multiplication in
time O(22.347ω

√
n). In Table 1, we also add the runtimes for solving related prob-

lems and the runtime improvement compared to [8], [9], and [11], and [13].
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Table 1. Worst-case runtime in the upper part expressed also by treewidth tw and
branchwidth bw of the input graph. The problems marked with ‘∗’ are the only one
where treewidth may be the better choice for some cutpoint tw ≤ α ·bw with α = 1.19
and 1.05 (compare with [10]). The lower part gives a summary of the most important
improvements on exact and parameterized algorithms with parameter k. Note that we
use the fast matrix multiplication constant ω < 2.376.

Previous results New results
Dominating Set O(n2min{2 tw,2.38 bw}) O(n22 bw)
Independent Set∗ O(n2tw) O(n2min{tw,1.19 bw})
Independent Dominating Set O(n2min{2 tw,2.38 bw}) O(n22 bw)
Perfect Code∗ O(n2min{2 tw,2.58 bw}) O(n2min{2 tw,2.09 bw})
Perfect Dominating Set∗ O(n2min{2 tw,2.58 bw}) O(n2min{2 tw,2.09 bw})
Maximum 2-Packing∗ O(n2min{2 tw,2.58 bw}) O(n2min{2 tw,2.09 bw})
Total Dominating Set O(n2min{2.58 tw,3 bw}) O(n22.58 bw)
Perfect Total Dom Set O(n2min{2.58 tw,3.16 bw}) O(n22.58 bw)

Planar Dominating Set O(25.04
√

n) O(23.99
√

n)
Planar Independent Set O(23.18

√
n) O(22.52

√
n)

Planar Hamiltonian Cycle O(26.9
√

n) O(25.58
√

n)
Planar Graph TSP O(29.86

√
n) O(28.15

√
n)

Planar connected Dom Set O(29.82
√

n) O(28.11
√

n)
Planar Steiner Tree O(28.49

√
n) O(27.16

√
n)

Planar Feedback Vertex Set O(29.26
√

n) O(27.56
√

n)

Parameterized Planar Dom Set O(215.13
√

kk + n3) O(211.98
√

kk + n3)
Param Planar Longest Cycle O(213.6

√
kk + n3) O(210.5

√
kk + n3)

2 Definitions

Branch decompositions. A branch decomposition 〈T, μ〉 of a graph G is a
ternary tree T with a bijection μ from E(G) to the leaf-set L(T ). For every e ∈
E(T ) define middle set mid(e) ⊆ V (G) as follows: For every two leaves 
1, 
2 with
vertex v adjacent to both μ−1(
1) and μ−1(
2), we have that v ∈ mid(e) for all
edges e along the path from 
1 to 
2. The width bw of 〈T, μ〉 is the maximum order
of the middle sets over all edges of T , i.e., bw(〈T, μ〉) := max{|mid(e)| : e ∈ T }.
An optimal branch decomposition of G is defined by the tree T and the bijection
μ which together provide the minimum width, the branchwidth bw(G).

Dynamic programming. For a graph G with |V (G)| = n of bounded branch-
width bw the weighted Independent Set problem with positive node weights
wv for all v ∈ V (G) can be solved in time O(f(bw)) ·nO(1) where f(·) is an expo-
nential time function only dependent on bw. The algorithm is based on dynamic
programming on a rooted branch decomposition 〈T, μ〉 of G. The independent
set is computed by processing T in post-order from the leaves to the root. For
each middle set mid(e) an optimal independent set intersects with some subset
U of mid(e). Since mid(e) may have size up to bw, this may give 2bw possible
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subsets to consider. The separation property of mid(e) ensures that the problems
in the different subtrees can be solved independently.

We root T by arbitrarily choosing an edge e, and subdivide it by inserting a
new node s. Let e′, e′′ be the new edges and set mid(e′) = mid(e′′) = mid(e).
Create a new node root r, connect it to s and set mid({r, s}) = ∅. Each internal
node v of T now has one adjacent edge on the path from v to r, called the parent
edge, and two adjacent edges towards the leaves, called the children edges. To
simplify matters, we call them the left child and the right child.

Let Te be a subtree of T rooted at edge e. Ge is the subgraph of G induced
by all leaves of Te. For a subset U of V (G) let w(U) denote the total weight of
nodes in U . That is, w(U) =

∑
u∈U wu. Define a set of subproblems for each

subtree Te. Each set corresponds to a subset U ⊆ mid(e) that may represent the
intersection of an optimal solution with V (Ge). Thus, for each independent set
U ⊆ mid(e), we denote by Ve(U) the maximum weight of an independent set S
in Ge such that S ∩ mid(e) = U , that is w(S) = Ve(U). We set Ve(U) = −∞
if U is not an independent set since U cannot be part of an optimal solution.
There are 2|mid(e)| possible subproblems associated with each edge e of T . Since
T has O(|E(G)|) edges, there are in total at most 2bw · |E(G)| subproblems. The
maximum weight independent set is determined by taking the maximum over
all subproblems associated with the root r.

For each edge e the information needed to compute Ve(U) is already computed
in the values for the subtrees. Since T is ternary, we have that a parent edge e
has two children edges f and g. For f and g, we simply need to determine the
value of the maximum-weight independent sets Sf of Gf and Sg of Gg, subject
to the constraints that Sf ∩mid(e) = U ∩mid(f), Sg ∩mid(e) = U ∩mid(g) and
Sf ∩mid(g) = Sg ∩mid(f).

With independent sets Uf ⊆ mid(f) and Ug ⊆ mid(g) that are not necessarily
optimal, the value Ve(U) is given as follows:

Ve(U) = w(U) + max{Vf (Uf )− w(Uf ∩ U) + Vg(Ug)− w(Ug ∩ U)
− w(Uf ∩ Ug \ U)} s.t. Uf ∩mid(e) = U ∩mid(f),

Ug ∩mid(e) = U ∩mid(g), and Uf ∩mid(g) = Ug ∩mid(f). (1)

The brute force approach computes for all 2|mid(e)| sets U associated with e
the value Ve(U) in time O(2|mid(f)| · 2|mid(g)|). Hence, the total time spent on
edge e is O(8bw).

Matrix multiplication. Two (n× n)-matrices can be multiplied using O(nω)
algebraic operations, where the naive matrix multiplication shows ω ≤ 3. The
best upper bound on ω is currently ω < 2.376 [6].

For rectangular matrix multiplication between two (n×p)- and (p×n)-matrices
B = (bij) and C = (cij) we differentiate between p ≤ n and p > n. For the
case p ≤ n Coppersmith [5] gives an O(n1.85 · p0.54) time algorithm (under
the assumption that ω = 2.376). If p > n , we get O( p

n · n2.376 + p
n · n2) by

matrix splitting: Split each matrix into p
n many n× n matrices B1, . . . , B p

n
and

C1, . . . , C p
n

and multiply each A
 = B
 · C
 (for all 1 ≤ 
 ≤ p
n ). Sum up each

entry a

ij overall matrices A
 to obtain the solution.
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The distance product of two (n× n)-matrices B and C, denoted by B � C, is
an (n× n)-matrix A such that

aij = min
1≤k≤n

{bik + ckj}, 1 ≤ i, j ≤ n. (2)

The distance product of two (n× n)-matrices can be computed naively in time
O(n3). Zwick [25] describes a way of using fast matrix multiplication, and fast
integer multiplication, to compute distance products of matrices whose elements
are taken from the set {−m, . . . , 0, . . . , m} The running time of the algorithm is
Õ(m ·nω). For distance product of two (n× p)- and (p×n)-matrices with p > n

we get Õ(p · (m · nω−1)) again by matrix splitting: Here we take the minimum
of the entries a


ij overall matrices A
 with 1 ≤ 
 ≤ p
n .

3 Dynamic Programming and Distance Product

In this section, we will continue our Independent Set example and oppose
two techniques on how to obtain faster dynamic programming approaches. The
previous algorithms use tables in order to decrease the number of times a subset
is queried. As a second approach, we introduce a technique using matrices that
allows to highly make use of the structure of branch decompositions and of the
fast matrix multiplication.

Tables. We will see now a more sophisticated approach that exploits properties
of the middle sets and uses tables as data structure. With a table, one has an
object that allows to store all sets U ⊆ mid(e) in an ordering such that the time
used per edge is reduced to O(21.5 bw).

By the definition of middle sets, a vertex has to be in at least two of three
middle sets of adjacent edges e, f, g. You may simply recall that a vertex has to
be in all middle sets along the path between two leaves of T .

For the sake of a refined analysis, we partition the middle sets of parent edge e
and left child f and right child g into four sets L, R, F, I as follows:
• Intersection I := mid(e) ∩mid(f) ∩mid(g),
• Forget F := mid(f) ∩mid(g) \ I,
• Symmetric difference L := mid(e) ∩mid(f) \ I and R := mid(e) ∩mid(g) \ I.

We thus can restate the constraints of (1) for the computation of value Ve(U).
Weight w(U) is already contained in w(Uf ∪Ug) since mid(e) ⊆ mid(f)∪mid(g).
Hence, we can change the objective function:

Ve(U) = max{Vf(Uf ) + Vg(Ug)− w(Uf ∩ Ug)}
s.t. Uf ∩ (I ∪ L) = U ∩ (I ∪ L), Ug ∩ (I ∪R) = U ∩ (I ∪R),
and Uf ∩ (I ∪ F ) = Ug ∩ (I ∪ F ). (3)

Turning to tables, each edge e is assigned a table Tablee that is labeled with
the sequence of vertices mid(e). More precisely, the table is labeled with the
concatenation of three sequences out of {L, R, I, F}. Define the concatenation
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’‖’ of two sequences λ1 and λ2 as λ1‖λ2. Then, concerning parent edge e and left
child f and right child g we obtain the labels: ’I‖L‖R’ for Tablee, ’I‖L‖F ’ for
Tablef , and ’I‖R‖F ’ for Tableg. Tablef contains all sets Uf with value Vf(Uf )
and analogously, Tableg contains all sets Ug with value Vg(Ug).

For computing Ve(U) of each of the 2|I|+|L|+|R| entries of Tablee, we thus
only have to consider 2|F | sets Uf and Ug subject to the constraints in (3). Since
mid(e)∪mid(f)∪mid(g) = I∪L∪R∪F , we have that |I|+|L|+|R|+|F | ≤ 1.5·bw.
Thus we spend in total time O(21.5 bw) on each edge of T .

A technical note: for achieving an efficient running time, one uses an adequate
encoding of the table entries. First define a coloring c : V (G) → {0, 1}: For an
edge e, each set U ⊆ mid(e), if v ∈ mid(e) \U then c(v) = 0 else c(v) = 1. Then
sort Tablef and Tableg to get entries in an increasing order in order to achieve
a fast inquiry.

Matrices. In the remaining section we show how to use matrices instead of
tables as data structure for dynamic programming. Then we apply the distance
product of two matrices to compute the values V(U). With U ∩ I = Uf ∩ I =
Ug ∩ I, one may observe that every independent set Se of Ge is determined
by the independent sets Sf and Sg such that all three sets intersect in some
subset U I ⊆ I. The idea is to not compute Ve(U) for every subset U separately
but to simultaneously calculate for each subset U I ⊆ I the values Ve(U) for all
U ⊆ mid(e) subject to the constraint that U ∩ I = U I . For each of these sets
U the values Ve(U) are stored in a matrix A. A row is labeled with a subset
UL ⊆ L and a column with a subset UR ⊆ R. The entry determined by row UL

and column UR is filled with Ve(U) for U subject to the constraints U ∩L = UL,
U ∩R = UR, and U ∩ I = U I .

We will show how matrix A is computed by the distance product of the two
matrices B and C assigned to the children edges f and g: For the left child f , a
row of matrix B is labeled with UL ⊆ L and a column with UF ⊆ F that appoint
the entry Vf (Uf ) for Uf subject to the constraints Uf ∩ L = UL, Uf ∩ F = UF

and Uf ∩ I = U I . Analogously we fill the matrix C for the right child with
values for all independent sets Ug with Ug ∩ I = U I . Now we label a row with
UF ⊆ F and a column with UR ⊆ R storing value Vg(Ug) for Ug subject to the
constraints Ug ∩ F = UF and Ug ∩R = UR. Note that entries have value ‘−∞’
if they are determined by two subsets where at least one set is not independent.

Lemma 1. Given an independent set U I ⊆ I. For all independent sets U ⊆
mid(e), Uf ⊆ mid(f) and Ug ⊆ mid(g) subject to the constraint U ∩I = Uf ∩I =
Ug ∩ I = U I let the matrices B and C have entries Vf (Uf ) and Vg(Ug). The
entries Ve(U) of matrix A are computed by the distance product A = B � C.

Proof. The rows and columns of A, B and C must be ordered that two equal
subsets stand at the same position, i.e., UL must be at the same position in either
row of A and B, UR in either column of A and C, and UF must be in the same
position in the columns of B as in the rows of C. In order to apply the distance
product of (2), we change the signs of each entry in B and C since we deal
with a maximization rather than a minimization problem. Another difference
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between (2) and (3) is the additional term w(Uf ∩ Ug). Since Uf and Ug only
intersect in U I and UF , we substitute entry Vg(Ug) in C for Vg(Ug)−|U I |−|UF |
and we get a new equation:

Ve(U) = min{−Vf(Uf )− (Vg(Ug)− |U I | − |UF |)}
s.t. U ∩ I = Uf ∩ I = Ug ∩ I = U I , Uf ∩ L = U ∩ L = UL,

and Ug ∩R = U ∩R = UR, and Uf ∩ F = Ug ∩ F = UF }. (4)

Since we have for the worst case analysis that |L| = |R| due to symmetry reason,
we may assume that |UL| = |UR| and thus A is a square matrix. Every value
Ve(U) in matrix A can be calculated by the distance product of matrix B and C,
i.e., by taking the minimum over all sums of entries in row UL in B and column
UR in C.

Theorem 1. Dynamic programming for the Independent Set problem on
weights O(m) = nO(1) on graphs of branchwidth bw takes time Õ(m · 2 ω

2 ·bw)
with ω the exponent of the fastest matrix multiplication.

Proof. For every U I we compute the distance product of B and C with absolute
integer values less than m. We show that, instead of a O(2|L|+|R|+|F |+|I|) running
time, dynamic programming takes time Õ(m ·2(ω−1)|L| ·2|F | ·2|I|). We need time
O(2|I|) for considering all subsets U I ⊆ I. Under the assumption that 2|F | ≥ 2|L|

we get the running time for rectangular matrix multiplication: Õ(m · 2|F |
2|L| ·2ω|L|).

If 2|F | < 2|L| we simply get Õ(m · 21.85|L| · 20.54|F |) (for ω = 2.376), so basically
the same running time behavior. By the definition of the sets L, R, I, F we obtain
four constraints:

• |I|+ |L|+ |R| ≤ bw, since mid(e) = I ∪ L ∪R,
• |I|+ |L|+ |F | ≤ bw, since mid(f) = I ∪ L ∪ F ,
• |I|+ |R|+ |F | ≤ bw, since mid(g) = I ∪R ∪ F , and
• |I|+ |L|+ |R|+ |F | ≤ 1.5 ·bw, since mid(e)∪mid(f)∪mid(g) = I ∪L∪R∪F .

When we maximize our objective function Õ(m · 2(ω−1)|L| · 2|F | · 2|I|) subject
to these constraints, we get the claimed running time of Õ(m · 2 ω

2 ·bw).

4 A General Technique

In this section we formulate the dynamic programming approach using distance
product in a more general way than in the previous section in order to apply it to
several optimization problems. In the literature these problems are often called
vertex-state problems. That is, we have given an alphabet λ of vertex-states de-
fined by the corresponding problem. E.g., for the considered Independent Set
we have that the vertices in the graph have two states relating to an independent
set U : state ‘1’ means “element of U” and state ‘0’ means “not an element of
U”. We define a coloring c : V (G) → λ and assign for an edge e of the branch
decomposition 〈T, μ〉 a color c to each vertex in mid(e). Given an ordering of
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mid(e), a sequence of vertex-states forms a string Se ∈ λ|mid(e)|. For a further
details, please consult for example [10].

Recall the definition of concatenating two strings S1 and S2 as S1‖S2. We then
define the strings Sx(ρ) with ρ ∈ {L, R, F, I} of length |ρ| as substrings of Sx

with x ∈ {e, f, g} with e parent edge, f left child and g right child. We set Se =
Se(I)‖Se(L)‖Se(R), Sf = Sf (I)‖Sf (L)‖Sf (F ) and Sg = Sg(I)‖Sg(F )‖Sg(R).
We say Se is formed by the strings Sf and Sg if Se(ρ), Sf (ρ) and Sg(ρ) suffice
some problem dependent constraints for some ρ ∈ {L, R, F, I}. For Indepen-
dent Set we had in the previous section that Se is formed by the strings
Sf and Sg if Se(I) = Sf (I) = Sg(I), Se(L) = Sf (L), Se(R) = Sg(R) and
Sf (F ) = Sg(F ). For problems as Dominating Set it is sufficient to mention
that “formed” is differently defined, see for example [10]. With the common dy-
namic programming approach of using tables, we get to proceed c

|L|
1 ·c

|R|
1 ·c

|F |
2 ·c

|I|
3

update operations of polynomial time where c1, c2 and c3 are small problem de-
pendent constants. Actually, we consider |λ||L| · |λ||F | · |λ||I| solutions of Gf and
|λ||R| · |λ||F | · |λ||I| solutions of Gg to obtain |λ||L| · |λ||R| · |λ||I| solutions of Ge.
In every considered problem, we have c1 ≡ |λ|, c2, c3 ≤ |λ|2 and c1 ≤ c2, c3.
We construct the matrices as follows: For the edges f and g we fix a string
Sf (I) ∈ λI and a string Sg(I) ∈ λI such that Sf (I) and Sg(I) form a string
Se(I) ∈ λI . Recall the definition of value Ve as the maximum (minimum) weight
of a solution class. We compute a matrix A with c

|L|
1 rows and c

|R|
1 columns

and with entries Ve(Se) for all strings Se that contain Se(I). That is, we la-
bel monotonically increasing both the rows with strings Se(L) and the columns
with strings Se(R) that determine the entry Ve(Se) subject to the constraint
Se = Se(I)‖Se(L)‖Se(R).

Using the distance product, we compute matrix A from matrices B and C
that are assigned to the child edges f and g, respectively. Matrix B is la-
beled monotonically increasing row-wise with strings Sf (L) and column-wise
with strings Sf (F ). That is, B has c

|L|
1 rows and c

|F |
2 columns. A column la-

beled with string Sf (F ) is duplicated depending on how often it contributes
to forming the strings Se ⊃ Se(I). The entry determined by Sf (L) and Sf (F )
consists of the value Vf (Sf ) subject to Sf = Sf (I)‖Sf (L)‖Sf (F ). Analogously,
we compute for edge g the matrix C with c

|F |
2 rows and c

|R|
1 columns and with

entries Vg(Sg) for all strings Sg that contain Sg(I). We label the columns with
strings Sg(R) and rows with strings Sg(F ) with duplicates as for matrix B.
However, we do not sort the rows by increasing labels. We order the rows such
that the strings Sg(F ) and Sf (F ) match, where Sg(F ) is assigned to row k
in C and Sf (F ) is assigned to column k in B. I.e., for all Sf (L) and Sg(R)
we have that Sf = Sf (I)‖Sf (L)‖Sf (F ) and Sg = Sg(I)‖Sg(F )‖Sg(R) form
Se = Se(I)‖Se(L)‖Se(R). The entry determined by Sg(F ) and Sg(R) consists
of the value Vg(Sg) subject to Sg = Sg(I)‖Sg(F )‖Sg(R) minus an overlap. The
overlap is the contribution of the vertex-states of the vertices of Sg(F ) ∩ F
and Sg(I) ∩ I to Vg(Sg). That is, the part of the value that is contributed by
Sg(F )‖Sg(R) is not counted since it is already counted in Vf (Sf ).
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Lemma 2. Consider fixed strings Se(I), Sf (I) and Sg(I) such that there exist
solutions Se ⊃ Se(I) formed by some Sf ⊃ Sf (I) and Sg ⊃ Sg(I). The values
Vf (Sf ) and Vg(Sg) are stored in matrices B and C, respectively. Then the values
Ve(Se) of all possible solutions Se ⊃ Se(I) are computed by the distance product
of B and C, and are stored in matrix A = B � C.

The following theorem refers to all the problems enumerated in Table 1.

Theorem 2. Let ω be the exponent of the fastest matrix multiplication and
c1, c2 and c3 the number of algebraic update operations for the sets {L, R},
F and I, respectively. Then, dynamic programming for solving vertex-state prob-
lems on weights O(m) = nO(1) on graphs of branchwidth bw takes time Õ(m ·
max{c(ω−1)·bw

2
1 c

bw
2

2 , cbw
2 , cbw

3 }).

5 Application of the New Technique

In this section, we show how one can apply the technique for several optimiza-
tion problems such as Dominating Set and its variants in order to obtain fast
algorithms. We also apply our technique to planar graph problems. The branch-
width of a planar graph is bounded by 2.122

√
n. There exist optimal branch

decompositions whose middle sets are closed Jordan curves in the planar graph
embedding [8]. Such a sphere cut decomposition has the property that the I-set
is of size at most 2, that is, the runtime stated in Theorem 2 has no part ’cbw

3 ’.
For Dominating Set we have that c1 ≡ c2 = 3 and c3 = 4. The former run-

ning time was O(31.5 bw) ·nO(1). We have Õ(m ·max{3(ω−1)·bw
2 3

bw
2 , 3bw, 4bw}) =

Õ(m · 4bw) for node weights O(m) if we use a matrix multiplication algorithm
with ω < 2.5 and thus hide the factor ω.

Sphere cut decompositions of planar graphs can be computed in time O(n3)
by an improvement of the famous rat catcher method ([19] and [14]). With the
nice property that |I| ≤ 2 for all middle sets, we achieve a running time in

terms of Õ(m · max{c(ω−1)·bw
2

1 c
bw
2

2 , cbw
2 }) for planar graph problems. Thus, we

improve for Planar Dominating Set with node weights O(m) the runtime
O(4bw) ·nO(1) to Õ(m ·31.188bw) = Õ(m ·3.688bw). This runtime is strictly better
than the actual runtime of the treewidth based technique of O(4tw) · nO(1).

For Planar Hamiltonian Cycle, it is not immediately clear how to use
matrices since here it seems necessary to compute the entire solution at a dy-
namic programming step. I.e., in [8] the usual dynamic programming step is
applied with the difference that a postprocessing step uncovers forbidden so-
lutions and changes the coloring of the vertices in the L- and R-set. The idea
that helps is that we replace the latter step by a preprocessing step, changing
the matrix entries of the child edges depending on the change of the coloring.
That coloring is only dependent on the coloring of the F -set in both matrices.
Hence we do not query the coloring of all three sets L, R and F simultaneously.
This means that this step does not increase the runtime of our algorithm that
is improved to Õ(m · 21.106ω bw) by applying boolean matrix multiplication.
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6 Conclusions

We established a combination of dynamic programming and fast matrix mul-
tiplication as an important tool for finding fast exact algorithms for NP-hard
problems. Even though the currently best constant ω < 2.376 of fast matrix
multiplication is of rather theoretical interest, there exist indeed some practi-
cal sub-cubic runtime algorithms that help improving the runtime for solving
all mentioned problems. An interesting side-effect of our technique is that any
improvement on the constant ω has a direct effect on the runtime behavior for
solving the considered problems. E.g., for Planar Dominating Set; under the
assumption that ω = 2, we come to the point where the constant in the compu-
tation is 3 what equals the number of vertex states, which is the natural lower
bound for dynamic programming. Currently, [23] have made some conjecture
on an improvement for distance product, which would enable us to apply our
approach to optimization problems with arbitrary weights. Is there anything
to win for dynamic programming if we use 3-dimensional matrices as a data
structure? That is, if we have the third dimension labeled with Se(I)?
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{kdouieb, stefan.langerman}@ulb.ac.be

Abstract. Consider a rooted tree T of arbitrary maximum degree d
representing a collection of n web pages connected via a set of links,
all reachable from a source home page represented by the root of T .
Each web page i carries a weight wi representative of the frequency with
which it is visited. By adding hotlinks — shortcuts from a node to one
of its descendents — we wish to minimize the expected number of steps l
needed to visit pages from the home page, expressed as a function of the
entropy H(p) of the access probabilities p. This paper introduces several
new strategies for effectively assigning hotlinks in a tree. For assigning
exactly one hotlink per node, our method guarantees an upper bound on
l of 1.141H(p)+1 if d > 2 and 1.08H(p)+2/3 if d = 2. We also present the
first efficient general methods for assigning at most k hotlinks per node
in trees of arbitrary maximum degree, achieving bounds on l of at most

2H(p)
log(k+1) and H(p)

log(k+d)−log d
, respectively. Finally, we present an algorithm

implementing these methods in O(n log n) time, an improvement over
the previous O(n2) time algorithms.

1 Introduction

There are many ways to speed up the access to information on the Web. The
solution discussed in this paper doesn’t change the original hyperlink structure
but enhances it with additional hyperlinks in order to speed up the access to
a destination. This addition of hyperlinks is called a hotlink assignment. The
problem of the hotlink assignment was originally introduced by Perkowitz and
Etzioni [13] to improve the search in Web sites.

The hotlinks are defined as additional pointers to a structure with the goal
of improving its design by reducing the expected number of steps to reach an
element. A hotlink can be seen as a shortcut from a web page to another one
that is accessible from it (see Fig. 1.b).

The problem: Formally, a web site can be modeled as a directed graph G =
(V, E) where the nodes V correspond to the web pages and the edges E represent
the links. Each node carries a weight representative of its access frequency. We
assume that all web pages are reached starting from the homepage r. Our goal
in adding hotlinks (one or up to k directed edges from a node to one accessible
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Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 292–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Near-Entropy Hotlink Assignments 293
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Hyperlinks

Fig. 1. a. Modeled site web, b. Example
of hotlink assignment

Hotlinks

Hyperlinks

i

i

Fig. 2. Consequence due to the greedy
user model assumption

from it) is to minimize the expected number of steps to reach a page from the
homepage r.

We restrict our attention to the case when G is a rooted directed tree T with
n nodes and maximum degree d (maximum number of children for a node). The
stated results extend to general graphs by taking T to be the shortest-path tree
of G from the homepage r. Every leaf i in T is associated with a weight wi

representative of its access frequency, and W =
∑

i∈T wi. We thus assume that
only the leaves of the tree are accessed. This restriction can easily be removed
by adding a leaf child to all nodes, with a weight corresponding to the access
frequency of the node. This transformation only increases the length of the search
paths by 1. We use Tx to denote the subtree rooted at x and W (Tx) to denote
its weight, i.e. the sum of the weights of its leaves.

Following the greedy user model assumption [9], we assume that from a node
the user always takes the pointer that leads him as close as possible to the desired
destination. Due to that assumption, the assignment of one hotlink which points
to a node i can be seen as the deletion of the other hyperlink that ends in i
(i.e. an adoption) because if the user doesn’t follow the hotlink then he will not
access this subtree (see Fig. 2).

Let T A be the tree resulting from an assignment A of hotlinks. A measure of
the average access time to the nodes is E[T A, p] =

∑n
i=1 dA(i)pi, where dA(i) is

the distance of the node i from the root, and p = 〈pi = wi/W : i = 1, . . . , n〉 is the
probability distribution on the nodes of the original tree T . We are interested in
finding an assignment A which minimizes E[T A, p].

A lower bound on the average access time E[T A, p] was given in [2] using
information theory [12]. Let H(p) be the entropy of the probability distribution
p, defined by H(p) =

∑n
i=1 pi log(1/pi), then for any assignment of at most k

hotlinks per node the expected number of steps to reach a node from the root
of a tree of maximum degree d is at least H(p)/log(d + k) in the best case. The
tree could be a list, in which case we have a lower bound of H(p)/log(1 + k).

We focus on recursive algorithms which first choose the hotlink(s) of the root
of the tree T , perform the adoption (see Fig. 2), and recursively assign hotlinks to
the children of the root (including the hotlink). We characterize these algorithms
as top-down if the hotlink assignment of a subtree only depends on the subtree
itself minus the subtrees adopted by its own ancestors.

Related work: The idea of hotlinks was suggested by Perkowitz and Etzioni [13]
to improve the search in Web sites (seen as DAGs). Later Bose et al. [2] proved



294 K. Doüıeb and S. Langerman

that finding the optimal hotlink assignment for a DAG is NP-hard, and analyzed
several heuristics for assigning hotlinks.

The problem might become easier when the graph considered is a rooted tree.
Kranakis, Krizanc and Shende [11] give a O(n2) time algorithm for assigning
one hotlink per node so that the expected number of steps to search a node
from the root of the tree attains the entropy bound within a constant factor.
Several results on adding hotlinks to nodes of d-regular complete trees are also
reported by Fuhrmann et al. [8]. Recently, Gerstel et al.[9], and A.A. Pessoa
et al. [14] independently discovered a polynomial time dynamic programming
algorithms for finding the optimal placement of hotlinks on a tree whose depth
is logarithmic in the number of nodes, the running time of the algorithm of
Gerstel et al. is O(n3D) where D is the height of the tree. Experimental results
showing the validity of the hotlinks approach are given in [5], and a software tool
to structure websites efficiently by automatic assignment of hotlinks has been
developed [10].

The concept of hotlinks can be applied to other problems than that of web
structuring. For instance, Bose et al.[3] use hotlink assignments to design efficient
asymmetric communication protocols. Hotlinks can also be used to design data
structures as was demonstrated by Brönnimann, Cazals and Durand [4] with
their jumplist dynamic dictionary data structure. The jumplist structure can be
seen as randomized hotlink assignment on a list, and is meant as a simplification
of the skiplist structure [15]. A deterministic version of the randomized jumplist
was developed by Elmasry [7] and by Doüıeb and Langerman [6], independently.

Using this deterministic jumplist, we recently introduced a linear time
algorithm [6] to allow the assignment of one hotlink per node in such a way that
the number of steps to reach a node i from the root of a tree is bounded by the
entropy, namely by (3 + ε)H(p) for any ε > 0. The method was then dynamized
to maintain hotlinks when nodes are added, deleted or their weights modified,
in amortized time O(log W/wi) per update.

Our results: Known exact algorithms [9, 14] for finding the optimal assignment
of hotlinks have a polynomial running time only for trees of logarithmic depth,
and are slow, so our work was focused on finding an assignment approaching the
entropy bound. The best previous algorithm, the KKS method [11], guarantees
that the average access time to the elements is at most H(p)

log(d+1)−(d/(d+1)) log d+ d+1
d ,

its asymptotic behavior is H(p) d
log d for sufficiently large values of d (maximum

degree of the tree). The running time of this algorithm is O(n2) where n is the
number of elements in the tree.

After showing some preliminary lemmas in the next section, a new top-down
method for assigning one hotlink per node is presented in Section 3. The h/ph

method guarantees an average access time of at most 1.141H(p)+ 1. This near-
entropy bound, in contrast to that of KKS, is completely independent of the
maximum degree of the tree and is better than KKS for all values of d > 2.
Furthermore, h/ph method matches the bound of KKS for d = 2.
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In Section 4, we present a natural generalization of the algorithm of Bose et
al. [3] for assigning k hotlinks per node of trees of arbitrary maximum degree d
instead of binary trees, it guarantees an upper bound on the average access time
of H(p)

log(k+d)−log d . As the performance guarantee of this method degrades when d

grows, we show a second method whose average access cost is at most 2H(p)
log(k+1)

constituting the first multiple hotlink assignment method giving a near-entropy
bound that is independent of the degree.

Finally in the Section 5 we develop a fast algorithm for the methods seen
in the preceding section; it uses an enhanced version of the link-cut trees of
Sleator and Tarjan [16] and performs the hotlink assignment in O(n log n) time
for all our methods and the KKS method [11]. This is an improvement over the
previous O(n2) algorithms. Omitted proofs appear in the full version.

2 Top-Down Methods

Before giving some hotlinks assignment methods and their analysis we present
a useful Lemma concerning entropy. Consider a probability distribution p =
〈p1, p2, . . . , pn〉 and a partition A1, A2, . . . , Ak of the index set {1, 2, . . . , n} into
k non-empty subsets. Define Si =

∑
j∈Ai

pj for i = 1, 2, . . . , k. Consider the new

distributions: p(i) = 〈p(i)
j := pj

Si
: j ∈ Ai〉 for i = 1, 2, . . . , k. Kranakis, Krizanc

and Shende [11] proved the following lemma:

Lemma 1. For any partition A1, A2, . . . , Ak of the index set of the probability
distribution we have the identity H(p) =

∑k
i=1 SiH(p(i))−

∑k
i=1 Si log Si, where

Si and p(i) are defined in the above equations.

A hotlink method A determines the hotlink assignment A = A(T ) to be applied
on any tree T . Let T A be the tree T enhanced by the hotlink assignment A and
TA = TA(T ). Consider that a selection of successive hotlinks starting from the
root node partitions the leaves of the tree TA into several subsets or subtrees
TA

1 , TA
2 , . . . , TA

k with corresponding weights S1, S2, . . . , Sk. These subtrees have
a depth in the tree corresponding to the number of pointers that we must follow
to reach them, called d(TA

i ).
We defined a top-down hotlink assignment method A to be a method be-

ginning by the assignment of the hotlink of the root of a tree and where the
hotlink assignment of any subtree Ti only depends on the subtree itself minus
the subtrees adopted by its own ancestors.

Lemma 2. Given a top-down hotlink assignment method A, if we can fix a
constant a such that for all tree T there exists a partition in the subtrees
TA

1 , TA
2 , . . . , TA

k of weights S1, S2, . . . , Sk which satisfies a ≥ −
∑k

i=1 Sid(T A
i )∑

k
i=1 Si log Si

, then

the expected number of steps needed to reach a leaf from the root of a tree TA is
E[TA, p] ≤ aH(p) + 1.

Finally we generalize Lemma 5 of [11]:
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Lemma 3. For any fixed constant 0 ≤ α ≤ 1/2, the solutions of the optimiza-
tion problem maximize f(s1, s2, . . . , sk) =

∑k
i=1 si log si subject to {0 ≤ si∀i,∑k

i=1 si = 1, α ≤ sk ≤ 1 − α} are obtained, when sk = α and one among the
quantities s1, s2, . . . , sk−1 attains the value 1− α and all the rest are equal to 0.

3 Single Hotlink Assignment: h/ph Method

The KKS method [11] assigns one hotlink per node for trees with a constant
maximum degree d. It is a top-down method which simply chooses as hotlink of
the root of the tree a node h defining a subtree Th of weight satisfying W (T )

(d+1) ≤
W (Th) ≤ dW (T )

(d+1) .
The running time of this algorithm is quadratic in the number of vertices of

the tree and assigns for any probability distribution p = 〈p1, p2, . . . , pn〉 on the
n leaves of a tree one hotlink per node such a way that the expected number of
steps to reach a leaf of the tree from the root is at most H(p)

log(d+1)−(d/(d+1)) log d +
d+1

d (see [11]). This bound is asymptotically tight for the KKS method, and is
achieved by a caterpillar with uniform distribution on its leaves.

The problem of this method is that its average access time degrades as the
maximum degree d of the trees considered grows. To avoid this increase in the
expected number of steps to reach a leaf from the root of a tree, we introduce a
new method in the next section. The h/ph Method :

The idea of this hotlink assignment method remains the same, the difference
lies on the number of candidate nodes that we consider for the choice of the
hotlink of the root of a subtree T . Namely, the candidates are firstly the node
h of weight w1/2 the nearest to W (T )/2 and secondly the parent node of h,
denoted ph. The method that determines how to choose among those candidates
is called the h/ph method : Let α be the unique solution of α

1−α = α
1

2(1−α) (i.e.
α ≈ 0.2965), if the weight w1/2 of the node h is greater than the threshold α we
take h as the hotlink of the root and we take ph otherwise.

Before beginning the analysis of the method, we give a property of the nodes
of weight w1/2. Define the heavy path of a tree to be the path from the root to
a leaf such that each node on the path is the heaviest child of its parent.

Lemma 4. If w1/2 is the weight nearest to W (T )/2 among all nodes in the
subtree T , then there is a node of weight w1/2 on its heavy path.

We can now begin to analyze the expected access time to reach a leaf from the
root of a tree after the hotlink assignment according to the h/phmethod.

Theorem 1. Consider a tree T of arbitrary maximum degree and T A the same
tree after the hotlink assignment of the h/ph method. The maximum average
access time to the leaves of T A is at most H(p)

log 3−(2/3) + 2/3 if d = 2 and
H(p) 2

log 1/α + 1 ≈ 1.141H(p) + 1 if d > 2.
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a. b.

Fig. 3. Before and after assigning the hotlink of the root to the node ph (a.) or h (b.)

Proof. We can make an analysis of the worst average access time by selecting 3
ranges for the value of w1/2:

1. 0 ≤ w1/2 < α, we are in the case where we must choose ph as hotlink of
the root. We know that the node h defines a subtree of weight w1/2 nearest
to 1/2, thus the weight of the subtree defined by its parent node ph is greater
than 1−w1/2 and the brother nodes of h define subtrees of weight smaller than
w1/2. After the assignment of the hotlink of the root to the node ph, we know
that none of the direct children of the root can have a weight greater than
1−W (Tph

) ≤ w1/2.
That guarantees that after two steps of search from the root of the tree af-

ter the hotlink assignment we can not reach a subtree of weight greater than
w1/2 ≤ α (see Fig. 3.a). Using the notation of Lemma 2, we can express the
worst expected number of steps to reach a leaf from the root of the tree in the
case where we choose the ph node as hotlink of the root in the current range:
E[TA, p] ≤ aH(p) + 1 with a ≥ − 2

log α .

2. α ≤ w1/2 < 1 − α, we are in a range where we must choose the node h
as hotlink of the root. Note that the children {c1, c2, . . . , ck} of the root of
TA other then h have a weight of at most (1 − w1/2) and the node h has
weight w1/2. All subtrees of the root have a depth of 1. This partition gives
a worst average access time to the leaves equal to E[TA, p] ≤ aH(p) + 1
with a ≥ − 1

(w1/2) log(w1/2)+
∑k

i=1(W (Tci
)) log W (Tci

)
(see Lemma 2). The maxi-

mum value of this this last function subject to the constraints {α ≤ w1/2 ≤
1 − α,

∑k
i=1 W (Tci) = 1 − w1/2} is given by Lemma 3, i.e. when w1/2 = α,

W (Tc1) = 1− α and W (Tci) = 0 for all 2 ≤ i ≤ k. Thus the maximum expected
number of steps to reach a leaf in this current range is H(p)

−(α log α+(1−α) log(1−α)) +1.

3. 1 − α ≤ w1/2 ≤ 1, we choose h as hotlink of the root. The node h defines a
subtree of weight w1/2 nearest to 1/2, thus its heaviest child has a weight smaller
than 1− w1/2 ≤ α, and the weight of the direct children of the root of the tree
after the hotlink assignment can not exceed 1−w1/2 ≤ α (see Fig. 3.b). By those
facts, we know that none of the subtrees reachable after two steps of search can
have a weight greater than α. That is exactly the same situation as in the first
case where 0 ≤ w1/2 ≤ α, thus the worst average access time to the leaves will
be the same, i.e. − 2H(p)

log α + 1.
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We saw that if α ≤ w1/2 ≤ 1 − α then the worst access time is equal to
H(p)

−(α log α+(1−α) log(1−α)) + 1, and for any other value of w1/2 we have − 2H(p)
log α + 1.

Thus we can compute the value of α for which both expressions are equal, i.e.
for which value of α the choice of h or ph is equivalent. This occurs when α

1−α =

α
1

2(1−α) (i.e. α ≈ 0.2965), and the maximum expected number of steps needed
to reach a leaf from the root of a tree TA is no more than H(p) 2

log 1
α

+ 1 ≈
1.141H(p) + 1.

Thus for any tree with a maximum degree d > 2, the h/ph method gives
a better ratio for the approximation of the optimum hotlink assignment than
the KKS method. But we can remark that if d = 2 then the h/ph method
cannot be worse than the KKS method. Indeed, in this case the value of w1/2
is bounded above by 1/3 and below by 2/3, that implies that the h/ph method
always chooses the node h as hotlink of the root. This choice will be better or
at least equivalent to the choice of the KKS hotlink assignment. So the h/ph

method is better in all the cases. ��

4 Multiple Hotlink Assignment

In the preceding sections we saw the hotlink assignment problem in the case
where just one hotlink per node of a tree is allowed. Now we consider the addition
of k hotlinks for each node. Some studies have already been done on this topic,
namely S. Fuhrmann et al. [8] present algorithms to reduce the height of a
tree by a constant factor. The algorithms for optimal hotlink assignment by
dynamic programming allow k hotlinks assignments per node [9, 14]. The KKS
method [11] has been generalized by Bose et al. [3] to assign k hotlinks per node,
but is restricted to binary trees, it guarantees an average access time at most

H(p)
log(k+2)−1 + 1.

We introduce in this paper a recursive top-down method which performs up
to k hotlink assignments, seen as adoptions, to the root of a tree T of arbitrary
degree d to obtain an enhanced tree T ′. Then the procedure is iterated for each
child of the root in T ′. This method is a natural generalization of the algorithm
of Bose et al. [3] for trees of arbitrary maximum degree. When processing a node
x, we perform hotlink assignments of the node x until each original child y of
x is either a leaf or its weight satisfies W (Ty) ≤ dW (Tx)/(k + d). To determine
which descendant z to assign next for a hotlink of the node x, we start at the
non-leaf original heaviest child of x and we traverse its heavy path until reaching
the node z of maximum weight smaller than dW (Tx)/(k + d).

Thus all the hotlink nodes hi of x have a weight greater than W (Tx)/(k + d)
implying that at most k hotlinks can be assigned by node, indeed the original
non-leaf children of x after k assignments cannot have a weight greater than
W (Tx)− kW (Tx)/(k + d) = dW (Tx)/(k + d) which is the condition to stop.

Theorem 2. Consider a tree T of maximum degree d and TA the same tree after
the hotlink assignment of the generalized method of [3]. The maximum average
access time to the leaves of TA is at most H(p)

log(k+d)−log d .
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The performances of this generalized method degrades as d grows. The next
method avoids this dependence on d. Here, we perform hotlink assignments for
the node x until each original child y of x is either a leaf or its weight sat-
isfies W (Ty) ≤ W (Tx)/(k + 1). To determine which descendant z to assign
next for a hotlink of x, we start at the non-leaf original heaviest child of x
and we traverse its heavy path until reaching the node z of minimum weight
greater than W (Tx)/(k + 1). While processing a node x, at most k hotlinks
are assigned. Indeed the assignment stops when each original child of x is ei-
ther a leaf or its weight is smaller than W (Tx)/(k + 1). After k hotlink as-
signments, a non-leaf child of the node x cannot have a weight greater than
W (Tx)− kW (Tx)/(k + 1) = W (Tx)/(k + 1).

Theorem 3. Consider a tree T of maximum degree d and TA the same tree after
the hotlink assignment of the above multiple hotlink assignment method. The
maximum average access time to the leaves of TA is at most 2H(p)/log(k + 1)
for d >

√
k + 1, and H(p)/(log(k + 1)− log d) otherwise.

5 Fast Hotlink Assignment Algorithm

In order to perform the hotlink assignment according to the methods introduced
previously, a naive O(n2) running time algorithm can be easily found. Here we
present an O(n log n) running time algorithm which uses an enhanced version of
the Link-Cut Trees.

The Link-Cut Trees or ST Trees of D.D.Sleator and R.E.Tarjan is a data
structure for the Dynamic trees problem [16]. Namely, we are given a collection of
vertex-disjoint rooted trees. We want to represent the trees by a data structure
that allows us to easily extract certain informations (the cost of an edge, the
minimum cost on a precise path, the parent of an node, the root of an node)
about the trees and to easily update the structure to reflect changes in the trees
caused by these two kinds of operations: link the root of a tree to any node of
an other tree making this node the parent of the root, and cut a tree into two
trees by deleting the edge from a selected node to its parent.

They develop a solution to the dynamic trees problem by using an implicit
representation of the forest, which sees dynamic trees as sets of solid paths con-
nected together with dashed edges (see Fig. 5.a). Each tree operation is carried
out by means of one or more path operations. These dynamic solid paths are
represented as biased binary trees(BBT) [1] (or splay trees [17]) whose external
nodes correspond to the vertices of the solid paths and internal nodes correspond
to subpaths (see Fig. 5.b). This data structure guarantees that each dynamic tree
operation takes O(log n) time in the worst-case but only if the partition in solid
paths is done by size (number of leaves inside the tree defined by a node), i.e. if
the solid paths are defined to be the paths from the root of a subtree to a leaf
where each node is the child of its parents which has the greatest size.

The remainder of this section modifies the Link-Cut tree structure, we refer
the reader to [16] for more details.
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Enhanced Link-Cut trees: Remember that the weight W (Tv) of a vertex v
is the sum of the weight of its children in the original tree T , where each leaf i
in T is associated with a weight wi representative of its access frequency.

Now we shall see how to enhance the Link-Cut Trees to use it for the hotlink
assignment. First we add an extra part to the structure. For each vertex v on
a solid path, we maintain a vertex set containing the children of v excepted
the child corresponding to the next vertex next[v] on the solid path of v (if it
exists). We allow three kinds of operations on the vertex sets: (1) maxw(vertex
v), return the vertex of maximum weight in the vertex set of v; return null if
the vertex set is empty. (2) insert(vertex u,vertex v), insert vertex u into the
vertex set of v. (3) delete(vertex u,vertex v), delete vertex u from the vertex
set of v. We represent the vertex set of a vertex by a globally biased binary
tree [1], the vertices appearing as external nodes, exactly as for the structures
used in the original Link-Cut trees.

Finally we add one more field to each internal node or leaf x in the associated
BBT of the solid paths: If the node x is a leaf of a BBT then the value wtx is
set to the sum of the weights of its children in the original tree excepted its next
vertex on the solid path. Else the node x is an internal node of the BBT and
wtx is set to the sum of the value wt of its children in the BBT. We note that
this information can be updated in a constant time after any rotation operation.

If the node x in the original tree T is contained in the solid path S, then
the weight W (Tx) can be computed with the value wt stored in the nodes of
the BBT associated to the solid path S, i.e. W (Tx) =

∑
i∈R(x) wti where R(x)

represent the right siblings (set of right child of nodes) on the path to the root
of the BBT associated to S.

Note that these two extra structures, i.e. for the vertex sets and the values
wt, are nearly identical to some structures present in the original Link-Cut trees,
used to maintain the solid paths and to compute the size (in number of nodes)
of the subtree of a node. Thus the added structures will be updated using the
same techniques, achieving the same performances.

h

Solid paths

Dashed edges

Heavy path

Fig. 4. The heavy path
could intersect several solid
paths

Search: Consider now the hotlink assignment and
see how to use the enhanced Link-Cut tree to per-
form the search of the candidate node which will be
pointed to by one of the k hotlinks of the root of the
original tree. For all methods presented here, this
candidate node will be found from a node h which
defines a subtree of minimum weight greater than
W (T )/c for any fixed constant c ≥ 1 depending on
the method used. We can deduce from Lemma 4 or
from the method itself that this node h is always lo-
cated on the heavy path, this heavy path is defined
as the path from the root of T to a leaf connecting
each node on the path to its heaviest child. But in
the Link-Cut tree, the decomposition of the initial tree is done by solid paths
(decomposition by size), thus the heavy path could traverse several solid paths
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(see Fig. 4). The search of the node h is thus a succession of searches in multiple
BBTs each associated to a solid path which intersects the heavy path.

The search is performed as follows: we begin from the BBT associated with
the solid path containing the root of the original tree T , and use it to locate the
lowest vertex v greater than W (T )/c. In order to perform this search efficiently
we use the information wt stored in the nodes of this associated BBT. We walk
down the BBT from its root r and we maintain a value Z =

∑
i∈R(j) wti where j

is the current node, i.e. Z is equal to the sum of the value wt of the right siblings
of nodes on the path from the current node j to the root r. Thus Z + wtj is
the maximum weight of any leaf reachable from the node j. We initially start
from the root r and we set Z = 0. If Z + wtright[r] ≥ W (T )/c we go down by
the right child rigth[r] of the root else we go by the left child and we update
Z = Z +wtright[r]. We iterate the process until we find the vertex v on the solid
path of minimum weight greater than W (T )/c. Note that the value Z is equal
to W (Tnext[v]) when the node v is found. An illustration of this search is shown
in Fig. 5.b.

If the the weight of the next vertex of v in its solid path is greater than
maxw(v), i.e. if W (Tnext[v]) ≥ maxw(v) then v corresponds to the node h that
we are looking for. Else we must check if the node h is present in the next solid
path beginning by the vertex of weight maxw(v). For that, we perform the same
search in the associated BBT of this next solid path. We iterate the process until
we find the node h.

According to the Link-Cut tree performance, we can find a node i contained
in an associated BBT rooted at r in O(log Size(r)

Size(i) ) time, corresponding to the
height of the BBT. The sum of the running times of the successive searches
in the different solid paths is log Size(T )

Size(x1) + log Size(x1)
Size(x2) + · · · + log Size(xk)

Size(h) ≤
log Size(T )

Size(h) ≤ logn, where x1, x2, . . . , xk are vertices leading to the successive
solid paths traversed by a search. We must add to that the number of times
that we use maxw() for a vertex set to check if the node h is deeper in the tree
(takes O(1) time), this number is bounded by logn because of the definition of
the solid path. Thus the maximum total running time needed to find the node
h which gives the necessary information to find the candidate for the hotlink
assignment of the root is O(log n).

Cut: To perform the hotlink assignment, we just need the Cut operation which
consists in cuting a tree T into two trees by deleting the edge from a selected
node to its parent. The cut operation with an enhanced Link-Cut tree is done
as in the original structure excepted that the extra structures (vertex sets and
fields wt) have to be updated.

Cutting a subtree rooted at a node h consists first in making an expose oper-
ation on the node h. That operation creates a single solid path, ending in h and
beginning at the root of the original tree T , by converting dashed edges (con-
necting two distinct solid paths) to solid (connecting two vertices of the same
solid path) along the tree path from h to the root of the original tree T and
converting solid edges incident to this path to dashed.
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Those kinds of edge conversions may change the vertex sets associated to
several vertices of the original tree T . The dashed edges converted in solid must
be deleted from the corresponding vertex set and respectively the solid edges
converted in dashed must be inserted in their corresponding vertex set. The
value wt of the nodes is also affected by those changes and have to be updated
following the Link-Cut tree methods.

After the expose of the node h, we have to cut the subtree rooted at h and
update the values of some nodes in the associated BBT of the solid path con-
taining h, i.e. all nodes i where we walk to their right child during a search for h
in the associated BBT have to update their value wti to wti−W (Th). Once this
is done, we restructure the associated BBT and we repair the damage caused by
the expose. Namely after the cut, the decomposition into solid paths could have
changed and we must update the structure by an operation which can be seen
as an expose running backwards. This operation is fully described in [16].

Thus the cut in a enhanced Link-Cut tree has the same asymptotic running
time than in the original structure, i.e. each cut operation takes O(log n) time,
where n is the number of nodes in the initial tree.

Lemma 5. The hotlink assignment of a tree T according to the methods de-
scribed in the previous sections can be done in O(n log n) time using the enhanced
Link-Cut trees data structure seen above.

Proof. Consider that we use an enhanced Link-Cut tree data structure as de-
scribed above for a tree T . The hotlink assignment consists in finding a node h
for one hotlink of the root according to the desired method. We have seen above
that this search is performed in O(log n) time (Fig. 5.b). Once h is found, we
cut the edge between h and its parent. This cut takes O(log n) time using the
enhanced Link-Cut trees. For the multiple assignment methods we carry out the
same operation as long as necessary. Once all the hotinks of the root has been
assigned we cut all the edges connecting the root to its children, those cuts are
done in O(log n) (Fig. 5.c), thus we obtain at most d + k subtrees for which we
iterate the same process recursively (Fig. 5.d).

Although each node could have up to k hotlinks, the total number of hotlinks
assigned is smaller than n because there cannot be more than one hotlink point-

a. b. c. d.

h h

h

Biased binary tree associ-
ated to the solid path.

Fig. 5. a. Decomposition of a tree T in solid paths. b. A search in the biased binary
tree representing the solid path. c. Cut of the node h and the children of the root. d.
Resulting trees.
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ing to each node. Thus the enhanced link-cut trees allow to perform a hotlink
assignment for a node in O(log n) time, this must be done at most n times which
implies that the entire hotlink assignment takes O(n logn) time. ��
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Abstract. Much recent work in the theoretical computer science, linear
algebra, and machine learning has considered matrix decompositions of
the following form: given an m×n matrix A, decompose it as a product
of three matrices, C, U , and R, where C consists of a small number of
columns of A, R consists of a small number of rows of A, and U is a small
carefully constructed matrix that guarantees that the product CUR is
“close” to A. Applications of such decompositions include the computa-
tion of matrix “sketches”, speeding up kernel-based statistical learning,
preserving sparsity in low-rank matrix representation, and improved in-
terpretability of data analysis methods. Our main result is a randomized,
polynomial algorithm which, given as input an m× n matrix A, returns
as output matrices C, U, R such that

‖A−CUR‖F ≤ (1 + ε) ‖A− Ak‖F
with probability at least 1 − δ. Here, Ak is the “best” rank-k approx-
imation (provided by truncating the Singular Value Decomposition of
A), and ‖X‖F is the Frobenius norm of the matrix X. The number
of columns in C and rows in R is a low-degree polynomial in k, 1/ε,
and log(1/δ). Our main result is obtained by an extension of our recent
relative error approximation algorithm for �2 regression from overcon-
strained problems to general �2 regression problems. Our algorithm is
simple, and it takes time of the order of the time needed to compute the
top k right singular vectors of A. In addition, it samples the columns
and rows of A via the method of “subspace sampling,” so-named since
the sampling probabilities depend on the lengths of the rows of the top
singular vectors, and since they ensure that we capture entirely a certain
subspace of interest.

1 Introduction

1.1 Motivation and Overview

Recent work in the theoretical computer science, linear algebra, and machine
learning has considered matrix decompositions of the following form: given an
m×n matrix A, decompose it as a product of three matrices, C, U , and R, where
� Part of this work was done while at the Department of Mathematics, Yale University.
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C consists of a few columns of A, R consists of a few rows of A, and U is a small,
carefully constructed matrix that guarantees that the product CUR is “close”
to A. Applications of such decompositions include constructing “sketches” for
large matrices in a pass-efficient manner, matrix reconstruction, speeding up
kernel-based statistical learning computations, sparsity-preservation in low-rank
approximations, and improved interpretability of data analysis methods. See
[6, 7, 21, 12, 11, 19, 20, 1] for examples of applications for matrix decompositions
of this form.

Let us consider the application to data analysis methods in more detail. In
many applications, the data are represented by a real m × n matrix A. Such a
matrix may arise if the data consist of n objects, each of which is described by
m features. The most common compressed representation of A used by data an-
alysts is that obtained by truncating the Singular Value Decomposition at some
number k  min{m,n} terms, in large part because this provides the “best”
rank-k approximation to A when measured with respect to any unitarily invari-
ant matrix norm. However, there is a fundamental difficulty with this represen-
tation: the new “dimensions” (the so-called eigencolumns and eigenrows) of Ak

are linear combinations of the original dimensions. As such, they are notoriously
difficult to interpret in terms of the underlying data and processes generating
that data. For example, the vector [(1/2) age - (1/

√
2) height + (1/2) income],

being one of the significant uncorrelated “factors” from a dataset of people’s fea-
tures is not particularly informative. From an analyst’s point of view, it would
be highly preferable to have a low-rank approximation that is nearly as good as
that provided by the SVD but that is expressed in terms of a small number of
actual columns and actual rows of a matrix, rather than linear combinations of
those columns and rows.

For example, consider recent data analysis work in DNA microarray and DNA
Single Nucleotide Polymorphism (SNP) analysis [14, 15, 17]. Researchers inter-
ested in analyzing DNA SNP data often model the data as an m × n matrix
A, where m is the number of individuals in the study, n is the number of SNPs
being analyzed, and Aij is an encoding of the i-th SNP value for the j-th in-
divudual. Since biologists do not have an understanding or intuition about the
behavior of, e.g., 30, 000 genes or 1, 000, 000 SNPs or 1000 individuals, that they
do have about a single gene or a single SNP or a single individual, linear alge-
braic methods have been employed to extract actual SNPs from the computed
eigen-SNPs in order to be used for further analysis [14, 15, 17]. Our problem of
approximating a matrix A by CUR is a direct formulation of this problem; in
particular, our problem will determine a small number of actual SNPs to serve
as a basis to express the remaining SNPs, and a small number of individuals to
serve as a basis to express the remaining individuals.

1.2 Review of Linear Algebra

Let [n] denote the set {1, 2, . . . , n}. For any matrix A ∈ Rm×n, let A(i), i ∈ [m]
denote the i-th row of A as a row vector, and let A(j), j ∈ [n] denote the j-th
column of A as a column vector. The Singular Value Decomposition (SVD) of
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A will be denoted by A = UΣV T , where U ∈ Rm×ρ, Σ ∈ Rρ×ρ, V ∈ Rn×ρ,
and where ρ is the rank of A. The “best” rank-k approximation to A (with
respect to, e.g., the Frobenius norm, ||A||F =

√∑
i,j A

2
ij) will be denoted by

Ak = UkΣkV
T
k , where Uk ∈ Rm×k is the first k columns of U , etc. The SVD and

hence the best rank-k approximation of a general matrix A can be computed in
O(min{n2m,nm2}) time, and optimal rank-k approximations to it can be com-
puted more rapidly with, e.g., Lanczos methods. We will use SVD(Ak) to denote
the time to compute Ak. For more details on linear algebra, see [2, 10, 13, 16],
and for more details on notation and our sampling matrix formalism, see [4, 9].

1.3 Problem Definition

We start with the following definition.

Definition 1. Let A be an m×n matrix, let C be an m×c matrix whose columns
consist of a small number c of columns of the matrix A, and let R be an r × n
matrix whose rows consist of a small number r of rows of the matrix A. Then
the m× n matrix A′ is a column-row-based low-rank matrix approximation to
A, or a CUR matrix approximation, if it may be explicitly written as A′ = CUR
for some c× r matrix U .

Note that the combined size of C, U and R is O(mc + rn + cr), which is an
improvement over A’s size of O(nm) when c, r  n,m.

The quality of a CUR matrix approximation depends on the choice of C and
R as well as on the matrix U . We consider the following problem.

Problem 1 (Column-row-based low-rank matrix approximation prob-
lem). Given a matrix A ∈ Rm×n, choose a sufficient number of columns and
rows of A and construct a matrix U of appropriate dimensions such that

‖A− CUR‖F ≤ (1 + ε) ‖A−Ak‖F . (1)

Here, C is a matrix consisting of the chosen columns of A, R is a matrix con-
sisting of the chosen rows of A, and Ak is the best rank k approximation to A.
The number of columns of C and rows of R should be a function of k, 1/ε, and –
in the case of randomized algorithms – a failure probability δ. The running time
of the algorithms should be a low-degree polynomial in m,n.

Note that is not obvious whether there exist, and if so whether one can efficiently
find, a small (depending on k, 1/ε, and 1/δ, but independent of m and n) number
of columns and rows that provide such relative-error guarantees.

1.4 “Subspace Sampling” and Our Main Result

Our main result is the following theorem, which asserts the existence of an
algorithm to solve Problem 1.
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Theorem 1. There exists a randomized algorithm that solves Problem 1. In
the algorithm, c = O(k2 log(1/δ)/ε2) columns of A are chosen to construct C,
and then r = O(c2 log(1/δ)/ε2) rows of A are chosen to construct R, and the
matrix U is a weighted Moore-Penrose inverse of the intersection between C and
R. The algorithm satisfies (1) with probability at least 1 − δ, it runs in time
O(SV D(Ak)), and it uses the method of “subspace sampling” to sample columns
to form C and rows to form R.

For the moment, assume that we are given a set of columns, and consider the
following theorem.

Theorem 2. Let ε ∈ (0, 1]. Let an m × n matrix A and an m × c matrix C
consisting of c columns of A be given. There exists a randomized algorithm
that runs in O(mn) time and constructs an r × n matrix R consisting of r =
O(c2 ln(1/δ)/ε2) rows of A and a c × r matrix U such that, with probability at
least 1− δ

‖A− CUR‖F ≤ (1 + ε)
∥∥A− CC+A

∥∥
F
.

This algorithm is described in Section 2. This result is a CUR matrix approx-
imation that applies to any subset of columns C of the original matrix A, and
has relative error with respect to CC+A, i.e.,the projection of A on the subspace
spanned by the columns of C.

Given Theorem 2, in order to establish Theorem 1 it suffices to find a C for
which CC+A is relative-error approximation to the best rank-k approximation
provided by the SVD. It is known that such columns exist [18, 3], and recently we
designed the first polynomial time algorithm to find such a C [8]. We summarize
these results in the following theorem. See [8] for details.

Theorem 3. Let ε ∈ (0, 1]. Let an m×n matrix A and any positive integer k be
given, and let Ak be the best rank k approximation to A. There exists a random-
ized algorithm that runs in O(SV D(Ak)) time and selects c = O(k2 ln(1/δ)/ε2)
columns of A such that, if C is the m× c matrix whose columns are the selected
columns of A, then with probability at least 1− δ∥∥A− CC+A

∥∥
F
≤ (1 + ε) ‖A−Ak‖F .

Given a matrix A, it follows from Theorem 3 that we can either choose a column
matrix C with this relative-error property or a row matrix R that has an analo-
gous relative-error property. But combining those two matrices C and R does not
immediately provide a CUR approximation with the relative-error guarantees.
However, by combining Theorem 3 with Theorem 2, we establish Theorem 1 and
obtain the relative-error CUR approximation.

The bulk of the technical work is the proof of Theorem 2. We will show that,
given a matrix A and a set of its columns C, we can choose a set of its rows
R such that CW+R captures almost as much of A as does CC+A in a relative
error sense, where W+ is a weighted Moore-Penrose generalized inverse of the
intersection between C and R. This is obtained by extending our earlier �2-
regression result [9] to a generalized �2-regression problem defined below. This
extension is the main technical contribution of this paper.
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The key technical insight that leads to the relative-error guarantees is that
the rows are selected by a novel sampling procedure that we call “subspace
sampling.” Rather than sample rows from the input matrix with a probabil-
ity distribution that depends on the Euclidean norms of its rows (which gives
provable additive-error bounds [4, 5, 6]), in “subspace sampling” we randomly
sample rows of the input matrix with a probability distribution that depends
on the Euclidean norms of the rows of the top k singular vectors of the input
matrix. This allows us to capture entirely a certain subspace of interest. This
is required since we will be performing operations such as pseudoinversion that
are not well-behaved to missing a dimension, no matter how insignificant its
singular vlaue is. This is different than sampling to capture coarse statistics up
to an additive error of ε||A||F , and it requires the use of more complex probabil-
ities and more sophisticated analysis. The precise form of sampling is somewhat
complicated and is shown in (4) and (11). It is similar to the sampling method
we developed recently to solve the l2 regression problem [9] that we extend here.

1.5 Related Work

To the best of our knowledge, ours is the first CUR matrix approximation with
relative error. Previously, the only know CUR matrix approximations had a
large additive error ε ‖A‖F [6, 7]. In fact, previous to our result, it was not even
known whether such a relative-error CUR representation existed. Note that in
the linear algebra community, there are several algorithms [19, 20, 1, 12, 11] to
get C,U,R like ours for low-rank approximation, but none that is comparable
in proven guarantees.

2 The Column-Row-Based Low-Rank Approximation

Assume that we are given an m × n matrix A and any set of c columns of A
forming an m × c matrix C, and consider the following idea for approximating
A. The columns of C are a set of “basis vectors” that are, of course, in general
neither orthogonal nor normal. Thus, we can express every column of A as a
linear combination of the columns of C. If m and n are large and c = O(1),
then this is an overconstrained least-squares fit problem. Thus, for all columns
A(j), j ∈ [n], we can solve

min
xj∈Rc

∣∣∣A(j) − Cxj

∣∣∣
2

(2)

in order to find a c-vector of coefficients xj and get the optimal least-squares fit
for A(j). Equivalently, we seek to solve

min
X∈Rc×n

‖A− CX‖F (3)

in order to express A as A ≈ CXopt, where Xopt = C+A is a c×n matrix whose
columns are the coefficient vectors xj , j ∈ [n] that minimize Equation (2).
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We will now use a generalization of the ideas in [9] to modify the above
approach to get a CUR decomposition for the matrix A, given C. Instead of
solving the generalized least squares problem of Equation (3) we will solve a
sampled version of the problem, constructed as follows:

1. Compute the SVD of C, C = UCΣCV T
C , where UC ∈ Rm×ρ, ΣC ∈ Rρ×ρ,

VC ∈ Rc×ρ, and ρ is the rank of C.
2. Compute sampling probabilities pi for all i ∈ [m]:

pi =
(1/3)

∣∣∣(UC)(i)
∣∣∣2
2∑n

j=1

∣∣∣(UC)(j)
∣∣∣2
2

+
(1/3)

∣∣∣(UC)(i)
∣∣∣
2

∣∣∣∣(U⊥
C U⊥

C

T
A
)

(i)

∣∣∣∣
2∑n

j=1

∣∣∣(UC)(j)
∣∣∣
2

∣∣∣∣(U⊥
C U⊥

C

T
A
)

(j)

∣∣∣∣
2

+
(1/3)

∣∣∣∣(U⊥
C U⊥

C

T
A
)

(i)

∣∣∣∣2
2∑n

j=1

∣∣∣∣(U⊥
C U⊥

C

T
A
)

(j)

∣∣∣∣2
2

. (4)

(Notice that
∑

i∈[m] pi = 1.)
3. Create an m× r sampling matrix S and a r× r diagonal rescaling matrix D,

as defined in [9], in r (an input parameter not greater than m) i.i.d. trials,
using the pi of Equation (4).

4. Return as output the r × n matrix R = STA and the c × r matrix U =(
DSTC

)+
D.

Note that the time required to compute the SVD of C is O(c2m), and computing
the probabilities pi of (4) takes an additional O(cmn) time. Overall, the running
time of the algorithm is O(mn) since c, r are constants independent of m,n.

In order to obtain some intuition on the construction of U and R, consider
the following “sampled and rescaled” version of Equation (3):

min
X∈Rc×n

∥∥DSTA−DSTCX
∥∥

F
. (5)

Note that in this “sampled and rescaled” problem, the matrix X has the same
dimensions as the matrix X of Equation (3), but that the number of constraints
in the overconstrained problems has been reduced from m to r. We will see
that solving this “sampled and rescaled” problem, and substituting the solution
back into the original problem provides a CUR decomposition with a provable
error bound. That is, let X̃opt =

(
DSTC

)+
DSTA = UR and use X̃opt as an

approximation to Xopt (which achieves the optimal value for the full problem of
Equation (3)). Then, we will be able to bound the error

∥∥∥A− CX̃opt

∥∥∥
F

=

∥∥∥∥∥∥∥A− C
(
DSTC

)+
D︸ ︷︷ ︸

U

STA︸︷︷︸
R

∥∥∥∥∥∥∥
F

= ‖A− CUR‖F . (6)
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Here we have let W = STC be the r × c matrix that corresponds to rows of C
that are in R, i.e., equivalently, W contains the common elements of C and R.
In addition, C consists of a few columns of A, R consists of a few rows of the
matrix A, and U = (DW )+D; note that in general, (DW )+D �= W+.

Rather than proving that this algorithm leads to a choice of U and R such
that ‖A− CUR‖F ≤ (1 + ε) ‖A− CC+A‖F , we establish in the next section a
more general result (of independent interest), of which this is a corollary.

3 Approximating Generalized �2 Regression

3.1 The Generalized �2 Regression Problem

In this section, we present and analyze a random sampling algorithm to approxi-
mate the following generalized �2 regression (or least-squares fit) problem: given
as input a matrix A ∈ Rm×n of rank not greater than k (thus, A = Ak in this
section) and a target matrix B ∈ Rm×p, compute

Z = min
X∈Rn×p

‖B −AkX‖F . (7)

That is, compute the “best” approximation to the matrix B in the basis pro-
vided by the matrix A = Ak. Also of interest is the computation of matrices
that achieve the minimum Z. The “smallest” matrix among those minimizing
‖B −AkX‖F is

Xopt = A+
k B. (8)

Note that we have not placed any constraints on the relationship between m and
n. Since we allow m > n, m = n, and also m < n, our approximation algorithm
for generalized �2 regression can be applied to both overconstrained and under-
constrained problems. We do, however, constrain the rank of the matrix A (in
this section only).

In the special case that m ! n and p = 1, we have the traditional (very
overconstrained) �2 regression (or least-squares fit) problem: given as input a
matrix A ∈ Rm×d and a target vector b ∈ Rm, compute Z = minx∈Rd |b−Ax|2 .
If m > d there are more constraints than variables and the problem is an over-
constrained least-squares fit problem; in this case, there does not in general exist
a vector x such that Ax = b. It is well-known that the minimum-length vec-
tor among those minimizing |b−Ax|2 is xopt = A+b, where A+ denotes the
Moore-Penrose generalized inverse of the matrix A.

In [9], we presented a sampling algorithm for this special case. The algorithm
of [9] was the first to use SVD-based sampling probabilities similar to those we
use in this paper to solve approximately the generalized �2 regression problem (7)
and (8). Generalizing from m! n and p = 1 to arbitrary m, n, and p constitutes
the main technical contribution of this paper. Generalizing the analysis of [9] to
p > 1 right-hand side vectors is straightforward; on the other hand, generalizing
the analysis of [9] from m! n, i.e., very overconstrained �2 problems, to general
m and n is more subtle.
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3.2 Our Main Algorithm and Theorem for This Problem

We present and analyze an algorithm that constructs and solves an induced
subproblem of the �2 regression problem of Equations (7) and (8). Let DSTA
be the r × n matrix consisting of the sampled and appropriately rescaled rows
of the matrix A = Ak, and let DSTB be the matrix consisting of the sampled
and appropriately rescaled rows of B. Then consider the problem

Z̃ = min
X∈Rn×p

∥∥DSTB −DSTAkX
∥∥

F
. (9)

The “smallest” matrix X̃opt ∈ Rn×p among those that achieve the minimum
value Z̃ in the sampled generalized �2 regression problem of Equation (9) is

X̃opt =
(
DSTA

)+
DSTB. (10)

Since we will sample a number of rows r  m of the original problem, we will
compute (10), and thus (9), exactly. Our main theorem, Theorem 4, states that
under appropriate assumptions on the original problem and on the sampling
probabilities, the computed quantities Z̃ and X̃opt will provide very accurate
relative error approximations to the exact solution Z and the optimal matrix
Xopt.

In more detail, our main algorithm for approximating the solution to the
generalized �2 regression problem takes as input an m× n matrix A, an m × p
matrix B, and a positive integer r ≤ m. It returns as output a number Z̃ and a
n× p matrix X̃opt by doing the following:

1. Compute Ak, the “best” rank-k approximation to A.
2. Compute sampling probabilities pi for all i ∈ [m]:

pi =
(1/3)

∣∣∣(UA,k)(i)
∣∣∣2
2∑n

j=1

∣∣∣(UA,k)(j)
∣∣∣2
2

+
(1/3)

∣∣∣(UA,k)(i)
∣∣∣
2

(
U⊥

A,kU
⊥
A,k

T
B
)

i∑n
j=1

∣∣∣(UA,k)(j)
∣∣∣
2

(
U⊥

A,kU
⊥
A,k

T
B
)

j

+
(1/3)

(
U⊥

A,kU
⊥
A,k

T
B
)2

i∑n
j=1

(
U⊥

A,kU
⊥
A,k

T
B
)2

j

. (11)

3. Create an m× r sampling matrix S and an r × r diagonal rescaling matrix
D, as defined in [9], in r i.i.d. trials, using the pi of Equation (11).

4. Solve the induced subproblem, i.e., compute and return the number Z̃ and
the n× p matrix X̃opt given by (9) and (10), respectively.

The algorithm (implicitly) forms a sampling matrix S, the transpose of which
samples with replacement a few rows of Ak and also the corresponding rows of
B, and a rescaling matrix D, which is a diagonal matrix scaling the sampled
rows of Ak and the elements of B. Since r rows of Ak and the corresponding
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r rows of B are sampled, the algorithm randomly samples with replacement
r of the m constraints in the original �2 regression problem. Thus, intuitively,
the algorithm approximates the solution of AkX ≈ B with the exact solution
of the downsampled problem DSTAkX ≈ DSTB. Note that it is the space of
constraints that is sampled and that the dimension of the unknown matrix X is
the same in both problems.

An important aspect of the algorithm will be the nonuniform sampling prob-
abilities (11). Computing these probabilities clearly takes time of the order of
computing the best rank-k approximation to the matrix A plus computing the
product U⊥

A,kU
⊥
A,k

T
B. Note that the probabilities (4) are a special case of (11).

Theorem 4 below is our main quality-of-approximation result for this gener-
alized �2 regression problem. This result states that if the matrix achieving the
minimum in the sampled problem is substituted back into the original problem
then a good approximation to the original generalized �2 regression problem is
obtained.

Theorem 4. Let ε ∈ (0, 1]. Let an m × n matrix A that has rank no greater
than k, an m× p matrix B, and the sampling probabilities {pi}mi=1 be given. Let
Z and Xopt be the solution to the full generalized �2-regression problem given
by (7) and (8), repsectively, and let Z̃ and X̃opt be the solution to the sampled
generalized �2 regression problem, given by (9) and (10), respectively. If the sam-
pling probabilities satisfy (11) and if r ≥ O(d2 ln(1/δ)/ε2), then with probability
at least 1− δ ∥∥∥B −AkX̃opt

∥∥∥
F
≤ (1 + ε) ‖B −AkXopt‖F .

By considering the special case where B is any m× n matrix A, where A is any
m× c matrix consisting of c actual columns of A, and where k = rank(C), then
Theorem 2 follows as a corollary of Theorem 4.

3.3 Proof of Theorem 4

Due to space limitations, the proof is omitted. It is a generalization of the proof
of the main theorem of [9]. Alternatively, see [8].

4 Concluding Remarks

We have presented the first known polynomial time algorithm for obtaining a
(1+ ε) relative error CUR approximation to a given matrix A. It was previously
not even known if such a CUR representation exists, and the best known prior
work involved large additive error of ε ‖A‖F . This problem is of interest in data
analysis, and improved bounds will be useful. Further, it is an interesting open
problem whether deterministic results can be btained that match our randomized
results. Finally, the sampling method we use has found a few applications since
we introduced it in [9]; it is of interest to either find other applications or replace
it by simpler sampling methods.
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Abstract. A popular approach in combinatorial optimization is to model
problems as integer linear programs. Ideally, the relaxed linear program
would have only integer solutions, which happens for instance when the
constraint matrix is totally unimodular. Still, sometimes it is possible to
build an integer solution with same cost from the fractional solution. Ex-
amples are two scheduling problems [4,5] and the single disk prefetching
/caching problem [3]. We show that problems such as the three previously
mentioned can be separated into two subproblems: (1) finding an optimal
feasible set of slots, and (2) assigning the jobs or pages to the slots. It is
straigthforward to show that the latter can be solved greedily. We are able
to solve the former with a totally unimodular linear program, from which
we obtain simple combinatorial algorithms with improved worst case run-
ning time.

1 Introduction

In this work, we propose a specific approach to give simpler solutions to several
optimization problems. Herein we considered three such optimization problems:
the first two are scheduling problems : the Tall-Small Jobs Problem [4]
and the Equal Length Jobs Problem [5]. The last one is about Offline
prefetching and caching to minimize stall time [3]. In the Tall-Small
Jobs Problem, we have m machines, n unit length jobs, some of which need
to execute on all the machines at the same time. In the Equal Length Jobs
Problem, jobs have a given equal length p ≥ 1 and each job executes on a
single machine. In both problems jobs have given release times and deadlines in
between which they need to execute. The goal is to find a feasible schedule, and
moreover, for the equal length jobs problem, a feasible schedule that minimizes
total completion time of the jobs. The third optimization problem, Offline
prefetching and caching to minimize stall time belongs to a different
field: we are given a sequence of n page requests and a cache of size k. We can
evict a page from the cache and fetch a new page to replace it. This operation
cannot be done in parallel and costs F time units. When a page request is served
it costs 1 time unit, unless the page is not yet in the cache, then a stall time is
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generated until the corresponding fetch completes. The goal is to decide when
to evict and fetch pages so as to minimize the total stall time.

Though quite different, those three problems were solved in a similar manner.
Unlike previous works where the authors transform the solution of a relaxed
integer linear program into an integer solution, we used a new technique which
simplifies the linear programs, and allows us to get directly optimal integer
solutions: our approach is based on the observation that only the structure of the
solution matters in the objective function, jobs and pages don’t appear namely.
Therefore, we completely dissociate the resolution process into two phases. First
a simplified linear program can be used to find an optimal skeleton for the
solution, and it is only later that we need to worry about assigning jobs or
pages to this skeleton: for scheduling problems, the skeleton is a sequence of
slots, and the assignment maps jobs to slots; for the cache problem, the skeleton
is a sequence of intervals and the assignment associates to every interval a page
to evict at the beginning and a page to fetch at the end. Our skeletons are such
that the assignment phase just comes down do running a greedy algorithm. Our
contribution is that this strategy, where you don’t compute the assignment in the
linear program, leads to linear programs with very simple constraint matrices,
which not only are totally unimodular, but are (the transpose of ) directed vertex
adjacency matrices.

This allows us to reduce our scheduling problems into a shortest path problem
and to reduce the caching problem into a min cost flow problem. It is interesting
to notice, that compared to the previous linear programs, our linear programs
are not completely novel: they are in fact relaxations of the former ones. We
will make this point clear in the next section. The tall/small job scheduling
problem and the prefetch/caching problem can be solved in worst case time
O(n3) improving over respectively O(n10) and O∗(n18). Implementations are
available from the authors home-pages.

2 Scheduling Equal Length Jobs

We will first introduce our method on a basic scheduling problem. We have n
jobs, each of the same length p. Every job j ∈ [1, n] comes with an interval
[rj , Dj ] consisting of a release time and a strict deadline. The goal is to find a
schedule on m parallel machines, such that each job is assigned to an execution
slot consisting of a particular machine and a time interval [sj , sj + p) ⊆ [rj , Dj ].
In addition, all execution slots assigned to a particular machine must be disjoint.
One possible application could be frequency allocation. A network operator has
a link with m optical fiber strings. Users ask for allocations of a frequency band
of fixed size, inside the large frequency band that the particular user devices
can handle. The goal is to find an assignment which satisfies all users. In addi-
tion we want to find the solution (if it exists) that minimizes the total comple-
tion time of the jobs. In the standard Graham notation, this problem is called
P |rj ; pj = p;Dj|

∑
Cj .
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Simons [8] give a complicated greedy-backtrack algorithm running in time
O(n3 log logn), and later improved to O(mn2) [9]. Recently Brucker and
Kravchenko [5] gave another algorithm for it, using a completely different ap-
proach. While their algorithm has worse complexity it is interesting because of a
generalization which permits to solve an open problem, namely minimizing the
weighted total completion time, where jobs are given priority weights.

A generalization of the feasibility problem is to find a maximal set of jobs,
which can all be scheduled between their release times and deadlines. This prob-
lem is still open. Even the more general problem, when jobs come with a weight,
and the goal is to find a maximal weighted feasible job set, is not known to be
NP-hard.

2.1 Previous Work

First we observe that without loss of generality we can restrict ourselves to
schedules where each execution slot starts at some release time plus a multiple
of p, simply by shifting each slot as much to the beginning as possible. Let
T = {ri + (a − 1)p : 1 ≤ i, a ≤ n} be this set of time points. And finally for a
fixed schedule, if we number the execution slots from left to right, we can always
reassign the j-th slot to the machine (j mod m) + 1. This way we don’t need
to take care of which machines the slots are assigned to, as long as there are at
most m slots starting in every time interval of size p, which ensures that slots
don’t overlap on a particular machine. The linear program of [5] has a variable
xjt for each job j and time t ∈ T , with the meaning that xjt = 1 if job j is
executed in the slot [t, t + p). Then the program is to minimize

∑
jt(t + p)xjt

subject to

∀j ∈ [1, n] :
∑
t∈T

xjt = 1 : (every job cmpl.)

∀j ∈ [1, n], ∀t ∈ T \[rj , Dj − p] : xjt = 0 (allowed interval)

∀s ∈ T :
∑

s≤t<s+p

∑
j∈[1,n]

xjt ≤ m (no overlapping)

It is quite clear that there is an integer solution to this linear program if
and only if there is a feasible schedule. While this linear program is not totally
unimodular, the authors of [5] were still able to round the fractional solution
into an integer solution of the same cost.

2.2 Relaxing the Linear Program

The linear program above computes not only the time slots of the schedule, but
also the assignment of jobs to slots. However once we are given the skeleton
of a schedule, meaning a set of time slots, it is always possible to assign the
jobs greedily in EDD fashion: assign to every slot the job with smallest deadline
among the available jobs. We release the linear program from the job assignment,
in order to obtain a simpler linear program which only computes a feasible
skeleton.
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We proceed in several steps. First we weaken equation (every job completes)
into the inequality

∑
t∈T xjt ≥ 1. Then combining this new constraint with

(allowed interval) leads to

∀j ∈ [1, n] :
∑

t∈[rj,Dj−p]

: xjt ≥ 1. (1)

Now for every pair s, t ∈ T , s ≤ t we sum (1) over all jobs j that have [rj , Dj −
p] ⊆ [s, t], upper-bounding the left hand side we obtain

∀s, t ∈ T , s ≤ t :
∑

s′∈[s,t]

∑
j

xjs′ ≥ |{i : [ri, Di − p] ⊆ [s, t]}|. (2)

The constraints are clearly necessary, and we will show later they are also suffi-
cient to get the optimal solutions. We reduce the number of variables and group∑

j xjt by setting yt :=
∑

s≤t

∑
j xjt. Now yt represents the total number of

slots up to time t. To simplify notations we introduce an additional time point
t0 < min T , and set T ′ = T ∪ {t0}. For any time t > t0, we define the functions
round(t) := max{s ∈ T ′ : s ≤ t} and prec(t) := max{s ∈ T ′ : s < t}.

minimize
∑

t∈T (t + p)(yt − yprec(t))
subject to

yt0 = 0, ymaxT − yt0 ≤ n

∀t ∈ T , s = prec(t) : ys − yt ≤ 0 (order)

∀s ∈ T , t = round(s + p) : yt − ys ≤ m (load)
∀i, j ∈ [1, n], s = prec(ri), t = round(Dj − p), s ≤ t : yt − ys ≥ cij , (incl.)

where cij := |{k : [rk, Dk] ⊆ [ri, Dj]}| is the number of jobs which have
to be executed in the interval [ri, Dj ].

The two first inequalities force yt at first and last time step. In fact they are not
necessary, but simplify the proof. The order inequalities ensure that (yt) is a non
decreasing sequence. The load inequalities verify that there are never more than
m slots overlapping, and the inclusion inequalities, are there to ensure that there
is a feasible mapping from jobs to slots, as we show next. Execpt the equality
yt0 = 0, the linear program has in every constraint exactly two variables, and
with the respective coefficients +1 and −1. So the dual of the constraint matrix
is the incidence matrix of a directed graph, which means the constraint matrix
is totally unimodular. Now this property is preserved when adding a row with
a single +1 entry, corresponding to yt0 = 0. Therefore our linear program’s
constraints are in the from Ay ≤ b with A totally unimodular and b integer.
This means that if the linear program has a solution then there is an optimal
integer solution.

Let (yt) be an optimal integer solution to this linear program. It indeed defines
the skeleton of a solution: at each time t ∈ T there will be yt − yprec(t) slots
available for scheduling. Assigning greedily jobs to these slots means scheduling
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at each time on each slot the job with the smallest deadline among the available
jobs, meaning jobs which are not yet scheduled and which release time, deadline
intervals permits to be scheduled in that slot.

Lemma 1. The greedy assignment produces a valid schedule.

Proof. We can notice that according to the second condition and the inclusion
condition on [t0,maxT ], ymaxT = n. We define V to be the multiset of time
slots, such that slot [t, t + p] is contained yt − yprec(t) times. Therefore |V | = n.
As mentioned in the previous section, by the load inequality, the slots can be
assigned to machines without overlapping. So, it only remains to show that there
exist assignments of jobs to slots, which respect release times and deadlines, and
then that the greedy assignment is one of them.

Let U be the set of n jobs, and G(U, V,E) a bipartite graph where E contains
all edges between a job j and a slot [t, t + p] if [t, t + p] ∈ [rj , Dj]. We have to
show that this graph has an injection from U to V , and will use Hall’s theorem
for this.

For a set of jobs S, we denote the neighboring slots ∂S, as the set of all slots
t such that there is a job j ∈ S with (j, t) ∈ E. We need to show that for every
set S, |S| ≤ |∂S|, which by Hall’s theorem, characterizes the existence of an
injection. Let S be a set of jobs. Suppose S can be partitioned into S1 ∪S2 such
that for any jobs i ∈ S1 and j ∈ S2 the intervals [ri, Di − p] and [rj , Dj − p] are
disjoint. Then clearly ∂S is the disjoint union of ∂S1 and ∂S2. Therefore we can
without loss of generality assume that

⋃
j∈S [rj , Dj] is a unique interval [ri, Dj ],

for i = argmini∈Sri and j = argmaxj∈SDj . Then |S| ≤ cij . Also the number of
slots in the interval [ri, Dj) is exactly yt−ys for s = prec(ri), t = round(Dj−p).
From the inclusion inequality we get the required inequality and we conclude
that there exist a valid assignment. Now since |V | = |U | = n, the injection is in
fact a bijection, and there exists at least one perfect matching from jobs to slots
with respect to release times and deadlines.

Proving that you can permute jobs in any of these matching to get the greedy
matching is a quite standard in scheduling: let be two jobs i, j with Di < Dj ,
and i is scheduled at some time t, while j is scheduled at some time s with
ri ≤ s < t. Then it is possible to exchange the jobs i, j in their execution slots
[s, s + p) and [t, t + p). By the use of a potential function, decreasing at each
exchange, it is possible to transform our schedule in a so called earliest due date
schedule. We conclude that since there exists at least a valid assignment, the
greedy assignment is valid as well. ��

This means that an optimal integer solution can be found with a standard linear
program solve. But our linear program describes in fact the dual of a minimum
cost flow problem, with uncapacitated arcs, and a single supply node, which
corresponds to a shortest path problem and can be solved in time O(NM), where
N is the number of variables and M the number of constraints [10, p.558].

Theorem 1. Our algorithm solves P |rj ; pj = p;Dj|
∑

Cj in worst case time
O(n4).
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Proof. Given the instance m, p, r1, . . . , rn, D1, . . . , Dn, we construct the set T of
O(n2) time points. Then we compute for every pair of jobs i, j the number of
jobs cij which need to be scheduled in [ri, Dj ]. A naive algorithm does it in time
O(n3), which would be enough for us. However it can be solved in time O(n2)
using the following recursive formula. We assume jobs are indexed in order of
release times. For convenience we set cn+1,j = 0. Then ci,j = ci+1,j+1 if Di ≤ Dj

and ci,j = ci+1,j if Di > Dj .
This permits to construct the graph G and find in time O(n4) the optimal

solution to the linear program, if there is one. Finally we do an earliest due date
assignment of the jobs to the slots defined by the solution to the linear program
in time O(n logn) using a priority queue. ��

Note that in this section we don’t beat the best known algorithm for P |rj ; pj =
p;Dj|

∑
Cj which is O(mn2) [9]. However, it allows us to introduce our technique

that will be used later on.

3 Scheduling Tall and Small Jobs

In a parallel machine environment, sometimes maintenance tasks are to be done
which involve all machines at the same time. Think of business meetings or
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inventory. Formally we are given n jobs of
unit length p = 1, each job j comes with an
integer release time and a deadline interval
[rj , Dj ] in which it must be scheduled. We
distinguish two kind of jobs. The first n1 jobs
are small jobs, in the sense that they must be
scheduled on one of the m parallel machines,
it does not matter which one. The n2 = n−n1
remaining jobs are tall jobs, in the sense that
they must be scheduled on all the m machines
at the same time.

A time slot is an interval [t, t + 1) for an
integer boundary t. The goal is to find a fea-
sible schedule, where each tall job is assigned
to a different time slot, and each small job
is assigned to a different (machine, time slot)
pair for the remaining time slots. In addition
the time slot to which some job j is assigned must be included in [rj , Dj].

This problem has been solved by Baptiste and Schieber [4], with a linear pro-
gram using O(n2) variables and O(n2) constraints. The linear program is not
totally unimodular, however they manage to show that for the particular objec-
tive function it always has an integer solution. We provide a linear program using
only O(n) variables but still O(n2) constraints, but whose constraint matrix is
the incidence matrix of a directed graph, and can be solved in time O(n3) with
a shortest path algorithm.
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Baptiste and Schieber showed that we can assume that the time interval ranges
only from 1 to n, otherwise the problem could easily be divided into two disjoint
subproblems.

In a similar way than before, we will denote by xt the total number of time
slots assigned to tall jobs in [1, t+1]. For convenience we set x0 = 0. The number
of small jobs that must be scheduled in [s, t] is ks,t = |{j : j ≤ n1, [rj , Dj ] ⊆
[s, t]}| and the same for tall jobs is �s,t = |{j : j > n1, [rj , Dj ] ⊆ [s, t]}|. Let be
the following linear program, which does not have an objective value.

∀t ∈ [1, n] : xt−1 ≤ xt (3)
∀t ∈ [1, n] : xt − xt−1 ≤ 1 (4)

∀s, t ∈ [1, n], s ≤ t : xt−1 − xs−1 ≥ �s,t (5)
∀s, t ∈ [1, n], s ≤ t : xt−1 − xs−1 ≤ t− s− 	ks,t/m
. (6)

Inequalities (3) make sure that (xt) is a non decreasing sequence, (4) that
only one tall job can be scheduled per unit-length interval, (5) that there are
enough slots for the tall jobs and (6) that there are enough remaining slots for
the small jobs.

Once again, the transpose of the constraint matrix is the adjacency matrix
of an oriented graph, and the constant vector b is integer. As previously, it has
optimal integer solutions.

Theorem 2. Fix an instance of the tall/small scheduling problem. There is an
integer solution to this linear program if and only if there is a feasible schedule.

Proof. It is quite obvious that fixing (xt) according to any feasible schedule will
satisfy the constraints.

For the hard direction, let (xt) be a solution to the linear program, we know
it is integer. Then xt − xt−1 — which can be 0 or 1 — is the number of slots
for tall jobs at time t. We will again use Hall’s theorem to show that there is a
valid assignment of the n2 tall jobs to these slots. Inequality (5) for [s, t] = [1, n]
forces xn ≥ n2. Now let be G(U, V,E) the bipartite graph, where U are the
n2 tall jobs, and V the xn slots. There is an edge between job j and time slot
[t, t+1] if it is included in [rj , Dj]. We have to show that for every subset S ⊆ U ,
the number of neighboring slots in V is at least |S|. Let s be the smallest release
time among S and t be the largest deadline among S. Again it is sufficient to
show this claim for connected sets S in the sense that ∪j∈S [rj , Dj ] = [s, t]. Now
|S| ≤ �s,t ≤ xt−1−xs−1, where the last expression is the number of slots in [s, t].
This completes the claim that there is a valid assignment from tall jobs to the
slots.

For the small jobs, note that as,t := (t− s)− (xt−1 − xs−1) is the number of
remaining slots in [s, t] which are not assigned to tall jobs, and as,t ·m small jobs
can fit in that interval. Again inequality (6) implies ks,t ≤ m · as,t, and Hall’s
theorem shows that there is a valid assignment of small jobs to the remaining
slots. ��
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In the original paper [4] the author gave a linear program which is solved in
expected time O(n4) and worst case time O(n10). Using the transformation into
a shortest path problem allows us to improve this complexity.

Corollary 1. The tall/small scheduling problem can be solved in worst case time
O(n3).

Proof. As in the second section, we have a linear program with O(n) variables
and O(n2) constraints which can be produced in time O(n2). We just take an
arbitrary objective function in which all the variable coefficients are positive, and
build the associated graph as in the previous section. Then we compute the all
shortest paths from the source x0, in time O(n3). If this computation detects a
negative cycle, then the problem has no solution. Otherwise, we get the skeleton
of a solution to the problem that minimize the total completion time of the tall
jobs. Finally if there is a solution, the standard earliest due date assignment, first
of tall jobs, then of small ones, produces a valid schedule in time O(n logn). ��

Here again, a direction that we are still exploring is to find another shortest
path algorithm inspired from [9], better fitted for these specific graphs, that
could improve this complexity.

4 Prefetching

Caches are used to improve the memory access times. In this context the memory
unit is called a page, and is stored on a slow disk. The cache can store up to
k pages. Now if a page request arrives, and the page is already in the cache, it
can be served immediately, otherwise it must first be fetched from the disk, and
that introduces a stall time of F units. In the latter case the new page replaces
some other page currently in the cache. The idea of prefetching is to fetch a page
even before it is requested, so as to reduce the stall time: During a fetch which
evicts some page y replacing it by some page z, other requests can be served for
pages currently in the cache and different from y or z. In the single disk model
we consider here, only a single fetch can occur at the same time. The goal is,
knowing in advance the complete request sequence, to come up with a prefetch
schedule, which minimizes total stall time.

While the real life problem is on-line, and has been extensively studied by
Cao et al. [6], the offline problem has first been solved in 1998 [3], by the use of
a linear program, for which it was shown that it always has an optimal integer
solution, while not being totally unimodular. Later in 2000 [2], a polynomial
time algorithm was given modeling the problem as a multi commodity flow with
some postprocessing. Formally the problem can be defined as follows.

The Offline Prefetching problem. The input is a page request sequence
x1, . . . , xn, an initial cache set C1, and a fetch duration F . Let k = |C1| be the
cache size. A fetch is a tuple (s, y, e, z), where y, z are pages and s, t ∈ [1, n] are
time points with s ≤ e ≤ s+F . The meaning is that at time s, the page y leaves
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the cache and at time e the page z enters the cache. Its cost, the induced stall
time, is F − (e − s). The goal is to come up with a fetch sequence minimizing
the total stall time, such that two fetches intersect in at most one time point,
and such that every request can be served, i.e. ∀t ∈ [1, n] : xt ∈ Ct, where Ct is
the cache at time t obtained from Ct−1 by evicting/fetching all the pages that
had to be evicted/fetched at time t. To simplify notation we assume that the
request sequence contains at least k distinct pages, that C1 consists of the first
k distinct requests, and that at time 1, no page has left/entered the cache yet.

Albers, Garg and Leonardi defined a linear program with a characteristic vari-
able for every fetch interval [s, e], and two additional characteristic variables for
every pair (y, [s, e]) indicating whether page y enters (resp. leaves) the cache at
the beginning (resp. the end) of the fetch [s, e]. Finally they show that the linear
program has always an integer solution for the considered objective function.

As observed in [3] without loss of generality the page to be evicted at time t
from the cache Ct−1 is the page, who’s next request is furthest in the future or
which is never requested again. Also without loss of generality the page to be
fetched at time t is the page who’s next request starting from t is nearest in the
future. Therefore all the information about the fetches is in the time intervals,
and we will write a linear program which produces only the time intervals in
which evictions/fetches occur. The actual pages have to be assigned in a post
processing, in greedy manner as just mentionned. Rather to have single variable
for every interval and every page, we only count how many pages entered and
how many left the cache in total since the beginning, which leaves us with O(n)
instead of O(n2F ) variables. We denote by It (resp. Ot ) the total number of
pages which entered (resp. left) the cache up to time t included. We get the
following linear program.

minimize FOn − FI1 −
∑n

t=1(Ot − It),
subject to

∀t ∈ [2, n] : Ot−1 ≤ Ot and It−1 ≤ It (7)
∀t ∈ [1, n] : Ot ≥ It (8)
∀t ∈ [1, n] : Ot ≤ It + 1 (9)
∀t ∈ [1, n] : Imin{t+F,n} ≥ Ot (10)

∀1 ≤ s ≤ t ≤ n : It −Os ≥ |{xs, xs+1, . . . , xt}| − k (11)

Inequalities (7) make sure that (Ot) and (It) are non decreasing sequences, (8)
that the cache cannot overflow, (9) that two fetches don’t overlap in time, (10)
that a fetch length is at most F and (11) that there are enough fetches to serve
all requests.

The optimal solution of this linear program is always integer, since it is totally
unimodular (for the same reason as in previous section: its constraint matrix the
transposed incidence matrix of a directed graph.)

Theorem 3. Let (It, Ot) be an optimal integer solution to the linear program.
Then there is valid fetch sequence of the same cost, which can be built by greedy
assignment.
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Proof. First we observe that the cost function makes sure that On = In, which
ensures that all interval are eventually closed. The solution defines m = On

intervals as follows. For every j = 1 . . .m, let sj be the smallest time such that
Osj ≥ j and ej the smallest time such that Iej ≥ j. Then by (8) and (10) we
have sj ≤ ej ≤ sj + F . Which means that all intervals are well defined and of
length smaller or equal than F . Now by (9), ej ≤ sj+1 (otherwise, we wouldd
have Iej + 1 ≥ Oej > Osj+1 but Iej = j and Osj+1 = j + 1 by definition.), and
this for all j < m, so the intervals do not overlap (but the ending point of one
might be the starting point of another). Moreover the objective value of (It, Ot),
equals the total stall time of these intervals, for at each time t, the difference Ot

- It is 1 if an interval is currently opened and is 0 otherwise. It remains to prove
that the greedy assignement of pages to evict/fetch to each interval is such that
all requests are served, i.e. that the constraints (11) are sufficient. We denote by
Cs the cache obtained at time s, after all entrances and evictions that occur at
time s. We will show that the following invariant holds in a solution of our linear
program for every time s ∈ [1, n],

∀t ∈ [s, n] : It − Is ≥ |{xs, . . . , xt}\Cs|. (12)

It means that if the number of pages requested in [s, t] but not in the cache at
time s is a, then at least a pages must enter the cache somewhere in [s + 1, t].
In particular it means for t = s, that the page requested at time s will be the in
the cache at that moment. The proof is by induction on s.

Basis case s = 1. Let t0 be the greatest request time such that xt0 is not in
C1. Then by the assumption that initially the cache contains the first k distinct
requests, we have that for t < t0, {x1, . . . , xt} ⊆ C1, so the right hand side of
(12) is 0 and (12) holds by (7). For t ≥ t0, since the intersection of {x1, . . . , xt}
and C1 is exactly k, the invariant holds by (11) and O1 = I1 = 0.

Induction case. Assume the invariant holds for some s. Let’s show that it also
holds for s + 1. Several things can happen at time s + 1, pages can leave the
cache and pages can enter the cache. We will do these operations step by step,
transform slowly Is into Is+1 and Cs into Cs+1, and show that each step preserves
the invariant (12).

By induction hypothesis xs ∈ Cs, so {xs, . . . , xt}\Cs = {xs+1, . . . , xt}\Cs.
Therefore, if nothing happens and no page enter or leave the cache, then Cs+1 =
Cs, Is = Is+1 and the invariant is preserved for s + 1.

Now we deal with the case when there is some page movement at time s +
1, that is Is+1 > Is or Os+1 > Os or both. We artificially decompose this
page movement in as many times as needed, so that at each time there is only
one operation happening: a fetch or an eviction. The page movements at those
intermediary times are set so as to alternatively evict and enter pages, among
the Os+1−Os pages to evict and the Is+1−Is pages to enter. Of course if a fetch
is pending at time s, that is |Cs| = k−1, then we start with entering a new page
and otherwise if the cache is full, i.e. |Cs| = k, we start with evicting a page.
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Since the number of total entrances and evictions up to some time can differ by
at most one, it is possible to do so. Therefore, we need to do the induction case
only in the case when a page is entering the cache or when one is leaving the
cache but not both.

When page is entering the cache, we have Is+1 = Is + 1. Let z be the page
entering the cache, and let t0 ≥ s + 1 be the next request time of z. Then if
t < t0, by the choice of z, all requests of xs+1, . . . , xt must be in Cs+1, so the
right hand side of (12) at time s + 1 is 0, and the inequality holds by (7). Now
if t ≥ t0, since z ∈ Cs+1 but z �∈ Cs, the left hand side of (12) at time s + 1 has
decreased by 1 compared to time s, but at the same time Is+1 = Is + 1, so both
sides of the invariant decrease by 1 and by induction the inequality is preserved
at time s + 1.

Now consider the case when a page leaves the cache. Let y be the leaving
page. Then Is = Is+1 and Os+1 = Os + 1. Let t0 be the next request time of y
or let t0 = n + 1 if y is never requested again. Then if t < t0, removing y from
Cs+1 does not change the right hand side of (12) when replacing s by s+1. The
left hand side does not change either since no page enters the cache, and the
inequality is preserved. For t ≥ t0 however by the choice of the evicted page y,
we have that Cs+1 ⊆ {xs+1, . . . , xt}. So the left hand side of (12) at time s + 1
is |{xs+1, . . . , xt}| − (k − 1), and Is+1 = Os+1 − 1 since we have just evicted a
page. Therefore, (12) holds by (11). ��
Theorem 4. The offline prefetch problem can be solved in time O(n3) if F =
O(n) and in time O(n3 logn) otherwise.

Proof. The dual of the linear program is a min cost flow problem with unca-
pacitated arcs, where the supply/demand bi of the nodes i are given by the
coefficients in the cost function and where the arc costs cij are given by right
hand sides of the inequalities. It could be solved in time O(n3 logn) using [7].
To solve it in O(n3), when F = O(n), we first explode the source of supply
F − 1 into F − 1 vertices of supply +1 and do the same with the sink of demand
1 − F . The new graph has only sources of supply +1 and sinks of demand −1.
Clearly there is a bijection between the min cost flows of the new and the origi-
nal graph. Moreover a min cost flow matches sources to sinks such that the flow
between a matched source/sink pair uses a shortest path (since the arcs have
unbounded capacity) and such that the total distances are minimal. To obtain
this flow we first compute the distances in the graph between all source/sink
pairs, in time O(n3) using Floyd-Marshall’s algorithm. Then we construct the
bi-partite sources/sinks graph, where every edge is weighted with the source-sink
distance in the original graph. Then a minimum weighted perfect matching can
be computed in time O(n3) provided F ∈ O(n), using Edmond’s algorithm with
adapted data-structures. The optimal flow then is obtained by adding a unit flow
on the shortest path between source i and sink j, for every edge of the matching
corresponding to source i and sink j.

Finally to get an optimal solution for the primal linear program, we use the
standard technique of computing a shortest path tree in the residual graph ob-
tained from the flow [1, chapter 9]. ��
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5 Conclusion

Further work would include trying to find other optimization problems where
our technique may apply, and maybe generalize from it a general framework. We
are also interested in improving the combinatorial algorithms that arise from the
graph structures in the scheduling problems: indeed those graphs have, among
others, the property that once the vertices drawn as points on a line, the arcs
from left to right have positive weights and the ones from right to left negative.
One idea for instance is to try and extract from Simons and Warmuth’s algorithm
a shortest path algorithm suitable for our class of graphs.

We wish to thank Arthur Chargueraud, Philippe Baptiste, Miki Hermann and
Leo Liberti for helpful comments.
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Abstract. Our main result is an optimal online algorithm for preemp-
tive scheduling on uniformly related machines with the objective to min-
imize makespan. The algorithm is deterministic, yet it is optimal even
among all randomized algorithms. In addition, it is optimal for any fixed
combination of speeds of the machines, and thus our results subsume all
the previous work on various special cases. Together with a new lower
bound it follows that the overall competitive ratio of this optimal algo-
rithm is between 2.054 and e ≈ 2.718.

1 Introduction

We study an online version of the classical problem of preemptive scheduling on
uniformly related machines. We are given m machines with speeds s1 ≥ s2 ≥
. . . ≥ sm and a sequence of jobs, each described by its processing time (length).
The time needed to process a job with length p on a machine with speed s is p/s.
In the preemptive version, each job may be divided into several pieces, which can
be assigned to different machines in disjoint time slots. (A job may be scheduled
in several time slots on the same machine, and there may be times when a
partially processed job is not running at all.) The objective is to find a schedule
of all jobs in which the maximal completion time (makespan) is minimized.

In the online problem, jobs arrive one-by-one and we need to assign each
incoming job to some time slots on some machines, without any knowledge of the
jobs that arrive later. This problem, known as list scheduling, was first studied in
Graham’s seminal paper [11] for identical machines (i.e., s1 = . . . = sm = 1). In
the preemptive version, upon arrival of a job its complete assignment at all times
must be given and we are not allowed to change this assignment later. In other
words, the online nature of the problem is in the order in the input sequence
and it is not related to possible preemptions and the time in the schedule.

The offline scheduling with makespan objective is well understood, and results
for uniformly related machines were usually obtained using similar methods as
for identical machines. Exact solutions can be computed with preemptions and
approximation schemes exist for the non-preemptive version, which is NP-hard.

In the online version of non-preemptive scheduling, tight results are known
only for two related or three identical machines. For deterministic algorithms on
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m identical machines, there still remains a small gap between the lower bound of
1.880 [13] and the upper bound of 1.923 [9], and a much larger gap for uniformly
related machines, where the current bounds are 2.438 and 5.828 [2]. For random-
ized non-preemptive scheduling even less is known, the bounds are 1.581 and
1.916 for identical machines [3,14,1] and 2 and 4.311 for related machines [8,2].
It is still open whether randomized algorithms are better than deterministic.

The study of preemptive scheduling was partially motivated by studying the
power of randomization in the non-preemptive setting. All previous lower bounds
for randomized non-preemptive scheduling, except for [15], use speed sequences
where tight bounds for preemptive scheduling are known and the same lower
bound (but not the algorithm) works also in randomized non-preemptive setting.

All previous online algorithms that work for arbitrary speeds, preemptive or
not, were obtained by a doubling approach. This means that a competitive al-
gorithm is designed for the case when the optimum is approximately known in
advance, and then, without this knowledge, it is used in phases with geometri-
cally increasing guesses of the optimum. Such an approach probably cannot lead
to an optimal algorithm. Instead, our algorithm computes exactly the current
optimum at each step of the sequence and takes full advantage of this knowledge.

In all the previously known optimal algorithms for special cases, the optimal
algorithms try to maintain certain fixed ratio of loads on the machines, generally
with largest part of each job scheduled on the fast machine. These algorithms
create no “holes” in the schedules, i.e., each machine is always busy from time
0 until some time t and idle afterwards. In contrast, our algorithm attempts
to schedule the whole job on as slow machine as possible without violating the
desired competitive ratio. This is done even at the cost of creating “holes” in
the schedule, and using these holes efficiently is the key issue.

Previous results for preemptive online scheduling. The oldest result is by
Chen et al. [4] for m identical machines. They gave an optimal algorithm with
the competitive ratio 1/(1−(1−1/m)m), which is 4/3 for m = 2 and approaches
e/(e−1) ≈ 1.582 when m→∞. An optimal online algorithm for the special case
of two related machines was given by Wen and Du [16], and by Epstein et al. [7].
The optimal competitive ratio in this case is 1 + s1s2/(s2

1 + s1s2 + s2
2). A special

case with non-decreasing speed ratios, i.e., si−1/si ≤ si/si+1 for i = 2, . . . ,m−1,
was studied by Epstein [6]; note that this subsumes both identical and two related
machines. Epstein gave an optimal competitive ratio for each sequence of speeds
in this class; see Theorem 6.1 for its value. All these algorithms are deterministic
and matching lower bounds are known to hold also for randomized algorithms.

For the general case, Ebenlendr and Sgall [5] obtained a 4-competitive deter-
ministic algorithm and an e competitive randomized algorithm, where e ≈ 2.718.

Epstein and Sgall [8] gave lower bounds on the competitive ratio for the worst
case combination of speeds for any fixed m. These bounds approach 2 when
m→∞ and all hold for randomized algorithms.

Our results. Our main result is an optimal online algorithm for preemptive
scheduling on uniformly related machines. The algorithm achieves the best pos-
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sible competitive ratio not only in the general case, but also for any number of
machines and any particular combination of machine speeds. Our algorithm is
deterministic, but its competitive ratio matches the best randomized algorithm.
This proves that, similarly to the case of identical machines and other special
cases studied before, randomization does not help for preemptive scheduling.

For any fixed set of speeds the competitive ratio of our algorithm can be com-
puted by solving a linear program. We do not know, however, what is its worst
case value over all speed combinations. Nevertheless, using the fact that there
exists e-competitive randomized algorithm [5], we conclude that our (determin-
istic) algorithm is also e-competitive.

In Section 3 we present the linear program that gives the optimal competitive
ratio and the lower bound, in Section 4 we describe the algorithm and its analysis.

In Section 5 we prove that no algorithm can be better than 2.054-competitive,
by providing an explicit numerical instance on 100 machines. This improves the
lower bound of 2 of Epstein and Sgall [8].

In Section 6 we analyze the linear program for computing the optimal com-
petitive ratio for certain cases of speed sequences. We show that the formula
given by Epstein [6] for non-decreasing speed ratios gives an upper bound on
the competitive ratio for all possible speed combinations, and we extend the
region where it is proven to be optimal. For m = 3 we give an exact formula for
the competitive ratio for any speed combination.

2 Preliminaries

Let Mi, i = 1, 2, . . . ,m denote the m machines, and let si be the speed of Mi.
Without loss of generality we assume that the machines are sorted by decreasing
speeds, i.e., s1 ≥ s2 ≥ . . . ≥ sm. To avoid degenerate cases, we assume that
s1 > 0. Let J = (pj)n

j=1 denote the input sequence of jobs, where n is the
number of jobs and pj is the length, or processing time, of jth job. Given J , let
Jj denote a sequence that is obtained from J by removing the last j − 1 jobs.

The time needed to process a job with length p on machine with speed s is
equal p/s; each machine can process at most one job at any time. Preemption
is allowed, which means that each job may be divided into several pieces, which
can be assigned to different machines, but any two time slots to which a single
job is assigned must be disjoint (no parallel processing of a job); there is no
additional cost for preemptions. The objective is to find a schedule of all jobs
in which the maximal completion time (makespan) is minimized. In Graham’s
three-field notation the problem is denoted Q|pmtn|Cmax. For an algorithm A, let
CA

max[J ] denote the makespan of the schedule of J , produced by A. By C∗
max[J ]

we denote the makespan of the optimal offline schedule of J .
In the online version of this problem, denoted Q|online-list,pmtn|Cmax, jobs

arrive one-by-one and we need to assign each incoming job to some time slots
on some machines, without the knowledge of the jobs that arrive later. Upon
release of each job a complete assignment of this job at all times must be given.
An online algorithm A is called R-competitive if for every input J , the makespan
is at most R times the optimal makespan, i.e., CA

max[J ] ≤ R · C∗
max[J ]. In case
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of a randomized algorithm, the same must hold for every input for the expected
makespan of the online algorithm, E[CA

max[J ]] ≤ R · C∗
max[J ], where the expec-

tation is taken over the random choices of the algorithm.
There are two easy lower bounds on C∗

max[J ]. First, C∗
max[J ] can be bounded

by the total work done on all machines. Second, the makespan of the optimal
schedule is at least the makespan of the optimal schedule of any � jobs. For � < m
this latter schedule uses only � fastest machines, so the work of any � jobs must
fit on these machines. Formally, the bounds are:

C∗
max[J ] ≥

∑n
j=1 pj∑m
i=1 si

and C∗
max[J ] ≥ P
∑


i=1 si

for � = 1, . . . ,m− 1, (1)

where P
 denotes the sum of � largest processing times in J . It is known that
C∗

max[J ] is the minimal value that satisfies (1), see [12,10,5].
The proof of the following lemma is very helpful in understanding our results.

Lemma 2.1 ([8]). For any randomized R-competitive on-line algorithm A for
preempted scheduling on m machines, and for any input sequence J we have∑n

j=1 pj ≤ R ·
∑m

i=1 siC
∗
max[Ji]. For non-preemptive scheduling, the same holds

if C∗
max refers to the non-preemptive optimal makespan.

Proof. Fix a sequence of random bits used by A. Let Ti denote the last time
when at most i machines are running and set Tm+1 = 0. First observe that∑n

j=1 pj ≤
∑m

i=1 siTi: During the time interval (Ti+1, Ti] at most i machines are
busy, and their total speed is at most s1 + s2 + . . . + si. Thus the maximum
possible work done in this interval is (Ti − Ti+1)(s1 + s2 + . . . + si). Summing
over all i, we obtain

∑m
i=1 siTi. In any valid schedule all the jobs are completed,

so the observation follows.
Since the algorithm is online, the schedule for Ji is obtained from the schedule

for J by removing the last i−1 jobs. At time Ti there are at least i jobs running,
thus after removing i−1 jobs at least one machine is busy at Ti. So we have Ti ≤
CA

max[Ji] for any fixed random bits. Averaging over random bits of the algorithm
and using

∑n
j=1 pj ≤

∑m
i=1 siTi, we have

∑n
j=1 pj ≤ E

[∑m
i=1 siC

A
max[Ji]

]
=∑m

i=1 siE
[
CA

max[Ji]
]
. Since A is R-competitive, i.e., E[CA

max[Ji]] ≤ R · C∗
max[Ji],

the lemma follows. ��

3 The Optimal Competitive Ratio and the Lower Bound

The optimal competitive ratio for given speeds s1, . . . , sm turns out to be equal
to the best lower bound obtained by Lemma 2.1. In this section we formalize
this bound using a linear program and prove the lower bound.

For each input sequence J = (pj)n
j=1, Lemma 2.1 shows that the competitive

ratio is at least
∑n

j=1 pj/(
∑m

i=1 siC
∗
max[Ji]). The set of input sequences can be

restricted in two ways. First, we may assume that the processing times of jobs
are non-decreasing: Sorting the jobs can only decrease the values of C∗

max[Ji], as
in each of these partial instances some jobs are possibly replaced by smaller jobs;
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thus the bound on R can only increase. Second, the bound is invariant under
scaling, so we may assume that

∑m
i=1 siC

∗
max[Ji] = 1. The lower bound is then

simply the sum of all processing times.
Now it is easy to give a linear program to compute the optimal lower bound,

given the parameters s1 ≥ · · · ≥ sm. The linear program has variables q1, q2,
. . ., qm, O1, O2, . . ., Om. Variable q1 corresponds to the sum of all processing
times in Jm, variables q2, . . . , qm to the processing times of the last m− 1 jobs,
and variables Ok correspond to C∗

max[Jm−k+1].

Definition 3.1. Let r(s1, . . . , sm) denote the value of the objective function of
the optimal solution of the following linear program:

maximize r(s1, . . . , sm) = q1 + q2 + q3 + . . . + qm

subject to
q1 + . . . + qk ≤ (s1 + s2 + . . . + sm)Ok for k = 1, . . . ,m

qj + qj+1 + . . . + qk ≤ (s1 + s2 + . . . + sk−j+1)Ok for 2 ≤ j ≤ k ≤ m
1 = s1Om + s2Om−1 + . . . + smO1
qj ≤ qj+1 for j = 2, . . . ,m− 1
0 ≤ q1
0 ≤ q2

(2)

The linear program has a feasible solution with the only non-zero variable Om =
1/s1. It is also easy to see that the objective function is bounded, the constraints
imply that q1 +q2 + . . .+qm ≤ (s1 +s2 + . . .+sm)Om ≤ m ·s1Om ≤ m. Thus the
value r(s1, . . . , sm) is well-defined. Finally, the linear program has a quadratic
number of constraints, and thus it can be solved efficiently.

Theorem 3.2. Any randomized online algorithm for m machines with speeds
s1 ≥ s2 ≥ · · · ≥ sm has competitive ratio at least r(s1, . . . , sm).

Proof. There exist values q∗1 , q∗2 , . . . , q∗m, O∗
1 , O∗

2 , . . . , O∗
m of variables q1, q2, . . . ,

qm, O1, O2, . . . , Om, which satisfy all the constraints of the linear program (2)
and r(s1, . . . , sm) = q∗1 + q∗2 + . . . + q∗m. Create instance I as follows: The first
m jobs have processing times p1 = · · · = pm = q∗1/m. The remaining m− 1 jobs
have processing times pm+1 = q∗2 ,pm+2 = q∗3 , . . . ,p2m−1 = q∗m.

We claim that the first two families of constraints of (2) guarantee that the
values O∗

k satisfy (1) for C∗
max[Im−k+1]. If the set of � largest jobs includes a job

with processing time p1 then it is easy to see that this bound in (1) is dominated
either by the second bound for �′ < � such that �′ largest jobs do not contain
any job of processing time p1, or by the first bound which includes all m jobs
with processing time p1. In the remaining cases, the constraints of (2) imply
the corresponding bounds in (1). Thus C∗

max[Im−k+1] ≤ O∗
k for k = 1, 2, . . . ,m.

Finally, Lemma 2.1 implies that the competitive ratio of any algorithm is at least

q∗1 + q∗2 + . . . + q∗m∑m
i=1 siC∗

max[Ji]
≥ q∗1 + q∗2 + . . . + q∗m

s1O∗
m + . . . + smO∗

1
= r(s1, . . . , sm),

using the constraint s1O
∗
m + . . . + smO∗

1 = 1 in the last step. ��
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4 The Optimal Algorithm

In this section we present the r(s1, . . . , sm)-competitive algorithm RatioStretch
for all combinations of speeds. The idea of the algorithm is fairly natural. First
we compute the desired competitive ratio for the given speeds, r = r(s1, . . . , sm).
Next, for each arriving job, we compute the optimal makespan for jobs that have
arrived so far and run the incoming job as slow as possible so that it finishes at
r times the computed optimal makespan. There are many ways of creating such
a schedule given the flexibility of preemptions. We choose a particular one based
on the notion of a virtual machine from [5].

M1 M2 M3 M4M5

The ith virtual machine, denoted Vi, at
each time τ contains the ith fastest machine
among those real machines M1, M2, . . ., Mm

that are idle at time τ . When we sched-
ule (a part of) a job on a virtual machine
during some interval, we actually schedule
it on the corresponding real machines that
are uniquely defined at each time; this is al-
ways possible to achieve using preemptions.
To simplify the description of the algorithm,
we assume that there are infinitely many real
machines of speed zero, i.e., si = 0 for any
i > m. Scheduling a job on one of these zero-
speed machines means that we do not sched-
ule the job at the given time at all. Initially,
each virtual machine Vi corresponds to the
real machine Mi; as the incoming jobs are scheduled, the assignment of the real
machines to the virtual machines changes.

The figure above illustrates an example of a schedule of three jobs produced
by RatioStretch. Similarly shaded regions correspond to scheduled pieces of the
same job. The bold lines mark the first two virtual machines.

In our algorithm, upon arrival of a job j we compute a value Tj defined as r
times the current optimal makespan. Then we find two adjacent virtual machines
Vk and Vk+1, and time tj , such that if we schedule j on Vk+1 in the time interval
(0, tj ] and on Vk from tj on, then j finishes exactly at time Tj . It is essential
that each job is stretched over the whole interval (0, Tj], which is the maximal
time interval which it can use without violating the desired competitive ratio.
Next we update the virtual machines, which means that in the interval (0, Tj ]
we merge Vk and Vk+1 into Vk and shift machines Vi+1, i > k, to Vi. Then we
continue with the next job. This gives a complete informal description of the
algorithm sufficient for its implementation.

To prove that our algorithm works, it is sufficient to show that each job j
scheduled on V1, completes by time Tj; this is equivalent to the fact that we can
schedule j as described above. We show that this is true due to our choice of r.

To facilitate the proof, we maintain an assignment of scheduled jobs (and
consequently busy machines) to the set of virtual machines, i.e., for each virtual
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machine Vi we compute a set Si of jobs assigned to Vi. Although the incoming
job j is split between two different virtual machines, at the end of each iteration
each scheduled job belongs to exactly one set Si, since right after j is scheduled
the virtual machines executing this job are merged (during the execution of j).
We stress that the sets Si serve only as means of bookkeeping for the purpose
of the proof, and their computation is not an integral part of the algorithm.

At each time τ , machine Mi′ belongs to Vi if it is the ith fastest idle machine
at time τ , or if it is running a job j ∈ Si at time τ . At each time τ the real
machines belonging to Vi form a set of adjacent real machines, i.e., all machines
Mi′ ,Mi′+1, . . . ,Mi′′ for some i′ ≤ i′′. This relies on the fact that we always
schedule a job on two adjacent virtual machines which are then merged into a
single virtual machine during the times when the job is running, and on the
fact that these time intervals (0, Tj] increase with j, as adding new jobs cannot
decrease the optimal makespan.

Let vi(t) denote the speed of the virtual machine Vi at time t, which is the
speed of the unique idle real machine that belongs to Vi. Let Wi(t) =

∫ t

0 vi(τ)dτ
be the total work which can be done on machine Vi in the time interval (0, t].
By definition we have vi(t) ≥ vi+1(t) and thus also Wi(t) ≥Wi+1(t) for all i and
t. Note also that Wm+1(t) = vm+1(t) = 0 for all t.

Algorithm RatioStretch. First solve the linear program (2) for a fixed sequence
of speeds s1 ≥ s2 ≥ · · · ≥ sm given on input. Let r = r(s1, . . . , sm) be the optimal
objective value. Also initialize T0 := 0, Si := ∅, vi(τ) := si, and vm+1(τ) := 0
for all i = 1, 2, . . . ,m and τ ≥ 0.
For each arriving job j, compute the output schedule as follows:

(1) Let Tj := r · C∗
max[(pi)

j
i=1].

(2) Find the smallest k such that Wk(Tj) ≥ pj ≥Wk+1(Tj). If such k does not
exist, then output “failed” and stop. Otherwise find time tj ∈ [0, Tj] such
that Wk+1(tj) + Wk(Tj)−Wk(tj) = pj .

(3) Schedule job j on Vk+1 in time interval (0, tj] and on Vk in (tj , Tj].
(4) Set vk(τ) := vk+1(τ) for τ ∈ (tj , Tj], and vi(τ) := vi+1(τ) for i = k +

1, . . . ,m and τ ∈ (0, Tj]. Also set Sk := Sk ∪Sk+1 ∪{j}, and Si := Si+1 for
i = k + 1, . . . ,m.

We leave out implementation details. We only note that job j can be pre-
empted only at times Tj′ for j′ < j or at times tj′ for j′ ≤ j, i.e., at most 2j − 1
times. The total number of preemptions is at most n(m+1), since at most m−1
jobs are preempted at each time Tj and at most two jobs are preempted at each
time tj . This also implies that the functions vi and Wi are piecewise linear with
at most 2n parts. Thus it is possible to represent and process them efficiently.
The computation of r and Tj is efficient as well.

Theorem 4.1. RatioStretch is r = r(s1, . . . , sm) competitive for online preemp-
tive scheduling on m uniformly related machines with speeds s1 ≥ s2 ≥ · · · ≥ sm.

Proof. If RatioStretch schedules a job, it is always completed at time Tj ≤ r ·
C∗

max[(pi)n
i=1]. Thus to prove the theorem, it is sufficient to guarantee that the
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algorithm does not fail to find machines Vk and Vk+1 for the incoming job j.
This holds if there is always enough space on V1, i.e., that pj ≤ W1(Tj) in
the iteration when j is to be scheduled. Since Wm+1 ≡ 0, this is sufficient to
guarantee that required k exists. Given the choice of k, it is always possible to
find time tj as the expression Wk+1(tj)+Wk(Tj)−Wk(tj) continuously decreases
from Wk(Tj) ≥ pj for tj = 0 to Wk+1(Tj) ≤ pj for tj = Tj .

To avoid cases, we assume that the input sequence starts by m jobs with
processing time 0. In RatioStretch, they are assigned to V1, but they are actually
never running and thus do not affect the schedule produced by RatioStretch.

Let j1, j2, . . . , jm−1 denote the last m− 1 jobs in S1, ordered as they appear
on input. Let I be the sequence of the remaining jobs in S1, and let P be the
total processing time of jobs in I. Finally, let jm = j be the incoming job.

Consider any i = 1, . . . ,m and any time τ ∈ (0, Tji ]. Using the fact that the
times Tj are non-decreasing in j and that the algorithm stretches each job j
over the whole interval (0, Tj], there are at least m− i jobs from S1 running at
τ , namely jobs ji, ji+1, . . . , jm−1. Including the idle machine, there are at least
m+1− i real machines belonging to V1. Since V1 is the first virtual machine and
the real machines are adjacent, they must include the fastest real machines M1,
. . . , Mm+1−i. It follows that the total work that can be processed on the real
machines belonging to V1 during the interval (0, Tjm ] is at least s1Tjm +s2Tjm−1+
· · ·+ smTj1 . The total processing time of jobs in Si is P +pj1 +pj2 + · · ·+pjm−1 .
Thus to prove that jm can be scheduled on V1 we need to verify that

pjm ≤ s1Tjm + s2Tjm−1 + · · ·+ smTj1 − (P + pj1 + pj2 + · · ·+ pjm−1). (3)

Let ν1, ν2, . . . , νm be the sequence of jobs j1, j2, . . . jm ordered so that the
processing times pνi are non-decreasing, i.e., pνi ≤ pνi+1 for i = 1, . . . ,m−1. We
claim that for each i = 1, . . . ,m,

Tji ≥ r · C∗
max[(I, pj1 , pj2 , . . . , pji)] ≥ r · C∗

max[(I, pν1 , pν2 , . . . , pνi)].

The first inequality follows since removing some jobs from the input sequence
cannot increase C∗

max. The second one can be thought as replacing some of the
jobs by smaller ones and then permuting them; this also cannot increase C∗

max.
The inequality (4) and the fact that pj1 +pj2 + · · ·+pjm = pν1 +pν2 + · · ·+pνm

together imply that to prove (3), it is sufficient to prove

P + pν1 + pν2 + · · ·+ pνm ≤ r ·
m∑

i=1

siC
∗
max[(I, pν1 , pν2 , . . . , pνm−i+1)]. (4)

Let σ =
∑m

i=1 siC
∗
max[(I, pν1 , pν2 , . . . , pνi)]. Let q1 = (P + pν1)/σ, qj = pνj /σ,

for j = 2, 3, . . . ,m, and let Ok = C∗
max[(I, pν1 , pν2 , . . . , pνk

)]/σ for k = 1, . . . ,m.
These values satisfy all constraints of (2), as follows by using inequalities (1) for
instances (I, pν1 , pν2 , . . . , pνk

). Thus (P +pν1 +pν2 + · · ·+pνm)/σ = q1+q2+ · · ·+
qm ≤ r. This proves (4) and thus also (3) and correctness of the algorithm. ��

Theorems 3.2 and 4.1 show that RatioStretch is as good as any randomized
algorithm. Together with e-competitive randomized algorithm from [5] we get:
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Corollary 4.2. RatioStretch is e-competitive for online preemptive scheduling
on uniformly related machines with arbitrary speeds, where e ≈ 2.718.

5 Numerical Lower Bounds

We have the optimal algorithm for arbitrary speeds, but we do not know the
numerical value of its competitive ratio. The competitive ratio for m machines
is equal to the solution of a quadratic program obtained from (2) by considering
si to be variables (in addition to qj and Ok). However, this quadratic program
is not convex and we do not know how to solve it efficiently. We have obtained
some lower bounds numerically using mathematical software Maple.

A lower bound is simply a feasible solution of (2). Once the values of si are
given, verification only involves solving a linear program. Once also the optimal
values q∗j are given, it is trivial to compute values O∗

k and verify (2). A complete
file with our solutions for m = 3, . . . , 70 and m = 100 in a format suitable for
computer verification is available at http://math.cas.cz/sgall/ps/optrel/.

We obtain lower bounds improving the bounds from [8] for m ≥ 8. For m ≥ 58
the bounds are above 2, and for m = 100 we obtain a speed combination with
optimal competitive ratio above 2.054, see Figure 1. Thus we have:

Theorem 5.1. For any online algorithm for preemptive scheduling on uniformly
related machines, the competitive ratio is at least 2.054.

m = 100, R = 2.05467722307586032

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

Fig. 1. An instance giving a lower bound of 2.054. The solid curve shows speeds si,
the dashed curve (bottom) shows reversed scaled job variables, and the thin dashed
curve (top) shows inverses of the speed ratios, i.e., si−1/si. The values of qj are printed
in reverse order, i.e., column i shows qm−i+1, and scaled so that qm = 1 = s1. This
ordering and scaling emphasizes the relations between job sizes and speeds.
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6 Special Cases

One approach to analyze the optimal competitive ratio is to give a symbolic so-
lution to the linear program (2). A feasible primal solution gives a lower bound
(which can be easily turned into an sequence of jobs, as we have seen before).
A feasible solution of a dual linear program gives an upper bound on the com-
petitive ratio. A dual solution actually means that we form a positive linear
combination of some of the linear constraints so that the resulting inequality
bounds the objective function by the desired competitive ratio.

A basic solution of the linear program is described by giving a subset of
constraints where equality holds. If for some range of speeds this subset does
not change in the optimal solution, the optimal competitive ratio is given by a
rational function of the speeds. However, in general, for different speed sequences
we need to use different subsets of the constraints.

We give two cases where we can provide analysis along these lines. First we
generalize the case of non-decreasing speed ratios from [6]. We prove that the
same formula is a general upper bound on the competitive ratio and that it is
actually optimal for a slightly larger region of speed sequences. Then we give a
complete analysis of the case m = 3.

We denote S =
m∑

i=1

si, α = 1− s1

S
=

s2 + · · ·+ sm

s1 + s2 + · · ·+ sm
.

Theorem 6.1. Let R =
(∑m

i=1 αi−1si/S
)−1. Then r(s1, . . . , sm) ≤ R for any

speeds s1 ≥ · · · ≥ sm and thus RatioStretch is R-competitive. Furthermore
r(s1, . . . , sm) = R whenever

s1
(
1 + α + . . . + αi−1) ≤ s1 + . . . + si for all i = 2, . . . ,m− 1. (5)

Proof. The upper bound. As described in the outline above, we form a positive
linear combination of some constraints of the linear program (2). We add up

qk ≤ s1Ok for 2 ≤ k ≤ m, times xk =
k∑

i=2

sm−k+iα
i−2 (6)

q1 + . . . + qk ≤ SOk for 1 ≤ k ≤ m, times yk = sm−k+1 −
s1

S
xk

We need to show that yk ≥ 0 and simplify the resulting inequality. For all
k = 1, . . . ,m we have

xk + yk = sm−k+1 +
(
1− s1

S

) k∑
i=2

sm−k+iα
i−2 =

k+1∑
i=2

sm−k+i−1α
i−2, (7)

so yk =
k+1∑
i=2

sm−k+i−1α
i−2 − xk ≥

k∑
i=2

(sm−k+i−1 − sm−k+i)αi−2 ≥ 0.
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In addition, (7) implies that xk + yk = xk+1 for k < m, and xm + ym =∑m
i=1 siα

i−1 = S/R. Using also the fact that y1 = sm = x2, the left-hand
side of the linear combination given by (6) is equal to

q1(y1 + y2 . . . + ym) + q2(x2 + y2 + . . . + ym) + · · ·+ qm(xm + ym)
= (q1 + . . . + qm)S/R.

The right-hand side of the linear combination given by (6) is equal to

y1SO1+(x2s1+y2S)O2+ . . .+(xms1+ymS)Om = S(s1Om+ . . .+smO1) = S,

using the definitions of xk and yk and the third constraint of (2). We conclude
that any feasible solution of (2) satisfies the linear combination given by (6),
which simplifies to (q1 + . . . + qm)S/R ≤ S, and thus r(s1, . . . , sm) ≤ R .
The lower bound. Now we give a primal solution of (2) with the value of
objective R, assuming (5). Naturally, this exactly corresponds to the lower bound
from [6]. The solution is:

Ok = R
αm−i

S
for k = 1, . . . ,m

q1 = Rαm−1

qk = s1Ok = R
s1

S
αm−k for i = 2, . . . ,m.

The verification of the feasibility is straighforward; it uses the assumption (5)
for the second constraint of (2). Details are omitted due to space constraints. ��

We remark that the upper bound in the previous theorem is not bounded by
any constant in the region where the condition (5) does not hold.

Epstein [6] in Claim 1 exactly proves that (5) is satisfied by speed sequences
with non-decreasing speed ratios. In her notation, speeds are listed in reversed
order and normalized so that sm = 1; her x is our 1/α. However, (5) is satisfied
for a slightly wider range of speeds. One example is s1 = 2, s2 = s3 = 1.

Theorem 6.2. For m = 3 and any speeds s1 ≥ s2 ≥ s3,

r(s1, s2, s3) =

⎧⎪⎪⎨⎪⎪⎩
(s1

S
+ (1− s1

S
)
s2

S
+ (1− s1

S
)2

s3

S

)−1
if

s1

s2
≤ s2

s3
+ 1

S2

s2
1 + s2

2 + s2
3 + s1s2 + s1s3 + s2s3

if
s1

s2
≥ s2

s3
+ 1

The function r(s1, s2, s3) has maximal value 37+7
√

7
38 ≈ 1.461, and thus this is

also the optimal competitive ratio for m = 3 over all speeds.

Proof. The first case follows directly from Theorem 6.1 and the observation that
the case condition is equivalent to (5). For the second case, let R = S2/(s2

1 +
s2
2 + s2

3 + s1s2 + s1s3 + s2s3). We omit the simple verification of solutions.
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The upper bound. We again form a positive linear combination of some con-
straints of the linear program (2). We add up

q1 ≤ SO1 times s3
q1 + q2 ≤ SO2 times s2
q1 + q2 + q3 ≤ SO3 times (s2

1 − s2s3)/S
q2 + q3 ≤ (s1 + s2)O3 times s3

q3 ≤ s1O3 times s2.

The lower bound. We put qk = s4−kR/S and Ok = (s4−k + · · ·+s3)R/S2. ��

Conclusions. The main open problem is to find better bounds on the overall
competitive ratio, and perhaps to find an explicit formula for further special
cases. With the knowledge of the optimal algorithm, this “only” involves ana-
lyzing the linear program better. In general, the formula for optimal competitive
ratio may need to have many cases. Still, it is plausible that a good overall bound
can be proved with only a few upper bounds similar to the ones in Section 6.

Another question concerns the idle times in the schedule. Our algorithm relies
on creating idle periods on some machines during the schedule. However, we are
not able prove that idle periods are really necessary to achieve the optimal
competitive ratio, even for any particular combination of speeds.
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Abstract. Given the irredundant CNF representation φ of a monotone
Boolean function f : {0, 1}n �→ {0, 1}, the dualization problem calls
for finding the corresponding unique irredundant DNF representation ψ
of f . The (generalized) multiplication method works by repeatedly divid-
ing the clauses of φ into (not necessarily disjoint) groups, multiplying-
out the clauses in each group, and then reducing the result by applying
the absorption law. We present the first non-trivial upper-bounds on
the complexity of this multiplication method. Precisely, we show that if
the grouping of the clauses is done in an output-independent way, then
multiplication can be performed in sub-exponential time
(n|ψ|)O(

√
|φ|)|φ|O(log n). On the other hand, multiplication can be carried-

out in quasi-polynomial time poly(n, |ψ|) · |φ|o(log |ψ|), provided that the
grouping is done depending on the intermediate outputs produced during
the multiplication process.

1 Introduction

Let f : {0, 1}n "→ {0, 1} be a monotone Boolean function, defined by its irredun-
dant conjunctive normal form (CNF)

φ(x) =
∧

C∈C

∨
i∈C

xi,

where C is the set of clauses (prime implicates) of φ, each represented by the
indices of the variables it contains. Such a CNF representation exists and is
uniquely defined for a monotone Boolean function. The well-known monotone
Boolean dualization problem is to find the corresponding irredundant disjunctive
normal form (DNF) representation of f :

ψ(x) = φ∗(x) def=
∨

D∈D

∧
i∈D

xi.

Equivalently, the problem is to find, for an explicitly given hypergraph H ⊆ 2V ,
the transversal hypergraph, consisting of all minimal subsets of V hitting every
hyperedge of H.

This problem has received considerable attention in the literature (see e.g.
[3,12,13,25,27]), since it is known to be polynomially equivalent with many other

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 340–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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problems appearing in various areas, such as artificial intelligence (e.g. [12,20]),
database theory (e.g. [26]), distributed systems (e.g. [16,18]), machine learning
and data mining (e.g. [1,17]), mathematical programming (e.g. [5,21]), matroid
theory (e.g. [22]), and reliability theory (e.g. [8,29]).

Clearly, the size of ψ can be exponential in n and the size (the number
of clauses) of φ, and hence one can only hope for an algorithm whose effi-
ciency is measured in terms of these parameters n, |φ| and |ψ|. Fredman and
Khachiyan (1996) established the remarkable result that the monotone dualiza-
tion problem can be solved in quasi-polynomial time O(nN) + No(log N), where
N = |φ|+ |ψ|, thus putting the problem somewhere between polynomiality and
NP-completeness [15]. They achieved this by presenting a quasi-polynomial time
algorithm for the decision-version of the problem: given two monotone Boolean
formulae φ and ψ in CNF and DNF forms respectively, is φ ≡ ψ? Furthermore,
for several special classes of monotone formulae φ, the problem is known to be
solvable in polynomial time, e.g. when every clause has bounded-size [7,9,12,19],
when every variable has bounded degree [10,13,28], when clauses have bounded
intersection-size [4], for read-once formulae [11], etc.

An elementary folklore method, sometimes known as multiplication (see e.g.
[2, Page 52]), works in its simplest form by traversing the clauses in some order,
say i = 1, . . .m = |φ|, multiplying-out clause Ci with the result obtained for
C1∧ . . .∧Ci−1, and simplifying using the absorption law whenever possible (that
is using the identity x∨ (x ∧ y) = x valid for all Boolean x, y). It is not difficult
to come up with examples for which this method exhibits an exponential blow-
up in the input-output size, e.g. the intermediate outputs have exponential size,
while the final output is polynomially-bounded. Consider for instance, the CNF
φ =

∧
1≤i,j≤n(xi∨yj) on the set of 2n variables {x1, . . . , xn, y1, . . . , yn}. One can

easily check that the corresponding DNF is (x1 ∧ . . . ∧ xn) ∨ (y1 ∧ . . . ∧ yn). On
the other hand, if we start by multiplying the clauses (x1 ∨ y1), . . . , (xn ∨ yn),
then we get 2n clauses, which will be canceled-out later in the process. More
interestingly, Takata [30] gave an example for which the multiplication method
exhibits a superpolynomial blow-up, under any ordering of the clauses of the
input CNF.

In a more general setting, one can perform multiplication as follows (see e.g.
[30]). Write φ = φ1∧. . .∧φk, where each φi is a conjunction of a subset of clauses
of φ, then multiply independently the individual φi’s to obtain DNF’s ψ1, . . . ψk.
Finally, multiply-out ψ1, . . . , ψk to obtain the final result ψ. More formally, given
the input CNF formula φ, we build a tree T each node w of which is associated
with an equivalent pair of a monotone CNF φ(w) and a monotone DNF ψ(w)
defined as follows:

(I) if w is a leaf then φ(w) = ψ(w) is an individual clause of φ and every clause
of φ appears in at least one leaf of T;

(II) if w is an internal node with children w1, . . . , wk, then φ(w) = φ(w1) ∧
. . . ∧ φ(wk) is the conjunction of the subset of clauses of φ appearing in
the leaves of the subtree of T rooted at w, and ψ(w) = φ∗(w) is the DNF
representation of ψ(w1) ∧ . . . ∧ ψ(wk).
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In particular, at the root r of T, ψ = ψ(r) will contain the required DNF
representation of φ. For this method to be efficient, one further requires at each
node w of T that:

(III) the size of the intermediate output at w is not too large: |ψ(w)| ≤
ρ(n, |φ|, |ψ|), for some polynomial ρ;

(IV) the DNF ψ(w) = ψ(w1) ∧ . . . ∧ ψ(wk) can be computed by a ”trivial”
procedure1, in time τ(w), polynomial (or sub-exponential) in n, |φ| and |ψ|,
given the individual outputs ψ(w1), . . . , ψ(wk) at the children of w.

For any such tree T, denote by N(T) the the number of nodes in T, by
d(T) the depth of T, and by τ(T) the maximum of τ(w) over all nodes w of T.
In what follows, we shall distinguish between two types of multiplication trees.
An output-independent tree is one in which the selection of the sub-formulae
φ(w1), . . . , φ(wk), at any node w with children w1, . . . wk, is performed indepen-
dent of the intermediate outputs ψ(w1), . . . , ψ(wk), computed at that node, i.e.
the tree is constructed completely from the input formula φ, regardless of the
intermediate outputs. In an output-sensitive tree, on the other hand, the interme-
diate output at each node affects the decision on how to split the clauses among
the children of that node. To measure the dependence between the children of
a node w of T in this case, we let μ(w) =

∑
w′ |φ(w′)|/|φ(w)|, where the sum is

over all the children w′ of w which are dependent. We will denote by μ(T) the
maximum of μ(w) over all the nodes w of T. This distinction will appear im-
portant when we discuss the parallel and space complexity of the multiplication
method. With the above notation, we have the following statements (the space
bound follows by techniques similar to that of [31]; see [14] for more details).

Proposition 1. Let φ be a monotone CNF formula on n variables:
(i) If T is a multiplication tree for φ then the corresponding DNF ψ = φ∗ can

be computed in time O(N(T)τ(T)), using O(d(T)μ(T)d(T) |φ|n) space.
(ii) If T is an output-independent multiplication tree for φ then the corre-

sponding DNF ψ = φ∗ can be computed in parallel time O(d(T)Δ(T)) using
O(N(T)Π(T)) processors, where Δ(T) and Π(T) are respectively the maximum
parallel time and number of processors required by the trivial multiplication pro-
cedure in (IV) above at any node of T.

The main results of this paper are the following.

Theorem 1. Let φ be a monotone CNF formula on n variables:
(i) There exists an output-sensitive multiplication tree T satisfying proper-

ties (I)-(IV) above, with N(T) = |φ|o(log |ψ|), d(T) = o(log |φ| log |ψ|), τ(T) =
poly(n, |φ|, |ψ|), and μ(T) ≤ 1.

(ii) There exists an output-independent multiplication tree T satisfying prop-
erties (I)-(IV) above, with N(T) = nO(

√
|φ| log |φ|)|φ|O(log n), and d(T) = O(

√
|φ|

log |φ|+ logn).
1 i.e. one that uses only left-to-right multiplication, followed by absorption.
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As we shall see later, these trees can be found efficiently, and moreover in (ii)
we will have Δ(T) = polylog(n, |φ|, |ψ|) and Π(T) = |ψ|O(

√
|φ|) poly(n, |φ|).

Corollary 1. Given a monotone CNF formula φ on n variables, the correspond-
ing DNF ψ = φ∗ can be computed

(i) in time poly(n, |φ|)|φ|o(log |ψ|), using polynomial space poly(n, |φ|);
(ii)in parallel time

√
|φ| polylog(n, |φ|, |ψ|), using (n|ψ|)O(

√
|φ| log |φ|)|φ|O(log n)

processors.

Remark. All the above bounds remain valid, if we require, instead of outputting
the whole DNF φ∗, a sub-formula of a prescribed size ψ of φ∗.

2 Notation and an Outline of the Approach

Let φ = φ(x1, . . . , xn) be a monotone CNF (DNF) formula. We denote by V (φ)
the set of variables appearing in φ and by S(φ) ⊆ 2V (φ) its set of clauses (terms),
where we identify each clause (term) C ∈ C of φ with the index set C ⊆ V (φ) of
the variables that it contains. We shall assume that the given CNF φ is irredun-
dant, i.e. for all C,C′ ∈ S(φ), C ⊆ C′ implies that C = C′. If φ is a monotone
CNF formula, we denote by φ∗ the irredundant DNF formula representing the
same monotone Boolean function as φ.

For a subset S ⊆ [n] of variables, denote by φS the CNF formula obtained
form φ by fixing xi = 1 for all i ∈ S̄

def= [n]�S. Equivalently, φS =
∧

C∈S(φ), C⊆S∨
i∈C xi. For i ∈ [n], we let degφ(i) = |{C ∈ S(φ) : i ∈ C}| be the degree of xi in

φ, and for a positive number ε ∈ (0, 1), we let L = L(φ, ε) def= {i ∈ [n] : degφ(i) >
ε|φ|}, correspond to the subset of ”high” degree variables with respect to φ.

Given ε′, ε′′ ∈ (0, 1), let us call any subset of variables S ⊆ [n], such that
ε′|φ| ≤ |φS | ≤ ε′′|φ|, an (ε′, ε′′)-balanced set with respect to φ.

Proposition 2. Let ε1, ε2 ∈ (0, 1) be two given numbers such that, ε1 < ε2 and
L = L(φ, ε1) satisfies |φL| ≤ (1−ε2)|φ|. Then there exists a (1−ε2, 1−(ε2−ε1))-
balanced set L′ ⊇ L.

Proof. Such a set L′ can be found as follows. Write L̄ = {i1, . . . , il} and find the
index j ∈ [l − 1], such that

|φ[n]�{i1,...,ij}| > (1− ε2)|φ| and |φ[n]�{i1,...,ij+1}| ≤ (1 − ε2)|φ|. (1)

The existence of such j is guaranteed by the facts that degφ(i1) ≤ ε1|φ| <
ε2|φ| ≤ |φ|−|φL|. Finally, we let L′ = [n]�{i1, . . . , ij}. Since degφ(ij+1) ≤ ε1|φ|,
it follows from (1) that |φL′ | < (ε1 + 1 − ε2)|φ|, implying that L′ is indeed a
balanced superset of L. ��
We use the following general framework for building the multiplication trees with
the properties stated above. Let L be the set of ”large” degree variables of the
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input CNF φ. If L contains at least one clause of φ, then we can decompose the
problem by picking each variable xi in L, and solving the subproblem on the
sub-formula of φ avoiding xi, which is of reasonably small size, since xi has
large degree. Otherwise, L admits a balanced superset L′ ⊇ L, and we can
decompose φ into two sub-formulas on L′ and L̄′, each of considerably smaller
size, because L′ is balanced. This will essentially lead to a multiplication tree
with the properties given in Theorem 1-(i). To get part (ii) of the theorem, we
apply recursion only until we get a set L of large degree variables for which
|φL| = 0. At this point, we observe that, since the degrees of the variables
become sufficiently small, we can switch to the multiplication algorithm of [6],
which works for bounded degree CNF’s.

3 Output-Sensitive Multiplication Algorithm

In the sequel we let φ be a monotone CNF formula on n variables. When referring
to a DNF expression, it is assumed implicitly that the expression is irredundant,
in the sense that, the absorption law has been applied whenever possible. Fol-
lowing [23], we call a family of subsets {S1, . . . , Sr} ⊆ 2V (φ) complete for φ, if
for every clause C of φ, there exists an index i ∈ {1, . . . , r} such that Si ⊇ C.

Proposition 3 ([23]). Let {S1, . . . , Sr} ⊆ 2V (φ) be a complete family of subsets
for φ. Then, φ∗ =

∧r
i=1 φ∗

Si
. ��

Proposition 4 ([24]). For any S ⊆ [n], |φ∗
S | ≤ |φ∗|.

Let ε1, ε2 be constants in (0, 1) to be selected later. Consider the multiplica-
tion function DNF-S shown in Figure 1. It is clear that the multiplication tree
constructed by this procedure is exactly the recursion tree traversed by the pro-
cedure, and thus the depth and the number of nodes of this tree correspond
respectively to the depth of the recursion and the total number of recursive calls
plus the number of leaves.

Proposition 5. Function DNF-S is correct: when run to termination on a
monotone irredundant input CNF φ, it returns all the terms of the corresponding
DNF φ∗ without repetition.

Proof. The statement follows by induction on the size of φ. If |φ| = 1, the DNF
representation of φ is φ itself and is returned in Step 1. Otherwise, let L be the
set of variables computed in Step 2. Assume first that the function exists at Step
4. Note that the family {L} ∪ {V (φ) � i : i ∈ L} is complete for φ (since φ
is irredundant and |φL| ≥ 1). Thus Proposition 3 implies in this case that the
output returned at Step 4 is correct. Finally, assume that the function exits at
Step 8. Then we need to show that the family {L} ∪ {Ȳ : Y ∈ S(φ∗

L)} is a
complete set for φ. Let C ∈ S(φ) be a clause of φ. If C∩Y �= ∅ for all Y ∈ S(φ∗

L),
then C must contain some clause C′ ∈ S(φL). But since φ is irredundant and
C,C′ ∈ S(φ), we conclude that C = C′, i.e. C ⊆ L. ��
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Function (φ)∗:
Input: A monotone CNF φ, Output: the corresponding DNF φ∗.

1. if |φ| = 1, then return φ.
2. L:= L(φ, ε1).
3. If |φL| ≥ 1, then
4. return

(∨
i∈L xi

) ∧ (∧
i∈L φ∗

V (φ)�i

)
.

5. else
6. L:= a (1− ε2, 1− (ε2 − ε1))-balanced superset of L; (c.f. Proposition 2)
7. ψ:= φ∗

L;

8. return ψ ∧
(∧

Y ∈S(ψ) φ∗̄
Y

)
.

Fig. 1. Function DNF-S

Next we show that the multiplication tree traversed by function DNF-S satisfies
properties (III) and (IV), stated in the introduction. We shall make use of the
following statement.

Proposition 6. Let H ⊆ 2[n] be a family of subsets of variables, and φ be a
monotone CNF, such that

φ(x) ≤
∨

H∈H

∧
i∈H

xi for all x ∈ {0, 1}n. (2)

Then

φ(x) ≡ ψ(x) def=
∨

H∈H

((∧
i∈H

xi

)
∧ φ∗̄

H(x)

)
.

Proof. If x ∈ {0, 1}n satisfies ψ(x) = 1 then there exists H ∈ H such that
xi = 1 for all i ∈ H and φH̄(x) = φ∗̄

H
(x) = 1. This readily implies φ(x) = 1.

On the other hand, if φ(x) = 1, then by (2) there exists an H ∈ H such that∧
i∈H xi = 1. Since φ(x) = 1 implies φH̄(x) = 1, we get that ψ(x) = 1. ��

Proposition 7. Let w be a node of the multiplication tree T constructed by
function DNF-S on input φ, let w1, . . . , wk be the children of w in T, and let
ψ(v) be the corresponding DNF produced at node v of T. Then (i) |ψ(w)| ≤
|φ∗| and (ii) the product ψ(w) = ψ(w1) ∧ . . . ∧ ψ(wk) can be computed in time
poly(|φ|, |ψ(w)|, n).

Proof. Part (i) follows immediately from Proposition 4 since at each node w, the
input is the set of all clauses of φ contained in some subset S ⊆ [n]. For part
(ii), we consider two cases:

(a) If the function returns at Step 4: the product can be computed by applying
Proposition 6 with H = {{i} : i ∈ L} (which satisfies (2) since |φL| ≥ 1). This
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means that the output in Step 4 is identically equal to the irredundant DNF
representation of ∨

i∈L

(
xi ∧ φ∗

V (φ)�i

)
,

which can be computed in time (
∑

i∈L |φ∗
V (φ)�i|)2 ≤ (n|φ∗|)2.

(b) If the function returns at Step 8: the product can be computed by applying
Proposition 6 with H = S(φ∗

L) (which again satisfies (2)), yielding the equivalent
formula ∨

Y ∈S(φ∗
L)

((∧
i∈Y

xi

)
∧ φ∗̄

Y (x)

)
,

the irredundant DNF of which can be evaluated in time (
∑

Y ∈S(φ∗
L) |φ∗̄

Y
|)2 ≤

|φ∗|4. ��

For a, b > 1, let c = c(a, b) be the unique positive root of the equation

2c+1
(
ac/ log b − 1

)
= 1. (3)

Given n, k ∈ R+, we define ε = ε(n, k) and Λ = Λ(n, k), as

ε =
1
2

[
1
2

+
(

2k
n

) 1
Λ−1

]−1

, Λ =
log(2k/n)
c(2n, 2k/n)

+ 1, (4)

if 2k > n, and we set

ε =
1
3
, Λ =

log(2n)
log(3/2)

+ 1, (5)

otherwise. Note that Λ > 1 for n ≥ 1 and hence ε ≤ 1/3.
In function DNF-S, we use the thresholds ε2 = 2ε1 = 2ε, where ε is given by

(4) and (5). Note that the values of the thresholds are computed with respect to
the initial values of n = |Vφ| and m = |φ|. The value of k = |φ∗| can be estimated
within a factor of 2, using standard exponential search (we run the procedure
for each value of k′ = 1, 2, 4, . . ., and for each such value, if the procedure did
not stop within the bounds stated in Lemma 1, we know that k > k′, and we
consider the next k′, etc).

Analysis of DNF-S. Let respectively N(n,m, k) and d(n,m, k) denote the
number of nodes and depth of the multiplication tree constructed by DNF-S on
an input instance of size |φ| = m whose corresponding output is of size |φ∗| = k.

Step 4: Note that, for all i ∈ L, degφ(i) > ε1|φ|. Thus |φV (φ)�i| ≤ (1 − ε1)|φ|,
yielding the recurrences

N(n,m, k) ≤ 1 + n ·N(n− 1, (1− ε1)m, k),
d(n,m, k) ≤ 1 + d(n− 1, (1− ε1)m, k).
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Step 8: Note that, since L is balanced, we have |φL| ≤ (1 − (ε2 − ε1))|φ|, and
|φȲ | ≤ |φ| − |φL| ≤ ε2|φ|, for all Y ∈ S(φ∗

L) (since any C ∈ S(φȲ ) also satisfies
C �∈ S(φL)). Hence, we get the recurrences

N(n,m, k) ≤ 1 + N(n− 1, (1− (ε2 − ε1))m, k) + k ·N(n− 1, ε2m, k),
d(n,m, k) ≤ 1 + max{d(n− 1, (1− (ε2 − ε1))m, k), d(n − 1, ε2m, k)}.

We write N(m) = N(n,m, k), d(m) = d(n,m, k), and observe that the above
recurrences, together with our settings for ε1 and ε2, imply that

N(m) ≤ 1 + n ·N((1− ε)m) + k ·N(2εm), (6)
d(m) ≤ 1 + max{d((1− ε)m), d(2εm)}. (7)

Lemma 1. For m ≥ 1, N(m) ≤ mΛ(n,k) and d(m) ≤ Λ(n, k) logm/ log(2n)+1.

Proof. We prove the statement by induction on m ≥ 1, with the base case m = 1
being trivial. Clearly it is enough to prove this for (6) and (7).

Case 1. n < 2k: First we may verify that our setting (4) together with (3) imply
that

n(1− ε)Λ + k(2ε)Λ = n(1− ε)Λ−1 = 2k(2ε)Λ−1 =
1
2
. (8)

Now consider (6). We apply induction and use (8) to get

N(m) ≤ 1 +
[
n(1− ε)Λ + k(2ε)Λ

]
mΛ = 1 +

1
2
mΛ ≤ mΛ,

for m ≥ 2. (In fact ε was selected to minimize n(1− ε)Λ + k(2ε)Λ.)
Next consider (7): we get by induction and (8) that

d(m) ≤ 1 +
Λ logm

log(2n)
+ 1 + Λ ·max

{
log(1 − ε)
log(2n)

,
log(2ε)
log(2n)

}
= 1 +

Λ logm

log(2n)
+ 1 + Λ ·max ·

{
−1

Λ− 1
,
−1

Λ − 1

(
log(4k)
log(2n)

)}
= 1 +

Λ logm

log(2n)
+ 1− Λ

Λ− 1
<

Λ logm

log(2n)
+ 1.

This gives the required bound on d(m).

Case 2. n ≥ 2k: First consider (6). Form (5), we get that (3/2)Λ−1 = 2n. Using
ε = 1/3, k ≤ n/2, and induction, we get for m ≥ 2

N(m) ≤ 1 +
3n
2

N(
2
3
m) ≤ 1 +

3n
2

(
2
3

)Λ

mΛ = 1 +
1
2
mΛ ≤ mΛ.
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Now consider (7). Both terms of the maximum in (7) are equal to d(2
3m) and

hence we get by induction

d(m) ≤ 1 +
Λ logm

log(2n)
+ 1 +

Λ log(2/3)
log(2n)

= 1 +
Λ logm

log(2n)
+ 1− Λ

Λ− 1
<

Λ logm

log(2n)
+ 1.

��

Note that if k > n/2, then Λ(n, k) ∼ log(2k/n)/ log
(

log(2k/n)
log(2n)

)
. Furthermore,

for any node w of the multiplication tree T constructed by function DNF-S, a
subset of dependent children consists of two children w1 and w2 with φ(w1) = φL

and φ(w2) = φȲ , for a subset L ⊆ V (φ) and some set Y ∈ S(φ∗
L). Noting that

the clauses of φL and φȲ are disjoint (since Y ∩ C �= ∅ for all C ∈ S(φL)), we
conclude that the total number of clauses allocated to two dependent children of
Y is at most |φ|, i.e. μ(T) ≤ 1. This establishes the bounds stated in Theorem
1-(i).

Remark. If we replace in DNF-S, ε1 < ε2 by arbitrary constants in (0, 1),
say ε1 = 1/3 and ε2 = 2/3, then we get N(n,m, k) ≤ (n + k)O(log m) and
d(n,m, k) = O(logm).

4 Output-Independent Multiplication Algorithm

We first recall the following theorem from [6].

Theorem 2 ([6]). Let φ : {0, 1}n "→ {0, 1} be a monotone CNF, h : [n] "→ Z+
an integer-valued monotone sub-additive function2, and δ > 0 be a given number,
such that for all X ⊆ [n],

(i) h(X) = 0 implies that |φX | = 0, and
(ii) 1

h(X)

∑
C∈S(φX) h(C) ≤ δ.

Fix a constant 0 < η < 1, and let r = 1 + 2δ/(1 − η), and α = h([n]). Then
there exists an output-independent multiplication tree T for φ with depth d(T) ≤
(logα)/η, maximum degree at most r, and thus of size N(T) ≤ r(log α)/η+1.

Figure 2 gives an output-independent multiplication procedure. We use ε1 =
1/

√
|φ|. As in DNF-S, whenever the set L of large degree variables contains a

clause of φ, we recurse. However, if |φL| becomes empty we call DNF-D, which
builds the multiplication tree guaranteed by Theorem 2. To apply the theorem,
we use h(X) = |X ∩ L̄| and δ = ε1|φ|. It easy to check that both conditions (i)
and (ii) in the statement of the theorem are satisfied. Consequently, we obtain
the following statement, regarding the depth d(m) and the number of nodes
N(m) of the tree constructed by DNF-I, where m = |φ|.

Lemma 2. For m ≥ 1, N(m) = nO(
√

m log m)mO(log n) and d(m) = O(
√
m logm

+ log(n)).

2 i.e. one for which h(X ∪ Y ) ≤ h(X) + h(Y ) holds for all subsets X, Y ⊆ [n].
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Function (φ)∗:
Input: A monotone CNF φ, Output: the corresponding DNF φ∗.

1. if |φ| = 1, then return φ.
2. L:= L(φ, ε1).
3. If |φL| ≥ 1, then
4. return

(∨
i∈L xi

) ∧ (∧
i∈L φ∗

V (φ)�i

)
.

5. else
6. return DNF-D(φ).

Fig. 2. Function DNF-I

Proof. As long as |φL| ≥ 1 (in Step 3), the function recurses on |L| formulae of
size at most (1− ε1)|φ| each. This gives the recurrences:

N(m) ≤ 1 + n ·N((1− ε1)m),
d(m) ≤ 1 + d((1 − ε1)m).

Thus after at most O(logm/ε1) = O(
√
m logm) steps, we either terminate or

call the function DNF-D. By Theorem 2, the depth and number of nodes of
each sub-tree constructed after that are respectively O(log n) and mO(log n). The
lemma follows. ��
To conclude the proof of Theorem 1, part (ii), we observe that the product
in Step 4 of function DNF-S can be computed in polynomial time (and also
efficiently in parallel), see Proposition 7. Furthermore, since each node of the
multiplication sub-trees constructed by DNF-D has degree at most r = O(

√
m),

the product at such node can be done by trivial left-to-right multiplication in
any order in time kO(

√
m) (or in parallel time polylog(n,m, k) using kO(

√
m)

processors), where k = |φ∗|.
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Abstract. We consider FIFO buffer management for switches providing
differentiated services. In each time step, an arbitrary number of packets
arrive, and only one packet can be sent. The buffer can store a limited
number of packets, and, due to the FIFO property, the sequence of sent
packets has to be a subsequence of the arriving packets. The differenti-
ated service model is abstracted by attributing each packet with a value
according to its service level. A buffer management strategy can drop
packets. The goal is to maximize the sum of values of sent packets.

For only two different packet values, we introduce the account strategy
and prove that this strategy achieves an optimal competitive ratio of
≈ 1.282, if the buffer size tends to infinity, and an optimal competitive
ratio of (

√
13−1)/2 ≈ 1.303, for arbitrary buffer sizes. For general packet

values, the simple preemptive greedy strategy (PG) is studied. We show
that PG achieves a competitive ratio of

√
3 ≈ 1.732 which is the best

known upper bound on the competitive ratio of this problem. In addition,
we give a lower bound of 1 + 1/

√
2 ≈ 1.707 on the competitive ratio of

PG which improves the previously known lower bound. As a consequence,
the competitive ratio of PG cannot be further improved significantly.

1 Introduction

Quality of Service (QoS) guarantees for network services allow service providers
to address the service requirements of customers by providing different levels of
service. In the network setting, where traffic volumes may exceed network capac-
ity, effective management of packets at buffers in switches is a key to achieving
QoS guarantees. By differentiating service levels, packets of different types may
be treated according to the level of service they require.

1.1 The Model

Time is slotted in time steps. In each time step, an arbitrary number of packets
arrive, and, at the end of each time step, only one packet can be sent. Packets
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that are not sent can be stored in a FIFO buffer with a limited storage capacity
for b packets. Initially, the FIFO buffer is empty. Due to the FIFO property, the
sequence of sent packets has to be a subsequence of the arriving packets, i.e., if
a packet p is sent before a packet p′, then p has arrived before p′.

The differentiated service model is abstracted by attributing each packet p
with the value v(p) according to its service level. A buffer management strategy
can drop arriving packets, i.e., these packets are never stored in the buffer, or
can drop packets stored in the buffer, i.e., these packets are deleted from the
buffer and not sent. The goal of the buffer management strategy is to maximize
the sum of the values of sent packets.

The notion of an online strategy is intended to formalize the realistic scenario
where the strategy does not have knowledge about the whole input sequence
of arriving packets in advance. The online strategy gets to know this sequence
packet by packet, and has to react without knowledge about the future. Online
strategies are typically evaluated in a competitive analysis. In this kind of anal-
ysis the total value produced by the online strategy is compared with the total
value produced by an optimal offline strategy.

For a given input sequence σ of arriving packets, let V (σ) denote the total
value produced by an optimal offline strategy. An online strategy is denoted
as c-competitive, if it produces total value at least V (σ)/c − κ, for each input
sequence σ of arriving packets, where κ is a term that does not depend on σ.
The value c is also called the competitive ratio of the online strategy.

1.2 Previous Work

Aiello et al. [1] introduce the model of differentiated services for FIFO buffers
without preemption. Mansour, Patt-Shamir, and Lapid [11] add preemption and
general packet values to this model. Kesselman and Mansour [8] study the value
of the lost packets instead of the value of the sent packets.

Kesselman et al. [7] show that the greedy strategy achieves a competitive ratio
of 2. Kesselman, Mansour, and van Stee [9] introduce the preemptive greedy
strategy and prove that this strategy achieves a competitive ratio of ≈ 1.983. In
addition, they give the previously best known lower bound of (1+

√
5)/2 ≈ 1.618

on the competitive ratio of the preemptive greedy strategy. Bansal et al. [5] study
a modification of the preemptive greedy strategy and show that this strategy
achieves a competitive ratio of 7/4 which is the previously best known upper
bound on the competitive ratio of this problem. Note that this modification
does not improve the overall performance of the strategy [6]. The best known
lower bound on the competitive ratio of this problem is ≈ 1.419 [9].

The following results refer to the case where only two different packet values
are considered. Lotker and Patt-Shamir [10] present a strategy that achieves
a competitive ratio of ≈ 1.30448. Kesselman et al. [7] show a lower bound of
≈ 1.281 on the competitive ratio. Andelman [2] presents a randomized strategy
that achieves a competitive ratio of 5/4. Further, he gives a lower bound of
≈ 1.197 on the competitive ratio of any randomized strategy.
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Azar and Richter [4] extend the buffer management problem to multi-queues,
i.e., several incoming queues have to be served by delivering packets that arrive
at these queues through one output port, one packet per time step. They present
a generic technique that transforms a strategy for a single queue to a strategy for
several queues. They show that the competitive ratio of the constructed strategy
is at most twice the competitive ratio of the single queue strategy.

1.3 Our Contributions

In Section 2, only two packet values are considered. We introduce the account
strategy and prove that this strategy achieves an optimal competitive ratio of
≈ 1.282, if the buffer size tends to infinity, and an optimal competitive ratio
of (
√

13 − 1)/2 ≈ 1.303, for arbitrary buffer sizes. Note that this is the first
non-trivial optimal result in this area.

In Section 3, general packet values are considered. We study the preemp-
tive greedy strategy (PG) introduced in [9]. This is a simple strategy that can
be implemented efficiently. We show that PG achieves a competitive ratio of√

3 ≈ 1.732 which is the best known upper bound on the competitive ratio of
this problem. In addition, we give a lower bound of 1 + 1/

√
2 ≈ 1.707 on the

competitive ratio of PG which improves the previously known lower bound of
(1 +

√
5)/2 ≈ 1.618. Hence, the gap between upper and lower bound for PG

narrows to approximately 1/40. We conjecture that the lower bound is tight. As
a consequence, new approaches are needed, since the competitive ratio of PG
cannot be further improved significantly. Based on our lower bound for PG and
our optimal account strategy for two packet values, we propose an approach to
tackle the problems of PG.

2 Two Packet Values

In this section, only two packet values 1 and α > 1 are considered. A packet of
value 1 is denotes as 1-packet, and a packet of value α is denotes as α-packet.
Define

r :=
√

13− 1
2

≈ 1.303 and

r∞ :=
46 + 32

√
2 + 7

√
2
√

10 + 8
√

2 + 10
√

10 + 8
√

2

36 + 25
√

2 + 6
√

2
√

10 + 8
√

2 + 7
√

10 + 8
√

2
≈ 1.282 .

The following theorem states two lower bounds on the competitive ratio of any
deterministic strategy. The proof for the first statement of this theorem can be
found, e.g., in [3], and the proof for the second statement of this theorem can be
found, e.g., in [7].

Theorem 1. Consider only two packet values 1 and α > 1.

1. The competitive ratio of any deterministic strategy is at least r, if the buffer
size is 2.
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2. The competitive ratio of any deterministic strategy is at least r∞, if the buffer
size tends to infinity.

The account strategy (ACC) tries to preempt 1-packets from the buffer in order
to avoid losing too many α-packets in case of a buffer overflow. The number
of preempted 1-packets has to be chosen carefully. Obviously, the total number
of preempted 1-packets should not exceed (x − 1) times the total value of sent
packets, if a competitive ratio of x should be achieved. Hence, one basic idea
of ACC is to preempt at most (x − 1) · α 1-packets for each α-packet entering
the buffer and at most (x − 1) 1-packets for each sent 1-packet. ACC tries to
preempt as much 1-packets as possible without violating this constraint.

We define ACC(x) with one parameter x ≥ 1 which is the competitive ratio we
aim for and which is therefore used to determine how aggressive the strategy is
w.r.t. preemption. ACC(x) uses an account a which is initially set to 0. Basically,
each packet sent by ACC(x) increases the account by (x−1) times its own value,
and each preempted 1-packet decreases the account by 1. More precisely, for each
time step, ACC(x) does the following.

1. For each arriving packet p, do the following.

(a) If there is an unoccupied location in the buffer, store p in the buffer.
Otherwise, if p is an α-packet, drop the first (i.e., closest to the front of
the buffer) packet p′ with the smallest value among the packets in the
buffer, and store p in the buffer.

(b) If p is an α-packet (observe that arriving α-packets are always stored
in the buffer) and has not ejected another α-packet, the account a is
increased by (x−1)·α. The first �a� 1-packets in the buffer are dropped (if
there are less, all 1-packets are dropped), and the account a is decreased
by the number of dropped 1-packets.

(c) If the buffer is completely filled with α-packets, the account a is reset to
0.

2. After all packets have arrived and a packet p has been sent, do the following.
If p is a 1-packet, the account a is increased by (x−1). The first �a� 1-packets
in the buffer are dropped (if there are less, all 1-packets are dropped), and
the account a is decreased by the number of dropped 1-packets.

Note that ACC(x) does not require any knowledge about the two packet values
in advance.

The following theorem shows that ACC(x) achieves optimal competitive ra-
tios. The proof of this theorem is omitted due to space limitations.

Theorem 2. Consider only two packet values 1 and α > 1.

1. ACC(r) achieves a competitive ratio of r, for arbitrary buffer sizes.
2. ACC(r∞) achieves a competitive ratio of r∞, if the buffer size tends to

infinity.
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3 The Preemptive Greedy Strategy

Kesselman, Mansour, and van Stee [9] introduce the preemptive greedy strategy
(PG) with the parameter β > 1. When a packet p arrives, PG does the following.

1. Find the first (i.e., closest to the front of the buffer) packet p′, with v(p′) ≤
v(p)/β. If such a packet p′ exists, drop it (p′ is denoted as preempted by p).

2. If there is an unoccupied location in the buffer, store p in the buffer.
3. Otherwise, drop a packet p′ with the smallest value among the packets in the

buffer, if v(p′) < v(p) (p′ is denoted as ejected by p). If a packet is dropped,
store p in the buffer.

Bansal et al. [5] study a modified version of PG. The only difference is that
step 1 of PG is substituted by the following.

1. Find the first (i.e., closest to the front of the buffer) packet p′, with v(p′) ≤
v(p)/β and v(p′) is not larger than the value of the packet stored after p′ in
the buffer. If such a packet exists, drop it.

Note that this modification does not improve the overall performance of the
strategy [6].

New approaches are needed, since, due to the following lower and upper
bound, the competitive ratio of PG cannot be further improved significantly.
A basic concept of PG is that, for each arriving packet p, the first packet whose
value is at most v(p)/β is preempted. At first sight, it seems more reasonable
that, instead, the packet with the smallest value is preempted. But in fact, the
preemption of the first packet whose value is suitable small enough is a crucial
property to achieve a competitive ratio smaller than 2. However, this can turn
out to be a great disadvantage as the first input sequence in the following lower
bound shows. This disadvantage diminishes with increasing β. On the other
hand, too few packets are preempted for larger β as the second input sequence
in the following lower bound shows. An approach to tackle this problem might
be the following: If, for large β, the value of a single packet does not suffice to
preempt another packet, the values of more than one packet are combined for
preemption. Note that, in the case of only two packet values, we achieve with
this idea an optimal strategy.

3.1 Lower Bound

The following theorem gives an lower bound on the competitive ratio of PG.

Theorem 3. The competitive ratio of PG is at least 1 + 1/
√

2 ≈ 1.707.

Proof. Fix an even buffer size b. Depending on β, we distinguish the following
two cases.

– Suppose that β ≤ 2 +
√

2.
The input sequence consists of n consecutive phases defined as follows.
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• Phase 1 ≤ i < n consists of b/2 time steps. In time step 1, at first
b packets of value ε and finally b/2 packet of value βi arrive. In the
remaining b/2− 1 time steps, new packets do not arrive.
• Phase n consists of one time step. In this time step, b packets of value

βn−1 arrive.

For this input sequence, PG produces value

lim
ε→0

n−1∑
i=1

(
b

2
· ε

)
+ b · βn−1 = b · βn−1 ,

and the optimal value is

n−1∑
i=1

(
b

2
· βi

)
+ b · βn−1 = b · 3β

n − 2βn−1 − β

2(β − 1)
.

Hence, the competitive ratio is

lim
n→∞

3βn − 2βn−1 − β

2(βn − βn−1)
= 1 +

β

2(β − 1)
≥ 1 +

1√
2

.

– Suppose that β > 2 +
√

2.
The input sequence consists of n consecutive phases defined as follows.

• Phase 1 consists of b− 1 time steps. In time step 1, at first b− 1 packets
of value 1 and finally one packet of value α < β arrive. In each of the
remaining b− 2 time steps, one packet of value α arrives.
• Phase 1 < i < n consists of b− 1 time steps. In each of these time steps,

one packet of value αi arrives.
• Phase n consists of one time step. In this time step, b packets of value

αn−1 arrive.

For this input sequence, PG produces value
n−2∑
i=0

((b − 1) · αi) + b · αn−1 = b ·
αn − 1

b · αn−1 − b−1
b

α− 1
,

and the optimal value is
n−1∑
i=1

((b − 1) · αi) + b · αn−1 = b ·
(
2− 1

b

)
· αn − αn−1 − b−1

b · α
α− 1

.

Hence, the competitive ratio is

lim
α→β

lim
n→∞ lim

b→∞

(
2− 1

b

)
· αn − αn−1 − b−1

b · α
αn − 1

b · αn−1 − b−1
b

= lim
α→β

lim
n→∞

2αn − αn−1 − α

αn − 1
= lim

α→β

2α− 1
α

= 1 +
β − 1
β
≥ 1 +

1√
2

.

This concludes the proof of the theorem. ��
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3.2 Upper Bound

The following theorem gives an upper bound on the competitive ratio of PG.

Theorem 4. PG achieves a competitive ratio of
√

3 ≈ 1.732 for β = 2 +
√

3.

Proof. Let OPT denote an optimal offline strategy. W.l.o.g. we assume that, at
the arrival of each packet, the buffer of PG is completely filled with packets. If
there are unoccupied locations in the buffer of PG, it is assumed that dummy
packets of value 0 are stored at these locations which are always at the end of
the buffer. Hence, each arriving packet either preempts another packet, causes
the ejection of another packet, or is not stored in the buffer of PG.

Fix an input sequence of arriving packets. This input sequence can also be
regarded as a sequence σ = σ1σ2 · · · of arrival and send events, where each
arrival of a new packet corresponds to an arrival event and each sending of a
packet corresponds to a send event. The event sequence σ is partitioned into
time steps, where the first time step starts with the first event and a new time
step starts right after each send event.

Let Spg
t (Sopt

t ) denote the set of packets sent by PG (OPT) by the end of
event σt. Let Bpg

t (Bopt
t ) denote the set of packets stored in the buffer of PG

(OPT) at the end of σt. For a packet p ∈ Bpg
t , we call ct(p) the charge of p at

the end of σt. Further, we call Dt ⊆ Bopt
t \Bpg

t the set of packets with a deposit
at the end of σt. Initially, D0 := ∅. The goal is to choose ct(p) and Dt in such a
way that, for each event σt, the main inequality∑

p∈Spg
t

r · v(p) +
∑

p∈Bpg
t

ct(p) ≥
∑

p∈Sopt
t ∪Dt

v(p)

is true, with r :=
√

3. As a consequence, this yields the theorem.
Let Δpg

t (Δopt
t ) denote the alterations of the left (right) side of the main

inequality at the event σt, i.e.,

Δpg
t :=

∑
p∈Spg

t \Spg
t−1

r · v(p) +
∑

p∈Bpg
t

ct(p)−
∑

p∈Bpg
t−1

ct−1(p) and

Δopt
t :=

∑
p∈Sopt

t \Sopt
t−1

v(p) +
∑

p∈Dt

v(p)−
∑

p∈Dt−1

v(p) .

Obviously, the main inequality is true before the first event, since packets have
not been sent so far and the buffers and the set of packets with a deposit are
empty. Hence, it is sufficient to show, for each event σt, Δpg

t ≥ Δopt
t , since this

yields the main inequality.
First, an intuition for the basic ideas of the proof is given. Then, the formal

proof is presented. The basic idea for the set Dt ⊆ Bopt
t \ Bpg

t is simple. Pack-
ets stored exclusively in the buffer of OPT at the end of event σt, especially
packets already sent by PG, could be a problem, if PG cannot sent a packet,
i.e., the buffer of PG is empty, when those packets are sent by OPT. The left
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st(p) ct(p) comment

BC (r − 2) · v(p) buddy with credit

B 0 buddy

U (r/β) · v(p) + (2− r) · vmin
t (p) unproblematic

E (r − 1) · v(p) exclusively in Bpg
t , i.e., not in Bopt

t

EB 2(r − 1) · v(p) exclusively in Bpg
t with buddy

Fig. 1. Definition of the charge ct(p) of a packet p ∈ Bpg
t at the end of event σt

side of the main inequality is not increased at these events, and it is crucial
for the proof that the same is true for the right side of the main inequality.
Hence, these packets have to be contained in Dt. Intuitively, PG has already
gained enough value to pay these packets in advance, i.e., before they are sent
by OPT.

The basic idea for ct(p) is the following. In case of a send event σt in which
OPT sends a much more valuable packets than PG that is not in Dt−1, the
right side of the main inequality is increased by a large amount and we have to
compensate this by increasing the charge of packets stored in the buffer of PG.
It is fairly unproblematic to charge a packet up to (r − 1) times its own value,
since, if such a packet is sent by PG and OPT in the same send event, the left
side of the main inequality is still increased by the same amount as the right side
of the main inequality. In any case, larger charges are only allowed for packets
that are exclusively in the buffer of PG.

In case of a buffer overflow in the buffer of PG in which a charged packet is
ejected, this charge has to be transferred to another packet in the buffer of PG.
This is problematic for an ejected packet that is charged by more than (r − 1)
times its own value, since, after this charge is transferred to another packet in
the buffer of PG, there might be a packet charged by more than (r − 1) times
its own value that is not exclusively in the buffer of PG. Therefore we introduce
the concept of buddies. A packet stored exclusively in the buffer of PG might
be charged by 2(r− 1) times its own value, only if there is another packet in the
buffer of PG that is not charged at all. We call the packet with no charge buddy
for the packet with the high charge.

Unfortunately, the precise definition of charges is slightly more complicated.
Before we define the charges in detail, we need some preliminaries. For each two
packets p and p′, we write p ≺ p′, if p arrives before p′ in the input sequence.
Further, for each packet p and the undefined symbol ⊥, p ≺ ⊥, ⊥ ≺ p, and
⊥ ≺ ⊥. Each p ∈ Bpg

t can have assigned another p′ ∈ Bpg
t as buddy, if p ≺ p′.

But each p′ ∈ Bpg
t is assigned as buddy for at most one other packet. If p ∈ Bpg

t

has assigned another p′ ∈ Bpg
t as buddy at the end of event σt, define bt(p) := p′,

otherwise, define bt(p) := ⊥. Further, for each p �∈ Bpg
t , bt(p) :=⊥. Finally, for

each p ∈ Bpg
t , define vmin

t (p) := min{v(p′)|Bpg
t ( p′ ) p}.

Each p ∈ Bpg
t is in one of the five states BC, B, U, E, and EB. Let st(p) denote

the state of p at the end of event σt, and define st(⊥) := ⊥. Let BCt, Bt, Ut, Et,
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and EBt denote the set of packets that are in state BC, B, U, E, and EB, respec-
tively, at the end of event σt. The initial state of each packet is B, and dummy
packets of value 0 are always in state B. The charge ct(p) of a packet p at the
end of event σt is defined in Fig. 1. Note that the charge of a packet, except for
packets in state U, does not change as long as this packet stays in the same state.
The charge of a packet in state U can only increase, since vmin

t (p) ≤ vmin
t+1(p).

Let Pt denote the set of packets that are preempted by PG by the end of
event σt. For each packet p, if p preempts another packet p′, define d(p) := p′,
otherwise, define d(p) := ⊥. A packet p transitively preempts another packet
p′, if either d(p) = p′, p preempts a packet that transitively preempts p′, or p
ejects a packet that transitively preempts p′. For each p′ ∈ Pt, if p′ is transitively
preempted by a packet p ∈ Bpg

t , define d̂t(p′) := p, otherwise, define d̂t(p′) := ⊥.
For each p′ �∈ Pt, define d̂t(p′) := ⊥.

In order to prove the theorem, we show the following 5 invariants by induction
over the event sequence σ.

I1: Δpg
t ≥ Δopt

t .
I2: If p ∈ Et ∪ EBt, then p �∈ Bopt

t .
I3: If p ∈ EBt, then bt(p) ∈ BCt ∪ Bt.
I4: If p ∈ Xt := (Pt ∪ Spg

t ) ∩ (Bopt
t \Dt), then d̂t(p) ∈ BCt ∪Bt.

I5: If p ∈ Bpg
t \ BCt, then b−1

t (p) ≺ d(p).

Observe that the invariants have only to be verified in the following cases.

I1: Always.
I2: For each packet p ∈ (Et ∪ EBt) \ (Et−1 ∪ EBt−1).
I3: For each packet p with p ∈ EBt\EBt−1, bt−1(p) ∈ (BCt−1∪Bt−1)\(BCt∪Bt),

or bt−1(p) �= bt(p).
I4: For each packet p with p ∈ Xt \Xt−1, d̂t−1(p) ∈ (BCt−1∪Bt−1)\ (BCt∪Bt),

or d̂t−1(p) �= d̂t(p).
I5: For each packet p with p ∈ (Bpg

t \BCt)\(Bpg
t−1 \BCt−1), or b−1

t−1(p) �= b−1
t (p).

The following lemma restricts the set of packets stored in the buffer of OPT.

Lemma 5. W.l.o.g. Bopt
t ⊆ Pt ∪ Spg

t ∪Bpg
t .

Proof. We show that w.l.o.g. each p ∈ Bopt
t is not ejected by PG by the event σt.

By analogous arguments, w.l.o.g. each p ∈ Bopt
t is stored in the buffer of PG at

its arrival, i.e., it is not rejected by PG. Combining both results yields the lemma.
Assume that a packet p ∈ Bopt

t is ejected by another packet p′ at the event
σt. Then, p′ ∈ Bopt

t , because otherwise OPT could increase its total value by
dropping p instead of p′. Since p, p′ ∈ Bopt

t and p is ejected by p′ at the event σt,
a q ∈ Bpg

t \B
opt
t exists with v(q) ≥ v(p). W.l.o.g. q is sent by OPT in a previous

event σt′ with t′ < t. Now assume that OPT sends p instead of q at the event
σt′ and that q ∈ Bopt

t instead of p ∈ Bopt
t . Note that p can arrive after the event

σt′ , however, OPT can just take advantage in this case.
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Invariants I3, I4 and I5 are not effected, since changes are not made in the
buffer of PG and q �∈ Pt ∪ Spg

t . If st(q) �∈ {E,EB}, invariant I2 is not effected
either. Otherwise, st(q) := U and, if q was in state EB, st(b(q)) := U. Hence,
invariants I2–I5 are still true.

Observe that Δopt
t is decreased by v(q) − v(p). Hence, Δpg

t can be decreased
by the same amount.

– If q was in state E and its state changed to U, Δpg
t is decreased by at most

(r − 1) · v(q)− ((r/β) · v(q) + (2− r) · vmin
t (q)) = (2− r) · (v(q)− vmin

t (q)) ≤
v(q)− v(p), since r/β = 2r − 3 and p is ejected at the event σt.

– If q was in state EB and its state changed to U, Δpg
t is decreased by at most

2(r − 1) · v(q)− ((r/β) · v(q) + (2− r) · vmin
t (q)) = v(q) + (r − 2) · vmin

t (q) ≤
v(q) + (r − 2) · v(p). In this case, the state of b(q) changed from BC or B
to U. This increases Δpg

t by at least (r/β) · v(b(q)) + (2 − r) · vmin
t (b(q)) ≥

(r/β) · v(p) + (2− r) · v(p) ≥ (r − 1) · v(p). Hence, in total Δpg
t is decreased

by at most v(q) + (r − 2) · v(p)− (r − 1) · v(p) = v(q) − v(p).

Altogether, invariant I1 is true. ��

Fix an arrival event σt in which a packet p arrives. We distinguish the follow-
ing cases. If not mentioned otherwise, everything remains unchanged at σt. The
verification of the invariants I1–I5 is omitted due to space limitations. Observe
that the only possible state transition at σt is that p is either in the state B or
U at the end of σt.

– p preempts another packet q

• q ∈ Bt−1 ∪ BCt−1

Changes: st(p) := B and bt(b−1
t−1(q)) := p

• q ∈ Et−1 ∪ EBt−1

Changes: st(p) := U
• q ∈ Ut−1

Changes: st(p) := U and Dt := Dt−1 ∪ {q}
– p ejects another packet q
• q ∈ Bt−1 ∪ BCt−1

Changes: st(p) := B and bt(b−1
t−1(q)) := p

• q ∈ Et−1 ∪Ut−1

Changes: st(p) := U
• q ∈ EBt−1

Changes: st(p) := U and st(bt−1(q)) := U
– p is not stored in the buffer of PG

Changes: –
(Due to lemma 5, p is also not stored in the buffer of OPT.)

Fix a send event σt in which PG sends packet p and OPT sends packet q. Note
that due to lemma 5, q ∈ Pt−1∪Spg

t−1∪B
pg
t−1. Since a new dummy packet of value

0 is stored in the buffer of PG after a packet is sent, a packet uB ∈ Bpg
t \ B

pg
t−1

exists with st(uB) = B. We can assign uB as buddy to another packet at this
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BC

B

E

EB

U

b2, b6

b4, b6, b7

b3, b5, b8

b8

a4–a6, b7 b1

�

�

�������������

�

�

Fig. 2. Possible state transitions at a send event. The labels at the edges specify the
cases in which the respective state transition could occur.

event, since uB �∈ Bpg
t−1. We distinguish the following cases. If not mentioned oth-

erwise, everything remains unchanged at σt. The verification of the invariants
I1–I5 is omitted due to space limitations. In Fig. 2, we depict the possible state
transitions at σt.

– q ∈ Pt−1 ∪ Spg
t−1

a1: q ∈ Dt−1 and p ∈ Bt−1 ∪ BCt−1
Changes: Dt := Dt−1 ∪ {p} ∪ {p′|d̂t−1(p′) = p}

a2: q ∈ Dt−1 and p ∈ Bopt
t \ (Bt−1 ∪ BCt−1)

Changes: Dt := Dt−1 ∪ {p}
a3: q ∈ Dt−1 and p �∈ Bopt

t ∪ (Bt−1 ∪ BCt−1)
Changes: –

a4: q �∈ Dt−1 and p ∈ Bt−1 ∪ BCt−1
Changes: st(d̂t−1(q)) := U, Dt := Dt−1 ∪ {p} ∪ {p′|d̂t−1(p′) = p} ∪ {q′ �=
q|d̂t−1(q′) = d̂t−1(q)}, bt(b−1

t−1(d̂t−1(q))) := uB

(Due to I4, d̂t−1(q) ∈ BCt−1 ∪ Bt−1.)
a5: q �∈ Dt−1 and p ∈ Bopt

t \ (Bt−1 ∪ BCt−1)
Changes: st(d̂t−1(q)) := U, Dt := Dt−1 ∪ {p} ∪ {q′ �= q|d̂t−1(q′) =
d̂t−1(q)}, bt(b−1

t−1(d̂t−1(q))) := uB

a6: q �∈ Dt−1 and p �∈ Bopt
t ∪ (Bt−1 ∪ BCt−1)

Changes: st(d̂t−1(q)) := U, Dt := Dt−1 ∪ {q′ �= q|d̂t−1(q′) = d̂t−1(q)},
bt(b−1

t−1(d̂t−1(q))) := uB
– q = p

Changes: –
– q ∈ Bpg

t−1 \ {p}
b1: q ∈ Ut−1

Changes: bt(q) := uB, st(q) := EB
b2: q ∈ BCt−1

Changes: bt(b−1
t−1(q)) := uB, st(q) := E

b3: q ∈ Bt−1 and v(p) < v(q)/β
Changes: bt(q) := uB, st(q) := EB
(Due to I5, b−1

t−1(q) ≺ d(q), i.e., b−1
t−1(q) �∈ Bpg

t−1, since v(p) < v(q)/β.)
b4: q ∈ Bt−1 and v(p) ≥ v(q)/β and p �∈ EBt−1

Changes: bt(b−1
t−1(q)) := uB, st(q) := E
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b5: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and b−1
t−1(q) = ⊥

Changes: bt(q) := uB, st(q) := EB
b6: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and bt−1(p) ) b−1

t−1(q) �= ⊥
Changes: st(bt−1(p)) := E, bt(b−1

t−1(q)) := uB, st(q) := E
(Due to I5, b−1

t−1(q) ≺ d(q), i.e., v(bt−1(p)) ≥ v(q)/β.)
b7: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and ⊥ �= b−1

t−1(q) ≺ bt−1(p)
and v(bt−1(p)) > 2v(q)
Changes: st(bt−1(p)) := U, Dt := Dt−1 ∪ {p′|d̂t−1(p′) = bt−1(p)},
bt(b−1

t−1(q)) := uB, st(q) := E
b8: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and ⊥ �= b−1

t−1(q) ≺ bt−1(p)
and v(bt−1(p)) ≤ 2v(q)
Changes: st(bt−1(p)) := BC, bt(b−1

t−1(q)) := bt−1(p), bt(q) := uB, st(q) :=
EB

This concludes the proof of the theorem. ��
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Abstract. We consider the following vertex coloring problem. We are
given an undirected graph G = (V, E), where each vertex v is associated
with a penalty rejection cost rv. We need to choose a subset of vertices,
V ′, and to find a proper coloring of the induced subgraph of G over V ′.
We are interested in both the number of colors used to color the vertices
of V ′, and in the total rejection cost of all other vertices. The goal is to
minimize the sum of these two amounts. In this paper we consider both
the online and the offline versions of this problem. In the online version,
vertices arrive one at a time, revealing the rejection cost of the current
vertex and the set of edges connecting it to previously revealed vertices.
We also consider the classical online coloring problem on bounded degree
graphs and on (k + 1)-claw free graphs.

1 Introduction

Given an undirected graph G = (V,E), a coloring of G is an assignment of colors
to the vertices such that two adjacent vertices are assigned distinct colors. I.e.,
a coloring is a function c : V → Z+ such that if (i, j) ∈ E then c(i) �= c(j). In
the offline coloring problem, the goal is to find a coloring of G where the
number of used colors, maxi∈V c(i), is minimized. This problem is well-known to
be NP-hard for general input graphs (see problem [GT4] in [3]), however it can
be solved in polynomial time when the input graph is perfect (using the ellipsoid
method, see [9]). The minimum number of colors that are necessary in order to
color G, is called the chromatic number of G and it is denoted by χ(G). For a
coloring c, denote by n(c,G) the number of distinct colors that are used by c.

We define the coloring with rejections problem, which is a new general-
ization of the standard coloring problem, as follows. We are given an undirected
graph G = (V,E), where each vertex v ∈ V is associated with a non-negative
penalty rejection cost rv. The goal is to find a subset V ′ ⊆ V , and a coloring c
of G[V ′] that is the induced subgraph of G over V ′, so as to minimize the sum of
the number of used colors (in the coloring of G[V ′]) and the total rejection cost
of all the vertices in V \ V ′. I.e., the goal function is n(c,G[V ′]) +

∑
v∈V \V ′ rv.

If we can color every induced subgraph of G using a minimum number of colors,
then our goal is to find a vertex set V ′ that minimizes χ(G[V ′]) +

∑
v∈V \V ′ rv.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 364–375, 2006.
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The use of a penalty function for failing to serve some clients is a common
practice in combinatorial optimization problems. For example, this is the mo-
tivation behind the definition of the prize-collecting Steiner tree and the prize-
collecting traveling salesperson problems (in both problems we pay a penalty
for not connecting a vertex, where in the first problem the goal is to construct
a tree that spans some vertices, and in the second problem the goal is to con-
struct a cycle over some vertex set). For an earlier work on these problems see
for example [4].

Since there does not exist a competitive online algorithm for the standard
coloring problem even for very limited graph classes (such as trees), and as the
coloring problem with rejections generalizes the standard coloring problem, we
consider both problems on special classes of graphs, where one can hope to
achieve a finite competitive ratio.

In an online setting, vertices arrive one by one, and we need to deal with
an arriving vertex before seeing any future vertices. In the online coloring
with rejections problem, when a vertex arrives the following information is
revealed. Its rejection cost, and the edges that connect this new vertex to all
the previously introduced vertices (but no information regarding edges to the
future vertices is given at this time). We need to decide whether we would like
to accept the new vertex (i.e., to add it to the vertex set V ′) or to reject it. If
the algorithm decides to accept the new vertex, then it needs to color it using
one of the existing colors or using a new color (and in this case we say that
the algorithm opens a new color). In the online coloring problem we simply
do not reveal the rejection cost of a vertex (as such a notion is undefined for
the standard coloring problem, or we can alternatively assume infinite rejection
costs for all vertices in this case).

The maximum weight k-colorable subgraph problem is the following
related problem. The input to this problem consists of an integer number k
and an undirected graph G = (V,E), where each vertex v has a non-negative
weight wv. The goal is to pick a subset V ′ ⊆ V , such that there exists a coloring
c of G[V ′] with k colors, and among all such subsets, the value

∑
v∈V ′ wv is

maximized. Yannakakis and Gavril [11] showed that this problem is NP-hard
on split graphs when k is part of the input, and it is polynomially solvable
on interval graphs. This was done by formulating the problem as an integer
Linear Program on the vertices versus cliques constraint matrix, which is totally
unimodular. If all weights are equal, we obtain the maximum size k-colorable
subgraph problem, that was shown to be polynomial for comparability and co-
comparability graphs by Frank [2].

The online coloring problem is well-studied (see Kierstead [7] for a survey).
Gyárfás and Lehel [5] showed that for every positive integer k and every online
algorithm A, there exists a tree Tk on 2k−1 vertices, with maximum degree
k−1, such that A must use at least k colors when coloring Tk. They also showed
that for trees, the First-Fit algorithm denoted as FF (the FF algorithm assigns
for each vertex the minimum color that can be used to color the vertex) is
best possible among all possible online algorithms (in terms of the competitive
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ratio). Bar-Noy, Motwani and Naor [1] showed that First-Fit is a 2-competitive
online algorithm for coloring line graphs, and that any online algorithm has a
competitive ratio of at least two (and hence First-Fit is the best possible online
algorithm for coloring line graphs).

For an algorithm A, we denote its cost by A as well. The cost of an optimal
offline algorithm that knows the complete sequence of vertices is denoted by
OPT. In this paper we consider the absolute competitive ratio and the absolute
approximation ratio criteria. For an online algorithm we use the term competitive
ratio whereas for an offline algorithm we use the term approximation ratio. The
competitive ratio of A is the infimum R such that for any input, A ≤ R ·OPT.
If the competitive ratio of an online algorithm is at most C we say that it is C
competitive. The approximation ratio of a polynomial time offline algorithm is
defined similarly to be the infimum R such that for any input, A ≤ R ·OPT. If
the approximation ratio of a polynomial time offline algorithm is at most R we
say that it is a R approximation.

A perfect graph is a graph G such that for every induced subgraph G′ of G, the
chromatic number of G′ equals its maximum clique size. A split graph is a graph
whose vertices can be partitioned into two subsets I and K such that I is an
independent set and K induces a complete graph. Note that the complement of a
split graph is a split graph. A (k+1)-claw free graph is a graph that does not con-
tain an induced subgraph that is a star with k+1 leaves, and a claw-free graph is a
3-claw free graph. A line graph G can be modeled by the edges of a second graph
H = (VH , EH) such that the vertex set of G is EH and there is an edge between
two vertices of G if the corresponding edges of H share a common endpoint.

Our results. In Section 2 we consider the offline coloring problem with rejec-
tions. Given a graph class F we show a close relation between the complexity
of this problem on F to the complexity of the maximum weight k-colorable
subgraph problem on F . In fact we show that if the class F is closed under
the operation of union with a disjoint finite clique, then one problem is poly-
nomially solvable if and only if the other one is polynomially solvable. Among
the sub-classes of the family of perfect graphs discussed in [6], the only graph
class that is not closed under this operation is the class of split graphs. For this
family it is known that the maximum weight k-colorable subgraph problem is
NP-hard, and we show that the coloring problem with rejections on split graphs
is NP-hard as well. Then, we turn our attention to approximation algorithms
for this problem. We first consider split graphs, we show an approximation algo-
rithm with an additive error guarantee of one from the optimum, and then we
show how to derive a polynomial time approximation scheme for the coloring
problem with rejections on split graphs. We conclude this section by presenting
an O(log n) approximation algorithm for the coloring problem with rejections
on perfect graphs that is based on the greedy algorithm. In Section 3 we focus
on the classical online coloring problem, and analyze the competitive ratio of
the First-Fit algorithm on two graph classes. We show that First-Fit is a Δ+1

2
competitive algorithm for the class of graphs with a maximum vertex degree of
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at most Δ, and we show that the First-Fit algorithm colors a (k + 1)-claw free
graph using at most kOPT−k+1 colors. We also show that any online algorithm
cannot perform better on these graph classes. In Section 4 we turn to deal with
the online coloring problem with rejections. We first show an online algorithm
whose competitive ratio is Δ + 2, for the class of graphs with maximum degree
at most Δ. Thus we show that for bounded degree graphs, adding the notion
of rejections to the problem makes it harder but still tractable. We then show
that there is no online algorithm whose competitive ratio is smaller (in terms of
Δ), even if the input graph is a collection of disjoint cliques. Since the class of
(k + 1)-claw free graphs contains all graphs which are collections of cliques, we
get that unlike the bounded degree problem, adding rejections to this problem
makes it much harder . Among the sub-classes of the family of perfect graphs
discussed in [6], the only graph class that does not contain a disjoint union of
cliques is the class of split graphs. Therefore, we conclude the paper by showing
that even for split graphs there is no online algorithm with a finite competitive
ratio.

2 Offline Coloring with Rejections

In this section we study the offline version of the coloring with rejection. We show
a close connection between the tractability of this problem on graph classes
F and the tractability of the problem of computing the maximum weight k-
colorable subgraph of graphs that belong to F .

Theorem 1. Given a graph class F such that F is closed under the operation
of union with a disjoint finite clique, the offline coloring problem with rejections
on F is polynomially solvable if and only if the maximum weight k-colorable
subgraph problem on graphs that belong to F is polynomially solvable.

Proof. Assume that for F it is possible to solve the maximum weight k-colorable
subgraph problem. Then, given an instance of the offline coloring with rejections
G = (V,E) where G ∈ F and rejection cost rv, v ∈ V , we apply the following
procedure. For each value of k we compute the maximum weight k-colorable
subgraph of G where the weight wv of a vertex v equals its rejection cost, and
denote this subgraph by (Vk, Ek). For each value of k, we compute the total cost
of k and the total rejection cost of the vertices from V \ Vk, and we pick the
solution whose total cost is minimized. In order to analyze the performance of the
resulting algorithm we fix an optimal solution OPT, and consider the iteration
in which the algorithm uses the value of k that equals the correct number of
colors that OPT uses. By the optimality of (Vk, Ek) to the maximum weight
k-colorable subgraph problem, we conclude that the total rejection cost of the
vertices in V \Vk is at most the total rejection cost that OPT pays. Therefore, the
algorithm returns an optimal solution to the coloring with rejections problem.

Next assume that for the class F , it is possible to compute in polynomial time
an optimal solution to the coloring problem with rejection. Let G = (V,E) and
w : V → R+ be an input instance to the maximum weight k-colorable subgraph
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problem such that G ∈ F . Let G′ = (V ′, E′) be the graph resulting from G by
augmenting it with a set of k new vertices and a clique over them (so G′ is a
union of G and a clique of size k). Since G ∈ F and by the assumption on F , we
conclude that G′ ∈ F . Therefore, it is possible to compute in polynomial time
the optimal solution to the coloring with rejections problem for every rejection
cost function, r. Let 0 ≤ ε ≤ 1

1+
∑

v∈V w(v) and define a rejection cost function
r as follows: r(v) = 1 if v ∈ V ′ \ V (i.e., if it belongs to the new clique), and
otherwise r(v) = ε · w(v).

Consider an optimal solution OPT to the instance of the coloring problem
with rejections. W.l.o.g. OPT does not reject a vertex v ∈ V ′ \ V (this can
be assumed as opening a new color and assigning v to the new color does not
increase the total cost). Therefore, the number of colors that OPT uses is at
least k. We next argue that OPT uses exactly k colors. To see this claim, assume
otherwise that OPT uses at least k + 1 colors. Then, there is a color in OPT
such that each vertex that is assigned to this color is from V , and therefore by
definition of ε, the total rejection cost of all the vertices that are assigned to this
color is less than 1. Therefore, rejecting all these vertices rather than opening
this color results in a solution of a strictly smaller cost, which contradicts the
optimality of OPT.

Given that OPT uses exactly k colors, it assigns each one of the clique
vertices, V ′ \ V , to one of these colors, and also assigns a maximum weight
k-colorable subgraph of G to these colors (and the remaining vertices if there
are such, are rejected). Since the rejection costs are simply the scaled original
weights, OPT solves also the maximum weight k-colorable subgraph of G in
polynomial time. ��

In the full version of the paper we show that the offline coloring with rejection
problem is NP-hard even when the input graph is restricted to be a split graph.
Although computing the maximum weight k-colorable subgraph of a split graph
is known to be NP-hard (when k is not fixed), the next result does not follow
from Theorem 1 as split graphs are not closed under the operation of union with
a disjoint clique. The following proposition can be proved by using a reduction
from 3-set packing problem.

Proposition 1. The offline coloring problem with rejections is NP-hard in the
strong sense even when the input graph is restricted to be a split graph.

We next show that for a split graph there is an approximation algorithm with
an additive approximation guarantee. We do not require an input split graph to
be introduced together with its realization. However, such a realization is easy
to find in polynomial time.

Theorem 2. If the input to the offline coloring with rejections problem is a
split graph, and the optimal solution OPT has cost OPT, then it is possible
to compute in polynomial time a feasible solution SOL whose cost is at most
OPT + 1.
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Proof. Assume that G is decomposed into an independent set I and a vertex
set K such that the induced subgraph of G over K is a complete graph. Clearly
such a decomposition can be found in polynomial time since G is a split graph.

The algorithm guesses the number of colors that OPT uses. Denote this num-
ber by N . The term “guessing” means performing an exhaustive enumeration
of all possibilities from the polynomial size set {0, 1, 2, . . . , |V |}, and picking the
cheapest solution among the resulting solutions (one solution for each possibil-
ity). In the analysis it suffices to consider the solution that the algorithm returns
in the iteration in which it uses the correct value of N .

SOL uses N + 1 colors. The first color is used to color the independent set I
of G. The other N colors are used to color the N most expensive rejection cost
vertices from K (one vertex per each of these N colors).

The total cost that SOL pays is the sum of N +1 and the total rejection cost.
It suffices to show that the total rejection cost that OPT pays is at least the
total rejection cost that SOL pays. However, this is clear as each color in OPT
can be used to color at most one vertex from K and therefore OPT pays the
rejection cost of at least |K|−N vertices from K as SOL does. We conclude the
proof using the fact that SOL pays the rejection cost for the cheapest vertices
in K. ��

We can actually show how to transform the algorithm of Theorem 2 into a
polynomial time approximation scheme.

Corollary 1. There is a PTAS for approximating the offline coloring problem
with rejections on split graphs.

We conclude this section by considering approximation algorithms for perfect
graphs. For the maximum weight k-colorable subgraph problem on perfect graphs
there is an easy (1 − 1

e )-approximation algorithm that is based on the greedy
algorithm for the maximum coverage problem. The maximum coverage prob-
lem is defined as follows: We are given a ground set E where each element
e ∈ E has a weight we, a collection S of subsets of E and an integer num-
ber k. The goal is to find a sub-collection S′ of S of (exactly) k subsets that
covers a maximum total weight of the elements of E (where covering an ele-
ment means that at least one of the subsets in S′ contains the element). It
is known (see [8]) that the greedy algorithm is an (1 − 1

e )-approximation algo-
rithm where the greedy algorithm at each iteration adds the set from S that
covers the most total weight of elements that were not covered prior to this
iteration, to the collection S′ until there are k subsets in S′. Noting that we
can formulate the maximum weight k-colorable subgraph problem as an in-
stance of the maximum coverage problem, by letting E be the set of vertices
of the input graph, and S be the collection of independent sets of the graph.
Note that the greedy algorithm does not use a list of the sets in S, but it
only needs to compute a maximum weight independent set in a residual graph
(the graph induced by the non-covered vertices), and this can be done in
polynomial time for perfect graphs. So we can apply the greedy algorithm
for the maximum coverage problem where each iteration is implemented in
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polynomial time (where the time complexity is polynomial in the size of the
input graph).

However, we are not aware of a constant approximation algorithm for the
offline coloring with rejections problem when applied to perfect graphs. We next
discuss an O(log n)-approximation algorithm for this problem.

Theorem 3. There is an O(log n)-approximation algorithm for the offline col-
oring problem with rejections on perfect graphs.

Proof. We denote the total rejection cost of vertices for which OPT does not
pay the rejection cost (this is the sum of rejection costs of the vertices that OPT
colors) by R and by R the total rejection cost that OPT pays. We also denote by
C the number of colors that OPT uses. The partial cover problem is defined
as follows. We are given a ground set E where each element e ∈ E has a weight
we, a collection S of subsets of E and a number W . The goal is to find a sub-
collection S′ of S of minimum number of subsets that covers a subset of E whose
total weight is at least W (where covering an element means that at least one
of the subsets in S′ contains the element). It is known (see [10]) that the greedy
algorithm is an O(log n)-approximation algorithm for the partial cover problem
where the greedy algorithm at each iteration adds the set from S that covers the
most total weight of elements that were not covered prior to this iteration, to the
collection S′ until the total weight of covered elements is at least W . Note that
we can formulate the offline coloring with rejections problem as an instance of
the partial cover problem by letting E be the set of vertices of the input graph,
S be the collection of independent sets of the graph and W = R. Given this
instance note that there is a solution to the partial cover instance that uses at
most C subsets and therefore the greedy algorithm returns a solution with at
most O(C logn) subsets, and the total cost of the solution of the offline coloring
with rejections is at most O(C logn)+R ≤ O(log n) · (C +R) = O(log n) ·OPT.
So if the exact value of R is known to us, then the greedy algorithm for the
partial cover instance is an O(log n) approximation algorithm. To overcome the
lack of this information, we consider the following algorithm.

Apply the greedy algorithm for the partial cover instance until all elements
are covered, adding each of the intermediate solutions created at the end of each
iteration of the greedy algorithm, to a solution set denoted by SOL. When the
algorithm terminates, return the best solution from SOL. We note that SOL
contains the approximated greedy solutions for the partial cover instances for
all possible values of W . Therefore, picking the cheapest solution among SOL is
superior to the solution created for the correct value of R, and the last solution
is an O(log n)-approximation algorithm. ��

3 Online Coloring (Without Rejections)

In this section, we consider the classical online coloring problem. We consider
two classes of graphs, (k + 1)-claw free graphs and bounded degree graphs. We
show that the First-Fit algorithm is a best possible online algorithm for both
cases.



Graph Coloring with Rejection 371

3.1 (k + 1)-Claw Free Graphs

In this subsection we prove that for (k + 1)-claw free graphs, the First-Fit al-
gorithm is a best possible online algorithm. Our result extends the result of
Bar-Noy, Motwani and Naor [1] for line graphs (that are 3-claw free graphs).

Theorem 4. The solution returned by the First-Fit algorithm uses at most
kOPT − k + 1 colors when applied to (k + 1)-claw free graphs. Moreover, no
online algorithm can guarantee a smaller number of colors.

Proof (sketch). We first show that the solution returned by First-Fit uses at
most kOPT − k + 1 colors. Assume that First-Fit uses t + 1 colors, and let v
be a vertex that is colored by First-Fit using the t + 1-th color. Then, clearly
v has at least t neighbors. Since the input graph is a (k + 1)-claw free graph,
the maximum size independent set in the induced subgraph over the neighbors
of v, has size at most k. Therefore, OPT must use at least 	 t

k 
 colors to color
the neighbors of v and one additional color to color v. Therefore, if FF = t + 1,
then 	 t

k
+ 1 ≤ OPT. Therefore,

FF = t + 1 ≤ k ·
(⌈

t

k

⌉
+ 1

)
− k + 1 ≤ k ·OPT− k + 1.

It remains to show the lower bound. We fix a value of k = �, and the cost
of the optimal solution, which we denote by OPT = n + 1. Our lower bound
makes use of the following recursive construction. We define structures of types
1, 2, . . ., where each such structure is a graph which has a subset of n designated
vertices which are called the “top clique”. All other vertices are also arranged
in cliques and are associated with levels. A structure of type 1 is simply defined
to be a clique over n vertices, all these vertices are defined to be the top clique.
These vertices are also called the level 1 clique. We define a structure of type
t recursively using structures of types � = 1, 2, . . . , t. To obtain a structure of
type t, we construct for every 1 ≤ i ≤ t − 1, n copies of a type i structure.
All n(t− 1) structures are pairwise disjoint and constructed independently from
each other. Denote the structures of type i by Si,1, . . . , Si,n. To combine them all
into a type t structure, we construct an additional clique on n vertices, denoted
by v1, . . . , vn. This will be the top clique of the structure. Vertex vj is connected
to all vertices of the top clique in Si,j for all 1 ≤ i ≤ t − 1. The level i cliques
of the type t structure, for 1 ≤ i ≤ t − 1 are all level i cliques of all structures
of types 1, . . . , t− 1 (or actually of types i, . . . , t− 1, since structures of smaller
types do not have level i cliques), which are used in the type t structure. The
level t clique of a type t structure is defined to be its top clique.

Next, we define a “superior structure” of type t. This structure is constructed
similarly to a regular type t structure, but instead of a top clique which consists
of n vertices, we use a top clique with n + 1 vertices. Furthermore, we use
n+ 1 structures of each type 1, . . . , t− 1 instead of n such structures. Note that
structures used in a recursive construction are regular structures and a superior
structure is never used as a building block for another structure.
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Our lower bound proof is based on considering optimal coloring of a superior
type t structure, and then showing how to force an online algorithm to use a
large number of colors. ��

3.2 Bounded Degree Graphs

In this section we restrict ourselves to input graphs with maximum degree at
most Δ. We can prove that the First-Fit algorithm (FF) is a best possible online
algorithm for this case.

Theorem 5. The First-Fit algorithm is a Δ+1
2 -competitive algorithm for online

coloring of graphs with maximum degree at most Δ, and no online algorithm can
guarantee a better competitive ratio on this graph class.

Remark 1. Another way to achieve the same lower bound (using a similar con-
struction) for coloring bounded degree graphs using the First-Fit algorithm, is
by adapting the lower bound construction in [5]. In that paper, a lower bound
of Ω(log n) on the competitive ratio of online coloring of trees is given. One can
stop their construction when a new vertex has a degree of exactly Δ. At this
step each vertex has a degree of at most Δ. Moreover, OPT uses only two colors
whereas the online algorithm is forced to use at least Δ + 1 colors. Therefore,
no online algorithm can guarantee a better than Δ+1

2 competitive ratio.

4 Online Coloring with Rejections

In this section we first show our positive result, that is, restricting ourselves to in-
put graphs with maximum degree of at most Δ, then there is an online algorithm
with competitive ratio of Δ + 2. Our first lower bound proves that without this
restriction there is no competitive online algorithm. This lower bound applies to
a disjoint union of cliques (with arbitrary size, so these are not bounded degree
graphs). The second lower bound applies to split graphs. Our first lower bound
shows that for each fixed value of Δ, our Δ + 2 competitive algorithm is best
possible (for any online algorithm). Another consequence from our constructions
is that for (k+1)-claw free graphs, there is no constant competitive algorithm for
the coloring problem with rejections. We note this to show that despite the sim-
ilar behavior of the two classes of graphs, (k + 1)-claw free graphs and bounded
degree graphs, with respect to the standard online coloring problem, the online
coloring problem with rejections separates these two classes.

Theorem 6. There is a Δ + 2 competitive algorithm for the online coloring
problem with rejections on graphs with a maximum degree of at most Δ.

Proof. Our algorithm rejects all arriving vertices as long as the total rejection
costs does not exceed one. Then, it opens Δ + 1 colors and uses the First-Fit
algorithm to color all future vertices (starting from the vertex in which the total
rejection costs exceeds one, and that vertex is the first one to be accepted). If
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the algorithm reaches the point where it opens Δ + 1 colors, then its total cost
is at most Δ + 2 (as the total rejection cost is at most one). In this case the
cost of an optimal solution must be at least one, since if OPT uses at least one
color, then its cost is at least one, and otherwise it rejects all vertices with total
rejection cost at least one (as our algorithm decided to open the colors).

Otherwise, assume that the algorithm rejects all vertices with a total rejection
cost of x, then x ≤ 1, and an optimal solution also rejects all the vertices with
total cost of x (if x = 1 then there may be a different optimal solution which
uses a single color and has the same cost). In this case the competitive ratio is
1 < Δ + 2. ��

We next show that our algorithm is best possible for graphs with maximum
degree at most Δ.

Theorem 7. For all δ > 0, there is no online algorithm for the online coloring
problem with rejections on graphs with a maximum degree of at most Δ, whose
competitive ratio is at most Δ + 2− δ.

Proof. Assume that there is an online algorithm whose competitive ratio is at
most Δ+2−δ. Let ε > 0 to be defined later. We define a sequence {εk}Δ+1

k=1 as the
(unique) solution for the following equations ε1 = ε and for all k = 1, 2, . . . , Δ,
the following equation ε · εk =

∑Δ+1
j=k+1 εj . The implicit values of the solution

are εi = εi

(1+ε)i−1 , for i ≤ Δ, and εΔ+1 = εΔ+1

(1+ε)Δ−1 . Our construction will have
two phases. In both phases we will present vertices of disjoint cliques one clique
after the other. In the first phase vertex i of the current clique has rejection
cost εΔ+2−i , and in the second phase vertex i of the current clique has rejection
cost

ε
Δ+2−i

ε . We stop presenting vertices in the current clique (and move to the
next clique) after the first time that the online algorithm has rejected a vertex
from the clique. If the algorithm has opened (at least) Δ + 1 colors we stop the
instance immediately. This means that no clique has more than Δ + 1 vertices,
since introducing more than Δ + 1 vertices in the clique means that the online
algorithm did not reject any of the vertices. However, in that case, it must use
Δ + 1 colors to color the clique, and thus the construction terminates at this
time. Given an upper bound of Δ + 1 on the size of cliques, we get that the
largest degree ever used is at most Δ.

The first phase lasts as long as the total rejection cost of the instance is at
most one. Thus the last clique in this phase is presented until the total rejection
cost is about to become at least one, and not until the algorithm rejects some
vertex. Afterwards, in the next clique that we present, we move to the second
phase. If the total rejection cost that the online algorithm pays ever exceeds
3(Δ + 2) at some time, we stop the instance immediately, even if the online
algorithm did not open at least Δ + 1 colors. Note that at least one of the two
events must happen. In each clique of the second phase, where less than Δ + 1
colors are used by the algorithm, the algorithm increases its rejection cost by
at least εΔ+1

ε . Thus within a finite number of cliques either the rejection cost
becomes large enough, or at least Δ + 1 colors are used.
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If we stop the instance already in the first phase, then the optimal solution
rejects all vertices. Otherwise, we get to the second phase, and the solution that
we consider as an upper bound on the optimal cost has one color, and it accepts
only the last vertex from each clique. Therefore, if we denote the total rejection
cost of the optimal solution by Ropt and the total rejection cost of the online
algorithm by Ronl, then we argue that Ropt ≤ ε2 +εRonl ≤ ε+εRonl is satisfied.
To show this, consider first the very last clique of the first phase. Excluding the
last vertex of this clique, for which OPT does not need to pay for its rejection
cost (since it accepts and colors it), the clique has a total rejection cost of at
most ε. As for all preceding cliques, OPT pays the rejection cost only for all
vertices except for the last one, whereas the online algorithm pays only for the
last vertex, and ε · εk =

∑Δ+1
j=k+1 εj holds.

Assume that the instance stops while we are in the first phase. Let x denote the
total rejection cost of all the vertices. Then, the optimal solution of the instance
is to reject all the vertices with a total cost of x. The total rejection cost of all
the vertices in the last clique is less than 2ε, and therefore the online algorithm
has a total rejection cost of at least x−2ε

1+ε . Since we stop the instance in the first
phase the online algorithm has opened Δ + 1 colors, and therefore its total cost
is Δ + 1 + x−2ε

1+ε ≥ Δ + 1 + x− 3ε, where the inequality holds as x ≤ 1. We next
note that for all x ≤ 1 and ε ≤ 1

3 the following holds Δ+1−3ε+x
x ≥ Δ + 2 − 3ε.

Therefore, if ε ≤ δ
3 , and by the assumption that our online algorithm has a

competitive ratio of at most Δ+ 2− δ, we get that the algorithm does not open
the Δ + 1-th color in the first phase. Hence the total rejection cost that the
online solution pays for the vertices in the first phase is at least 1−2ε

1+ε .
Recall that Ronl is the total rejection cost that the online algorithm pays. If

Ronl ≥ 3(Δ + 2), then Ronl ≤ 3(Δ + 2) + ε. Assume that ε ≤ 1
3(Δ+2)+1 , and

therefore the competitive ratio of the resulting algorithm is at least Ronl

1+Ropt
≥

Ronl

1+ε+εRonl
≥ Ronl

1+ε+1 , where the last inequality holds as ε·Ronl ≤ ε·(3(Δ + 2) + 1)

≤ 1. Therefore, the competitive ratio of the algorithm is at least Ronl

3 ≥ 3(Δ+2)
3 =

Δ + 2, and this contradicts the fact that the competitive ratio of the algorithm
is at most Δ+2−δ. Therefore, the total rejection cost that the online algorithm
pays satisfies 1−2ε

1+ε ≤ Ronl ≤ 3(Δ + 2), and the algorithm pays an additional
Δ + 1 units of cost for opening at least Δ + 1 colors.

Therefore, the total cost paid by the online algorithm is at least Δ+1+ 1−2ε
1+ε ≥

Δ+ 2− 3ε ≥ Δ+ 2− δ
2 (assuming ε < δ

6 ), and the total cost paid by OPT is at
most 1 + Ropt ≤ 1 + ε + εRonl ≤ 1 + ε · (7 + 3Δ). The competitive ratio of the

online algorithm is at least Δ+2− δ
2

1+ε·(7+3Δ) . Note that this last quantity should be at
most Δ+ 2− δ. However, for ε < δ

2(7+3Δ)(Δ+2−δ) , the above constraint does not
hold, and we reach a contradiction. ��

Corollary 2. There is no competitive online algorithm for the online coloring
problem with rejections, even if the input graph is a disjoint union of cliques.

Proof. We use the proof of Theorem 7, and note that where the maximum degree
can be arbitrarily large the lower bound is arbitrarily large. ��



Graph Coloring with Rejection 375

However, the conclusion of Corollary 2 does not apply to split graphs as a union
of two (or more) disjoint cliques is not a split graph. We note that the offline
problem on split graphs has a polynomial time approximation scheme (and thus
is approximable very well), whereas the online problem cannot be tackled. We
can prove the following theorem.

Theorem 8. There is no competitive online algorithm for the online coloring
problem with rejections on split graphs.
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edges is. Precisely, it was known that graphs of doubling dimension at
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navigable. Finally, we complete our result by studying the special case
of square meshes, that we prove to always be augmentable to become
navigable.
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specific tasks efficiently [1,2,6,24]. Roughly speaking, the doubling dimension of
a graph G is the smallest d such that, for any integer r ≥ 1, and for any node
u ∈ V (G), the ball B(u, 2r) centered at u and of radius 2r can be covered by
at most 2d balls B(ui, r) centered at nodes ui ∈ V (G). (This definition can be
extended to any metric, and, for instance, Zd with the �1 norm is of doubling di-
mension d). In particular, the doubling dimension has an impact on the analysis
of the small world phenomenon [22], precisely on the expected performances of
greedy routing in augmented graphs [17].

An augmented graph is a pair (G,ϕ) where G is an n-node graph, and ϕ is
a collection of probability distributions {ϕu, u ∈ V (G)}. Every node u ∈ V (G)
is given an extra link pointing to some node v, called the long range contact of
u. The link from a node to its long range contact is called a long range link.
The original links of the graph are called local links. The long range contact of
u is chosen at random according to ϕu as follows: Pr{u → v} = ϕu(v). Greedy
routing in (G,ϕ) is the oblivious routing protocol where the routing decision
taken at the current node u for a message of destination t consists in (1) selecting
a neighbor v of u that is the closest to t according to the distance in G (this
choice is performed among all neighbors of u in G and the long range contact of
u), and (2) forwarding the message to v. This process assumes that every node
has a knowledge of the distances in G, or at least a good approximation of them.
On the other hand, every node is unaware of the long range links added to G, but
its own long range link. Hence the nodes have no notion of the distances in the
augmented graph. Note that the knowledge of the distances in the underlying
graph G is a reasonable assumption when, for instance, G is a network in which
distances can be computed from the coordinates of the nodes (e.g., in meshes,
as in [17]).

An infinite family of graphs G = {G(i), i ∈ I} is navigable if there exists a
family Φ = {ϕ(i), i ∈ I} of collections of probability distributions, and a function
f(n) ∈ O(polylog(n)) such that, for any i ∈ I, greedy routing in (G(i), ϕ(i))
performs in at most f(n(i)) expected number of steps where n(i) is the order of
the graph G(i). More precisely, for any pair of nodes (s, t) of G(i), the expected
number of steps E(ϕ(i), s, t) for traveling from s to t using greedy routing in
(G(i), ϕ(i)) is at most f(n(i)). The greedy diameter of (G(i), ϕ(i)) is defined as
maxs,t∈G(i) E(ϕ(i), s, t).

In his seminal paper, Kleinberg [17] proved that, for any fixed integer d ≥ 1,
the family of d-dimensional meshes is navigable. Duchon et al [8] generalized this
result by proving that any infinite family of graphs with bounded growth is nav-
igable. Fraigniaud [11] proved that any infinite family of graphs with bounded
treewidth is navigable. Finally, Slivkins [24] recently related navigability to dou-
bling dimension by proving that any infinite family of graphs with doubling
dimension at most O(log logn) is navigable. All these results naturally lead to
the question of whether all graphs are navigable.

Let δ : N "→ N, let Gn,δ(n) be the class of n-node graphs with doubling dimen-
sion at most δ(n), and let Gδ = ∪n≥1Gn,δ(n). By rephrasing Slivkins result [24],
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we get that Gδ is navigable for any function δ bounded from above by c log logn
for some constant c > 0. This however lets open the case of graphs of larger
doubling dimensions, namely the cases of all families Gδ where δ is satisfying
δ(n)! log logn.

1.1 Our Results

We prove a threshold of δ(n) = Θ(log logn) for the navigability of Gδ: below
a certain function δ, Gδ is navigable, while above it Gδ is not navigable. More
precisely, we prove that, for any function δ satisfying limn→∞(log logn)/δ(n) =
0, Gδ is not navigable. Hence, the result in [24] is essentially the best that can
be achieved by considering only the doubling dimension of graphs.

Our negative result requires to prove that for an infinite family of graphs
in Gδ, any distribution of the long range links leaves the expected number of
steps of greedy routing above any polylogarithmic for some pairs of source and
target. For this purpose, we exhibit graphs presenting a very high number of
possible “directions” for a long range link to go. By a counting argument, we
show that there exist pairs of source and target at distance greater than any
polylogarithm, between which greedy routing does not use any long range link,
whatever their distribution is. In other words, we exhibit an infinite family of
graphs with non polylogarithmic greedy diameter for any augmentation. This
negative results answers a question asked in [11,18].

We also prove a somehow counter intuitive result by showing that a super-
graph of a navigable graph is not necessarily navigable. In particular, we show
that all square meshes are navigable, for all dimensions. Specifically, we prove
that although the family of non navigable graphs that we use to disprove the
navigability of all graphs contains the standard square meshes of dimension δ as
subgraphs, this latter family of graphs is navigable.

1.2 Related Works

Kleinberg showed that greedy routing performs in O(log2 n) steps between any
pair of nodes on d-dimensional meshes augmented by the d-harmonic distribu-
tion. I.e. the greedy diameter of these augmented meshes is O(log2 n). Since
then, several results have been developed to tighten the analysis of greedy rout-
ing on randomly augmented networks. Precisely, Barrière et al. [5] showed that
the greedy diameter of the d-dimensional meshes augmented by the d-harmonic
distribution is Θ(log2 n). In the special case of rings, Aspnes et al. [3] proved
a lower bound on the greedy diameter of Ω(log2 n/ log logn) for any augmen-
tation. For paths, Flammini et al. [9] recently showed a lower bound on the
greedy diameter of Ω(log2 n) in the case of symmetric and distance mono-
tonic augmentations. Martel and Nguyen [21] showed however that the (stan-
dard) diameter of all these networks augmented by the harmonic distribution is
Θ(log n). In another perspective, several authors developed decentralized algo-
rithms for the d-dimensional mesh augmented by the d-harmonic distribution.
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Lebhar and Schabanel [19] presented a decentralized algorithm which performs in
O(log n(log logn)2) expected number of steps in this graph. The algorithm
Neighbor-Of-NeighborpresentedbyMankuetal. [20] performs inO( 1

k log k (logn)2)
expected number of steps, where k is the number of long range links per node in
the mesh. Assuming some extra knowledge on the long range links, Fraigniaud
et al. [12] described an oblivious routing which performs in O((log n)1+1/d) ex-
pected number of steps. Finally, Martel and Nguyen [21] presented a non oblivious
routing protocol achieving the same performances under the same assumption as
in [12].

1.3 Organization of the Paper

The paper is organized as follows: Section 2 presents the main result of the paper
by exhibiting the non navigability of graphs with doubling dimension! log logn.
In Section 3, we study the special case of square meshes, and prove that they
are all navigable.

2 Non Navigable Graphs

In this section, we prove that the result in [24] is essentially the best that can
be achieved as far as doubling dimension is concerned.

Theorem 1. Let δ : N "→ N be such that limn→∞ log log n
δ(n) = 0. Then Gδ is not

navigable.

Informally, the argument of the proof is that a doubling dimension ! log logn
implies that the number of possible “directions” where a random link can go is
greater than any polylogarithm of n. Therefore, for any trial of the long range
links, there always exist a direction for which these long links do not help in the
sense that there exist a source and a target between which greedy routing does
not use any long range link.

Proof. We show that there exists an infinite family of graphs {G(n), n ≥ 1}
indexed by their number of vertices, such that G(n) ∈ Gn,δ(n) and for any family
Φ = {ϕ(n), n ≥ 1} of collections of probability distributions, greedy routing in
(G(n), ϕ(n)) performs in an expected number of steps t(n) /∈ O(polylog(n)) for
some pairs of source and target.

Let d : N "→ N be such that d ≤ δ, limn→∞ log log n
d(n) = 0, and d(n) ≤ ε

√
logn

for some 0 < ε < 1. For the sake of simplicity, assume that p = n1/d(n) is integer.
G(n) is the graph of n nodes consisting of pd(n) nodes labeled (x1, . . . , xd(n)),
xi ∈ Zp. Node (x1, . . . , xd(n)) is connected to all nodes (x1+a1, . . . , xd(n)+ad(n))
where ai ∈ {−1, 0, 1}, i = 1, . . . , d(n), and all operations are taken modulo p (cf.
Figure 1). Note that, by construction of G(n), the distance between two nodes y =
(y1, . . . , yd(n)) and z = (z1, . . . , zd(n)) is max1≤i≤d(n) min(|yi − zi|, p− |yi − zi|).
Hence, the diameter of G(n) is �p/2�.
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dir(+1,+1)

dir(+1,0)dir(−1,0)

dir(0,+1)

dir(0,−1)dir(−1,−1)

dir(−1,+1)

dir(+1,−1)

Fig. 1. Example of graph G(n) defined in proof of Theorem 1 with d(n) = 2. Grey
areas represent the various directions for the central node. The bold line represents a
diagonal for the central node. Colored nodes belongs to a line.

Claim. G(n) ∈ Gn,δ(n).

Clearly G(n) has n nodes. We prove that G(n) has doubling dimension d(n),
therefore at most δ(n). Let 0 = (0, . . . , 0). The ball B(0, 2r) can be covered by
2d(n) balls of radius r, centered at the 2d(n) nodes (x1, . . . , xd(n)), xi ∈ {−r,+r}
for any i = 1, . . . , d(n). Hence the doubling dimension of G(n) is at most d(n).
On the other hand, |B(0, 2r)| = (4r+1)d(n) and |B(0, r)| = (2r+1)d(n). Thus at
least (4r + 1)d(n)/(2r + 1)d(n) balls are required to cover B(0, 2r), since in G(n),
for any node u and radius r, |B(u, r)| = |B(0, r)|. This ratio can be rewritten
as 2d(n)(1 − 1

2(2r+1) )
d(n). For 2r = n1/d(n)

5 , since d(n) ≤
√

log n, we get that

(2r + 1) > 2
√

log n

5 > d(n) for n ≥ n0, n0 ≥ 1. Then, for n ≥ n0,(
1− 1

2(2r + 1)

)d(n)

>

(
1− 1

2d(n)

)d(n)

= 2d(n) log(1− 1
2d(n) )

≥ 2d(n)
(
− 1

2d(n)− 4
4(d(n))2

)
= 2−

1
2− 1

d(n)

There exists n1 ≥ n0, such that 2−
1
2− 1

d(n) > 1
2 for n ≥ n1. Then, for n ≥ n1,

|B(0, 2r)|/|B(0, r)| > 2d(n)−1. Thus the doubling dimension of G(n) is at least
d(n), which proves the claim. *

Definition 1. For any node u = (u1, . . . , ud(n)), and for any D = (ν1, . . . , νd(n))
∈ {−1, 0,+1}d(n), we call direction the set of nodes

diru(D) = {v = (v1, . . . , vd(n)) : vi = (ui + νi · xi) mod p, 1 ≤ xi ≤ �p/2�}.
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Note that, for any u, the directions diru(D) for D ∈ {−1, 0,+1}d(n) partition
the nodes of G(n) (see Figure 1). There are obviously 3d(n) directions, and the
2d(n) directions defined on {−1,+1}d(n) have all the same cardinality.

Definition 2. For any node u = (u1, . . . , ud(n)), and for any D = (ν1, . . . , νd(n))
∈ {−1,+1}d(n), we call diagonal the set of nodes

diagu(D) = {v = (v1, . . . , vd(n)) : vi = (ui + νi · x) mod p, 1 ≤ x ≤ �p/2�}.

The next claim shows that long range links are useless for greedy routing along
a diagonal if they are not going in the direction of the diagonal.

Claim. Let u be any node and let v be the long range contact of u for some dis-
tribution ϕ(n) of the long range links. Assume v ∈ diru(D) and let t ∈ diagu(D′)
for D,D′ ∈ {−1,+1}d(n), D �= D′. Greedy routing from u to t does not use the
long range link (u, v).

Let u = (u1, . . . , ud(n)), v = (v1, . . . , vd(n)) and t = (t1, . . . , td(n)). Since t ∈
diagu(D′), there exists x ∈ {1, . . . , �p/2�} such that |ti − ui| = x for all 1 ≤ i ≤
d(n). Since D �= D′, there exists j ∈ {1, . . . , d(n)} such that:

tj = uj + α · x (1)

vj = uj − α · y, (2)

for some α ∈ {−1,+1} and y ∈ {1, . . . , �p/2�}. Then,

dist(v, t) ≥ |tj − vj | = x + y > x = dist(u, t).

Therefore greedy routing from u to t does not use the long range link (u, v),
which proves the claim. *

Consider now a distribution ϕ(n) of long range links that belongs to some given
collection of probability distributions Φ = {ϕ(n), n ≥ 1}. We prove that routing
on the diagonal is hard. More precisely, let s be a source node and t be a target
node, t ∈ diags(D) for some D. If any node u ∈ diags(D) between s and t has
its long range contact v ∈ diru(Dv) for some Dv �= D, then, from the previous
claim, greedy routing from s to t does not use any long range link and thus takes
dist(s, t) steps. We prove that this phenomenon occurs for at least one pair (s, t)
such that dist(s, t) ≥ 2d(n) − 3.

Definition 3. An interval I = [a, b] is a connected subset of a diagonal. Pre-
cisely, [a, b] is an interval of diaga(D) if b ∈ diaga(D) and

I = {c ∈ diaga(D) | dist(a, c) + dist(c, b) = dist(a, b)}.

We say that an interval I of diagu(D) is good if there exists x ∈ I such that the
long range contact y of x satisfies y ∈ dirx(D).
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Definition 4. A line L of G(n) in direction D ∈ {−1,+1}d(n) is a maximal
subset of V (G(n)) such that for any two nodes u, v ∈ L, we have

diagu(D) ∩ diagv(D) �= ∅.

The set of all the lines in the same direction D partitions G(n) into n/p lines of
size p.

Let us partition each line into p/X disjoint intervals of same length X . This
results into n/X intervals per direction, thus in total into a set S of n

X · 2d(n)

intervals of length X , since there are 2d(n) directions defined in {−1,+1}d(n).
We show that if X is too small, then there is at least one of all the intervals in
S which is not good.

There is a one-to-one mapping between intervals and nodes in the following
sense. Each good interval I = [a, b] ∈ S must contain a node u whose long range
contact v satisfies v ∈ diru(D). The node u is called the certificate for I. Node u
cannot be the certificate of any other interval J ∈ S with J �= I, even for those
such that J ∩ I �= ∅ when I and J are in two distinct directions.

We have 2d(n) · n
X intervals in S. Since a certificate certifies the goodness of

exactly one interval, 2d(n) · n
X has to be at most n, that is: X ≥ 2d(n). By the

pigeonhole principle, if X < 2d(n), there is one interval I = [s, t] ∈ S which is
not good. From Claim 2, greedy routing from s to t takes X − 1 steps.

Since d(n) ≤ ε
√

logn, we have:

p = n1/d(n) ≥ 2
1
ε

√
log n ≥ 2ε

√
log n − 2 ≥ 2d(n) − 2.

Therefore, the value X = 2d(n) − 2 can be considered for our partitioning. In
this case, we obtain that greedy routing from s to t takes 2d(n) − 3 steps.

We complete the proof of the theorem by proving the following claim.

Claim. 2d(n) /∈ O(polylog n).

Let α ≥ 1, we have:

logα n

2d(n) = 2α log log n−d(n) = 2α d(n)( log log n
d(n) − 1

α).

Since limn→∞ log log n
d(n) = 0, there exists n1 ≥ 1 such that for any n ≥ n1,(

log log n
d(n) −

1
α

)
≤ − 1

2α , and thus logα n
2d(n) ≤ 2−d(n)/2. Moreover, d(n) ≥ log logn,

then, for n ≥ n1,
logα n

2d(n) ≤ 2−
log log n

2 = o(1).

In other words, 2d(n) is not a polylogarithm of n, which proves the claim. *

Remark. Note that the proof of Theorem 1 does not assume independent trials
for the long range links.



A Doubling Dimension Threshold Θ(log log n) 383

3 Navigability of Meshes

The family of non navigable graphs defined in the proof of Theorem 1 con-
tains the standard square meshes of dimension d(n) as subgraphs, where d(n)!
log logn. Nevertheless, and somehow counter intuitively, a supergraph of a nav-
igable graph is not necessarily navigable. In this section, we illustrate this phe-
nomenon by focusing on the special case of d-dimensional meshes, the first graphs
that were considered for the analysis of navigable networks [17]. Precisely, we
show that any d-dimensional torus Cn1/d × . . . Cn1/d is navigable: either it has a
polylogarithmic diameter, or it admits a distribution of links such that greedy
routing computes paths of polylogarithmic length. This result has partially been
proven in [9] for the case of constant dimensions. We give here a complete proof
that holds for any dimension.

Theorem 2. For any positive function d(n), the n-node d(n)-dimensional torus
is navigable.

Proof. We construct a random link distribution ϕ as follows. Let u =
(u1, . . . , ud(n)) and v = (v1, . . . , vd(n)) be two nodes. If they differ in more than
one coordinate, then ϕu(v) = 0; otherwise, i.e. they differ in only one coordinate,
say the ith, then:

ϕu(v) =
1

d(n)
· 1
2Hk

· 1
|ui − vi|

,

where k = n1/d

2 and Hk =
∑k

j=1
1
j is the harmonic sum. Note that this distribu-

tion corresponds to:

– picking a dimension uniformly at random (probability 1
d(n) to pick dimension

i)
– and to draw a long-range link on this axis according to the 1-harmonic dis-

tribution over distances ( 1
2Hk

is the normalizing coefficient for this distribu-
tion), which is the distribution given by Kleinberg to make the 1-dimensional
torus navigable.

Let now s = (s1, . . . , sd(n)) and t = (t1, . . . , td(n)) be a pair of source and
target in the mesh. Assume that the current message holder during an execution
of greedy routing is x = (x1, . . . , xd(n)), at distance X from t. The probability
that x has a long range link to some node w = (x1, . . . , xi−1, wi, xi+1, . . . , xd(n)),
1 ≤ i ≤ d(n) such that |ti−wi| ≤ |ti−xi|/2, is at least

∑
1≤i≤d(n)

1
3d(n)Hk

= 1
3Hk

,
along the same analysis as the analysis of Kleinberg one dimensional model,
summing over the dimensions. If such a link is found, it is always preferred
to the local contact of x that only reduces one of the coordinate by 1. Thus,
after at most 3Hk steps on expectation, one of the coordinates has been divided
by two. Note that since long range links only get to nodes that differs in a
single coordinate from their origin, further steps cannot increase |xi − ti| for
any 1 ≤ i ≤ d(n), x being the current message holder. Repeating the analysis
for all coordinates, we thus get that after 3d(n)Hk steps on expectation, all
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the coordinates have been divided by at least two, and so the current distance
to the target is at most X/2. Finally, the algorithm reaches t after at most
3d(n)Hk log(dist(s, t)) steps on expectation, which is O

(
(log2 n)/d(n)

)
.

Fig. 2. Example of 2-dimensional mesh augmented as in proof of Theorem 2: 1-
harmonic distribution of links on each axis. Bold links are long range links, they are
not all represented.

Remark. Note that our example of non-navigability in Section 3 may appear
somehow counter intuitive in contrast to our latter construction of long range
links on meshes. Indeed, why not simply repeating such a construction on the
graph G(n) defined in the proof Theorem 1? That is, why not selecting long range
contacts on each ”diagonal” using the 1-harmonic distribution, in which case
greedy routing would perform efficiently between pairs (s, t) on the diagonals?
This cannot be done however because, to cover all possible pairs (s, t) on the
diagonals, 2d(n) long range links per node would be required, which is larger
than any polylogarithm of n when d(n)! log logn.

4 Conclusion

The increasing interest in graphs and metrics of bounded doubling dimension
arises partially from the hypothesis that large real graphs do present a low
doubling dimension (see, e.g., [10,16] for the Internet). Under such an hypoth-
esis, efficient compact routing schemes and efficient distance labeling schemes
designed for bounded doubling dimension graphs would have promising applica-
tions. On the other hand, the navigability of a network is actually closely related
to the existence of efficient compact routing and distance labeling schemes on
the network. Indeed, long range links can be turned into small labels, e.g. via the
technique of rings of neighbors [24]. Interestingly enough, our paper emphasizes
that the small doubling dimension hypothesis of real networks is crucial. Indeed,
for doubling dimension above log logn, networks may become not navigable. It
would therefore be important to study precisely to which extent real networks
do present a low doubling dimension.
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In a more general framework, our result of non navigability shows that the
small world phenomenon, in its algorithmic definition of navigability, is not only
due to the good spread of additional links over distances in a network, but is
also highly dependent of the base metric itself, in particular in terms of dimen-
sionality.

Peleg recently proposed the more general question of f -navigability. For a
function f , we say that a n-node graph G is f -navigable if there exists a dis-
tribution ϕ of long range links such that the greedy diameter of the augmented
graph (G,ϕ) is at most f(n). From [23], all n-node graphs are

√
n-navigable by

giving an uniform random distribution of the long range links. From Theorem 1,
we get as a corollary that, for all graphs to be f -navigable, f(n) = Ω(2

√
log n).

It thus remains to close the gap between these upper and lower bounds for the
f -navigability of arbitrary graphs.

Acknowledgments. We are thankful to Ph. Duchon for having pointed to us an
error in an earlier version of this paper.
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Abstract. Sharir and Welzl introduced an abstract framework for opti-
mization problems, called LP-type problems or also generalized linear pro-
gramming problems, which proved useful in algorithm design. We define
a new, and as we believe, simpler and more natural framework: violator
spaces, which constitute a proper generalization of LP-type problems. We
show that Clarkson’s randomized algorithms for low-dimensional linear
programming work in the context of violator spaces. For example, in this
way we obtain the fastest known algorithm for the P-matrix generalized
linear complementarity problem with a constant number of blocks. We
also give two new characterizations of LP-type problems: they are equiv-
alent to acyclic violator spaces, as well as to concrete LP-type problems
(informally, the constraints in a concrete LP-type problem are subsets of
a linearly ordered ground set, and the value of a set of constraints is the
minimum of its intersection).

1 Introduction

The framework of LP-type problems, invented by Sharir and Welzl in 1992 [2],
has become a well-established tool in the field of geometric optimization. Its
origins are in linear programming: Sharir and Welzl developed a randomized
variant of the dual simplex algorithm for linear programming and showed that
this algorithm actually works for a more general class of problems they called
LP-type problems.

For the theory of linear programming, this algorithm constituted an impor-
tant progress, since it was later shown to be subexponential in the RAM model
[3]. Together with a similar result independently obtained by Kalai [4], this was
the first linear programming algorithm provably requiring a number of arith-
metic operations subexponential in the dimension and number of constraints
(independent of the precision of the input numbers).

For many other geometric optimization problems in fixed dimension, the al-
gorithm by Sharir and Welzl was the first to achieve expected linear runtime,
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simply because these problems could be formulated as LP-type problems. The
class of LP-type problems for example includes the problem of computing the
minimum-volume ball or ellipsoid enclosing a given point set in IRd, and the
problem of finding the distance of two convex polytopes in IRd. Many other
problems have been identified as LP-type problems over the years [3, 5, 6, 7, 8].

Once it is shown that a particular optimization problem is an LP-type prob-
lem, and certain algorithmic primitives are implemented for it, several efficient
algorithms are immediately at our disposal: the Sharir–Welzl algorithm, two
other randomized optimization algorithms due to Clarkson [9] (see [10, 11] for
a discussion of how it fits the LP-type framework), a deterministic version of it
[11], an algorithm for computing the minimum solution that violates at most k
of the given n constraints [12], and probably more are to come in the future.

The framework of LP-type problems is not only a prototype for concrete opti-
mization problems, it also serves as a mathematical tool by itself, in algorithmic
[13, 14] and non-algorithmic contexts [15].

An (abstract) LP-type problem is given by a finite set H of constraints and
a value w(G) for every subset G ⊆ H . The values can be real numbers or, for
technical convenience, elements of any other linearly ordered set. Intuitively,
w(G) is the minimum value of a solution that satisfies all constraints in G. The
assignment G "→ w(G) has to obey the axioms in the following definition.

Definition 1. An abstract LP-type problem is a quadruple (H,w,W,≤), where
H is a finite set, W is a set linearly ordered by ≤, and w: 2H →W is a mapping
satisfying the following two conditions for all F ⊆ G ⊆ H.

Monotonicity: w(F ) ≤ w(G), and
Locality: for w(F ) = w(G) and all h ∈ H, w(G) < w(G ∪ {h}) implies

w(F ) < w(F ∪ {h}).

As our running example, we will use the smallest enclosing ball problem, where
H is a finite point set in IRd and w(G) is the radius of the smallest ball that
encloses all points of G. In this case monotonicity is obvious, while verifying
locality requires the nontrivial but well known geometric result that the smallest
enclosing ball is unique for every set.

It seems that the order ≤ of subsets is crucial; after all, LP-type problems
model optimization problems, and indeed, the subexponential algorithm for linear
programming and other LP-type problems [3] heavily relies on such an order.

A somewhat deeper look reveals that often, we only care whether two subsets
have the same value, but not how they compare under the order≤. The following
definition is taken from [2]:

Definition 2. Consider an abstract LP-type problem (H,w,W,≤). We say that
B ⊆ H is a basis if for all proper subsets F ⊂ B we have w(F ) �= w(B). For
G ⊆ H, a basis of G is a minimal subset B of G with w(B) = w(G).

We observe that a minimal subset B ⊆ G with w(B) = w(G) is indeed a basis.
Solving an abstract LP-type problem (H,w,W,≤) means to find a basis of

H . In the smallest enclosing ball problem, a basis of H is a minimal set B of
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points such that the smallest enclosing ball of B has the same radius (and is in
fact the same) as the smallest enclosing ball of H , w(B) = w(H).

In defining bases, and in saying what it means to solve an LP-type problem,
we therefore do not need the order ≤. The main contribution of this paper is that
many of the things we can say or prove about LP-type problems do not require
a concept of order. We formalize this by defining the new framework of violator
spaces. Intuitively, a violator space is an LP-type problem without order. This
generalization of LP-type problems is proper, and we can exactly characterize
the violator spaces that “are” LP-type problems. In doing so, we also establish
yet another equivalent characterization of LP-type problems that is closer to the
applications than the abstract formulation of Definition 1.

These are our main findings on the structural side. Probably the most sur-
prising insight on the algorithmic side is that Clarkson’s algorithms [9] work for
violator spaces of fixed dimension, leading to an expected linear-time algorithm
for “solving” the violator space.

We give an application of Clarkson’s algorithms in the more general setting by
linking our new violator space framework to well-known abstract and concrete
frameworks in combinatorial optimization. For this, we show that any unique sink
orientation (USO) of the cube [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] or the more
general grid [17] gives rise to a violator space, but not to an LP-type problem in
general. Grid USO capture some important problems like linear programming
over products of simplices, generalized linear complementarity problems over P-
matrices [17] or games like parity, mean-payoff, and simple stochastic games
[26, 27, 28].

We show that we can find the sink in a unique sink orientation by solving
the violator space. A concrete new result is obtained by applying this to P-
matrix generalized linear complementarity problems. These problems are not
known to be polynomial-time solvable, but NP-hardness would imply NP=co-NP
[29, 17]. Since any P-matrix generalized linear complementarity problem gives
rise to a unique sink orientation [17], we may use violator spaces and Clarkson’s
algorithms to solve the problem in expected linear time in the (polynomially
solvable) case of a fixed number of blocks. This is optimal and beats all previous
algorithms.

2 Structural Results

Concrete LP-type problems. Although intuitively one thinks about w(G) as the
value of an optimal solution of an optimization problem, the solution itself is
not explicitly represented in Definition 1. In specific geometric examples, the
constraints can usually be interpreted as a subset of some ground set X of
points, and the optimal solution for G is the point with the smallest value in
the intersection of all constraints in G. For example, in linear programming,
the constraints are halfspaces, the value is given by the objective function, and
the optimum is the point with minimum value in the admissible region, i.e., the
intersection of the halfspaces. In order to have a unique optimum for every set of
constraints (which is needed for w to define an LP-type problem), one assumes
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that the points are linearly ordered by the value; for linear programming, we can
always take the lexicographically smallest optimal solution, for instance.

Such an interpretation is possible for the smallest enclosing ball problem too,
although it looks a bit artificial. Namely, the “points” of X are all balls in IRd,
where the ordering can be an arbitrary linear extension of the partial ordering
of balls by radius. The “constraint” for a point h ∈ H is the set of all balls con-
taining h. The following definition captures this approach to LP-type problems.

Definition 3. A concrete LP-type problem is a triple (X,),H), where X is a
set linearly ordered by ), H is a finite multiset whose elements are subsets of
X, and for any G ⊆ H, if the intersection

⋂
G :=

⋂
G∈G G is nonempty, then it

has a minimum element with respect to ) (for G = ∅ we define
⋂
G := X).

The definition allows H to be a multiset, i.e., a constraint set A ⊆ X may be
included several times. For example, in an instance of linear programming, some
constraints can be the same, which we can reflect by this.

A similar model has been presented in [6] (mathematical programming prob-
lem). The slight difference is that it allows several points to have the same value
but the constraints form a set rather than a multiset.

Bases are defined analogously to Definition 2.

Definition 4. Consider a concrete LP-type problem (X,),H). We say that B ⊆
H is a basis if for all proper submultisets F ⊂ B we have min(

⋂
F) ≺ min(

⋂
B).

For G ⊆ H, a basis of G is a minimal B ⊆ G with min(
⋂
B) = min(

⋂
G).

As before, a minimal B ⊆ G with min(
⋂
B) = min(

⋂
G) is indeed a basis.

Given any concrete LP-type problem P = (X,),H), we obtain an abstract
LP-type problem P = (H, w,X,)) according to Definition 1 by putting w(G) =
min(

⋂
G) (or w(G) = +∞, if

⋂
G is empty), as is easy to check (proof omitted).

It is clear that B ⊆ G is a basis of G in P if and only if B is a basis of G in P .
We say that P is basis-equivalent to P . (Some care is needed if H consists of
elements with multiplicity bigger than 1, see [1] for details.)

Somewhat surprising is the converse, which we prove below in Theorem 1: Any
abstract LP-type problem (H,w,W,≤) has a “concrete representation”, that is,
a concrete LP-type problem that is basis-equivalent to (H,w,W,≤).

Violator spaces. Let (H,w,W,≤) be an abstract LP-type problem. It is natural
to define that a constraint h ∈ H violates a set G ⊆ H of constraints if w(G ∪
{h}) > w(G). For example, in the smallest enclosing ball problem, a point h
violates a set G if it lies outside of the (unique) smallest ball enclosing G.

Definition 5. The violator mapping of (H,w,W,≤) is defined by V(G) = {h ∈
H :w(G ∪ {h}) > w(G)}. Thus, V(G) is the set of all constraints violating G.

It turns out that the knowledge of V(G) for all G ⊆ H is enough to describe the
“structure” of an LP-type problem. That is, while we cannot reconstruct W , ≤,
and w from this knowledge, it is natural to consider two LP-type problems with
the same mapping V: 2H → 2H the same (isomorphic). Indeed, the algorithmic
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primitives needed for implementing the Sharir–Welzl algorithm and the other
algorithms for LP-type problems mentioned above can be phrased in terms of
testing violation (does h ∈ V(G) hold for a certain set G ⊆ H?), and they never
deal explicitly with the values of w.

We now introduce the notion of violator space:

Definition 6. A violator space is a pair (H,V), where H is a finite set and V
is a mapping 2H → 2H such that:

Consistency: G ∩ V(G) = ∅ holds for all G ⊆ H, and
Locality: for all F ⊆ G ⊆ H with G ∩ V(F ) = ∅, we have V(G) = V(F ).

Definition 7. Consider a violator space (H,V). We say that B ⊆ H is a basis
if for all proper subsets F ⊂ B we have B ∩V(F ) �= ∅. For G ⊆ H, a basis of G
is a minimal subset B of G with V(B) = V(G).

We will check in Section 3 that the violator mapping of an abstract LP-type
problem satisfies the two axioms above. We actually show more: given an ab-
stract LP-type problem (H,w,W,≤), the pair (H,V), with V being the violator
mapping, is an acyclic violator space. (Acyclicity of a violator space will be de-
fined later in Definition 9.) It turns out that acyclicity already characterizes the
violator spaces obtained from LP-type problems, and thus any acyclic violator
space can be represented as an LP-type problem (abstract or concrete). These
equivalences are stated in our main theorem.

Theorem 1. The axioms of abstract LP-type problems, of concrete LP-type
problems, and of acyclic violator spaces are equivalent. More precisely, every
problem in one of the three classes has a basis-equivalent problem in each of the
other two classes.

The construction is illustrated on a simple instance of linear programming (see
Figure 1). Several more results concerning violator spaces have been achieved in
the MSc. thesis of the fourth author [30].

3 Equivalence of LP-Type Problems and Acyclic Violator
Spaces

Preliminaries on Violator Spaces. To show that every acyclic violator space
(H,V) originates from some concrete LP-type problem, we need an appropriate
linearly ordered set X of “points”, and then we will identify the elements of H
with certain subsets of X .

What set X will we take? Recall that for smallest enclosing balls, X is the set
of all balls, and the subset for h ∈ H is the subset of balls containing h. It is not
hard to see that we may restrict X to smallest enclosing balls of bases ; in fact,
we may choose X as the set of bases, in which case the subset for h becomes the
set of bases not violated by h.
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This also works for general acyclic violator spaces, with bases suitably ordered.
The only blemish is that we may get several minimal bases for G ⊆ H ; for
smallest enclosing balls, this corresponds to the situation in which several bases
define the same smallest enclosing ball. To address this, we will declare such
bases as equivalent and choose X as the set of all equivalence classes instead.

In the following, we fix a violator space (H,V). The set of all bases in (H,V)
will be denoted by B.

Definition 8. B,C ∈ B are equivalent, B ∼ C, if V(B) = V(C).

Clearly, the relation ∼ defined on B is an equivalence relation. The equivalence
class containing a basis B will be denoted by [B].

Now we are going to define an ordering of the bases, and we derive from
this an ordering of the equivalence classes as well as the notion of acyclicity in
violator spaces.

Definition 9. For F,G ⊆ H in a violator space (H,V), we say that F ≤0 G (F
is locally smaller than G) if F ∩ V(G) = ∅.

For equivalence classes [B], [C] ∈ B/∼, we say that [B] ≤0 [C] if there exist
B′ ∈ [B] and C′ ∈ [C] such that B′ ≤0 C′.

We define the relation ≤1 on the equivalence classes as the transitive closure
of ≤0. The relation ≤1 is clearly reflexive and transitive. If it is antisymmetric,
we say that the violator space is acyclic, and we define the relation ≤ as an
arbitrary linear extension of ≤1.

The intuition of the locally-smaller notion comes from LP-type problems: if no
element of F violates G, then G∪F has the same value as G, and monotonicity
yields that value-wise, F is smaller than or equal to G.

Note that in the definition of [B] ≤0 [C] we do not require B′ ≤0 C′ to hold
for every B′ and C′.

To show that acyclicity does not always hold, we give an example of a cyclic
violator space where H = {f, g, h}, and V is given by the following table:

G ∅ f g h f, g f, h g, h f, g, h
V(G) f, g, h h f g h g f ∅

We can easily check both consistency and locality. The bases are ∅, one-element
sets, and H . We have {f} ≤0 {h} ≤0 {g} ≤0 {f}, but none of the one-element
bases are equivalent; i.e., ≤1 is not antisymmetric.

Abstract LP-type Problems yield Acyclic Violator Spaces. The following propo-
sition is not immediate and we refer the reader to [1] for a proof of it.

Proposition 1. Consider an abstract LP-type problem (H,w,W,≤), and let V
be its violator mapping. Then (H,V) is an acyclic violator space. Moreover,
(H,V) is basis-equivalent to (H,w,W,≤).

Acyclic Violator Spaces yield Concrete LP-type Problems. The following propo-
sition is the last ingredient for Theorem 1.
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Proposition 2. Every acyclic violator space (H,V) can be represented as a con-
crete LP-type problem that is basis-equivalent to (H,V).

Proof. We are given an acyclic violator space (H,V) and we define the mapping
S:H → 2B/∼ that will act as a “concretization” of the constraints in H :

S(h) = {[B]:B ∈ B, h �∈ V(B)} .

Further, let H be the image of the mapping S taken as a multiset, i.e.,

H = {S(h):h ∈ H} .

Thus, S is a bijection between H and H. By saying that a mapping S is a
bijection between a set and a multiset we mean that for any h̄ ∈ H, the number
of h ∈ H that map to h̄ is equal to the multiplicity of h̄. Note that we cannot use
some common properties of set bijections; for instance we have to avoid using
the inverse mapping S−1.

Additionally, let σ be the induced bijection of 2H and 2H defined by σ(G) =
{S(h):h ∈ G}, for G ⊆ H .

Consider the triple (B/∼,≤,H), where ≤ is an arbitrary linear extension of
≤1 (such an extension exists since (H,V) is acyclic and ≤1 therefore antisym-
metric). This is a concrete LP-type problem: The only thing to check is the
existence of a minimal element of every nonempty intersection

⋂
G (G ⊆ H),

which is guaranteed by the linearity of ≤ (remember from Definition 3 that⋂
G :=

⋂
G∈G G).

It remains to prove basis-equivalence, which is done in the full paper [1]. ��
Propositions 1 and 2, together with the fact that every concrete LP-type problem
can be transformed into an abstract one (as described below Definition 4), yield
Theorem 1.

Example. Here we present an abstract LP-type problem and we demonstrate
the construction (via acyclic violator spaces) of its concrete representation.

For better intuition we actually start with a concrete LP-type problem, namely,
the following linear programming problem in the positive orthant (rotated by 45
degrees for convenience). Beside the restriction to the positive orthant, the con-
straints are the four halfplanes depicted in Figure 1. The optimization direction
is given by the arrow.

Here the violator space bases are ∅, a, b, c, d, ac, ad, bc, bd; the equivalence
classes are O = ∅, A = {a}, B = {b}, C = {c}, D = {d} and Q = {ac} ∼ {ad} ∼
{bc} ∼ {bd}. Note that the equivalence classes correspond to the points in the
plane. We have O ≤1 B ≤1 A ≤1 Q and O ≤1 C ≤1 D ≤1 Q; we choose ≤ to be
O < B < A < C < D < Q. The concrete representation is

h a b c d
S(h) A,Q A,B,Q C,D,Q D,Q

.

Here we may interpret S(a) as the set of all “canonical” points lying in the
halfplane a.
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Fig. 1. Illustration example—linear programming

4 Clarkson’s Algorithms

We show that Clarkson’s randomized reduction scheme, originally developed
for linear programs with many constraints and few variables, actually works
for general (possibly cyclic) violator spaces. The two algorithms of Clarkson
involved in the reduction have been analyzed for LP and LP-type problems before
[9, 10, 11]. Our new contribution is that the combinatorial properties underlying
Clarkson’s algorithms also hold for violator spaces. We omit the analysis of
Clarkson’s reduction schemes (it can be found in the full paper [1]), since it is
almost identical to the analysis in [9, 10, 11].

In this section we will view a violator space as an “LP-type problem without
the order”, and it turns out that the order is irrelevant for Clarkson’s algorithms.
Even without an order, we can talk about monotonicity in violator spaces (see
[1] for a proof of the following lemma):

Lemma 1. Any violator space (H,V) satisfies
Monotonicity: V(F ) = V(G) implies V(E) = V(F ) = V(G), for all sets F ⊆
E ⊆ G ⊆ H.

Observation 1. Let (H,V) be a violator space. For G ⊆ H and all h ∈ H, we
have

(i) V(G) �= V(G ∪ {h}) if and only if h ∈ V(G), and
(ii) V(G) �= V(G \ {h}) if and only if h is contained in every basis of G.

An element h such that (ii) holds is called extreme in G.

We are particularly interested in violator spaces with small bases.

Definition 10. Let (H,V) be a violator space. The size of a largest basis is
called the combinatorial dimension δ = δ(H,V) of (H,V).

Observation 1 implies that in a violator space of combinatorial dimension δ, every
set has at most δ extreme elements. This in turn yields the following bound for
the expected number of violators of a random subset of constraints, using the
sampling lemma from [13]:
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Corollary 1. Let (H,V) be a violator space of combinatorial dimension δ and
G ⊆ H some fixed set. Let vr be the expected number of violators of the set G∪R,
where R ⊆ H is a random subset of size r < n = |H |. Then

vr ≤ δ
n− r

r + 1
.

Given a violator space (H,V) of combinatorial dimension δ, the goal is to find a
basis of H . For this, we assume availability of the following primitive.

Primitive 1. Given G ⊆ H and h ∈ H \G, decide whether h ∈ V(G).

Given this primitive, the problem can be solved in a brute-force manner by going
through all sets of size ≤ δ, testing each of them for being a basis of H . It is easily
seen that the number of times the primitive needs to be invoked is bounded by
O(nδ+1). This can be substantially improved by using Clarkson’s algorithms and
slightly adapting the analysis in [9, 10, 11] with the help of Corollary 1. We then
obtain (see [1]):

Theorem 2. A basis of H in a violator space (H,V) can be found calling Prim-
itive 1 expected O

(
δn + δO(δ)

)
many times.

5 Grid USO as Models for Violator Spaces

We show in this section that the problem of finding the sink in a δ-dimensional
grid unique sink orientation [17] can be reduced to the problem of finding the
(unique) basis of a violator space of combinatorial dimension δ.

Unique sink orientations of grids arise from various problems, including linear
programming over products of simplices and generalized linear complementar-
ity problems (GLCP) over P-matrices [17]. The GLCP has been introduced by
Cottle and Dantzig [31] as a generalization of the well known LCP [32]. There
are also applications in game theory; for instance [26, 27, 28] show how parity,
mean-payoff, and simple stochastic games are related to grid USO.

Grid USO. Fix a partition Π = (Π1, . . . , Πδ) of the set H := {1, . . . , n} into
δ nonempty subsets, where we refer to Πi as the block i. A subset J ⊆ H is
called a vertex if |J ∩Πi| = 1 for all i. The vertices naturally correspond to the
Cartesian product of the Πi. Let V be the set of all vertices.

In the following definition, we introduce the grid spanned by subsets Π ′
i whose

union is G ⊆ H . The vertex set of this grid contains all vertices J ⊆ G (J ∈ V),
with two vertices being adjacent whenever they differ in exactly two elements.

Definition 11. The δ-dimensional grid spanned by G ⊆ H is the undirected
graph G(G) = (V(G), E(G)), with V(G) := {J ∈ V : J ⊆ G} and E(G) :=
{{J, J ′} ⊆ V(G): |J ⊕ J ′| = 2}, where ⊕ denotes the symmetric difference of
sets.
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Fig. 2. A 3-dimensional grid G(H) with H = {1, . . . , 7} where Π =
({1, 2, 3}, {4, 5}, {6, 7}) and a USO of it

V(G) is in one-to-one correspondence with the Cartesian product
∏δ

i=1 Gi, Gi :=
G ∩ Πi, and the edges in E(G) connect vertices in V(G) whose corresponding
tuples differ in exactly one coordinate. See Figure 2 left for an example grid.

Note that G(G) is the empty graph whenever Gi = G∩Πi = ∅ for some i. We
say that such a G is not Π-valid, and it is Π-valid otherwise.

A subgrid of G(G) is any graph of the form G(G′), for G′ ⊆ G.

Definition 12. An orientation ψ of the graph G := G(H) is called a unique
sink orientation (USO) if all nonempty subgrids of G have unique sinks w.r.t. ψ.

Note that a USO ψ can be cyclic (see the thick edges in Figure 2 right). If ψ

induces the directed edge (J, J ′), we also write J
ψ→ J ′. Any USO can be specified

by associating each vertex J with its outgoing edges. Given J and j ∈ H \J , we
define J � j to be the unique vertex J ′ ⊆ J ∪ {j} that is different from J , and
we call J ′ the neighbor of J in direction j.

Definition 13. Given an orientation ψ of G, the function sψ : V → 2H is called
the outmap of ψ and is defined by

sψ(J) := {j ∈ H \ J : J
ψ→ J � j} . (1)

Reduction to Violator Spaces. Let us fix a unique sink orientation ψ of G. Given
a Π-valid subset G ⊆ H , we define sink(G) ∈ V(G) to be the unique sink vertex
in G(G). For a subset G that is not Π-valid, let Ḡ :=

⋃
i: Gi=∅ Πi. Thus Ḡ is the

set of elements occurring in blocks of Π disjoint from G.

Definition 14. For G ⊆ H, define

V(G) =
{

sψ(sink(G)) if G is Π-valid,
Ḡ if G is not Π-valid .

Theorem 3. The pair (H,V) from Definition 14 is a violator space of combi-
natorial dimension δ. Moreover, for all Π-valid G ⊆ H, the unique sink of the
subgrid G(G) corresponds to the unique basis of G in (H,V).

The proof is not difficult: consistency is immediate, and as for locality, we dis-
tinguish several cases for sets F ⊆ G ⊆ H , depending on whether G is Π-valid
and whether F is Π-valid. We omit further details here (see [1]).
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Note that a violator space obtained from a cyclic USO is also cyclic and
that the global sink of the grid USO corresponds to the unique δ-element (and
Π-valid) set B with V(B) = ∅. This is exactly the set output by Clarkson’s
algorithms, when we apply it to the violator space constructed in Definition
14. Primitive 1 corresponds to one edge evaluation in the USO setting. With
Theorem 2, we therefore have:

Theorem 4. The sink of a unique sink grid orientation can be found by evalu-
ating expected O

(
δn + δO(δ)

)
edges.

For small δ, this is faster than the Product Algorithm [17] which needs expected
O(δ!n + Hδ

n) edge evaluations, where Hn is the n-th harmonic number.
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Abstract. Cluster detection for a set P of n points in geographic sit-
uations is usually dependent on land cover or another thematic map
layer. This occurs for instance if the points of P can only occur in one
land cover type. We extend the definition of clusters to region-restricted
clusters, and give efficient algorithms for exact computation and approx-
imation. The algorithm determines all axis-parallel squares with exactly
m out of n points inside, size at most some prespepcified value, and area
of a given land cover type at most another prespecified value. The exact
algorithm runs in O(nm log2 n + (nm + nnf ) log2 nf ) time, where nf is
the number of edges that bound the regions with the given land cover
type. The approximation algorithm allows the square to be a factor 1+ε
too large, and runs in O(n log n + n/ε2 + nf log2 nf +(n log2 nf )/(mε2))
time. We also show how to compute largest clusters and outliers.

1 Introduction

Spatial data mining is concerned with the detection of interesting patterns from
large spatial data sets [12, 17, 19]. For instance, if only one data set is considered,
patterns may be related to the concepts of clusters, regularities, or outliers. If
more than one data set is considered, patterns of interest may be related to
co-locations in space. Objects with many scalar attributes can also be seen as a
spatial data set by using the attribute values as coordinates.

In contrast, geographic data mining is a type of spatial data mining where
objects or features occupy the geographic space (in the literature, the distinc-
tion between spatial and geographical data mining is often not made) [21]. It is
a form of geographical analysis: the study into the explanations of geographi-
cal phenomena. Geographical analysis includes statistical analysis of geographic
data, trend analysis (which includes time), and location planning (which involves
combining different data themes) as well.

Clustering has been widely studied in data analysis. Several books and surveys
[14, 15, 16] have appeared on the topic, and any book on data mining discusses
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Fig. 1. Clustering when five nests are required to form a cluster

clustering. Clustering can be hierarchical or partitional, the number of clusters
may be specified beforehand or not, and many different clustering methods exist,
each with their properties. In the algorithms field, clustering is still a very active
area of research; major conferences have papers that discuss clustering nearly
every year. In this paper we study algorithms for clustering in geographic data
mining. The objects to be clustered occupy a geographic space, and that space
has other relevant aspects as well. We give two examples.

1. Consider a set of points representing bird nests, and imagine a biologist
that is interested to what degree the birds of that species seek each other’s
company when nesting. If the birds always nests in trees, then the only
locations where they can have their nests is where the trees are. If the birds
are sea birds that nest on islands, then the water in between cannot contain
nests. Clustering of bird nest locations should take this into account to decide
if a group of nests is a cluster or not.

2. Consider a set of points representing burglary locations in a city. A cluster
of such locations is a group of points that are near to each other. However,
if the points occur around the perimeter of a park, then we would like to see
this as a cluster as well, because there cannot be buglary locations inside
the park. Similarly, car break-ins can only occur where cars may be parked.

We abstract the above situations in a simple way. Future research should
extend these abstractions to more realistic versions, an issue we discuss in the
conclusions section of this paper. Let P be a set of points in the plane, rep-
resenting the objects that are analyzed for clustering. Assume further that a
subdivision into two land cover types A and B is given, and the points of P only
occur in the one land cover type, say, B. A cluster is a subset P ′ ⊆ P with the
following properties: (i) P ′ should be large enough. (ii) The region occupied by
P ′ should not be too large. (iii) The region occupied by P ′ that is of type B
should not be too large. See Figure 1 for an example. We will model (i) by an
integer value m, denoting the minimum size of a subset to be called a cluster.
We will model the region occupied by P ′ by a circle or square that contains P ′;
only smallest circles and squares are of interest. Properties (ii) and (iii) can now
be specified by an area value; the value for (ii) should of course be larger than
the value for (iii). We give a more formal definition in the next section. Note
that the combination of properties (i) and (iii) specifies a lower bound on the
density of points from P ′ in the region where they can be.
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According to several sources, clusters are partitions of a set of objects. Other
sources also use the term cluster for large enough subsets of points that are
close. For lack of a better term we will also use the term cluster in this paper. In
GIS, finding properties of point sets is known as point pattern analysis [20]. Our
definition of region-restricted clusters gives a density-based measure for point
pattern analysis.

The squares that we find can be used to define larger clusters and of different
shapes, by taking the connected components of the union of the squares. Points
are then clustered by these connected components. With our definition of a
cluster, we can also define outliers. Any point p ∈ P that does not occur in any
subset P ′ of P with the three properties listed above is an outlier.

Within the research area of (spatial) data mining, one of the most problematic
issues is that there are many more potentially interesting patterns than actually
interesting patterns. The importance of our cluster definition is linked to this.
Assume a clustering algorithm does not have property (iii), which is the case for
all existing clustering algorithms. If the algorithm must be able to find clusters
like burglary locations around a park as well, then the cluster region size must
be chosen large enough. However, then many clusters will be found that do not
include any park, and after human inspection do not appear to be real clusters.
Hence, many non-interesting clusters are generated. Our definition overcomes
this problem by separating the extent of the cluster from the density of locations
in the relevant areas. Clusters of burglary locations around parks are detected
without detecting many false clusters in neighborhoods where there are no parks.
The same is true for bird nests in trees.

In Section 2 we formally state the definition of a region-restricted cluster, in
Section 3 we present the algorithm that finds such clusters, and in Section 4 we
give an approximation algorithm. As a result of independent interest we develop
a data structure that stores a set of polygons with nf edges in total and has
size O(nf log2 nf ), which can answer area containment queries: for any axis-
parallel query rectangle, the total area of the polygons inside it can be reported
in O(log2 nf ) time. Some additional results and details have been omitted from
this version, they can be found in the full version [11].

2 Problem Definition

Given a set of disjoint polygonal regions, a distance of interest r, a subset size of
interest m, and a set P of points, a cluster is a subset of P of size at least m for
which an enclosing circle exists of radius at most 2r, such that the intersection
of this circle and the polygonal regions has total area at most πr2.

Let us examine the area of intersection of a circle and a single polygon. It is the
sum of square roots, in total linearly many in the number of edges of the polygon
that intersect the circle. If we allow the circle to translate slightly, and express
its location by its center (x, y) then the area of intersection becomes a function
in x and y, whose terms appear in the square roots. To find the position of the
circle that minimizes the area of intersection, while intersecting the same set of
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polygon edges, requires analytical operations that cannot be executed exactly
in any reasonable model of computation. In particular, high-degree polynomials
must be solved. If the circle is replaced by an axis-parallel square, the situation is
quite different. The function giving the area expressed in the center (x, y) of the
square is quadratic, so it can have only a constant number of terms regardless of
how many polygon edges intersect the square. It can be evaluated and minimized
easily in constant time. To avoid the algebraic issues involved with circles, we
define clusters with respect to squares in this paper. It allows us to concentrate
on the combinatorial aspects of the problem.

Definition 1. Given a set of disjoint polygonal regions, a distance of interest
s, a subset size of interest m, and a set P of points, a region-restricted cluster
is a subset of P of size at least m for which an enclosing axis-parallel square
exists of side length at most 2s, such that the intersection of this square and the
polygonal regions has total area at most s2.

For any region-restricted cluster with more than m points, a subset of m points
exists that also is a cluster. To avoid redundant information, our algorithm will
only find clusters with exactly m points.

3 An Exact Algorithm for Region-Restricted Clusters

Following the analogy of bird nests in trees in forests, we will call the polygonal
regions forests from now on. The algorithm consists of the following steps. First,
for every point p ∈ P , we find the smallest square that has p in the lower left
corner and contains exactly m points of P . Second, we trace the collection of all
squares that have p on the left side, contain exactly m points, and are smallest.
Third, the trace gives us a collection of squares for which we must test whether
the side length is at most 2s and the area of forest inside is at most s2. The
former test is easy, the latter test is done with a data structure that returns the
area of forest inside any query square (or rectangle, for that matter) efficiently.
These three steps are described in detail in the next three subsections.

As just mentioned, in Sections 3.1 and 3.2 we show how to find all O(nm)
squares that contain exactly m points. This is closely related to the order-m
Voronoi diagram of the points in the L∞-metric. For the L2-metric, the fastest
algorithm takes O(n log3 n + nm logn) expected time and O(nm) space [1]. An
algorithm of Eppstein and Erickson [10] determines the O(m) nearest points
to each point in the L∞-metric in O(n log n + nm) time and O(n log n) space,
but requires a RAM model and bit manipulation. It is not clear whether these
results can be used to compute the order-m Voronoi diagram in the L∞-metric.
Various other results exist on determining the smallest square or circle that en-
closes m points [3, 8, 13]. Most of these approaches, however, do not imply the
computation of the squares that we require within the same time bound. Fur-
thermore, approaches that compute the order-m Voronoi diagram [1, 3] require
Θ(nm) space and are complicated. We present a simple algorithm that runs in
O(nm log2 n) time and requires O(n log n) space.
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p

p pp

Fig. 2. Left, finding the next point inside a growing square by four queries. Right,
situations 1, 2, and 3, where the next situations will be 2, 3, and 1, respectively.

3.1 Initializing for the Sweep

We describe how to determine, for each point p ∈ P , the smallest square that has
p in the lower left corner and contains exactly m points of P in O(nm log2 n)
time. The problem is easy to solve in O(n2) time: for each point p, find the
(m − 1)-th nearest point in the upper right quadrant of p with respect to the
L∞-metric, using a linear time selection algorithm [7].

Our solution is based on range query data structures. For each point p ∈ P ,
we grow a square whose lower left corner is fixed at p, and detect the next point
of P that will be inside. After m − 1 steps, we have the desired square for p.
The next point to be inside is determined by four queries, see Figure 2. One
query finds the first point reached when the top side of the square is translated
vertically upwards, a second query finds the first point reached when the right
side of the square is translated horizontally to the right, and the third and fourth
queries find the lowest and leftmost points in wedges, each bounded by two lines
through the upper right corner of the square. The lowest point is found in the
wedge bounded by a vertical line and a line with slope 1, and the leftmost point is
found in the wedge bounded by a horizontal line and the same line with slope 1.
One of the four answers gives the next point that will enter the growing square.
With the new point inside, we have the next square, and we perform the same
four queries again, but now based on the new, larger square.

The first two queries can easily be solved using a standard, two-dimensional
orthogonal range tree [9]. If we apply fractional cascading [6], we get a query
time of O(log n) using a data structure of size and preprocessing time O(n log n).

The third and fourth queries can be answered using a binary search tree on
P sorted by x − y, so that a line with slope 1 has the points above and left
of it in the left part of the tree, and the points to the right and below it in
the right part of the tree. Every internal node of the tree is augmented with a
priority search tree [9]. This structure allows us to answer the third and fourth
queries in O(log2 n) time, using a structure of size O(n log n) and preprocess-
ing time O(n log2 n). Fractional cascading cannot be used to improve the query
time.

For all points p ∈ P , we will perform O(nm) queries in total, and hence
the total query time is O(nm log2 n). The preprocessing time is O(n log2 n) and
the storage requirements are O(n log n). Depending on the machine model used,
slight variations on these bounds are possible, for which we refer to [2].
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3.2 Sweeping Squares Along Points

We show how to find all “interesting” squares that have a point p ∈ P on the
left side and contain exactly m points inside. To this end, we sweep, grow and
shrink the square while keeping its left side in contact with p. The previous
section showed how to find the first interesting square for the sweep.

There are three ways in which the sweep can advance: 1. The square translates
vertically downward. 2. The square grows to the bottom right. 3. The square
shrinks from the top right. We describe these situations in more detail; see
Figure 2.

1. The square translates vertically downward when it is in contact with p on
the left side and some other point of P on the right side, and continues until
either the top side of the square reaches a point of P , or the bottom side of
the square reaches a point of P . In the former case we go to situation 2, and
in the latter case we go to situation 3.

All squares during the translation are interesting, in the sense that they
may give rise to a region-restricted cluster.

2. The square grows to the bottom right when it is in contact with p on the left
side and some point of P on the top side. We cannot lower the top side, or else
the square would contain only m− 1 points. So we let it grow to the bottom
right, until either the right side or the bottom side reaches a point of P . In the
former case we go to situation 1, and in the latter case we go to situation 3.

When the right or bottom side reaches a point of P , the square contains
m + 1 points and therefore is not interesting. As soon as we proceed in
situation 1 or 3 we lose the (m + 1)-th point again. Other squares during
the growing are not interesting, since they properly contain a square with m
points inside.

3. The square shrinks from the top right when it has p on the left side and
some point of P on the bottom side (but no point of P on the top or right
side). The shrinking continues until either the top or the right side reaches
a point of P . In the former case we go to situation 2, and in the latter case
we go to situation 1.

Only the final square of the shrinking process is interesting, because it is
a subsquare of all others with the same m points inside.

To determine the next event in the sweep efficiently, we use the same two
types of data structures as for the initialization of the squares. We next analyze
how many events occur during the sweep along p. Note that any point that leaves
the square through the top side cannot re-enter, and any point that enters the
square through the bottom side can do so only once. At the end of situation 2,
we always lose a point through the top. At the end of situation 1, we either lose a
point through the top or gain a point at the bottom. At the end of situation 3 we
lose a point on the bottom side which goes inside the square. Hence, all situations
can occur only O(n) times. It follows that for one point p ∈ P , the sweep takes
O(n log2 n) time, and summed over all points of P this is O(n2 log2 n) time.
Preprocessing takes less time, asymptotically. However, we can also show:
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Lemma 1. The running time of all sweeps is O(nm log2 n) time.

Proof. The number of subsets of m points in smallest enclosing squares is O(nm),
due to the complexity of order-m Voronoi diagrams in the L∞-metric [3, 18]. Each
event gives a new subset, and each event is handled in O(log2 n) time. ��

We need to do such sweeps for each point p ∈ P in contact with each side of a
square. It is obvious that we can deal with the other sides of squares within the
same time bounds.

3.3 A Data Structure for Area Intersection Queries

The previous section shows how to compute a set of O(nm) subsets of m points
that are contained in a smallest square. These squares have a fixed size, but have
some x-interval or y-interval of possible locations (for example, the interval of
y-coordinates for the top side). The sweeps with the points of P in contact with
four possible sides of squares give these intervals. We refer to each such interval
as an interval of squares.

For all intervals of squares, we first test their size. All that have side length
at most s give a region-restricted cluster, even if they are completely covered by
forest. All that have side length greater than 2s cannot give a region-restricted
cluster, because the subset of m points is not close enough. For all intervals
of squares whose size is between s and 2s we must find out how much forest
area is inside each possible location of the square to determine if it forms a
region-restricted cluster. In this section we only consider vertical intervals; the
horizontal case is symmetric.

We first describe a data structure on the forest regions that, for any query
rectangle R, can report the total area of forest inside R. If the forest regions have
nf edges, then the data structure has size O(nf lognf ) and answers queries in
time O(log2 nf ). The structure is based on the hereditary segment tree [5].

The area of a polygon with n edges can easily be computed as the sum of
the areas of n quadrilaterals with a horizontal bottom side, vertical left and
right sides, and a polygon edge as the top side. Assuming the polygon lies
above the x-axis and the vertices are listed clockwise, the area of the polygon
(x1, y1), . . . , (xn, yn) is (x1− xn) · (y1 + yn)/2 +

∑n−1
i=1 (xi+1 − xi) · (yi + yi+1)/2 .

Note that trapezoids of edges that bound the polygon locally to the top give a
positive area contribution, whereas edges that bound the polygon locally from
below give a negative area contribution.

In our situation we also may assume that all forest polygons lie above the x-
axis. With every edge of a forest polygon we associate the area of its trapezoid,
which can be positive or negative, depending on whether the edge bounds a
forest region from above or below. We use the x-intervals of all forest edges to
get one-dimensional intervals that are stored on the main tree, which is the same
as the main tree of a normal segment tree. The associated structures, stored with
all nodes, are used similar to the hereditary segment tree [5].

In a hereditary segment tree, every node ν (internal or leaf) corresponds to
some interval Iν . Let e be some forest edge with forest locally below it. Then e
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is stored as a short edge at every node ν for which an endpoint of e lies in Iν (in
the x-projection). Furthermore, edge e is stored as a long edge at every node ν
for which Iν is contained in the x-interval of e, but this does not hold for the
parent node of ν (necessarily, e is stored as a short edge at this parent). This is
the standard approach for hereditary segment trees.

Each node ν has two associated structures, one for the short edges and one
for the long edges stored at ν. Node ν represents a vertical strip Iν×(−∞,+∞).
All long edges stored at ν cross the strip from left to right. All short edges come
in chains that either connect the left to the right boundary, or have both ends on
the left boundary, or have both ends on the right boundary. The forest can always
be on either side of long edges and of chains of short edges. Within one strip, the
specification of the side that contains the forest may seem inconsistent, e.g., two
adjacent long edges may both say that the forest is below it. The specification
is only local to each edge, however, and the seeming inconsistency does not give
problems with the design of the associated structures.

Assume we query with a rectangle R = [x1, x2]× [y1, y2] to determine the area
of forest inside R. We will query separately with the horizontal edges of R to
determine the aggregated area of forest below those edges. A subtraction then
gives the area inside R. So we need to be able to determine the area of forest
in the half-strip vertically below a horizontal edge [x1, x2] × y1. In the tree, we
will query the long segments at all nodes on the search paths to x1 and x2 (the
query segment is short). Furthermore, we will query the short segments at each
node ν for which [x1, x2] contains Iν , but this is not the case for the parent of
ν (the query segment is long at ν). Details on how to store long segments and
short segments, and query with a short and long segment, respectively, are given
in the full paper [11].

Theorem 1. A set of disjoint polygons with nf edges in total can be stored
in a data structure of size O(nf lognf ), such that for any axis-parallel query
rectangle, the area inside can be computed in O(log2 nf ) time. The construction
time is O(nf log2 nf ).

We use this structure to test our set of O(nm) vertical intervals of squares.
We perform a query with the topmost position, which gives us the area of forest
inside. However, instead of returning the area of forest inside, we can also obtain
the quadratic function in y that gives the forest area inside the square if the set
of forest edges intersected by the sides of the square is the same. This function
will be valid for a small subinterval at the top of the interval that we are testing.
When the square is translated down, the combinatorial structure of the forest
edges intersecting it will change, and so will the quadratic function in y giving
the forest area inside. This is an event in the sweep of the square through the
forest regions.

There are two types of event. A corner of the square may pass an edge of a
forest region, and a side of the square may pass a vertex of a forest region. We
preprocess the forest regions into two data structures that allow us to detect all
events on time, before they occur. One is a vertical ray shooting structure in the
forest edges. A standard locus approach combined with planar point location
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solves this; the structure has linear size and logarithmic query time. The other
is a segment dragging query, which can be solved using orthogonal range trees
with fractional cascading once again.

Between any two consecutive events, we consider the quadratic function in
y and minimize it, restricted to the relevant subinterval. If the minimum area
is at most s2, we found a region-restricted cluster and report it. Otherwise, we
update the quadratic function based on the change of intersected forest edges in
O(1) time, and continue the sweep.

For any sweep, there can be O(nf ) events, giving O(nm · nf) events for all
O(nm) sweeps. However, we can show that the number of events during all
O(nm) sweeps over the vertical intervals is only O(n · nf).

Lemma 2. The O(nm) vertical sweeps of a square have O(nm + n · nf ) events
in total (proof in the full paper [11]).

Theorem 2. Given a set P of n points in the plane, a set F of disjoint polygons
with nf edges, a positive integer m, and a positive real s, we can determine
all subsets of P of m points for which a smallest enclosing square exists with
side length at most 2s, and total area of polygons from F inside at most s2, in
O(nm log2 n + (nm + nnf) log2 nf ) time and O(n log n + nf lognf ) space. To
report O(nm) clusters of m points each explicitly, we need additional O(nm2)
time.

Proof. Only the space bound still needs to be proved. We simply note that the
O(nm) intervals of squares need not be computed all at once. As soon as we
generate a candidate square we test it and report or discard it. So we only need
the size of the data structures, which is O(n logn + nf lognf ). ��

To find outliers, we simply compute the union of the O(nm) squares that give
the clusters, and preprocess it for planar point location. Then we query with all
points of P . All points that do not lie in the union are outliers. These steps take
less time, asymptotically, than the determination of the squares.

Corollary 1. All region-restricted cluster outliers can be found in O(nm log2 n+
(nm + nnf ) log2 nf ) time.

4 Approximation for the Square Size

The size of the square, s, is a value that may be user-specified. In any case, the
precise value is not crucial, and running the algorithm with a value of s that is,
for example, 10% smaller or larger will generally give just as interesting clusters.
Therefore, it makes sense to study approximation algorithms, where the size of
the square may deviate slightly from what is specified. Approximation allows us
to obtain faster running times of the clustering and outlier detection algorithms.
At the same time, the number of clusters we find may be significantly smaller
than in the exact case. Recall that this is important in spatial data mining.
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Fig. 3. Left, overlaying a grid on P , and enlargement of squares containing exact
clusters (dark grey) to squares containing approximate clusters (light grey). Right,
snapping to a grid with multiplicity of grid points.

For a constant 0 < ε < 1, the ε-approximate region-restricted cluster re-
porting problem must determine a set Q of subsets of P , such that for every
region-restricted cluster P ′ of P , a subset Q ∈ Q exists such that P ′ ⊆ Q, the
enclosing square SQ of Q has side length at most (1 + ε) times the side length
of the smallest square SP ′ enclosing P ′, and area of forest inside SQ is at most
(1 + ε) · s2.

The idea is to overlay a regular grid with spacing εs/9 over the points of P ,
snap them to grid points, and only consider squares whose vertices lie on the
grid (see Figure 3). If a square S′ gives a region-restricted cluster for a subset
P ′, then our approximation algorithm will find the square S′′ whose vertices are
snapped outwards onto the grid. The side length of S′′ is at most that of S′,
plus 2εs/9, which is within a factor of (1 + ε) of the side length of S′. The area
inside S′′ that is not in S′ is at most 8s · εs/9 + 4(εs/9)2 < 76

81εs
2, since ε < 1.

We observe that the first, second and third conditions will be satisfied with this
idea. We may find approximate region-restricted clusters that do not contain any
exact region-restricted cluster, but then they would have been an exact cluster
for s′ = (1 + ε) · s. Snapping to a grid for a factor (1 + ε) approximation has
been used in several papers before (see e.g. [4, 13]).

Given P , m, s, and ε, we solve the ε-approximate region-restricted clus-
ter reporting problem as follows. Choose a grid with spacing εs/9 and place
the points of P in the appropriate cells. Then we snap the point to the up-
per right grid vertex. For each snapped point p ∈ P , we select a subgrid of
(1 + 	18/ε
)× (1 + 	18/ε
) grid vertices, where the vertex with p is the upper
right corner. The snapped coordinates of p are stored with the selected grid
vertices. In total, O(n/ε2) grid vertices are selected, many of which may be the
same. Selected grid vertices are lower left corners of candidate squares that will
be tested.

Note that only grid vertices that are chosen with multiplicity Ω(m) can be
part of a square in which an ε-approximate region restricted cluster lies. There
are only O(n/(mε2)) such grid points, and hence we need to report no more
than O(n/(mε2)) clusters to solve the ε-approximate region-restricted cluster
reporting problem. For each such grid point, we determine the smallest square
that has the lower left corner at this grid point, the upper right corner at another
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grid point, and contains at least m points. Using a selection algorithm [7] on
the snapped points stored with a grid point, this can be done in O(n/ε2) time
overall.

On the forest edges we build the data structure that was described in the pre-
vious section. We query with the O(n/(mε2)) squares to determine how much
forest is inside. If there is more than allowed, then we discard the square. Oth-
erwise, we report the cluster. We conclude:

Theorem 3. Given a set P of n points in the plane, a set of disjoint poly-
gons with nf edges, a positive integer m, a positive real s, and an approxi-
mation constant 0 < ε < 1, we can solve the ε-approximate region-restricted
cluster reporting problem in O(n logn + n/ε2 + nf log2 nf + (n log2 nf )/(mε2))
time.

To determine the outliers we can again determine the union of the O(n/(mε2))
squares, and locate the points of P . Alternatively, we can store P in a semi-
dynamic orthogonal range tree, query with each square, and remove the points
of P that lie in any query square.

5 Conclusions and Future Research

This paper introduced the concept of region-restricted clustering, which is im-
portant for geographic data mining. Our clustering definition takes into account
the situation where data points may only be possible in certain regions of the
plane. It may help to alleviate the problem of detecting many clusters that are
not interesting, by using a more appropriate definition of clusters in geographic
situations. We have also given efficient algorithms to compute clusters and out-
liers according to the new definition. A more efficient approximation algorithm
was also presented.

A result of independent interest is a new data structure for a set of disjoint
polygons with n edges, such that for any query rectangle, the total polygon
area inside it can be determined in O(log2 n) time. The data structure has size
O(n log n) and can be built in O(n log2 n) time.

As we remarked in the introduction, our definition of clusters is restricted
in the sense that the shape of a cluster is fixed and its size must be specified.
Common clustering methods like k-means, single link, and complete link [16] do
not have this restriction. An important topic for further research is therefore to
develop region-restricted versions of these clustering methods.

Open problems include developing more efficient algorithms, and extending
to the version where the (forest) area requirement of the square is independent
of the side length of the square (in other words: where properties (ii) and (iii) of
region-restricted clusters specify two values s1 and s2 that are unrelated). Other,
more general problems of interest include clustering where the points also have
attribute values on which clustering is done, and region-restricted clustering in
higher-dimensional geographic spaces.
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Abstract. We present an O(n3(log log n/ log n)5/4) time algorithm for
all pairs shortest paths. This algorithm improves on the best previous
result of O(n3/ log n) time.

1 Introduction

Given an input directed graph G = (V,E), the all pairs shortest path prob-
lem (APSP) is to compute the shortest paths between all pairs of vertices
of G assuming that edge costs are real values. The APSP problem is a fun-
damental problem in computer science and has received considerable atten-
tion. Early algorithms such as Floyd’s algorithm ([2], pp. 211-212) computes
all pairs shortest paths in O(n3) time, where n is the number of vertices of the
graph. Improved results show that all pairs shortest paths can be computed
in O(mn + n2 logn) time [8], where m is the number of edges of the graph.
Recently Pettie showed [12] an algorithm with time complexity of O(mn +
n2 log logn). See [13] for recent development. There are also results for all pairs
shortest paths for graphs with integer weights[9, 14, 15, 18, 19, 20]. Fredman gave
the first subcubic algorithm [7] for all pairs shortest paths. His algorithm runs
in O(n3(log logn/ logn)1/3) time. Fredman’s algorithm can also run in O(n2.5)
time nonuniformly. Later Takaoka improved the upper bounds for all pairs short-
est paths to O(n3(log logn/ logn)1/2) [16]. Dobosiewicz [6] gave an upper bound
of O(n3/(logn)1/2) with extended operations such as normalization capability
of floating point numbers in O(1) time. In 2004 we obtained an algorithm with
time complexity O(n3(log logn/ logn)5/7) [10]. Very recently Takaoka obtained
an algorithm with time O(n3 log logn/ logn) [17] and Zwick gave an algorithm
with time O(n3√log logn/ logn) [21]. Chan gave an algorithm with time com-
plexity of O(n3/ logn) [5]. Chan’s algorithm does not use tabulation and bit-wise
parallelism. His algorithm also runs on a pointer machine. We were unaware of
Chan’s result and published [11] in which we achieved O(n3/ logn) time using
large word size. Since Chan published [5] before us the result of O(n3/ logn)
time should be fully attributed to Chan.
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Takaoka raise the question [17] whether O(n3/ logn) can be achieved. It is
thought that O(n3/ logn) is a natural bound for this problem [5]. We show,
however, that this bound can be improved to O(n3(log logn/ logn)5/4). Our
technique is the traditional table lookup technique. However, we construct many
tables and maximize the saving the table lookup could bring to us. We shall give
reasons why the results presented in this paper would be difficult to improve on.

2 The Approach

Since it is well known that the all pairs shortest paths computation has the same
time as computing the distance product of two matrices [1] (C = AB), we will
concentrate on the computation of distance product.

We divide the first matrix A into (n/c1)(log logn/ logn)1/2 · (n/c2)
(log logn/ logn)1/4 small matrices each has dimension c1(logn/ log logn)1/2 ×
c2(logn/ log logn)1/4, where 0 < c1, c2 ≤ 1 is a suitable constant to be cho-
sen later. We divide the second matrix B into (n/c2)(log logn/ logn)1/4 · (n/c1)
(log logn/ logn)1/2 small matrices each has dimension c2(logn/ log logn)1/4 ×
c1(logn/ log logn)1/2.

For a c1(logn/ log logn)1/2 × c2(logn/ log logn)1/4 matrix E = (eij), we ob-
tain the ranks for eir − eis for all 1 ≤ r < s ≤ c2(log n/ log logn)1/4. Here rank
is defined in [17] and will be given explicitly in the next section. These ranks
are O(log logn) bits numbers. We therefore obtain a matrix E′ of ranks. E′ has
dimension e×f where e = c1(logn/ log logn)1/2 and f = O((log n/ log logn)1/2).
E′ has c3 log n bits with c3 < 1/2 being a constant. The corresponding
c2(logn/ log logn)1/4 × c1(logn/ log logn)1/2 matrix F is processed similarly.
Now EF can be computed in one step by a table lookup. Since direct or naive
computation of EF needs O((log n/ log logn)5/4) time we saved a factor of
(logn/ log log n)5/4 in the time complexity. However, the result R has
c21 logn/ log logn numbers (indices) each having O(log logn) bits. We cannot
disassemble R immediately for otherwise we lose a factor of logn/ log logn in
the time complexity.

What we do is to combine the results for logn/ log logn small matrix
product into one. This should take O(log n/ log logn) time by repeated table
lookup (details in the later section). After that we disassemble R and get the
c21 logn/ log logn resulting indices.

This concludes the strategy of our approach.

3 Obtaining the Ranks

We first divide the first matrix A into n/ log4 n · n(log logn/ logn)5/4

medium matrices each of dimension log4 n× (logn/ log logn)5/4 and second ma-
trix B into n(log logn/ logn)5/4 · n/ log4 n medium matrices each of dimension
(logn/ log log n)5/4 × log4 n. We will further divide each medium matrix into
small matrices in the next section. The reason we need these medium matrices
is that we need to compute the ranks to be defined below.
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Let A1 and B1 be two medium matrices. We want to compute C1 = A1B1,
where A1 = (aij), B1 = (bij) and C1 = (cij). We have that cij = mink{aik+bkj}.
Fredman noticed [7] that air+brj ≤ ais+bsj ⇐⇒ air−ais ≤ bsj−brj. Takaoka[16]
showed that by sorting {air − ais}i=1,2,...,m into sorted list Ers and sorting
{bsj − brj}j=1,2,...m into sorted list Frs and then merging Ers and Frs we obtain
a sorted list Grs. Here m = log4 n. Let Hrs be the list of ranks of air − ais

(i = 1, 2, ...,m) in Grs and let Lrs be the list of ranks of bsj − brj (j = 1, 2, ...m)
in Grs. Let Hrs[i] and Lrs[j] be the i-th and the j-th component of Hrs and
Lrs, respectively. Then:

Grs[Hrs[i]] = air − ais, Grs[Lrs[j]] = bsj − brj.

The lists Hrs and Lrs for 1 ≤ r < s ≤ l can be made in O(l2m) time, when
the sorted lists are available. Here m = log4 n and l = (logn/ log logn)5/4. The
following fact is established in [16, 17].

air + brj ≤ ais + bsj ⇐⇒ air − ais ≤ bsj − brj ⇐⇒ Hrs[i] ≤ Lrs[j].

Note that each Hrs[i] and Lrs[j] has 4 log log n + 1 bits.
Here we calculate the time for sorting and for merging. Sorting for each

pair of rs for each medium matrix takes O(m logm) time. For all pairs of rs this is
O(ml2 logm) time. For the input matrix A this takes O((n/m)(n/l)ml2 logm)=
O(n2l logm)= O(n2(logn/ log logn)5/4 log logn) time. The same time holds for
matrix B. The merging takes O((n/m)2(n/l)l2m)= O(n3l/m)
= O(n3(log n/ log logn)5/4/ log4 n)= O(n3(log log n/ logn)5/4) time.

The purpose of this section is to obtain all the ranks Hrs[i]’s and Lrs[j]’s.

4 Computing the Small Matrix Product

We further divide each medium matrix into small matrices. Divide the first
medium matrix A1 into small matrices each of dimension c1(log n/ log logn)1/2×
c2(logn/ log logn)1/4 and divide the second medium matrix B1 into small matri-
ces each of dimension c2(logn/ log logn)1/4×c1(logn/ log logn)1/2. Let E = (eij)
be a small matrix from A1 and let F = (fij) be a small matrix from B1. We are
to compute H = EF .

Thus if we have Hrs[i] and Lrs[j] for 1 ≤ r < s ≤ q we can determine the
index k such that hij = eik + fkj . Since q = c2(logn/ log logn)1/4 we have
O((log n/ log logn)1/2) rs pairs. We form matrix E′ and F ′:

E′ =

⎡⎢⎢⎣
H11[1] H12[1] ... H23[1] ... Hq−1,q[1]
H11[2] H12[2] ... H23[2] ... Hq−1,q[2]

... ... ... ... ... ...
H11[p] H12[p] ... H23[p] ... Hq−1,q[p]

⎤⎥⎥⎦

F ′ =

⎡⎢⎢⎣
L11[1] L12[1] ... L23[1] ... Lq−1,q[1]
L11[2] L12[2] ... L23[2] ... Lq−1,q[2]
... ... ... ... ... ...

L11[p] L12[p] ... L23[p] ... Lq−1,q[p]

⎤⎥⎥⎦
where p = c1(logn/ log logn)1/2 and q = c2(logn/ log logn)1/4.
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Thus E′ and F ′ have c3 logn/ log logn numbers each having 4 log logn + 1
bits. That is E′ and F ′ have c4 logn bits. Here c3 and c4 are constants which
can be made small. Now E′ and F ′ can be used to index into a lookup table T1
to get the p2 = c21 logn/ log logn indices for the matrix multiplication of EF .
These p2 indices are stored in one word. The lookup table T1 can be built in
O(n) time. Thus small matrix multiplication takes constant time.

5 Combining Results

Each small matrix multiplication returns a word R of c5 logn bits. R can be
viewed as an p×p matrix R[1..p, 1..p] with each element taking (1/4)(log logn−
log log logn) + log c2 bits to indicate the winner’s index. Suppose we have two
small matrix multiplication result R1 and R2. Let R1[i, j] = rij and R2[i, j] = sij ,
if we can obtain R3 with R3[i, j] = (Hrijsij [i], rij , sij), then our computation can
continue. Here HrijsIj [i] depends on both i and j because for different j’s it may
have different values (since Hrs’s are the ranks resulting from merging various
differences in A1 and differences in B1, it therefore depends on the choice of B1).
When A1 and B1 are fixed HrijsIj [i] is fixed also.

We now use Ru1v and Ru2v, for a fixed u and 0 ≤ v < log4 n/(c1(logn/
log logn)1/2), to represent the results of matrix multiplication of the two (consecu-
tive) small matrices in A1 with a row of (a total of log4 n/(c1(logn/ log logn)1/2))
small matrices in B1. We first group Ru1v and Ru2v into one matrix Ruv by a ta-
ble lookup such that Ru1v[i, j] and Ru2v[i, j] are consecutively placed in Ruv[i, j].
Therefore Ruv[i, j] has (1/2)(log logn − log log logn) + 2 log c2 bits. We may as-
sume that the address (that is (u, v, i, j)) is stored together with each original num-
ber Ruv[i, j]. Since each address is a 9 log log n bit number this should not create
any problem. We shall call (u, v, i, j) the address of Ruv[i, j] and the original num-
ber in Ruv[i, j] the winning index of Ruv[i, j].

We build a table for each row of a medium matrix in A and each medium ma-
trix of a row of medium matrices in B. That is we need (n2/ log5/4 n)(n/ log4 n) =
n3/ log21/4 n tables. Each of such a table has size O(log2∗5/4 n) = O(log5/2 n) be-
cause Ruv[i, j] has 2 values each can be as large as log5/4 n. For each of Ruv[i, j]
value we can index into a table to find the Hrs value.

We cannot disassemble Ruv to get the Ruv[i, j] values to index into the tables
built above because that will incur extra cost which we cannot afford. What we
do is to sort the Ruv[i, j]’s within each Ruv by their (i,winning index) key
and move the addresses with the winning indices. This is done by a table
lookup (not the table built above). Since there are c1(logn/ log logn)1/2 winning
indices with the same i address and each winning index has (1/2)(log logn −
log log logn) + 2 log c2 bits, by a suitable choice of c1 and c2 so that
2(1/2)(log log n−log log log n)+2 log c2 ≤ c1(logn/ log logn)1/2 and therefore there are
more winning indices than the different values of winning indices. Within each
Ruv for each value of winning indices we just need to keep one copy. We use
a table lookup to obtain the Hrs value for each different winning index value
in Ruv. Since there are c22(logn/ log logn)1/2 different winning index values we
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need to take O((log n/ log logn)1/2) time. This is for a fixed i in Ruv[i, j]. For
all Ruv’s for a fixed u we need O(log n/ log logn) time. After that we assemble
all these obtained Hrs values into one word w. This is done for all Ruv’s and
there are log4 n/(c1(log n/ log logn)1/2) of them. We make copies of w and con-
catenate one copy of w with each Ruv. That is the way each Ruv obtains its Hrs

values.
The similar process is done on the second input matrix B. If R1[i, j] = rij

and R2[i, j] = sij , then we will obtain R4 with R4[i, j] = (Lrijsij [j], rij , sij).
Now use R3 and R4 to index into yet another table T4. T4 will give re-

sult R5 with R5[i, j] being the winner between rij and sij for 1 ≤ i, j ≤
c1(logn/ log logn)1/2. R3 and R4 have c5 log n bits and therefore table T4 can
be built in O(n) time. This accomplishes the combining of R1 and R2 into R5.
This is the 0-th step of combining. Each step of the combining pairs-off every 2
small matrices.

In the t-th step, we group every 22t Ruv into one group and work on every
group the same way. We need to discuss the first group Ruv, 0 ≤ v < 22t. We
replace each duplicate winning index in Ruv[i, ∗] with a dummy (can be set
to max) but keep the first winning index among the same duplicated winning
indices. Let the resulting word be R1

uv. We use each distinct winning index value
of Ruv[i.j] and index into the lookup table to obtain the Hrs values. There
are 22tc22(logn/ log logn)1/2 distinct winning indices for a fixed i. Look them
up in the tables takes O(22t(log n/ log logn)1/2) time. For all i’s in u this takes
O(22t log n/ log logn) time. But this is done once for all groups. Since s2t ≤
O(log5/2 n) and the number of groups is Ω(log4 n/(22t(logn/ log logn)1/2)) =
Ω(log n(log logn)1/2) > Ω(log n/ log logn) (the number of winning indices in
Ruv). Therefore the time needed can be allocated.

We put these Hrs values together with its winning indices into 22t words wi,
0 ≤ i < 22t. We then sort R1

uv, 0 ≤ v < 22t, together with wi, 0 ≤ i < 22t, by
the packed winning indices in them. We can do this by a serialized version of the
bitonic sort[3, 4]. The bitonic sort will bring a factor of O(t2) to the complexity
(note that we are sorting O(22t) words, the winning indices within each word
can be sorted by a table lookup.). Since in the t-th step we have reduced the
data amount by a factor of 2t the factor of O(t2) in the sorting can be absorbed.
Therefore we can achieve linear time for sorting.

After sorting we now copy Hrs value to attach them to winning indices. For
each winning index there are at most 22t copies since duplicates have been re-
moved. Therefore copying can be done by incuring a factor of O(t) in the time
complexity and since data amount have been reduced this extra factor can be
absorbed.

Now use bitonic sort to sort on the addresses to bring the Hrs values to each
Ruv.

The combining of each small matrix thus takes constant time. Therefore
after O(log n/ log logn) steps we have combined logn/ log logn small matrix
multiplication result into one resulting matrix R6. R6 can be viewed as an
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c(logn/ log logn)1/2 × c(logn/ log logn)1/2 matrix with R6[i, j] giving the index
k for cij = aik + bkj (mentioned in the previous section).

6 The Result

Since we expend O(log n/ log logn) time multiplying a p × l matrix with an
l × p matrix where p = c(logn/ log logn)1/2 and l = (logn/ log log n)5/4, and
direct or naive matrix multiplication takes O((log n/ log logn)9/4) time we save
a factor of (log n/ log logn)5/4. By choosing small enough constant ci’s all our
preprocessing and table built up can be done in O(n3(log logn/ logn)5/4) time.
Thus our matrix multiplication algorithm takes O(n3(log logn/ logn)5/4) time.

Theorem. All-pairs shortest paths can be computed in O(n3(log logn/ logn)5/4)
time.

We give reasons why the results presented in this paper would be difficult to
improve on. When using tabulation and bit-parallelism we can expect to save
a factor of roughly logn because logn bits are encoded in one word. However,
in all pairs shortest paths computation if we encode logn numbers into a word
then we can compute log2 n results in constant time by table lookup. That is we
can speed up algorithm by a factor of log2 n. However, the log2 n results have to
be stored in at least logn words and therefore takes logn time to access. Thus
the speedup factor is reduced to logn. Since we need log logn bits to encode
a number, with log n bits we can use one word to store logn/ log logn results.
Thus the best strategy is to encode a (logn/ log logn)1/2 × a matrix and an
a × (logn/ log logn)1/2 matrix into a word. Here the larger the a, the better.
However, we can encode at most logn/ log logn numbers into one word because
each number takes log logn bits, plus if we use Fredman-Takaoka approach[7, 16]
then the encoding will blow a numbers to a2 numbers and thus we have that
a2(logn/ log logn)1/2 = logn/ log logn. Therefore a = (logn/ log logn)1/4. This
is the dimension of the small matrices we used earlier in the paper.
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Abstract. This paper addresses strategies for the stable marriage prob-
lem. For the Gale-Shapley algorithm with men proposing, a classical the-
orem states that it is impossible for every cheating man to get a better
partner than the one he gets if everyone is truthful. We study how to
circumvent this theorem and incite men to cheat. First we devise coali-
tions in which a non-empty subset of the liars get better partners and
no man is worse off than before. This strategy is limited in that not
everyone in the coalition has the incentive to falsify his list. In an at-
tempt to rectify this situation we introduce the element of randomness,
but the theorem shows surprising robustness: it is impossible that every
liar has a chance to improve the rank of his partner while no one gets
hurt. To overcome the problem that some men lack the motivation to
lie, we exhibit another randomized lying strategy in which every liar can
expect to get a better partner on average, though with a chance of get-
ting a worse one. Finally, we consider a variant scenario: instead of using
the Gale-Shapley algorithm, suppose the stable matching is chosen at
random. We present a modified form of the coalition strategy ensuring
that every man in the coalition has a new probability distribution over
partners which majorizes the original one.

1 Introduction

Suppose that n men and n women seek life-long partners. Each of them has a
preference list of the members of the other sex and submits it to a centralized
authority. In the spirit of making all the participants maintain a long-term rela-
tionship, the authority has to make sure that the matching does not involve any
blocking pair : a couple each of whom prefers the other over his (her) partner in
the matching. A matching without any blocking pair is stable. The goal of the au-
thority, given the men’s and women’s preference lists, is to find a stable matching.

The above situation is the classical stable marriage problem formulated by
Gale and Shapley [3]. Suppose the match-making mechanism is known before-
hand, and all men’s and women’s preference lists are made public. Can a group
of persons (of either sex) falsify their lists to get better partners?

For the Gale-Shapley men-optimal algorithm, some studies have partly an-
swered the question. If women are allowed to submit incomplete lists (i.e., they
can declare some men unacceptable), they can force a men-optimal matching
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into a women-optimal one [4]. For men, researchers reached the opposite con-
clusion: honesty is the best policy [2, 10]. The following theorem by Dubins and
Freedman [2] (Roth also gave a restricted version [10]) inspires this work and is
the key to our results.

Theorem 1. A subset of men cannot falsify their preference lists so that every
one of them gets a better partner than in the Gale-Shapley men-optimal algorithm.

This work studies how to circumvent this theorem and encourages men to falsify
their lists. The statement of the theorem does not rule out the possibility that
some of the liars get better partners while the others get the same partners as
before. Based on this observation, we devise a coalition strategy. Moreover, we
prove this is the only cheating strategy in which none of the liars is worse off.

The coalition strategy has a drawback: it relies on the cooperation of some
men who cannot benefit themselves. We consider that a randomized version of the
coalition strategy might give every liar a chance to get a better partner. However,
we reach an impossibility result which states that such a randomized strategy is
unrealizable, thus in this sense strengthening the Dubins-Freedman Theorem.

Relaxing the requirement that liars can never be worse off, we present a ran-
domized strategy in which every liar can expect to get a better partner. Thus, in
an amortized sense, our third attempt in circumventing the Dubins-Freedman
Theorem does succeed.

Finally, we discuss a different scenario: the stable matching is chosen at
random, what would be men’s strategy? This question is raised by Roth and
Vate [14]. We study how the lattice structure underlying the set of stable match-
ings evolves with regard to the coalition strategy. A corollary of our observation
is a modified coalition strategy guaranteeing that every man in the coalition has
a probability distribution over partners which majorizes the original one.

The main contribution of this work is the re-examinationof the classicalDubins-
Freedman Theorem and its associated strategy issues. To our knowledge, ours is
the first result about men-lying strategies (deterministic or randomized) under
the Gale-Shapley algorithm. We also present the first men’s group lying strategy
without relying on truncating lists in the context of random stable matching.

The outline of this paper is as follows. In Section 2, we observe the interaction
between the preference lists and the men-optimal matching. Section 3 formally
presents the coalition strategy. In Section 4, we prove that there always exist
some men who do not gain by lying. In Section 5, we exhibit another randomized
lying strategy in which men on the average can get better partners. Section 6
considers the scenario that the stable matching is chosen at random and analyzes
the effectiveness of the coalition strategy in this context. Section 7 concludes and
discusses related work.

2 Falsifying Preference Lists

In this section, we observe the interaction between falsified lists and the resulting
matchings. Before plunging into technical details, we establish some notation and
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terminology and give background. From Section 3 to 5, we assume that the Gale-
Shapley men-optimal algorithm is used and that we know the preferences of all
participants. The sets of men and women are denoted by M and W , both of
size n. When everyone is honest, M0 and Mz are the men-optimal and women-
optimal matchings; Ms denotes the men-optimal matching when some subset of
people lie. For any matching M and some subset of people S ⊆ M

⋃
W , the

collection of partners of people in S is M(S). For example, M0(m) is the partner
of man m in the men-optimal matching. We express the fact that man m prefers
woman w over woman w′ by w -m w′. For man m, w is his stable partner if
there exists any stable matching containing the pair (m,w).

Every man and woman has a strictly ordered preference list of size n (note
that our result still holds even if lists are incomplete). Specifically, for man m,
his preference list is composed of (PL(m),M0(m), PR(m)), where PL(m) and
PR(m) are respectively those women ranking higher and lower than M0(m).
More colloquially, we say the women in PL(m)(or PR(m)) are on the left (right)
of man m’s list. If for every man m ∈ M, M(m) .m M ′(m), matching M is
said to be “at least as good as” matching M ′ and is denoted as M . M ′. If,
besides M . M ′, there exists at least one man m such that M(m) -m M ′(m),
we write M -M ′ and say M is strictly better than M ′; if some men are better
off and some are worse off in M than in M ′, these two matchings are said to be
incomparable, denoted by M ‖M ′. Finally, if A is a set of distinct objects, π(A)
denotes the set of all |A|! permutations and πr(A) a random permutation from
this set.

The celebrated Gale-Shapley algorithm is recreated below.

1: assign each person to be free;
2: while some man m is free do
3: begin
4: w:= first woman on m’s list to whom m has not yet proposed;
5: if w is free then
6: assign m and w to be engaged to each other;
7: else
8: if w prefers m to her fiance m′ then
9: assign m and w to be engaged and m′ to be free;
10: else
11: w rejects m;
12 end;
13: output the matching

Fig. 1. Gale-Shapley men-optimal algorithm. The women-optimal version can be de-
rived by reversing the roles of men and women.

Our first lemma hints at the necessary ingredient in men’s falsified lists if we
wish for a better outcome for men: Men shifting women from the left to the right
of their lists will not cause any man to be worse off.

Lemma 1. For a subset of men S ⊆ M, if every member m ∈ S submits a
falsified list of the form (πr(PL(m)−X),M0(m), πr(PR(m) ∪X)), X ⊆ PL(m),
then Ms .M0.
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Proof. We proceed by contradiction. In Ms, suppose some man m gets a worse
partner than M0(m). Without loss of generality, assume that during the ex-
ecution of the algorithm with true lists, m is the first person rejected by his
M0-partner. The rejection can only be caused by another man m′, who ranks
higher than m in M0(m) preference list. Since m′ has not been accepted by his
M0-partner yet, he must prefer M0(m) over M0(m′). Therefore, (m′,M0(m′))
compose a blocking pair in M0. ��

Interestingly, Lemma 1 also has an intuitive interpretation: if some men know
beforehand that they have no chance of getting certain women, they may as well
avoid proposing to them. Doing this, they do not run any risk of getting worse
partners and may help others get better ones.

The next lemma indicates that if men simply permute the left and/or right
portion of their lists, nothing will change. This lemma goes a long way toward
explaining why Lemma 1 is a useful lying stratagem.

Lemma 2. For a subset of men S ⊆ M, if every member m ∈ S submits a
falsified list of the form (πr(PL(m)),M0(m), πr(PR(m))), then Ms = M0.

Proof. We can use the same argument in the proof of Lemma 1 to show that no
man will ever be rejected by his M0-partner. Hence, permuting the right portion
of the men’s preference lists will not cause men to be worse off. However, the
permutation on the left portion of the preference lists might cause some men to
be better off in Ms than in M0. We have to eliminate this possibility.

Suppose there exists a nonempty subset B ⊂ M such that each man m ∈ B
is better off in Ms than in M0. Given the falsified lists of men, the stability of
Ms implies that every man m ∈ B is preferred by his partner Ms(m) over any
other man m′ ∈M−B who puts Ms(m) on the left of his preference list. In any
execution of the Gale-Shapley algorithm with the true preference lists, the men
in B must be rejected by their Ms-partners, and this rejection can be caused only
by another man m′ ∈ B. Moreover, after this rejection, his Ms-partner can be
engaged only to men in B. Without loss of generality, assume that m is the last
person in B who is rejected by his Ms-partner. At the point of this rejection, all
the Ms-partners of men in B except Ms(m) must have been engaged, and only
to men in B. However, the rejection of m implies that Ms(m) is also engaged to
another man in B. Hence, |B| women are engaged to |B − 1| men when the last
rejection takes place, and we reach the desired contradiction. ��

3 Coalition Strategy

In this section we present the coalition strategy. An example could be found in
Figure 2.

Coalitions. We now formally explain the coalition strategy. A coalition is
comprised of two parts: cabal and accomplices. Each man in the cabal prefers an-
other’s partner to his own and would be happier if they can exchange; the accom-
plices are the men who need to falsify their lists to help them accomplish this goal.
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M0-matching Ms-matching
Men’s List Women’s List Men’s (Falsified) List Women’s List
A: abedc a: CBDAE A:aedcb a: CBDAE
B: bedac b: DEABC B:bedac b: DEABC
C: ebacd c: BCDEA C:ebacd c: BCDEA
D: dabce d: ABCED D:dabce d: ABCED
E: edbca e: ABECD E: ecabd e: ABECD
The Match Ranking for men in M0: A(e,3), B(d,3), C(a,3), D(b,3), E(c,4)
The Match Ranking for men in Ms: A(e,3), B(b,1), C(a,3), D(d,1), E(c,4)

Fig. 2. Men A and E falsify their lists to help men B and D get a better partner.
Falsified lists are underlined.

Definition 1. The cabal of a coalition K = (m1,m2, · · · ,m|K|) is a list of men
such that each man mi, 1 ≤ i ≤ |K|, prefers M0(mi−1) to his own partner
M0(mi), indices taken module |K|.

Having formed the cabal, the men in the cabal need to to enlist the help of
accomplices. Suppose man mi in the cabal wishes to be matched to some woman
w (who is mi−1’s partner). All other men (accomplices) putting her on the left of
their lists, if they are ranked higher than mi in w’s list, should avoid proposing
to her by shifting her to the right of their lists (as implied by Lemma 1).

Definition 2. The accomplices of cabal K = (m1,m2, ...m|K|) is a set of men
A(K) ⊆M such that m ∈ A(K) if

1. m �∈ K, for any mi ∈ K, if M0(mi) -m M0(m) and m -M0(mi) mi+1, or
2. m = mj ∈ K, for any mi ∈ K, i �= j, if M0(mi) -mj M0(mj−1) and

mj -M0(mi) mi+1.

Note that cabal K and its accomplices A(K) might not be disjoint, i.e., the
people in the cabal might have to falsify their lists as well. An immediate con-
sequence of the Dubins-Freedman Theorem is that A(K) ∪K ⊃ K.

We can now present the main result of this section.

Theorem 2. Coalition Strategy: If in a coalition C = (K,A(K)), each accom-
plice m ∈ A(K) submits a falsified list of the form (πr(PL(m) − X),M0(m),
πr(PR(m) ∪X)), and if

– m ∈ A(K)−K,X = {w|w = M0(mi) ∈M0(K),m -w mi+1}
– m = mj ∈ A(K) ∩ K,X = {w|w = M0(mi) ∈ M0(K), w -mj M0(mj−1),

mj -w mi+1},
then in the resulting Ms-matching, Ms(mi) = M0(mi−1) for mi ∈ K and
Ms(m) = M0(m) for m �∈ K.

Proof. As implied by Lemma 1, no man will be rejected by his M0-partner, since
men only shift some women from the left to the right of their lists. Moreover, no
man mi in K is going to be rejected by his preferred partner M0(mi−1), since
all the accomplices have altered their lists. Finally, men not in the cabal can
get only their M0-partners and men in the cabal can get only their preferred
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Ms-partners. If this is not so and some subset of men get even better partners,
as in the proof of Lemma 2, we can use a pigeonhole argument to refute this
possibility. ��

The coalition strategy is the only strategy that has the nice property of ensuring
that some men are better off and every liar is at least as well off as before. One
might wonder whether there exist other strategies by means of which liars can
manipulate the outcome at the expense of honest men without hurting them-
selves. The following theorem precludes this possibility.

Theorem 3. The coalition strategy is the only way for men to falsify their lists
such that in the resulting Ms-matching, some men are better off and every liar
is at least as well off as when he is truthful.

Proof. We proceed by contradiction. Suppose there exists another strategy for
men such that some men can be better off at the expense of honest men, and all
liars are at least as well off as when they are honest. Say some man m (whether
he is honest or not) is better off by being matched to the partner of some honest
man m′, i.e. Ms(m) = M0(m′), while the honest man m′ is worse off. We claim
that (m′,M0(m′)) must be a blocking pair in Ms, because (1) the stability of M0
implies that m′ -M0(m′) m, and (2) since m′ is honest, M0(m′) -m′ Ms(m′). ��

Theorem 3 has an important implication: Liars, if intending to help other men
(or themselves) get better partners, either have to adopt the coalition strategy
(in which no one gets hurt) as defined in Theorem 2, or must accept worse
partners for themselves. This observation prompts us to devise another strategy
in Section 5. The algorithms for finding the coalitions (cabals) can be found
in [7]. We discuss theoretical implications that directly follow from the coalition
strategy.

Cabalists and Hopeless Men. Based on the preference lists and the M0-
matching, a large number (which can be exponential) of coalitions may exist.
We define a man to be one of the cabalists K if he belongs to any one of the cabals
of the coalitions; otherwise, he is one of the hopeless men H. By this definition,
men fall into two categories:M = K

⋃
H and K

⋂
H = ∅. Apparently, hopeless

men cannot benefit from utilizing the coalition strategy. The following lemma,
implying at least one man does not have incentive to cheat, is important in
proving our next major result.

Lemma 3. Whatever the true preference lists, there always exists at least one
hopeless man, i.e., H �= φ.

Proof. If woman w is the last woman receiving a proposal during the execution
of the Gale-Shapley algorithm, then (1) she has not received any other proposal
before, and (2) she is not in the left portion of any man’s preference list. If this
is not so, then when the last proposal is made to w, she will either reject the
proposer or dump her former partner. In both cases, this “last” proposal will
not terminate the algorithm.
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Since the last woman w receiving a proposal is not on the left of any man’s
preference list, M0(w) cannot belong to any cabal. Hence he must be one of the
hopeless men. ��

4 Impossibility of Forming Leagues

The coalition strategy has one unsatisfactory aspect: The Dubins-Freedman The-
orem ordains that for every coalition, at least one accomplice does not gain from
lying and hence has little motivation of doing so. Can we devise a stratagem such
that everyone is predisposed to cheat? In this section, we show that even with a
randomized strategy, we still cannot overcome the problem that some men lack
the motivation of lying.

We formulate what would be a successful randomized strategy for men.

Definition 3. A league is a subset L ⊆M with the following properties. Each
man mi ∈ L has a set of possible preference lists si = π(W), and a joint prob-
ability distribution F :s1 × s2 · · · × s|L| → [0, 1] exists such that for every man
mi ∈ L:

– (Positive Expectation): E[Rank(Ms(mi))] > Rank(M0(mi)).
– (Elimination of Risk): If in event E, Rank(M0(mi)) > Rank(Ms(mi)), then

Prob(E) = 0.

Based on Theorem 3, the two requirements imply that the only choice is to
employ a mix of coalition strategies. We can randomly pick some coalition con-
tained in the league and realize the strategy accordingly. The problem then boils
down to whether we can find a union of coalitions Ci = (Ki, A(Ki)) such that
L =

⋃
i Ki =

⋃
i A(Ki). In other words, in this league, each accomplice belongs

to the cabal of some coalition, and thus has a chance to improve the rank of his
partner (and hence the incentive to lie).

A league would circumvent the Dubins-Freedman Theorem, by allowing ev-
ery liar to improve the rank his partner (in a randomized sense) with no risk.
However, leagues do not exist.

Theorem 4. In any coalition C = (K,A(K)), at least one accomplice is a hope-
less man, i.e., A(K)

⋂
H �= ∅.

Proof. We first consider maximal coalitions and then go on to more general
cases. A coalition C = (K,A(K)) is maximal if K =M−H. For every man mi

in the cabal of this maximal coalition, we move his preferred partner M0(mi−1)
in the cabal to the front of his list and his M0-partner M0(mi) to the second
place. Note that due to Lemma 1, after this alteration of the lists, a man in
the cabal can be matched only to either his original M0-partner or his preferred
partner in the cabal.

Arrange the proposal sequence of the Gale-Shapley algorithm in the follow-
ing way: all men in M−H propose first and are temporarily engaged to their



Cheating by Men in the Gale-Shapley Stable Matching Algorithm 425

preferred partners in the cabal. In the resulting matching, the Dubins-Freedman
Theorem tells us that it is impossible that every liar gets a better partner, so at
least one person mj in the cabal is matched to his M0-partner M0(mj); conse-
quently, mj+1 also can be matched only to his original M0-partner M0(mj+1)
and so forth. The only way to break the “balance” of this cabal is that some hope-
less man m∗ (there exists at least one hopeless man, as indicated by Lemma 3)
proposes to some woman who is a partner of a man in the cabal and he is pre-
ferred by this woman over him. Hence, m∗ must be one of the accomplices in
this coalition.

If the coalition C is not maximal, i.e., |K| < |M−H|, we still can apply the
above argument, with a little more complication. First, choose some cabalist m
not in K, and move his M0-partner to the front of his preference list. Then,
for all other cabalists mk, if M0(m) -mk

M0(mk), shift M0(m) to the end of
his list. Note that by Lemma 1, these operations will not make any man get a
worse partner. We claim that now m becomes a hopeless man and the resulting
Ms-matching is still identical to M0. The reasons are as follows: (1) If there
exists any other cabal K ′ involving m, then the coalition containing the cabal
K ′ cannot be realized. Recall that for a coalition to be formed, the men in the
cabal K ′ must have better partners, but m can only be matched to his M0-
partner, who is on the front of his list. (2) Cabals other than K not involving
m also cannot be realized, because all we have done is to shift M0(m) to the
right of other men’s preference lists. If a coalition containing such a cabal is to
be realized, the accomplices of the coalition have to shift the preferred women
in the cabal to the right of their lists. But M0(m) is not one of them. Hence,
such a coalition cannot succeed.

By applying the above argument repeatedly, we can make all cabalists in
M− (H∪K) become hopeless men. For the men in the cabal K (which is now a
maximal coalition), use the same argument we have used before: for each mi ∈ K,
shift M0(mi−1) and M0(mi) to the first two places in his list. Let all men in K
propose first. The “balance” of K can be broken only by some true hopeless men
(those originally in H, instead of those false ones we created, because the latter
will only propose to their M0-partners and stop. Moreover, Lemma 3 guarantees
that H be non-empty). By the above argument, we reach the conclusion that
every coalition has at least one accomplice who is a hopeless man. ��
By Theorem 4, we know that an all-win league is impossible. A hopeless man
never improves his lot by the coalition strategy, which means that he can never
attain the first requirement in Definition 3. Combining Theorem 3 and Theo-
rem 4, we derive our major result in this section:

Theorem 5. It is impossible to find a league, thus a successful randomized strat-
egy as defined in Definition 3 cannot be formed.

5 In Pursuit of Motivation

In this section, we show it is possible to devise a randomized strategy in which
every cheating man can expect to get a better partner. The crucial point is that
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these liars must be willing to take the risk of getting worse partners. We first
introduce another lying strategy.

Lemma 4. Victim Strategy: Suppose M0(m) -m M0(m′) and M0(m) -m′

M0(m′). And for all mi ∈ M− {m,m′}, if M0(m′) ∈ PL(mi), then m -M0(m′)
mi. Let m submit a falsified list of the form
(πr(PL(m)∪M0(m′)),M0(m), πr(PR(m)−M0(m′))), then in the resulting match-
ing Ms:

1. For m (the victim), Ms(m) = M0(m′);
2. For m′ (the benefiter), Ms(m′) -m′ M0(m′);
3. For men mi ∈M− {m,m′},Ms(mi) .mi M0(mi).

Proof. We construct a stable matching M∗ as follows: Retain all the couples in
M0 except exchange the partners of m and m′.

We claim that the constructed M∗ is stable, since every man, except m, has
either the same or a better partner. For m, he also gets a “better” partner, since
M0(m′) is now on the left of his perjured preference list. And there is no danger
of the existence of a blocking pair containing M0(m′), since m is more favored
by M0(m′) than any other man putting her on the left of his list.

If the constructed M∗ is not men-optimal, then the true Ms will still have the
stated properties. Men-optimality of Ms ensures that every man gets the best
possible partner among all stable matchings. The only exception is m, who can
not get a better partner than M0(m′) in Ms, because of the Dubins-Freedman
Theorem. ��

M0-matching Ms-matching
Men’s List Women’s List Men’s (Falsified) List Women’s List
A: bdace a: BADCE A:bdcae a: BADCE
B: cdbae b: CBADE B:cdbae b: CBADE
C: adcbe c: ACBED C:adcbe c: ACBED
D: aebcd d: EDBCA D:aebcd d: EDBCA
E: dabce e: DBECA E: dabce e: DBECA
The Match Ranking for men in M0: A(a,3), B(b,3), C(c,3), D(e,2), E(d,1)
The Match Ranking for men in Ms: A(c,4), B(b,3), C(c,1), D(e,2), E(d,1)

Fig. 3. An example: Man A shifts woman c from the right to the left of his list. He gets
woman c and man C gets woman a. Note man B (C) also can use the same strategy
to help man A (B).

A simple example for the victim strategy can be found in Figure 3. The problem
is the practicality of the victim strategy: where can we find people with such a
self-sacrificing spirit? The randomness of the victim strategy makes possible that
some men be willing to play the role of victim (occasionally). Here we present
an easy example. As shown in Figure 3, a successful alliance is composed of men
A, B and C. Man A (or B, or C) can play the role of victim to help man C (or
A, or B). Suppose we assign the probability of 1/3 to each one of them to play
the victim; then the expected rank of their partner would be 8/3, which is an
improvement.
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6 Coalition Strategy in Random Stable Matching

In this section, we modify the coalition strategy for the scenario that the stable
matching is chosen at random. It is well-known that the set of stable matchings
compose a distributive lattice. In the following, we investigate what happens to
the lattice when a subset of men adopt the coalition strategy. It is easy to see that
if men shift women from the left to the right of their lists but without permuting
the right portions of their lists, all the original stable matchings remain stable
with regard to the falsified lists.

The following is good news for cheating men: even if the authority all of a
sudden decides to change the men-optimal matching to a women-optimal one,
they will not be worse off than when they are truthful.

Lemma 5. Given a subset of men S ⊆ M, let every member m ∈ S submit a
falsified list of the form (πr(PL(m) −X),M0(m), πr(X), PR(m)), X ⊆ PL(m).
Then, in the women-optimal matching, every man still gets his M0-partner.

Proof. (Sketch) This can be observed by the fact that men never receive pro-
posals from women ranking higher than their M0-partners. ��

By Lemma 5, when the coalition strategy is adopted, the new women-optimal
matching will be identical to Mz, the original one when everyone is truthful.
Therefore, Mz is still the minimal element in the new lattice L′. As previously
alluded to, the original men-optimal matching M0 is also an element in the new
lattice L′ (but no longer the maximal element, which is now the new men-optimal
matching Ms realized by the coalition strategy). We next show that there is no
newly-created stable matching dominated by M0.

As defined by Gusfield and Irving [6], given a stable matching M , an (exposed)
rotation is a circular list σ = ((m1, w1), (m2, w2), · · · , (m|σ|, w|σ|)), indices taken
modulo |σ|, such that:

1. M(mi) = wi,
2. mi−1 -wi mi,
3. If wi -mi w -mi wi+1, then M(w) -w mi.

“Eliminating” the rotation σ from M means that every man mi changes his
partner from wi to wi+1 (a worse partner for him). Eliminating an exposed
rotation σ in a stable matching M creates another stable matching M ′ = M/σ,
which lies immediately below M in the lattice [6, Lemma 2.5.2]. The following
lemma explains what would happen to these rotations when men shift women
from the left to the right of their lists. We present a slightly stronger result then
is required. Let A and B be any ordered lists.

∏
r(A,B) denotes any mixed list

of A and B such that the order of elements in A and in B is still preserved.

Lemma 6. Given true preference lists, let M and M ′ = M/σ be two stable
matchings where σ is exposed in M and M0 .M . Given a subset of men S ⊆M,
let every member m ∈ S submit a falsified list of the form
(πr(PL(m) − X),M0(m),

∏
r(πr(X), PR(m))), X ⊆ PL(m), then in M , σ is

still exposed with regard to the falsified lists.
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Proof. (Sketch) Consider any man mi ∈ S involved in an original rotation σ.
Consider any such woman w being shifted by mi (who originally ranks higher
than M0(mi) in mi’s list); w must prefer her partner in M0 over mi, otherwise,
(mi, w) blocks M0. By the fact that M0 . M , in M , w can not be matched to
some one who ranks lower than M0(w) in her list (otherwise, (M0(w), w) blocks
M), so M(w) .w M0(w) -w mi. Therefore, the fact that in the falsified list of
mi, w appears between wi and wi+1 does not affect the rotation σ. ��

Gusfield and Irving prove that a stable matching can be generated by repeatedly
eliminating the exposed rotations [6, Corollary 2.5.2]. Combining these observa-
tions, we have,

Theorem 6. Given a subset of men S ⊆M, let every member m ∈ S submit a
falsified list of the form (πr(PL(m)−X),M0(m), πr(X), PR(m)), X ⊆ PL(m).

– The new lattice L′ ⊇ L, the old lattice.
– The set of rotations found along any maximal chain of L′ is a superset

of rotations found along any maximal chain of L.M0 can be generated by
eliminating from Ms all the newly-created rotations with regards to the fal-
sified lists. Moreover, the newly-created rotations only involve men who get
a strictly better partner in Ms.

– For a new stable matchings M � in L′ − L, either M �‖M0, or M � -M0.

We now have all the necessary tools to present the major result.

Theorem 7. Suppose Ms is a men-optimal stable matching realizable by the
coalition strategy and C = (K,A(K)) be the corresponding coalition. Let men in
the coalition cheat as follows:

– If m ∈ A(K) − K, m submits a falsified list of the form (πr(PL(m) −
X),M0(m), πr(X), PR(m)), where X is the set of women defined by the coali-
tion strategy for realizing Ms.

– If m ∈ K, m submits a falsified list of the form (Ms(m),M0(m), πr(PL(m)−
Ms(m)), PR(m)).

Then in all the newly-created stable matchings, every man in the coalition C
gets a partner whose rank is at least as high as his M0-partner.

Proof. Consider the men in the cabal K. Since there is no woman between their
Ms-partners and M0-partners, there is only one rotation δ̂ between Ms and M0.
For a contradiction. Suppose there exists a newly-created matching Mφ in which
men in K get worse partners than their M0-partners, δ̂ must be eliminated. By
Theorem 6, Mφ must be one of the stable matchings in the original lattice L.

For the accomplices in A(K) − K, if in a stable matching, they, along with
the men in the cabal K, get worse partners than their M0-partners, the same
argument in the preceding paragraph can be applied. The special case that needs
to be taken care of is some newly-created stable matching Mφ which can be
generated from Ms by eliminating some (original) rotations excluding σ̂ (so the
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men in the cabal K are still matched to their Ms-partners). Suppose that in Mφ,
some accomplice m gets a worse partner than his M0-partner. By Lemma 6, m
must be matched to some woman ranks lower (in the falsified list) than all those
women he shifts from the PL(m) (who now ranks lower than M0(m) but still
higher than all women in PR(m)). We claim that Mφ cannot be stable. Suppose
w be any woman being shifted in m’s list. Since σ̂ is not eliminated, w is still
a partner of some man in the cabal K, and, by definition of an accomplice, w
prefers m over that man in the cabal. Therefore (m,w) blocks Mφ. ��

In the newly-created matchings, since men in the coalition only get partners
ranking at least as high as their M0-partners, the following is immediate:

Corollary 1. Suppose men submit their preference lists as defined in Theo-
rem 7. Each man in the coalition has a new probability distribution over his
partners which majorizes the original one when everyone is truthful.

Hence, by this corollary, the accomplices are finally rewarded for their coop-
eration. As opposed to the Dubins-Freedman Theorem, in this random stable
matching setting, a subset of men can cheat together and all get (expectedly)
better partners.

7 Conclusion and Related Work

In this work, we propose a variety of lying strategies, both deterministic and ran-
domized, for men in the Gale-Shapley algorithm. We also strengthen the classical
theorem stating that honesty is the best policy for men. Even with a randomized
strategy, this theorem still holds. The theorem can only be circumvented if liars
are willing to take risk. We also display the greater applicability of the coalition
strategy in the context of random stable matching.

Given that there are so many possible coalitions, a question inevitably arises:
how can men in the coalition be sure that there will not be double-crossers, who
suddenly decide to switch their allegiance to other coalitions? Even if there is only
one coalition, how can men in the coalition be sure that some accomplices will
not back out? The answer is that every coalition strategy is a strong equilibrium
point for men. Even if a subset of liars betray their co-conspirators, they cannot
all to get better partners (than the ones agreed upon). This can be easily shown
by applying the Dubins-Freedman Theorem to the falsified lists.

The coalition strategy causes women to be worse off. In some situations women
can have counter-measures if any one of them is going to receive more than
one proposal. However, the Gale-Shapley algorithm has a feature that can be
exploited by men: women cannot say no when they receive their first proposal.
In other words, men can get together and decide upon a “best” coalition strategy
by formulating the problem into the house-swapping problem. With each man
initially being assigned his M0-partner, the goal is to find the strict core of the
market [12]. Once men agree with one another which women they are supposed
to be matched to, they put these women at the tops of their lists. The related
algorithmic details can be found in [7].
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Related Work. The stable marriage problem, due to its theoretical appeal and
practical applications, has spawned a large body of literature. For a summary,
see [6, 9, 13]. Several early results [1, 2, 5, 10] indicated the futility of men-lying
and this probably caused later work to focus mostly on women-lying strategies.
Gale and Sotomayor [4] presented the women lying strategy of truncating their
lists. Immorlica and Mahdian [8] showed that if men have preference lists of
constant size while women have complete lists and both are drawn from an
arbitrary distribution of preference lists, the chance of women gaining from lying
is vanishingly small. Teo et al. [15] suggested lying strategies for an individual
woman. About permuting men’s preference lists to manipulate the outcome of
the matching, there is an example in the book of Gusfield and Irving [6, P.65].
Another example is given by Roth and Sotomayor [13, P.115]. Roth and Vate [14]
discussed strategy issues when the stable matching is chosen at random. They
proposed a truncation strategy and showed that every stable matching can be
achieved as an equilibrium in truncation strategies.
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Abstract. We give a deterministic polynomial-time algorithm which for
any given average degree d and asymptotically almost all random graphs
G in G(n, m = 
 d

2n�) outputs a cut of G whose ratio (in cardinality)
with the maximum cut is at least 0.952. We remind the reader that it
is known that unless P=NP, for no constant ε > 0 is there a Max-Cut
approximation algorithm that for all inputs achieves an approximation
ratio of (16/17) + ε (16/17 < 0.94118).

1 Introduction

There is a vast and growing literature on approximation algorithms for NP-hard
problems. Both in the direction of designing algorithms that give good approxi-
mations, as well as in the direction of showing, under a putative hypothesis like
P �=NP, that no approximation better than a given bound exists. In this work, we
concentrate on the problem of Max-Cut, that of partitioning the vertex set V
of a graph G = (V,E) in two parts so that the number of edges joining vertices
in different parts is as large as possible. In more colorful language, Max-Cut is
the problem of coloring the vertices of a graph with two colors (red or blue) so
that the bichromatic edges are as many as possible. It is probably needless to
elaborate on the interest, from the point of view of either theory or practice, of
the NP-hard optimization problem Max-Cut. Just as an example, let us men-
tion the early considerations of Max-Cut in relation to circuit layout design
and Statistical Physics mentioned in [1] (as pointed out in [4]). In the language
of Statistical Physics, Max-Cut is equivalent to computing the ground energy
of the antiferromagnetic Ising model defined on graphs [15].
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For maximization problems, like Max-Cut, we say that an algorithm A
achieves an approximation ratio 0 < α < 1, if for any input I, the output
of the algorithm A(I) on I relates to an optimum solution OPT(I) for I as in:

|A(I)|
|OPT(I)| ≥ α.

Similarly, we define the approximation ratio of minimization problems. For gen-
eral graphs, the best Max-Cut approximation algorithm is, for more than a
decade now, the one by Goemans and Williamson [12], which can achieve a ratio
arbitrarily close (from below) to

αGW = min0≤θ≤π
2
π

θ

1− cos θ
> 0.87856.

Under the “Unique Games” and the “Majority is Stablest” conjectures, the above
approximation ratio was shown to be optimal by Khot et al. [16] (however, very
recently a hypothesis only slightly stronger than the Unique Games conjecture
was falsified [5]).

Also by a now classical inapproximability result by H̊astad [13] and Trevisan et
al. [20], unless P �=NP, Max-Cut cannot be approximated for general graphs by
a deterministic algorithm that attains a ratio strictly exceeding 16/17 (16/17 <
0.94118).

Let now G(n; d) be the probability space of random graphs with n vertices
and m = �d

2n� edges selected uniformly at random. It is convenient for the prob-
abilistic calculations to allow repetitions and even self-loops in the selection of
edges. This does not affect the results as such selections happen with vanish-
ingly small probability as n grows large. We say that a property E holds for
asymptotically almost all (a.a.a.) random graphs from G(n; d) if limn Pr[G ∈
G(n; d) & E holds for G] = 1. Notice that the negative result for approximation
ratios > 16/17 does not exclude the possibility of a deterministic algorithm that
achieves a ratio of (16/17) + c (c a positive constant) for a.a.a. input instances
from G(n; d), for any given fixed d (see e.g. the pioneering work of Frieze and
McDiarmid on graph algorithms on random instances [11]).

With respect to a different problem, namely Max-Sat, Fernandez de la Vega
and Karpinski [8] analyzed an algorithm that achieves an approximation ratio
of 8/9 for a.a.a. instances, with any given ratio of clauses to variables (H̊astad
[13] has proved that there is no approximation algorithm for Max-Sat whose
ratio strictly exceeds 7/8). The ratio of 8/9 was further improved to 19/20 by
Interian [14]. These algorithms for Max-Sat are Davis-Putnam-style heuristics
that do not take into account the number of occurrences of the variable selected
to be assigned the value “true” at each step.

Similar heuristics, that ignore degree considerations of the vertices to be put
into each part of the cut under construction, have been analyzed for the case
of Max-Cut, or more general versions of it like Max-k-Cut, in various papers
(see [15, 6, 7]), giving a series of interesting lower bound results for the optimal
cut. The fact that degree considerations are not taken into account in these
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algorithms, greatly simplifies their probabilistic analysis. However, as far as the
question of the ratio of the size of the output of these algorithms to the size
of the optimal cut is concerned, they all yield values that are far below the
H̊astad threshold, even below the Goemans-Williamson ratio, for values of the
average degree in a sizable interval. Also heuristics that take into account degree
considerations, but for different graph problems, are analyzed in the work of Beis
et al. and others (see [2, 3] and references therein).

To break the H̊astad barrier for Max-Cut (for a.a.a. input instances with any
given d), it became necessary to follow a double front approach. On one hand,
since the size of optimum cut is not known, we had to find improved upper
bounds for the optimum cut. On the other, we had to considerably improve the
known algorithmic lower bounds. So that using both bounds we could come up
with a ratio that exceeds 16/17. Both upper and lower bounds are computed not
for the graph itself, but for its 2-core, the maximum induced subgraph whose
vertices have degree at least 2. The reason being that, as it is easy to prove, the
edges of a graph not belonging to its 2-core, belong to any max cut. Therefore,
once we have a max cut of the 2-core, then a max cut of the original graph
can be found by adding to the cut the edges that are outside the 2-core. This
pruning preprocessing phase considerably improves the bounds, but necessitates
carrying our analysis not in G ∈ G(n; d), but in the uniform probability space of
graphs with a given degree sequence. Our algorithm for the lower bound takes
into account the degree of each vertex. The numerical analysis makes use of
computer aided computations.

The approximation ratio we get, besides crossing the H̊astad threshold, sub-
stantially improves the Goemans-Williamson value (0.87856) and thus, to the
best of our knowledge, constitutes the first after more than a decade improve-
ment of the approximation ratio of Max-Cut, valid for general graphs (but only
for a.a.a. input instances with any given average degree). In the next section we
give some necessary formal definitions, state the main result and give some pre-
liminary facts. The main tools of the proof are given in the sections that come
after the next one.

2 Preliminaries

Definition 1. Given a cut C of a graph G, the cut size of C, denoted by |C|, is
the number of edges of G that connect vertices in different parts of C (bichromatic
edges).

We now give definitions of a.a.a. upper and lower bounds that are given as
percentages of (scaled with respect to) m, the number of edges.

Definition 2. A function ub : R+ → R+ a.a.a. defines a scaled (with respect to
the number of edges m) upper bound ub(d) for the maximum cut size mc(G) of
a random graph G ∈ G(n; d) if

lim
n

Pr [G ∈ G(n; d) & (ub(d) + o(1))m ≥ mc(G)] = 1, ∀d > 0.
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Definition 3. Given (i) a function lb : R+ → R+ and (ii) a deterministic
algorithm A that on input a graph G outputs a cut A(G) of G, we say that A
a.a.a. establishes a scaled (with respect to the number of edges m) lower bound
lb(d) on the maximum cut size of a random graph in G ∈ G(n; d) if

lim
n

Pr [G ∈ G(n; d) & (lb(d)− o(1))m ≤ |A(G)|] = 1, ∀d > 0.

Proposition 1. If there are functions ub and lb and an algorithm A as in
Definitions (2) and (3), then ∀d and ∀ε > 0, A achieves an approximation ratio
lb(d)
ub(d) − ε for Max-Cut for a.a.a. input instances G ∈ G(n; d).

Proof. Immediate from the definitions. �

Theorem 1. There are functions ub and lb and an algorithm A as in Defini-
tions (2) and (3) such that ∀d, lb(d)

ub(d) > 0.952.

Proof. For the case when d < 1, then by the proof in [7, Theorem 19] we know
that the cut obtained by considering (i) all edges of the tree-components of G,
(ii) all edges of its even cyclic components and (iii) all edges but one of its
odd cyclic components has cardinality equal to the total number of edges of G
within an o(1) additive term. This procedure defines the algorithm A. Also, we
set ub(d) = lb(d) = 1.

For the case of large d, first observe that by coloring red an arbitrary half of
the vertices of G, we get a trivial lower bound lb(d) = (1/2)−ε, for any ε > 0. By
combining this trivial lower bound with the upper bound ub(d) = 1/2+

√
(ln 2/d)

[4], we easily get by solving for d the equation

1/2
1/2 +

√
(ln 2/d)

=
16
17

,

that the Theorem holds for d > 710,
As for the interval 1 ≤ d ≤ 710, in Section 4 we define the function ub, while

in Section 5 we describe and analyze the algorithm A and define the function lb.
The computations involved are computer-aided (but the probabilistic analysis
and the derivations of all formulas are analytic). The computer-aided analysis
shows that the for d ≥ 20, the ratio lb(d)

ub(d) is bounded below by numbers greater
than 0.952 by 0.01 or more. Actually for d ≥ 20, easier upper and lower bound
functions, some of which already given in the literature [15, 6, 7], yield a ratio
lb(d)
ub(d) that easily exceeds 0.952. So in the following sections we concentrate in
the interval [1, 20], where the real difficulty lies, i.e. the interval where the ratio
lb(d)
ub(d) for the improved upper and lower bound functions that we define closely
approaches from above the value 0.952. �

Corollary 1 (Main Result). There is a deterministic algorithm A such that
for any average degree d > 0, A achieves an approximation ratio 0.952 for Max-
Cut for a.a.a. random graphs in G(n; d).

Proof. Immediate from Theorem 1 and Proposition 1. �
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3 The 2-Core

The 2-core of a graph G is defined to be the largest induced subgraph of G
with minimum degree at least 2. For technical reasons, we use an essentially
equivalent but formally slightly different definition:

Definition 4. Given a graph G = (V,E) the 2-core of G, denoted by K2(G), is
the unique subgraph K2(G) = (V,E′), where E′ is the maximum (with respect to
set-inclusion) subset of E so that with respect to K2(G) all vertices in V have
degree either zero (isolated vertices) or degree at least 2.

By our definition, the 2-core results by edge-deletions only (and no change in
the set of vertices) and the resulting graph has either isolated vertices or vertices
of degree at least 2 (retaining throughout our analysis the same set of vertices
avoids unnecessary technical complications).

It immediately follows by well known results that K2(G) can be obtained from
G by recursively deleting one at a time and in any order edges that are incident
on vertices of degree 1. By assumption, when we delete the edge incident on a
vertex v of degree 1, v remains in the graph (but becomes isolated).

Consider now the uniform probability space of graphs such that the number
of vertices of degree i is (e−d(di/i!)+o(1))n, i.e. graphs whose degree sequence is
Poisson distributed with mean d. It is known that a.a.a. graphs in G(n; d) have
a Poisson distributed degree sequence with mean d.

In general, let G(n; 〈di〉i=0,...,m) be the uniform probability space of graphs
with n vertices and scaled degree sequence 〈di〉i=0,...,m (i.e. the number of vertices
of degree i is (di+o(1))n; di are assumed to be independent of n). For such graphs
we use the configuration model which models random pairings of copies of the
vertices, the number of copies of each vertex being equal to its degree. It is well
known that results that hold for a.a.a. such pairings in the configuration model,
also hold for a.a.a. uniformly distributed simple graphs with the same degree
sequence.

It is known that if G is random with a Poisson degree sequence, then K2(G)
is random in G(n; 〈di〉i=0,...,m) for the same n and a new degree sequence, for
which d1 = 0. To compute the new degree sequence, we follow the technique of
differential equations of Wormald [21]: we write differential equations that give
the dynamics each di during the execution of the edge-deletion process. The
solution of the differential equations give the final values of di within o(1), for
i = 0, . . . , n− 1. These values hold for a.a.a. input graphs. Our analysis closely
follows the methodology given by Mitzenmacher [17] for the case of deletion
of pure literals from 3-SAT formulas. We symbolically solve the resulting sys-
tem of differential equations. Actually, the system of differential equations in
our case is easier to obtain and solve, as we do not have the complication of
handling the negation of a deleted literal. For reasons of space, we avoid the
details (that follow standard techniques) and only give the final result without
proof:



Approximating Almost All Instances of Max-Cut 437

Theorem 2. The number of vertices of degree i = 0, . . . ,m of the 2-core K2(G)
of a random graph G in G(n,m = �d

2n�) is a.a.a. (di + o(1))n, where

di =

⎧⎨⎩
− 1

dWd(d + 1 + Wd) when i = 0,
0 when i = 1,
−Wd

d
(d+Wd)i

i! when i ≥ 2,
(1)

and where Wd is LambertW(−de−d), i.e. the value of the principal branch of
Lambert’s W-function at −de−d. Also the number of deleted edges during the edge
deletion process that yields the 2-core a.a.a. is

(
−Wd − W 2

d

2d + o(1)
)
n. Finally, a

property holds a.a.a. for K2(G) iff it holds a.a.a. for a random graph conditional
its degree sequence is as described in Equation (1) above.

It can be easily seen that the number of the edges that are deleted to yield the
2-core are part of any maximum size cut. Therefore, the size of the max cut of
G can be obtained from the size of the max cut of K2(G) by adding to the latter
the number

(
−Wd − W 2

d

2d + o(1)
)
n. It easily follows that:

Proposition 2. If the functions ub(d) and lb(d) give scaled (with respect to the
number of edges m) upper and lower, respectively, bounds for the size of the max
cut of a random graph conditional its degree sequence is that of Theorem 2, then
the functions ub(d)+2

(
−Wd − W 2

d

2d

)
/d and lb(d)+2

(
−Wd − W 2

d

2d

)
/d give scaled

(with respect to the number of edges m) upper and lower bounds, respectively,
for the size of the maximum cut of a random graph in G(n,m = �d

2n�).
The previous proposition allows us to work with a random graph conditional its
degree sequence is as in Theorem 2.

4 The Upper Bound

For a random graph in G(n,m = �d
2n�), a simple application of the first moment

method gives that the maximum cut is no more than
(

1
2 +

√
ln 2
d

)
d
2n for a.a.a.

input instances with average degree d, for d ≥ 4 ln 2 [4]. This bound is established
by estimating the probability of existence of a cut of a given size z by the
expectation of the number of cuts of size z. However, first moment estimations
are in general, and in this particular case as well, rather gross.

Another well known approach to the question of finding an upper bound for
the optimum cut is by semidefinite relaxation of the problem [12]. However, it
is in general difficult to estimate the average-case (or typical-case, i.e. a.a.a.-
instances-case) output of a semidefinite program. A related result can be found
in [6, Theorem 4], which however gives an estimation of the SDP upper bound
of Max-Cut in terms of an unspecified constant only. An earlier bound was ob-
tained by Linear Programming relaxation [1], but with respect to sparse graphs
it is shown in [19] that the upper bound obtained by an LP relaxation of Max-
Cut is a.a.a. at most the total number of edges, i.e. no information is obtained.
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So we have to resort to other means in order to compute a better bound suited
for typical-case considerations. We compute the expected number of majority
cuts of given size z for a random graph conditional its degree sequence is as in
Theorem 2.

Definition 5. A cut is called a majority cut if (i) at least half of the edges
incident on any vertex are bichromatic (i.e., they connect vertices in different
parts of the cut) and (ii) any vertex of even degree whose exactly half of its
incident edges are bichromatic is necessarily colored red (i.e., it belongs to a
prescribed part of the cut).

Theorem 3. If a cut of size z exists then also a majority cut of size at least z
exists.

Proof. Given a cut which is not necessarily a majority cut move —one at a time
and recursively— vertices that violate any of the two conditions of Definition
5 to the other part of the cut. In any such move, the cut size either remains
constant or strictly increases. Also, the process cannot continue indefinitely, as
at each move either (i) the cut size increases strictly (when we move a vertex
with a minority of bichromatic incident edges), or alternatively (ii) the cut size
remains constant but the cardinality of the vertices colored red strictly increases
in comparison to its immediately previous value (when we move to the red color
a vertex with equal number of bichromatic and monochromatic incident edges).
To prove more formally that the process does not continue indefinitely, introduce
as the potential of a cut the pair of numbers (c, r), where c is the current size
of the cut and r is the current cardinality of red vertices, order the set of these
pairs lexicographically and observe that each move of a violating vertex to the
other part drives the cut to a strictly higher potential, because each move either
strictly increases c, or keeps c constant and strictly increases r (in comparison
to its previous value). Therefore there must be a stopping time. �
Let G(n; d, 2-core) denote the uniform probability space of the 2-core of a random
graph in G(n,m = �d

2n�) (see Theorem 2 and Proposition 2 of Section 3). In the
sequel, let G be a random graph in G(n; d, 2-core).

Let Cζ(G) be the class of all majority cuts of G with cut size at least ζm,
where ζ is a real in [0, 1] and ζm = ζ�(d/2)n� is an integer in {0, . . . ,m}. We
will compute an a.a.a. scaled upper bound ub(d) to the values of ζ for which
Cζ(G) �= ∅ (which by Theorem 3 is also an a.a.a. scaled upper bound to the
maximum cut size of G) by finding a minimum value of ζ such that:

lim
n

Pr[|Cζ(G)| > 0] = 0 (2)

Towards this end, first observe that the following Markov-type inequality holds:

Pr[|Cζ(G)| > 0] ≤ Ex(|Cζ(G)|). (3)

Therefore, to find a minimum ζ for which Equation 2 holds, it is sufficient to
find a minimum ζ for which

lim
n

Ex(|Cζ(G)|) = 0. (4)
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Let now E(b00, b11, b01) be the expected number of majority cuts whose edges
connecting two red (respectively, blue, of different color) vertices have cardinality
exactly b00n (respectively, b11n, b01n), where b00, b11, b01 belong to the interval
[0, 1] and sum to the scaled number of edges d/2. It is easy to see that Equation
(4) holds iff the following is true:

lim
n

(
max

ζm≤b01n,b00,b11
{E(b00, b11, b01)}

)
= 0. (5)

The analytic computation of E(b00, b11, b01) and the computer-aided numerical
calculation of the smallest ζ for which Equation (5) holds follow techniques
previously used in [10] (see also [9]). Details are omitted for reasons of space.

In Figure 1 we indicatively plot ub(d) for values of d ∈ [1, 20], juxtaposing it

with the plot of the scaled with respect to m upper bound 1
2 +

√
ln 2
d obtained

in [4] by the simple first moment method.
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Fig. 1. The upper bound ub(d) given in Section 4 (solid line) versus the upper bound
1
2 +

√
ln 2
d

given in [4] (dashed line) for values of average degree d ∈ [1, 20]

5 The Algorithmic Lower Bound

In this section we describe an algorithm A that on input a the 2-core K2(G)
of a random graph G in G(n; d) outputs a coloring C of the vertices of K2(G)
with one of the colors in {R,B} (i.e. C is a cut). We remind the reader that by
Theorem 2, K2(G) can be assumed to be random conditional its degree sequence
is as in Equation (1). Let |A(K2(G))| be the size of the cut C, i.e. the number
of its bichromatic edges. From |A(K2(G))|, we can then compute a scaled lower
bound of the max cut of the original graph G by Proposition 2.

The algorithm A colors the vertices of K2(G) one at a step. Let d(v) be the
degree of the vertex v in K2(G). At any step t of the algorithm, let U t be the set
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of yet uncolored vertices of K2(G). For v ∈ U t, let dt
R(v) (dt

B(v), respectively)
be the number of vertices that are neighbors of v and are already colored with R
(B, respectively). Also let dt

U (v) = d(v)−dt
R(v)−dt

B(v), i.e. dt
U (v) is the number

of neighbors of v in K2(G) that are yet uncolored. Finally let the discrepancy
Δt(v) of a vertex v ∈ U t be |dt

R(v) − dt
B(v)|. The algorithm A at any step t

first locates the vertices v ∈ U t−1 that have the largest discrepancy Δt−1(v)
and chooses among them one with the lowest dt−1

U (v). It then assigns to v the
color R if dt−1

B (v) ≥ dt−1
R (v) and B otherwise. Intuitively, A at any step greedily

maximizes the difference of the number of edges to be placed in the cut from the
number of edges to remain out of it. At the same time, it minimizes the impact
of each color assignment to future assignments.

The algorithm A is described in pseudo-code in Algorithm 5. Its analysis
is based on the method of differential equations. The equations give a lower
bound on the size of the maximum cut of K2(G). They are analytically ob-
tained and numerically solved (details are omitted for reasons of space). In
Figure 2, we give a plot of the final value of lb(d) (i.e. the value obtained
after applying Proposition (2)) for d ∈ [1, 20] compared with the values of
the algorithms in Coja-Oghlan et al. [6] and Coppersmith et al. [7]. To cor-
roborate the results obtained by numerically solving the analytically derived
differential equations, we performed simulation experiments. The simulations
gave, as expected, the same values for lb(d) as the numerical solutions of the
differential equations. In Table 1 we juxtapose the simulation results with
the results obtained from the differential equations, for certain indicative val-
ues of d.
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Fig. 2. Our values of the lower bound lb(d) (solid line), obtained by the numerical solu-
tion of differential equations (and corroborated by simulation experiments), juxtaposed
with the corresponding values obtained by simulating the algorithms in Coja-Oghlan
et al. [6] (dashed line) and Coppersmith et al. [7] (dotted line), for values of average
degree d ∈ [1, 20]
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Algorithm. A(K2(G) = (VK2 , EK2), C)
t = 0; U0 = VK2 ; /* Initialize the set of yet uncolored vertices of K2(G) */
for all v ∈ VK2 do /* Initialize the number of neighbors of each vertex v of
K2(G) */

d0
U (v) = d(v); d0

R(v) = 0; d0
B(v) = 0;

end for
while U t �= ∅ do /* while there are uncolored vertices */

t = t + 1;
Locate all vertices v ∈ U t−1 having the largest discrepancy Δt−1(v);
Among them, arbitrarily choose a vertex v with the lowest dt−1

U (v);
if dt−1

B (v) ≥ dt−1
R (v) then

C[v] = R; /* Assign color R to v */
/* Update the number of colored R and yet uncolored neighbors of each neighbor
u of v */
for each vertex u adjacent to v do

dt
R(u) = dt−1

R (u) + 1;
dt

U (u) = dt−1
U (u)− 1;

end for
else

C[v] = B; /* Assign color B to v */
/* Update the number of colored B and yet uncolored neighbors of each neighbor
u of v */
for each vertex u adjacent to v do

dt
B(u) = dt−1

B (u) + 1;
dt

U (u) = dt−1
U (u)− 1;

end for
end if
U t = U t−1 \ {v}; /* Update the set of yet uncolored vertices of K2(G) */

end while

Algorithm 1. Algorithm A takes as input the 2-core K2(G) of a random graph G =
(V, E) and returns a coloring C of its vertices

6 Conclusion and Discussion

Putting together the computations of the previous sections, we reach the con-
clusion that for every average degree d > 0, a.a.a. lb(d)

ub(d) > 0.952. Therefore our
main result, Corollary 1, has been proved. In Figure 3 we give a plot of the
ratio ub(d)/lb(d) for various values of d, especially close to the average densities
where the ratio approaches (from above) the H̊astad threshold. Theoretically it
is conceivable that there might exist a deterministic algorithm that a.a.a. com-
putes exactly the maximum cut size of a random graph or, more realistically,
offers a Polynomial Time Approximation Scheme to it (PTAS). We believe that
for at least certain values of d there is no such PTAS valid a.a.a. However it
is conceivable that for every given ε > 0, one might come with an algorithm
that yields an a.a.a. approximation scheme of ratio ε. Finally, when d is not
constant, but approaches infinity with n (dense graphs), then it is known that
a.a.a. (1/2)|E| < |E|((1/2) + o(1)) [18].
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Table 1. Simulation experiment results (SE) versus numerical solution of the differ-
ential equations (DE) for indicative values of average degree d

d 2.0 3.5 4.0 4.5 5.0 6.0 8.0 10.0 12.0 14.0
SE 0.945 0.850 0.829 0.813 0.798 0.773 0.738 0.713 0.696 0.681
DE 0.945 0.851 0.830 0.813 0.798 0.774 0.738 0.713 0.695 0.681
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Fig. 3. The approximation ratio lb(d)/ub(d), for values of average degree d ∈ [1, 20].
The lower dashed line corresponds to H̊astad inapproximability threshold 16/17, while
the upper dashed line to our approximation ratio 0.952.

We believe that these results can also be extended to the case of d-regular
graphs. We are currently working on this. Also these results extend to k-Max-
Cut for k > 2.
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Abstract. We show that enumerating all minimal spanning and con-
nected subsets of a given matroid can be solved in incremental quasi-
polynomial time. In the special case of graphical matroids, we improve
this complexity bound by showing that all minimal 2-vertex connected
edge subsets of a given graph can be generated in incremental polynomial
time.

1 Introduction

The level of connectivity in communications and computer networks is an impor-
tant parameter influencing the reliability of the service such networks provide.
The problem of computing network reliability, that is calculating the probability
that the network is able to provide its services without interruption, assumes
the enumeration of minimal subsets of links in the network which guarantee the
required level of connectivity [5, 15].

In the simplest case the connectivity of an undirected graph is required. In
this case minimal working subsets are the spanning trees, and reliability com-
putations call for the enumeration of all spanning trees of the given graph. In
case of a (directed) communication network, minimal working subnetworks are
determined by subsets of the arcs which guarantee strong connectivity. Both
minimal spanning trees and minimal strongly connected subgraphs can be effi-
ciently enumerated [1, 4, 13].

Practical applications frequently demand higher levels of connectivity, result-
ing in higher reliability. Numerous research articles consider the problem of
increasing efficiently the connectivity of a given (directed) graph, see e.g. [2, 8].
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Determining the reliability of such highly connected networks requires the enu-
meration of all minimal edge (arc) sets F ⊆ E of a given (directed) graph G =
(V,E) which guarantee the required level of connectivity of the subgraph (V, F ).

In this paper we consider such enumeration problems, corresponding to the
next levels of connectivity. An undirected graph G = (V,E) is called 2-vertex
connected if between any pair u, v ∈ V of its vertices there are at least two
paths connecting u and v and having no other vertex in common. Obviously,
adding edges to a graph can only increase its connectivity. In other words, the
property that for a subset X ⊆ E the subgraph (V,X) is 2-vertex connected is
a monotone property, i.e., if X ⊆ X ′ ⊆ E, and (V,X) is 2-vertex connected,
then (V,X ′) must also be 2-vertex connected. Thus, determining the reliability
of such a graph, that is the probability that it remains 2-vertex connected if its
edges are deleted (fail) according to some probability distribution, requires the
enumeration of all minimal 2-vertex connected subgraphs of G:

Minimal 2-Vertex-Connected Spanning Subgraphs: Given a 2-vertex
connected undirected graph G = (V,E), enumerate all minimal edge sets
X ⊆ E such that G′ = (V,X) is still 2-vertex connected.

Undirected graphs can be viewed as special cases of matroids (so called graph-
ical or cycle matroids), and thus the above enumeration problems have a natural
generalization for matroids. In our presentation we follow standard terminology
of matroid theory (see e.g., [12] or [16]). Given a matroid M on ground set E, a
subset T ⊆ E is called connected if for every pair of distinct elements x, y of T
there is a circuit C of M such that T ⊇ C ⊇ {x, y}. It is well-known that con-
nectedness defines an equivalence relation on E, whose equivalence classes are
called the connected components of M . Let us also recall that a subset X ⊆ E
is said to span the matroid M if r(X) = r(E), where r : E → Z+ denotes the
rank function of M .

Note that in the cycle matroid of a graph G = (V,E) spanning trees are
the bases. Thus, the problem of enumerating all bases of a matroid includes
as a special case the spanning tree enumeration problem. Note also that edge
subsets X ⊆ E for which (V,X) are 2-vertex connected are exactly the spanning
and connected subsets in the cycle matroid of G (see e.g., [16, Theorem 3 on
page 70]). Let us add that the family of spanning and connected subsets in a
matroid form a monotone system (see Lemma 3), while connected subsets of a
matroid may not form a monotone system. The following enumeration problem
generalizes naturally the problem of enumerating minimal 2-vertex-connected
spanning subgraphs:

Minimal Spanning and Connected Subsets in Matroids: Given a
connected matroid M on ground set E, generate all minimal spanning and
connected subsets of E.

1.1 Main Results

It is easy to see that in enumeration problems, such as the ones mentioned above,
the size of the output may be exponential in terms of the input size. For such
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problems the efficiency of the enumeration method is measured both in the input
and output sizes (see e.g., [10, 13, 15]). In particular, the enumeration procedure
is said to run in incremental (quasi-) polynomial1 time, if generating k elements
of the target hypergraph (or generating all if it has less than k elements) can be
done in (quasi-) polynomial time in the size of the input and k, for an arbitrary
integer k.

Note that all of the above mentioned enumeration problems involve monotone
systems. Among such monotone generation problems perhaps the most widely
known is the so called hypergraph transversal problem (or equivalently, monotone
Boolean dualization) which consists of generating all minimal transversals of a
given hypergraph. This problem has numerous applications in several different
areas (see e.g., [6]).

Our first result shows that the problem of generating minimal spanning and
connected subsets of a matroid generalizes the hypergraph transversal problem:

Theorem 1. The problem of enumerating all minimal spanning and connected
subsets of a matroid includes, as a special case, the hypergraph transversal
problem.

This theorem implies that generating minimal spanning and connected subsets
of a matroid is at least as hard as the hypergraph transversal problem, for which
the most efficient currently known algorithm is incrementally quasi-polynomial
[7]. Our next result shows that minimal spanning and connected subsets in a
matroid can also be generated in incremental quasi-polynomial time.

Theorem 2. All minimal spanning and connected subsets in a matroid can be
generated in incremental quasi-polynomial time.

As we noted above, the problem of generating minimal spanning and connected
subsets in a graphical matroid coincides with the problem of generating minimal
2-vertex-connected subgraphs of the underlying undirected graph. Our third
result shows that in this special case the problem can be solved more efficiently:

Theorem 3. All minimal 2-vertex connected spanning subgraphs of a given
graph can be generated in incremental polynomial time.

The remainder of the paper is organized as follows. We prove Theorems 1 and 2
in Section 2, and the proof of Theorem 3 is included in Section 3.

2 Minimal Spanning and Connected Subsets in Matroids

2.1 Proof of Theorem 1

Let H be a hypergraph on n vertices consisting of m = |H| hyperedges. We
denote by v1, . . . ,vn the column vectors of the edge-vertex incidence matrix
of H.
1 A function f(x) is called quasi-polynomial if f(x) = O(2polylog(x)).
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We shall associate to H a binary matroid M = MH, defined by m + 2n + 2
binary vectors of dimension 2m + 2. For this, let us introduce o = (0, ..., 0)
denoting the zero vector of dimension m, and let ei denote the ith unit vec-
tor of dimension m, for i = 1, ...,m. We shall define the vectors of MH by
concatenations from the above vectors, as follows: Let μ(vj) = (vj ,o, 1, 0) for
j = 1, ..., n, let ai = (ei, ei, 0, 0) and bi = (o, ei, 0, 0) for i = 1, ...,m, and finally
let c1 = (o,o, 1, 1) and c2 = (o,o, 0, 1).

We group the above defined vectors into four groups: H = {μ(vj)|j = 1, ..., n},
A = {ai|i = 1, ...,m}, B = {bi|i = 1, ...,m} and C = {c1, c2}, and finally we
consider the binary matroid M = MH on the ground set E = H ∪ A ∪ B ∪ C.
For simplicity, we re-interpret H as a family of subsets of H .

Example 1. Consider the hypergraph H defined by the incidence matrix

(v1, . . . ,v5) =

⎛⎜⎜⎝
1 0 0 1 0
0 1 0 1 1
0 1 1 0 0
0 0 1 0 1

⎞⎟⎟⎠
Then the binary matroid MH on the ground set H ∪ A ∪ B ∪ C is represented
by a matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
To complete the proof of Theorem 1, we show two lemmas which then readily
imply the statement of the theorem. For this proofs, let us recall (e.g., from [16])
that in a matroid M on ground set E with rank function r a subset X ⊆ E is
spanning and connected if and only if for every nontrivial partition X = Y ∪ Z
(i.e., for which |Y | ≥ 1 and |Z| ≥ 1) we have r(Y ) + r(Z) ≥ r(M) + 1.

Lemma 1. Let X be a spanning and connected subset in M . Then A∪B∪C ⊆ X
and X ∩H is a transversal of H.

Proof. First we show that for each i = 1, . . . , 2m + 2 at least two vectors of X
have their ith coordinates equal to 1. Indeed, since X is spanning and the matrix
representing M has full row rank, there is at least one vector in X whose ith
coordinate is 1. Suppose that there is exactly one such vector x ∈ X . Then we
consider the partition of X into Y = {x} and Z = X�{x}. For this partition we
have r(Y ) = 1, and r(Z) < r(M) since all vectors of Z have their ith coordinates
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equal to 0. Consequently, r(Y )+r(Z) ≤ r(M), contradicting the assumption that
X is spanning and connected.

The above implies that X must contain all vectors of A, B and C, in order to
have two 1’s in rows from m + 1 to 2m and in row 2m + 2. In order to contain
two 1’s in the first m rows, H ∩X must form a transversal of H. ��

Lemma 2. If X is a transversal of H, then X ∪A ∪B ∪ C is a connected and
spanning subset in M .

Proof. First note that r(M) = 2m + 2, and observe that X ∪ A ∪ B ∪ C is
spanning, since r(A ∪B ∪ C) = 2m + 2.

To prove the statement, we show that r(Y ) + r(Z) ≥ r(M) + 1 = 2m + 3 for
every partition Y ∪ Z = X for which |Y | ≥ 1 and |Z| ≥ 1.

Suppose that all vectors of A ∪ B ∪ C belong to Y . Then r(Y ) = 2m + 2
and r(Z) ≥ 1, since Z is nonempty. For all other nontrivial partitions of X the
vectors of A ∪B ∪C must be split between Y and Z.

Without loss of generality assume that Y contains k vectors of A ∪ B ∪ C
including c1, where 1 ≤ k ≤ 2m + 1. Consequently r(Y ) ≥ k and r(Z) ≥
2m + 2 − k. Let Ii ⊆ {1, . . . ,m} denote the set of coordinates of vi equal to
1. Observe that μ(vi) = c1 + c2 +

∑
j∈Ii

(aj + bj) is the only combination of
vectors in A ∪ B ∪ C producing μ(vi). Depending whether Z contains a vector
μ(vi) ∈ X , or not, we have two cases:

Case 1: Z contain at least one vector of X . Since vectors of X cannot be obtained
without c1, we must have r(Z) ≥ 2m+3−k implying thus r(Y )+r(Z) ≥ 2m+3.
Case 2: Y contains all vectors of X . Since X is a transversal of H, we have⋃

μ(vi)∈X Ii = {1, . . . ,m}. As Y does not contain all vectors of A∪B ∪C, there
is a vector in X which cannot be obtained as a combination of vectors in Y .
Thus r(Y ) ≥ k + 1 and r(Y ) + r(Z) ≥ 2m + 3 follows again. ��
The statement of the theorem follows from Lemmas 1 and 2.

2.2 Proof of Theorem 2

Let M be a matroid on ground set S with rank function r : S → Z+. We assume
that M does not contain loops, i.e. singletons of rank 0.

Let us show first that spanning and connected subsets of a matroid form a
monotone family.

Lemma 3. If X ⊆ E is spanning and connected then for an arbitrary element
f ∈ E � X the set X ∪ f is again spanning and connected.

Proof. Let X ⊆ E be a spanning and connected subset and let f ∈ E � X .
Clearly X ∪ f is spanning. According to [16], to see that X ∪ f is also connected
it is enough to show that r(Y ) + r(Z) ≥ r(X ∪ f) + 1 holds for an arbitrary
partition Y ∪ Z = X ∪ f with |Y | ≥ 1, |Z| ≥ 1. Note that, since X is spanning,
r(X) + 1 = r(X ∪ f) + 1. Without loss of generality assume that f ∈ Z. If
|Z| = 1 we have r(Y ) + r(Z) = r(X) + r(f) = r(X) + 1, since we assumed
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that all singletons of M have rank 1. In case |Z| ≥ 2, we have r(Y ) + r(Z) ≥
r(Y ) + r(Z � f) ≥ r(X) + 1, since r(Z) ≥ r(Z � f) and the sets Y and Z � f
form a partition of X , with |Y | ≥ 1, |Z � f | ≥ 1, completing the proof of our
claim. ��

To prove Theorem 2, we show that for every matroid M , the family F of all
minimal spanning and connected subsets in M is exactly the set of minimal
solutions of a polymatroid inequality with polynomially bounded right hand
side. For such inequalities, it is known that the generation of minimal feasible
sets can be done in incremental quasi-polynomial time (see Theorem 3 in [3]).

For this end, let us define a set function f(X) on subsets of E by:

f(X) = |E| r(X)− 1.

The Dilworth truncation of f(X) is the set function f∗(X) defined as follows:

f∗(∅) = 0,

f∗(X) = min{f(X1) + . . . + f(Xk) | X1, . . . , Xk is a partition of X} for X �= ∅.

Clearly, f(X) is a nondecreasing submodular function. Thus f∗(X) is submod-
ular and can be evaluated in polynomial time using poly(|E|) calls to the mem-
bership oracle defining the matroid M (see [11]). We next show that f∗(X) is
also nondecreasing, implying that f∗(X) is a polymatroid function.

Lemma 4. f∗(X) is nondecreasing.

Proof. We will show that f∗(X ∪ e) ≥ f∗(X), where X ⊆ E, e ∈ E � X . Let
X1, X2, . . . , Xk be an optimal partition for X ∪ e, i.e., f∗(X ∪ e) = f(X1) +
f(X2) + . . . + f(Xk). Without loss of generality assume that e ∈ X1. There are
two cases:

Case 1: X1 � e �= ∅. Then X1 � e,X2, . . . , Xk is a partition of X . Hence

f∗(X) ≤ f(X1 � e) +
k∑

i=2

f(Xi) ≤ f(X1) +
k∑

i=2

f(Xi) = f∗(X ∪ e),

where the last inequality in the chain follows from f(X1�e) = |E|r(X1�e)−1 ≤
|E|r(X1)− 1 = f(X1).

Case 2: X1 = {e}. Consider the partition X2, . . . , Xk of X , which again gives

f∗(X) ≤
k∑

i=2

f(Xi) ≤ f(e) +
k∑

i=2

f(Xi) = f∗(X ∪ e),

where the last inequality in the chain follows from the fact that r(e) = 1, thus
f(e) = |E| − 1 ≥ 0, for all e ∈ X . ��
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Consider now the polymatroid inequality

f∗(X) ≥ |E| r(M) − 1.

Note that the right hand side of the above inequality is bounded by |E|2. We
prove that minimal connected spanning subsets are exactly minimal solutions to
the above polymatroid inequality.

Lemma 5. X is connected in M if and only if f∗(X) ≥ f(X).

Proof. Let X be connected subset in M . Consider a partition X1, . . . , Xk of
X into at least k ≥ 2 sets. Since the rank function is submodular and by the
definition of connectivity we have r(A)+r(E�A) > r(E) for every proper subset
A of E, we obtain r(X1) + r(X2) + . . . + r(Xk) ≥ r(X1) + r(X2 ∪ . . . ∪Xk) ≥
r(X) + 1. Hence

f(X1) + f(X2) + . . . + f(Xk) ≥ |E| r(X) + |E| − k > |E| r(X)− 1 = f(X).

Comparing that with the trivial partition X = X1 for k = 1, we conclude that
f∗(X) = f(X).

On the other hand, if X is not connected, then we can decompose X into two
disjoint sets X1 and X2 such that r(X1)+r(X2) = r(X). Hence f(X1)+f(X2) =
|E| r(X)− 2, and consequently, f∗(X) < |E|r(X)− 1 = f(X). ��

Lemma 6. X is connected and spanning subset in M if and only if f∗(X) ≥
|E| r(M)− 1.

Proof. If X is connected and spanning, the claim follows from Lemma 5 and the
fact that r(X) = r(M).

Conversely, suppose X satisfies f∗(X) ≥ |E| r(M) − 1 and also suppose that
X is not spanning. Then since r(X) < r(M) for the trivial partition X = X1, we
obtain f(X1) = |E|r(X1)−1 < |E|r(M)−1, which implies f∗(X) < |E|r(M)−1,
a contradiction. Thus X must be spanning and by Lemma 5 X must also be
connected. ��
This completes the proof of Theorem 2.

3 Minimal 2-Connected Spanning Subgraphs

3.1 The X − e + Y Method

In this section we recall a technique from [9], which is a variant of the supergraph
approach introduced by [14]. Let E be a finite set, and π : 2E → {0, 1} be a
monotone Boolean function, i.e., one for which X ⊆ Y implies π(X) ≤ π(Y ). We
assume that π(∅) = 0 and π(E) = 1. We also assume that an efficient algorithm
for evaluating π(X) in polynomial time in the size of E is available for every
X ⊆ E. Let

F = {X | X ⊆ E is a minimal set satisfying π(X) = 1}.

Our goal is to generate all sets belonging to F .
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Let us remark first that for every X ⊆ E for which π(X) = 1 we can derive
a subset Y ⊆ X such that Y ∈ F , by evaluating π exactly |X | times. This
can be accomplished by deleting one-by-one elements of X the removal of which
does not change the value of π. To formalize this, we can fix an arbitrary linear
order ≺ on elements of E, without any loss of generality, and define a mapping
μ : {X ⊆ E | π(X) = 1} → F by μ(X) = X�Z, where Z is the lexicographically
first subset of X , with respect to≺, such that π(X�Z) = 1 and π(X�(Z∪e)) = 0
for every e ∈ X �Z. Clearly, by trying to delete elements of X in their ≺-order,
we can compute μ(X), as we remarked above, by evaluating π exactly |X | times.

We next introduce a directed graph G = (F , E) on vertex set F , where the
neighborhood N(X) of X ∈ F and the family YX,e are defined by

N(X) = {μ((X � e) ∪ Y ) | e ∈ X,Y ∈ YX,e}, and

YX,e = {Y | Y ⊆ E � X is a minimal set satisfying π((X � e) ∪ Y ) = 1}.

In other words, for every set X ∈ F and for every element e ∈ X (since X ∈ F ,
we have π(X � e) = 0) we extend X � e in all possible ways to a set X ′ =
(X �e)∪Y for which π(X ′) = 1, and introduce each time a directed arc from X
to μ(X ′). We call the obtained directed graph G a supergraph of our generation
problem.

Proposition 1 ([9]). The supergraph G = (F , E) is strongly connected. ��

Since G is strongly connected by performing a breadth-first search in G we can
generate all elements of F as follows:

Traversal(G)
Find an initial vertex X0 ← μ(E), and initialize two queues P = Q = ∅.
Perform a breadth-first search of G starting from Xo:

1 output X0 and insert it to the queue P
2 while P �= ∅ do
3 take the first vertex X out of the queue P , and insert it to Q
4 for every e ∈ X do
5 for every Y ∈ YX,e do
6 compute the neighbor X ′ ← μ((X � e) ∪ Y )
7 if X ′ is not in P ∪Q then
8 output X ′ and insert it to P
9 endfor

10 endfor
11 endwhile

Proposition 2 ([9]). If the sets of YX,e can be generated in incremental polyno-
mial time for every X ∈ F and e ∈ X, then Traversal(G) generates all elements
of F in incremental polynomial time. ��
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3.2 Proof of Theorem 3

We apply the X − e + Y method to the generation of all minimal 2-vertex
connected spanning subgraphs of a 2-vertex connected graph G = (V,E).

For X ⊆ E, we define a Boolean function π as follows:

π(X) =
{

1, if (V,X) is 2-vertex connected;
0, otherwise.

Then F = {X | X ⊆ E is a minimal set satisfying π(X) = 1} is a family of edge
sets of all minimal 2-vertex connected spanning subgraphs of (V,E). For X ∈ F
and e ∈ X we define

YX,e = {Y | Y ⊆ E � X is a minimal set satisfying π((X � e) ∪ Y ) = 1}.
Therefore by Proposition 2 we only need to prove that we can generate all
elements of YX,e in incremental polynomial time. In fact, we show that we can
do it, more efficiently, with polynomial delay, i.e., in which the generation of the
first k elements can be accomplished in time polynomial in the input size and
linear in k.

Recall that a maximal connected subgraph without a cutvertex is called a
block. Thus, every block of a connected graph H is either a maximal 2-vertex
connected subgraph, or a bridge (with its ends). Different blocks overlap in at
most one vertex, which is a cutvertex of H . Hence, every edge of the graph lies
in a unique block.

Let A denote the set of cutvertices of H and let B denote the set of its blocks.
We then have a natural bipartite graph on vertex set A∪B in which two vertices
B ∈ B, a ∈ A are connected if a is a cutvertex of H belonging to B. We call such
graph a block graph of H . Observe that the block graph of a connected graph is
a tree.

Proposition 3. All elements of YX,e can be generated with polynomial delay.

Proof. Let (V,X) be a minimal 2-vertex connected spanning subgraph of (V,E)
(see Figure 1).

First we show that the block graph of (V,X �e) is a path such that endpoints
of e belong to its ends. As we observed above the block graph of (V,X � e) is
a tree. Suppose it has a leaf B that does not contain an endpoint of e. Let a
be a cutvertex of (V,X � e) adjacent to B in the block graph. But removing
the vertex a from the 2-vertex connected graph (V,X) disconnects vertices of B
from other vertices, a contradiction. Thus the block graph of (V,X � e) has only
two leaves, each containing one endpoint of e.

We denote by B1, . . . , Br the blocks of (V,X � e) and by a1, . . . , ar−1 its cutver-
tices. Without loss of generality we assume that the block graph of (V,X � e) is
a path B1a1B2 . . . ar−1Br (see Figure 2).

Let f = uv be an edge of E � X , such that u belongs to the block Bi and

v belongs to Bj , where i < j. We define α(f) =
{

i, if v ∈ Bi � ai ;
i + 1, if v = ai,

and

β(f) =
{

j, if v ∈ Bj � aj−1 ;
j − 1, if v = aj−1.
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G (V, X)

e

Fig. 1. 2-vertex connected graph G = (V, E) and a minimal 2-connected spanning
subgraph (V, X) of G

a1 a2 a3
a4

B1

B2 B3
B4 B5

B1 B2 B3 B4 B5a1 a2 a3 a4

Fig. 2. (V, X � e) and its block graph

Then we construct a directed multigraph D on vertex set B1, . . . , Br whose edge
set is defined as follows:

– for each i = 1, . . . , r − 1, we add an arc Bi+1Bi,
– for each edge f ∈ E � X , such that α(f) < β(f), we add an arc Bα(f)Bβ(f)

(see Figure 3).

Now we show that the generation of elements of YX,e is equivalent to the
generation of minimal directed B1-Br paths in D.

For every cutvertex ak there is an edge f ∈ Y such that α(f) ≤ k < β(f).
By minimality of Y , edges of E � X whose both endpoints belong to the same
block cannot be in Y . We conclude that Y = {f1, . . . , fs} such that

1 = α(f1) < α(f2) ≤ β(f1) < α(f3) ≤ . . . < α(fs) ≤ β(fs−1) < β(fs) = r.

Thus Y corresponds to a directed path Bα(f1) Bβ(f1) Bβ(f1)−1 . . . Bα(f2)+1 Bα(f2)
Bβ(f2) Bβ(f2)−1 . . . Bα(f3)+1 Bα(f3)Bβ(f3) . . . Bβ(fs) (see Figure 4).

Since all minimal directed paths between two vertices can be generated via
backtracking with polynomial delay [13], Proposition 3 follows. ��
This completes the proof of Theorem 3.



454 L. Khachiyan et al.

B1 B2 B3 B4 B5

Fig. 3. Directed multigraph D

f1

f2

B1 B2 B3 B4 B5

Fig. 4. Y = {f1, f2} and corresponding directed path B1B4B3B5
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Abstract. A standard technique from the hashing literature is to use
two hash functions h1(x) and h2(x) to simulate additional hash functions
of the form gi(x) = h1(x) + ih2(x). We demonstrate that this technique
can be usefully applied to Bloom filters and related data structures.
Specifically, only two hash functions are necessary to effectively imple-
ment a Bloom filter without any loss in the asymptotic false positive
probability. This leads to less computation and potentially less need for
randomness in practice.

1 Introduction

A Bloom filter is a simple space-efficient randomized data structure for repre-
senting a set in order to support membership queries. Although Bloom filters
allow false positives, the space savings often outweigh this drawback. The Bloom
filter and its many variations have proven increasingly important for many ap-
plications (see, for example, the survey [3]). Although potential alternatives have
been proposed [15], the Bloom filter’s simplicity, ease of use, and excellent per-
formance make it a standard data structure that is and will continue to be of
great use in many applications. For space reasons, we do not review the standard
Bloom filter results; for more background, see [3].

In this paper, we show that applying a standard technique from the hash-
ing literature can simplify the implementation of Bloom filters significantly. The
idea is the following: two hash functions h1(x) and h2(x) can simulate more
than two hash functions of the form gi(x) = h1(x) + ih2(x). (See, for example,
Knuth’s discussion of open addressing with double hashing [11].) In our con-
text i will range from 0 up to some number k − 1 to give k hash functions,
and the hash values are taken modulo the size of the relevant hash table. We
demonstrate that this technique can be usefully applied to Bloom filters and
related data structures. Specifically, only two hash functions are necessary to ef-
fectively implement a Bloom filter without any increase in the asymptotic false
positive probability. This leads to less computation and potentially less need
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for randomness in practice. Specifically, in query-intensive applications where
computationally non-trivial hash functions are used (such as in [5, 6]), hashing
can be a potential bottleneck in using Bloom filters, and reducing the number
of required hashes can yield an effective speedup. This improvement was found
empirically in the work of Dillinger and Manolios [5, 6], who suggested using the
hash functions gi(x) = h1(x) + ih2(x) + i2 mod m, where m is the size of the
hash table.

Here we provide a full theoretical analysis that holds for a wide class of vari-
ations of this technique, justifies and gives insight into the previous empirical
observations, and is interesting in its own right. In particular, our methodology
generalizes the standard asymptotic analysis of a Bloom filter, exposing a new
convergence result that provides a common unifying intuition for the asymptotic
false positive probabilities of the standard Bloom filter and the generalized class
of Bloom filter variants that we analyze in this paper. We obtain this result by a
surprisingly simple approach; rather than attempt to directly analyze the asymp-
totic false positive probability, we formulate the initialization of the Bloom filter
as a balls-and-bins experiment, prove a convergence result for that experiment,
and then obtain the asymptotic false positive probability as a corollary.

We start by analyzing a specific, somewhat idealized Bloom filter variation
that provides the main insights and intuition for deeper results. We then move
to a more general setting that covers several issues that might arise in practice,
such as when the size of the hash table is a power of two as opposed to a prime.

Because of space limitations, we leave some results in the full version of this
paper [10]. For example, rate of convergence results appear in the full version
[10], although in Section 6 we provide some experimental results showing that the
asymptotics kick in quickly enough for this technique to be effective in practice.
Also, in the full version we demonstrate the utility of this approach beyond the
simple Bloom filter by showing how it can be used to reduce the number of hash
functions required for Count-Min sketches [4], a variation of the Bloom filter
idea used for keeping approximate counts of frequent items in data streams.

Before beginning, we note that Luecker and Molodowitch [12] and Schmidt
and Siegel [17] have shown that in the setting of open addressed hash tables,
the double hashing technique gives the same performance as uniform hashing.
These results are similar in spirit to ours, but the Bloom filter setting is suffi-
ciently different from that of an open addressed hash table that we do not see
a direct connection. We also note that our use of hash functions of the form
gi(x) = h1(x) + ih2(x) may appear similar to the use of pairwise independent
hash functions, and that one might wonder whether there is any formal con-
nection between the two techniques in the Bloom filter setting. Unfortunately,
this is not the case; a straightforward modification of the standard Bloom filter
analysis yields that if pairwise independent hash functions are used instead of
fully random hash functions, then the space required to retain the same bound
on the false positive probability increases by a constant factor. In contrast, we
show that using the gi’s causes no increase in the false positive probability, so
they can truly be used as a replacement for fully random hash functions.
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2 A Simple Construction Using Two Hash Functions

As an instructive example case, we consider a specific application of the general
technique described in the introduction. We devise a Bloom filter that uses
k fully random hash functions on some universe U of items, each with range
{0, 1, 2, . . . , p − 1} for a prime p. Our hash table consists of m = kp bits; each
hash function is assigned a disjoint subarray of p bits in the filter, that we
treat as numbered {0, 1, 2, . . . , p− 1}. Our k hash functions will be of the form
gi(x) = h1(x) + ih2(x) mod p, where h1(x) and h2(x) are two independent,
uniform random hash functions on the universe with range {0, 1, 2, . . . , p − 1},
and throughout we assume that i ranges from 0 to k − 1.

As with a standard partitioned Bloom filter, we fix some set S ⊆ U and
initialize the filter with S by first setting all of the bits to 0 and then, for each
x ∈ S and i, setting the gi(x)-th bit of the i-th subarray to 1. For any y ∈ U , we
answer a query of the form “Is y ∈ S?” with “Yes” if and only if the gi(y)-th bit
of the i-th subarray is 1 for every i. Thus, an item z �∈ S generates a false positive
if and only if each of its hash locations in the array is also a hash location for
some x ∈ S.

The advantage of our simplified setting is that for any two elements x, y ∈
U , exactly one of the following three cases occurs: gi(x) �= gi(y) for all i, or
gi(x) = gi(y) for exactly one i, or gi(x) = gi(y) for all i. That is, because we
have partitioned the bit array into disjoint hash tables, each hash function can
be considered separately. Moreover, by working modulo p, we have arranged that
if gi(x) = gi(y) for at least two values of i, then we must have h1(x) = h1(y) and
h2(x) = h2(y), so all hash values are the same. This codifies the intuition behind
our result: the most likely way for a false positive to occur is when each element
in the Bloom filter set S collides with at most one array bit corresponding to
the element generating the false positive; other events that cause an element to
generate a false positive occur with vanishing probability. It is this intuition that
motivates our analysis; in Section 3, we consider more general cases where other
non-trivial collisions can occur.

Proceeding formally, we fix a set S = {x1, x2, . . . , xn} of n elements from U
and another element z /∈ S, and compute the probability that z yields a false
positive. A false positive corresponds to the event F that for each i there is (at
least) one j such that gi(z) = gi(xj). Obviously, one way this can occur is if
h1(xj) = h1(z) and h2(xj) = h2(z) for some j. The probability of this event E is

Pr(E) = 1−
(
1− 1/p2)n

= 1−
(
1− k2/m2)n

.

Notice that when m/n = c is a constant and k is a constant, as is standard for
a Bloom filter, we have Pr(E) = o(1). Now since

Pr(F) = Pr(F | E)Pr(E) + Pr(F | ¬E)Pr(¬E)
= o(1) + Pr(F | ¬E)(1 − o(1)),

it suffices to consider Pr(F | ¬E) to obtain the (constant) asymptotic false
positive probability.
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Conditioned on ¬E and (h1(z), h2(z)), the pair (h1(xj), h2(xj)) is uniformly
distributed over the p2 − 1 values in V = {0, . . . , p− 1}2 − {(h1(z), h2(z))}. Of
these, for each i∗ ∈ {0, . . . , k − 1}, the p− 1 pairs in

Vi∗ = {(a, b) ∈ V : a ≡ i∗(h2(z)− b) + h1(z) mod p, b �≡ h2(z) mod p}

are the ones such that if (h1(xj), h2(xj)) ∈ Vi∗ , then i∗ is the unique value of i
such that gi(xj) = gi(z). We can therefore view the conditional probability as
a variant of a balls-and-bins problem. There are n balls (each corresponding to
some xj ∈ S), and k bins (each corresponding to some i∗ ∈ {0, . . . , k−1}). With
probability k(p − 1)/(p2 − 1) = k/(p + 1) a ball lands in a bin, and with the
remaining probability it is discarded; when a ball lands in a bin, the bin it lands
in is chosen uniformly at random. What is the probability that all of the bins
have at least one ball?

This question is surprisingly easy to answer. By the Poisson approximation,
the total number of balls that are not discarded has distribution Bin(n, k/(p +
1)) ≈ Po(k2/c), where Bin(·, ·) and Po(·) denote the binomial and Poisson distri-
butions, respectively. Since each ball that is not discarded lands in a bin chosen
at random, the joint distribution of the number of balls in the bins is asymp-
totically the same as the joint distribution of k independent Po(k/c) random
variables, by a standard property of Poisson random variables. The probability
that each bin has a least one ball now clearly converges to

Pr(Po(k/c) > 0)k = (1− exp[−k/c])k ,

which is the asymptotic false positive probability for a standard Bloom filter,
completing the analysis.

We make the above argument much more general and rigorous in Section 3,
but for now we emphasize that we have actually characterized much more than
just the false positive probability of our Bloom filter variant. In fact, we have
characterized the asymptotic joint distribution of the number of items in S hash-
ing to the locations used by some z �∈ S as being independent Po(k/c) random
variables. Furthermore, from a technical perspective, this approach appears fairly
robust. In particular, the above analysis uses only the facts that the probability
that some x ∈ S shares more than one of z’s hash locations is o(1), and that
if some x ∈ S shares exactly one of z’s hash locations, then that hash loca-
tion is nearly uniformly distributed over z’s hash locations. These observations
suggest that the techniques used in this section can be generalized to handle a
much wider class of Bloom filter variants, and form the intuitive basis for the
arguments in Section 3.

3 A General Framework

In this section, we introduce a general framework for analyzing Bloom filter vari-
ants, such as the one examined in Section 2. We start with some new notation.
For any integer �, we define the set [�] = {0, 1, . . . , �− 1} (note that this defini-
tion is slightly non-standard). We denote the support of a random variable X
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by Supp(X). For a multi-set M , we use |M | to denote the number of distinct
elements of M , and ‖M‖ to denote the number of elements of M with multi-
plicity. For two multi-sets M and M ′, we define M ∩M ′ and M ∪M ′ to be,
respectively, the intersection and union of M ′ as multi-sets. Furthermore, in an
abuse of standard notation, we define the statement i, i ∈ M as meaning that i
is an element of M of multiplicity at least 2.

We are now ready to define the framework. As before, U denotes the universe
of items and S ⊆ U denotes the set of n items for which the Bloom filter will
answer membership queries. We define a scheme to be a method of assigning
hash locations to every element of U . Formally, a scheme is specified by a joint
distribution of discrete random variables {H(u) : u ∈ U} (implicitly parameter-
ized by n), where for u ∈ U , H(u) represents the multi-set of hash-locations
assigned to u by the scheme. We do not require a scheme to be defined for
every value of n, but we do insist that it be defined for infinitely many val-
ues of n, so that we may take limits as n → ∞. For example, for the class
of schemes discussed in Section 2, we think of the constants k and c as being
fixed to give a particular scheme that is defined for those values of n such that
p

def= m/k is a prime, where m
def= cn. Since there are infinitely many primes, the

asymptotic behavior of this scheme as n → ∞ is well-defined and is the same
as in Section 2, where we let m be a free parameter and analyzed the behav-
ior as n,m → ∞ subject to m/n and k being fixed constants, and m/k being
prime.

Having defined the notion of a scheme, we may now formalize some important
concepts with new notation (all of which is implicitly parameterized by n). We
define H to be the set of all hash locations that can be assigned by the scheme
(formally, H is the set of elements that appear in some multi-set in the support
of H(u), for some u ∈ U). For x ∈ S and z ∈ U−S, define C(x, z) = H(x)∩H(z)
to be the multi-set of hash collisions of x with z. We let F(z) denote the false
positive event for z ∈ U − S, which occurs when each of z’s hash locations is
also a hash location for some x ∈ S.

In the schemes that we consider, {H(u) : u ∈ U} will always be independent
and identically distributed. In this case, Pr(F(z)) is the same for all z ∈ U −S,
as is the joint distribution of {C(x, z) : x ∈ S}. Thus, to simplify the notation,
we may fix an arbitrary z ∈ U −S and simply use Pr(F) instead of Pr(F(z)) to
denote the false positive probability, and we may use {C(x) : x ∈ S} instead of
{C(x, z) : x ∈ S} to denote the joint probability distribution of the multi-sets
of hash collisions of elements of S with z.

The main technical result of this section is the following key theorem, which
is a formalization and generalization of the analysis in Section 2.

Theorem 1. Fix a scheme. Suppose that there are constants λ and k such that:

1. {H(u) : u ∈ U} are independent and identically distributed.
2. For u ∈ U , ‖H(u)‖ = k.
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3. For x ∈ S, Pr(‖C(x)‖ = i) =

⎧⎨⎩
1− λ

n + o(1/n) i = 0
λ
n + o(1/n) i = 1
o(1/n) i > 1

.

4. For x ∈ S, maxi∈H

∣∣Pr(i ∈ C(x) | ‖C(x)‖ = 1, i ∈ H(z))− 1
k

∣∣ = o(1).

Then limn→∞ Pr(F) =
(
1− e−λ/k

)k
.

Proof. For ease of exposition, we assign every element of H(z) a unique number
in [k] (treating multiple instances of the same hash location as distinct elements).
More formally, we define an arbitrary bijection fM from M to [k] for every multi-
set M ⊆ H with ‖M‖ = k (where fM treats multiple instances of the same hash
location in M as distinct elements), and label the elements of H(z) according
to fH(z). This convention allows us to identify the elements of H(z) by numbers
i ∈ [k], rather than hash locations i ∈ H .

For i ∈ [k] and x ∈ S, define Xi(x) = 1 if i ∈ C(x) and 0 otherwise, and
define Xi

def=
∑

x∈S Xi(x). Note that i ∈ C(x) is an abuse of notation; what
we really mean is f−1

H(z)(i) ∈ C(x), although we will continue using the for-

mer since it is much less cumbersome. We show that Xn def= (X0, . . . , Xk−1)
converges in distribution to a vector P

def= (P0, . . . , Pk−1) of k independent
Po(λ/k) random variables as n → ∞. To do this, we make use of moment
generating functions. For a random variable R, the moment generating func-
tion of R is defined by MR(t) def= E[exp(tR)]. We show that for any t0, . . . , tk,
limn→∞ M∑k−1

i=0 tiXi
(tk) = M∑k−1

i=0 tiPi
(tk), which is sufficient by [1, Theorem 29.4

and p. 390], since M∑k−1
i=0 tiPi

(tk) = exp
[

λ
k

(∑
i∈k etkti − 1

)]
< ∞, by an easy

calculation. Proceeding, we write

M∑
i∈[k] tiXi

(tk) = M∑
i∈[k] ti

∑
x∈S Xi(x)(tk) = M∑

x∈S

∑
i∈[k] tiXi(x)(tk)

=
(
M∑

i∈[k] tiXi(x)(tk)
)n

,

where the first two steps are obvious, and the third step follows from the fact that
the H(x)’s are independent and identically distributed (for x ∈ S) conditioned on
H(z), so the

∑
i∈[k] tiXi(x)’s are too, since each is a function of the corresponding

H(x). Continuing, we have (as n→∞)(
M∑

i∈[k] tiXi(x)(tk)
)n

=
(

Pr(‖C(x)‖ = 0) +
k∑

j=1

Pr(‖C(x)‖ = j)

×
∑

T⊆[k]:|T |=j

Pr(C(x) = f−1
H(z)(T ) | ‖C(x)‖ = j)etk

∑
i∈T ti

)n

=

(
1− λ

n
+

λ
∑

i∈[k] e
tkti

kn
+ o(1/n)

)n

→ e−λ+ λ
k

∑
i∈[k] etkti = e

λ
k (∑ i∈[k](etkti−1)) = M∑

i∈[k] tiPoi(λk)(tk).
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The first step follows from the definition of the moment generating function.
The second step follows from the assumptions on the distribution of C(x) (the
conditioning on i ∈ H(z) is implicit in our convention that associates integers
in [k] with the elements of H(z)). The next two steps are obvious, and the last
step follows from a previous computation.

We have now established that Xn converges to P in distribution as n → ∞.
Standard facts from probability theory [1] now imply that as n→∞,

Pr(F) = Pr(∀i ∈ [k], Xi > 0)→ Pr(∀i ∈ [k], Pi > 0) =
(
1− e−λ/k

)k

.

��
It turns out that the conditions of Theorem 1 can be verified very easily in many
cases.

Lemma 1. Fix a scheme. Suppose that there are constants λ and k such that:

1. {H(u) : u ∈ U} are independent and identically distributed.
2. For u ∈ U , ‖H(u)‖ = k.
3. For u ∈ U , maxi∈H

∣∣Pr(i ∈ H(u))− λ
kn

∣∣ = o(1/n).
4. For u ∈ U , maxi1,i2∈H Pr(i1, i2 ∈ H(u)) = o(1/n).
5. The set of all possible hash locations H satisfies |H | = O(n).

Then the conditions of Theorem 1 hold (with the same values for λ and k), and
so the conclusion does as well.

Remark 1. Recall that, under our notation, the statement i, i ∈ H(u) is true if
and only if i is an element of H(u) of multiplicity at least 2.

Proof. The proof is essentially just a number of applications of the first two
Boole-Bonferroni inequalities. For details, see [10].

4 Some Specific Schemes

We are now ready to analyze some specific schemes. In particular, we examine
a natural generalization of the scheme described in Section 2, as well as the
double hashing and extended double hashing schemes introduced in [5, 6]. In
both of these cases, we consider a Bloom filter consisting of an array of m = cn
bits and k hash functions, where c > 0 and k ≥ 1 are fixed constants. The nature
of the hash functions depends on the particular scheme under consideration.

4.1 Partition Schemes

First, we consider the class of partition schemes, where the Bloom filter is defined
by an array of m bits that is partitioned into k disjoint arrays of m′ = m/k bits
(we require that m be divisible by k), and an item u ∈ U is hashed to location

h1(u) + ih2(u) mod m′
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of array i, for i ∈ [k], where h1 and h2 are independent fully random hash
functions with codomain [m′]. Note that the scheme analyzed in Section 2 is a
partition scheme where m′ is prime (and so is denoted by p in Section 2).

Unless otherwise stated, henceforth we do all arithmetic involving h1 and h2
modulo m′. We prove the following theorem concerning partition schemes.

Theorem 2. For a partition scheme, limn→∞ Pr(F) =
(
1− e−k/c

)k
.

Proof. We show that the H(u)’s satisfy the conditions of Lemma 1 with λ =
k2/c. For i ∈ [k] and u ∈ U , define gi(u) = (i, h1(u) + ih2(u)) and H(u) =
(gi(u) : i ∈ [k]). That is, gi(u) is u’s ith hash location, and H(u) is the multi-set
of u’s hash locations. This notation is obviously consistent with the definitions
required by Lemma 1.

Since h1 and h2 are independent and fully random, the first two conditions
are trivial. The last condition is also trivial, since there are m = cn possible
hash locations. For the remaining two conditions, fix u ∈ U . Observe that for
(i, r) ∈ [k]× [m′],

Pr((i, r) ∈ H(u)) = Pr(h1(u) = r − ih2(u)) = 1/m′ = (k2/c)/kn,

and that for distinct (i1, r1), (i2, r2) ∈ [k]× [m′], we have

Pr((i1, r1), (i2, r2) ∈ H(u))
= Pr(i1 ∈ H(u))Pr(i2 ∈ H(u) | i1 ∈ H(u))

=
1
m′ Pr(h1(u) = r2 − i2h2(u) | h1(u) = r1 − i1h2(u))

=
1
m′ Pr((i1 − i2)h2(u) = r1 − r2)

≤ 1
m′ ·

gcd(|i2 − i1|,m′)
m′ ≤ k

(m′)2
= o(1/n),

where the fourth step is the only nontrivial step, and it follows from the standard
fact that for any r, s ∈ [m], there are at most gcd(r,m) values t ∈ [m] such that
rt ≡ s mod m (see, for example, [9, Proposition 3.3.1]). Finally, since it is clear
that from the definition of the scheme that |H(u)| = k for all u ∈ U , we have
that for any (i, r) ∈ [k]× [m′], Pr((i, r), (i, r) ∈ H(u)) = 0. ��

4.2 (Extended) Double Hashing Schemes

Next, we consider the class of double hashing and extended double hashing
schemes, which are analyzed empirically in [5, 6]. In these schemes, an item
u ∈ U is hashed to location

h1(u) + ih2(u) + f(i) mod m

of the array of m bits, for i ∈ [k], where h1 and h2 are independent fully random
hash functions with codomain [m], and f : [k] → [m] is an arbitrary function.
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When f(i) ≡ 0, the scheme is called a double hashing scheme. Otherwise, it is
called an extended double hashing scheme (with f). We show that the asymptotic
false positive probability for an (extended) double hashing scheme is the same
as for a standard Bloom filter. The proof is analogous to the proof of Theorem 2.
For details, see the technical report version of this paper [10].

Theorem 3. For any (extended) double hashing scheme,

lim
n→∞Pr(F) =

(
1− e−k/c

)k

.

5 Multiple Queries

In the previous sections, we analyzed the behavior of Pr(F(z)) for some fixed z
and moderately sized n. Unfortunately, this quantity is not directly of interest
in most applications. Instead, one is usually concerned with certain character-
istics of the distribution of the number of elements in a sequence (of distinct
elements) z1, . . . , z
 ∈ U − S for which F(z) occurs. In other words, rather than
being interested in the probability that a particular false positive occurs, we are
concerned with, for example, the fraction of distinct queries on elements of U−S
posed to the filter for which it returns false positives. Since {F(z) : z ∈ U − S}
are not independent, the behavior of Pr(F) alone does not directly imply results
of this form. This section is devoted to overcoming this difficulty.

We start with a definition.

Definition 1. Consider any scheme where {H(u) : u∈U} are independent and
identically distributed. Write S = {x1, . . . , xn}. The false positive rate is defined
to be the random variable R = Pr(F | H(x1), . . . , H(xn)).

The false positive rate gets its name from the fact that, conditioned on R, the
events {F(z) : z ∈ U − S} are independent with common probability R. Thus,
the fraction of a large number of queries on elements of U −S posed to the filter
for which it returns false positives is very likely to be close to R. In this sense,
R, while a random variable, acts like a rate for {F(z) : z ∈ U − S}.

It is important to note that in much of literature concerning standard Bloom
filters, the false positive rate is not defined as above. Instead the term is often
used as a synonym for the false positive probability. Indeed, for a standard
Bloom filter, the distinction between the two concepts as we have defined them
is unimportant in practice, since one can easily show that R is very close to
Pr(F) with extremely high probability (see, for example, [13]). It turns out that
this result generalizes very naturally to the framework presented in this paper,
and so the practical difference between the two concepts is largely unimportant
even in our very general setting. However, the proof is more complicated than in
the case of a standard Bloom filter, and so we must be careful to use the terms
as we have defined them.

We give only an outline of our results here, deferring the details to [10]. First,
we use a standard Doob martingale argument to apply the Azuma-Hoeffding
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inequality to R, which tells us that R is concentrated around E[R] = Pr(F).
We then use that result to prove versions of the strong law of large numbers, the
weak law of large numbers, Hoeffding’s inequality, and the central limit theorem.

6 Experiments

In this section, we evaluate the theoretical results of the previous sections empiri-
cally for small values of n. We are interested in the following specific schemes: the
standard Bloom filter scheme, the partition scheme, the double hashing scheme,
and the extended double hashing schemes where f(i) = i2 and f(i) = i3.

For c ∈ {4, 8, 12, 16}, we do the following. First, compute the value of k ∈
{�c ln 2�, 	c ln 2
} that minimizes p = (1 − exp[−k/c])k. Next, for each of the
schemes under consideration, repeat the following procedure 10, 000 times: in-
stantiate the filter with the specified values of n, c, and k, populate the filter
with a set S of n items, and then query 	10/p
 elements not in S, recording
the number Q of those queries for which the filter returns a false positive. We
then approximate the false positive probability of the scheme by averaging the
results over all 10, 000 trials. We use the standard Java pseudorandom number
generator to simulate independent hash values.
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Fig. 1. Estimates of the false positive probability for various schemes and parameters

The results are shown in Figure 1. In Figure 1, we see that for small values
of c, the different schemes are essentially indistinguishable from each other, and
simultaneously have a false positive probability/rate close to p. This result is
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particularly significant since the filters that we are experimenting with are fairly
small, supporting our claim that these schemes are useful even in settings with
very limited space. However, we also see that for the slightly larger values of
c ∈ {12, 16}, the partition scheme is no longer particularly useful for small values
of n, while the other schemes are. This result is not particularly surprising, since
we know from [10, Section 6] that all of these schemes are unsuitable for small
values of n and large values of c. Furthermore, we expect that the partition
scheme is the least suited to these conditions, given the standard fact that the
partitioned version of a standard Bloom filter never performs better than the
original version. Nevertheless, the partition scheme might still be useful in certain
settings, since it gives a substantial reduction in the range of the hash functions.

7 Conclusion

Bloom filters are simple randomized data structures that are extremely useful
in practice. In fact, they are so useful that any significant reduction in the
time required to perform a Bloom filter operation immediately translates to a
substantial speedup for many practical applications. Unfortunately, Bloom filters
are so simple that they do not leave much room for optimization.

This paper focuses on modifying Bloom filters to use less of the only re-
source that they traditionally use liberally: (pseudo)randomness. Since the only
nontrivial computations performed by a Bloom filter are the constructions and
evaluations of pseudorandom hash functions, any reduction in the required num-
ber of pseudorandom hash functions yields a nearly equivalent reduction in the
time required to perform a Bloom filter operation (assuming, of course, that
the Bloom filter is stored entirely in memory, so that random accesses can be
performed very quickly).

We have shown that a Bloom filter can be implemented with only two pseu-
dorandom hash functions without any increase in the asymptotic false positive
probability. We have also shown that the asymptotic false positive probability
acts, for all practical purposes and reasonable settings of a Bloom filter’s param-
eters, like a false positive rate. This result has enormous practical significance,
since the analogous result for standard Bloom filters is essentially the theoretical
justification for their extensive use.

More generally, we have given a framework for analyzing modified Bloom
filters, which we expect will be used in the future to refine the specific schemes
that we analyzed in this paper. We also expect that the techniques used in this
paper will be usefully applied to other data structures, as demonstrated by our
modification to the Count-Min sketch (in [10]).
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Abstract. An instance of the generalized partial cover problem consists of a
ground set U and a family of subsets 2U . Each element e U is associated
with a profit p(e), whereas each subset S has a cost c(S ). The objective is
to find a minimum cost subcollection such that the combined profit of
the elements covered by is at least P, a specified profit bound. In the prize-
collecting version of this problem, there is no strict requirement to cover any
element; however, if the subsets we pick leave an element e U uncovered,
we incur a penalty of (e). The goal is to identify a subcollection that
minimizes the cost of plus the penalties of uncovered elements.

Although problem-specific connections between the partial cover and the
prize-collecting variants of a given covering problem have been explored and ex-
ploited, a more general connection remained open. The main contribution of this
paper is to establish a formal relationship between these two variants. As a result,
we present a unified framework for approximating problems that can be formu-
lated or interpreted as special cases of generalized partial cover. We demonstrate
the applicability of our method on a diverse collection of covering problems, for
some of which we obtain the first non-trivial approximability results.

1 Introduction

For over three decades the set cover problem and its ever-growing list of generalizations,
variants, and special cases have attracted the attention of researchers in the fields of dis-
crete optimization, complexity theory, and combinatorics. Essentially, these problems
are concerned with identifying a minimum cost collection of sets that covers a given set
of elements, possibly with additional side constraints. While such settings may appear
to be very simple at first glance, they still capture computational tasks of great theo-
retical and practical importance, as the reader may verify by consulting directly related
surveys [2, 13, 18, 28] and the references therein.

In the present paper we focus our attention on the generalized partial cover problem,
whose input consists of a ground set of elements U and a family of subsets of U. In
addition, each element e U is associated with a profit p(e), whereas each subset S
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has a cost c(S ). The objective is to find a minimum cost subcollection such that
the combined profit of the elements covered by is at least P, a specified profit bound.
When all elements are endowed with unit profits, we obtain the well-known partial
cover problem, in which the goal is to cover a given number of elements by picking
subsets of minimum total cost.

Numerous computational problems can be formulated or interpreted as special cases
of generalized partial cover, although this fact may be well-hidden. For most of these
problems, novel techniques in the design of approximation algorithms have emerged
over the years, and it is clearly beyond the scope of this writing to present an exhaustive
overview. However, from the abundance of greedy schemes, local-search heuristics,
randomized methods, and LP-based algorithms a simple observation is revealed: There
is currently no unified approach to approximating partial covering problems.

The suggested method: Preliminaries. The main contribution of this paper is to es-
tablish a formal relationship between the partial cover and the prize-collecting versions
of a given covering problem. In the prize-collecting set cover problem there is no strict
requirement to cover any element; however, if the subsets we pick leave an element
e U uncovered, we incur a penalty of (e). The objective is to find a subcollection

that minimizes the cost of plus the penalties of the uncovered elements. A
polynomial-time algorithm for this problem is said to be Lagrangian multiplier preserv-
ing with factor r (henceforth, r-LMP) if for every instance I it constructs a solution that
satisfies C r r OPT(I), where C is the total cost of the subsets picked, and is
the sum of penalties over all uncovered elements. We further denote by r the family of
weighted set systems (U c) that possess the following property: There is an r-LMP
algorithm for all prize-collecting instances (U c ), : U . In other words, for
every penalty function the corresponding instance admits an r-LMP approximation.

The main result. At the heart of our method is an algorithm for the generalized partial
cover problem that computes an approximate solution by making use of an r-LMP
prize-collecting algorithm in a black-box fashion. Specifically, in Section 2 we prove
the following theorem.

Theorem 1. Let I be a generalized partial cover instance defined on an underlying
weighted set system (U c), and suppose that (U c) r for some r 1. Then, for
any 0, we can find a feasible solution to I whose cost is at most ( 4

3 )r times the
optimum, within time polynomial in U , 1 and the input length of I.

Here is a rough outline of how the proof of Theorem 1 will proceed. We begin by for-
mulating the generalized partial cover problem as an integer program. Next, we dualize
the complicating constraint that places a lower bound of P on the total profit. More
precisely, we lift this constraint to the objective function multiplied by an auxiliary
variable , and obtain its corresponding Lagrangian relaxation. For any fixed 0,
the new program describes, up to a constant term, a prize-collecting set cover instance
with non-uniform penalties. We now conduct a binary search, using the r-LMP prize-
collecting algorithm as a subroutine, to find sufficiently close 1 2 that satisfy: For

1, the algorithm constructs a solution 1 such that the total profit of the elements
covered by 1 is at least P; For 2, it constructs a solution 2 with a total profit of
at most P.



470 J. Könemann, O. Parekh, and D. Segev

Although we can exploit the r-LMP property to show that the cost of 2 is within
factor r of optimum, this solution is not necessarily feasible. The situation is quite the
opposite with respect to 1, which is a feasible solution whose cost may be arbitrarily
large. Having observed these facts, we create an additional feasible solution 3 by aug-
menting 2 with a carefully chosen subset of 1. The cost of this subset is bounded by
extending the arguments used by Levin and Segev [24] and independently by Golovin,
Nagarajan and Singh [17] for approximating the k-multicut problem. Finally, we estab-
lish Theorem 1 by proving that the cost of the cheaper of 1 and 3 is at most ( 4

3 )r
times the cost of an optimal solution.

Designing LMP algorithms. At this point in time, the reader should bear in mind that
the performance guarantee of our algorithm, as stated in Theorem 1, depends on the ex-
istence of an LMP prize-collecting algorithm for a given covering problem. Indeed, this
dependence appears to be the primary factor limiting the employment of Lagrangian
relaxations in most problems of interest. The latter drawback was pointed out by Chu-
dak, Roughgarden and Williamson [6], who asked whether it is possible to devise more
general variants of the Lagrangian relaxation framework that apply to a broader class
of problems. We answer this question in the affirmative, by developing prize-collecting
algorithms with the LMP property for some of the most fundamental integer covering
problems. These results, along with a detailed description of previous work, are for-
mally presented in Section 3.

2 The Generalized Partial Cover Algorithm

The main result of this section is a constructive proof of Theorem 1. Recall that a gen-
eralized partial cover instance I is defined with respect to an underlying weighted set
system, consisting of a ground set U and a family of subsets 2U , where each S
has a cost c(S ). The additional ingredients of I are profits p(e), specified for each ele-
ment e U, and a requirement parameter P. Now suppose that (U c) r for some
r 1, meaning that there is an r-LMP algorithm for all prize-collecting instances
(U c ), : U .

2.1 Preliminaries

The method we suggest and its analysis will be based on a natural integer programming
formulation of the generalized partial cover problem. In the following, let e be
the collection of sets that contain e U, and let PU e U p(e).

minimize
S

c(S )xS (GC)

subject to
S e

xS ze 1 e U (2.1)

e U

p(e)ze PU P (2.2)

xS ze 0 1 S e U (2.3)
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In this formulation, the variable xS indicates whether we pick the set S , whereas ze

indicates whether the element e is uncovered. Constraint (2.1) guarantees that we either
pick at least one set that contains e, or specify that this element is uncovered by setting
ze 1. Constraint (2.2) forces any feasible solution to cover elements with a total profit
of at least P.

Essential to the subsequent analysis will be the fact that the LP-relaxation of (GC),
obtained by replacing constraint (2.3) with xS 0 and ze 0, has an integrality gap of
O(r). Unfortunately, this prerequisite is not satisfied even in the case of unit profits, as
the next example illustrates. Consider an instance in which the ground set U consists
of n elements, and the family contains a single set S U with cost n. When we are
required to cover at least one element, the integral optimum is clearly n. However, by
setting xS

1
n and ze 1 1

n for every e U, we define a feasible fractional solution
whose cost is 1. This example, as well as additional constructions of similar nature,
demonstrate that an unbounded integrality gap may arise whenever a small number of
sets in the optimal solution contribute a large fraction of its cost.

Therefore, an inevitable part of our algorithm is a preprocessing step in which, given
a fixed accuracy parameter 0, we “guess” the 1 most expensive sets in the optimal
solution, whose cost we denote by OPT. More precisely, we enumerate all O( 1 )
subsets of cardinality at most 1 , test each such subset as the correct guess,
and return the best solution we find. For a given subset , we include it as part of
the solution to be constructed, eliminate the sets in from , remove all covered
elements from U and from the remaining sets, and update the profit requirement. Any
set whose cost is greater than minS c(S ) is also eliminated. Consequently, the cost of
each remaining set is at most OPT.

In the remainder of this section we will bypass the preprocessing step, and assume
that the maximum cost of a set in is at most OPT. For ease of presentation, we also
assume that c(S ) 0 for every S and that p(e) 0 for every e U, since zero-cost
sets can be picked in advance and zero-profit elements can be discarded.

2.2 Obtaining 1 and 2

We now dualize the profit constraint (2.2), and lift it to the objective function multiplied
by 0. The resulting Lagrangian relaxation is:

LR( ) minimize
S

c(S )xS

e U

p(e)ze (PU P)

subject to
S e

xS ze 1 e U

xS ze 0 1 S e U

We remark that, excluding the constant term of (PU P) in the objective function,
LR( ) is an integer programming formulation of the prize-collecting set cover problem,
in which each element e U is associated with a penalty p(e). We refer to this instance
as I , and use OPT(I ) to denote its optimum value. It is not difficult to verify that
LR( ) OPT(I ) (PU P) is at most OPT for any 0, by observing that an
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optimal solution to (GC) is also a feasible solution to LR( ), whose cost is at most
OPT.

Since the underlying weighted set system of I is identical to that of I, we may apply
the prize-collecting algorithm to approximate I . Let x indicate which sets in
were picked by the algorithm, and let z indicate which elements were left uncovered.
In terms of (x z ), the r-LMP property of is equivalent to

S

c(S )xS r
e U

p(e)ze r OPT(I ) (2.4)

an inequality that, in particular, leads to the following observation.

Lemma 2. When 1
mine U p(e) S c(S ), the solution (x z ) covers all elements. On

the other hand, (x0 z0) does not cover any element.

Proof. Let 1
mine U p(e) S c(S ), and suppose that there is an element ē U for

which zē 1, that is, ē is not covered by any set the algorithm picks when we
approximate I . Then (x z ) no longer satisfies inequality (2.4), as

S

c(S )xS r
e U

p(e)ze r p(ē) r
p(ē)

mine U p(e)
S

c(S ) r
S

c(S ) r OPT(I )

where the last inequality holds since is a feasible solution to I .
Now let 0, and note that each element of the instance I0 has a zero penalty.

Therefore, by deciding not to pick any set and instead pay all penalties we obtain a
feasible solution with zero cost, implying that OPT(I0) 0. Since (x0 z0) satisfies
inequality (2.4), it follows that this solution cannot pick any set, as all sets in have
strictly positive costs by assumption.

This observation allows us to conduct a binary search over [0 2
mine p(e) S c(S )],

consisting of a polynomially-bounded number of calls to the prize-collecting algorithm
, as a result of which we find 1 2 that satisfy:

1. 1 2
cmin
PU

, where cmin minS c(S ) 0.
2. The elements covered by (x 1 z 1 ) have a total profit of P1 P, and at the same

time those covered by (x 2 z 2 ) have a total profit of P2 P.

For ease of notation, we designate by 1 and 2 the subsets of that were picked by
the solutions (x 1 z 1) and (x 2 z 2 ), respectively. Without loss of generality, P1 P, or
otherwise 1 is already a feasible solution whose cost is at most r LR( 1) r OPT.
Similarly, we assume that P2 P. The analysis of our algorithm crucially depends on
the next lemma, which is a consequence of the r-LMP property.

Lemma 3. Let P P2
P1 P2

(0 1). Then, c( 1) (1 )c( 2) r(1 )OPT.

Proof. By combining inequality (2.4) with the fact that LR( ) OPT(I ) (PU P)
OPT for every 0, we have

c( 1)
S

c(S )x 1
S r OPT(I 1) 1

e U

p(e)z 1
e r OPT(I 1) 1 (PU P1)

r(LR( 1) 1(P1 P)) r(OPT 1(P1 P)) (2.5)
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A similar argument shows that c( 2) r(OPT 2(P2 P)). Therefore,

c( 1) (1 )c( 2) r(OPT 1(P1 P)) (1 )r(OPT 2(P2 P))

r OPT r 2
cmin

PU
(P1 P) (1 )r 2(P2 P)

r OPT r 2 ( (P1 P) (1 )(P2 P)) r cmin
P1 P

PU

r OPT r cmin

r(1 )OPT

The second inequality follows from observing that P1 P and 1 2
cmin
PU

. The third
inequality holds since (P1 P) (1 )(P2 P) 0, 1 and P1 P PU .

2.3 Composing an Additional Solution

Up until now, the only feasible solution we have at our possession is 1, as this subset
of covers elements with an overall profit of P1 P. Inequality (2.5) places an up-
per bound of r OPT r 1(P1 P) on the cost of 1. However, the latter term may
be arbitrarily large in comparison to OPT, implying that 1 cannot approximate the
instance I by itself. The situation is quite the opposite with respect to 2: Although
this solution covers elements with an insufficient profit of P2 P, a similar bound of
r OPT r 2(P2 P) on its cost actually yields the inequality c( 2) r OPT, since in
this case r 2(P2 P) 0.

At this point, we are concerned with creating an additional feasible solution 3,
by augmenting 2 with a carefully chosen subset 1. To attain feasibility, we
must ensure that of the elements that were left uncovered by 2, a subcollection with
a total profit of at least P P2 is covered by . We construct this augmenting subset
as follows. Let U U be the collection of elements that are covered by 1 but not by

2. We assign each element e U to an arbitrary set in 1 2 that contains it, and
denote by (S ) the total profit of the elements assigned to S . Without loss of generality,
we assume that 1 2 S 1 S k , where these sets are indexed by non-decreasing
order of the ratio c(S i)

(S i)
. Finally, let S 1 S q , where q is the minimal index for

which q
i 1 (S i) P P2. Note that such an index exists, since k

i 1 (S i) P1 P2

and P1 P. The next lemma bounds the cost of 3 2 .

Lemma 4. c( 3) c( 2) c( 1 2) OPT.

Proof. By assumption, the cost of each set in is at most OPT. Therefore, it is
sufficient to prove that c( S q ) q 1

i 1 c(S i) c( 1 2). To this end, consider a

random variable K that takes the values 1 k, such that (K i) (S i)
k
l 1 (S l)

, and let

R c(S K )
(S K ) . Since the sets in 1 2 are indexed by non-decreasing order of c(S i)

(S i)
, we have

(R K q 1) (R). As P P2
P1 P2

, this inequality implies q 1
i 1 c(S i) c( 1 2),

since

(R)
k

i 1

c(S i)
(S i)

(S i)
k
l 1 (S l)

1
k
l 1 (S l)

k

i 1

c(S i)
1

P1 P2
c( 1 2)
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and

(R K q 1)
q 1

i 1

c(S i)
(S i)

(S i)
q 1
l 1 (S l)

1
q 1
l 1 (S l)

q 1

i 1

c(S i)
1

P P2

q 1

i 1

c(S i)

The last inequality holds since q 1
l 1 (S l) P P2, by the minimality of q.

2.4 Deriving the Approximation Factor

We now conclude the proof of Theorem 1, by demonstrating that the cost of the cheaper
of 1 and 3 is within factor ( 4

3 O( ))r of optimum. An appropriate choice of
restores the original form of the theorem.

Lemma 5. min c( 1) c( 3) ( 4
3 O( ))r OPT.

Proof. To simplify the analysis, we begin by introducing a new parameter, c( 2)
OPT

[0 r], and bound the cost of 1 and 3 in terms of OPT, and . We first observe that

c( 1)
c( 1) r(1 )OPT (1 )c( 2) r(1 ) (1 )

OPT

where the first inequality follows from Lemma 3, and the last equation is obtained by
substituting c( 2) OPT. In addition, Lemma 4 implies that

c( 3) c( 2) c( 1 2) OPT (1 )c( 2) c( 1) c( 2) OPT

r(1 )OPT c( 2) OPT (r(1 ) )OPT

where the third inequality and the last equation follow from Lemma 3 and the definition
of , respectively. Finally, we bound the resulting approximation factor by considering
the worst possible choice for the parameters and , to conclude that

min c( 1) c( 3) min
r(1 ) (1 )

r(1 ) OPT

max
(0 1)
[0 r]

min
r(1 ) (1 )

r(1 ) OPT OPT

4
3

O( ) r OPT

3 Applications

In what follows, we demonstrate the applicability of our method on a diverse collection
of covering problems, which is by no means exhaustive. Rather, the problems we have
chosen to study are only meant to illustrate that the LMP property is applicable in a va-
riety of settings. For the vast majority of these problems, we propose the first algorithm
that approximates their generalized partial cover version. For others, our algorithms of-
fer approximation guarantees that compete with the currently best known results. Due
to space limitations, we defer the description of problem-specific prize-collecting sub-
routines to the full version of this paper [23].
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3.1 Set Cover, in Terms of

Kearns [21, Thm. 5.15] seems to have been the first to study the partial cover prob-
lem, showing that the greedy set cover algorithm [20, 25] can be adapted to provide an
approximation factor of 2H( U ) 3. A slightly different algorithm was suggested by
Slavı́k [32], who obtained a factor of H(min k ), where is the maximum size of a
set in and k is the coverage requirement. We remark that the partial cover problem
contains set cover as a special case, implying that it cannot be approximated within a
factor of (1 ) ln U for any 0, unless NP TIME(nO(log log n)) [10].

To the best of our knowledge, the greedy heuristic has not been studied in the con-
text of generalized partial cover, and in fact no algorithm is currently known for this
problem. In the full version of this paper [23], we prove that every weighted set system
(U c) is in H( ), where maxS S . The next theorem follows.

Theorem 6. The generalized partial set cover problem can be approximated within a
factor of ( 4

3 )H( ), for any fixed 0.

3.2 Set Cover, in Terms of f

Let fe be the number of sets in that contain the element e U; fe is also known as the
frequency of e. A recent line of work, that was initiated by Bshouty and Burroughs [4]
and Hochbaum [19] in the context of partial vertex cover, is approximating partial cover
in terms of f , the maximum frequency of any element. Based on the local-ratio method,
Bar-Yehuda [3] devised an algorithm for generalized partial cover whose approximation
guarantee is f , a result that was independently obtained by Fujito [11] using a prima-
dual algorithm. Gandhi, Khuller and Srinivasan [12] achieved a similar ratio for partial
cover.

In the full version of this paper [23], we present a combinatorial f -LMP algorithm for
the prize-collecting set cover problem, showing that every weighted set system (U c)
is in f , where f maxe U fe. Combined with Theorem 1, this result allows us to
approximate the generalized partial set cover problem within a factor of ( 4

3 ) f , which
is slightly worse than the currently best.

3.3 Laminar Cover

Let G (V E) be an undirected graph, in which each edge e E has a non-negative
cost c(e), and let V1 Vk 2V be a laminar family of vertex sets, meaning that
Vi V j Vi V j for every i j. We say that an edge e covers Vi if it has exactly one
endpoint in Vi. The objective is to find a minimum cost set of edges that collectively
cover all sets in . Note that every instance of this problem induces a weighted set
system ( c), where for each edge e E there is an analogous subset S e ,
consisting of all vertex sets Vi covered by e. Laminar cover can be approximated
by applying various techniques, most of which actually deal with the more general tree
augmentation problem, and produce solutions whose cost is within factor 2 of optimum.
We refer the reader to a short survey of these results [9, Sec. 1]. For the unweighted case,
Nagamochi [27] proposed a (1 875 )-approximation for any fixed 0, a ratio that
was later improved to 3

2 by Even, Feldman, Kortsarz and Nutov [9].
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In the generalized partial laminar cover problem, each Vi is associated with a
profit p(Vi). The goal is to identify a minimum cost set of edges E E such that the
overall profit of the sets in covered by E is at least P, a specified profit bound. We are
not aware of any approximability result for this problem, even for the seemingly simple
case of unit profits. In the full version of this paper [23], we prove that ( c) 2 for
every weighted set system induced by a laminar cover instance, to obtain the following
theorem.

Theorem 7. The generalized partial laminar cover problem can be approximated within
a factor of 8

3 , for any fixed 0.

3.4 Totally Unimodular Cover and k-Interval Cover

The element-set incidence matrix U of a set system (U ) has a row for every ele-
ment e U and a column for every set S ; its entry in row e and column S is 1
when e S and 0 otherwise. Totally unimodular cover (TUC) is a special case of the
set cover problem in which U is totally unimodular, that is, every square submatrix of
this matrix has determinant 0, 1 or 1. We remark that although TUC is known to have
integral LP solutions (see, for example, [7, Sec. 6.5]), this property does not extend to
its partial covering version, which has not been explicitly studied yet. A particularly in-
teresting problem captured by the latter variant is partial bipartite vertex cover: While
the approximability of the unit-profit case is still open, arbitrary profits render the prob-
lem NP-hard, since it generalizes minimum knapsack even when the given graph is a
star. We omit the straightforward reduction.

As illustrated in the full version of this paper [23], the prize-collecting set cover
problem can be formulated as an integer program whose constraint matrix is [ U I].
Simple linear algebra arguments show that whenever U is totally unimodular then
so is [ U I], implying that we obtain a 1-LMP algorithm by solving prize-collecting
TUC to optimality as a linear program. The next theorem follows.

Theorem 8. The generalized partial TUC problem can be approximated within a factor
of 4

3 , for any fixed 0.

We say that U is a k-interval matrix if it contains at most k blocks of consecutive
1’s in each row. The k-interval cover problem (k-IC) is a special case of set cover in
which U is a k-interval matrix. In the full version of this paper [23], we present a
k-LMP rounding algorithm for the prize-collecting k-IC problem, that makes use of our
1-LMP algorithm for the corresponding variant of totally unimodular cover. We derive
the following result as a corollary of Theorem 1.

Theorem 9. The generalized partial k-IC problem can be approximated within a factor
of ( 4

3 )k, for any fixed 0.

This provides, for instance, the first algorithm that approximates partial rectangle stab-
bing in d, noting that the resulting factor of ( 4

3 )d nearly matches the d-approximation
of Gaur, Ibaraki and Krishnamurti [16] for the full coverage version of this problem. In
addition, we obtain an alternative, albeit non-combinatorial, ( 4

3 ) f -approximation for
partial set cover with maximum element frequency f .
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3.5 Edge Cover

Given an undirected graph G (V E) with non-negative edge costs, edge cover is
the problem of finding a minimum cost set of edges that contains at least one edge
incident to each vertex. Clearly, this problem is equivalent to the special case of set
cover in which each subset consists of exactly two elements. We note that edge cover
is actually a matching problem in disguise, implying its polynomial time solvability
[8, 26]. Plesnı́k [30] proved that unit-profit partial edge cover, which is also known as
the k-edge cover problem, can be solved to optimality by reducing it to standard edge
cover. However, when arbitrary profits are allowed, this problem becomes NP-hard, as
it generalizes minimum knapsack. Since Parekh [29, Sec. 2.3] suggested a polynomial-
time algorithm for prize-collecting edge cover, we obtain the following theorem.

Theorem 10. Generalized partial edge cover can be approximated within a factor of
4
3 , for any fixed 0.

3.6 Multicut

On trees. The input to this problem consists of an edge-weighted tree T (V E) and
a collection of k distinct pairs of vertices, s1 t1 sk tk . The objective is to find a
minimum cost set of edges whose removal from T disconnects each of the given pairs.
It is important to note that, once again, we are facing a special case of set cover: The
elements to cover are the input pairs, and an edge e E covers si ti if it resides on the
unique path in T connecting si and ti. Garg, Vazirani and Yannakakis [15] presented a
primal-dual 2-approximation for this problem, which was also shown to be at least as
hard to approximate as vertex cover.

The corresponding partial cover problem, in which we are required to disconnect
a specified number of pairs, has recently been studied by Levin and Segev [24] and
independently by Golovin et al. [17], who achieved an approximation guarantee of 8

3 ,
for any fixed 0. Since the former authors provide a 2-LMP algorithm for the prize-
collecting multicut problem, we immediately obtain the following theorem, extending
the factor of 8

3 to the case of arbitrary profits.

Theorem 11. When the underlying graph is a tree, the generalized partial multicut
problem can be approximated within a factor of 8

3 , for any fixed 0.

General graphs. When the input graph is no longer restricted to be a tree, the multi-
cut problem becomes significantly harder to approximate. While Garg et al. [14] de-
vised an O(log k)-approximation using the region growing method, a hardness result of

(log log n) was given by Chawla, Krauthgamer, Kumar, Rabani and Sivakumar [5],
assuming a stronger version of the Unique Games Conjecture [22]. Based on Räcke’s
hierarchical decomposition method [31], Alon, Awerbuch, Azar, Buchbinder and Naor
[1] have shown how to simulate multicuts in general graphs by multicuts in the corre-
sponding decomposition tree. As observed by Golovin et al. [17], this method extends
to approximate the partial multicut problem within factor O( log2 n log log n), given
an -approximation for the more restricted tree case. Their arguments can be easily
combined with Theorem 11 to derive the next result for arbitrary profits.



478 J. Könemann, O. Parekh, and D. Segev

Theorem 12. On arbitrary graphs, the generalized partial multicut problem can be
approximated within a factor of O(log2 n log log n).
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31. H. Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Annual

IEEE Symposium on Foundations of Computer Science, pages 43–52, 2002.
32. P. Slavı́k. Improved performance of the greedy algorithm for partial cover. Information

Processing Letters, 64(5):251–254, 1997.



Navigating Low-Dimensional and Hierarchical
Population Networks�

Ravi Kumar1, David Liben-Nowell2, and Andrew Tomkins1

1 Yahoo! Research, Sunnyvale, CA 94089, USA
2 Department of Computer Science, Carleton College, Northfield, MN 55057, USA

{ravikumar, atomkins}@yahoo-inc.com, dlibenno@carleton.edu

Abstract. Social networks are navigable small worlds, in which two ar-
bitrary people are likely connected by a short path of intermediate friends
that can be found by a “decentralized” routing algorithm using only local
information. We develop a model of social networks based on an arbitrary
metric space of points, with population density varying across the points.
We consider rank-based friendships, where the probability that person u
befriends person v is inversely proportional to the number of people who
are closer to u than v is. Our main result is that greedy routing can find a
short path (of expected polylogarithmic length) from an arbitrary source
to a randomly chosen target, independent of the population densities, as
long as the doubling dimension of the metric space of locations is low. We
also show that greedy routing finds short paths with good probability in
tree-based metrics with varying population distributions.

1 Introduction

The last few years have witnessed increased interest in measuring, modeling, and
exploiting social networks—collections of people connected by edges represent-
ing acquaintance, friendship, or other social relationships. Numerous internet
startups have arisen predicating that one’s social network requires the same
careful husbandry as one’s credit rating or investment portfolio. A common fo-
cus of scientific studies of social networks is the small-world phenomenon, the
observation that most pairs of people are connected through short chains of
friends. A remarkable experiment of Stanley Milgram [24] in the 1960s empir-
ically validated this hypothesis, showing that two typical people in the United
States were connected by a chain of acquaintances with an average length of six,
thereby introducing the concept of “six degrees of separation” into popular cul-
ture. It is surprising that short paths exist, but it is remarkable that members of
the network are able to discover these short paths with only information about
their local neighborhood and some scant information about the destination [16].
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Thus, Milgram’s experiment suggests not only that social networks have small
diameter but also that they admit efficient “decentralized” search.

There have been a number of recent models of social networks that attempt
to include an account of observed social-network properties like the small-world
phenomenon. Watts and Strogatz [31] proposed a model consisting of two super-
imposed sets of edges, a structured set of edges and a smaller number of random
edges. The former is meant to capture “typical” social friendships created, say,
by geographic proximity. The latter is meant to capture long-range connections;
these edges reduce the network’s diameter, but do not explain navigability. Klein-
berg [15, 16] proposed a simple model that suffices to produce a navigable small
world. The underlying network is a k-dimensional grid, and each person occupies
a unique grid location. As in the Watts–Strogatz model, the network has two
kinds of links. Each person is connected via short-range links to her immediate
neighbors in the grid, and she has one long-range link, chosen randomly so that
the probability that a person u befriends a person v is proportional to d(u, v)−α,
where d(u, v) is the lattice distance between u and v, and α ≥ 0 is a parameter
of the model. Kleinberg studied greedy routing—to route a message from s to t,
person s sends the message to the neighbor of s who is closest in lattice distance
to t—and showed that with high probability this simple algorithm finds paths
of length polylogarithmic in the population size if and only if α = k.

As with most models of complex real-world phenomena, Kleinberg’s mathe-
matically appealing model makes certain simplifying assumptions. In particular,
it postulates that each grid point is occupied by a single individual, and hence the
grid exhibits uniform population density—a significant deviation from most real-
world populations. This issue has been addressed by two subsequent models, both
designed to handle nonuniform population distributions without compromising
analytical tractability. The first is Kleinberg’s group-structure model, based on
set systems [17]. The second is rank-based friendship, which we proposed in joint
work with Jasmine Novak and Prabhakar Raghavan [21]. We showed empirically
that the geographic distribution of friendships in the LiveJournal blogging com-
munity closely matches rank-based friendship when the population is modeled in
two-dimensional Euclidean space, and we proved that short paths can be found
in two-dimensional grids by greedy routing [19, 21].

In this paper, we focus on rigorous analysis of rank-based friendship in a
wide variety of social-network settings. For intuition on this model, consider two
people u and v who live 500 meters apart. In rural Minnesota, say, u and v
are probably next-door neighbors, and are very likely to know each other; in
Manhattan, there may be more than 10,000 people who live closer to u than v
does, and u and v have probably never met. This discrepancy suggests why
distance alone is insufficient as the basis for a model of real friendships. Instead,
we model long-range links using a notion of “rank”: the rank of a person v with
respect to u is the number of people who live at least as close to u as v does.
Thus, the closest candidate friend to u has rank 1, the next one has rank 2, and
so forth. In rank-based friendship, the probability that u befriends v is inversely
proportional to the rank of v with respect to u. (Intuitively, to be befriended by
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u, person v will have to compete with all of the more “convenient” candidate
friends for u, i.e., all people w who live closer to u than v does.) An important
feature of this model is that it implicitly accounts for the dimensionality of the
space in which people live. For example, in a k-dimensional grid of uniform
population density, for any k, the rank-based formulation induces exactly the
unique value of α proven by Kleinberg to generate a navigable network.

Our contributions. In this paper, we study the properties of rank-based friend-
ship. Our main theorem shows that greedy routing discovers short paths for
arbitrary (not necessarily uniform) population densities on any metric space of
low doubling dimension. We extend the main theorem in two directions. First,
we present a recursive formulation of a population in which it is possible to route
a message to the city of Manhattan, then to the appropriate block of the city,
and finally to the floor of the building where the target person lives. We show
that the theorem holds even for recursive structures of polynomial depth. Next,
we analyze greedy routing and rank-based friendship under tree metrics, which
have been proposed to capture non-geographic proximity between individuals in
a social network [17, 30]. (One can naturally model the proximity of two hobbies
or occupations, e.g., through a tree.) Through a more detailed analysis, we are
able to remove the notion of “local neighbors” entirely in this case.

In Sect. 2, we present background material on metric spaces, population net-
works, and routing algorithms, and we define a notion of a social structure, which
can be formed from an arbitrary metric space. Points in the metric space cor-
respond to locations, at which many people may reside. In Sect. 3, we formally
define rank-based friendship, and we construct social networks with long-range
links generated via rank-based friendship. We also define a general notion of
short-range links based on the metric space. In Sect. 4, we present our main re-
sult on greedy routing in these social networks. Specifically, we show that greedy
routing finds a path from an arbitrary source person to the location of a target
person chosen uniformly at random from the population. The expected length
of this path is polylogarithmic in the size of the population and exponential in
the doubling dimension of the metric space. Thus, if the underlying metric space
has low doubling dimension—like a constant-dimensional grid—greedy routing
yields expected polylogarithmic paths. We then turn to our two extensions. In
Sect. 5, we describe recursive population networks and analyze greedy routing
in these networks; due to potentially polynomial-depth leaves in the tree of lo-
cations, we must adopt a more complex measure of progress towards the target.
Finally, in Sect. 6, we investigate tree social structures, in which the points of
the population network are leaves of a tree.

Other related work. There have been several relevant extensions to Kleinberg’s
original model, which we review here. In k-dimensional grids, there has also been
considerable work on upper and lower bounds for the diameter and the length
of the greedy path (e.g., [4, 23,26]), and partially decentralized algorithms other
than greedy routing have also been considered [9, 20, 22, 23, 27]. Kleinberg has ex-
tended his model to tree-based structures and group structures [17]. Fraigniaud
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analyzes circumstances under which a graph can be augmented to be naviga-
ble, and gives a positive answer in the case of bounded treewidth or bounded
chordality [8]. Analysis of navigability in (uniform-population) networks of low
doubling dimension has been performed by Duchon et al. [7] and Slivkins [28].
Broadly speaking, these papers give stronger bounds on network navigability
than the present work, but are limited to uniform populations; the treatment of
nonuniform population distributions is the major contribution of this paper.

In previous work with J. Novak and P. Raghavan, we defined rank-based
friendship and referenced a technical report that includes a theorem regarding
population networks on two-dimensional grids [19, 21]. The current paper gives
a significantly more general analysis of rank-based friendship, and subsumes the
particular theorem contained in that technical report. Notions similar to rank-
based friendships can also be found in geometric data structures [5, 10].

The question of searching in social networks was also considered by Adamic
et al. [1–3] and Kim et al. [13], and Milgram’s experiment was replicated in a
larger-scale email setting by Dodds et al. [6]. For a comprehensive treatment of
social networks, good sources include the book by Wasserman and Faust [29]
and a recent survey by Kleinberg [18].

2 Preliminaries

Background on metric spaces. Let 〈X, d〉 be a metric space. Denote by Br(x) :=
{y ∈ X : d(x, y) < r} the open radius-r ball around point x ∈ X . Define
the aspect ratio as Δ := maxx,y∈X d(x, y)/ minx,y∈X,x �=y d(x, y). The doubling
dimension of 〈X, d〉 is the smallest α such that, for every r > 0 and every
Y ⊆ X of diameter 2r, Y can be covered by at most 2α subsets of diameter r.

Social structures and population networks. A social network is a graph 〈P,E〉,
where a node represents a person and an edge represents a friendship between
its endpoints. Edges are directed to allow nonreciprocal friendships. Let Γ (u)
denote the out-neighbors of u ∈ P .

A social structure is a quadruple 〈L, d, P, loc〉, where L is a finite set of points ;
d : L×L→ R≥0 is a distance metric on the points (so 〈L, d〉 is a metric space);
P is an ordered finite set of people; and loc : P → L is the location function, which
maps people to the point in which they live. For convenience, we assume that d is
scaled so that min
,
′∈L,
 �=
′ d(�, �′) = 1. Extend d to d : (P ∪L)×(P ∪L)→ R≥0

where d(u, ·) := d(loc(u), ·) and d(·, v) := d(·, loc(v)) for all people u, v ∈ P . We
use the ordering on P to break ties in comparing distances: for people u, v, v′ ∈ P ,
write d(u, v) < d(u, v′) as shorthand for 〈d(u, v), v〉 ≺lexicographic 〈d(u, v′), v′〉,
where the ordering on the second component is given by the ordering on P . This
tie-breaking role is the only purpose of the ordering on people.

A population network is a quintuple 〈L, d, P, loc, E〉 where 〈L, d, P, loc〉 is a
social structure and E ⊆ P × P is a set of friendships. (Thus 〈P,E〉 is a social
network.) Let pop(�) := |{u ∈ P : loc(u) = �}| denote the population of � ∈ L.
Extend pop so that pop(L′) :=

∑

∈L′ pop(�) for a subset L′ ⊆ L of the points.
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Write n := pop(L) = |P | for the total population. Let dens : L → [0, 1] be a
probability distribution denoting the population density of each point � ∈ L,
so that dens(�) := pop(�)/n. As before, we extend dens to allow us to write
dens(L′) :=

∑

∈L′ dens(�) for L′ ⊆ L.

Routing algorithms. Given a population network 〈L, d, P, loc, E〉, a source indi-
vidual s ∈ P , and a target individual t ∈ P , a routing algorithm seeks a path
ρ = 〈u0, u1, . . . , uk〉 from s = u0 to t = uk in the graph 〈P,E〉.

We are interested in routing algorithms that compute the next step ui+1
from the current person ui without taking the entire graph 〈P,E〉 as input. The
algorithm is decentralized if, when computing the next step ui+1 in the path, the
only information used is ui, t, the social structure 〈L, d, P, loc〉, and the set of
neighbors Γ (ui) of the current node ui. (That is, the edges in E excluding those
incident to ui are not available as input to the decentralized algorithm.) In this
paper, we focus on one particular decentralized algorithm: the greedy algorithm
Greedy selects ui+1 := argminv∈Γ (ui)d(v, t).

3 Rank-Based Friendship

For two people u, v ∈ P , the rank of v with respect to u is the number of peo-
ple w ∈ P who are closer to u than v is. Formally, this quantity is given by
ranku(v) := |{w ∈ P : d(u,w) < d(u, v)}| , where we break ties in distance from
person u ∈ P using the linear ordering on P so that, for any i ∈ {1, . . . , n} and
any person u ∈ P , there is exactly one person v such that ranku(v) = i.

A rank-based friendship for a person u ∈ P is one generated as follows:
a friend v is chosen randomly for u according to the probability distribution
Pr[u links to v] ∝ 1/ranku(v). For any person u ∈ P , we have

∑
v 1/ranku(v) =∑n

i=1 1/i = Hn, the nth harmonic number. Therefore, by normalizing, we have

Pr[a particular rank-based link from u links to v] = 1/(Hn · ranku(v)). (1)

Up to constant factors, this rank-based formulation gives the same link probabil-
ities as Kleinberg’s distance-based model for a uniform-population k-dimensional
mesh. Thus Kleinberg’s results [16] immediately imply that rank-based friend-
ship produces a navigable grid for a uniformly distributed population:

Theorem 1. Let 〈L, d, P, loc〉 be a social structure where L is a k-dimensional
mesh for k = Θ(1), d is the Manhattan (L1) distance, and we have a uniform
population P in which exactly one person lives at each point on the grid. Endow
each person in the network with 2k “local” friends (the immediate neighbors in
each cardinal direction) and one “long-range” friend, chosen according to rank-
based friendship. Then, with high probability, the length of the Greedy path from
any s ∈ L to any t ∈ L is O(log2 n).

In this paper, we will consider networks with more complicated metrics on the
points. To do so, we will need a generalization of the 2k “local” neighbors from
Theorem 1. For a social structure 〈L, d, P, loc〉, construct a population network
〈L, d, P, loc, E〉 by generating friendships as follows:
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– Endow each person p ∈ P with δ rank-based links, chosen according to (1).
– Endow each person p ∈ P with “local neighbors,” as follows. Let G = 〈L,EG〉

be a graph where shortest paths correspond to the metric d—i.e., the shortest
�-to-�′ path in G has length d(�, �′). For � ∈ L, let ΓG(�) be the neighbors
of � in G. For every person p ∈ P with loc(p) = � and for every �′ ∈ ΓG(�),
choose an arbitrary q such that loc(q) = �′ and add the edge 〈p, q〉 to E.

We refer to a network satisfying the latter condition as a neighbor-connected
network. Neighbor connectivity ensures that, for any s and any t, the first step
taken by Greedy(s, t) will be to a person u such that d(u, t) < d(s, t). Among
other things, this condition guarantees that every person encountered by Greedy
is encountered only once. Thus we can invoke the Principle of Deferred Decisions
in our analysis (see [25]): we proceed as if the long-range links of each person are
generated only once the greedy algorithm encounters that person. Furthermore,
the greedy algorithm never gets “stuck”; a person u fails to link to a person v
such that d(v, t) < d(u, t) only if loc(u) = loc(t). (Notice also that neighbor
connectivity requires that every point has strictly positive population.)

4 Routing in Networks with Low Doubling Dimension

Let 〈L, d, P, loc〉 be an arbitrary social structure, where n := |P |. Let α and Δ,
respectively, be the doubling dimension and aspect ratio of 〈L, d〉. We derive
a neighbor-connected degree-δ rank-based population network 〈L, d, P, loc, E〉
by endowing each person p ∈ P with “local” neighbors as required to achieve
neighbor connectivity and δ rank-based friends. In this section, we show that
greedy routing finds a short path to a target location whenever α is small.

Lemma 2 (Greedy quickly (in expectation) halves distance to target).
For arbitrary s ∈ P and t ∈ P chosen uniformly at random from P , the ex-
pected number of rank-based links examined before Greedy(s, t) reaches a person
in Bd(s,t)/2(loc(t)) is O(log n · logΔ · 2O(α)), where the expectation is taken over
both the random construction of the network and the random choice of t.

Proof sketch. An r-net, for any r > 0, is a set S ⊆ L such that (i) for all
x ∈ L, there is some s ∈ S with d(x, s) < r; and (ii) for all distinct s, s′ ∈ S,
we have d(s, s′) ≥ r. An r-net can be greedily constructed for any r > 0. Let
R := {1, 2, 4, . . . , 22+�log Δ�}. For every r ∈ R, we define a set of balls of radius r,
where the set Cr of ball centers forms an (r/2)-net. Let rt denote the minimum
r ∈ R such that s, t ∈ Br(s′) for some s′ ∈ Cr. We show that 2rt ≥ d(s, t)/2 ≥
rt/8; thus it will suffice to show that the expected number of links examined
before Greedy(s, t) lands in Brt/8(t) ⊆ Bd(s,t)/2(t) is O(log n · logΔ · 2O(α)).

Suppose that Greedy(s, t) has generated a partial path from s, where the last
element of the path so far is some person u ∈ P . Each step taken by Greedy
decreases the distance from the current point to the target t, so we have that
d(u, t) ≤ d(s, t) ≤ 2rt.

We refer to a link from u as good t if it connects u to any person living in
the ball Brt/8(t). Let βu,t denote the probability that a particular link from u is
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goodt. We show that there is a point zt ∈ C16rt such that B8rt(t) ⊆ B16rt(zt),
and that βu,t ≥ pop(Brt/8(t))/(pop(B16rt(zt)) · Hn), independent of u. Define
βt := pop(Brt/8(t))/(pop(B16rt(zt)) ·Hn). Thus the probability that a particular
link from u is goodt is at least βt for every person u along the Greedy path, and
is independent at each step. Therefore, the expected number of links examined
by Greedy before we reach a goodt link (or t itself) is at most 1/βt, where the
expectation is taken over the random construction of the network.

We now examine the expected value of 1/βt when t is chosen uniformly at
random from the population. We show that

Et[1/βt] ≤ Hn ·
∑

x∈L
dens(x) · dens(B16rx(zx))/dens(Brx/16(z′x))

≤ Hn ·
∑

r∈R,z∈C16r

∑
z′∈Cr/16:z′∈B16r(z)

dens(B16r(z))
dens(Br/16(z′))

∑
x∈Br/16(z′)

dens(x),

where the second line follows by reindexing the summation to be over radii and
ball centers from the appropriate r-nets rather than over target locations x.
From this, we obtain

Et[1/βt] ≤ Hn ·
∑

r∈R

∑
z∈C16r

dens(B16r(z)) · |{z′ ∈ Cr/16 : z′ ∈ B16r(z)}|.

Using properties of r-nets, we are able to show that the inner summation is upper
bounded by 2O(α), independent of r. Thus, the expectation is upper bounded by
Hn · |R| · 2O(α), which is O(log n · logΔ · 2O(α)) by definition of R.

Theorem 3. Let 〈L, d, P, loc, E〉 be a neighbor-connected degree-δ rank-based
population network. Let s ∈ P be arbitrary, and let t ∈ P be chosen uniformly
at random. Then the expected length of the Greedy(s, t) path from s to loc(t) is
O(max{logΔ, logn · log2 Δ · 2O(α)/δ}), where the expectation is taken both over
the random construction of the network and over the random choice of t.

As a corollary, in the k-dimensional mesh under L1 distance, where each person
has δ rank-based friends and 2k local friends, for an arbitrary source s and a
uniformly chosen target t, the expected length of Greedy(s, loc(t)) is O(log3 n ·
2O(k)/δ), which is just O(log3 n) when δ = Ω(1) and k = O(1).

5 Recursive Population Networks

In this section, we describe a recursive model of population networks that allows
higher resolution of location, and that allows the routing of messages to an
individual, rather than just to that individual’s city or town.

Recursive social structures. In the model described previously, a point � ∈ L
represents a collection of collocated individuals. Here, we extend the model so
that each � ∈ L represents either a single individual or a substructure refining
distances between �’s inhabitants.



Navigating Low-Dimensional and Hierarchical Population Networks 487

A recursive social structure (RSS) is the following: we have a social structure
consisting of people living at various points, with a distance function describing
the separation between points. For each point � in which strictly more than
one person lives, we have, recursively, a social structure for the people living in
point �. Formally, an RSS σ on a nonempty set P of people is given as follows:

– If |P | = 1, then σ is simply the lone individual in P .
– If |P | ≥ 2, then σ = 〈L, d, P, loc,M〉, where 〈L, d, P, loc〉 is a social structure

with |L| ≥ 2 and pop(�) ≥ 1 for every � ∈ L, and, for every � ∈ L, we have
that M(�) = σ
 is an RSS on the set of people P
 := {u ∈ P : loc(u) = �}.

For an RSS σ, define a tree T (σ) of social structures, where each social structure
〈L, d, P, loc〉 contained in σ has “child structures” for each point � ∈ L with
|P
| ≥ 2. The leaves of the tree are the points with a single resident. Let M (σ)
denote the internal nodes in T (σ). For N ∈ T (σ), let depth(N) denote the depth
of N in the tree T (σ), and let depth(T (σ)) denote the depth of the deepest leaf
in T (σ). (The root of T (σ) has depth one.)

For u ∈ P , let Nu = u denote the leaf of T (σ) where u is the lone person.
For a structure N ∈M (σ), we write u ∈ N to denote that Nu is in the subtree
of T (σ) rooted at N—i.e., that u ∈ PN where N = 〈LN , dN , PN , locN 〉. Write
depth(u) := depth(Nu), and for any 1 ≤ i ≤ depth(u), write structurei(u) to
denote the unique structure at depth i in T (σ) such that u ∈ structurei(u).
Finally, for two individuals u, v ∈ P , let LCA(u, v) denote the least common
ancestor of u and v in T (σ)—i.e., the smallest-population structure N in T (σ)
such that u, v ∈ N .

From an RSS σ on a set P of people, we derive a (standard) social structure
S (σ), where the distances between people are derived from σ. Because the leaves
of T (σ) are just the people of P , there will be a unique location in S (σ) for each
person of P . To derive distances dσ(u, v) in σ, we consider only the coarsest-
resolution structure N in which u and v live in distinct points. Formally, let
N := LCA(u, v), where N = 〈LN , dN , PN , locN 〉. (Note that u, v ∈ PN and that
locN (u) �= locN (v).) We define d(u, v) := 〈−depth(N), dN (locN (u), locN (v))〉,
and we use standard lexicographic ordering on pairs to compare distances.

Recursive population networks. Given an RSS σ on a set P of people, we can
generate a recursive population network (RPN) ρ = 〈σ,E〉 by endowing the
people of P with friendships. Let d = dσ be the derived distance function as
described above. (We will abuse notation and write T (ρ) := T (σ), etc.) In a
degree-δ rank-based RPN, we endow each person in P with δ long-range links,
chosen according to (1). We assume that ties in distance are broken randomly
for the purposes of generating rank-based friendships.

As before, we introduce local neighbors to guarantee (minute) progress from
any source to any target t. (The condition is similar to the one introduced in
Section 4, but slightly more complicated.) Let h : P → R be a function assigning
a “social height” to the people in the network. Consider any N ∈ T (σ) where
N = 〈LN , dN , PN , locN 〉, and let P
 denote the set of people living in point
� ∈ LN . For a person p ∈ P
, consider the following conditions:
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1. Person p has a local link to a person q ∈ P
 so that h(q) > h(p).
2. Suppose that the metric dN on LN is a shortest-path metric in a graph

G = 〈LN , EN 〉. For every point �′ for which the edge 〈�, �′〉 ∈ EN , there
exists a q where locN (q) = �′ such that p has a local link to person q.

If every person in an RPN ρ satisfies one of these two conditions for every
structure in M (σ), then we say that ρ is neighbor connected.

We also add a tie-breaking rule to Greedy using the social-height function.
Suppose that source s seeks a greedy path to a target t �= s, and there is no
friend u of s such that d(u, t) < d(s, t). (Thus s cannot fall into Case 2 of the
definition of neighbor connectivity for the structure N = LCA(s, t).) The next
step in the Greedy path is a neighbor u of s such that d(s, t) = d(u, t) and
h(u) > h(s). This tie-breaking rule guarantees that Greedy can “lift” itself out
of a substructure to reach a target in a different structure.

For non-local ties in distance—i.e., s has two distinct friends u, v such that
d(u, t) = d(v, t) < d(s, t)—we assume that ties are broken uniformly at random.

Routing on rank-based RPNs. We will prove that Greedy finds short paths in
expectation in any neighbor-connected rank-based RPN derived from an RSS σ
as long as the maximum doubling dimension of N ∈M (σ) is small.

Notice the following fact, which follows immediately by definition of d = dσ:
for any u ∈ P and any depth i ≤ depth(u), all people in structurei(u) are closer
to u than any person outside structurei(u) is to u. An immediate consequence of
this fact is that the path found by Greedy aiming for a target t will never leave
structurei(t) once it enters this subtree.

The expected time required to reach a target t drawn uniformly from the pop-
ulation P is bounded by O(max{logΔ, logn · log2 Δ ·2O(α)/δ} ·depth(T (σ))), by
Theorem 3: in expectation we reach the target point in any particular structure
in O(max{logΔ, logn · log2 Δ · 2O(α)/δ}) steps, and we must find the correct
point depth(t) times before we have arrived at the target person herself. In the
following, we remove the dependence on depth(T (σ)).

Theorem 4. Let ρ be an arbitrary degree-δ rank-based neighbor-connected RPN
with n = |P | people, maximum doubling dimension α, and maximum aspect
ratio Δ. For an arbitrary source person s ∈ P and a target person t ∈ P chosen
uniformly at random from P , we have that the expected length of the Greedy path
from s to t is O(max{logΔ, log2 Δ · logn · 2O(α)/δ} ·min{depth(T (ρ)), logn}).

Proof sketch. Our proof proceeds by showing that within a polylogarithmic num-
ber of steps we will reduce by a factor of two the number of people closer to the
target than the current person on the greedy path is. Let NLCA := LCA(s, t),
and let PLCA := pop(NLCA) be its population. In the structure NLCA, we begin
at some point �s and we wish to reach some point �t. There are two cases to
consider. If pop(�t) ≤ |PLCA|/2 (i.e., the subpopulation containing the target is
not too big), then simply reaching �t as per Theorem 3 constitutes considerable
progress towards the target. If pop(�t) > |PLCA|/2, then any node encountered
on the Greedy path has a probability Ω(1/Hn) of linking to one of the |PLCA|/2
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people closest to t. Thus in O(log n) steps with high probability we reach one of
the |PLCA|/2 people closest to t, which is also considerable progress towards the
target. In either case, we have reduced by a factor of two the number of people
closer to the target than the current person on the greedy path; a logarithmic
number of repetitions of this process will find the target individual herself.

To formalize the above intuitive argument, consider running Greedy starting
from person s until the completion of the following two-phase operation:

Phase 1 (“Halfway there”): Run Greedy starting from s until we reach a
person v such that either (i) v ∈ structuredepth(t)−1(t)—i.e., the structure
that directly contains the target t—or (ii) rankt(v) ≤ pop(LCA(s, t))/2.

Phase 2 (“One level deeper”): Run Greedy starting from v until we reach a
person w such that either w = t or depth(LCA(w, t)) > depth(LCA(v, t)).

We show the following:

– After Phase 2 has ended, either w = t or pop(LCA(w, t)) ≤ pop(LCA(s, t))/2.
– The expected number of steps before we complete a single two-phase oper-

ation is O(max{logΔ, log2 Δ · logn · 2O(α)/δ}).

Thus after a logarithmic number of repetitions of the two-phase process—or
depth(T (ρ)) repetitions, if that quantity is smaller—we reach the target t.

6 Routing in Trees

We now turn to tree social structures 〈L, d, P, loc〉, where the elements of L are
the leaves of a k-ary tree T . We abuse notation and also let T denote the nodes
of this tree. Let T [r] denote the subtree of T rooted at r ∈ T . We restrict d so
that, for every point x ∈ L and every node r that is an ancestor of x in T , the
point x is closer to every node in T [r] than it is to any node outside of T [r].
The population P consists of an arbitrary set of n people, and loc : P → L is an
arbitrary location function. In particular, we do not impose the condition that
pop(�) be strictly positive for every � ∈ L; we can simply treat zero-population
leaves as not appearing in the tree. If each person in a k-ary tree social structure
is endowed with δ edges chosen according to rank-based friendship, then we refer
to the resulting population network as a rank-based δ-degree k-ary tree population
network. Proofs of the following are omitted due to space constraints.

Lemma 5. Fix an arbitrary s ∈ P . Fix any internal node r ∈ T such that
loc(s) ∈ T [r]. Choose t ∈ P uniformly at random from {t : loc(t) ∈ T [r]}. Let
rt denote the child of r such that loc(t) ∈ T [rt]. Then, with probability at least
1− (k−1)·Hn

e·δ , within one step the path from s to t found by Greedy reaches T [rt].

Theorem 6. Let 〈L, d, P, loc, E〉 be a rank-based δ-degree k-ary tree population
network. Fix an arbitrary η ≥ 1. If the degree δ satisfies δ ≥ η ·k ·Hn ·depth(T )/e,
then the following holds with probability at least 1− 1/η: for an arbitrary source
person s ∈ P and a target person t ∈ P chosen uniformly at random from P ,
the Greedy path from s to loc(t) has length at most depth(T ).
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As a corollary, consider a rank-based population network derived from a binary
tree with depth O(logk n) and with degree δ = Ω(η · logk+1 n). Then with prob-
ability at least 1 − 1/η, for arbitrary s ∈ P and uniformly chosen t ∈ P , the
length of the Greedy path from s to loc(t) has length O(logk n).

7 Discussion and Future Work

Here we highlight some interesting open questions for future study, focusing on
the model described in Sections 4 and 5. We have shown that Et[|Greedy(s, t)|] =
polylog(|P |) for any s ∈ P in rank-based networks. In contrast, Kleinberg has
shown that, for uniform populations, with high probability, Greedy(s, t) has poly-
logarithmic length for any s and for any t when link probabilities are chosen
according to the correct distance-based distribution. There may be population
distributions for which the “for all t” condition cannot be achieved in our con-
text, perhaps if there is a recluse who is very unlikely to be reached by long-range
links. It remains open whether Greedy finds a short expected path for any target.

We use the assumption that there are no empty locations in our network to
guarantee that Greedy never gets “stuck” at a person u without a local neighbor
closer to the target than u herself is. Investigating the limitations of Greedy in
a model with zero-population locations (like lakes and deserts in the real world)
is an intriguing direction, and would eliminate the most unrealistic limitation in
our model. Geographic routing via local-information algorithms in general, and
geographic routing around obstacles in particular, has been previously considered
in the wireless-networking community [11, 12, 14]. It is an interesting question
as to whether these results, where there is typically a technologically inspired
threshold on the geographic distance that a message can traverse in a single hop,
can be adapted to the social-network setting.

A number of partially decentralized algorithms (e.g., [9,20, 22, 23, 27]) have
been shown to outperform Greedy theoretically or experimentally; it would be in-
teresting to analyze them in rank-based networks. More generally, our results can
be viewed as extending Kleinberg’s theorem to a dimension-independent model
that allows varying population density (and one that holds in real networks [21]).
There have been some recent theoretical results extending and refining Klein-
berg’s result—for example, considering routing on other types of underlying
graphs [7, 8, 28], among other results [4, 23, 26]—and we might hope to be able
to make analogous improvements to our results.
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Abstract. We consider the problem of finding a popular matching in
the Capacitated House Allocation problem (CHA). An instance of CHA
involves a set of agents and a set of houses. Each agent has a preference
list in which a subset of houses are ranked in strict order, and each house
may be matched to a number of agents that must not exceed its capacity.
A matching M is popular if there is no other matching M ′ such that the
number of agents who prefer their allocation in M ′ to that in M exceeds
the number of agents who prefer their allocation in M to that in M ′.
Here, we give an O(

√
Cn1 + m) algorithm to determine if an instance

of CHA admits a popular matching, and if so, to find a largest such
matching, where C is the total capacity of the houses, n1 is the number
of agents and m is the total length of the agents’ preference lists. For the
case where preference lists may contain ties, we give an O((

√
C + n1)m)

algorithm for the analogous problem.

1 Introduction

An instance I of the Capacitated House Allocation problem (CHA) comprises a
bipartite graph G = (A,H,E), where A = {a1, a2, ..., an1} is the set of agents,
H = {h1, h2, ..., hn2} is the set of houses and E is the set of edges in G. We let
n = n1 +n2 and m = |E|. Each agent ai ∈ A ranks in strict order a subset of the
set of houses (the acceptable houses for ai) represented by his/her preference list.
Each house hj ∈ H has a capacity cj ≥ 1 which indicates the maximum number
of agents that may be matched to it. We assume that m ≥ max {n1, n2}, i.e. no
agent has an empty preference list and each house is acceptable to at least one
agent. We also assume that cj ≤ n1 for each hj ∈ H . Let C =

∑n2
j=1 cj denote

the sum of the capacities of the houses.
A matching M in I is a subset of E such that (i) each agent is matched to

at most one house in M , and (ii) each house hj ∈ H is matched to at most cj

agents in M . If an agent ai ∈ A is matched in M , we denote by M(ai) the house
that ai is matched to in M . We define M(hj) to be the set of agents matched
to hj in M (thus M(hj) could be empty). Given two matchings M and M ′ in I,
we say that an agent ai prefers M ′ to M if either (i) ai is matched in M ′ and
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(a) a1: h1 h2 h3 (b) a1: h1 h2

a2: h1 h2 h3 a2: h1

a3: h1 h2 h3

Fig. 1. Two instances of HA

unmatched in M , or (ii) ai is matched in both M ′ and M and prefers M ′(ai) to
M(ai). Let P (M ′,M) denote the set of agents who prefer M ′ to M . Then, M ′

is more popular than M if |P (M ′,M)| > |P (M,M ′)|, i.e. the number of agents
who prefer M ′ to M is greater than the number of agents who prefer M to M ′.
Furthermore, a matching M in I is popular if there is no other matching M ′ in
I that is more popular than M .

CHA is an example of a bipartite matching problem with one-sided pref-
erences [1, 2, 7, 3]. These problems have applications in areas such as campus
housing allocation in US universities [1], hence the problem name; in assigning
probationary teachers to their first posts in Scotland; and in Amazon’s DVD
rental service. A variety of optimality criteria have been defined for such prob-
lems. Gärdenfors [6] first introduced the notion of a popular matching (also
known as a majority assignment) in the context of voting theory. Alternatively,
Pareto optimality [1, 2] is often regarded by economists as a fundamental prop-
erty to be satisfied. A matching M is Pareto optimal if there is no matching M ′

such that some agent prefers M ′ to M , and no agent prefers M to M ′. Finally,
a matching is rank maximal [7] if it assigns the maximum number of agents to
their first-choice houses, and subject to this, the maximum number of agents to
their second-choice houses, and so on. However, Pareto optimal matchings and
rank maximal matchings need not be popular.

Popular matchings were considered by Abraham et al. [3] in the context of the
House Allocation problem (HA) – the special case of CHA in which each house
has capacity 1. They gave an instance of HA in which no popular matching exists
(see Figure 1(a)) and also noted that popular matchings can have different sizes
(see Figure 1(b); in this HA instance the matchings M1 = {(a1, h1)} and M2 =
{(a1, h2), (a2, h1)} are both popular). Abraham et al. [3] described an O(n+m)
algorithm for finding a maximum cardinality popular matching (henceforth a
maximum popular matching) if one exists, given an instance of HA. They also
described an O(

√
nm) counterpart for the House Allocation problem with Ties

(HAT) – the generalisation of HA in which agents’ preferences may include ties.
Several other recent papers have also focused on popular matchings. Mahdian

[8] gave some probabilistic results with respect to the existence of popular match-
ings in a random instance of HA. Abraham and Kavitha [4] considered popular
matchings in a dynamic matching market in which agents and houses can enter
and leave the market, and showed that there exists a 2-step voting path to com-
pute a new popular matching from some initial matching after every such change,
provided some popular matching exists. Also Mestre [10] studied a generalisation
of the problem in which agents have a weight indicating their priority, and the
objective is to compute a weighted popular matching M (i.e. there is no other
matching M ′ such that the weighted majority of the agents prefer M ′ to M .)



494 D.F. Manlove and C.T.S. Sng

In this paper, we consider popular matchings in instances of CHA and CHAT,
where CHAT denotes the Capacitated House Allocation problem with Ties – the
generalisation of CHA in which agents’ preference lists may contain ties. Both
CHA and CHAT are natural generalisations of the one-one HA and HAT models
considered in [3] to the case where houses may have non-unitary capacity. We
extend the characterisations and algorithms for popular matchings from [3] to
these many-one settings. In particular, in Section 2, we develop a characterisation
of popular matchings in a CHA instance I, and then use it to construct an
O(
√
Cn1 + m) algorithm for finding a maximum popular matching in I if one

exists. In Section 3, we build a new characterisation of popular matchings in a
CHAT instance I, and then use it to construct an O((

√
C +n1)m) algorithm for

finding a maximum popular matching in I if one exists.
We finally remark that a straightforward solution to each of the problems of

finding a maximum popular matching, given an instance of CHA or CHAT, may
be to use “cloning”. Informally, this entails creating cj clones for each house hj ,
to obtain an instance C(I) of HAT (i.e. each house has capacity 1), and then
applying the HAT algorithm of [3] to C(I). However, we will show in Sections
2 and 3 that this method in general leads to slower algorithms than the direct
approach that we will be using in each case.

2 Popular Matchings in CHA

Characterising Popular Matchings. Let I be an instance of CHA. For
each agent ai ∈ A, let f(ai) denote the first-ranked house on ai’s preference
list. Any such house hj is called an f -house. For each hj ∈ H , let f(hj) =
{ai ∈ A : f(ai) = hj} and fj = |f(hj)| (possibly fj = 0). Now let M be a match-
ing in I. We say that a house hj ∈ H is full if |M(hj)| = cj , and undersubscribed
if |M(hj)| < cj . We also create a unique last resort house l(ai) with capacity
1 for each agent ai ∈ A, and append l(ai) to ai’s preference list. The following
lemma is a vital first step in characterising popular matchings in I.

Lemma 1. Let M be a popular matching in I. Then for every f-house hj,
|M(hj) ∩ f(hj)| = min {cj , fj}.

Proof. We consider the following two cases.
– Case (i): Suppose fj ≤ cj . We will show that f(hj) ⊆M(hj). For, suppose

not. Then choose any ar ∈ f(hj)\M(hj). We consider the subcases that (a) hj is
undersubscribed and (b) hj is full. In subcase (a), promote ar to hj to obtain a
more popular matching than M . In subcase (b), choose any as ∈M(hj)\f(hj).
Let hk = f(as). Then hk �= hj. If hk is undersubscribed, promote ar to hj and
promote as to hk to obtain a more popular matching than M . Otherwise, choose
any at ∈M(hk). We then promote ar to hj, promote as to hk and demote at to
l(at) to obtain a more popular matching than M .

– Case (ii): Suppose fj > cj . If hj is undersubscribed, then f(hj) �⊆ M(hj)
so there exists some ar ∈ f(hj)\M(hj) that we can promote to hj to obtain a
more popular matching as in Case (i)(a). Hence, hj is full. Now, suppose for a
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contradiction that M(hj) �⊆ f(hj). Then there exists some as ∈M(hj)\f(hj). As
fj > cj , it follows that f(hj) �⊆ M(hj) so there exists some ar ∈ f(hj)\M(hj).
The remainder of the argument follows Case (i)(b).

Hence the following properties hold for the new matching. If fj ≤ cj , then
f(hj) ⊆ M(hj). Otherwise, M(hj) ⊆ f(hj) and |M(hj)| = cj . Thus, the condi-
tion in the statement of the lemma is now satisfied. ��

For each agent ai, we next define s(ai) to be the most-preferred house hj

on ai’s preference list such that either (i) hj is a non-f -house, or (ii) hj is an
f -house such that hj �= f(ai) and fj < cj. Note that s(ai) must exist in view
of l(ai). We refer to such a house hj as an s-house. We remark that the set of
f -houses need not be disjoint from the set of s-houses. It may be shown that
a popular matching M will only match an agent ai to either f(ai) or s(ai), as
indicated by the next two lemmas (see [9] for the proofs).

Lemma 2. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house between f(ai) and s(ai) on ai’s preference list.

Lemma 3. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house worse than s(ai) on ai’s preference list.

Let G = (A,H,E) be the underlying graph of I. We form a subgraph G′ of G
by letting G′ contain only two edges for each agent ai, that is, one to f(ai) and
the other to s(ai). We say that a matching M is agent-complete in a given graph
if it matches all agents in the graph. Clearly, in view of last resort houses, all
popular matchings must be agent-complete in G′. However, G′ need not admit
an agent-complete matching if s(ai) �= l(ai) for some agent ai. In conjunction
with Lemmas 1-3, the graph G′ gives rise to the following characterisation of
popular matchings in I.

Theorem 1. A matching M is popular in I if and only if

1. for every f -house hj,
(a) if fj ≤ cj, then f(hj) ⊆M(hj);
(b) if fj > cj, then |M(hj)| = cj and M(hj) ⊆ f(hj).

2. M is an agent-complete matching in the reduced graph G′.

Proof. By Lemmas 1-3, any popular matching necessarily satisfies Conditions 1
and 2. We now show that these conditions are sufficient.

Let M by any matching satisfying Conditions 1 and 2 and suppose for a
contradiction that M ′ is a matching that is more popular than M . Let ai be any
agent that prefers M ′ to M and let hk = M ′(ai). Since M is an agent-complete
matching in G′, and since G′ contains only edges from ai to f(ai) and s(ai),
then M(ai) = s(ai). Hence either (i) hk = f(ai) or (ii) hk is an f -house such
that hk �= f(ai) and fk ≥ ck, by definition of s(ai).

In Case (i), if fk < ck then by Condition 1(a), ai ∈ M(hk), a contradiction.
Hence in both Cases (i) and (ii), fk ≥ ck. In each of the cases that fk = ck and
fk > ck, it follows by Conditions 1(a) and 1(b) that |M(hk)| = ck and M(hk) ⊆
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1. M := ∅;
2. for each f -house hj

3. c′
j := cj ;

4. if fj ≤ cj

5. for each ai ∈ f(hj)
6. M := M ∪ {(ai, hj)};
7. delete ai and its incident edges from G′;
8. c′

j := cj − fj ;
9. remove all isolated and full houses, and their incident edges, from G′;
10. compute a maximum matching M ′ in G′ using capacities c′

j ;
11. if M ′ is not agent-complete in G′

12. output “no popular matching exists”
13. else
14. M := M ∪M ′;
15. for each ai ∈ A
16. hj := f(ai);
17. if fj > cj and |M(hj)| < cj and hj �= M(ai)
18. promote ai from M(ai) to hj in M ;

Fig. 2. Algorithm Popular-CHA for finding a popular matching in CHA

f(hk). Since hk is full in M , it follows that |M(hk)\M ′(hk)| ≥ |M ′(hk)\M(hk)|.
Hence for every ai who prefers M ′(ai) = hk to M(ai), there is a unique aj ∈
M(hk)\M ′(hk). But as aj ∈M(hk), it follows that hk = f(aj). Hence aj prefers
M(aj) to M ′(aj). Therefore, M is popular in I. ��

Finding a Popular Matching. Theorem 1 leads to Algorithm Popular-CHA
for finding a popular matching in a CHA instance I, or reporting that none exists,
as shown in Figure 2. The algorithm begins by using a pre-processing step (lines
2-9) on G′ that matches agents to their first-choice house hj whenever fj ≤ cj ,
so as to satisfy Condition 1(a) of Theorem 1.

Our next step computes a maximum cardinality matching M ′ (henceforth a
maximum matching) in G′, according to the adjusted house capacities c′j that are
defined following pre-processing. The subgraph G′ can be viewed as an instance
of the Upper Degree-Constrained Subgraph problem (UDCS) [5]. (An instance
of UDCS is essentially the same as an instance of CHA, except that agents
have no explicit preferences in the UDCS case; the definition of a matching is
unchanged.) We use Gabow’s algorithm [5] to compute M ′ in G′ and then test
whether M ′ is agent-complete. The pre-allocations are then added to M ′ to give
M . As a last step, we ensure that M also meets Condition 1(b) of Theorem 1.
For, suppose that hj ∈ H is an f -house such that fj > cj . Then by definition, hj

cannot be an s-house. Thus if ak ∈M(hj) prior to the third for loop, it follows
that ak ∈ f(hj). At this stage, if hj is undersubscribed in M , we repeatedly
promote any agent ai ∈ f(hj)\M(hj) from M(ai) (note that M(ai) must be
s(ai) and hence cannot be an f -house hl such that fl > cl) to hj until hj is full,
ensuring that M(hj) ⊆ f(hj).

It is clear that the reduced graph G′ of G can be constructed in O(m) time.
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The graph G′ has O(n1) edges since each agent has degree 2 in G′. Clearly each
of the pre- and post-processing steps involving the three for loop phases takes
O(n1 +n2) time. The complexity of Gabow’s algorithm [5] for computing M ′ in
G′ is O(

√
Cn1). Hence we obtain the following result concerning the complexity

of Algorithm Popular-CHA.

Lemma 4. Given an instance of CHA, we can find a popular matching, or
determine that none exists, in O(

√
Cn1 + m) time.

It remains to consider the problem of finding a maximum popular matching
in I. We begin by dividing the set of all agents into disjoint sets. Let A1 be the
set of all agents ai with s(ai) = l(ai), and let A2 = A − A1. We aim to find a
matching M that satisfies the conditions of Theorem 1, and that minimises the
number of A1-agents who are matched to their last resort house.

We begin by constructing G′, and carrying out the pre-processing step in lines
2-9 of Algorithm Popular-CHA on all agents in A1 ∪ A2. We then try to find a
maximum matching M ′ in G′ that only involves the A2-agents that remain after
pre-processing and their incident edges. If M ′ is not an agent-complete matching
of the agents in A2 that remain after pre-processing, then G admits no popular
matching by Theorem 1. Otherwise, we remove all edges in G′ that are incident
to a last resort house, and try to match A1-agents to their first-choice houses. At
each step, we try to match an additional A1-agent to his/her first-choice house
by finding an augmenting path with respect to M ′ using Gabow’s algorithm for
UDCS [5], so that we have a maximum matching of agents in A1 ∪ A2 in G′ at
the end of this process. If any A1-agent remains unmatched, we simply assign
him/her to his/her last resort house, to obtain an agent-complete matching in G′.
We also ensure that Condition 1(b) of Theorem 1 is met by executing the third
for loop in Algorithm Popular-CHA. Clearly then, the matching so obtained,
together with the pre-assignments from earlier, is a maximum popular matching,
giving the following theorem.

Theorem 2. Given an instance of CHA, we can find a maximum popular
matching, or determine that none exists, in O(

√
Cn1 + m) time.

An alternative approach to our algorithm would be to use cloning. Given an
instance I of CHA, we may obtain an instance J of HAT by creating cj clones
h1

j , h
2
j , ..., h

cj

j of each house hj in I, where each clone has a capacity of 1. In
addition, we replace each occurrence of hj in a given agent’s preference list with
the sequence h1

j , h
2
j , ..., h

cj

j , the elements of which are listed in a single tie at the
point where hj appears. We can then apply the O(

√
nm) algorithm for HAT

given by [3] to J in order to find a maximum popular matching in I.
We now compare the worst-case complexity of the above cloning approach

with that of our algorithm. The underlying graph GJ of J contains n′ = n1 +C
nodes. Let cmin = min{cj : hj ∈ H}, and for ai ∈ A, let Ai denote the
set of acceptable houses for ai. Then the number of edges in GJ is m′ =∑

ai∈A

∑
hj∈Ai

cj ≥ mcmin. Hence the complexity of applying the algorithm

given by [3] to J is Ω(
√
Cmcmin). Recall that the complexity of Algorithm
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Popular-CHA is O(
√
Cn1 +m). It follows that the cloning method is slower by a

factor of Ω(
√
Ccmin) or Ω(mcmin/n1) (note that m ≥ n1 and cmin ≥ 1) accord-

ing as
√
Cn1 ≤ m or

√
Cn1 > m respectively. In the case that cmin = Ω(n1), our

approach offers an improvement by a factor of Ω(n3/2
1 n

1/2
2 ) or Ω(m) respectively.

3 Popular Matchings in CHAT

In this section, we generalise the characterisation of popular matchings together
with Algorithm Popular-CHA as given in the previous section to the case that
I is an instance of CHAT.

Characterising Popular Matchings. Let M be a popular matching in I.
For each agent ai ∈ A, let f(ai) denote the set of first-ranked houses on ai’s
preference list (clearly it is possible that |f(ai)| > 1 in view of ties in the pref-
erence lists). We refer to all such houses hj as f-houses and we let f(hj) =
{ai ∈ A : hj ∈ f(ai)}. Let G = (A,H,E) be the underlying graph of I. Define
E1 = {(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)} to be the set of first-choice edges. We de-
fine the first-choice graph of G as G1 = (A,H,E1). For instances with strict
preference lists, Lemma 1 implies that M ∩ E1 is a maximum matching in G1.
As the next lemma indicates (see [9] for the proof), this latter condition also
extends to the CHAT case.

Lemma 5. Let M be a popular matching in I. Then M ∩ E1 is a maximum
matching in G1.

As Lemma 1 no longer holds in general in a CHAT instance, we work towards
a new definition of s-houses by using some concepts from the theory of bipartite
matching. Let M be a maximum matching in some bipartite graph G where
all nodes have capacity 1. According to the Edmonds-Gallai Decomposition (see
[11]), then the nodes of G can be partitioned into three disjoint sets: E , O and U .
Nodes in E , O and U are called even, odd, and unreachable respectively. A node
v is even (odd) if there exists an alternating path of even (odd) length from an
unmatched node in G to v. If no such alternating path exists, v is unreachable.
Some fundamental properties of this node labelling (henceforth referred to as
the EOU labelling) in relation to a maximum matching in G are summarised in
Lemma 3.2 of [3].

Our aim is to obtain an EOU labelling of G1 relative to a maximum matching
M1 of G1 (as obtained by Gabow’s algorithm [5], for example). However Lemma
3.2 of [3] applies directly only to the case where each node in the given bipartite
graph has capacity 1. We obtain an EOU labelling of nodes in G1 by a cloning
process, as follows. The cloned graph C(G1) can be constructed from G1 by
replacing every house hj ∈ H with the clones h1

j , h
2
j , . . . , h

cj

j . We then divide the
capacity of each house among its clones by allowing each clone to have capacity 1.
In addition, if (ai, hj) ∈ G1, then we add (ai, h

k
j ) ∈ C(G1) for all k (1 ≤ k ≤ cj).

We then adapt the maximum matching M1 in G1 to obtain a matching C(M1)
in C(G1), as follows. If a house hj in G1 is matched to xj agents ai1 , ...aixj

in



Popular Matchings in the Capacitated House Allocation Problem 499

M1, then we add (aik
, hk

j ) to C(M1) for 1 ≤ k ≤ xj , so that |C(M1)| = |M1| and
C(M1) is a maximum matching in C(G1).

We next use C(M1) and C(G1) to obtain an EOU labelling of the nodes in
C(G1), and hence G1. Clearly, such a labelling in C(G1) is useful only if it can
give a well-defined characterisation of EOU labels in G1. Crucial to this is the
need for the clones corresponding to each house hj ∈ H to have the same EOU
label in C(G1), as stated by the next lemma (see [9] for the proof).

Lemma 6. Let G1 be the first-choice graph in I and let M1 be a maximum
matching in G1. Define the cloned graph C(G1) and its corresponding maximum
matching C(M1) as above. Then, given any house hj ∈ H, any two clones of hj

in C(G1) have the same EOU label.

We now use Lemma 6 to obtain an EOU labelling of the nodes in G1. Clearly,
in view of Lemma 6, a well-defined EOU labelling of hj ∈ H can be obtained by
letting hj inherit its EOU label from those of its clones. That is, we say that hj

is even, odd or unreachable in G1 if its clones are even, odd or unreachable in
C(G1) respectively. It is immediate that each agent can inherit its EOU label in
G1 from its corresponding label in C(G1). The next result is a consequence of
Lemma 6 (see [9] for the proof).

Lemma 7. Let M be a popular matching in I. Then every odd or unreachable
house hj ∈ H satisfies |M(hj)| = cj and M(hj) ⊆ f(hj).

Lemmas 6 and 7 give us the following analogue of Lemma 3.2 from [3] for CHAT.

Lemma 8. Let G1 be the first-choice graph in I and let M1 be a maximum
matching in G1. Define E, O and U to be the node sets corresponding to even,
odd and unreachable nodes in an EOU labelling of G1 with respect to M1. Then:

(a) The sets E, O and U are pairwise disjoint. Every maximum matching in G1
partitions the nodes into the same sets of even, odd and unreachable nodes.

(b) Every maximum matching M in G1 satisfies the following properties:
(i) every odd agent is matched to an even house in M ;
(ii) every odd house is full in M and matched only to even agents in M ;
(iii) every unreachable agent is matched to an unreachable house in M ;
(iv) every unreachable house is full in M and matched only to unreachable

agents in M ;
(v) |M | = |OA| + |UA| +

∑
hj∈OH

cj, where UA is the set of unreachable
agents, OA is the set of odd agents and OH is the set of odd houses.

(c) No maximum matching in G1 contains an edge between two nodes in O or
a node in O with a node in U . There is no edge in G1 connecting a node in
E with a node in U , or between two nodes of E.

We are now in a position to define s(ai), the set of houses such that, in a
popular matching M , if ai ∈ A is matched in M and M(ai) /∈ f(ai), then
M(ai) ∈ s(ai). We will ensure that any odd or unreachable house hj is not a
member of s(ai), since |M(hj)| = cj and M(hj) ⊆ f(hj) by Lemma 7. Hence,
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we define s(ai) to be the set of highest-ranking houses in ai’s preference list that
are even in G1. Any such house is called an s-house. Clearly, it is possible that
|s(ai)| > 1, however, ai is indifferent between all houses in s(ai). Furthermore,
s(ai) �= ∅ due to the existence of last resort houses which are of degree 0 in G1
(and thus even). However, f(ai) and s(ai) need not be disjoint. It turns out that
Lemmas 2 and 3 also extend to CHAT as established by the following lemmas
(see [9] for the proofs).

Lemma 9. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house between f(ai) and s(ai) on ai’s preference list.

Lemma 10. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house worse than s(ai) on ai’s preference list.

As was the case with CHA, we can also define a subgraph G′ for the CHAT
instance I by this time letting G′ contain only edges from each agent ai to houses
in f(ai) ∪ s(ai). Clearly, all popular matchings must be agent-complete in G′ in
view of last resort houses. However, an agent-complete matching need not exist
if s(ai) �= {l(ai)} for some agent ai. Lemmas 5, 9 and 10 give rise to the following
characterisation of popular matchings in I.

Theorem 3. A matching M is popular in I if and only if

1. M ∩ E1 is a maximum matching in G1, and
2. M is an agent-complete matching in the subgraph G′.

Proof. By Lemmas 5, 9 and 10, any popular matching necessarily satisfies Con-
ditions 1 and 2. We now show that these conditions are sufficient.

Let M be any matching satisfying Conditions 1 and 2. Suppose for a contra-
diction that M ′ is a matching that is more popular than M . Let ai be any agent
that prefers M ′ to M . Since ai prefers M ′(ai) to M(ai), M is an agent-complete
matching in G′, and G′ only contains edges from ai to f(ai) ∪ s(ai), it follows
that M(ai) ∈ s(ai), and f(ai) and s(ai) are disjoint. Hence, M ′(ai) must be an
odd or unreachable house in G1, as M(ai) is the highest-ranked even house in
ai’s preference list.

Let hj1 = M ′(ai). Since hj1 is odd or unreachable, it follows by Condition
1 and Lemma 8(b) that |M(hj1)| = cj1 and M(hj1) ⊆ f(hj1). Now since ai ∈
M ′(hj1)\M(hj1), there exists a distinct agent ak1 ∈ M(hj1)\M ′(hj1). If ak1 is
unmatched in M ′ or M ′(ak1) /∈ f(ak1), then ak1 prefers M to M ′. Otherwise,
suppose M ′(ak1) ∈ f(ak1). Let hj2 = M ′(ak1). Clearly, ak1 is even or unreachable
so that hj2 must be odd or unreachable. It follows by Condition 1 and Lemma
8(b) that |M(hj2)| = cj2 and M(hj2) ⊆ f(hj2). Hence, there exists an agent
ak2 �= ak1 such that ak2 ∈M(hj2)\M ′(hj2) and hj2 ∈ f(ak2). If ak2 is unmatched
in M ′ or M ′(ak2) /∈ f(ak2), then ak2 prefers M to M ′. Otherwise, suppose
that M ′(ak2) ∈ f(ak2). Let hj3 = M ′(ak2). Then there exists an agent ak3 ∈
M(hj3)\M ′(hj3) by a similar argument for ak2 . Note that possibly hj3 = hj1 , but
we must be able to choose ak3 �= ak1 , for otherwise |M ′(hj1)| > |M(hj1)|, which
is a contradiction since |M(hj1)| = cj1 . Thus, ak3 is a distinct agent, so that
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1. Build subgraph G1=(A,H, E1), where E1={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)}.
2. Compute a maximum matching M1 of first-choice edges in G1.
3. Obtain an EOU labelling of G1 using C(G1) and C(M1).
4. Build subgraph G′=(A, H,E′), where E′={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai) ∪ s(ai)}.
5. Delete all edges in G′ connecting two odd nodes, or connecting an odd node with

an unreachable node. (This step does not delete an edge of M1.)
6. Find a maximum matching M in the reduced graph G′ by augmenting M1.
7. If M is not agent-complete in G′, then output “No popular matching exists”,

otherwise return M as a popular matching in I .

Fig. 3. Algorithm Popular-CHAT for finding a popular matching in CHAT

we can repeat the above argument to identify an alternating path P in which
houses need not be distinct, but agents are distinct. Clearly, P must terminate
at some agent akr as the number of agents are finite. Furthermore, it must be
the case that akr is unmatched in M ′ or M ′(akr ) /∈ f(akr ) so that for every ai

that prefers M ′ to M , there must exist a distinct akr that prefers M to M ′.
Finally, we note the uniqueness of akr . If there exists another agent a′i who

prefers M ′ to M , then we can build another alternating path – it is possible that
some of the houses are those already used in previous alternating paths such as
P . However, it must be the case (from our argument that ak3 is a distinct agent)
that we are always able to identify distinct agents not already used in previous
alternating paths, as each house on the path is odd or unreachable, and thus full
in M . Hence, M is popular in I. ��

Finding a Popular Matching. Theorem 3 leads to Algorithm Popular-CHAT
for finding a popular matching in I of CHAT or reporting that none exists, as
shown in Figure 3. The next lemma is an important step in establishing the
correctness of the algorithm.

Lemma 11. Algorithm Popular-CHAT constructs a matching M such that M∩
E1 is a maximum matching of G1.

Proof. (Sketch – see [9] for the full proof.) Firstly, we claim that only first-choice
edges are incident to odd nodes and unreachable houses in G′ at the end of Step
4, using our definition of s-houses and Lemma 8(b). Define a second-choice edge
as belonging to the edge set {(ai, hj) ∈ E′ : hj ∈ s(ai)∧ s(ai) �⊆ f(ai)}. By the
claim, and by Lemma 8(c), the only first-choice edges in G′ after Step 5 are those
between (i) odd agents and even houses, (ii) even agents and odd houses, and
(iii) unreachable agents and unreachable houses; the only second-choice edges
are those between (i) even agents and even houses, and (ii) unreachable agents
and even houses. Moreover no edge of M1 is deleted by Step 5 of the algorithm.
It follows that in Step 6, odd agents must remained matched to their first-choice
houses, and by an argument involving alternating paths, unreachable agents
cannot become worse off. Only even agents may become worse off, so that at
least |OA|+ |UA|+

∑
hj∈OH

cj first-choice edges are matched in the matching M .
It thus follows by Lemma 8(b) that M ∩E1 is a maximum matching of G1. ��
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Hence if Algorithm Popular-CHAT returns a matching M , then M is both an
agent-complete matching in G′ and M ∩ E1 is a maximum matching of G1 by
Lemma 11. Hence M is a popular matching in I by Theorem 3.

We now consider the complexity of Algorithm Popular-CHAT. Let F be the
number of first-choice edges in G, and let cmax = max{cj : hj ∈ H}; then cmax ≤
n1. Clearly G1 can be constructed in O(F +n2) time. We use Gabow’s algorithm
[5] to compute a maximum matching M1 in G1 in O(

√
CF ) time. We next use

C(M1) in C(G1) to compute an EOU labelling of G1. The total number of edges
in C(G1) is O(cmaxF ). We first use a pre-processing step to label each unmatched
agent and each undersubscribed house as even. Clearly, this step takes O(n) time.
Next, breadth-first search may be used on C(G1) to search for alternating paths
with respect to C(M1), building up odd or even labels for every node encoun-
tered. This step labels all odd and even (matched) agents, and all odd and even
(full) houses and takes O(cmaxF + n2) time. Any remaining unlabelled nodes
must be unreachable and we can directly label these nodes in G1 in O(n) time.
Thus, the total time complexity of this step is O(cmaxF + n2) = O(n1F + n2).
The EOU labelling of G1 is then used to construct G′ and to delete certain edges
from G′ at Steps 4 and 5 of the algorithm, both of which take O(m) time overall.

Finally, we use Gabow’s algorithm again to obtain the maximum matching M
in G′ in O(

√
C(F + S)) time, where S is the number of second-choice edges in

G′. The following result gives the overall run-time of Algorithm Popular-CHAT.

Lemma 12. Given an instance of CHAT, we can find a popular matching, or
determine that none exists, in O((

√
C + n1)m) time.

It now remains to consider the problem of finding a maximum popular match-
ing in I. The aim is to find a matching that satisfies the conditions of Theorem
3 and that minimises the number of agents who are matched to their last re-
sort houses. We begin by firstly using Algorithm Popular-CHAT to compute a
popular matching M in I, assuming such a matching exists. Then M ∩ E1 is a
maximum matching in G1. We remove all edges in G′ (and thus from M) that
are incident to a last resort house. Clearly, M still satisfies the property that
M ∩ E1 is a maximum matching in G1, but M need not be maximum in G′ if
agents become unmatched as a result of the edge removals. Thus, we obtain a
new maximum matching M ′ from M by using Gabow’s algorithm on G′ again.
If M ′ is not agent-complete in G′, we simply assign any agent who remains un-
matched in M ′ to their last resort house to obtain an agent-complete matching.
Using an argument similar to that in the proof of Lemma 11, it follows that
M ′∩E1 is a maximum matching of G1. Thus, M ′ is a maximum popular match-
ing in I. Clearly the overall complexity of this approach is as for Algorithm
Popular-CHAT, giving the following result.

Theorem 4. Given an instance of CHAT, we can find a maximum popular
matching, or report that no such matching exists, in O((

√
C + n1)m) time.

We may compare the complexity of our direct approach for CHAT to that
obtained using cloning on I together with the algorithm of [3] on the cloned
instance of I. As in Section 2, the latter approach takes Ω(

√
Cm′ + C) time,
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where m′ =
∑

ai∈A

∑
hj∈Ai

cj . The complexity of Algorithm Popular-CHAT may

be rewritten as O(
√
Cm + mF + C), where mF =

∑
ai∈A

∑
hj∈f(ai) cj . Clearly

mF ≤ m′. Since m′ ≥ mcmin, the first term in the complexity function of the
cloning method is slower than the first term in that of Algorithm Popular-CHAT
by a factor of Ω(cmin), which is Ω(n1) if cj = Ω(n1) for each hj ∈ H .

4 Concluding Remarks

We conclude with the following open problem. Suppose that we are presented
with an instance J of CHA or CHAT in which the houses have preferences over
the agents. Real-life applications of such a problem exist in many centralised
matching markets such as the National Resident Marketing Program (NRMP)
[12] and counterpart schemes in Canada and Scotland. Then, what is the com-
plexity of finding a maximum popular matching in J if one exists?
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Abstract. In recent years wavelet based synopses were shown to be ef-
fective for approximate queries in database systems. The simplest wavelet
synopses are constructed by computing the Haar transform over a vec-
tor consisting of either the raw-data or the prefix-sums of the data, and
using a greedy-heuristic to select the wavelet coefficients that are kept
in the synopsis. The greedy-heuristic is known to be optimal for point
queries w.r.t. the mean-squared-error, but no similar efficient optimality
result was known for range-sum queries, for which the effectiveness of
such synopses was only shown experimentally.

We construct an operator that defines a norm that is equivalent to
the mean-squared error over all possible range-sum queries, where the
norm is measured on the prefix-sums vector. We show that the Haar
basis (and in fact any wavelet basis) is orthogonal w.r.t. the inner prod-
uct defined by this novel operator. This allows us to use Parseval-based
thresholding, and thus obtain the first linear time construction of a prov-
ably optimal wavelet synopsis for range-sum queries. We show that the
new thresholding is very similar to the greedy-heuristic that is based on
point queries.

For the case of range-sum queries over the raw data, we define a
similar operator, and show that Haar basis is not orthogonal w.r.t. the
inner product defined by this operator.

1 Introduction

In recent years there has been increasing attention to the development and study
of data synopses, as effective means for addressing performance issues in massive
data sets. Data synopses are concise representations of data sets, that are meant
to effectively support approximate queries to the represented data sets [5]. A
primary constraint of a data synopsis is its size. The effectiveness of a data
synopsis is measured by the accuracy of the answers it provides, as well as
by its response time and its construction time. Several different synopses were
introduced and studied, including random samples, sketches, and different types
of histograms. Recently, wavelet-based synopses were introduced and shown to
be a powerful tool for building effective data synopses for various applications,
including selectivity estimation for query optimization in DBMS, approximate
query processing in OLAP applications and more (see [13, 21, 19, 20, 1, 2, 4, 3],
and references therein).
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The general idea of wavelet-based approximations is to transform a given
data vector of size N into a representation with respect to a wavelet basis (this
is called a wavelet transform), and approximate it using only M  N wavelet
basis vectors, by retaining only M coefficients from the linear combination that
spans the data vector (coefficients thresholding). The linear combination that
uses only M coefficients (and assumes that all other coefficients are zero) defines
a new vector that approximates the original vector, using less space. This is
called M -term approximation, which defines a wavelet synopsis of size M .

Wavelet Synopses. Wavelets were traditionally used to compress some data
set where the purpose was to reconstruct, in a later time, an approximation of
the whole data using the set of retained coefficients. The situation is a little dif-
ferent when using wavelets for building synopses in database systems [13, 21]: in
this case different portions of the data are reconstructed each time, in response
to user queries, and same portions of the data can be built several times in re-
sponse to different queries. Thus, when building wavelet synopses in database
systems, the approximation error is measured over queries, in contrast to the
standard wavelet-based approximation techniques, where the error is measured
over the data. Another aspect of the use of wavelet-based synopses is that due to
the large data-sizes in modern DBMS (giga-, tera- and peta-bytes), the efficiency
of building wavelet synopses is of primary importance. Disk I/Os should be min-
imized and non-linear-time algorithms may be unacceptable. Wavelet synopses
suggested in the database literature typically used the Haar wavelet basis due
to its simplicity.

Optimal Wavelet Synopses. The main advantage of transforming the data
into a representation with respect to a wavelet basis is that for data vectors
containing similar values, many wavelet coefficients tend to have very small val-
ues. Thus, eliminating such small coefficients introduces only small errors when
reconstructing the original data, resulting in a very effective form of lossy data
compression.

After the wavelet transform is done, the selection of coefficients that are re-
tained in the wavelet synopsis may have significant impact on the approximation
error. The goal is therefore to select a subset of M coefficients that minimizes
the approximation error. A subset that minimizes the approximation error for a
given error metric w.r.t. the given basis is called an optimal wavelet synopsis.

While there has been a considerable work on wavelet synopses and their appli-
cations [13, 21, 19, 20, 1, 2, 4, 3, 12], so far most known optimal wavelet synopses
are with respect to point queries [13, 21, 2, 4, 12, 15]. Additionally, some of them
are built in non-linear time.

Wavelet Synopses for Range-Sum Queries. A primary use of wavelet-
based synopses in DBMS is answering range-sum queries. For such synopses, the
approximation error is measured over the set of all possible range queries.

In the database literature (e.g., [13, 21, 19, 20]), two types of wavelet synopses
for range-sum queries were presented. One over raw data and the other one over
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the vector of prefix-sums of the data. In both cases, a range-sum query can be
expressed using point queries. In the prefix-sums case, the answer to a range
query is a difference between two point queries; in the raw-data case the answer
is a sum of all point queries in the range, or using a formula that depends on
about 2 logN queries for pre-specified hierarchical ranges.

Thus, the basic thresholding algorithms suggested in [13, 21] were based on
a greedy heuristic, that optimizes the synopsis w.r.t. point queries, based on
Parseval’s theorem. As for range-queries no efficient optimality result has been
known, the greedy-heuristic was selected for a lack of a better choice, and due
to the simplicity and efficiency of its implementation.

It seems that optimality over points would give especially good results for the
case of prefix-sums, where the answer to a range-query is a difference between
only two point queries. Moreover, note that if we are interested only in range
queries of the form d0:i, that is,

∑i
i=0 di, then the greedy-heuristic is optimal,

as a point query in this case is exactly a range query of the form d0:i. However,
it turns out that when using the greedy heuristic over prefix-sums for general
queries di:j , the mean-squared-error could be larger than the optimal error by a

factor of Θ
(√

N
)
, as shown in this paper (Thm. 4). Nevertheless, we show here

that a slight variation of the greedy heuristic is indeed an optimal thresholding
for the case of prefix-sums.

One optimality result for range-sum queries is mentioned in [6]; the authors
introduce an algorithm that computes optimal M -term wavelet synopses for
range-sum queries over prefix-sums in O

(
N (M logN)O(1)

)
time.

1.1 Contributions

As pointed out above, the greedy heuristic is based on applying the Parseval-
based thresholding, which is optimal for point queries, for the case of range-sum
queries. The reason we can rely on Parseval’s formula and get an (efficient)
optimal thresholding in the case of point queries, is because in this case the
Haar basis is orthogonal.

Our main goal is to be able to use a Parseval-based thresholding that is
optimal for range-sum queries. The main idea is to express the mean-squared-
error measured over (Θ

(
N2

)
) range-sum queries using an inner product defined

on the raw-data / prefix-sums vector (vectors of size N), and check whether the
Haar basis is still orthogonal in these cases. So far inner products were used
in a more conventional way, to define an Euclidean error between two vectors,
or a generalized Euclidean error (weigthed norm, see [12]). The main technical
contributions with respect to this approach are:

– We construct an operator that defines a norm that is equivalent to the mean-
squared error over all possible range-sum queries, where the norm is mea-
sured on the prefix-sums vector.

– We show that the Haar basis (and in fact any wavelet basis) is orthogonal
w.r.t. the inner product defined by this novel operator. This allows us to
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use Parseval-based thresholding, and thus obtain the first linear time, I/O
optimal, construction of a provably optimal wavelet synopsis.

– We show that the new thresholding is very similar to the greedy-heuristic
that is based on point queries.

– The synopsis is also an optimal enhanced wavelet synopsis. Enhanced wavelet
synopses are synopses that allow changing the values of their coefficients to
arbitrary values.

– For the case of range-sum queries over the raw data, we define a simi-
lar operator, and show that Haar basis is not orthogonal w.r.t. the inner
product defined by this operator, both analytically and experimentally. For
non-orthogonal bases no efficient optimal thresholding algorithm is known.
Additionally, our empirical proof demonstrates an anomaly when using a
non-orthogonal basis, where a larger synopsis may result with an increased
error.

The problem that is at the heart of the subject is the representation of a sym-
metric operator (the X matrix in this paper) in a wavelet basis. The deep math-
ematical question is: what kind of matrices are diagonal in a wavelet basis. This
is connected to the theory of Calderon-Zygmund operators which are sparse in
wavelet bases. For additional references, see [7, 14].

1.2 Paper Outline

In Sec. 2 we describe some basics regarding Parseval Formula and its use. In
Sec. 3 we describe the development of the optimal synopsis for prefix-sums.
We build the inner-product for the case of prefix-sums, and then construct the
optimal synopsis resulted from it. We then discuss the similarity and difference
between our optimal wavelet synopsis and the greedy-heuristic given in [13, 21].
In Sec. 4 we show the non-orthogonality of Haar basis for range queries in the
raw-data case. Conclusions are given in Sec. 5.

2 Optimal Thresholding in Orthonormal Bases

The efficient construction of optimal wavelet-synopses is commonly based on
Parseval’s formula.

2.1 Parseval’s Formula

Let V be a vector space, where v ∈ V is a vector and {u0, ..., uN−1} is an
orthonormal basis of V . We can express v as v =

∑N−1
i=0 αiui. Then

‖v‖2 =
N−1∑
i=0

α2
i (1)

An M -term approximation is achieved by representing v using a subset of
coefficients S ⊂ {α0, ..., αN−1} where |S| = M . The error vector is then e =
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i/∈S αiui. By Parseval’s formula, ‖e‖2 =

∑
i/∈S α2

i . This proves the following
theorem.

Theorem 1 (Parseval-based optimal thresholding). Let V be a vector
space, where v ∈ V is a vector and {u0, ..., uN−1} is an orthonormal basis of
V . We can represent v by {α0, ..., αN−1} where v =

∑N−1
i=0 αiui. Suppose we

want to approximate v using a subset S ⊂ {α0, ..., αN−1} where |S| = M  N .
Picking the M largest (in absolute value) coefficients to S minimizes the L2
norm of the error vector, over all possible subsets of M coefficients.

Given an inner-product, based on this theorem one can easily find an optimal
synopsis by choosing the largest M coefficients. In fact, we can use the Parseval-
based optimal thresholding even when using an orthogonal basis, as we can
normalize coefficients by multiplying them by the corresponding basis vectors
norms. Parseval-based thresholding can then be applied on the normalized coef-
ficients (see [13] for such usage). Thus, the main technical question with which
we are concerned in the rest of the paper is the orthogonality of the Haar basis
in specific cases of interest.

Note that in order to show a negative result, that is, that Thm. 1 cannot be
applied during the thresholding w.r.t. a given basis, it is sufficient to find an
inner product that defines the desired L2 norm, and show that the given basis
is not orthogonal w.r.t. this inner product. This relies on the fact that if a norm
is defined by some inner-product, then this inner-product is unique; that is, no
other inner-product defines the same norm.

Thus, if a basis is shown to be non-orthogonal w.r.t. an inner product 〈·, ·〉
whose norm is ‖ · ‖ =

√
〈·, ·〉, then it can be said to be non-orthogonal w.r.t. the

norm ‖ · ‖.

2.2 Optimality over Enhanced Wavelet Synopses

As our synopses are built w.r.t. an orthonormal basis, they are also enhanced
wavelet synopses (see [12]).

3 The Synopsis Construction

In this section we describe the development of our optimal synopsis. First we
define the mse error metrics by which we measure the approximation error over
range-sum queries (Sec. 3.1), denoted here as MSErange. Our goal is to effi-
ciently build a synopsis that minimizes MSErange. Our main idea is to define
our problem in terms of an inner product space by constructing a range-sum-
based inner product (Sec. 3.2), and to show that this inner product defines an
L2 norm that is equivalent, up to a constant positive factor, to MSErange, when
approximating a prefix-sums vector (Sec. 3.3). We then show that the Haar basis
(and in fact any wavelet basis) is orthogonal with respect to this inner product
and normalize it (Sec. 3.4). Next, we discuss the complexity of the algorithm
(Sec. 3.5). Finally we show the similarity to the greedy heuristic (Sec. 3.6).
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3.1 The Error Metrics for Range-Sum Queries

We define the error metrics by which the approximation error is measured. This
is the mean-squared-error (mse), measured over all possible range-sum queries.

Let D = (d0, ..., dN−1) be a sequence with N = 2j values. Let di be the i’th
data value, and let ql:r be the range query

∑r
i=l di. Let dl:r be the answer to

the range query ql:r and let d̂l:r be an approximated answer to the query ql:r.
The absolute error of the approximated answer is defined as |el:r| = |dl:r − d̂l:r|.
We can now define the mean-squared-error of any approximation that approxi-
mates all range-queries in some way. Such approximation defines a vector R̂ =(
d̂1:1, ..., d̂1:N , d̂2:2, ..., d̂2:N , ...., d̂N :N

)
. A vector of approximated answers defines

a vector of errors E = (e1:1, ..., e1:N , e2:2, ..., e2:N , ...., eN :N). The mse is defined
as:

MSErange

(
R̂
)

=
1

(N + 1)N/2

∑
i=1,...,Nj=i,...,N

e2
i:j

which is the sum of squared errors divided by the number of possible range-sum
queries. Note that typically the sum of squared errors was measured only over
point queries.

3.2 The Prefix-Sum Based (PSB) Inner Product

We want to approximate a data vector v ∈ RN where N = 2j . Our inner product,
called PSB inner product, would be defined by the following positive symmetric
bilinear form:

X =

⎛⎜⎜⎜⎜⎝
N −1 . . . −1

−1 N
. . .

...
...

. . . . . . −1
−1 . . . −1 N

⎞⎟⎟⎟⎟⎠ (2)

That is, 〈v, u〉X := vTXu where v, u ∈ RN .

3.3 Defining a Norm Based on the PSB Inner Product

Based on the PSB inner product we define the norm:

‖v‖X =
√
〈v, v〉X (3)

Lemma 1. Let P = (p1, ..., pN ) be a vector of prefix sums of the data. Let
P̂ = (p̂1, ..., p̂N) be a vector that approximates it, by which we answer range-sum
queries. Let Ep = (p1 − p̂1, ..., pN − p̂N) = (ep1 , ..., epN ) be the error vector. Let
R̂ be the vector of approximations of all range-sum queries, answered using P̂ .

Then,

‖Ep‖2X =
N (N + 1)

2
MSErange

(
R̂
)
.
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Proof. Let v ∈ RN where v = (v1, . . . , vN ). Then

‖v‖2X = 〈v, v〉X = vTXv =
∑
i,j

vi ·Xij · vj = ... =

N∑
i=1

v2
i +

N∑
i=2

(vi − v1)
2 +

N∑
i=3

(vi − v2)
2 + · · ·+ (vN − vN−1)

2

Now, let D = (d1, ..., dN ) be a vector of data values, which P = (p1, . . . , pN)
is the vector of its prefix-sums (pi =

∑i
i=1 di). Each range-sum query dl:r is

computed by dl:r = pr − pl−1 (p−1 is defined as 0 and is not part of the vector).
Therefore the absolute error of a specific range sum query approximation is:

|el:r| = |dl:r − d̂l:r| = | (pr − pl−1)− (p̂r − p̂l−1) | =

| (pr − p̂r)− (pl−1 − p̂l−1) | = |epr − ep(l−1) |

As a result

‖Ep‖2X = 〈Ep, Ep〉X =

N∑
i=1

e2
pi

+
N∑

i=2

(epi − ep1)
2 +

N∑
i=3

(epi − ep2)
2 + · · ·+

(
epN − ep(N−1)

)2 =

N∑
i=1

e2
1:i +

N∑
i=2

e2
2:i +

N∑
i=3

e2
3:i + · · ·+ e2

N :N =
N (N + 1)

2
MSErange

(
R̂
)

This concludes our proof.

Minimizing ‖Ep‖X is equivalent to minimizing the MSErange

(
R̂
)

norm, since
N(N+1)

2 is always positive and constant. By proving the Haar basis is orthogonal
with respect to the PSB inner product, we would be able to use Thm. 1: choosing
the M largest normalized coefficients to our synopses (where M is the space
limitation) would minimize ‖Ep‖X, and equivalently MSErange

(
R̂
)
.

3.4 Orthonormality of the Haar Basis with Respect to the PSB
Inner Product

In this section we show the orthonormality of the Haar basis w.r.t. the PSB
inner product. We show it in two stages. First we show that the Haar basis is
orthogonal w.r.t. the PSB inner product. Then we show how to normalize the
basis.

Theorem 2. The Haar basis is orthogonal with respect to the PSB inner
product.
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Proof. A basic algebraic fact is that if a basis H is orthogonal and diagonalises a
symmetric operator X , then it is still orthogonal for the dot product defined by
X . All that we need to show is that Haar basis diagonalises X . We use the fact
that the wavelet has one vanishing moment, so the mean of a wavelet is 0. Note
that X = (N + 1) Id − 1̄ · 1̄t, where Id is the identity matrix, 1̄ is the vector
filled with 1, and 1̄t is its transpose. 1̄ · 1̄t is the sum operator, which maps a
wavelet to 0. Thus each wavelet is an eigen-vector of the operator X , and so is
the constant function. Thus, Haar basis diagonlises X .

In fact, the same proof shows that any standard (not weighted, see [12]) wavelet
basis diagonalises X .

Corollary 1. Theorem 2 is valid for any standard wavelet basis.

As we have seen, the Haar basis is orthogonal with respect to our PSB inner
product. We normalize each basis vector in order to have an orthonormal basis.
For the first basis vector u1 = (1, . . . , 1) it is easy to verify that its norm is
‖u1‖X =

√
〈u1, u1〉X =

√
N . For any other basis vector v at level i its norm is

‖u‖X =
√

N
2i (N + 1). In order to normalize the basis, we divide each basis vector

by its norm. Transforming the basis w.r.t. the orthonotmal basis still takes linear
time.

3.5 Building the Optimal Synopsis

First, the algorithm transforms the vector of prefix-sums with respect to the
normalized Haar basis. Equivalently, the algorithm could transform the vector
w.r.t. the orthogonal Haar basis and then normalize the wavelet coefficients
(see [13]). The vector of prefix-sums, if not built yet, can be computed during
the wavelet transform. Computing the Haar wavelet transform takes linear time
using O(N/B) I/Os. Next, the algorithm chooses the largest M coefficients which
can be done in linear time using the M-approximate quantile algorithm [8]. Note
that although there are O(N2) range-sum queries, our algorithm didn’t use at
any stage the vector of all possible queries. It was described for the purpose of
analysis.

Based on Corollary 1, we can use the same construction for any wavelet basis.
The following theorem follows from our construction, together with Thm. 1 and
Thm. 2 (extended by Corollary 1):

Theorem 3. An optimal wavelet synopses for a vector of size N , which mini-
mizes the mse measured over all possible range-sum queries, can be constructed
in linear-time, using O(N/B) I/Os, for a disk block of size B.

3.6 Comparison Between the Optimal Thresholding and the Greedy
Heuristic

The greedy heuristic for wavelet-synopses thresholding is commonly described
as a two-stage process. First, the transform is computed w.r.t. the orthogonal
Haar basis, where all non-zero coordinates are ±1. Then, the coefficients are
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normalized to be the coefficients of the linear combination w.r.t. the normalized
basis (Sec. 2). We show that the greedy-heuristic thresholding is nearly identi-
cal to the optimal thresholding described in Thm. 3. Specifically, the resulting
synopses may defer in at most a single coefficient.

The greedy heuristic (see [13]) transforms the data with respect to the or-
thogonal Haar basis, and normalizes each coefficient as follows: a coefficient of a
vector at level i by multiplied by 1√

2i
. Suppose that we scale all the coefficients

of the greedy heuristic by multiplying them with the same factor
√

N (N + 1).
Clearly, the greedy thresholding will still select the same coefficients to be part
of the computed synopsis. Recall that the optimal synopsis computes the same
Haar transform, and normalizes each coefficient as follows: a coefficient of the
first basis vector is multiplied by

√
N , and any other coefficient is multiplied by√

N
2i (N + 1). As can be easily verified, except for the first coefficient, all coeffi-

cients in the optimal synopsis construction are identical to the scaled coefficients
in the greedy heuristic. Therefore, the only possible difference between the op-
timal synopsis and the standard synopsis (obtained by the greedy heuristic) is
a situation where the coefficient of v0 is included in the standard synopsis but
not in the optimal synopsis.

While the optimal synopsis and the standard synopsis are nearly identical,
the difference in their error can be significant in extreme situations:

Theorem 4. When using the greedy-heuristic that is based on point queries,
instead of the above optimal thresholding, the mean-squared-error might be
Θ

(√
N
)

times larger than the optimal error.

Proof. Consider a wavelet transform that results in the following coefficients,
normalized according to the greedy heuristic: [α0, . . . , αN−1] = [m,m,m,m,m−
1, ε, ε, . . . , ε] and suppose that we have a synopsis consisting of 4 coefficients.
The greedy heuristic would keep the first 4 coefficients, resulting with a mean-

squared-error of
√

(m− 1)2 + (N − 5) · ε2, which is Θ (m) for ε = O(1/
√
N).

The optimal algorithm would normalize the first coefficient to m√
N+1

, and conse-
quently not keep it in the synopsis, but instead keep in the synopsis the next 4 co-

efficients: m,m,m,m−1. The error in this case is
√(

m/
√
N + 1

)2
+ (N − 5) · ε2,

which is Θ
(
m/
√
N
)

for ε = O(1/
√
N); that is, smaller by a factor of Θ(

√
N)

than that of the standard greedy heuristic.

Comment: Vectors of prefix-sums tend to be monotone increasing in database-
systems, as in many cases the raw-data has non-negative values (for example in
selectivity estimation). In this case we should slightly change the proof so that
the wavelet coefficients would be of a non-decreasing vector. We would fix the
“small” coefficients to be ε, ..., ε, ε

2 , ...,
ε
2 ,

ε
4 , ..., according to their levels in the tree

(in level i the “ε” coefficient would be divided by 2i (i < logN). One can easily
verify that the resulting vector would be monotone non-decreasing, and yet the
wavelet coefficients are small enough, such that the proof stands.
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4 The Non-orthogonality of the Haar Basis over Raw
Data

In this section we define the inner product that corresponds to the mse when
answering range-sum queries over the raw data. We then show that the Haar
basis is not orthogonal with respect to this inner product. Consequently, the
Haar basis is non-orthogonal w.r.t. the desired norm and Parseval’s formula
cannot be applied for optimal thresholding. We prove the non-orthogonality in
two different ways. First we give an analytical proof, and then give a different,
empirical proof. The latter also demonstrates an anomaly when using a non-
orthogonal basis, where a larger synopsis may result with an increased error.

Lemma 2 (raw-data inner product). Let D = (d1, ..., dN ) be a data vector.
Let D̂ =

(
d̂1, ..., d̂N

)
be a vector that approximates the raw data, D, built using

the Haar-based wavelet synopsis. An answer to a range query dl:r is approximated
as d̂l:r =

∑r
i=l d̂i.

As above, define R̂ :=
(
d̂1:1, ..., d̂1:N , d̂2:2, ..., d̂2:N , ...., d̂N :N

)
. Denote:

Xl:r :=

⎛⎜⎜⎜⎜⎜⎝
1 . . . 1
...

. . .
...

1 . . . 1

⎞⎟⎟⎟⎟⎟⎠
l

r

and Xraw :=
∑

l=1,...,N r=l,...,N Xl:r. Let E=(e1, ..., eN )=
(
d1 − d̂1, ..., dN − d̂N

)
be the vector of errors. Then:

1. ETXrawE = N(N+1)
2 MSErange

(
R̂
)
.

2. 〈v, u〉Xraw := vTXrawu is an inner product.

Due to space limitations, the proof is omitted and can be found in the full pa-
per [11]. The proofs for non-orthogonality are briefly described here, and can also
be found in [11]. The basic idea of the analytical proof is to give a counter exam-
ple by choosing pairs of basis functions, and show their inner product 〈, 〉Xraw

is not 0. The basic idea of the empirical proof is to show an experiment where
adding a coefficient to a Haar wavelet synopsis increases ‖·‖Xraw . This is impossi-
ble for orthogonal bases, and thus the Haar basis is not orthogonal w.r.t. 〈, 〉Xraw .

5 Conclusions

In this paper we construct an operator that defines a norm that is equivalent to
the mean-squared error over all possible range-sum queries, where the norm is
measured on the prefix-sums vector. We show that the Haar basis (and in fact
any wavelet basis) is orthogonal w.r.t. the inner product defined by this novel



514 Y. Matias and D. Urieli

operator. This allows us to use Parseval-based thresholding, and thus obtain the
first linear time construction of a provably optimal wavelet synopsis for range-
sum queries. We show that the new thresholding is very similar to the greedy-
heuristic that is based on point queries. For the case of range-sum queries over
the raw data, we define a similar operator, and show that Haar basis is not
orthogonal w.r.t. the inner product defined by this operator. The problem that
is at the heart of the subject is the representation of a symmetric operator (the
X matrix in this paper) in a wavelet basis. The deep mathematical question is:
what kind of matrices are diagonal in a wavelet basis.

Recently, an interesting relationship was discovered [18] between our prefix-
sums based inner product and Lemma 3.1 from [16]. In their lemma, the authors
prove a proportion between the error for range queries in raw-data based his-
tograms, and the error for point queries in the corresponding prefix-sums based
histograms. Using a generalization of their lemma to an arbitrary error vector,
one can give an alternative proof, using probabilistic techniques, that our inner
product expresses the mean-squared error over all range-sum queries.

This paper leads to three interesting open problems. The first one is explor-
ing whether the prefix-sums X operator, and the operator-based inner-product
method used here, are applicable in other fields of approximation theory. The
second one is finding an optimal wavelet synopsis for range-sum queries over the
raw-data representation. We constructed the operator that defines the mean-
squared error over the raw data, but showed that Haar basis is not orthogonal
w.r.t. the inner-product defined by this operator. The third one is finding an
optimal workload-based wavelet synopsis for a workload of range queries. Recall
that effective, yet non-optimal workload-based synopses for range queries were
presented in [9, 17], and that efficient workload-based wavelet synopses for point
queries were given in [12].
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ing relationships to the literature on approximation theory and applicability to
a wider set of wavelet bases. We thank Leon Portman for helpful discussions,
and for his help with the τ -synopses system [10]. We thank Yariv Matia for his
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Abstract. We present a first constant performance guarantee for pre-
emptive stochastic scheduling to minimize the sum of weighted comple-
tion times. For scheduling jobs with release dates on identical parallel
machines we derive a policy with a guaranteed performance ratio of 2
which matches the currently best known result for the corresponding
deterministic online problem.

Our policy applies to the recently introduced stochastic online
scheduling model in which jobs arrive online over time. In contrast to
the previously considered nonpreemptive setting, our preemptive policy
extensively utilizes information on processing time distributions other
than the first (and second) moments. In order to derive our result we
introduce a new nontrivial lower bound on the expected value of an
unknown optimal policy that we derive from an optimal policy for the
basic problem on a single machine without release dates. This problem
is known to be solved optimally by a Gittins index priority rule. This
priority index also inspires the design of our policy.

1 Introduction

Stochastic scheduling problems have attracted researchers for about four decades,
see e.g. [20]. A full range of articles concerns criteria that guarantee the opti-
mality of simple policies for special scheduling problems. Only recently research
interest has also focused on approximative policies [18, 26, 15, 21] for nonpreemp-
tive scheduling. We are not aware of any approximation results for preemptive
problems. Previous approaches, based on linear programming relaxations, do not
seem to carry over to the preemptive setting. In this paper, we give a first ap-
proximation result for preemptive stochastic scheduling to minimize the weighted
sum of completion times. We prove an approximation guarantee of 2 even in the
recently introduced more general model of stochastic online scheduling [15, 4].
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This guarantee matches exactly the currently best known approximation result
for the deterministic online version of this problem [14].

Problem definition. Let J = {1, 2, . . . , n} be a set of jobs which must be sched-
uled on m identical parallel machines. Each of the machines can process at most
one job at a time, and any job can be processed by no more than one machine at
a time. Each job j has associated a positive weight wj and an individual release
date rj ≥ 0 before which it is not available for processing. We allow preemption
which means that the processing of a job may be interrupted and resumed later
on the same or another machine.

The stochastic component in the model we consider is the uncertainty about
processing times. Any job j must be processed for P j units of time, where P j

is a random variable. By E [P j ] we denote the expected value of the process-
ing time of job j and by pj a particular realization of P j . We assume that all
random variables of processing times are stochastically independent and follow
discrete probability distributions. With the latter restriction and a standard
scaling argument, we may assume w.l.o.g. that P j attains integral values in the
set Ωj ⊆ {1, 2, . . . ,Mj} and that all release dates are integral. The sample space
of all processing times is denoted by Ω = Ω1 × · · · ×Ωn.

The objective is to schedule all jobs so as to minimize the total weighted com-
pletion time of the jobs,

∑
j∈J wjCj , in expectation, where Cj denotes the com-

pletion time of job j. Adopting the well-known three-field classification scheme
by Graham et al. [8], we denote the problem by P | rj , pmtn |E [

∑
wjCj ].

The solution of a stochastic scheduling problem is not a simple schedule, but a
so-called scheduling policy. We follow the notion of scheduling policies as proposed
by Möhring, Radermacher, and Weiss [17]. Roughly spoken, a scheduling policy
makes scheduling decisions at certain decision time points t, and these decisions
are based on information on the observed past up to time t, as well as the a
priori knowledge of the input data of the problem. The policy, however, must
not anticipate information about the future, such as the actual realizations pj

of the processing times of the jobs that have not yet been completed by time t.
Additionally, we restrict ourselves to so-called online policies, which learn

about the existence and characteristics of a job only at its individual release date.
This means for an online policy that it must not anticipate the arrival of a job at
any time earlier than its release date. At this point in time, the job with its pro-
cessing time distribution and weight is revealed. Thus, our policies are required to
be online and non-anticipatory. However, an optimal policy can be offline as long
as it is non-anticipatory. We refer to Megow, Uetz, and Vredeveld [15] for a more
detailed discussion on stochastic online policies. In this paper, we concentrate on
(online) approximation policies. As suggested in [15] we use a generalized def-
inition of approximation guarantees from the stochastic scheduling setting [17].

Definition 1. A (online) stochastic policy Π is a ρ-approximation, for some
ρ ≥ 1, if for all problem instances I,

E [Π(I) ] ≤ ρE [opt(I) ] ,
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where E [Π(I) ] and E [opt(I) ] denote the expected values that the policy Π
and an optimal non-anticipatory offline policy, respectively, achieve on a given
instance I. The value ρ is called performance guarantee of policy Π.

Previous work. Stochastic scheduling has been considered for more than 30
years. Some of the first results on preemptive scheduling that can be found
in literature are by Chazan, Konheim, and Weiss [2] and Konheim [11]. They
formulated sufficient and necessary conditions for a policy to solve optimally
the single machine problem where all jobs become available at the same time.
Later Sevcik [24] developed an intuitive method for creating optimal schedules
(in expectation). He introduces a priority policy that relies on an index which
can be computed for each job based on the properties of a job, but not on other
jobs.

Gittins [6] showed that this priority index is a special case of his Gittins
index [6, 7]. Later in 1995, Weiss [30] formulated Sevcik’s priority index again
in terms of the Gittins index and names it a Gittins index priority policy. He
also provided a different proof of the optimality of this priority policy, based on
the work conservation invariance principle. Weiss covers a more general problem
than the one considered here and in [2, 11, 24]: The holding costs (weights) of
a job are not deterministic constants, but may vary during the processing of a
job. At each state these holding costs are random variables.

For more general scheduling problems with release dates and/or multiple ma-
chines, no optimal policies are known. Instead, literature reflects a variety of
research on restricted problems as those with special probability distributions
for processing times or special job weights [1, 29, 19, 5, 9, 30].

For the parallel machine problem without release dates it is worthwhile to
mention that Weiss [30] showed that the Gittins index priority policy above is
asymptotically optimal and has a turnpike property, which means that there is
a bound on the number of times that the policy differs from an optimal policy.

Optimal policies have only been found for a few special cases of stochastic
scheduling problems. Already the deterministic counterpart of the scheduling
problem we consider, is well-known to be NP-hard, even in the case that there is
only a single processor or if all release dates are equal [12, 13]. Therefore, recently
attempts have been made on obtaining approximation algorithms which have
been successful in the nonpreemptive setting. Möhring, Schulz, and Uetz [18]
derived first constant-factor approximations for the nonpreemptive problem with
and without release dates. They were improved later by Megow et al. [15] and
Schulz [21] for a more general setting. Skutella and Uetz [26] complemented
the first approximation results by constant-approximative policies for scheduling
with precedence constraints. In general, all given performance guarantees for
nonpreemptive policies depend on a parameter defined by expected values of
processing times and the coefficients of variation.

In contrast to stochastic scheduling, in a deterministic online model is assumed
that no information about any future job arrival is available. However, once a
job arrives, its weight and actual processing time become known immediately.
The performance of online algorithms is typically assessed by their competitive
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ratio [10, 27]. An algorithm is called ρ-competitive if it achieves for any instance
a solution with a value at most ρ times the value of an optimal offline solution.

In this deterministic online model, Sitters [25] gave a 1.56-competitive algo-
rithm for preemptive scheduling on a single machine. This is the currently best
known result and it improved upon an earlier result by Schulz and Skutella [22];
they generalized the classical Smith rule [28] to the problem of scheduling jobs
with individual release dates and achieved a competitive ratio of 2. This algo-
rithm has been generalized further to the multiple machine problem without loss
of performance by Megow and Schulz [14]. As far as we know, there is no ran-
domized online algorithm known with a provable competitive ratio less than 2
for this problem. In contrast, Schulz and Skutella [23] provide a 4/3-competitive
algorithm for the single machine problem.

Recently, the stochastic scheduling model as we consider it in this paper
has been investigated; all obtained results which include asymptotic optimal-
ity [4] and approximation guarantees for deterministic [15] and randomized poli-
cies [15, 21] address nonpreemptive scheduling.

Our contribution. We derive a first constant performance guarantee for preemp-
tive stochastic scheduling. For jobs with general processing time distributions
and individual release dates, we give a 2-approximation policy for multiple ma-
chines. This performance guarantee matches the currently best known result in
deterministic online scheduling although we consider a more general model. In
comparison to the previously known results in this model in a nonpreemptive set-
ting, our result stands out by being constant and independent of the probability
distribution of processing times.

In general our policy is not optimal. However, on restricted problem instances
it coincides with policies whose optimality is known. If processing times are ex-
ponentially distributed and release dates are absent, our policy coincides with
the Weighted shortest expected processing time (WSEPT) rule. This classical
policy is known to be optimal if all weights are equal [1] or, more general, if they
are agreeable, which means that for any two jobs i, j holds that E [P i ] < E [P j ]
implies wi ≤ wj [9]. If only one machine is available, we solve the weighted prob-
lem 1 | pmtn |E [

∑
wjCj ] optimally by utilizing the Gittins index priority pol-

icy [11, 24, 30]. Moreover, Pinedo showed in [19] that in presence of release dates
the WSEPT rule is optimal if all processing times are exponentially distributed.

Our result is based on a new nontrivial lower bound for the preemptive
stochastic scheduling problem. This bound is derived by borrowing ideas for
a fast single machine relaxation from Chekuri et al. [3]. The crucial ingredient
to our result is then the application of a Gittins index priority policy which is
optimal to a relaxed version of our fast single machine relaxation.

2 A Gittins Index Priority Policy

As mentioned in the introduction, a Gittins index priority policy solves the single
machine problem with trivial release dates to optimality, see [11, 24, 30]. This
result is crucial for the approximation result we give in this paper; it inspires
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the design of our policy and it serves as a tool for bounding the expected value
of an unknown optimal policy for the more general problem that we consider.
Therefore, we introduce in this section the Gittins index priority rule and some
useful notation.

Given that a job j has been processed for y time units, we define the expected
investment of processing this job for q time units or up to completion, which
ever comes first, as

Ij(q, y) = E [ min{P j − y, q} |P j > y ] .

The ratio of the weighted probability that this job is completed within the next q
time units over the expected investment, is the basis of the Gittins index priority
rule. Therefore, we define this as the rank of a sub-job of length q of job j, after
it has completed y units of processing:

Rj(q, y) =
wjPr [P j − y ≤ q |P j > y]

Ij(q, y)
.

For a given (unfinished) job j and attained processing time y, we are interested
in the maximal rank it can achieve. We call this the Gittins index, or rank, of
job j, after it has been processed for y time units.

Rj(y) = max
q∈R+

Rj(q, y).

The length of the sub-job achieving the maximal rank is denoted as

qj(y) = max{ q ∈ R+ : Rj(q, y) = Rj(y) }.

With these definitions, we define the Gittins index priority policy.

Algorithm 1. Gittins index priority policy (Gipp)

At any time t, process an unfinished job j with currently highest
rank Rj(yj(t)), where yj(t) denotes the amount of processing that has been
done on job j by time t. Break ties by choosing the job with the smallest job
index.

Theorem 1 ([11, 24, 30]). The Gittins index priority policy (Gipp) solves the
preemptive stochastic scheduling problem 1 | pmtn |E [

∑
wjCj ] optimally.

The following properties of the Gittins indices and the lengths of sub-jobs achiev-
ing the Gittins index are well known, see [7, 30]. In parts, they have been derived
earlier in the scheduling context by [11] and [24].

Proposition 1 ([7, 30]) Consider a job j that has been processed for y time
units. Then, for any 0 < γ < qj(y) holds

Rj(y) ≤ Rj(y + γ) , (1)
qj(y + γ) ≤ qj(y)− γ , (2)

Rj(y + qj(y)) ≤ Rj(y) . (3)
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Let us denote the sub-job of length qj(y) that causes the maximal rank Rj(y),
a quantum of job j. We now split a job j into a set of nj quanta, denoted by
tuples (j, i), for i = 1, . . . , nj. The processing time yji that a job j has attained
up to a quantum (j, i) and the length of each quantum, qji, are recursively
defined as yj1 = 0, qji = qj(yji), and yj,i+1 = yj,i + qji. By Proposition 1(1), we
know that, while processing a quantum, the rank of the job does not decrease,
whereas Proposition 1(3) and the definition of qj(y) tell us that the rank is
strictly lower at the beginning of the next quantum. Hence, once a quantum has
been started Gipp will process it for its complete length or up to the completion
of the job, whatever comes first. Thus, a job is preempted only at the end of a
quantum. Obviously, the policy Gipp processes job quanta nonpreemptively in
non-increasing order of their ranks.

Based on the definitions above, we define the set H(j, i) of all quanta that
preceed quantum (j, i) in the Gipp order. LetQ be the set of all quanta, i. e., Q =
{(k, l) | k = 1, . . . , n, l = 1, . . . , nk }, then

H(j, i)={(k, l)∈Q |Rk(ykl)>Rj(yji)}∪{(k, l) ∈ Q |Rk(ykl)=Rj(yji) ∧ k ≤ j} .

As the Gittins index of a job is decreasing with every finished quantum 1(3),
we know that H(j, h) ⊆ H(j, i), for h ≤ i. In order to uniquely relate higher
priority quanta to one quantum of a job, we introduce the notation H ′(j, i) =
H(j, i) \H(j, i − 1), where we define H(j, 0) = ∅. Note that the quantum (j, i)
is also contained in the set of its higher priority quanta H ′(j, i). In the same
manner, we define the set of lower priority quanta as L(j, i) = Q \H(j, i).

With these definitions and the observations above we can give a closed formula
for the expected objective value of Gipp.

Lemma 2. The optimal policy for the scheduling problem 1 | pmtn |E [
∑

wjCj ],
Gipp, achieves the expected objective value of

E [Gipp ] =
∑

j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl).

Proof. Consider a realization of processing times p ∈ Ω and a job j. Let ip be the
index of the quantum in which job j finishes, i. e., yjip < pj ≤ yjip + qjip . The
policy Gipp processes quanta of jobs that have not completed nonpreemptively
in non-increasing order of their ranks. Hence,

Cj(p) =
∑

(k,l)∈H(j,ip) : pk>ykl

min{qkl, pk − ykl} . (4)

For an event E , let χ(E) be an indicator random variable which equals 1 if and
only if the event E occurs. The expected value of χ(E) equals then the probability
with that the event E occurs, i. e., E [χ(E) ] = Pr [E ] . Additionally, we denote
by ξkl the special indicator random variable for the event P k > ykl.

We take expectations on both sides of equation (4) over all realizations. This
yields
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E [ Cj ] = E

⎡⎣ ∑
h:yjh<Pj≤yj,h+1

∑
(k,l)∈H(j,h):Pk>ykl

min{qkl, P k − ykl}
⎤⎦

= E

⎡⎣ nj∑
h=1

χ(yjh < P j ≤ yj,h+1)
∑

(k,l)∈H(j,h)

ξkl ·min{qkl, P k − ykl}
⎤⎦

= E

⎡⎣ nj∑
h=1

χ(yjh < P j ≤ yj,h+1)
h∑

i=1

∑
(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}
⎤⎦

= E

⎡⎣ nj∑
i=1

nj∑
h=i

χ(yjh < P j ≤ yj,h+1)
∑

(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}
⎤⎦

= E

⎡⎣ nj∑
i=1

χ(yji < P j)
∑

(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}
⎤⎦

= E

⎡⎣ nj∑
i=1

ξji

∑
(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}
⎤⎦ . (5)

The equalities follow from an index rearrangement and the facts that H(j, h) =
∪h

i=1H
′(j, i) for any h and that nj is an upper bound on the number of quanta

of job j.
For jobs k �= j, the processing times P j and P k are independent random

variables and thus, the same holds for their indicator random variables ξji and ξkl

for any i, l. Using linearity of expectation, we rewrite (5) as

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

E [ ξji · ξkl ·min{qkl, P k − ykl} ]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

∑
x

x · Pr [ξji = ξkl = 1 ∧min{qkl, P k − ykl} = x]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

∑
x

x · Pr [ξji = ξkl = 1] · Pr [min{qkl, P k − ykl} = x | ξkl = 1]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · E [ min{qkl, P k − ykl} |P k > ykl ]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl) ,

where the third equality follows from conditional probability and the fact that
either j �= k, thus ξji and ξkl are independent, or (j, i) = (k, l) and thus the
variables ξji and ξkl are the same. Weighted summation over all jobs concludes
the proof. ��



Approximation in Preemptive Stochastic Online Scheduling 523

3 A New Lower Bound on Parallel Machines

For the scheduling problem P | rj , pmtn |E [
∑

wjCj ] and most of its relaxations,
optimal offline policies and the corresponding expected objective values are un-
known. Therefore, we use lower bounds on the optimal value in order to compare
the expected outcome of a policy with the expected outcome E [opt ] of an un-
known optimal policy opt. The trivial bound E [opt ] ≥

∑
j wj( rj + E [P j ] ) is

unlikely to suffice proving constant approximation guarantees. However, we are
not aware of any other bounds known for the general preemptive problem. LP-
based approaches as they are used in the non-preemptive setting [18, 26, 4, 15, 21]
do not transfer directly.

We derive in this section a new non-trivial lower bound for preemptive stochas-
tic scheduling on parallel machines. We utilize the knowledge of Gipp’s optimal-
ity for the single machine problem without release dates, see Theorem 1. To do
so, we show first that the fast single machine relaxation introduced in determin-
istic online environment [3] applies in the stochastic setting as well.

Lemma 3. Denote by I an instance of the problem P | rj , pmtn |E [
∑

wjCj ],
and let I ′ be the same instance to be scheduled on a single machine of speed m
times the speed of the machines used for scheduling instance I. The optimal single
machine policy opt1 yields an expected value E [opt1(I ′) ] on instance I ′. Then,
for any parallel machine policy Π holds

E [Π(I) ] ≥ E [opt1(I ′) ] .

Proof. Given a parallel machine policy Π , we provide a policy Π ′ for the fast
single machine that yields an expected objective value E [Π ′(I ′) ] ≤ E [Π(I) ]
for any instance I. Then the lemma follows since an optimal policy opt1 on the
single machine yields an expected objective value E [opt1(I ′) ] ≤ E [Π ′(I ′) ].

We construct policy Π ′ by letting its first decision point coincide with the first
decision point of policy Π (the earliest release date). At any of its decision points,
Π ′ can compute the jobs to be scheduled by policy Π and due to the fact that
the processing times of all jobs are discrete random variables, it computes the
earliest possible completion time of these jobs, in the parallel machine schedule.
The next decision point of Π ′, is the minimum of these possible completion times
and the next decision point of Π . Between two consecutive decision points of Π ′,
the policy schedules the same set of jobs that Π schedules, for the same amount
of time. This is possible as the single machine on which Π ′ operates works m
times as fast.

In this way, we ensure that all job completions in the parallel machine schedule
obtained by Π , coincide with a decision point of policy Π ′. Moreover, as Π ′

schedules the same set of jobs as Π between two decision points, any job that
completes its processing at a certain time t in the schedule of Π , will also be
completed by time t in the schedule of Π ′. ��

With this relaxation, we derive a lower bound on the expected optimal value.
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Theorem 2. The expected value of an optimal policy opt for the parallel ma-
chine problem I is bounded by

E [opt(I) ] ≥ 1
m

∑
j

wj

nj∑
i=1

∑
(k,
)∈H′(j,i)

Pr [P j > yji ∧ P k > yk
] · Ik(qk
, yk
) .

Proof. We consider the fast single machine instance I′ as introduced in the
previous lemma and relax it further to instance I′0 by setting all release dates
equal. By Theorem 1, the resulting problem can be solved optimally by Gipp.
With Lemma 3 we have then

E [opt(I) ] ≥ E [opt1(I ′) ] ≥ E [Gipp(I ′0) ] . (6)

By Lemma 2 we know

E [Gipp(I ′0) ] =
∑

j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr
[
P ′

j > y′ji ∧ P ′
k > y′kl

]
· I ′k(q′kl, y

′
kl), (7)

where the dashes indicate the modified variables in the fast single machine in-
stance I ′0. By definition holds P ′

j = P j/m for any job j as well as Pr [P j > x] =
Pr

[
P ′

j > x/m
]
, and the probability Pr [P j − y = x |P j > y] for the remaining

processing time after y units of processing remains the same on the fast ma-
chine. Moreover, the investment I ′j(q

′, y′) for any sub-job of length q′ = q/m of
job j ∈ I ′ after it has received y′ = y/m units of processing coincides with

I ′j(q
′, y′) = E

[
min{P ′

j − y′, q′} |P ′
j > y′

]
=

1
m

E [ min{P j − y, q} |P j > y ] =
1
m

Ij(q, y) .

We conclude that the partition of jobs into quanta in instance I immediately
gives the partition for the fast single machine instance I′. Each quantum (j, i)
of job j maximizes the rank Rj(q, yji) and thus q′ = q/m maximizes the rank
R′

j(q/m, y/m) = Rj(q, y)/m on the single machine; thus, the quanta are simply
shortened to an m-fraction of the original length, q′ji = qji/m and thus, y′ji =∑i−1

l=1 q′jl = yji/m.
Combining these observations with (6) and (7) yields

E [opt(I) ] ≥ 1
m

∑
j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl) .

��
Theorem 2 above and Lemma 2 imply immediately

Corollary 1. The lower bound on the optimal preemptive policy for parallel
machine scheduling on an instance I equals an m-fraction of the expected value
achieved by Gipp on the relaxed instance I0 without release dates but the same
processing times to be scheduled on one machine, i. e.,

E [opt(I) ] ≥ E [Gipp(I0) ]
m

. (8)
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4 A 2-Approximation on Parallel Machines

Simple examples show that Gipp is not an optimal policy for scheduling problems
with release dates and/or multiple machines. The following policy uses a modified
version of Gipp where the rank of jobs is updated only after the completion of
a quantum.

Algorithm 2. Follow Gittins Index Priority Policy (F-Gipp)

At any time t, process an available job j with highest rank Rj(yj,k+1),
where (j, k) is the last quantum of j that has completed, or k = 0 if no
quantum of job j has been completed.

Note, that the decision time points in this policy are release dates and any time,
when a quantum or a job completes. In contrast to the original Gittins index
priority policy, F-Gipp considers only the rank Rj(yji =

∑i−1
k=1 qjk) that a job

had before processing quanta (j, i) even if (j, i) has been processing for some
time less than qji. Informally speaking, the policy F-Gipp updates the ranks
only after quantum completions and then follows Gipp.

This policy applied to a deterministic scheduling instance coincides with the P-
WSPT rule by Megow and Schulz [14], which is a generalization of Smith’s
optimal nonpreemptive single machine algorithm [28] to the deterministic coun-
terpart of our scheduling problem without release dates. It has a competitive
ratio of 2, and we prove the same performance guarantee for the more general
stochastic online setting.

Theorem 3. The online policy F-Gipp is a deterministic 2-approximation for
the preemptive scheduling problem P | rj , pmtn |E [

∑
wjCj ].

Proof. This proof incorporates ideas from [14] applied to the more complex stochas-
tic setting. Fix a realization p ∈ Ω of processing times and consider a job j and its
completion time CF-Gipp

j (p). Job j is processing in the time interval [ rj , C
F-Gipp
j (p) ].

We split this interval into two disjunctive sets of sub-intervals, T (j, p) and T (j, p),
respectively. Let T (j, p) denote the set of sub-intervals in which job j is processing
and T (j, p) contains the remaining sub-intervals. Denoting the total length of all
intervals in a set T by |T |, we have

CF-Gipp
j (p) = rj + |T (j, p)|+ |T (j, p)| .

In intervals of the set T (j, p), no machine is idle and F-Gipp schedules only
quanta with a higher priority than (j, ip), the final quantum of job j. Thus
|T (j, p)| is maximized if all these quanta are scheduled between rj and CF-Gipp

j (p)
with an upper bound on the overall length of the total sum of quantum lengths
on m machines. The total length of intervals in T (j, p) is pj and it follows

CF-Gipp
j (p) ≤ rj + pj +

1
m
·

∑
(k,l)∈H(j,ip) :

pk>ykl

min{qkl, pk − ykl} .



526 N. Megow and T. Vredeveld

Weighted summation over all jobs and taking expectations on both sides give
with the same arguments as in Lemma 2:∑

j

wjE
[
CF-Gipp

j

]
≤

∑
j

wj ( rj + E [P j ] )

+
1
m
·
∑

j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ pk > ykl] · Ik(qkl, ykl) .

Finally, we apply the trivial lower bound E [opt ] ≥
∑

j wj(rj + E [P j ]) and
Theorem 2, and the approximation result follows. ��

In absence of release dates, our policy coincides with Gipp and is thus optimal
on a single machine (Theorem 1). Nevertheless, for general input instances the
approximation factor of 2 is best possible for F-Gipp which follows directly from
a deterministic worst-case instance in [14].

Concluding remarks. In a full version of our paper [16], we introduce a second
single machine policy, which deviates less from the original Gittins index priority
rule than F-Gipp does. Thus, we use more information on the actual state of
the set of known, unfinished jobs. This single machine policy can be immediately
extended to the parallel machine setting by randomized machine assignment. For
both policies, on the single and on multiple machines, we prove the performance
guarantee of 2. Clearly, this result does not improve the approximation guarantee
of of F-Gipp in the previous section. But, while the analysis of F-Gipp is tight,
we conjecture that the true approximation ratio of the new policy is less than 2.
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Abstract. The objective of this paper is to characterize classes of prob-
lems for which a greedy algorithm finds solutions provably close to op-
timum. To that end, we introduce the notion of k-extendible systems, a
natural generalization of matroids, and show that a greedy algorithm is a
1
k
-factor approximation for these systems. Many seemly unrelated prob-

lems fit in our framework, e.g.: b-matching, maximum profit scheduling
and maximum asymmetric TSP.

In the second half of the paper we focus on the maximum weight b-
matching problem. The problem forms a 2-extendible system, so greedy
gives us a 1

2 -factor solution which runs in O(m log n) time. We improve
this by providing two linear time approximation algorithms for the prob-
lem: a 1

2 -factor algorithm that runs in O(bm) time, and a
( 2

3 − ε
)
-factor

algorithm which runs in expected O
(
bm log 1

ε

)
time.

1 Introduction

Perhaps the most natural first attempt at solving any combinatorial optimization
problem is to design a greedy algorithm. The underlying idea is simple: we make
locally optimal choices hoping that this will lead us to a globally optimal solution.
Needless to say that such an algorithm may not always work, therefore a natural
question to ask is: for which class of problems does this approach work? A
classical theorem due to Edmonds and Rado answers this question; to state this
result we first need to define our problem more rigorously.

A subset system is a pair (E,L), where E is a finite set of elements and L

is a collection of subsets of E such that if A ∈ L and A′ ⊆ A then A′ ∈ L.
Sets in L are called independent, and should be regarded as feasible solutions of
our problem. Given a positive weight function w : E → R+ there is a natural
optimization problem associated with (E,L) and w, namely that of finding an
independent set of maximum weight. We want to study the following algorithm,
which from now on we simply refer to as Greedy: start from the empty solution
and process the elements in decreasing weight order, add an element to the
current solution only if its addition preserves independence.

A matroid is a subset system (E,L) for which the following property holds:

∀A,B ∈ L and |A| < |B| then ∃ z ∈ B \A such that A + z1 ∈ L
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Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 528–539, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Greedy in Approximation Algorithms 529

Matroids were first introduced by Whitney [24] as an abstraction of the notion
of independence from linear algebra and graph theory. Rado [21] showed that if
a given problem has the matroid property then Greedy always finds an optimal
solution. In turn, Edmonds [11] proved the other direction of the implication,
i.e., if Greedy finds an optimal solution for any weight function defined on the
elements then the problem must have the matroid property.

A rich theory of matroids exists, see [22, 18] for a thorough treatment of the
subject. Many generalizations along two main directions have been proposed.
One approach is to define a more general class of problems. Greedy no longer
works, therefore alternative algorithms must be designed; examples of this are
greedoids [15], two-matroid intersection [10], and matroid matching [17]. Another
approach is to study structures where Greedy finds optimal solutions for some,
but not all weight functions; symmetric matroids [7], sympletic matroids [6] and
the work of Vince [23] are along these lines.

Although different in nature, both approaches have the same objective in
mind: exact solutions. In this paper we study Greedy from the point of view
of approximation algorithms. Our main contribution is the introduction of k-
extendible systems, a natural generalization of matroids. We show that Greedy
is a 1

k -factor approximation for k-extendible systems.
Given a subset system (E,L), Korte and Hausman [14] showed that for the

maximization problem defined by (E,L), Greedy achieves its worst approxi-
mation ratio on 0-1 weight functions. Consider the 0-1 function wA defined as
wA(x) = 1 for x ∈ A and 0 otherwise. The cost of the solution Greedy finds,
comes from the elements in A the algorithm happens to pick, these elements
form an independent set which is maximal with respect to A. Let γA be the
ratio between the smallest and the largest maximal independent subsets of A.
Notice that γA is the worst greedy can do on wA. Let γ = minA⊆E γA. Korte
and Hausman showed that Greedy is a γ-factor approximation for (E,L).

While this result tells us how well Greedy performs on a particular system, in
some cases it may be difficult to establish γ for a given combinatorial problem—
which can be regarded as a class of systems, as every instance of the problem
defines a system. Our k-extendible framework better highlights the structure
of the problem and allows us to easily explain the performance of Greedy on
seemingly unrelated problems such as b-matching, maximum profit scheduling
and maximum asymmetric TSP. For some of these, an algorithm tailored to the
specific problem yields a better approximation ratio than that offered by Greedy.
This should not come as a surprise, after all Greedy is a generic algorithm that we
can try on nearly every problem. The goal of this paper is to characterize those
problems for which a simple greedy strategy produces nearly optimal solutions
and to better understand its shortcomings. Along these lines is the recent work by
Borodin et al. [5], who introduced the paradigm of priority algorithms, a formal
class of algorithms that captures most greedy-like algorithms. Lower bounds
on the approximation ratio any priority algorithm can achieve were derived for
scheduling [5], set cover, and facility location problems [1].
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In particular, our framework explains why Greedy produces 1
2 -approximate

solutions for b-matching. Given a graph G = (V,E) with n vertices and m
edges and degree constraints b : V → N for the vertices, a b-matching is a set of
edges M such that for all v ∈ V the number of edges in M incident to v, de-
noted by degM (v), is at most b(v). Polynomial time algorithms exist to solve the
problem optimally: A maximum size b-matching can be found in O(nm log n)
time and maximum weight in O

(∑
b(v)min(m logn, n2)

)
time; both results

are due to Gabow [12]. Greedy on the other hand produces approximate so-
lutions but has the advantage of being simple and much faster, running in just
O(m log n) time. This time savings can be further improved. For instance, for
maximum weight matching (the case where b(v) = 1 for all v) Preis [20] proposed
a 1

2 -approximation algorithm which runs in linear time. Drake et al. [9] designed
an alternative simpler algorithm that greedily finds disjoint heavy paths and
keeps the best of the two matchings defined on the path; the same authors in
later work [8] designed an algorithm with an approximation factor of 2

3−ε which
runs in O

(
m
ε

)
time. Finally, Pettie and Sanders [19] gave randomized and deter-

ministic algorithms with the same approximation guarantee of 2
3 − ε which run

in O(m log 1
ε ) time. We note that a better approximation ratio can be obtained

using local search [2] or the limited-backtrack greedy scheme of Arora et at [3],
albeit at a very high running time. The challenge here is to get a fast algorithm
with a good approximation guarantee.

In the second half of the paper we explore this tradeoff for b-matching and pro-
vide a 1

2 -approximation which runs in O(bm) time and a
( 2

3 − ε
)
-factor random-

ized algorithm that runs in expected O
(
bm log 1

ε

)
time, where b = maxu b(u).

Our algorithms build upon the work of [9] and [19]. The main difficulty in ex-
tending previous results to b-matching is the way the optimal solution and the
one produced by the algorithm are compared in the analysis. This was done by
taking the symmetric difference of the two, which for matchings yields a collec-
tion of simple paths and cycles. Unfortunately this does not work for b-matching,
a more careful pairing argument must be provided.

2 k-Extendible Systems

The following definitions are with respect to a given system (E,L) and a par-
ticular weight function. Let A ∈ L, we say B is an extension of A if A ⊆ B
and B ∈ L. We denote by OPT(A) an extension of A with maximum weight.
Note that OPT(∅) is an independent set with maximum weight.

Definition 1. The subset system (E,L) is k-extendible if for all C ∈ L and x /∈
C such that C +x ∈ L and for every extension D of C there exists a subset Y ⊆
D \ C with |Y | ≤ k such that D \ Y + x ∈ L.

Notice that if x ∈ D or C = D then the property holds trivially by letting Y = ∅,
therefore we do not need to consider these two cases in our proofs.

Our goal is to characterize problems for which a greedy algorithm will produce
good solutions. In Section 2.1 we show that Greedy is a 1

k -factor approximation
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for k-extendible systems. We also show a close relation between k-extendible
systems and matroids, starting with the following theorem:

Theorem 1. The system (E,L) is a matroid if and only if is 1-extendible.

Proof. First we prove the ⇒ direction: given sets C ⊂ D ∈ L and an element
x /∈ D we need to find Y such that D \ Y + x is independent. Set A = C + x
and B = D. If |A| = |B| then the two sets differ by one element, by setting
Y = B \A we get the k-extendible property. Otherwise we can repeatedly apply
the matroid property to add an element from B \ A to A until |A| = |B|.
Again Y = D \A has cardinality 1. Since D \ Y + x = A ∈ L we get that (E,L)
is 1-extendible.

Let us show the other direction. Given two independent sets A and B such
that |A| < |B|, we need to find z. Notice that if A ⊆ B we are done, any z ∈ B\A
will do, this is because any subset of B ∈ L is independent, in particular A + z.
Suppose then that A �⊆ B. The idea is to pick x ∈ A\B and then find, if needed,
an element y in B \ A such that B − y + x ∈ L. Remove y from B, add x, and
repeat until A ⊆ B, at this point return any element z ∈ B \A.

Pick any x in A \ B, if B + x ∈ L we are done since we do not need to pick
a y. Otherwise, set C = A ∩ B and D = B, since the system is 1-extendible
there exists Y such that D \ Y + x ∈ L. Moreover Y consists of exactly one
element y ∈ D \ C = B \A, which is exactly what we were looking for. ��

2.1 Greedy

Given (E,L) and w : E → R+ a natu-
ral first attempt at finding a maximum
weight independent set is to use the
greedy algorithm on the right. Start-
ing from an empty solution S, we try
to add elements to S one at a time, in
decreasing weight order. We add x to
S only if S + x is independent.

greedy(G, w)
1 sort edges in decreasing weight
2 S ← ∅
3 for x ∈ E in order
4 do if S + x ∈ L

5 then S ← S + x
6 return S

Corollary 1. Greedy solves the optimization problem defined by (E,L) for any
weight function if and only if (E,L) is 1-extendible.

This follows from Theorem 1 and the work of Rado [21] and Edmonds [11]. Now
we generalize one direction of this result for arbitrary k.

Theorem 2. Let (E,L) be k-extendible, Greedy is a 1
k -factor approximation for

the optimization problem defined by (E,L) and any weight function w.

Let x1, x2, . . . xl be the elements picked by greedy, also let S0 = ∅, . . . Sl be the
successive solutions, that is Si = Si−1 + xi. To prove Theorem 2 we need the
following lemma whose proof we defer for a moment.

Lemma 1. If (E,L) is k-extendible then the ith element xi picked by Greedy is
such that w(OPT(Si−1)) ≤ w(OPT(Si)) + (k − 1)w(xi).
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Remember that we can express the optimal solution as OPT(∅). Starting from S0
we can apply Lemma 1 l times to get:

w(OPT(S0)) ≤ w(OPT(Sl)) + (k − 1)
l∑

i=1

w(xi)

= w(Sl) + (k − 1)w(Sl)
= k w(Sl).

We can replace w(OPT(Sl)) with w(Sl) because the set Sl is maximal. Hence
Greedy returns a solution Sl with cost at least 1

k that of the optimal solution.
Now it all boils down to proving Lemma 1.

Notice that OPT(Si−1) is an extension of Si−1. Since Si−1 + xi ∈ L, we can
find Y ⊆ OPT(Si−1) \ Si−1 such that OPT(Si−1) \ Y + xi ∈ L. Thus,

w(OPT(Si−1)) = w(OPT(Si−1) \ Y + xi) + w(Y )− w(xi),

≤ w(OPT(Si)) + w(Y )− w(xi).

The second line follows because OPT(Si−1)\Y +xi is an extension of Si−1 + xi

and OPT(Si) is one with maximum weight. Now let us look at an element y ∈ Y ,
we claim that w(y) ≤ w(xi). Suppose for the sake of contradiction that w(y) >
w(xi). Since y /∈ Si−1 this means that y was considered by Greedy before xi and
was dropped. Therefore there exist j ≤ i such that Sj + y /∈ L, but Sj + y ⊆
OPT(Si−1) ∈ L, a contradiction. All weights are positive, therefore w(Y ) ≤
kw(xi), and the lemma follows.

2.2 Examples of k-Extendible Systems

Now we show that many natural problems fall in our k-extendible framework.

Maximum weight b-matching: Given a graph G = (V,E) and degree con-
straints b : V → N for the vertices, a b-matching is a set of edges M such that
for all v ∈ V the number of edges in M incident to v, denoted by degM (v), is at
most b(v).

Theorem 3. The subset system associated with b-matching is 2-extendible.

Proof. Let C + (u, v) and D be valid solutions, where C ⊆ D and (u, v) /∈ D.
We know that degC(u) < b(u) and degC(v) < b(v), otherwise C + (u, v) would
not be a valid solution. Now if degD(u) = b(u) we can find an edge in D \ C
incident to u, add this edge to Y and do the same for the other endpoint.
Clearly D \ Y + (u, v) ∈ L and |Y | ≤ 2, therefore the system is 2-extendible. ��

Maximum profit scheduling: We are to schedule n jobs on a single machine.
Each job i has release time ri, deadline di, and profit wi, all positive integers.
Every job takes the same amount of time L ∈ Z+ to process. (See [4] for a
2-approximation algorithm when the job lengths are arbitrary.) Our objective is
to find a non-preemptive schedule that maximizes the weight of the jobs done
on time. A job i is done on time if it starts and finishes in the interval [ri, di].
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Theorem 4. The subset system associated with maximum profit scheduling is
1-extendible when L = 1.

Proof. Let C + i be a feasible set of jobs, and D and extension of C. A schedule
for a certain set of jobs can be regarded as matching between those jobs and
time slots. Let M1 and M2 be the matchings for C + i and D respectively. The
set M1 ∪M2 contains a path starting on i ending on a job j ∈ D \ C or a time
slot t. Alternating the edges of M2 along the path we get a schedule for D+ i− j
in the first case, and for D + i in the latter. ��

For L > 1 we model the problem with a slightly different subset system. Let
the elements of E be pairs (i, t) where t denotes the time job i is scheduled, and
ri ≤ t ≤ di−L. A set of elements is independent if it specifies a feasible schedule.
Greedy considers the jobs in decreasing weight and adds the job being processed
somewhere in the current schedule, if no place is available the job is dropped.

Theorem 5. The subset system described above for maximum profit scheduling
is 2-extendible for any L > 1.

Proof. Let C + (i, t) be a feasible schedule and D and extension of C. Adding i
at time t to D may create some conflicts, which can be fixed by removing the
jobs i overlaps with. Since all jobs have the same length, job i overlaps with at
most two other jobs. ��

Maximum asymmetric traveling salesman problem: We are given a com-
plete directed graph with non-negative weights and we must find a maximum
weight tour that visits every city exactly once. The problem is NP-hard; the best
known approximation factor for it is 5

8 [16].
The elements of our subset system are the directed edges of the complete

graph; a set is independent if its edges form a collection of vertex disjoint paths
or a cycle that visits every vertex exactly once.

Theorem 6 ([13]). The subset system for maximum ATSP is 3-extendible.

Proof. As usual let C+(x, y) be independent, and D be an extension of C. First
remove from D the edges (if any) out of x and into y, these are clearly at most
two and not in C. If we add (x, y) to D then every vertex has in-degree and
out-degree at most one, but there may be a non-Hamiltonian cycle which uses
(x, y). There must be an edge in the cycle, not in C, that we can remove to break
it. Therefore we need to remove at most three edges in total. ��

Matroid intersection: This last theorem shows a nice relationship between
matroids and k-extendible systems.

Theorem 7. The intersection of k matroids is k-extendible

Proof. Let (E,Li) for 1 ≤ i ≤ k be our k matroids and let L = ∩i Li. We need
to show that for every C ⊆ D ∈ L and x /∈ C such that C + x ∈ L there
exist Y ⊆ D \ C with at most k element such that D \ Y + x ∈ L.
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Since the above sets are in L they are also in Li. By Theorem 1 these individual
matroids are 1-extendible, therefore we can find Yi with at most one element such
D\Yi+x ∈ Li. Set Y = ∪i Yi, clearly |Y | ≤ k and for all i we have D\Y +x ∈ Li,
which implies independence with respect to L. ��

3 A Linear Time 1
2-Approximation for b-Matching

Because maximum weight b-matching can be solved exactly in
O

(∑
b(v)min(m log n, n2)

)
time [12], Greedy should be regarded as a

tradeoff: we sacrifice optimality in order to get a much simpler algorithm which
runs in O(m log n) time. This tradeoff can be further improved to obtain a
linear time 1

2 -approximation, our solution builds upon the work of Drake and
Hougardy [9]. Let b = maxv∈V b(v), in this section we show:

Theorem 8. There is a O(bm) time 1
2 -approximation algorithm for b-matching.

The main procedure of our algorithm, linear-main, iteratively calls find-walk,
which greedily finds a heavy walk. Starting at some vertex u we take the heaviest
edge (u, v) out of u, delete it from the graph, reduce b(u) by one, and repeat
for v. If at some point the b(·) value of a vertex becomes zero we delete all the
remaining edges incident to it.

As we construct the walk we decrease the b(·) value of the vertices in the walk.
Except for the endpoints every node will have its b(·) value decreased by 1 for
every two edges in the walk incident to it. This means that M , the set of all
walks, is not a valid solution as we can only guarantee that degM (u) ≤ 2b(u) for
every vertex u.

Now consider choosing every other edge in a walk starting with the first edge.
For any vertex the number of chosen edges incident to it is at most how much
its b(·) value was decreased while finding this walk. The same holds for the
complement of this set, that is, picking every other edge starting with the second
edge. We can therefore split M into two sets M1 and M2 by taking alternating
edges of individual walks. These are valid solutions to our problem since for every
vertex u we have degMi

(u) ≤ b(u). Because M = M1 ∪M2, picking the one with

linear-main(G, w)
1 M ← ∅
2 while ∃ u ∈ V such that

b(u) > 0 and deg(u) > 0
3 do M ←M + find-walk(u)
4 split M into M1 and M2

5 return argmax{w(Mi)}

find-walk(u)
1 b(u)← b(u)− 1
2 if deg(u) = 0
3 then return ∅
4 let (u, v) be the heaviest edge out of u
5 remove (u, v) from G
6 if b(u) = 0
7 then remove all edges incident to u
8 return (u, v) + find-walk(v)

Fig. 1. A linear time 1
2 approximation for b-matching
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maximum weight we are guaranteed a solution with weight at least w(M)
2 . We

now concentrate our effort in showing that w(M) is an upper bound on the cost
of the optimal solution.

Let MOPT be the optimal solution. We can imagine including an additional
step in the find-walk(u) function in which an edge e ∈ MOPT is assigned to
the heavy edge (u, v): If (u, v) ∈ MOPT then we assign it to itself, otherwise
we pick any edge e ∈ MOPT incident to u. In either case after e is assigned we
remove it from MOPT , so that it is not later assigned to a different edge.

It may be that some edges in M do not receive any edge from MOPT , but can
an edge in MOPT be left unassigned? The following lemma answers this question
and relates the cost of the two edges.

Lemma 2. The modified find-walk procedure assigns every edge e ∈ MOPT

to a unique edge (u, v) ∈M , furthermore w(e) ≤ w(u, v).

Proof. Suppose, for the sake of contradiction, that (x, y) ∈ MOPT was not as-
signed. It is easy to see that if the b(·) value of some vertex u becomes 0 then
all edges in MOPT incident to u must be assigned. Thus when the algorithm
terminated b(x), b(y) > 0 and deg(x) = deg(y) = 0. Therefore the edge (x, y)
must have been deleted from the graph because it was traversed (chosen in M).
In this case we should have assigned (x, y) to itself. We reached a contradiction,
therefore all edges in MOPT are assigned a unique edge in M .

If (x, y) was assigned to itself then the lemma follows, suppose then that it
got assigned to (x, v) in the call find-walk(x). Notice that at the moment the
call was made b(x), b(y) > 0. If at this moment (x, y) was present in the graph
the lemma follows as (x, v) is the heaviest edge out of x. We claim this is the
only alternative. If (x, y) had been deleted before it would be because it was
traversed and thus it should have been assigned to itself. ��

An immediate corollary of Lemma 2 is that w(MOPT ) ≤ w(M), which as men-
tioned implies the algorithm returns a solution with cost at least w(MOP T )

2 . Now
we turn our attention to the time complexity.

The running time is dominated by the time spent finding heavy edges. This
is done by scanning the adjacency list of the appropriate vertex. An edge (x, y)
may be considered several times while looking for a heavy edge out of x and y.
The key observation is that this can happen at most b(x) + b(y) times. Each
time we reduce the value of either endpoint by one, when one of them reaches
0 all edges incident to that endpoint are deleted and after that (x, y) is never
considered again. Adding up over all edges we get a total time of O(bm).

4 A Randomized
(2

3 − ε
)
-Factor Algorithm

In this section we generalize ideas from Pettie and Sander [19] to improve the
approximation ratio of our linear time algorithm. We will develop a randomized
algorithm that returns a solution with expected weight at least

( 2
3 − ε

)
w(MOPT )

and runs in expected O
(
bm log 1

ε

)
time.
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linear-random(G, w)
1 M ← ∅
2 do
3 pick a vertex u uniformly at random
4 with prob degM (u)

b
do

5 pick (u, v) ∈M uniformly at random
6 find max-benefit compatible piece P about (u, v)
7 M ←M ⊕ P
8 with prob b(u)−degM (u)

b
do

9 find max-benefit compatible arm A out of u
10 M ←M ⊕ A
11 repeat k times

Fig. 2. A linear time
( 2

3 − ε
)
-factor algorithm for b-matching

Before describing the algorithm we need to define a few terms, all of which
are with respect to a given solution M . An edge e is matched if e ∈M otherwise
we say e is free. A set of edges S can be used to update the matching by taking
the symetric difference of M and S denoted by M ⊕ S = (M ∪ S) \ (M ∩ S).
The set S is said to be compatible with M if M ⊕ S is a valid b-matching.

Our algorithm works by iteratively finding a compatible set of edges and
updating our current solution M with it. To keep the running time low we only
look for arms and pieces. An arm A out of a vertex u consists of a free edge
(u, x) followed, maybe, by a matched edge (x, y). The benefit of A is defined as
w(u, x) − w(x, y), note that benefit(A) = w(M ⊕ A) − w(M). Let (u, v) ∈ M ,
a piece P about (u, v) consists of the edge (u, v), and, possibly, of arms Au

and Av out of u and v. The benefit of the piece is defined as benefit(Au) +
benefit(Av) − w(u, v). Notice that if Au and Av use the same matched edge
then benefit(P ) < w(M ⊕ P ) − w(M), otherwise these two quantities are the
same.

We now describe in detail an iteration of our algorithm. First we pick a vertex
u uniformly at random. Then we probabilistically decide to either: choose an edge
(u, v) ∈ M and augment M using a max-benefit compatible piece about (u, v),
augment M with a max-benefit compatible arm out of u, or simply do nothing.
See Fig. 2 for the exact probabilities of these events. This is repeated k times,
the parameter k will be determined later to obtain:

Theorem 9. The procedure linear-random finds a b-matching in
O

(
bm log 1

ε

)
time with expected weight at least

( 2
3 − ε

)
w(MOPT ).

Let us first prove the approximation ratio of linear-random. Our plan is to
construct a set Q of pieces and arms with benefit at least 2w(MOPT )− 3w(M)
and then argue that the expected gain of each iteration is a good fraction of
this. Note that if 2w(MOPT )− 3w(M) ≤ 0 then M is already a 2

3 -approximate
solution. In what follows we assume without loss of generality that MOPT and
M are disjoint—any overlap only makes our bounds stronger.
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In order to construct Q we need to pair edges of MOPT and M . Every edge
(u, v) ∈MOPT is paired with (u, x) ∈M via u and (v, y) ∈M via v in such a way
that every edge in M is paired with at most two edges, one via each endpoint.
If degMOP T

(u) > degM (u) then the excess of MOPT edges are assigned to u.
Thus every edge (u, v) ∈ MOPT is paired/assigned exactly twice, once via each
endpoint.

For every edge (u, x) ∈M we build a piece P by finding arms Au and Ax out
of u and x. To construct Au follow, if any, the edge (u, y) ∈ MOPT paired with
(u, x) via u, then take, if any, the edge (y, z) ∈ M paired with (u, y) via y. A
similar procedure is used to construct Ax. Finally we assign P to vertex u and
add it to Q. Also for every u ∈ V which has been assigned edges (u, v) ∈MOPT

we grow an arm A out of u using (u, v). These arms are assigned to u and added
to Q.

Every edge in MOPT appears in exactly two of the pieces and arms in Q,
on the other hand every edge in M appears at most three times. Therefore the
benefit of Q is at least 2w(MOPT )− 3w(M).

How many pieces/arms can be assigned to a single vertex u? At most degM (u)
pieces, one per (u, x) ∈ M , and at most b(u) − degM (u) arms, one per (u, v) ∈
MOPT which did not get paired up with M edges via u. A simple case analysis
shows that all these pieces and arms are compatible with M . Therefore the
expected benefit of the piece or arm picked in any given iteration is:

E[benefit] =
1
n

∑
u∈V

b(u)− degM (u)
b

max-arm(u) +
∑

(u,v)∈M

1
b
max-piece(u, v)

≥ 1
bn

∑
u∈V

benefit of pieces/arms assigned to u

≥ 1
bn

benefit(Q)

≥ 3
bn

(
2
3
w(MOPT )− w(M)

)
From this inequality we can derive the following lemma which is very similar

to Lemma 3.3 from [19], we include its proof for completeness.

Lemma 3. After running linear-random for k iterations M has an expected
weight of at least 2

3w(MOPT )(1 − e−
3k
bn )

Proof. Let Xi = 2
3w(MOPT )− w(Mi), where Mi is the matching we get at the

end of the ith iteration. From the above inequality and the fact that the gain of
each iteration is at least as much as the benefit of the piece/arm found we can
infer that E[Xi+1|Xi] ≤ Xi − 3

bnXi. Thus E[Xi+1] ≤ E[Xi]
(
1− 3

bn

)
, and

E[Xk] ≤ E[X0]
(

1− 3
bn

)k

≤ 2
3
w(MOPT ) e−

3k
bn .
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By setting k = bn
3 log 1

ε we get a matching with expected cost at least( 2
3 − ε

)
w(MOPT ). Let us now turn our attention to the running time.

To compute a max benefit arm out of a vertex u we follow free edges (u, v)
and if degM (v) = b(v) we scan the list of matched edges incident to v to find
the lightest such edge; among the arms found we return the best. Notice that
this can take as much as O(b deg(v)) time. Suppose now, that we already had
computed for every vertex which is the lightest matched edge incident to it, then
the task can be carried out in just O(deg(v)) time.

To produce a max benefit piece about (u, v) we can try finding max bene-
fit arms out of u and v in O(deg(u) + deg(v)) time. This unfortunately does
not always work as the resulting piece may not be compatible, consider find-
ing arms {(u, x)} and {(v, x)} with degM (x) = b(x) − 1, or {(u, x), (x, z)} and
{(v, x), (x, z)} with degM (x) = b(x); both arms are compatible by themselves,
but x cannot take both at once. If this problem arises, it can be solved by taking
the best arm for u and the second best arm for v, or the other way around, and
keeping the best pair. To find the second best arm we need to have access to the
second lightest matched edge incident to any vertex.

Once we found our piece/arm we have to update the matching. This may
change the lightest matched edges incident to vertices on the piece/arm. Since
there are most 6 such vertices the update can be carried out in O(b) time. The
expected work done in a single iteration is given by:

E[work] ≤ 1
n

∑
u∈V

b(u)− degM (u)
b

(deg(u) + b) +
∑

(u,v)∈M

1
b
(deg(u) + deg(v) + b)

≤ 1
n

∑
v∈V

deg(u) + b(u) +
∑

(u,v)∈M

1
b

deg(v) ≤ 3
n

∑
u∈V

deg(u) =
6m
n

The third inequality assumes b(u) ≤ deg(u). If this is not the case we can just
set b(u) to be deg(u) which does not change the optimal solution.

There are k = bn
3 log 1

ε iterations each taking O(m
n ) time, by linearity of

expectation the total expected running time is O(bm log 1
ε ).

5 Conclusion

We introduced the notion of k-extendible systems which allowed us to explain
the performance of the greedy algorithm on seemingly disconnected problems.
We also provided better approximation algorithms for b-matching, a specific
problem that falls in our framework. It would be interesting to improve the
approximation factor of other problems in this class beyond 1

k .
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Abstract. We show how to compute single-source shortest paths in
undirected graphs with non-negative edge lengths in O(

√
nm/B log n +

MST (n, m)) I/Os, where n is the number of vertices, m is the number
of edges, B is the disk block size, and MST (n, m) is the I/O-cost of
computing a minimum spanning tree. For sparse graphs, the new algo-
rithm performs O((n/

√
B) log n) I/Os. This result removes our previous

algorithm’s dependence on the edge lengths in the graph.

1 Introduction

Let G = (V,E) be a graph, let s be a vertex of G, called the source vertex, and let
� : E → R+ be an assignment of non-negative real lengths to the edges of G. The
single-source shortest-path (SSSP) problem is to find, for every vertex v ∈ V , the
distance, distG(s, v), from s to v, that is, the length of a shortest path from s to
v in G. We focus mostly on the equivalent closest-source shortest-path (CSSP)
problem: In addition to the input for SSSP, let w : V → R+ be an assignment of
non-negative weights to the vertices of G. Then compute for every vertex x ∈ G,
its distance D(x) = min{w(y) + distG(y, x) | y ∈ G} from the closest source. If
y is a vertex such that w(y) + distG(y, x) = D(x), a shortest path to x, denoted
π(x), is a path of length distG(y, x) from y to x. The classical SSSP-algorithm for
general graphs is Dijkstra’s algorithm [6], which has seen many improvements,
particularly for undirected graphs with integer or float edge lengths [12, 13], and
undirected graphs with real edge lengths [11]. When applied to massive graphs
that do not fit in memory and are stored on disk, however, Dijkstra’s algorithm
and its improved variants perform poorly. This is because they access the data
in a random fashion.

More recently, much work has focused on SSSP in massive graphs. These
algorithms are analyzed in the I/O-model [1], which assumes that the computer

� For more details, see [10].
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has a main memory that can hold M vertices or edges and that the graph is
stored on disk. In order to process the graph, pieces of it have to be loaded into
memory, which happens in blocks of B consecutive data items. Such a transfer
is referred to as an I/O-operation (I/O). The complexity of an algorithm is the
number of I/Os it performs; e.g., sort(n) = Θ((n/B) logM/B(n/B)) I/Os to sort
n numbers [1].

Little is known about solving SSSP in general directed graphs I/O-efficiently.
For undirected graphs, the algorithm of Kumar and Schwabe (KS-SSSP) [7]
performs O(n+(m/B) log(n/B)) I/Os. For dense graphs, the second term dom-
inates; but for sparse graphs, the I/O-bound becomesO(n). The SSSP-algorithm
of Meyer and Zeh (MZ-SSSP) [9] extends the ideas of [8] for breadth-first search
(BFS) to graphs with edge lengths between 1 and W , leading to an I/O-bound of
O(

√
nm logW/B+MST (n,m)), where MST (n,m) is the I/O-cost of computing

a minimum spanning tree.1 This paper removes the algorithm’s dependence on
W using a number of new ideas, proving the following result:

Theorem 1. SSSP in an undirected graph with n vertices, m edges, and non-
negative2 edge lengths can be solved in O(

√
nm/B logn + MST (n,m)) I/Os.

Note that for sparse graphs, the cost of our algorithm is O((n/
√
B) logn) I/Os.

The rest of the paper is organized as follows: Section 2 discusses the ideas of
KS-SSSP and MZ-SSSP that are reused in our algorithm. Section 3 augments
MZ-SSSP to make it independent of the edge lengths, assuming an appropri-
ate graph partition. The algorithm’s complexity now depends on a parameter
of the partition, called its depth. Section 4 describes a recursive shortest-path
algorithm that uses another partition into “well-separated” subgraphs, allowing
the computation of shortest paths in the whole graph using nearly independent
computations on these subgraphs. Section 5 argues that any graph can be par-
titioned into such well-separated subgraphs, while at the same time ensuring
that each has a partition of small depth in the sense of Sect. 3. This allows
the two approaches from Sects. 3 and 4 to be combined to obtain an efficient
CSSP-algorithm (which also solves SSSP) as stated in Thm. 1 above.

2 Previous Work: KS-SSSP and MZ-SSSP

KS-SSSP. KS-SSSP [7] is an I/O-efficient version of Dijkstra’s algorithm. It
uses a priority queue Q to maintain the tentative distances of all vertices and
retrieves the vertices one by one from Q, by increasing tentative distances. After
retrieving a vertex x from Q, x is visited, that is, its incident edges are relaxed,
where the relaxation of an edge xy replaces the tentative distance d(y) of y with
min(d(y), d(x) + �(xy)); this is reflected by updating the priority of y in Q.
1 The current bounds for MST (n, m) are O(sort(m) log log(nB/m)) deterministically

[2] and O(sort(m)) randomized [5].
2 In this paper, it is assumed that edge lengths are strictly positive. Length-0 edges

can be handled by treating each connected component of the subgraph they induce
as a single vertex.
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The main contribution of KS-SSSP is an I/O-efficient priority queue that
supports Update(x, p), Delete(x), and DeleteMin operations, each in amortized
O((1/B) log(n/B)) I/Os. The latter two respectively delete x or the item with
minimum priority from the priority queue. The former replaces x’s current prior-
ity px with min(px, p) if x ∈ Q. If x �∈ Q and x has never been in Q, it is inserted
with priority p. If x has been in Q before, but has been deleted, the operation
does nothing! This particular behaviour of update operations is supported only
for SSSP-computations in undirected graphs that visit vertices by increasing
distances, because information about the structure of the resulting update se-
quence is used to ensure this behaviour (see [7] for details). As our algorithms
visit vertices out of order, more effort is required to ensure this behaviour in our
algorithms. Details appear in the full paper.

Given this fairly powerful priority queue, visiting a vertex x reduces to scan-
ning its adjacency list E(x) and performing an Update(y, d(x)+�(xy)) operation
on Q for every edge xy ∈ E(x). Thus, KS-SSSP performs O(m) priority queue
operations, which cost O((m/B) log(n/B)) I/Os, and it spends O(1+deg(x)/B)
I/Os to retrieve the adjacency list of each vertex x, O(n+m/B) I/Os in total. For
sparse graphs, the bottleneck of KS-SSSP is thus the random accesses to the ad-
jacency lists. This problem is addressed by MZ-SSSP and by our new algorithm.

MZ-SSSP. MZ-SSSP partitions the vertex set of G into q = O(n/μ) carefully
chosen sets V1, . . . , Vq, called vertex clusters; 1 ≤ μ ≤

√
B is a parameter speci-

fied later. For each vertex cluster Vi, the adjacency lists of the vertices in Vi are
concatenated to form an edge cluster Ei. The edges in each edge cluster Ei are
stored consecutively on disk.

The shortest-path computation now proceeds as in KS-SSSP, except that a
hot pool H acts as an intermediary between the priority queue and the adjacency
lists. When a vertex x is retrieved from Q, it is only released, which means that
the hot pool H is instructed to visit x. H may delay visiting x, but not long
enough to compute incorrect distances, as formalized by the following property:

(SP) If vertex y is visited before vertex x, then D(y) ≤ D(x) + distG(x, y)/2.

This implies in particular that the vertices along any shortest path are visited by
increasing distances, which immediately implies the correctness of the algorithm.

The hot poolH is a buffer space storing adjacency lists. When a vertex x needs
to be visited and E(x) is in H, the edges in E(x) are relaxed. If E(x) is not in H,
then the entire edge cluster containing E(x) is loaded into H before x is visited.
This ensures that only O(n/μ + m/B) I/Os are performed to load edges into
the hot pool, because every edge cluster is loaded only once. The difficult part
is looking for adjacency lists in H efficiently, which can be done in amortized
O(μ logW/B) I/Os per edge, provided that the cluster partition has certain
properties, discussed in the next section. A partition with these properties can
be computed in O(MST (n,m) + (n/B) logW ) I/Os. By using a priority queue
that exploits the bounded range of the edge lengths to support Update, Delete,
and DeleteMin operations in amortized O((1/B) logW ) I/Os, the complexity of
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the algorithm thus becomes O(n/μ+ (mμ logW )/B + MST (n,m)) I/Os, which
is O(

√
nm logW/B + MST (n,m)) if μ =

√
nB/(m logW ) is chosen.

3 A Length-Independent MZ-SSSP

This section presents a new implementation of MZ-SSSP, called MZ-SSSP∗. The
cost of MZ-SSSP∗ is O((n/μ) log n+m(μd+log n)/B) I/Os, where d is a parame-
ter of the used cluster partition, called the depth of the partition. Section 5 will be
concerned with ensuring that d = O(log n), which, after choosing μ =

√
nB/m,

leads to the desired complexity of O(
√

nm/B logn) I/Os, plus the cost for com-
puting the partition, which will be O(MST (n,m)) I/Os.

3.1 μ-Partitions

The efficient implementation of the hot pool in MZ-SSSP∗ requires that the used
cluster partition has a number of properties. For an edge e ∈ G, the category of
e is the integer c such that 2c−1 ≤ �(e) < 2c. A c-component of G is a maximal
connected subgraph of G all of whose edges have category c or less. A category
component is a c-component, for some c. A c-cluster is a vertex cluster Vi that is
contained in a c-component, but not in a (c− 1)-component. The corresponding
edge cluster Ei is also referred to as a c-cluster. The diameter of a vertex set V ′ is
equal to max{distG(x, y) | x, y ∈ V ′}. Now the partition required by MZ-SSSP∗

is a μ-partition of G, which is a partition of V into q = O(n/μ) vertex clusters
V1, . . . , Vq with the following properties:

(C1) Every cluster Vi contains at most μ vertices,
(C2) Every c-cluster Vi has diameter at most μ2c,
(C3) No (c− 1)-component contributes vertices to two c-clusters, and
(C4) Every c-component contributing a vertex to a c′-cluster with c′ > c has

diameter at most 2cμ.

The depth of a cluster is the difference between the category of the cluster and
the category of the shortest edge with exactly one endpoint in the cluster. The
depth of the partition is the maximal depth of its clusters. A (μ, d)-partition is
a μ-partition of depth d. Note that d ≤ logW .

Even though every edge with exactly one endpoint in a c-cluster of a (μ, d)-
partition has category at least c−d, edges between vertices in the same c-cluster
may be arbitrarily short. A mini-cluster is a (c − d)-component contained in
a c-cluster. (Note that, in a (μ, d)-partition, any (c − d)-component is either
completely contained in or disjoint from a given c-cluster.) Mini-clusters have to
be treated specially, in order to ensure correctness of the algorithm.

The hot pool also requires information about which vertices of which cluster
are contained in which category component. This information is provided by a
cluster tree Ti associated with each cluster Vi. To define these cluster trees, the
component tree Tc of G needs to be defined first: A c-component is maximal if
it is properly contained in a (c + 1)-component or it is equal to G; all vertices
of G are maximal 0-components. The vertex set of Tc consists of all maximal
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category components. Component C is the parent of component C′ if C′ ⊂ C
and C ⊆ C′′ for all C′′ ⊃ C′. Now the cluster tree Ti of a c-cluster Vi is the
subtree of Tc containing all nodes of category c or less that are ancestors of
vertices in Vi (which are leaves of Tc).

3.2 Shortest Paths

The shortest-path computation proceeds in iterations; each iteration releases a
vertex x from the priority queue Q and inserts a Visit(x, d(x)) signal into the
hot pool to induce the relaxation of all edges incident to x. Before releasing x
from Q, a Scan operation is invoked on the hot pool to ensure that all edges that
need to be relaxed before releasing x are relaxed. This operation is described in
the next section, which discusses the implementation of the hot pool.

Our algorithm uses the same priority queue as KS-SSSP. It also requires a
distance repository REP, which stores the tentative distances of all vertices in
G, maintained using Update(x, d(x)) operations, and allows the retrieval of the
tentative distances of all nodes in a cluster tree Ti using a ClusterQuery(Ti)
operation. Every edge relaxation in our algorithm performs an update on the
priority queue and on the repository.

The repository can be implemented as an augmented buffered repository tree
(BRT) [4], which supports Update(x, d(x)) operations in amortized O(log n/B)
I/Os and ClusterQuery(Ti) operations in amortized O((1 + ri) log n + |Ti|/B)
I/Os, where ri is the number of cluster tree roots that are contained in or adjacent
to Ti. It is easy to prove that

∑q
i=1 ri = O(n/μ). Details appear in the full paper.

3.3 Hot Pool

The hot pool consists of a hierarchy of r = 	logW 
 edge buffers EB1, . . . ,EBr,
a hierarchy of r tree buffers TB1, . . . ,TBr, and a hierarchy of r signal buffers
SB1, . . . ,SBr. Each of these hierarchies is implemented as a single stack with
markers indicating the boundaries between consecutive buffers. Buffers EBi,
TBi, and SBi form level i of the hot pool.

The edge buffers hold edges that have been loaded into the hot pool. Edge
buffer EBi+1 is inspected by Scan operations about half as often as EBi. If an
edge xy is stored in EBi, then TBi stores all ancestors of x in Tc that have
category at most i. The signal buffers store signals that are used to trigger edge
relaxations and movements of edges between different edge buffers. The purpose
of moving edges between different edge buffers is to initially store edges in buffers
that are inspected infrequently and later, when the time of their relaxation
approaches, move them to buffers that are inspected more frequently, in order
to avoid delaying their relaxation for too long. The inspection of edge buffers
is controlled by due times t1 ≤ t2 ≤ · · · ≤ tr+1 = +∞ associated with these
buffers. These due times satisfy the following condition:

(DT) For 1 ≤ i < r, ti+1 = ti or 2i−3 ≤ ti+1 − ti ≤ 2i−2.

The due times are initialized as ti = min{w(x) | x ∈ G} + 2i−2, for 1 ≤ i ≤ r.
Due time ti indicates that EBi has to be inspected for edges to be relaxed or
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moved to lower buffers before the first vertex with tentative distance d(x) ≥ ti
is released from Q. The hot pool maintains the following invariant:

(HP) After loading a c-edge cluster Ej into the hot pool, an edge xy ∈ Ej

is stored in the lowest edge buffer EBi such that i ≥ c − d and the i-
component C containing vertex x satisfies d(C) < ti+1.

The tree buffers are used to check this condition. In particular, component C
is stored as a node of Tj in the tree buffer TBi, and this copy of C in TBi al-
ways stores the correct value of d(C) = min{d(x) | x ∈ C}.3 To achieve this, an
Update(y, d(x)+�(xy)) signal is inserted into an appropriate signal buffer when-
ever an edge xy is relaxed; this signal updates the tentative distance of every
ancestor of y in Tc that is stored in a tree buffer to which this signal is applied.

As discussed in the previous subsection, the shortest-path algorithm inserts a
Visit(x, d(x)) signal into the hot pool to trigger the relaxation of edges incident
to x. This signal is inserted into SBcx , where cx = c− d if x is contained in a c-
cluster. From there, it travels only up to level c+O(log n) and is then discarded.
In order to achieve this insertion into SBcx without performing a random access,
the signal is sent to level cx by inserting it, with priority cx, into a priority
queue SQ+. Priority queue SQ+ is used to send signals to higher levels. Another
priority queue SQ− is used to send signals to lower levels.

Scanning the hot pool: The Scan operation scans a prefix EB1, . . . ,EBj of
edge buffers for edges that need to be relaxed or moved to other levels. Let f
be the minimum priority of the vertices in Q. Since f is the priority of the next
vertex to be released from Q, edge buffers EB1, . . . ,EBj such that t1 ≤ · · · ≤
tj ≤ f < tj+1 need to be scanned. The scanning of an edge buffer EBi may
decrease f . Then the updated value of f is used to decide whether to include
EBi+1 in the scan.

The Scan operation can be divided into two phases: The up-phase inspects
edge buffers EB1, . . . ,EBj , relaxes edges, and moves edges whose relaxation is
not imminent to higher levels. The down-phase inspects EB1, . . . ,EBj in reverse
order, assigns new due times to EB1, . . . ,EBj , and moves edges to lower levels
if the maintenance of property (HP) requires it. These two phases perform the
following operations on each inspected level i:

Up-phase
– Retrieve all signals sent to level i from SQ+ and insert them into SBi.
– For every Visit(x, d(x)) signal in SBi such that x �∈ TBi, load the edge

cluster Eh containing E(x) into EBi; load the corresponding cluster tree Th

into TBi and retrieve the tentative distances of all nodes in Th from REP.
Eh is loaded only once, even if more than one vertex in Vh is to be visited.

– For every cluster tree node C in TBi and every Update(x, d) signal in SBi

such that x ∈ C, replace d(C) with min(d(C), d).
– For every Visit(x, d(x)) signal in SBi, process the mini-cluster containing x.

The details are explained below. For every category-c edge xy with c ≥ i

3 This is not quite correct; C stores only an upper bound d∗(C) ≥ d(C); but this
upper bound suffices to move edges to lower buffers in time for their relaxation.
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relaxed during this process, send an Update(y, d(x) + �(xy)) signal to level
max(i+1, c− logn− d− 1) (using SQ+) and, if c ≤ i+ logn+ d+1, to level
i (using SQ−). Such an Update signal is said to have category c.

– Move all cluster tree nodes C in TBi to TBi+1 for which either the category
of C is greater than i or the tentative distance of the i-component containing
C is at least ti+1. For every cluster tree leaf (vertex) x moved to TBi+1, move
E(x) from EBi to EBi+1.

– Move update signals with category greater than i− d to SBi+1. Discard all
other signals in SBi.

– Test whether f ≥ ti+1 and, if so, continue to level i + 1.

Down-phase
– Update the due time ti: If f + 2i−1 ≥ ti+1, then ti = ti+1. Otherwise, let

ti = (ti+1 + f)/2. It is easy to check that this maintains Property (DT).
– Retrieve all signals sent to level i from SQ− and insert them into SBi. At

this point, they will all be Update signals sent during scans of higher levels.
As in the up-phase, apply these signals to the nodes stored in TBi.

– Move all cluster tree nodes C in TBi to TBi−1 for which the category of C
is less than i and the (i− 1)-component containing C has tentative distance
less than ti. Discard all cluster tree nodes of category i. For every cluster
tree leaf x moved to TBi−1, move E(x) from EBi to EBi−1.

– Move all signals of category less than i + logn + d + 1 to SBi−1. Discard all
other signals in SBi.

To implement these different steps efficiently, the nodes in Tc are numbered
in preorder. The algorithm then keeps the cluster tree nodes in TBi sorted by
their preorder numbers, the signals in SBi sorted by the preorder numbers of the
vertices they affect, and the edges in EBi sorted by the preorder numbers of their
first endpoints. It is easy to show then that both phases can be implemented by
scanning the involved buffers a constant number of times, except that the signals
retrieved from SQ+ and SQ− have to be sorted before merging them into SBi.

We show in the full paper that due times of empty levels can be represented
implicitly using the due times of the two closest non-empty levels. This avoids
spending I/Os on accessing due times of empty levels. Accesses to due times of
non-empty levels can be charged to accesses to elements in these levels.

Processing mini-clusters: The processing of a mini-cluster C involves visiting
all vertices in C that have Visit(x, d(x)) signals in SBi. Since the vertices in the
mini-cluster are connected by potentially very short edges, it may also be neces-
sary to immediately visit other vertices in the same mini-cluster. In particular,
starting with their current tentative distances, we apply a bounded version of
Dijkstra’s algorithm to the mini-cluster. This can be done in internal memory be-
cause the mini-cluster has at most μ ≤

√
B vertices and, thus, at most B edges.

When Dijkstra’s algorithm is about to visit a vertex x, the vertex is visited if
d(x) ≤ ti. Otherwise, the algorithm terminates. Once Dijkstra’s algorithm ter-
minates, the tentative distances of all vertices in the mini-cluster that have not
been visited are updated, that is, for each such vertex, Update(x, d(x)) opera-
tions are performed on Q and REP, and d(x) is updated in TBi. For every visited
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vertex x and every category-c edge xy in E(x) with c ≥ i, Update(y, d(x)+�(xy))
signals are sent to the levels specified in the discussion of the up-phase. Finally,
a Delete(x) operation is performed on Q for every visited vertex x. This is nec-
essary to ensure that x is not visited again because, during the processing of the
mini-cluster, vertices not yet released from Q may be visited.

3.4 Analysis

The lengthy and technical correctness proof of our algorithm is omitted from this
extended abstract due to lack of space. The main idea is to prove the following
lemma, which immediately implies the algorithm’s correctness.

Lemma 1. MZ-SSSP∗ has property (SP).

The key to proving this is the following lemma.

Lemma 2. A vertex x visited during a scan of level i satisfies ti−2i−2 ≤ d(x) ≤
d∗(x) ≤ ti, where d∗(x) is the tentative distance stored with x in TBi.

From Lem. 2, Property (SP) follows almost immediately, ignoring a few technical
details: Consider a vertex y that is visited before the current scan of level i. Then
one can show that this vertex satisfies d(y) < ti because otherwise, level i would
have been scanned before visiting y. Thus, if x and y do not belong to the same
mini-cluster, then, because the path from x to y must include a category-i edge
and by Lem. 2, d(y) ≤ d(x)+distG(x, y)/2, which implies Property (SP). If x and y
belong to the same mini-cluster, it can be shown that they are visited by increasing
tentative distances, that is, d(y) ≤ d(x), which again implies Property (SP).

The key to the analysis of the I/O-complexity is to prove that the hot pool
maintains Property (HP), which we do in the full paper. Given this, we obtain

Lemma 3. Excluding the cost of computing the (μ, d)-partition, MZ-SSSP∗ per-
forms O((n/μ) log n + m(μd + logn)/B) I/Os.

Proof sketch. Observe that the algorithm performs O(m) priority queue opera-
tions and Update operations on REP. All these operations have an amortized
cost of O((1/B) logn) I/Os, which gives a cost of O((m/B) logn) I/Os for these
operations. Only O(m) signals are sent to the different levels of the hot pool,
which costs O(sort(m)) I/Os for the involved operations on SQ+ and SQ− and
for sorting these signals before insertion into the signal buffers.

The remainder of the complexity analysis hinges on two claims: (1) Every
cluster is loaded into the hot pool only once. This results in a cost of O(n/μ +
m/B) I/Os for reading edge clusters and cluster trees, plus O((n/μ) logn+n/B)
I/Os for answering cluster queries on REP. (2) Every signal traverses at most
d+ logn+ 2 levels in the hot pool; every edge and cluster tree node traverses at
most d levels in the hierarchy, remaining at each level for at most O(μ) scans of
this level. This implies a cost of O((m/B)(d + logn + 2)) I/Os for scanning the
signals and O(mdμ/B) I/Os for scanning edges and cluster tree nodes. Summing
up the different costs proves the lemma.
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The number of levels traversed by each edge or signal is easily seen to be as
claimed. The number of scans of a level during which an edge remains at a given
level follows from properties (C2) and (C4) and the fact that ti increases by at
least 2i−3 every time level i is scanned, which is easy to prove. Finally, Property
(HP) implies immediately that every cluster is loaded only once because an edge
xy, once loaded, reaches level cx in time for its relaxation. ��

4 A Recursive Shortest-Path Algorithm

This section describes a CSSP-algorithm that uses in a sense the exact opposite of
a μ-partition of low depth. Section 4.1 defines the partition required by the algo-
rithm. Section 4.2 shows that shortest paths in the whole graph can be computed
by solving nearly independent CSSP-problems on the graphs in the partition. This
section proves only the correctness of the algorithm. Its complexity is analyzed in
Sect. 5, where it is combined with MZ-SSSP∗ to obtain the final algorithm.

4.1 Barrier Decomposition

The algorithm uses a barrier decomposition of G, which consists of a number of
multigraphs G0, . . . , Gq and vertex sets ∅ = B0, . . . , Bq, called barriers, with the
following properties:

(B1) Every graph Gi represents a connected vertex-induced subgraph Hi of G;
H0 = G.

(B2) For i < j, Hi ∩ Hj = ∅ or Hj ⊂ Hi. If Hj ⊂ Hi and Hi ⊆ Hk for all
Hk ⊃ Hj , Gi is the parent of Gj (and Gj a child of Gi).

(B3) For all i, graph Gi is obtained from Hi by contracting each graph Hj such
that Gj is a child of Gi into a single vertex r(Gj), called the representative
of Gj . For a vertex x ∈ Hj , r(Gj) is considered the representative of x in
Gi and denoted by rx. For x ∈ Gi, let rx = x.

(B4) For a given graph Gj with parent Gi, Bj is the set of vertices in (V (Hi)∪
Bi) \ V (Hj) that are reachable from Hj using edges of length at most
2n�max(Hj), where �max(Hj) is the length of the longest edge in Hj .

(B5) No set Bi contains a graph representative.

Intuitively, for every graph Gj , the set Bj forms a barrier between Hj and the
rest of G in the sense that a shortest-path between two vertices in Hj cannot
contain a vertex not in V (Hj) ∪Bj .

4.2 The Algorithm

Now assume that a Dijkstra-like CSSP algorithmA is given, that is, an algorithm
that visits every vertex exactly once and, when it does, relaxes all edges incident
to x. Assume also that algorithm A has property (SP). Given a barrier decom-
position of G, the CSSP problem in G can then be solved using the following
recursive algorithm. The algorithm requires the use of the distance repository
REP from Sect. 3, augmented to support a GraphQuery(Gi) operation, which
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returns the tentative distances of all vertices in Gi; for a graph representative
x = r(Gj), let d(x) = min{d(y) | y ∈ Hj}. In the full paper, we show how
to perform such an operation in amortized O((1 + ci) logn + |V (Gi)|/B) I/Os,
where ci is the number of children of Gi.

ShortestPaths(Gi): Run a modified version of algorithmA on the graph Gi∪Bi

obtained from G[V (Hi) ∪ Bi] by contracting each graph Hj such that Gj is a
child of Gi into a single vertex r(Gj). The modifications are as follows:

– Terminate A as soon as all vertices in Gi have been visited. In particular, it
is not necessary to visit all vertices in Bi.

– When A visits a vertex x that is not a graph representative, relax all its
incident edges. In particular, for each such edge xy, where ry may or may
not be a graph representative, replace d(y) with min(d(y), d(x) + �(xy)) in
REP and d(ry) with min(d(ry), d(x) + �(xy)) in A’s data structures.

– When A visits a graph representative r(Gj):
• Recursively invoke ShortestPaths(Gj) with the weights of all vertices

in V (Gj) ∪ Bj initialized to their current tentative distances. (These
distances are retrieved from REP.)
• If the recursive call visits vertices in Bj , reflect this in the data structures

of the current invocation to ensure that these vertices are not visited
again. (E.g., if A is Dijkstra’s algorithm or MZ-SSSP∗, remove these
vertices from the priority queue.)
• If the recursive call updates the tentative distances of vertices in Bj ,

reflect this in the data structures of the current invocation. (E.g., if
A is MZ-SSSP∗, update their priorities in the priority queue and send
corresponding Update signals to the hot pool.)
• Relax all edges with exactly one endpoint in Hj , that is, for each edge xy

such that x ∈ Hj and y ∈ Hi \Hj , replace d(ry) with min(d(ry), d(x) +
�(xy)).

The initial invocation is on graph G0, which ensures that all vertices in G are
visited. The following lemma shows that this solves the CSSP problem.

Lemma 4. For every vertex x ∈ Hi ∪ Bi visited by ShortestPaths(Gi), d(x) =
D(x) at the time when x is visited.

Proof. The proof is by induction on the number of descendants of Gi. If there is
none, the algorithm behaves like A and the claim follows because, by (SP), all
vertices on π(x) are visited in order.

So assume that Gi has at least one child Gj , that there exists a vertex x ∈
Hi ∪ Bi such that d(x) > D(x) when x is visited, and that every vertex z
preceding x on π(x) satisfies d(z) = D(z) when it is visited. First assume that
x is not visited in a recursive call Shortest-Path(Gj), where Gj is a child of
Gi. Let y be x’s predecessor on π(x), and let ry be its representative in Gi. ry

must be visited after x because otherwise d(x) = D(x) when x is visited. Hence,
by (SP), D(y) ≥ D(ry) ≥ D(x) − distGi∪Bi(ry , x)/2 ≥ D(x) − distG(y, x)/2, a
contradiction because y ∈ π(x).
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Now assume that x is visited during a recursive call ShortestPaths(Gj). Then
the claim follows by induction if we can prove that DHj∪Bj (x) = D(x). If π(x) ⊆
Hj ∪Bj , this is trivial. So assume that π(x) contains at least one vertex outside
Hj ∪ Bj . Let z be the last such vertex on π(x), and let y be its successor on
π(x), which is in Hj ∪Bj . We need to prove that w(y) = D(y).

Assume the contrary. Then r = r(Gj) must be visited before rz, that is, by
(SP), D(r) ≤ D(rz)+distGi∪Bi(rz , r)/2. However, D(u) < D(r)+n ·�max(Hj) ≤
D(r) + distGi∪Bi(rz , r)/2, for all u ∈ Hj , because z �∈ Hj ∪ Bj . Hence, D(u) <
D(rz) + distGi∪Bi(rz , r) ≤ D(z) + distG(z, u). Thus, z cannot belong to π(u),
for any u ∈ Hj , and x �∈ Hj . Then, however, x is visited only if DHj∪Bj (x) ≤
DHj∪Bj (u), for some u ∈ Hj . Since D(x) ≤ DHj∪Bj (x) and DHi∪Bi(u) = D(u),
this implies again that z �∈ π(x), a contradiction. ��

5 The Final Algorithm

Our final algorithm is based on the recursive framework of Sect. 4 and uses
MZ-SSSP∗ or, on small graphs, Dijkstra’s algorithm to compute shortest paths
on the different graphs in the barrier decomposition. To achieve the claimed I/O-
complexity, the following properties of the barrier decomposition are required:

(P1) The barrier decomposition consists of O(n/μ) multigraphs G0, . . . , Gq.
(P2) Each graph Gi has at most

√
B vertices or is equipped with a (μ, logn+2)-

partition. In the former case, it is called atomic; in the latter, compound.
(P3) If the parent Gi of Gj is atomic, then Gj is Gi’s only child. If the parent

Gi of Gj is compound, then Bj is a subset of a vertex cluster of Gi, and
this vertex cluster contains only one graph representative, namely r(Gj).
This implies in particular that |Bj | ≤ μ ≤

√
B, for all j.

In the full paper, we prove the following lemma.

Lemma 5. It takes O(MST (n,m)) I/Os to compute a barrier decomposition of
an undirected graph G that has properties (P1)–(P3).

In a nutshell, such a decomposition can be obtained as follows: In [9], a pro-
cedure is described that computes a μ-partition of a graph in O(MST (n,m) +
(n/B) logW ) I/Os, by computing a minimum spanning tree T and then com-
puting c-clusters iteratively using logW scans of an Euler tour of T . Using an
algorithm from [3], the component tree Tc can be computed from T in O(sort(n))
I/Os; the logW scans of the Euler tour can then be simulated in O(sort(n)) I/Os
using one traversal of Tc. Once this μ-partition is given, two more traversals of
Tc are needed. The first one refines the partition so that all clusters of depth
greater than logn+2 have a particularly simple structure. The second one splits
each of these deep clusters into three parts: a top, middle, and bottom part,
which correspond to top, middle, and bottom parts of its cluster tree. The top
and bottom parts define clusters in (μ, logn+2)-partitions of two graphs Gi and
Gk in the barrier decomposition. The middle part Gj defines an atomic graph
in the barrier decomposition that is a child of Gi and the parent of Gk.
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By Lem. 5, it takesO(MST (n,m)) I/Os to compute the desired decomposition
of the graph. Using MZ-SSSP∗ to solve CSSP in a compound graph Gi in the
computed barrier decomposition takes O(((ni + |Bi|)/μ) logn + (miμ logn)/B)
I/Os, where ni is the number of vertices in Gi and mi is the number of edges in
Gi. If Gi is atomic, Dijkstra’s algorithm can be used to solve CSSP in Gi, which
incurs O(1 + mi/B) I/Os because Gi fits in memory.

It is easy to see that
∑q

i=1(ni+|Bi|) = O(n) and
∑q

i=1 mi = O(m). Hence, the
cost of all CSSP-computations on graphs Gi is O((n/μ) logn + (mμ logn)/B).

The cost of all repository operations can be bounded as follows: The algorithm
performs exactly one subgraph query per graph Gi and at most two cluster
queries per cluster: one when the cluster is loaded into the hot pool and another
one when the graph representative r(Gj) in the cluster is visited. Moreover, it
is easy to show that the sum of the rj and ci is O(n/μ), so that the cost of
all queries on the repository is O((n/μ) logn + n/B) = O((n/μ) logn) I/Os.
Since the algorithm performs only O(m) edge relaxations, the cost of all Update
operations on the repository is O((m/B) log n) I/Os.

Summing the costs of all parts of the algorithm yields an I/O-complexity
of O((n/μ) log n + (mμ logn)/B + MST (n,m)), which is O(

√
nm/B logn +

MST (n,m)) for μ =
√

nB/m. This proves Thm. 1.
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Abstract. We consider the problem of finding shortest paths in a graph with in-
dependent randomly distributed edge lengths. Our goal is to maximize the proba-
bility that the path length does not exceed a given threshold value (deadline). We
give a surprising exact nΘ(log n) algorithm for the case of normally distributed
edge lengths, which is based on quasi-convex maximization. We then prove av-
erage and smoothed polynomial bounds for this algorithm, which also translate
to average and smoothed bounds for the parametric shortest path problem, and
extend to a more general non-convex optimization setting. We also consider a
number other edge length distributions, giving a range of exact and approxima-
tion schemes.

1 Introduction

Finding shortest paths between a given source and destination is a classic and fun-
damental problem in theoretical computer science which has influenced a wide ar-
ray of other fields. It is less clear what a stochastic shortest path would mean, when
the edge lengths are random with given distributions. Is it the shortest path on aver-
age, or the path minimizing a combination of mean and variance, or minimizing some
other criterion? Is it found adaptively or non-adaptively? A variety of problem vari-
ants have appeared in the literature, most minimizing the expected length of a path,
or a combination of expected length and expected cost such as bicriterion problems
[15], [19]. Adaptive formulations have prevailed, perhaps because a non-adaptive min-
imization of the expected path length trivially reduces to the deterministic shortest path
problem.

Few researchers have considered optimizing a non-linear function of the (random)
path length. Some notable work includes that of Loui [12] who seeks the path maxi-
mizing an expected utility of the path length for a class of monotone decreasing utility
functions. Fan et al. [6] present an adaptive heuristic for paths that maximize the prob-
ability of arriving on time. Formulations of this type with nonlinear objective, though
perhaps most useful in practice, have been sparse, because different sources of hard-
ness arise from many levels: combinatorial, distributional, analytic, functional, to list a
few. For example, in the absence of randomness, the combinatorial nature of the prob-
lem may be hard to approximate for certain objective functions (e.g., longest path [9]).

� nikolova@mit.edu. MIT CSAIL, Ongoing doctoral thesis work. Part of this work was done
while the author was at Mitsubishi Electric Research Labs. Supported in part by NSF grants
ANI-0225660 and ITR-0219018.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 552–563, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Stochastic Shortest Paths Via Quasi-convex Maximization 553

In the absence of graph structure, the objective function in itself may be difficult to
optimize: we can solve efficiently linear programming but not even quadratic or more
generally non-convex programming. The distributions may be hard to work with: calcu-
lating values of the cumulative distribution function of the sum of n Bernoulli random
variables is #P-hard as it corresponds to counting knapsack solutions [11]. Comput-
ing the expectation E[u(X)] =

∫
u(x)f(x)dx of the non-linear utility function u(.)

of the random path length X with probability density function f(.) may not even have
a closed form, thus making the standard notion of computational hardness inapplica-
ble. Superimposing these sources of difficulty may ultimately lead to a problem that
has no hope of even being categorized as to what level of hardness it has—partly
because we do not understand to what extent each source contributes to the overall
complexity.

We thus focus on a stochastic shortest paths model which can effectively factor the
sources of difficulty above and at the same time has an innovative solution drawing from
a variety of areas. Inspired by recent formulations of the stochastic knapsack and other
classic problems turned stochastic [5], [7] our goal is to maximize the probability that
the path length would not exceed some threshold value. This is a natural formulation
which is also very practical: For example, this is our objective when we are going to
the airport and want to pick the path that would maximize our probability of arriving on
time for our flight. We consider a pre-planning (nonadaptive) scenario and note that it
can easily be converted to an adaptive one by rerunning our algorithms on the fly with
updated information.

Apart from the inherent practicality of the problem, it reveals a deeper theoretic
structure intertwining areas such as nonconvex programming, the geometry of path
polytopes and combinatorial optimization. As a preview to some of the open ques-
tions, we give an exact nΘ(log n) algorithm for our main model with edge lengths drawn
from normal distributions. It is unknown whether a polynomial exact algorithm exists or
whether this problem is complete for the corresponding complexity class LogNP [21].
Our algorithm also reveals a somewhat unexpected connection between Kelner & Spiel-
man’s recent techniques for linear programming [10] and the much more general field
of nonconvex optimization. We extend their techniques to get polynomial-time aver-
age and smoothed complexity for our superpolynomial algorithms. We stress that these
smoothed results are stronger than previous smoothed results in that they do not per-
turb the feasible set (the path polytope), but just the objective function (the plane on
which the polytope is projected). Or, in the terms of the stochastic shortest paths termi-
nology, only the edge means and variances and not the solution paths themselves, are
slightly perturbed. As an added benefit, we reveal a connection between the stochastic
and parametric shortest path problems, which implies new average and smoothed re-
sults for the parametric shortest path problem as well. Our results can also generalize
to a wide class of non-convex optimization problems, known as low-rank quasiconcave
minimization [18].

1.1 Our Results

We define a model for the stochastic shortest path problem in which the edge lengths
are independent random variables drawn from known distributions. The optimal path
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maximizes the probability that the path length does not exceed a given threshold (dead-
line). This objective arises naturally in practice where a user wants to maximize the
probability of arriving on time to a destination. In an effort to decouple the complexity
inherent in this objective from the distributional and analytic complexity of the prob-
lem, our first model draws the edges from normal distributions. We show that for a
large range of deadlines our problem entails the maximization of a quasi-convex func-
tion over the path polytope. Due to the particular form of our quasi-convex objective, the
optimal path is attained at an extreme point of the dominant of the projection (shadow)
of the path polytope onto a two-dimensional plane. We thus give an exact algorithm
for finding the optimal path by walking along extreme points of the shadow dominant.
We then establish an equivalence between the shadow dominant and the optimal cost
envelope of the parametric shortest path problem. Consequently, this proves that our al-
gorithm has a worst case running time nΘ(log n). We give a pseudopolynomial algorithm
for the remaining range of deadlines.

In the following section we extend the techniques from Kelner & Spielman [10] to
prove linear average and smoothed complexity of the shadow of the path polytope and
consequently polynomial running time of our algorithm. These results also imply new
polynomial average and smoothed bounds on the complexity of the parametric shortest
path problem and hold for a wider class of non-convex optimization problems than the
specific stochastic shortest path objective.

Finally we extend our model to distributions other than the normal. For edge lengths
coming from a Poisson or a gamma distribution with a fixed second parameter, or more
generally distributions which are additive and satisfy stochastic dominance, we show
that the problem easily reduces to the deterministic shortest path problem. For the case
of exponential and Bernoulli random variables, we give polynomial (PTAS) and quasi-
polynomial (QPTAS) approximation schemes respectively based on a discretization of
the state space of the random edge lengths.

1.2 Related Work

The majority of the related literature on stochastic shortest paths focuses on adaptive
algorithms, which compute the next best hop based on information about realized edge
lengths so far [2], [22], [3], [20], [6], [13]. Most of the adaptive formulations focus on
minimizing expected path length; few consider minimizing a non-linear function of the
length and settle for heuristic algorithms [6].

The most closely related nonadaptive formulation to our model is that of Loui [12].
Loui considers a general utility function of path length which is monotone and nonde-
creasing, and proves that the expected utility becomes separable into the edge lengths
only when the utility function is linear or exponential. In that case the path that maxi-
mizes expected utility can be found via traditional shortest path algorithms. For general
utility functions he gives an algorithm based on an enumeration of paths, with a very
large running time O(nn). In a consequent paper, Mirchandani and Soroush give expo-
nential algorithms and heuristics for quadratic utility functions [14]. For non-monotone
utility functions Nikolova, Brand and Karger [17] give hardness results and pseudopoly-
nomial algorithms. For a separate model on bicriteria shortest paths with monotone
objective, Ackerman et al. [1] give different average and smoothed analyses.
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2 Problem Definitions and Quasi-convex Maximization

2.1 Stochastic Shortest Path Definition

Consider a graph G = (V,E), with |V | = n nodes and |E| = m edges. We are given
a source S and destination T . Each edge i has an independent random variable length
(travel time) Xi. We have a deadline in time t, and we would like to find an ST -path
which maximizes the probability that we reach the destination within time t. Thus, we
would like to solve

max
π

Pr
(∑

i∈π

Xi ≤ t
)

for paths π between the source and destination. (1)

In the following sections, we see that different distributional assumptions for the edge
lengths lead to problem complexity and algorithms of very different nature.

2.2 Parametric Shortest Path Definition

Consider a graph G with distinguished source S and destination T . Each edge i has a
parameter dependent length ui + λwi, where ui, wi are nonnegative constants. and
λ ∈ [0,∞). The parametric shortest paths problem looks for the parameter values
(breakpoints) λ ∈ (0,∞) at which the shortest path changes. Carstensen [4] proved
that the number of breakpoints is at least nΩ(log n) in the worst case, and one can easily
show a matching upper bound for general graphs (A more involved proof on the upper
bound is also available in Carstensen [4]).

In the next section we will establish a connection between the stochastic shortest
paths with normal distributions and the parametric shortest paths problem, which will
enable us to apply our average and smoothed results for the former to the parametric
shortest path setting as well.

2.3 Quasi-convex Maximization

In this section we briefly define convex functions and their generalization to quasi-
convex functions and state the main property of their global maxima.

Let C be a convex set.

Definition 1. A function f : C → (−∞,∞] is convex if for all x, y ∈ C and α ∈ [0, 1],

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

A function f : C → (−∞,∞] is quasi-convex if all its lower level sets Lγ = {x | x ∈
C, f(x) ≤ γ} are convex.

Informally, quasi-convex functions have a convex cross-section at any height (level).

Definition 2. We say that x is an extreme point of the set C if it cannot be represented
as a convex combination of two other points in the set C,

x = αy + (1 − α)z for y, z ∈ C, α ∈ (0, 1) ⇒ y = z = x.
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The following important property of quasi-convex maximization seems to be attributed
to folklore. A statement of the theorem without proof appears in the Introduction to
Global Optimization [8]; our proof is deferred to the full version of this paper.

Theorem 1. Let C ⊂ Rm be a compact convex set. A quasi-convex function f : C →
R that attains a maximum over C, attains the maximum at some extreme point of C.

We will need a few more definitions. The shadow of a convex set in Rm onto a two-
dimensional subspace is the orthogonal projection of the set onto the subspace. The
dominant of a set C inRm is defined as the set of all points that are greater than a point
in C, {x ∈ Rm | x ≥ y for some y ∈ C}.

3 Stochastic Shortest Paths with Normal Distributions

In this section we apply quasi-convex maximization to a graph with normally distributed
edge lengths, in which we have to select the most certain route to reach a destination by
a given time.

Assume each edge i has independent normally distributed length Xi ∼ N(μi, σ
2
i ).

Our problem is to

max
π

Pr(
∑
i∈π

Xi ≤ t) for paths π between the source and destination. (2)

For any path π, this probability can be computed by

Pr
(∑

i∈π

Xi ≤ t
)

= Pr
(∑

Xi −
∑

μi√∑
σ2

i

≤ t−
∑

μi√∑
σ2

i

)
= Φ

( t−
∑

μi√∑
σ2

i

)
,

where Φ(.) is the cumulative distribution function of the standard normal random vari-
able N(0, 1). Since Φ is monotone increasing, the problem is equivalent to finding the
ST -path which maximizes its argument,

max
π

t−
∑

i∈π μi√∑
i∈π σ2

i

. (3)

The objective in Eq. (3) cannot be separated into edge costs and does not satisfy sub-
optimality so a dynamic programming approach based on substructure would fail. To
better understand the properties of the objective function, we formulate it as a contin-
uous optimization problem over the path polytope in Rm, where m is the number of
edges.

Index all edges by 1, 2, ...,m. Represent each edge subset by its incidence vector
x ∈ Rm, with xi = 1 if edge i is in the subset and xi = 0 otherwise. All 2m subsets of
edges correspond to the vertices of the unit hypercube in Rm. The ST -path polytope
(or, the path polytope for short) is the convex hull of incidence vectors of (simple) ST -
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Fig. 1. Projection of the unit hypercube (representing all edge subsets) and the path polytope onto
the (μ, σ2)-plane

paths. It is a subset of the unit hypercube in Rm, and its vertices are a subset of the
vertices of the hypercube. Thus, the optimal ST -path is a solution to

maximize
t− μ · x√

σ2 · x
(4)

subject to x ∈ path polytope

x ∈ {0, 1}m,

where by {0, 1}m we denote the set of 0−1 vectors of length m. Projecting the path
polytope onto the span of vectors μ = (μ1, ..., μm) and σ2 = (σ2

1 , ..., σ
2
m) defines

a convex polygon, which we call the path polytope shadow. The objective in Eq. (4)
is not separable, far from linear or quadratic and not even convex. This places it in a
category of mathematical programming and combinatorial optimization problems, for
which there are no general efficient algorithms. Although the integer constraints are
what usually causes the main difficulty, in this case it is not clear how to solve even the
fractional version.

It turns out our objective has special structure which forces its maximum to lie on
the boundary of the feasible set. In particular, it is quasi-convex on a subset of the path
polytope and monotone in μ · x and σ2 · x on the remaining subset of the polytope.
This is not automatically good news since we do not have a polynomial description
of the boundary of the path polytope or even its shadow. For example computing the
rightmost and uppermost vertices of the path polytope shadow corresponds to finding
the longest path, in terms of the edge means and edge variances respectively. Thus the
computation of the path convex hull is in general strongly NP-hard [9]. On the other
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Fig. 2. Correspondence of extreme points P1, P2, ... of the dominant of the shadow path polytope
(left) and linear segments from the parametric path cost-function g(λ) = infx{μ ·x+λ(σ2 ·x)}
(right)

hand, we can efficiently find the extreme points on the dominant of the shadow hull,
since they optimize the linear objective γμ + (1− γ)σ2 for γ ∈ [0, 1].

Our main theorem 2 shows that for sufficiently early departure time (eliminating the
incidence of a longest path problem), our objective is quasi-convex and we can solve
the stochastic shortest paths problem exactly in time nΘ(log n). We first state a lemma
about the correspondence of the stochastic and parametric shortest paths problems. Its
proof is deferred to the full paper version.

Lemma 1. There is a one-to-one correspondence between the extreme points on the
shadow of the path polytope dominant on the plane spanned by vectors u=(u1, ..., um),
w = (w1, ..., wm) and the breakpoints of the parametric shortest path problem with
edge weights ui + λwi.

By Lemma 1, the results for the complexity of the parametric shortest paths problem
[4], [16] imply equivalent bounds for the number of extreme points on the shadow
dominant.

Corollary 1. The dominant of the path polytope shadow has nΘ(log n) extreme points
in the worst case.

We now turn to the main result in this section.

Theorem 2. When the deadline t is no less than the mean of the smallest-mean path,
the solution to Eq. (4) is an extreme point of the dominant of the path polytope shadow
and can be found in time nΘ(log n).

Proof. We first consider the relaxed version of Eq. (4). Denoting z1 = μ · x and z2 =
σ2 · x, the system becomes equivalent to

maximize
t− z1√

z2
(5)

subject to (z1, z2) ∈ path polytope shadow S

We first show that the induced objective f(z1, z2) = t−z1√
z2

is quasi-convex on a subset

of the feasible set S̄ = S ∩ {z1 | z1 < t} (which is non-empty assuming there is a path
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with mean less than t). Since z1 = μ · x < t, the value of f(z1, z2) on this feasible
subset is positive, and must contain the maximum. Consider the level set Lγ = {z ∈
R2 | f(z) ≤ γ}. This set consists of points (z1, z2) such that

t− z1√
z2
≤ γ ⇐⇒ z2 ≥

( t− z1

γ

)2
,

hence for positive γ and z1 < t, the level set Lγ is convex. Therefore f(z1, z2) is
quasi-convex on S̄, which is the part of path polytope shadow to the left of z1 = t. By
Theorem 1, the maximum is attained at an extreme point of S̄. Further, since f(z1, z2)
is monotone decreasing in both z1 and z2, the solution must be an extreme point of the
dominant of the shadow, to the left of z1 = t.

Now, any extreme point of the shadow is the projection of an exteme point of the
original path polytope (which has integer coordinates). Hence the optimal solution of
the relaxed program (5) is also a solution to the integer program (4).

Next, the extreme points of the dominant of the shadow can be found in time linear
in their number, for example with a binary search type enumeration as follows. Each
extreme point on the shadow dominant is the solution to a linear program

min c · z (6)

subject to z ∈ shadow path polytope

for some c = (c1, c2) ≥ 0. Equivalently, each extreme point corresponds to a path
minimizing c1z1 + c2z2 where z1 = μ · x is the total mean of the path and z2 is
the total variance so for c1, c2 ≥ 0 it can be found via any shortest path algorithm.
To find all extreme points on the shadow dominant, we start with its two endpoints:
the leftmost point, which corresponds to the path with smallest mean, and the bottom-
most point, which is the path of smallest variance. Denote these π1 = (m1, s1), π2 =
(m2, s2) ∈ R2, where mi is the mean and si the variance of path πi, then solve Eq.
(6) with (c1, c2) = (− s2−s1

m2−m1
, 1) if m2 − m1 �= 0, otherwise (c1, c2) = (1, 0). The

new solution is π3 = (m3, s3), a vertex between π1 and π2 on the shadow bound-
ary. If different from both π1 and π2, we repeat the procedure for finding a vertex
between π1, π3 and between π3, π2, etc. Clearly in this way we find all vertices on the
shadow dominant in time linear in their number, multiplied by the time to solve the
auxiliary program (6). Similar enumeration methods for extreme points are discussed
in Carstensen [4].

Finally, since there are N = nΘ(log n) extreme points of the shadow dominant in the
worst case by Corollary 1 and we can find each in polynomial time, the running time of
the algorithm is nΘ(log n).

When the departure time is closer to the deadline, so that any shortest path has mean
greater than t, our objective is no longer quasi-convex, in fact it is increasing in the
variance. Since finding the simple path with highest variance is strongly NP-hard [9], we
might not expect to find a good polynomial-time approximation. Settling for potentially
non-simple paths, we can give a pseudopolynomial dynamic programming solution,
which finds the path of smallest mean for every possible value of its variance and then
selects the ST-path with optimal objective value.
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Theorem 3. For general deadline t, the solution to Eq. (4) can be found in time
O(σ2nm) where σ2 is the maximum variance of an edge.

4 Average and Smoothed Complexity

In this section we show that if the edge weight vectorsu,w ∈ Rm are uniformly random
unit vectors or fixed vectors which are slightly perturbed, then the expected number of
extreme points on the path polytope shadow is linear and consequently our nΘ(log n)

algorithm from the previous section will have a low expected polynomial running time.
The techniques in this section are motivated by the recent techniques of Kelner and
Spielman [10] for the polynomial simplex algorithm for linear programming.

Note that the vertices of the path polytope P are a subset of the vertices of the unit
hypercube, in particular:

Fact 1. Each edge of the polytope P has length at least 1.

Fact 2. The polytope P is contained in the unit hypercube, which in turn is contained
in a ball with radius

√
m/2.

4.1 Average Bounds

Theorem 4. Let u,w ∈ Rm be uniformly random unit vectors and let V be their span.
Then the expectation of the number of edges on the projection of P onto V is at most
2
√

2πm.

Proof. By Fact 2, the perimeter of the shadow of P onto V is bounded above by π
√
m.

Next, for each edge I of the polytope P , denote by SI(V ) the event that edge I appears
in the shadow, and let l(I) be the length of the edge in the shadow. The sum of expected
edge lengths in the shadow is at most equal to the biggest possible perimeter:∑

I

E[l(I)] =
∑

I

E[l(I)|SI(V )] Pr[SI(V )] ≤ π
√
m.

By Lemma 2 below, E[l(I)|SI(V )] ≥ 1
2
√

2m
. Therefore,

E[number of shadow edges] =
∑

I

Pr[SI(V )] ≤ 2
√

2πm,

where m is the dimension of the polytope P , in our case it is the number of edges of
the original graph.

Lemma 2. For all edges I of the polytope P , E[l(I)|SI(V )] ≥ 1
2
√

2m
.

Proof. We first note a direct corollary from Lemma 3.8 in Kelner & Spielman [10],
namely that if an edge I of the polytope appears in the shadow, it must make a small
angle θI(V ) with the projection plane V , PrV

[
cos(θI(V )) ≥ 1√

2m
| SI(V )

]
≥ 1

2 .

Now, since any edge in the polytope P has length at least 1 (by Fact 1 above), the
length of the edge in the shadow would be at least cos(θI(V )) and its expectation pro-
vided it appears in the shadow is

E[l(I)|SI(V )] ≥ 1√
2m

1
2
.
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4.2 Smoothed Bounds

We now provide smoothed results for the maximization of our quasi-convex objective.
In particular, we show that the expected number of extreme points (equivalently edges)
on the projection of a general 0−1 vertex polytope onto a perturbed plane is polynomial
in m and 1/ρ, the inverse of our perturbation.

We first define a ρ-perturbation of the vector u, for ρ > 0. Choose an angle θ ∈ [0, π]
at random from an exponential distribution with mean ρ, restricted to the range [0, π].
Set the ρ-perturbation of u to be a unit vector chosen uniformly at random at an angle
θ to u. The following theorem states that the expected number of edges on the polytope
shadow is polynomial.

Theorem 5. Let u1, u2 ∈ Rm be given vectors and let v1 and v2 be their respective
ρ-perturbations. Denote V = span(v1, v2). The expected number of edges of the pro-
jection of P onto V is at most 4π

√
2m/ρ, for ρ < 1/

√
m.

The theorem follows similarly to the argument in Section 4.1 from the next lemma.

Lemma 3. With the variables above, Prv1, v2 [cos(θI(V )) ≤ ε |SI(V )] ≤ 4(ε/ρ)2.

This lemma generalizes the lemma of Kelner and Spielman [10] by allowing both v1
and v2 to be drawn from ρ-perturbed distributions, as opposed to requiring one of them
to be uniformly random. Its proof is deferred to the full version of this paper.

Naturally, the smaller the perturbation, the weaker the bound in the theorem. How-
ever setting ρ = 1√

2m
for example, gives the linear bound 8πm which is just a little

larger than the bound on the number of shadow edges for the average case. Finally note
that by Lemma 1, these bounds imply linear (in the number of graph edges) average
and smoothed bounds for the number of optimal paths in the parametric shortest paths
problem as well.

5 Extensions to Other Distributions

5.1 Poisson and Additive Stochastic Dominant Distributions—Exact Solution

The probability distribution D(λ) is called additive if the sum of two independent ran-
dom variables with distributions D(λ1) and D(λ2) is another random variable with the
same distribution and parameter equal to the sum, D(λ1 + λ2). With a slight abuse of
notation we use D(λ) to also denote a random variable with this distribution. Assume
in addition that the distribution D satisfies stochastic dominance, that is Pr(D(λ1) ≤
t) ≥ Pr(D(λ2) ≤ t) whenever λ1 ≤ λ2. Examples of such distributions are Poisson
and gamma(a, b) with constant parameter b.

Suppose the random length of edge i is Xi ∼ D(λi). Now, despite the non-separable
objective function, the form of distribution makes the problem separable:

Pr
(∑

i∈π

Xi ≤ t
)

= Pr
(∑

i∈π

D(λi) ≤ t
)

= Pr
(
D
(∑

i∈π

λi

)
≤ t

)
≥ Pr

(
D(λ′) ≤ t

)
,

where the last inequality follows from the stochastic dominance property of the distri-
bution for all λ′ ≥

∑
i∈π λi. With this, the optimal path is the one that has the smallest
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sum of distribution parameters along its links and can be found exactly with a deter-
ministic shortest path algorithm.

5.2 Exponential PTAS and Bernoulli QPTAS

Unlike the Poisson, the exponential distribution is not additive and we cannot write a
simple closed form expression for the objective function. We propose a polynomial-
time approximation scheme, based on dynamic programming over a discretization of
the distribution parameter space. More precisely, we give a bicriterion approximation,
which is given a lateness tolerance p and for ε > 0 it finds an ST -path π
satisfying

Pr
(∑

i∈π

Xi < t(1 + ε)
)

> 1− εp.

Due to space constraints, we defer the algorithm description to the full paper version
and only state its running time.

Theorem 6. An approximately optimal path π with Pr[
∑

i∈π Xi > (1+ ε)] ≤ p(1+ ε)

can be computed in time O(n4 logn)O
(

log(1/ε)
ε4 log 1

εp

)
γO( 1

ε log 1/ε).

A similar discretization of the state space yields a quasi-polynomial approximation
scheme for the case of Bernoulli distributions; we omit the details from this version.

6 Conclusion

We have considered a novel framework for stochastic shortest paths with indepen-
dent random edge lengths. When the edges are normally distributed, we give an exact
nΘ(log n) algorithm. Several points worth noting are that this is an unusual algorithm
(not based on dynamic programming) with an unusual running time for the classic
shortest path problem in the presence of uncertainty. Although the problem is inher-
ently discrete, in its core are properties from continuous optimization. One possibility
to prove a polynomial worst-case bound on our nΘ(log n) algorithm is to restrict the
class of graphs under consideration. We conjecture that the number of extreme points
on the corresponding shadow dominant of planar graphs is polynomial (linear) in the
size of the graph.

We present polynomial average and smoothed bounds with respect to the means and
variances of the edge length distributions in the case of normal distributions. We note
that these bounds hold for the maximization of any quasi-convex function of rank 2
(that is, a function of the form f(a · x, b · x) for vectors a, b ∈ Rm) over general
polytopes with 0−1 vertex coordinates. Our results could be further generalized [18]
and apply to diverse other settings as well as serve of independent interest to non-convex
optimization.

Other open questions for our stochastic shortest path model include considering cor-
related as well as dynamically varying edge length distributions.

Acknowledgement. We thank Brian Dean, David Karger, Asu Ozdaglar and Santosh
Vempala for valuable suggestions.
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Abstract. An instance of the path hitting problem consists of two families of
paths, and , in a common undirected graph, where each path in is asso-
ciated with a non-negative cost. We refer to and as the sets of demand and
hitting paths, respectively. When p and q share at least one mutual
edge, we say that p hits q. The objective is to find a minimum cost subset of
whose members collectively hit those of .

In this paper we provide constant factor approximation algorithms for path
hitting, confined to instances in which the underlying graph is a tree, a spider,
or a star. Although such restricted settings may appear to be very simple, we
demonstrate that they still capture some of the most basic covering problems in
graphs.

1 Introduction

The input to the path hitting problem consists of two families of paths, and , in
a common undirected graph G (V E), where each path p is associated with a
non-negative cost cp. We refer to and as the sets of demand and hitting paths,
respectively. When p and q share at least one mutual edge, we say that p hits
(or intersects) q. The objective is to find a minimum cost subset of whose members
collectively hit those of . As we demonstrate in the sequel, numerous special cases of
path hitting have been extensively studied; however, to the best of our knowledge, the
present paper is the first to address this problem in its utmost generality.

Arbitrary graphs are well-understood. A rather straightforward lower bound on the
approximability of path hitting can be derived by observing that it is at least as hard
to approximate as set cover. Given an instance of the latter problem, with a ground set
U e1 en and a collection S 1 S m of subsets of U, we construct a path hitting
instance as follows. The graph G is bipartite and complete with sides x1 xn and
y1 yn . The demand paths are (x1 y1) (xn yn) . For each subset S i there is a

corresponding hitting path pi that traverses the edges (x j y j) : e j S i but none of
the edges (x j y j) : e j S i . It is easy to see that for every I 1 m the subset
of paths pi : i I hits all demand paths if and only if i I S i U. Therefore,
path hitting cannot be approximated within a factor of (1 ) ln for any 0,

Due to space limitations, some technical details and proofs are omitted from this extended
abstract. We refer the reader to the full version of this paper (currently available online at
http://www.math.tau.ac.il/ segevd), in which all missing details are provided.
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unless NP TIME(nO(log log n)) [6]. On the positive side, path hitting can be viewed as a
special case of set cover: The set of elements to cover is and the collection of subsets
corresponds to , meaning that a path p covers the demand paths it intersects,
with cost cp. This interpretation immediately implies an O(log ) approximation for
path hitting, by applying the greedy set cover algorithm [13, 16].

Implicit demands. Another related observation is that path hitting generalizes the mul-
ticut problem, in which given an undirected graph with non-negative edge costs and a
collection of k pairs of vertices, s1 t1 sk tk , we seek a minimum cost set of edges
whose removal disconnects each of these pairs. The latter problem can be restated as
that of simultaneously hitting each si-ti path using an edge set of minimum total cost.
However, in this context the demand paths are represented implicitly, by specifying
which pairs should be disconnected. While Garg, Vazirani and Yannakakis [9] devised
an O(log k) approximation for the multicut problem, a hardness result of (log log n)
has recently been obtained by Chawla, Krauthgamer, Kumar, Rabani and Sivakumar
[3], assuming a stronger version of the Unique Games Conjecture.

1.1 Motivation for Studying Restricted Topologies

In light of these observations, we focus our attention on the approximability of the path
hitting problem confined to instances in which the underlying graph is a tree, a spider1,
or a star. Although such restricted settings may appear to be very simple, we proceed by
demonstrating that they still generalize some of the most basic graph covering problems.

Edge dominating set. Let G (V E) be an undirected graph, where each edge e E
is associated with a non-negative cost ce. An edge e is said to dominate an edge f
if e f . The goal is to find a subset E E of minimum total cost such that
each edge of G is dominated by at least one member of E . We note that this prob-
lem is known to generalize both edge cover and vertex cover (see, for example, [18]).
Even when restricted to stars, path hitting captures the edge dominating set problem
as a special case. Assuming that V v1 vn , we construct a star S on the ver-
tex set r x1 xn , with r serving as a center. The demand and hitting paths are

xi r x j : (vi v j) E , and the cost of xi r x j is c(vi v j). There is a
one-to-one correspondence between these two instances, since E E dominates all
edges of G if and only if xi r x j : (vi v j) E hits each demand path in . Carr, Fu-
jito, Konjevod and Parekh [2] were the first to have achieved significant progress with
respect to the weighted version of the edge dominating set problem, for which they pro-
posed a 2 1

10 -approximation. This factor was improved to 2 by Fujito and Nagamochi
[8] and independently by Parekh [18].

Tree augmentation. Given an undirected tree T (V E) and a set of auxiliary edges
V V coupled with non-negative costs, the tree augmentation problem asks to

identify a minimum cost subset of whose addition to T makes the newly formed
graph 2-edge connected. Menger’s Theorem allows us to interpret this problem as a
special case of path hitting: The demand paths are E, whereas for each (u v)

1 A spider is a subdivision of a star or, alternatively, the result of identifying the roots of a
collection of disjoint paths.
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the unique path in T connecting u and v plays the role of a hitting path. Since tree
augmentation has enjoyed sustained interest spanning decades, it is beyond the scope
of this paper to present an inclusive overview, and the reader is referred to a short
survey of directly related results [5, Sec. 1]. Nevertheless, we remark that there are
several tree augmentation algorithms that achieve an approximation guarantee of 2 (for
example, those in [7, 14] and variants of [11, 12]). In addition, an improved factor of 3

2
was obtained by Even, Feldman, Kortsarz and Nutov [5] for the unweighted case.

Tree multicut. The relation to the multicut problem described earlier implies that when
the input graph is a tree T (V E) and E, path hitting reduces to multicut on a
tree. Garg et al. [10] proved that this problem is at least as hard to approximate as vertex
cover. They also presented a primal-dual algorithm that constructs a feasible solution
whose cost is at most twice the optimum. An LP-rounding algorithm with a similar
approximation guarantee has recently been suggested by Levin and Segev [15]. We note
that the hardness proof of Garg et al. can be easily modified to show that the problem of
hitting subtrees of a given tree using its set of edges is at least as hard to approximate as
set cover. Therefore, in an attempt to achieve a sub-logarithmic approximation factor,
assuming that consists of paths, rather than arbitrary subtrees, is indeed necessary.

1.2 Results and Techniques

The main contribution of this paper are LP-based approximation algorithms for path
hitting on trees, spiders, and stars. As a secondary objective, we make a concentrated
effort to unify the algorithmic methods utilized in approximating previously studied
special cases. Our findings, and the techniques by which we derive them, can be briefly
summarized as follows.

Descending paths. We begin by presenting a natural LP-relaxation of path hitting in
trees, that results from formulating this problem as an integer covering program. Simple
examples illustrate that there are instances for which this linear program does not have
an integral optimal solution. Nevertheless, we constructively prove the existence of such
a solution when the paths in and are descending, that is, each path has the property
that one of its endpoints is an ancestor of the other, with respect to an arbitrary root we
fix in advance. Our proof shows how to extend the algorithm of Garg et al. [10] so that
it constructs an integral primal solution and a dual solution that satisfy complementary
slackness conditions.

General paths. We make use of this integrality result to approximate the general prob-
lem, where and may contain non-descending paths, as follows. We first define a
new set of hitting paths by performing path splitting, a preprocessing step in which
each hitting path is replaced by two descending paths of equal cost. Then, using the
optimal fractional solution we identify a new set of demand paths , all of which are
descending. Finally, we solve the problem of hitting using a minimum cost subset of

to optimality, and translate the solution we obtain to a corresponding feasible subset
of whose cost is within factor 4 of optimum. When exactly one of and consists
of descending paths, a simplification of our analysis yields an improved factor of 2,
thus providing a new tree augmentation method and recovering the multicut algorithm
of Levin and Segev [15]. These results are described in Section 2.
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A new variant of edge cover. In an attempt to outdo the above-mentioned algorithm,
we introduce and study the edge cover with assignment problem. Let G (V E) be an
undirected multigraph with edge costs ce for each e E and assignment costs sv e for
each v V and e (v). A subset E E is called an edge cover if every vertex v V
is adjacent to some edge in E . The objective is to find an edge cover E and a function

: V E that assigns each vertex to an adjacent edge in E so as to minimize the
sum of edge costs and assignment costs. When there are no assignment costs we obtain
the standard edge cover problem, which is a matching problem in disguise that can be
solved in polynomial time [4, 17]. In Section 3 we demonstrate that edge cover with
assignment can be interpreted as an equivalent edge cover problem, which is created by
modifying the given multigraph and its edge costs. This reduction enables us to derive
a polyhedral description of the former problem by adapting that of the latter [1, 4].
However, rather than using this description we consider a simplified set of constraints,
and prove that the resulting linear program has an integrality gap of exactly 4

3 .

Spiders and stars. One possible direction for improving the approximation factor of 4
is to avoid the path splitting step. In Section 4 we prove that this task can be accom-
plished when the input graph is a spider. In this case, we solve the LP-relaxation right
away and utilize its optimal solution to identify a new set of descending demand paths

. We then formulate the problem of hitting using a subset of as an instance of
edge cover with assignment in an auxiliary multigraph. Finally, we solve the resulting
problem, and prove that after translating its solution back to the original graph we ob-
tain a feasible subset of with cost of at most 3 219 times the optimum. Our analysis
is based on combining the integrality result for descending paths and the integrality gap
of the simplified relaxation of edge cover with assignment. In the full version of this
paper, we also show that the suggested algorithm provides an 8

3 -approximation in stars.

2 Path Hitting in Trees

The main result of this section is an algorithm for path hitting in trees, with an approx-
imation guarantee of 4. We begin by presenting a natural LP-relaxation of path hitting
and its dual. Next, we extend the algorithm of Garg et al. [10] for multicuts in trees, and
utilize complementary slackness conditions to prove that the new algorithm constructs
an optimal solution when the paths in and are descending. Finally, we show how
to manipulate this algorithm in order to approximate the general problem.

2.1 A Linear Program and Its Dual

Our algorithms and their analysis will be based on the following LP-relaxation of the
path hitting problem:

minimize
p

cp xp (PH)

subject to
p :p q

xp 1 q (2.1)

xp 0 p (2.2)
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In an integral solution, the variable xp indicates whether we pick the path p , and
constraint (2.1) ensures that each demand path is intersected by at least one of the hitting
paths we pick. The dual of this linear program is:

maximize
q

yq (DPH)

subject to
q :q p

yq cp p (2.3)

yq 0 q (2.4)

To better understand (DPH), we first consider integral solutions to this program. The
variables yq : q specify the number of copies we pick from each demand path q,
and the objective is to maximize their sum. The primal costs now serve as capacities,
and constraint (2.3) states that for each path p the total number of copies of
demand paths that are intersected by p does not exceed its capacity cp. Therefore, the
dual program can be viewed as a fractional path packing problem.

2.2 An Exact Algorithm for Descending Paths

In the following we consider the special case in which and consist of descending
paths. We assume that the tree T (V E) is rooted at an arbitrary vertex, which is
fixed in advance. For v V , we denote by depth(v) the length of the unique path in
T connecting v to the root. In addition, for u v V we denote by [u v] the unique
path in T connecting u and v. Finally, for each path q the endpoints of q are
designated by uq and lq, with the convention that depth(uq) depth(lq).

The algorithm. Starting with an empty set of hitting paths P and the trivial dual solution
y 0, we proceed as follows.

1. For each v V , in non-increasing order of depth in T ,
(a) For each q such that uq v, we increase the dual variable yq as much as

possible, without violating the capacity constraints.
(b) We augment P by adding, in an arbitrary order, the paths in whose dual

constraint became tight during this iteration (henceforth, saturated paths).
2. For each p P, in reverse order of addition, if P p is a feasible solution we

eliminate p from P.

Analysis. Let P be the set of hitting paths produced by the algorithm, and let y be
the corresponding dual solution. When step 1 terminates, each demand path q is
intersected by at least one saturated hitting path, or otherwise yq could have been further
increased, contradicting the maximality of y. It follows that P is indeed a feasible primal
solution, as feasibility is maintained throughout step 2. In addition, since we never
violate the capacity constraints, y is a feasible dual solution.

We now prove that P and y are optimal for (PH) and (DPH), respectively, by showing
that these solutions satisfy complementary slackness conditions. In terms of P and y, the
primal conditions state that for each p , if p P then this path is saturated. The dual
conditions state that for each q , if yq 0 then P contains exactly one hitting path
that intersects q. The primal conditions are immediately implied by the construction of
P, whereas the dual require a closer inspection of step 2.
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Lemma 1. Let q be a path for which yq 0. Then q is intersected by exactly one
path in P.

Proof. Suppose that P contains two distinct paths, p1 and p2, that intersect q, where
without loss of generality depth(up1 ) depth(up2 ). Let P p2 be the set of paths remaining
in P just before p2 is considered for elimination in step 2, and let p2 be the set of
demand paths for which p2 is the only path in P p2 that intersects them. We remark that
p1 and p2 are members of P p2 , as these paths survived step 2.

We first show that for each q p2 we have depth(uq ) depth(uq) by considering
two cases, depending on whether the edge set p1 p2 q is empty or not.

Case I: p1 p2 q . min us .1emSince q is a descending path, there is a unique
minimum depth edge in p1 q, which we denote by e1. Similarly, e2 is the unique
minimum depth edge in p2 q. Clearly, e1 e2, or otherwise p1 p2 q . In addi-
tion, by the assumption that depth(up1 ) depth(up2) the edge e2 must be deeper than
e1, and by definition of e2 the upper endpoint of this edge is up2 , as shown in Figure
1a. Now suppose that depth(uq ) depth(uq). Note that q is intersected by p2 and
contains uq , implying that q traverses the edge e1 (see Figure 1b). However, e1 p1

and therefore p1 intersects q . This contradicts the fact that p2 is the only path in P p2

that intersects q , since p1 P p2 and p1 p2.

Case II: p1 ∩ p2 ∩ q � ∅. Let e p1 p2 q and let r be the lower endpoint of e,
as described in Figure 1c. As p2 intersects q , exactly one of the following scenarios
occurs:

1. q [r up2 ] . Since p1 contains the edge e and the vertex up1 , [r up2 ] is a subpath
of p1 and therefore p1 intersects q . Once again, this contradicts the fact that p2 is
the only path in P p2 that intersects q .

2. q [r up2 ] and q [r lp2 ] . Clearly, depth(uq ) depth(r) depth(uq),
where the second inequality holds since e q.
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Fig. 1. (a) Case I: General configuration. (b) Any path that intersects p2 and contains a vertex
whose depth is at most that of uq unavoidably traverses e1. (c) Case II: General configuration.
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We now show that p2 should have been eliminated in step 2, by proving that p2 .
Suppose that p2 and let q p2 . Since depth(uq ) depth(uq), the vertex uq

is processed in step 1 before uq. Immediately after uq is processed, P contains a path
p intersecting q , that became saturated in an earlier iteration or in the current one.
Subsequently, when the iteration in which uq is processed begins, the path p2 is not
saturated yet, since yq 0. Therefore, p2 is added to P in this iteration or later. It
follows that p P p2 , since the paths in P are considered for elimination in reverse
order of their addition, contradicting the assumption that q p2 .

Theorem 2. When the paths in and are descending, the linear program (PH) has
an integral optimal solution. This solution can be computed in polynomial time.

2.3 An Algorithm for Arbitrary Paths

We now exploit the integrality result described in Theorem 2 to design an approximation
algorithm for the general case, in which and may contain non-descending paths.
For a path p in T , we denote by v1

p and v2
p the endpoints of this path and by LCA(v1

p v2
p)

the lowest common ancestor of v1
p and v2

p.

The algorithm. Let x be an optimal fractional solution to the linear program (PH).

1. We create a new set of hitting paths , by replacing each p with the pair
of descending paths [v1

p LCA(v1
p v2

p)] and [v2
p LCA(v1

p v2
p)]. Each of these paths is

given a cost cp.
2. We define a set of demand paths as follows. For each q , we add the path

q1 [v1
q LCA(v1

q v2
q)] to if p :p q1

xp
1
2 and otherwise we add q2

[v2
q LCA(v1

q v2
q)].

3. We apply the exact algorithm for descending paths to find a minimum cost subset
P that hits . The resulting solution is translated to a solution P for the
original problem by picking p if at least one of its replacements belongs to P .

Analysis. We first argue that P is indeed a feasible solution. This claim follows from
observing that the construction of in step 2 guarantees that it contains a subpath of
each demand path in . Therefore, the paths in P collectively hit those in , and this
property is clearly preserved when P is translated back to the original problem. We
now show that the total cost of the paths in P is within factor 4 of optimum.

Lemma 3. p P cp p P cp 4 OPT(PH).

Theorem 4. Path hitting in trees can be approximated to within a factor of 4.

3 Edge Cover with Assignment

We temporarily deviate from the general theme of this paper and study the edge cover
with assignment problem, formally defined in Subsection 1.2. This section introduces
several tools that will allow us to obtain an improved approximation guarantee when the
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input graph is a spider, as well as significantly simplify the presentation. We demon-
strate that edge cover with assignment can be reduced to an equivalent edge cover prob-
lem, by modifying the given multigraph and its edge costs. We also consider a simple
LP-relaxation of this problem and prove that its integrality gap is 4

3 .

A reduction to edge cover. Let I be an instance of the edge cover with assignment
problem, consisting of a multigraph G (V E) with edge costs ce for each e E and
assignment costs sv e for each v V and e (v). Consider the following instance I of
the edge cover problem:

1. The new multigraph is G , with a vertex set V V a b and an edge set E
E (a b) (u a) : u V . In other words, we add a new edge (a b) and connect
a to each original vertex.

2. The cost of an original edge e (u v) is ce ce su e sv e; the cost of a new edge
(u a) is c(u a) mine G(u)(ce su e); and the cost of (a b) is c(a b) 0.

Lemma 5. For each solution to I there exists a corresponding solution to I of no
greater cost, and vice versa.

Theorem 6. Edge cover with assignment can be solved as an edge cover problem.

A simple LP-relaxation. Essential to our analysis will be the following LP-relaxation
of edge cover with assignment:

minimize
e E

cexe

v V e (v)

sv eyv e (ECA)

subject to
e (v)

yv e 1 v V (3.1)

yv e xe v V e (v) (3.2)

xe yv e 0 v V e (v) (3.3)

In an integral solution, the variable xe indicates whether we pick the edge e, whereas
yv e indicates whether the vertex v is assigned to e. Constraint (3.1) ensures that each
vertex is assigned to some adjacent edge, and constraint (3.2) states that the assignment
of vertices is restricted to edges that we pick.

Theorem 7. The integrality gap of (ECA) is exactly 4
3 .

4 Path Hitting in Spiders

The main result of this section is an improved algorithm for path hitting in spiders that
constructs a solution whose cost is within factor 3 219 of optimum. We initially consider
the special case in which all demand paths are descending, and show how to exploit a
number of structural properties in order to formulate this problem as edge cover with
assignment. To approximate the general problem, we combine this formulation together
with new insight into some of the results presented in Sections 2 and 3.
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Notation. We assume that the given spider S (V E) is rooted at its center r, and use
to denote the set of paths emerging from r, to which we also refer as the arms of S .

The subset 1 is the set of hitting paths that are contained in a single arm of S , of
which 1

a are those contained in a . Similarly, 2 is the set of hitting paths
that go through two arms of S , of which 2

a are those that go through a and an
additional arm. For a path p 2

a , we use deptha(p) to denote the depth of the endpoint
of p that resides on a. A demand path q that is contained in a is said to be located below
a hitting path p 2

a if the depth of the upper endpoint of q is at least deptha(p). In this
case, p and q are edge-disjoint.

4.1 A Reformulation of Descending Demand Paths

In what follows we consider the special case in which the objective is to find a minimum
cost subset of that hits a collection of descending paths . Let be an
optimal solution to this problem. We observe that, with respect to each arm a , the
set of paths satisfies two structural properties.

1. If 2
a , then the set of paths 1

a is an optimal solution to the problem
of hitting the paths in that are contained in a using a subset of 1

a .
2. If 2

a , let pa be the path that maximizes deptha(p) over all paths in
2
a . Then 1

a is an optimal solution to the problem of hitting the
demand paths below pa using a subset of 1

a .

These observations enable us to reformulate the subproblem we consider as an in-
stance of edge cover with assignment in an auxiliary multigraph, by interpreting the
cost of each subset 1

a as an assignment cost. Specifically, we begin by finding
for each arm a an optimal solution to the problem of hitting the paths in that
are contained in a using a subset of 1

a . Since both and 1
a consist of descending

paths, this solution can be obtained by applying the algorithm described in Subsection
2.2, and we denote its cost by OPTa . We then find for each a and p 2

a an
optimal solution to the problem of hitting the demand paths below p using a subset of

1
a . Once again, we apply the algorithm for descending paths and use OPTa p to denote

the cost of the resulting solution. Based on these computations, we define an instance
of edge cover with assignment on a multigraph G as follows:

1. The set of vertices is v .
2. For each a a and p 2

a
2
a , we add an edge ep (a a ) with cost cp.

3. For each a , we add an edge (a v ) of zero cost.
4. The assignment costs are: sa ep OPTa p for each a and p 2

a ; sa (a v )

OPTa for each a ; and sv (a v ) 0 for each a .

We now prove that the above reduction is indeed correct, by clarifying the equiva-
lence between the original instance of path hitting and the resulting instance of edge
cover with assignment.

Lemma 8. There exist an edge cover F E(G) and an assignment function :
V(G) F whose total cost is at most p cp.

Lemma 9. Let F E(G) be an edge cover in G, and let : V(G) F be an as-
signment function. Then (F ) can be translated to a subset of that hits with an
identical cost.
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4.2 An Algorithm for Arbitrary Paths

In the following we design an improved algorithm for path hitting in spiders. The cur-
rent algorithm departs from our approach for general trees in two aspects. First, we skip
the path splitting step and add an elimination step in which redundant demand paths are
discarded. Second, we solve the problem of hitting descending paths using the reduction
to edge cover with assignment.

The algorithm. Let x be an optimal fractional solution to the linear program (PH).

1. We define a set of descending demand paths by2:
(a) For each q , we add the path q1 [v1

q LCA(v1
q v2

q)] to if p :p q1
xp

1
2 and otherwise we add q2 [v2

q LCA(v1
q v2

q)].
(b) While there is a pair q q such that q is a subpath of q , we eliminate

q from .
2. We find a minimum cost subset P that hits as follows:

(a) We reduce this problem to edge cover with assignment (see Subsection 4.1).
(b) We find an optimal solution to the resulting instance (see Theorem 6) and trans-

late it back to the original problem, as specified in Lemma 9.

4.3 Analysis

We first observe that P is indeed a feasible solution. The construction of in step 1a
guarantees that it contains a subpath of each demand path in . In addition, for each
path q that is eliminated in step 1b we leave in a witness ensuring that q is hit by
P, in the form of a subpath of q . In what follows we prove the next theorem.

Theorem 10. The cost of P is at most 4(1 2)
3 OPT(PH) 3 219 OPT(PH).

Let I denote the instance of edge cover with assignment that is produced by step 2a of
the algorithm. Using notation similar to that in Subsection 4.1, consider the specializa-
tion of the LP-relaxation (ECA) for I, after picking in advance some edge (a v ) and
assigning v to this edge (with zero cost):

minimize
p 2

cp xep

a p 2
a

OPTa pya ep

a

OPTa ya (a v ) (ECAI)

subject to
p 2

a

ya ep ya (a v ) 1 a (4.1)

ya (a v ) x(a v ) a (4.2)

ya ep xep a p 2
a (4.3)

xep x(a v ) ya ep ya (a v ) 0 a p 2 (4.4)

To avoid confusion, we denote by OPT f ( ) the cost of an optimal fractional solution
to a given linear program. Similarly, OPTi( ) is the cost of an optimal integral solution.

2 Recall that v1
q and v2

q denote the endpoints of a given path q.
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As specified in step 2b, the set of paths P is a translation of an optimal integral so-
lution to (ECAI). According to Lemma 9 this translation is cost-preserving, therefore

p P cp OPTi(ECAI). In addition, Theorem 7 states that the integrality gap of (ECA)
is 4

3 , and we have p P cp
4
3 OPT f (ECAI). It follows that we can prove Theorem 10

by showing that the linear program (ECAI) has a fractional solution (x̂ ŷ) whose cost is
at most (1 2)OPT f (PH).

Constructing (x̂ ŷ). Let 2 be a fitting parameter, whose value will be determined
later. Using x , the optimal solution to (PH), we define (x̂ ŷ) as follows:

1. The fractional edges we pick are x̂ep xp for each p 2, and x̂(a v ) 1 for each
a .

2. The fractional assignment of each a is determined according to two cases. Let
2
a p1 pk , where we assume that these paths are indexed by non-increasing

order of depth in a.
(a) If k

i 1 xpi

1 , let I(a) be the minimal index for which I(a)
i 1 xpi

1 . Then

ŷa (a v ) 0, ŷa epi
xpi

for 1 i I(a) 1, ŷa epi
1 I(a) 1

j 1 xpj
for

i I(a), and ŷa epi
0 otherwise.

(b) If k
i 1 xpi

1 , then ŷa (a v ) 1 k
i 1 xpi

, and ŷa epi
xpi

for 1 i k.

Lemma 11. (x̂ ŷ) is a feasible solution to (ECAI).

Bounding the assignment cost of (x̂ ŷ). We are now concerned with bounding the total
fractional assignment cost of some a in terms of and x . Specifically, we relate
this cost to that of the hitting paths in 1

a .

Lemma 12.

OPTa ŷa (a v )

p 2
a

OPTa pŷa ep

sup [0 1 )
2 (2 )

(1 )(1 2 ) p 1
a

cp xp if p 2
a

xp
1

1
1 1 p 1

a
cpxp if p 2

a
xp

1

Bounding the overall cost of (x̂ ŷ). We now show that the fitting parameter can be
determined such that the total cost of (x̂ ŷ) is at most (1 2) p cp xp, completing
the proof of Theorem 10. Let denote the ratio between the fractional costs of the

paths in 2 and the paths in , that is, p 2 cp xp

p cp xp
[0 1]. By definition of x̂ and

the bounds in Lemma 12, the cost of (x̂ ŷ) with respect to (ECAI) is

p 2

cp x̂ep

a p 2
a

OPTa pŷa ep

a

OPTa ŷa (a v )

p 2

cp xp max sup
[0 1 )

2 (2 )
(1 )(1 2 )

1
1 1

a p 1
a

cp xp

p 2

cp xp sup
[0 1 )

2 (2 )
(1 )(1 2 )

a p 1
a

cpxp

(1 ) sup
[0 1 )

2 (2 )
(1 )(1 2 )

p

cpxp
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where the first equality follows from the observation that sup [0 1 )
2 (2 )

(1 )(1 2 )
1

1 1 .
Although we do not control the parameter , we can bound the ratio between the cost of
(x̂ ŷ) and p cpxp by considering the worst possible choice for . Using elementary
calculus, it is easy to verify that

max
[0 1]

min
2

(1 ) sup
[0 1 )

2 (2 )
(1 )(1 2 )

1 2
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Abstract. Given a system (V, f, d) on a finite set V consisting of two
set functions f : 2V → R and d : 2V → R, we consider the problem of
finding a set R ⊆ V of the minimum cardinality such that f(X) ≥ d(X)
for all X ⊆ V − R, where the problem can be regarded as a natural
generalization of the source location problems and the external network
problems in (undirected) graphs and hypergraphs. We give a structural
characterization of minimal deficient sets of (V, f, d) under certain con-
ditions. We show that all such sets form a tree hypergraph if f is posi-
modular and d is modulotone (i.e., each nonempty subset X of V has
an element v ∈ X such that d(Y ) ≥ d(X) for all subsets Y of X that
contain v), and that conversely any tree hypergraph can be represented
by minimal deficient sets of (V, f, d) for a posi-modular function f and
a modulotone function d. By using this characterization, we present a
polynomial-time algorithm if, in addition, f is submodular and d is given
by either d(X) = max{p(v) | v ∈ X} for a function p : V → R+ or
d(X) = max{r(v, w) | v ∈ X, w ∈ V − X} for a function r : V 2 → R+.
Our result provides first polynomial-time algorithms for the source lo-
cation problem in hypergraphs and the external network problems in
graphs and hypergraphs. We also show that the problem is intractable,
even if f is submodular and d ≡ 0.

1 Introduction

Given a system (V, f, d) on a finite set V consisting of two set functions f : 2V →
R and d : 2V → R with f(∅) ≥ d(∅), we consider the problem of finding a set
R ⊆ V of minimum cardinality such that f(X) ≥ d(X) for all X ⊆ V −R. The
problem can be regarded as a natural generalization of the source location prob-
lems and the external network problems with edge-connectivity requirements in
(undirected) graphs and hypergraphs [1, 6, 7, 13]; we will discuss these problems
in Section 6. We give an interesting structural characterization of minimal defi-
cient sets of (V, f, d), i.e., minimal sets X ⊆ V such that f(X) < d(X), under

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 576–587, 2006.
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certain conditions. We show that all such sets form a tree hypergraph if f is
posi-modular and d is modulotone (i.e., each nonempty subset X of V has an
element v ∈ X such that d(Y ) ≥ d(X) for all subsets Y of X containing v),
and that conversely any tree hypergraph can be represented by minimal defi-
cient sets of (V, f, d) for a posi-modular function f and a modulotone function
d. By using this characterization, we present a polynomial-time algorithm if, in
addition, f is submodular and d is given by either d(X) = max{p(v) | v ∈ X}
for a function p : V → R+ or d(X) = max{r(v, w) | v ∈ X,w ∈ V −X} for a
function r : V 2 → R+.

As applications of our algorithm, we present first polynomial-time algorithms
for the following problems:

1. The source location problem in hypergraphs with edge-connectivity re-
quirements.

2. The external network problems in graphs and hypergraphs with edge-
connectivity requirements.

We also show that the problem is intractable even if f is submodular and d ≡ 0.
Namely, we show that the problem is NP-hard if a submodular function f is
given as a functional form, and it requires at least 2

n
2 time in the worst case, if

f is given implicitly by an oracle, where n = |V |.
Our approach partly follows the idea by Bárász et al. [2] that is used to

construct a polynomial time algorithm for the source location problem with a
uniform demand function in directed networks. They introduced a new concept
of solid sets for cut functions of directed graphs, proved that solid sets form a
tree hypergraph, and gave an efficient algorithm for computing the underlying
tree of the tree hypergraph by introducing a technique to reduce the size of solid
sets required to obtain the tree. However, their proof is based on the properties
of cut functions f of directed graphs (which cannot be generalized to submodular
functions, as will be observed in Proposition 1) and the uniformness of demand
functions (which cannot also be generalized to modulotonicity), while our proof
is based on the posi-modularity of f and modulotonicity of demand functions.

The rest of this paper is organized as follows. In Section 2 we formulate our
problem, introduce some known results, and present our structural result on the
minimal deficient sets. Section 3 shows the intractability of the problem, even
if f is submodular. Section 4 reveals the structural properties of posi-modular
systems and gives a proof of our new hypertree characterization (Theorem 4).
Section 5 describes a polynomial-time algorithm if f is submodular and posi-
modular. Section 6 addresses applications of our problem.

Due to the space limitation, some of the proofs can be omitted.

2 Preliminaries

2.1 Hypergraphs

Let V be a finite set. A family E ⊆ 2V is called a Sperner family if for arbitrary
two distinct sets E,E′ ∈ E , neither E ⊆ E′ nor E′ ⊆ E holds. For a family
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E ⊆ 2V , the hypergraph (V, E) is simply written as E . For a hypergraph E , a
subset R ⊆ V is called a transversal (or hitting set) of E if R ∩ E �= ∅ for all
E ∈ E . Let τ(E) denote the transversal number of E , i.e.,

τ(E) = min{|R| | R is a transversal of E}.

A subfamily E ′ ⊆ E is called a matching of E if E ∩ E′ = ∅ for arbitrary two
distinct sets E,E′ ∈ E ′, and let ν(E) denote the matching number of E , i.e.,

ν(E) = max{|E ′| | E ′ is a matching of E}.

A hypergraph E is called a tree hypergraph (or hypertree) if there exists a tree
T with a vertex set V such that each hyperedge E ∈ E induces a subtree of T .
Such a tree T is called a basic tree for the hypergraph E . For a tree hypergraph,
the following result is known.

Theorem 1. (e.g., [3]) Let E be a tree hypergraph. Then E satisfies the König
property, i.e., τ(E) = ν(E).

We review two characterizations of tree hypergraphs. A hypergraph E is said to
have the Helly property if every subfamily of pairwise intersecting hyperedges has
a nonempty intersection. The line (or intersecting) graph L(E) of a hypergraph
E is a graph in which the vertices correspond to the hyperedges, two of them
being adjacent if the corresponding hyperedges have a nonempty intersection.
An undirected graph is called chordal if every cycle of length at least 4 has a
chord.

Theorem 2. (e.g., [10]) A family E ⊆ 2V is a tree hypergraph if and only if E
has the Helly property and its line graph L(E) is chordal.

Another characterization is known as follows. Define a weight function c(u, v)
on the edge set of the complete graph on V as follows. For every pair {u, v} of
elements in V , let c(u, v) be the number of hyperedges containing both u and v.

Theorem 3. (Bárász et al.[2]) A family E is a tree hypergraph if and only if
a spanning tree of maximum c-weight has weight

∑
E∈E(|E| − 1). Furthermore,

such a spanning tree is a basic tree for E.

It follows from Theorem 3 that any maximum spanning tree algorithm can be
used to compute a basic tree for a tree hypergraph.

2.2 Transversals over Set Functions

In this paper, we consider a system (V, f, d) on a finite set V consisting of two
set functions f : 2V → R and d : 2V → R with f(∅) ≥ d(∅), and introduce the
following problem:

Minimize |R|
subject to f(X) ≥ d(X) for all X ⊆ V −R (1)

R ⊆ V.
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Here f(∅) ≥ d(∅) is necessary for the problem to have a feasible solution. A
vertex subset X ⊆ V is called deficient if f(X) < d(X). A deficient set X is
called minimal if no proper subset of X is deficient. Let W(f, d) denote the
family of all minimal deficient sets of (V, f, d). Then the constraint in problem
(1) is equivalent to

R ∩X �= ∅ for all X ∈ W(f, d). (2)

Therefore, it follows that the problem we consider is to compute a minimum
transversal R of W(f, d). We remark that W(f, d) is not given explicitly and
|W(f, d)| may be exponential in n = |V |.

A set function f : 2V → R is called submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (3)

for arbitrary two subsets X,Y of V , and posi-modular if

f(X) + f(Y ) ≥ f(X − Y ) + f(Y −X) (4)

for arbitrary two subsets X,Y of V . We call a function d : 2V → R modulotone if
each nonempty X ⊆ V has an element v ∈ X such that d(Y ) ≥ d(X) for all
Y ⊆ X containing v.

One of the main contributions of this paper is to derive the following new
characterization of tree hypergraphs in terms of set functions.

Theorem 4. A Sperner family E ⊆ 2V is a tree hypergraph if and only if
E = W(f, d) holds for a posi-modular function f : 2V → R and a modulo-
tone function d : 2V → R.

3 Submodular Systems

This section shows that problem (1) with a submodular function f is intractable
in general and W(f, d) may not be a tree hypergraph. We first show that every
Sperner hypergraph E can be represented by W(f, d) of a submodular function
f and a constant function d.

Lemma 1. For a Sperner hypergraph E ⊆ 2V , let d, f : 2V → R be functions
defined by

d(X) = 0 for all X ⊆ V, (5)
f(X) = −|E(X)| for all X ⊆ V, (6)

where E(X) = {E ∈ E | E ⊆ X}. Then f is submodular and it holds that

E =W(f, d).

Since it is NP-hard to compute a minimum transversal of a general Sperner
hypergraph, Lemma 1 implies the following hardness result.
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Theorem 5. Let d be a function defined by d ≡ 0. For a given Sperner hyper-
graph E ⊆ 2V , let f be a submodular function given by (6). Then it is NP-hard
to compute a minimum transversal of W(f, d).

We also have the following complexity result if f is given by an oracle, i.e., we
can invoke the oracle for the evaluation of f(X) for any X ⊆ V and use the
function value f(X).

Theorem 6. Let f be a submodular function given by an oracle. Then problem
(1) requires at least 2

n
2 calls to the oracle in the worst case, where n = |V |.

Lemma 1 also implies thatW(f, d) is not a tree hypergraph even if f is submod-
ular, which contrasts to the result on posi-modular functions f .

Proposition 1. The family W(f, d) is not always a tree hypergraph, even if f
is a submodular function and d is given by d ≡ 0.

4 Posi-modular Systems

This section discusses problem (1) for posi-modular functions f . We first prove
the sufficiency of Theorem 4, where the necessity will be shown in Section 4.2.

4.1 Structure of Posi-modular Functions

Let V be a finite set and f : 2V → R be a posi-modular function.

Basic Properties of posi-modular Functions. This section gives two prop-
erties of posi-modular functions.

Lemma 2. Let X0, X1, . . . , Xh−1, Xh (= X0) (h ≥ 3) be subsets of V such
that Xi ∩ Xj �= ∅ if and only if i and j are consecutive integers. For each
i = 0, . . . , h− 1, let Yi = Xi ∩Xi+1. Then any posi-modular function f satisfies

h−1∑
i=0

f(Xi) ≥
h−1∑
i=0

f(Yi).

Let X = {X1, . . . , Xh} ⊆ 2V and I = {1, . . . , h}. For each subset J of I, let

ZJ =
⋂
j∈J

Xj . (7)

Lemma 3. If X is pairwise intersecting, i.e., Xi ∩Xj �= ∅ for all i, j ∈ I, then
for any posi-modular function f on 2V , we have

h∑
i=1

f(Xi) ≥
h∑

i=1

f(ZI\{i} − ZI).
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Solid Sets. For an element v ∈ V , we call a nonempty subset X of V v-solid
(with respect to f) if v ∈ X and f(X) < f(Y ) for all nonempty proper subsets
Y of X containing v. For each v ∈ V , we denote by Sv the family of all v-
solid sets. Let S(f) =

⋃
v∈V Sv. We prove that S(f) is a tree hypergraph if f is

posi-modular. For each subset X ⊆ V , let AX = {v ∈ X | X ∈ Sv}.

Lemma 4. Let X and Y be sets in S(f) such that X ∩Y �= ∅. Then AX or AY

is included in X ∩ Y , if f is a posi-modular function.

Proof. We suppose that X −Y and Y −X are both nonempty, since the lemma
clearly holds if X ⊆ Y or Y ⊆ X . By the posi-modularity, we have

f(X) ≥ f(X − Y ) or f(Y ) ≥ f(Y −X).

By symmetry, we assume without loss of generality that f(X) ≥ f(X−Y ). Then
X cannot be v-solid for any v ∈ X−Y since X−Y is a nonempty proper subset
of X . Therefore all elements v ∈ X such that X ∈ Sv belong to X ∩ Y , i.e.,
AX ⊆ X ∩ Y . ��

Lemma 5. The line graph L of S(f) is chordal, if f is a posi-modular function.

Proof. Assuming that L is not chordal, we derive a contradiction. Let X0,
X1, . . . , Xh−1, Xh (= X0) be a chordless cycle in S(f) of length at least 4.
For each i = 0, . . . , h − 1, let Yi = Xi ∩ Xi+1. Then we have Yi �= ∅ for all
i = 0, . . . , h−1 and Yi∩Yj = ∅ for all i and j with i �= j. It follows from Lemma
4 that

AX0 ⊆ Y0 or AX1 ⊆ Y0.

By symmetry, we assume without loss of generality that AX1 ⊆ Y0. Then by
applying Lemma 4 to X1 and X2, AX2 ⊆ Y1 holds, since Y0 ∩ Y1 = ∅. By
repeating this argument, we have

AXi+1 ⊆ Yi for i = 0, 1, . . . , h− 1.

From this, f(Yi) > f(Xi+1) holds for i = 0, 1, . . . , h − 1, since Yi is a proper
subset of Xi+1 containing some v with Xi+1 ∈ Sv. Therefore we have

h−1∑
i=0

f(Yi) >

h−1∑
i=0

f(Xi),

which contradicts Lemma 2. ��
We can also show the Helly property of S(f) by extending Lemma 4.

Lemma 6. Let f be a posi-modular function, and let X = {Xi | i ∈ I =
{1, . . . , h}} be a pairwise intersecting subfamily of S(f). Then it has a set Xi

such that AXi ⊆ ZI , where ZI is given as (7).

Lemma 6 directly implies the following lemma.
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Corollary 1. If f is posi-modular, then S(f) has the Helly property.

Lemma 5 and Corollary 1 imply the following theorem.

Theorem 7. If f is posi-modular, then S(f) is a tree hypergraph.

We are ready to prove the sufficiency of Theorem 4.

Lemma 7. If f is a posi-modular function and d is a modulotone function, then
W(f, d) ⊆ S(f).

Proof. Let X be a member of W(f, d). Then f(X) < d(X) and f(Y ) ≥ d(Y )
for all nonempty proper subsets Y of X . From the assumption on d, there is an
element v ∈ X such that d(Y ) ≥ d(X) for all Y ⊆ X containing v. Therefore we
have f(Y ) ≥ d(Y ) ≥ d(X) > f(X) for all proper subsets Y of X containing v.
That is, X is v-solid and hence X ∈ S(f) holds. ��
Theorem 7 together with Lemma 7 implies the sufficiency of Theorem 4.

4.2 Necessity of Theorem 4

Let us show the necessity of Theorem 4.
For a hypergraph E ⊆ 2V , let w : E → R+ be a nonnegative weight function

on E . Let us define f, d : 2V → R by

f(X) =
∑
{w(E) | E ∈ E , E ∩X �= ∅, E −X �= ∅},

d(X) = maxv∈X d(v),
(8)

where d(∅) = 0 and d(v) =
∑
{w(E) | v ∈ E ∈ E}. Note that f is a cut function

of the hypergraph. This implies that f is symmetric submodular, and hence it
is posi-modular. It is clear that d : 2V → R+ is modulotone.

Theorem 8. Let E ⊆ 2V be a tree Sperner hypergraph. Then there is a weight
function w : E → R+ such that E =W(f, d) holds for two set functions f and d
defined as above.

5 Submodular and Posi-modular Systems

In this section, we assume that a function f is posi-modular and submodular
and a function d is given by one of the following two forms, since applications
discussed in the subsequent section satisfy this assumption.

1. For a given function p : V → R+, let

d(X) =
{

max{p(v) | v ∈ X} if X �= ∅
0 if X = ∅. (9)

2. For a given function r : V 2 → R+, let

d(X) =
{

max{r(u, v) | u ∈ X, v ∈ V −X} if X �= ∅, V
0 if X = ∅ or V.

(10)

It is not difficult to see that d is modulotone in both cases.
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Theorem 8 together with the result in [5, 6] implies that problem (1) with a
posi-modular function f and a modulotone function d is solvable in O(n3ρ(n))
time, if the feasibility (i.e., a given R ⊆ V satisfies f(X) ≥ d(X) for all X ⊆ V −
R) can be checked in O(ρ(n)) time. We first show that the feasibility (transversal)
check is possible in polynomial time if f is posi-modular and submodular and d
is given by either (9) or (10), which implies polynomiality of the problem. We
then improve the complexity by using maximal s-avoiding t-solid sets, which will
be defined later, where a similar technique can be found in [2].

We remark that it is open whether the feasibility check is possible in polyno-
mial time for a posi-modular function f and a modulotone function d.

5.1 Transversal Check

We consider how to check whether a given set R ⊆ V is a transversal.
Let us first consider a function d of the form (10). In this case, a subset R ⊆ V

is a transversal, i.e., f(X) ≥ d(X) for each X ⊆ V −R if and only if

min{f(X) | u ∈ X ⊆ V − (R ∪ {v})} ≥ r(u, v) (11)

for each ordered pair (u, v) ∈ V 2. The value of the left-hand side of (11) is the
minimum value of the submodular function f ′ : 2V −(R∪{u,v}) → R+ defined by

f ′(X) = f(X ∪ {u}). (12)

Therefore we can check whether R is a transversal by minimizing the submodular
function f ′ for every ordered pair (u, v) ∈ V 2. Since the submodular function
minimization is solved in O((n6γ + n7) logn) time [8], where γ denotes the time
required to compute the function value for each subset X , problem (1) can be
solved in O(n3 × n2 × (n6γ + n7) logn) = O((n11γ + n12) log n) time.

Similarly, for functions d given by (9), the problem can be solved in O((n10γ+
n11) logn) time.

In the subsequent sections, we reduce these complexities.

5.2 Computing s-Avoiding Solid Sets

For s, t ∈ V with s �= t, by an s-avoiding t-solid set X we mean a t-solid subset
of V − {s}. An s-avoiding t-solid set X is called maximal if X is not included
in any other s-avoiding t-solid set. For each s ∈ V , let S(s) be the family of
maximal s-avoiding t-solid sets for t ∈ V − {s}, and let S∗(f) =

⋃
s∈V S(s).

We consider minimizing a submodular function f , in particular, finding a
subset X of V − {s} containing t such that

f(X) = min{f(Y ) | t ∈ Y ⊆ V − {s}}. (13)

From the submodularity of f , the family of the minimizers is closed under taking
union and intersection. Let Ns

t denote a unique minimal member of this family.

Lemma 8. For s, t ∈ V with s �= t, Ns
t is a unique maximal s-avoiding t-solid

set.
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Based on this, the family S(s) can be obtained by computing all sets Ns
t for

t ∈ V −{s}. We note that a unique minimal minimizer for a submodular function
can be computed by using (strongly) polynomial algorithms for submodular
function minimization (e.g., [8, 9, 11]) once. The best known algorithm due to [8]
computes a maximal minimizer. Since the minimal minimizer can be obtained
by executing it for the submodular function f∗ defined by f∗(X) = f(V −X)
for all X ⊆ V , Ns

t can be computed in O((n6γ +n7) logn) time [8]. Thus S∗(f)
can be computed in O((n8γ + n9) logn) time.

5.3 Computing a Basic Tree for S(f)

From Theorem 3, given a tree hypergraph with the explicit list of the hyperedges,
we can compute a basic tree and the algorithm is polynomial in n = |V | and
m = |E| [2].

Since |S∗(f)| is at most n2 as mentioned above, we can compute a basic tree
T for S∗(f) in polynomial time. Moreover, we can show that T is also a basic
tree for S(f), where a similar proof can be found in [2].

Lemma 9. If T is a basic tree for S∗(f), then it is basic for S(f).

5.4 Computing a Minimum Transversal

In this section, we consider the problem of computing a minimum transversal
R of W(f, d), i.e., a minimum size set R ⊆ V such that R ∩ X �= ∅ for all
X ∈ W(f, d).

Theorem 4 implies thatW(f, d) is a tree hypergraph, and it follows from Lem-
mas 7 and 9 that a basic tree T forW(f, d) can be computed in polynomial time.
It is known (e.g., [2]) that if a basic tree T is available, we can compute a min-
imum transversal by the following simple algorithm which uses the transversal
check as a subroutine.

Choose an arbitrary element r of T , and regard T as an arborescence with a
root r. Here T [U ] denotes the subtree of T induced by a vertex set U .

Algorithm MinTransversal
Input: A posi-modular function f : 2V → R, a modulotone function d : 2V → R

with f(∅) ≥ d(∅), and a basic tree T for W(f, d).
Output: A minimum transversal R of W(f, d).
Step 1. Initialize R := ∅ and U := V .
Step 2. If U is empty, then output R and halt.
Step 3. Choose a leaf v of T [U ] and U := U − {v}.
Step 4. If R ∪ U is not a transversal then R := R ∪ {v}. Go to Step 2. ��

Lemma 10. Algorithm MinTransversal outputs a minimum transversal of
W(f, d).
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5.5 Complexity

Given a posi-modular and submodular function f : 2V → R+ and a function
d : 2V → R+ given by either (9) or (10), the algorithm outlined above for
finding a minimum-size set R ⊆ V such that f(X) ≥ d(X) for each X ⊆ V −R
consists of the following three steps:

1. Computing the family S∗(f).
2. Computing a basic tree T for S∗(f).
3. Computing a minimum transversal R of the family W(f, d) of all minimal

deficient sets using T (Algorithm MinTransversal).

As discussed in Section 5.2, Step 1 can be done in O((n8γ+n9) logn) time. In
Step 2, we first determine the weight function c in Theorem 3 and then construct
a maximum weight spanning tree T . These can be executed in O(n2|S∗(f)|) =
O(n4) time, since |S∗(f)| ≤ n2. Since the time-consuming part of Step 3 (i.e.,
Algorithm MinTransversal) is to check whether R ∪ U is a transversal of
W(f, d) for every v ∈ V , Step 3 can be performed in O((n8γ + n9) logn) time
and O((n9γ +n10) logn) time for functions d given by (9) and (10), respectively.
The time bound of Step 3 dominates the time complexity of the entire algorithm.

Theorem 9. Let f be a posi-modular and submodular function. Then problem
(1) can be solved in O((n8γ + n9) logn) and O((n9γ + n10) logn) time if d is
given by (9) and (10), respectively.

We note that the complexities above are essentially O(n2SFM (n)) and
O(n3SFM (n)), where SFM (n) denotes the time complexity for minimizing a
submodular function on 2V with n = |V |. We also note that the algorithms are
quadratically faster than the ones based on [5, 6] (See Section 5.1).

6 Applications of Problem (1)

In this section, we briefly discuss applications of our problem, where we focus
on the source location problem and the external network problem in undirected
graphs.

Let G = (V,E) be an undirected graph with a capacity function c : E → R+.
It has a demand function p : V → R+. Then the source location problem with
edge-connectivity requirements in undirected graphs [1, 7, 12, 13] is given as

Minimize |S|
subject to λG(S, v) ≥ p(v) for all v ∈ V (14)

S ⊆ V,

where λG(S, v) denotes the maximum flow value (i.e., edge-connectivity) between
S and v in G, and we define λG(S, v) = +∞ if v ∈ S. This problem has been
studied as a location problem concerned with network reliability.
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Suppose that we are asked to locate a set S of multiple servers which can
provide a certain service in a multimedia network N . A user at vertex v can
receive a service by connecting to a server in S through a path in N . To ensure
the quality of the service to v even if certain number p(v) − 1 of links become
out of order, we should select S so that the edge-connectivity between S and v
is at least p(v). Therefore, this kind of fault-tolerant setting can be formulated
as the source location problem.

For each X ⊆ V , let f(X) denote the sum of edge capacities between X and
V −X , i.e.,

f(X) =
∑
{c(u, v) | u ∈ X, v ∈ V −X, (u, v) ∈ E}. (15)

It is well known that f is called a cut function and is posi-modular and submod-
ular. Then by the max-flow min-cut theorem, the source location problem can
be regarded as problem (1) when f and d are respectively given as (15) and (9).

Let us next consider that the external network problem with edge-connectivity
requirements in undirected graphs [6].

Let G = (V,E) be an undirected graph with a capacity function c : E → R+.
It has a demand function r : V 2 → R+. Then the external network problem is
given as

Minimize |S|
subject to λG/S(u, v) ≥ r(u, v) for all (u, v) ∈ V 2

S ⊆ V,

where G/S denotes the graph obtained from G by identifying vertex set S with a
single vertex s, and if u ∈ S, we define λG/S(u, v) = λG/S(s, v). Similarly to the
source location problem, this has been studied as a network reliability problem
[6]. Let f and d be respectively given as (15) and (10). Then by the max-flow
min-cut theorem, the external network problem can be formulated as problem
(1).

Let us now apply the algorithm given in Section 5.5 to these problems. In
Step 1, for each s and t, Ns

t can be computed in O(nm log(n2/m)) time [4],
where n = |V | and m = |E|. Thus Step 1 can be done in in O(n3m log(n2/m))
time. As mentioned in Section 5.5, Step 2 can be executed in O(n4) time. Since
each transversal check in Step 3 is, respectively, possible in O(n2m log(n2/m))
and O(n3m log(n2/m)) time for d given by (9) and (10), Step 3 can be done in
O(n3m log(n2/m)) and O(n4m log(n2/m)) time, respectively.

Therefore, by using our general framework given in Section 5.5, we have the
following result.

Corollary 2. The source location problem and the external network problem are
solvable in O(n3m log(n2/m)) and O(n4m log(n2/m)) time, respectively.

We remark that this is the first polynomial-time algorithm for the external net-
work problem and it is known that the source location problem can be solved
in O(n2m log(n2/m)) time by using its own specific properties [1]. We also note
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that our general framework is applicable for the source location problem and the
external network problem for not only graphs G = (V,E) but also hypergraphs
(V, E), where f is given as

f(X) =
∑
{c(E) | E ∩X,E ∩ (V −X) �= ∅, E ∈ E}. (16)
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Abstract. The class Max (r, 2)-CSP consists of constraint satisfaction
problems with at most two r-valued variables per clause. For instances
with n variables and m binary clauses, we present an Õ(r19m/100)-time
algorithm. It is the fastest algorithm for most problems in the class (in-
cluding Max Cut and Max 2-Sat), and in combination with “Generalized
CSPs” introduced in a companion paper, also allows counting, sampling,
and the solution of problems like Max Bisection that escape the usual
CSP framework. Linear programming is key to the design as well as the
analysis of the algorithm.

1 Introduction

A recent line of research has been to speed up exponential-time algorithms (de-
terministic or randomized) for maximization problems such as Max 2-Sat and
Max Cut. For example, Gramm, Hirsch, Niedermeier and Rossmanith solve Max
2-Sat in time Õ(2m/5) and use this to solve Max Cut in time Õ(2m/3) [GHNR03],
while Kulikov and Fedin solve Max Cut in time Õ(2m/4) [KF02], where m is the
number of constraints or edges. (The Õ(·) notation is defined in Section 2.)

The typical method is to repeatedly transform an instance to a smaller one or
split it into several smaller ones (whence the exponential running time) until triv-
ial instances are reached; the reductions are then reversed to recover a solution to
the original instance. In [SS03] we introduced a new such method, distinguished
by the fact that reducing an instance of Max Cut, for example, results in a prob-
lem that is not Max Cut, but where the reductions are closed over the larger
class Max 2-CSP. This allowed the reductions to be simpler, fewer, and more
powerful. The algorithm ran in time Õ(rm/5) (time Õ(2m/5) for binary-valued
problems), making it the fastest for Max Cut, but tied for Max 2-Sat.

Results. The present Õ(r19m/100) algorithm is the fastest for Max Cut, Max
2-Sat, Max Dicut, weighted versions of these problems, less often considered
problems like Max Ones 2-Sat, Max 2-Lin, and of course general Max 2-CSP;
more efficient algorithms are known only for a few problems such as Maximum
Independent Set (MIS). (For discussion of MIS and references, see the full ver-
sion, which also addresses polynomial factors in an efficient implementation.)

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 588–599, 2006.
© Springer-Verlag Berlin Heidelberg 2006



An LP-Designed Algorithm for Constraint Satisfaction 589

In combination with a “Generalized CSP” approach described in a companion
paper [SS06], the algorithms here also enable (still in time Õ(r19m/100)) counting
CSP solutions of each possible cost; randomly sampling from optimal solutions,
or according to the Gibbs measure or other distributions; and solving problems
that do not fall into the Max 2-CSP framework, like Max Bisection, Sparsest
Cut, judicious partitioning, Max Clique (without blowing up the input size), and
multi-objective problems.

Techniques. We focus throughout on the graph supporting a CSP instance.
The key step in our earlier Õ(rm/5) analysis was to use a linear program (LP)
to show that the number of splitting reductions for an m-edge graph is ≤ m/5.
Consideration of an example which achieves that bound shows that any im-
provement must exploit connected components of the CSP’s underlying graph.
Conceptually, treatment of separate components sits uneasily with the LP anal-
ysis, which considers the (indivisible) degree sequence of the full graph: the usual
argument that in case of component division “we are done, by induction” cannot
be applied. However, a simple observation will sweep away the difficulty.

The LP was essential in the design of the new algorithm as well as its analysis.
Its primal solution shows which reductions contribute to the worst case. We can
easily exclude a bad reduction from the LP to see if an improved bound would
result, and only then think hard about whether the reduction can be avoided.

The LP method presented is certainly applicable to reductions other than our
own, and we hope to see it applied to algorithm design and analysis in contexts
other than exponential-time algorithms and CSPs. (For a different use of LPs in
automating an extremal construction, see [TSSW00].)

Literature Survey. The (a, b)-CSP model is extensively exploited for exam-
ple in Beigel and Eppstein’s [BE05]. An early version of our results was given
in technical report [SS04]. We have already mentioned the Max 2-Sat algo-
rithm of [GHNR03] and the Max Cut algorithm of [KF02]; [SS03] improved
on the latter, and the present result improves on both. The lovely algorithm of
Williams [Wil04], like ours, applies to all of 2-CSP. It runs in time Õ(nω/3), where
ω < 2.376 is the matrix-multiplication exponent. Depending on n rather than m,
this algorithm is faster than ours if the average degree is above 200/(19ω) <
4.430. However, it requires exponential space of order 22n/3.

Outline. In the next section we define the class Max 2-CSP, and in Section 3
we introduce the reductions our algorithms will use. In Section 4 we define and
analyze the Õ(rm/5) algorithm as a relatively gentle introduction to the tools,
including the LP analysis. The Õ(r19m/100) algorithm is presented in Section 5.

2 Max (r, 2)-CSP

The problem Max Cut is to partition the vertices of a given graph into two
classes so as to maximize the number of edges “cut” by the partition. Think of
each edge as being a function on the classes (or “colors”) of its endpoints, with
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value 1 if the endpoints are of different colors, 0 if they are the same: Max Cut
is equivalent to finding a 2-coloring of the vertices which maximizes the sum of
these edge functions. This view naturally suggests a generalization.

An instance (G,S) of Max (r, 2)-CSP is given by an “underlying” graph G =
(V,E) and a set S of “score” functions. Writing [r] = {1, . . . , r} for the set of
available colors, we have a “dyadic” score function se : [r]2 → R for each edge
e ∈ E, a “monadic” score function sv : [r]→ R for each vertex v ∈ V , and finally
a single “niladic” score “function” s∅ : [r]0 → R which takes no arguments and
is just a constant convenient for bookkeeping.

A candidate solution is a function φ : V → [r] assigning “colors” to the vertices
(we call φ an “assignment” or “coloring”), and its score is

s(φ) := s∅ +
∑
v∈V

sv(φ(v)) +
∑

uv∈E

suv(φ(u), φ(v)). (1)

An optimal solution φ is one which maximizes s(φ).

Notation. We reserve the symbols G for the underlying graph of a Max (r, 2)-
CSP instance, n and m for its numbers of vertices and edges, [r] = {1, . . . , r} for
the allowed colors of each vertex, and L = 1 + nr + mr2 for the input length.
Since a CSP instance with r < 2 is trivial, we will assume r ≥ 2 as part of
the definition. For brevity, we write “d-vertex” for “vertex of degree d”. The
notation Õ(·) suppresses polynomial factors in any parameters, so for example
Õ(rcn) may mean O(r3n rcn).

Remarks. The class Max (r, 2)-CSP is surprisingly flexible, and in addition to
Max Cut and Max 2-Sat includes problems like MIS and minimum vertex cover
that are not at first inspection structured around pairwise constraints. Readers
familiar with the class F -Sat will see that when the arity of F is limited to 2,
Max (r, 2)-CSP also contains F -Sat, F -Max-Sat and F -Min-Sat (e.g., Max 2-Sat
and Max 2-Lin) and F -Max-Ones.

3 Reductions

As with most of the works surveyed above, our algorithms are based on pro-
gressively reducing the instance to one with fewer vertices and edges until the
instance becomes trivial. Because we work in the general class Max (r, 2)-CSP
rather than trying to stay within a smaller class such as Max 2-Sat, our reduc-
tions are simpler and fewer than is typical. For example, [GHNR03] uses seven
reduction rules; we have just three (plus a trivial “0-reduction” that other works
may treat implicitly). The first two reductions each produce equivalent instances
with one vertex fewer, while the third produces a set of r instances, each with
one vertex fewer, one of which is equivalent to the original instance. We expand
the previous notation (G,S) for an instance to (V,E, S), where G = (V,E).

Reduction 0 (transformation). This is a trivial “pseudo-reduction”. If a ver-
tex y has degree 0 (so it has no dyadic constraints), then set s∅ = s∅ +
maxC∈[r] sy(C) and delete y from the instance entirely.
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Reduction I. Let y be a vertex of degree 1, with neighbor x. Reducing (V,E, S)
on y results in a new problem (V ′, E′, S′) with V ′ = V \ y and E′ = E \ xy.
S′ is the restriction of S to V ′ and E′, except that for all colors C ∈ [r] (and
in total time O(r2)) we set

s′x(C) = sx(C) + max
D∈[r]

{sxy(CD) + sy(D)}.

Note that any coloring φ′ of V ′ can be extended to a coloring φ of V in
r ways, depending on the color assigned to y. Writing (φ′, D) for the ex-
tension in which φ(y) = D, the defining property of the reduction is that
S′(φ′) = maxD S(φ′, D). In particular, maxφ′ S′(φ′) = maxφ S(φ), and an
optimal coloring φ′ for the instance (V ′, E′, S′) can be extended to an opti-
mal coloring φ for (V,E, S).

xx y

Reduction II (transformation). Let y be a vertex of degree 2, with neigh-
bors x and z. Reducing (V,E, S) on y results in a new problem (V ′, E′, S′)
with V ′ = V \ y and E′ = (E \ {xy, yz})∪ {xz}. S′ is the restriction of S to
V ′ and E′, except that for C,D ∈ [r] (and in total time O(r3)) we set

s′xz(CD) = sxz(CD) + max
F∈[r]
{sxy(CF ) + syz(FD) + sy(F )} (2)

if there was already an edge xz, discarding the first term sxz(CD) if there
was not. As in Reduction I, any coloring φ′ of V ′ can be extended to V in
r ways, according to the color F assigned to y, and the defining property of
the reduction is that S′(φ′) = maxF S(φ′, F ). In particular, maxφ′ S′(φ′) =
maxφ S(φ), and an optimal coloring φ′ for (V ′, E′, S′) can be extended to an
optimal coloring φ for (V,E, S).

xx

y

zz

Reduction III (splitting). Let y be a vertex of degree 3 or higher. Where
reductions I and II each had a single reduction of (V,E, S) to (V ′, E′, S′),
here we define r different reductions: for each color C there is a reduction
of (V,E, S) to (V ′, E′, SC) corresponding to assigning the color C to y. We



592 A.D. Scott and G.B. Sorkin

define V ′ = V \y, and E′ as the restriction of E to V \y. SC is the restriction
of S to V \ y, except that we set

(sC)0 = s∅ + sy(C),

and, for every neighbor x of y and every D ∈ [r],

(sC)x(D) = sx(D) + sxy(DC).

As in the previous reductions, any coloring φ′ of V \ y can be extended to
V in r ways, (φ′, C) where color C is given to y, and now (this is different!)
SC(φ′) = S(φ′, C). Furthermore,

max
C

max
φ′

SC(φ′) = max
φ

S(φ),

and an optimal coloring on the left is an optimal coloring on the right.

y

(V,E, S) (V ′, E′, S1) (V ′, E′, Sr)

4 An Õ(rm/5) Algorithm

As a warm-up to our Õ(r19m/100) algorithm, in this section we will present
Algorithm A, which will run in time O(nr3+m/5) and space O(L). (Recall that
L = 1 + nr + mr2 is the input length.) Roughly speaking, a simple recursive
algorithm for solving an input instance could work as follows. Begin with the
input problem instance.

Given an instanceM = (G,S):

1. If any reduction of type 0, I or II is possible (in that order of preference),
apply it to reduceM toM′, recording certain information about the reduc-
tion. Solve M′ recursively, and use the recorded information to reverse the
reduction and extend the solution to one forM.

2. If only a type III reduction is possible, reduce (in order of preference) on a
vertex of degree 5 or more, 4, or 3. For i ∈ [r], recursively solve each of the
instancesMi in turn, select the solution with the largest score, and use the
recorded information to reverse the reduction and extend the solution to one
forM.

3. If no reduction is possible then the graph has no vertices, there is a unique
coloring (the empty coloring), and the score is s∅ (from the niladic score
function).
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If the recursion depth is �, the recursive algorithm’s running time is Õ(r
),
and the preference order over type III reductions is needed to obtain the bound
� ≤ m/5 of Lemma 1; we prove this bound in Section 4. Numerous complications
in optimizing the polynomial factors are addressed in the full paper.

Phases. While a III-reduction produces r different subinstances, all have the
same underlying graph: the original graph with one vertex deleted. Type 0, I
and II CSP reductions also change the underlying graph in a way independent of
the score functions, so all the CSP reductions have graph-reduction counterparts
depending only on the underlying graph and the reduction vertex. Our algorithm
runs in three phases. The first, Algorithm A.1, finds a sequence of n graph
reductions; this can be done in linear time and space, and our focus is to show
that it has � ≤ m/5 III-reductions. Details of this phase will allow us to assume
the graph is always simple. The second phase finds an optimal cost, and the
third produces a corresponding coloring.

Recursion Depth. The crux of the analysis is the following lemma.

Lemma 1. Algorithm A.1 reduces a graph G with n vertices and m edges to an
empty graph after � ≤ m/5 III-reductions.

Proof. While the graph has maximum degree 5 or more, Algorithm A.1 III-
reduces only on such a vertex, destroying at least 5 edges; any I- or II-reductions
included in the same step only increase the number of edges destroyed. Thus,
it suffices to prove the lemma for graphs with maximum degree 4 or less. Since
the reductions never increase the degree of any vertex, the maximum degree will
always remain at most 4.

In this paragraph, we give some intuition for the rest of the argument. Al-
gorithm A.1 III-reduces on 4-vertices as long as possible, before III-reducing on
3-vertices, whose neighbors must then all be of degree 3 (degrees 0, 1 or 2 would
trigger a 0-, I- or II-reduction in preference to the III-reduction). Note that each
III-reduction on a 3-vertex destroys 6 edges if we imagine immediately following
up with II-reductions on its neighbors; similarly, reduction on a 4-vertex destroys
at least 5 edges unless the 4-vertex has no degree-3 neighbor. The only problem
comes from reductions on 4-vertices whose neighbors are also all of degree 4,
as these destroy only 4 edges. Our LP analysis will show that because such re-
ductions create degree-3 vertices, and the algorithm terminates with none, these
bad reductions cannot occur too often.

We proceed by considering the various types of reductions and their effect on
the number of edges and the number of 3-vertices. The reductions are catalogued
in Table 1. The first row, for example, shows that III-reducing on a 4-vertex
with 4 neighbors of degree 4 (and thus none of degree 3), destroys 4 edges,
and (changing the neighbors from degree 4 to 3) destroys 5 4-vertices (including
itself) and creates 4 3-vertices. The remaining rows up to the table’s separating
line similarly illustrate the other III-reductions. Below the line, II-reductions
and I-reductions are decomposed into parts. As shown just below the line, a
II-reduction, regardless of the degrees of the neighbors, first destroys 1 edge



594 A.D. Scott and G.B. Sorkin

Table 1. Tabulation of the effects of various reductions in Algorithm A.1

deg #nbrs of deg destroys steps
4 3 2 1 e 4 3 2 1

4 4 0 0 0 4 5 −4 0 0 1
4 3 1 0 0 4 4 −2 −1 0 1
4 2 2 0 0 4 3 0 −2 0 1
4 1 3 0 0 4 2 2 −3 0 1
4 0 4 0 0 4 1 4 −4 0 1
3 0 3 0 0 3 0 4 −3 0 1
2 1 0 0 1 0 0

½ e 1 0 0 0 ½ 1 −1 0 0 0
½ e 0 1 0 0 ½ 0 1 −1 0 0
½ e 0 0 1 0 ½ 0 0 1 −1 0
½ e 0 0 0 1 ½ 0 0 0 1 0

and 1 2-vertex, and counts as 0 steps (steps count only III-reductions). In the
process, the II-reduction may create a parallel edge, which may at some stage
be deleted by Algorithm A.1. Since the exact effect of an edge deletion depends
on the degrees of its neighbors, to minimize the number of cases we treat an
edge deletion as two half-edge deletions, each destroying 1

2 an edge, and whose
effect depends on the degree of the half-edge’s incident vertex. For example the
table’s next line shows deletion of a half-edge incident to a 4-vertex, changing it
to a 3-vertex and destroying half an edge. The last four rows of the table also
capture I-reductions. 0-reductions are irrelevant to the table, which does not
consider vertices of degree 0.

The sequence of reductions reducing G to an empty graph can be parametrized
by an 11-vector n giving the number of reductions (and partial reductions)
indexed by the rows of the table, so for example its first element is the number
of III-reductions on 4-vertices whose neighbors are also all 4-vertices. Since the
reductions destroy all m edges, the dot product of n with the table’s column
“destroys e” (call it e) must be precisely m. Since all 4-vertices are destroyed, the
dot product of n with the column “destroys 4” (call it d4) must be ≥ 0, and the
same goes for the “destroy” columns 3, 2 and 1. The number of III-reductions is
the dot product of n with the “steps” column, n · s. How large can the number
of III-reductions n · s possibly be?

To find out, let us maximize n · s subject to the constraints that n · e = m
and that n · d4, n · d3, n ·d2 and n · d1 are all ≥ 0. Instead of maximizing over
proper reduction collections n, which seem hard to characterize, we maximize
over the larger class of non-negative real vectors n, giving an upper bound on
the proper maximum. Maximizing the linear function n · s of n subject to a
set of linear constraints (such as n · e = m and n · d4 ≥ 0) is simply solving a
linear program (LP); the LP’s constraint matrix and objective function are the
part of Table 1 right of the double line. To avoid dealing with “m” in the LP,
we set n′ = n/m, and solve the LP with constraints n′ · e = 1, and as before
n′ · d4 ≥ 0, etc., to maximize n′ · s. The “n′” LP is a small linear program (11
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variables and 5 constraints) and its maximum is precisely 1/5, showing that the
number of III-reduction steps — n · s = mn′ · s — is at most m/5.

This establishes that the number of type-III reductions can be at most 1/5th
the number of edges m, concluding the proof.

Theorem 2. A Max (r, 2)-CSP instance on n variables with m dyadic con-
straints and length L can be solved in time O(nr3+m/5) and space O(L).

Proof. The theorem is an immediate consequence of Lemma 1 and the
polynomial-factor considerations ignored in this version of the paper.

The LP’s dual solution gives a “potential function” proof of Lemma 1. The dual
assigns “potentials” to the graph’s edges and to vertices according to their de-
grees, such that the number of steps counted for a reduction is at most its change
to the potential. Since the potential is initially at most 0.20m and finally 0, the
number of steps is at most m/5. The primal solution of the LP uses (propor-
tionally) 1 III-reduction on a 4-vertex with all 4-neighbors, 1 III-reduction on a
3-vertex, and 3 II-reductions; reducing a K5 realizes these values.

5 An Õ(r19m/100) Algorithm

The analysis of Algorithm A contains the seeds of its improvement. First, since
reductions on vertices 5-vertices may destroy only 5 edges, we cannot ignore
them and improve on m/5. This simply means including them in the LP.

Second, were this the only change we made, we would find that the LP solution
is the same as before, with support on a reduction on a 4-vertex with all 4-
neighbors (a “bad” reduction destroying only 4 edges), and harmless reductions
(III-reduction on a 3-vertex and the I- and II-reductions it enables). This suggests
that we should focus on eliminating the bad reduction. Indeed, if we exclude
it from the LP, the LP cost decreases to 23/120 (about 0.192), and the new
solution shows support on a reduction on a degree-5 vertex with all degree-5
neighbors and a degree-4 vertex with one degree-3 neighbor (each resulting in
the destruction of 5 edges). If the first of these cases could also be eliminated, the
LP would have cost 19/100, precisely what our algorithm will achieve. Improving
beyond this would require addressing the remaining bad cases of a 5-vertex with
neighbors of degree 5 except for one of degree 4, and a 4-vertex with neighbors
of degree 4 except for one of degree 3.

Finally, a collection of many disjoint K5s requires m/5 III-reductions in total.
To beat Õ(rm/5) we will have to use the fact that an optimum solution to
a disconnected CSP is a union of solutions of its components, and thus the
m/5 reductions can in some sense be done in parallel, rather than sequentially.
Correspondingly, where Algorithm A.1 built a sequence of reductions of length
at most m/5, Algorithm B.1 will build a reduction tree whose depth is at most
2 + 19m/100. The depth bound is proved by showing that in any sequence of
reductions in a component on a fixed vertex, all but at most two “bad” reductions
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can be paired with other reductions, and for the good reductions (including the
paired ones), the LP has maximum 19/100.

Algorithm B: First Phase. As with Algorithm A, a first phase Algorithm B.1
of Algorithm B performs only graph reductions. Like Algorithm A, Algorithm B
preferentially performs type 0, I or II reductions, but it is more particular about
the vertices on which it III-reduces. When forced to perform a type III reduction,
Algorithm B selects a vertex in the following decreasing order of preference:

– a vertex of degree ≥ 6;
– a vertex of degree 5 with at least 1 neighbor of degree 3 or 4;
– a vertex of degree 5 whose neighbors all have degree 5;
– a vertex of degree 4 with at least 1 neighbor of degree 3;
– a vertex of degree 4 whose neighbors all have degree 4;
– a vertex of degree 3.

When Algorithm B makes any such reduction with any degree-3 neighbor, it
immediately follows up with II-reductions on all those neighbors.

Because Algorithm B treats graph components individually, the sequence of
reductions must be organized into a reduction tree. The defining property of
the reduction tree is that if reduction on a vertex v divides the graph into
k components, then a corresponding tree node v has k children, one for each
component, the child node corresponding to the first vertex reduced upon in
that component (the first vertex in the reduction sequence restricted to the set
of vertices in the component). If the graph is initially disconnected, the reduction
“tree” is really a forest, but since this case presents no additional issues we will
speak in terms of a tree. We remark that the number of children k is necessarily
1 for I- and II-reductions, can be 1 or more for a III-reduction, and is 0 for a
0-reduction.

Call the maximum number of III-reduction nodes in any root-to-leaf path
in the reduction tree its “III-reduction” depth. Lemma 3 characterizes an effi-
cient construction of the tree, but it is clear that it can be done in polynomial
time and space. The crux of the matter is Lemma 4, which relies on the re-
duction preference order set forth above, but not on the algorithmic details of
Algorithm B.1.

Lemma 3. A reduction tree on n vertices which has III-reduction depth d can
be constructed in time O(dn + n) and space O(m + n).

Splitting-Tree Depth. Analogous to Lemma 1 characterizing Algorithm A,
the next lemma is the heart of the analysis of Algorithm B.

Lemma 4. For a graph G with m edges, the reduction tree’s III-reduction depth
is d ≤ 2 + 19m/100.

Proof. It suffices to prove the lemma for graphs with maximum degree ≤ 5. As
in the proof of Lemma 1, for each type of reduction we will count the number
of edges and vertices of various degrees it destroys, and its depth: the depth
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is normally 1 for a III-reduction and 0 otherwise, but we will now introduce
“paired” pseudo-reductions counting for depth 2. Recall that in Algorithm B
we immediately follow each III-reduction with a II-reduction on each 2-vertex it
produces.

Define a “bad” reduction to be one on a 5-vertex all of whose neighbors are
also of degree 5, or on a 4-vertex all of whose neighbors are of degree 4. (These
two reductions destroy 5 and 4 edges respectively, while, except for reducing
on a 4-vertex with three 4-neighbors and one 3-neighbor, every other reduction,
coupled with the II-reductions it enables, destroys at least 6 edges.) The analysis
is aimed at controlling the number of these reductions.

For shorthand, we write reductions in terms of the degree of the vertex on
which we are reducing followed by the numbers of neighbors of degrees 5, 4,
and 3, so for example the “bad” reduction on a 5-vertex is written (5|500).

Within a component, a (5|500) reduction is performed only if there is no
5-vertex adjacent to a 3- or 4-vertex; this means the component has no 3- or 4-
vertices, since otherwise a path from such a vertex to the 5-vertex would include
an edge incident on a 5-vertex and a 3- or 4-vertex. We track the component
containing one vertex, say vertex 1, as it is reduced. If the component necessitates
a bad 5-reduction, one of four things must be true:

1. This is the first degree-5 reduction in this branch of the splitting tree. This
case can occur only once. Weakening this constraint, we will allow it to occur
any number of times, but we will count its depth contribution as 0, and add
1 to the depth at the end. For this reason, the first bold row in Table 2 has
depth 0 not 1.

2. The previous III-reduction (which because of our preference order must also
have been a degree-5 reduction) was on a (5|005) vertex, and left no vertices of
degree 3 or 4. In this case we pair the bad (5|500) reduction with its preceding
(5|005) reduction. This defines a new “pair” pseudo-reduction shown as the
second bold row of the table: it counts for 2 steps, destroys 15 edges, etc.
(Other, non-paired (5|005) reductions are still allowed as before.)

3. The previous III-reduction was on a 5-vertex and produced vertices of degree
3 or 4 in this component, but they were destroyed by I- and II-reductions. In
this case we similarly pair the (5|500) reduction with a I- or II-reduction, but
we cannot say specifically with which sort. The “forces” column of Table 2
will constrain each (5|500) reduction for this case to be accompanied by at
least one I- or II-reduction (or two “half-edge” reductions) of any sort.

4. The previous III-reduction was on a 5-vertex and produced vertices of degree
3 or 4, but split them all off into other components. In this case, the (5|500)
reduction produces a non-empty side component destroyed with the usual re-
ductions but adding depth 0 for the component of interest. These reductions
can be expressed as a nonnegative combination of half-edge reductions, so
we can pair the (5|500) reduction with any two of these, much as in case (3).

Table 2 summarizes the reductions. Together, the four cases above let us
exclude (5|500) reductions, replacing them with less harmful possibilities repre-
sented by the first three bold rows in the table. Reasoning identically for bad
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Table 2. Tabulation of the effects of various reductions in Algorithm B

deg #nbrs of deg destroys forces depth
5 4 3 2 1 e 4 3 2 1

5 0 0 5 0 0 10 0 5 0 0 0 1
5 0 1 4 0 0 9 1 3 0 0 0 1
. . . . . . . . . . . . .
5 4 1 0 0 0 5 −3 −1 0 0 0 1
5 5 0 0 0 0 5 −5 0 0 0 0 0

5 + 5 5 0 5 0 0 15 −5 5 0 0 0 2
5 5 0 0 0 0 5 −5 0 0 0 −1 1
4 0 0 4 0 0 8 1 4 0 0 0 1
4 0 1 3 0 0 7 2 2 0 0 0 1
4 0 2 2 0 0 6 3 0 0 0 0 1
4 0 3 1 0 0 5 4 −2 0 0 0 1
4 0 4 0 0 0 4 5 −4 0 0 0 0

4 + 4 0 4 4 0 0 12 6 0 0 0 0 2
4 0 4 0 0 0 4 5 −4 0 0 −1 1
3 0 0 3 0 0 6 0 4 0 0 0 1
2 0 0 0 0 0 1 0 0 1 0 1 0

½ e 1 0 0 0 0 ½ −1 0 0 0 ½ 0
½ e 0 1 0 0 0 ½ 1 −1 0 0 ½ 0
½ e 0 0 1 0 0 ½ 0 1 −1 0 ½ 0
½ e 0 0 0 1 0 ½ 0 0 1 −1 ½ 0
½ e 0 0 0 0 1 ½ 0 0 0 1 ½ 0

reductions on 4-vertices contributes the other three bold rows. In analyzing a
branch of the splitting tree, let vector n′ count the (normalized) number of re-
ductions of each type, as in the proof of Lemma 1. Constraining the “forces”
column’s dot product with n′ forces the pairing of a I- or II-reduction with
each bad reduction. Everything else goes as before. The LP maximum is 19/100,
which (accounting for case (1) occurrences for a 4- and a 5-vertex) proves the
reduction depth to be ≤ 2 + 19m/100.

Corollary 5. Algorithm B solves a Max (r, 2)-CSP instance (G,S), where G
has n vertices and m edges, in time O(nr5+19m/100) and in linear space.

Motivated by a tree-decomposition CSP approach in a recent report by Kneis
and Rossmanith [KR05], we note the following corollary of Lemma 4.

Corollary 6. A graph G with m edges has treewidth at most 3 + 19m/100.

6 Conclusions

The LP is key to our algorithm design as well as the analysis. We begin with a
collection of reductions, and a preference order on them, guided by intuition. The
preference order both excludes some cases (e.g., reducing on high-degree vertices
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first, we do not need to worry about a reduction vertex having a neighbor of larger
degree) and determines an LP. Solving the LP pinpoints the “bad” reductions
that determine the bound. We then try to ameliorate these cases: in the present
paper we showed that each could be paired with another reduction to give a less
bad combined reduction, but we might also have taken some other course such
as changing the preference order to eliminate bad reductions. Using the LP as a
black box is a convenient way to engage in this cycle of algorithm analysis and
improvement, an approach that should be applicable to other problems.

Our methods seem not to extend to 3-variable CSPs, since a II-reduction
would combine two 3-variable clauses into a 4-variable clause.

The improvement from m/5 to 19m/100 is significant in that m/6 appears
to be a natural barrier: In a random cubic graph, a III-reduction results in the
deletion of 6 edges and a new cubic graph, and to beat m/6 requires either dis-
tinguishing the new graph from random cubic, or targeting many III-reductions
so as to divide the graph into components. Such an approach would require new
ideas outside the scope of the local properties we consider.
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Abstract. An instance of the k-Steiner forest problem consists of an undirected
graph G (V E), the edges of which are associated with non-negative costs, and
a collection (si ti) : 1 i d of distinct pairs of vertices, interchangeably
referred to as demands. We say that a forest G connects a demand (si ti)
when it contains an si-ti path. Given a requirement parameter k , the goal
is to find a minimum cost forest that connects at least k demands in . This
problem has recently been studied by Hajiaghayi and Jain [SODA ’06], whose
main contribution in this context was to relate the inapproximability of k-Steiner
forest to that of the dense k-subgraph problem. However, Hajiaghayi and Jain
did not provide any algorithmic result for the respective settings, and posed this
objective as an important direction for future research.

In this paper, we present the first non-trivial approximation algorithm for
the k-Steiner forest problem, which is based on a novel extension of the La-
grangian relaxation technique. Specifically, our algorithm constructs a feasible
forest whose cost is within a factor of O(min n2 3 d log d) of optimal, where
n is the number of vertices in the input graph and d is the number of demands.

1 Introduction

An instance of the k-Steiner forest problem consists of an undirected graph G (V E),
whose edges are associated with non-negative costs specified by a real-valued function
c : E . An additional ingredient of the input is a collection (si ti) : 1
i d of distinct pairs of vertices, interchangeably referred to as demands. In adherence
to standard terminology, we say that a forest G connects a demand (si ti) when
it contains an si-ti path. Given a requirement parameter k, the objective is to find a
minimum cost forest that connects at least k demands in . It is important to note that
there is no loss of generality in restricting the discussion to forests, rather than allowing
arbitrary subgraphs, as any edge-minimal solution to the problem under consideration
is necessarily acyclic.

Due to space limitations, some proofs and technical details are omitted from this extended
abstract. We refer the reader to the full version of this paper (currently available online
at http://www.math.tau.ac.il/ segevd), in which all missing information is
provided.
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The k-Steiner forest problem has recently been introduced and studied by Hajiaghayi
and Jain [12], who pointed out that both Steiner forest and k-MST can be interpreted as
special cases of this problem, implying its APX-hardness [3, 15]. Their main contri-
bution in this context is to relate the inapproximability of k-Steiner forest to that of
the dense k-subgraph problem, in which given an undirected graph we wish to iden-
tify a subset of k vertices whose induced subgraph has a maximum number of edges.
Specifically, this relation states that a polynomial-time (n)-approximation for k-Steiner
forest on stars can be employed as a subroutine to efficiently find a k-vertex subgraph
whose density is at least 1

2
2(n) times that of an optimal solution. We remark that the

currently best approximation guarantee for the dense k-subgraph problem is O(n ),
for some universal constant 1 3, due to Feige, Kortsarz and Peleg [7]; this long-
standing bound will be immediately improved as a consequence of achieving an o(n 2)
factor for k-Steiner forest. Hajiaghayi and Jain [12] did not provide any algorithmic
result for the latter, and posed this objective as an important open problem for future
research.

1.1 Results and Techniques

In this paper, we present the first non-trivial approximation algorithm for the k-Steiner
forest problem, which is based on a novel extension of the Lagrangian relaxation tech-
nique. Our main result is the following.

Theorem 1. There is a polynomial-time algorithm that approximates the k-Steiner for-
est problem to within a factor of O(min n2 3 d log d), where n is the number of
vertices in the given graph and d is the number of demands.

A slightly different view. The algorithm we propose and its analysis are based on
viewing k-Steiner forest as a partial covering problem with exponentially many “sets”.
For this purpose, let denote the collection of all trees in the input graph G. Then, one
can think of the k-Steiner forest problem as that of computing a minimum cost subset
of trees that connects at least k demands in . Although is clearly a forest in
any optimal solution, it would be imperative to allow the trees in this subset to overlap
in both vertices and edges; therefore, will be referred to as a collection of trees rather
than as a forest.

A seemingly useful method. Suppose that the requirement to connect at least k de-
mands is not strictly enforced; instead, if the collection of trees we construct leaves
a demand (si ti) unconnected, we incur a penalty of (i). The prize-collecting Steiner
forest problem asks to find a collection that minimizes the cost of plus
the penalties of the unconnected demands. As we demonstrate in the full version of
this paper, connections between the prize-collecting and the partial variants of numer-
ous optimization problems have been the subject of an ever-growing line of work, in
which the Lagrangian relaxation technique plays an instrumental role. Schematically
speaking, this technique assembles a near-optimal solution to the partial variant by em-
ploying successive calls to an approximation algorithm for the prize-collecting variant.
However, in all previous applications the latter algorithm had to satisfy two structural
properties, stated here in terms of prize-collecting Steiner forest:
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1. Pay penalties at the same rate as OPT. For every instance I, the solution we
obtain satisfies C OPT(I), where C is the total cost of the trees picked
by the algorithm, and is the sum of penalties over all unconnected demands.
Intuitively, an inequality of this form guarantees an -approximation even when all
penalties are inflated by a factor of .

2. Allow solutions to be combined. Lagrangian duality, in conjunction with the first
property we mention, establishes that any optimal solution to the original k-Steiner
forest problem can be approximated by a convex combination of prize-collecting
solutions. Nevertheless, such a characterization does not appear to be of much help,
unless there is an efficient method for combining these solutions into an approxi-
mate integral one.

Once again, existing algorithms are not applicable. It is not difficult to verify that the
LP-rounding technique suggested by Bienstock, Goemans, Simchi-Levi and Williamson
[5] can be adapted to approximate prize-collecting Steiner forest to within a factor of
3. In fact, Hajiaghayi and Jain [12] have recently proposed a primal-dual algorithm for
this problem that achieves a similar approximation guarantee, and have also derived
an improved factor of 2 54 by means of randomized rounding. Unfortunately, penalties
are not paid-for at the same rate as OPT by any of these algorithms. Furthermore, we
argue that this difficulty is not the primary factor limiting the applicability of previ-
ously advocated methods; rather, the fundamental question is: How do we combine the
prize-collecting solutions?

It is worth noting that, regardless of the problem-specific scheme we may apply to
combine these solutions, most algorithms that follow the Lagrangian relaxation frame-
work acquire an additional lower bound on the optimal cost through preprocessing.
Specifically, an exhaustive search is conducted in order to “guess” certain attributes of
an arbitrary optimal solution, according to which the given instance is modified in ad-
vance. Examples for attributes that were found to be useful in approximating directly
related problems include the optimal diameter [9], a constant number of edges in the
optimal solution [14, 16], or a combination of both vertices and edges [2].

“Discarding” expensive trees via internal preprocessing. Intuitively, the k-Steiner
forest problem would be much easier to approximate, given that our prize-collecting
algorithm avoids picking overly-priced trees. However, we are not aware of any way of
achieving this objective by utilizing the above-mentioned form of preprocessing. The
new approach we propose does not involve a preliminary step of preprocessing; instead,
an analogous effect is obtained by adding extra requirements to internal procedures. To
clarify this statement, suppose that 0 estimates the minimum cost of a k-Steiner
forest to within some constant factor. Then, we would like the prize-collecting algorithm
to behave as if all trees with cost greater than were explicitly eliminated from , a
hypothetical scenario whose optimal cost is denoted by OPT . In Section 2, we show
that this task can be accomplished in bicriteria fashion, establishing the next theorem.

Theorem 2. There is a polynomial-time algorithm that finds a collection , con-
sisting of trees with individual costs of at most 4 min n2 3 d , such that

C( ) 12 min n2 3 d (d) ( ) 12 min n2 3 d (d) OPT
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Here, C( ) is the total cost of the trees in , ( ) is the sum of penalties over all
demands left unconnected by , and (d) is the d-th harmonic number.

Putting it all together. In Section 3, we formulate the k-Steiner forest problem as an
integer program, and augment it with additional valid constraints stating that trees in
with a cost greater than cannot be picked. While these constraints are clearly redun-
dant with respect to the original problem, they play an important role in its Lagrangian
relaxation, by enabling us to make use of the unorthodox algorithm described in The-
orem 2. Consequently, the prize-collecting solutions we construct pay penalties at an
optimal rate, and at the same time consist of trees whose cost can be bounded in terms
of . The strategy we apply to combine these solutions has its roots in a greedy proce-
dure suggested by Levin and Segev [14] for partially covering general set systems.

1.2 Related Work

We proceed by demonstrating that k-Steiner forest generalizes and unifies two of the
most fundamental problems in combinatorial optimization. Noting that the undermen-
tioned problems have received a great deal of attention in the operations research and
computer science communities, it is beyond the scope of this writing to present an
exhaustive overview. We refer the reader to the full version of this paper for a more
comprehensive review of the literature.

When k , we obtain the Steiner forest problem, in which the goal is to com-
pute a minimum cost forest connecting all given demands. This problem is known to
be APX-hard [3, 15], since it contains Steiner tree as a special case. On the positive
side, Agrawal, Klein and Ravi [1] devised the currently best approximation algorithm,
achieving a performance guarantee of 2(1 1 d). This result was extended to a broader
class of network design problems by Goemans and Williamson [11].

Now suppose that the set of demands is (r v) : v V , where r is some speci-
fied vertex. In this case, k-Steiner forest captures the rooted k-MST problem, asking to
find a minimum cost tree that spans at least k vertices, one of which is r. We remark that
this version of the problem is equivalent to its classic version, in which no root vertex
is specified (see, for example, [10]). Following a sequence of initial results, Blum, Ravi
and Vempala [6] were the first to obtain a constant-factor approximation for k-MST.
This factor was improved to 3 by Garg [9], later to 2 by Arora and Karakostas [2],
and finally to 2 by Garg [10].

As previously mentioned, the approximability of k-Steiner forest is closely related
to that of the dense k-subgraph problem. The currently best approximation guarantee
for the latter problem is O(n ), for some universal constant 1 3, due to Feige,
Kortsarz and Peleg [7]. Additional approaches whose performance depends on the ratio
k n have emerged over the years, for example, a greedy heuristic proposed by Asahiro,
Iwama, Tamaki and Tokuyama [4], and SDP-based algorithms developed by Feige and
Langberg [8] and by Han, Ye and Zhang [13].

1.3 Notation

We conclude this section by introducing some notation and terminology. Given a tree
T , we use c(T ) e E(T ) c(e) to denote the total cost of the edges in T .
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Furthermore, when is a collection of trees, the notation c( ) is used as a shorthand
for T c(T ). Finally, for a collection , we denote by ( ) the set of demands
connected by at least one tree in , excluding the case where consists of a single
tree, which is abbreviated by writing (T ) instead of ( T ).

2 A Bicriteria Prize-Collecting Algorithm

The main result of this section is a constructive proof of Theorem 2. We remind the
reader that a prize-collecting instance consists of an undirected graph G (V E) with
non-negative edge costs specified by c : E . An additional ingredient of the input
is a collection of demands (si ti) : 1 i d , where the penalty we incur for
leaving a demand (si ti) unconnected is (i). Now suppose that the individual cost of
every tree in the constructed solution should not exceed , a given budget; we denote
by OPT the cost of an optimal solution satisfying this extra restriction.

2.1 Constructing Dense Trees with Small Costs

In what follows, we examine the intrinsic structure of connectivity under budget con-
straints, and develop an essential tool that will allow us to considerably simplify the
proof of Theorem 2. For this purpose, we define the density of a tree T to be the
ratio between its cost and the number of demands it connects, and let denote the
collection of trees in whose cost is at most . Having introduced this notation, we
claim that the minimum density of a tree in can be efficiently approximated, while
keeping the factor by which the budget is exceeded within an acceptable magnitude.
This result is formally described in the next theorem.

Theorem 3. There is a polynomial-time algorithm that finds a tree T whose den-
sity is at most 12 min n2 3 d times the minimum density of a tree in , ensuring that
c(T ) 4 min n2 3 d at the same time.

Due to space limitations, we prove a simplified version of the above theorem, in which
the term min n2 3 d is replaced by n2 3. Following similar arguments, an analogous
proof for the d-dependent bound is provided in the full version of this paper. For sake
of simplicity, we do not attempt to optimize constant factors in this extended abstract.

Initial assumptions. To avoid special treatment of degenerate cases, it would be con-
venient to assume throughout this section that the input graph contains at least one tree
with c(T ) and (T ) . As explained in Section 3, this requirement can be easily
enforced. We therefore consider the case where minT density(T ) , let T be a
tree of minimum density over all trees in , and let q (T ) . By conducting an
exhaustive search, we may also assume that the number of connected demands q and an
arbitrary vertex r V(T ) are known in advance.

The vertex-augmentation lemma. Noting that the demands in are distinct, T must
be comprised of many vertices whenever q is sufficiently large. By combining this in-
tuitive observation with further structural properties, we demonstrate in Lemma 4 how
to extend a given tree to a new tree that connects (q) demands or contains ( q)
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additional vertices. To bound the overall cost of the augmenting edges, our approach
depends upon a constant-factor approximation for the rooted quota-MST problem. In
this generalization of k-MST, each vertex v V is associated with a non-negative profit
p(v), and the objective is to compute a minimum cost tree rooted at r that collects a total
profit of at least P, a specified quota. It is easy to ascertain that the proof of Lemma 4 re-
quires to approximate instances with p(v) 0 d , a subproblem that reduces back
to k-MST in a straightforward way. Consequently, such instances can be approximated
to within a factor of 2 [10].

Lemma 4. Let T be a tree that contains r. Then, we can find in polynomial time a
tree T satisfying T T , c(T ) c(T ) 2c(T ) and at least one of the following
properties:

1. V(T ) V(T )
q

2 .

2. (T ) 3q
8 .

Proof. We assume without loss of generality that (T ) q 2, since the claim can be
established in the opposite case by defining T T . For 0 j 2, let A j be the set
of demands in (T ) with exactly j endpoints in V(T ), that is, A j (si ti) (T ) :

si ti V(T ) j . The proof proceeds by considering two cases, depending on the
cardinality of V(T ) V(T ).

Case 1: V(T ) V(T) q 2. This inequality implies, in particular, that T con-
nects r to at least q 2 vertices not belonging to T . Hence, we can obtain a tree T̃ that
connects r to at least q 2 vertices in V V(T ) and satisfies c(T̃ ) 2c(T ) by approxi-
mating the following quota-MST instance: The vertices in V V(T ) are associated with
unit profits, whereas those in V(T ) have zero profits; the quota is q 2; and the root is
r. We now define T T T̃ , and eliminate cycles in T by removing edges from T̃ .
Clearly, V(T ) V(T ) q 2.

Case 2: V(T ) V(T) q 2. Since the demands in are distinct, we have

A0
V(T ) V(T )

2
q 2
2

q
8

implying that

A1 (T ) A0 A2 (T ) A0 (T ) q
q
8

q
2

3q
8

where the first equation holds since A0 A1 A2 is a partition of (T ), and the succeed-
ing inequality is obtained by observing that A2 (T ). At this point, we approximate
the following quota-MST instance: The profit p(v) of each vertex v V V(T ) is set to be
the number of demands in consisting of v and an additional vertex from T ; all vertices
in V(T ) have zero profits; the quota is 3q 8; and the root is r. As a result, we acquire a
tree T̃ satisfying c(T̃ ) 2c(T ), since T connects r to the vertex set V(T ) V(T ), with

v V(T ) V(T ) p(v) A1 3q 8. Once again, we designate T T T̃ and eliminate
cycles in T , noting that (T ) 3q 8.
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Needless to say, V(T ) V(T ) and q 2 cannot be compared without prior knowl-
edge of T . To work around this difficulty, we try to approximate both quota-MST
instances, whose construction is independent of T . If one of these attempts fails to
generate a feasible solution, we can immediately distinguish between the pair of cases
described above; otherwise, we pick the case in which c(T̃ ) is smaller.

Finding a budgeted dense tree. A close inspection of Lemma 4 reveals that repeated
applications of the algorithm it prescribes will terminate rather quickly with a tree con-
necting (q) demands, provided that q is sufficiently large. Moreover, as each augmen-
tation step increases the overall cost by at most 2c(T ) 2 , the resulting tree would
be of near-optimal density, and its cost would not exceed the budget by much. This
observation suggests two separate tactics, depending on the order of q.

Case 1: q 9n2 3. Interpreting c : E as a length function, we compute the
shortest path P connecting any demand in . Note that the cost of this solution does
not exceed , since T connects at least one demand and c(T ) . In addition,

density(P)
c(P)

(P)
c(T ) 9n2 3 c(T )

q
9n2 3 c(T )

(T )
9n2 3 density(T )

Case 2: q 9n2 3. Starting with a trivial tree T that consists of the singular vertex r,
we repeatedly extend T by applying the algorithm proposed in Lemma 4, as long as

(T ) 3q 8. In each step, we either add to T at least q 2 new vertices, or discover
that it already connects at least 3q 8 demands. It follows that the resulting tree satisfies

c(T )
n
q 2

1 2c(T )
2n2 3

3
1 2c(T ) 4n2 3c(T ) 4n2 3

and at the same time

density(T )
c(T )

(T )
4n2 3c(T )

3q 8
11n2 3 c(T )

(T )
11n2 3 density(T )

2.2 A Greedy Prize-Collecting Approach

We are now ready to conclude the proof of Theorem 2, by enclosing the algorithm
for constructing budgeted dense trees within a sensible greedy heuristic. The principal
idea that guides our algorithm can be informally described as follows. In each step,
we identify a tree T of near-optimal density, whose cost does not significantly
exceed . However, rather than picking T right away, its density is compared to the
minimum available penalty (i ), scaled by some factor that will be specified later.
Based on the outcome of this comparison, we decide whether to pick T or to tentatively
pay the penalty (i ) and leave the corresponding demand (si ti ) unconnected. In an
attempt to highlight the intimate relationship between Theorems 2 and 3, let (n d) be
the approximation guarantee of the latter theorem with respect to the optimal density,
and let (n d) be the maximal factor by which the budget is exceeded. As previously
mentioned, (n d) 12 min n2 3 d and (n d) 4 min n2 3 d .

The algorithm. In what follows, denotes the collection of trees we construct, while
denotes the set of remaining demands; and price( ) are used for purposes of analysis.
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1. Initialize , and .
2. While

(a) Apply the algorithm given in Theorem 3 to identify a tree T that approx-
imates the following instance: The underlying graph and edge costs are still
G (V E) and c : E , respectively; the collection of demands is ; and
the budget is .

(b) Let (si ti ) be a demand that minimizes (i) over all demands in , breaking
ties arbitrarily.

(c) If density(T ) (n d) (d) (i ), add T to , eliminate from all newly con-
nected demands, and for each of them define price(i) density(T ). Otherwise,
add i to , eliminate (si ti ) from , and define price(i ) (n d) (d) (i ).

3. Return .

Analysis. We first argue that the collection consists of trees with individual costs of
at most (n d) . This follows from the observation that each of these trees was obtained
during step 2a, implying that c(T ) (n ) (n d) for every T , according
to Theorem 3. In addition, the overall cost of the trees in is T c(T ), whereas the
demands left unconnected by have a total penalty of at most i (i). We remark
that the latter term is an upper bound on the sum of penalties, and not the exact sum,
since it is quite possible that connects one or more demands in (si ti) : i .
Therefore, we can complete the proof of Theorem 2 by verifying that

T

c(T ) (n d) (d)
i

(i) (n d) (d) OPT (2.1)

Let be an optimal solution to the prize-collecting instance at hand, and let
be the index set of demands not connected by , that is, i : (si ti) ( ) .

Note that, by construction of , we have T c(T ) i (i) OPT . Bearing these
definitions in mind, each index i is assigned to a tree in that connects (si ti),
making an arbitrary choice in case of multiple options. In the remainder of this section,
we use : 1 d to denote the resulting assignment and 1(T ) to denote
the inverse image of T under . We proceed by establishing two crucial properties of
the suggested pricing method.

Lemma 5. i 1(T ) price(i) (n d) (d)c(T ) for every T .

Lemma 6. price(i) (n d) (d) (i) for every 1 i d.

Noting that our pricing method guarantees i price(i) i (n d) (d) (i) and

i price(i) T c(T ), we derive the desired bound (2.1) by manipulating Lemmas
5 and 6:

T

c(T ) (n d) (d)
i

(i)
i

price(i)
i

price(i)
i

price(i)
i

price(i)

T i 1(T )

price(i)
i

price(i) (n d) (d)
T

c(T ) (n d) (d)
i

(i)

(n d) (d) OPT
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3 The k-Steiner Forest Algorithm

Having already laid the foundations of our approach, we turn to describe the main re-
sult of this paper, namely, a polynomial-time algorithm that approximates the k-Steiner
forest problem to within a factor of O(min n2 3 d log d). Given an instance of the
problem under consideration, we use OPT to denote the minimum cost of a forest that
connects at least k demands. By conducting an exhaustive search, we may assume that
a constant-factor estimate [OPT 2 OPT] of the optimal cost is known in advance.
Furthermore, straightforward arguments allow us to assume that each edge has a strictly
positive cost and that the shortest path connecting any demand is of length at most .

3.1 An Integer Program and Its Lagrangian Relaxation

As mentioned earlier, the algorithm we propose and its analysis are based on viewing
k-Steiner forest as an exponential-size partial covering problem, with the objective of
computing a minimum cost subset of trees that connects at least k demands. This
perspective motivates a natural integer programming formulation, which is surprisingly
augmented with additional valid constraints stating that trees with cost greater than
cannot be picked.

OPT minimize
T

c(T )xT

subject to
d

i 1

zi d k (3.1)

T :(si ti) (T )

xT zi 1 1 i d (3.2)

xT 0 T : c(T ) (3.3)

xT zi 0 1 T 1 i d (3.4)

In this formulation, the variable xT indicates whether the tree T is chosen for the col-
lection we construct, whereas zi indicates whether the demand (si ti) is not connected.
Constraint (3.1) forces any feasible solution to connect at least k demands. Constraint
(3.2) ensures that we either pick at least one tree that connects (si ti), or specify that
this demand remains unconnected by setting zi 1. Last but not least, the additional
constraint (3.3) appears to be completely redundant at the moment, since OPT .

We now relax the complicating constraint (3.1), and lift it to the objective function
multiplied by 0. The resulting Lagrangian relaxation is:

LR( ) minimize
T

c(T )xT

d

i 1

zi (d k)

subject to
T :(si ti) (T )

xT zi 1 1 i d (3.5)

xT 0 T : c(T ) (3.6)

xT zi 0 1 T 1 i d (3.7)
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We remark that, excluding the constant term of (d k) in the objective function,
LR( ) describes a closely related instance of the prize-collecting Steiner forest problem,
in which all demands are coupled with a uniform penalty of . However, the current
formulation retains the extra restriction imposing an upper bound of on the individual
cost of every tree picked, which turns out to be of great importance. Indeed, simple
examples demonstrate that the optimal cost may fluctuate by a factor of (d) should
this restriction be discarded, rendering any prize-collecting scheme obsolete. We refer
to the above-mentioned instance as I , and use OPT(I ) to denote its optimum value.
It is easy to verify that LR( ) OPT(I ) (d k) provides a lower bound on OPT
for any 0, by observing that an optimal solution to the original problem is also a
feasible solution to LR( ), whose cost is at most OPT.

3.2 Setting Up the Prize-Collecting Solutions

Preliminaries. In what follows, we apply the techniques developed in Section 2 to ap-
proximate the cost of an optimal k-Steiner forest by a convex combination of prize-
collecting solutions, each of which consists of trees whose individual costs do not
significantly exceed . At this point, we remind the reader that, given any 0,
the polynomial-time algorithm described in Theorem 2 provides a bicriteria approx-
imation for I . To simplify the oncoming discussion, it would be convenient to in-
terpret the resulting solution in terms of the indicators (x z) defined above. For this
purpose, let x indicate which trees were picked by the algorithm, and let z indicate
which demands were left unconnected. Clearly, (x z ) satisfies the constraints (3.5)
and (3.7), but not necessarily (3.6). However, recalling that (n d) 12 min n2 3 d
and (n d) 4 min n2 3 d , Theorem 2 guarantees c(T ) (n d) for every T
with xT 1, while

T

c(T )xT (n d) (d)
d

i 1

zi (n d) (d) OPT(I ) (3.8)

The binary search. Intuitively speaking, increasingly larger values of compel the
prize-collecting algorithm to connect all demands, as even a single penalty becomes
unaffordable. Similar reasoning suggests that very few demands would be connected
when is sufficiently small. In the next lemma, we obtain concrete bounds for this
asymptotic behavior.

Lemma 7. When d , the solution (x z ) connects all demands. On the other
hand, we may assume without loss of generality that (x0 z0) connects strictly less than
k demands.

This observation determines an initial interval over which we conduct a binary search,
consisting of a polynomially-bounded number of calls to the prize-collecting algorithm.
As a result, we find along with approximate solutions (x z ) and (x z )
satisfying the following properties:

1. cmin
d , where cmin 0 denotes the minimum cost of an edge in the input

graph.
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2. The solution (x z ) connects k k demands, whereas (x z ) connects k k
demands.

For the remainder of this section, we use and to denote the collections of trees
that were picked by (x z ) and (x z ), respectively. In addition, we assume without
loss of generality that k k, as by itself provides an approximation factor of

(n d) (d) when k k; this claim follows from a straightforward application of the
inequalities (3.8) and LR( ) OPT.

Fractionally approximating OPT. Even though we can exercise inequality (3.8) to
show that the cost of comes within a factor of (n d) (d) of optimal, this solution
is clearly infeasible. The situation is quite the opposite with respect to , which is
a feasible solution whose cost may be arbitrarily large in comparison to OPT. Having
observed these facts, we argue that the cost of an optimal k-Steiner forest can be ap-
proximated by a convex combination of and , an essential characterization on
which the forthcoming analysis will depend.

Lemma 8. Let be the unique solution to k (1 )k k, that is, k k
k k . Then,

T

c(T ) (1 )
T

c(T ) 2 (n d) (d) OPT

3.3 Assembling an Approximate Integral Solution

In the following, we focus our attention on combining and into a single col-
lection of trees , trying to balance between two contradicting objectives. On the one
hand, we would like to connect a sufficient number of demands; on the other hand,
the factor by which the cost of deviates from OPT should be minimized. Roughly
speaking, this collection is created by augmenting with a carefully chosen subset

, connecting at least k k demands that were left unconnected by . For this
purpose, we specialize a greedy procedure that has been recently suggested by Levin
and Segev [14] for partially covering general set systems.

Lemma 9. There is a polynomial-time algorithm that finds a subset of trees
connecting at least k k demands in ( ) ( ), such that

T

c(T )
T

c(T ) max
T

c(T )

We complete the construction of an approximate k-Steiner forest by defining
, noting that this collection constitutes a feasible solution, as it connects at least k

demands. With the latter observation in mind, we are now ready to establish the main
result of this paper, claiming that the cost of is within a factor of O(min n2 3 d
log d) of optimal. The underlying idea is to decompose the overall cost into three parts,
and separately bound each of them by utilizing previously stated results, including the
upper bound on the individual cost of every tree in :
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T

c(T )
T

c(T )
T

c(T )

T

c(T ) (1 )
T

c(T )
T

c(T ) max
T

c(T )

( 2) (n d) (d) OPT 2 (n d) OPT

O min n2 3 d log d OPT

The first inequality is an immediate consequence of Lemma 9. The second inequality
is implied by Lemma 8, the observation that T c(T ) (n d) (d) OPT, and the
fact that c(T ) (n d) 2 (n d) OPT for every T . The last equation holds
since [0 1], (n d) 12 min n2 3 d and (n d) 4 min n2 3 d .
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Balancing Applied to Maximum Network Flow
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Abstract. We explore balancing as a definitional and algorithmic tool
for finding minimum cuts and maximum flows in ordinary and paramet-
ric networks. We show that a standard monotonic parametric maximum
flow problem can be formulated as a problem of computing a particu-
lar maximum flow that is balanced in an appropriate sense. We present a
divide-and-conquer algorithm to compute such a balanced flow in a loga-
rithmic number of ordinary maximum-flow computations. For the special
case of a bipartite network, we present two simple, local algorithms for
computing a balanced flow. The local balancing idea becomes even sim-
pler when applied to the ordinary maximum flow problem. For this prob-
lem, we present a round-robin arc-balancing algorithm that computes a
maximum flow on an n-vertex, m-arc network with integer arc capacities
of at most U in O(n2m log(nU)) time. Although this algorithm is slower
by at least a factor of n than other known algorithms, it is extremely
simple and well-suited to parallel and distributed implementation.

1 Introduction

In this paper we explore the idea of balancing as a definitional and algorithmic
tool in the solution of maximum flow and minimum cut problems on capacitated
networks. One motivation for introducing this concept is its application to mono-
tone parametric flow problems. For such a problem, we define a λ-balanced flow,
which is a maximum flow in which the flows on the parametrically-capacitated
arcs are balanced in an appropriate way. From a λ-balanced flow it is easy to ex-
tract a maximum flow and a minimum cut for any value of the parameter. Thus
a λ-balanced flow provides a succinct representation of the entire parameterized
set of solutions of the parametric problem. We describe a divide-and-conquer
algorithm that finds a λ-balanced flow in a logarithmic number of ordinary
maximum flow computations.

Balancing can also be used as an algorithmic technique to develop simple, lo-
cal algorithms for maximum flow problems. For the special case of the maximum
flow problem on a bipartite parametric network, we develop two local algorithms
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to compute a λ-balanced flow. One balances flow across a pair of arcs at a time,
and the other balances flows across all arcs incident to a single vertex, a sub-
graph we call a star. For the ordinary maximum flow problem (not restricted
to bipartite graphs), we develop an even simpler local algorithm that balances
across one arc at a time. Such single-arc balancing was previously used by Awer-
buch and Leighton [2, 3] in (more-complicated) approximation algorithms for
finding multi-commodity flows. We provide a tight running-time analysis of our
arc-balancing algorithm.

Our paper is organized as follows. The remainder of this section gives our
basic network flow terminology. More specialized terminology is developed in
later sections. Section 2 contains a discussion of some related work. Section 3
discusses the monotone parametric problem, discusses related work, defines λ-
balanced flows, and gives our divide-and-conquer algorithm for finding such a
flow. Section 4 presents our two local algorithms for finding a λ-balanced flow in a
bipartite parametric network. Section 5 describes and analyzes our arc-balancing
algorithm for ordinary maximum flow. Section 6 contains final remarks.

A network is a directed graph G with two distinguished vertices, a source
s and a sink t, along with a non-negative capacity function c on the arcs. We
allow an arc to have infinite capacity. We shall assume that G is symmetric:
if (v, w) is an arc, so is (w, v). We sometimes refer to the pair (v, w), (w, v)
as the edge {v, w}. We can make a network symmetric without affecting the
maximum flow problem by adding an arc (w, v) with zero capacity for each arc
(v, w) whose reversal (w, v) is not originally present. We assume (without loss
of generality) that arcs into the source and out of the sink have zero capacity.
In stating resource bounds we shall denote by n the number of vertices, by m
the number of arcs, and by U the maximum arc capacity, assuming that the
capacities are integers. We assume arbitrary-precision real arithmetic.

A pseudoflow on G is a real-valued function f on the arcs that is antisym-
metric: f(v, w) = −f(w, v) for every arc (v, w), and that obeys the capacity
constraints : f(v, w) ≤ c(v, w) for every arc (v, w). Given a pseudoflow, the ex-
cess at a vertex v is

∑
{f(u, v) | (u, v) is an arc}. A pseudoflow is a preflow if

e(v) is non-negative for every vertex v other than s, and it is a flow if e(v) is
zero for every vertex v other than s and t. The value of a flow is e(t). A flow is
maximum if it has maximum value over all possible flows. The maximum flow
problem is that of finding a maximum flow in a given network.

A problem dual to the maximum flow problem is the minimum (source-sink)
cut problem. A cut is a partition of the vertex set into two parts, one containing
the source, the other containing the sink. We shall denote a cut by the set
X of vertices in the part of the partition containing the source. An arc (v, w)
with v but not w in X crosses the cut. The capacity of the cut is

∑
{c(v, w) |

(v, w) crosses X}. A cut is minimum if it has minimum capacity. The minimum
cut problem is that of finding a minimum cut in a given network.

Given a pseudoflow, the residual capacity of an arc (v, w) is r(v, w) = c(v, w)−
f(v, w). An arc (v, w) is saturated if r(v, w) = 0; otherwise, it is unsaturated
or residual. An augmenting path is a path of residual arcs; its capacity is the
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minimum of the residual capacities of its arcs. A cut is saturated if every arc
crossing it is saturated. The maximum-flow minimum-cut theorem implies that
a flow is maximum and a cut is minimum if and only if the flow saturates every
arc across the cut.

2 Related Work

Maximum Flows. The maximum flow problem is a central problem in net-
work optimization. Goldberg and Rao [14] modified the blocking flow approach
of Dinitz [7] by using a distance function based on the residual capacities (rather
than just assigning each arc a length of one) and obtained an algorithm running
in O(min{n2/3,m1/2}m log(n2/m) logU) time on networks with integer arc ca-
pacities. For most interesting ranges of n,m and U , their algorithm is fastest.
This algorithm uses dynamic trees [22] as well as other involved ideas.

Another approach that has led to both good theoretical bounds and fast
practical implementations [6] is the preflow-push method of Goldberg and Tar-
jan [13]. The preflow push method is simple and local, although its theoret-
ically fastest versions use sophisticated ideas. The use of dynamic trees gives
an O(nm log(n2/m)) running time [13]. Combining excess-scaling with the use
of dynamic trees gives an O(nm log((n/m)

√
logU + 2)) running time [1]. See

[14] for a table showing a complete history of complexity improvements for the
problem.

A third approach notable for its simplicity is the MA-ordering maximum
flow algorithm of Fujishige [10], which runs in O(n(m + n logn) log(nU)) time,
improvable to O(nm logU) by using scaling. A fast practical version of this
algorithm has been obtained by adding the preflow idea [18].

Parametric Flows. The monotone parametric network flow problem is a gen-
eralization of the ordinary network flow problem in which each arc incident to
the source has its capacity given by a monotone increasing function of λ, and
each arc incident to the sink has its capacity given by a monotone decreasing
function of λ, where λ is a common value in the range [0,∞). For any fixed
value of λ, a parametric network has a minimum cut. The parametric minimum
cut problem is to compute all minimum cuts for every possible value of λ. This
problem has a variety of applications, including product selection [4, 21], repair
kit selection [17], database record segmentation [8], and baseball team elimina-
tion [15, 19]. See Gallo et al. [11] and Hochbaum [16] for discussions of some of
these applications. Gallo, Grigoriadis, and Tarjan [11] gave a divide-and-conquer
method that for certain preflow-push maximum-flow algorithms has a time com-
plexity asymptotically the same as one maximum flow computation. Their fastest
algorithm runs in O(nm log(n2/m)) time. For a parametric bipartite network,
their algorithm runs in time O(km log(k2/m + 2)) where k is the size of the
smaller side of the bipartite graph. Gallo et al. also show that the capacities on
the arcs into the sink can be made constant, with no loss of generality.

Balancing. The definition of a λ-balanced flow that we present in Section 3,
and the two local algorithms for computing such a flow that we give in Section 4,



Balancing Applied to Maximum Network Flow Problems 615

were originally developed by the second and third authors [24, 25]: their work
was the genesis of this paper. Awerbuch and Leighton [2] gave a local balancing
algorithm for approximating maximum multi-commodity flow. The round-robin
arc-balancing algorithm for ordinary single-commodity maximum flow that we
give in Section 5 is closely related to (but simpler than) this algorithm. Awer-
buch and Leighton [3] later gave a more-complicated but more-efficient balancing
algorithm for approximating maximum multi-commodity flows. They did not ex-
plore the case of a single commodity, but for this special case of their algorithm
a time bound of O((n2m/ε3) log3(m/ε)) to compute a (1 + ε)-approximation
follows from their general bound.

3 Parametric Minimum Cuts and Balanced Flows

For our purposes, a monotone parametric network is one in which the capacity
of each arc (s, v) is a strictly increasing function c(λ, v) of a single parameter λ,
for λ in the range [0,∞), and every other arc has fixed capacity. For simplicity
we assume c(0, v) = 0 for all arcs (s, v). We further assume that there is a
cut S of finite capacity containing every vertex v such that (s, v) is an arc. (In
particular, this means that (s, t) is not an arc.) An important special case is
c(λ, v) = λ for every arc (s, v). The problem we wish to solve is to compute
a minimum cut for every value of λ. This problem and related ones have a
variety of applications [4, 21, 8, 17, 15, 19], with the latest application in webgraph
clustering [9]. Even though there are an infinite number of possible λ values,
there are only a finite number of possible cuts. Furthermore, in solving this
problem it is only necessary to consider nested families of cuts: as the value
of λ increases, the capacities of the arcs out of the source increase, and the
minimum cut contains more-and-more vertices (more precisely, the minimum
cut with fewest vertices contains more-and-more vertices) [8, 23]. Indeed, we can
assign to each vertex v a value λ(v) such that S = S(λ) = {v | λ(v) ≤ λ} is a
minimum cut for λ [23]. (Vertices v with λ(v) = λ can actually be included in
S or not.) Thus the problem we solve is that of computing such a set of vertex
values, which we call a cut function. Not only does a cut function define a nested
family of minimum cuts, it also allows easy computation of the minimum cut
capacity as a function of λ.

One way to compute a cut function is to find maximum flows for appropriately
chosen values of λ. A straightforward application of this idea requires at most
n − 2 maximum flow computations. Gallo et al. [11] describe a complicated
divide-and-conquer method that runs a preflow-push maximum-flow algorithm
both forwards and backwards on each subproblem, and starts each subproblem
with a preflow given by the solution to an enclosing subproblem. By a clever
amortization argument, they show that the overall running time to compute a
cut function is only a constant factor larger than the time bound for the preflow
push algorithm. In particular, they obtain a bound of O(nm log(n2/m)) time
to compute a cut function. For a bipartite network, they claim a time bound
of O(km log(k2/m + 2)), where k is the size of the smaller side of the bipartite
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graph. The Gallo et al. algorithm is actually presented as a way to compute
the minimum cut capacity function and it is restricted to affine arc capacity
functions, but it is easily modified to compute a cut function, and Gusfield and
Martel [15] show how to extend the algorithm to nonlinear arc capacity functions.

We reformulate the problem of computing a cut function as one of computing
a particular maximum flow in the network formed by replacing all the param-
eterized capacities by ∞. Specifically, replace all capacities of arcs out of the
source by ∞, and let f be a maximum flow of the resulting network. We can
compute f by applying any maximum flow algorithm. For each arc (s, v), we
define λ(f, v) to be the unique value of λ such that c(λ, v) = f(s, v). We call
the flow f λ-balanced if there is no augmenting path avoiding s from a vertex
v to a vertex w with λ(f, v) < λ(f, w). The idea is that a λ-balanced flow is a
maximum flow that, to the extent possible, equalizes the flows on the arcs out of
s, where equalization is with respect to λ-values. In particular, if c(λ, v) = λ for
every arc (s, v), a λ-balanced flow is a maximum flow that, to the extent possi-
ble, equalizes the flows on the arcs out of s. In this special case, the notion of a
λ-balanced flow is equivalent to that of a maximum flow that achieves the best
possible lexicographic sharing. See Gallo et al. [11], Section 4.1 for a discussion
of various notions of flow-sharing, including lexicographic sharing.

Given a λ-balanced flow f , we can obtain a cut function as follows. We set
λ(s) = 0. For each arc (s, v), we let λ(v) = λ(f, v). For each other vertex w,
we let λ(w) = min{λ(v) | there is an augmenting path avoiding s from v to w},
with the minimum over the empty set defined to be∞. (In particular, λ(t) =∞.)
It is straightforward to compute this cut function in O(n log n+m) time by first
sorting the vertices v such that (s, v) is an arc in non-decreasing order by λ(v)
and then doing an incremental graph search along residual arcs from vertices of
small λ, increasing λ to the next possible value when the search runs out of arcs
to traverse.

A straightforward way to attempt to compute a λ-balanced flow is to apply
the definition. Specifically, begin by finding any maximum flow on the network
with parameterized capacities replaced by ∞. Then repeat the following step
until it no longer applies: find an augmenting path avoiding s from a vertex v
to a vertex w with λ(f, v) < λ(f, w). Send as much flow as possible along the
cycle formed by this path and the arcs (w, s) and (s, v) without causing λ(f, v)
to exceed λ(f, w). The amount of flow increase is the minimum of the capacity of
the augmenting path and c(λ, v)− f(s, v), where λ is the unique value such that
c(λ, v)−f(s, v) = f(s, w)−c(λ,w). Unfortunately, in general this algorithm does
not terminate, although it leads to simple, efficient algorithms for the special case
of bipartite networks, as we discuss in Section 4.

On the other hand, the Gallo et al. divide-and-conquer algorithm can be refor-
mulated in a straightforward way to compute a λ-balanced flow, without affect-
ing its asymptotic time bound. We develop a simpler version of this algorithm,
which uses a maximum-flow computation as a black box. The initialization is to
replace the capacities of the parameterized arcs by ∞ and compute a maximum
flow. The main step of the algorithm computes a maximum flow on an auxiliary
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network, thereby either making measurable progress toward producing a bal-
anced flow or splitting the problem in two. Specifically, given a maximum flow,
compute λ(v) for every arc (s, v). If all these values are equal, the flow is bal-
anced. Otherwise, choose a value λ strictly between the maximum and minimum
of the λ(v)’s. Construct a dummy source s′ and a dummy sink t′, and construct
dummy arcs as follows: if (s, v) is an arc with λ(f, v) < λ, construct a dummy
arc (s′, v) with capacity c(λ, v) − f(s, v); if (s, v) is an arc with λ(f, v) > λ,
construct a dummy arc (v, t′) with capacity f(s, v)− c(λ, v). Delete s and t and
all incident arcs, and replace the capacity of all arcs not incident to s′ and t′ by
their residual capacity. Find a maximum flow in the resulting auxiliary network.
Add this flow (ignoring the flow on the new arcs) to the flow on the original
network. Adjust the flow on the arcs out of s so that the new f is indeed a flow.
(That is, restore flow conservation at each vertex v such that (s, v) is an arc.)

Note that this flow modification increases λ(f, v) for any vertex v with λ(f, v)
< λ to at most λ, and decreases λ(f, v) for any vertex v with λ(f, v) > λ to at
least λ. In the auxiliary network, one of three things can happen. The maximum
flow on the original network corresponds to a saturated cut. If this cut is {s′},
then after the flow augmentation all arcs (s, v) have λ(f, v) ≥ λ. If the cut is
V − {t′}, then after the augmentation all arcs (s, v) have λ(f, v) ≤ λ. In either
of these cases the flow augmentation has reduced the range of the λ values,
and we repeat the main step. In any other case, the problem can be split into
two nontrivial subproblems, as follows. Let the saturated cut in the auxiliary
network be S′. Let S = S′∪{s}−{s′}, and let S = V −S. Form one subproblem
by contracting all vertices in S into s and then deleting all unparameterized
arcs out of s. Form the other subproblem by contracting all vertices in S into
t and deleting all parameterized arcs into t. The current maximum flow on
the original network gives maximum flows on the subproblems. Convert these
into λ-balanced flows by applying the method (minus the initialization) to each
subproblem. The λ-balanced flows on the subproblems, plus the flows on the
unparameterized contracted arcs, plus appropriate flows on the parameterized
arcs, give a λ-balanced flow on the original network.

It remains to choose λ in each iteration of the main step. Since each subprob-
lem contains an original arc (s, v), the number of subproblem splits is at most
n− 3. If the value chosen for λ is such that the sum of the capacities of arcs out
of s′ equals the sum of arc capacities into t′, then applying the main step either
splits the problem or makes all λ’s equal and hence completes the computation.
Thus this choice of λ gives a bound of n−3 maximum flow computations. On the
other hand, choosing λ equal to the average of the maximum and the minimum
of the λ(v)’s guarantees that the difference between the maximum and the min-
imum of the λ(v)’s drops by a factor of two with each iteration of the main step,
whether or not the problem is split. If we alternate between these two choices,
the number of iterations of the main loop is 2 min{n − 3, 1 + logR}, where R
is the ratio between the initial difference between λ values and the minimum
possible difference between λ values. In the important special case where all the
parameterized capacities are equal to λ, R is at most n2U , giving us a bound
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of at most 2 min{n− 3, 1 + log(n2U)} on the number of maximum flow compu-
tations needed to find a λ-balanced flow. If we use the Goldberg-Rao algorithm
for the maximum flow computations, we obtain a bound of

O
(
min

{
n2/3,m1/2

}
·m · log(n2/m) · logU ·min {n, log(nU)}

)
to find a λ-balanced flow. This bound is better than that of Gallo et al. for
interesting ranges of the parameters. Goldberg and Rao [14] claim that their
maximum flow algorithm in combination with ideas in the Gallo et al. paper [11]
gives a bound of O(logU) times their maximum flow bound to find parametric
flows. This bound is better than ours O(log(nU)). But we can find no justification
in the Gallo et al. paper for the Goldberg-Rao claim, even for simpler versions
of the problem such as computing a maximum or minimum breakpoint of the
minimum cut capacity function, and in a private conversation [12] Goldberg has
retracted the claim.

As compared to the analysis of the Gallo et al. algorithm, our analysis is
straightforward. In particular, it does not rely on starting the maximum flow
computations on the subproblems with partially computed solutions, or on the
fact that the sizes of the subproblems at a given level of recursion sum to at most
the size of the original problem. We wonder if the logR factor in our time bound
can be reduced or eliminated, either by doing a more sophisticated analysis, or
by exploiting the internals of certain maximum flow algorithms. Another issue is
to bound R for more-complicated parametric capacities, such as arbitrary linear
or piecewise-linear ones.

4 Local Algorithms for Bipartite Parametric
Flow-Balancing

In this section we restrict our attention to the special case of a parametric
network that is bipartite; that is, the vertices can be partitioned into two sets
A and B such that every arc has one end in A and one end in B. We further
assume that the sink t is in A (so that every arc (v, t) has v in B) and the source
is in B. We also assume that every vertex in A is incident to s. This restriction
still covers most of the interesting applications. (See [11].)

In this setting, we can efficiently convert a maximum flow into a λ-balanced
flow by doing local balancing operations based on the definition of a λ-balanced
flow. We describe two algorithms, one of which uses two-arc augmenting paths,
and the other of which balances a star at each step, where a star is the subgraph
induced by the set of arcs incident on a single vertex. The main advantage of
these algorithms is that they are very simple as compared to algorithms based
on standard maximum-flow algorithms.

Two-Arc-Balancing Algorithm: Begin with a maximum flow on the network
with parameterized capacities replaced by ∞. Repeat the following step until
it no longer applies: find an augmenting path ((v, u), (u,w)) with u �= s and
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λ(f, v) < λ(f, w). Add as much flow as possible to this path without violating
the capacity constraints or causing λ(f, v) to exceed λ(f, w). Increase the flow
on (s, v) and decrease the flow on (s, w) by the same amount.

If this algorithm terminates ( which it need not), the resulting flow is balanced.
That is, if the network is bipartite with all vertices in A incident to s, then the
definition of a balanced flow need only include two-arc augmenting paths.

We do not explore this algorithm further here, since there is a better alterna-
tive, which is to simultaneously consider all two-arc paths for a given interme-
diate vertex u. This idea gives the following algorithm:

Star-Balancing Algorithm: Begin with a maximum flow on the network with
parameterized capacities replaced by ∞. Repeat the following step until it no
longer applies: find a vertex u �= s such that there is an augmenting path
((v, u), (u,w)) with λ(f, v) < λ(f, w). Modify the flows on all arcs into u, and
on corresponding arcs out of s, so that there is no such augmenting path.

The time required to do a star-balancing step depends on the complexity of
the parameterized capacities. In the special case where all such capacities equal
λ, or more generally where they are affine functions of λ, it is possible to star-
balance a vertex u in time proportional to the degree of u [5]. The round-robin
star-balancing algorithm is the version of star-balancing that repeatedly iterates
over the vertices in B doing star-balancing steps, until an entire pass does not
change the flow, or until a suitable stopping condition holds. (Vertices joined
by an augmenting path have λ-values close enough that a simple postprocessing
phase will complete the computation. )

A variant of round-robin star-balancing that may be more efficient in practice
is to maintain a working set W of vertices in B whose last examination resulted in
a change in the flow. Initially W = B. During a pass over W , if an examination
of w results in sufficiently small flow change or no flow change, w is dropped
from W . When W becomes empty, it is reset to be B. If a pass over W = B
results in no flow change, the computation is complete. A more-refined idea is
to periodically find saturated cuts, as in the divide-and-conquer algorithm, and
to split the working set into separate subsets based on the cuts.

At least for the special case in which all parameterized capacities are equal to
λ, the running time of the round-robin star-balancing algorithm can be analyzed
using the techniques we use to analyze the round-robin arc-balancing algorithm
described in the next section, resulting in a similar running time. We omit this
analysis and a discussion of appropriate stopping rules here since the ordinary
maximum flow problem provides a simpler analytical setting.

In the important special case in which all arcs from A to B have infinite
capacity, it is easy to construct an initial maximum flow in linear time without
using a maximum-flow algorithm, by saturating all arcs into the sink, assigning
flow to the arcs from A to B to get flow conservation on the vertices in B, for
example by averaging the outgoing flow over the incoming arcs, and assigning
flow to the arcs out of s to get flow conservation on the vertices in A. It is also
easier to do star balancing steps.
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5 Ordinary Maximum Flows Via Arc-Balancing

The idea of balancing flows can be fruitfully applied to the ordinary maximum
flow problem. We develop an algorithm that computes a maximum flow by main-
taining a pseudoflow and repeatedly moving flow along individual arcs so as to
balance flow excesses. The algorithm has the virtue of being extremely simple
and local, and it provides a simpler setting than the parametric flow problem
in which to do algorithmic analysis. The key observation that justifies the algo-
rithm is that if there is no augmenting path from a vertex of positive excess or
the source to a vertex of negative excess or the sink, then both a minimum cut
and a maximum flow can easily be extracted from the pseudoflow.

Arc-Balancing Algorithm: Construct an initial pseudoflow by saturating ev-
ery arc out of s and every arc into t, and assigning zero flow to every other arc.
Repeat the following step until it no longer applies (or until a suitable stopping
rule holds):

Move: Choose a residual arc (v, w) with e(v) > e(w), w �= s, and v �= t.
Increase the flow on (v, w) by min{r(v, w), (e(v) − e(w))/2}.

A move on an arc (v, w) leaves e(v) ≥ e(w). Either it makes e(v) and e(w)
equal, in which case we call it a balancing move, or it saturates (v, w), in which
case we call it a saturating move, or both. An α-move is a move on an arc of
residual capacity at least α.

It is easy to construct examples on which this algorithm runs forever. Hence-
forth in this section we shall assume that the arc capacities are integers bounded
by U . Given integer arc capacities, it suffices to stop doing moves when there
are no (1/n2)-moves. (We discuss another stopping rule below.) Furthermore
one can restrict the moves to (1/n2)-moves. Also, log(n2U) + O(1) bits of pre-
cision suffice in the computations. (Unlike most maximum flow algorithms, our
algorithm does not maintain integrality of flows.)

Two notions help in understanding the behavior of this algorithm. A canonical
cut is a cut S(a) = {s}∪{v �= t | e(v) ≥ a} for some real value a. If the algorithm
ever saturates a canonical cut, no move can ever again occur on any arc crossing
the cut. A section S(a, b) is a non-empty set of vertices S(a) − S(b) such that
both S(a) and S(b) are saturated. Once the algorithm creates a section, the
minimum excess in the section can never decrease, the maximum excess in the
section can never increase, and the excess difference in the section, defined to be
the maximum excess minus the minimum excess, can never decrease. The initial
pseudoflow defines a section containing all the vertices except s and t.

As the algorithm proceeds, it saturates canonical cuts, splitting the network
into smaller-and-smaller sections. All moves take place within sections. To find
a minimum cut, the only important section is the active section, defined to be
the minimal section S(a, b) with a ≤ 0 and b > 0. It suffices to do moves only in
the active section. Another stopping rule for integer capacities is to stop when
the sum of positive excesses in the active section is less than one or the sum of
negative excesses in the active section is greater than minus one. As a special
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case, it suffices to stop when the maximum excess of the non-sink vertices is
non-positive or the minimum excess of the non-source vertices is non-negative.

Once the arc-balancing algorithm stops, a minimum cut can be extracted as
follows.

Minimum Cut Computation: If the main loop stops with the sum of positive
excesses in the active section less than one, find the saturated cut S = S(b) with
minimum b > 0. Alternatively, if the main loop stops with the sum of negative
excesses in the active section greater than minus one, find the saturated cut
S = S(a) with maximum a ≤ 0.

The desired cut can be found in O(m) time using graph search. It is a little
more complicated to extract a maximum flow. The time to do so is O(m log n)
using a dynamic tree data structure [22].

The arc-balancing algorithm is generic in the sense that the order of moves is
unspecified. We can restrict the order of moves in a simple way that leads to a
good theoretical time bound. We call the resulting method the round-robin arc-
balancing algorithm. It consists merely of looping over a fixed list of the arcs,
applying a move to each active arc, until an entire pass results in no (1/n2)-
moves. (Alternatively, we can stop when the active section has positive excesses
summing to less than one or negative excesses summing to more than minus
one.) The round-robin algorithm is particularly well-suited to massively parallel
implementation.

Theorem 1. The round-robin algorithm stops after O(n2 log(nU)) passes over
the arcs, taking O(m) time per pass, for a total time of O(n2m log(nU)).

The bound on passes in Theorem 1 is tight within a constant factor.

Theorem 2. For any n and U , there is a network with n vertices and arc capac-
ities bounded by U on which the round-robin algorithm does Ω(n2 logU) passes
and Ω(n3 logU) moves.

The example used to prove Theorem 2 shows that arc-balancing has trouble
moving flow along long paths. Essentially the same example is bad for both
the two-arc-balancing and the star-balancing round-robin algorithms for finding
a λ-balanced flow on a parametric network. This motivates looking for longer-
range balancing methods. We can use a modified form of star-balancing in place
of arc-balancing in the ordinary maximum flow algorithm: the main change is
that the excess of the vertex at the center of the star must be balanced against
all those of the adjacent vertices. We have developed a linear-time algorithm
for balancing a path of arbitrary length, and an O(n log2 n)-time algorithm for
balancing an n-vertex tree. (That is, given an initial pseudoflow, modifying it so
that no arc-balancing moves are possible.) Both of these methods can be adapted
to work for the bipartite parametric problem. These methods could be used as
steps in computations on more-general networks, but so far we have not found
a way to obtain a better overall running time for the ordinary maximum flow
problem, for example.
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6 Remarks

As we have discussed in this paper, balancing can be used as a conceptual and
algorithmic tool for finding ordinary and parametric maximum flows and mini-
mum cuts. Other types of applications may be able to use balancing ideas. Here
we only mention one potential application in bioinformatics. In protein classifi-
cation, we are given a graph whose edges may have weights. Vertices represent
proteins; edges represent associational strengths. Certain proteins are classified
by function. We wish to classify the unclassified proteins based on their associ-
ational strengths with classified ones. One possible approach is to compute, for
an unclassified protein and for each group of classified proteins, an arc-balanced
pseudoflow with the classified proteins as sources, and to regard the final excess
at the unclassified protein as a measure of its associativity. In applying this idea
it makes sense to make the edge capacities increasing functions of their weights
and decreasing functions of their distance from classified proteins. See Singh et
al. [20] for an approach to this problem using a similar method.

The balanced flow notion offers a succinct description of the solution to a
parametric maximum flow or minimum cut problem, and it leads to novel algo-
rithms for solving both parametric and ordinary maximum flow problems that
use balancing as a local operation. Although our balancing algorithms are very
simple, their time bounds are not competitive with those of existing algorithms.
Nevertheless, we are optimistic that our techniques will lead to improved algo-
rithms that are competitive in practice, if not in theory, with existing algorithms.
Indeed, preliminary experiments on large real-world datasets suggest that the
star-balancing algorithm for bipartite parametric problems computes solutions
for all parameter values within a factor of two of the time taken by the fastest
ordinary max-flow code [6] to compute a solution for a single parameter value.
We intend to do additional experimental work. The idea of balancing in the
context of maximum flow offers a rich space for research.
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Abstract. We study the problem of designing kinetic data structures (KDS’s for
short) when event times cannot be computed exactly and events may be processed
in a wrong order. In traditional KDS’s this can lead to major inconsistencies from
which the KDS cannot recover. We present more robust KDS’s for the mainte-
nance of two fundamental structures, kinetic sorting and tournament trees, which
overcome the difficulty by employing a refined event scheduling and processing
technique. We prove that the new event scheduling mechanism leads to a KDS
that is correct except for finitely many short time intervals. We analyze the maxi-
mum delay of events and the maximum error in the structure, and we experimen-
tally compare our approach to the standard event scheduling mechanism.

1 Introduction

The recent advances in sensing and tracking technology have led researchers to investi-
gate the problem of maintaining various geometric attributes of a set of moving objects,
as evident from a large body of literature on kinetic geometric algorithms. Basch et
al. [6] introduced the kinetic data structure (KDS) framework for designing and ana-
lyzing algorithms for continuously moving objects. The KDS framework consists of
two parts: a combinatorial description of the attribute, and a set of certificates (each
of which is a predicate) with the property that as long as the certificates remain valid,
the maintained attribute remains valid. It is assumed that each object follows a known
trajectory so that one can compute the failure time of each certificate. Whenever a cer-
tificate fails—we call this an event—the KDS must be updated. This involves updating
the attribute and the set of certificates. The KDS then remains valid until the next event
has to be processed, and so on.

To be able to process each event at the right time, a global event queue Q is main-
tained to process the events in the right (chronological) order. This is a priority queue on
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the events, with the priority of an event being its failure time. Unfortunately, the event
scheduling is not as easy as it seems. Suppose that a new certificate arises due to some
event. When the failure time of the certificate lies in the past we should not schedule
it, and when it lies in the future we should. But what if the event time is equal to the
current time tcurr? In such a degenerate situation one has to be very careful to avoid
an infinite loop. A more serious problem arises when the event times are not computed
exactly. This will indeed be the case if the trajectories are polynomials of high degree
or more complex curves. As a result, events may be processed in a wrong order, or we
may fail to schedule an event because we think it has already taken place. This in turn
may not only lead to serious errors in the geometric attribute the KDS is maintaining
but also cause the algorithm to crash.

As a concrete example, consider the kinetic sorting problem: maintain the sorted
order of a set S of points moving on the real line. We store S in a sorted array A[1..n].
For each 1 ≤ i < n there is a certificate

[
A[i] < A[i+ 1]

]
. Whenever A[j] = A[j + 1],

we have a certificate failure. At such an event we swap A[j] and A[j+1]. Furthermore, at
most three new certificates arise:

[
A[j−1] < A[j]

]
,
[
A[j] < A[j+1]

]
, and

[
A[j+1] <

A[j + 2]
]
. We compute the failure time of each of them, based on our knowledge of

their current motions, and insert the failure times that are not in the past into the event
queue Q. Some certificates may also disappear because the two points involved are no
longer neighbors; they have to be deleted from Q. Now suppose that due to errors in
the computed failure times the difference between the exact and the computed failure
time of each certificate can be ε, for some ε > 0. Consider the three moving points x1,
x2 and x3 whose trajectories in the tx-plane are depicted in Figure 1. Table (i) shows
what happens when we can compute the exact failure times. Table (ii) shows what
happens when the computed failure times of the certificates

[
x1 < x2

]
,
[
x1 < x3

]
, and[

x2 < x3
]

are t0 + ε, t0 + 3
2ε, and t0 respectively: the KDS is not just temporarily

incorrect, but gets into an incorrect state from which it never recovers.

t0 t0 + 1
2 ε t0 + ε t

x1

x3

x2

x
tcurr List Certificates Failure Time

0 x1, x2, x3
[x1 < x2]
[x2 < x3]

t0
t0 + ε

t0 x2, x1, x3 [x1 < x3] t0 + 1
2 ε

t0 + 1
2 ε x2, x3, x1 [x2 < x3] t0 + ε

t0 + ε x3, x2, x1
(i) without error

tcurr List Certificates Failure Time

0 x1, x2, x3
[x1 < x2]
[x2 < x3]

t0 + ε
t0

t0 x1, x3, x2 [x1 < x3] t0 + 3
2 ε

t0 + 3
2 ε x3, x1, x2

(ii) with error

Fig. 1. An example that numerical errors in the event times may cause errors in the KDS. Left:
the trajectories of the points. Right: the status of the KDS at various times of execution.

This is a serious problem for the applicability of the KDS framework in practice. The
goal of our paper is to address this issue: is it possible to do the event scheduling and
processing in such a way that the KDS is more robust under errors in the computation of
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event times? The KDS may process the events in a wrong order and thus may maintain
a wrong geometric attribute from time to time, but we would like the KDS to detect
these errors and fix them quickly.

Related work. The KDS framework [6] is a widely used algorithmic method for mod-
eling motion. It has been applied to maintain a variety of geometric attributes of moving
objects, including convex hull [5, 6], closest pair [6, 7], range searching structures [1, 2],
extent measures [3, 4], and much more. See the survey by Guibas [13] and the references
therein. There has been much work on modeling motion in many other fields as well,
including computer graphics, spatial databases, robotics, and sensor networks.

There is a large body of work on robust computations in geometric algorithms
[11, 20, 21], including geometric software libraries [8, 10]. The goal there is to imple-
ment various geometric primitives in a robust manner, including predicates, which test
the sign of an arithmetic expression (e.g., ORIENTATION and INCIRCLE predicates),
and constructions, which compute the value of an arithmetic expression (e.g., comput-
ing the intersection of two lines). There are two broad paradigms. The first approach,
exact computation, performs computation with enough precision to ensure predicates
can be evaluated correctly. One can of course use this approach to do the event schedul-
ing in a KDS—see the papers by Guibas and co-workers [14, 15] for some research
in this direction. Unfortunately, in practice a significant portion of the running time of
a KDS is spent on computing certificate failure times [14, 16], and exact computation
may lead to unacceptable performance (for example, when many events are very close
to each other). An alternative is controlled perturbation [17, 12], where we perturb the
initial positions of the objects by some amount δ so that with high probability the roots
of all pertinent functions are sufficiently far away from each other. This does not seem
to work well on KDS’s because the large number of kinetic events makes the required
perturbation bound δ fairly large.

Recently, Milenkovic and Sacks [19] studied the computation of arrangements of x-
monotone curves in the plane using a plane sweep algorithm, under the assumption that
intersection points of curves cannot be computed exactly. For infinite curves this boils
down to the kinetic sorting problem, because one has to maintain the sorted order of the
curves along the sweep line. In fact, our KDS for the kinetic sorting problem is very
similar to their algorithm. The main difference is in the subroutine to compute inter-
section points of curves which we assume to have available; this subroutine is stronger
than the subroutine they assume—see Section 2 for details. This allows us to ensure that
we never process more events than the number of actual crossings, whereas Milenkovic
and Sacks may process a quadratic number of events in the worst case even when there
is only a linear number of crossings. The main difference between our and their papers,
however, lies in the different view on the problem: since we are looking at the problem
from a KDS perspective, we are especially interested in the delay of events and the error
in the output for each snapshot of the motion, something that were not studied in [19].
Moreover, we study other KDS problems as well.

Our results. The main problem we face when event times are not computed exactly
is that events may be processed in a wrong order. We present KDS’s that are robust
against this out-of-order processing, including kinetic sorting and kinetic tournaments.
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Our algorithms are quasi-robust in the sense that the maintained attribute of the moving
objects will be correct for most of the time, and when it is incorrect, it will not be
far from the correct attribute. For the kinetic sorting problem, we obtain the following
results:

– We prove that the KDS can only be incorrect when the current time lies inside an
event interval.

– We prove that an event may be processed too late, but not by more than O(nε) time.
This bound is tight in the worst case.

– We prove bounds on the geometric error of the structure—the maximum distance
between the i-th point in the maintained list and the i-th point in the correct list—
that depend on the velocities of the points.

We obtain similar results for kinetic tournaments. As a by-product of our approach, de-
generacy problems (how to deal with multiple events occurring simultaneously) arising
in traditional KDS algorithms naturally disappear, because our KDS no longer cares
about in which order these simultaneous events are processed.

We have implemented the robust sorting and tournament KDS algorithms and tested
them on a number of inputs, including highly degenerate ones. Our sorting algorithm
works very well on these inputs: of course it does not get stuck and the final list is
always correct (after all, this is what we proved), but the maximum delay is usually
much less than the worst-case bound suggests (namely O(ε) instead of Θ(nε)). This is
in contrast to the classical KDS, which either falls into an infinite loop or misses many
kinetic events along the way and maintains a list that deviates far from the true sorted
list both geometrically and combinatorially. Our kinetic tournament algorithm is also
robust and reduces the error by orders of magnitude.

Because of lack of space, many details including the proofs of lemmas and theorems
are omitted from this abstract. We refer the reader to the full version for the details.

2 Our Model

We describe our model for computing the event times of certificates—how we cope
with handling the events being processed out of order. Each certificate c is a predicate,
and there is a characteristic function χc : R → {1, 0,−1} so that χc(t) = 1 if c is
true at time t, −1 if it is false at time t, and 0 if c is switching from being true to false,
or vice-versa, at time t. The values of t at which χc is 0 are the event times of c. In
our applications, χc(t) = sign(ϕc, t) for some continuous function ϕc. For example, if
x(t), y(t) are two points, each moving in R1, then ϕc(t) := y(t)−x(t) for the certificate
c := [x < y]. For simplicity, we assume in this extended abstract that sign(ϕc, t) = 0
for a finite number, s, of values of t.

We assume that the trajectory of each object is explicitly described by a function of
time, which means in our applications that the function ϕc is also explicitly described,
and that event times can be computed by computing the roots of the function ϕc. This is
what is being done in traditional KDS’s. In order to model the inaccuracy in computing
event times, we fix a parameter ε > 0, which will determine the accuracy of the root
computation. We assume there is a subroutine, denoted by CROP

(
f(t)

)
, to compute the

roots of a function f(t), whose output is as follows:
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(i) a set of disjoint, open event intervals I1, · · · , Ik , where |Ii| ≤ ε for each i, that
cover all roots of f(t);

(ii) the sign of f(t) between any two consecutive event intervals;

For polynomial functions, Descartes’ sign rule [9] and Sturm sequences [18] are
standard approaches to implement such a subroutine. Observe that if f(t) does not
have any roots, then CROP

(
f(t)

)
will tell us so. This is where our subroutine is more

powerful than the subroutine of Milenkovic and Sacks [19], and this is why we can
ensure that we only handle events if there is a real crossing of trajectories.

In our applications, we can ignore the event intervals whose two endpoints have the
same sign and assume (pretend) that the sign does not change during such an interval.
We will use I = 〈I1, . . . Ik〉 to denote the set of open event intervals whose two end-
points have different signs, and ask CROP to only output these event intervals. Let λj

(resp. ρj) denote the left (resp. right) endpoint of Ij , i.e., Ij = (λj , ρj). As we will see
below, we will schedule events at the right endpoints of these intervals.

We assume that CROP is deterministic: it always returns the same result when run on
the same function. We also assume that tests as to whether a given time t lies inside an
event interval computed by CROP are exact. We use tcurr to denote the current time of
the KDS, which is the maximum computed event time over all processed events.

The pseudo-code of the algorithm for computing the failure time of a certificate c is
given below. We first find the index, last, of the last event interval that lies to the left of
tcurr. By our model, the sign of the function ϕc(t) remains the same at all times during
the interval [ρlast, λlast+1]; inside an event interval, we pretend that the sign is the same
as at its left endpoint and that it changes at its right endpoint. Therefore, if tcurr lies in
this interval, we can assume χc(tcurr) = χc(ρlast).

Algorithm EVENTTIME (c)
1. I := 〈I1 = (λ1, ρ1), . . . , Ik = (λk, ρk)〉 ← CROP (ϕc)
2. ρ0 ← −∞; ρk+1 ← +∞
3. last←number of intervals in I to the left of tcurr

4. if χc(ρlast) = −1 then return ρlast else return ρlast+1

Note that if χc(ρlast) = −1, then the event time returned by EVENTTIME(c) (i.e.,
ρlast) is in the past. Still we insert this event into the queue because the certificate c is
not valid and thus the combinatorial structure of the KDS is not correct. Apparently we
missed an event, which we must still handle. As we will see in the next section, when
we handle such an event in the past, we do not reset tcurr: the time tcurr will always be
the maximum of the computed event times over all processed events. Finally, note that
the above procedure has the following properties: If it returns a finite value ρi, then

(I1) ρi is the right endpoint of an event interval;
(I2) the certificate c is valid at λi and invalid at ρi, i.e., χc(λi) = 1 and χc(ρi) = −1.

3 Kinetic Sorting

Let S be a set of n points moving continuously on the real line. The value of a point
x ∈ S is a continuous function x(t) of time t. We define S(t) = {x(t) : x ∈ S}. In the
kinetic sorting problem, we want to maintain the sorted order of S during the motion.
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The algorithm. As in the standard algorithm, we maintain an array A that stores the
points in S. The events are stored in a priority queue Q, called global event queue. The
certificates are standard as well: the certificate c :=

[
x < y

]
belongs to the current

certificate set of the KDS if x = A[k] and y = A[k+1] for some k. We call these n−1
certificates active. We need the following notation regarding failure times.

tcp(x, y) : the computed failure time1of certificate
[
x < y

]
tpr(x, y) : the time at which the failure of

[
x < y

]
is actually processed

The new kinetic sorting algorithm is described below. The major difference with the
standard algorithm is that we use the algorithm EVENTTIME to compute the failure
time of a certificate. As such, unlike the standard algorithm, our algorithm may process
events in the past. Note that tcurr remains unchanged when this happens (see line 4).

Algorithm KINETICSORTING

1. tcurr ← −∞; Initialize A and Q.
2. while Q �= ∅
3. do c :

[
x < y

]
← DELETEMIN(Q)

4. tcurr ← max{tcurr, tcp(x, y)}
5. Swap x and y (which are adjacent in A).
6. Remove from Q all certificates that become inactive.
7. C← set of new certificates that become active.
8. for each c :

[
a < b

]
∈ C

9. do tcp(a, b)← EVENTTIME (c)
10. if tcp(a, b) �=∞
11. then Insert

[
a < b

]
into Q, with tcp(a, b) as failure time.

Basic properties. The status of the KDS at time t is defined as the status of the KDS
after all events whose processing times are at most t have been processed. In the kinetic
sorting problem, the status refers to the maintained array A. We say that a point x
precedes a point y in the maintained array A if x = A[k] and y = A[l] for some l > k.
If l = k + 1, then x immediately precedes y.

Since events may be processed in a wrong order, the above KDS could perhaps get
into an infinite loop. However, if a certificate c is processed by the algorithm (line 5) at
time t0 and c becomes active again at time t0, then EVENTTIME ensures that the failure
time of c is in the future. This implies that the algorithm does not go into an infinite
loop. We can also show the KDS almost always maintains a correctly sorted list in A.

Lemma 1. If x immediately precedes y in A at time tcurr, then either

(i) x(tcurr) < y(tcurr), which means the order is correct, or
(ii) tcp(x, y) − ε ≤ tcurr < tcp(x, y), where tcp(x, y) is the computed failure time of

the certificate [x < y] currently stored in Q. Furthermore, x(γ) = y(γ) for some
γ ∈ (tcurr − ε, tcurr].

1 This is a slight abuse of notation, because points can swap more than once, so the same
certificates can fail multiple times. It will be convenient to treat these certificates as different.
Formally we should write tcp((x, y), tcurr) for the failure time of the certificate

[
x < y

]
computed by the KDS at time tcurr. Since this is always clear from the context we omit the
time parameter.
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The following theorem is a straightforward consequence of the above lemma.

Theorem 1. The ordering maintained by the kinetic sorting algorithm is correct except
during at most E time intervals of length ≤ ε, where E is the number of collisions of
points in S over the entire motion.

Delay of kinetic events. Theorem 1 shows that the ordering may be incorrect only near
the event times, but many “event intervals” may cascade and thus an event may not be
processed for a long time, thereby maintaining a wrong ordering for a long time. Next
we bound the maximum delay of an event. The bound holds when every pair of points
swaps at most s times for some parameter s.

Theorem 2. Suppose that the trajectories of any two points x, y ∈ S intersect at most
s times. If an event with computed failure time tcp(x, y) gets processed at time tpr(x, y),
then we have tpr(x, y) − tcp(x, y) < (n − 2)s · ε + ε. The bound is tight in the worst
case.

Remark. As tcurr advances, it might happen that an event interval (λi, ρi) corresponding
to some certificate c becomes obsolete before it can be processed. This happens when
by the time c becomes active, tcurr has already advanced past the next event interval
(λi+1, ρi+1) of c. The above theorem implies that an event with computed failure time
tcp(x, y) either becomes obsolete or gets processed by the KDS before tcp(x, y)+ (n−
2)s · ε + ε.

Error bounds. We turn our attention to the “error” in the array A. Combinatorially,
Lemma 1 implies that if there are k event intervals containing tcurr, then the array A
at time tcurr can be decomposed into at most k + 1 (contiguous) subarrays, each of
which is in sorted order. Next we discuss how far the maintained order can be from the
correct order geometrically. In particular, we present a bound on the maximum distance
between two points that are in the wrong order in the array and on how far away the
k-th point in the maintained order—that is, the point A[k]—can be from the true point
of rank k.

Theorem 3. Let 〈y1, · · · , yn〉 and 〈z1, · · · , zn〉 be the sequence maintained by the al-
gorithm and the correctly sorted sequence at some given time tcurr, respectively. Let
Vmax be the maximum velocity of any point in S over the time interval [tcurr − ε, tcurr].
Then for any 1 ≤ i < j ≤ n, we have: (i) yi(tcurr) − yj(tcurr) ≤ nε · Vmax, and (ii)
|yi(tcurr)− zi(tcurr)| ≤ nε · Vmax.

4 Kinetic Tournaments

A kinetic tournament [6] is a KDS that maintains the maximum of a set S of moving
points in R by maintaining a tournament tree T over S. Each interior node u of T has a
certificate of the form

[
x < y

]
, where x, y ∈ S are the two points stored at the children

of u, and y is also currently stored at u. To handle events, we need a subroutine that
compares two points at time tcurr in a way that is consistent with EVENTTIME.
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Algorithm COMPUTEMAX(x, y)
1. I := 〈I1 = (λ1, ρ1), . . . , Ik = (λk, ρk)〉 ← CROP (x(t) − y(t))
2. ρ0 ← −∞
3. last←number of intervals in I to the left of tcurr

4. if sign(x(ρlast)− y(ρlast)) = 1 then return x else return y

In the algorithm below, pu denotes the point stored at node u, with parent(root) = nil.

Algorithm KINETICTOURNAMENT

1. tcurr ← −∞; Initialize T and Q.
2. while Q �= ∅
3. do c :

[
x < y

]
← DELETEMIN(Q)

4. tcurr ← max{tcurr, tcp(x, y)}
5. u← the node at which the certificate c fails.
6. while u �= nil
7. do Let z1 and z2 be the points stored at u’s children.
8. pu←COMPUTEMAX(z1, z2); u← parent(u)
9. Remove from Q all certificates that become inactive.
10. C← set of new certificates that become active.
11. for each c :

[
a < b

]
∈ C

12. do tcp(a, b)←EVENTTIME (c)
13. if tcp(a, b) �=∞
14. then Insert

[
a < b

]
into Q, with tcp(a, b) as failure time.

The algorithm can be shown to maintain the following invariant:

Invariant: After an event has been processed, the point pu stored at a node u is always
one of the points stored at its children. Moreover, pu is either the correct current max-
imum of the two children, or the trajectories of points stored at the two children cross
during the period (tcurr − ε, tcurr].

Following standard KDS terminology, we call an event in the kinetic tournament exter-
nal when the maximum changes.

Lemma 2. If the maximum maintained by the algorithm is incorrect at time tcurr, there
must have been an external event during the period (tcurr − ε, tcurr].

The following result is an immediate consequence of Lemma 2.

Theorem 4. The maximum maintained by the kinetic tournament is correct except dur-
ing at most E time intervals of length ≤ ε, where E is the number of external events.

We now turn our attention to the geometric error of our KDS—the difference in
value between the point stored in the root of the kinetic tournament tree and the real
maximum—as a function of the maximum velocity. Interestingly, the geometric error
is much smaller than in the sorting KDS, because it depends on the depth of the tour-
nament tree. The following theorem makes this precise. It follows from the invariant,
since the error between two consecutive nodes on the path from the root to the real
maximum can be at most ε · 2Vmax.
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Theorem 5. Let x denote the point stored in the root of the kinetic tournament tree at
some time tcurr, and let y denote the point with the maximum value at time tcurr. Then
y(tcurr)−x(tcurr) ≤ 2ε	logn
 · Vmax, where Vmax is the maximum velocity of any point
in S over the time interval [tcurr − ε, tcurr].

5 Experiments

We implemented our robust kinetic-sorting and kinetic-tournament algorithms and com-
pared them to the traditional KDS event-scheduling approach. The programs are written
in C++ and run in the Linux 2.4.20 environment.

Input data. We used the following synthetic datasets in our experiments, as illustrated
in Figure 2. The inputs are low-degree motions because we have not yet implemented
a full-fledged CROP procedure, and it becomes easier for us to compute delays of the
events. Nonetheless, these inputs already cause trouble to traditional KDS’s and are
sufficient to illustrate the effectiveness of our algorithms.

– GRIDS: linear trajectories in whose dual points form a uniform grid;
– PARABOLA: congruent parabolic trajectories with apexes on a grid in the tx-plane;
– RANDDC: linear trajectories whose dual points are randomly distributed in a disk;
– RANDCR: linear trajectories whose dual points are randomly distributed on a circle.

GRIDS PARABOLA RANDDC RANDCR

Fig. 2. Various datasets. The figures depict trajectories in tx-plane, after an appropriate scaling.

Kinetic sorting. We tested the kinetic sorting algorithms on the first three types of input
data. All experiments were run on inputs of size 900. We first observed the behavior of
the traditional kinetic sorting algorithm, which uses floating point arithmetic. In a few
instances, the algorithm went into an infinite loop because of simultaneous events. As
for the correctness of the maintained structures, the traditional KDS was very fragile:
it quickly ran into noticeable errors and was unable to recover from these errors (see
Figures 3 (1), 4 (1), and 5 (1)). The reason is that some events that should have been
scheduled into the global queue were discarded by the KDS because their computed
event times happened to lie in the past.

We now turn our attention to the geometric error of the structures maintained by our
robust kinetic sorting algorithm. We measure the error of the sorting KDS at time t by
err(t) = maxi |yi(t) − zi(t)|, where 〈y1, · · · , yn〉 and 〈z1, · · · , zn〉 are the sequence
maintained by the KDS and the correctly sorted sequence at time t. In Figures 3- 5
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Fig. 3. Error for kinetic sorting on GRID input; y-axis scales are different

we plot err(t) as t varies, by measuring err(t) every other 10−7 seconds. Note the
different scales on the error axis in these figures. As can be seen, while the traditional
KDS quickly ran into serious errors and was never able to recover, our robust KDS
maintained a rather small error all the time. Observe that the error of the robust KDS
reduces as the precision of the CROP procedure increases. We also tested the algorithm
on a number of larger inputs, and the error remained roughly the same.
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Fig. 4. Error for kinetic sorting on PARABOLA input; y-axis scales are different
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Fig. 5. Error for kinetic sorting on RANDDC input; y-axis scales are different.

We also studied how long a kinetic event could be delayed before it is eventually
processed in the kinetic sorting algorithm—see Table 1. Some events were actually
processed earlier instead of being delayed; we regard delays of these events as zero.
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It can be seen that the RMS of the delays are always very small for all inputs. As to
the maximum delay, we only observed one instance in the first two types of inputs in
which some events are delayed by about 2ε; in all other cases, the maximum delay never
exceeds ε, which is far below the rather contrived worst-case bound in Theorem 2.

Table 1. Delay of events in kinetic sorting

Precision GRIDS PARABOLA RANDDC

of CROP RMS Max RMS Max RMS Max
ε = 10−6 0.48 × 10−6 2.00 × 10−6 0.37 × 10−6 1.00 × 10−6 0.42 × 10−6 1.00 × 10−6

ε = 10−7 0.43 × 10−7 1.00 × 10−7 0.37 × 10−7 1.00 × 10−7 0.42 × 10−7 1.00 × 10−7

ε = 10−8 0.42 × 10−8 1.00 × 10−8 0.39 × 10−8 1.00 × 10−8 0.41 × 10−8 1.00 × 10−8

Kinetic tournament. We tested the kinetic tournament algorithms on the RANDCR

data as they tend to have a large number of external events. Since the kinetic tournament
algorithms are less sensitive to simultaneous events than kinetic sorting, we artificially
increased the error in computing the event times so as to cause noticeable geometric
errors in the tested algorithms. Specifically, in the traditional KDS we round the event
times to the precision of 10−5, and in the robust KDS we vary the error from 10−3 to
10−5.

We first noticed that the traditional kinetic tournament algorithm did not go into an
infinite loop; this is because the kinetic events are always “pushed” up in the tree. How-
ever, as for the geometric error, one can see from Figure 6 (1) that the KDS maintains a
rather inaccurate maximum during the motion. In contrast, the geometric errors in our
robust KDS are smaller by orders of magnitudes, even though the event time computa-
tion is less precise than in the traditional KDS.
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Abstract. Define a static algorithm as an algorithm that computes some com-
binatorial property of its input consisting of static, i.e., non-moving, objects. In
this paper, we describe a technique for syntactically transforming static algo-
rithms into kinetic algorithms, which compute properties of moving objects. The
technique o ers capabilities for composing kinetic algorithms, for integrating dy-
namic and kinetic changes, and for ensuring robustness even with fixed-precision
floating-point arithmetic. To evaluate the e ectiveness of the approach, we im-
plement a library for performing the transformation, transform a number of algo-
rithms, and give an experimental evaluation. The results show that the technique
performs well in practice.

1 Introduction

Since first proposed by Basch, Guibas, and Hershberger [13], many kinetic data struc-
tures for computing properties of moving objects have been designed and analyzed
(e.g., [8, 12, 9]). Some kinetic data structures have also been implemented [14, 12, 17].
A kinetic data structure for computing a property can be viewed as maintaining the
proof obtained by running a static algorithm for computing that property. Based on this
connection between static algorithms and kinetic data structures, previous work devel-
oped kinetic data structures by kinetizing static algorithms. In all previous approaches,
the kinetization process is performed manually.

This paper proposes techniques for kinetizing static algorithms semi-automatically
by applying a syntactic transformation. We call such kinetized algorithms as kinetic
algorithms. The transformation (Section 2) relies on self-adjusting computation [1],
where programs can respond to any change to their data (e.g., insertions deletions
into from the input, changes to the outcomes of comparisons) by running a general-
purpose change-propagation algorithm. We evaluate the e ectiveness of the approach
by kinetizing a number of algorithms (Sections 3 and 4), including the merge-sort
and the quick-sort algorithms, the Graham-Scan [16], merge-hull, quick-hull [11], ulti-
mate [15] algorithms for computing convex hulls, and Shamos’s algorithm for com-
puting diameters [21] and performing an experimental evaluation. Our experiments
(Section 5) show that kinetized algorithms are e cient in practice.

For the transformation to yield an e cient kinetic algorithm, the static algorithms be-
ing transformed need to be stable. Informally, an algorithm is stable if a small change to
the input causes a small change in the execution of the algorithm. In previous work [1, 6]
we have formalized the notion of stability and described approaches to analyzing it. In
practice many algorithms seem stable with respect to small input changes, or can be

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 636–647, 2006.
c Springer-Verlag Berlin Heidelberg 2006
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made stable with minor modifications. From a theoretical point of view, our approach
can be viewed as a reduction from dynamic kinetic problems to stable, static problems.
Given that the algorithm designer needs to analyze the stability, one may wonder what
advantages the approach has over direct design of kinetic data structures, which often
also start by considering static algorithms.

We briefly describe here several advantages of the approach over traditional ap-
proaches. In addition to guaranteeing the correctness of kinetized algorithms, the
approach enables some capabilities that can dramatically simplify the design and im-
plementation of algorithms for motion simulation. These capabilities are inherent to
the approach (require no changes to the implementation) and include composibility, in-
tegration of dynamic and kinetic changes, and the ability to advance the simulation
time to any time in the future. Composibility refers to the ability to send (or pipe)
the output of one kinetic algorithm to another: e.g., if and are kinetic al-
gorithms, then is a kinetic algorithm. Composibility is important for build-
ing large software systems from smaller modules. Integration of dynamic and kinetic
changes refers to the ability of kinetic algorithms to respond to both dynamic changes
(e.g., insertions deletions into from the input), and kinetic changes due to motion. With
previously proposed approaches, integrating dynamic and kinetic changes can involve
major changes to a dynamic or kinetic data structure. For example, Basch et al.’s kinetic
convex-hull data structure [13], which does not handle dynamic changes, is very di er-
ent from Alexandron et al.’s data structure [10], which supports integrated changes.
Advancing-time capability refers to the ability to advance the simulation time to any
time in the future. In addition to combining time-stepping and kinetic simulation ap-
proaches, this capability also helps ensure robustness in the presence of certain numeri-
cal inaccuracies (discussed in more detail below). Since the approach makes it possible
to transform static algorithms into kinetic semi-automatically and guarantees correct-
ness, it also has some software engineering benefits: only the static code needs to be
maintained, documented, and debugged.

An important problem in motion simulation is ensuring robustness in the presence
of numerical errors in computing the roots of certain polynomials, called certificate
polynomials. These roots give the failure times (events) at which the computed property
may change. Based on the advancing-time capability of kinetic algorithm, we describe
a scheduling algorithm that guarantees robustness even with finite-precision floating-
point arithmetic (Section 2.2). The idea behind our approach is to process the events
closer than the smallest computable precision together as a batch. In all previous work,
events are processed one by one by computing their order exactly—this requires expen-
sive numerical techniques based on exact and or interval arithmetic [19, 18, 17]. The
reason for processing events one by one is that events may be interdependent: pro-
cessing one may invalidate another. Our approach is made possible by the ability of
the change-propagation algorithm to process interdependent events correctly. It is not
known if previously proposed approaches based on kinetic data structures can be ex-
tended to support interdependent events (e ciently).

To illustrate the di erences between our proposal and traditional approaches based
on kinetic data structures, consider the example of computing the convex hull of a set
of points above some dividing line (e.g., Figure 1). In the static setting, where points
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Fig. 1. Computing the convex hull of a set of points that are above some line

do not move, this can be performed by composing a function that finds the
points above a line with the function that computes the convex hull, i.e., the al-
gorithm can be expressed as , where is a set of points. Our ap-
proach enables giving the kinetic algorithm , where
and are the kinetic versions of and obtained by applying
our syntactic transformation, and is a set of moving points. This algorithm supports
the aforementioned capabilities without further modifications to the implementation.

Suppose we want to solve the same problem by composing the kinetic data struc-
tures and for the filtering and the convex hull problems. Note
first that must respond to integrated dynamic and kinetic changes, because
the output of will change over time as points cross the dividing line. To
compose the two data structures, it is also necessary to convert the changes in the output
of into appropriate insert delete operations for . This requires
1) computing the “edit” (changes) between successive outputs of , 2) im-
plementing a data structure for communicating the changes to (chapter 9
in Basch’s thesis [12]). We don’t know of any previously proposed general-purpose
approaches to computing “edits” between arbitrary data structures e ciently. Finally,
kinetic data structures rely on processing events one by one. This requires sequentializ-
ing simultaneous events (e.g., when multiple points cross the dividing line at the same
time) and using costly numerical techniques to determine the exact order of failing
certificates.

2 From Static to Kinetic Programs

We describe the transformation from static to kinetic algorithms, and present an algo-
rithm for robust motion simulation by exploiting certain properties of the transformation
(Section 2.2). The asymptotic complexity of kinetic algorithms can be determined by
analyzing the stability of the program; we describe stability briefly in Section 2.3.

2.1 The Transformation

The transformation of a static program (algorithm) into a kinetic program requires two
steps. First, the static program is transformed into a self-adjusting program. Second, the
self-adjusting program is kinetized by linking it with a kinetic scheduler.
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Transforming a static program into a self-adjusting program requires annotating the
program with primitives for creating, reading, and writing modifiable references, and
for memoization. A modifiable (reference) is a reference, whose contents is a change-
able or time dependent value. In particular, once a self-adjusting program executes, the
contents of modifiables can be changed, and the computation can be updated by run-
ning a change-propagation algorithm. For the purposes of this paper, changeable data
consists of all comparisons that involve moving points, and the “next pointers” in the
input list. Placing the outcomes of comparisons into modifiables enables changing them
as points move; placing the links into modifiables enables inserting deleting elements
into from the input. After the programmer determines what data is changeable, s he can
transform the program by annotating it with the aforementioned primitives. This trans-
formation is aided by language techniques that ensures correctness [1, 2, 4]. Example
transformations can be found elsewhere [7, 1].

Kinetizing a self-adjusting program requires replacing the comparisons in the pro-
gram with certificate-generating comparisons. This is achieved by linking the program
with a library that provides the certificate-generating comparisons. When executed, a
certificate-generating comparison creates a certificate consisting of a boolean value and
a certificate function that represents the value of the certificate over time. Creating a cer-
tificate requires computing its failure time by finding the roots of its certificate function,
and inserting the certificate into a certificate (priority) queue. An event scheduler sim-
ulates motion by repeatedly removing the earliest certificate to fail from the certificate
queue, changing its outcome, and running the change propagation.

The key di erence between our approach and the previously proposed approaches to
motion simulation is the use of the change-propagation algorithm for updating computa-
tion. Instead of requiring the design of a kinetic data structure, the change-propagation
algorithm takes advantage of the computation structure expressed by the static algo-
rithm to update the output. To achieve e ciency, the change-propagation algorithm
[3, 1] relies on an integral combination of memoization [5] and dynamic-dependence
graphs [6, 4]. Since change-propagation is general purpose and can handle any change
to the computation, kinetic (self-adjusting) algorithm have the following capabilities:

– Integrated Changes: They can respond to any change to their data including any
combination of changes to the input (a.k.a., dynamic changes), and changes to the
outcomes of comparisons (a.k.a., kinetic changes).

– Composibility: They are composable: if and are kinetic algorithms, then
so is .

– Advancing Time: In a kinetic simulation with a kinetic (self-adjusting) algorithm,
the simulation time can be advanced from the current time to any time t in the
future. This requires first changing the outcome of certificates that fail between the
current time and t, and then running change propagation.

2.2 Robust Motion Simulation

Traditional approaches to motion-simulation based on kinetic data structures rely on
computing the exact order in which certificates fail. The reason for this is correctness:
since comparisons can be interdependent, changing the outcome of one certificate can
invalidate (delete) another certificate. Thus, if the failure order of comparisons is not



640 U.A. Acar et al.

safe

unsafe

Fig. 2. The simulation time, the certificate failure intervals, and safe and unsafe time intervals

determined exactly, then the event scheduler can prematurely process an event e1, be-
fore the event e2 that invalidates e1. This can easily lead to an error by violating critical
invariants. Previous work on robust motion simulation focused on techniques for deter-
mining the exact order of failure times by using numerical approaches [19, 18, 17].

We propose an algorithm for robust motion simulation that only requires fixed-
precision floating-point arithmetic. The algorithm takes advantage of the advancing-
time property of kinetic algorithms to perform change-propagation only at “safe” points
in time at which the outcomes of certificates can be computed precisely. Given a kinetic
simulation, where each certificate is associated with an interval that contains its exact
failure time, we say that a time t is safe if t is not contained in the interval of any
certificate. Figure 2 shows a hypothetical example and some safe time intervals.

If the scheduler could determine the safe time points, then it would perform a robust
simulation by repeatedly advancing the time to the earliest next safe time, i.e., target.
Since the outcomes of all comparisons can be determined correctly at safe targets, such
a simulation is guaranteed to be correct. It is not possible, however, to know what targets
are safe online, because this requires knowing all the future certificates. Our algorithm
therefore selects a safe target t based on existing certificates and aborts when it finds
that t becomes unsafe, which happens if, during the change propagation, a certificate
whose interval contains t is created. To abort, the algorithm restarts the simulation at
the next safe time greater than t (this ensures progress).

As discussed in Section 5, this approach seems very e ective in practice. To en-
sure robustness, the scheduler needs to process less than two certificates per event (on
average), and requires very few restarts.

2.3 Stability

The asymptotic complexity of change propagation with a kinetic algorithm can be de-
termined by analyzing the stability of the kinetic algorithm. Since this paper concerns
experimental issues, we give a brief overview of stability here and refer the reader to the
first author’s thesis for further details [1]. The stability of an algorithm is measured by
computing the “edit distance” between the executions of the algorithm on di erent data
as the symmetric set di erence of the executed instructions. For example, the stability
of the merge sort algorithm under a change to the outcome of one of the comparisons
can be determined by computing the symmetric set di erence of the set of comparisons
performed before and after this change. Elsewhere [1], we prove that, under certain
conditions, change-propagation takes time proportional to the edit distance between the
traces of the algorithm on the inputs before and after the change.

3 Implementation

We implemented a library for transforming static algorithms into kinetic. The library
consists of primitives for creating certificates, event scheduling, and is based on a
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library for self-adjusting-computation. The self-adjusting-computation library is de-
scribed elsewhere [3, 2]. The implementation of the kinetic event scheduler follows the
description in Section 2.2; as a priority queue, a binary heap is used. For solving the
roots of the polynomials, the library relies on a degree-two solver, which uses the stan-
dard floating-point arithmetic and makes no further accuracy guarantees. The solver can
be extended to solve higher-degree polynomials. The full code for the implementation
is available at

4 Applications

Using our library for kinetizing static algorithms, we implemented a number of algo-
rithms and kinetized them. The algorithms include an algorithm for finding the mini-
mum key in a list ( ), the and the algorithms, several
convex hull algorithms including [16], [11], ,
the (improved) convex-hull algorithm [15], and an algorithm, called

, for finding the diameter of a set of points [20]. The input to all our al-
gorithms is a list of one or two dimensional points. Each component of a point is a
univariate polynomial of time with floating-point coe cients. In the static versions of
the algorithms, the polynomials have degree zero; in the kinetic versions, the polyno-
mials can have an arbitrary degree depending on the particular motion represented. For
our experiments, we only consider linear motion plans; the polynomials therefore have
no more than degree 2.

To obtain an e cient kinetic algorithm for an application, we first implement a sta-
ble, static algorithm for that application and then transform the algorithm into a kinetic
algorithm using the techniques described in Section 2.1. The transformation increases
the number of lines by about 20% on average. Our implementations rely on the capa-
bility to compose kinetic algorithms: the and algorithms use

to find the point furthest away from a line; uses
to sort its input points; uses to compute the convex hull of the
points and to find the furthest antipodal pair, etc.

Not every algorithm is stable. For example, the straightforward list-traversal algo-
rithm for computing the minimum of a list of keys is not stable. Our algorithm for com-
puting the minimum relies on random-sampling (details can be found elsewhere [7, 1]).
The other algorithms require small changes to ensure stability: the and

algorithms require randomizing the split phase so that the input list is
randomly divided into two sets (instead of dividing in the middle); the
convex-hull algorithm requires randomizing the elimination step; the ,

, , and algorithms require no changes.

5 Experimental Results

We present an experimental evaluation of the approach. We give detailed experimental
results for the application, and summarize the results for other applications.
We compare our kinetic algorithm to a (hand-designed) kinetic data struc-
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ture for maintaining the minimum [13, 12].1 We finish by comparing the convex-hull
algorithms and discussing the e ectiveness of our robust scheduling algorithm.

Experimental Setup. We ran our experiments on a 2.7GHz Power Mac G5 with 4
gigabytes of memory. We compiled the applications with the MLton compiler using
“ ” option that directs the run-time system to use all the avail-
able memory on the system—MLton, however, can allocate a maximum of about two
gigabytes. Since MLton uses garbage collection, the total time depends on the partic-
ulars of the garbage-collection system. We therefore report the application time, mea-
sured as the total time minus the time spent for garbage collection (garbage collection is
discussed elsewhere [3]). For the experiments, we use a standard floating-point solver
with the robust kinetic scheduler (Section 2.2). We assume that certificate failure times
are computed within an error of 10 10.

Input Generation. We generate the inputs for our experiments randomly. For one-
dimensional applications, we generate points uniformly at random between 0 0 and
1 0 and assign them velocities uniformly at random between 0 5 and 0 5. For two-
dimensional applications, we pick points from within the unit square uniformly at ran-
dom and assigning a constant velocity vector to each point where each component is
selected from the interval [ 0 5 0 5] uniformly at random.

Measurements. In addition to measuring various quantities such as the number of
events in a kinetic simulation, we run some specific experiments. These experiments
are described below; throughout, n denotes the input size (e.g., number of points).

– Average time for an insertion deletion: This is measured by applying a delete-
propagate-insert-propagate step to each point in the input. Each step deletes an
element, runs change propagation, inserts the element back, and runs change prop-
agation. The average is taken over all propagations.2

– Average time for a kinetic event: This is measured by running a kinetic simula-
tion and averaging over all events. For all applications except for
and sorting applications, we run the simulations to completion. For sorting and

applications, we run the simulations for the duration of 10 n events.
– Average time for an integrated dynamic change & kinetic event: This is mea-

sured by running a kinetic simulation while performing one dynamic change at
every kinetic event. Each dynamic change scales the coordinates of a point by 0 8.
We run the simulation for the duration of 2 n events such that all points are scaled
twice. The average is taken over all events and changes.

Diameter. The application first computes (using ) the convex
hull of its input, performs a scan of the convex hull to compute the antipodal pairs, and
finds (using ) the pair that is furthest apart. We note that Agarwal et al. give a

1 We also tried to compare our implementation to the implementation of kinetic convex-hulls by
Basch et al. [14]. Unfortunately, we could not compile their implementation, because it relies
on depreciated libraries.

2 When measuring these operations, the kinetic event queue operations are turned o .
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similar algorithm for computing diameters, but they provide no implementation [8]. We
expect a similar technique can be used to compute the width of a point set.

Figure 3 shows the total time for a from-scratch run of the kinetic algo-
rithm for varying input sizes. The figure shows that the kinetic algorithm is at most
5 times slower than the static algorithm for the considered inputs—due to the event
queue, asymptotic overhead of a kinetic algorithm is O(log n). Figure 4 shows the total
time for complete kinetic simulations of varying input sizes—the curve seems slightly
super-linear. Figure 5 shows the average time for change propagation after an inser-
tion deletion for varying inputs. Note that the time for change propagation decreases
slightly as the input size increases. We believe that this is because the running time
for (and thus change propagation) is sensitive to the size of the convex-
hull of the points. In particular, 1) deleting inserting a point from into the inside of a
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Table 1. From-scratch runs and dynamic changes

Appli- n Static Kinetic Over- Insert Speedup
cation Run Run head Delete

minimum 106 0 8 6 2 7 8 1 6 10 5 50000
merge-sort 105 1 3 9 7 7 4 3 6 10 4 4000
quick-sort 105 0 3 9 8 31 6 3 7 10 4 800

graham-scan 105 2 3 12 5 5 4 8 0 10 4 3000
merge-hull 105 2 2 10 0 4 7 6 0 10 3 300
quick-hull 105 1 1 5 0 4 7 2 1 10 4 5000
ultimate 105 1 8 7 8 4 2 1 0 10 3 1500
diameter 105 1 1 5 0 4 7 2 3 10 4 5000

Table 2. Kinetic simulations (also with integrated changes)

Appli- n Static Simu- # # Ext. Per Per Int. Speedup
cation Run lation Events Events Event Event

minimum 106 0 8 40 2 5 3 105 9 9 3 10 5 9 3 10 5 8000
merge-sort 105 1 3 239 1 106 106 2 4 10 4 9 8 10 4 6000
quick-sort 105 0 3 430 9 106 106 4 3 10 4 2 9 10 2 700

graham-scan 105 2 3 710 3 106 38 7 1 10 4 1 4 10 3 3000
merge-hull 105 2 2 1703 6 6 8 105 293 2 5 10 3 7 4 10 3 800
quick-hull 105 1 1 171 9 3 1 105 293 5 6 10 4 8 9 10 4 2000
ultimate 105 1 8 1757 8 4 1 105 293 4 3 10 3 7 3 10 3 400
diameter 105 1 1 184 4 3 1 105 11 5 9 10 4 8 7 10 4 2000

convex hull of the input points is cheap and 2) with uniformly randomly distributed
points, many of the points are expected to be inside the hull. Figure 6 shows the aver-
age time per kinetic event and the average time for an integrated dynamic change and
kinetic event. Both curves fit O(log2 n). These experimental results match best known
asymptotic bounds for the kinetic diameter problem [8]. To measure of how fast change
propagation is, we compute the average speedup (Figure 7) as the ratio of the average
time for one kinetic event to the time for a from-scratch execution of the static version.
As can be seen, the speedup increases nearly linearly with the input size to exceed three
orders of magnitude.

Other benchmarks. We report a summary of our results for other benchmarks at
fixed input sizes. Table 1 shows, for input sizes (“n”), the timings for from-scratch
executions of the static version (“Static Run”) and the kinetic version (“Kinetic Run”),
the overhead, the average time for change propagation after an insertion deletion (“In-
sert Delete”), and the speedup of change propagation computed as the average time for
an insertion deletion divided by the time for recomputing from scratch using the static
algorithm. The overhead, defined as the ratio of the time for a kinetic run to the time for
a static run, is O(log n) asymptotically because of the certificate-queue operations. The
experiments show that the overhead is about 9 on average for the considered inputs,
but varies significantly depending on the applications. As can be expected, the more
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sophisticated the algorithm, the smaller the overhead, because the time taken by the
library operations (operations on certificates, event queue, modifiables, etc.) compared
to the amount of “real” work performed by the static algorithm is small for more so-
phisticated algorithms. The “speedup” column shows that change propagation can be
orders of magnitude faster than recomputing from scratch.

Table 2 shows the timings for kinetic simulations. The “n” column shows the input
size, “Simulation” column shows the time for a kinetic simulation, the “# Events” and
“# Ext. Events” columns show the number of events and external events respectively,
the “per Event” column shows the average time per kinetic event. The “per int. ev.” col-
umn shows the average time for an integrated dynamic and kinetic event. The “Speedup”
column shows the average speedup computed as the ratio of time for a from-scratch exe-
cution of the static version to the average time for an event. The speedup column shows
that the change propagation is orders of magnitude faster than re-computing from scratch.

The results show that is more e ective than : the
algorithm is two times faster for kinetic events and nearly thirty times

faster for integrated events. We discuss the convex-hull algorithms below.
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A comparison of convex hull algorithms. We compare the , ,
and algorithms based on their responsiveness, e ciency and locality.
which measure the e ectiveness of kinetic algorithms [13]. Since al-
gorithm relies on sorting, it is not practical; we therefore do not discuss
in detail.

Figure 9 shows the time per event for the convex hull algorithms. In a kinetic simula-
tion, the time per event measures the responsiveness of a kinetic algorithm, and the total
number of events processed determines the e ciency of an algorithm. The total simu-
lation time measures overall e ectiveness of a kinetic algorithm. In all these respects,
the algorithms rank from best to worst as , , and .

Kinetic algorithms can also be compared based on their locality [13], which is de-
fined as the maximum number of certificates that depend on any input point. The time
for integrated dynamic and kinetic changes (Figure 10) gives a measure of locality be-
cause a change to the coordinates of a point requires recomputing all certificates that
depend on that point. In terms of their locality, the algorithms rank from best to worst
as , , and .
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The results show that the performs best. One disadvantage of
is that it is di cult to prove asymptotic bounds for it. If asymptotic com-

plexity is important, then the experiments indicate that algorithm performs
better than , especially if few dynamic changes are performed.

Comparison to a handcrafted kinetic data structure. One may wonder how the
approach performs relative to handcrafted kinetic data structures. We compare our

algorithm to the tournament-tree based kinetic data structure for maintain-
ing minimum by Basch, Guibas, and Hershberger [13, 12]. Figure 8 shows the total
time of a kinetic simulation with our semi-automatically generated algorithm and the
Basch-Guibas-Hershberger kinetic data structure. Our algorithm is a factor of 3 slower
than the handcrafted data structure.

Robustness. Our experiments rely on the robust scheduling algorithm (Section 2.2). To
determine the e ectiveness of the approach, we performed additional testing by running
kinetic simulations and probabilistically verifying the output after each kinetic event.
These tests verified that the approach ensures correctness for all inputs that we consid-
ered: up to 100,000 points with all applications.3 With computational geometry algo-
rithms, the scheduler performed no cold restarts. With sorting (and ) al-
gorithms, there were ten restarts with 100,000 points—no restarts took place for smaller
inputs. Since sorting algorithms can process up to O(n2), this is not surprising.

The robust scheduling algorithm can process multiple certificates simultaneously.
We measured the number of certificates processed simultaneously to be less than 1.75
averaged over all our applications. Note that both the number of restarts and the num-
ber of certificates can be further decreased by using higher (but still fixed) precision
floating-point numbers.

6 Conclusion

This paper describes the first technique for kinetizing static algorithms by applying a
syntactic transformation based on self-adjusting computation. The technique ensures
that kinetized algorithms are correct, and enables 1) integrating dynamic and kinetic
changes, 2) composing kinetic algorithms, and 3) robust motion simulations. The ef-
fectiveness of the technique is evaluated by considering a number of algorithms and
performing a broad range of experiments. The experimental results show that the ap-
proach performs well in practice.
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Abstract. In this paper we consider one of the basic problems in
scheduling and project management: scheduling on parallel identical ma-
chines. We present a solution framework for a number of scheduling prob-
lems in which the goal is to find a feasible schedule that minimizes some
objective function of the minimax type on a set of parallel, identical ma-
chines, subject to release dates, deadlines, and/or generalized precedence
constraints. Our framework is based on column generation. Although col-
umn generation has been successfully applied to many parallel machine
scheduling problems with objective functions of the minsum type, the
number of applications for minimax objective functions is still small.

We determine a lower bound on the objective function in the follow-
ing way. We first turn the minimization problem into a decision problem
by bounding the outcome value. We then ask ourselves ‘Are m machines
enough to feasibly accommodate all jobs?’. We formulate this as an inte-
ger linear programming problem and we determine a high quality lower
bound by applying column generation to the LP-relaxation; if this lower
bound is more than m, then we can conclude infeasibility. To speed up
the process, we compute an intermediate lower bound based on the out-
come of the pricing problem. As the pricing problem is intractable for
many variants of the original scheduling problem, we mostly solve it ap-
proximately by applying local search, but once in every 50 iterations or
when local search fails, we use a time-indexed integer linear programming
formulation to solve the pricing problem.

After having derived the lower bound on the objective function of the
original scheduling problem, we try to find a matching upper bound by
identifying a feasible schedule with objective function value equal to this
lower bound. Our computational results show that our lower bound is so
strong that this almost always succeeds. We are able to solve problems
with up to 160 jobs and 10 machines in 10 minutes on average.
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1 Introduction

In this paper we consider one of the basic problems in scheduling and project
management; we refer to the book by Pinedo (2002) for an introduction to
scheduling theory. We are given m parallel, identical machines, which are con-
tinuously available from time zero onwards and can process no more than one
job at a time; these machines have to process n jobs, which are denoted by
J1, . . . , Jn. Processing Jj requires one, arbitrary processor during an uninter-
rupted period of length pj , which must start at or after the given release date rj

and must be completed by the given deadline d̄j . Given a schedule σ, we denote
the completion time of job Jj by Cj(σ), and hence, we need for all jobs Jj that
rj + pj ≤ Cj(σ) ≤ d̄j for σ to be feasible. Moreover, the jobs may be subject
to generalized precedence constraints, which prescribe that for a pair of jobs Ji

and Jj the difference in completion time Cj(σ) − Ci(σ) should be at least (at
most, or exactly) equal to some given value qij . The quality of the schedule is
measured by some objective function of minimax type, which is assumed to be
nondecreasing in the completion times, like maximum lateness or maximum cost.
Here, the maximum lateness is defined as maxj Lj(σ), where Lj(σ) = Cj(σ)−dj ;
dj signals the due date, by which the job preferably should be completed. A spe-
cial case occurs when all due dates are equal to zero; in this case, the objective
function becomes equal to minimizing the maximum completion time, that is,
the makespan of the schedule.

We solve these problems by applying the technique of column generation. This
approach has been shown to work very well for the problem of minimizing total
weighted completion time on a set of identical parallel machines (see [2] and
[7]), and since the appearance of these papers, the method of applying column
generation has been applied to many parallel machine problems with a sum type
criterion in which the jobs are known to follow a specific order on the individual
machines; we refer to [3] for an overview. One notable exception is due to Brucker
and Knust ([4], [5], [6]), who apply column generation to a number of resource
constrained project scheduling problems in which the goal is to minimize the
makespan. Here they first formulate the problem as a decision problem and then
use linear programming to check whether it is possible to execute all jobs in a
feasible preemptive schedule; here the decision variables refer to the length of a
time slice during which a given set of jobs is executed simultaneously.

We use the three-field notation scheme introduced by Graham et al. [9] to
denote scheduling problems. The remainder of this paper is organized as follows.
In Sect. 2, we describe the basic approach for the relatively simple problem of
minimizing Lmax without release dates and generalized precedence constraints.
We explain the column generation approach and the derivation of an intermedi-
ate lower bound in Sect. 3 and 4. In Sect. 5, we add release dates and generalized
precedence constraints. In Sect. 6, we describe our local search algorithm to solve
the pricing problem approximately, and in Sect. 7 we formulate the pricing prob-
lem as a time-indexed integer linear programming problem that can be used to
find (an upper bound on) the solution of the pricing algorithm. Finally, in Sect. 8
we draw some conclusions.
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Our contribution. We give the first algorithm for solving this kind of problems
using column generation. Our approach is a bit complementary to the approach
by Brucker and Knust, since they check the existence of a preemptive schedule for
a given set of resources, whereas we let the number of machines vary. Moreover,
we describe an efficient way to use an intermediate lower bound to be able to
make a decision without having to solve the LP-relaxation to optimality.

2 The Basic Approach

In this section, we sketch the basic approach, which we illustrate on the P ||Lmax
problem, that is, there are m parallel, identical machines to execute n jobs, where
the objective is to minimize maximum lateness; there are no release dates and
precedence constraints, but there can be deadlines, which are not related to the
due dates.

It is well-known that this optimization problem can be solved by solving a set
of decision problems, which are obtained by putting an upper bound L on the
value of the objective function. Since the restriction Lmax ≤ L is equivalent to the
constraint that Lj = Cj−dj ≤ L for each job Jj , we find that Cj ≤ dj +L ≡ d̄j ;
the decision problem is then to determine whether there exists a feasible schedule
meeting all deadlines, where we take the minimum of the original deadline and
the deadline induced by the constraint Lmax ≤ L. Hence, we can solve the
optimization problem by determining the smallest value L that allows a feasible
schedule.

Since the machines are identical, the decision problem can be reformulated
as: is it possible to partition the jobs in at most m subsets such that for each
subset we can find a feasible single-machine schedule that meets all deadlines?
Checking the feasibility of a subset is easy by executing the jobs in order of
earliest deadline order and see whether these are all met [10]; hoping not to
confuse the reader, we call this the ED-order. Note that it is identical to the
earliest due date (EDD) order if the original deadlines are not restrictive. We
solve this decision problem by answering the question: what is the minimum
number of machines that we need to get a feasible schedule?

We call a subset of jobs that allows a feasible single-machine schedule a ma-
chine schedule. The above question is then to find the minimum number of
mutually distinct machine schedules that contain all jobs. We can formulate
the above problem as an integer linear programming problem as follows. Let S
be the set containing all machine schedules. We introduce binary variables xs

(s = 1, . . . , |S|) that take value 1 if machine schedule s is selected and 0 other-
wise. Each machine schedule s is encoded by a vector as = (a1s, . . . , ans), where
ajs = 1 if machine schedule s contains job Jj and ajs = 0, otherwise. We have to
minimize the number of machine schedules that we select, such that each job is
contained in one machine schedule. Hence, we have to determine values xs that
solve the problem

(P1) min
∑
s∈S

xs
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subject to ∑
s∈S

ajsxs = 1, for each j = 1, . . . , n, (1)

xs ∈ {0, 1}, for each s ∈ S. (2)

We obtain the linear programming relaxation by replacing (2) with xs ≥ 0 for all
s ∈ S; we do not need to enforce the upper bound of 1 for xs, since this follows
immediately from (1). We solve the LP-relaxation using column generation.

3 Column Generation

We first solve the linear programming relaxation for a small initial subset of the
columns. Given the solution to the linear programming problem with the current
set of variables, it is well-known from the theory of linear programming that the
reduced cost of a variable xs is given by

c′s = cs −
n∑

j=1

λjajs = 1−
n∑

j=1

λjajs,

where λ1, . . . , λn are the dual multipliers corresponding to the constraints (1) of
the solution of the current LP. If for each variable xs we have that c′s ≥ 0, then the
solution with the current set of variables solves the linear programming problem
with the complete set of variables as well. To check whether this condition is
fulfilled, we minimize the reduced cost over all machine schedules. Therefore,
we must pick the subset of the jobs with maximum total dual multiplier value
among all subsets of jobs that lead to a feasible single-machine schedule, that is,
we must solve the problem

max
s∈S

n∑
j=1

λjajs (3)

We use ĉ to denote the outcome value of this problem; hence, we have that the
minimum reduced cost, which we denote by c∗, is equal to

c∗ = 1− ĉ

This maximization problem is equivalent to the problem of minimizing the total
weight of the jobs that are not selected, which is known as the problem of
minimizing the weighted number of tardy jobs, where the weight of a job is
equal to the dual multiplier λj and the due date for each job is equal to the
deadline d̄j . Note here that the constraint that each weight is nonnegative in
this scheduling problem is not restrictive, since a job with negative weight will
never be selected in the maximization problem. This problem, which is denoted
as 1||

∑
wjUj in the three-field notation scheme, is solvable in O(n

∑
pj) time

by the dynamic programming algorithm of Lawler and Moore [11]. Hence, in
this situation we solve the pricing problem to optimality. If c∗ ≥ 0, then we have
solved the linear programming relaxation; otherwise, we add the variable with
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minimal reduced cost value to the LP and solve it again. In this way, we solve the
linear programming relaxation to optimality. If the outcome value is more than
m, then we know that the answer to the decision problem is ‘no’; if the outcome
value is no more than m, and we have not identified a feasible solution yet
that uses m (or fewer) machines, then we solve the integer linear programming
problem to optimality using the branch-and-bound algorithm developed by Van
den Akker et al. [2] for the problem P ||

∑
wjCj .

4 An Intermediate Lower Bound

In the above implementation we have to apply column generation to the bitter
end, that is, until we have concluded that the linear programming relaxation
has been solved to optimality, before we have found a valid lower bound. Since
we only need to know whether the outcome value is more than m or no more
than m, we are not interested in the exact outcome value, as long as it allows
us to decide the decision problem. Fortunately, it is possible to compute an
intermediate lower bound on basis of the reduced cost.

Theorem 1. An intermediate lower bound for the optimal value of LP-
relaxation of P1 is given by

∑n
j=1 λj/ĉ, where ĉ is the solution value of the

maximization problem (3).

We can use this lower bound to decide whether m machines are sufficient. If it
has value smaller than or equal to m, then we continue with solving the LP-
relaxation.

Solving the problem P ||Lmax was relatively simple, since each machine sched-
ule can be represented by just listing the indices of the jobs that it contains,
and since the pricing problem can be solved by applying dynamic programming.
We can use the same methodology to solve any problem for which putting an
upper bound on the objective function results in a set of deadlines. Hence, we
can solve the more general P ||fmax problem in the same fashion, where fmax
denotes maximum cost, which is defined as maxj fj(Cj), where fj(t) is the cost
function of job Jj , which is assumed to be nondecreasing in t.

5 Release Dates and Precedence Constraints

In this section, we assume that next to the deadlines there are release dates and
generalized precedence constraints. We again translate the problem into one of
minimizing the number of machine schedules that are needed. Since two jobs that
are connected through a precedence constraint do not have to be executed by
the same machine, we assume that the machine schedules obey the release dates
and deadlines, and we include a constraint in the integer linear programming
formulation for each of the generalized precedence constraints. We define A1 as
the arc set containing all pairs (i, j) such there exists a precedence constraint
of the form Cj − Ci ≥ qij ; similarly, we define A2 and A3 as the arc sets that
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contain an arc for each pair (i, j), for which Cj − Ci ≤ qij and Cj − Ci = qij ,
respectively. Note that the intersection of A1 and A2 does not have to be empty.
To be mathematically correct, we should replace qij by q1

ij and q2
ij , if the arc (i, j)

occurs in both A1 and A2, but to ease notation, we do not make this distinction.
We denote the union of A1, A2, and A3 by the multi set A. This leads to the
following integer linear programming formulation

(P2) min
∑
s∈S

xs

subject to ∑
s∈S

ajsxs = 1, for each j = 1, . . . , n,∑
s∈S

Cjsxs −
∑
s∈S

Cisxs ≥ qij for each (i, j) ∈ A1;∑
s∈S

Cjsxs −
∑
s∈S

Cisxs ≤ qij for each (i, j) ∈ A2;∑
s∈S

Cjsxs −
∑
s∈S

Cisxs = qij for each (i, j) ∈ A3;

xs ∈ {0, 1}, for each s ∈ S.

Here Cjs denotes the completion time of job Jj in column s, which we define to
be equal to 0 if Jj is not contained in s. If we want to solve the LP-relaxation
by applying column generation, then we find that the reduced cost of a machine
schedule s is equal to

c′s = cs −
n∑

j=1

ajsλj −
n∑

j=1

⎡⎣∑
h∈Pj

δhjCjs −
∑
k∈Sj

δjkCjs

⎤⎦ .

Here the sets Pj and Sj are defined as the sets containing all predecessors and
successors of job Jj in A, respectively. Hence, we must solve the maximization
problem

n∑
j=1

ajsλj +
n∑

j=1

⎡⎣∑
h∈Pj

δhjCjs −
∑
k∈Sj

δjkCjs

⎤⎦ . (4)

over all machine schedules s ∈ S. We solve this problem approximately using
local search (see Sect. 6). Again, we can compute an intermediate lower bound.

Theorem 2. An intermediate lower bound for the optimal value of LP-
relaxation of P2 is given by

[∑n
j=1 λj +

∑
(j,k)∈A δjkqjk

]
/ĉ, where ĉ is the out-

come value of the maximization problem (4).

If we get stuck, that is, the outcome of the LP-relaxation does not lead to ‘no’
on the decision problem, then we assume for the time-being that the decision
problem is feasible, and we decrease the upper bound L on Lmax that we want to
test. If we end up with a value L for which we know that L−1 yields an infeasible
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decision problem and for which the LP-relaxation cannot decide whether the
decision problem obtained by putting the upper bound on Lmax equal to L is
feasible, then we can apply branch-and-bound with a branching strategy based
on splitting the execution intervals. It turned out in our experiments, however,
that it is better to solve an integer linear programming formulation in which we
request that Lmax = L by using CPLEX (see Sect. 8).

6 Generating New Columns by Local Search

In this section, we describe the local search algorithm that we have implemented
to solve the pricing problem.
Recall from (4) that solving the original pricing problem is equivalent to find-
ing the single-machine schedule that obeys the release dates and deadlines and
maximizes

n∑
j=1

λjajs +
n∑

j=1

QjCjs, (5)

where Qj =
∑

h∈Pj
δhj −

∑
k∈Sj

δjk. Looking at this formula we see that, if job
Jj gets selected, then this Qj value determines whether it is more profitable to
execute the job as late as possible (Qj > 0) or as early as possible (Qj < 0).
In a preprocessing step, we can even determine the time interval during which
we must complete job Jj , if selected, since its total contribution to the objective
function would be negative otherwise, in which case it would have been better
not to select Jj .

In our local search we use a two-phase procedure. In the first phase, we deter-
mine the jobs that are selected and the order in which they are executed. In the
second phase, we then determine the optimal set of completion times, which can
be done in linear time using a shifting procedure, which resembles the procedure
for a similar problem given by Garey et al. [8].

We now describe the first step in the local search procedure. We define a
solution in our local search as a selection of the jobs and the order in which they
should be processed, after which we find the value of this solution by solving the
second step. Our algorithm uses the following methods to exploit the solution
space:

(i) Remove a random job from the set of selected jobs;
(ii) Add a random, yet unselected job at a random place in the order of selected

jobs;
(iii) Replace a random job from the current selection by a random, yet unselected

job;
(iv) Swap the positions of two random jobs in the set of selected jobs.

We choose to apply simulated annealing. In our computational experiments, we
added up to 50 columns with negative reduced cost per iteration.
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7 Time Indexed Formulation

Finally we describe how to find an upper bound for ĉ, which is defined as the
outcome of the maximization problem (5), such that we can compute the inter-
mediate lower bound. To this end, we formulate the problem as an integer linear
programming problem using a time-indexed formulation (see for instance [12]
and [1]) and solve the LP-relaxation, which gives an upper bound. We checked
the intermediate lower bound by computing this upper bound on ĉ every 50
iterations, or when our local search algorithm could not find any column with
negative reduced cost. If infeasibility could not be decided and if we could not
find a column with negative reduced cost, we turn to the time-indexed ILP for-
mulation of the pricing problem. We compute for which value of the objective
function of the pricing problem we find an intermediate lower bound equal to
m. We then ask our ILP solver CPLEX whether there exists a solution to the
pricing problem with this value or larger. If the answer to this decision problem
is ‘no’, then we can conclude that m machines are not enough; if the answer
is ‘yes’, then we add the corresponding column and continue with solving the
LP-relaxation by column generation.

8 Computational Results

Compared Methods

Since we could not find other results of reports trying to solve the problem
P |rj , prec|Lmax, we have compared our method to the rather straightforward
and direct approach using a time-indexed ILP formulation of this problem like
the one stated in Section 7.

When we compared the column generation approach that we had originally
in mind, that is, with the branch-and-bound based on splitting the execution
intervals, to the method of solving this time-indexed ILP formulation through
CPLEX, we noticed that these methods have difficulty with exactly opposite
problems. We noticed that for all our testing instances the lower bound on Lmax

found by the LP-relaxation coincided with the optimal value of Lmax. The prob-
lem with our method is that it is often not able to generate a set of columns in
the LP-relaxation that form a solution to the original ILP formulation. CPLEX
has exactly the opposite problem when solving the time-indexed formulation;
it has a very hard time to conclude that a solution is optimal. Therefore, we
tried to exploit the best of both worlds in defining a hybrid method, using the
very strong lower bound LB on Lmax found by our column generation method
and then let CPLEX find a solution with this value (thus adding the constraint
L = LB and ignoring a big part of the variables). Hence, the hybrid method
first spends some time to find the lower bound and passes this information to
the time-indexed formulation.
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Results

In our experiments we compare our hybrid algorithm to the direct ILP solved
by CPLEX (that is, without knowing the value of the lower bound). We have
applied both algorithms on 13 scenarios; for each scenario we ran five test
instances. The scenarios are described in Table 1; n denotes the number of
jobs, m the number of machines, and # prec denotes the number of prece-
dence constraints. The first 8 scenarios are used to compare our hybrid algo-

Table 1. Test scenarios

Number pj rj dj n m # prec
0 U[1,20] U[0,60] U[50,80] 40 4 20
1 U[1,20] U[0,40] U[30,60] 70 5 35
2 U[1,20] U[0,80] U[80,150] 80 7 30
3 U[1,20] U[0,40] U[60,80] 100 9 40
4 U[1,20] U[0,60] U[80,110] 120 9 50
5 U[1,20] U[0,60] U[80,110] 140 10 50
6 U[1,20] U[0,60] U[80,110] 160 10 50
7 U[1,20] U[0,60] U[80,110] 180 10 60
8 U[1,20] U[0,60] U[40,80] 60 3 30
9 U[1,20] U[0,60] U[40,80] 60 5 30
10 U[1,20] U[0,60] U[40,80] 60 7 30
11 U[1,20] U[0,60] U[50,80] 30 3 15
12 U[1,40] U[0,120] U[100,160] 30 3 15

rithm to solving the time-indexed formulation directly, without knowing the
lower bound. Hence, we are testing whether spending time on determining the
lower bound is worthwhile. The scenarios 8-10 are used to find out the influ-
ence of the number of machines, whereas in the last two the influence of a
doubling of the times value is measured. The results of the experiments are
summarized in Table 2. The results of the hybrid algorithm are denoted in
the row starting with Hi, where i denotes the number of the scenario; the
results of applying CPLEX (Version 9.0) to the ILP formulation appear in
the same row between brackets, starting with Ci. The algorithms were en-
coded in Java (Version 1.4.2 05) and the experiments were run on a Dell Op-
tiplex GX270 P4 2,8 Ghz computer. For each instance we let each algorithm
run for at most 30 minutes. We keep track of the number of times out of
5 that an optimum was found (‘# success’) and also the average and maxi-
mum amount of time in seconds needed for the successful runs (‘Avg t’ and
‘Max t’). Next, we measured the average and maximum time needed to find
the lower bound for the successful runs (‘Avg t LB’ and ‘Max t LB’). Fi-
nally, by (‘Avg #ILP’ and ‘Max #ILP’), we denote the number of times that
we solved the ILP formulation of the pricing problem; this was conducted af-
ter each series of 50 runs of the local search algorithm, since we wanted to
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Table 2. Results of comparing the direct time-indexed approach and the hybrid
algorithm

# Avg t Max t Avg t Max t Avg Max
success LB LB #ILP #ILP

H0(C0) 5(2) 66(27) 194(53) 38 92 33 77
H1(C1) 4(3) 53(30) 170(37) 14 26 4 16
H2(C2) 5(3) 153(231) 396(645) 83 180 47 139
H3(C3) 5(0) 342(-) 1109(-) 110 174 14 33
H4(C4) 5(0) 342(-) 393(-) 183 302 38 57
H5(C5) 5(0) 452(-) 689(-) 228 269 25 41
H6(C6) 5(0) 636(-) 1045(-) 354 415 29 37
H7(C7) 1(0) 553(-) 553(-) 470 470 27 27
H8(C8) 3(0) 199(-) 296(-) 158 266 40 98
H9(C9) 5(2) 88(80) 197(351) 53 85 17 42

H10(C10) 5(5) 6(2) 9(3) 5 8 0 0
H11(C11) 5(5) 31(92) 55(180) 24 35 15 50
H12(C12) 4(0) 101(-) 150(-) 73 147 24 54

find out whether the intermediate lower bound could decide the problem al-
ready, and whenever the local search algorithm could not find an improving
column.

We also tested the performance of our local search algorithm on the pricing
problem by comparing it to the method of only generating columns found by
the ILP formulation of the pricing problem. For the scenarios 0, 5, 11 and 12
we ran another set of 5 instances each. We determined the lower bound on these
instances by using our local search algorithm and by using the optimal solutions
to the ILP only. The results are depicted in Table 3. Here Hi denotes the hybrid
algorithm run on scenario i, and Ii denotes the results obtained on scenario i
by the algorithm in which the pricing algorithm is solved by the ILP. Scenario
0 is used to show the difference for easy instances, where scenario 5 is used to
investigate difficult instances. Finally scenarios 11 and 12 are used to investigate
the influence of the doubling of time values on the results.

Table 3. Results of comparing LS to only ILP solving

# success Average time Maximum time
H0 5 36 89
I0 5 108 230
H5 5 190 298
I5 0 - -

H11 5 28 48
I11 5 88 127
H12 5 51 91
I12 4 307 506
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Evaluation of Our Experiments

Our results clearly show our hybrid algorithm outperforms the method of letting
CPLEX solve the full ILP by far. CPLEX is not able to solve the ignorant time-
indexed ILP in less than 30 minutes for most of the tested instances, where
our hybrid algorithm easily solves nearly all instances. Looking at scenario 3 we
already see that CPLEX fails to solve any of the 5 instances with 100 jobs and
9 machines within 30 minutes, where our hybrid algorithm solves all instances
we tested up to 160 jobs and 10 machines (scenarios 3-6).

Our results also show that for all instances we managed to solve, the derived
lower bound was equal to the optimal value. There are some instances for which
we could not check whether optimum and lower bound coincided, for we could
not solve them within 30 minutes. It seems reasonable that in at least some of
these cases this is due to the fact that the lower bound was not strict. However,
we never were able to show that the lower bound differed from the optimum for
any instance. Altogether we may draw the conclusion that our lower bound is
extremely strong.

If we compare the algorithm of solving the time-indexed formulation without
specifying the lower bound with the second part of the hybrid algorithm, then
we see that specifying the optimum makes a lot of difference. If we for instance
stopped an instance of C5, then the best found upper bound so far in general was
way off the optimum. This may be explained partly by the reduction in size of
the model, but it is most certainly also due to the preprocessing steps performed
by CPLEX. Therefore, we may expect the technique of constraint satisfaction
to work very well to find a solution of value L′ if such solution exists.

The hardness of the problem seems to depend mostly on the number of jobs
per machine: if we look at scenarios 8-10 we can see that 20 jobs per machine gets
really difficult. However, doubling the time values (scenarios 11 and 12) adds a
relatively little increase to the average time needed to solve an instance, but one
problem becomes unsolvable for our hybrid algorithm. But also here our hybrid
algorithm shows its merit in comparison to the ignorant time-indexed method,
for doubling the times makes CPLEX incapable to solve any of the instances: it
does not even find any solution for these instances, which is of course due to the
large increase in variables in the ILP model.

Table 2 already shows the quality of our local search algorithm since the
number of (costly) ILP solves of the pricing problem is limited and does not seem
to depend much on the size or difficulty of the problem. Table 3 further validates
that our local search algorithm performs very well, for without the local search
algorithm easy instances already take 3 times as much time to compute the lower
bound. And difficult instances even become unsolvable within 30 minutes, while
our local search algorithm only needs a little more than 3 minutes on average
to compute the lower bound for these instances. Next, doubling the time values
also doubles the time needed to compute the lower bound, where using only ILP
to solve the pricing problem quadruples the average time for 4 instances and is
not able to compute a lower bound for one instance within 30 minutes.
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9 Conclusion and Future Research

We have described a column generation approach for the parallel machine
scheduling problem with minimax objective subject to release dates and prece-
dence constraints. We have tested the algorithm for maximum lateness subject
to release dates, but with greater than or equal precedence constraints only. We
suspect that problems with maximum cost are harder, since changing the upper
bound on the cost with a small amount does not necessarily change the dead-
lines of all jobs. We expect that the nature of the precedence constraints does
not change the effectiveness of the algorithm. It is an interesting, nontrivial step
to extend this algorithm to the case with uniform, or even unrelated machines.

The next step in the research will be to investigate the natural connection with
constraint satisfaction, which for instance can be used to tighten the release dates
and deadlines. This looks a very promising direction to improve the effectiveness
of the algorithm, as already witnessed by the success of the preprocessing phase
of the CPLEX algorithm.
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Abstract. Data representing moving objects is rapidly getting more
available, especially in the area of wildlife GPS tracking. It is a central
belief that information is hidden in large data sets in the form of interest-
ing patterns. One of the most common spatio-temporal patterns sought
after is flocks. A flock is a large enough subset of objects moving along
paths close to each other for a certain pre-defined time. We give a new
definition that we argue is more realistic than the previous ones, and we
present fast approximation algorithms to report flocks. The algorithms
are analysed both theoretically and experimentally.

1 Introduction

Data related to the movement of objects is becoming increasingly available be-
cause of substantial technological advances in position-aware devices such as
GPS receivers, navigation systems and mobile phones. The increasing number
of such devices will lead to huge spatio-temporal data volumes documenting the
movement of animals, vehicles or people. One of the objectives of spatio-temporal
data mining [12, 14] is to analyse such data sets for interesting patterns. For ex-
ample, a group of 25 elks in Sweden was equipped with GPS-GSM collars. The
GPS collar acquires a position every half hour and then sends the information
to a GSM-modem where the positions are extracted and stored. Analysing this
data gives insight into entity behaviour, in particular, migration patterns. There
are many other examples where spatio-temporal data is collected [1, 13]. The
analysis of moving objects also has applications in sports (e.g. soccer players
[8]), in socio-economic geography [5] and in defence and surveillance areas.

The input is a set P of n moving point objects p1, . . . , pn whose locations are
known at τ consecutive time steps t1, . . . , tτ , i.e. the trajectory of each object is
a polygonal line, see Fig. 1a. We will call moving point objects entities from now
on, and assume their velocity between two consecutive time steps is constant.
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Fig. 1. (a) A polygonal line describing the movement of an entity p in the time interval
[t1, t6]. (b) A flock for p1, p2, p3 in the time interval [t7, t9].

There is some research on data mining of moving objects (e.g. [15, 16, 18]) in
particular, on the discovery of similar directions or clusters. Kalnis et al. detect
moving clusters over many time steps [9]. However, their definition of clusters does
not lead to an approach that in general finds flocks. Verhein and Chawla [18] used
associated data mining to detect patterns in spatio-temporal sets. They parti-
tioned space into cells and then defined a cell to be a source, sink or thoroughfare
depending on the number of objects entering, exiting or passing through the cell.

Laube and Imfeld [10] proposed a different approach in 2002 - the REMO
framework (RElative MOtion) which defines similar behaviour in groups of
entities. They define a collection of spatio-temporal patterns based on simi-
lar direction of motion or change of direction. Laube et al. [11] extended the
framework by not only including direction of motion, but also location itself.
They defined several spatio-temporal patterns, including flock, leadership, con-
vergence and encounter, and gave algorithms to compute them efficiently. In [11]
they developed an algorithm for finding the largest flock pattern (maximum
number of entities) using the higher-order Voronoi diagram with running time
O(τ(nm2 + n logn)), they also proved that the detection problem can be an-
swered in O(τ(nm + n logn)) time. Applying the paper by Aronov and Har-
Peled [2] to the problem gives a (1 + ε)-approximation with expected running
time O(τn/ε2 log2 n). Gudmundsson et al. [7] showed that if the region that
should contain the entities (disk) is (1 + ε)-approximated then the detection
problem can be solved in O(τ(n/ε2 log 1/ε + n logn)) time.

However, the above algorithms only consider each time step separately, that
is, given m ∈ N and r > 0 a flock is defined by at least m entities within a
circular region of radius r and moving in the same direction at some point in
time. We argue that this is not enough for most practical applications, e.g. a
group of animals may need to stay together for days or even weeks before they
define a flock. Therefore we propose the following definition of a flock:

Definition 1. (m, k, r)-flockA - Given a set of n trajectories where each trajec-
tory consists of τ − 1 line segments, a flock in a time interval I = [ti, tj ], where
j − i + 1 � k, consists of at least m entities such that for every point in time
within I there is a disk of radius r that contains all the m entities. Note that
m, k ∈ N and r > 0 are given constants.

Gudmundsson and van Kreveld [6] recently showed that (in the discrete model,
see Definition 2) computing the longest duration flock and the largest subset
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flock is NP-hard to approximate within a factor of τ1−ε and n1−ε respectively.
They also give a 2-radius approximation algorithm for the longest duration flock
with running time O(n2τ logn).

We describe efficient approximation algorithms for reporting and detecting
flocks, where we let the size of the region deviate slightly from what is specified.
Approximating the size of the circular region with a factor of Δ > 1 means
that a disk with radius between r and Δr that contains at least m objects may
or may not be reported as a flock while a region with a radius of at most r
that contains at least m entities will always be reported. We present several
approximation algorithms, for example, a (2 + ε)-approximation with running
time T (n) = O(τnk2(logn + 1/ε2k−1)) and a (1 + ε)-approximation algorithm
with running time O(1/(mε2k) · T (n)).

Our aim is to present algorithms that are efficient not only with respect to
the size of the input (which is τn) but also try to keep the dependency on k and
m as small as possible. For most of the practical applications we have seen; m
will be between a couple of entities to a few hundreds or even thousands, and k
is expected to be between 5 and 30 for most applications.

The paper is organised as follows. In Section 2 we show a discrete version of the
definition of a flock and prove that it is equivalent to the original definition. Three
approximation algorithms (all derived from a general approach) are presented
in Section 3. In Section 4 we evaluate these algorithms. Note that due to space
constraints proofs are omitted in this paper, they can be found in [3].

1.1 The Skip Quadtree and the Computational Model

One of the main tools used in this paper is the skip-quadtree by Eppstein et
al. [4]. A small modification to the skip-quadtree results in the following lemma:

Lemma 1. Insertion, deletion and search in the modified d-dimensional skip
quadtree using a total of O(dn) space can be done in O(d log n) time. An (1+δ)-
approximate range counting query for a fat convex region of complexity O(d) can
be answered in time T (n) = O(d2(logn+δ1−d)), where δ > 0 is a given constant.

The standard practice [4] in computational geometry using quadtrees is that
certain operations can be done in constant time. In arithmetic terms, the com-
putations needed to perform point location, range queries or nearest neighbour
queries in a quadtree, involve finding the most significant binary digit at which
the coordinates of two points differ. This can be done using a constant number
of machine instructions if we have a most-significant-bit instruction, or by using
floating point or extended precision normalisation.

2 Approximate Flocks

The input is a set P of n trajectories p1, . . . , pn, where each trajectory pi is a
sequence of τ coordinates in the plane (xi

1, y
i
1), (xi

2, y
i
2), . . . , (xi

τ , y
i
τ ), and (xi

j , y
i
j)

is the position of entity pi at time tj . We will assume that the movement of an
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entity from its position at time tj to its position at time tj+1 is described by the
straight-line segment between the two coordinates, and that the entity moves
along the segment with constant velocity.

2.1 An Equivalent Definition of Flock

We will give an alternative and algorithmically simpler definition of a flock.

Definition 2. (m, k, r)-flockB - Given a set of n trajectories where each tra-
jectory consists of τ − 1 line segments a flock in a time interval [ti, tj ], where
j− i+1 � k consists of at least m entities such that for every discrete time step
t
, i � � � j, there is a disk of radius r that contains all the m entities.

Lemma 2. If the entities move with constant velocity along the straight line
segment between two consecutive time steps then flockA and flockB are equivalent.

Note that the centre of a disk does not have to coincide with one of the positions
of the entities. In the remainder of this paper we refer to Definition 2 whenever
we talk about flocks. Definition 2 immediately suggests a new approach; for
each time interval [ti, ti+k−1] check whether there is a set of m entities F =
{p1, . . . , pm} that can be covered by a disk of radius r at each discrete time step
in [ti, ti+k−1]. We will show how this observation will allow us to develop an
approximation algorithm.

2.2 The General Approach

When developing an algorithm for this problem one of the main hurdles that we
encountered was to detect flocks without having to keep track of all the objects
in a potential flock. That is, when we consider a specific time step, the number
of potential flocks can be very large and the number of objects that one needs
to keep track of for each potential flock might be Ω(n). In general this problem
occurs whenever one attempts to develop a method that processes the input
time step by time step. In this paper we avoid this problem by transforming the
trajectories into higher dimensional space. Note that the gain is that we only
need to count the number of points in a region, instead of keeping track of the
actual objects. This might seem like overkill but both the theoretical and the
experimental bounds supports this approach, at least as long as k is fairly small.

The basic idea builds upon the fact that a polygonal line with d vertices
in the plane can be modelled as a single point in 2d dimensions. The trajec-
tory of an entity p in the time interval [ti, tj ] is described by the polygonal
line p(i, j) = 〈(xi, yi), (xi+1, yi+1), . . . , (xj , yj)〉, which corresponds to a point
p′(i, j) = (xi, yi, xi+1, yi+1, . . . , xj , yj) in 2(j − i + 1)-dimensional space.

The first step when checking whether there is a flock in the time interval
[ti, ti+k−1] is to map the polygonal lines of all entities to R2k. Equivalence 1
gives the key characterisation of flocks. First, we define an (x, y, i, r)-pipe which
is an unbounded region in R2k. Such a pipe contains all the points that are only
restricted in two of the 2k dimensions (namely in dimensions i and i + 1) and
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when projected on those two dimensions lie in a circle of radius r around the
point (x, y). Formally, a (x, y, i, r)-pipe is the following region:{

(x1, . . . , x2k) ∈ R2k | (xi − x)2 + (xi+1 − y)2 � r2}.
Equivalence 1. Let F = {p1, . . . , pm} be a set of entities and I = [t1, tk] a time
interval. Let {p′1, . . . , p′m} be the mapping of F to R2k w.r.t. I. It holds that: F is a

(m, k, r)-flock ⇐⇒ ∃x1, y1, . . . , xk, yk : ∀p ∈ F : p′ ∈
⋂k

i=1(xi, yi, 2i− 1, r)-pipe.

To see that this equivalence holds we observe the following: for each time step
ti ∈ I the disk with radius r and centre (xi, yi) contains the entity positions
pi
1, . . . , p

i
m. We will show that approximation algorithms can be obtained by

performing a set of range counting queries in higher dimensional space.

3 Approximation Algorithms

We now give approximation algorithms where the radius r is approximated.

Method 1: A (
√

8+ ε)-Approximation Algorithm (Box). Using the gen-
eral idea discussed in Section 2.2 we will develop a (

√
8 + ε)-approximation

algorithm. For each time interval I = [ti, ti+k−1], where 1 � i � τ − k + 1,
we will do the following computations. For simplicity our first method uses a
2k-dimensional box to approximate the region of a potential flock.

For each entity p let p′ denote the mapping of p to R2k with respect to I.
Construct a skip quadtree T for the point set P ′ = {p′1, . . . , p′n}. Then, for each
point p′ ∈ P ′ and an appropriately chosen δ > 0 perform a (1 + δ)-approximate
range counting query in T where the query range Q(p′) is a 2k-dimensional
cube. As we do not know the centre of a potential flock we choose to query
around p′ and any flock that contains p is within distance 2r from p. Hence,
our query box has side length 4r and centre at p′. We (1 + δ)-approximate the
2k-dimensional cube which is itself a

√
8-approximation for the query region (see

Fig. 2a) in two dimensions. Thus, every counting query containing at least m
entities corresponds to an (m, k, (

√
8 + ε)r)-flock as stated in Lemma 3. Note

that the same flock may be reported several times.

Lemma 3. Method 1 is a (
√

8+ε)-approximation algorithm and requires O(τn)
space and O(τnk2(logn + 1/ε2k−1)) time.

Method 2: A (2 + ε)-Approximation Algorithm (Pipes). The algorithm
is similar to the above algorithm. The main difference is that we will use the
intersection of k pipes as the query regions instead of the 2k-dimensional box.
For each time interval I = [ti, ti+k−1], where 1 � i � τ − k + 1, we will do the
following computations.

Construct a skip quadtree T for the point set P ′ = {p′1, . . . , p′n} ∈ R2k as in
Method 1. Then, for each point p′ ∈ P ′ perform a (1 + ε)-approximate range
counting query in T where the query range Q(p′) is the intersection of the k pipes
(xi, yi, 2i− 1, 2r) and (xi, yi) is the position of p at time step ti (see Fig. 2b).
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Fig. 2. Illustration of the approximative range of methods 1,2 and 3 for r = 1. The
dashed region is the query region.

Recall that since the query region is convex and fat we can apply Lemma 1.
The definition of fatness we use was introduced by van der Stappen [17].

Definition 3 ([17]). Let α > 1 be a real value. An object s is α-fat if for any
d-dimensional ball D whose centre lies in s and whose boundary intersects s, we
have volume(D) � α · volume(s ∩D).

Lemma 4. The intersection of d pipes (xi, yi, 2i − 1, 2r), 1 � i � k, in 2d-
dimensional space is a bounded convex 4d-fat region whose boundary consists of
O(d) surfaces of quadratic complexity.

Lemma 5. Method 2 is a (2 + ε)-approximation algorithm and requires O(τn)
space and O(τnk2(logn + 1/ε2k−1)) time.

Remark 1. A comparison between Lemmas 3 and 5 shows that even though
the approximation factor of the second method is smaller the running time is
identical. However, this is a theoretical bound, in practice we chose to implement
the second method using a compressed quadtree for which we only have to decide
whether the intersection of a d-dimensional cell and the k pipes is non-empty,
while for the skip-quadtree we have to compute the volume of this intersection
which is possible in theory but hard in practice. Consequently, the experiments
performed with methods 1 and 2 use different data structures.

Method 3: A (1+ε)-Approximation Algorithm. We use the same approach
as above but instead of querying only the input points in R2k we will now
query O(1/ε2k) sample points for each entity point. For each time interval I =
[ti, ti+k−1], where 1 � i � τ − k + 1, we will do the following computations.

Construct a skip quadtree T for the point set P ′ = {p′1, . . . , p′n} ∈ R2k as in
Method 1 and 2. Let Γ be the vertices of a regular grid in R2k of spacing ε · r/2.
Each input point p′i generates the sample set Γ ∩D(p′i) where D(p′i) is the 2k-
dimensional ball of radius 2r centred at p′i. Clearly, this gives rise to O(1/ε2k)
sample points for each entity (see Fig. 2c).

Next, we perform a (1+ ε
2+ε )-approximate range counting query in T for each

sample point (x1, y1, . . . , xk, yk) where the query range is the intersection of the
k pipes (xi, yi, 2i− 1, (1 + ε/2)r), 1 � i � k. However, a necessary condition for
a sample point q to induce an (m, k, r)-flock is that there are at least m entities
in the disk D(q) of radius 2r centred at q. During the processing of the sample
points we can count how many entities indeed lie in D(q) for each sample point
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q. As we generate at most O(n/ε2k) sample points, this means that we have to
check at most O(n/(mε2k)) candidate sample points for inducing a flock. Next
we prove the approximation bound.

Lemma 6. Method 3 is a (1 + ε)-approximation algorithm and requires O(τn)
space and O( τnk2

mε2k (logn + 1/ε2k−1)) time.

4 Experiments

We used a Linux operated off-the-shelf PC with an Intel Pentium-4 3.6 GHz
processor and 2 GB of main memory. The data structures and algorithms were
implemented and compiled with the Gnu C++ compiler. Our point sets used
in the experiments were created artificially. Each point coordinate of an input
point is an integer from the interval

[
0, ..., 213

]
or

[
0, ..., 216

]
. The point sets

differ in size (10,000 - 160,000 points; one algorithm was run with more than
1 million points), in length of the time interval (4 - 16 time steps) and also in
the distribution of the points (uniformly random or clustered). This was done
to see the impact of the different characteristics on the algorithms behaviour.
In all point sets, 10% of the points were placed in such a way that they form
(randomly positioned) flocks of m = 50 entities in a circle of radius r = 50. The
distribution and density of the clusters were chosen not to considerably increase
the number of flocks found by the algorithms. This makes a comparison between
the results for clustered and uniformly randomly distributed point sets easier.
Note that each generated data instance contains the coordinates of points for
a certain number of time steps τ , and in the experiments on that instance, we
always looked for (m, k, r)-flocks with m = r = 50 and k = τ .

4.1 Methods

We compare the results of four methods called ‘box’, ‘pipes’, ‘no-tree’ and ‘prun-
ing’. The box and pipes method are explained in Section 3 and use a skip-
quadtree or a compressed quadtree, respectively.

The no-tree method (which was implemented for comparison) is a 2-approxi-
mation and does not use a tree structure. It has two nested loops (each running
over all input points), the outer one specifying a potential flock centre and the
inner one computing the distance between a point and the potential flock centre.
If there are enough points within a ball (around the potential flock centre) of
double flock-radius then we found a flock.

The pruning method takes advantage of the fact that all points not involved
in flocks of length k∗ < k cannot be involved in flocks of length k. It works as
follows: At first, we compute flocks of length k∗ = 4 using the box method. Then
we build a new tree containing only those points that were contained in flocks
during the first step. This drastically reduces the number of points. We then
again perform the box method on the new tree for the entire length k = τ .

A set of entities can have many flocks and even one single entity can be
involved in several flocks, e.g. a flock involving m+1 entities implies the existence
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of m+1 flocks of cardinality m that pairwise differ by one entity. We must specify
what we want to find and report in a given data set, see [7] for a discussion. The
general approach described in Section 3 has the following disadvantage: As every
entity is tested, a flock consisting of exactly m elements can be reported up to
m times. We chose to use an approach in the experiments which guarantees
a high level of correctness while bounding the number of flocks that an entity
may simultaneously belong to. The idea is that when a flock is found every query
point within the query region will be marked, so that no query will be performed
with those marked points as centres. Using a simple packing argument it follows
that the maximal number of flocks an entity can be part of during a time step
is bounded by O(22k). The additional time that we have to spend updating the
tree is O(nk logn) per time step, thus O(τnk logn) in total.

4.2 Results

We run the experiments with a series of generated point-sets for each combina-
tion of point-set characteristics. The results were very similar for fixed charac-
teristics and hence the tables below show the numbers for only one collection
of point-sets with the specified characteristics. The results of the algorithms for
ε = 0.05 are depicted in Table 1, where the coordinates of the points are chosen
from the interval

[
0, ..., 216

]
. The columns below ‘input’ specify the number of

points and the number of time steps, and the columns below ‘uniformly’ and
‘clustered’ show the number of flocks found (our algorithms also output the size
and the centre of those flocks) and the running times (in seconds) needed when
performing the box-, pipes- and no-tree-algorithm on the corresponding input.
We also performed the same experiments on point-sets where the coordinates
where chosen from

[
0, ..., 213

]
. Table 2 shows those results. The results for the

method with pruning are given in Table 3. Because of the similarity of the results
for a different number of time steps, we only report the results for 16 time steps
in that table. We also report the number of flocks found (indicated in italics if
it deviates from the number of artificially inserted flocks) to ensure and verify
that our methods indeed find them. The dependencies of the running times are
a more important result than the number of flocks.

4.3 Discussion

Flat trees in high dimensions. One obvious observation is that the running times
of our algorithms are increasing with the number of time steps (i.e. with the
number of dimensions d). Recall that an internal node of a quadtree has 2d

children. Using 16 time steps means 32 dimensions which translates to more
than 4 billion quadrants, i.e. children of an internal node (in our approach we
only store non-empty children in a list, which reduces storage space but increases
time complexity). In an experiment with 160K points in 32 dimensions it is not
likely that many of the random points (not in flocks) fall into the same quadrant.
Therefore the tree is very flat (i.e. have only a very small depth, but large width),
which results in high running times.
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Table 1. Results for ε = 0.05 and point-sets with coordinates from
[
0, ..., 216]

input uniformly clustered
box pipes no-tree box pipes no-tree

n τ flocks time flocks time flocks time flocks time flocks time flocks time
10K 4 20 0 20 0 20 5 20 0 20 1 20 5
10K 8 20 2 20 1 20 5 20 1 20 0 20 5
10K 16 20 2 20 1 20 6 20 1 20 0 20 5
20K 4 40 1 41 0 40 21 40 0 40 1 40 20
20K 8 40 7 40 5 40 21 40 1 40 0 40 22
20K 16 40 13 40 10 40 25 40 3 40 2 40 25
40K 4 80 0 80 1 80 83 80 1 80 0 80 83
40K 8 80 32 80 22 80 87 80 2 80 2 80 87
40K 16 80 62 80 44 80 99 80 8 80 7 80 101
80K 4 160 3 163 3 160 332 160 3 160 2 160 332
80K 8 160 129 160 88 160 347 160 6 160 4 160 346
80K 16 160 244 160 182 160 392 160 30 160 29 160 392

160K 4 320 8 321 10 320 1326 320 8 320 5 320 1327
160K 8 320 441 320 316 320 1391 320 20 320 15 320 1384
160K 16 320 986 320 768 320 1576 320 102 320 93 320 1564

Error value ε. When performing a range query, ε influences the approximate
region to be queried. One could expect that a larger value of ε leads to shorter
running times and more flocks, because the descent in the tree can be stopped
earlier. However, apart from marginal fluctuations, this behaviour could not be
observed in our experiments. Our trees in the experiments are rather sparsely
filled. Hence, the squares corresponding to most of the leaves in the tree (which
correspond to single points in a point set) are still quite large compared to
the approximated flock radius (1 + ε)r. Furthermore, it often seems that the
point sets are too sparse to find any random flocks. Therefore we refrained from
reporting results for different ε and only used ε = 0.05.

Number of flocks. Most of the times the algorithms found exactly as many flocks
as were artificially inserted. A few times more flocks were found, i.e. some of the
randomly positioned points created flocks by chance. This happened only in
instances with a small number of time steps, which is reasonable as it is more
likely for random points to form flocks only for a small number of time steps. In
one case more than 1300 flocks were found which indicates that for that instance
and for that characteristic the distribution of the points and clusters reached a
limit were the clusters are dense enough to often create random flocks. In some
of our experiments we observed that the algorithms found less flocks than were
inserted. This can happen if two flocks are close to each other and fall into one
query region and hence will be counted as one flock by the algorithm.

Coordinate space
[
0, ..., 213

]
vs.

[
0, ..., 216

]
. The experiments with coordinate

space
[
0, ..., 216

]
, i.e. where each coordinate of a point is in

[
0, ..., 216

]
, were
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Table 2. Results for ε = 0.05 and point-sets with coordinates from
[
0, ..., 213]

input uniformly clustered
box pipes no-tree box pipes no-tree

n τ flocks time flocks time flocks time flocks time flocks time flocks time
10K 4 20 1 20 0 20 5 20 2 20 1 20 4
10K 8 20 8 20 6 20 6 20 2 20 2 20 6
10K 16 20 14 20 11 20 6 20 5 20 11 20 6
20K 4 40 1 40 4 40 20 40 2 40 1 40 20
20K 8 40 52 40 35 40 22 40 6 40 4 40 22
20K 16 40 83 40 58 40 25 40 17 40 44 40 25
40K 4 80 4 80 15 80 83 81 6 80 2 80 83
40K 8 80 237 80 166 80 87 80 16 80 21 80 87
40K 16 80 347 80 244 80 99 80 55 80 177 80 99
80K 4 160 10 160 57 160 333 206 16 160 8 160 332
80K 8 160 932 160 696 160 348 160 45 160 77 160 348
80K 16 160 1411 160 1124 160 394 160 164 160 594 160 395

160K 4 320 29 320 201 320 1326 1317 42 320 27 320 1331
160K 8 320 3179 320 2658 320 1393 320 124 320 238 320 1392
160K 16 320 6015 320 4226 320 1575 320 692 320 2306 320 1576

comparatively much faster than those with coordinate space
[
0, ..., 213

]
. One

explanation is that the query region is relatively larger in the coordinate space[
0, ..., 213

]
. Also, in a bigger underlying coordinate space it is more likely that

the query region falls into a single quadrant of a quadtree. Due to the sparseness
of the point-sets the algorithms are likely to find just a single point in that
quadrant. On the other hand in a smaller underlying space the query region
might intersect more quadrants, which results in more subsequent queries.

Uniformly vs. clustered. We can observe that our tree-based algorithms almost
always perform better on the clustered point-sets. This behaviour could be ex-
pected because, as we have seen from the experiments in general, uniformly
distributed points result in quadtrees that are rather flat (especially for higher
dimensions). But it is a ‘good balance’ between height and width of a tree that
allows fast query times. Clustered data sets are more likely to create trees that
are faster descended by the algorithms. The no-tree method (which is not using
a tree) is not affected by the two different types of data.

No-tree vs. box vs. pipe. The no-tree method’s running times are quadratic in the
number of points and not influenced by the number of time steps, as expected.
On the other hand the box and pipes algorithms are strongly influenced by the
number of time steps and the number of points. A large query region in combi-
nation with a small coordinate space causes their behaviour to become similar
(although with a big overhead) to the no-tree method. The difference between
the box and pipes method is caused by the different data structure they use.
That is why the pipe method is almost always faster than the box method.
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Table 3. Results for pruning method, ε = 0.05

input coordinates from
[
0, ..., 213] coordinates from

[
0, ..., 216]

uniformly clustered uniformly clustered
pruning pruning pruning pruning

n τ flocks time flocks time flocks time flocks time
10K 16 20 0 20 1 20 1 20 0
20K 16 40 1 40 2 40 1 40 0
40K 16 80 3 80 6 80 2 80 2
80K 16 160 11 160 15 160 3 160 3

160K 16 320 30 320 45 320 9 320 9
320K 16 639 82 633 303 640 26 640 25
640K 16 1271 194 1268 1796 1280 75 1280 75

1280K 16 2501 533 2507 9213 2560 249 2560 246

Pruning. Table 3 shows the impressive impact of the pruning step. Depending
on the density and distribution, even some point-sets with more than 1 million
points can be dealt with in a couple of minutes. Furthermore, we observed that
the number of time steps has almost always no effect on the running times. An
exception to this are the clustered point sets with many points and with coordi-
nates in

[
0, ..., 213

]
, where we experienced much longer running times. (Because

of space restrictions, we only give the numbers for 16 time steps.) This can be
explained by noting that after the pruning step it is likely that the remaining
points form a flock also for more time steps (as intended). Therefore, almost
every query to the datastructure leads to finding a flock and hence, the number
of queries is drastically decreased. For the clustered point sets with coordinates
in

[
0, ..., 213

]
, however, the probability of random flocks is higher, because the

query region is comparatively large. The fact that the pruning method some-
times finds less flocks than the box method can be explained by noting that the
pruning method performs two runs of the box method each of which can handle
the points in a different order. Therefore the second run of the box method can
encounter points which will not belong to any flock.

5 Conclusions and Open Problems

This paper is a first step towards practical algorithms for finding spatio-temporal
patterns, such as flocks, encounters and convergences. Future research does not
only include more efficient approaches to compute these patterns but also more
complicated patterns, e.g. hierarchical patterns or repetitive patterns. In this
paper we have presented different algorithms for finding flock patterns and anal-
ysed them theoretically as well as experimentally. From the experiments we have
seen that our algorithms can perform very well, especially for a small number
of time steps. However, their running times depend very much on the character-
istics of the input point-sets, which motivates more research and experiments,
preferably on real-world data.
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In the past years, a large number of papers appeared studying the problem to
determine the treewidth of a graph, including both theoretical and experimental
results, see e.g., [4] for an overview. Since the problem is NP complete [1], there is
a little hope in finding an algorithm which can determine the treewidth of a graph
in polynomial time. There are several exponential time (exact) algorithms known
in the literature for the treewidth problem. (See the surveys [10,21] for an intro-
duction to the area of exponential algorithms.) Arnborg et al. [1] gave an algo-
rithm that tests in O(nk+2) time if a given graph has treewidth at most k. It is not
hard to observe that the algorithm runs for variable k in O∗(2n) time1. See also
[18]. In 2004, Fomin et al. [11] presented an O(1.9601n) algorithm to compute the
treewidth based on minimal separators and potential maximal cliques of graphs,
using the paradigms introduced by Bouchitté and Todinca [7,6]. The analysis
of the algorithm of Fomin et al. from [11] was improved by Villanger [20], who
showed that the treewidth of a graph can be computed in O(1.8899n) time. While
the algorithms from [11,20] provide the best known running time, they are based
on computations of potential maximal cliques and are difficult to implement.

In this paper we try another approach to compute the treewidth, which seems
to be much more suitable for implementations. While Treewidth is usually for-
mulated as the problem to find a tree decomposition of minimum width, it is
possible to formulate it as a problem to find a linear ordering of (the vertices of)
the graph such that a specific cost measure of the ordering is as small as possible.
Several existing algorithms and heuristics for treewidth are based on this linear
ordering characterization of treewidth, see e.g., [2,8,12]. In this paper, we exploit
this characterization again, and a lesser known property of the characterization.
Thus, we can show that an old dynamic programming method, introduced by
Held and Karp for the Traveling Salesman problem [15] in 1962 can be
adapted and used to compute the treewidth of given graphs. Suppressing poly-
nomial factors, time and space bounds of the algorithm for treewidth is the same
as that of the algorithm of Held and Karp for Traveling Salesman: O∗(2n)
running time and O∗(2n) space. The Held-Karp algorithm tabulates some in-
formation for pairs (S, v), where S is a subset of the vertices, and v is a vertex
(from S); a small variation of the scheme allows us to save a factor O(n) on the
space for the problems considered in this paper: we tabulate information for all
subsets S ⊆ V of vertices.

We have carried out experiments that show that the method works well to
compute the treewidth of graphs of size up to around forty to fifty. For larger
graphs, the space requirements of the algorithm appear to be the bottleneck.
Thus, this raises the question: are there polynomially space algorithms to com-
pute the treewidth having running time of the form O∗(cn) for some constant c?
In this paper we answer this question in the affirmative. We show that there is an
algorithm to compute the treewidth that uses O∗(4n) time and only polynomial
space. It uses a simple recursive divide-and-conquer technique and is similar to
the polynomial space algorithm of Gurevich and Shelah [14] for TSP.

1 We sometimes use O∗-notation which is a modified O-notation introduced by Woeg-
inger [21] suppressing all polynomially bounded factors.



674 H.L. Bodlaender et al.

Finally, we further provide theoretical results improving upon the running
time for the polynomial space algorithm for Treewidth. Using balanced sepa-
rators, we obtain an algorithm for Treewidth that uses O∗(2.9512n) time and
polynomial space. As we expect that in practical cases, the algorithm will use
too much time, we do not provide an experimental evaluation of the algorithm.

2 Algorithms for Treewidth

2.1 Definitions

We assume the reader to be familiar with standard notions from graph theory.
Throughout this paper, n = |V | denotes the number of vertices of graph G =
(V,E). A graph G = (V,E) is chordal, if every cycle in G of length at least four
has a chord, i.e., there is an edge connecting two non-consecutive vertices in the
cycle. A triangulation of a graph G = (V,E) is a graph H = (V, F ) that contains
G as subgraph (F ⊆ E) and is chordal. H = (V, F ) is a minimal triangulation of
G = (V,E) if H is a triangulation of G and there does not exist a triangulation
H ′ = (V, F ′) of G with H ′ a proper subgraph of H .

Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )) with {Xi | i ∈ I} a collection of subsets of V , called bags, and
T = (I, F ) a tree, such that

– for all v ∈ V , there exists an i ∈ I with v ∈ Xi,
– for all {v, w} ∈ E, there exists an i ∈ I with v, w ∈ Xi,
– for all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subgraph

(subtree) of T .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) equals maxi∈I |Xi|−1.
The treewidth of a graph G, tw(G), is the minimum width of a tree decomposi-
tion of G.

2.2 Treewidth as a Linear Ordering Problem

It is well known that treewidth can be formulated as a linear ordering problem,
and this is exploited in several algorithms for treewidth, see e.g., [2,12,8,9].

A linear ordering of a graph G = (V,E) is a bijection π : V → {1, 2, . . . , |V |}.
For a linear ordering π and v ∈ V , we denote by π<,v the set of vertices that
appear before v in the ordering: π<,v = {w ∈ V | π(w) < π(v)}. Likewise, we
define π≤,v, π>,v, and π≥,v. A linear ordering π of G is a perfect elimination
scheme, if for each vertex, its higher numbered neighbors form a clique, i.e., for
each i ∈ {1, 2, . . . , |V |}, the set {π−1(j) : {π−1(i), π−1(j)} ∈ E ∧ j > i} is a
clique. A graph has a perfect elimination scheme, if and only if it is chordal, see
[13, Chapter 4].

For arbitrary graphs G, a linear ordering π defines a triangulation H of G
that has π as perfect elimination scheme. The triangulation with respect to π of
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G is built as follows: first, set G0 = G, and then for i = 1 to n, Gi is obtained
from Gi−1 by adding an edge between each pair of non adjacent higher numbered
neighbors of π−1(i). One can observe that the resulting graph H = Gn is chordal,
has π as perfect elimination scheme, and contains G as subgraph.

For our algorithms, we want to avoid working with the triangulation explicitly.
The following predicate allows us to ‘hide’ the triangulation. For a linear ordering
π, and two vertices v, w ∈ V , we say Pπ(v, w) holds, if and only if there is a path
v, x1, x2, . . . , xr, w from v to w in G, such that for each i, 1 ≤ i ≤ r, π(xi) < π(v),
and π(xi) < π(w). In other words, Pπ(v, w) is true, if and only if there is a path
from v to w such that all internal vertices are before v and w in the ordering
π. Note that the definition implies that Pπ(v, w) is always true when v = w or
when {v, w} ∈ E.

With Rπ(v), we denote the number of higher numbered vertices w ∈ V for
which Pπ(v, w) holds, i.e., Rπ(v) = |{w ∈ V | π(w) > π(v) ∧ Pπ(v, w)}|. The
proof of the following proposition is an immediate consequence of a lemma of
Rose et al. [17]. (See also [3,8,9].)

Proposition 1. Let G = (V,E) be a graph, and k a non-negative integer. The
treewidth of G is at most k iff there is a linear ordering π of G, such that for
each v ∈ V , Rπ(v) ≤ k.

2.3 A Dynamic Programming Algorithm for Treewidth

The results of this section are based on the observation that the value Rπ(v)
only depends on v, G, and the set of vertices left of v in π.

Let for sets S, Q, Q ⊆ S, Π(S) be the set of all permutations of S, and
Π(S,Q) be the set of all permutations of S that end with the vertices in Q. For
a set of vertices S ⊆ V and a vertex v ∈ V − S, we define

Q(S, v) = |{w ∈ V − S − {v} | there is a path from v to w in G[S ∪ {v, w}]|}

TW (S) = min
π∈Π(S)

max
v∈S

Q(π<,v, v).

Let us note that Q(S, v) can be computed in time O(n + m) by checking for
each w ∈ V −S−{v} whether w has a neighbor in the component of G[S ∪{v}]
containing v, and that

tw(G) = min
π∈Π(V )

max
v∈V

Rπ(v) = min
π∈Π(V )

max
v∈V

Q(π<,v, v) = TW (V )

Lemma 1. For any graph G = (V,E), and any set of vertices S ⊆ V , S �= ∅,

TW (S) = min
v∈S

max{TW (S − {v}), Q(S − {v}, v)}.

Theorem 1. The treewidth of a graph on n vertices can be determined in O∗(2n)
time and O∗(2n) space.
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Proof. By Lemma 1, we almost directly obtain a Held-Karp-like dynamic pro-
gramming algorithm for the problem. In order of increasing sizes, we compute
for each S ⊆ V , TW (S) using Lemma 1. The algorithm uses O∗(2n) time, as
we do polynomially many steps per subset of V . The algorithm also keeps all
subsets of V and thus uses O∗(2n) space. ��

2.4 A Recursive Algorithm for Treewidth

For vertex subsets L, S ⊆ V, S ∩ L = ∅ of a graph G = (V,E) we define

t(L, S) = min
π∈Π(S)

max
v∈S

Q(L ∪ π<,v, v).

The intuition behind t(L, S) is as follows: we investigate the resulting cost of
the ‘best’ ordering of the vertices in S, assuming that all vertices in L are left
of all vertices in S, and all vertices in V − (L ∪ S) are right of all vertices in
S. We observe that if S = {v}, then t(L, S) = Q(L, v). Also, by definition,
t(∅, S) = TW (S) and therefore tw(G) = t(∅, V ).

Lemma 2. Let G = (V,E) be a graph, let S ⊆ V , |S| ≥ 2, L ⊆ V , L ∩ S = ∅,
k = �|S|/2�. Then

t(L, S) = min
S′⊆S,|S′|=k

max {t(L, S′), t(L ∪ S′, S − S′)}

Theorem 2. The treewidth of a graph on n vertices can be determined in O∗(4n)
time and polynomial space.

Proof. Lemma 2 is used to obtain Algorithm 1. This algorithm computes t(L, S)
recursively. Algorithm 1 computes the treewidth of the graph G when calling
Recursive-Treewidth(G,∅,V ). It is not hard to show that the algorithm uses
polynomial space and O∗(4n) time. ��

Algorithm 1. Recursive-Treewidth(Graph G, Vertex Set L, Vertex Set S)
if |S|=1 then

Suppose S = {v}.
return Q(L, v)

end if
Set Opt = ∞.
for all sets S′ ⊆ S, |S′| = 
|S|/2� do

Compute v1 = Recursive-Treewidth(G, L, S′);
Compute v2 = Recursive-Treewidth(G, L ∪ S′, S − S′);
Set Opt = min {Opt, max {v1, v2}};

end for
return Opt
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3 Experimental Results

In this section, we comment on the experiments we have carried out for the
dynamic programming algorithm for computing the treewidth of a given graph.

For practical considerations, we use a scheme that is slightly different than
that of Theorem 1. We can note that it is not useful to perform computations
with sets S for which TW (S) is larger or equal than a known upper bound up
on the treewidth of G: these cannot lead to a smaller bound on the treewidth
of G. Thus, in order to save time and space in practice, we avoid handling some
of such S. We compute collections TW1, TW2, . . . , TWn. Each collection TWi

(1 ≤ i ≤ n) contains pairs (S, TW (S)) with |S| = i. The collection for sets of
size i > 1 is built as follows: for each pair (S, r) ∈ TWi−1 and each x ∈ V − S,
we compute r′ = max(r,Q(S, x)). If r′ < up, then we check if there is a pair
(S ∪ {x}, t) in TWi for some t, and if so, replace it by (S ∪ {x},min(t, r′)). If no
such pair exists in TWi, we insert (S ∪ {x}, r′) in TWi.

In our implementation, we use two additional optimizations that appeared to
give significant savings in time and memory consumption. The following simple
lemma gives the first idea.

Lemma 3. Let G = (V,E) be a graph, and let S ⊆ V . The treewidth of G is at
most max{TW (S), n− |S| − 1}.

Lemma 3 shows correctness of the following rule that was used in the implemen-
tation: we keep an upper bound up for the treewidth of G, initially set by the
user or set to n− 1. Each time, we get a pair (S, r) in a collection TWi, either
by insertion, or by replacement of an existing pair, we set the upper bound up
to the minimum of up and n − |S| − 1 = n − i − 1. Moreover, when handling
a pair (S, r) from TWi−1, it is first checked if r is smaller than up; if not, then
this pair cannot contribute to an improvement of the upper bound, and hence
is skipped. Our second optimization is stated in Lemma 4.

Lemma 4. Let G = (V,E) be a graph of treewidth k. Given a subset Q ⊂ V
inducing a clique in G, there exists a linear ordering π with Rπ(v) ≤ k and
π(v) ≥ |V | − |Q|+ 1 for all v ∈ Q.

By Lemma 4, we can restrict the sets S to elements from V \Q for some clique
Q; in particular for the maximum clique. Although it is NP-hard to compute the
maximum clique in a graph, it can be computed extremely fast for the graphs
considered. In our program, we use a simple combinatorial branch-and-bound
is used to compute all maximum cliques. It recursively extends a clique by all
candidate vertices once.

The algorithm was implemented in C++, using the Boost graph library, as
part of the Treewidth Optimization Library TOL, a package of algorithms for the
treewidth of graphs. The package includes preprocessing, upper bound, and lower
bound algorithms for treewidth. Experiments were carried out on a number of
graphs taken from applications; several were used in other experiments. See [19]
for the used graphs, information on the graphs, and other results of experiments



678 H.L. Bodlaender et al.

to compute the treewidth. The experiments were carried out on a Sun computer
with 4 AMD Dualcore Opteron 875, 2.2 GHz processor and at most 20 GB of
internal memory available. The program did not use parallelism.

In Table 1 the results of our experiments on a number of graphs are reported.
Besides instance name, number of vertices, number of edges, and the computed
treewidth, we report on the CPU time in seconds and the maximum number of
sets (S, r), considered at once, max |TW | = maxi=0,...,n |TWi| in a number of
cases. First, we report on the CPU time and maximum number of sets for the
case that no initial upper bound up is exploited. Next, we report on the case
where we use an initial upper bound, displayed in the column up. The last two
columns report on the experiments in which the algorithm is advanced by both
an initial upper bound up and a maximum clique Q.

In several instances reported in [19], the best bound obtained from a few
upper bound heuristics, and the lower bound obtained by the LBP+(MMD+)
heuristic match, and then we have obtained in a relatively fast way an exact
bound on the treewidth of the instance graph. In other cases, these bounds do
not match. Then, when the graph is not too large, the dynamic programming
algorithm can be of good use.

A nice example is the celar03 graph. This graph has 200 vertices and 721
edges. A combination of different preprocessing techniques yield an equivalent
instance celar03-pp-001 which has 38 vertices and 238 edges. Existing upper
bound heuristics gave a best upper bound of 15, while the lower bound of the
LBP+(MMD+) heuristic was 13. With the dynamic programming algorithm
with 15 as input for an upper bound, we obtained the exact treewidth of 14 for
this graph, and hence also for celar03.

The algorithm can also be used as a lower bound heuristic: give the algorithm
as ‘upper bound’ a conjectured lower bound �: when it terminates, it either has
found the exact treewidth, or we know that � is indeed a lower bound for the
treewidth of the input graph. In a few cases, we could thus increase the lower
bound for the treewidth of considered instances, e.g., for the treewidth of the
queen8-8 graph (the graph modeling the possible moves of a queen on an 8 by 8
chessboard) the lower bound could be improved from 27 to 35.

For larger graphs, the above idea can be combined by an idea exploited ear-
lier in various papers. Given a graph G and a minor G′ of G, tw(G′) ≤ tw(G).
In [5,12,16], a lower bound on tw(G′) is computed to obtain a lower bound for
G. With the dynamic programming algorithm, we can compute tw(G′) exactly
to obtain a lower bound for tw(G). For the 1024 vertices graph pignet2-pp, we
have generated a sequence of minors by repeatedly contracting a minimum de-
gree vertex with a neighbor with least number of common neighbors (see [5]).
Figure 1 shows the treewidth (right y-scale) for the minors with 70 to 79 ver-
tices. Moreover, the maximum number of sets for three different upper bounds
is reported (left y-scale, logarithmic). If the used upper bound is less than or
equal to the treewidth, no feasible solution is found in the end. The best known
lower bound for pignet2-pp is increased from 48 to 59 by the treewidth of the
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Table 1. Experimental results for some DIMACS vertex coloring graphs, some prob-
abilistic networks and celar03-pp-001

no up, no Q with up, no Q with up, w Q
instance |V | |E| tw CPU max |TW | up CPU max |TW | CPU max |TW |
myciel3 11 20 5 0.00 240 5 0.00 35 0.00 21
myciel4 23 71 10 7.64 296835 10 0.14 4422 0.12 4064
queen5-5 25 160 18 0.15 18220 18 0.02 944 0.02 392
queen6-6 36 290 25 36.43 2031716 26 1.16 18872 0.36 6994
queen7-7 49 476 35 - - 37 1012.12 96517095 248.03 24410915
pathfinder-pp 12 43 6 0.00 107 6 0.00 1 0.00 1
oesoca+-pp 14 75 11 0.00 48 11 0.00 5 0.00 5
fungiuk 15 36 4 0.07 4713 4 0.00 4 0.00 4
weeduk 15 49 7 0.02 2906 7 0.00 35 0.00 35
munin-kgo-pp 16 41 5 0.11 6892 5 0.00 2 0.00 2
wilson 21 27 3 14.44 350573 3 0.08 2412 0.06 2342
water-pp 22 96 9 1.60 77286 10 0.04 816 0.01 475
oow-trad-pp 23 54 6 42.91 1065120 6 0.09 2953 0.05 1895
barley-pp 26 78 7 349.31 6110572 7 0.61 13597 0.29 7971
oow-bas 27 54 4 1579.38 19937301 4 0.01 303 0.00 111
oow-solo-pp 27 63 6 1059.50 17048070 6 0.91 22484 0.30 9426
ship-ship-pp 30 77 8 - - 9 291.20 3062863 50.75 820910
water 32 123 9 - - 10 12.59 127545 1.53 25874
oow-trad 33 72 6 - - 6 129.55 1162650 14.55 178846
mildew 35 80 4 - - 4 2.98 33045 0.35 5431
mainuk 48 198 7 - - 8 - - 2251.97 11748147
celar03-pp-001 38 238 14 - - 15 121.29 911918 4.36 55504

79 vertex-minor. Figure 1 shows one more time the impact of the upper bound
on the memory consumption (and time consumption) of the algorithm.

4 Improved Polynomial Space Algorithms for Treewidth

In this section, we give a faster exponential time algorithm with polynomial space
for Treewidth. The algorithm is based on results of earlier sections combined
with techniques based upon balanced separators.

Lemma 5. Let S ⊆ V be a set of vertices, such that the treewidth of G is equal
to the treewidth of the graph G′ = (V,E ∪ {{v, w} | v, w ∈ S, v �= w}) obtained
from G by turning S into a clique. Then there is a linear ordering π ∈ Π(V ),
that ends with a permutation of S, with tw(G) = maxv∈V Rπ(v), Moreover,
tw(G) = max {TW (V − S), TWR(V − S, S)} .
Lemma 6. Let G = (V,E) be a graph with treewidth at most k. There is a set
S ⊆ V with |S| = k+1, such that each connected component of G[V −S] contains
at most (|V |−k)/2 vertices and the graph G′ = (V,E∪{{v, w} | v, w ∈ S, v �= w})
obtained from G by turning S into a clique has treewidth at most k.

Lemma 6 is a variant on a folklore result on balanced separators in graphs of
small treewidth. Lemmas 5 and 6 are used to show Lemma 7.

Lemma 7. Let G = (V,E) be a graph with treewidth at most k. Let k + 1 ≤
r ≤ n. There is a set W ⊆ V , with |W | = r, such that each connected com-
ponent of G[V −W ] contains at most (|V | − r + 1)/2 vertices, and tw(G) =
max{TWR(∅, V −W ), TWR(V −W,W )}.
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Fig. 1. Maximum number of subsets S during algorithm for different upper bounds

For a graph G = (V,E), and a set W , let G+[W ] be the fill-in graph, obtained
by eliminating the vertices in V −W , i.e., G+[W ] = (W,F ), with for all v, w ∈ W ,
v �= w, we have that {v, w} ∈ F , if and only if there is a path from v to w that
uses only vertices in V − W as internal vertices. The next lemma formalizes
the intuition behind TWR(V −W,W ): when computing TWR(V −W,W ), we
look for the best ordering of the vertices in W , after all vertices in V −W are
eliminated — i.e., in the graph G+[W ].

Lemma 8. Let G = (V,E) be a graph, and W ⊆ V a set of vertices. Then
tw(G+[W ]) = TWR(V −W,W ).

Lemma 9. Let G = (V,E) be a graph, and let S = S1 ∪ S2 ⊆ V . Suppose
S1∩S2 = ∅, and that there is no edge between a vertex in S1 and a vertex in S2.
Then TW (S) = max{TW (S1), TW (S2)}.

The lemmas above are summarized in the following result, which gives a main
idea of the improved recursive algorithm.

Corollary 1. Let G = (V,E) be a graph, and let k, r be integers, 0 ≤ k < r ≤
|V |. The treewidth of G is at most k, if and only if there is a set of vertices
S ⊆ V , with |S| = r, such that each connected component of G[V − S] contains
at most (|V | − r + 1)/2 vertices, for each connected component W of G[V − S],
TWR(∅,W ) ≤ k, and the treewidth of G+[S] is at most k.

We now present the main result of this section.

Theorem 3. The treewidth of a graph G on n vertices can be computed in poly-
nomial space and time O∗(2.9512n).
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Proof. We describe a decision algorithm for treewidth: given a graph G, and
an integer k, it decides whether the treewidth of G is at most k. Of course, an
algorithm that, given a graph G, computes tw(G) can be constructed at the
cost of an additional multiplicative factor O(log n). Correctness of the algorithm
follows from Corollary 1. Let γ = 0.4203.

The algorithm works as follows. If |V | ≤ k + 1, then the treewidth of G is at
most |V | − 1 ≤ k, so the algorithm returns true.

Otherwise, the algorithm checks if k ≤ 0.25 · |V | or k ≥ γ · |V |. If this is
the case, then we search for a set S, as implied by Corollary 1 when we take
r = k + 1. I.e., we enumerate all sets S of size k + 1. For each such S, we check
if all connected components of G = (V,E) have size at most (|V | − |S| + 1)/2.
If so, we use the algorithm of Theorem 2 (Algorithm 1 Recursive-Treewidth) to
compute for each connected component W the value TWR(W, ∅). If for each
such component W , TWR(∅,W ), then the algorithm returns true: as G+(W )
has k+1 vertices, its treewidth is trivially at most k, and hence all conditions of
Corollary 1 are fulfilled, so G has treewidth at most k. If no set S of size k + 1
yields true, then the algorithm returns false.

The remaining case is that 0.25 · |V | < k < γ · |V |. Now, we search for a set S
as implied by Corollary 1 when taking r = 	γ · |V |
. I.e., we enumerate all sets S
of size r = 	γ ·|V |
. For each we check if all connected components W of G[V −S]
have size at most (|V | − r + 1)/2. If so, we use Algorithm 1 Recursive-Treewidth
for deciding if all connected components W of G[V −S] fulfill TWR(∅,W ) ≤ k.
We also recursively call the algorithm on G+(W ) to decide if this graph has
treewidth at most k. If all these checks succeed, the algorithm returns true. If
no S of size r made the algorithm return true, the algorithm returns false.

We now analyze the running time of the algorithm. Write α = k/|V |.
We start with analyzing the case where k ≤ 0.25 · |V | or γ · |V | ≤ k. We have

α ≤ 0.25 or α ≥ γ. The number of subsets of size α · n of a set of size n is
known to be of size O∗((α−α · (1 − α)α−1)n). Write f(α) = α−α · (1 − α)α−1 ·
21−α. Each connected component W of G[V − S] for which the algorithm calls
Recursive-Treewidth has size at most (|V | − α · |V | + 1)/2, thus we use at most
O∗(4(|V |−α·|V |+1)/2) = O∗(2(1−α)|V | time for one such component. Thus, the
total time in this case is bounded by O∗(f(α)n)). f monotonically increases in the
interval (0, 1

3 ), and monotonically decreases in the interval (1
3 , 1). As f(0.25) <

2.9512, and f(γ) < 2.9512, we have for all α with 0 < α ≤ 0.25 or γ ≤ α < 1,
that f(α) < 2.9512, and hence that the algorithm uses O∗(2.9512n) time.

We now look at the case where 0.25·|V | < k < γ ·|V |, i.e., where 0.25 < α < γ.
As in the previous case, the time for all computations of TWR(∅,W ) for all
connected components of G[V − S] over all sets S ⊆ V of size r is bounded by
O∗((γ−γ · (1 − γ)γ−1 · 21−γ)n = O∗(f(γ)n) = O∗(f(0.4203)n) < O∗(2.9512n).

We have to add to this time the total time over all recursive calls to the
algorithm with graphs of the form G+(S). Note that the recursion depth is at
most 1: in the recursion, the value of k is unchanged, while we now have a graph
with |S| = 	γ · |V |
 vertices. So, in the recursive call, k > 0.25 · |V | > γ · |S|,
and the algorithm executes the first case. From the analysis above, it follows
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that each recursive call of Improved-Recursive-Treewidth on a graph G+[S] costs
O∗(

(
β−β · (1− β)β−1 · 21−β

)γ·n) time, with β = α/γ. Write

g(α) = γγ · (1− γ)γ−1 ·
(
(α/γ)−α/γ · (1− α/γ)α/γ−1 · 21−α/γ

)γ

As there are O∗((γγ · (1− γ)γ−1)n) vertex sets S ⊆ V of size γn, the total time
of all calls of Improved-Recursive-Treewidth with graphs of the form G+[S] is
bounded by O∗(g(α)n). On the interval [0.25, γ], the function g is monotonically
decreasing, with g(0.25) < 2.9511. Thus, the total time over all calls of Improved-
Recursive-Treewidth for graphs G+[S] is bounded by O∗(2.9511n), and the total
time of the algorithm is bounded by O∗(2.9512n). ��
We conjecture that with a more detailed analysis and more levels of recursion,
small improvements to the running time are possible.

5 Conclusions

In this paper, we have given dynamic programming and recursive algorithms
to compute the treewidth. Similar results can be obtained for related graph
parameters, like minimum fill-in. The dynamic programming algorithm for the
treewidth problem has been implemented; for small instances (slightly below 50
vertices), the algorithm appears to be practical. On a more theoretical side, we
gave the first exponential time algorithms for Treewidth with a running time
of the type O∗(cn) for some constant c that use polynomial space and we reduced
the running time of the algorithm with polynomial space to O∗(2.9512.).

A comparison of the dynamic programming algorithm for Treewidth with
other algorithms, (e.g., a branch and bound algorithm as in [12] or the algorithm
of Shoikhet and Geiger [18]) would be very interesting.
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Abstract. A counting Bloom filter (CBF) generalizes a Bloom filter
data structure so as to allow membership queries on a set that can be
changing dynamically via insertions and deletions. As with a Bloom filter,
a CBF obtains space savings by allowing false positives. We provide a
simple hashing-based alternative based on d-left hashing called a d-left
CBF (dlCBF). The dlCBF offers the same functionality as a CBF, but
uses less space, generally saving a factor of two or more. We describe
the construction of dlCBFs, provide an analysis, and demonstrate their
effectiveness experimentally.

1 Introduction

A Bloom filter is an inexact representation of a set that allows for false positives
when queried; that is, it can sometimes say that an element is in the set when
it is not. In return, a Bloom filter offers very compact storage: less than 10
bits per element are required for a 1% false positive probability, independent of
the size or number of elements in the set. There has recently been a surge in
the popularity of Bloom filters and variants, especially in networking [6]. One
variant, a counting Bloom filter [10], allows the set to change dynamically via
insertions and deletions of elements. Counting Bloom filters have been explicitly
used in several papers, including for example [7, 8, 9, 10, 12, 18, 19].

In this paper, we present a new construction with the same functionality as
the counting Bloom filter, based on d-left hashing. We call the resulting structure
a d-left counting Bloom filter, or dlCBF. For the same fraction of false positives,
the dlCBF generally offers a factor of two or more savings in space over the
standard solution, depending on the parameters. Moreover, the construction is
very simple and practical, much like the original Bloom filter construction. As
counting Bloom filters are often used in settings where space and computation
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are limited, including for example routers, we expect that this construction will
prove quite useful in practice.

2 Background

2.1 Bloom Filters and Counting Bloom Filters

We briefly review Bloom filters; for further details, see [6]. A Bloom filter repre-
sents a set S of m elements from a universe U using an array of n bits, denoted by
B[1], . . . , B[n], initially all set to 0. The filter uses a group H of k independent
hash functions h1, . . . , hk with range {1, . . . , n} that independently map each
element in the universe to a random number uniformly over the range. (This
optimistic assumption is standard and convenient for Bloom filter analyses.) For
each element x ∈ S, the bits B[hi(x)] are set to 1 for 1 ≤ i ≤ k. (A bit can be
set to 1 multiple times.) To answer a query of the form “Is y ∈ S?”, we check
whether all hi(y) are set to 1. If not, y is not a member of S, by the construction.
If all hi(y) are set to 1, it is assumed that y is in S, and hence a Bloom filter
may yield a false positive.

The probability of a false positive for an element not in the set is easily derived.
If p is the fraction of ones in the filter, it is simply pk. A standard combinatorial
argument gives that p is concentrated around its expectation(

1− (1− 1/n)mk
)
≈

(
1− e−km/n

)
.

These expressions are minimized when k = ln 2 · (n/m), giving a false positive
probability f of f ≈ (1/2)k ≈ (0.6185)n/m. In practice, k must be an integer,
and both n/m (the number of bits per set element) and k should be thought of as
constants. For example, when n/m = 10 and k = 7 the false positive probability
is just over 0.008.

Deleting elements from a Bloom filter cannot be done simply by changing ones
back to zeros, as a single bit may correspond to multiple elements. To allow for
deletions, a counting Bloom filter (CBF) uses an array of n counters instead of
bits; the counters track the number of elements currently hashed to that location
[10]. Deletions can now be safely done by decrementing the relevant counters. A
standard Bloom filter can be derived from a counting Bloom filter by setting all
non-zero counts to 1. Counters must be chosen large enough to avoid overflow; for
most applications, four bits suffice [5, 10]. We generally use the rule of four bits
per counter when comparing results of our data structure with a standard CBF,
although we do note that this could be reduced somewhat with some additional
complexity.

2.2 Related Work on Counting Bloom Filters

The obvious disadvantage of counting Bloom filters is that they appear quite
wasteful of space. Using counters of four bits blows up the required space by a
factor of four over a standard Bloom filter, even though most entries are zero.
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Some work has been done to improve on this. The spectral Bloom filter was
desigend for multi-sets, but also considers schemes to improve the efficiency of
storing counters [7]. A paper on “optimal” Bloom filter replacements is another
work in this vein [17], introducing a data structure with the same functionality
as a counting Bloom filter that is, at least asymptotically, more space-efficient.

While this problem has received some attention, the previous work does not
appear to give useful solutions. Spectral Bloom filters are primarily designed for
multi-sets and skewed streams; we do not know of experiments or other evidence
suggesting they are appropriate as a replacement for a CBF. The alternatives
suggested in [17] do not appear to have been subject to experimental evaluation.
Moreover, the schemes suggested in both of these papers appear substantially
more complex than the standard counting Bloom filter scheme. This simplicity is
not just useful in terms of ease of programming; for implementations in hardware,
the simplicity of the Bloom filter scheme translates into very straightforward and
clean hardware designs.

Our goal is to provide a scheme that maintains the simplicity of the original
counting Bloom filter construction, and further is backed by experimental results
demonstrating that the scheme is likely to be very useful in practice. We believe
our work is novel in these regards. Our motivation for our general approach came
about when considering generalizations of Bloom filters for state machines. See
[4] for more details.

2.3 Background: d-Left Hashing

Our approach makes use of d-left hashing, a variation of the balanced allocations
paradigm [1] due to Vöcking [20], which we now recall. Often this setting is
described in terms of balls and bins; here, for consistency, we use the terms
elements and buckets. We have a hash table consisting of n buckets. Initially they
are divided into d disjoint subtables of n/d buckets. (For convenience we assume
n/d is an integer.) We think of the subtables as running consecutively from left
to right. Each incoming element is hashed to give it a collection of d possible
buckets where it can be placed, one in each subtable. We assume in the analysis
that these choices are uniform and independent. Each incoming element is placed
in the bucket containing the smallest number of elements; in case of a tie, the
element is placed in the bucket of the leftmost subtable with the smallest number
of elements. To search for an element in the hash table, the contents of d buckets
must be checked. Note that, if the bucket size is fixed a priori, there is the
possibility of overflow. Various combinatorial bounds on the resulting maximum
load have been proven [2, 20].

For our purposes, we are more interested in obtaining precise estimates of
d-left hashing under constant average load per bucket. For the case where el-
ements are only inserted, this can be obtained by considering the fluid limit,
corresponding to the limiting case where the number of elements and buckets
grow to infinity but with the ratio between them remaining fixed. The fluid limit
is easily represented by a family of differential equations, as described in [5, 14].
The advantage of using the fluid limits in conjunction with simulation is that
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it provides insight into how d-left hashing scales and the probability of overflow
when fixed bucket sizes are used. Because of lack of space, we do not review the
derivation of the differential equations. (See the full version for more details.)

Analyzing the behavior with deletions is somewhat more problematic in this
framework, as one requires a suitable model of deletions. Good insight can be
gained by the following approach. Suppose that we begin by inserting m ele-
ments, and then repeatedly, at each time step, delete an element chosen uni-
formly at random and then insert a new element. The corresponding fluid limit
equations can be easily derived and are very similar to the insertion-only case.
We can run the family of equations until the system appears to reach a steady
state distribution. (Again, more details are in the full version.)

3 The d-Left CBF Construction

3.1 The Framework

Our goal is to design a structure that allows membership queries on a set S over
a universe U that can change dynamically via insertions and deletions, although
there will be an upper bound of m on the size of the set. A query on x ∈ S should
always return that x ∈ S; a query on some y /∈ S could give a false positive. The
target false positive rate is ε. We allow for data structures that may with very
small probability reach a failure condition, such as the overflow of a counter, at
some point in its lifetime. Preferably, the failure probability is so small that it
should not occur in practice. The failure condition should, however, be apparent,
so that an appropriate response can be taken if necessary.

A standard counting Bloom filter offers one possible solution to this problem.
Our alternative has a different starting point. It is a folklore result (see [6])
that if the set S is static, one can achieve essentially optimal performance by
using a perfect hash function and fingerprints. One finds a perfect hash function
P : U → [|S|], and then stores at each location an f = 	log 1/ε
 bit fingerprint in
an array of size |S|, computed according to some (pseudo-)random hash function
H . A query on z requires computing P (z) and H(z), and checking whether the
fingerprint stored at P (z) matches H(z). When z ∈ S a correct response is
given, and when z /∈ S a false positive occurs with probability at most ε; this
uses m	log 1/ε
 bits.

The problem with this approach is that it does not cope with changes in the
set S, and perfect hash functions are generally too expensive to compute for
most applications. To deal with this, we make use of the fact, recognized in [5],
that using d-left hashing provides a natural way to obtain an “almost perfect”
hash function. The resulting hash function is only almost perfect in that instead
of having one set element in each bucket, there can be several, and space is
not perfectly utilized. A strong advantage, however, is that it can easily handle
dynamically changing sets. The resulting construction meets our goals of being
a substantial improvement over Bloom filters while maintaining simplicity. (See
[12] for an alternative approach for dynamic “almost perfect” hash functions.)
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3.2 The Construction of a d-Left Counting Bloom Filter

We first present a seemingly natural construction of a dlCBF that has a subtle
flaw; we then demonstrate how this flaw can be corrected. To begin, we use a
d-left hash table, where each bucket consists of many cells, each cell being a fixed
number of bits meant to hold a fingerprint and a counter. As we want to avoid
pointers to keep our representation as small as possible, we use a fixed number
of cells per bucket, so that our hash table may be viewed as a large bit array.

We store a fingerprint for each element. The fingerprints are essentially com-
pressed by taking advantage of how they are stored. Specifically, each fingerprint
will consist of two parts. The first part corresponds to the bucket index the el-
ement is placed in. We assume the bucket index has range [B], where in this
setting we use [x] = {0, 1, . . . , x − 1}. The second part is the remaining finger-
print, which we refer to as the remainder, and is stored explicitly. We assume
the remainder has range [R].

For example, if we were just using a single hash function, and a single hash
table with B buckets, we would use a hash function H : U → [B]× [R]. The m
elements of S would be stored by computing H(x) for each x ∈ S and storing the
appropriate remainders in a cell for each bucket. In order to handle deletions in
the case that two (or more) elements might yield the same bucket and remainder,
each cell would also contain a small counter. A false positive would occur if and
only if for a query y /∈ S there existed x ∈ S with H(x) = H(y).

Using a single hash function yields the problem that the distribution of the
load varies dramatically across buckets, essentially according to a Poisson dis-
tribution. Since we use a fixed number of cells per bucket, to avoid overflow
requires a small average load as compared to the maximum load, leading to a
lot of wasted spaced. Using d-left hashing dramatically reduces this waste.

We now explain the subtle problem with using d-left hashing directly. Let us
suppose that our hash table is split into d subtables, each with B buckets. To
use d-left hashing, we would naturally use a hash function H : U → [B]d × [R],
giving d choices for each element, and store the remainder in the least loaded
of the d choices (breaking ties to the left). The problem arises when it comes
time to delete an element from the set. The corresponding remainder might be
found in more than one of the d choices, as the same remainder might have been
placed by another element in another of these d buckets at some later point in
time. When this happens, we do not know which copy to delete.

It is worth making this clear by framing a specific example. Suppose that
when an element x is inserted into the table, its d choices correspond to the first
bucket in each subarray, and its remainder is a. Suppose further that the loads
are such that the remainder is stored in the last subarray. Now suppose later
than an element y is inserted into the table, its d choices correspond to the ith
bucket in the ith subarray for each i, and its remainder is also a. Notice that,
because the remainder a was placed in the first bucket of the last subarray for
x, when y is placed, this remainder a will not be seen in any of y’s buckets.
Now suppose that, due to y, the remainder a is placed in the first bucket of the
first subarray. Finally, consider what happens when we now try to delete x. The
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appropriate remainder a now appears in two of x’s buckets, the first and the last,
and there is no way to tell which to delete. Deleting both would lead to false
negatives for queries on the element y; such occurrences happen too frequently
to allow this approach. Failing to delete would leave garbage in the table, causing
it to fill and leading to increased false positives.

We solve this problem by breaking the hashing operations into two phases. For
the first phase, we start with a hash function H : U → [B]× [R]; this gives us the
true fingerprint fx = H(x) for an element. For the second phase, to obtain the d
locations, we make use of additional (pseudo)-random permutations P1, . . . , Pd.
Specifically, let H(x) = fx = (b, r). Then let

P1(fx) = (b1, r1), P2(fx) = (b2, r2), . . . , Pd(fx) = (bd, rd).

The values Pi(fx) correspond to the bucket and remainder corresponding to fx

for the ith subarray. Notice that for a given element, the remainder that can be
stored in each subarray can be different; although this is not strictly necessary,
it proves convenient for implementation. When storing an element, we first see
whether in any bucket bi the remainder ri is already being stored. If so, we
simply increment the corresponding counter. We point out that these counters
can be much smaller than counters used in the standard CBF construction, as
here collisions are much rarer; they occur only when H gives the same result for
multiple elements. Also, as we show in Claim 3.2, only one remainder associated
with fx is stored in the table at any time, avoiding any problem with deletions.
If ri is not already stored, we store the remainder in the least loaded bucket
according to the d-left scheme.

The following simple claims demonstrate the functionality of this dlCBF con-
struction. When considering false positives below, we ignore the negligible prob-
abilities of counter or bucket overflow, which must be considered separately.

Claim. When deleting an element in the set, only one remainder corresponding
to the element will exist in the table.

Proof. Suppose not. Then there is some element x ∈ S whose remainder is stored
in subtable j to be deleted and at the same time another element y ∈ S such
that Pi(fx) = Pi(fy) for i �= j. Since the Pi are permutations, we must have that
fx = fy, so x and y share the same true fingerprint. Now suppose without loss
of generality that x was inserted before y; in this case, when y is inserted, the
counter in subtable j associated with the remainder of x would be incremented,
contradicting our assumption.

Claim. A false positive for a query z occurs if and only if H(z) = H(x) for some
x ∈ S.

Proof. If z gives a false positive, we have Pi(fx) = Pi(fz) for some x ∈ S. But
then H(x) = H(z).

Claim. The false positive probability is 1− (1 − 1/BR)|S| ≈ m/BR.

Proof. The probability that there is no false positive for z is the probability that
no x ∈ S has H(x) = H(z), and this expression corresponds to that probability.
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We have thereby avoided the problem of finding two possible fingerprints to
delete when handling deletions. In return, however, we have introduced another
issue. Our process is no longer exactly equivalent to the d-left hashing process we
have analyzed, since our d choices are no longer independent and uniform, but
instead determined by the choice of the permutations. In any instantiation, there
are really only BR collections of d choices available, not a full Bd. Fortunately
this problem is much less significant, at least in practice. Intuitively, this is
because the dependence is small enough that the behavior is essentially the
same. We verify this with simulations below. A formal argument seems possible,
for limited numbers of deletions, but is beyond the scope of this paper. More
discussion of this point is given in the full version.

3.3 Additional Practical Issues

In practice we recommend using simple linear functions for the permutations;
for example, when H(x) can has range [2q], we suggest using

Pi(H(x)) = aH(x) mod 2q

for a chosen uniformly at random from the odd numbers in [2q]. The high or-
der bits of Pi(H(x)) can be used for the bucket, and the low order bits for
the fingerprint. (Because of the dependence of these hash functions, using the
low order bits for the buckets is less effective; the same groups of buckets will
frequently be chosen. Also, although even H(x) values are then placed only in
even buckets, and similarly for odd H(x) values, since H(x) values are (pseudo)-
random the effect is negligible.) In this case, it is harder to see why the system
behavior should necessarily follow the fluid limit, since the dependence among
the bucket choices is quite strong with such limited hash functions. However,
our simulations, discussed below, suggest the fluid limit is still remarkably ac-
curate. (Some theoretical backing for this comes from the the recent results of
[11]; again, further discussion is in the full version.)

Using simple invertible permutations Pi may allow further advantages. For
example, when inserting an element, it may be possible to move other elements
in the hash table, as long as each element is properly placed according to one
of its d choices. (Allowing such movement of elements was the insight behind
cuckoo hashing [15], and subsequent work based on cuckoo hashing, including
[16].) Intuitively, such moves allow one to rectify previous placement decisions
that may have subsequently turned out poorly. Recent work has shown that even
limited ability to move existing elements in the hash table can yield better bal-
ance and further reduce loads [15, 16]. In particular, such moves may be useful
as an emergency measure for coping with situations where the table becomes
overloaded, using the moves to prevent overflow. By using simple invertible per-
mutations Pi, one can compute fx from a value Pi(fx), and move the fingerprint
to another location given by Pj(fx). We have not studied this approach exten-
sively, as we believe the costs outweigh the benefits for our target applications,
but it may be useful in future work.
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4 A Comparison with Standard Counting Bloom Filters

Roughly speaking, our experience has been that for natural parameters, our
dlCBF uses half the space or less than standard CBF with the same false positive
probability, and it appears as simple or even simpler to put into practice. We now
formalize this comparison. Suppose, for convenience, that we are dynamically
tracking a set of m elements that changes over time.

For m elements, a standard CBF using cm counters, each with four bits, as
well as the theoretically optimal k = c ln 2 hash functions, gives a false positive
probability of approximately (2− ln 2)c using 4cm bits. (This is slightly optimistic,
because of the rounding for k.) The probability of counter overflow is negligible.

A comparable system using our dlCBF would use four subarrays, each with
m/24 buckets, giving an average load of six elements per bucket. The method
of Section 2.3 shows that providing room for eight elements per bucket should
suffice to prevent bucket overflow with very high probability. Each cell counter
should allow for up to four elements with the same hash value from the hash
function H in the first step to prevent counter overflow with high probability.
This can be done effectively with 2 bit counters, as long as one has a sentinel cell
value, say 0, that cannot be a fingerprint but represents an empty cell. (We ignore
the minimal effect of the sentinel value henceforth.) With an r bit remainder,
the false positive probability is upper bounded by 24 ·2−r, and the total number
of bits used is 4m(r + 2)/3. (For convenience, we think of r ≥ 5 henceforth,
so that our upper bound on the probability is less than 1.) Alternatively, one
can think in the following terms: to obtain a false positive rate of f = 24 · 2−r,
one needs to use (4 log2(1/f) + 20 + 4 log2 3)/3 bits per element. We note that
the constant factor of 4/3 in the leading term 4 log2(1/f)/3 could be reduced
arbitrarily close to 1 by using buckets with more items and filling them more
tightly; the corresponding disadvantages would be a larger constant term, and
more cells would need to be examined on each lookup when trying to find a
matching remainder.

Equating c = (r + 2)/3, the two approaches use the same amount of space.
But comparing the resulting false positive probabilities, we find

(2− ln 2)(r+2)/3 > 24 · 2−r

for all integers r ≥ 7. Indeed, the more space used, the larger the ratio between
the false positive probability of the standard CBF and the dlCBF. For r = 14
and c = 16/3, for example, the two structures are the same size, but the false
positive probability is over a factor of 100 smaller for the dlCBF. Moreover, the
dlCBF actually uses less hashing than a standard CBF once the false positive
probability is sufficiently small.

Alternatively, we might equalize the false positive probabilities. For example,
using 9 4-bit counters (or 36 bits) per element with six hash functions in a standard
CBF gives a false positive probability of about 0.01327. Using 11-bit remainders
(or 52/3 bits per element) with the dlCBF gives a smaller false positive probability
of approximately 0.01172. The dlCBF provides better performance with less than
1/2 the space of the standard CBF for this very natural parameter setting.
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5 Simulation Results

5.1 A Full Example and Comparison

We have implemented a simulation of the dlCBF in order to test its performance
and compare to a standard CBF. We focus here on a specific example, and
extrapolate from it. We chose a table with 4 subarrays, each with 2048 buckets,
and each bucket with 8 cells, for a total capacity of 216 elements. Our target load
is 3 · 214 = 49152 elements, corresponding to an average load of six items per
bucket. The approach of Section 2.3 suggests that bucket overload is sufficiently
rare (on the order of 10−27 per set of elements) that it can be ignored.

We must also choose the size of the remainder and the number of counter
bits per cell. In our example we have chosen 14 bit fingerprints, which as per
our analysis of Section 4 should give us a false positive rate of slightly less than
24 ·2−14 ≈ 0.001465. We use 2 bit counters per cell to handle cases where a hash
value is repeated. The total size of our structure is therefore exactly 220 bits.

In our construction, we use a “strong” hash function for the first phase (based
on drand48), and random linear permutations exactly as described in Section 3.3
for the second phase.

For every experiment we perform, we do 10000 trials. In each trial, we initially
begin with a set of 49152 elements, which we represent with the dlCBF; this
corresponds to an average of six elements per bucket. We then simulate 220 time
steps, where in each time step we first delete an element from the current set
uniformly at random, and then we insert a new element chosen uniformly at
random from the much larger universe. This test is meant to exemplify the case
where the dlCBF always remains near capacity, although the underlying set is
constantly changing; it also matches the setting of our fluid limit equations. We
test to make sure counter and bucket overload do not occur. After the 220 time
steps, we consider 10000 elements not in the final set, and see how many give
false positives, in order to approximate the false positive rate that would be
observed in practice.

We first consider the issue of overflow in the hash table. Over the 10000 trials,
overflow never occurred. In fact, the fourth subarray never, over all insertions
and deletions, had any buckets with eight elements, so overflow was never even
an immediate danger. More concretely, we note that the fluid limit provides
a very accurate representation of what we see in the simulation (even though
we are using simple random linear permutations). Specifically, after all of the
random insertions and deletions, we examine the bucket loads, and consider their
distribution. As we can see in Table 1, the fluid limit matches the simulations
extremely well, providing a very accurate picture of performance.

We now turn consider the cell counter. Recall that this counter is necessary
to track when multiple elements have the same first round hash value. Over
all 10000 trials, the largest this counter needed to be was 4. That is, on six
of the trials, there were at some time four extant elements that shared the
same hash value. This requires only two bits per cell counter (again assuming
a sentinel value). While more precise calculations can be made, it is easy to
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Table 1. Simulation results with 6n elements being placed into n buckets using four
choices, compared to the differential equations. The simulation results give the fraction
of buckets with load at least k for each k up to 9; the results are based on the final
distribution of elements after 220 deletions and insertions, averaged over 10000 trials.
No bucket obtained a load of 9 at any time over all 10000 trials.

Simulation Steady
Results State

(Fluid limit)
Load ≥ 1 1.0000 1.0000
Load ≥ 2 0.9999 0.9999
Load ≥ 3 0.9990 0.9990
Load ≥ 4 0.9920 0.9920
Load ≥ 5 0.9502 0.9505
Load ≥ 6 0.7655 0.7669
Load ≥ 7 0.2868 0.2894
Load ≥ 8 0.0022 0.0023
Load ≥ 9 0.0000 1.681e-27

bound the probability of counter flow: for any set of m elements, the probability

that any five will share the same hash value is at most
(
m
5

) ( 1
|B||R|

)5
, which for

our parameters is approximately 5.62e− 17. Again, for most practical settings,
counter overflow can be ignored, or if necessary a failsafe could be implemented.

Finally, we consider false positives. Over the 10000 trials, the fraction of false
positives ranged from 0.00106 to 0.00195, with an average of slightly less than
0.001463. This matches our predicted performance almost exactly.

We emphasize again that this is a specific example, and the various per-
formance metrics could be improved in various ways. False positives could be
reduced by simply increasing the fingerprint size; space utilization could be im-
proved by using fewer, larger buckets.

We now compare with a simulation of a standard CBF. We choose to compare
by trying to achieve nearly the same false positive rate We use 13.5 counters
per element (with 9 hash functions), or 663552 counters for 49152 elements. At
four bits per counter, this works out to 2654208 bits, over 2.5 times the size
of our dlCBF. Again, we performed 10000 trials, each having 220 deletions and
insertions after the initial insertion of the base set. The largest counter value
obtained was 13, which appears in just one of the 10000 trials; counter values of
12 were obtained in 16 trials. These results match what one would obtain using
a back-of-the-envelope calculation based on the Poisson approximation of the
underlying balls and bins problem, as in e.g. Chapter 5 of [13] (or see also [10]).
The approximate probability that a counter is hashed to by 16 elements (giving
an overflow) in an optimal CBF configuration, where the expected number of
hashed elements per counter is ln 2, is approximately e− ln 2(ln 2)16/(16!) ≈ 6.79 ·
10−17, roughly the same as the counter overflow probability for the dlCBF.

Over the 10000 trials, the fraction of false positives ranged from 0.00108 to
0.00205, with an average of slightly less than 0.001529. Again, this matches our
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predicted performance almost exactly, and it is just slightly higher then the
dlCBF. As in Section 4, our conclusion is that the dlCBF can provide the same
functionality as the standard CBF, using much less space without a significant
difference in complexity.

5.2 Additional Simulation Results

Suppose that we add more elements to the initial set, so that the average load per
bucket is 6.5 instead of 6. (Specifically, in our simulations, we had 8192 buckets
and 53428 elements, with each bucket having a capacity of 8 elements.) Using the
fluid limit differential equations, we find that (in the steady state limit) the frac-
tion of buckets with load at least 9 is approximately 2.205e−08. We would there-
fore expect in our experiments, with just over 1 million deletions and insertions,
that some bucket would reach a load of 9 (causing an overflow if buckets have
capacity 8) slightly over 2 percent of the time. This indeed matches our simula-
tions; over 10000 trials, we had an overflow condition in 254 trials. This example
demonstrates the fact that in general the equations are quite useful for deter-
mining the threshold number of elements over which overflow is likely to occur.

These overflows could be mitigated by allowing elements to be moved, as dis-
cussed in section 3.3. We have implemented and tested this functionality as well.
Specifically, we have focused on a simple improvement: if all the buckets associ-
ated with an inserted element are at capacity, we see if any of the items in just
the first subarray can possibly be moved to another of its choices to resolve the
overflow. This additional failsafe allowed us to handle an average load per bucket
of 6.75 (or 55296 elements), without overflow in 10000 trials. A potential bucket
overflow occured between 40 to 100 times in each trial, but even this limited
allowance of movement allowed the potential overflows to be resolved. Greater
loads could be handled by allowing more movement, and this is certainly wor-
thy of further experimentation. For many applications, however, including the
router-based applications we are considering, we believe that movement should
remain a failsafe or a very rare special case. The small loss in space utilization
is compensated for by simplicity of design.

6 Conclusion

We have demonstrated via both analysis and simulation that the dlCBF provides
the same performance as a standard CBF using much less space. We believe the
dlCBF will become a valuable tool in routing hardware and other products where
the functionality of the counting Bloom filter is required.

One interesting area we hope to examine in future work is how to make the
dlCBF responsive to large variations in load. The ability to move fingerprints
offers one approach. Another interesting possibility is to dynamically changing
the size of the fingerprint stored according to space needs.

A more general question relates to the use of d-left hashing. Since d-left hashing
provides a natural way to obtain an “almost perfect” hash function, where else
could it be used effectively to improve on a scheme that calls for perfect hashing?
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heavily loaded case. In Proc. of the 32nd Annual ACM STOC, pp. 745–754, 2000.

3. B. Bloom. Space/time tradeoffs in in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422-426, 1970.

4. F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. Beyond
Bloom filters: From approximate membership checks to approximate state ma-
chines. To appear in Proc. of SIGCOMM, 2006.

5. A. Broder and M. Mitzenmacher. Using multiple hash functions to improve IP
Lookups. In Proceedings of IEEE INFOCOM, pp. 1454-1463, 2001.

6. A. Broder and M. Mitzenmacher. Network applications of Bloom filters: A survey.
Internet Mathematics, 1(4):485-509, 2004.

7. S. Cohen and Y. Matias. Spectral Bloom Filters. Proceedings of the 2003 ACM
SIGMOD Conference, pp. 241-252.

8. S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep Packet
Inspection using Parallel Bloom Filters. In IEEE Hot Interconnects 12, 2003.

9. S. Dharmapurikar, P. Krishnamurthy, and D. Taylor. Longest prefix matching using
Bloom filters. Proceedings of the ACM SIGCOMM 2003, pp. 201-212.

10. L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-
area Web cache sharing protocol. IEEE/ACM Trans. on Networking, 8(3):281-293,
2000.

11. K. Kenthapadi and R. Panigrahy. Balanced allocation on graphs. In Proc. of the
Seventeenth Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 434-443, 2006.

12. Y. Lu, B. Prabhakar, and F. Bonomi. Perfect Hashing for Network Applications.
To appear in Proc. of ISIT 2006.

13. M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.
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Abstract. We propose a solution method for a water-network opti-
mization problem using a nonconvex continuous NLP relaxation and
an MINLP search. We report successful computational experience us-
ing available MINLP software on problems from the literature and on
difficult real-world instances.

Introduction

The optimal design of a WDN (Water Distribution Network) consists, in its
classical formulation, of the choice of a diameter for each pipe, while other design
properties are considered to be fixed (e.g., the topology and pipe lengths). From
a mathematical viewpoint, we can cast the optimal design problem of a WDN
as a MINLP (Mixed Integer NonLinear Programming) problem in which the
discrete variables select from a set of commercially-available diameters, water
flows must respect the hydraulic constraints, and we seek to minimize the cost
function which only depends on the selected diameters.

Recently there has been renewed interest in optimal WDN design, due to
emerging issues related to water distribution systems; in particular, the gradual
deterioration of network pipes and the need for a more rational use of water
resources has lead to very costly renovation activities.

Approaches in the literature use various combinations of linearization and
relaxation, which lead to MILP (Mixed Integer Linear Programming), NLP
NonLinear Programming) and meta-heuristic algorithms. We survey these ap-
proaches in §3. In this paper we are interested in approaches exploiting mathe-
matical-programming formulations, and we consider two cases.

The MILP approach to our problem relies on using piecewise-linear approxi-
mations. If tractable, a solution of such a model would provide a global optimum
of an approximation to the real system. If accurate models are desired for a large
network, we are lead to using a large number of binary variables (to manage the
linear pieces). This tends to lead to a very poor relaxation and ultimately an
intractable model.

With an MINLP approach, we are lead to a more natural model. Our view
is that by accurately modeling the nonlinear phenomena, we will have a model
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that will provide an MINLP search with a good NLP relaxation. While fore-
going any hope of practically verifying MINLP global optimality of the best
solution encountered, we are able to find very good solutions to large real-world
instances.

Our experiments were carried out using AMPL [1] as an interface to two
MINLP codes. We are using Sven Leyffer’s code MINLP BB [2], (available from the
University of Dundee) as well as the new CMU/IBM open-source MINLP code
BONMIN [3, 4] (to be available from COIN-OR [5]). Our modeling and solution
methods are worked out with the target software in mind (in particular, the
branch-and-bound implementation in BONMIN).

In Section §1, we formally set the notation for specifying instances of the
problem. In §2, we describe the problem more fully, through a preliminary con-
tinuous model. In §3, we survey earlier approaches, and we describe an NLP
model in which we make a smooth (approximate) relaxation of the preliminary
model described in §2, so that we can apply methods of smooth optimization.
In §4, so as to decrease the nonlinearity, we describe a reparameterization of
pipes by (cross-sectional) area, rather than diameter. In §5, we describe how we
incorporate binary variables for the purposes of then applying different MINLP
codes. In §6, we describe the results of computational experiments.

1 Notation

The network is oriented for the sake of making a careful formulation, but flow
on each pipe is not constrained in sign (i.e., it can be in either direction). The
network consists of pipes (arcs) and junctions (nodes). In the optimization, the
pipes are to have their diameters sized.

Sets:

E = set of pipes.
N = set of junctions.
ν = source junction (ν is a fixed element of N).
δ+(i) = set of pipes with tail at junction i (i ∈ N).
δ−(i) = set of pipes with head at junction i (i ∈ N).

Parameters:

len(e) = length of pipe e (e ∈ E).
k(e) = physical constant depending on pipe material (e ∈ E).
dem(i) = demand at junction i (i ∈ N).
elev(i) = physical elevation of junction i (i ∈ N).
pmin(i) = minimum gauge pressure at junction i (i ∈ N).
pmax(i) = maximum gauge pressure at junction i (i ∈ N).
dmin(e) = minimum diameter of pipe e (e ∈ E).
dmax(e) = maximum diameter of pipe e (e ∈ E).
vmax(e) = maximum speed of pipe e (e ∈ E).
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Pipes are only available from a discrete set of re diameters. For e ∈ E:

dmin(e) := D(e, 1) < D(e, 2) < · · · < D(e, re) =: dmax(e).

For each pipe e ∈ E, there is a cost function Ce() having a discrete specifica-
tion as a (typically rapidly) increasing function of diameter. That is, C(e, r) :=
Ce(D(e, r)), r = 1, . . . , re, where

C(e, 1) < C(e, 2) < · · · < C(e, re).

2 A Preliminary Continuous Model

In this section, we fully describe the problem, and at the same time we develop
a preliminary NLP relaxation.

Variables:

Q(e) = flow in pipe e (e ∈ E).
D(e) = diameter of pipe e (e ∈ E).
H(i) = hydraulic head of junction i (i ∈ N).

Simple bounds [Linear]:

dmin(e) ≤ D(e) ≤ dmax(e) (∀e ∈ E).
pmin(i) + elev(i) ≤ H(i) ≤ pmax(i) + elev(i) (∀ i ∈ N).

The hydraulic head of slowly flowing water is its energy per unit weight. It is
expressed in terms of a height (since the pressure exerted by a column of water
only depends on the height of the column). Furthermore, the hydraulic head is
the sum of gauge pressure and pressure related to elevation, and all of these are
measured in units of length.

Flow bounds (dependent on cross-sectional area of pipe) [Smooth but noncon-
vex]:

−π
4 vmax(e)D2(e) ≤ Q(e) ≤ π

4 vmax(e)D2(e) (∀ e ∈ E).

Flow conservation [Linear]:∑
e∈δ−(i) Q(e)−

∑
e∈δ+(i) Q(e) = dem(i) (∀ i ∈ N \ {ν}).

Head loss across links [Nonsmooth and nonconvex]:

H(i) − H(j) = sgn(Q(e))|Q(e)|1.852 · 10.7 · len(e) · k(e)−1.852/D(e)4.87

(∀ e = (i, j) ∈ E).

This constraint models friction loss in water pipes using the empirical Hazen-
Williams equation. This is an accepted model for fully turbulent flow in water
networks (see Walski [6]). Diameter is bounded away from 0, so the only nondif-
ferentiability is when the flow is 0.
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Objective to be minimized [Discrete]:∑
e∈E Ce(D(e)) len(e)

Since we only have discretized cost data, within AMPL we are fitting a
polynomial to the input discrete cost data to make a working continuous cost
function Ce().

We have experimented with different fits: l1, l2 and l∞; with and without
requiring that the fit under or over approximates the discrete points. Requiring
an under approximation makes our formulation a true relaxation — in the sense
that the global minimum of our relaxation is a lower bound on the discrete
optimum. We use and advocate weighted fits to minimize relative error. For
example, our least-squares fit for arc e minimizes

re∑
r=1

1
C(e, r)2

⎡⎣C(e, r)−

⎛⎝ t∑
j=0

β(j, e)
(π

4
D(e, r)2

)j

⎞⎠⎤⎦2

=
re∑

r=1

[
1−

(∑t
j=0 β(j, e)

(
π
4 D(e, r)2

)j

C(e, r)

)]2

3 Models and Algorithms

Optimal design of a WDN has already received considerable attention. Artina
and Walker [7] linearize and use an MILP approach. Savic and Walters [8] and
Cunha and Sousa [9] work within an accurate mathematical model, but they
use meta-heuristic approaches for the optimization, and they work with the
constraints by numerical simulation. Fujiwara and De Silva [10] employ a “split-
pipe model” in which each pipe e is split into re stretches with unknown length
where re is the number of possible choices of the diameter of pipe e and the
variables become the length of the stretches. It is not difficult to see that models
of this type have the disadvantage of allowing solutions with many changes in
the diameter along the length of a pipe. Using this type of model, they employ
a meta-heuristic approach for the optimization, working with the constraints by
numerical simulation. Eiger et al. [11] also work with a split-pipe model, but they
use NLP methods for calculating a solution. Sherali et al. [12] also work with a
split-pipe model, and they successfully employ global optimization methods. Xu
and Goulter [13] and Lansey and Mays [14] also employ an NLP approach, but
they use an approximation of the split-pipe methodology (using just 2 discrete
pipe sections).

In what follows, we develop an MINLP approach and compare it to the more
standard MILP approach. The MILP approach has the advantage of correctly
modeling the choices of discrete diameters with binary indicator variables xe,r

representing the assignment of diameter D(e, r) to arc e. In this way we can also
easily incorporate costs for the chosen diameters. There is still the nonlinearity
of the flow terms in the head-loss constraints. Piecewise-linear approximation
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of these nonlinear constraints is the standard MILP approach here. Unfortu-
nately, the resulting MILPs are typically very difficult to solve. The difficulty
of the MILP models is related to the fact that once the diameters have been
fixed, the objective function is set, and a feasibility problem associated with the
piecewise-linear approximation must be solved, without any guidance from the
objective function. It turns out that linear-programming tools in such a context
are not effective at all. Good feasible solutions to the models are not always
obtainable for even networks of moderate size. Often one is lead to using very
coarse piecewise-linear approximations to get some sort of solution, but these
tend to not be accurate enough to be truly feasible. Indeed, especially with few
linearization points, the MILP may (i) generate flows that are infeasible, and
(ii) cut off some feasible (and potentially optimal) solutions. §6 includes some of
these rather negative computational results with the MILP approach.

Instead, our preferred starting point is a fully-continuous nonconvex NLP
model as described in §2. The main difficulty, besides giving up on global opti-
mality, is to deal algorithmically with the absolute value term in the head-loss
constraints. This term is nondifferentiable (at 0) but not badly. One possibility
is to ignore the nondifferentiability issue, and just use a solver that will either
get stuck or will handle it in its own way. This has the advantage of straight-
forward implementation from AMPL and access to many NLP solvers (e.g., via
NEOS [15]). But since we ultimately wish to employ available MINLP solvers,
and these solvers count on being given smooth NLP subproblems, we look for a
more promising approach.

We suggest smoothing away the mild nondifferentiability as follows: Let f(x) =
xp (p = 1.852) when x is nonnegative, and f(x) = −f(−x) when x is negative
(x is standing in for Q(e)). This function misbehaves at 0 (the second derivative
does not exist there). Choose a small positive δ and replace f with a function
g on [−δ,+δ]. Outside of the interval, we leave f alone. We will choose g to be
of the following form: g(x) = ax + bx3 + cx5. In this way, we can choose a, b, c
(uniquely) so that f and g agree in value, derivative and second derivative, at
x = |δ|. So we end up with a nice smooth-enough anti-symmetric function. It
agrees in value with f at 0 and outside [−δ,+δ]. It agrees with f in the first two
derivatives outside of (−δ,+δ). Some simple calculations yields

g(x) =
(

3δp−5

8
+

1
8
(p− 1)pδp−5 − 3

8
pδp−5

)
x5

+
(
−5δp−3

4
− 1

4
(p− 1)pδp−3 +

5
4
pδp−3

)
x3

+
(

15δp−1

8
+

1
8
(p− 1)pδp−1 − 7

8
pδp−1

)
x

Note that f ′(0) = 0, while g′(0) is slightly positive.
As can be seen in Figure 1, this seems to work pretty well on a micro level

since the function f is not so bad near x = 0. In the figure, we have taken δ = 0.1.
Indeed the quintic curve fits very well on (−δ,+δ), and of course it matches up
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to second order with the true function f at ±δ. This is all no surprise since we
are operating in a small interval of 0, and the function that we approximate is
not pathological. The NLP solvers that we have tested appear to respond well
to this technique.

-0.4 -0.2 0.2 0.4

-0.1

-0.05

0.05

0.1

Fig. 1. Smoothing f near x = 0

Piecewise constraints can be modeled in AMPL (see §18.3 of [1]), so we have
the advantage of being able to use a variety of NLP solvers, as well as a path
to using BONMIN and MINLP BB, both of which are interfaced with AMPL. Our
experience is that the inaccuracy in using this smoothed function is minimal
compared to the other inaccuracies (e.g., numerical and modeling inaccuracies).

4 Parameterizing by Area Rather Than Diameter

We can use variables

A(e) = cross-sectional area of pipe e (e ∈ E),

rather than the diameter variables D(e) (e ∈ E). This makes the model ‘less
nonlinear.’ In particular, we have the now linear flow bounds:

−vmax(e)A(e) ≤ Q(e) ≤ vmax(e)A(e) (∀ e ∈ E),

the still linear simple bounds:
π
4 d

2
min(e) ≤ A(e) ≤ π

4 d
2
max(e) (∀e ∈ E),
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and the less nonlinear head loss across links constraints:

H(i)−H(j) = sgn(Q(e))|Q(e)|1.852·10.7·len(e)·k(e)−1.852
(

π
4

)2.435
/A(e)2.435

(∀ e = (i, j) ∈ E).

Finally, there is the possibility that the cost function may be well modeled
by a function that is nearly quadratic in diameter — this means nearly linear in
area, which would be very nice.

We have tried out this area parameterization with different NLP solvers, and it
seems to work well, presumably due to the fact that the model is “less nonlinear”
and “less nonconvex”. We will report on more testing regarding reparameteriza-
tions in the full version of this paper.

5 Discretizing the Diameters

With an eye toward using BONMIN as well as MINLP BB, we discretized the diam-
eters in a certain way. Specifically, we defined additional binary variables

Xe,r, r = 1, . . . , re − 1; ∀e ∈ E.

These variables are used to represent diameter increments. That is, we have the
linking equations

D(e) = D(e, 1) +
re∑

r=2

(D(e, r)−D(e, r − 1))Xe,r−1, ∀e ∈ E.

and
Xe,r ≥ Xe,r+1, for r = 1, . . . , re − 2; ∀e ∈ E.

The advantage of this incremental modeling is that branching D(e) ≤ D(e, r)
vs D(e) ≥ D(e, r + 1) can be realized by ordinary 0/1 branching on the single
binary variable Xe,r, without requiring any special solver handling of so-called
SOS (Type 1) constraints (see [16]).

If we wish to work with the area parameterization instead (see §4), we employ
precisely the same discretization. That is, we keep the same 0/1 variables, but
we employ the still linear linking equations:

A(e) =
π

4

(
D2(e, 1) +

re∑
r=2

(
D2(e, r)−D2(e, r − 1)

)
Xe,r−1

)
, ∀e ∈ E.

6 Some Computational Results

The area parameterization seems to be better behaved than the diameter one, so
we confine our reported experimental results to the area parameterization. For
convenience, we define the discrete areas A(e, r) := π

4 D(e, r)2, for r = 1, . . . , re.
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For the computational results, for approximating the cost function (see §2),
we used rather high-degree polynomials, l2 approximation, and we required that
the fitted curve be a lower approximation of the discrete points.

We created an AMPL model that first fits the cost function, and then solves
the continuous problem instances using a variety of NLP solvers (notably, we
experimented with the Dundee solver filterSQP and the open-source COIN-
OR solver Ipopt). This seems to give decent local minima without any special
starting points needed. On all of our data sets, filterSQP and Ipopt, using the
AMPL interface, have been able to find good local optima rather easily.

We first solve the NLP relaxation to get continuous areas A(e). Then, to-
ward using the MINLP solvers MINLP BB and BONMIN, we are setting branching
priorities as follows. If A(e) is between say A(e, r′) and A(e, r′ + 1), then we let

prio(Xe,r) := 100.5− |r′ − r + 0.5|,

so that prio(Xe,r′) = prio(Xe,r′+1) = 100, prio(Xe,r′−1) = prio(Xe,r′+2) = 99,
prio(Xe,r′−2) = prio(Xe,r′+3) = 98,. . .

Our data sets are shamir, hanoi and foss. For foss, we have three varia-
tions: foss poly 0, foss iron, and foss poly 1. Summary statistics and com-
putational results using MINLP for the data sets are in Table 1. For comparison,
Table 2 contains results using an MILP model.

For the small network shamir, we obtain an MINLP solution equal to the
previously best known (and almost certainly optimal) one.

For hanoi, which is a significantly harder problem, we also perform well. We
obtain an MINLP solution that is only slightly worse than the best known one.
Previously computed solution values that we know of are:

6.073 ×106, Savic and Walters [8];
6.056 ×106, Cunha and Sousa [9];
6.327 ×106, MILP (see Table 2).

In particular, we do significantly better than the solution that we obtained by
MILP. Also our solution can be compared to the “split-pipe” designs obtained
in the literature:

6.056 ×106, Sherali et al. [12];
6.319 ×106, Fujiwara and Khang [10].

The foss data is from a real problem of the Fossolo neighborhood of Bologna.
In Figure 2, we have a diagram of the Fossolo network made with EPANET 2.0
[17]. EPANET is free software distributed by the US Environmental Protection
Agency. It is commonly used to model the hydraulic and water quality behavior
of water distribution piping systems.

We have three instances for this network. Instance foss poly 0 consists of the
original data provided to us for this network. The pipe material for that instance
is polyethylene. Our solution compares quite favorably with the solution obtained
using MILP. Not only is the objective value poor for the solution obtained by
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Fig. 2. Fossolo network

MILP, the piecewise-linear approximation is very coarse, and so the solution
obtained can not really be considered as feasible. Instance foss iron is for the
same network, but with almost twice as many choices of pipe diameters and with
the material being cast iron. Instance foss poly 1, a polyethylene instance, is
a much harder instance than the other two, with even more choices for the
pipe diameters. Note that for instance foss poly 1, there is a larger relative
discrepancy between the value of the continuous optimum and the value of the
MINLP solution that we were able to find. This suggests that there is a good
possibility that we may be able to obtain a significantly better MINLP solution
for this instance.

We note that the MILP model is entirely too difficult to work with for the
foss iron and foss poly 1 data sets.

The cost data for foss poly 0 is out of date, and so the solution values
can not be directly compared to that of foss poly 1 and foss iron, which
can be reasonably compared. The value of the solution that we obtained for
foss poly 1 is much lower than for foss iron. At first this seems surprising,
but this is explained by comparing the costs of the varying diameters of pipe.
We see in Figure 3 that for small diameters, polyethylene is much cheaper than
cast iron, and we note that the data is such that there are feasible solutions
with very low flows. Although polyethylene is generally a much cheaper material
than cast iron, its life is rather limited, and so cast iron is strongly preferred as
a long-term solution.
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The MINLP results were obtained under the following computing environ-
ment: Windows XP, Pentium M, 1.70 GHz, 1 GB RAM. The instance shamir
required just a few seconds, and each of the other instances took 3-4 minutes for
the solutions obtained. The MILP results were obtained with CPLEX 9.0.3 [18] un-
der the following computing environment: Windows XP, Pentium IV, 1.70 GHz,
512 MB RAM. The MILP run times for shamir (resp., hanoi, foss poly 0)
were 262 (91,730, 176,960) seconds.

Fig. 3. Cast iron vs. polyethylene

We have experimented with restricting the range of discrete diameters to ones
nearby the diameters chosen in the continuous optimum; this seems to be a very
useful approach for difficult instances like foss poly 1.

7 Conclusions

We are able to get good solutions to practical instances of water-network opti-
mization problems, with very low development time. We attribute our success to:

1. The availability of software for finding good solutions to MINLP problems.
2. The easy interface to such software via the modeling language AMPL.
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Table 1. Computational results for the MINLP model

# # # NLP MINLP MINLP Previously
Network junctions pipes diameters (fitted obj) (fitted obj) (actual obj) best known
shamir 7 8 14 425,103.06 443,295.95 419,000.00 419,000.00
hanoi 32 34 6 6,013,430.03 6,109,620.90 6,109,620.90 6,056,000.00

foss poly 0 37 58 7 35,403.19 36,503.44 36,503.44 (46,533.38)*
foss iron 37 58 13 178,829.52 180,373.35 178,673.70 —

foss poly 1 37 58 22 27,827.06 31,442.21 31,178.89 —

Table 2. Computational results for MILP model

Best MILP LP Lower Gap # # nodes # lineariz-
Network solution solution bound (%) nodes remaining ation points
shamir 419,000.0 307,897.7 419,000.0 0.00 35,901 0 15
hanoi 6,327,613.3 5,508,664.4 6,117,905.6 3.31 4,532,718 2,592,716 7

foss poly 0 (46,533.4)* 33,882.7 34,851.8 25.10 1,845,254 1,299,426 3

*piecewise-linearization is too coarse for us to rely on this solution as being truly
feasible to the MINLP as discussed in detail in Section 3.

3. The natural framework of MINLP allows for an easy-to-develop and close
model of the real system — to some extent we give up on a MILP model
that seeks a globally-optimal solution, so that we can get a close MINLP
model of the system which is tractable for finding good local solutions.

4. Smoothing mild nonlinearities (of the head-loss constraints) makes for good
behavior of typical codes that solve the NLP subproblems.

5. Reparameterizing (by cross-sectional area rather than diameter) leads to a
less nonlinear and more convex model.

6. Modeling discrete choices (of pipes) by (cross-sectional area) increments,
and then setting appropriate branching priorities, enables us to mimic SOS
branching while using only simple single-variable branching of the MINLP
solvers.

Our belief is that much of this wisdom (omitting the parenthetical remarks
above) applies to other instances of optimization problems with significant dis-
crete and nonlinear aspects.
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Åbogade 34, DK-8200 Århus N, Denmark
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Abstract. It is well-known that to minimize the number of comparisons
a binary search tree should be perfectly balanced. Previous work has
shown that a dominating factor over the running time for a search is
the number of cache faults performed, and that an appropriate memory
layout of a binary search tree can reduce the number of cache faults
by several hundred percent. Motivated by the fact that during a search
branching to the left or right at a node does not necessarily have the
same cost, e.g. because of branch prediction schemes, we in this paper
study the class of skewed binary search trees. For all nodes in a skewed
binary search tree the ratio between the size of the left subtree and the
size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced
trees). In this paper we present an experimental study of various memory
layouts of static skewed binary search trees, where each element in the
tree is accessed with a uniform probability. Our results show that for
many of the memory layouts we consider skewed binary search trees can
perform better than perfect balanced search trees. The improvements in
the running time are on the order of 15%.

1 Introduction

In this paper we discuss the problem of building binary search trees that achieve
good running times in practice for random queries. Theoretically, the minimum
number of comparisons is achieved by perfectly balanced binary search trees,
where for each given node the number of nodes in the left subtree is approxi-
mately equal to the number of nodes in the right subtree [15]. We show that in
practice better running times can be achieved if we allow the search tree to be
skewed, i.e. allow one of the subtrees to have more nodes than the other subtree.

When analyzing the complexity of an algorithm, usually the number of in-
structions performed by the CPU is counted. However, in practice there are
other hardware issues besides the amount of computation that can affect the
running time. During a search in a binary search tree, it is usually assumed
that branching left and right at any given node inflicts the same cost on the
running time. This does not always hold, since modern processors prefetch the
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instructions in a pipeline and therefore must predict the outcome of the condi-
tional branches as their outcome is not known when they enter the instruction
pipeline. If a branch is incorrectly predicted, the entire pipeline must be flushed,
which results in a performance loss which is proportional with the pipeline size.

In the design of algorithms, in the RAM model it is assumed that all the
memory accesses take constant time. Due to the memory hierarchy on modern
computers, this hardly happens in practice. The access time for a given item
can vary from one CPU cycle if it is stored in a CPU register to over 10,000,000
CPU cycles if the item must be fetched from the hard-disk. Due to the high
costs of memory transfers between the different levels, data is not transfered in
individual items, but in contiguous blocks. If the memory size and the block size
are known, B-trees [5] support random searches in O(logB N) block transfers,
where B is the block size. If the memory parameters are not known, cache-
oblivious B-trees [6, 7] achieve the same bound. Given a tree stored in memory,
Gil and Itai [14] gave optimal algorithms for computing optimal layouts, while
Alstrup et al. [2] introduced faster approximate algorithms for minimizing the
expected number of memory transfers and Demaine et al. [12] proved worst case
bounds. Brodal et al. [9] introduced an efficient version of cache-oblivious search
trees and gave experimental results on the performance of some different memory
layouts for search tress.

Recently, Sanders and Winkel [16] studied the influence that branch mis-
predictions have over the running time of algorithms in practice. They gave
a distribution based sorting algorithm and show that in certain cases branch
mispredictions can be avoided by using certain processor specific instructions,
namely predicative instructions. Some other works focused on the influence of
branch mispredictions over the running time of sorting algorithms, both theo-
retically and experimentally [10, 11].

Outline. The paper is structured as follows. In Section 2 we describe skewed
balanced search trees and give an upper bound on the running time performed
for a random query. In Section 3 we give brief insights on the hardware issues
that affect the running time in practice. For a random query we give upper
bounds on the number of branch mispredictions in Section 4, while in Section 5
we introduce different memory layouts and give upper bounds on the number of
cache misses. In Section 6 we describe the setup for the experiments we perform
and in Section 7 we show and discuss our experimental results.

2 Skewed Binary Search Trees

A skewed binary search tree is a binary search tree where there exists a constant
α, 0 < α ≤ 1/2, such that for each node v there is a fixed ratio between the
number of nodes in the subtree rooted in the left child and the subtrees rooted at
v. More precisely, size(left(v)) = �α · size(v)�, where size(v) denotes the number
of nodes in the subtree rooted at v.

Skewed binary search trees are the extreme unbalanced cases of BB[α] trees
of Nievergelt and Reingold [15].
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Fig. 1. Bound on the expected cost for a random search, where the cost for visiting
the left child is cl = 1 and the cost for processing the right child is cr = 0, 1, 2, . . . , 28
(cr = 0 being the lowest curve)

Theorem 1 (Mehlhorn, Theorem 2, Section III.5.1). The average path
length P , is at most (1 + 1/n) log(n + 1)/H(α), where H(α) = −α logα − (1 −
α) log(1− α).

In practice, due to hardware issues, the running time spent at a given node might
depend on the next node to process, i.e. the left or right child. In Corollary 1
we analyze the running time for a random search in the case where the costs for
visiting the left and right children of a given node are different.

Corollary 1. Consider a skewed search tree T of balance α, and let cl and cr

be the costs for branching left and right respectively. A random search has

O((αcl + (1− α)cr) log n/H(α)) (1)

expected cost, where H(α) = −α logα− (1 − α) log(1 − α).

Proof. Due to the linearity of expectation, the expected number of comparisons
performed for a random search is equal to the average path length, which is
O(log n/H(α)) cf. Theorem 1. If for branching left and right we have costs cl

and cr, we obtain at a given node an expected cost of αcl + (1− α)cr, since the
probabilities of branching left and right are α and 1−α respectively. We conclude
that the expected cost of a random search is O((αcl +(1−α)cr) logn/H(α)). ��

In Figure 1 we show the function from the bound (1) on the expected cost for
a random search where we consider different costs for visiting the left and the
right child respectively. We note that in all the cases where cl �= cr the minimum
occurs for α values different than 1/2.

3 Hardware Discussion

The running time of algorithms is usually analyzed by counting the instructions
performed by the CPU. However, in practice, the running time of an algorithm
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can be severely affected by some other hardware factors besides the CPU in-
structions. We show that the branch mispredictions that occur in the CPU and
the cache faults can have a major effect over the running time of searching in
skewed binary search trees.

To increase the clock speed, modern CPUs include instruction pipelines in
their architecture, where the instructions are prefetched before being executed.
When a conditional branch enters the pipeline, its outcome is not known prior to
its execution and thus its direction must be predicted to ensure the prefetching
of the following instructions. If the branch is incorrectly predicted, the whole
pipeline must be flushed, since the instructions in the pipeline correspond to
a wrong execution path. This obviously leads to a performance loss, which in-
creases proportionally with the length of the pipeline. In such a case, we say that
a branch misprediction occurs. Since the pipelines are getting longer and longer
(e.g. 18 instructions for Pentium P4 and 31 for Intel Prescott), branch mispre-
dictions are having an increasing influence over the running time of algorithms
in practice.

In the traditional RAM model, all memory accesses are considered to have
equal access times. In practice, nowadays computers have a hierarchy of memory
layers, each of them having smaller size and access time than the next one, from
the CPU registers to the hard-disk. The data can be transfered only between
consecutive layers, and is performed in blocks of consecutive data rather than
individual items.

4 Branch Mispredictions

Branch mispredictions can dramatically affect the running time in practice. Even
though in most of the cases the branch predictors incorporated in the CPU
architectures are accurate and yield good performances, in certain algorithms
the outcome of certain branches is hard to guess. Sorting and searching are two
such examples, since they involve comparisons among elements and the outcome
of an element comparison is usually hard to predict.

There are two major types of branch prediction schemes, namely static and
dynamic. In static branch predictors, each branch is predicted in the same direc-
tion at all times, and the direction of the branch is either given at compile time
or it follows some simple heuristics, e.g. forward branches predicted taken and
backward branches predicted not taken. On the other hand, the dynamic branch
prediction schemes predict the direction of the branches at runtime, taking ad-
vantage of the execution history. In the case of searching in a balanced search
tree, since the number of nodes in the left and right subtrees of a given node are
approximately the same, the outcome of any branch is hard to predict and hence
we expect branch mispredictions in around half of the cases. On the other hand,
for the skewed search trees, we expect the number of branch mispredictions to
decrease when increasing the skewness, since the probability that the search key
lies in the larger subtree is increasing. In Theorem 2 we prove an upper bound
on the number of branch mispredictions performed for a skewed binary search
tree when a static branch predictor is used.
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Theorem 2. The expected number of branch mispredictions performed for a
random search in a skewed binary search tree of balance α is O(α logn/H(α)),
where H(α) = −α logα− (1− α) log(1− α), assuming a static branch predictor
and 0 ≤ α ≤ 1/2.

Proof. Since we consider α ≤ 1/2, for each non-leaf node of the search tree,
the right subtree will have more nodes than the left subtree, hence visiting the
right subtree next is more likely than visiting the left subtree. We use a static
prediction scheme where for each node we predict that the search key is larger
than the key stored at the given node. Using Corollary 1 with cl = 1 and cr = 0,
we obtain that for a random search we perform expected O(α logn/H(α)) branch
mispredictions. ��

5 Memory Layouts

The difference in access times between the different layers of the memory hier-
archy, especially from the internal memory to the hard disk, has led to several
models that deal with capturing the cache effect. One of the most successful is
the I/O model introduced by Aggarwal and Vitter [1] and consist of a two level
memory hierarchy, containing a fast memory of bounded size M and a slow, infi-
nite memory. The computation is performed in the fast memory and the data is
transfered between the slow and fast memories in blocks of B consecutive items.
The I/O complexity of an algorithm is given by the number of blocks transfered.
Since in practice hardware architectures contain several memory levels with dif-
ferent values for the fast memory size M and the block size B, Frigo et al. [13]
introduced the cache oblivious model. A cache oblivious algorithm is an algo-
rithm whose analysis holds for any values of M and B. Most of the algorithms
in this model assume a tall cache, i.e. M = Ω(B2). For a comprehensive list of
efficient external memory algorithms, e.g. refer to [3, 4, 8, 17].

We analyze different memory layouts for the static skewed binary search trees.
For all the layouts the tree is stored as an array of n nodes, where each node is
a structure containing two pointers to the left and the right subtree respectively
together with an integer key. We note that the number of comparisons and
branch mispredictions performed for searches is not affected by the way the tree
is laid in memory, as they only depend on the height of the tree and the number
of left turns on a path from the root to a certain leaf (for α < 1/2, assuming
a static branch prediction scheme). However, the number of cache faults can be
dramatically affected by the memory layout, ranging from O(1/ logB) to O(1)
I/Os for each node on a search path.

Consider a balanced binary search tree T of n nodes. The different memory
layouts that we consider together with the expected number of I/Os for a random
search are introduced below.

Random. Each node of T is stored at a random position in the array.
Since in this layout the nodes are stored at random locations in the array, for

each node on a search path we perform an I/O, hence the expected number of
I/Os is given by the average path length.
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BFS. In this layout the nodes of the tree are stored according to the BFS
traversal of T , where the nodes at a level are processed in a left-to-right order.

The first B nodes of the array contain the topmost subtree. In any practical
setting, i.e. the tree is not severely skewed, the length of any path in this subtree
is Θ(logB). The top subtree is loaded into memory using in a single I/O, hence
for the first O(logB) nodes on any path we use O(1) I/Os. Afterward, for the
remaining nodes on any search path we consume O(1) I/Os per node, thus
obtaining expected O(1 + |P | − logB) I/Os for a following a search path P .

Inorder. The tree is stored in the array according to the inorder traversal, i.e.
the array is sorted.

Following a path from the root to a leaf takes O(1) I/Os per node, except for
possibly the last subtree of Θ(B) nodes, since they will be loaded using a single
I/O. Considering the case when in a subtree of size B the length of a search
path is O(logB), we obtain that for a search path P in this layout we perform
between O(|P |) and O(1+ |P |− logB) I/Os, where |P | denotes the length of P ,
depending whether P reaches the bottom levels of the tree or not.

DFSl. The tree is laid out in the array according to a DFS traversal, where after
visiting the root, the left child is traversed before the right child.

Since the left child is stored next to the parent, they are stored in the same
block, hence branching left takes O(1/B) I/Os. In what concerns the right child,
accessing it requires O(1) I/Os. Using Corollary 1 we obtain that for a random
search we perform expected O((α/B +(1−α)) log n/H(α)) I/Os, where H(α) =
−α logα− (1− α) log(1− α).

DFSr. This layout is similar to DFSl, except for the fact that the right child
is traversed first and the left child afterwards. Using a similar argument, we
obtain that the number of I/Os performed for a random search is expected
O(α + (1− α)/B) logn/H(α).

k-level grouping. Given a tree T , in this layout we first store the first k levels of
T in the order given by a BFS traversal and then recursively store the subtrees
rooted in the nodes at level k + 1, in a right-to-left order.

Choosing k = logB, we obtain that following a search path P takes P (1 +
|P |/ logB) I/Os, each block is loaded using O(1) I/Os and in each block we
process Θ(logB) nodes of the search path, except for possibly the last block
loaded. Since the expected length of P is O(log n/H(α)), we obtain that the
expected number of memory transfers is O(1 + (1/H(α)) · logB n).

pqDFS. In a preprocessing phase, for each node v we assign its weight w(v) as
the number of nodes contained by the subtree rooted at v. Given a parameter p,
we first store consecutively the p heaviest nodes in decreasing order with respect
to their weights. The subtrees rooted at the children of the nodes on the frontier,
if any, are then recursively stored. The children are laid out in decreasing order
of their weights. If two or more nodes have the same weight, no assumption can
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be made with respect to the order in which they will be stored. To implement
this layout we use a priority queue, hence its name.

To optimize the number of memory transfers, we choose p = Θ(B) and thus
the group of the p heaviest nodes is stored in O(1) memory blocks. For the
children of the frontier of a group of p nodes the ratio between the weight of the
lightest and heaviest child0 is at least α (for 0 ≤ α ≤ 1/2). This implies that
each subtree in the frontier of the group has at most a fraction of 1/(Bα+ 1) of
the size of the subtree rooted at the root of the group. It follows that a search
uses O(logBα+1 n) I/Os.

Skewed van Emde Boas. This layout is a variation of the van Emde Boas layout,
which is known to match in the cache-oblivious model, i.e. where the parameters
M and B are not known, the best bounds known for searching in the I/O-model.
Given a node v and a tree, the weight of the node is given by the number of nodes
in the subtree rooted in v. Given a tree of n nodes, we split it into a top subtree
containing 	

√
n
 nodes and O(

√
n) bottom subtrees. The top subtree contains

the nodes with the highest weights and the bottom subtrees have as roots the
children of the leaves of the top subtree. After the splitting phase, the top and
the botttom subtrees are recursively stored in consecutive memory locations.

Since the top subtree contains the heaviest 	
√
n
) nodes, by a similar argument

to pqDFS the ratio between the weights of the lightest and heaviest root of the
bottom subtrees is at least α (for 0 ≤ α ≤ 1/2). If the root of the tree has
weight n, we obtain that the number of nodes in each of the bottom subtrees is
at most n/(α

√
n + 1) nodes. In the recursive layout, when n = Θ(B) searching

in the corresponding subtree takes O(1) I/Os. We obtain that a search takes
O(logBα+1 n) I/Os.

6 Experimental Setup

We analyze how the skewness factor α of the binary tree affects the running
time in practice for the different layouts. To avoid additional costs inflicted over
the running time by recursive calls, we use the iterative searching procedure in
Figure 2. We generate a large sequence of random successful queries and mea-
sure the running time together with the number of comparisons, the number
of branch mispredictions and the L1 data cache misses performed. We conduct
our experiments on two standard Linux machines, having two different archi-
tectures. One of them has a P4 3.4 GHz CPU and 1 GB RAM, running linux
2.6.10. The other one has an AMD Athlon XP 2400+ 2.0 GHz CPU with 1GB
RAM, running linux 2.6.8.1. To count the number of branch mispredictions and
L1 data cache misses we use the PAPI 3.0 library. The code is compiled with
gcc 3.3.2 using optimization level -O3. We will restrict ourselves to showing in
the paper empirical results for AMD architecture. For the Pentium 4 processor
the same behavior was observed as for the AMD architecture. The source code
together with the scripts running the experiments and the plotted resulting data
are available at www.daimi.au.dk/~gabi/esa06.tar.gz.
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while(root!=NULLV)
{
if(key==t[root].key)

return root;
if(key>t[root].key)

root=t[root].right;
else

root=t[root].left;
}

Fig. 2. An iterative C source code for searching

7 Experimental Results

We demonstrate experimentally that in practice the skewed binary search trees
can outperform the theoretically better balanced binary search trees, because of
the different costs for branching left or right.

Since the number of branch mispredictions and the amount of computation
(i.e. the number of comparisons) are independent on the memory layout, we can
count them on any layout. The charts in Figure 3 are obtained by counting the
number of comparisons (left) and the number of branch mispredictions (right) for
a tree of 25×103 items and 106 queries. As expected, the number of comparisons
achieves a minimum for perfectly balanced trees, i.e. for α ≈ 0.5, and increases
with the skewness of the tree. In what concerns branch mispredictions, their
number increases by a factor of 350% when decreasing the skewness, following
the expectation in Theorem 2. Intuitively, this happens because the more nodes
one of the subtrees rooted at the children of a given node has, the more likely
is that a random search path will contain that child, hence the more likely the
searching conditional branch will be correctly predicted. We observe that the
number of branch mispredictions has a maximum for α ≈ 0.52 and that for very
high values of α the number of branch mispredictions is greater by about 25%
than for very low values. This is because of the rounding for small instances, i.e.
the number in the left subtree is �αn� which yields a rightmost path for αn < 1.

As previously stated, the number of cache faults performed for a random
search depends not only on the skewness factor α, but also on the memory
layout of the tree. We first analyze the layouts that do not use blocking, that is
DFSl, DFSr, BFS, Inord and Rand. In Figure 4 we give the running time (left)
and the number of cache misses (right) performed by 106 queries in a skewed
search tree of 25× 103 nodes. As expected, the Rand layout achieves the worst
running time, since it performs one cache fault for each element on a given path.
Inord and BFS achieve competitive running times, whereas DFSl and DFSr
are best layouts that do not use blocking, with respect to both running time
and cache misses performed. We note that the Inord layout performs less cache
faults and achieves better running times than BFS for very skewed trees, i.e. very
small or very large values of α, whereas when the trees are almost balanced BFS
outperforms Inord. Also, it is expected that DFSl and DFSr have symmetric
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Fig. 3. The number of comparisons (left) and branch mispredictions (right) performed
by a skewed search tree of 25× 103 items for 106 queries

charts for the number of cache misses and implicitly the running time, since
they are symmetric layouts, where DFSr is efficient for α < 0.5, since there are
more nodes in the right subtree, and DFSl is more efficient for α > 0.5. We
recall that in the case of DFSr, since the right child is recursively stored after
the root, branching right takes O(1/B) I/Os whereas we spend O(1) I/Os for
branching left, whereas in the case of DFSl we spend O(1/B) I/Os for branching
left and O(1) I/Os for branching right. We note that the minimum running time
is achieved for α ≈ 0.2 in the case of DFSr and for α ≈ 0.75, and is better by
around 15% compared to α = 0.5. In DFSr, for 0.2 < α ≤ 0.5, even though
less comparisons are performed, both cache faults and branch mispredictions
increase and the overall running time increases too.

We now analyze the blocked layouts. We conduct experiments for tuning the
parameterized layouts, i.e. k-level grouping and pqDFS. Again, we perform 106

queries on a skewed search tree of 25 × 103 nodes, for different values of the
parameters. For k-level grouping, we give experimental data for different values
of the parameter k, i.e. the number of levels grouped together in the layout,
for different values of α. For each pair of values for k and α, we perform three
series of queries and select the median of the running times. For each value
of the parameter k we choose the smallest running time among the different
possible skewness factors. The data we obtained is shown in Figure 5 (left). The
differences in the running times are up to 5%, and the minimum running time is
achieved for k = 2, i.e. when two levels of the tree are grouped together. Thus,
in our further experiments involving this layout we use this value.

We perform the same experiments for the pqDFS layout, varying the number
p of the heaviest nodes grouped in a block, see Figure 5 (right). Unlike the k-level
grouping, in this case the differences in the running times are very small. Since
the minimum running time was obtained when grouping p ≈ 40 nodes together,
in the further experiments we are using p = 40.

We perform a comparative study for the blocked layouts, i.e. k-level grouping,
pqDFS, and skewed van Emde Boas, together with DFSr, since it is the non-
blocked layout that achieved the best running time. In Figure 6 we show the
running times (left) and the number of cache misses (right) performed for these
layouts on a skewed binary search tree of 25×103 nodes for 106 queries. We note
that even though all layouts achieve approximately the same running times, at
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all times the skewed van Emde Boas is the fastest. The heuristics of grouping
the heavy nodes achieves good results in practice, since pqDFS is faster than
blocking k levels (bDFS). Finally, we note that DFSr is slightly slower than the
blocked layouts. In what concerns the data cache misses, for all the algorithms
the number of data cache misses is almost similar and is approximately the same
regardless of the skewness factor for α < 0.5, except for the case when the tree
is extremely skewed, i.e. for very small values of α. We note when increasing the
skewness factor α up to 0.5, the number of comparisons decreases, the number
of cache misses is approximately the same except for extremely low values of α,
whereas the number of branch mispredictions is increasing. The resulting effect
is that the minimum running time is achieved for α ≈ 0.3, and is better by a
factor of 5% compared to the perfectly balanced search trees for all the blocked
layouts. As stated before, for DFSr, the observed improvement in the running
time is up to 15%. In what concerns the number of caches, the blocked layouts
performed much better than the non-blocked layouts, as the skewed van Emde
Boas and pqDFS layouts achieve significant improvements against BFS, Inord
and Rand.

Finally, we study for which values of the skewness factor α we achieve the
minimum running time when varying the size of the tree. We choose to perform
our experiments on two of the layouts that achieved the best running times,
namely pqDFS and the skewed van Emde Boas. For a given tree size, we vary
the skewness factor α and for each value of α we perform three series of 106

queries and pick the median of the running times. We then measure the skewness
factor for which the minimum running time was achieved. In Figure 7, we show
the resulting data for both the AMD (left) and P4 (right) architectures. We
notice that for both architectures the pqDFS achieves its best running time for
smaller values of α than skewed van Emde Boas. Also, the best skewness factor
is increasing while increasing the input size in the case of the AMD architecture,
whereas for the P4 it has a constant behavior when increasing the input size.
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Abstract. Proportional symbol maps visualize numerical data associ-
ated with point locations by placing a scaled symbol—typically opaque
disks or squares—at the corresponding point on a map. Overlapping
symbols need to be drawn in such a way that the user can still judge
their relative sizes accurately.

We identify two types of suitable drawings: physically realizable draw-
ings and stacking drawings. For these we study the following two prob-
lems: Max-Min—maximize the minimum visible boundary length of each
symbol—and Max-Total—maximize the total visible boundary length
over all symbols. We show that both problems are NP-hard for physi-
cally realizable drawings. Max-Min can be solved in O(n2 log n) time for
stacking drawings, which can be improved to O(n log n) or O(n log2 n)
time when the input has certain properties. We also experimented with
four methods to compute stacking drawings: our solution to the Max-Min
problem performs best on the data sets considered.

1 Introduction
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Fig. 1. A proportional symbol map depict-
ing Australian earthquakes of size > 4.0 on
the Richter scale [12].

Proportional symbols maps, also
known as graduated symbol maps, are
a well established cartographic tool
to visualize quantitative data that is
associated with specific (point) loca-
tions. A symbol, most commonly a
disk or a square, is scaled such that its
area corresponds to the data value as-
sociated with a point and then placed
at exactly that point on a geographic
map. The spatial distribution of the
data can then be observed by study-
ing the spatial distribution of the dif-
ferently sized symbols. Typical data
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that are visualized in this way include the magnitude of earthquakes (see Fig. 1),
the production of oil wells, or the temperature at weather stations.

A proportional symbol map communicates its message via the sizes of its
symbols—both the actual size of the symbols and the ratio between symbol
sizes. There exists a large amount of theory and user studies that discuss which
sizing communicates the difference between quantities in the most effective way.
See the books by Dent [5] and Slocum et al. [13] for an extensive overview.

While it is commonly agreed upon that a map should appear “neither ‘too
full’ nor ‘too empty’” [13] it is unclear how much the symbols on a proportional
symbol map should overlap. Small symbols create little or no overlap but spatial
patterns are difficult to detect. On the other hand, large symbols result in a
cluttered map where it is difficult to identify and judge individual symbols.
Determining the ideal size for the symbols is a major issue when constructing
proportional symbol maps, but every “good” map will contain at least some
overlapping symbols (see the discussion in [13]).

In principle any two- or three-dimensional shape can be used as a symbol on a
proportional symbol map. However, circles (transparent) and disks (opaque) are
used most frequently, since they are visually stable, they conserve map space, and
users do prefer them. Also squares and triangles are occasionally seen. Although
opaque symbols obscure each other and also the map below them, users indicate
a preference for opaque symbols [8].

Clearly there are many different ways to arrange opaque symbols with respect
to each other and any choice of (partial) order makes some symbols more visible
than others. In this paper we address the algorithmic question how to arrange
a given set of overlapping disks or squares such that all of them can be seen “as
well as possible”.

Definitions and notation. Before we can formally state the problem we first
introduce some definitions and notation. To simplify the presentation we give all
definitions for disks, but they naturally extend to opaque squares. Let S be a
set of n disks D1, . . . , Dn in the plane. We denote by S the arrangement formed
by the boundaries of the disks in S. A drawing D of S is a sub-arrangement of
S which is drawn on top of the filled interiors of the disks in S.

Not every drawing is suitable for the use on a proportional symbol map. A
suitable drawing needs to include at least the boundary of the union of the disks
in S. It should be locally correct at the vertices: every vertex v of the drawing is
formed by the intersection of the boundaries of two disks Di and Dj ; a drawing

Fig. 2. An arrangement S , a drawing with S visible, and a bounded drawing
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is locally correct at v if it corresponds locally around v to stacking Di onto Dj

or vice versa. Furthermore, a suitable drawing must have only correct faces: a
face of the drawing is correct if there is an order in which all disks in S that
contain the face can be drawn on top of each other such that the face appears.
We call drawings that satisfy these conditions face correct.

Fig. 3. A face correct drawing shown with
and without S visible

Figure 3 shows that even a face cor-
rect drawing can still have an “Escher-
like” quality which we would like
to avoid on a proportional symbol
map. Hence we need to enforce even
stronger requirements on what consti-
tutes a proper drawing. We consider
two types of drawings.
Physically realizable drawings. A face correct drawing is physically realizable
if and only if for every face f of the arrangement S there exists a total order
on the disks in Sf (the disks in S that contain f) such that the topmost disk is
visible and the orders associated with any two faces of S do not conflict. That
is, the order in which the disks in S are stacked upon each other is uniquely
determined at every face of S and no two of such orders conflict. In particular,
any two or more disks that have a common intersection have a unique ordering.

We can show that this definition is in fact equivalent to the following. We
associate a pr-disk D′

i with every disk Di in S. D′
i is a surface patch that is

the image of a continuous function of the points in the input disk, that is,
(x, y) ∈ Di maps to (x, y, fi(x, y)) where fi(·, ·) is continuous. The boundary of
D′

i is a closed curve that lies in a cylinder erected vertically up on the boundary
of Di. A drawing D is physically realizable if functions f1, . . . , fn exist so that
the pr-disks D′

1, . . . , D
′
n are disjoint and the view vertically down from infinity

is D. That is, if we imagine that we are working with actual physical disks then
we are allowed to warp them in a “Dali-like” fashion, but we cannot cut them.
Stacking drawings. A stacking drawing is a natural restriction of a physically
realizable drawing and also the one most frequently found on proportional sym-
bol maps. A physically realizable drawing D is a stacking drawing if there exists
a total order on the disks in S such that D is the result of stacking the disks in
this order.

a
b1

b2

b3

Fig. 4. A stacking drawing (left), a physically realizable drawing that is not a stacking
drawing (middle), a drawing that may seem physically realizable, but is not—any order
for face a will conflict with one of b1, b2, or b3 (right)
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Quality of a drawing. Intuitively, a good drawing should enable the viewer
to see at least some part of all symbols and to judge their sizes as correctly
as possible. The accuracy with which the size of a symbol can be judged is
proportional to the portion of its boundary that is visible. This leads us to the
following two optimization problems. Assume that we are given a set S of n
opaque symbols S1, . . . , Sn.

Max-Min: Find a physically realizable or a stacking drawing that maximizes
the minimum visible boundary length of each symbol, that is,
maxmin1≤i≤n{visible length of the boundary of Si}.

Max-Total: Find a physically realizable or a stacking drawing that maximizes
the total visible boundary length over all symbols.

Figure 5 illustrates why we consider only visible boundary length and not visible
area of symbols. The boundary of the center disk is completely covered but a
significant part of its area is still visible. It is, however, impossible to judge its
size or to determine the location of its center. Figure 6 shows that a stacking
drawing can be arbitrarily much worse than a physically realizable drawing with
respect to the Max-Min problem. At least half of the boundary of every disk
in Figure 6 (left) is visible, whereas the lowest disk in any stacking drawing is
covered by its two neighbors and hence has only a very short visible boundary.

Fig. 5. Visible perimeter
is more important than
visible area

Fig. 6. An optimal physically realizable draw-
ing (left), an optimal stacking drawing for the
same disks (right)

Formal problem statement. Assume that we are given a set S of n disks
or opaque squares that overlap. Construct a physically realizable drawing or a
stacking drawing for the elements of S that either maximizes the minimum visible
boundary of each symbol (Max-Min) or maximizes the total visible boundary
over all symbols (Max-Total).
Results. We show in Section 2 that for physically realizable drawings both the
Max-Min and the Max-Total problems are NP-hard. For stacking drawings the
Max-Min problem can be solved in O(n2 logn) time. If the symbols are disks and
have the property that no point in the plane is covered by more than O(1) disks,
then it can be solved in O(n logn) time. If the symbols are unit-size squares
it can be solved in O(n log2 n) time. These algorithmic results are presented in
Section 3. The status of the Max-Total problem for stacking drawings is open.
We performed experiments to compare the results of four different methods
that compute a stacking drawing. One of these is our solution to the Max-Min
problem, and this one performs best on our data sets. These results are presented
with various figures in Section 4.
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2 NP-Hardness

We show that the Max-Min and the Max-Total problem are NP-hard for physi-
cally realizable drawings. It is better for our discussion to use the standard RAM
model of computation and consider disks or squares with integer radius and cen-
ters located at integer coordinates. In this model, the visible boundary of a set
of squares is easily computable, since it involves only integer numbers. However,
for problems involving disks, the visible perimeter is a sum of the lengths of
circular arcs, and therefore, it is unclear if they belong to the class NP. This is
not surprising, since many basic geometric problems are not known to be in NP
[4, 6]. Both reductions are from planar 3-SAT, which was proved NP-hard by
Lichtenstein [10]. Since the ideas are standard and often used (see for example
[1, 7, 9]), our discussion concentrates mostly on the gadgets.

Theorem 1. It is NP-hard to decide if a given collection of congruent disks has
a physically realizable drawing where at least some given length of the perimeter
of each disk is visible.

Proof. We sketch a construction with disks of perimeter 1 and radius 1/2π, such
that it is NP-hard to decide if there is a physically realizable drawing with at
least 3/4 of each disk’s boundary visible. We explain in the full paper how an
equivalent construction can be made in polynomial time in the RAM model.

A Boolean variable xi is represented by an even cycle of disks, as shown in
Figure 7. We say that two disks overlap for a fraction f if a fraction f of the
boundary of one disk is covered by the other disk. Any two adjacent disks overlap
for 1/8 or 1/4, such that any disk overlaps for 1/8 with one neighbor and for
1/4 with the other neighbor. Hence, to achieve that each disk has 3/4 of its
perimeter visible, the cycle must be either clockwise overlapping (signifying that
xi is true) or counterclockwise overlapping (signifying that xi is false).

In the true state, every second disk has 1/4 of its boundary covered by the
next disk in the cycle—if 3/4 of the boundary of each of these disks is to remain
visible, no more disks (other than those in the cycle) must cover them. For the
other half of the disks in the cycle, only 1/8 of their boundaries are covered and
disks outside the cycle may cover another fraction 1/8 of them. In the false
state, it is precisely the other set of disks that can be covered for another 1/8.

A channel for xi may start at a disk that has 1/8 overlap with a disk in the
cycle that can take another 1/8 overlap in the true state. A channel for xi may

xi = true xi = false

Fig. 7. Representation of a Boolean variable and its true and false states
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Clause (xi ∨ xj ∨ xk)

from xk

(xk = true)

Channel for
use in a

xi clause

Channel for
use in a
xi clause

Cycle representing xi

from xj

(xj = false)
from xi

(xi = true)

Fig. 8. Representation of a clause

start at a disk that has 1/8 overlap with a disk in the cycle that can take another
1/8 overlap in the false state. If the variable has enough disks in its cycle, then
any number of channels can be connected and in any order for xi and xi.

At a clause like (xi ∨ xj ∨ xk), the channels for xi, xj , and xk come close and
are connected with a single disk that has overlap 1/8 with each of the last disks
of the channel, see Figure 8. For the clause disk to be uncovered for at least 3/4,
at least one of the three channels must represent true, and the last disk of that
channel can go under the clause disk.

The details of the construction are easily filled in. The disks have a physical
realization with a free perimeter of at least 3/4 if and only if the planar 3-SAT
formula is satisfiable, and only a polynomial number of disks are needed in the
reduction. Moreover, note that if it is not possible to achieve a free perimeter of
at least 3/4 in all disks, then some disk has free perimeter of exactly 5/8. ��

Note that in the proof, no point in the plane is contained in more than two
disks. Furthermore, the decision whether a physically realizable drawing exists
with free perimeter strictly between some values A and B is equally difficult as
the decision whether a physically realizable drawing exists with free perimeter
at least A, for some constants A and B. This shows that we cannot expect to
find an approximation algorithm that finds a solution better than a constant
factor from the optimum in polynomial time. In the given construction, with an
appropriate scaling, the constant can be brought arbitrarily close to 6/5, but
with some fine-tuning it can be raised.

A reduction for Max-Total when the input consists of squares can be found
in the full version of this paper. Here we only state the result.

Theorem 2. It is NP-complete to decide if a given collection of bounded-size
squares has a physically realizable drawing whose visible perimeter is at least a
given value T .

Our construction uses coordinates and squares of polynomial size. Therefore,
there is no fully polynomial time approximation scheme (FPTAS) for the opti-
mization problem, unless P=NP.
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3 Algorithms

We can compute the stacking order that maximizes the minimum of the visible
boundary in polynomial time. We present the algorithms in this section. We first
give a general algorithm for disks, then we deal with special cases and squares.

The general idea to compute a stacking order of n disks that maximizes the
minimum of the boundary length uncovered is simple: for each disk, we deter-
mine how much boundary would be seen if it were the bottommost disk. We
choose that disk with the maximum value, make it the bottommost disk, and
then recurse on the n − 1 remaining disks. To implement this greedy approach
efficiently, we maintain for each disk a data structure that represents all of its
uncovered boundary intervals. For technical reasons, we consider a disk bound-
ary ci to be an interval from its topmost point clockwise around. Any other disk
dj intersects ci in zero, one or two intervals (two if dj contains the topmost point
of ci). All intersection points on ci define a set of elementary intervals between
two consecutive intersection points. The data structure Ti that stores ci is a
variation of a segment tree that stores the elementary intervals in its leaves. An
internal node ν corresponds to an interval int(ν) that is the union of elementary
intervals below it in Ti. (See [3] for a detailed description of segment trees.)

Every node (internal and leaf) stores the boundary length of int(ν) and a
counter that stores the number of other disks that contain int(ν), but not
int(parent(ν)). It also stores an interval vis-int(ν) that is the visible bound-
ary length of int(ν) that would remain if only the disk intervals of other disks
that occur in the subtree rooted at ν would hide parts of int(ν) from view.
Disk intervals at ancestors of ν may still cause that no part of int(ν) is actually
visible. The root of Ti stores the total perimeter length of di if it were placed
bottommost in vis-int(root(Ti)).

Initially, we construct a segment tree Ti for each disk di, storing the disk
intervals for all disks dj with j �= i. By inspecting vis-int(root) for all trees
T1, . . . , Tn, we determine the one with the largest boundary length if it were
bottommost, and select it. When a disk dj is chosen, we delete the disk interval
of dj from all structures Ti of disks di that intersect dj and were not yet chosen.
To this end, we find the canonical nodes of the disk interval of dj in Ti. For
each canonical node ν, we lower the counter. When the counter becomes 0, we
also update vis-int(ν) by taking the vis-int(..) values of the two children of ν,
and adding their values. By the standard analysis of segment trees and tree
augmentation, deletion of a disk interval from Ti takes O(log n) time. Therefore,
the process of choosing a disk to be placed bottommost, and updating all trees
takes O(n log n) time.

Theorem 3. Given n disks in the plane, a stacking order maximizing the bound-
ary length of the disk that is least visible can be computed in O(n2 logn) time.

If no point in the plane is contained in more than C disks, where C is some
constant, and the ratio in size of the largest and smallest disk is also a con-
stant, then we can prove with a packing argument that any disk intersects only
a constant number of other disks. The whole arrangement of disk boundaries has
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complexity O(n), and for each disk di, we find the ones that intersect its bound-
ary in constant time by walking in the arrangement around the boundary of di

and inside it. We store all disks in a priority queue, sorted on visible boundary
length. This allows us to select the next bottommost disk in O(1) time, find the
intersecting disks in O(1) time as well, recompute their visible boundary length
in O(1) time, and recompute their position in the priority queue in O(log n)
time. In this way, the whole algorithm takes only O(n logn) time overall.

If we do not assume that the ratio in size of the smallest and largest disks
are bounded, we can prove the same result. A disk may now intersect many
more than O(1) disks, but the arrangement still has O(n) complexity, and hence
all traversals to find the disks that intersect a selected disk take only O(n)
time in total. This implies that in total, only O(n) visible boundary lengths
are recomputed. We need to take care that this can be done efficiently for
disks that intersect many other disks. To this end, we use the segment tree
given above for the general algorithm, and we again obtain an O(n logn) time
algorithm (note that all segment trees together have size O(n) in this case).

Fig. 9. Deletion of a square from
the union of squares

Theorem 4. Given a set of n disks in the plane such that no point is contained in
more than O(1) disks, a stacking order that maximizes the boundary length of the
disk that is least visible can be computed in O(n log n) time.

For unit squares we can give an O(n log2 n)
time algorithm without the assumption that
any point is covered by only a constant num-
ber of squares. So the arrangement of squares
may have quadratic complexity. We first com-
pute the union of all squares, and determine
for each square the visible boundary length
that it contributes to the boundary of the
union. We store the squares in a priority
queue. Note that any square has at most one
visible interval on each side. We select the next
bottommost square S from the priority queue
and update the union of squares explicitly. Up to four segments disappear, but
possibly many more appear, see Figure 9. We find these by repeated ray shoot-
ing. Up to eight squares have a visible interval enlarged because they ended on
a side of S. All other squares that have a change in their visible interval have
a vertex exposed on the contour, or have an interval on a side exposed for the
first time; these cases can arise at most four times for each square. Hence, the
total change in intervals is O(n) throughout the whole process.

We preprocess all vertical sides of squares in a semi-dynamic data structure for
horizontal ray shooting. Similarly, we preprocess all horizontal sides of squares
in a semi-dynamic data structure for vertical ray shooting. Using an augmented
segment tree we can implement this to run in O(n log2 n) time overall.

Theorem 5. Given a set of n unit squares in the plane, a stacking order that
maximizes the visible boundary of the square that is least visible can be computed
in O(n log2 n) time.
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4 Experiments

We have examined stacking orders based on different methods experimentally.
We first describe our data sets and then the stacking methods, followed by an
evaluation of their quality.

Data sets. In principle there are three different types of data sets. Either all
disks have the same size, or disk sizes are taken from a small number of classes,
or the disk sizes are all different. Equal size disks are uncommon because they
do not show a value with locations, only an occurrence. We therefore omit such
data sets from our experiments.

Test data number smallest largest
of disks radius radius

City 156 156 1.428 12
City 538 538 0.279 6
Earthquake magnitude 602 8.075 10
Earthquake death count 602 0.123 100
City 156, classed 156 1.897 6
Earthquake mag., classed 602 4.472 10

We used several differ-
ent data sets; see the ta-
ble. First, we took two
data sets with the cities
of the USA, namely the
156 and the 538 largest
ones by population. The
area of each disk is pro-
portional to the popu-
lation of the city. Two
other data sets consist of
602 disks corresponding to earthquakes in the world. Disks are centered at the
epicenter and the areas of the disks are proportional to the magnitude (scale of
Richter) and to the death count [11]. Second, we used versions of the 156 cities
and the earthquake magnitudes where disk sizes were classified into five different
classes.

Stacking methods. Proportional symbol maps that are published in books or
on the internet do not seem to follow any method consistently. Some appear to
be stacked from the left to the right, others appear to be random. For maps with
differently sized disks, often the stacking order is from large to small (small on
top). For disks of arbitrary sizes we compare four different stacking methods.

Left-to-right by center: The disk with leftmost center is put at the bottom
of the stacking order, and the remaining disks are stacked recursively on top.

Left-to-right by leftmost: The disk with leftmost left extreme is put at the
bottom, with the remaining disks stacked recursively on top.

Large-to-small: The disks are stacked from bottom to top in order of non-
increasing radius.

Max-Min: We maximize the visible boundary length of the disk with least
visible boundary length, using the greedy approach presented in Section 3.

All the left-to-right methods could of course also be executed from right-to-left
with different results. The stacking methods and the results pertaining to the
two classed data sets can be found in the full paper.

Evaluation. To evaluate the stacking drawings we measured the visible bound-
ary length of the top-10 of the least visible disks and we measured the total
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Table 1. Results on disks of arbitrary sizes, given as average visible boundary length
of top-10 / total visible boundary length

City City Earthquake Earthquake
156 538 magnitude death count

Left-to-right by center 0.00 / 1405 0.00 / 1533 0.00 / 14446 0.00 / 4697
Left-to-right by leftmost 2.14 / 1711 0.44 / 1815 4.96 / 15061 0.66 / 8568
Large-to-small 2.72 / 1730 0.00 / 1809 0.00 / 12126 0.78 / 9049
Max-Min 4.42 / 1759 0.88 / 1868 12.45 / 16608 0.78 / 9016

boundary length that is visible. Disks that do not intersect any other disk were
excluded from the top-10. For sets of disks with different sizes it makes a dif-
ference if 1 cm of the boundary of a small disk or 1 cm of the boundary of a
larger disk is visible. This implies a difference in absolute visibility of a disk (in
length units) and relative visibility (in percentages). We measured both absolute
visibility and relative visibility. Because the comparative performance of the dif-
ferent methods turned out to be roughly the same in both cases, we only show
results for absolute visibility and leave results for relative visibility to the full
version of this paper.

Table 1 summarizes the results for the four stacking methods for the four
unclassed data sets. It is clear that the Max-Min method performs best on the
top-10 of least visible disks. The left-to-right by center method performs worst,
except for the case where disks have roughly the same size (earthquake magni-
tudes), where the large-to-small method performs poorly. The same observations
hold for data sets that are not shown in this paper (1260 cities, tsunami death
counts (39 disks), tsunami height events (33 disks)).

Another important aspect is the visual quality of the resulting map. Since
this cannot be measured, user experiments would be needed to evaluate it. In
this paper, we only show a few figures for comparison purposes. Figure 10 shows
the 156 largest cities of the USA with disk areas proportional to the population
using the four different methods (the differences can be seen most clearly in the
upper right corners of the maps). The figures correspond to the top four rows
of Table 1. It is noticeable that the left-to-right methods produce maps that
seem ‘unbalanced” or ‘asymmetric”. A left-to-right structure is visible that has
no cartographic meaning. This artifact can be perceived even more clearly on
maps where the disk sizes vary less (not shown here).

The Max-Min method has a higher computational cost (O(n2 logn) time) than
the simple left-to-right or large-to-small methods, which require only sorting.
The implementation effort is also significantly higher for the Max-Min method.
However, it scores better than the other methods according to Table 1, especially
for the least visible disks. Furthermore, for sets of disks with not too much
difference in size, the Max-Min method is better because it does not have visual
artifacts like the left-to-right methods, and it clearly outperforms the large-to-
small method on visible perimeter.
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(a) (b)

(c) (d)

Fig. 10. USA, 156 biggest cities (only showing half of the map), stacked: (a) left-to-
right by center; (b) left-to-right by leftmost; (c) large-to-small; (d) Max-Min method

5 Conclusions and Open Problems

We described an algorithm that solves the Max-Min problem for stacking draw-
ings in O(n2 logn) time. In our experiments, comparing this algorithm with three
heuristics, we found that our method performed best on our test data. However,
we did not experiment with methods that compute physically realizable draw-
ings, and it is unclear how they would perform in comparison with our methods
for stacking drawings. Solving the Max-Min problem (or the Max-Total problem)
for physically realizable drawings is NP-hard, and developing good heuristics for
such drawings is not trivial.

Among the open problems that remain are the computation of optimal Max-
Min stacking drawings in o(n2 logn) time, the computation of optimal Max-
Total stacking drawings (or approximations thereof) in polynomial time, and
the development of approximation algorithms for physically realizable drawings.
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Abstract. In the dynamic all-pairs shortest path problem we wish to
maintain information about distances in a weighted graph subject to
dynamic operations such as edge insertions, edge deletions, and edge
weight updates. The most efficient algorithms for this problem maintain
a suitable superset of shortest paths in the graph. This superset retains
information about the history of previous graph updates so as to avoid
pathological situations where algorithms are continuously forced to re-
build large portions of their data structures. On the other hand, the set
of maintained paths may grow too large, resulting in both prohibitive
space consumption and inefficient updates. To circumvent this problem,
the algorithms perform suitable path cleaning operations. In this paper,
we implement and experiment with a recent efficient algorithm by Tho-
rup, which differs from the previous algorithms mainly in the way path
cleaning is done, and we carry out a thorough experimental investigation
on known implementations of dynamic shortest path algorithms. Our ex-
perimental study puts the new results into perspective with respect to
previous work and gives evidence that path cleaning, although crucial
for the theoretical bounds, appears to be instead of very limited impact
in practice.

1 Introduction

In this paper we consider dynamic shortest path problems. In particular, our goal
is to maintain information about all-pairs shortest paths (APSP) in a weighted
directed graph subject to edge weight updates (which includes as a special case
edge insertions and deletions). This seems an important problem on its own
right, and it finds applications in many areas (see, e.g., [15]), including trans-
portation networks, where weights are associated with traffic/distance; database
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systems, where one is often interested in maintaining distance relationships be-
tween objects; data flow analysis and compilers; document formatting; and net-
work routing [7, 14].

The fully dynamic APSP problem was first studied in 1967 [13], but the first
algorithms that were provably faster than recomputing the solution from scratch
were proposed only more than thirty years later: in 1999 King [12] presented a
fully dynamic algorithm for maintaining APSP in directed graphs with positive
integer weights less than C: the running time of her algorithm is O(n2.5√C logn )
per update and O(1) per query in a graph with n vertices. Recently, Demetrescu
and Italiano [5] presented a fully dynamic shortest paths algorithm that requires
O(n2 · log3 n) amortized time per update and constant time per query. After that
work, Demetrescu et al. [3] conducted a thorough empirical study on dynamic
APSP algorithms, focusing in particular on the theoretical work in [5, 12]. This
study has shown that dynamic shortest path algorithms and their techniques
can be really of practical value in many situations: in practice the speed up
of dynamic algorithms is much higher than the one predicted by the theoretical
analysis, and they can be even several orders of magnitude faster than repeatedly
computing a solution from scratch with a static algorithm. The theoretical bound
of [5] has been later improved to O(n2(logn + log2(m/n))) amortized time per
update by Thorup [16], where m is the number of edges.

Our Results. The objective of this paper is to advance our knowledge on dynamic
shortest paths algorithms by following up the recent theoretical progress of Tho-
rup [16] with a thorough empirical study. We performed extensive tests under
several variations of graph and update parameters in order to gain a deeper un-
derstanding of the experimental behavior of dynamic shortest paths algorithms.
To this end, we produced a rather general framework in which the dynamic
shortest paths algorithms available in the literature can be implemented and
tested. Our experiments were run both on randomly generated inputs, on more
structured (non–random) inputs, which tried to enforce bad update sequences
on the algorithms, and on real-world inputs.

We note that the algorithm of Thorup builds on the same approach as the
algorithm by Demetrescu and Italiano, i.e., by maintaining a suitably defined
superset of shortest paths in the graph. The main goal of this superset is to
retain information about the history of previous graph updates in order to avoid
pathological situations where algorithms are continuously forced to rebuild large
portions of their data structures. On the other hand, throughout the sequence
of updates the set of maintained paths may grow out of hand and become too
large, resulting in both prohibitive space consumption and inefficient updates.
To circumvent this problem, both algorithms perform suitable path cleaning
operations, although with rather different approaches. In this experimental work
we try to assess the practical value of the two approaches: in particular, our
experiments give evidence that path cleaning, even if crucial for the theoretical
analysis, appears to be of very limited impact in practice.

Related Work. Besides the extensive computational studies on static shortest
path algorithms (see, e.g., [10]), many researchers have been complementing the
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wealth of theoretical results on dynamic shortest paths with empirical studies
in the effort of bridging the gap between the design and theoretical analysis
and the actual implementation, experimental tuning and practical performance
evaluation. In particular, Frigioni et al. [9] proposed efficient implementations of
dynamic transitive closure and shortest path algorithms, while Frigioni et al. [8]
and later Demetrescu et al. [4] conducted an empirical study of dynamic single-
source shortest path algorithms. Many of these shortest path implementations
refer either to partially dynamic algorithms or to special classes of graphs. More
recently, Buriol et al. [1] have conducted a thorough computational analysis
to study the effects of heap size reduction techniques in dynamic single-source
shortest path algorithms, and Demetrescu et al. [3] conducted a computational
study on dynamic APSP.

2 Algorithms Under Investigation

In this section we briefly survey the two algorithms for fully dynamic APSP
that will be considered in this computational study. We also discuss suitable
heuristics for improving their practical performance. Our implementations work
on graphs with non-negative edge weights. Unless otherwise stated, we assume
that each update operation on the input graph consists of either inserting or
deleting a vertex and all its incident edges. We notice that this is essentially
equivalent to updating the weights of all edges with a common endpoint.

The algorithm by Demetrescu and Italiano (DI). The dynamic shortest
path algorithm in [5] (which we refer to as DI) works on directed graphs with
nonnegative real-valued edge weights and hinges on the notion of locally shortest
paths (LSP): we say that a path π is locally shortest if every proper subpath
of π is a shortest path (note that π is not necessarily a shortest path). Locally
shortest paths can be used to generate the set of shortest paths. If we only know
a subset of the shortest paths but have generated all the locally known shortest
paths, then these contain the unknown shortest paths. The above leads to a
quite efficient static APSP algorithm [3] and it works perfectly as a deletions-
only APSP algorithm spending O(mn + n2 logn) time in total on deleting all
n vertices. A key to the efficiency is that all locally shortest paths between
two vertices are internally vertex disjoint. This implies that we have at most
n2 locally shortest paths through any vertex, hence that each vertex deletion
can destroy at most that many paths. However, a vertex insertion can stop
many paths from being shortest by introducing new shortest paths, e.g., a single
vertex insertion may introduce new shortest paths between all pairs of nodes.
We call historical a path that stops being shortest due to a vertex insertion.
More formally, a historical path is a path that has been a shortest path at some
point during the sequence of updates, and none of its edges have been touched
by an update since then. We further say that a path π in a graph is a locally
historical path (LHP) if every proper subpath of π is a historical path.

The main idea behind the DI algorithm is to maintain dynamically the set
of locally historical paths, which include locally shortest paths, and therefore
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shortest paths, as special cases. The following theorem from [5] bounds the num-
ber of paths that become locally historical after each update:

Theorem 1. Let G be a graph with n vertices subject to a sequence of update
operations. If at any time throughout the sequence of updates there are at most
h historical paths between each pair of vertices, then the amortized number of
paths that become locally historical at each update is O(hn2).

To keep changes in locally historical paths small, it is then desirable to have as
few historical paths as possible throughout the sequence of updates. To do so,
after a vertex has been inserted, we perform dummy updates on it at exponen-
tially spaced updates. That is, if v is inserted at update i, then for � = 1, 2, 3, . . .,
we perform a dummy update on v in connection with update i + 2�. The effect
of a dummy update is to terminate all historical paths through v that are no
longer shortest. This path cleaning technique, which we call smoothing, leaves
at any time during a sequence of k updates at most O(log k) historical paths
between each pair of vertices in the graph (see [5]).

To support a vertex insertion or deletion, the algorithm works in two phases.
In case of deletion, it first removes all maintained paths that contain the deleted
vertex. Then it runs a dynamic modification of Dijkstra’s algorithm [6] simulta-
neously from all vertices: at each step a shortest path with minimum weight is
extracted from a priority queue and it is combined with existing historical paths
to form new locally historical paths. The update algorithm spends O(log n) time
for each of the O(hn2) new locally historical paths. Since the smoothing strategy
described above lets h = O(logn) and increases the length of the sequence of
updates by an additional O(log n) factor, this yields O(n2 log3 n) amortized time
per update. Even with smoothing, there can be as many as O(mn log n) locally
historical paths in a graph: this implies that the space required by the algorithm
is O(mn log n) in the worst case. We refer the interested reader to [5] for the
low-level details of the method.

Our implementation. In this paper, we consider the implementation of DI de-
veloped for the experimental study in [3], which follows closely the theoretical
algorithm in [5]. For the sake of simplicity, this implementation restricts update
operations to change the weight of a single edge at a time, rather than all edges
with a common endpoint as described in [5]. To improve the practical perfor-
mance of the algorithm, we implemented a smoothing threshold heuristic, which
consists of skipping dummy updates whenever the ratio between the number
of created LHP’s and deleted LHP’s exceeds a certain smoothing threshold. In
particular, when the smoothing threshold is 0, no smoothing is in place, while a
smoothing threshold equal to 1 corresponds to full smoothing.

The algorithm by Thorup (T). Thorup’s algorithm for the fully-dynamic
APSP problem [16] follows a general idea of Henzinger and King [11] reducing a
fully-dynamic problem to a logarithmic number of decremental problems. Recall
here that the Demetrescu-Italiano approach [5] works well if only deletions are
performed using locally shortest paths instead of locally historical paths.
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The decremental structure we need here takes a graph where some vertices
are centers. As vertices are deleted, it will only maintain locally shortest paths
that use some of these centers. It will assume that someone else identifies short-
est paths not running through any center. Using its locally shortest paths, the
decremental structure will identify any shortest path using one of its centers.
The basic theorem is that if the graph starts with n vertices and c centers,
then during the course of Θ(c) vertex deletions, the total number of generated
centered locally shortest paths is Θ(cn2).

To use such a centered data structure in the fully dynamic case, we divide the
updates into levels. Updates are numbered t = 1, 2, 3, . . . and the birth date of a
vertex is the number of the update inserting it. The graph is rebuilt whenever t ≥
2n, with n being the current number of vertices. We then set t = 1 and rebuild
the graph with n reinserts. Asymptotically, this does not affect our amortized
time bounds.

We impose a standard binary hierarchy over the update sequence. We say
that level I is active after update t if bit I is set in t. Here bit 0 is the least
significant bit. Also, t activates the level of its least significant set bit, that is, if
L is the least significant set bit of t, then level L is inactive before t and active
after t. Also, t deactivates the active levels lower than L. If level I is active, we
let tI denote the update that activated level I. Note that if level J > I is also
active, then tJ < tI . Hence, among active levels, we sometimes refer to active
higher levels as older levels.

When we activate a level I, we construct a level I graph GI as a copy of the
current graph G. The vertices from GI are called level I vertices. While level
I is active, we do not add any vertices to GI but if a level I vertex is deleted
from G, it is also deleted from GI . Thus GI is a decremental dynamic graph.
We destroy GI when level I is deactivated. We will often identify an active level
I with its decremental level graph GI .

For each active level graph GI with centers CI , we run the above mentioned
centered decremental data structure. The older level graphs, will maintain short-
est paths not using CI . For GI , we generate shortest paths through CI via locally
shortest paths through CI .

For the efficiency we note that GI has at most 2I centers and lasts for 2I

updates, so the number of locally shortest paths it generates is O(2In2), or
O(n2) per update. Moreover, we have only O(log n) levels. It follows that the
total number of paths generated is O(n2 logn) per updates whereas the best
bound for the DI algorithm is O(n2 log2 n).

A more sophisticated argument says that for sparse graphs with m n edges,
we should in fact rebuild from scratch, resetting t, once in every 2	m/n
 updates.
Then the number of paths generated per update is at most O(n2 log(m/n)).

Our implementation. Since the algorithm by Thorup [16] builds on the algo-
rithm by Demetrescu and Italiano [5], our implementation of T is based on the
DI implementation described above. Differently from DI, T maintains paths on
different levels, rather than on a single level. To improve the practical perfor-
mance of T, we have implemented the following two heuristics:
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• Level shift heuristic. One performance bottleneck of T is the global rebuild-
ing done every 2n operations, which consists of the deletion of the entire path
system followed by n insert operations. The level shift heuristic is based on the
observation that each global rebuilding is equivalent to shifting all levels one
level down, i.e., level i becomes level (i − 1) for each i > 1: by accessing levels
through pointers, this operation can be simply done in O(log n) steps by just
updating up to O(log n) pointers every 2n operations.

• Activation delay heuristic. Differently from DI, which uses smoothing oper-
ations, algorithm T does not have any explicit mechanism to keep the size
of the path system under control: this is done implicitly via level activations
and deactivations at each update. The activation delay heuristic simply forces
the algorithm to perform activations/deactivations only every k updates, where
k is a user-defined parameter. During this interval, no existing levels are deleted
and no new levels are created, and thus T ends up performing essentially
the same steps as DI, with all insertions centered on level 1. As we will see,
this heuristic can greatly improve the performance of T on real-world and ran-
dom instances, where the rate of path generation is substantially small in
nature.

3 Experimental Setup

Test sets. Following previous computational studies on dynamic graph algo-
rithms, in our experiments we considered three kinds of test sets with non-
negative edge weights: random inputs, real-world inputs, and worst-case inputs.

• Random inputs. We considered random graphs with n nodes, m edges, under
the Gn,m model. Edge weights are integers chosen uniformly at random in the
interval [1, 10m]. To generate the update sequence, we select at random one
operation among edge insertion and edge deletion. If the operation is an edge
insertion, we select at random a pair of nodes x, y such that edge (x, y) is not
in the graph, and we insert edge (x, y) with random weight. If the operation is
a deletion, we pick at random an edge in the graph, and delete it.

• Real-world inputs. We considered two kinds of real-world inputs: US road
networks and Internet networks. The US road networks were obtained from
ftp://edcftp.cr.usgs.gov, and consist of graphs having 148 to 952 vertices
and 434 to 2,896 edges. The edge weights can be as high as 200,000, and rep-
resent physical distances. As Internet networks, we considered snapshots of the
connections between Autonomous Systems (AS) taken from the University of
Oregon Route Views Archive Project (http://www.routeviews.org). The re-
sulting graphs (AS 500, . . . ,AS 3000) have 500 to 3,000 vertices and 2,406 to
13,734 edges, with edge weights as high as 20,000. The update sequences we
considered in real-world graphs were random weight updates on their edges in
the interval [minw,maxw], where minw and maxw are the minimum and maxi-
mum edge weight in the original graph, respectively.
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•Worst-case inputs. The worst-case inputs
we considered consist of synthetic graphs
and sequences of updates that force Θ(n3)
historical paths in the graph and Θ(n3)
new locally historical paths per update [5].
Graphs in the family are made of six layers
L1 . . . L6 containing (k+1) vertices each as
shown on the right, where k = n/6−1. The
update sequence alternates two phases.

L1 L2 L3 L4 L5 L6

k+
1=

n/6

In the first phase, decreases are made on edges connecting L2 to L3 so that all
shortest paths from L1 to L5 go through the first edge, then through the second
edge, and so on. At the end of this phase, there are Θ(n) historical paths in the
graph between each pair of vertices in L1 and L5. In the second phase, increases
are made on edges connecting L4 to L5 so that all shortest paths from L2 to
L6 go through the first edge, then through the second edge, and so on. During
this phase, for each pair of vertices in L1 and L6, Θ(n) paths connecting them
become locally historical, leading to a total of Θ(n3) new locally historical per
update. The update sequence can be made arbitrarily long by repeating the two
phases back and forth many times. In our tests, the two phases are repeated 20
times, yielding sequences of 40 · k updates.
Performance measures. To evaluate the performance of the algorithms consid-
ered in this computational study, we consider five measures:

• Path cleaning time: average time in milliseconds spent to perform path cleaning
during each operation. For DI, this is the time required to perform dummy
updates, while for T this is the time required to activate/deactivate levels;

• Update time: average time in milliseconds spent to update the data structures
during each operation; this time does not include the path cleaning time;

• Time per operation: average time in milliseconds per operation, including both
path cleaning and update time;

• Space: maximum amount of memory allocated by the algorithms during a
sequence of updates;

• Number of generated paths: average number of paths generated during an
operation.

Times were measured using the standard system call getrusage. Path cleaning
times and update times were measured separately by properly instrumenting the
code of DI and T.
Computing platform. We have conducted our experiments on a PC equipped
with a 2.4 GHz Intel Xeon Dual-Processor, 2 GB of physical RAM, 8 KB L1-
cache, and 256 KB L2-cache running Linux Kernel 2.4.21. All our implemen-
tations are coded in C using the Leonardo Library [2], and are homogeneously
written by the same people, i.e., with the same algorithmic and programming
skills. We compiled our codes with gcc 3.4.6 using the standard optimization
flag (-O3).
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Code availability. The experimental package used in this computational study,
including the source code of our implementations, the input generators, the real-
world test beds, the scripts used for running the experiments, and additional per-
formance charts are publicly available at the URL http://polluce.dia.unisa
.it/dsp/.

4 Implementation Tuning

Before comparing the two algorithms, we analyze them separately, and we discuss
how different settings of their parameters may affect their performance. Our
goal is to try to identify the best parameter setting for the different classes
of inputs considered in this study. As we will see, the performance is mostly
dependent on the path cleaning rate. In particular, we will study how the degree
of smoothing for DI and the activation delay for T affect their performance on
different input families. Our experiments showed a substantial difference between
worst-case inputs on one side, and real-world and random inputs on the other
side. For worst-case inputs, which exhibit a very high path generation rate, path
cleaning is very important in order to keep the size of the data structures and
the operation time small. On the other hand, path cleaning seems to be largely
useless in real-world and random inputs.

Algorithm DI. We have considered four variants of DI with decreasing degree of
smoothing: DI1 (full smoothing), DI0.7 (70% smoothing), DI0.3 (30% smooth-
ing), and DI0 (no smoothing). We conducted many experiments to investigate
the impact of path cleaning on the running time of those variants. Our experi-
ments show that, on random and real-world inputs, path cleaning appears to be
just an overhead and does not contribute substantially to reducing the number
of generated paths. In contrast, path cleaning becomes very important on worst-
case inputs: in this case, reducing the degree of smoothing causes a substantial
increase of the path generation rate, and consequently a clear degradation in
the update times. This is not surprising as the worst-case inputs are especially
designed to create many locally historical paths at each operation. An example
of this behavior is illustrated in the left hand side of Figure 1, which shows the
time per operation required by the four variants of algorithm DI with different
degrees of smoothing on three different graphs: a dense random graph with 500
vertices and 62500 edges (top), a sparse graph with 490 vertices and 1388 edges
representing the Maryland (MD) road network (middle), and a worst-case graph
with k + 1 = 70, i.e., 420 vertices and 14840 edges (bottom). The charts show
both the path cleaning time (light grey bars), and the update time (dark grey
bars).

Algorithm T. We have first observed experimentally that the level shift heuristic
consistently improves the running time of the T algorithm: an example of this is
illustrated in Figure 2 (a), where we consider random, real-world and worst-case
inputs. For this reason, in the remainder of this paper we assume that T includes
the level shift heuristic. To study how the activation delay heuristic affects the
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Experiment on random inputs (500 vertices, 62500 edges)
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Experiment on MD road network (490 vertices, 1388 edges)
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Experiment on worst-case inputs (420 vertices, 14840 edges)
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Fig. 1. Experiments on a random graph (top), Maryland road network (middle), and
a worst-case graph (bottom), aimed at studying the influence of path cleaning on the
time per operation of DI and T

time per operation, we have considered ten variants of algorithm T with delay
values: 0, 1, 2, 4, 8, 16, 64, 128, 256, and∞. We denote the corresponding variants
of T by T0, T1, T2, T4, T8, T16, T64, T128, T256, and T∞, respectively. We note
that T0 is just T without the activation delay heuristic. On the other side, T∞
performs no activation/deactivation, making the path system collapse into the
single level 1. On the right hand side of Figure 1, we show the running time of
the different variants of T on the same inputs as in the experiments reported
for DI. The charts show that T has a similar trend as DI, i.e., path cleaning
appears mostly as an overhead for random and real-world inputs: however, the
effect here is greatly amplified due to the more complex path system structure
of the algorithm. Indeed, avoiding path cleaning may result in speedups up to a
factor of 120 for the random graphs considered, and up to a factor of 30 for the
Maryland road network. On worst-case inputs, our experiment revealed instead
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T with and without the level shift heuristic
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Fig. 2. (a) Performance improvement resulting from the application of the level shift
heuristic to algorithm T. (b) Overall comparison of T and DI on worst-case graphs with
k + 1 = 50, 60, 70, 80.

a clear trade-off between path cleaning time and update time. Increasing the
values of the activation delay reduces the path cleaning rate, causing the number
of generated paths to grow, which in turn produces an increase of the update
times. However, the interaction between the two effects this time is much more
complicated: as we reduce the rate of path cleaning, we pay less overhead but we
incur in a steeper performance degradation. As a result, in this case the fastest
algorithm is not T0, as one may expect for this class of inputs. While the best
tradeoff appears to be at T16 for k + 1 = 70, we observed that the optimal
activation delay is likely to be a non-decreasing function of the graph size for
our worst-case inputs. We remark that this phenomenon is neither well captured
nor predicted by the theoretical analysis.

5 Overall Experimental Evaluation

The parameter tuning experiments of Section 4 suggested that path cleaning
can be an unnecessary overhead when dealing with input instances that do not
suffer from pathological patterns. However, a robust implementation should be
able to deal with heterogeneous and impredictable structural configurations,
and thus should be able to cope efficiently with worst-case inputs that force the
algorithms to generate many paths in their data structures. The most robust
variants of DI and T for the graph sizes considered in this study seem to be
DI0.7 and T16. In this section, we therefore study the relative performance of
these two implementations on different synthetic and real-world input families.

Worst-case inputs. Figure 2 (b) shows the relative performance of DI0.7 and T16
on our worst-case graphs. Notice that T16 is consistently faster. We recall that
DI and T build their path system by finding at each step a path that shares all
edges but the endpoints with two other paths already in the system. The better
behavior of T can be explained by observing that it generates paths by combining
only paths on a subset of the levels in the hierarchical path decomposition, rather
than all paths in the path system as DI does. For inputs that tend to generate
many paths, this can substantially reduce the update time.
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Experiment on random inputs (500 vertices, increasing m)

40

45

50

55

60

65

70

75

80

0 10000 20000 30000 40000 50000 60000 70000

Number of edges

T
im

e
 p

e
r 

o
p

e
ra

ti
o

n
 (

m
s
e
c
)

DI0.7

T16

Experiment on random inputs (500 vertices, increasing m)

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000 70000

Number of edges

S
p

a
c
e
 (

M
B

)

DI0.7

T16

Experiment on US road networks

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

Number of vertices

T
im

e
 p

e
r 

o
p

e
ra

ti
o

n
 (

m
s

e
c

)

DI0.7
T16

Experiment on US road networks

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1000

Number of vertices

S
p

a
c

e
 (

M
B

)

DI0.7
T16

Experiment on Internet AS networks

0

50

100

150

200

250

300

500 1000 1500 2000

Number of vertices

T
im

e
 p

e
r 

o
p

e
ra

ti
o

n
 (

m
s
e
c
)

DI0.7
T16

Experiment on Internet AS networks

0

200

400

600

800

1000

1200

1400

500 1000 1500 2000

Number of vertices

S
p

a
c

e
 (

M
B

)

DI0.7
T16

Fig. 3. Overall experimental evaluation of DI and T on random graphs (top), road
networks (middle), and Internet AS networks (bottom)

Random inputs. The top chart of Figure 3 shows the time and space require-
ments of T16 and DI0.7 on an evenly mixed sequence of 2000 random insertions
and deletions on random graphs with 500 vertices and number of edges increas-
ing from 3000 to 62500. We notice that the relative performance of the two
algorithms depends on the graph density: on sparse random graphs, DI0.7 out-
performs T16. On the other hand, T16 becomes faster than DI0.7 as the edge
density grows. This can be explained by the fact that dense graphs tend to gen-
erate many locally historical paths, and thus we can expect similar results as in
the case of worst-case inputs. Notice that the better time behavior of T16 is paid
in terms of a substantially higher space demand for maintaining a multi-level
path system.

Real-world inputs. The mid and bottom charts of Figure 3 show the time and
space requirements of T16 and DI0.7 on a sequence of 1000 random edge weight
updates on US road networks and AS networks. Since our real-world graphs are
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very sparse, the path generation rate is small, making DI0.7 faster than T16 as
in the case of sparse random graphs discussed above. While the maximum size
of our road graphs is 1000 vertices, the size of AS networks approaches 3000
vertices. We remark that on the largest AS instances the space demands of T
exceeded the available internal memory, thus incurring into space swap problems
that prevented us from completing the experiments.
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Abstract. We consider an optimization problem arising in the design
of controllers for OLED displays. Our objective is to minimize amplitude
of the electrical current through the diodes which has a direct impact
on the lifetime of such a display. Modeling the problem in mathematical
terms yields a class of network flow problems where we group the arcs
and pay in each group only for the arc carrying the maximum flow. We
develop (fully) combinatorial approximation heuristics suitable for being
implemented in the hardware of a control device that drives an OLED
display.

1 Introduction

Organic Light Emitting Diode (OLED) displays are considered as the displays of
the future. The image and video displayed is brilliant, has a very high contrast
and a viewing angle of nearly 180 degrees. It reacts within 10 microseconds
which is much faster than the eye can catch and is therefore perfect for video
applications. The display is flexible and above all can be produced at low cost.
One major reason why there are only small-size displays on the market is the
insufficient lifetime of state of the art OLED displays.

What causes this short lifetime? Briefly, this is because of the high electrical
currents through the diodes that occur with the traditional addressing tech-
niques. Though it seems that every pixel shines continuously with a certain
brightness, the images are displayed row-after-row. This works at a sufficiently
high frame rate since the perception of the eye is the average intensity emitted
by each diode. The problem is that this row-by-row activation scheme causes
long idle times of the diodes and extreme stress when they are activated.

To overcome this problem one considers now to activate two, or more con-
secutive rows simultaneously [1]. For passive matrix displays rows can only be
simultaneously displayed if their content is equal.

Therefore the goal is to decompose an image into several images, the overlay
(addition) of which is equal to the original image. Fig. 1 shows such a decom-
position. The first image (single) is traditionally displayed row-after-row. In the
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= + +

original single double

Fig. 1. Decomposition of an image with k = 2 such that every two rows of the double
parts have the same content and the sum of all row maxima is minimized

other two images (double) every two rows have the same content so that one
can display these rows simultaneously. As one can see in Fig. 1, the images on
the right hand side are much darker than the original one. The decomposition
should be in such a way that the amplitudes of the electrical current which are
needed to display the picture are as small as possible.

In this paper we develop an algorithm to tackle this optimization problem.
Our objective is to come up with a combinatorial approximation algorithm that
will be implemented in hardware to actually drive such an OLED display. This
imposes some restrictions on the methods and techniques we shall use. First of
all, such an algorithm has to compute a feasible solution in realtime, i.e. below
the perception of a human eye. Moreover, it should be implemented on a chip of
low cost meaning that we are not able to e.g. use a general purpose LP solver
or a general purpose CPU with an IEEE floating point unit. Therefore, we look
for algorithms that are sufficiently simple and easy to implement. Moreover,
the algorithms should not suffer from numerical instabilities. Also exact rational
arithmetic is not an option for such a realtime application. We rather want to use
only fixed precision numbertypes, i.e. integers of fixed size. Hence, we aim at a
fully combinatorial algorithm using only addition, subtraction, and comparison.

Contributions of This Paper

First, we model this optimization problem as a certain network-flow problem
where the arcs are partitioned into groups and only the arc with the highest
flow in each group is charged. This model yields an equivalent formulation as a
covering (integer) linear program with an exponential number of constraints. We
develop linear time separation routines which are required to solve the problem
exactly with the ellipsoid method [2, 3] or with a cutting-plane approach [4]
or to solve it approximately [5] with known frameworks. We then propose an
efficient fully combinatorial heuristic which is based on the separation of these
constraints and satisfies the above requirements. Our implementation shows that
this heuristic is very close to the optimum.

2 Technical Background

To understand the objective of our optimization problem, we need to explain
in an informal way how OLED displays work. An OLED display has a matrix
structure with n rows and m columns. At any crossover between a row and a
column there is a vertical diode which works as a pixel.
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The image itself is given as an integral n ×m matrix (rij) ∈ {0, . . . , "}n×m

representing its RGB values. The number " determines the color depth, e.g.
" = 255 for 16.7 million colors. Since there are only n + m contacts available, a
specific addressing technique is needed. We explain one technique (pulse width
modulation) in a simplified way in the following. Consider the contacts for the
rows and columns as switches. If the switch of row i and column j is closed,
the pixel (i, j) shines with a brightness or intensity I which is common to all
row-column pairs. An image has to be displayed within a certain time frame Tf .
The value rij determines that within the time-frame Tf , the switches i and j
have to be simultaneously closed for the time

tij = rij ·
Tf

I
(1)

in total. At a sufficient high frame rate e.g. 50 Hz, the perception by the eye is
the average value of the light.

Currently, drivers for OLED displays display the image in a row-by-row fash-
ion. This means that the switches for the rows are activated one after the other.
While row i is active, column j has to be active for the time tij so row i is
finished after max{tij | j = 1, . . . ,m} time units. The time which is required
to display the image is consequently T (I) =

∑n
i=1 max{tij | j = 1, . . . ,m}. The

intensity I has to be high enough such that T (I) ≤ Tf holds.
Equation (1) shows that the time tij is anti-proportional to the value I. The

aforementioned short lifetime of todays OLED displays is mainly due to the
high value of I which is necessary to display images with a sufficient frame rate.
This means that the peak energy which has to be emitted by the diodes of the
display is very high while on the other hand, the diodes stay idle most of the
time, see [6]. The high amplitudes of electrical current which alternate with long
idle times put the diodes under a lot of stress, which results in a short lifetime.

In this paper, we aim to overcome this problem by a different driving mech-
anism. The simple but crucial observation is that, if two rows have the same
content, we could drive them simultaneously and thereby we would save half of
the time necessary for the two rows. Therefore the value of I could be reduced
until T (I) = Tf .

109 238 28
112 237 28
150 234 25
189 232 22
227 229 19

=

0 82 25
0 82 25
0 41 22
0 41 22
0 0 0

+

0 0 0
112 155 3
112 155 3
189 191 0
189 191 0

+

109 156 3
0 0 0
38 38 0
0 0 0
38 38 19

Fig. 2. An example decomposition

Consider the example in Fig. 2. Suppose here that initially Tf/I = 1. If
the image is displayed row-by-row, then the minimum time which is needed to
display the image is 238 + 237 + 234 + 232 + 229 = 1170 time units. But we
can do better by a suitable decomposition of the image into three matrices. In
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the first one every even row is equal to its odd predecessor and in the second
one every odd row is equal to its even predecessor with zero-rows, where there is
no predecessor available respectively. The remainder is put into an offset matrix
that is driven in the traditional way. By driving the equal rows simultaneously,
we require only 82+41+155+191+156+38+38 = 701 time units. This means
that we could reduce I and therefore the amplitude of the electrical current by
roughly 40%.

We could save even more by driving 3, 4, 5 . . . rows simultaneously. Of course
there is a saturation somewhere, unless the image is totally homogeneous. On
our benchmark pictures, we observed that it is not worth to consider more than
6 simultaneously driven rows.

3 The Network Model

For the sake of simplicity, we first consider the case in which two consecutive rows
can be activated simultaneously. Let R = (rij) ∈ {0, . . . , "}n×m be the matrix
representing the picture. To decompose R we need to find matrices F (1) = (f (1)

ij )

and F (2) = (f (2)
ij ) where F (1) represents the offset part and F (2) the common part.

More precisely, the i-th row of matrix F (2) represents the common part of rows i
and i + 1. In order to get a valid decomposition of R, the matrices F (1) and F (2)

must fulfill the constraint f
(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for i = 1, . . . , n and j =

1, . . . ,m, where we now and in the following use the convention to simply omit
terms with indices running out of bounds. The fixed boundary conditions in our
application require f (1)

1j +f
(2)
1j = r1j and f

(1)
nj +f

(2)
n−1,j = rnj for the first and the last

row, respectively. Notice that the matrix F (2) has only n− 1 rows. We sometimes
assume that there is in addition a row numbered n containing only zeros.

Since we cannot produce “negative” light we require also non-negativity of
the variables f

(�)
ij ≥ 0 where we now and in the following use the superscript

� = 1, 2 for statements that hold for both matrices. The goal is to find an
integral decomposition that minimizes

n∑
i=1

max{f (1)
ij : 1 ≤ j ≤ m}+

n−1∑
i=1

max{f (2)
ij : 1 ≤ j ≤ m} .

This problem can be formulated as an integer linear program by replacing the
objective by

∑n
i=1 u

(1)
i +

∑n−1
i=1 u

(2)
i and by adding the constraints f

(�)
ij ≤ u

(�)
i .

This yields

min
n∑

i=1

u
(1)
i +

n−1∑
i=1

u
(2)
i

s.t. f
(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for all i, j (2)

f
(�)
ij ≤ u

(�)
i for all i, j, �

f
(�)
ij ∈ Z≥0 for all i, j, �
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The corresponding linear programming relaxation is not integral in general as
an example with

R =

⎛⎝1 0 1
1 1 1
0 1 1

⎞⎠
shows. The optimal solution is obtained by setting each u

(�)
i = 1

2 yielding an
objective value of 5

2 .
Observe that the constraints (2) can be represented by a blockdiagonal 0/1-

matrix with one block for each j = 1, . . . ,m. We thus have m blocks with
identical structure of the form illustrated on the left of equation (3).⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ �

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 0 0 0 0 0
−1 0 1 1 0 0 0 0 0
0 −1 −1 0 1 1 0 0 0
0 0 0 −1 −1 0 1 1 0
0 0 0 0 0 −1 −1 0 1
0 0 0 0 0 0 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

Notice that the columns have the consecutive ones property. Hence, there is a
natural transformation by row-operations (preserving the solution space like in
Gaussian elimination) into a node-arc incidence matrix, see, e.g. [7]. In other
words, we add a zero dummy row at the end and subtract from each row its
predecessor and obtain in each column exactly one 1 and one −1 as depicted
on the right in equation (3). Recall that this matrix is just the block for one
j ∈ {1, . . . ,m}. The resulting graph G = (V,A), which is common to all j,
is called the displaygraph; see Fig. 3 for an illustration. The displaygraph has
node set V = {1, . . . , n + 1} and arcs (i, i + 1) for i = 1, . . . , n and (i, i + 2) for
i = 1, . . . , n− 1.

In the forthcoming, we refer to the u variables as capacities. The new right-
hand sides of the equality constraints which we call demands are given by dj(i) =
rij − ri−1,j . The generalization when we drive k ≥ 2 consecutive lines together
is straightforward and depicted in Fig. 3.

The optimization problem can now be understood as follows. Assign integral
capacities u : A → Z≥0 to the arcs of the displaygraph at minimum cost (each
unit of capacity costs 1 for each arc) such that each network flow problem defined
by the displaygraph together with the demands dj : V → Z has a feasible
solution for each j = 1, . . . ,m. Let δout(X) denote the outgoing arcs of node
set X ⊂ V . We use the standard notation u(δout(X)) and d(X) for the sums
over the corresponding capacities and demands respectively. It follows now from
MaxFlow/MinCut duality that our optimization problem can be rewritten as
(cf. chapter 11 in [8])

min
∑
a∈A

u(a)

s.t. u(δout(X)) ≥ dj(X) for all X ⊂ V , for all j (4)

u ∈ Z≥0
A
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Fig. 3. Examples for a displaygraph with n = 5, k = 2, 3, 4

For general graphs, this problem contains DirectedSteinerTree as a spe-
cial case. It remains NP-complete for directed acyclic graphs by a reduction to
VertexCover. Note that there is a trivial k-approximation with respect to the
displaygraph when we just use the singleline variables.

Since the number of cuts in a graph is exponential in its size, we have to look
for an efficient way to solve the separation problem.

4 Efficient Algorithms for the Separation Problem

Finding violated inequalities for a given assignment to the variables is a key
idea for solving linear programs. It is well known [9] that the linear optimization
problem over a given polyhedron is polynomial time equivalent to the separa-
tion problem for this polyhedron. Also our heuristics (see Sec. 5) rely on the
solution of the separation problem for inequalities (4) and updating the solution
iteratively until we have found a feasible solution. In our setting, the separation
problem is the following:

Given a capacity assignment u ≥ 0 of the displaygraph, determine
whether u is feasible and if not, compute a subset X ⊂ V of the nodes in
the displaygraph such that there is a j ∈ {1, . . . ,m} with u(δout(X)) <
dj(X).

4.1 Separation by MaxFlow/MinCut

Observe that we can consider the separation problem for each column j ∈
{1, . . . ,m} independently. For a given j this can be done with a MaxFlow
computation as follows. We construct a network Gj by adding new vertices s
and t to the displaygraph. The capacities of the arcs in the displaygraph are
given by u. There is an arc (s, i) if dj(i) > 0 with capacity dj(i) and there is an
arc (i, t) if dj(i) < 0 with capacity −dj(i).

If the maximum s, t-flow in this network is less than δj =
∑

dj(i)>0 dj(i),
then the vertices of a corresponding MinCut which belong to the displaygraph
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comprise a set X ⊂ V with u(δout(X)) < dj(X). If the value of a MaxFlow in
Gj is equal to δj for all j = 1, . . . ,m, then the capacity assignment u is feasible.

In our implementation we iteratively increase the capacity of one arc by some
integral constant c. We use a Blocking Flow approach in our implementation.
Thereby, we can benefit from an efficient treatment of capacity adjacent prob-
lems, see, e.g. [7]. Note that in this case there only exist at most c augmenting
paths and moreover these paths have to take the adjacent arc. Since each of these
paths can be found in linear time by depth-first search, the update takes only
O(n) for one column. In practice, the performance is even better since on average
the paths are rather short. Moreover, we have to consider only the columns that
have this arc in their current MinCut since otherwise the additional capacity
would not have any effect.

Theorem 1. Given two capacity adjacent assignments 0 ≤ u ≤ ū, i.e. u and ū
differ in exactly one arc, and suppose that one is given a maximum flow f w.r.t.
u, then the separation problem can be solved in linear time. More precisely one
can compute a maximum flow f̄ ≤ ū and a minimum cut X̄ ⊂ V with respect to
ū in linear time.

One issue of this approach is that we maintain the flow variables f . On ordinary
PC hardware this is an advantage since we have to compute the decomposition
of the image which is represented by the flow variables at the end anyways.
But we need roughly k times more memory than the input size which makes
the implementation on a chip more expensive. We address this issue in the next
section.

4.2 A Linear Time Algorithm for Fixed k

The number of simultaneously activated lines k is relatively small, in fact up to 6.
We now show how to solve the separation problem for fixed k in linear time. The
key feature of the displaygraph which allows such an efficient algorithm is the
following. The arcs are of the form (i, i′), where i′ ≤ i + k. It is sufficient to
find for each j = 1, . . . ,m a subset X ⊂ V such that u(δout(X)) − dj(X) is as
small as possible. If one of these values is negative, we have found a violated
inequality. Otherwise, all constraints are fulfilled.

In order to find such a subset X , we partition the vertices V = {1, . . . , n+ 1}
into consecutive blocks B1, . . . , B�(n+1)/k� of size k. That is, Bi := {(i − 1) ·
k + 1, (i − 1) · k + 2, . . . , i · k} for i = 1, . . . , �(n + 1)/k� and B�(n+1)/k� :=
{�(n + 1)/k�+ 1, . . . , n + 1} if k does not divide n + 1.

We now consider a directed graph G = (V,A) where the vertex set V contains
all subsets of the sets Bi and there is an arc (S1, S2) if there exists an index i
such that S1 ⊆ Bi and S2 ⊆ Bi+1. Furthermore G has an additional vertex s
and an additional vertex t together with arcs (s, S) for each S ⊆ B1 and (S, t)
for each S ⊆ B�(n+1)/k�. A path from s to t specifies a subset X ⊆ V of the
displaygraph in a natural way (and also vice versa): Given a path from s to t,
take the union of the subsets represented by the inner vertices of the path.
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B1 B2 B3

00 00 00

s 01 01 01 t

10 10 10

11 11 11

Fig. 4. Solving the separation problem by a shortest path computation in a DAG (here
k = 2)

It remains to define arc weights in G such that the weight of such a path
is exactly u(δout(X)) − dj(X). For this consider an arc (S1, S2) with head and
tail different from s and t respectively. The weight of this arc is defined as
−

∑
i∈S2

dj(i) + u(S1 : S2), where S1 : S2 denotes the subset of arcs of the
displaygraph which run from S1 to S2. The weight of an arc (s, S) is defined as
−

∑
i∈S dj(i) and the weight of an arc (S, t) is zero.

In this way, the weight of a path from s to t in G is equal to the value
u(δout(X))− dj(X), where X is the set which is represented by the path. Thus,
the separation problem can be reduced to m shortest path problems in graph G

with roughly 2k · (n + 1)/k = O(n) vertices, if k is fixed. We have proved the
following theorem.

Theorem 2. The separation problem for the inequalities (4) can be solved in
linear time for fixed k.

5 Implementation

In practice we have a display of fixed size and the requirement on the run-
ning time to be below the perception of a human eye. According to this time
constraint, we have to design our algorithm such that the cost of the integrated
circuit which implements it is minimized. Parallelization, e.g. on several columns
concurrently, and reusing results of certain computations, e.g. shortest path trees
of previous iterations, decrease the running time but increase the complexity and
memory usage of the circuit and hence the production costs.

Since we use only fixed precision datatypes, we consider the variables to be
integral all the time. A higher intermediate precision is easily achieved by scaling
the constraints, i.e. the demands. Briefly speaking our heuristics work as follows.
We start with an initial assignment of the capacities returned by the function
Initialize. We will discuss it later. Consider it to simply return the zero vector
for now. Afterwards, we iterate until we find a feasible solution. In each iteration,
we first solve the separation problem. Since we have to compute the lifting to
the flow-variables at the end we use the blocking flow approach for this task.
Depending on the outcome and on the chosen strategy, we augment one or several
capacities. In Fig. 5, we describe this general framework of our heuristics with
pseudo-code.
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Input: d = (d1, . . . , dm)
Output: f

f = 0
u = Initialize(d)
while(f is not feasible){

f = MaxFlow(V, A, d, u)
C = MinCut(V, A, d, u)
for(k = 1, . . . , p){

u(k) = u(k) + Δu(k, C)
}

}
returnf

Fig. 5. Framework for the approximation heuristics

In short, d denotes the demands of the nodes and thereby implicitly defines
the underlying graph as we consider k to be fixed. The notion of the function
Δu covers several variants of our heuristics for augmenting the capacities.

5.1 Capacity Augmentation

After having found a violated cut, the question arises which capacity variables to
augment. Unlike in the framework of Garg and Könemann [5] where all capacities
of the cut would be multiplied with a constant, we select only one variable to
augment since we want to benefit from the capacity adjacency mentioned before.

Our strategy is to augment the most prospective variable that is in any of the
cuts of the different columns. We measure the potential impact of a capacity by
the number of different columns, i.e. cuts, it appears in. This would be equivalent
to summing up all the cuts over all columns which gives us a valid violated
inequality too. The basic greedy approach selects the capacity having the highest
potential impact, i.e. to increase the capacity with the highest coefficient in the
sum of the cuts. A slightly different variant of this approach takes only the
variables into account which appear in the cut of a column with the maximum
deficit (referred to as max-column greedy update), i.e. that attains the minimum
in the separation problem.

Since we maintain the integrality of the variables throughout the algorithm,
we have to increase the variables at least by 1 in each iteration. With this value,
the running time is then proportional to the size of the display and the difference
between the achieved objective value and the one from the initial solution. By
adding a greater constant or a certain fraction of the previous capacity like in the
framework of Garg and Könemann, the running time would improve, however
we observed that the quality of our approximation deteriorated.

5.2 Initialization

The naive way to initialize the capacities is to set them to the zero vector.
The other extremal case would be to solve the LP and round up each frac-
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tional capacity with the result that we have just one iteration where we com-
pute the flow variables. Though, we are within an additive error not greater
than the number of variables then, we could round down instead of rounding
up and solve or approximate the remaining 0/1 integer program with a possi-
bly better solution for the whole problem. However, as mentioned before solving
(or approximating) linear programs involving fractional numbers is not really
what we want. It is natural to ask whether there is a way inbetween that al-
lows us to stick with integers and can be attacked with a fully combinatorial
algorithm.

Indeed, if we restrict ourselves to easy constraints, i.e. constraints describing
an integral polyhedron, we accomplish the first goal of remaining integral. If
we only consider constraints permitting fully combinatorial algorithms (e.g. flow
problems or their duals) then we could also achieve the second goal.

Having solved such an easy subproblem, we can initialize our heuristics with
the thereby computed solution. The next theorem, which we prove in the full
version of this paper, identifies such an easy subset of the constraints.

Theorem 3. The linear program (4) restricted to the setsystem

C =
n⋃

i=1

{Xi, Yi, Xi ∩ Yi, Xi ∪ Yi : Xi = {1, . . . , i}, Yi = {i, i+ 2, i+ 3, . . . , n + 1}}

has an integral optimal solution for k = 2 which can be found in O(n) time by a
fully combinatorial algorithm.

The proof of this theorem is based on the observation that, after a suitable re-
ordering of the variables, the constraint matrix has the consecutive ones property
and that the optimization problem can be solved via a shortest path computation
in a directed acyclic graph. This consecutive ones property does not hold for
k > 2. However, we can restore this property by adding the missing capacities
on the left-hand-side of the inequalities and the corresponding lower bounds on
the right-hand-side giving (weaker) valid inequalities yielding an approximate
solution.

6 Computational Results

As of yet the computational results are based on ordinary PC hardware. There-
fore, we only present the running times of the variant that performs best on a
Pentium M with 2GHz and 2MB L2 cache.

As a testset we used the portraits of 197 employees of the MPI. While the
original images have a resolution of 180 × 240, we scaled them down to n =
60, 90, 120, 150 keeping the aspect ratio such that we have m = 4n for all im-
ages. We observed that, among the different initialization and augmentation
strategies, a combination of the aforementioned max-column greedy update and
the initialization using the easy constraints performs best. We recommend these
strategies on the basis of an implementation on PC-hardware.
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Fig. 6. We initialize the capacities by the easy constraints (ec), used a blocking flow
algorithm (bf), performed the capacity augmentation by the maximum column greedy
update method (mcgu), and k = 2, 4, 6. The left plot shows the dependence of the
running time on n in case of k = 2. The inset in the right graph shows the average
ratios and their standard deviations for k = 2, 4, 6 respectively.
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Fig. 7. Using safe lower bounds for initialization yields better ratios (right) but worser
running times (left)

On the left of Fig. 6, one can see the dependence of the running time on
the input size together with the distribution of the instances. We connected the
median running time to guide the eye. The fit of these medians with respect to
a power function yields t = 21μs · n2.23 which is almost linear in the number of
pixels. The graph on the right of Fig. 6 has on its x-axis the initial intensity I and
on the y-axis the reduced intensity I ′ which we achieve with multiline addressing
using our algorithm. The black dots are the results obtained by addressing two
rows simultaneously, i.e. for k = 2. Here one can see that the average ratio I ′/I
is roughly 0.545 with a standard deviation of 0.034. The green squares are the
results for k = 4. Here the average ratio I ′/I is 0.385± 0.065. The red triangles
represent k = 6 with I ′/I = 0.372±0.100. The theoretical lower bound for these
ratios being 1/k.
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Not using the easy constraints but safe lower bounds yields slightly better
ratios as depicted in the inset of the right graph of Fig. 7. But the running
time grows faster with the number of pixels as one can see in the left graph
of Fig. 7 where the three top curves belong to the median runtimes using save
lower bounds with k = 2, 4, 6 respectively. Whereas the median runtimes using
the easy constraint initialization and k = 2, 4, 6 yield the three lower curves.
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Abstract. Data Compression is one of the most challenging arenas both
for algorithm design and engineering. This is particularly true for Bur-
rows and Wheeler Compression a technique that is important in itself
and for the design of compressed indexes. There has been considerable
debate on how to design and engineer compression algorithms based on
the BWT paradigm. In particular, Move-to-Front Encoding is generally
believed to be an “inefficient” part of the Burrows-Wheeler compression
process. However, only recently two theoretically superior alternatives to
Move-to-Front have been proposed, namely Compression Boosting and
Wavelet Trees. The main contribution of this paper is to provide the first
experimental comparison of these three techniques, giving a much needed
methodological contribution to the current debate. We do so by provid-
ing a carefully engineered compression boosting library that can be used,
on the one hand, to investigate the myriad new compression algorithms
that can be based on boosting, and on the other hand, to make the first
experimental assessment of how Move-to-Front behaves with respect to
its recently proposed competitors. The main conclusion is that Boosting,
Wavelet Trees and Move-to-Front yield quite close compression perfor-
mance. Finally, our extensive experimental study of boosting technique
brings to light a new fact overlooked in 10 years of experiments in the
area: a fast adapting order-zero compressor is enough to provide state of
the art BWT compression by simply compressing the run length encoded
transform. In other words, Move-to-Front, Wavelet Trees, and Boosters
can all be by-passed by a fast learner.
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1 Introduction

In the quest for the ultimate data compressor, Algorithmic Theory and Engi-
neering go hand in hand. This point is well illustrated by the amount of results
and implementations originated by the fundamental results by Lempel and Ziv.
A more recent example is provided by the fundamental contributions given by
Burrows and Wheeler to data compression [3], via their transform (denoted for
short bwt). In their seminal paper Burrows and Wheeler proposed to compress
the output of the bwt using Move-to-Front Encoding (shortly mtf), followed by
an order zero compressor (usually Arithmetic or Huffman coding). As pointed
out by Fenwick [5] in the first systematic study of that new type of compression,
the technique is so powerful that it yields nearly state-of-the-art compression re-
sults without any particularly sophisticated engineering of the coding step. This
should be contrasted with PPM-based compressors that involve quite a bit of
engineering. From that point on, the research on bwt compression has focused
on two aspects: faster bwt computation, and the identification and exploitation
of potential inefficiencies in the use of mtf. While substantial progress has been
made on the first point, both theoretically and experimentally (e.g. [2, 17]), the
second point experienced a plethora of heuristically-designed proposals (see [1, 4]
and references therein) which improved over the original proposal but often
lacked of analytical justification.

Recently, two theoretical results [7, 8] have shed new light on the role of mtf
within the bwt-based compression paradigm, paving the way to the (analytically
justified) design of more powerful bwt-based compressors. In particular, [8] pro-
posed a new technique, named compression boosting, that fully uses the power
of bwt to show that the performance of any order zero compressor can be au-
tomatically, and optimally, boosted to higher order entropy compression. On
the other hand, [7] proved that combining the bwt with the Wavelet Tree data
structure [10] we can achieve high-order entropy bounds without using mtf or
the boosting technique. At the same time, a novel and very recent analysis of
classic bwt compression [12] showed that mtf may not be as inefficient as initially
thought. Summing this with the fact that the theoretical results in [7, 8] require
some sophisticated algorithmic machinery, it is not at all clear how much com-
putational/compression gain can be achieved by shaving off the mtf-step from
the bwt-based compressors.

The above is the main question addressed in the present paper, whose key
contribution is first of all methodological. We provide the first carefully engi-
neered compression boosting library that can be used, on the one hand, to in-
vestigate the myriad new compression algorithms that can be based on boost-
ing, and on the other hand, to make the first experimental assessment of how
mtf behaves with respect to its recently proposed competitors: Boosting and
Wavelet Trees. The boosting library is available under the GPL license at the
page http://www.mfn.unipmn.it/˜manzini/boosting and it is highly modular in
the sense that it can be used to create a powerful high order compressor even
without any knowledge of the bwt.
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In order to highlight our additional technical contributions, we need to re-
call a few facts about compression boosting [8]. Additional details are given in
Section 3. The boosting technique builds upon three main ingredients: bwt, the
Suffix Tree data structure, and a greedy algorithm to process them. Specifically,
it is shown that there exists a proper partition of the bwt of a string s exhibiting
a deep combinatorial relation with the k-th order entropy of s. That partition
can be identified via a greedy processing of the suffix tree of s. The final com-
pressed string is then obtained by compressing individually each substring of the
partition by means of the base (order zero) compressor A we wish to boost. The
proper design of a compression booster is a bit trickier than it sounds:

(A) The greedy algorithm alluded to before is a bottom up visit of the suffix
tree. In practice, on large files, the memory requirements for the construction
of the suffix tree would be prohibitively large. We use suffix arrays instead and
procedures that efficiently simulate the bottom up visit of the suffix tree [13].

(B) Given the algorithm A we wish to boost, we also need an objective function
that estimates how well A compresses a given string. In [8], the objective function
is given in terms of two parameters λ and μ, and the order zero empirical entropy
of the string (see Section 3 for details). In practice, λ and μ may either be not
available or be too conservative. This point is discussed in Section 4, where we
propose two cost models and the relative objective functions.

(C) Another important aspect of the boosting process is the ability of the algo-
rithm A to quickly adapt to the statistics of a string to be compressed. Faster
adaptation means better compression. This learning process is usually governed
by parameters establishing how fast A “forgets the past”. We limit our experi-
mentation to range coding and arithmetic coding. The somewhat intuitive, yet
surprising, results are reported in Section 5 and outlined in point (F) below.

Using our library we have compared the performance of the compression
booster against bwt compressors based on mtf (e.g. Bzip2 [19] and variants),
bwt compressors based on Wavelet Trees (e.g., Wzip [9]), and state-of-the-art
PPM compressors (e.g. PPMd [21]). We show that:

(D) As predicted by Theory [8], boosting is superior to classic bwt approaches
that use mtf in terms of compression ratio but not by much. It is also slower, as
it is to be expected, because of the significant time cost for building the optimal
bwt-partition (as observed in B). Therefore, those results give a strong indication
that mtf may actually be a time-efficient way to effectively “approximate” the
optimal partition computed by the boosting technique.

(E) As predicted by Theory [7, 10, 11], the simple combination of bwt with
Wavelet Trees is effective both in time and compression ratio, and does not
benefit from the use of the booster. However, the Wavelet Tree approach is out-
performed by classic bwt approaches that use mtf. This further confirms the
effectiveness in time and compression ratio of mtf, and leaves open the problem
of investigating the more powerful approach proposed in [7], namely Generalized
Wavelet Trees, which are based on sophisticated combinations of binary (like,



The Engineering of a Compression Boosting Library 759

Run Length encoders) versus non-binary (like, Huffman or Arithmetic encoders)
compressors and Wavelet Trees of properly-designed shapes.
(F) The experiments performed to estimate the best adaptation parameters for
range and arithmetic coding show clearly that a fast adaptation yields state-
of-the-art compression by simply compressing a run length encoded bwt. This
is somewhat intuitive, yet surprising: to our knowledge no one observed exper-
imentally the superiority of this strategy w.r.t. mtf, and no theoretical analysis
has explained or suggested such behavior. Moreover, this result comes from the
stronger finding that for a fast adapting range coder the optimal partition com-
ing out of the booster is the bwt itself (data not shown, due to space limitations).
That is, the strategy is optimal with respect to the boosting paradigm.
(G) All the bwt-based compressors we tested were inferior, in terms of compres-
sion ratio, to the highly engineered PPMd tool. The principle behind bwt and
PPM techniques is the same: discover and encode according to the “best” con-
texts. However, bwt-based algorithms have the advantage of knowing the entire
string, while PPMd “discovers” good contexts on-line. Yet bwt-based algorithms
do not perform as well. This yields an extremely intriguing engineering problem
for data compression practitioners. Note that there is a very good reason to
stick with bwt-based compressors instead of embracing the, apparently superior,
PPM-based compressors: the reason is that bwt-based compressors are a key tool
for the construction of compressed indices which (informally) are compressed files
offering the additional capability of very fast full-text search (see [18] for formal
definitions and a comprehensive survey).

In conclusion our experiments show that Boosting, Wavelet Trees and mtf
yield quite close compression performance. However, the boosting technique ap-
pears to be more robust and works well even with less effective order zero com-
pressors (such as Huffman coding). Moreover, when used with range/arithmetic
coding the boosting technique yields excellent compression somewhat irrespec-
tive of how fast the order-zero compressor adapts to the statistics of the string.
These positive features are achieved using more resources (time and space) dur-
ing compression: nevertheless our results show that a careful implementation of
boosting can handle efficiently even very large files.

2 Background and Notation

Let s be a string over the alphabet Σ = {a1, . . . , ah} and, for each ai ∈ Σ, let
ni be the number of occurrences of ai in s. The 0-th order empirical entropy of
the string s is defined as1 H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is well known

that H0 is the maximum compression we can achieve using a fixed codeword for
each alphabet symbol. We can achieve a greater compression if the codeword we
use for each symbol depends on the k symbols preceding it, since the maximum
compression is now bounded by the k-th order entropy Hk(s) (see [15] for the
formal definition). For highly compressible strings, |s|Hk(s) fails to provide a

1 We assume that all logarithms are taken to the base 2 and 0 log 0 = 0.
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Fig. 1. The bwt matrix (left) and the suffix tree (right) for the string s = mississippi$.
Note that the output of the bwt is the last column of the bwt matrix, i.e., ipssm$pissii.

reasonable bound to the performance of compression algorithms (see discussion
in [8, 15]). For that reason, [15] introduced the notion of 0-th order modified
empirical entropy H∗

0 (s) which has the property that if |s| > 0, |s|H∗
0 (s) is at

least equal to the number of bits needed to write down the length of s in binary.
The k-th order modified empirical entropy H∗

k is then defined in terms of H∗
0 as

the maximum compression we can achieve by looking at no more than k symbols
preceding the one to be compressed.

Given a string s, the Burrows-Wheeler transform (bwt for short) consists
of three basic steps: (1) append to the end of s a special symbol $ smaller
than any other symbol in Σ; (2) form a conceptual matrix M whose rows are
the cyclic shifts of the string s$, sorted in lexicographic order; (3) construct
the transformed text ŝ = bwt(s) by taking the last column of M (see Fig. 1).
Although it is not obvious, from ŝ we can always recover s, see [3] for details.
The power of the bwt rests on the fact that equal contexts (substrings) of s are
grouped together resulting in a few clusters of distinct symbols in bwt(s). That
clustering makes bwt(s) a better string to compress than s. In their seminal
paper Burrows and Wheeler proposed to compress the output of the bwt using
Move-to-Front Encoding2 (shortly mtf), followed by an order zero compressor
(Arithmetic or Huffman coding). In [12] it is shown that if we use an order zero
compressor A such that for any string x we have |A(x)| ≤ |x|H0(x) + c|x|, then
the bwt followed by mtf, followed by A produces an output bounded by

μ|s|Hk(s) + (log ζ(μ) + c)|s|+ log |s|+ μgk (1)

where ζ is the Riemann zeta function. The bound (1) holds for any k ≥ 0 and
μ > 1. In [15] it is shown that if we use Run Length Encoding (shortly rle)
between mtf and the order zero compressor, the output is bounded by

(5 + ε)|s|H∗
k (s) + log2 |s|+ g′k (2)

2 Move-to-Front transforms the input encoding each symbol with the number of dis-
tinct symbols seen since its last occurrence, see [3] for details.
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for any k ≥ 0 and ε ≈ 10−2. The bottom line is that combining the Burrows-
Wheeler transform with mtf and an order zero compressor we can achieve the
k-th order entropy, Hk or H∗

k , simultaneously for any k ≥ 0. Note however, that
the coefficient in front of the k-th order entropy in (1) and (2) is greater than 1
whereas we are assuming that A achieves H0 without any multiplicative constant.
This means that there is a small inefficiency as we go from H0 and H∗

0 to Hk

and H∗
k . It is an open question whether this inefficiency can be removed with a

more detailed analysis or is inherent in the use of Move-to-Front encoding.

3 A BWT-Based Compression Booster

Recently [8] has described a bwt-based compression booster that, starting from
an order zero compressor, achieves the k-th order entropy without the inefficiency
found in the mtf-based approach. In this section we quickly review how the
boosting algorithm works; the details and proofs can be found in [8].

A crucial ingredient of the compression booster is the relationship between
the bwt matrix and the suffix tree data structure. Let T denote the suffix tree
of the string s$. T has |s| + 1 leaves, one per suffix of s$, and edges labeled
with substrings of s$ (see Figure 1). Any node u of T has implicitly associated a
substring of s$, given by the concatenation of the edge labels on the downward
path from the root of T to u. In that implicit association, the leaves of T
correspond to the suffixes of s$. We assume that the suffix tree edges are sorted
lexicographically. Since each row of the bwt matrix is prefixed by one suffix of s$
and rows are lexicographically sorted, the i-th leaf (counting from the left) of the
suffix tree corresponds to the i-th row of the bwt matrix. We associate the i-th
leaf of T with the i-th symbol of the string ŝ = bwt(s). The symbol associated
to the leaf v is thus the symbol preceding in s the substring of s$ associated with
v. Such symbols are represented inside circles in Fig. 1. If we write �̂i to denote
the symbol associated to the i-th leaf, from the above discussion, it follows that
ŝ = �̂1�̂2 · · · �̂|s|+1 (see Fig. 1 for an example).

For any suffix tree node u, let ŝ〈u〉 denote the substring of ŝ obtained con-
catenating, from left to right, the symbols associated to the leaves descending
from node u. We say that a subset L of T ’s nodes is a leaf cover if every leaf
of the suffix tree has a unique ancestor in L. Any leaf cover L = {u1, . . . , up}
naturally induces a partition of the leaves of T namely ŝ〈u1〉, . . . , ŝ〈up〉. Because
of the relationship between T and the bwt matrix this is also a partition of ŝ.

Let C denote a function which associates to every string x over Σ ∪ {$} the
positive real value C(x). For any leaf cover L, we define its cost as: C(L) =∑

u∈L C(ŝ〈u〉). In [8] it is shown a linear time greedy algorithm that computes a
leaf cover Lmin of minimum cost. That is, Lmin is such that C(Lmin) ≤ C(L), for
any leaf cover L. Lmin is called an optimal leaf cover and we say that Lmin induces
an optimal partition of ŝ with respect to the cost function C. The relevance of
Lmin for achieving the k-th order entropy derives by the following Theorem [8].

Theorem 1. Let A denote an order zero compressor such that for any string
x |A(x)| ≤ λ|x| H∗

0 (x) + μ where λ and μ are constants. Let Lmin denote an
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optimal partition of ŝ with respect to C(x) = λ|x|H∗
0 (x)+μ. If we use algorithm

A to compress the substrings of the optimal partition induced by Lmin, the overall
output size is bounded by λ|s| H∗

k (s) + gk bits for any k ≥ 0, where gk only
depends on the alphabet size |Σ|. A similar result holds for Hk as well. ��

4 The Compression Boosting Library

The efficient implementation of the compression booster algorithm is a non trivial
engineering task. The main challenge is avoiding the explicit construction of
the suffix tree which would require an unpractically large amount of working
memory. We now detail our implementation discussing its space requirements
in the “real world” model where we assume that every character takes one byte
and every integer takes 4 bytes. Let n = |s|. We first compute the suffix array of
s using the ds algorithm [17] that has a peak memory usage of only 5.03n bytes:
n bytes for the text, 4n for the suffix array, and 0.03n working space.

Given the suffix array we compute and store ŝ = bwt(s) using n bytes. The
greedy algorithm computing the optimal partition of ŝ consists of a properly
defined post-order visit of the suffix tree of s. To avoid the explicit construction
of the suffix tree we use the technique from [13] that allows one to emulate the
post-order visit of the suffix tree using the Longest Common Prefix (shortly
LCP) array. Thus, we use the Lcp6 algorithm from [16] for computing in O(n)
time the LCP array given s, ŝ, and the suffix array. This algorithm overwrites
the LCP array over the suffix array and has a peak space usage of (6 + δ)n
bytes. The parameter δ is at most 4 and is bounded also by |Σ|k/n+ 2Hk(s) for
any k ≥ 0. This means that the space usage is smaller for highly compressible
inputs.

Having computed the LCP array we can discard the input string s; thus at
this stage we are only storing ŝ and the LCP array for a total space usage of
5n bytes. The computation of the optimal partition using the technique in [13]
reduces to a left to right scan of the LCP array. This allows us to store the
endpoints of intervals of the optimal partition in the same memory used for
the LCP array (that is, overwriting the LCP array). Thus the only additional
memory used during the “emulated” suffix tree visit is the space used to store
the stack of the suffix tree nodes whose visit has started but not yet finished.
This space could be Θ(n) in the worst case, but in practice is much smaller than
n bytes overall.
Cost models. An important issue in the implementation of the compression
booster is the choice of the parameters λ and μ in the cost function C(x) =
λ|x|H∗

0 (x)+μ of Theorem 1. Given a compressor A, theory dictates that λ and μ
be chosen so that |A(x)| ≤ C(x) for any string x. However, if we strictly enforce
this condition it is possible that for many strings x we have |A(x)|  C(x).
Since the optimal partitioning is computed minimizing C(Lmin), if C(x) is “too
far” from |A(x)| we could end up with a partition which does not exploit the full
potential of the compressor A. To evaluate this phenomenon our boosting library
supports two different cost models. In addition to the “entropy bound” model
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outlined above, we provide a “real cost” model in which the optimal partition is
computed with respect to the cost C(x) = |A(x)|. Using the “real cost” model we
get the best possible compression that we can achieve using the compressor A.
The drawback of this model is that the computation of the optimal partition no
longer takes linear time. The time cost might be quadratic in the worst case,
although the experimental results show that the overall running time usually
increases only by a factor 1.5.

User interface. Our library provides a simple interface to boost the perfor-
mance of an arbitrary compressor using either mtf or the optimal partitioning
strategy outlined in Sect. 3. This can be done even without any knowledge of the
Burrows-Wheeler transform! The user simply needs to provide compression and
decompression procedures and, for the computation of the optimal partition, a
procedure evaluating the cost function C(x) (see [6] for details).

5 Experimental Results

Using the boosting library described in the previous section we have imple-
mented several bwt-based compressors. By means of extensive experiments we
tried to assess to what extent mtf and the boosting algorithm are able to turn
a generic order zero compressor into a state of the art compressor. We ran all
experiments on a 2.6 GHz Pentium 4 CPU with 1.5 GB of main memory running
Fedora Linux. All code was written in C and compiled using gcc Ver. 3.2.2. As a
testbed we used the collection of files introduced in [17] for testing suffix array
construction algorithms.

The following are the algorithms tested in our experiments.

Bzip2 is the well known tool based on the bwt developed by Julian Seward [19].
Bzip2 splits the input file into blocks of size 900Kb and computes the bwt
followed by mtf on each block. The actual compression is done using rle03

followed by Multiple-Table Huffman coding [22].
MtfRleMth executes the same steps as Bzip2 operating on the whole input instead

that on fixed length blocks.
MtfRleRc. The earliest versions of Bzip2 used arithmetic coding instead of

multiple-table Huffman. Recently, range coding has been (re)discovered as a
patent-free alternative to arithmetic coding. Range coding and arithmetic cod-
ing are based on similar concepts and achieve similar compression. MtfRleRc
compresses the bwt using mtf followed by rle0, followed by range coding (we
used the code from [14]). Note that MtfRleRc is identical to MtfRleMth except
that, instead of Multiple-table Huffman coding, it uses range coding.

RleRc compresses the bwt using rle followed by range coding.

3 We use rle to denote the run length encoding of the runs of any character, while
we use rle0 to denote the run length encoding only of the runs of zeros. If a string
was produced by mtf, rle0 is the natural choice because of the massive presence of
0-runs as observed by Fenwick [5].
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BoostRleRc is the boosting algorithm applied to the compressor consisting of
rle followed by range coding. Note that the difference in compression between
RleRc and BoostRleRc gives the “added value” of the use of the booster.

MtfRleAc, RleAc, BoostRleAc are analogous respectively to MtfRleRc, RleRc,
BoostRleRc except that they use the arithmetic coding routines from [23] in-
stead of range coding.

MtfRleHuff, RleHuff, BoostRleHuff are analogous respectively to MtfRleRc, RleRc,
BoostRleRc except that they use Huffman coding instead of range coding. Note
that MtfRleHuff differs from MtfRleMth in that the former uses a single Huffman
table whereas the latter uses up to six tables for the same file.

Wavelet. This algorithm computes the bwt of the whole input and compresses the
resulting string using a wavelet tree [10]. The importance of wavelet trees stems
from the fact that they have been used for the design of efficient bwt-based
compressed indices [18] and that they also achieve the k-th order entropy for
any k ≥ 0. More precisely, from [7] follows that for a string s over the alphabet
Σ the output size of Wavelet is bounded by 4|s|H∗

k (s) + 6|Σ|k+1 log(|s|) bits.
BoostWav is an implementation of the boosting algorithm applied to the wavelet

tree encoder using the “real cost” model. Thus the difference between Wavelet
and BoostWav is that the former builds one wavelet tree on the whole bwt,
whereas the latter finds an optimal partition of the bwt and builds one wavelet
tree on each substring of the optimal partition. Again, the difference in com-
pression between Wavelet and BoostWav is the “added value” of the booster.

PPMd is an implementation of the ppm encoder by Dmitry Shkarin [21, 20] which
is the current state of the art for PPM compression. In our tests we used PPMd
at its maximum strength, that is using a model of order 16 and 256Mb of
working memory.

Range/arithmetic coding variants. The behavior of range and arithmetic
coding depends on two parameters: MaxFreq and Increment. The ratio between
these two values essentially controls how quickly the coding “adapts” to the
new statistics. For range coding we set MaxFreq = 65536 (the largest possible
value) and we experimented with three different values of Increment. Setting
Increment = 256 we get a range coder with fast adaptation, with Increment = 32
we get a range coder with medium adaptation, and finally setting Increment =
8 we get a range coder with slow adaptation. For arithmetic coding we set
MaxFreq = 16383 (the largest possible value) and Increment = 64 obtaining
therefore a fast adaptation.

Compression ratio. Figure 2 reports the average compression ratio (in bits
per symbol) and average (de)compression time (microseconds per symbol) for
all the algorithms mentioned above. Looking at the average compression ratio we
can see that both mtf and the boosting algorithm do a good job in transforming
an order zero compressor into a state-of-the-art compressor. However, our data
show some unexpected behaviors. Considering the three version of range coding
(with fast, medium, and slow adaptation) we see that mtf achieves the best
compression using medium adaptation whereas the boosting algorithm “prefers”
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averg ctime dtime

Bzip2 1.424 0.53 0.14
MtfRleMth 1.167 0.96 0.46
RleAc fast 1.126 0.97 0.59
MtfRleAc fast 1.158 0.94 0.53
BoostRleAc fast RC 1.125 7.43 0.59
RleHuff 1.596 0.89 0.47
MtfRleHuff 1.230 0.95 0.46
BoostRleHuff RC 1.195 5.04 0.45
BoostRleHuff EB 1.229 2.96 0.45
Wavelet 1.230 0.96 1.01
BoostWav RC 1.229 3.55 0.94
PPMd 1.080 0.60 0.66

averg ctime dtime

RleRc fast 1.129 0.90 0.48
MtfRleRc fast 1.161 0.90 0.48
BoostRleRc fast RC 1.129 4.11 0.48
BoostRleRc fast EB 1.134 3.04 0.48
RleRc med. 1.171 0.89 0.48
MtfRleRc med. 1.153 0.96 0.48
BoostRleRc med. RC 1.152 4.13 0.49
BoostRleRc med. EB 1.158 3.02 0.48
RleRc slow 1.245 0.90 0.48
MtfRleRc slow 1.164 0.90 0.48
BoostRleRc slow RC 1.175 4.12 0.48
BoostRleRc slow EB 1.194 3.02 0.48

Fig. 2. Experimental results for the collection of files introduced in [17]. For each algo-
rithm we report the average compression in bits per symbol and the average compres-
sion and decompression time in microseconds per symbol. The RC and EB acronyms
indicate the cost model (“real cost” or “entropy bound”) used by the booster.

running time peak memory
bwt lcp visit cmpr total lcp visit

sprot 0.70 0.60 1.67 0.11 3.08 7.01 5.00
rfc 0.60 0.51 2.35 0.11 3.57 6.86 5.00
howto 0.50 0.45 2.83 0.15 3.93 7.29 5.01
reut 1.24 0.55 1.92 0.08 3.79 6.58 5.00
linux 0.52 0.42 3.39 0.12 4.46 6.88 5.04
jdk13 1.15 0.40 2.10 0.05 3.70 6.26 5.00
etext 0.75 0.63 2.65 0.16 4.19 7.57 5.00
chr22 0.49 0.54 6.33 0.17 7.53 8.34 5.49
gcc 0.85 0.40 3.00 0.10 4.36 6.75 5.07
w3c 1.10 0.43 3.18 0.06 4.78 6.31 5.01

running time
bwt lcp visit cmpr total

sprot 0.70 0.59 1.23 0.11 2.63
rfc 0.60 0.51 1.52 0.11 2.74
howto 0.50 0.46 1.86 0.15 2.96
reut 1.24 0.56 1.32 0.08 3.19
linux 0.52 0.42 2.17 0.12 3.23
jdk13 1.15 0.40 1.48 0.05 3.08
etext 0.75 0.64 1.59 0.16 3.14
chr22 0.49 0.54 0.89 0.18 2.10
gcc 0.86 0.40 1.64 0.10 3.00
w3c 1.10 0.43 2.34 0.06 3.94

Fig. 3. Running time and peak memory usage for the various stages of the BoostRleRc
(medium adaptation) algorithm using the “real cost” model (left) and the “entropy
bound” model (right, the table only shows running times since the memory usage is
the same as for the “real cost” model). The running times of the four basic steps (bwt
computation, LCP array computation, optimal partition computation via suffix tree
visit, actual compression using range coding) and the total running time are given
in microseconds per input byte. The peak memory usage is given for the LCP array
computation and the suffix tree visit which are the steps using more memory. Memory
usage is reported as number of used bytes per input byte.

fast adaptation. It is also remarkable that RleRc with fast adaptation achieves
a very good compression, better indeed that mtf combined with any version of
range coding (and the same is true for RleAc fast). This means that the bwt
can be compressed efficiently using rle and an order zero encoder that quickly
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adapts to the new statistics. This is somewhat intuitive, but to our knowledge no
one observed experimentally the superiority of this strategy w.r.t. mtf, and no
theoretical analysis has explained or suggested such behavior. Overall the data
show that the boosting algorithm is superior to mtf in terms of compression
ratio and it is also more robust in the sense that it works well even with less
effective order zero compressors (for example Huffman coding). This superiority
is however paid in terms of running time as discussed below.

Running time. The data in Figure 2 show that for range coding the boosting
algorithm with the “real cost” model is between 4 and 5 times slower than mtf in
compression while there is no significant difference in decompression. For arith-
metic and Huffman coding the ratio is even higher. Using the “entropy bound”
model the compression time decreases significantly and there is a correspond-
ing loss in compression efficiency. Summing up, mtf and the boosting algorithm
(with the two different cost models) offer three different trade offs between com-
pression ratio and compression time: the user can choose the one most suitable
for the application at hand. Figure 3 reports the resource usage of the various
stages of the boosting algorithm. We can see that the most time consuming step
is the optimal partition computation via the suffix tree visit both in the “real
cost” and “entropy bound” models. Note also that the peak memory usage is
achieved during the LCP array computation.

Wavelet tree performance. The data in Figure 2 show that the algorithms
Wavelet and BoostWav roughly achieve the same compression as the algorithms
based on Huffman coding (RleHuff and BoostRleHuff) and are inferior to the
algorithms based on range/arithmetic encoding. We point out that the similar
compression ratio of Wavelet and BoostWav provide an experimental validation
of the theoretical analysis of [7] which states that even using a single wavelet
tree—as in the algorithm Wavelet—we already achieve the k-th order entropy.

PPMd performance. The results in Figure 2 show that PPMd outperforms all
other compressors. Additional tests on the files of the Canterbury corpus (see [6])
show that the Weighted Frequency Count algorithm from [1] (which is based on
the bwt) compresses better than mtf, boosting, and wavelet tree algorithms.
This suggests that in the field of (bwt) compression Theory is currently a step
behind Practice. Although we emphasize that for the construction of compressed
indexes it is essential to have simple and efficient bwt-based algorithms whose
performance are theoretically guaranteed, we take these results as a stimulus for
further research!
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Abstract. We address the problem of sorting in the presence of faults
that may arbitrarily corrupt memory locations, and investigate the im-
pact of memory faults both on the correctness and on the running times
of mergesort-based algorithms. To achieve this goal, we develop a soft-
ware testbed that simulates different fault injection strategies, and we
perform a thorough experimental study using a combination of several
fault parameters. Our experiments give evidence that simple-minded ap-
proaches to this problem are largely impractical, while the design of more
sophisticated resilient algorithms seems really worth the effort. Another
contribution of our computational study is a carefully engineered im-
plementation of a resilient sorting algorithm, which appears robust to
different memory fault patterns.

1 Introduction

A standard assumption in the design and analysis of algorithms is that the
content of memory locations does not change throughout the algorithm execution
unless it is explicitly written by the algorithm itself. This assumption, however,
may not necessarily hold for very large and inexpensive memories used in modern
computing platforms. The trend observed in the design of today’s highest-speed
memory technologies, in fact, is to avoid the use of sophisticated error checking
and correction circuitry, that would impose non-negligible costs in terms of both
performance and money: as a consequence, memories may be quite error-prone.
Hardware or power failures, as well as environmental conditions such as cosmic
rays and alpha particles, can temporarily affect the memory behavior resulting in
unpredictable, random, independent failures known as soft memory errors [10].
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For instance, a system with Terabytes of memory, such as a large cluster of
computing platforms with a few Gigabytes per node, is likely to experience one
soft error every few minutes. In the design of reliable systems, when specific
hardware for fault detection is not available, it makes sense to assume that the
algorithms themselves are in charge of dealing with memory faults. Designing
resilient algorithms seems especially important in those large scale applications
that demand for large memory capacities at low cost, such as Web search engines.
Informally, we say that an algorithm is resilient to memory faults if, despite the
corruption of some memory values before or during its execution, the algorithm is
nevertheless able to get a correct output at least on the set of uncorrupted values.
Classical algorithms are typically non-resilient, and the appearance of even few
memory faults may jeopardize their correctness and affect their running time.

The problem of computing with unreliable information has been investigated
in a variety of different settings, including the liar model [2, 4, 7, 9] and fault-
tolerant sorting networks [1, 8]. In [5], we introduced a faulty-memory random
access machine, i.e., a random access machine whose memory locations may suf-
fer from memory faults. In this model, an adaptive adversary may corrupt up to
δ memory words throughout the execution of an algorithm. The algorithm can-
not distinguish corrupted values from correct ones and can exploit only O(1) safe
memory words, whose content gets never corrupted. In [5, 6] we presented match-
ing upper and lower bounds for resilient sorting and searching in this model. In [5]
we proved that any resilient O(n log n) comparison-based deterministic algorithm
can tolerate the corruption of at most O(

√
n logn ) keys. We also proved that we

can sort resiliently in O(n logn+δ3) time: this yields an algorithm (Fast) whose
running time is optimal in the comparison model as long as δ = O((n log n)1/3).
In [6] we closed the gap between the upper and the lower bound, designing a
resilient sorting algorithm (Opt) with running time O(n log n + δ2).

Our results. In this paper we perform a thorough experimental evaluation of
the resilient sorting algorithms presented in [5, 6], along with a carefully engi-
neered version of Opt (named Opt-Nb). In order to study the impact of memory
faults on the correctness and running time of sorting algorithms, we implemented
a software testbed that simulates different fault injection strategies, allowing us
to control the number of faults to be injected, the memory location to be al-
tered, and the fault generation time. We performed experiments using a variety
of combinations of these parameters and different instance families. In our inves-
tigation we first show experimentally that even very few random memory faults
can make the sequence produced by a non-resilient sorting algorithm completely
disordered: this stresses the need of taking care explicitly of memory faults in
the algorithm implementation. We next evaluate the running time overhead of
Fast, Opt, and Opt-Nb. Our main findings can be summarized as follows.

– A simple-minded approach to resiliency is largely impractical: it yields an
algorithm (Naive) which may be up to hundreds of times slower than its
non-resilient counterpart.

– The design of more sophisticated resilient algorithms seems worth the effort:
Fast, Opt and Opt-Nb are always much faster than Naive and get close to



770 U. Ferraro-Petrillo, I. Finocchi, and G.F. Italiano

Table 1. Summary of the running times of the resilient algorithms under evaluation

Algorithm Naive Fast Opt Opt-Nb
Running time O(δ n log n) O(n log n + αδ2) O(n log n + αδ) O(n log n + αδ)

Reference [5] [6] [6], This paper

the running time of non-resilient sorting algorithms. In particular, Opt-Nb
is typically at most 3 times slower than its non-resilient counterpart.

– Despite the theoretical bounds, Fast can be superior to Opt in case of a
small number of faults: this suggests that Opt has larger implementation
constants. However, differently from Opt, the performance of Fast degrades
quickly as the number of faults becomes larger.

– The time interval in which faults happen may influence significantly the
running times of Fast, while this seems to have a negligible effect on the
running times of Opt and Opt-Nb.

– Our engineered implementation Opt-Nb typically outperforms its competi-
tors and seems to be the algorithm of choice for resilient sorting.

All the algorithms under investigation make explicit use of an upper bound δ
on the number of faults in order to be correct. Since it is not always possible
to know in advance the number of memory faults that will occur during the
algorithm execution, we analyzed the sensitivity of the algorithms with respect
to variations of δ, showing that rounding up δ (in absence of a good estimate)
does not affect significantly the performances of Opt and Opt-Nb. Finally,
we considered a more realistic scenario where algorithms with larger execution
times are likely to incur in a larger number of memory faults. In this model
we observed the same relative performances of the algorithms, with even more
remarked differences in their running times. Also in this case, Opt and Opt-Nb
appear to be more robust than Fast and can tolerate higher fault rates.

2 Resilient Sorting Algorithms

In this section we recall the mergesort-based resilient algorithmspresented in [5, 6].
Their worst-case running times are summarized in Table 1 as a function of the
number n of keys to be sorted, the upper bound δ on the total number of faults,
and the actual number α of faults that happen during a specific execution.

We will say that a key is faithful if its value is never corrupted by any memory
fault, and that a sequence is k-unordered, for some k ≥ 0, if the removal of at
most k faithful keys yields a subsequence in which all the faithful keys are sorted.
A sorting or merging algorithm is resilient if its output is 0-unordered. A simple-
minded resilient variant of standard merging takes the minimum among (δ + 1)
keys per sequence at each merge step, and thus considers at least one faithful
key per sequence. By plugging this into mergesort, we obtain a resilient sorting
algorithm, called Naive, with running time O(δ n logn).

Two Basic Tasks: Merging and Purifying. With respect to Naive, the
algorithms Fast and Opt reduce the time spent to cope with memory faults
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to an additive overhead (see Table 1). This is achieved by temporarily relaxing
the requirement that the merging must produce a 0-unordered sequence and by
allowing its output to be k-unordered, for some k > 0. We now describe the
main subroutines used by algorithms Fast and Opt.

Weakly-resilient merge [5] is an O(n)-time merging algorithm, which, although
unable to produce a 0-unordered sequence, can guarantee that not too many
faithful keys are out of place in the output sequence. It resembles classical merg-
ing, with the addition of suitable checks and error recovery. Checks are performed
when the algorithm keeps on advancing in one of the two sequences for (2δ + 1)
consecutive steps: if a check fails, a faulty key can be identified and removed
from further consideration. In [5] we proved that each faulty key may prevent
O(δ) faithful keys from being returned at the right time: this implies that the
output sequence is O(αδ)-unordered.

Purify [5] is a resilient variant of the Cook-Kim division algorithm [3]. Given
a k-unordered sequence X of length n, it computes a 0-unordered subsequence
S in O(n + δ · (k + α)) worst-case time. It is guaranteed that the length of S is
at least n− 2(k+α), i.e., only O(k +α) keys are discarded in order to purify X .

Purifying-merge [6] is a fast resilient merging algorithm that may neverthe-
less fail to merge all the input keys: the algorithm produces a 0-unordered se-
quence Z and a disordered fail sequence F in O(n + αδ) worst-case time, where
|F | = O(α), i.e., only O(α) keys can fail to get inserted into Z. This is an im-
provement over the weakly-resilient merge described above (obtained at a small
price on the running time), and is achieved by a clever use of buffering techniques
and more sophisticated consistency checks on data. Namely, the algorithm uses
auxiliary buffers of size Θ(δ), in which keys to be merged are copied and from
which merged keys are extracted. Thanks to the use of buffers, the total cost of
identifying faulty keys and moving them to the fail sequence is only O(α δ) [6].

Unbalanced merge [5] requires superlinear time, but is particularly well suited
at merging unbalanced sequences. It works by repeatedly extracting a key from
the shorter sequence and placing it in the correct position with respect to the
longer sequence: we need some care to identify this proper position, due to the
appearance of memory faults. The algorithm runs in O(n1 + (n2 + α) · δ) time,
where n1 and n2 denote the lengths of the sequences, with n2 ≤ n1.

Fast Resilient Sorting. Consider the merging algorithm represented by the
figure below:

A
B

  Merge with
discarded keys

Z

F Naive D

Unbalanced 
   Merge C

0-unordered

0-unordered 0-unordered

Step 1 Step 2 Step 3

A first merging attempt on the input sequences A and B may fail to merge
all the input keys, producing a 0-unordered sequence Z and a disordered fail
sequence F . The sequence F is sorted using algorithm Naive: this produces
another 0-unordered sequence D. The two 0-unorderded unbalanced sequences,
Z and D, can be finally merged using unbalanced merging.
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Step 1 (the first merging) can be implemented either by using the weakly-
resilient merge and then purifying its output sequence, or by invoking directly
the purifying-merge algorithm: in the former case |F | = O(αδ) and the merge
running time is O(n + αδ2), while in the latter case |F | = O(α) and the merge
running time is O(n+αδ). A resilient sorting algorithm can be obtained by plug-
ging these merging subroutines into mergesort: the two implementation choices
for Step 1 yield algorithms Fast and Opt, respectively. We refer the interested
reader to references [5, 6] for the low-level details of the method.

Algorithm Implementation Issues. We implemented all the algorithms in
C++, within the same algorithmic and implementation framework. Since recur-
sion may not work properly in the presence of memory faults (the recursion stack
may indeed get corrupted), we relied on a bottom up iterative implementation
of mergesort, which makes 	log2 n
 passes over the array, where the i-th pass
merges sorted subarrays of length 2i−1 into sorted subarrays of length 2i. For
efficiency issues we applied the standard technique of alternating the merging
process from one array to the other in order to avoid unnecessary data copying.
We also took care of using only O(1) reliable memory words to maintain array
indices, counters, and memory addresses. With respect to algorithm Opt, again
for efficiency reasons, we avoided to allocate/deallocate its auxiliary buffers at
each call of the merging subroutine. In spite of this, in a first set of experiments
the buffer management overhead slowed down the execution of Opt consider-
ably for some choices of the parameters. Hence, we implemented and engineered
a new version of Opt with the same asymptotic running time but which avoids
completely the use of buffers: throughout this paper, we will refer to this imple-
mentation as Opt-Nb (i.e., Opt with No Buffering). The merging subroutine
used by Opt-Nb benefits from the same approach used by algorithm Fast, i.e.,
it avoids copying data to/from the auxiliary buffers by maintaining a constant
number of suitable array indices and by working directly on the input sequences.

3 Experimental Framework

In this section we describe our experimental framework, discussing fault injection
strategies, performance indicators, and additional implementation details.

Fault Injection: a Simulation Testbed. In order to study the impact of
memory faults on the correctness and running time of sorting algorithms, we
implemented a software testbed that simulates different fault injection strategies.
Our simulation testbed is based on two threads: the sorting thread runs the
sorting algorithm, while the corrupting thread is responsible of injecting memory
faults. In the following we discuss where, when, and how many faults can be
generated by the corrupting thread.
Fault location. In order to simulate the appearance of memory faults, we imple-
mented an ad-hoc memory manager: faults are injected in memory locations that
are dynamically allocated through our manager. The location to be altered by
a fault is chosen uniformly at random. As previously observed, the algorithms’
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implementation is such that, at any time during the execution, only a constant
number of reliable memory words is in use. To maximize the damage produced
by a fault, the new value of the corrupted memory location is chosen (at random)
so as to be always larger than the old value.
Fault injection models. The number of faults to be injected can be specified
according to two different models. The upper bound model requires an upper
bound δ on the total number of memory faults, and the actual number α of faults
that should happen during the execution of an algorithm: it must be α ≤ δ. The
fault injection strategy ensures that exactly α memory faults will occur during
the execution of an algorithm, independently from the algorithm’s running time.
This assumption, however, may not be true in a more realistic scenario, where
algorithms with larger execution times are likely to incur in a larger number
of faults. The fault-per-second model overcomes this limitation (not addressed
by the theoretical model of [5]) by using faults generated on a periodic time
basis and independently from the algorithm’s running time. In particular, this
model requires to specify the number σ of faults that must be injected per each
second of execution. We note that the algorithms under investigation were not
designed for the fault-per-second model, as they make explicit use of δ in their
implementation. Hence, to stress those algorithms on a different terrain, we start
from a number σ of faults per second and must generate a suitable value of δ: for
each σ and instance size n, we experimented with different values of δ, paying
attention to use only values that guarantee the algorithms to be correct (if any).
Fault generation time. In the upper bound model, before running the algorithm
the corrupting thread precomputes α breakpoints, at which the sorting thread
will be interrupted and one fault will be injected. The breakpoints can be spread
over the entire algorithm execution, or concentrated in a given temporal interval
(e.g., at the beginning or at the end of the execution). In both cases the corrupt-
ing thread needs an accurate estimate of the algorithm’s running time in order to
guarantee that Θ(α) faults will be generated and evenly spread as required: an
automatic tuning mechanism takes care of this estimate. In the fault-per-second
model, faults are simply generated at regular time intervals.

Experimental Setup. Our experiments have been carried out on a workstation
equipped with two Opteron processors with 2 GHz clock rate and 64 bit address
space, 2 GB RAM, 1 MB L2 cache, and 64 KB L1 data/instruction cache. The
workstation runs Linux Kernel 2.6.11. All programs have been compiled through
the GNU gcc compiler version 3.3.5 with optimization level O3. The full package,
including algorithm implementations and memory manager, is publicly available
at the URL http://www.dsi.uniroma1.it/~finocchi/experim/faultySort/.
Unless stated otherwise, in our experiments we average each data point on ten
different instances, and, for each instance, on five runs using different fault se-
quences on randomly chosen memory locations. Random values are produced by
the rand() pseudo-random source of numbers provided by the ANSI C standard
library. The running time of each experiment is measured by means of the stan-
dard system call getrusage(). The sorting and the corrupting threads run as two
different parallel processes on our biprocessor architecture and operating system:
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Fig. 1. Disorder produced by random memory faults in the sequence output by
Vanilla mergesort. In this experiment n = 5 · 106 and α = δ increases up to 1000.

concurrent accesses to shared memory locations (e.g., the corruption of a key in
unreliable memory) are solved at the hardware level by spending only a few CPU
cycles. This allows us to get a confident measure of the algorithms’ running time,
without taking into account also the time spent for injecting faults.

4 Experimental Results

In this section we summarize our main experimental findings. We performed
experiments using a wide variety of parameter settings and instance families.
For lack of space, in this extended abstract we only report the results of our
experiments with uniformly distributed integer keys: to ensure robustness of our
analysis, we also experimented with skewed inputs such as almost sorted data
and data with few distinct key values, and obtained similar results. Similarly,
most of the experiments that we describe here are carried out in the upper
bound fault injection model: the same relative performances of the algorithms
have been observed in the fault-per-second model, where the differences in the
running times are even more remarked.

The Price of Non-resiliency: Correctness. Our first aim was to measure
the impact of memory faults on the correctness of the classical (non-resilient)
mergesort, which we refer to as Vanilla mergesort. In the worst case, when
merging two n-length sequences, a single memory fault may be responsible for
a large disorder in the output sequence: namely, it may be necessary to remove
as many as Θ(n) elements in order to obtain a 0-unordered subsequence. Since
memory faults affecting large and inexpensive memories are not typically gener-
ated according to an adversarial pattern, a natural question to ask is whether the
output can be completely out of order even when few faults hit memory locations
at random. In order to characterize the non-resiliency of Vanilla mergesort in
the presence of random memory faults, we ran this algorithm on several input
sequences with a fixed number of elements while injecting an increasing number
of faults spread over the entire algorithm’s execution time. The correctness of
the output has been measured using the k-unordered metric, which is a classical
measure of disorder (see Section 2). The outcome of the experiment, exemplified
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(a) (b)

Fig. 2. Running times of (a) Naive and Vanilla (b) Fast, Opt, Opt-Nb, and
Vanilla on random input sequences of increasing length. In this test α = δ = 500.

in Figure 1, shows a deep vulnerability of Vanilla mergesort even in the pres-
ence of very few random faults. As it can be seen from Figure 1, when sorting 5
million elements, it is enough to have only 1000 random faults (i.e., roughly only
0.02% of the input size) to get a k-unordered output sequence for k ≈ 4 · 106:
in other words, only 0.02% faults in the input are able to produce errors in
approximately 80% of the output.

The Price of Resiliency: Running Time Overhead. In order to operate
correctly, resilient algorithms must cope with memory faults and be prepared to
pay some overhead in their running times. In the following experiments we will
try to evaluate this overhead by comparing the sorting algorithms of Table 1
with respect to the non-resilient Vanilla mergesort.
Overhead of Naive. Once the need for resilient algorithms is clear, even in the
presence of very few non-pathological faults, another natural question to ask is
whether we really need sophisticated algorithms for this. Put in other words, one
might wonder whether a simple-minded approach to resiliency (such as the one
used by algorithm Naive) would be enough to yield a reasonable performance
in practice. To answer this question, we measured the overhead of Naive on
random input sequences. Figure 2(a) illustrates one such experiment, where we
measured the running times of Vanilla and Naive on random input sequences
of increasing length by keeping fixed the number of faults injected during the
sorting process (α = δ = 500). As suggested by the theoretical analysis, the
Θ(δ) multiplicative factor in the running times of Naive makes this algorithm
even hundreds of time slower than its non-resilient counterpart, and thus largely
impractical. For this reason, we will not consider Naive any further in the rest
of the paper.
Overhead of Fast, Opt, and Opt-Nb. According to the theoretical analysis, al-
gorithms Fast, Opt, and Opt-Nb are expected to be much faster than Naive.
All our experiments confirmed this prediction. The chart in Figure 2(b), for in-
stance, has been obtained on the same data sets used for the experiment reported
in Figure 2(a), and shows that Fast, Opt, and Opt-Nb perform very well for
this choice of the parameters: indeed, they exhibit a running time which approxi-
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Fig. 3. Running times of Fast, Opt, Opt-Nb, and Vanilla on random input sequences
of length n = 20 · 106 and increasing number of injected faults.

mately ranges from 2.5 times to 3 times the running time of Vanilla mergesort,
while Naive appears to be more than two orders of magnitude slower. Note
that, despite the theoretical bounds, Fast seems to have a better performance
than Opt on this data set. This suggests that Opt may have larger implemen-
tation constants (probably due to the buffer management overhead) and that
there are situations where Fast is able to perform better than Opt, at least in
the presence of few faults. Our efforts in engineering Opt so as to avoid the use
of buffers seem to pay off and confirm this intuition: indeed, in this experiment
Opt-Nb performs always better than both Opt and Fast.

Impact of faults on the running time. According to the asymptotic analysis, we
would also expect that the performance of Fast, Opt, and Opt-Nb degrade
substantially as the number of faults becomes larger. In order to check this, we
designed experiments in which the length of the input sequence is fixed (e.g.,
n = 20 · 106) but the number α = δ of injected faults increases. One of those
experiments is illustrated in Figure 3, and shows that only the running time
of Fast seems heavily influenced by the number of faults. Opt and Opt-Nb,
instead, appear to be quite robust as their running times tend to remain almost
constant for all the values of δ considered in the experiment. To get a deeper
understanding of this phenomenon, we profiled all the algorithms: in particular,
for Fast we observed that when δ is large, most of the time is spent in Step 2,
where the disordered fail sequence F returned by Purify is sorted by means of
algorithm Naive. This suggests that either the number of calls to Naive or the
number of elements to be sorted in each call tends to be bigger in Fast than in
Opt. Computing the average and the maximum length of the fail sequences F
throughout the algorithm execution confirmed the second hypothesis. As shown
in Figure 4, the fail sequences in Fast can be even 10, 000 times larger than in
Opt, thus suggesting that the theoretical upper bounds on |F | (i.e., O(α δ) and
O(α) for Fast and Opt, respectively) are likely to be pretty tight also in the
case of random memory faults.

Early versus late faults. In all the experiments presented so far, we have con-
sidered random faults uniformly spread in time over the entire execution of the
algorithm. The time interval in which faults happen, however, may significantly
influence the running time of the algorithm. Indeed all of the resilient algorithms
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Fig. 4. Average and maximum length of the fail sequence F to be sorted by Naive

Fig. 5. Increasing number of faults concentrated in the first 20% and in the last 20%
of the algorithms’ running times (n = 20 · 106 in this experiment)

considered tend to process many sequences of smaller size in the initial stage of
their execution, and few sequences of larger size at the end of their execution.
As a consequence, faults occurring in the initial phase of the execution will likely
produce short fail sequences, while faults occurring during the ending phase may
produce longer fail sequences. Since sorting fail sequences appears to be a bot-
tleneck in the resilient algorithms, faults appearing at the beginning or at the
end of the execution may produce quite different running times. To check this,
we performed experiments in which we injected faults only in the initial and in
the final 20% of the running time. The outcome of one of those experiments, pre-
sented in Figure 5, confirms that faults occurring early during the execution of
Fast are processed more quickly than faults occurring late. The effect is instead
negligible for algorithms Opt and Opt-Nb: this seems due to the fact that the
fail sequences of these algorithms are always short, independently of the fault
generation time (see also Figure 4).

Sensitivity to δ. All the resilient algorithms considered in our experiments need
explicitly an upper bound δ on the number of faults that may happen throughout
their execution. This is not a problem when δ is known in advance. However,
if the rate of faults is unknown, the algorithms need at least an estimate on
δ to work properly: on the one side, rounding up δ may lead to much slower
running times; on the other side, rounding it down may compromise the whole
correctness of the resilient sorting algorithm. In all the experiments described up
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Fig. 6. Sensitivity to δ: in this experiment n = 20 · 106, α = 400, and δ ≤ 2000

to now we used δ = α. We now discuss issues related to finding a good estimate
for δ in the upper bound and in the fault-per-second models, respectively.

Upper bound model. In the experiment illustrated in Figure 6 we analyzed the
sensitivity of Fast, Opt, and Opt-Nb with respect to variations of δ: we run the
algorithms keeping the actual number of faults fixed (α = 400) and increasing
δ from 400 to 2000. When δ = 400, this simulates a good estimate of δ; as δ
gets much larger than α, this tend to simulate bad estimates of δ. Note that,
while the performances of Opt and Opt-Nb are substantially unaffected by the
increase on the value of δ, the running time of Fast seems to grow linearly with
δ: once again, this depends on the fact that the length of the fail sequences in
Fast is proportional to δ, differently from what happens in the case of both
Opt and Opt-Nb. As a result, we can argue that Opt and Opt-Nb appear to
be much less vulnerable than Fast to potential bad estimates on the value of δ.

Fault-per-second model. The fault-per-second injection model introduces a major
novelty with respect to the upper bound model, as the actual number of faults
that will be generated throughout the execution of an algorithm is not bounded
a priori. Thus, the quest for a good estimate of δ here is even more crucial.
Note that in this model rounding up δ not only pushes additional overhead
on the resilient sorting algorithm, but also increases the number of faults that
will actually occur throughout the execution, because the running time becomes
larger. In more details, let t(n, δ) denote the running time (in seconds), and let σ
be the number of faults generated per each second of execution. Then σ · t(n, δ)
is the actual number of faults that will occur, and the algorithm is guaranteed to
be correct only if δ ≥ σ ·t(n, δ). Since the running time t is an increasing function
of δ itself, if the fault injection rate is too fast (i.e., σ is too large) it may be even
possible that no value of δ satisfies the above inequality. To investigate this issue,
we tried to determine, given the number σ of faults per seconds, the smallest
value of δ that is larger than the actual number σ · t(n, δ) of faults: we will refer
to this value of δ as the correctness threshold. Table 2 reports the correctness
thresholds for the three algorithms Fast, Opt, and Opt-Nb corresponding to
six different values of σ and to n = 20 · 106. As one may expect, such thresholds
increase with σ: this is because larger values of σ yield larger total numbers of
injected faults. The experiment also confirms our intuition that a correctness
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Table 2. Correctness thresholds for n = 20 · 106 and σ ∈ [10, 60]

Algorithm σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 60
Fast 100 180 290 410 - -

Opt-Nb 100 210 300 400 500 590
Opt 160 310 445 620 770 880

threshold may not always exist, limiting the possibility of using the algorithms
in the fault-per-second model only when the fault injection rate is small enough.
In particular, it is remarkable that Fast cannot tolerate more than 50 faults per
second, while Opt and Opt-Nb appear to be more robust and can tolerate much
higher fault injection rates. This is in line with the previous experiments, where
we observed that the running time of Fast grows much more quickly than the
running times of Opt and Opt-Nb as the number of faults increases. We used
the correctness thresholds, if any, to compare Fast, Opt, and Opt-Nb in the
fault-per-second model. Our experiments confirmed the relative performances
observed in the upper bound model, and exhibit even more remarked differences
in the running times of these algorithms. For lack of space, we defer to the full
paper a detailed description of our experiments in this setting.
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Abstract. We explain the counterintuitive observation that finding
“good” pivots (close to the median of the array to be partitioned) may
not improve performance of quicksort. Indeed, an intentionally skewed
pivot improves performance. The reason is that while the instruction
count decreases with the quality of the pivot, the likelihood that the
direction of a branch is mispredicted also goes up. We analyze the ef-
fect of simple branch prediction schemes and measure the effects on real
hardware.

1 Introduction

Sorting is one of the most important algorithmic problems both practically and
theoretically. Quicksort [1] is perhaps the most frequently used sorting algo-
rithm since it is very fast in practice, needs almost no additional memory, and
makes no assumptions on the distribution of the input. Hence, quicksort, its
analysis and efficient implementation is discussed in most basic courses on al-
gorithms. When we take a random pivot, the expected number of comparisons
is 2n lnn ≈ 1.4n lgn. One of the most well known optimizations is that taking
the median of three elements reduces the expected number of comparisons to
12
7 n lnn ≈ 1.2n lgn [2]. Indeed, by using the median of a larger random sample,
the expected number of comparisons can be made as close to n lgn as we want
[3]. For sufficiently large inputs, the increased overhead for pivot selection is
negligible. At first glance, counting comparisons makes a lot of practical sense
since in quicksort, the number of executed instructions and cache faults grow
proportionally with this figure.

However, in comparison based sorting algorithms like quicksort or mergesort,
neither the executed instructions nor the cache faults dominate execution time.
Comparisons are much more important, but only indirectly since they cause
the direction of branch instructions depending on them to be mispredicted.
In modern processors with long execution pipelines and superscalar execution,
dozens of subsequent instructions are executed in parallel to achieve a high peak
throughput. When a branch is mispredicted, much of the work already done
on the instructions following the predicted branch direction turns out to be
wasted. Therefore, ingenious and very successful schemes have been devised to
accurately predict the direction a branch takes. Unfortunately, we are facing a
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dilemma here. Information theory tells us that the optimal number of ≈ n lgn
element comparisons for sorting can only be achieved if each element compari-
son yields one bit of information, i.e., there is a 50 % chance for the branch to
take either direction. In this situation, even the most clever branch prediction
algorithm is helpless. A painfully large number of branch mispredictions seems
to be unavoidable.

Related Work: This dilemma can be circumvented by devising sorting algorithms
where comparisons are decoupled from branches [4]. However, the algorithm pro-
posed in [4] is not in-place and requires compiler optimizations that are not uni-
versally available yet. Hence it remains interesting to see what can be done about
branch mispredictions in quicksort. [5] based on a discussion between Sanders
and Moruz in 2004 observes that a reduced number of branch mispredictions
improves the running time of quicksort when inputs are almost sorted. In [6], a
variant of multiway mergesort is proposed that reduces branch mispredictions
by sequentially searching for the next element to be merged. This algorithm is
analyzed for the case of static branch prediction. Compared to this, the inno-
vation of the present paper is that it gives experimental results and concerns a
classical, in-place algorithm. Moreover, for quicksort also dynamic branch pre-
diction is interesting. Martinez and Roura [3] note that nonmedian pivots can
be beneficial if swaps are much more expensive than comparisons. However, it
seems that this situation would correspond to a nonoptimal use of quicksort
because then it would be more efficient to sort references to the elements first,
followed by a permutation of the original input.

Overview: In Section 2, we review quicksort and basic branch prediction mech-
anisms. Section 3 outlines our main theoretical contributions — an analysis of
quicksort in the context of branch mispredictions. For simplicity we assume that
the elements are distinct. We look at two variants of quicksort: random and
skewed pivot, and three branch prediction methods: static, 1-bit predictor and
2-bit predictor. To the best of our knowledge this represents the first analysis
of the interactions of a nontrivial algorithm with dynamic branch prediction
methods. Note that static branch prediction is not useful for analyzing quicksort
variants like random pivot that try to approximate the median. The theoreti-
cal results are complemented by experiments in Section 4. In particular, there
we also look at the classical median-of-three pivot selection. It turns out that
this frequently used improvement only gives a negligible advantage over random
pivot. Its advantages wrt. instruction count basically cancel with its disadvan-
tages wrt. branch prediction. Somewhat surprisingly, taking a pivot with rank
around n/10 can lead to a better performance.

2 Preliminaries

In this section we give a more detailed description of quicksort and then give an
overview of several branch prediction schemes.
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2.1 Quicksort

A simple pseudocode of quicksort sufficient for our purposes can be seen in
Algorithm 1. In the rest of the paper, it will be clear from the context, whether n
denotes the input size or the currently relevant subproblem size. The algorithm
can be instantiated with different subroutines for determining the pivot. We
distinguish between three basic schemes: random pivot, median-of-three random
elements, and α-skewed pivot, i.e., a median of rank αn. Note that the latter
scheme is an idealization because in practice only approximations of this value
can be obtained efficiently (using random sampling [3]). However, for sufficiently
big inputs, one could get very good approximations at negligible cost for all but
the lowest levels of recursion.

Algorithm 1. Sort array part a[�..r]
Procedure quicksort(�, r : integer);

if r > � then
i = �; j = r; x = pivot();
repeat

while a[i] < x do i++ ; endwhile {Loop I}
while a[j] > x do j−− ; endwhile {Loop J}
if i ≤ j then swap(a[i], a[j]);

until j ≤ i
quicksort(�, i− 1);
quicksort(i + 1, r);

end if

2.2 Branch Prediction Schemes

In static branch prediction the compiler once and for all labels a branch in-
struction as predict-taken or as predict-not-taken. This scheme does not take
into account the dynamic behavior of the program. Static prediction is useful
together with α-skewed pivot selection. For α < 1/2, the compiler should stati-
cally predict that Loop I is not executed and that Loop J is executed.1

In the standard versions of pivot selection that attempt to approximate the
median, static prediction does not help. Here dynamic branch prediction mech-
anisms provided by the hardware may do better.

The simplest dynamic scheme is a 1-bit predictor. The hardware always pre-
dicts a branch instruction to take the same direction it took the last time it was
executed.

A refined version working better in practice is the 2-bit predictor. In order
to further improve the prediction accuracy, 2-bit prediction schemes were intro-
duced. In these schemes the prediction must be wrong twice before it is changed.
See for example [7]. In Fig. 1 we can see the behavior of a 2-bit predictor scheme.

In fact we can have the general case of a k-bit counter. As in the 2-bit case,
the counter is incremented if the branch is taken and decremented if the branch
1 Modern compilers do that using profiling information.
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Fig. 1. 2-bit prediction scheme: There are four states, where PT means Predict Taken
and PNT means Predict Not Taken. The arrows show how the states are changed when
a branch is taken T or not taken NT.

is not taken. The branch is predicted taken when the counter is greater than or
equal to half of its maximum value and not taken otherwise. The k-bit prediction
schemes are not widely used since studies have shown that the 2-bit prediction
scheme is good enough for all practical purposes.

Furthermore, there are branch prediction schemes which not only consider the
history of the particular branch to be predicted but also that of other branches
which may be related to the current branch and affect its outcome. In this way
the prediction accuracy is further improved. See [7] for more details. It looks
difficult to analyze quicksort for the most general schemes. It also seems that
simple local prediction is adequate in the case of quicksort since the past behavior
of a branch instruction is likely to yield information whether the pivot is larger
or smaller than the median.

3 Analysis

In this section we analyze the behavior of quicksort in terms of the number of
branch mispredictions it incurs. We give the analysis of the branch mispredictions
occurring in the two inner and consecutive while loops of quicksort that perform
the partitioning step. Note that the remaining branch instructions are much less
frequently executed or easy to predict.

In the next three subsections we outline the proof of the following theorem.

Theorem 1. Let H(α) = −(α lg(α) + (1 − α) lg(1 − α)) be the binary entropy
function. The number of branch mispredictions that occur during the execution of
the partitioning step of quicksort are as described in Table 1. The entries for the
1-bit and the 2-bit predictor give the expected number of branch mispredictions
given the assumption that there is a probability α of an element being smaller
when compared with the pivot that has rank αn.2 For the entry random pivot
2 This assumption means that our analysis is “heuristic” since the knowledge that the

pivot has rank αn introduces slight dependencies between the comparisons. It is an
interesting question whether there is an easy argument proving the same bounds for
the standard average case model.



784 K. Kaligosi and P. Sanders

Table 1. Number of branch mispredictions

random pivot α-skewed pivot

static predictor ln 2
2 n lg n +O(n), ln 2

2 ≈ 0.3466 α
H(α)n lg n +O(n), α < 1/2
1−α
H(α)n lg n +O(n), α ≥ 1/2

1-bit predictor 2 ln 2
3 n lg n +O(n), 2 ln 2

3 ≈ 0.4621 2α(1−α)
H(α) n lg n +O(n)

2-bit predictor 28 ln 2
45 n lg n +O(n), 28 ln 2

45 ≈ 0.4313 2α4−4α3+α2+α
(1−α(1−α))H(α)n lg n +O(n)

with static predictor there is no such assumption and for the entry α-skewed
with static predictor we give a worst case analysis.

In Fig. 2 we see the α-dependent coefficients of n lg n for the case of the α-skewed
pivot. As expected they are maximized for α = 0.5 and their value decreases as
we move towards smaller or larger α’s. Moreover, the best curve is the one for
the static predictor, followed by the one for the 2-bit predictor and then the one
for the 1-bit predictor.

3.1 Static Prediction Scheme

Next we analyze the number of branch mispredictions quicksort could achieve
with static branch prediction if somebody would tell the predictor whether the
pivot is smaller or larger than the median. We can judge dynamic branch pre-
diction by comparing its performance with this “best possible” prediction. We
consider the random pivot and the α-skewed pivot case. For the former we give
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an expected case analysis that holds for every input, namely we make no as-
sumptions for the distribution of the input. For the latter we give a worst case
analysis.

Let Bstat(n) denote the expected number of branch mispredictions occurring
in the partitioning step of quicksort with random pivot when a static predictor
is used. Consider one execution of the partitioning step. Let x be the pivot
element and αn its rank for some 0 < α ≤ 1. The rank αn of the pivot can take
each of the values 1, . . . , n with equal probability and after the partitioning we
are left with subproblems of size αn − 1 and (1 − α)n. If α < 1/2 then each
element smaller than the pivot causes a branch misprediction, since Loop I is
predicted not to be executed and Loop J is predicted to be executed. Therefore,
we have at most αn branch mispredictions. If α ≥ 1/2 the prediction of the loop
is the other way around and each element larger than the pivot causes a branch
misprediction and therefore we have (1 − α)n mispredictions. So, we set up the
following recurrence for n ≥ 1, with Bstat(0) = 1.

Bstat(n) ≤ 1
n

(�n/2�∑
αn=1

Bstat(αn− 1) + Bstat((1− α)n) + αn)

+
n∑

αn=�n/2�+1

(Bstat(αn− 1) + Bstat((1− α)n) + (1− α)n
)
.

We solve the recurrence using for example the technique in [8] and we obtain
Bstat(n) ≤ ln 2

2 n lg n +O(n).
Now let Astat(n) be the number of branch mispredictions of quicksort with

α-skewed pivot when the static predictor is used. Similarly to above if α < 1/2
each element smaller than the pivot causes a branch misprediction and if α ≥ 1/2
each element larger than the pivot causes a branch misprediction. So, we set up
the following recurrence for n ≥ 1, with Astat(0) = 1.
Astat(n) ≤ αn + Astat(αn− 1) + Astat((1 − α)n), if α < 1/2 and
Astat(n) ≤ (1− α)n +Astat(αn− 1) +Astat((1−α)n), if α ≥ 1/2. We can prove
by induction that Astat(n) ≤ α

H(α)n lgn +O(n), if α < 1/2 and
Astat(n) ≤ 1−α

H(α)n lgn +O(n), if α ≥ 1/2.

3.2 1-Bit Prediction Scheme

We now analyse quicksort when a 1-bit prediction scheme is used. In the 1-
bit prediction scheme we predict that a branch instruction will go in the same
direction as the last time it was executed. Let Xi be the indicator random
variable which is 1 if the i-th element in Loop I causes a branch misprediction
and 0 otherwise. Correspondingly we define Yj for Loop J . We have that Xi = 1 if
a[i] ≥ x and a[i−1] < x or if a[i] < x and a[i−1] ≥ x. Using our assumption that
P [a[i] < x] = α, we get P [Xi = 1] = 2α(1−α). Similarly P [Yj = 1] = 2α(1−α).
Let X =

∑k
i=1 Xi +

∑n
j=k+1 Yj denote the number of mispredictions. Then

E[X ] = E[
∑k

i=1 Xi +
∑n

j=k+1 Yj ] =
∑n

i=1 E[Xi] = nP [X1 = 1] = 2α(1− α)n.
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Let B1-bit(n) denote the expected number of branch mispredictions when
random pivot is used. Then we obtain the recurrence
B1-bit(n) ≤ 1

n

∑n
αn=1

(
B1-bit(αn− 1) + B1-bit((1 − α)n) + 2α(1− α)n

)
.

This solves to B1-bit(n) = 2 ln 2
3 n lgn +O(n).

Now let A1-bit(n) denote the expected number of branch mispredictions when
an α-skewed pivot is used. Then
A1-bit(n) ≤ 2α(1− α)n + A1-bit(αn− 1) + A1-bit((1 − α)n).
It can be shown by induction that it solves to A1-bit(n) = 2α(1−α)

H(α) +O(n).

3.3 2-Bit Prediction Scheme

We now consider the 2-bit prediction scheme. As stated earlier we assume that
an element is smaller than the pivot with probability α independently of the
other comparisons. With this simplification, the branch predictor can be mod-
eled as a Markov chain. First consider the predictor of Loop I. Its corresponding
Markov chain has four states, each one corresponding to a state of the predic-
tors automaton, see Fig. 1. The transition table where entry Pkl represents the
probability of going to state l given that we are in state k is as follows.

P =

⎡⎢⎢⎣
α 1− α 0 0
α 0 0 1− α
α 0 0 1− α
0 0 α 1− α

⎤⎥⎥⎦
Let π0, π1, π2, π3 denote the stationary probabilities of the Markov chain, i.e.,

they are the solution to the system −→π · P = −→π and
∑3

k=0 πi = 1. Then π0 =
α2

1−α(1−α) , π1 = α2(1−α)
1−α(1−α) , π2 = α(1−α)2

1−α(1−α) and π3 = (1−α)2

1−α(1−α) . One can easily
verify this by substitution. Similarly, to the above we obtain the Markov chain
corresponding to Loop J . Now, let Xi be the indicator random variable which is
1 if the i-th element of the Loop I causes a branch misprediction and 0 otherwise.
Correspondingly we define Yj for Loop J .

The ith element causes a branch misprediction in the following cases. After
having considered element a[i− 1] the Markov chain is in state 0 and a[i] ≥ x,
or it is in state 1 and a[i] ≥ x, or it is in state 2 and a[i] < x or it is in state 3
and a[i] < x. Therefore,

P [Xi = 1] = π0 ·P [a[i] ≥ x] + π1 ·P [a[i] ≥ x] + π2 ·P [a[i] < x] + π3 ·P [a[i] < x].

By substituting P [a[i] ≥ x] = 1 − α and P [a[i] < x] = α and the values for
π1, . . . , π3 we obtain that P [Xi = 1] = 2α4−4α3+α2+α

1−α(1−α) . The same holds for

P [Yi = 1]. Now let X =
∑k

i=1 Xi +
∑n

j=k+1 Yj be the number of branch mis-
predictions. Then E[X ] = E[

∑k
i=1 Xi +

∑n
j=k+1 Yj ] =

∑n
i=1 E[Xi] = nP [X1 =

1] = 2α4−4α3+α2+α
1−α(1−α) n. Let B2-bit(n) denote the expected number of branch mis-

predictions of quicksort with random pivot. Then
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B2-bit(n) ≤ 1
n

∑n
αn=1

(
B2-bit(αn−1)+B2-bit((1−α)n)+ 2α4−4α3+α2+α

1−α(1−α) n
)
. This

solves to B2-bit(n) = 28 ln 2
45 n lgn +O(n).

Now let A2-bit(n) be the expected number of branch mispredictions of quick-
sort with α-skewed pivot. Then
A2-bit(n) ≤ 2α4−4α3+α2+α

1−α(1−α) n + A2-bit(αn− 1) + A2-bit((1 − α)n), which solves to

A2-bit(n) = 2α4−4α3+α2+α
(1−α(1−α))H(α)n lgn +O(n).

4 Experiments

For our experiments we use one of the fastest quicksort implementations std::sort
from the STL library included in GCC v3.3. This implementation uses the me-
dian of 3 elements as the pivot. We added an implementation of the random pivot
and the idealized α-skewed pivot mechanisms. Our inputs are random permuta-
tion of the integers in the range [1, . . . , n]. We average over max{100,

⌈
107/n

⌉
}

inputs. Note that with a simple calculation we can obtain the element of rank
αn, for a given α. Observe that this makes the cost of finding the pivot element
negligible. If the time taken by quicksort is too large, the STL implementation
switches to an algorithm of O(n lg n) worst case performance. Since we are only
interested in quicksort we have removed this switch. In order to be able to use a
larger number of α’s for the skewed pivot mechanism we changed the threshold
of breaking the recursion from 16 to 20 elements. This does not have any signif-
icant effects. The STL implementation uses insertion sort for sorting the small
instances. The measures in our figures include the cost of the final insertion sort.
This changes the cost of all algorithms by the same amount and therefore does
not affect our conclusions.

We used the PAPI tool which provides an interface that allows to count several
CPU events including the number of branch mispredictions and the number of
instructions executed. When not otherwise stated, the experiments are on a
3GHz Pentium 4 Prescott.

Figs. 3, 4 and 5 show a comparison of the random pivot, the median of 3, the
exact median or 1/2-skewed and the 1/10-skewed pivoting mechanisms in terms
of the execution time, the number of occurring branch mispredictions and the
number of instructions executed for different values of n. In Fig. 3 we see that the
random pivot algorithm is most of the times a little bit worse than the others. On
the other hand the difference is very small and in particular we observe that the
curves for the random pivot, the median of 3 and the exact median are very close
to each other, in contrast to the common concept that the exact median and the
median of 3 should significantly outperform the random pivot. Furthermore, we
see that the 1/10-skewed algorithm has a better performance.

In Fig. 4 we see that the random pivot has for most n a smaller number of
branch mispredictions compared to the median of 3 and the exact median. The
measured prediction quality is better than the quality we would expect for a
1-bit predictor (see Table 1) but not quite as good as to be expected for a 2-bit
predictor. The 1/10-skewed pivot algorithm has of course the smallest number
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of branch mispredictions. In Fig. 5 we see the number of instructions that are
executed. These are proportional to the number of comparisons and therefore
we see that the exact median is the best, followed by the median of 3, then the
random pivot and finally the 1/10-skewed pivot. Observe that the curves in this
figure are very flat and smooth in contrast to the curves in Fig. 3. Therefore, it
is not only the number of executed instructions that plays a major role in the
running time. The fluctuations in Fig. 3 indicate architectural effects. Observe
that for n = 216 the number of branch mispredictions of random pivot drop and
for this n we also see a significant drop in its running time. Having a closer look at
the curves we see that the curves of time and those of the branch mispredictions
have the same shape, in the sense that when the branch mispredictions drop, the
running time drops too and when the branch mispredictions increase the running
time increases too. Note that the branch mispredictions only slowly approach
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0.5n lgn for the exact median algorithm. The main reason is that the insertion
sort used for small subproblems incurs only O(n) branch mispredictions (each
iteration of the inner loop of insertion sort incurs just one branch misprediction).

Figs. 6, 7 and 8 show the performance of the α-skewed pivot when we vary
α. We tried three different values of n, i.e. 212, 219 and 226. In Fig. 6, where the
running time is measured, we see that we have a parabola like figure and for
α = 1/11 we get the best running time. Moreover, the exact median which is
for α = 1/2 is a lot worse. Figs. 7 and 8 indicate why we have such a shape in
Fig. 6. As α increases, the number of branch mispredictions decreases and the
number of instructions increases. Therefore, we see that α = 1/11 is the place
of compromise.

In order to see the effects of different architectures we reran the experiments
on an Athlon, an Opteron and a Sun machine (Figures will be in the full paper).
We see for large inputs, pivots close to the median are an advantage. Our inter-
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pretation is that on the Opteron, memory bandwidth is more of an issue than
on the Pentium 4 architecture (perhaps its long pipelines make branch mispre-
diction more predominant). Hence, for a skewed pivot algorithm one might want
to pick α close to 1/2 for large subproblems but use a smaller value when a sub-
problem fits in cache. A similar strategy might be useful on a Pentium 4, when
we sort larger objects. Since our goal is understanding branch mispredictions
rather than designing an efficient algorithm, we do not dwell on this issue.

5 Conclusions

Somewhat astonishingly, generally accepted “improvements” of quicksort such
as median-of-three pivot selection bring no significant benefits in practice (at
least for sorting small objects) because they increase the number of branch mis-
predictions. For teaching this means that we should either stop after random
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pivots or give the full story of what happens for more sophisticated pivot selec-
tion strategies. By actively choosing a skewed pivot, we can slightly improve the
performance of quicksort. Since this increases the instruction count, the better
approach seems to be to avoid branch mispredictions altogether, e.g. using the
techniques described in [4]. However, an in-place sorting algorithm that is better
than quicksort with skewed pivots is an open problem.

Acknowledgments. We would like to thank Roman Dementiev, Dimitrios
Michail and Johannes Singler for crucial assistance with the experiments.

References

1. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7) (1961) 321
2. Knuth, D.E.: The Art of Computer Programming—Sorting and Searching. Vol-

ume 3. Addison Wesley (1973)
3. Mart́ınez, C., Roura, S.: Optimal sampling strategies in Quicksort and Quickselect.

SIAM Journal on Computing 31(3) (2002) 683–705
4. Sanders, P., Winkel, S.: Super scalar sample sort. In: 12th European Symposium

on Algorithms (ESA). Volume 3221 of LNCS., Springer (2004) 784–796
5. Brodal, G.S., Fagerberg, R., Moruz, G.: On the adaptiveness of quicksort. In:

Workshop on Algorithm Engineering & Experiments, SIAM (2005) 130–149
6. Brodal, G.S., Moruz, G.: Tradeoffs between branch mispredictions and comparisons

for sorting algorithms. In: Proc. 9th International Workshop on Algorithms and
Data Structures. Volume 3608 of Lecture Notes in Computer Science., Springer
Verlag, Berlin (2005) 385–395

7. Patterson, D.A., Hennessy, J.L.: Computer Architecture: A Quantitative Approach
3rd. ed. Morgan Kaufmann (2003)

8. Sedgewick, R.: Algorithms (Second Edition). Addison-Wesley Longman Publishing
Co. (1988)



Robust, Generic and Efficient Construction of
Envelopes of Surfaces in Three-Dimensional

Spaces�

Michal Meyerovitch��

School of Computer Science
Tel Aviv University

gorgymic@post.tau.ac.il

Abstract. Lower envelopes are fundamental structures in computa-
tional geometry, which have many applications, such as computing gen-
eral Voronoi diagrams and performing hidden surface removal in
computer graphics. We present a generic, robust and efficient implemen-
tation of the divide-and-conquer algorithm for computing the envelopes
of surfaces in IR3. To the best of our knowledge, this is the first exact im-
plementation that computes envelopes in three-dimensional space. Our
implementation is based on Cgal (the Computational Geometry Algo-
rithms Library) and is designated as a Cgal package. The separation
of topology and geometry in our solution allows for the reuse of the al-
gorithm with different families of surfaces, provided that a small set of
geometric objects and operations on them is supplied. We used our algo-
rithm to compute the lower and upper envelope for several types of sur-
faces. Exact arithmetic is typically slower than floating-point arithmetic,
especially when higher order surfaces are involved. Since our implemen-
tation follows the exact geometric computation paradigm, we minimize
the number of geometric operations, and by that significantly improve
the performance of the algorithm in practice. Our experiments show in-
teresting phenomena in the behavior of the divide-and-conquer algorithm
and the combinatorics of lower envelopes of random surfaces.

1 Introduction

Lower envelopes are fundamental structures in computational geometry, which
have many applications. Let S = {s1, . . . , sn} be a collection of n (hyper)surface
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is monotone in x1, . . . , xd−1, namely every line parallel to the xd-axis intersects
si in at most one point. Regard each surface patch si in S as the graph of a

� This work has been supported in part by the IST Programme of the EU as Shared-
cost RTD (FET Open) Project under Contract No IST-006413 (ACS - Algorithms
for Complex Shapes), and by the Hermann Minkowski–Minerva Center for Geometry
at Tel Aviv University.

�� This work is part of the author’s M.Sc. thesis under the guidance of Prof. Dan
Halperin.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 792–803, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Robust, Generic and Efficient Construction of Envelopes of Surfaces 793

partially defined (d−1)-variate function si(x̄). The lower envelope ES of S is the
pointwise minimum of these functions: ES(x̄) = min si(x̄), x̄ ∈ IRd−1, where the
minimum is taken over all functions defined at x̄. Similarly, the upper envelope
of S is the pointwise maximum of these functions.

The minimization diagramMS of S is the subdivision of IRd−1 into maximal
connected cells such that ES is attained by a fixed subset of functions over the
interior of each cell. In the same manner, the maximization diagram of S is the
subdivision of IRd−1 induced by the upper envelope of S.

The complexity of the lower envelope of a set of surfaces is defined as the com-
plexity of its minimization diagram. The maximum combinatorial complexity of
the lower envelope of n x-monotone Jordan arcs in the plane such that each pair
intersects in at most s points, for some fixed constant s, is near linear [22]. The
combinatorial complexity of the lower envelope of a set S of n well-behaved (see
e.g., [3]) surface patches in IRd is O(nd−1+ε), for any ε > 0, where the constant
of proportionality depends on ε, d and some surface-specific constants [12, 21].

In this paper we deal only with envelopes in IR3. Many algorithms for com-
puting envelopes in three-space exist. Agarwal et al. [2] presented a divide-and-
conquer algorithm with running time O(n2+ε), for any ε > 0. This time bound
is based on their result that the combinatorial complexity of the overlay of two
minimization diagrams of two collections of a total of n surface patches is also
O(n2+ε), for any ε > 0. Boissonnat and Dobrindt presented a randomized incre-
mental algorithm with the same running-time bound [7]. Another randomized
incremental approach [18] leads to a “quasi output sensitive” algorithm whose
expected running time is a sum of weights associated with all intersections of
projected objects edges, where the weight of an intersection is inversely pro-
portional to the number of objects ”hiding” that intersection from the viewing
point. Obtaining output sensitive algorithms that compute envelopes is a major
challenge. Such algorithms exist for special cases only. de Berg et al. [9] presented
an output-sensitive algorithm for polyhedral objects. Using the data structure of
Agarwal and Matoušek [1] its running time is O(n2/3+εk2/3) for any ε > 0, where
k is the output size and n is the number of faces of the polyhedra. Katz et al. [14]
presented an output-sensitive algorithm which runs in time O((U(n)+k) log2 n),
where k is the complexity of the output map and U(n) is a super-additive bound
on the maximal complexity of the union of the projections on the viewing plane
of any n objects. The method assumes that the surfaces can be ordered by depth
from the viewing point and its efficiency shows up when U(n) is small. For a
comprehensive summary of results see [8].

Transforming a geometric algorithm into a computer program is not a simple
task. An algorithm implemented from a textbook is susceptible to robustness
issues, and thus may yield incorrect results, enter infinite loops or crash (see
e.g., [15, 20]). This is mainly due to two assumptions that are often made in the
theoretical study of geometric algorithms, which are not realistic in practice.
First, the general position assumption excludes all degenerate inputs. Secondly,
the real Ram model is assumed, which allows for infinite precision arithmetic
operations on real numbers. Moreover, every operation on a constant number of
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simple geometric objects is assumed to take constant time. This is of course not
true in computer programs that use finite precision numbers.

Cgal, the Computational Geometry Algorithms Library,1 is a product of
a collaborative effort of several sites in Europe and Israel, aiming to provide
a robust, generic and efficient implementation of geometric data structures and
algorithms. It is a software library written in C++ following the generic program-
ming paradigm. The arrangement of a set C of planar curves is the subdivision
of the plane induced by the curves in C into maximally connected cells. Cgal
provides a robust implementation for constructing planar arrangements of arbi-
trary bounded curves and supporting operations on them [10, 23]. Robustness is
achieved both by handling all degenerate cases, and by using exact number types.
The Cgal arrangement package contains a class-template, which represents a
planar arrangement, and is parameterized by a traits class that encapsulates the
geometry of the family of curves it handles. Robustness is guaranteed as long
as the traits class uses exact number types for the computations it performs.
Among the number-type libraries that are used are Gmp2 for rational numbers,
and Core3 [13] and Leda4 [16, Chapter 4] for algebraic numbers.

We devised an exact and generic implementation of the
divide-and-conquer algorithm for constructing the enve-
lope of surface patches in IR3. Our solution is complete in
the sense that it handles all degenerate cases, and at the
same time it is efficient. To the best of our knowledge, this
is the first implementation of this kind. Our implementa-
tion is based on the Cgal library and is designated as a
Cgal package. The problem of computing the envelope is
somewhat two-and-a-half dimensional, since the input is
three-dimensional, but the output is naturally represented
as a two-dimensional object, the minimization diagram.
We use the Cgal two-dimensional arrangement package
for the representation of the minimization diagram. The
separation of topology and geometry in our solution al-
lows for the reuse of the algorithm with different families
of surfaces, provided that a small set of geometric objects and operations on
them is supplied. We used our algorithm to compute the lower or upper enve-
lope of sets of triangles, of sets of spheres and of sets of quadratic surfaces [6].
The figures above show examples of minimization diagrams of a set of triangles
and of a set of spheres as computed by our program. Our implementation fol-
lows the exact geometric computation paradigm. Exact arithmetic is typically
slower than floating-point arithmetic, especially when higher order surfaces are
involved. One of the main contributions of our work is minimizing the number
of geometric operations, and by that significantly improving the performance of

1 See the Cgal project homepage: http://www.cgal.org/.
2 Gnu’s multi-precision library http://www.swox.com/gmp/.
3 http://www.cs.nyu.edu/exact/core pages/intro.html.
4 http://www.algorithmic-solutions.com/enleda.htm.
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the algorithm in practice. Our experiments show interesting phenomena in the
behavior of the divide-and-conquer algorithm and the combinatorics of lower en-
velopes of random surfaces. In particular, they show that on some input sets the
algorithm performs better than the worst-case bound, and the combinatorial size
of the envelope is typically asymptotic much smaller than the worst-case bound.

The rest of this paper is organized as follows. In Sect. 2 we briefly review
the divide-and-conquer algorithm. In Sect. 3 we explain how we separate the
geometry and topology, and provide the details on the geometric part of our
implementation. Section 4 lists the methods we use to reduce the amount of ge-
ometric computation and improve the performance of the algorithm. In Sect. 5
we present experimental results and discuss the practical performance of the
algorithm. More details on the work can be found in [17]. In the following sec-
tions, to simplify the exposition, we refer to lower envelopes. However, our code
is generic and capable of computing envelopes in any direction, including upper
envelopes.

2 The Divide-and-Conquer Algorithm

We are given as input a set F of n surface patches in IR3. The first step is to
extract all the xy-monotone portions of these surfaces that are relevant to the
envelope. We denote this set by G. Henceforth, for convenience, we only work on
these xy-monotone surfaces in G. (Some of our methods described in Sect. 4 are
valid only under the assumption that the surfaces are xy-monotone. Yet, this
assumption does not contradict the generality of the algorithm since EF = EG .)
The output of our program is a minimization diagram, represented as a planar
arrangement where each arrangement feature (vertex, edge or face) is labelled
with the set of xy-monotone surfaces that attain the minimum over that feature.
The label can contain a single surface, several surfaces, or no surface at all, in
which case we call it the no surface label.

When G consists of a single xy-monotone surface, we construct its minimiza-
tion diagram using the projection of its boundary. When G contains more than
one xy-monotone surface, we split G into two sets G1 and G2 of (roughly) equal
size, recursively construct the minimization diagramsM1 andM2 of these sets
respectively, and finally merge these two diagrams into the final minimization
diagramM.

The merge step is carried out as follows. First, we overlay the two planar
arrangements underlying the minimization diagramsM1 andM2 to obtain the
arrangement O, where each feature is a maximal connected portion of the inter-
section of one feature f1 of M1 and one feature f2 of M2. For each feature in
O we keep two pointers to f1 and f2.

Next, we determine the structure of the minimization diagram over each fea-
ture in O, to obtain the arrangement O′

, which is a refinement of the arrange-
ment underlyingM. We then label each feature of O′

with the correct envelope
surfaces. We should consider here the two relevant features inM1 andM2 and
their labels l1 and l2, respectively. The non-trivial case is when both labels rep-
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resent non-empty sets of xy-monotone surfaces. These surfaces are defined over
the entire current feature f , and their envelope over f is the envelope of G1 ∪G2
there. Since all the xy-monotone surfaces of one label li overlap over the cur-
rent feature f , it is possible to take only one representative surface si from each
label and find the shape of their minimization diagram over f . Here we should
consider the intersection between the representative surfaces s1 and s2, or more
precisely, the projection C (which is, in general, a set of curves) onto the xy-plane
of this intersection, which may split the current feature, if it is an edge or a face.
We then label all the features of the arrangement of C restricted to f (where f
is considered relatively open) with the correct label, which might be either one
of the labels l1 and l2, or l1 ∪ l2 in case of an overlap.5 A face of the overlay
handled in this step, and hence the arrangement restricted to the face, can be
very complicated, with arbitrary topology (including holes, isolated points and
“antennas”) and unbounded complexity.

Finally, we apply a cleanup step in order to remove redundant features (edges
or vertices) of O′

and obtain the minimization diagramM of G.
The algorithm that we implemented (and described in detail below) is similar

to the one presented by [2] with one main difference — it handles the com-
plex faces directly instead of performing a vertical decomposition to get simple
constant-size faces.

3 The Geometric Traits Class

Our algorithm is parameterized with a traits class [5, 19], which serves as the
geometric interface to the algorithm. The traits class encapsulates the geometric
objects the algorithm operates on, and the predicates and constructions on these
objects used by the algorithm. In this manner the algorithm is made generic and
independent of the specific geometry needed to handle a special type of surfaces.

The set of requirements from a traits class forms a concept [5]. The geometric-
traits concept for the envelope algorithm refines (extends) the concept for build-
ing planar arrangements of general bounded curves. The latter concept, which is
described in detail in [23], defines three object types: planar points, x-monotone
curves and general curves, and operations on them. The envelope concept adds
to these requirements two more object types: three-dimensional xy-monotone
surfaces and general surfaces, and the following operations on them:

1. Given a general surface, extract maximal continuous xy-monotone patches
of the surface which contribute to its envelope.

2. Construct all the planar curves that form the boundary of the vertical pro-
jection of a given xy-monotone surface onto the xy-plane.

3. Construct all the planar curves and points, which compose the projection
(onto the xy-plane) of the intersection between two xy-monotone surfaces
s1 and s2, or return an empty set in case these surfaces do not intersect. If

5 With a slight abuse of notation we use the label li to denote the corresponding set
of surfaces.
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possible, indicate, for each projected intersection curve, whether the envelope
order of s1 and s2 changes when crossing that curve, or not. The envelope
order of s1 and s2 indicates whether s1 is below/coincides with/is above s2.
This information (referred to as the intersection type information) is optional
— when provided, it is used to improve performance of the algorithm, as is
explained in Sect. 4.

4. Given two xy-monotone surfaces s1 and s2, and a planar point p, which lies
in their xy definition range, determine the envelope order of s1 and s2 at
the xy-coordinates of p. This operation is only used in degenerate cases. A
situation where this operation is used is illustrated in Fig. 1(a).

5. Given two xy-monotone surfaces s1 and s2, and a planar x-monotone curve c,
which is a part of their projected intersection, determine the envelope order
of s1 and s2 immediately above (similarly below) the curve c (in the plane).
Note that c is a curve in the plane, and we refer to the region above/below
c in the plane, here and in the description of Operation 6.

6. Given two xy-monotone surfaces s1 and s2, and a planar x-monotone curve
c, which lies fully in their common xy range, such that s1 and s2 do not
intersect over the interior of c, determine the envelope order of s1 and s2 in
the interior of c. Figure 1(b) illustrates a situation where this operation is
used.

project
p

s1

s2

project

s1

s2

c

(a) (b)

Fig. 1. (a) Two tangent spheres s1 and s2 will be compared over the only point p in
their common xy-range. (b) The surfaces s1 and s2 will be compared over the interior
of the line segment c.

Making the traits-class concept as tight as possible, by identifying the minimal
number of required methods, is crucial. It can make the whole difference between
being able to implement a traits class for a specific type of surfaces or not, and
may have a major effect on the efficiency of the algorithm, especially for non-
linear objects. This observation has guided us in our design. Our algorithm
does not require the traits class to define any three-dimensional types except
the surface types. The interface with the traits class contains only the necessary
types for the input and the output of the algorithm, and a small set of operations
defined on these types.

Our implementation of the divide-and-conquer algorithm is completely inde-
pendent of the direction in which the envelope is to be computed. The traits
is responsible for controlling this direction. All our traits classes support the
computation of a lower and an upper envelope. It is also possible to use our
algorithm to compute the envelope seen from a direction that is not parallel
to the z-axis, provided that the traits-class correctly implements all operations
with respect to that direction.



798 M. Meyerovitch

4 Reducing the Number of Algebraic Operations

We invested considerable effort in trying to minimize the amount of algebraic
computation whenever possible, as such computation is usually very costly. This
actually means substituting calls to the different traits-class methods by the
propagation of information (in the form of labels) between incident features.

In the rest of this section we use the following notation. We merge two min-
imization diagrams M1 and M2 (representing the lower envelopes E1 and E2
respectively) of two sets of xy-monotone surfaces G1 and G2 respectively. The re-
sult of the merge is a minimization diagramM (representing the lower envelope
E) of the set G1 ∪ G2.

We use two types of information caching to avoid recomputing some geometric
information, (for more details on these caches we refer the reader to [17]).

– Cache for projected intersections of pairs of xy-monotone surfaces (since the
projected intersection of the same pair of surfaces may arise in the algorithm
more than once).

– Cache for comparison results of pairs of disjoint xy-monotone surfaces, where
the projection onto the xy-plane of each of the surfaces is convex.

Let O′ be the arrangement, which is created by overlaying the arrangements
underlyingM1 andM2, and determining the shape of the minimization diagram
over each feature of the overlay.O′ is a refinement of the arrangement underlying
M. For each feature f of O′ the envelope E is attained by the same set of surfaces
over all points of f . O′ is the input to the labelling step, which determines the
correct label of all the features of O′. For each feature f of O′ we have to decide
between two labels from the two minimization diagrams currently being merged;
we say that f is associated with a decision. A decision can be one of three values:
first, when the feature should be labelled with all the surfaces of the first label,
second, when the feature should be labelled with all the surfaces of the second
label and both, when the surfaces of both labels overlap over the feature. We
work with decisions in the labelling step, and after the cleanup step, we translate
the decisions into the relevant labels.

Obviously, in order to make a decision for a feature, we can use one of the
three types of comparison operations described in Sect. 3. However, we can use
the following observations to significantly reduce the number of such operations.
These savings are demonstrated in the experiments reported in Sect. 5.

– No need to compare xy-monotone surfaces over their projected intersection,
since they are equal there.

– Information on intersection type can be used when available, to avoid the
comparison of two xy-monotone surfaces on one side of a curve (which is a
part of their projected intersection) if their envelope order on the other side
of that curve is known. Recall that such information is (optionally) given by
the traits operation which constructs the projected intersection of two xy-
monotone surfaces. Similar information is extremely helpful in constructing
two-dimensional arrangements of curves [11].
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– Information on the continuity or discontinuity of the two envelopes currently
being merged can be used in order to conclude the decision for a feature
from a decision on an incident feature. We regard the following as incident
features: (i) a face and an edge on its boundary, (ii) a face and a vertex on
its boundary, and (iii) an edge and its endpoint vertices.

Using continuity or discontinuity information, as we explain in the rest of this
section, it is possible to carry a decision over from a face to a boundary edge and
vice versa. To best exploit this property, we traverse the faces in a breadth-first
order, moving from a face to its neighboring faces.

Using Continuity or Discontinuity Information

We consider the xy-monotone surfaces as graphs of partially defined bivariate
continuous functions, and their envelope as a function defined over the entire
xy-plane. In addition, we consider the boundary of an xy-monotone surface to
be part of this surface. For lack of space, we omit proofs here; the interested
reader can find them in [17].

Definition 1. Let E be an envelope andM its minimization diagram. Let f and
e be two incident features of M, such that e lies on the boundary of f . We say
that E meets f and e continuously if E restricted to f ∪ e is continuous over e.

Observation 1. Let E be an envelope of a set S of surfaces and M its mini-
mization diagram. Let f and e be two incident features of M, such that e lies
on the boundary of f . E meets f and e continuously if and only if there exists
an xy-monotone surface s ∈ S which appears over f and e on the envelope E.

We use this observation in our implementation to decide where an envelope meets
two incident features continuously. This information in then used to reduce the
number of geometric comparisons according to the following lemma.

Lemma 1. Let f be a face of O′ and e be an edge on its boundary. Suppose that:
(i) a decision over the face f is known, and (ii) both envelopes E1 and E2 meet f
and e continuously. Let s1 and s2 be the xy-monotone surfaces that appear over
f and e on these envelopes respectively. Suppose further that e is not part of
the projected intersection of the surfaces s1 and s2. Then the decision made on
f is valid also on e. Similar statements can be used for other types of incident
features.

Sometimes, we can use also the discontinuity information to deduce a decision
for a feature without comparing the relevant surfaces.

Observation 2. Let E be a lower envelope and M its minimization diagram.
Let f and e be two incident features of M, such that e lies on the boundary
of f . Let sf and se be representative xy-monotone surfaces of E over f and e
respectively. E does not meet f and e continuously if and only if se lies below sf

over e (note that sf is defined over e).
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Applying Observation 2 to the labelling step we get:

Lemma 2. Let f be a face of O′ and e be an edge on its boundary. Assume that
the lower envelope E1 meets f and e continuously, but the lower envelope E2 does
not. (i) If E2 is below E1 over f , then E2 is below E1 also over e. (ii) If E1 is
below E2 over e, then E1 is below E2 also over f . Similar arguments apply to all
other incidence relationships.

Figure 2 illustrates how the observations above are used in the labelling step.
Table 2 in Sect. 5 demonstrates the significant savings in geometric operations by
the techniques presented above. For example, for a set of 1000 random triangles
the total number of comparison operations reduces from 265,211 to 13,620, and
for a set of 1000 random spheres the total number of such operations reduces
from 48,842 to 2,457, which is roughly a saving of 95% in either case.

f2b

r

f3

e2

e1

f1
g

(a) (b) (c) (d)

Fig. 2. Applying continuity or discontinuity arguments to carry on a decision between
incident features: (a) the envelope of two triangles r and b, (b) the envelope of one
triangle g, (c) the envelope of r, b and g, (d) the overlaid arrangement before the
labelling step. To label face f1 with g we compare triangles b and g. Using Lemma 1,
we label all the features on the boundary of f1 with g. To label face f2, where triangles
r and g should be compared, we use Lemma 1 and the edge e1 to conclude that g
appears on the envelope, without actually comparing r and g. Using Lemma 1, we
label all the features on the boundary of f2 with g. Finally, we use Lemma 2 and the
edge e2 to set the label of face f3 to g. To summarize, we need only compare triangles
b and g once, and all the other decisions follow.

5 Experimental Results

In this section we present experimental results that demonstrate the performance
of our algorithm and show its behavior on various input sets. Many more exper-
imental results are available in [17]. The running times reported in this section
were obtained on a single 3 GHz PC with 2Gb of Ram, running under Linux.

Our experiments were conducted on the following input sets:

– rnd triangles n n triangles, each of which was generated by choosing the
coordinates of its three vertices uniformly at random as integers in the cube
[0, 10000]3.

– rnd small p triangles n n triangles, each of which was generated by first
choosing the coordinates of one corner of the triangle uniformly at randomin
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the cube [0, 10000]3, then choosing two random points in the sphere with
radius p ∗ 10000 around this point. All the vertex coordinates are integers.

– rnd small spheres n n spheres, where the centers were chosen with integer
coordinates uniformly at random in the range [−1000, 1000]3, and the integer
radii were chosen uniformly at random in the range [1, 250].

– rnd spheres n n spheres, where the centers were chosen with integer co-
ordinates uniformly at random in the range [−1000, 1000]3, and the integer
radii were chosen uniformly at random in the range [1, 500].

We measured the running time of our algorithm on various types of examples,
to investigate the behavior of the algorithm in practice. Some of the results
are shown in Fig. 3. Our results show that on some inputs sets the algorithm
performs better than the worst-case estimate.
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Fig. 3. The running time of computing the envelope for different input sizes: (a)
rnd triangles n, (b) rnd spheres n

We investigated the behavior of the size of the lower envelope of specific input
sets; results graphs are available in [17]. For the rnd triangles n input sets, the
results show that the size of the minimization diagram is roughly6 Θ(n2/3). For
other input sets the minimization diagrams are sub-linear in the input size as well.

Table 1 shows the actual running time for different input sets, each consisting
of 1000 input surfaces. In the last three columns we give statistics of the whole
process, which can give an idea about the amount of work that is carried out
during the whole execution. It can be seen that the algorithm is much slower
when run on non-linear input than on linear input; this is expected when using
exact arithmetic, since with linear input, rational arithmetic suffices, whereas
with non-linear input, algebraic numbers should be used. For lack of space we
omit the statistics on the size of the minimization diagrams, which demonstrate
the huge variance in output size for the same (combinatorial) input size; they
can be found in [17].

Table 2 shows the algorithm running time and the number of calls to the three
types of comparison methods made by the algorithm in the labelling process,

6 This bound of roughly Θ(n2/3) is inspired by recent results of Alon et al. [4] for en-
velopes of segments in the plane. It seems that some of their results extend to 3D
implying this bound.
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Table 1. Results for different input sets. Intermediate is the total sum of the combi-
natorial size of all the minimization diagrams computed during the recursion. Inter-
sections is the number of intersections between pairs of surfaces that were found by
the algorithm. 2d-Intersections is the number of two-dimensional intersections between
projected x-monotone curves that were found during the entire run of the algorithm.

Input File Time Process details:
(1000 surfaces) (seconds) Intermediate Intersections 2d-Intersections

rnd triangles 14.073 190,942 12,007 52,990
rnd small 0.1 triangles 2.369 94,906 117 11,134
rnd small 0.5 triangles 6.532 144,383 2,676 29,093
rnd small spheres 249.111 60,465 842 7,472
rnd spheres 654.044 53,188 1,565 8,547

comparing between the näıve approach and our approach. The näıve approach
means comparing surfaces over all features, except over projected intersections.
Our approach is described in Sect. 4, and uses the intersection type and con-
tinuity/discontinuity information together with a breadth-first traversal of the
faces. Both approaches use the caching information described in Sect. 4. It can
be seen that the reduction in the number of operations is highly significant for
all the input sets. We remark that the number of comparison operations over a
two-dimensional point reduces to zero in our approach since these examples do
not contain degeneracies in which this operation is invoked.

Table 2. Comparing the number of comparison operations used by the algorithm with
and without our means for reducing the number of algebraic operations. The Pt., Cv.
and Cv.-side columns represent the number of calls made to the appropriate version of
the comparison method: comparison over a planar point, comparison over a planar x-
monotone curve and comparison above/below a planar x-monotone curve respectively.
The construction time is given in seconds.

Input File Näıve solution Using our improvements
(1000 surfaces) Pt. Cv. Cv.-side Time Pt. Cv. Cv.-side Time

rnd triangles 85,091 166,405 13,715 25.028 0 10,333 3,287 14.073
rnd small 0.3 triangles 42,090 76,763 1,934 6.861 0 8,244 791 5.263
rnd small 0.5 triangles 51,598 96,662 3,703 9.593 0 8,851 1,325 6.532
rnd small spheres 14,901 25,853 1297 399.327 0 2,466 450 249.111
rnd spheres 14,965 25,630 2247 1116.430 0 1,840 617 654.044
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Abstract. In [1], we presented a shortest path algorithm that allows
fast point-to-point queries in graphs using preprocessed data. Here, we
give an extensive revision of our method. It allows faster query and pre-
processing times, it reduces the size of the data obtained during the pre-
processing and it deals with directed graphs. Some important concepts
like the neighbourhood radii and the contraction of a network have been
generalised and are now more flexible. The query algorithm has been
simplified: it differs only by a few lines from the bidirectional version of
Dijkstra’s algorithm. We can prove that our algorithm is correct even
if the graph contains several paths of the same length.

Experiments with real-world road networks confirm the effectiveness
of our approach. Preprocessing the network of Western Europe, which
consists of about 18 million nodes, takes 15 minutes and yields 68 bytes of
additional data per node. Then, random queries take 0.76 ms on average.
If we are willing to accept slower query times (1.38 ms), the memory
usage can be decreased to 17 bytes per node. For the European and the
US road networks, we can guarantee that at most 0.05% of all nodes are
visited during any query.

1 Introduction

Computing fastest routes in road networks is one of the showpieces of real-world
applications of algorithmics. In principle we could use Dijkstra’s algorithm.
But for large road networks this would be far too slow. Therefore, there is con-
siderable interest in speedup techniques for route planning. Commercial systems
use information on road categories to speed up search. “Sufficiently far away”
from source and target, only “important” roads are used. This requires man-
ual tuning of the data and a delicate tradeoff between computation speed and
suboptimality of the computed routes. In a previous paper [1] we introduced
the idea to automatically compute highway hierarchies that yield optimal routes
uncompromisingly quickly. This was the first speedup technique that was able
to preprocess the road network of a continent in realistic time and obtain large
speedups (several thousands) over Dijkstra’s algorithm. Since this was a pro-
totype, we made several simplifying assumptions. Our system was limited to
undirected graphs, we only had a proof for a simplified version of the query
algorithm, practitioners criticised the considerable constant factor in space con-
sumption, and the query algorithm was fairly complicated.
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In this paper we tackle all these issues. We originally thought that this would
be a more or less routine case study in algorithm engineering. However, we
arrived at some algorithmically interesting new and more general concepts and
we obtained results we did not expect. In particular, our system became at the
same time considerably simpler, more space efficient, and faster with respect to
both preprocessing and query time.

Our Contributions. Perhaps the most crucial definition for highway hierarchies
is a specification of the concept of local search. Section 3 allows directed graphs
and an individual neighbourhood radius for each node. The highway network—a
set of edges that suffice for all shortest paths outside of local neighbourhoods—
can then still be computed using methods analogous to [1]. Since the highway
network is very sparse, it is then important to contract it by removing nodes of
small degree. In [1] this was done using specialised routines for attached trees
and lines of nodes with degree two. First experiments indicated that a straight
forward adaptation of these concepts to directed graphs leads to deteriorating
performance. In Section 4 we describe a simpler, more general method that leads
to better performance even for undirected graphs: A node v can be bypassed by
replacing all edge pairs of the form (u, v), (v, w) with u �= w by a shortcut (u,w).
For a tuning parameter c, if the number of introduced shortcuts is smaller than c
times the number of removed edges adjacent to v, the node is actually bypassed.

Section 5 describes a simple query algorithm for directed highway hierarchies.
Its pseudocode is only four lines longer than code for ordinary bidirectional
Dijkstra. Since highway hierarchies are additionally similar to the heuristic
hierarchies used in industry, we are very optimistic that they are easy to use in
products. Moreover, the simplified algorithm also allows us to give a complete
correctness proof.

Section 6 deals with the abort criterion that can be applied when forward
and backward search have met. In contrast to the undirected prototype from
[1], we drop optimisations intended for pruning the search space. While this
inflates the search space by about 50%, our measurements indicate that the net
effect on the running time is an improvement by more than 50%. Furthermore,
we describe how an additional acceleration can be obtained by computing a
complete distance table for the topmost level of the highway hierarchy.

The experiments in Section 7 give a strong indication that directed highway
hierarchies are currently the most efficient technique for route planning. The
tuning parameters turn out to work uniformly well for all the inputs or at least
suboptimal values only lead to small performance degradations. Highway hier-
archies also allow per-instance worst case performance guarantees, i.e., we can
give a good approximation of the complete query time distribution including
the worst case for all n2 possible query pairs without actually executing this
astronomic number of queries.

Related Work. For a detailed review of practical and theoretical speedup tech-
niques we refer to [2, 3, 4]. Here we restrict ourselves to the latest news and the
concepts needed to understand the problems at hand. A classical technique is
bidirectional search, which simultaneously searches forward from s and back-
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wards from t until the search frontiers meet. For the remaining techniques, we
distinguish between two basic speedup effects. Some techniques direct the search
towards the target node (and backward search towards the source node), other
approaches exploit the hierarchy inherent in road networks, and some incorpo-
rate both effects by storing information about nodes reached by shortest paths
via some edge. Besides highway hierarchies, the most effective hierarchy based
technique is reach based routing [5] which was considerably strengthened in [6].
Interestingly, the methods used to efficiently compute highway hierarchies in [1]
also turned out to be crucial for computing reaches. Reach based routing com-
bined with the strong sense of goal direction from the landmark method (the
REAL algorithm) beats [1] with respect to query time whereas it needs signif-
icantly more preprocessing time. Our new results achieve better query times, a
factor ≥ 26 smaller preprocessing times, and need less space.

2 Preliminaries

Graphs and Paths. We expect a directed graph G = (V,E) with n nodes and m
edges (u, v) with nonnegative weights w(u, v) as input. We assume w.l.o.g. that
there are no self-loops, parallel edges, and zero weight edges in the input—they
could be dealt with easily in a preprocessing step. The length w(P ) of a path
P is the sum of the weights of the edges that belong to P . P ∗ = 〈s, . . . , t〉 is
a shortest path if there is no path P ′ from s to t such that w(P ′) < w(P ∗).
The distance d(s, t) between s and t is the length of a shortest path from s to
t. If P = 〈s, . . . , s′, u1, u2, . . . , uk, t

′, . . . , t〉 is a path from s to t, then P |s′→t′ =
〈s′, u1, u2, . . . , uk, t

′〉 denotes the subpath of P from s′ to t′.

Dijkstra’s Algorithm. Dijkstra’s algorithm can be used to solve the single
source shortest path (SSSP) problem, i.e., to compute the shortest paths from
a single source node s to all other nodes in a given graph. It is covered by
virtually any textbook on algorithms, so that we confine ourselves to introducing
our terminology: Starting with the source node s as root, Dijkstra’s algorithm
grows a shortest path tree that contains shortest paths from s to all other nodes.
During this process, each node of the graph is either unreached, reached, or
settled. A node that already belongs to the tree is settled. If a node u is settled, a
shortest path P ∗ from s to u has been found and the distance d(s, u) = w(P ∗) is
known. A node that is adjacent to a settled node is reached. Note that a settled
node is also reached. If a node u is reached, a path P from s to u, which might
not be the shortest one, has been found and a tentative distance δ(u) = w(P ) is
known. Nodes that are not reached are unreached.

A bidirectional version of Dijkstra’s algorithm can be used to find a shortest
path from a given node s to a given node t. Two Dijkstra searches are executed
in parallel: one searches from the source node s in the original graph G = (V,E),
also called forward graph and denoted as −→G = (V,−→E ); another searches from the
target node t backwards, i.e., it searches in the reverse graph ←−G = (V,←−E ),←−
E := {(v, u) | (u, v) ∈ E}. The reverse graph ←−G is also called backward graph.
When both search scopes meet, a shortest path from s to t has been found.
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3 Highway Hierarchy

A highway hierarchy of a graph G consists of several levels G0, G1, G2, . . . , GL,
where the number of levels L + 1 is given. We provide an inductive definition:
– Base case (G′

0, G0): level 0 (G0 = (V0, E0)) corresponds to the original graph
G; furthermore, we define G′

0 := G0.
– First step (G′

� → G�+1, 0 ≤ � < L): for given neighbourhood radii, we will
define the highway network G�+1 of a graph G′

�.
– Second step (G� → G′

�, 1 ≤ � ≤ L): for a given set B� ⊆ V� of bypassable
nodes, we will define the core G′

� of level �.

First step (highway network). For each node u, we choose a nonnegative neigh-
bourhood radius r→� (u) for the forward graph and a radius r←� (u) ≥ 0 for the
backward graph. To avoid some case distinctions, for any direction �∈ {→,←},
we set the neighbourhood radius r�

� (u) to infinity for u �∈ V ′
� and for � = L.

The level-� neighbourhood of a node u ∈ V ′
� is N→

� (u) := {v ∈ V ′
� | d�(u, v) ≤

r→� (u)} with respect to the forward graph and, analogously,N←
� (u) := {v ∈ V ′

� |
d←� (u, v) ≤ r←� (u)} with respect to the backward graph, where d�(u, v) denotes
the distance from u to v in the forward graph G� and d←� (u, v) := d�(v, u) in the
backward graph ←−G�.

The highway network G�+1 = (V�+1, E�+1) of a graph G′
� is the subgraph of

G′
� induced by the edge set E�+1: an edge (u, v) ∈ E′

� belongs to E�+1 iff there
are nodes s, t ∈ V ′

� such that the edge (u, v) appears in the canonical shortest
path1 〈s, . . . , u, v, . . . , t〉 from s to t in G′

� with the property that v �∈ N→
� (s)

and u �∈ N←
� (t).

Second step ( core). For a given set B� ⊆ V� of bypassable nodes, we define
the set S� of shortcut edges that bypass the nodes in B�: for each path P =
〈u, b1, b2, . . . , bk, v〉 with u, v ∈ V� \B� and bi ∈ B�, 1 ≤ i ≤ k, the set S� contains
an edge (u, v) with w(u, v) = w(P ). The core G′

� = (V ′
� , E

′
�) of level � is defined

in the following way: V ′
� :=V� \B� and E′

� := (E� ∩ (V ′
� × V ′

� )) ∪ S�.

4 Construction

Neighbourhood Radii. We suggest the following strategy to set the neighbour-
hood radii. For this paragraph, we interpret the graph G′

� as an undirected graph,
i.e., a directed edge (u, v) is interpreted as an undirected edge {u, v} even if the
edge (v, u) does not exist in the directed graph. Let us fix any rule that decides
which element Dijkstra’s algorithm removes from the priority queue in the case
that there is more than one queued element with the smallest key. Then, during
a Dijkstra search from a given node u in the undirected graph, all nodes are
settled in a fixed order. The Dijkstra rank rku(v) of a node v is the rank of v
w.r.t. this order. u has Dijkstra rank rku(u) = 0, the closest neighbour v1 of u
1 For each connected node pair (s, t), we select a unique canonical shortest path in

such a way that each subpath of a canonical shortest path is canonical as well. For
details, we refer to [1].
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has Dijkstra rank rku(v1) = 1, and so on. For a given parameter H�, for any
node u ∈ V ′

� , we set r→� (u) := r←� (u) := d↔� (u, v), where v is the node whose
Dijkstra rank rku(v) is H�; d↔� (u, v) denotes the distance between u and v
in the undirected graph. Applying this strategy to the forward and backward
graph one after the other in order to define individual forward and backward
radii yields a similar good performance, but needs twice the memory.

Fast Construction of a Highway Network. The fast construction method intro-
duced in [1] has been modified in order to deal with directed graphs and the new,
more general neighbourhood definition. For details, we refer to the full paper.

Contraction of a Graph. In order to obtain the core of a highway network,
we contract it, which yields several advantages. The search space during the
queries gets smaller since bypassed nodes are not touched and the construction
process gets faster since the next iteration only deals with the nodes that have
not been bypassed. Furthermore, a more effective contraction allows us to use
smaller neighbourhood sizes without compromising the shrinking of the highway
networks. This improves both construction and query times. However, bypassing
nodes involves the creation of shortcuts, i.e., edges that represent the bypasses.
Due to these shortcuts, the average degree of the graph is increased and the
memory consumption grows. In particular, more edges have to be relaxed during
the queries. Therefore, we have to carefully select nodes so that the benefits of
bypassing them outweigh the drawbacks.

We give an iterative algorithm that combines the selection of the bypassable
nodes B� with the creation of the corresponding shortcuts. We manage a stack
that contains all nodes that have to be considered, initially all nodes from V�. As
long as the stack is not empty, we deal with the topmost node u. We check the
bypassability criterion #shortcuts ≤ c · (degin(u) + degout(u)), which compares
the number of shortcuts that would be created when u was bypassed with the sum
of the in- and outdegree of u. The magnitude of the contraction is determined
by the parameter c. If the criterion is fulfilled, the node is bypassed, i.e., it is
added to B� and the appropriate shortcuts are created. Note that the creation of
the shortcuts alters the degree of the corresponding endpoints so that bypassing
one node can influence the bypassability criterion of another node. Therefore,
all adjacent nodes that have been removed from the stack earlier, have not been
bypassed, yet, and are bypassable now are pushed on the stack once again. It
happens that shortcuts that were created once are discarded later when one of
its endpoints is bypassed. Note that we will get a contraction that is similar to
our trees-and-lines method [1] if we set c = 0.5.

5 Query

Our highway query algorithm is a modification of the bidirectional version of
Dijkstra’s algorithm. For now, we assume that the search is not aborted when
both search scopes meet. This matter is dealt with in Section 6. We only describe
the modifications of the forward search since forward and backward search are
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symmetric. In addition to the distance from the source, the key of each node
includes the search level and the gap to the next applicable neighbourhood
border. The search starts at the source node s in level 0. First, a local search in
the neighbourhood of s is performed, i.e., the gap to the next border is set to the
neighbourhood radius of s in level 0. When a node v is settled, it adopts the gap
of its parent u minus the length of the edge (u, v). As long as we stay inside the
current neighbourhood, everything works as usual. However, if an edge (u, v)
crosses the neighbourhood border (i.e., the length of the edge is greater than
the gap), we switch to a higher search level �. The node u becomes an entrance
point to the higher level. If the level of the edge (u, v) is less than the new search
level �, the edge is not relaxed—this is one of the two restrictions that cause the
speedup in comparison to Dijkstra’s algorithm (Restriction 1). Otherwise, the
edge is relaxed2. If the relaxation is successful, v adopts the new search level �
and the gap to the border of the neighbourhood of u in level � since u is the
corresponding entrance point to level �.

We have to deal with the special case that an entrance point to level � does
not belong to the core of level �. In this case, as soon as the level-� core is
entered, i.e., a node u ∈ V ′

� is settled, u is assigned the gap to the border
of the level-� neighbourhood of u. Note that before the core is entered, the
gap has been infinity. To increase the speedup, we introduce another restriction
(Restriction 2): when a node u ∈ V ′

� is settled, all edges (u, v) that lead to a
bypassed node v ∈ B� in search level � are not relaxed.

Despite of Restriction 1, we always find the optimal path since the construc-
tion of the highway hierarchy guarantees that the levels of the edges that belong
to the optimal path are sufficiently high so that these edges are not skipped.
Restriction 2 does not invalidate the correctness of the algorithm since we have
introduced shortcuts that bypass the nodes that do not belong to the core. Hence,
we can use these shortcuts instead of the original paths.

The Algorithm. We use two priority queues −→Q and←−Q , one for the forward search
and one for the backward search. The key of a node u is a triple (δ(u), �(u),
gap(u)), the (tentative) distance δ(u) from s (or t) to u, the search level �(u),
and the gap gap(u) to the next applicable neighbourhood border. A key (δ, �, gap)
is less than another key (δ′, �′, gap′) iff δ < δ′ or δ = δ′∧� > �′ or δ = δ′∧� = �′∧
gap < gap′. Figure 1 contains the pseudo-code of the highway query algorithm.
The proof of correctness is included in the full paper.

6 Optimisations

Abort on Success. In the bidirectional version of Dijkstra’s algorithm, we can
abort the search as soon as both search scopes meet. Unfortunately, this would be
incorrect for our highway query algorithm. We therefore use a more conservative
criterion: after a tentative shortest path P ′ has been encountered (i.e., after both
search scopes have met), the forward (backward) search is not continued if the

2 To relax an edge means to execute Line 11 in Fig. 1.
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input : source node s and target node t

1
−→
Q .insert(s, (0, 0, r→

0 (s))); ←−Q .insert(t, (0, 0, r←
0 (t)));

2 while (−→Q ∪←−Q �= ∅) do {
3 � ∈ {→,←}; // select direction

4 u :=
�
Q.deleteMin();

5 if gap(u) �=∞ then gap′ := gap(u) else gap′ := r�
�(u)(u);

6 foreach e = (u, v) ∈�
E do {

7 for (� := �(u), gap := gap′; w(e) > gap; �++)
gap := r�

�+1(u); // go “upwards”
8 if �(e) < � then continue; // Restriction 1
9 if u ∈ V ′

� ∧ v ∈ B� then continue; // Restriction 2
10 k := (δ(u) + w(e), �, gap − w(e));

11 if v ∈
�
Q then

�
Q.decreaseKey(v, k); else

�
Q.insert(v, k);

12 }
13 }

Fig. 1. The highway query algorithm. Differences to the bidirectional version of Dijk-
stra’s algorithm are marked: additional and modified lines have a framed line number;
in modified lines, the modifications are underlined.

minimum element u of the forward (backward) queue has a key δ(u) ≥ w(P ′).
More sophisticated rules used in [1] turned out to be too expensive in terms of
query time.

Speeding Up the Search in the Topmost Level. Let us assume that we have a
distance table that contains for any node pair s, t ∈ V ′

L the optimal distance
dL(s, t). Such a table can be precomputed during the preprocessing phase by
|V ′

L| SSSP searches in V ′
L. Using the distance table, we do not have to search

in level L. Instead, when we arrive at a node u ∈ V ′
L that ‘leads’ to level L, we

add u to a set −→I or ←−I depending on the search direction; we do not relax the
edge that leads to level L. After the sets −→I and ←−I have been determined, we
consider all pairs (u, v), u ∈ −→I , v ∈ ←−I , and compute the minimum path length
D := d0(s, u) + dL(u, v) + d0(v, t). Then, the length of the shortest s-t-path is
the minimum of D and the length of the tentative shortest path found so far
(in case that the search scopes have already met in a level < L). This optimi-
sation can be included in the highway query algorithm (Fig. 1) by adding two
lines:

between Lines 5 and 6:
5a if gap′ �=∞∧ �(u) = L then {

�
I :=

�
I ∪{u}; continue;}

between Lines 9 and 10:
9a if gap �=∞∧ � = L ∧ � > �(u) then {

�
I :=

�
I ∪{u}; continue;}
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7 Experiments

Environment and Instances. The experiments were done on one core of an AMD
Opteron Processor 270 clocked at 2.0 GHz with 4 GB main memory and 2 ×
1 MB L2 cache, running SuSE Linux 10.0 (kernel 2.6.13). The program was
compiled by the GNU C++ compiler 4.0.2 using optimisation level 3. We use 32
bits to store edge weights and path lengths.

We deal with the road networks of Western Europe3 and of the USA (without
Hawaii) and Canada. Both networks have been made available for scientific use
by the company PTV AG. The original graphs contain for each edge a length and
a road category, e.g., motorway, national road, regional road, urban street. We
assign average speeds to the road categories, compute for each edge the average
travel time, and use it as weight. In order to compare ourselves with [1, 6], we
also perform experiments on another version of the US road network (without
Alaska and Hawaii) that was obtained from the TIGER/Line Files [7]. However,
in contrast to the PTV data, the TIGER graph is undirected, planarised and
distinguishes only between four road categories.

As in [1, 6], we report only the times needed to compute the shortest path
distance between two nodes without outputting the actual route. In order to
obtain the corresponding subpaths in the original graph, we are able to extract
the used shortcuts without using any extra data. However, if a fast output routine
is required, we might want to spend some additional space to accelerate the
unpacking process. For details, we refer to the full paper. Table 1 summarises
the properties of the used road networks and key results of the experiments.

Parameters. Unless otherwise stated, the following default settings apply. We
use the contraction rate c = 1.5 and the neighbourhood sizes H as stated in
Tab. 1—the same neighbourhood size is used for all levels of a hierarchy. First, we
contract the original graph. Then, we perform four iterations of our construction
procedure, which determines a highway network and its core. Finally, we compute
the distance table between all level-4 core nodes.

In one test series (Fig. 2), we used all the default settings except for the
neighbourhood size H , which we varied from 40 to 90. On the one hand, if H is
too small, the shrinking of the highway networks is less effective so that the level-
4 core is still quite big. Hence, we need much time and space to precompute and
store the distance table. On the other hand, if H gets bigger, the time needed
to preprocess the lower levels increases because the area covered by the local
searches depends on the neighbourhood size. Furthermore, during a query, it
takes longer to leave the lower levels in order to get to the topmost level where
the distance table can be used. Thus, the query time increases as well. We
observe that we get good space-time tradeoffs for neighbourhood sizes around
60. In particular, we find that a good choice of the parameter H does not vary
very much from graph to graph.

In another test series (Tab. 2a), we did not use a distance table, but repeated
the construction process until the topmost level was empty or the hierarchy
3 14 countries: at, be, ch, de, dk, es, fr, it, lu, nl, no, pt, se, uk.
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Table 1. Overview of the used road networks and key results. ‘∅overhead/node’ ac-
counts for the additional memory that is needed by our highway hierarchy approach
(divided by the number of nodes). The amount of memory needed to store the original
graph is not included. Query times are average values based on 10 000 random s-t-
queries. ‘Speedup’ refers to a comparison with Dijkstra’s algorithm (unidirectional).
Worst case is an upper bound for any possible query in the respective graph.

Europe USA/CAN USA (Tiger)

input
#nodes 18 029 721 18 741 705 24 278 285
#directed edges 42 199 587 47 244 849 58 213 192
#road categories 13 13 4

param. average speeds [km/h] 10–130 16–112 40–100
H 50 60 60

preproc. CPU time [min] 15 20 18
∅overhead/node [byte] 68 69 50

query

CPU time [ms] 0.76 0.90 0.88
#settled nodes 884 951 1 076
#relaxed edges 3 182 3 630 4 638
speedup (CPU time) 8 320 7 232 7 642
speedup (#settled nodes) 10 196 9 840 11 080
worst case (#settled nodes) 8 543 3 561 5 141

consisted of 15 levels. We varied the contraction rate c from 0.5 to 2. In case
of c = 0.5 (and H = 50), the shrinking of the highway networks does not work
properly so that the topmost level is still very big. This yields huge query times.
Note that in [1] we used a larger neighbourhood size to cope with this problem.
Choosing larger contraction rates reduces the preprocessing and query times
since the cores and search spaces get smaller. However, the memory usage and
the average degree are increased since more shortcuts are introduced. Adding
too many shortcuts (c = 2) further reduces the search space, but the number of
relaxed edges increases so that the query times get worse.
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Fig. 2. Preprocessing and query performance depending on the neighbourhood size H
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Table 2. Preprocessing and query performance for the European road network de-
pending on the contraction rate c (a) and the number of levels (b). ‘overhead’ denotes
the average memory overhead per node in bytes.

contr.
preprocessing query

rate c
time over-

∅deg. time #settled #relaxed
[min] head [ms] nodes edges

0.5 89 27 3.2 176.05 242 156 505 086
1 16 27 3.7 1.97 2 321 8 931

1.5 13 27 3.8 1.58 1 704 7 935
2 13 28 3.9 1.70 1 681 8 607

(a)

preproc. query
# time over- time #settled

levels [min] head [ms] nodes
5 16 68 0.77 884
7 13 28 1.19 1 290
9 13 27 1.51 1 574
11 13 27 1.62 1 694

(b)

In a third test series (Tab. 2b), we used the default settings except for the
number of levels, which we varied from 5 to 11. In each test case, a distance
table was used in the topmost level. The construction of the higher levels of
the hierarchy is very fast and has no significant effect on the preprocessing
times. In contrast, using only five levels yields a rather large distance table,
which somewhat slows down the preprocessing and increases the memory usage.
However, in terms of query times, ‘5 levels’ is the optimal choice since using the
distance table is faster than continuing the search in higher levels.

Space Saving. If we omit the first contraction step and use a smaller contraction
rate (� less shortcuts), use a bigger neighbourhood size (� higher levels get
smaller), and construct more levels before the distance table is used (� smaller
distance table), the memory usage can be reduced considerably. In case of Eu-
rope, using seven levels, H = 100, and c = 1 yields an average overhead per
node of 17 bytes. The construction and query times increase to 55 min and 1.38
ms, respectively.

Worst Case Upper Bounds. By executing a query from each node of a given
graph to an added isolated dummy node and a query from the dummy node to
each actual node in the backward graph, we obtain a distribution of the search
spaces of the forward and backward search, respectively. We can combine both
distributions to get an upper bound for the distribution of the search spaces
of bidirectional queries: when F→(x) (F←(x)) denotes the number of source
(target) nodes whose search space consists of x nodes in a forward (backward)
search, we define F↔(z) :=

∑
x+y=z F→(x) · F←(y), i.e., F↔(z) is the number

of s-t-pairs such that the upper bound of the search space size of a query from
s to t is z. In particular, we obtain the upper bound max{z | F↔(z) > 0} for
the worst case without performing all n2 possible queries. Figure 3 visualises the
distribution F↔(z) as a histogram.

For the European road network, we observe several outliers between 7 800 and
8 600. The investigation of some samples indicates that these outliers are situated
on some islands next to the Norwegian coast. Since Norway is sparsely populated
and the road network is very sparse as well, we know that the neighbourhoods in
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Fig. 3. Histogram of upper bounds for the search spaces of s-t-queries. To increase
readability, only the outline of the histogram is plotted instead of the complete
boxes.

low levels, which are defined by a fixed number of road junctions, cover a large
geographic area. Hence, the search spreads very far before entering a reasonably
high search level. When several densely populated areas are encountered while
the search level is still quite low, the total search space size gets comparatively
large. To improve the worst case, it might be a good idea to introduce adaptive
neighbourhood sizes instead of fixed ones so that the above mentioned effect can
be avoided.

In a similar way, we obtained a distribution of the number of entries in the
distance table that have to be accessed during an s-t-query. While the average
values are reasonably small (2 874 in case of Europe), the worst case can get
quite large (62 250). For example, accessing 62 250 entries in a table of size
13 465 × 13 465 takes about 1 ms, where 13 465 is the size of the level-4 core
of the European highway hierarchy. Hence, in some cases the time needed to
determine the optimal entry in the distance table might dominate the query
time. We could try to improve the worst case by introducing a case distinction
that checks whether the number of entries that have to be considered exceeds a
certain threshold. If so, we would not use the distance table, but continue with
the normal search process. However, this measure would have only little effect
on the average performance.

Comparisons. In Tab. 3, we compare several variants of our HH algorithm with
the REAL algorithm, which is the method from [6] that features the best query
times. Experimental results for the USA (Tiger) graph are taken from [6]. Results
for the European graph have been provided by Andrew Goldberg.4

4 These latter results have to viewed as tentative since the networks of Europe and
North America are different (long distance ferries,. . . ) and this was the very first
attempt to run REAL on the European network. It is likely that future versions of
REAL will yield better results.
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Table 3. Comparison between the REAL algorithm [6] and our highway hierarchies.
In addition to the current version of the highway hierarchies with the default settings
(HH), we provide results that have been obtained using settings that reduce the memory
usage (HH mem). Furthermore, we give old values (HH old) from [1]. Note that the
disk space includes the memory that is needed to store the original graph.

Europe USA (Tiger)

method
preprocessing query preprocessing query
time disk space time #settled time disk space time #settled
[min] [MB] [ms] nodes [min] [MB] [ms] nodes

HH old 161 892 7.4 4 065 255 1 171 7.04 3 912
REAL 1 625 1 746 2.8 1 867 459 2 392 1.84 891
HH 15 1 570 0.8 884 18 1 686 0.88 1 076
HH mem 55 692 1.4 1 976 65 919 1.60 2 217

Note that the CPU times cannot be compared directly since the implementa-
tion of the REAL algorithm was executed on an AMD Opteron running at 2.4
GHz, while our machine only runs at 2.0 GHz. We also have to be careful when
we compare the memory usage. In [6] a translation table is created that can be
used to unpack shortcuts. We have subtracted the size of the translation tables
from the disk spaces used by the REAL algorithm in order to account for the
fact that our numbers do not include space for such a table.

Compared to the old highway hierarchies we see big improvements. An order of
magnitude reduction in both preprocessing and query time. The main difference
between HH and REAL is the dramatically smaller preprocessing time of HH.
We see a factor 26 for the USA and a factor 108 for Europe. HH queries are also
significantly faster than REAL. Only for the Tiger graph, REAL has a smaller
search space. All variants of HH need less space than REAL. The main reason
is the overhead for storing distances to landmarks.

8 Discussion

Highway hierarchies are a simple, robust and space efficient concept that al-
lows very efficient fastest path queries even in huge realistic road networks. No
other technique has reported such short query times although highway hierar-
chies have not yet been combined with goal directed search and although none
of the previous techniques is competitive w.r.t. preprocessing time. Real-world
applications suggest a number of additional challenging problems: How to handle
mobile devices with limited fast memory? How to update or patch the hierarchy
when edge weights change, e.g. due to traffic jams? What about multiple objec-
tive functions or time dependent edge weights? We are optimistic that several
of these problems can be solved, in particular because plain highway hierarchies
are so fast that even a 100 fold slow-down w.r.t. query time or preprocessing
time would be acceptable in some situations.
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Abstract. We present algorithmic, complexity and implementation re-
sults concerning real root isolation of integer univariate polynomials us-
ing the continued fraction expansion of real numbers. We improve the
previously known bound by a factor of d τ , where d is the polynomial
degree and τ bounds the coefficient bitsize, thus matching the current
record complexity for real root isolation by exact methods. Namely, the
complexity bound is ÕB(d4τ 2) using a standard bound on the expected
bitsize of the integers in the continued fraction expansion. We show how
to compute the multiplicities within the same complexity and extend the
algorithm to non square-free polynomials. Finally, we present an efficient
open-source C++ implementation in the algebraic library synaps, and il-
lustrate its efficiency as compared to other available software. We use
polynomials with coefficient bitsize up to 8000 and degree up to 1000.

1 Introduction

In this paper we deal with real root isolation of univariate integer polynomials,
a fundamental problem in computer algebra as well as in many applications
ranging from computational geometry to quantifier elimination. The problem
consists in computing intervals with rational endpoints which contain exactly
one real root of the polynomial. We use the continued fraction expansion of
real algebraic numbers. Recall that such a number is a real root of an integer
polynomial.

One motivation is to explain the method’s good performance in implementa-
tions, despite the higher complexity bound which was known until now. Indeed,
we show that continued fractions lead to (expected) asymptotic bit complexity
bounds that match those recently proven for other exact methods, such as Sturm
sequences and Descartes’ subdivision.

Notation: In what follows OB means bit complexity and the ÕB-notation
means that we are ignoring logarithmic factors. For A =

∑d
i=0 aiX

i ∈ Z[X ],
deg (A) denotes its degree. We consider square-free polynomials except if ex-
plicitly stated otherwise. By L (A) we denote an upper bound on the bit size
of the coefficients of A (including a bit for the sign). For a ∈ Q, L (a) ≥ 1 is
the maximum bit size of the numerator and the denominator. Let M (τ) denote
the bit complexity of multiplying two integers of bit size at most τ . Using FFT,
M (τ) = OB(τ lgc τ) for a suitable constant c. V ar(A) denotes the sign variations

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 817–828, 2006.
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in the coefficient list of A ignoring zero terms and Δ the separation bound of A,
that is the smallest distance between two (complex) roots of A.

Previous work and our results: Real root isolation of univariate integer
polynomials is a well known problem with a huge bibliography and we only
scratch the surface of it. We encourage the reader to refer to the references.

Exact subdivision based algorithms for real root isolation are based either on
Descartes’ rule of sign or on Sturm sequences. Roughly speaking, the idea behind
both approaches is to subdivide a given interval that initially contains all the
real roots until it is certified that none or one root is contained. Quite recently it
was proven (cf [12, 13] and references therein) that both approaches (Descartes
and Sturm), achieve the same bit complexity bound, namely ÕB(d4τ2), where
d is the polynomial degree and τ bounds the coefficient bitsize, or ÕB(N6),
where N = max {d, τ}. Moreover using Sturm sequences in a pre-processing and
a post-processing step [14, 15] the bound holds for the non square-free case and
the multiplicities of the roots can also be computed.

The continued fraction algorithm (from now on called CF) differs from the
subdivision algorithms in that instead of bisecting a given initial interval it com-
putes the continued fraction expansions of the real roots of the polynomial. The
first formulation of CF is due to Vincent [32], see also [2] for historical references,
based on his theorem (Th. 3 without the terminating condition) where it was
stated that repeated transformations of the polynomial will eventually yield a
polynomial with zero (or one) sign variation, thus Descartes’ rule implies the
transformed polynomial has zero (resp. one) real root in (0,∞). Unfortunately
Vincent’s algorithm is exponential [9].

Uspensky [29] extended Vincent’s theorem by computing an upper bound on
the number of transformations so as to isolate the real roots, but failed to deal
with its exponential behavior. Using Vincent’s theorem, Collins and Akritas [9]
derived a polynomial subdivision-based algorithm using Descartes’ rule of sign.
Akritas [5, 1] dealt with the exponential behavior of CF, by computing the partial
quotients as positive lower bounds of the positive real roots, via Cauchy’s bound
(for details, see Sec. 4), and obtained a complexity of ÕB(d5τ3) or ÕB(N8),
without using fast Taylor shifts [33]. However, it is not clear how this approach
accounts for the increased coefficient size in the transformed polynomial after
applying X "→ b+X . Another issue is to bound the size of the partial quotients.
Refer to Eq. (1) which indicates that the magnitude of the partial quotients is un-
bounded. CF is the standard real root isolation algorithm in mathematica [3].
For some experiments against subdivision-based algorithms, in mathematica,
the reader may refer to [4].

Another class of univariate solvers are numerical solvers, e.g. [24, 6] that com-
pute an approximation of all the roots of a polynomial up to a desired accuracy.
The complexity of these algorithms is ÕB(d3 τ) or ÕB(N4).

The contributions of this paper are the following: First, we improve the bound
of the number of steps (transformations) that the algorithm performs. Second, we
bound the bitsize of the partial quotients and thus the growth of the transformed
polynomials which appear during the algorithm. We revisit the proof of [5, 1] so
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as to improve the overall bit complexity bound of the algorithm to ÕB(N6), thus
matching the current record complexity for real root isolation. The extension to
the non square-free case uses the techniques from [14, 15]. Third, we present our
efficient open-source C++ implementation in synaps1 [23], and illustrate it on
various data sets, including polynomials of degree up to 1000 and coefficients
of 8000 bits. We performed experiments against rs2, which seems to be one of
the fastest available software for exact real root isolation and against aberth
[6], a numerical solver available through synaps. Our implementation seems to
have the best performance in practice. We believe that our software contributes
towards reducing the gap between rational and numeric computation, the latter
being usually perceived as faster.

The rest of the paper is structured as follows. The next section sketches the
theory behind continued fractions. Sec. 3 presents the CF algorithm and Sec. 4
its analysis. We conclude with experiments using our implementation, along with
comparisons against other available software for univariate equation solving.

2 Continued Fractions

We present a short introduction to continued fractions, following [30] which
although is far from complete suffices for our purposes. The reader may refer
to e.g [5, 34, 7, 30]. In general a simple (regular) continued fraction is a (possibly
infinite) expression of the form

c0 +
1

c1 +
1

c2 + . . .

= [c0, c1, c2, . . . ]

where the numbers ci are called partial quotients, ci ∈ Z and ci ≥ 1 for i > 0.
Notice that c0 may have any sign. By considering the recurrent relations

P−1 = 1, P0 = c0, Pn+1 = cn+1 Pn + Pn−1

Q−1 = 0, Q0 = 1, Qn+1 = cn+1 Qn + Qn−1

it can be shown by induction that Rn = Pn

Qn
= [c0, c1, . . . , cn], for n = 0, 1, 2, . . .

If γ = [c0, c1, . . . ] then γ = c0 + 1
Q0Q1

− 1
Q1Q2

+ · · · = c0 +
∑∞

n=1
(−1)n−1

Qn−1Qn

and since this is a series of decreasing alternating terms it converges to some
real number γ. A finite section Rn = Pn

Qn
= [c0, c1, . . . , cn] is called the n−th

convergent (or approximant) of γ and the tails γn+1 = [cn+1, cn+2, . . . ] are known
as its complete quotients. That is γ = [c0, c1, . . . , cn, γn+1] for n = 0, 1, 2, . . . .
There is a one to one correspondence between the real numbers and the continued
fractions, where the finite continued fractions correspond to rational numbers.
It is known that Qn ≥ Fn+1 and that Fn+1 < φn < Fn+2, where Fn is the n−th
Fibonacci number and φ = 1+

√
5

2 is the golden ratio. Continued fractions are the
best (for a given denominator size), approximations, i.e

1 www-sop.inria.fr/galaad/logiciels/synaps/
2 fgbrs.lip6.fr/salsa/Software/index.php
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1
Qn(Qn+1 + Qn)

≤
∣∣∣∣γ − Pn

Qn

∣∣∣∣ ≤ 1
QnQn+1

≤ 1
Q2

n

< φ−2n

Let γ = [c0, c1, . . . ] be the continued fraction expansion of a real number. The
Gauss-Kuzmin distribution [7, 25] states that for almost all real numbers γ (the
set of exceptions has Lebesgue measure zero) the probability for a positive integer
δ to appear as an element in the continued fraction expansion of γ is

Prob[ci = δ] = lg
(δ + 1)2

δ(δ + 2)
, i > 0 (1)

The Gauss-Kuzmin law induces that we can not bound the mean value of the
partial quotients, i.e E[ci] =

∑∞
δ=1 δ Prob[ci = δ] = ∞, i > 0. However the

geometric (and the harmonic) mean is not only asymptotically bounded, but is
bounded by a constant. For the geometric mean this is the famous Khintchine’s
constant [17], i.e. limn→∞ n

√∏n
i=1 ci = K = 2.685452001... which is not known

if it is an irrational number, let alone transcendental. The expected value of the
bitsize of the partial quotients is a constant for almost all real numbers, when
n → ∞ or n sufficiently big [17, 25]. Following closely [25], we have: E[ln ci] =
1
n

∑n
i=1 ln ci = lnK = 0.98785..., as n→∞, ∀i > 0. Let L (ci) � bi, then

E[bi] = O(1) (2)

A real number has an (eventually) periodic continued fraction expansion if
and only if it is a root of an irreducible quadratic polynomial. “There is no
reason to believe that the continued fraction expansions of non-quadratic alge-
braic irrationals generally do anything other than faithfully follow Khintchine’s
law”[8], and also various experimental results [7, 25, 26] suggest so.

3 The CF Algorithm

Theorem 1 (Budan). [20, 5] Let A ∈ R[X ] and a < b, where a, b ∈ R. Let Aa

(Ab) be the polynomial produced after we apply the map X "→ X+a (X "→ X+b)
to A. Then the followings hold: (i) V ar(Aa) ≥ V ar(Ab), (ii) #{γ ∈ (a, b)|A(γ) =
0} ≤ V ar(Aa)−V ar(Ab) and (iii) #{γ ∈ (a, b)|A(γ) = 0} ≡ V ar(Aa)−V ar(Ab)
mod 2.

Theorem 2 (Descartes’ rule of sign). The number R of real roots of A(X)
in (0,∞) is bounded by V ar(A) and we have R ≡ V ar(A) mod 2.

In general Descartes’ rule of sign obtains an overestimation of the number of the
positive real roots. However if we know that A is hyperbolic, i.e has only real
roots or when the number of sign variations is 0 or 1 then it counts exactly.

The CF algorithm depends on the following theorem, which dates back to
Vincent’s theorem in 1836 [32]. It is a very interesting question whether the one
and two circle theorems (cf [19] and references therein), employed in the analysis
of the subdivision-based real-root isolation algorithm [9], can also be applied and
possibly improve the complexity of CF.
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Theorem 3. [5, 29] Let A ∈ Z[X ], with deg(A) = d and let Δ be the separation
bound. Let n be the smallest index such that Fn−1Δ > 2 and Fn−1FnΔ > 1+ 1

εd
,

where Fn is the n-th Fibonnaci number and εd = (1 + 1
d)

1
d−1 − 1. Then the map

X "→ [c0, c1, . . . , cn, X ], where c0, c1, . . . , cn is an arbitrary sequence of positive
integers, transforms A(X) to An(X), which has no more than one sign variation.

Remark 1. Since 3
4d2 < εd < 4

d2 [10] we conclude that 1
εd

+ 1 < 2d2 for d ≥ 2.
Thus, if d ≥ 2 we can replace the two conditions of Th. 3 by Fn−1Δ ≥ 2d2, since
Fn ≥ Fn−1 ≥ 1 and Fn−1FnΔ ≥ Fn−1Δ ≥ 2d2 > 2.

Th. 3 can be used to isolate the positive real roots of a square-free polynomial A.
In order to isolate the negative roots we perform the transformation X "→ −X , so
in what follows we will consider only the positive real roots of A. Vincent’s variant
of CF goes as follows: A polynomial A is transformed to A1 by the transformation
X "→ 1 + X and if V ar(A1) = 0 or V ar(A1) = 1 then A has 0, resp. 1, real root
greater than 1 (Th. 2). If V ar(A1) < V ar(A) then (possibly) there are real roots
of A in (0, 1), due to Budan’s theorem (Th. 1). A2 is produced by applying the
transformation X "→ 1/(1+X) to A, if V ar(A2) = 0 or V ar(A2) = 1 then A has
0, resp. 1, real root less than 1 (Th. 2). Uspensky’s [29] variant of the algorithm
(see also [26]) at every step produces both polynomials A1 and A2, probably, as
Akritas states [2], because he was unaware of Budan’s theorem (Th. 1). In both
variants, if the transformed polynomial has more than one sign variations, we
repeat the process.

We may consider the process of CF as an infinite binary tree in which the
root corresponds to the initial polynomial A. The branch from a node to a right
(left) child corresponds to the map X "→ X+1 (X "→ 1

1+X ). Vincent’s algorithm
(and Uspensky’s) results to a sequence of transformations as in Th. 3, and so
the leaves of the tree hold (transformed) polynomials that have no more than
one sign variations, if Th. 3 holds. Akritas [1, 5] replaced a series of X "→ X + 1
transformations by X "→ X + b, where b is the positive lower bound (PLB) on the
positive roots of the tested polynomial, using Cauchy’s bound [5, 34]. This way,
the number of steps is polynomial and the complexity is in ÕB(d5τ3). However,
it is not clear whether or how the analysis takes into account that the coefficient
bitsize increases after a shift operation. Another issue is to bound the size of b.

For these polynomials that have one sign variation we still have to find the
interval where the real root of the initial polynomial A lies. Consider a polyno-
mial An that corresponds to a leaf of the binary tree that has one sign variation.
Notice that An is produced after a transformation as in Th. 3, using positive
integers c0, c1, . . . , cn. Using the convergents, this transformation becomes

M : X �→ PnX + Pn−1

QnX + Qn−1
(3)

where Pn−1
Qn−1

and Pn

Qn
are consecutive convergents of the continued fraction

[c0, c1, . . . , cn]. Notice that (3) is a Möbius transformation, see [5, 34] for more
details. Since An has one sign variation it has one and only one real root in
(0,∞), so in order to obtain the isolating interval for the corresponding real
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Algorithm 1. CF(A,M)
Input: A ∈ Z[X], M(X) = kX+l

mX+n
, k, l, m, n ∈ Z

if A(0) = 0 then1

OUTPUT Interval( M(0), M(0)) ;2

A← A(X)/X;3

CF(A, M);4

if Var(A) = 0 then return ;5

if Var(A) = 1 then OUTPUT Interval( M(0), M(∞)), return ;6

b← PLB(A) // PLB ≡ PositiveLowerBound ;7

if b > 1 then A← A(b + X), M ←M(b + X) ;8

A1 ← A(1 + X), M1 ←M(1 + X) ;9

CF(A1, M1) // Looking for real roots in (1, +∞);10

A2 ← A( 1
1+X

), M2 ←M( 1
1+X

) ;11

CF(A2, M2) // Looking for real roots in (0, 1) ;12

root of A we evaluate the right part of Eq. (3) once over 0 and once over ∞.
The (unordered) endpoints of the isolating interval are Pn−1

Qn−1
and Pn

Qn
.

The pseudo-code of CF is presented in Alg. 1. The Interval function orders
the endpoints of the computed isolating interval and PLB(A) computes a lower
bound on the positive roots of A. The input of the algorithm is a polynomial
A(X) and the trivial transformation M(X) = X . Notice that Lines 11 and 12
are to be executed only when V ar(A1) < V ar(A2), but in order to simplify the
analysis we omit this, since it only doubles the complexity.

4 The Complexity of the CF Algorithm

Let disc(A) be the discriminant and lead (A) the leading coefficient of A.
Mahler’s measure of a polynomial A is M(A) = | lead (A) |

∏d
i=1 max {1, |γi|},

where γi are all the (complex) roots of A [34, 20, 21]. We prove the following
theorem, which is based on a theorem by Mignotte [20], thus extending [11, 13].

Theorem 4. Let A ∈ Z[X ], with deg(A) = d and L (A) = τ . Let Ω be any set
of k pairs of indices (i, j) such that 1 ≤ i < j ≤ d and let the non-zero (complex)
roots of A be 0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γd|. Then

2kM(A)k ≥
∏

(i,j)∈Ω

|γi − γj | ≥ 2k− d(d−1)
2 M(A)1−d−k

√
disc(A)

Proof. Consider the multiset Ω = {j|(i, j) ∈ Ω}, |Ω| = k. We use the inequality

∀ a, b ∈ C |a− b| ≤ 2 max {|a|, |b|} (4)

and the fact [20, 21] that for any root of A, 1
M(A) ≤ |γi| ≤ M(A). In order to

prove the left inequality∏
(i,j)∈Ω

|γi − γj | ≤ 2k
∏
j∈Ω

|γj | ≤ 2k max
j∈Ω
|γj |k ≤ 2kM(A)k.



Univariate Polynomial Real Root Isolation 823

Recall [34, 20] that disc(A) = lead (A)2d−2 ∏
i<j (γi − γj)2. For the right in-

equality we consider the absolute value of the discriminant of A:

| disc(A)| = | lead (A) |2d−2 ∏
i<j |γi − γj |2

= | lead (A) |2d−2 ∏
(i,j)∈Ω |γi − γj |2 ∏

(i,j)/∈Ω |γi − γj |2 ⇔√| disc(A)| = | lead (A) |d−1 ∏
(i,j)∈Ω |γi − γj | ∏(i,j)/∈Ω |γi − γj |

We consider the product
∏

(i,j)/∈Ω |γi − γj | and we apply d(d−1)
2 − k times in-

equality (4), thus∏
(i,j)/∈Ω |γi − γj | ≤ 2

d(d−1)
2 −k |γ1|0|γ2|1 · · · |γd|d−1 (

∏
j∈Ω |γj |)−1

≤ 2
d(d−1)

2 −kM(A)d−1| lead (A) |1−dM(A)k
(5)

where we used the inequality |γ1|0|γ2|1 · · · |γd|d−1 ≤ |M(A)/ lead (A) |d−1, and
the fact [20] that, since ∀i, |γi| ≥ M(A)−1, we have

∏
j∈Ω |γj | ≥ |γ1|k ≥

M(A)−k. Thus
∏

(i,j)∈Ω |γi − γj | ≥ 2k− d(d−1)
2 M(A)1−d−k

√
| disc(A)|. ��

A similar theorem but with more strict hypotheses on the roots first appeared
in [11] and the conditions were generalized in [13]. Th. 4 has a factor 2d2

instead
of dd in [11, 13], which plays no role when d = O(τ) or when notation with N is
used. Possibly a more involved proof of Th. 4 may eliminate this factor [22].

Remark 2. There is a simple however crucial observation about Th. 3. When
the transformed polynomial has one (zero) sign variation, then the interval with
endpoints Pn−1

Qn−1
= [c0, . . . , cn−1] and Pn

Qn
= [c0, . . . , cn] isolates a positive real

root (a complex root with positive real part) of A, say γi. Then, in order for
Th. 3 to hold, it suffices to consider, instead of the separation bound Δ, the
quantity |γi − γci |, where γci is the (complex) root of A closest to γi.

Theorem 5. The CF algorithm performs at most O(d2 + dτ) steps.

Proof. Let 0 < |γ1| ≤ · · · ≤ |γk|, k ≤ d be the (complex) roots of A with positive
real part and let γci denote the root of A that is closest to γi. We consider the
binary tree T generated during the execution of CF. The number of steps of CF
corresponds to the number of nodes in T , which we denote by #(T ). We use
some arguments and the notation from [13] in order to prune T .

With each node v of T we associate a Möbius transformation Mv : X "→
kX+l

mX+n , a polynomial Av and implicitly an interval Iv whose unordered endpoints
can be found if we evaluate Mv on 0 and on ∞. Recall that Av is produced
after Mv is applied to A. The root of T is associated with A, M(X) = X (i.e
k = n = 1, l = m = 0) and implicitly with the interval (0,∞).

Let a leaf u of T be type-i if its interval Iu contains i ≥ 0 real roots. Since the
algorithm terminates the leaves are type-0 or type-1. We will prune certain leaves
of T so as to obtain a certain subtree T ′. We remove every leaf that has a sibling
that is not a leaf. Now we consider the leaves that have a sibling that is also a
leaf. If both leaves are type-1, we arbitrary prune one of them. If one of them is
type-1 then we prune the other. If both leaves are type-0, this means that the
polynomial on the parent node has at least two sign variations and thus that we
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are trying to isolate the (positive) real part of some complex root. We keep the
leaf that contains the (positive) real part of this root. And so #(T ) < 2 #(T ′).

Now we consider the leaves of T ′. All are type-0 or type-1. In both cases they
hold the positive real part of a root of A, the associated interval is |Iv| ≥ |γi−γci |
(Rem. 2) and the number of nodes from a leaf to the root is ni, which is such
that the condition of Rem. 1 is satisfied. Since ni is the smallest index such that
the condition of Rem. 1 holds, if we reduce ni by one then the inequality does
not hold. Thus

Fni−2|γi − γci | ≤ 2d2 ⇒ φni−3|γi − γci | < 2d2 ⇒ ni < 4 + 2 lg d− lg |γi − γci |
We sum over all ni to bound the nodes of T ′, thus

#(T ′) ≤
k∑

i=1

ni ≤ 2k(2 + lg d)−
k∑

i=1

log |γi − γci | ≤ 2k(2 + lg d)− log
k∏

i=1

|γi − γci | (6)

So as to use Th. 4 we should rearrange
∏k

i=1 |γi − γci | so that the requirements on
the indices of roots are fulfilled. This can not be achieved when symmetric prod-
ucts occur and the worst case is when the product consists only of symmetric prod-
ucts i.e

∏k/2
i=1 |(γj − γcj )(γcj − γj)|. Thus we consider the square of the inequality

of Th. 4 taking k
2 instead of k and disc(A) ≥ 1 (since A is square-free), thus∏k

i=1 |γi − γci | ≥
(
2

k
2 − d(d−1)

2 M(A)1−d− k
2

)2

− log
∏d

i=1 |γi − γci | ≤ d2 − d− k + (2d + k − 2) lgM(A)
(7)

Eq. (6) becomes #(T ′) ≤ 2k(2+lgd)+d2−d−k+(2d+k−2) lgM(A). However
for Mahler’s measure it is known thatM(A) ≤ 2τ

√
d + 1⇒ lgM(A) ≤ τ + lg d,

for d ≥ 2, thus #(T ′) ≤ 2k(2 + lg d) + d2 − d− k + (2d + k − 2)(τ + lg d). Since
#(T ) < 2 #(T ′) and k ≤ d, we conclude that #(T ) = O(d2 + d τ + d lg d). ��

To complete the analysis of CF we have to compute the cost of every step that
the algorithm performs. In the worst case every step consists of a computation
of a positive lower bound b (Line 7) and three transformations, X "→ b + X ,
X "→ 1 + X and X "→ 1

1+X (Lines 8, 9 and 11 in Alg. 1). Since inversion can be
performed inO(d), the complexity is dominated by the cost of the shift operation
(Line 8 in Alg. 1) if a small number of calls to PLB is needed in order to compute
a partial quotient. We will justify this in the end of the section. We also will use
the following theorem:

Theorem 6 (Fast Taylor shift). [33] Let A ∈ Z[X ], with deg(A) = d and
L (A) = τ and let a ∈ Z, such that L (a) = σ. The cost of computing B =
A(a + X) ∈ Z[X ] is OB(M

(
d2 lg d + d2σ + dτ

)
). Moreover L (B) = O(τ + dσ).

Initially A has degree d and bitsize τ . Evidently the degree does not change after
a shift operation. Each shift operation by a number of bitsize bh increases the
bit size of the polynomial by an additive factor d bh, in the worst case (Th. 6).
At the h−th step of the algorithm the polynomial has bit size O(τ + d

∑h
i=1 bi)

and we perform a shift operation by a number of bit size bh+1. Th. 6 states that
this can be done in OB

(
M

(
d2 lg d + d2bh+1 + d(τ + d

∑h
i=1 bi)

))
.
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Table 1. Experimental results

100 200 300 400 500 600 700 800 900 1000

L
cf 0.27 2.24 9.14 25.27 55.86 110.13 214.99 407.09 774.22 1376.34
rs 0.65 3.65 13.06 35.23 77.21 151.17 283.43 527.42 885.86 1387.45

#roots 100 200 300 400 500 600 700 800 900 1000

C1
cf 0.11 0.85 3.16 8.61 19.67 38.23 77.75 139.18 247.11 414.51
rs 0.21 1.36 3.80 10.02 23.15 46.02 82.01 150.01 269.35 458.67

#roots 100 200 300 400 500 600 700 800 900 1000

C2
cf 0.11 0.77 3.14 8.20 19.28 38.58 73.59 133.52 233.48 386.61
rs 0.23 1.48 3.80 9.84 23.28 46.34 83.58 146.04 273.00 452.77

#roots 100 200 300 400 500 600 700 800 900 1000

W
cf 0.11 0.76 2.54 6.09 12.07 21.43 34.52 53.35 81.88 120.21
rs 0.09 0.59 2.25 6.34 14.62 29.82 55.47 104.56 179.23 298.45

#roots 100 200 300 400 500 600 700 800 900 1000

M1
cf 0.02 0.08 0.21 0.42 0.73 1.19 1.84 2.75 4.16 6.22
rs 7.83 287.27 1936.48 7328.86 * * * * * *

aberth 0.01 0.04 0.07 0.11 0.12 0.26 0.43 0.37 0.47 0.90
#roots 4 4 4 4 4 4 4 4 4 4

M2

cf 0.08 0.43 1.10 2.78 4.71 8.67 18.26 25.28 40.15 60.10
rs 1.24 144.64 1036.785 4278.275 12743.79 * * * * *

aberth 0.04 0.78 3.24 ? ? ? ? ? ? ?
#roots 8 8 8 8 8 8 8 8 8 8

R1

cf 0.001 0.04 0.07 0.33 0.06 0.37 0.66 0.76 1.03 1.77
rs 0.026 0.09 0.11 0.68 0.22 0.89 0.95 0.69 1.55 2.09

aberth 0.02 0.03 0.07 0.14 0.21 0.31 0.44 0.51 0.64 0.80
#roots 4 4 2 6 2 4 4 2 4 4

R2

cf 0.01 0.04 0.08 0.36 0.14 0.38 0.74 0.77 1.24 1.42
rs 0.05 0.23 0.47 1.18 0.81 1.64 2.68 3.02 4.02 4.88

aberth 0.01 0.05 0.08 0.14 0.23 0.33 0.44 0.55 0.67 0.83
#roots 4 4 4 6 4 4 6 4 6 4

In order to bound
∑h+1

i=1 bi we use Eq. (2), which bounds E[bi]. By lin-
earity of expectation it follows that E[

∑h+1
i=1 bi] = O(h). Since h ≤ #(T ) =

O(d2 + dτ) (Th. 5), the (expected) worst case cost of step h is
OB(M

(
d2 lg d + dτ + d2(d2 + dτ)

)
) or ÕB(d2(d2 + dτ)). Finally, multiplying by

the number of steps, #(T ), we conclude that the overall complexity is ÕB(d6 +
d5τ + d4τ2), or ÕB(d4τ2) if d = O(τ).

Now consider Ain ∈ Z[X ], not necessarily square-free, with deg(Ain) = d and
L (Ain) = τ . Following [14, 15] we compute the square-free part A of Ain using
Sturm-Habicht sequences in ÕB(d2τ) and L (A) = O(d+τ). Using CF we isolate
the positive real root of A and then, by applying the map X "→ −X , we isolate
the negative real roots. Finally, using the square-free factorization of Ain, which
can be computed in ÕB(d3τ), it is possible to find the multiplicities in ÕB(d3τ).
The previous discussion leads to the following theorem:

Theorem 7. Let A ∈ Z[X ] (not necessarily square-free) such that deg(A) =
d > 2 and L (A) = τ . We can isolate the real roots of A and compute their
multiplicities in expected time ÕB(d6+d4τ2), or ÕB(N6), where N = max {d, τ}.

Rational roots and PLB (Positive Lower Bound) realization: If p
q is a root

of A then p divides a0 and q divides ad, thus in the worst case L (p/q) = O(τ) and
so the rational roots are isolated fast. Treating them as real algebraic numbers
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leads to an overestimation of the number of iterations. There is one exception
to this good behavior of rational roots, namely when they are very large, well
separated, and we are interested in practical complexity [3], since then PLB must
be applied many times. In [25], the authors performed a small number of Newton
iterations in order to have a good approximation of a partial quotient. In [3, 4],
this problem was solved by performing the transformation X "→ bX , where b is
the computed bound, whenever b ≥ 16. We follow the latter approach so, after
Line 8 in Alg. 1, if b = PLB(A) ≥ 16, we apply X "→ bX to polynomial A.

PLB(A) is computed as the inverse of an upper bound on the roots of XdA( 1
X ).

In general PLB(A) is applied more than once in order to compute some ci. How-
ever this number is very small [5, 1]. Eq. (1) implies that the probability that a
partial quotient is ≤ 10 is ∼ 0.87, thus in general the partial quotients are of
small magnitude. In order to implement PLB we set PLB(A) = 2 maxaj<0 | aj

ad
|1/j ,

which is nearly optimal [18]. Actually this bound “[...] is to be recommended
among all”[31]. In our implementation we compute PLB only as powers of 2 so
that we can take advantage of fast operations as in [27]. Notice that PLB is not a
general bound on the roots, but a bound on the positive roots only, see [18, 28].

5 Implementation and Experiments

We have implemented cf in synaps [23], which is a C++ library for symbolic-
numeric computations. The implementation is based on gmp3 (v. 4.1.4) and
uses only transformations of the form X "→ 2βX and X "→ X + 1. We con-
sider square-free polynomials of degree ∈ {100, 200, . . . , 1000}. Following [27],
the first class of experiments concerns well-known ill-conditioned polynomi-
als: Laguerre (L), first (C1) and second (C2) kind Chebyshev, and Wilkinson
(W) polynomials. We also consider Mignotte (M1) polynomials Xd − 2(101X −
1)2, that have 4 real roots but two of them very close together, and prod-
ucts,

(
Xd − 2(101X − 1)2

) (
Xd − 2((101 + 1

101 )X − 1)2
)
, of two such polyno-

mials (M2). Finally, we consider polynomials with random coefficients (R1), and
monic polynomials with random coefficients (R2) in the range [-1000, 1000], pro-
duced by maple, using 101 as a seed for the pseudo-random number generator.

We performed experiments against rs that implements a subdivision-based
algorithm using Descartes’ rule of sign with several optimizations and symbolic-
numeric techniques [27]. We used rs through its maple interface and with de-
fault options. Timings were reported by its function rs time(). We also test
aberth [6], a numerical solver with unknown (bit) complexity but very efficient
in practice, available through synaps. In particular, it uses multi-precision floats
and provides a floating-point approximation of all (real and complex) roots. Un-
fortunately, we were not always able to tune its behavior in order to produce the
correct number of real roots in all the cases.

So, in Table 1, we report experiments with cf, rs and aberth, where the
timings are in seconds. The asterisk (*) denotes that the computation did not

3 www.swox.com/gmp/
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finish after 12000s and the question-mark (?) that we were not able to tune
aberth. The experiments were performed on a 2.6GHz PIII with 1GB RAM,
using g++ 3.3 with option -O3.

For (M1) and (M2), there are rational numbers with a very simple continued
fraction expansion that isolate the real roots which are close. These experiments
are extremely hard for rs. On (M1), aberth is the fastest and correctly com-
putes all real roots, but on (M2), which has 4 real roots close together, it is
slower than cf. cf is advantageous on (W) since, as soon as a real root is found,
transformations of the form X "→ X+1 rapidly produce the other real roots. We
were not able to tune aberth on (W). For (L), (C1) and (C2), cf is comparable
to rs, while we were not able to appropriately tune aberth to produce the cor-
rect number of real roots. The polynomials in (R1) and (R2) have few and well
separated roots, thus the semi-numerical techniques of rs isolate all roots using
only 63 bits of accuracy. aberth is even faster on these experiments. However,
even in this case, cf is only a little slower than aberth. Finally, we tested a
univariate polynomial that appears in the Voronoi diagram of ellipses [16]. The
polynomial has degree 184, coefficient bitsize 903, and 8 real roots. cf solves it
in 0.12s, rs in 0.3s and aberth in 1.7s. We have to mention, as F. Rouillier
pointed out to us, that rs can be about 30% faster in (L), (C1) and (C2), if we
use it with the (non-default) option precision=0.
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Exact and Efficient Construction of Planar
Minkowski Sums Using the Convolution Method�
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Abstract. The Minkowski sum of two sets A, B ∈ IRd, denoted A⊕B,
is defined as {a + b | a ∈ A, b ∈ B}. We describe an efficient and robust
implementation for the construction of Minkowski sums of polygons in
IR2 using the convolution of the polygon boundaries. This method allows
for faster computation of the sum of non-convex polygons in comparison
with the widely-used methods for Minkowski-sum computation that de-
compose the input polygons into convex sub-polygons and compute the
union of the pairwise sums of these convex sub-polygon.

1 Introduction

Given two sets A,B ∈ IRd, their Minkowski sum, denoted by A ⊕ B, is the set
{a + b | a ∈ A, b ∈ B}. Minkowski sums are used in many applications, such as
motion planning and computer-aided design and manufacturing. In this paper
we focus on an important sub-class of the planar Minkowski-sum computation
problem: computing the sum of two simple polygons.

If P and Q are simple planar polygons having m and n vertices respectively,
then P ⊕Q is a subset of the arrangement of O(mn) line segments, where each
segment is the Minkowski sum of an edge of P with a vertex of Q, or vice-
versa. The size of the sum is therefore bounded by O(m2n2), and this bound is
tight [11]. However, if both P and Q are convex, then P ⊕Q is a convex polygon
with at most m+n vertices, and can be computed in O(m+n) time (see, e.g., [3,
Chap. 13]). If only P is convex, the Minkowski sum of P and Q is bounded by
O(mn) [12], and this bound is tight as well.

As we mentioned above, computing the Minkowski sum of two convex poly-
gons can be performed in linear time using a simple procedure that can be
easily implemented in software. The prevailing method for computing the sum
of two non-convex polygons P and Q, is therefore based on convex decom-
position: we decompose P into convex sub-polygons P1, . . . , Pk and Q into
convex sub-polygons Q1, . . . , Q�, obtain the Minkowski sum of each pair of sub-
polygons and compute the union of the k� pairwise sub-sums. Namely, we cal-
culate P ⊕ Q =

⋃
i,j (Pi ⊕Qj). Flato [4] (see also [1]), implemented a software

� Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv
University.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 829–840, 2006.
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package for computing Minkowski sums of planar polygons in an exact manner,
based on the decomposition method. He implemented about a dozen different
polygon-decomposition strategies and several methods for the union computa-
tion, and conducted thorough experiments to determine the optimal decomposi-
tion and union strategies. Flato’s code is robust and produces exact results. It is
based on Cgal Version 2.0,1 and uses exact rational arithmetic. This is the first
implementation capable of handling degenerate inputs, and the only one that
correctly identifies low-dimensional elements of the Minkowski sum, such as an-
tennas or isolated vertices (see more details in Sec. 3.2). The Leda library [13]
also contains functions for robust Minkowski-sum computation based on convex
polygon decomposition that use exact rational arithmetic.2 However, these func-
tions are limited to performing regularized Minkowski-sum computations, which
eliminate low-dimensional features of the output.

Another approach to computing the Minkowski sum of two polygons is calcu-
lating the convolution of the boundaries of P and Q [7,8]. Ramkumar [15] used
this approach to devise an efficient algorithm for computing the outer bound-
ary of the Minkowski sum of two polygons.3 To the best of our knowledge, our
code is the first implementation of software for robust and exact computation of
Minkowski sums that is based on the convolution method. As our experiments
show, using the convolution method we construct intermediate geometric enti-
ties that are more compact than the ones constructed using the decomposition
method. Consequently, we are able to obtain faster running times.

The rest of this paper is organized as follows: In Sec. 2 we review the definition
of polygon convolution and develop the notation that will be used throughout the
paper. In Sec. 3 we give the details of our implementation of the Minkowski-sum
algorithm. We present experimental results in Sec. 4, and give some concluding
remarks in Sec. 5.

2 Preliminaries

Guibas et al. [7] introduced the concept of convolutions of general planar trac-
ings, giving a special attention to polygonal tracings, which are composed of a
series of interleaved moves (translations in a fixed direction) and turns (rotations
at a fixed location).

Given two polygons, P with vertices (p0, . . . , pm−1) and Q with vertices
(q0, . . . , qn−1), we make a move by traversing a polygon edge −−−−→pipi+1, and make
a turn be rotating on a polygon vertex pi from the direction of −−−−→pi−1pi to the of
direction −−−−→pipi+1.4 Without loss of generality, we can assume that both polygons
are counterclockwise oriented. The convolution of these two polygons, denoted
1 See Cgal’s homepage at http://www.cgal.org.
2 For more details and a detailed on-line documentation, see:
http://www.algorithmic-solutions.info/leda guide/geo algs/minkowski.html.

3 The complexity of this boundary is O(mn ·α(n)), where α(·) is the functional inverse
of Ackermann’s function [9].

4 Throughout this paper, when we increment or decrement an index of a vertex, we
do so modulo the size of the polygon. Indeed, −−−−−→pm−1p0 is also a valid polygon edge.
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Fig. 1. Computing the convolution of a convex polygon and a non-convex polygon
(left). The convolution consists of a single self-intersecting cycle, drawn as a sequence
of arrows (right). The winding number associated with each face of the arrangement
induced by the segments forming the cycle appears in brackets. The Minkowski sum
of the two polygons is shaded.

P ∗ Q, is a collection of line segments of the form
−−−−−−−−−−−−−−→
(pi + qj)(pi+1 + qj), where

the vector −−−−→pipi+1 lies between −−−−→qj−1qj and −−−−→qjqj+1,5 and — symmetrically — of
segments of the form

−−−−−−−−−−−−−−→
(pi + qj)(pi + qj+1), where the vector −−−−→qjqj+1 lies between

−−−−→pi−1pi and −−−−→pipi+1. We can label the convolution segment as 〈(i, i + 1), j〉 in the
former case or 〈i, (j, j+1)〉 in the latter case. From the definition, it is clear that
P ∗Q contains at most O(mn) line segments.

The segments of the convolution form a number of closed (not necessarily
simple) polygonal curves called convolution cycles. The Minkowski sum P ⊕Q is
the set of points having a non-zero winding number with respect to these cycles
(see, e.g., [14, Chap. 7] for the topological definition of the winding number and
some examples). See Fig. 1 for an illustration.

In case both input polygons P and Q are convex, their convolution is a convex
polygonal tracing. If only one polygon (say P ) is convex, then P ∗Q still contains
a single cycle, which may not be simple (see [15] for a proof), as illustrated in
Fig. 1. If both P and Q are non-convex, the convolution may comprise several
cycles, and in order to compute the Minkowski sum of the polygons one has to
consider the set of points having a non-zero winding number with respect to all
cycles (see Fig. 2 for an illustration).

3 Implementation Details

Given two simple polygons P and Q having m and n vertices, respectively, we
compute their Minkowski sum in three steps: first we compute the cycles of the
convolution P ∗ Q, then we construct the planar arrangement induced by the
segments that form the convolution cycles, and finally we extract the Minkowski
sum from this arrangement.
5 We say that a vector v lies between two vectors u and w, if we reach v strictly before

reaching w if we move all three vectors to the origin and rotate u counterclockwise.
Note that this also covers the case where u has the same direction as v.
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Fig. 2. Computing the convolution of two non-convex octagons (left). The convolution
consists of two cycles (right), one (solid arrows) comprises 32 line segments while the
other (dashed arrows) contains 48 line segments, non of which lies on the boundary of
the Minkowski sum (shaded).

3.1 Computing the Convolution Cycles

Guibas and Seidel [8] show how to compute the convolution cycles of two poly-
gons in optimal O(m + n + K) time, where K = |P ∗ Q|. However, they make
some general-position assumptions on the polygons (e.g., an edge of P cannot
have the same direction as an edge in Q) and cannot handle degenerate inputs.
In this section we present a simple and robust algorithm, whose asymptotic run-
ning time is O(m+n+min {mrn, nrm}+K), where mr and nr are the number
of reflex vertices in P and Q, respectively. As our experiments show, the running
time of the construction of the convolution cycles is in practice negligible with
respect to the overall Minkowski-sum computation.

We start by describing a simple procedure that constructs a single convolution
cycle C of two polygons P = (p0, . . . pm−1) and Q = (q0, . . . qn−1), starting
from two vertices pi0 and qj0 , such that pi0 + qj0 is a vertex on the cycle C.
See the pseudo-code listing of the procedure ComputeConvolutionCycle.
Observe that in the main loop of the procedure we add at least one convolution
segment each iteration. However, in degenerate situations, namely when −−−−→pi, pi+1
and −−−−→qj , qj+1 have the same direction, we add two segments to the cycle in a
single iteration.

We next describe how to locate the pairs of indices i0 and j0 needed for the
procedure above. We start by locating the bottommost vertex of P (the minimal
vertex with respect to a yx-lexicographical order) and the bottommost vertex
of Q. Assume, without loss of generality, that these are the vertices p0 and q0.
These vertices are not reflex, and it is clear that either −−→p0p1 lies between the
edges around q0, or vice-versa. We can therefore compute a convolution cycle
starting from this pair of vertices.

If either of the polygons is convex (that is, mr = nr = 0), then the convolution
consists of a single cycle, and we are done. Otherwise, we traverse the reflex
vertices of Q (we assume, without loss of generality that nrm < mrn), and for



Exact and Efficient Construction of Planar Minkowski Sums 833

ComputeConvolutionCycle (P, i0; Q, j0)
let C ←− ∅.
let i←− i0. let j ←− j0.
let s←− (pi + qj).
do:

let inc P ←− IsBetweenCounterclockwise (−−−−→pi, pi+1; −−−−→qj−1qj ,
−−−−→qjqj+1).

let inc Q←− IsBetweenCounterclockwise (−−−−→qj , qj+1; −−−−→pi−1pi,
−−−−→pipi+1).

if inc P = True, then:
let t←− (pi+1 + qj).
Push the segment st, labelled 〈(i, i + 1), j〉, into C.
let s←− t.
let i←− i + 1 (modulo the size of P ).

if inc Q = True, then:
let t←− (pi + qj+1).
Push the segment st, labelled 〈i, (j, j + 1)〉, into C.
let s←− t.
let j ←− j + 1 (modulo the size of Q).

while i �= i0 or j �= j0.
return C.

each such vertex qj0 we go over all vertices of P and try to locate a vertex pi0 ,
such that −−−−−→pi0pi0+1 lies between −−−−−→qj0−1qj0 and −−−−−→qj0qj0+1. When we locate such a
vertex pair and such that the label 〈(i0, i0 + 1), j0〉 has not been used (for this
purpose we maintain an auxiliary set of used labels; this set can be represented
using a hash table, such that each access to the set takes O(1) time on average),
we invoke the procedure above to compute an additional convolution cycle.

3.2 Obtaining the Minkowski Sum from the Convolution Cycles

Flato [4, App. A.1] describes a simple algorithm for computing the union of a
set of simple polygons having counterclockwise orientation. He constructs the
arrangement of the directed segments that correspond to the polygon edges (re-
ferred to as the boundary segments), namely the subdivision they induce on the
plane into one unbounded face and several bounded faces. The arrangement is
represented using a doubly-connected edge-list (Dcel for short; see, e.g., [3,
Chap. 2]), such that it is easy to perform a breadth-first search traversal of all
arrangement faces, starting from the unbounded face (whose winding number is
of course 0), and compute the winding number of each face. The same arguments
used for proving the correctness of the polygon-union algorithm in [4, App. A.1]
also hold for the case of convolution cycles. We can therefore construct the ar-
rangement of all directed segments constituting the convolution cycles, compute
the winding numbers of the arrangement faces and output the union of the faces
with a positive winding number. Consider for example Fig. 1, where we cor-
rectly identify the hole in the Minkowski sum, as it is represented by a face
whose winding number is 0.

So far we have described an algorithm that computes the regularized Minkowski
sum P ⊕̂Q, namely the closure of the interior of P ⊕ Q, as all 1-dimensional or
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Fig. 3. A house plan and a star-shaped polygon (left). The Minkowski sum of the two
polygons (right) consists of low-dimensional features. For clarity, two copies of the star
are drawn using a dashed line with their center positioned on these features. The left
copy is located on an antenna on the Minkowski-sum boundary, such that the star
can move along this antenna while touching the walls of the house. The right copy is
located on an isolated vertex, which designates a location where the star can be placed
without being able to move.

0-dimensional features of the sum (antennas and isolated vertices, respectively)
are disregarded. In this case, the output is given as a polygon that represents the
outer boundary of the sum and an additional, possibly empty, set of polygons that
represents the holes inside this polygon. This representation is sufficient for many
applications, but for other applications, such as motion planning and assembly
planning, low-dimensional features may play an important role as they represent
tight passages. Consider the example depicted in Fig. 3, where we wish to move
a star-shaped polygon in a house, allowing translations only. The interior of the
Minkowski sum in this case consists of all forbidden placements for the star cen-
ter, such that each point on the boundary of the sum corresponds to a semi-free
placement of the star, where it touches the walls but does not penetrate them.

Our software is also capable of outputting a planar arrangement that captures
all features of the Minkowski sum of the input polygons.6 Locating the low-
dimensional features incurs no asymptotic run-time penalty; see [4] for the full
details of the algorithm including a proof of correctness.

4 Experimental Results

We have adapted parts of Flato’s software [4] to comply with the interface of
the latest version of Cgal (Version 3.2). As the original software consists of
several thousands of lines of code, we did not convert all polygon-decomposition
strategies; instead, we use the three convex-decomposition algorithm bundled
with the Polygon Partitioning package of the Cgal public release. In addition,
6 Unlike previous Cgal versions, Version 3.2 of Cgal’s arrangement package supports

isolated vertices, so we can have 0-dimensional features in the output as well.
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we added the small-side angle-bisector decomposition strategy (see below). In
his experiments, Flato reports this strategy as the one that yields the fastest
running times for the overall Minkowski-sum computation process (see also [1]).
We ran our experiments with all four strategies listed below.

Optimal (Opt). The dynamic-programming algorithm of Greene [6] for com-
puting an optimal decomposition of a polygon into a minimal number of
convex sub-polygons. The main drawback of this strategy is that it runs
in O(n4) time and requires O(n3) space in the worst case, where n is the
number of vertices in the input polygon.

Hertel–Mehlhorn (HM). The approximation algorithm suggested by Hertel
and Mehlhorn [10], which triangulates the input polygon and proceeds by
throwing away unnecessary triangulation edges. This algorithm requires
O(n) time and space and guarantees that the number of sub-polygons it
generates is not more than four times the optimum.

Greene (Gre.). Greene’s approximation algorithm [6] which computes a con-
vex decomposition of the polygon based on its partitioning into y-monotone
polygons. This algorithm runs in O(n log n) time and O(n) space, and has
the same approximation guarantee as Hertel and Mehlhorn’s algorithm.

Small-side angle-bisector (SSAB). A heuristic improvement to the angle-
bisector decomposition method suggested by Chazelle and Dobkin [2]. It
starts by examining each pair of reflex vertices in the input polygon such
that the entire interior of the diagonal connecting these vertices is contained
in the polygon. Out of all available pairs, it selects pi and pj , such that the
number of reflex vertices from pi to pj (or from pj to pi) is minimal. The
polygon is split by the diagonal pipj and the process continues recursively
on both resulting sub-polygons. In case it is not possible to eliminate two
reflex vertices at once any more, each reflex vertex is eliminated by an angle
bisector emanating from it. The entire process takes O(n2) time.
In the original implementation, the intersections between the angle bisectors
and the polygon edges induce Steiner points in the decomposed sub-polygons.
We have slightly modified the algorithm, such that instead of eliminating a
reflex vertex pi using an angle bisector, we look for another vertex pj∗ , such
that pipj∗ is contained in the polygon, and such that the ratio between the
two angles 	pi−1pipj∗ and 	pj∗pipi+1 that pipj∗ induces is as close to 1 as
possible. Our experiments show that this modified approach yields very good
decompositions, while avoiding the introduction of Steiner points, which may
lead to more complex computations.

The original Minkowski-sum software was based on the arrangement pack-
age of Cgal Version 2.0, which supported only the incremental construction
of arrangements, inserting curves one at a time. In the current Cgal version,
it is possible to construct arrangements aggregately, so all boundary segments
are inserted together using a sweep-line algorithm. Constructing an arrangement
aggregately is asymptotically more efficient for line segments that sparsely in-
tersect, as happens in our case. This theoretical argument is also backed up by
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experiments that show that constructing an arrangement of line segments aggre-
gately is usually one order of magnitude faster than constructing it incrementally.
We have therefore implemented an aggregated version of the union algorithm,
as described in Sec. 3.2, and did not try the incremental union algorithm, as
described in [4, Chap. 3].

We have conducted a large number of tests with various input sets. Here we
report on eight representative input sets containing polygon pairs, most of them
taken from [1] (see Figs 4 and 5 for illustrations). All data sets are available
on-line at http://www.cs.tau.ac.il/∼wein/software/:

Chain: A chain-shaped polygon with 82 vertices (37 of them are reflex), and a
star-shaped polygon with 30 vertices (6 reflex).

Stars: Two star-shaped polygons, each containing 40 vertices (14 reflex).
Comb: A comb-shaped polygon containing 53 vertices (24 reflex) and a convex

polygon with 22 vertices. This input set introduces the worst-case complexity
for the sum of a convex and a non-convex polygon.

Fork: The well-known example for a Minkowski sum of size O(m2n2) [11]. The
large “fork” consists of 34 vertices (19 reflex) and the smaller one has 31
vertices (18 reflex).

Cavity: A random-looking polygon with 22 vertices (10 reflex) and a small
convex octagon, chosen to fit some of the cavities in the larger polygon.

Random: Two random-looking polygons, with 40 and 20 vertices (19 and 8
reflex vertices, respectively).

Knife: A large polygon with 64 vertices (40 reflex) and a small polygon with
12 vertices (5 reflex), that can fit into the cavities on the larger polygon.

Country: The map of Israel, represented as a polygon with 50 vertices (24
reflex), and a smaller polygon with 30 vertices (8 reflex).

Table 1 summarizes the performance of the Minkowski-sum computations
for the selected input sets, using the polygon-decomposition method. We give
the running times, as obtained on a Pentium IV 3 GHz machine with 2 Gb of
Ram, and averaged over 100 executions for each decomposition strategy. We also
indicate — for the strategy that achieved the fastest running time on each input
set — the numbers of sub-polygons k and � in the decompositions of the two
input polygons, the total number S of segments in all k� Minkowski sums, and
the size of the arrangement (number of vertices, edges and faces) induced by the
boundary segments.

It should be mentioned that the running times stated in Table 1 are sometimes
two orders of magnitude faster than the ones reported in [1]. This can be partly
attributed to the fact that we used a faster machine in our experiments,7 and
mostly due to the improvements in the new version of Cgal’s arrangement
package, which now handles intersections of line segments more efficiently [5] due
to numerous improvements, such as the reduction of the number of geometric
operations and predicates the arrangement-construction algorithms invoke [16].
Moreover, we use the predefined Cgal kernel, which uses interval arithmetic to
7 Flato reports using a 500 MHz Pentium III machine.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Samples of input polygons (left) and their Minkowski sums (right): (a) chain;
(b) stars; (c) comb; (d) fork; (e) knife
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(a)

(b)

Fig. 5. Samples of input polygons (left) and their Minkowski sums (right): (a) cavity;
(b) random

filter exact computations with rational numbers, and helps reducing the running
times even further. The exact rational number-type we use is provided by Gnu’s
multi-precision library (Gmp Version 4.1).

Table 2 summarizes the performance of the Minkowski-sum computations for
the selected input sets using the convolution method. We indicate the numbers of
convolution cycles Nc, the total number K of convolution segments and the size
of the induced arrangement. We also include a column that states the running
time using the fastest decomposition scheme in each case (as given in Table 1)
and the running times of the Minkowski-sum function provided by Leda (Ver-
sion 4.4) on the various input sets. We used the exact rational kernel of Leda,
which also employs arithmetic filtering to speed up the computations with an
exact rational number-type.

In almost all cases, the convolution methods yields faster running times than
the fastest decomposition scheme (recall that Leda also employs the polygon-
decomposition method). This is attributed to the fact that the convolution
method usually induces a smaller arrangement as its intermediate construct.
As the total running-time is clearly dominated by the arrangement-construction
time, the convolution method may achieve a speed-up of up to a factor of 5
in some cases. Moreover, the memory requirements for storing the intermediate
arrangement are also considerably smaller.

The convolution method has another important advantage. As we learn from
Table 1, the choice of a decomposition strategy may have drastic effects on the
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Table 1. Running times (measured in milliseconds) for the Minkowski-sum compu-
tation using various decomposition strategies. The running time of the for the fastest
strategy in each case is shown in bold, and its construction statistics are also given.

Decomp. Arrangement size Running time
Input set k � S time |V | |E| |F | Opt. HM Gre. SSAB
chain 35 7 2520 123 7239 13627 6390 390 424 578 444
stars 17 17 2446 13 12955 25624 12671 488 744 867 477
comb 26 1 650 4 671 769 100 32 58 17 37
fork 12 11 1048 6 6827 13377 6552 287 524 1220 260
cavity 14 1 160 1 167 244 79 8 7 6 8
random 20 10 1540 15 8209 16310 8103 234 349 376 320
knife 22 6 1108 9 7721 15150 7431 249 370 1630 232
country 16 8 1344 8 5126 9772 4648 338 798 410 188

Table 2. Running times (measured in milliseconds) and construction statistics for the
Minkowski-sum computation using the convolution method

Conv. Arrangement size Total Best Using
Input set Nc K time |V | |E| |F | time decomp. Leda
chain 1 1452 7 2077 2868 793 69 390 463
stars 2 1200 7 3225 5482 2259 92 477 332
comb 1 603 7 627 651 26 17 17 97
fork 1 1266 5 11203 22063 10862 521 260 266
cavity 1 110 1 135 161 28 4 6 21
random 1 580 3 2589 4698 2111 62 234 229
knife 1 876 5 5075 9749 4676 184 232 175
country 2 1050 5 1940 3064 1126 61 188 275

running time of the Minkowski-sum computation, and the best strategy can
only be found by experimenting; when using the convolution method, no such
experiments are needed.

The fork input set is the only example that exhibits slower running times when
using the convolution method. This is due to the fact that the input polygons are
decomposed very nicely by the SSAB decomposition-strategy, separating each of
the fork prongs into a single thin rectangle, such that the Minkowski sums of the
sub-polygons are nearly pairwise disjoint. On the other hand, as we have many
pairs of parallel edges in the input polygons (note that all edges of the two forks
are axes-parallel), the convolution cycle in this case contains many redundant
loops that incur the greater run-time overhead.

5 Conclusions

We present an efficient implementation for computing Minkowski sums of simple
polygons using the convolution method. This is the first software implementa-
tion of a robust algorithm based on the polygon-convolution method. It uses
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exact computation, and can handle inputs with many degeneracies, yielding
topologically correct results. As our experiments show, the convolution method
is superior to the polygon-decomposition method on almost all input sets, and
improves the running times by a factor of 2–5. We intend to include our software
in the next public release of Cgal (the forthcoming Version 3.3).
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Bezáková, Ivona 136
Bhuvanagiri, Lakshminath 148
Blelloch, Guy E. 636
Bodlaender, Hans L. 672
Bonomi, Flavio 684
Boros, E. 444
Borys, K. 444
Bragalli, Cristiana 696
Brand, Matthew 552
Bremner, David 160
Brodal, Gerth Stølting 172, 708

Cabello, S. 720
Caragiannis, Ioannis 184
Chan, Ho-Leung 208
Chan, T.-H. Hubert 196
Chan, Timothy M. 16, 160
Chen, Danny Z. 220
Codenotti, Bruno 232
Cohen, Yuval 64
Czygrinow, Andrzej 244

D’Ambrosio, Claudia 696
Dasgupta, Anirban 256
Dean, Brian C. 268
Demaine, Erik D. 1, 160

Demetrescu, C. 732
Dinitz, Michael 196
Dorn, Frederic 280
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