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Abstract. This paper presents a new application of the snap-drift algorithm [1]: 
feature discovery and clustering of speech waveforms from non-stammering 
and stammering speakers. The learning algorithm is an unsupervised version of 
snap-drift which employs the complementary concepts of fast, minimalist learn-
ing (snap) & slow drift (towards the input pattern) learning. The Snap-Drift 
Neural Network (SDNN) is toggled between snap and drift modes on succes-
sive epochs. The speech waveforms are drawn from a phonetically annotated 
corpus, which facilitates phonetic interpretation of the classes of patterns dis-
covered by the SDNN. 

1   Introduction  

Stuttering (stammering) is a highly variable condition which occurs across ages and 
cultures. There is a lack of consensus in establishing the criteria for a definition. Find-
ing a way of identifying exactly what phonetic characteristics are associated with 
stammering, as opposed to non-stammering speech, has proved elusive. Perceptual 
analysis is known to be compromised by its subjectivity [2], [3]. In contrast, a correla-
tive data analysis to characterise the acoustic properties of stammering is realisable. 
There are four classes of sound pressure wave that form the acoustic structure of ut-
terances [4]: Periodic ‘voice’: regular repeating fluctuations produced by vocal fold 
vibration; Aperiodic ‘noise’: ongoing irregular fluctuations in voiceless fricatives; 
Transient ‘burst’: brief irregular fluctuations as in voiceless plosives; or Silent: no 
acoustic energy is emitted. The speech sounds used in human languages are made up 
of combinations of the four categories.  

The snap-drift learning algorithm first emerged as an attempt to overcome the limi-
tations of ART learning in non-stationary environments where self-organisation needs 
to take account of periodic or occasional performance feedback. Since then, the snap-
drift algorithm has proved invaluable for continuous learning in several applications. 

The reinforcement versions [5], [6] of snap-drift are used in the classification of 
user requests in an active computer network simulation environment whereby the sys-
tem is able to discover alternative solutions in response to varying performance re-
quirements. Furthermore, the unsupervised snap-drift algorithm, without any form of 
reinforcement, has been used in the analysis and interpretation of data representing  
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interactions between trainee network managers and a simulated network management 
system [7]. New patterns of the user behaviour were discovered.  

The further exploration of snap-drift, in the form of a classifier [8] has been used in 
attempting to discover and recognize phrases extracted from Lancaster Parsed Corpus 
(LPC) [9]. Comparisons carried out between snap-drift and MLP with back-
propagation, show that the former is faster and just as effective. 

This paper describes the further exploration of snap-drift, in unsupervised form, in 
attempting to discover the defining and unique millisecond features in the speech pat-
terns, which will be used to help understand the language learning of non-stammering 
and stammering speakers.  

2   The Snap-Drift Neural Network (SDNN) Architecture  

The modular neural network modified from the Performance-guided Adaptive Reso-
nance Theory (P-ART) network, first introduced by Lee & Palmer-Brown [1] is 
shown in Fig. 1. 

 

 

 
 
 

 

                                      

Fig. 1. SDNN Architecture 

On presentation of an input pattern at the input layer F01, dSDNN will learn to 
group the input patterns according to their general features. In this case, 10 F21 nodes, 
whose weight prototypes best match the current input pattern, are used as the input 
data to the sSDNN module for feature classification. In both of the modules, the stan-
dard matching and reset mechanism of ART [5], [6] is discarded. Instead, in the 
dSDNN module, the output nodes with the highest net input are always accepted as 
winners. In the sSDNN module, a quality assurance threshold is introduced. If the net 
input of a sSDNN node is above the threshold, the output node is accepted as the win-
ner, otherwise a new uncommitted output node will be selected as the new winner and 
initialised with the current input pattern. 

In this version of SDNN we introduce weight re-initialisation.  The main purpose 
of weight re-initialisation is to enable unused output nodes to be reinstated into the 
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competition for winning nodes. Weight re-initialization is invoked after many epochs 
since the SDNN must first allow input patterns to settle into their categories. After a 
duration defined by a certain number of input patterns, called a learning era (an era is 
a number of epochs), the weights of nodes unused during the preceding era will be re-
initialised to enable them to participate again in the competition for the best winning 
nodes. In effect, reinitialisation is a neuron pruning algorithm. It removes weight vec-
tors that are redundant. 

The following is a summary of the steps that occur in SDNN: 

Step 1: Initialise parameters: (α = 1, σ = 0), era = 
2000 
Step 2: For each epoch (t) 
  Test: Weights re-initialization condition  
  For each input pattern 
  Step 2.1: Find the D (D = 10) winning nodes at F21 

with the largest net input  
  Step 2.2: Inhibit the F21 node for weights re-

initialization 
  Step 2.3: Weights of dSDNN adapted according to the    

alternative learning procedure: (α,σ)  
becomes Inverse(α,σ) after every successive 
epoch  

Step 3: Process the output pattern of F21 as input  
pattern of F12 

  Step 3.1: Find the node at F12 with the largest net 
input   

  Step 3.2: Test the threshold condition: 

    IF (the net input of the node is greater than the 
threshold)    

    THEN  

Weights of the sSDNN output node adapted according 
to the alternative learning procedure: (α,σ)  
becomes inverse (α,σ) after every successive epoch  
ELSE 

An uncommitted sSDNN output node is selected and 
its weights are adapted according to the  
alternative learning procedure: (α,σ) becomes 
Inverse(α,σ) after every successive epoch 

 
Weights re-initialization condition: 
After ‘era’ input patterns  
IF (F21 node not used for the past era input  
presentations) THEN 
Re-initialize the F21 node with randomly selected input 
pattern 
Inhibit the F21 node for weights re-initialization for 
the next era input pattern presentation  
ELSE 
No action taken. 
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3   The Snap-Drift Algorithm 

The learning algorithm combines a modified form of Adaptive Resonance Theory 
(snap) [10] and Learning Vector Quantisation (drift) [11]. In general terms, the snap-
drift algorithm can be stated as: 

Snap-drift = α(Fast_Learning_ART) + σ(LVQ) (1) 

The top-down learning of both of the modules in the neural system is as follows: 

wJi
(new) = α(I ∩ wJi

(old)) + σ(wJi
(old) + β (I - wJi

(old))) (2) 

where wJi = top-down weights vectors; I = binary input vectors,  and β  = the drift 
speed constant = 0.5. 

In successive learning epochs, the learning is toggled between the two modes of 
learning. When α = 1, fast, minimalist (snap) learning is invoked, causing the top-
down weights to reach their new asymptote on each input presentation. (2) is simpli-
fied as: 

wJi
(new) = I ∩ wJi

(old) (3) 

This learns sub-features of patterns. In contrast, when σ = 1, (2) simplifies to: 

wJi
(new) = wJi

(old) + β (I - wJi
(old)) (4) 

which causes a simple form of clustering at a speed determined by β. 
The bottom-up learning of the neural system is a normalised version of the top-

down learning. 

wiJ
(new) = wJi

(new) / | wJi
(new)| (5) 

where wiJ
(new)= top-down weights of the network after learning. 

In SDNN, as described in section 2, snap-drift is toggled between snap and drift on 
each successive epoch. The effect of this is to capture the strongest clusters (holistic 
features), sub-features, and combinations of the two.  

4   Simulations  

The snap-drift algorithm is used for learning and discovering the features embedded 
in the utterances of two speaker groups, non-stammering and stammering. Before any 
simulations, pre-processing of the utterances is completed. In this research, each point 
of a speech utterance waveform collected represents 1 ms of speech data. In this re-
search, in order to analyze and recognise the acoustic properties of the speaker with 
sufficient precision, each utterance is sampled every 10 points for a total of 1000 
points, which represents about 1 second of speech information. This is considered suf-
ficient by a phonetics expert. Figure 2 shows the example of sampled utterance used 
in the simulations. Each of the sampled waveforms is used to generate a number of 
input patterns for SDNN. The input patterns are generated using a sliding window of 
size 100 samples points. The sliding window is shifted to the right by 25 sample 
points to create a new input. This provides some overlapping of features among the 
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input patterns. Then, each input pattern is converted into a 1400 bit coarse coded bi-
nary pattern. 5 utterances are used from 2 speakers, 3 utterances from the non-
stammering speaker and 2 from the stammering speaker. Table 1 shows the range and 
properties of the input set, making the total number of input patterns, 1873 input vec-
tors. These test input patterns are presented in sequence to SDNN. The number of in-
put patterns for each speaker varies because: 

1. Each speaker is asked to speak using different types of statements. 
2. Non-stammering speaker will produce more fluent speech utterances with shorter 

or no delay between phrases.  
3. Stammering speakers always produce longer utterances due to the delay in the 

voiceless fricative. 

The input patterns, which are also quite noisy, provide a real world test for unsu-
pervised SDNN as a feature discovery and classification system.  

For SDNN to act as a viable classifier, and to demonstrate the utility of the features 
it acquires, it should be able to estimate or predict whether a speaker in a real-time 
scenario is non-stammering or stammering when a speech utterance is fed into the 
system. An estimation will be made of how long it takes to be certain that a speaker is 
non-stammering or stammering. 

Table 1. Range and properties of the input set  

Speaker group Total number of Inputs  
Non-stammering 256 

Stammering 644 
Non-stammering 162 

Stammering 467 
Non-stammering 229 

 

Fig. 2. Example utterance waveform used in simulation  

4.1   Results  

The results are presented in Table 2 to Table 4; each of the tables shows the example 
category types formed by the SDNN network with their acoustic properties. The acous-
tic properties record is obtained from a phonetics expert’s annotation of the speech 
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Table 2. Accoustic properties of example category type 1 (Stammering) 

Input Speaker group Silent Periodic Aperiodic Transient 
195 Non-stammering     
211 Non-stammering     

377, 456 Stammering     
432, 68 Stammering     

473, 485, 575, 
585 

Stammering 
    

570 Stammering     
595 Stammering     
609 Stammering     

Table 3. Accoustic properties of example category type 2 (Non-Stammering) 

Input Speaker group Silent Periodic Aperiodic Transient 
21, 34, 3699, 

142, 175 
Non-stammering 

    

27, 32, 231, 
253 

Non-stammering 
    

38, 187 Non-stammering     
48 Non-stammering     
56 Non-stammering     

200 Non-stammering     
304 Stammering     
310 Stammering     

Table 4. Accoustic properties of example category type 3 (Mixture of both type of speakers) 

Input Speaker group Silent Periodic Aperiodic Transient 
45, 108 Non-stammering     

165 Non-stammering     
131, 135 Non-stammering     
204, 123 Non-stammering     
283, 504 Stammering     
304, 442 Stammering     

615, 565, 370, 
457 

Stammering 
    

546, 547 Stammering     
 

waveform corpus. Each of the sampled sequence of the speech utterance is identified 
with one or more acoustic properties: Silent, Periodic, Aperiodic and Transient.   

By looking at the tables, it is clear that the SDNN has categorised the input patterns 
into 3 distinctive types, stammering speech, non-stammering speech, and a category 
type with a mixture of the two speaker types. The three category types were identified 
since they corresponded to different non-overlapping sets of sSDNN output nodes.  
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Fig. 3. Example input waveform for category type 1 (Input 377) 

 

Fig. 4. Example input waveform for category type 1 (Input 595) 

Fig. 3 - 5 show the example input waveforms being grouped into the same cate-
gory, in this case example category type 1 (Stammering).  By comparing these wave-
forms, the similarities can be easily identified. In order to understand the learned fea-
tures of the speech utterances, a comparison of the input patterns of the system and 
the learned weight templates is performed.  

The input patterns received by the SDNN are binary coarse coded representations 
of the fragments of speech input utterances, such as those shown in Fig. 3 – 5. Each 
point in the speech input is represented by a 14 bit binary representation. So, the 
weights learned are the results of processing these binary input patterns. As a means 
of visualization, the weights learned are thresholded as a first order approximation to 
produce a binary representation of the weights learned. Then, the 14 bit coarse binary 
representation of the weights learned are decoded to show the actual waveform fea-
tures that have been acquired from the original waveforms.  

 

-3000 

-2000 

-1000 

0 

1000 

2000 

3000 

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

-15000 

-10000 

-5000 

0 

5000 

10000 

1 9 17 25 33 41 49 57 65 73 81 89 97



 Phonetic Feature Discovery in Speech Using Snap-Drift Learning 959 

-8000 

-6000 

-4000 

-2000 

0 

2000 

4000 

6000 

1 9 17 25 33 41 49 57 65 73 81 89 97

 

 

 

 

 

 

 

Fig. 5. Example input waveform for category type 1 (Input 456) 

 

Fig. 6. Example weights learned for category type 1 (Winning node 42) 
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Fig. 7. Example weights learned for category type 1 (Winning node 13) 
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Fig. 6 and Fig. 7 show the weights learned. Although these weights graphs are 
drawn using approximation for visualization, the figures clearly show that system has 
learned the features in the input patterns of the categories. In fig. 6 and 7, the graphs 
show a noisy sinusoid of about 3 Hz. By comparing with the original waveforms, it 
has clearly shown that what these waveforms have in common is a sinusoid of ap-
proximately 3Hz. The phonetics expert has identified that these parts of the utterances 
are often associated with silence or pauses or gaps between words where there is 
some sound perhaps but no clear articulation. This is indeed known to be the case for 
stammerers. 

5   Unique Sequences and Classifications 

As mentioned, during each learning epoch, the speech utterances are fed into the sys-
tem in sequence, one speaker utterance at a time. In order to do the analysis and thus 
determine the time it takes to identify the speaker type, one epoch after convergence 
is randomly selected. By randomly selecting one sequence of sSDNN winning nodes 
to start with, the whole epoch is examined to find any repeated occurrences of the se-
quence. These repeated occurrences of winning nodes sequences are called unique se-
quences if they are unique to only stammering or non-stammering speakers. Then, the 
speaker input utterances which caused the unique sequence, is examined. With this 
method of analysis, the length of unique sequence of winning nodes which only oc-
curred in a particular group of speakers, either stammering or non-stammering, will 
determine the time the system takes to be certain of the speaker group for a particular 
speech utterance.  

Table 4 shows the sequence occurrence of winning nodes for non-stammering or 
stammering group input patterns. The sequences for analysis are randomly selected. 
In the table, most of the sequences with the length less than 3 tend to have a mixture 
of occurrence of both types of speaker groups. By increasing the length of the se-
quence, some form of bias arises. With the sequence length of more than 5 winning 
nodes, these sequences only occur in one of the speaker types, either non-stammering 
or stammering. For example, the sequence {45, 52, 43, 19, 65} only exists in the 
speech input of the stammering speaker. Obviously, this sequence is unique to the 
stammering speaker. By plotting the average ratio of the speaker type over the se-
quence length, the length of the sequence which can be labelled as unique can be 
identified. This is illustrated in Fig. 8. In fig. 8, the average ratio of the speaker group 
for sequence length of 5 and 6 is the lowest. With this number of randomly selected 
sequences for consideration, it confidently shows that input patterns for particular 
speaker groups can be identified when a unique sequence, with the length of 5 win-
ning nodes is used for analysis.  

By identifying this unique sequence; we mean SDNN is capable of identifying the 
speaker group of input patterns after system convergence is achieved. As mentioned 
in section IV, each input pattern roughly represents about 1 second of speech informa-
tion, thus, SDNN is capable of distinguishing the type of speaker by analysis of about 
5 seconds of speech, which is analogous to the a person identifying a speaker as  
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stammering or non-stammering after hearing several words. Since not all words are 
stammered by stammerers, this figure is also of the order of 5 seconds of speech for 
humans. 

Thus, SDNN has shown the capability of a classifier, in this case, categorizing the 
input patterns according to their features and classifying and estimating the time it 
takes to be certain that a speaker is non-stammering or stammering by using unique 
sequences of sSDNN winning nodes. 

Table 5. Randomly selected sequence occurrence of winning nodes for non-stammering / 
stammering group input patterns 

Sequence 
No. of  

Occurrences 
Non-

stammering 
Stammering 

63, 65 21 13 9 
1, 36, 31 25 9 6 

7,5,3 19 11 8 
45,52,43 15 6 9 

12,23,34,34 11 6 7 
7,5,3,54,39 4 4 0 

42,34,46,10,59 3 3 0 
45,52,43,19,65 7 0 7 

7,7,2,6,49 3 3 0 
39,36,56,16,32 4 0 4 
6,32,40,4,23,58 6 1 5 
69,68,56,68,69 3 0 3 

54,69,55,11,46,50 3 0 3 
11,63,45,37,56,68 4 4 0 
6,32,46,23,4,33 2 0 2 

 

 

 

 

 
 
 
 

Fig. 8. The average ratio of the speaker type over the length of the winning node sequence 
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6   Conclusion 

This paper presents the new application of feature discovery in phonetics speech us-
ing the snap-drift algorithm. It also gives the opportunity to test the performance of 
SDNN without a performance feedback in a purely unsupervised mode. SDNN cate-
gorizes the input patterns according to their general and distinct features. By examin-
ing the phonetic and waveform properties of the input patterns in each of the catego-
ries formed, it has been shown that without any performance feedback, the SDNN 
modules group the input patterns sensibly and extract properties which are general be-
tween non-stammering and stammering speech, as well as distinct features within 
each of the utterance groups, thus supporting classification. 
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