
S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 952 – 962, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Phonetic Feature Discovery in Speech Using Snap-Drift
Learning

Sin Wee Lee and Dominic Palmer-Brown

Innovative Informatics Research Group
University of East London, Essex, Rm8 2AS, UK

{SinWee, D.Palmer-Brown}@uel.ac.uk
http://www.uel.ac.uk/scot/ii/index.htm

Abstract. This paper presents a new application of the snap-drift algorithm [1]:
feature discovery and clustering of speech waveforms from non-stammering
and stammering speakers. The learning algorithm is an unsupervised version of
snap-drift which employs the complementary concepts of fast, minimalist learn-
ing (snap) & slow drift (towards the input pattern) learning. The Snap-Drift
Neural Network (SDNN) is toggled between snap and drift modes on succes-
sive epochs. The speech waveforms are drawn from a phonetically annotated
corpus, which facilitates phonetic interpretation of the classes of patterns dis-
covered by the SDNN.

1 Introduction

Stuttering (stammering) is a highly variable condition which occurs across ages and
cultures. There is a lack of consensus in establishing the criteria for a definition. Find-
ing a way of identifying exactly what phonetic characteristics are associated with
stammering, as opposed to non-stammering speech, has proved elusive. Perceptual
analysis is known to be compromised by its subjectivity [2], [3]. In contrast, a correla-
tive data analysis to characterise the acoustic properties of stammering is realisable.
There are four classes of sound pressure wave that form the acoustic structure of ut-
terances [4]: Periodic ‘voice’: regular repeating fluctuations produced by vocal fold
vibration; Aperiodic ‘noise’: ongoing irregular fluctuations in voiceless fricatives;
Transient ‘burst’: brief irregular fluctuations as in voiceless plosives; or Silent: no
acoustic energy is emitted. The speech sounds used in human languages are made up
of combinations of the four categories.

The snap-drift learning algorithm first emerged as an attempt to overcome the limi-
tations of ART learning in non-stationary environments where self-organisation needs
to take account of periodic or occasional performance feedback. Since then, the snap-
drift algorithm has proved invaluable for continuous learning in several applications.

The reinforcement versions [5], [6] of snap-drift are used in the classification of
user requests in an active computer network simulation environment whereby the sys-
tem is able to discover alternative solutions in response to varying performance re-
quirements. Furthermore, the unsupervised snap-drift algorithm, without any form of
reinforcement, has been used in the analysis and interpretation of data representing

 Phonetic Feature Discovery in Speech Using Snap-Drift Learning 953

interactions between trainee network managers and a simulated network management
system [7]. New patterns of the user behaviour were discovered.

The further exploration of snap-drift, in the form of a classifier [8] has been used in
attempting to discover and recognize phrases extracted from Lancaster Parsed Corpus
(LPC) [9]. Comparisons carried out between snap-drift and MLP with back-
propagation, show that the former is faster and just as effective.

This paper describes the further exploration of snap-drift, in unsupervised form, in
attempting to discover the defining and unique millisecond features in the speech pat-
terns, which will be used to help understand the language learning of non-stammering
and stammering speakers.

2 The Snap-Drift Neural Network (SDNN) Architecture

The modular neural network modified from the Performance-guided Adaptive Reso-
nance Theory (P-ART) network, first introduced by Lee & Palmer-Brown [1] is
shown in Fig. 1.

Fig. 1. SDNN Architecture

On presentation of an input pattern at the input layer F01, dSDNN will learn to
group the input patterns according to their general features. In this case, 10 F21 nodes,
whose weight prototypes best match the current input pattern, are used as the input
data to the sSDNN module for feature classification. In both of the modules, the stan-
dard matching and reset mechanism of ART [5], [6] is discarded. Instead, in the
dSDNN module, the output nodes with the highest net input are always accepted as
winners. In the sSDNN module, a quality assurance threshold is introduced. If the net
input of a sSDNN node is above the threshold, the output node is accepted as the win-
ner, otherwise a new uncommitted output node will be selected as the new winner and
initialised with the current input pattern.

In this version of SDNN we introduce weight re-initialisation. The main purpose
of weight re-initialisation is to enable unused output nodes to be reinstated into the

Input
Pattern

(I)

F22
 F21

F1 2

 F11

F01

 dSDNN
(Feature Extraction)

sSDNN
(Classification)

954 S.W. Lee and D. Palmer-Brown

competition for winning nodes. Weight re-initialization is invoked after many epochs
since the SDNN must first allow input patterns to settle into their categories. After a
duration defined by a certain number of input patterns, called a learning era (an era is
a number of epochs), the weights of nodes unused during the preceding era will be re-
initialised to enable them to participate again in the competition for the best winning
nodes. In effect, reinitialisation is a neuron pruning algorithm. It removes weight vec-
tors that are redundant.

The following is a summary of the steps that occur in SDNN:

Step 1: Initialise parameters: (α = 1, σ = 0), era =
2000
Step 2: For each epoch (t)
 Test: Weights re-initialization condition
 For each input pattern
 Step 2.1: Find the D (D = 10) winning nodes at F21

with the largest net input
 Step 2.2: Inhibit the F21 node for weights re-

initialization
 Step 2.3: Weights of dSDNN adapted according to the

alternative learning procedure: (α,σ)
becomes Inverse(α,σ) after every successive
epoch

Step 3: Process the output pattern of F21 as input
pattern of F12

 Step 3.1: Find the node at F12 with the largest net
input

 Step 3.2: Test the threshold condition:

 IF (the net input of the node is greater than the
threshold)

 THEN

Weights of the sSDNN output node adapted according
to the alternative learning procedure: (α,σ)
becomes inverse (α,σ) after every successive epoch
ELSE

An uncommitted sSDNN output node is selected and
its weights are adapted according to the
alternative learning procedure: (α,σ) becomes
Inverse(α,σ) after every successive epoch

Weights re-initialization condition:
After ‘era’ input patterns
IF (F21 node not used for the past era input
presentations) THEN
Re-initialize the F21 node with randomly selected input
pattern
Inhibit the F21 node for weights re-initialization for
the next era input pattern presentation
ELSE
No action taken.

 Phonetic Feature Discovery in Speech Using Snap-Drift Learning 955

3 The Snap-Drift Algorithm

The learning algorithm combines a modified form of Adaptive Resonance Theory
(snap) [10] and Learning Vector Quantisation (drift) [11]. In general terms, the snap-
drift algorithm can be stated as:

Snap-drift = α(Fast_Learning_ART) + σ(LVQ) (1)

The top-down learning of both of the modules in the neural system is as follows:

wJi
(new) = α(I ∩ wJi

(old)) + σ(wJi
(old) + β (I - wJi

(old))) (2)

where wJi = top-down weights vectors; I = binary input vectors, and β = the drift
speed constant = 0.5.

In successive learning epochs, the learning is toggled between the two modes of
learning. When α = 1, fast, minimalist (snap) learning is invoked, causing the top-
down weights to reach their new asymptote on each input presentation. (2) is simpli-
fied as:

wJi
(new) = I ∩ wJi

(old) (3)

This learns sub-features of patterns. In contrast, when σ = 1, (2) simplifies to:

wJi
(new) = wJi

(old) + β (I - wJi
(old)) (4)

which causes a simple form of clustering at a speed determined by β.
The bottom-up learning of the neural system is a normalised version of the top-

down learning.

wiJ
(new) = wJi

(new) / | wJi
(new)| (5)

where wiJ
(new)= top-down weights of the network after learning.

In SDNN, as described in section 2, snap-drift is toggled between snap and drift on
each successive epoch. The effect of this is to capture the strongest clusters (holistic
features), sub-features, and combinations of the two.

4 Simulations

The snap-drift algorithm is used for learning and discovering the features embedded
in the utterances of two speaker groups, non-stammering and stammering. Before any
simulations, pre-processing of the utterances is completed. In this research, each point
of a speech utterance waveform collected represents 1 ms of speech data. In this re-
search, in order to analyze and recognise the acoustic properties of the speaker with
sufficient precision, each utterance is sampled every 10 points for a total of 1000
points, which represents about 1 second of speech information. This is considered suf-
ficient by a phonetics expert. Figure 2 shows the example of sampled utterance used
in the simulations. Each of the sampled waveforms is used to generate a number of
input patterns for SDNN. The input patterns are generated using a sliding window of
size 100 samples points. The sliding window is shifted to the right by 25 sample
points to create a new input. This provides some overlapping of features among the

956 S.W. Lee and D. Palmer-Brown

input patterns. Then, each input pattern is converted into a 1400 bit coarse coded bi-
nary pattern. 5 utterances are used from 2 speakers, 3 utterances from the non-
stammering speaker and 2 from the stammering speaker. Table 1 shows the range and
properties of the input set, making the total number of input patterns, 1873 input vec-
tors. These test input patterns are presented in sequence to SDNN. The number of in-
put patterns for each speaker varies because:

1. Each speaker is asked to speak using different types of statements.
2. Non-stammering speaker will produce more fluent speech utterances with shorter

or no delay between phrases.
3. Stammering speakers always produce longer utterances due to the delay in the

voiceless fricative.

The input patterns, which are also quite noisy, provide a real world test for unsu-
pervised SDNN as a feature discovery and classification system.

For SDNN to act as a viable classifier, and to demonstrate the utility of the features
it acquires, it should be able to estimate or predict whether a speaker in a real-time
scenario is non-stammering or stammering when a speech utterance is fed into the
system. An estimation will be made of how long it takes to be certain that a speaker is
non-stammering or stammering.

Table 1. Range and properties of the input set

Speaker group Total number of Inputs
Non-stammering 256

Stammering 644
Non-stammering 162

Stammering 467
Non-stammering 229

Fig. 2. Example utterance waveform used in simulation

4.1 Results

The results are presented in Table 2 to Table 4; each of the tables shows the example
category types formed by the SDNN network with their acoustic properties. The acous-
tic properties record is obtained from a phonetics expert’s annotation of the speech

 Phonetic Feature Discovery in Speech Using Snap-Drift Learning 957

Table 2. Accoustic properties of example category type 1 (Stammering)

Input Speaker group Silent Periodic Aperiodic Transient
195 Non-stammering 9 9 9
211 Non-stammering 9 9

377, 456 Stammering 9
432, 68 Stammering 9 9

473, 485, 575,
585

Stammering
9

570 Stammering 9 9
595 Stammering 9 9
609 Stammering 9 9

Table 3. Accoustic properties of example category type 2 (Non-Stammering)

Input Speaker group Silent Periodic Aperiodic Transient
21, 34, 3699,

142, 175
Non-stammering

 9 9

27, 32, 231,
253

Non-stammering
 9

38, 187 Non-stammering 9
48 Non-stammering 9
56 Non-stammering 9 9

200 Non-stammering 9
304 Stammering 9 9 9
310 Stammering 9 9

Table 4. Accoustic properties of example category type 3 (Mixture of both type of speakers)

Input Speaker group Silent Periodic Aperiodic Transient
45, 108 Non-stammering 9 9

165 Non-stammering 9
131, 135 Non-stammering 9 9
204, 123 Non-stammering 9
283, 504 Stammering 9 9
304, 442 Stammering 9 9 9

615, 565, 370,
457

Stammering
 9

546, 547 Stammering 9

waveform corpus. Each of the sampled sequence of the speech utterance is identified
with one or more acoustic properties: Silent, Periodic, Aperiodic and Transient.

By looking at the tables, it is clear that the SDNN has categorised the input patterns
into 3 distinctive types, stammering speech, non-stammering speech, and a category
type with a mixture of the two speaker types. The three category types were identified
since they corresponded to different non-overlapping sets of sSDNN output nodes.

958 S.W. Lee and D. Palmer-Brown

Fig. 3. Example input waveform for category type 1 (Input 377)

Fig. 4. Example input waveform for category type 1 (Input 595)

Fig. 3 - 5 show the example input waveforms being grouped into the same cate-
gory, in this case example category type 1 (Stammering). By comparing these wave-
forms, the similarities can be easily identified. In order to understand the learned fea-
tures of the speech utterances, a comparison of the input patterns of the system and
the learned weight templates is performed.

The input patterns received by the SDNN are binary coarse coded representations
of the fragments of speech input utterances, such as those shown in Fig. 3 – 5. Each
point in the speech input is represented by a 14 bit binary representation. So, the
weights learned are the results of processing these binary input patterns. As a means
of visualization, the weights learned are thresholded as a first order approximation to
produce a binary representation of the weights learned. Then, the 14 bit coarse binary
representation of the weights learned are decoded to show the actual waveform fea-
tures that have been acquired from the original waveforms.

-3000

-2000

-1000

0

1000

2000

3000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

-15000

-10000

-5000

0

5000

10000

1 9 17 25 33 41 49 57 65 73 81 89 97

 Phonetic Feature Discovery in Speech Using Snap-Drift Learning 959

-8000

-6000

-4000

-2000

0

2000

4000

6000

1 9 17 25 33 41 49 57 65 73 81 89 97

Fig. 5. Example input waveform for category type 1 (Input 456)

Fig. 6. Example weights learned for category type 1 (Winning node 42)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Fig. 7. Example weights learned for category type 1 (Winning node 13)

960 S.W. Lee and D. Palmer-Brown

Fig. 6 and Fig. 7 show the weights learned. Although these weights graphs are
drawn using approximation for visualization, the figures clearly show that system has
learned the features in the input patterns of the categories. In fig. 6 and 7, the graphs
show a noisy sinusoid of about 3 Hz. By comparing with the original waveforms, it
has clearly shown that what these waveforms have in common is a sinusoid of ap-
proximately 3Hz. The phonetics expert has identified that these parts of the utterances
are often associated with silence or pauses or gaps between words where there is
some sound perhaps but no clear articulation. This is indeed known to be the case for
stammerers.

5 Unique Sequences and Classifications

As mentioned, during each learning epoch, the speech utterances are fed into the sys-
tem in sequence, one speaker utterance at a time. In order to do the analysis and thus
determine the time it takes to identify the speaker type, one epoch after convergence
is randomly selected. By randomly selecting one sequence of sSDNN winning nodes
to start with, the whole epoch is examined to find any repeated occurrences of the se-
quence. These repeated occurrences of winning nodes sequences are called unique se-
quences if they are unique to only stammering or non-stammering speakers. Then, the
speaker input utterances which caused the unique sequence, is examined. With this
method of analysis, the length of unique sequence of winning nodes which only oc-
curred in a particular group of speakers, either stammering or non-stammering, will
determine the time the system takes to be certain of the speaker group for a particular
speech utterance.

Table 4 shows the sequence occurrence of winning nodes for non-stammering or
stammering group input patterns. The sequences for analysis are randomly selected.
In the table, most of the sequences with the length less than 3 tend to have a mixture
of occurrence of both types of speaker groups. By increasing the length of the se-
quence, some form of bias arises. With the sequence length of more than 5 winning
nodes, these sequences only occur in one of the speaker types, either non-stammering
or stammering. For example, the sequence {45, 52, 43, 19, 65} only exists in the
speech input of the stammering speaker. Obviously, this sequence is unique to the
stammering speaker. By plotting the average ratio of the speaker type over the se-
quence length, the length of the sequence which can be labelled as unique can be
identified. This is illustrated in Fig. 8. In fig. 8, the average ratio of the speaker group
for sequence length of 5 and 6 is the lowest. With this number of randomly selected
sequences for consideration, it confidently shows that input patterns for particular
speaker groups can be identified when a unique sequence, with the length of 5 win-
ning nodes is used for analysis.

By identifying this unique sequence; we mean SDNN is capable of identifying the
speaker group of input patterns after system convergence is achieved. As mentioned
in section IV, each input pattern roughly represents about 1 second of speech informa-
tion, thus, SDNN is capable of distinguishing the type of speaker by analysis of about
5 seconds of speech, which is analogous to the a person identifying a speaker as

 Phonetic Feature Discovery in Speech Using Snap-Drift Learning 961

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 3 4 5 6

Sequence length

A
ve

ra
ge

 r
at

io
 o

f
sp

ea
ke

r
ty

pe
s

stammering or non-stammering after hearing several words. Since not all words are
stammered by stammerers, this figure is also of the order of 5 seconds of speech for
humans.

Thus, SDNN has shown the capability of a classifier, in this case, categorizing the
input patterns according to their features and classifying and estimating the time it
takes to be certain that a speaker is non-stammering or stammering by using unique
sequences of sSDNN winning nodes.

Table 5. Randomly selected sequence occurrence of winning nodes for non-stammering /
stammering group input patterns

Sequence
No. of

Occurrences
Non-

stammering
Stammering

63, 65 21 13 9
1, 36, 31 25 9 6

7,5,3 19 11 8
45,52,43 15 6 9

12,23,34,34 11 6 7
7,5,3,54,39 4 4 0

42,34,46,10,59 3 3 0
45,52,43,19,65 7 0 7

7,7,2,6,49 3 3 0
39,36,56,16,32 4 0 4
6,32,40,4,23,58 6 1 5
69,68,56,68,69 3 0 3

54,69,55,11,46,50 3 0 3
11,63,45,37,56,68 4 4 0
6,32,46,23,4,33 2 0 2

Fig. 8. The average ratio of the speaker type over the length of the winning node sequence

962 S.W. Lee and D. Palmer-Brown

6 Conclusion

This paper presents the new application of feature discovery in phonetics speech us-
ing the snap-drift algorithm. It also gives the opportunity to test the performance of
SDNN without a performance feedback in a purely unsupervised mode. SDNN cate-
gorizes the input patterns according to their general and distinct features. By examin-
ing the phonetic and waveform properties of the input patterns in each of the catego-
ries formed, it has been shown that without any performance feedback, the SDNN
modules group the input patterns sensibly and extract properties which are general be-
tween non-stammering and stammering speech, as well as distinct features within
each of the utterance groups, thus supporting classification.

References

[1] Lee, S. W., Palmer-Brown, D., Roadknight, C. M.: Performance-guided Neural Network
for Rapidly Self-Organising Active Network Management. Neurocomputing, Vol. 61C
(2004) 5 – 20.

[2] Aylett, M., Turk, A.: Vowel Quality in Spontaneous Speech: What makes a good vowel.
Proc. of Int. Conf. of Spoken Language Processing. Sydney, Australia.

[3] Klatt, D. H.: Review of Text-to-Speech Conversion for English. Online collection (1987)
[4] Ladefoged, P.: A Course in Phonetics. 4th ed., Boston, Heinle & Heinle (2001)
[5] Lee, S. W., Palmer-Brown, D., Tepper, J., Roadknight, C. M.: Snap-Drift: Real-time Per-

formance-guided Learning. Proc. of IJCNN, Portland, Oregon, Vo1. 2 (2003) 1412 –
1416.

[6] Lee, S. W., Palmer-Brown, D., Roadknight, C. M.: Reinforced Snap-Drift Learning for
Proxylet Selection in Active Computer Networks. Proc. of IJCNN, Budapest, Hungary,
Vo1. 2 (2004) 1545 – 1550.

[7] Donelan, H., Pattinson, C., Palmer-Brown, D., Lee, S. W.: The Analysis of Network
Manager’s Behaviour using a Self-Organising Neural Networks. Proc. of ESM, Magde-
burg, Germany, (2004) 111 – 116..

[8] Lee, S. W., Palmer-Brown, D.: Phrase Recognition using Snap-Drift Learning Algo-
rithm. Proc. of IJCNN, Montreal, Canada (2005).

[9] Garside, R., Leech, G., Varadi, T.: Manual of Information to Accompany the Lancaster
Parsed Corpus: Department of English, University of Oslo (1987).

[10] Carpenter, G. A., Grossberg, S.: A Massively Parallel Architecture for a Self-Organising
Neural Pattern Recognition Machine. Com. Vision, Graphics and Image Proc., Vol. 37
(1987) 54-115.

[11] Kohonen, T.: Improved Versions of Learning Vector Quantization. Proc. of IJCNN, Vol.
1 (1990) 545 – 550.

	Introduction
	The Snap-Drift Neural Network (SDNN) Architecture
	The Snap-Drift Algorithm
	Simulations
	Results

	Unique Sequences and Classifications
	Conclusion
	References

