


Lecture Notes in Computer Science 4132
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Stefanos Kollias Andreas Stafylopatis
Włodzisław Duch Erkki Oja (Eds.)

Artificial
Neural Networks –
ICANN 2006

16th International Conference
Athens, Greece, September 10 – 14, 2006
Proceedings, Part II

13



Volume Editors

Stefanos Kollias
Andreas Stafylopatis
National Technical University of Athens
School of Electrical and Computer Engineering
157 80 Zographou, Athens, Greece
E-mail: {stefanos,andreas}@cs.ntua.gr

Włodzisław Duch
Nicolaus Copernicus University
Department of Informatics
ul. Grudziadzka 5, 87-100 Torun, Poland
E-mail: wduch@phys.uni.torun.pl

Erkki Oja
Helsinki University of Technology
Laboratory of Computer and Information Science
P.O. Box 5400, 02015 Hut, Finland
E-mail: erkki.oja@hut.fi

Library of Congress Control Number: 2006931797

CR Subject Classification (1998): F.1, I.2, I.5, I.4, G.3, J.3, C.2.1, C.1.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-38871-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38871-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11840930 06/3142 5 4 3 2 1 0



Preface 

This book includes the proceedings of the International Conference on Artificial 
Neural Networks (ICANN 2006) held on September 10-14, 2006 in Athens, Greece, 
with tutorials being presented on September 10, the main conference taking place 
during September 11-13 and accompanying workshops on perception, cognition and 
interaction held on September 14, 2006.  

The ICANN conference is organized annually by the European Neural Network 
Society in cooperation with the International Neural Network Society, the Japanese 
Neural Network Society and the IEEE Computational Intelligence Society. It is the 
premier European event covering all topics concerned with neural networks and 
related areas. The ICANN series of conferences was initiated in 1991 and soon 
became the major European gathering for experts in these fields. 

In 2006 the ICANN Conference was organized by the Intelligent Systems 
Laboratory and the Image, Video and Multimedia Systems Laboratory of the National 
Technical University of Athens in Athens, Greece.  

From 475 papers submitted to the conference, the International Program 
Committee selected, following a thorough peer-review process, 208 papers for 
publication and presentation to 21 regular and 10 special sessions. The quality of the 
papers received was in general very high; as a consequence, it was not possible to 
accept and include in the conference program many papers of good quality.  

A variety of topics constituted the focus of paper submissions. In regular sessions, 
papers addressed topics such as learning algorithms, hybrid architectures, neural 
dynamics and complex systems, self-organization, computational neuroscience, 
connectionist cognitive science, neural control, robotics and planning, data analysis, 
signal and time series processing, image and vision analysis, pattern recognition and 
applications to bioinformatics, market analysis and other real-world problems.   

Special sessions, organized by distinguished researchers, focused on significant 
aspects of current neural network research, including cognitive machines, Semantic 
Web technologies and multimedia analysis, bridging the semantic gap in multimedia 
machine learning approaches, feature selection and dimension reduction for 
regression, learning random neural networks and stochastic agents, visual attention 
algorithms and architectures for perceptional understanding and video coding, neural 
computing in energy engineering, bio-inspired neural network on-chip 
implementation and applications, computational finance and economics. 

Prominent lecturers provided key-note speeches for the conference. Moreover, 
tutorials were given by well-known researchers. John Taylor was the honorary Chair 
of the conference. 

Three post-conference workshops, on intelligent multimedia, semantics, 
interoperability and e-culture, on affective computing and interaction and on cognitive 
machines, concluded the focus of ICANN 2006 on the state-of-the-art research on 
neural networks and intelligent technologies in relation to the domains of cognition, 
perception and interaction. In-depth discussion was made on the prospects and future 
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developments of the theoretical developments and applications of neural network 
models, algorithms and systems in the fields of cognition, neurobiology, semantics, 
perception and human computer interaction.  

We would like to thank all members of the organizing laboratories for their 
contribution to the organization of the conference. In particular we wish to thank Lori 
Malatesta and Eleni Iskou, who greatly helped in handling a variety of technical and 
administrative problems related to the conference organization. Finally, we wish to 
thank Alfred Hofmann and Christine Guenther from Springer for their help and 
collaboration in the publication of the ICANN proceedings. 

 
 

July 2006                                                              Stefanos Kollias, Andreas Stafylopatis 
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Building Ensembles of Neural Networks with Class-Switching . . . . . . . . . . 178
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Jan Koutńık, Miroslav Šnorek
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Abstract. Knowledge based artificial networks networks have been ap-
plied quite successfully to propositional knowledge representation and
reasoning tasks. However, as soon as these tasks are extended to struc-
tured objects and structure-sensitive processes it is not obvious at all
how neural symbolic systems should look like such that they are truly
connectionist and allow for a declarative reading at the same time. The
core method aims at such an integration. It is a method for connection-
ist model generation using recurrent networks with feed-forward core.
After an introduction to the core method, this paper will focus on pos-
sible connectionist representations of structured objects and their use in
structure-sensitive reasoning tasks.

1 Introduction

From the very beginning artificial neural networks have been related to propo-
sitional logic. McCulloch-Pitts networks are finite automata and vice versa [22].
Finding a global minima of the energy function modelling a symmetric network
corresponds to finding a model of a propositional logic formula and vice versa
[23]. These are just two examples that illustrate what McCarthy has called a
propositional fixation of connectionist systems in [21].

On the other hand, there have been numeruous attempts to model first-order
fragments in connectionist systems. In [3] energy minimization was used to model
inference processes involving unary relations. In [19] and [27] multi-place predi-
cates and rules over such predicates are modelled. In [16] a connectionist infer-
ence system for a limited class of logic programs was developed. But a deeper
analysis of these and other systems reveals that the systems are in fact proposi-
tional. Recursive auto-associative memories based on ideas first presented in [25],
holographic reduced representations [24] or the networks used in [9] have consid-
erable problems with deeply nested structures. We are unaware of any connec-
tionist system that fully incorporates structured objects and structure-sensitive
processes and, thus, naturally incorporates the power of symbolic computation
as argued for in e.g. [28].

� The first author is supported by the GK334 of the German Research Foundation.
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Fig. 1. The Neural-Symbolic Cycle

In this paper we are mainly interested in knowledge based artificial neural
networks, i.e., networks which are initialized by available background knowl-
edge before training methods are applied. In [29] it has been shown that such
networks perform better than purely empirical and hand-built classifiers. [29]
used background knowledge in the form of propositional rules and encodes these
rules in multi-layer feed-forward networks. Independently, we have developed a
connectionist system for computing the least model of propositional logic pro-
grams if such a model exists [14]. This system has been further developed to
the so-called core method : background knowledge represented as logic programs
is encoded in a feed-forward network, recurrent connections allow for a compu-
tation or approximation of the least model of the logic program (if it exists),
training methods can be applied to the feed-forward kernel in order to improve
the performance of the network, and, finally, an improved program can be ex-
tracted from the trained kernel closing the neural-symbolic cycle as depicted in
Fig. 1.

In this paper we will present the core method in Section 3. In particular, we
will discuss its propositional version including its relation to [29] and its exten-
sions. The main focus of this paper will be on extending the core method to deal
with structured objects and structure-sensitive processes in Section 4. In partic-
ular, we will give a feasability result, present a first practical implementation,
and discuss preliminary experimental data. These main sections are framed by
introducing basic notions and notations in Section 2 and an outlook in Section 5.

2 Preliminaries

We assume the reader to be familiar with basic notions from artificial neural
networks and logic programs and refer to e.g. [4] and [20], resp. Nevertheless, we
repeat some basic notions.

A logic program is a finite set of rules H ← L1∧· · ·∧Ln, where H is an atom
and each Li is a literal. H and L1∧· · ·∧Ln are called the post- and precondition of
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P1 = { p, % p is always true.

r ← p ∧ ¬q, % r is true if p is true and q is false.

r ← ¬p ∧ q } % r is true if p is false and q is true.

Fig. 2. A simple propositional logic program. The intended meaning of the rules is
given on the right.

the rule, resp. Fig. 2 and 4 show a propositional and a first-order logic program,
resp. These programs will serve as running examples. The knowledge represented
by a logic program P can essentially be captured by the meaning function TP ,
which is defined as a mapping on the space of interpretations where for any
interpretation I we have that TP(I) is the set of all H for which there exists a
ground instance H ← A1 ∧ · · · ∧Am ∧ ¬B1 ∧ · · · ∧ ¬Bn of a rule in P such that
for all i we have Ai ∈ I and for all j we have Bj �∈ I, where each Ai and each
Bj is an atom. Fixed points of TP are called (supported) models of P , which can
be understood to represent the declarative semantics of P .

Artificial neural networks consist of simple computational units (neurons),
which receive real numbers as inputs via weighted connections and perform sim-
ple operations: the weighted inputs are added and simple functions (like thresh-
old, sigmoidal) are applied to the sum. We will consider networks, where the
units are organized in layers. Neurons which do not receive input from other
neurons are called input neurons, and those without outgoing connections to
other neurons are called output neurons. Such so-called feed-forward networks
compute functions from IRn to IRm, where n and m are the number of input and
output units, resp. Fig. 3 on the right shows a simple feed-forward network. In
this paper we will construct recurrent networks by connecting the output units
of a feed-forward network N to the input units of N . Fig. 3 on the left shows a
blueprint of such a recurrent network.

3 The Core Method

In a nutshell, the idea behind the core method is to use feed-forward connection-
ist networks – called core – to compute or approximate the meaning function of
logic programs. If the output layer of a core is connected to its input layer then
these recurrent connections allow for an iteration of the meaning function leading
to a stable state, corresponding to the least model of the logic program provided
that such a least model exists (see Fig. 3 on the left). Moreover, the core can
be trained using standard methods from connectionist systems. In other words,
we are considering connectionst model generation using recurrent networks with
feedforward core.

The ideas behind the core method were first presented in [14] for propositional
logic programs (see also [13]). Consider the logic program shown in Fig. 2. A
translation algorithm turns such a program into a core of logical threshold units.
Because the program contains the predicate letters p, q and r only, it suffices
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Fig. 3. The blueprint of a recurrent network used by the core method on the left. The
core corresponding to P1 = {p, r ← p ∧ ¬q, r ← ¬p ∧ q} is shown on the right. Solid
connections have weight 1.0, dashed connections weight −1.0. The numbers within the
units denote the thresholds.

to consider interpretations of these three letters. Such interpretations can be
represented by triples of logical threshold units. The input and the output layer
of the core consist exactly of such triples. For each rule of the program a logical
threshold unit is added to the hidden layer such that the unit becomes active
iff the preconditions of the rule are met by the current activation pattern of the
input layer; moreover this unit activates the output layer unit corresponding to
the postcondition of the rule. Fig. 3 on the right shows the network obtained by
the translation algorithm if applied to P1.

In [14] we proved – among other results – that for each propositional logic
program P there exists a core computing its meaning function TP and that for
each acyclic logic program P there exists a core with recurrent connections such
that the computation with an arbitray intitial input converges and yields the
unique fixed point of TP .

The use of logical threshold units in [14] made it easy to prove these results.
However, it prevented the application of standard training methods like back-
propagation to the kernel. This problem was solved in [8] by showing that the
same results can be achieved if bipolar sigmoidal units are used instead (see also
[5]). [8] also overcomes a restriction of the KBANN method originally presented
in [29]: rules may now have arbitrarily many preconditions and programs may
have arbitrarily many rules with the same postcondition.

In the meantime the propositional core method has been extended in many
directions. In [18] three-valued logic programs are discussed; This approach has
been extended in [26] to finitely determined sets of truth values. Modal logic
programs have been considered in [6]. Answer set programming and metalevel
priorities are discussed in [5]. The core method has been applied to intuitionistic
logic programs in [7].

To summarize, the propositional core method allows for model generation with
respect to a variety of logics in a connectionist setting. Given logic programs are
translated into recurrent connectionist networks with feed-forward cores, such
that the cores compute the meaning functions associated with the programs.
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The cores can be trained using standard learning methods leading to improved
logic programs. These improved programs must be extracted from the trained
cores in order to complete the neural-symbolic cycle. The extraction process
is outside the scope of this paper and interested readers are refered to e.g. [1]
or [5].

4 The Core Method and Structured Objects

If structured objects and structure-sensitive processes are to be modelled, then
usually higher-order logics are considered. In particular, first-order logic plays a
prominent role because any computable function can be expressed by first-order
logic programs. The extension of the core method to first-order logic poses a
considerable problem because first-order interpretations usually do not map a
finite but a countably infinite set of ground atoms to the set the truth values.
Hence, they cannot be represented by a finite vector of units, each of which
represents the value assigned to a particular ground atom.

In this section we will first show that an extension of the core method to
first-order logic programs in feasible. However, the result will be purely theoret-
ical and thus the question remains how cores can be constructed for first-order
programs. In Subsection 4.2 a practical solution is discussed, which approxi-
mates the meaning functions of logic programs by means of piecewise constant
functions. Some preliminary experimental data are presented in Subsection 4.3.

4.1 Feasibility

It is well known that multilayer feed-forward networks are universal approxi-
mators [17,12] of functions IRn → IRm. Hence, if we find a way to represent
interpretations of first-order logic programs by finite vector of real numbers,
then feed-forward networks can be used to approximate the meaning function of
such programs.

Consider a countably infinite set of ground atoms and assume that there is a
bijection l uniquely assigning a natural number to each ground atom and vice
versa; l is called level mapping and l(A) level of the ground atom A. Further-
more, consider an interpretation I assigning to each ground atom A either 0
(representing falsehood) or 1 (representing truth) and let b be a natural number
greater than 2. Then,

ι(I) =
∞∑

j=1

I(l−1(j)) · b−j ,

is a real number encoding the interpretation I. With

D = {r ∈ IR | r =
∞∑

j=1

ajb
−j , aj ∈ {0, 1}}

we find that ι is a bijection between the set of all interpretions and D. Hence,
we have a sound and complete encoding of interpretations.



6 S. Bader and S. Hölldobler

Let P be a logic program and TP its associated meaning operator. We define
a sound and complete encoding fP : D → D of TP as follows:

fP(r) = ι(TP(ι−1(r))).

In [15] we proved – among other results – that for each logic program P which
is acylic wrt. a bijective level mapping the function fP is contractive, hence
continuous. This has various implications: (i) We can apply Funahashi’s result,
viz. that every continuous function on (a compact subset of) the reals can be
uniformly approximated by feed-forward networks with sigmoidal units in the
hidden layer [12]. This shows that the meaning function of a logic program (of
the kind discussed before) can be approximated by a core. (ii) Considering an
appropriate metric, which will be discussed in a moment, we can apply Ba-
nach’s contraction mapping theorem (see e.g. [30]) to conclude that the meaning
function has a unique fixed point, which is obtained from an arbitrary initial in-
terpretation by iterating the application of the meaning function. Using (i) and
(ii) we were able to prove in [15] that the least model of logic programs which
are acyclic wrt. a bijective level mapping can be approximated arbitrarily well
by recurrent networks with feed-forward core.

But what exactly is the approximation of an interpretion or a model in this
context? Let P be a logic program and l a level mapping. We can define a metric
d on interpretations as follows:

d(I, J) =

{
0 if I = J,

2−n if n is the smallest level on which I and J disagree.

As shown in [10] the set of all interpretations together with d is a complete metric
space. Moreover, an interpretation I approximates an interpretation J to degree
n ∈ IN iff d(I, J) ≤ 2−n. In other words, if a recurrent network approximates
the least model I of an acylic logic program to a degree n ∈ IN and outputs
r ∈ D then for all ground atoms A whose level is equal or less than n we find
that I(A) = ι−1(r)(A).

4.2 A First Approach

In this section, we will show how to construct a core network approximating
the meaning operator of a given logic program. As above, we will consider logic
programs P which are acyclic wrt. an bijective level mapping. We will construct
sigmoidal networks and RBF networks with a raised cosine activation function.
All ideas presented here can be found in detail in [2]. To illustrate the ideas, we
will use the program P2 shown in Fig. 4 as a running example. The construction
consists of five steps:

1. Construct fP .
2. Approximate fP using a piecewise constant functions f̄P .
3. Implement f̄P using (a) step and (b) triangular functions.
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P2 = { even(0). % 0 is an even number.

even(succ(X)) ← odd(X). % The successor of an odd X is even.

odd(X) ← ¬even(X). } % If X is not even then it is odd.

Fig. 4. The first-order logic program P2 describing even and odd numbers. The in-
tended meaning of the rules is given on the right.

ι(I)

ι(TP(I))

0.25

0.25

ι(I)

ι(TP(I))

0.25

0.25

Fig. 5. On the left is the plot of fP2 . On the right a piecewise constant approximation
f̄P2 (for level n = 2) of fP2 is shown. The base b = 4 was used for the embedding.

4. Replace those by (a) sigmoidal and (b) raised cosine functions.
5. Construct the core network approximating fP .

In the sequel we will describe the ideas underlying the construction. A rigorous
development including all proofs can be found in [2,31]. One should observe that
fP is a function on D and not on IR. Although the functions constructed below
will be defined on intervals of IR, we are concerned with accuracy on D only.

1. Construct fP : fP is defined as before, i.e., fP(r) = ι(TP(ι−1(r))). Fig. 5 on
the left shows the plot of fP2 .

2. Constructing a Piecewise Constant Function f̄P : Because P is acyclic, we con-
clude that all variables occurring in the precondition of a rule are also contained
in its postcondition. Hence, for each level n we find that whenever d(I, J) ≤ 2−n

then d(TP(I), TP(J)) ≤ 2−n, where I and J are interpretations. Therefore, we
can approximate TP to degree n by some function T̄P which considers ground
atoms with a level less or equal n only. As a consequence, we can approximate fP
by a piecewise constant function f̄P where each piece has a length of λ = 1

(b−1)bn ,
with b being the base used for the embedding. Fig. 5 shows fP2 and f̄P2 for n = 2.

3. Implementation of f̄P using Linear Functions: As a next step, we will show
how to implement f̄P using (a) step and (b) triangular functions. Those func-
tions are the linear counterparts of the functions actually used in the networks
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ι(I)

ι(TP(I))

0.25

0.25

ι(I)

ι(TP(I))

0.25

0.25

Fig. 6. Two linear approximation of f̄P2 . On the left, three step functions were used;
On the right, eight triangular functions (depicted in gray) add up to the approximation,
which is shown using thick lines.

constructed below. If f̄P consists of k intervals, then we can implement it us-
ing k − 1 step functions which are placed such that the steps are between two
neighbouring intervals. This is depicted in Fig. 6 on the left.

Each constant piece of length λ could also be implemented using two trian-
gular functions with width λ and centered at the endpoints. Those two triangles
add up to the constant piece. For base b = 4, we find that the gaps between two
intervals have a length of at least 2λ. Therefore, the triangular functions of two
different intervals will never interfere. The triangular implementation is depicted
in Fig. 6 on the right.

4. Implementation of f̄P using Nonlinear Functions: To obtain a sigmoidal ap-
proximation, we replace each step function with a sigmoidal function. Unfortu-
nately, those add some further approximation error, which can be dealt with
by increasing the accuracy in the constructions above. By dividing the desired
accuracy by two, we can use one half as accuracy for the constructions so far
and the other half as a margin to approximate the constant pieces by sigmoidal
functions. This is possible because we are concerned with the approximation on
D only.

The triangular functions described above can simply be replaced by raised
cosine activation functions, as those add up exactly as the triangles do and do
not interfere with other intervals either.

5. Construction of the Network: A standard sigmoidal core approximating the
TP-operator of a given program P consists of:

– An input layer containing one input unit whose activation will represent an
interpretation I.

– A hidden layer containing a unit with sigmoidal activation function for each
sigmoidal function constructed above.

– An output layer containing one unit whose activation will represent the ap-
proximation of TP(I).
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ι(I)

ι(TP(I))

0.25

0.25

ι(I)

ι(TP(I))

0.25

0.25

Fig. 7. Two non-linear approximation of f̄P2 . On the left, sigmoidal functions were
used and on the right, raised cosines.

The weights from input to hidden layer together with the bias of the hidden units
define the positions of the sigmoidals. The weights from hidden to output layer
represent the heights of the single functions. An RBF network can be constructed
analogously, but will contain more hidden layer units, one for each raised cosine
functions. Detailed constructions can be found in [2].

4.3 Evaluation and Experiments

In the previous section, we showed how to construct a core network for a given
program and some desired level of accuracy. We used a one-dimensional embed-
ding to obtain a unique real number ι(I) for a given interpretation I. Unfortu-
nately, the precision of a real computer is limited, which implies, that using e.g.
a 32-bit computer we could embed the first 16 atoms only. This limitation can
be overcome by distributing an interpretation over more than one real number.
In our running example P2, we could embed all even-atoms into one real num-
ber and all odd-atoms into another one, thereby obtaining a two-dimensional
vector for each interpretation, hence doubling the accuracy. For various reasons,
spelled out in [32], the sigmoidal approach described above does not work for
more than one dimension. Nevertheless, an RBF network approach, similar to
the one described above, does work. By embedding interpretations into higher-
dimensional vectors, we can approximate meaning functions of logic programs
arbitrarily well.

Together with some theoretical results, Andreas Witzel developed a prototype
system in [32]. By adapting ideas from [11], he designed appropriate learning
techniques utilizing the knowledge about a given domain, viz. the space of em-
bedded interpretations. In the sequel, we will briefly present some of the results.

To adapt the networks behaviour during learning, the algorithm changes the
weights, thereby changing the position and height of the constant pieces de-
scribed above. Furthermore, new units are added if required, i.e., if a certain
unit produces a large error, new units are added to support it. If a unit be-
comes inutile it will be removed from the network. These ideas are adaptations
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Fig. 8. Two different setups of the system during learning. Note that the error is shown
on a logarithmic scale with respect to some given ε (1 means that the error is ε).
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Fig. 9. Iterating random inputs

of concepts originally developed in the so called growing neural gas approach
[11]. Fig. 8 shows a comparison of two different setups called FineBlend 1 and
2. FineBlend 1 is configured to keep the error below 1, whereas FineBlend 2 is
configured to reduce the number of units resulting in a slightly higher error.

As mentioned above, a recurrent network is obtained by connecting output
and input layer of the core. This is done to iterate the application of the meaning
function. Therefore, we would assume a network set up and trained to represent
the meaning function of an acyclic logic program to converge to a state repre-
senting the least model. As shown in Fig. 9, the network shows this behaviour.
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Fig. 10. The effect of unit failure. After 5000 examples, one third of the units were
removed.

Shown are the two dimensions corresponding to the embedding of the even and
odd predicates, resp. Also depicted is the ε-neighborhood of the least fixed point
as a small square. Five random inputs were presented to the network and the
output fed back via the recurrent connections. This process was repeated until
the network reached a stable state, always being within the ε-neighbourhood of
the fixed point.

Another advantage of connectionist systems is their robustness and their ca-
pability of repairing damage by further training. Fig. 10 shows the effect of unit
failure. After presenting 5000 training samples to the network, one third of the
hidden layer units were removed. As shown in the error plot, the system was
able to recover quickly, thereby demonstrating its robustness. Further experi-
ments and a more detailed analysis of the system can be found in [32,2].

5 Conclusion

We are currently implementing the first-order core method in order to further
evaluate and test it using real world examples. Concerning a complete neural-
symbolic cycle we note that whereas the extraction of propositional rules from
trained networks is well understood, the extraction of first-order rules is an open
question.

Acknowledgements. Many thanks to Sven-Erik Bornscheuer, Artur d’Avila
Garcez, Pascal Hitzler, Yvonne McIntyre (formerly Kalinke), Anthony K. Seda,
Hans-Peter Störr, Andreas Witzel and Jörg Wunderlich who all contributed to
the core method.



12 S. Bader and S. Hölldobler

References

1. R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowledge–Based Systems,
8(6), 1995.

2. S. Bader, P. Hitzler, and A. Witzel. Integrating first-order logic programs and
connectionist systems — a constructive approach. In Proceedings of the IJCAI-05
Workshop on Neural-Symbolic Learning and Reasoning, NeSy’05, Edinburgh, UK,
2005.

3. D. H. Ballard. Parallel logic inference and energy minimization. In Proceedings of
the AAAI National Conference on Artificial Intelligence, pages 203 – 208, 1986.

4. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, 1995.

5. A.S. d’Avila Garcez, K. Broda, and D.M. Gabbay. Neural-Symbolic Learning Sys-
tems: Foundations and Applications. Springer, 2002.

6. A.S. d’Avila Garcez, L. C. Lamb, and D.M. Gabbay. A connectionist inductive
learning system for modal logic programming. In Proceedings of the IEEE In-
ternational Conference on Neural Information Processing ICONIP’02, Singapore,
2002.

7. A.S. d’Avila Garcez, L.C. Lamb, and D.M. Gabbay. Neural-symbolic intuitionistic
reasoning. In Design and Application of Hybrid Intelligent Systems, pages 399–408,
IOS Press, 2003.

8. A.S. d’Avila Garcez, G. Zaverucha, and L.A.V. de Carvalho. Logic programming
and inductive learning in artificial neural networks. In Ch. Herrmann, F. Reine,
and A. Strohmaier, editors, Knowledge Representation in Neural Networks, pages
33–46, Berlin, 1997. Logos Verlag.

9. J. L. Elman. Structured representations and connectionist models. In Proceedings
of the Annual Conference of the Cognitive Science Society, pages 17–25, 1989.

10. M. Fitting. Metric methods – three examples and a theorem. Journal of Logic
Programming, 21(3):113–127, 1994.

11. B. Fritzke. Vektorbasierte Neuronale Netze. Shaker Verlag, 1998.
12. K.-I. Funahashi. On the approximate realization of continuous mappings by neural

networks. Neural Networks, 2:183–192, 1989.
13. P. Hitzler, S. Hölldobler, and A.K. Seda. Logic programs and connectionist net-

works. Journal of Applied Logic, 2(3):245–272, 2004.
14. S. Hölldobler and Y. Kalinke. Towards a massively parallel computational model

for logic programming. In Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, pages 68–77. ECCAI, 1994.

15. S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic
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Abstract. In this paper, we present a connectionist approach for de-
tecting and precisely localizing transparent logos in TV programs. Our
system automatically synthesizes simple problem-specific feature extrac-
tors from a training set of logo images, without making any assumptions
or using any hand-made design concerning the features to extract or the
areas of the logo pattern to analyze. We present in detail the design of
our architecture, our learning strategy and the resulting process of logo
detection. We also provide experimental results to illustrate the robust-
ness of our approach, that does not require any local preprocessing and
leads to a straightforward real time implementation.

1 Introduction

In the last decade, we have entered the digital era, with the convergence of
telecommunication, video and informatics. Our society (press agencies, television
channels, customers) is producing daily extremely large and increasing amounts
of digital images and videos, making it more and more difficult to track and ac-
cess this content, with traditional database search engines, requiring tedious
manual annotation of keywords or comments. Therefore, automatic content-
based indexing has become one of the most important and challenging issues
for the years to come, in order to face the limitations of traditional information
systems. Some expected applications are [6,7,9]: Information and entertainment,
video production and distribution, professional video archive management in-
cluding legacy footages, teaching, training, enterprise or institutional commu-
nication, TV program monitoring, self-produced content management, internet
search engines and video conference archiving and management.

The recent progresses in the field of object detection and recognition tend to
make possible a large range of applications that require accessing the seman-
tic content and identifying high-level indices, regardless of the global context
of the image, in order to ease automatic indexing and provide more intuitive
formulation of user requests. For instance, human face detection can now be
considered as a very mature tool, even though progresses have still to be made
for full-profile view detection and accurate facial feature detection, for allowing
robust face recognition. Recently, Garcia and Delakis [2] proposed a near-real
time neural-based face detection scheme, named ”Convolutional Face Finder”

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 14–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(CFF) that has been designed to precisely locate multiple faces of minimum
size 20x20 pixels and variable appearance, rotated up to 30 degrees in image
plane and turned up to 60 degrees, in complex real world images. A detection
rate of 90.3% with 8 false positives have been reported on the CMU test set,
which are the best results published so far on this test set. Locating a face and
recognizing it [10] tend to appear as a required functionality in state-of-the-art
systems, working with professional videos or personal digital image collections.
Another important expected functionality is superimposed text detection and
recognition.

Even though lots of progresses have been recently made in the field of object
detection and recognition, most approaches have focused on image of objects
variable in scale and orientation, but with small variation in shape or global gray
level appearance. There is a still a lot to be done in the case of deformable 3D
object detection but also in the case of very variable object texture appearance.

In this paper, we will focus on the specific case of transparent object de-
tection in images, which is a very challenging problem. We propose a general
solution that will be evaluated on the problem of transparent logo detection in
video programs. For illustration purposes, we will focus on the detection of the
logo of the France 2 television channel (FR2 logo), as shown in Fig. 1. Note
that the proposed method is very generic and can be applied to other logos
in a straightforward way. Most logo detection approach consider opaque logos
superimposed on video frames. In that case, pixels inside the logo boundaries
keep approximately the same values from one frame to the next, with a certain
amount of noise due to video coding. Only pixels outside the logo boundaries
are variable. In the case of transparent logo, pixels inside the logo boundaries
also change depending on the video underneath. If temporal constancy of pixel
inside opaque logo can ease the detection process, by temporal gradient analysis
[4] or low level based pattern matching techniques [4,1,11], this is not the case
for transparent logos, where all pixels strongly vary at the same time depending
on the background.

To face this challenge, we propose an image-based approach that is designed
to precisely detect transparent patterns of variable size, in complex real world
video images. Our system is based on a convolutional neural network architec-
ture [3], directly inspired from our face detector, the Convolutional Face Finder
(CFF) described in [2]. It automatically derives problem-specific feature extrac-
tors, from a large training set of logo and non-logo patterns, without making any
assumptions about the features to extract or the areas of the logo patterns to
analyze. Once trained, our system acts like a fast pipeline of simple convolutions
and subsampling modules, that treat the raw input image as a whole, for each
analyzed scale, and does not require any costly local preprocessing before clas-
sification. Such a scheme provides very high detection rate with a particularly
low level of false positives, demonstrated on difficult videos, maintaining a near
real time processing speed.

The remainder of the paper is organized as follows. In section 2, we describe
the architecture of the proposed transparent logo detection system. In sections
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Fig. 1. The convolutional architecture

3 and 4, we explain in detail the way we train and apply the built detector.
In section 5, we assess the performance of our approach by analyzing its preci-
sion. Some experimental results obtained on images of complex scenes are also
presented to demonstrate the effectiveness and the robustness of the proposed
approach. Finally, conclusions are drawn.

2 System Architecture

The convolutional neural network, shown in Fig. 1, consists of a set of three
different kinds of layers. Layers Ci are called convolutional layers, which contain a
certain number of planes. Layer C1 is connected to the retina, receiving the image
area to classify as logo or non-logo. Each unit in a plane receives input from a
small neighborhood (biological local receptive field) in the planes of the previous
layer. The trainable weights (convolutional mask) forming the receptive field for
a plane are forced to be equal at all points in the plane (weight sharing). Each
plane can be considered as a feature map that has a fixed feature detector that
corresponds to a pure convolution with a trainable mask, applied over the planes
in the previous layer. A trainable bias is added to the results of each convolutional
mask. Multiple planes are used in each layer so that multiple features can be
detected.
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Once a feature has been detected, its exact location is less important. Hence,
each convolutional layer Ci is typically followed by another layer Si that performs
local averaging and subsampling operations. More precisely, a local averaging
over a neighborhood of four inputs is performed followed by a multiplication
by a trainable coefficient and the addition of a trainable bias. This subsam-
pling operation reduces by two the dimensionality of the input and increases
the degrees of invariance to translation, scale, and deformation of the learnt
patterns.

The different parameters governing the proposed architecture, i.e., the num-
ber of layers, the number of planes and their connectivity, as well as the size of
the receptive fields, have been experimentally chosen. Practically, different ar-
chitectures have been iteratively built, trained, and tested over training sets. We
retained the architecture that performed efficiently in terms of good detection
rates and especially in terms of false alarm rejection, while still containing an
acceptable number of free parameters.

Layers C1 and C2 perform convolutions with trainable masks of dimension 5x5
and 3x3 respectively. Layer C1 contains four feature maps and therefore performs
four convolutions on the input image. Layers S1 and C2 are partially connected.
Mixing the outputs of feature maps helps in combining different features, thus
in extracting more complex information. In our system, layer C2 has 14 feature
maps. Each of the four subsampled feature maps of S1 is convolved by two
different trainable masks 3x3, providing eight feature maps in C2. The other
six feature maps of C2 are obtained by fusing the results of two convolutions
on each possible pair of feature maps of S1. Layers N1 and N2 contain simple
sigmoid neurons. The role of these layers is to perform classification, after feature
extraction and input dimensionality reduction are performed. In layer N1, each
neuron is fully connected to exactly one feature map of layer S2. The unique
neuron of layer N2 is fully connected to all the neurons of the layer N1. The
output of this neuron is used to classify the input image as logo or non-logo.
For training the network, we used the classical backpropagation algorithm with
momentum modified for being used in convolutional networks as described in
[3]. Desired responses are set to -1 for non-logo and to +1 for logo.

In our system, the dimension of the retina is 38x46. Because of weight sharing,
the network has only 1147 trainable parameters. Local receptive fields, weight
sharing and subsampling provide many advantages to solve two important prob-
lems at the same time: the problem of robustness and the problem of good
generalization, which is critical given the impossibility of gathering in one finite-
sized training set all the possible variations of the logo pattern. This topology
has another decisive advantage. In order to search for a specific pattern, the
network must be replicated (or scanned) at all locations in the input image, as
classically done in detection approaches [5,8]. In our approach, since each layer
essentially performs a convolution with a small-size kernel, a very large part
of the computation is in common between two neighboring logo window loca-
tions in the input images. This redundancy is naturally eliminated by performing
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Fig. 2. Some samples of the training set. The last row shows initial negative examples.

the convolutions corresponding to each layer on the entire input image at once.
The overall computation amounts to a succession of convolutions and non-linear
transformations over the entire images.

3 Training Methodology

The FR2 logo examples used to train the network were collected from various
video segments, during a 12 hour broadcast of the FR2 TV channel. Some of the
1, 993 collected FR2 logo images are shown in the first row of Fig. 2. Collecting
a representative set of non-logos is more difficult as virtually any random image
could belong to it. A practical solution to this problem consists in a bootstrap-
ping strategy [8], in which the system is iteratively re-trained with false alarms
produced when applied to a set of video images, that do not contain the targeted
logo. In the proposed approach, we improved this strategy. Before proceeding
with the bootstrapping, an initial training set of 2, 313 non-logo patterns was
built by randomly cropping images from video frames. Some non-logo patterns
(negative examples) are shown in Fig. 2. The proposed bootstrapping procedure
is presented in table 1. In step 1, a validation set is built and used for testing the
generalization ability of the network during learning and, finally, selecting the

Table 1. The proposed bootstrapping scheme

1. Create a validation set of 400 logo images and 400 non-logo images randomly
extracted and excluded from the initial training set. It will be used to choose the
best performing weight configuration during steps 3 and 8.

2. Set BIter = 0, ThrFa = 0.8.
3. Train the network for 60 learning epochs. Use an equal number of positive and

negative examples in each epoch. Set BIter = BIter + 1.
4. Gather false alarms from a set of 300 video frames with network answers above

ThrFa. Collect at maximum 5, 000 new examples.
5. Concatenate the newly created examples to the non-logo training set.
6. If ThrFa ≥ 0.2 set ThrFa = ThrFa − 0.2.
7. If BIter < 6 go to step 3.
8. Train the network for 60 more learning epochs and exit.
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weight configuration that performs best on it. This validation set is kept constant
through all the bootstrapping iterations, in contrast with the training set which
is updated. In step 3, the backpropagation algorithm is used with the addition
of a momentum term for neurons belonging to the N1 and N2 layers. Stochastic
learning was preferred versus batch learning. For each learning epoch, an equal
number of examples from both classes are presented to the network giving no
bias toward one of the two classes.

The generation of the new patterns that will be added to the non-logo training
set is carried out by step 4. The false alarms produced in this step force the
network, in the next iteration, to refine its current decision boundary for the FR2
logo class. At each iteration, the false alarms, giving network answers greater
than ThrFa, and therefore strongly misclassified, are selected. As the network
generalizes from these examples, ThrFa is gradually reduced until reaching 0. In
this way, some redundancy is avoided in the training set. The learning process is
stopped after six iterations, when convergence is noticed, i.e. when the number
of false alarms remains roughly constant. This procedure helps in correcting
problems arising in the original algorithm proposed in [8] where false alarms
were grabbed regardless of the strength of the network answers. Finally, the
controlled bootstrapping process added around 21, 000 non FR2 logo examples
to the training set.

4 Logo Localization

Fig. 3. depicts the process of logo localization. In order to detect FR2 logo
patterns of different sizes, the input image is repeatedly subsampled via a factor
of 1.2, resulting in a pyramid of images.

As mentioned earlier, each image of the pyramid is entirely convolved at once
by the network. For each image of the pyramid, an image containing the network
results is obtained. Because of the successive convolutions and subsampling op-
erations, this image is approximately four times smaller than the original one.
This fast procedure may be seen as corresponding to the application of the net-
work retina at every location of the input image with a step of four pixels in
both axis directions, without computational redundancy.

After processing by this detection pipeline, logo candidates (pixels with pos-
itive values in the result image) in each scale are mapped back to the input
image scale (step 3). They are then grouped according to their proximity in
image and scale spaces. Each group of logo candidates is fused in a represen-
tative logo whose center and size are computed as the centroids of the centers
and sizes of the grouped logos, weighted by their individual network responses.
After applying this grouping algorithm, the set of remaining representative logo
candidates serve as a basis for the next stage of the algorithm, in charge of fine
logo localization and eventually false alarm dismissal.

To do so, a local search procedure is performed in an area around each logo
candidate center in image scale-space (step 4). A reduced search space centered at
the logo candidate position is defined in image scale-space for precise localization
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Fig. 3. Multi-scale logo localization

of the logo candidate. It corresponds to a small pyramid centered at the logo
candidate center position covering ten equally distant scales varying from 0.8 to
1.5 times the scale of the logo candidate. For every scale, the presence of a logo
is evaluated on a rescaled grid of 16 × 16 pixels around the corresponding logo
candidate center position. We observed that true logos usually give a significant
number of high positive responses in consecutive scales, which is not often the
case for non logos. In order to discriminate true logos from false alarms, it
resulted efficient to take into account both number and values of positive answers.
We therefore consider the volume of positive answers (the sum of positive answer
values) in the local pyramid in order to take the classification decision. Based on
the experiments described in the next section, a logo candidate is classified as
logo if its corresponding volume is greater than a given threshold ThrVol (step
5). The bottom-right image of Fig.3 shows the position and size of the detected
logo after local search.

5 Experimental Results

We tested the trained logo detection system on two sets containing images ex-
tracted from TV programs. The first set consists of 800 images each containing
one FR2 logo. The other consists of 257 images not containing any FR2 logo.
Fig. 4 shows a ROC curve for the first set. This curve presents the detection rate
as a function of the number of false alarms while varying the volume threshold
ThrVol. One can clearly notice that, for a low number of false alarms, the detec-
tor attains a high detection rate. For example, if we allow 10 false alarms (for
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Fig. 6. Some results with false alarms

the 800 images) the system detects about 85% of the logos, which seems to be
the maximal detection rate that can be reached on these test images, with the
proposed architecture. An important point is that we obtain a good detection
rate of 82% with no false alarm, for values of ThrVol above 1.5. Note that for
13 test images (≈ 1.6%), we judged the logo invisible to the human eye, but we
still counted these examples as undetected. Fig. 6 shows some images with false
alarms for a very low ThrVol.

In the second experiment, we applied the FR2 logo detector on the second
test set that does not contain any image displaying the logo. The curve in Fig. 5
shows the number of false alarms as a function of the volume threshold ThrVol.
One can notice that this number of false alarm decreases very quickly as ThrVol
increases, and that no false alarm are produced for ThrVol above 1.5. For
illustration purposes, Fig. 7 shows some images of the first test set with detected
transparent logos. There are examples containing logos of very low contrast due
to light background. Other examples show logos over a high contrasted non-
uniform background which considerably falsifies the logo contours in the image
region. There are also some examples of FR2 logos of different sizes at different
positions in the image.
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Fig. 7. Some results of logo detection on ”France 2” TV programs

6 Conclusion

Our experiments have shown that a multi-resolution scheme based on convolu-
tional neural networks is very powerful for transparent logo detection. Indeed,
this approach does not require any heuristic regarding image preprocessing, low
level measures to extract or segmented shape analysis. The detection rate is
very high even in cases where the transparent logo is very poorly contrasted
because of the video background. Due to its convolutional nature and the use
of a single network, our approach is very fast and can be easily embedded in
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real time on various platforms. Moreover, recent experimental results tend to
show that multiple transparent logos can be handled through the use of a single
light convolutional architecture. As an extension of this work, we are currently
considering the detection of animated deformable transparent logos.

References

1. R.J.M. den Hollander and A. Hanjalic. Logo recognition in video stills by string
matching. In Proceedings of International Conference on Image Processing (ICIP),
pages 517–520, 2003.

2. C. Garcia and M. Delakis. Convolutional face finder: A neural architecture for fast
and robust face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(11):1408–1423, 2004.

3. Y. LeCun, L. Bottou, , Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

4. H. Pan, B. Li, and M. Ibrahim Sezan. Automatic detection of replay segments in
broadcast sports programs by detection of logos in scene transitions. In Proceedings
of International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2002.

5. H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998.

6. H. Sanson. Video indexing: Myth and reality. In Proceedings of International
Workshop on Content-Based Multimedia Indexing, 2005.

7. C.G.M. Snoek and M. Worring. A state-of-the-art review on multimodal video
indexing. In Proceedings of the 8th Annual Conference of the Advanced School for
Computing and Imaging, 2002.

8. K.K. Sung and T. Poggio. Example-based learning for view-based human face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):39–51, 1998.

9. R. C. Veltkamp and M. Tanase. Content-based image retrieval systems: A survey.
IEEE Image Processing, 1(1):100–148, 2001.

10. M. Visani, C. Garcia, and J.M. Jolion. Bilinear discriminant analysis for face
recognition. In Proceedings of International Conference on Advances in Pattern
Recognition (ICAPR 2005), 2005.

11. K. Zyga, R. Price, and B. Williams. A generalized regression neural network for
logo recognition. In Proceedings of International Conference on Knowledge-Based
Engineering Systems and Allied Technologies, 2000.



A Neural Network to Retrieve Images
from Text Queries

David Grangier1,2 and Samy Bengio1

1 IDIAP Research Institute, Martigny, Switzerland
firstname.lastname@idiap.ch

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. This work presents a neural network for the retrieval of im-
ages from text queries. The proposed network is composed of two main
modules: the first one extracts a global picture representation from local
block descriptors while the second one aims at solving the retrieval prob-
lem from the extracted representation. Both modules are trained jointly
to minimize a loss related to the retrieval performance. This approach
is shown to be advantageous when compared to previous models relying
on unsupervised feature extraction: average precision over Corel queries
reaches 26.2% for our model, which should be compared to 21.6% for
PAMIR, the best alternative.

1 Introduction

A system for the retrieval of images from text queries is essential to take full
benefit from large picture databases such as stock photography catalogs, news-
paper archives or website images. A widely used solution to this problem is to
manually annotate each image in the targeted database and then use a text
search engine over the annotations. However, this approach is time-consuming
and hence costly, moreover it often results in incomplete and biased annotations
which degrades retrieval performance. Therefore, several approaches to avoid this
manual step have been proposed in the literature [1,2,3,4]. These approaches are
either generative auto-captioning models or discriminative retrieval models. Gen-
erative auto-captioning models aims at inferring textual captions from pictures
that can then be searched with a text retrieval system [1,3,4], while discrimina-
tive retrieval models do not introduce an intermediate captioning step and are
directly trained to optimize a criterion related to retrieval performance [2].

In this work, a discriminative approach is proposed. This approach relies on a
neural network composed of two main modules: the first module extracts global
image features from a set of block descriptors, while the second module aims
at solving the retrieval task from the extracted features. The training of both
modules is performed simultaneously through gradient descent, meaning that
image feature extraction and global decision parameters are inferred to opti-
mize a retrieval criterion. This block-based neural network (BBNN) contrasts
with previous discriminative models, such as [2], in which the extraction of im-
age representation is chosen prior to training. This difference is shown to yield
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significant improvement in practice and BBNN is reported to outperform both
generative and discriminative alternatives over the benchmark Corel dataset [5]
(e.g. BBNN reaches 26.2% average precision over evaluation queries which should
be compared to 21.6% for PAMIR, the best alternative, see Section 5).

The remainder of this paper is organized as follows: Section 2 briefly describes
the related work, Section 3 introduces the proposed approach, Section 4 describes
the text and visual features used to represent queries and images. Next, Section 5
presents the experiments performed over the benchmark Corel dataset. Finally,
Section 6 draws some conclusions.

2 Related Work

As mentioned in introduction, most of the work in image retrieval from text
queries focussed on generative models that attempt to solve the image auto-
annotation task. These models include Cross-Media Relevance Models
(CMRM) [3], Probabilistic Latent Semantic Analysis (PLSA) [4] and Latent
Dirichlet Annotation (LDA) [1]. In general, these models introduce different
conditional independence assumptions between the observation of text and vi-
sual features in an image and the parameters of the model, θ, are selected to
maximize the (log) likelihood of some annotated training images, i.e.

θ∗ = argmax
N∑

i=1

logP (pi, ci|θ),

where (p1, . . . , pN ) and (c1, . . . , cN ) correspond to the N available training pic-
tures and their captions. The trained models are then applied to associate a
caption (or a distribution over text terms) to each of the unannotated test im-
ages and a text retrieval system is then applied over these textual outputs.

The training process of these models hence aims at maximizing the training
data likelihood, which is not directly related to the targeted retrieval task, i.e.
ranking a set of pictures P with respect to a query q such that the picture relevant
to q appear above the others. Better performance can be achieved with a more
suitable criterion, as recently shown by the discriminative model PAMIR [2]. To
the best of our knowledge, the PAMIR approach is the first attempt to train a
model to retrieve images from text queries through the optimization of a ranking
criterion over a set of training queries. Previous discriminative models have only
focussed on categorization ranking problems (e.g. [6,7]), i.e. the task of ranking
unseen images with respect to queries known at training time, which is not a
true retrieval task in which an unseen query can be submitted.

In this work, we propose to train a neural network with a criterion simi-
lar to the one introduced in [2]. This neural network consists of two modules,
the first one extracts an image representation from a set of local descriptors
and the second one relies on the inferred representation to solve the retrieval
problem. The training of both layers is performed jointly through gradient
descent (see Section 3). This approach is inspired from convolutional neural
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networks (CNN) [8] which have been successfully applied to various classifica-
tion/detection tasks [8,9]: these models also formulate the identification of a
suitable image representation and the classification from this representation as
a joint problem. The proposed neural network hence contrasts with the PAMIR
model for which the image representation is a-priori chosen. Our experiments
over the benchmark Corel corpus show that this difference actually yields a sig-
nificant improvement, e.g. P10 reaches 10.2% for BBNN compared to 8.8% for
PAMIR (see Section 5).

3 A Neural Network for Image Retrieval

This section presents the loss function L adopted to discriminatively train an
image retrieval model. It then describes the neural network proposed for image
retrieval and its training procedure.

3.1 Discriminative Training for Image Retrieval

Before introducing a loss suitable for image retrieval, we should first recall the
objective of a retrieval model: given a query q and a set of pictures P , a retrieval
model M should ideally rank the pictures of P such that the pictures relevant
to q appear above the others, i.e.

∀q, ∀p+ ∈ R(q), ∀p− /∈ R(q), rkM (q, p+) < rkM (q, p−), (1)

where R(q) is the set of queries relevant to q and rkM (q, p) is the rank of picture
p in the ranking outputted by M for query q.

In order to achieve such an objective, retrieval models generally introduce a
scoring function F that assigns a real value F (q, p) to any query/picture pair
(q, p). Given a query q, this function is used to rank the pictures of P by de-
creasing scores. In this case, the ideal property (1) hence translates to:

∀q, ∀p+ ∈ R(q), ∀p− /∈ R(q), F (q, p+) > F (q, p−). (2)

In order to identify an appropriate function F from a set of training data, the
following loss has been introduced [10],

L(F ;Dtrain) =
N∑

k=1

l(F ; qk, p
+
k , p

−
k )

=
N∑

k=1

max(0, εk − F (qk, p
+
k ) + F (qk, p

−
k )) (3)

where ∀k, εk > 0 and Dtrain is a set of N triplets {(qk, p
+
k , p

−
k ), ∀k = 1, . . . , N}

in which qk is a text query, p+
k is a picture relevant to q and p−k is a picture non-

relevant to q. This loss L can be referred to as a margin loss since it penalizes
the functions F for which there exists training examples (qk, p

+
k , p

−
k ) for which
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the score F (qk, p
+
k ) is not greater than F (qk, p

−
k ) by at least a margin of εk. This

loss has already been successfully applied to text retrieval problems [10,11] and
to image retrieval problems [2].

Regarding the choice of the margin value εk, two alternatives have been pro-
posed previously [2]. A first option, constant-ε, is to set εk to be the same for
all examples, e.g. ∀k, εk = 1 (the value 1 is chosen arbitrarily here, any positive
value would lead to the same optimization problem). Another option, text-ε,
which can be applied only if the training pictures are annotated with textual
captions, is to set εk to be greater than the difference of scores outputted by a
text retrieval system F text, i.e.

εk = max(ε, F text(qk, c
+
k )− F text(qk, c

−
k )), (4)

where c+k , c
−
k are the captions of the pictures p+

k , p
−
k and ε > 0. This second

option has previously shown to be more effective [2] and will hence be used in
the following.

Input Picture Local Representation Global
Representation

Textual
Representation

Input Query

Output Score

Local Feature Extraction 
(L1)

Spacial Averaging 
(A2)

Text Mapping 
(T3)

Text Matching 
(M4)

Fig. 1. The 4 successive layers of BBNN: local feature extraction (L1), spacial averaging
(A2), text mapping (T3) and text matching (M4)

3.2 Block-Based Neural Network Architecture

As explained above, our goal is to identify a scoring function q, p→ F (q, p) that
minimizes L(F ;Dtrain). For that purpose, we first introduce the block-based
neural network (BBNN), q, p → Fw(q, p), and we then explain how the param-
eters w∗ that minimize w → L(Fw;Dtrain) are identified through stochastic
gradient descent.

The proposed neural network is composed of 4 layers (see Figure 1): the
local feature extraction layer L1, the averaging layer A2, the text mapping layer
T 3 and the query matching layer M4. The first layer L1 extracts local feature
descriptors from different positions of the input picture p. The second layer A2
computes the average of the local feature vectors extracted by L1. The text
mapping layer T 3 then projects the output of A2 into the text space. The layer
M4 finally compares the obtained textual vector with the input query q leading
to the output F (q, p). The layers are detailed as follows:
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L1: Local Feature Extraction. This layer extracts the same type of features
at different positions of the input picture p through the following process:
first, p is divided into B (possibly overlapping) blocks of the same size,
{b1, . . . , bB}, and each block is assigned a vector representation, i.e. bi ∈ RN0

(see Section 4). The same parametric function is then applied over each block
vector,

∀i, fi = tanh(W1bi + B1),

where tanh is the component-wise hyperbolic tangent function, W1∈RN1×N0

and B1 ∈ N1 are the model parameters. The output dimension N1 is a hy-
perparameter of the model.

A2: Spacial Averaging. This layer summarizes the B output vectors of L1
into a single N1-dimensional vector through averaging:

f =
1
B

B∑
i=1

fi.

The succession of L1 and A2 is inspired from the bag-of-visterms (BOV)
representation which has been widely used in computer vision in the recent
years, e.g. [1,12]. In this case, a first quantization layer maps each vector bi

to a single discrete value among Nv, which is equivalent to map bi to a Nv

dimensional binary vector in which only one component is 1. In a second
step, the input image is represented by a histogram through the averaging
of its binary vectors. Here, we replace the quantization step by L1, which
has two main advantages: first, the vectors fi are continuous non-sparse
vectors which allows to better model correlation between blocks. Second, the
parameters of L1 are inferred jointly with the next layer parameters to solve
the retrieval problem. This contrasts with the BOV approach in which the
quantization parameters are generally inferred through generative learning
(e.g. k-means clustering).

T 3 : Text Mapping. This layer takes as input the representation f of picture
p as outputted by A2. It then outputs a bag-of-words (BOW) vector t, i.e.
a vocabulary-sized vector in which each component i represents the weight
of term i in picture p (see Section 4 for further description on the BOW
representation). This mapping from f to t is performed according to the
parametric function:

t = W3 tanh(W2f + B2) + B3

where W2 ∈ RN2×N1 , B2 ∈ RN2 , W3 ∈ RV ×N2 and B3 ∈ RV are the
parameters of layer T 3, V is the vocabulary size and N3 is a hyperparameter
to tune the capacity of T 3.

M4: Query Matching. This layer takes two BOW vectors as input: t, the
output of T 3 that represents the input picture p, and q, the input query.
It then outputs a real-valued score s. This score is the inner product of t
and q,

s =
V∑

i=1

ti · qi.
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This matching layer is inspired from the text retrieval literature in which
text documents and text queries are commonly compared according to the
inner product of their BOW representation [13].

This neural network approach is inspired from CNN classification models [8] for
its first layers (L1, A2, T 3) and from text retrieval systems for its last layer
(i.e. BOW inner product). Like CNN for classification, our model formulates the
problem of image representation and retrieval in a single integrated framework.
Moreover like CNN, our parameterization assumes that the final task can be
performed through the application of the same local feature extractor at different
locations in the image. Our BBNN approach is however not a CNN strictly
speaking: the local block descriptors bi to which the first layer is applied do not
simply consist of the gray level of the block pixels like in a CNN. In our case, we
extract a N0 dimensional feature vector summarizing color and texture statistics
of the block, as explained in Section 4. This difference is motivated by two main
aspects of our task: color information is helpful for image retrieval (see previous
works such as [2]) and, moreover, the limited amount of training data prevents
us from using a purely data-driven feature extraction technique (see Section 5
which depicts the small number of relevant pictures available for each query).

3.3 Stochastic Gradient Training Procedure

Stochastic gradient descent is the most widely used training technique for neural
networks applied to large corpora. Its main advantages are its robustness with re-
spect to local minima, and its fast convergence. We therefore decided to apply this
optimization technique to identify the weight vectorw = [W1;W2;W3;B1;B2;B3]
that minimizes the loss w→ L(Fw;Dtrain), which yields the following algorithm:

Initialize w.
Repeat

Pick (q, p+, p−) ∈ Dtrain randomly with replacement.
Compute the gradient ∂l

∂w (Fw; q, p+, p−).
Update weights w ← w − λ ∂l

∂w (Fw; q, p+, p−).
Until termination criterion.

It should be noted that this version of stochastic gradient training differs from
the most used implementation in its sampling process [14]: we choose to sample
a training triplet with replacement at each iteration rather than processing the
samples sequentially in a shuffled version of the training set. While having no
impact on the distribution of the examples seen during training, this difference
avoids the costly shuffle for large triplet sets (e.g. there are ∼ 108 triplets for the
Corel dataset presented in Section 5).

The other aspects of the training process are more classical: the weight ini-
tialization is performed according to the methodology defined in [14] and early
stopping is used as the termination criterion [14], i.e. training is stopped when
performance over a held-out validation set Dvalid stops improving. The learning
rate λ is selected through cross-validation, as are the other hyperparameters of
the model (i.e. N1, N2).
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4 Text and Visual Features

In this section, we describe the bag-of-words representation used to represent
text queries and the edge and color statistics used to represent image blocks.

4.1 Text Features

The text queries are assigned a bag-of-words representation [13]. This represen-
tation assigns a vector to each query q, i.e. q = (q1, . . . , qV ) where V is the
vocabulary size and qi is the weight of term i in query q. In our case, this weight
is assigned according to the well known normalized tf idf weighting, i.e.

qi = tfq,i · idfi,

where the term frequency tfq,i is the number of occurrences of i in q and the
inverse document frequency idfi is defined as idfi = −log(ri), ri referring to
the fraction of training picture captions containing term i. It should be noted
that this definition of idf hypothesizes that each training picture is labeled with
a caption. This is the case for the Corel data used in our experiments (see
Section 5). However, were such captions to be unavailable, it would still be
possible to compute idf over another textual corpus, such as an encyclopedia.

4.2 Image Block Features

The image block descriptors bi, on which the first layer of our model relies (see
Section 3), summarizes edges and color statistics in the following manner.

Color information is represented through a NC -bin histogram. This histogram
relies on a codebook inferred from k-means clustering of the RGB pixels of
the training pictures.

Edge information is represented through uniform Local Binary Pattern (uLBP)
histograms. These histograms summarize texture information through the
binary comparison of pixel intensities between each pixel and its eight neigh-
bors. These features have shown to be effective over various computer vision
tasks, including retrieval [15].

Color and edge histograms are then concatenated into a single block vector.
Furthermore, a log-scale is adopted in the histograms, i.e. each pixels count c is
replaced by log(1 + c), since such non-linear scalings have already shown to be
advantageous in previous work [16,13].

5 Experiments and Results

This section first describes the experimental setup and then discusses the results.

5.1 Experimental Setup

The experiments presented in this section have been performed over the Corel
dataset according to the setup defined in [5]. This setup has been widely used
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Table 1. Query Set Statistics

Qtrain Qvalid Qtest

Number of queries 7,221 1,962 2,241
Avg. # of rel. pic. per q. 5.33 2.44 2.37
Vocabulary size 179
Avg. # of words per query 2.78 2.51 2.51

in the image retrieval community [3,2,4] and has become a kind of benchmark
protocol for image retrieval. The data used consist of 4, 500 development pictures
and 500 test pictures. The size of each picture is either 384× 256 or 256× 384.
We further split the development set into a 4, 000-picture training set and a
500-picture validation set. This hence leads to three picture sets, Ptrain, Pvalid

and Ptest. Each picture is further labeled with a caption relying on a 179-word
vocabulary. These captions have been used for two purposes: for the definition
of relevance assessments (i.e. we considered a picture to be relevant to a query
q if its caption contained all query terms as explained in [2]) and for text − ε
training (in this case, we used inner product of BOW vector as F text function,
see equation (4)).

The queries, Qtrain, Qvalid and Qtest, used for training, validation and eval-
uation correspond to all subsets of the 179 vocabulary words for which there
is at least one relevant picture within the training, validation or test pictures
respectively. Table 1 summarizes query set statistics. The three query/picture
datasets (Qtrain, Ptrain), (Qvalid, Pvalid) and (Qtest, Ptest) have been respectively
used to train the model (i.e. select the parameters that minimize the loss L),
to select the model hyperparameters (i.e. the learning rate λ and the number
of hidden units N1, N2) and to perform evaluation. For this evaluation, BBNN
performance is measured with precision at top 10 (P10) and average precision
(AvgP), the standard measures for information retrieval benchmarks [13]. These
measures are complementary and evaluate different retrieval scenarios: P10 fo-
cuses on the first positions of the ranking, as the user of a web search engine
would do, while AvgP focuses on the whole ranking, as an illustrator requiring
all pictures about a specific theme would do. For any query, P10 measures the
precision within top 10 positions (i.e. the percentage of relevant pictures within
the 10 top-ranked pictures), while AvgP corresponds to the average of precision
measured at each position where a relevant picture appears. Both measures have
been averaged over the whole query set. BBNN has then been compared with
the alternative models CMRM, PLSA and PAMIR which have been evaluated
according to the same setup, as explained in [2].

Regarding picture preprocessing, 64 × 64 square blocks have been extracted
every 32 pixels horizontally and vertically, leading to 77 blocks per picture. The
size has been chosen as a trade-off between obtaining rich block statistics (i.e.
having large blocks with many pixels) and extracting local patterns from the im-
age (i.e. having many small blocks). The overlap of 32 pixels has been selected
such that all pixels belong to the same number of blocks, which avoids the pre-
dominance of pixels located at the block borders. Concerning the color codebook
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Table 2. P10 and mean average precision (%) over test queries

CMRM PLSA PAMIR BBNN
P10 5.8 7.1 8.8 10.2
AvgP 14.7 16.7 21.6 26.2

size, we defined NC = 50 which allows a perceptually good picture reconstruc-
tion while keeping the block histogram size reasonable. Although it would be
more appropriate to select all these parameters through cross-validation, these
a-priori choices already led to promising results, as reported in the next section.

5.2 Results

Table 2 reports the results obtained over the test queries. BBNN outperforms all
other evaluated techniques for both measures. For AvgP, the relative improve-
ment over CMRM, PLSA and PAMIR is respectively +78%, +57% and +21%.
For P10, BBNN reaches 10.2%, which means that, on average, ∼ 1 relevant
picture appears within the top 10 positions. This number corresponds to good
performance considering the low number of relevant pictures per query (2.37
on average, see Table 1). It fact, P10 cannot exceed 20.2% over Corel evalua-
tion queries. In order to check whether the improvements observed for P10 and
AvgP on the whole query set could be due to a few queries, we further com-
pared BBNN results to those of the other models according to the Wilcoxon
signed rank test [17]. The test rejected this hypothesis with 95% confidence for
all models and both measures, which is indicated by bold numbers in the table.
This means that BBNN consistently outperforms the alternative approaches on
the test query set.

The results reported in Table 2 outline the effectiveness of discriminative ap-
proaches (PAMIR and BBNN) which both outperform the generative alternative
(CMRM and PLSA). This shows the appropriateness of the selected loss func-
tion (3) for image retrieval problems. This outcome is in agreement with the
text retrieval literature that recently reported good results with models relying
on similar criteria [10,16,11].

As mentioned above, a difference in performance is also observed between
the two discriminative models: BBNN is reported to outperform PAMIR (26.2%
vs 21.6% AvgP). Since both models rely on the optimization of the same loss
function, the observed difference is certainly due to the parameterization of the
models. On one hand, PAMIR takes as input a bag-of-visterms representation
of images, this representation being inferred from local descriptor through un-
supervised clustering [2]. On the other hand, BBNN formulates the problem of
representing images from local descriptors and the image retrieval task in a single
integrated framework (see Section 3). This joint formulation allows the identi-
fication of a problem-specific image representation, which seems more effective
than the bag-of-visterms representation.

Since several studies report results only for single word queries (e.g. [4,5]),
we also trained and evaluated the model over the subset of our train and test
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Table 3. P10 and mean average precision (%) over single-word test queries

CMRM PLSA PAMIR BBNN
P10 17.8 21.3 25.3 28.5
AvgP 19.2 24.5 30.7 35.0

queries containing only 1 word. The results of this experiments are reported in
Table 3. This evaluation further confirms the advantage of BBNN which yields
a significant improvement is this case also. It should be noted that the difference
observed between Table 2 and Table 3 does not mean that the retrieval models
are more adapted to single-word queries: it only reflects the fact that single-word
queries correspond to an easier retrieval problem (the average number of relevant
documents per query is 2.4 for the whole Qtest set and 9.4 for its single-word
query subset).

Overall, the results of both retrieval experiments confirm the advantage of
supervised feature extraction that has already been observed with CNN over
other tasks, such as classification or detection [8,9].

6 Conclusions

We have introduced a discriminative model for the retrieval of images from text
queries. This model relies on a neural network architecture inspired from convo-
lutional neural networks [8]. The proposed network, Block-Based Neural Network
(BBNN), formulates the identification of global image features from local block
descriptors and the retrieval of images from such features as a joint problem.
This approach is shown to be effective over the benchmark Corel dataset [5]. In
particular, BBNN is reported to outperform both generative and discriminative
state-of-the-art alternatives. For instance, the mean average precision over Corel
test queries has been improved by 21% relative compared to the second best
model PAMIR [2] (26.2% vs 21.6%). These results are promising and need to be
confirmed over other datasets. It could also be interesting to extend the BBNN
approach such that it could be applied to other retrieval problems, such as video
retrieval.
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Abstract. In this paper we consider the interaction between different
semantic levels in still image scene classification and object detection
problems. We present a method where a neural method is used to pro-
duce a tentative higher-level semantic scene representation from low-level
statistical visual features in a bottom-up fashion. This emergent repre-
sentation is then used to refine the lower-level object detection results.
We evaluate the proposed method with data from Pascal VOC Chal-
lenge 2006 image classification and object detection competition. The
proposed techniques for exploiting global classification results are found
to significantly improve the accuracy of local object detection.

1 Introduction

In today’s world large amounts of digital video and image material are constantly
produced. Furthermore, the rate seems to be constantly increasing. Automatic
methods are thus called for to analyse and index these overwhelmingly large data
masses. Especially useful would be methods that could automatically analyse the
semantic contents of images and videos as it is just the content that determines
the relevance in most of the potential uses.

The major challenge in semantic image content analysis is the gap between
high-level semantic analysis that would be most beneficial for the potential ap-
plications and the low-level visual characterisations produced by bottom-up im-
age analysis systems. The correspondence between entities on different semantic
levels can be studied from the viewpoint of emergence [6]. Emergence is a pro-
cess where a new, higher-level phenomenon results from co-operation of a large
number of elementary processes. Neural networks, fed with large amounts of
semantically low-level visual data, have turned out to produce useful emergent
representations of higher-level semantic concepts, e.g [4]. The bottom-up image
content analysis approach with neural methods is thus able to overcome the se-
mantic gap to some degree. Admittedly, the depth and accuracy of the achieved
analysis leaves lots to be desired.
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Image analysis can be seen as interaction between top-down and bottom-up
processes. The top-down process generates hypotheses of the visual scene con-
tents and tries to verify them. On the other hand, the bottom-up process starts
from low-level visual features and tries to interpret and combine them to form
higher-level representations. The hypotheses made by the top-down component
guide the bottom-up component’s interpretation of the low-level features. On
the other hand the hypotheses can be made more accurate and appropriate with
help of better low and intermediate level representations.

In this paper we consider forming tentative representations of higher-level se-
mantic concepts by a bottom-up neural classifier and then refining the results of
lower-level object detection. We experimentally study the idea in the concrete
task of classification of scenes and detection of objects. In the experiments the
object detection results will be refined by using the produced scene classifica-
tions. The scenes are classified according to whether they contain the target
objects. Although the semantic concepts, say, “cow” and “a scene likely to con-
tain a cow” are related, the latter is clearly a richer and thus higher-level concept
than the former.

In Section 2 the considered concrete image analysis tasks are described in
detail. Section 3 outlines our neural PicSOM image analysis and classification
framework. In Section 4 we describe how the framework is applied to the scene
classification task. In Section 5 we apply the framework to the object detection
task. We look at the detection results both on the first bottom-up iteration and
refined by the classification results. In Section 6 we present conclusions from the
experiments.

2 Image Classification and Object Detection Tasks

The scene classification and object detection techniques addressed in this paper
have been used to participate in the Pascal Visual Object Classes Challenge
20061. In the challenge, machine learning systems are compared by their ability
to recognise objects from a number of visual object classes in realistic scenes.
The problem is formulated as a supervised learning problem in which a training
set of labelled images is provided.

2.1 Image Data

As the test set images provided by the VOC Challenge organisers were not yet
released at the time of this writing, we use approximately half of the available
images for training and the rest for evaluating the performance of the proposed
techniques. This results in an image set consisting of 2618 images which contain
4754 objects of ten selected object classes. The statistics of the image sets are
shown in Table 1. From the numbers we see that the images typically contain
several objects. They may be either of same or different classes.

1 http://www.pascal-network.org/challenges/VOC/
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Table 1. Statistics of image sets. Columns correspond to different object classes. For
each class number of objects (obj) and number of images containing objects of the class
are listed.

bicycle bus car cat cow dog horse motorbike(mb) person sheep total
training img 127 93 271 192 102 189 129 118 319 119 1277

set obj 161 118 427 214 156 211 164 138 577 211 2377
test img 143 81 282 194 104 176 118 117 347 132 1341
set obj 162 117 427 215 157 211 162 137 579 210 2377

The annotations of the images contain manually-specified bounding boxes
of the objects in the images. Additionally the objects may be tagged to be
“truncated” or “difficult”. Some object classes are further divided into subclasses
by the pose of the objects. At present we ignore this extra information apart from
the “difficult” tag. Just as in the VOC challenge, the difficult images (less than
10% of the images in each class) are excluded from the performance evaluation.

2.2 Learning Tasks and Performance Measures

We consider here two different types of tasks on the image sets. In the classifi-
cation task the goal is to predict the presence/absence of an object in the test
images. In the detection task the goal is to predict the bounding boxes of objects
in the test set images.

In this paper we use the same quantitative performance measures as in the
VOC Challenge. Classification performance is evaluated in terms of the Area
Under Curve (AUC) attribute of the Receiver Operating Characteristic (ROC)
curves. The performance in detection tasks is assessed by means of the preci-
sion/recall (PR) curve. The average precision (AP) in the PR-curve is used as
the quantitative measure. Detections are considered as true or false positives
based on the relative area of overlap with ground truth bounding boxes. To be
regarded as a correct detection, the area of overlap ao between the predicted
bounding box Bp and ground truth bounding box Bgt must exceed 50% by the
formula

ao =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

. (1)

Multiple detections of the same object are considered false detections.

3 PicSOM Framework for Object Classification

In the forthcoming sections we use the term target object to denote training and
test set images for the scene classification task and automatically extracted im-
age segments for the object detection task. Our proposed method for tackling the
VOC Challenge tasks is based on assessing the similarity of the visual properties
of the test set target objects to the properties of the training set target objects.
Section 3.1 outlines the neural framework used for the similarity assessment. For
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more details, see e.g. [5]. Sections 3.2 and 3.3 specify some details of the used
automatic image segmentation and visual feature extraction methods.

3.1 Outline

In the PicSOM image analysis framework, target objects are ranked according
to their similarity with a given set of positive example objects, simultaneously
combined with the dissimilarity with a set of negative example objects. The
objects are correlated in terms of a large set of visual features of statistical
nature. For this purpose training and test set images are pre-processed in the
same manner: the images are first automatically segmented and a large body
of statistical features is extracted from both the segments and whole images.
Several different segmentations of the same images can be used in parallel. In
the current experiments we consider only visual features, but the framework has
been used to index also e.g. multimedia messages and videos [4].

After feature extraction, a tree-structured variant of Self-Organising Map [2],
a TS-SOM [3], is trained in an unsupervised manner to quantise each of the
formed feature spaces. The quantisation forms representations of the feature
spaces where points on the TS-SOM surfaces correspond to images and image
segments. Due to the topology preserving property of the TS-SOM mapping,
the classification in each of the individual feature spaces can be performed by
evaluating the distance of representation of an object on the TS-SOM grid to
the representations of positive and negative example objects. A single combined
similarity measure is formed by summing the contributions of the individual
feature spaces. Because of the performed normalisations, the combining algo-
rithm automatically emphasises feature spaces that perform best in discriminat-
ing the objects. In the classification task where the target objects are images,
the segment-wise similarities are finally combined within an image by summing
the contributions of all the segments in it.

For the current experiments the set of features is selected separately for each
classification task to maximise classification performance in terms of ROC AUC
in the training set. We use a greedy sequential forward search procedure to grow
the set of used features until the used performance criterion stops improving.

3.2 Segmentation

Analogously to the principle of allowing the system to automatically select the
most beneficial combination of feature TS-SOMs, we address the question of se-
lecting the automatic segmentation method by making a number of alternative
segmentations available, and letting the system automatically choose the ap-
propriate ones. According to our earlier experience, the PicSOM algorithm for
statistical integration of visual features seems to be quite robust against pres-
ence of irrelevant extraneous information. Such unnecessary visual features and
segmentations seem to increase the level of noise in the problem but do not seri-
ously compromise the performance as long as the noise level remains moderate.
This can be understood by considering the distributions of the target objects in
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Table 2. Visual features extracted from image segments

MPEG-7 descriptors non-standard descriptors
Color Layout average colour in CIE L*a*b* colour space
Dominant Color central moments of colour distribution
Region Shape Fourier descriptors of segment contours
Scalable Color histogram of Sobel edge directions

co-occurence matrix of Sobel edge directions
8-neighbourhood binarised intensity texture

the corresponding feature spaces. In the irrelevant feature spaces the distribu-
tions of example objects are uniform and act as noise. On the average, no object
in the test set is favoured. In contrast, the distributions of example objects in
the relevant feature spaces are strongly peaked and able to overcome moderate
levels of noise.

Against this background, the exact selection of the segmentation methods
used does not seem critical to the performance. For example, selecting the par-
titions randomly still leads to non-trivial results. Different visual features have
different levels of sensitivity to the segmentation method. For instance, colour
and texture features are quite robust in terms of segmentation, whereas prop-
erly benefiting from segment shape features requires in some sense successful
segmentation. We use two means of generating alternative segmentations to be
used in the system. First one is to simply use several different segmentation
methods. Another mechanism is to record full segmentation hierarchies of the
images and simultaneously consider all levels of the hierarchy in the algorithm.
In practice, the results we report here use, due to time limitations, only two
alternative segmentations in addition to whole images.

For the current experiments we have used a generic image segmentation
method which is simple and somewhat rudimentary. The method employs an
area-based region merging algorithm based on homogeneity in terms of colour
and texture. In addition to the basic segments, we also record the hierarchical
segmentation that results from continuing the region-merging algorithm until
only three regions remain.

3.3 Statistical Visual Features

A number of statistical visual features is extracted and made available for the
similarity assessment algorithm. The features include MPEG-7 standard descrip-
tors [1] as well as some non-standard descriptors. The features are extracted from
image segments as well as from whole images when appropriate. Table 2 lists the
used visual features.

4 Scene Classification

The scene classification task straightforwardly employs the PicSOM framework
described in Section 3. Slight variations of the method are obtained by selecting
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Table 3. Test set ROC AUC resulting from different strategies of choosing the set of
positive examples

bicycle bus car cat cow dog horse mb person sheep
all segments 0.846 0.950 0.930 0.837 0.886 0.754 0.792 0.815 0.761 0.890

touching 0.828 0.942 0.930 0.829 0.881 0.767 0.773 0.829 0.759 0.890
min. overlap 0.820 0.912 0.930 0.817 0.873 0.725 0.781 0.807 0.731 0.880

different automatically obtained segments (Section 3.2) as positive examples
in the framework. In our experiments either (i) all segments of positive training
images, (ii) only those segments touching the manually specified bounding boxes,
or (iii) those segments having minimum overlap of 45% with the bounding boxes
were used as positive examples. All segments in the negative images were used
as negative examples. For these experiments we used all the features available
in the system.

Table 3 displays the resulting test set performances. Different object classes
have different optimal strategies of selecting example segments, which is under-
standable in the light of the images being of different type. Different scene classes
vary in the degree in which they depend on the context information outside the
object defining the scene class. Even semantically seemingly similar classes, such
as “cat” and “dog”, may appear in different types of contexts in the training
images and thus have different optimal strategies for selecting the example seg-
ments. In the light of these examples, it is worthwhile, however, to include all
segments of positive images in the positive example set in most cases. There
the slightly increased background noise level is more than compensated by the
introduced additional context information.

5 Object Detection

Our approach to the object detection problem is based on ranking the segments
in the pre-calculated segmentations according to their likelihood to present the
target object. In the rest of this section we describe the techniques we have
developed for object detection. We take the straightforward application of the
PicSOM framework as our baseline (Section 5.1) and then describe two improve-
ments thereupon: incorporation of global scene classification results (Section 5.2)
and heuristics for redistributing detector outcomes within images (Section 5.3).
Figure 1 shows some correct and incorrect detections on the present image data.

5.1 Baseline Method

In our baseline method we consider all the test image segments given by a certain
segmentation method. The segments are ranked using the PicSOM framework of
Section 3 according to their similarity of target object segments in the training
images. Rows B in Table 4 show the average precision (AP) measure for the test
set object detection. For comparison, we display also the performance figures
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(a) (b) (c) (d)

Fig. 1. Examples of correct (a) and different types of incorrect (b through d) detections
of object class “sheep”

Table 4. Average precision of the algorithm variants in object detection tasks for all
the objects classes and different algorithm variants. Rows designated with B correspond
to the baseline method, G the incorporation of global classification results and P the
nonlinear propagation algorithm. In these experiments all segments of the negative
images were used as negative examples. Within an algorithm the different rows corre-
spond to the different strategies of choosing the set of positive examples: all segments,
segments overlapping with the ground truth bounding boxes of the objects (touching)
and segments having at least 45% overlap with the bounding boxes (min. overlap). The
performance of VOC example detector is shown on the uppermost row for reference.

bicycle bus car cat cow dog horse mb person sheep
VOC example 0.013 0.005 0.013 0.016 0.091 0.013 0.001 0.005 0.004 0.010
B, all segments 0.050 0.121 0.212 0.037 0.110 0.101 0.099 0.137 0.019 0.035
B, touching 0.060 0.085 0.188 0.045 0.069 0.106 0.102 0.141 0.017 0.028
B, min. overlap 0.122 0.093 0.210 0.094 0.186 0.051 0.074 0.155 0.054 0.176
G, touching 0.215 0.142 0.194 0.100 0.153 0.075 0.110 0.141 0.014 0.110
G, min. overlap 0.199 0.148 0.206 0.179 0.228 0.074 0.052 0.090 0.039 0.232
G, best 0.178 0.139 0.223 0.130 0.226 0.131 0.131 0.058 0.025 0.223
P, touching 0.244 0.172 0.022 0.162 0.151 0.124 0.058 0.129 0.007 0.083
P, min. overlap 0.237 0.163 0.210 0.162 0.240 0.122 0.061 0.132 0.012 0.242
P, best 0.232 0.164 0.240 0.173 0.226 0.130 0.076 0.069 0.022 0.220

of simplistic VOC example implementation The results show that for almost
all of the ten object classes we clearly achieve non-trivial performance level.
For the class “person” and to some extent for the classes “cat “ and “dog”,
however, the detection accuracy is low. This is mainly due to the coarseness of
the selected fixed segmentation. To capture these objects, a more fine-grained
segmentations of the images would be required. Variants of the basic method
obtained by choosing slightly different strategies for selecting the positive and
negative example segments for the classification algorithm are also shown in the
table. The reasons for the performance differences are the same as discussed in
Section 4.

In the current experiments we do not adequately address the issue of sup-
pressing multiple detections of a single object. This issue is relevant for our
approach as the same image areas are contained in several levels of hierarchical
segmentation. As a heuristic cure, we have exponentially discounted subsequent
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detections when an object has already been detected in the same image. This
procedure consistently improves the detection accuracy.

5.2 Incorporation of Global Classification Results

In this section we employ the natural connection between the scene classification
and object detection tasks. If the scene does not contain an object of a certain
class as whole, neither can any of its parts correspond to a true positive detection
of that class. This suggests factorisation of the detector outcome into a product
where the conditional object detector confidence is modulated by the overall
probability of the scene containing objects of the class. As the overall scene
classification is more reliable than the object detection both in case of our system
and in general, this may provide a practical avenue in constructing an object
detector.

More formally, let r be an image segment, Is and Ii binary indicator variables
for the segment r and the corresponding image, respectively, belonging to certain
object class. The trained classifier outputs two confidence values: ci for the seg-
ment r being a true detection, and cs for r being contained in an image belonging
to the class. Now we write for the probability of r being a true detection

p(Is = 1|ci, cs) = p(Is = 1|Ii = 1, ci, cs)p(Ii = 1|ci, cs). (2)

With rather plausible independence assumptions this can be approximated as

p(Is = 1|ci, cs) ≈ p(Is = 1|Ii = 1, cs)p(Ii = 1|ci). (3)

The two mappings from classifier scores to probabilities in this product are esti-
mated by applying the PicSOM framework to the training data. The first classi-
fier is a discriminative classifier trained with only segments in the images belong-
ing to the object class. The true positive segments are used as positive examples
and other segments as negative examples. The second classifier is directly the
same as the one used for the classification task. For the current experiments, the
mappings from scores to probabilities are estimated by fitting logistic sigmoids
to the training data. Rows G in Table 4 show the object detection performance
of the described method.

5.3 Propagation of Detector Outcomes along Segmentation
Hierarchy

To augment the statistical detection of object segments with geometric con-
siderations, we implement a mechanism for propagating relevance scores along
the segmentation hierarchy within a single image. In the PicSOM algorithm the
propagation takes place after the relevance of the individual segments has been
evaluated by the SOMs. The classification framework of Section 3 only statisti-
cally estimates whether an individual segment is likely to correspond to a correct
detection. In particular, this assessment neglects the dependency of the seg-
ments in the same image, especially the relations in the segmentation hierarchy.
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In contrast, the propagation algorithm simultaneously considers just the cor-
rectness of several of the segments and their combinations that appear in the
hierarchical segmentation of an image.

Rows P in Table 4 show the object detection performance resulting from the
implementation of the above mentioned considerations in form of a simple non-
linear score propagation algorithm along the automatically discovered segmen-
tation hierarchy tree. In the algorithm a set of heuristically chosen rules is used
to compare the relative relevance of child and parent nodes and in some cases
propagate the relevance from children to parent. From the results we see that
the inclusion of the propagation step often leads to performance improvements
which in some cases are significant. In some other cases the step fails. From
this we conclude that there is potentially a large performance gain available in
considering the segments of an image simultaneously and taking segmentation
hierarchy into account, even though our simple algorithm is not always able to
capitalise on it.

6 Conclusions and Discussion

On the practical side, Figure 2 summarises the object recognition performance
achieved by using the techniques described in the previous sections. The tech-
niques were found to be useful and they were implemented and fully evaluated
in our entry to the VOC Challenge 2006 image analysis competition. Parts of
the contest are still ongoing, but in the preliminary results the PicSOM per-
formance in object classification was slightly over the average among the over
20 participants. Object detection attracted less participants. For some object
classes, PicSOM was the best system but not overall.

In this paper we have considered the processing of visual entities on different
semantic levels. At least three levels can be distinguished. On the lowermost
level there are the statistical low-level visual features describing the images and
all their imaginable parts. An intermediate-level semi-semantic representation is
formed by considering a small subset of all possible image segmentations. The
uppermost semantic level consists of interpretations of whole images in terms of
the semantic scene classes of the type “a scene likely to contain a certain object”.
Of the present concrete image analysis tasks scene classification is concerned with
entities on the uppermost semantic level, whereas the object detection operates
on the intermediate level.

In the experiments we have seen that the intermediate-level object detection
clearly benefits from interaction with the higher-level scene classification, com-
pared with just the bottom-up approach to the detection task. The presented
technique can be seen as the first round of iterative alteration of bottom-up and
top-down processes. Along the chosen path, the next step we are going to take
is to feed the refined intermediate level representation back to the higher-level
analysis and to study the usefulness of continuing the iteration even longer.

The distance between the semantic levels which the image analysis aims to
link varies, as does the total height and size of the hierarchies. In this comparison



44 V. Viitaniemi and J. Laaksonen

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

B
G
P

(a) (b)

Fig. 2. Summary of the best object detection results obtained using the three algorithm
variants. Subfigure (a) shows the best PR-curves for one object class, “sheep”. Curve B
(AP = 0.176) corresponds to the baseline algorithm, G (AP = 0.232) the incorporation
of global classification results and P (AP = 0.242) the nonlinear propagation algorithm.
Subfigure (b) shows average precision measure for all ten classes. Here The leftmost
bars (black) represent the baseline algorithm, bars in the middle (grey) the algorithm
incorporating global classification results and the rightmost bars (white) the nonlinear
score propagation.

the present hierarchy is relatively small and flat, and the levels are quite close to-
gether. However, conceptually there is no obvious reason why similar approaches
could not be used in case of more challenging semantic hierarchies.
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Abstract. Fuzzy logic programs are a useful framework for handling
uncertainty in logic programming; nevertheless, there is the need for
modelling adaptation of fuzzy logic programs. In this paper, we first
overview weighted fuzzy programs, which bring fuzzy logic programs and
connectionist models closer together by associating significance weights
with the atoms of a logic rule: by exploiting the existence of weights, it is
possible to construct a neural network model that reflects the structure
of a weighted fuzzy program. Based on this model, we then introduce the
weighted fuzzy program adaptation problem and propose an algorithm
for adapting the weights of the rules of the program to fit a given dataset.

1 Introduction

In many applications it is essential to reason with uncertain information. Be-
cause logic programming is a widely used reasoning framework, adding fuzziness
to logic programs has already been investigated (for a review on fuzzy logic pro-
grams see e.g. [LS01]). The base of all the proposed approaches is the definition
of fuzzy facts, whose truth value belongs to the interval [0, 1]. In [CSSK06] the
expressiveness of fuzzy programs was extended with the introduction of weights
that allow an atom in a rule body to have a different importance in inferencing
the head. E.g. the rule Happy(x) ← (0.3; Rich(x))∧ (0.8; Healthy(x)) expresses
the fact that healthiness is more important for happiness; richness is not (usu-
ally) so important, although it may add a bit to the happiness of a person.

On the other hand, neural networks are architectures characterized by adap-
tation and learning capabilities and fault tolerance. Therefore, the possibility to
use connectionist models to perform symbolic reasoning and extract symbolic
rules out of them is of considerable interest. Some such models for the repre-
sentation of fuzzy logic programs have already been developed (e.g. [HHS04],
[MCA04]). When the rules include weights, a connectionist representation has
a significant advantage: the neural network may be trained to learn the weights
that make the rules fit best the data, so that the problem of extracting symbolic
rules from the network is reduced to learning the rule weights.

In this paper, after overviewing weighted fuzzy programs and describing how a
connectionist model may be constructed for their representation, we investigate
� A. Chortaras is funded by the Alexander S. Onassis Public Benefit Foundation.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 45–54, 2006.
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the issue of adapting the weights of a program to fit better a given dataset. For
this purpose, we define a mean square error minimization criterion, which gives
rise to a heuristic adaptation algorithm that adapts the weights of the neural
network. The structure of the paper has as follows: Section 2 overviews the syntax
and semantics of definite weighted fuzzy programs, Section 3 describes their
connectionist representation, Section 4 defines the weight adaptation problem
and presents the adaptation algorithm, and Section 5 concludes the paper.

2 Definite Weighted Fuzzy Programs

2.1 Syntax

Definition 1. A fuzzy atom of predicate p (of arity 〈p〉 ≥ 0) is the formula
p(u1, . . . ,un) where ui for i = 1...n are variables or constants. The truth fuzzy
atom t is a special fuzzy atom of zero arity that represents absolute certainty.

Definition 2. A definite weighted fuzzy program is a finite set of weighted
fuzzy rules that are clauses of the form:

w : B ← ∧̃((w1; A1), . . . , (wn; An))

where A1, . . . , An are fuzzy atoms and B a fuzzy atom excluding t, such that all
the variables that appear in B appear also in at least one Ai for i = 1 . . .n. The
weight w ∈ [0, 1] represents the strength of the rule, while the weight wi ∈ [0, 1]
the significance of atom Ai for the rule.

We write a rule R also as w : B ← (w1; A1), . . . , (wn; An) and use the notation
s(R) ≡ w, w(R) ≡ (w1, . . . , wn) and a(R) ≡ (A1, . . . , An). A fuzzy atom (rule)
that contains only constants is called a ground fuzzy atom (rule) and is denoted
by A (R). The ground rules that may be obtained from R by substituting all its
variables by constants are the instances of R. A rule whose body includes only
t is a fuzzy fact. The number of fuzzy atoms that make up the body of a rule R
plus 1 (for the strength) is the weight size qR of R and qP =

∑
R∈P qR is the

weight size of the weighted fuzzy program P .

2.2 Semantics

Let P be a definite weighted fuzzy program, PP the set of all the predicates
that appear in P excluding t, VP a superset of the set of all the constants that
appear in P (an extended Herbrand universe), and BP(VP ) the set of all the
ground fuzzy atoms that can be constructed from the predicates in PP and the
constants in VP (the extended Herbrand base).

Given an extended Herbrand base BP(VP ), the base Bp of predicate p is the
subset of BP(VP ) that consists of all the ground fuzzy atoms of predicate p.
We denote a member of Bp by B or p(c) for some c ∈ V

〈p〉
P . The rule base Rp

of predicate p is the set of all the rules in P whose head is a fuzzy atom of
predicate p. The inference base RB of a ground fuzzy atom B is the set of all
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the rule instances of the rules in P that consist of atoms from BP(VP ) and have
B in their head. Given an extended Herbrand universe VP , the explicit extended
Herbrand base EBP(VP ) of P is the set of all the ground fuzzy atoms in BP(VP)
whose predicate appears only in the body of a rule in P .

Definition 3. An extended fuzzy Herbrand interpretation I with domain VP
of P is a set of mappings pI : V

〈p〉
P → [0, 1] that associate each tuple of V

〈p〉
P with

a certainty value ∀p ∈ PP . The interpretation assigns to t always the value 1.

We denote the value with which I associates A by AI . The value of the body
of a rule instance R ≡ w : B ← (w1; A1), . . . , (wn; An) may be computed by a
weighted fuzzy AND operator, introduced in [CSSK06]; here, it suffices to say
that it is non-decreasing in AI

i for i = 1 . . .n, that any operand with weight
0 may be omitted without affecting the result and that the result is bounded
from above by the maximum weight and AI

i . We denote the operator by ∧̃[·],
so that the value of ∧̃((w1; AI

1), . . . , (wn; AI
n)) is ÃI = ∧̃[w1,...,wn](A

I
1, . . . , A

I
n). If

w̄ = maxi=1...n wi and T a t-norm and S an s-norm, an example is the operator:

∧̃[w1,...,wn](a1, . . . , an) = min
i=1...n

S(w̄ − wi, T (w̄, ai))

For the values of the atoms in the body of R we will also write aI(R) instead of
(AI

1, . . . , A
I
n). The rules are interpreted as fuzzy r-implications (see [KY95]), so

that the certainty value of R under I is ωT (ÃI , BI) = sup{x ∈ [0, 1] | T (ÃI , x) ≤
BI} for some t-norm T . Hence, ωT (ÃI , BI) = v implies that BI ≥ T (ÃI , v).

Definition 4. Given a fuzzy weighted AND operator ∧̃[·], a t-norm T and an
s-norm S, an extended fuzzy Herbrand interpretation I with domain VP is an
extended Herbrand model of P under (∧̃[·], T,S), if ∀B ∈ BP(VP):

S
({

T
(
∧̃[w(R)]

(
aI(R)

)
, s(R)

)}
R∈RB

)
≤ BI

Given two interpretations I1, I2 of P with domain VP , I1 is less or equal to I2

(I1 � I2) if ∀p ∈ PP and ∀c ∈ V
〈p〉
P , pI1(c) ≤ pI2(c). The intersection of I1, I2 is

the interpretation I with pI(c) = min{pI1(c), pI2(c)}, ∀p ∈ PP and ∀c ∈ V
〈p〉
P .

Theorem 1. Given an extended Herbrand universe VP , P has a unique extended
minimal Herbrand model FMP under (∧̃[·], T,S), equal to the intersection of all
the extended Herbrand models of P with domain VP under (∧̃[·], T,S).

The fuzzy immediate consequence under (∧̃[·], T,S) of an interpretation I of P is
the interpretation FTP(I) with the same domain as I, such that ∀B ∈ BP(VP):

BFTP (I) = S
({

T
(
∧̃[w(R)]

(
aI(R)

)
, s(R)

)}
R∈RB

)
FTP is the fuzzy immediate consequence operator under (∧̃[·], T,S) and by

fixpoint theory it can be proved that it has a least fixpoint FTP↑ω, which can
be determined by a countable number of iterative applications of FTP (starting
from the interpretation that maps all ground fuzzy atoms to 0). It can also be
proved that FMP = FTP↑ω , which defines the intended meaning of P .
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3 Connectionist Representation

A connectionist model for the representation of a weighted fuzzy program P
is proposed in [CSSK06]. The proposed neural network has the benefit that its
structure reflects the structure of P and that the link weights are the actual rule
weights, in a way that the network has a direct, well-defined symbolic interpre-
tation. Here, we provide a brief overview of the structure of the network.

Because P may be non-propositional, a property of the network is that its links
carry complex named values, i.e. multisets of pairs (c, v), where c is a vector of
constants (the arguments of a fuzzy ground atom) and v a certainty value.

The network consists of an input, a conjunction and a disjunction layer. The
conjunction layer consists of conjunctive multivalued neurons that correspond to
the rules of P . There is one such neuron for each rule in P . Each neuron has
so many inputs as are the atoms of the body of the respective rule, and each
link is characterized by the weight of the respective atom. The neuron computes
the value of the head of the rule, by appropriately grounding the variables and
combining the complex named values that appear in its input links.

The disjunction layer consists of disjunctive multivalued neurons, one for each
predicate in PP . Their role is to combine into one the possibly many certainty
values computed for the same ground fuzzy atom by the conjunction layer. The
input links of a disjunctive neuron are connected to the outputs of the conjunc-
tive neurons that compute the rules whose head involves the predicate that the
disjunctive neuron represents. The weight of each input link is the strength of
the respective rule. The network is recursive, and the outputs of the disjunc-
tive neurons are connected through a unit delay node to the input links of the
conjunctive neurons that correspond to the rules that involve in their body the
predicates that the disjunctive neurons compute.

The output of the network is considered to be the set of the complex named
values that appear at the output of the disjunctive neurons, each characterized
by the respective predicate name. Thus the output, or state, of the network at
time point t is the set {(p1, outP1(t)), . . . , (pk, outPk

(t))}, where Pi for i = 1 . . .k
is the disjunctive neuron that represents predicate pi and outPi its output.

The network performs a computation in a discrete time setting. As described
in [CSSK06], by construction the neural network that corresponds to a weighted
fuzzy program P is a connectionist implementation of FTP , so that at time point
ti its state encodes interpretation FTP↑i (given an initial interpretation provided
to the network by the input layer nodes). Thus, the network accomplishes the
computation of the minimal model of P at the same number of time points
(iterations) that FTP needs to reach its least fixpoint. Hence, if FTP converges
to its least fixpoint at a finite number of k iterations, then the state S(tk), after
k time points, of the neural network encodes the minimal Herbrand model MP
of P under (∧̃[·], T,S). In particular, ∀p ∈ PP , MP is such that:

pMP (c) =
{

v if (p, W ) ∈ S(tk) and (c, v) ∈W
0 otherwise
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Example 1. The neural network that corresponds to the following program (the
rules are given on the left and the facts on the right) is illustrated in Fig. 1.

wa : a(x, y) ← (w1; a(x, y)), (w2; b(y, z)), (w3, c(z)) v1 : b(a, b) ← (1; t)
wb : b(x, y) ← (w4; c(x)), (w5; d(y)) v2 : d(a) ← (1; t)
wc : c(x) ← (w6; d(x)) v3 : d(b) ← (1; t)
we : e(y) ← (w7; d(y))
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Fig. 1. The neural network of the program of example 1

As it is evident from example 1, the neural network that corresponds to a
weighted fuzzy program distinguishes between facts and rules. Its structure re-
flects the structure of the rules only; the facts are left to be encoded in the input
signals. This is useful for the weight adaptation process, described in the next
section, because the same rules may be used in combination with different data.
Whenever a fact changes the minimal Herbrand model of the program changes
as well; thus, if the facts are not encoded in the structure of the network, it is
not necessary to construct a new neural network to represent the new program:
it suffices only to appropriately change the input signals.

4 Weight Adaptation

In the above discussion, we have assumed that the rules of a weighted fuzzy
program have known weights. In the following, we allow also parametric weighted
fuzzy rules R(w), in which the vector of weights w of size qR is a parameter.
Similarly, we allow parametric weighted fuzzy programs P(w). In this case, the
parameter is the weight vector w of size qP , obtained from the concatenation
(for some ordering) of the weight vectors of the individual rules of P .

Because the network described in Section 3 has a direct symbolic interpreta-
tion, it may be used in a machine learning framework and trained in order to
learn the rules that characterize a given dataset. If the data consist of database-
like tables whose attributes may be seen as fuzzy sets or relations and whose
row values as membership values of the individual elements to the sets or re-
lations, the database may be regarded as an interpretation (or model) of an
unknown weighted fuzzy program which we would like to learn. Based on some
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a priori knowledge on the domain that the database models, we can then set
up a parametric weighted fuzzy program P(w) consisting of rule candidates for
the description of the data, leaving the rule weights as parameters to be learned
(adapted). The available data will be only an arbitrary interpretation of P(w)
for some weight values; the aim of the adaptation process should be to adapt the
weights, so that the data is a “good” interpretation (or model) of the program.

We define now the weighted fuzzy program adaptation problem as follows:
Given a parametric weighted fuzzy program P(w), an extended fuzzy Herbrand
interpretation I for P(w) with domain an extended Herbrand universe VP , and
a triple of operators (∧̃[·], T,S), find an “optimal” vector of weights ŵ ∈ [0, 1]qP

such that I is a model of P(ŵ) under (∧̃[·], T,S). We will now investigate how
we can learn from I the “optimal” or more in general a “good” vector of weights.

From definition 4, we know that an interpretation I with domain VP is a
model of P under (∧̃[·], T,S), if for all fuzzy ground atoms B ∈ BP(VP ):

S
({

T
(
∧̃[w(R)]

(
aI(R)

)
, s(R)

)}
R∈RB

)
≤ BI (1)

This condition must hold ∀B ∈ BP(VP ), thus if we consider a parametric
program P(w) and write the corresponding set of inequalities letting the weights
be unknown variables, we obtain a system Σ(w) of |BP(VP)| inequalities and
qP unknown weights: the vector w. Then for some vector ŵ ∈ [0, 1]qP , I is a
model of P(ŵ) if ŵ satisfies Σ(w). However, because the inference bases of any
ground atoms of distinct predicates contain instances of distinct rules, and thus
involve different weights, Σ(w) may be split into |PP | independent systems of
|Bp| inequalities, one for each predicate p ∈ PP . Each one of these systems will
have in total qp =

∑
R∈Rp

qR unknown weights, which we denote by wp. In
the absence of additional conditions these systems may be solved independently.
We denote the partial system corresponding to predicate p by Σp(wp), so that
Σ(w) ≡

⋃
p∈PP Σp(wp), where now w = (wp)p∈PP is the concatenation (for

some ordering) of the weight vectors of the |PP | systems.
It is convenient to define the functions gp

l = gp
l

(
wp,

{
aI(R)

}
R∈RB

)
, one

for each of the left-hand side expressions that make up the |Bp| inequalities
of Σp(wp) (like inequality 1), where l = 1 . . . |Bp| and B = p(cp

l ), cp
l ∈ V

〈p〉
P .

To simplify further notation, we suppress the arguments of gp
l and write it as

gp
i (wp)I where the superscript ·I exists to make clear that its value depends also

on {aI(R)}R∈RB . Using this notation, Σp(wp) may eventually be written as:

gp
l (wp)I ≤ pI(cp

l ) for l = 1 . . . |Bp|

In general, Σp(wp) (and Σ(w)) will have an infinite number of solutions.
It is therefore essential to specify criteria that will allow the selection of some
preferred solutions of Σ(w). A natural choice is to select the maximum solutions
of Σ(w), which have the property that correspond to strong rules, in which the
entire body plays the maximal possible role in determining the value of the head.
However, it can be proved that even a maximum solution is by itself not “good
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enough”; additional criteria are needed in order to obtain rules that express
better the relations between the atoms manifested in I. Hence, we recourse to the
mean square error minimization criterion and provide the following definitions:

Definition 5. The explicit restriction of the extended fuzzy Herbrand interpre-
tation I with domain VP on the program P is the extended fuzzy Herbrand in-
terpretation EI with domain VP such that:

BEI =
{

BI if B ∈ EBP(VP)
0 otherwise

Definition 6. The weight vector w∗ is an optimal fit under (∧̃[·], T,S) of the
extended fuzzy Herbrand interpretation I with domain VP to the parametric
weighted fuzzy program P(w), if I is a model of P(w∗) under (∧̃[·], T,S) and:

w∗ = argmin
w

∑
B∈BP(VP)

(
BI −BM(w)

)2

where M(w) = FT ↑ω
P(w)(EI) and EI is the explicit restriction of I on P.

We may now restate the weighted fuzzy program adaptation problem as finding
a maximum optimal fit of I under (∧̃[·], T,S) to the parametric program P(w),
i.e. to finding the maximum optimizers of the following problem O(w):

minimize
∑

p∈P
∑|Bp|

i=1

(
pI(cp

i )− gp
i (wp)M(w)

)2

subject to gp
ip

(wp)I ≤ pI(cp
ip

) for p ∈ P and ip = 1 . . . |Bp|
0 ≤ wp ≤ 1

Because of the monotonicity properties of gp
ip

(wp)I and the partial ordering of
the interpretations, it can be proved that finding an optimizer of O(w) is equiv-
alent to independently finding optimizers for the following (partial) problems
Op(wp), one for each p ∈ PP :

minimize
∑|Bp|

i=1

(
pI(ci)− gp

i (wp)I
)2

subject to gp
i (wp)I ≤ pI(ci) for i = 1 . . . |Bp|

0 ≤ wp ≤ 1

Clearly, the goal function of Op(wp) is the sum of the square errors by which
the inequalities in Σp(wp) are not satisfied as equalities. Thus, it may be re-
garded as a soft constraint corresponding to the hard constraints Σp(wp). In
practice, because the data may be noisy, requiring that the hard constraints
Σp(wp) are satisfied may lead to poor solutions. Thus, we may drop Σp(wp)
and minimize only the soft constraint, so that we get the problems O′

p(wp):

minimize
∑|Bp|

i=1

(
pI(ci)− gp

i (wp)I
)2

subject to 0 ≤ wp ≤ 1
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Now, I will not be any more a model of the respective program P(w∗) for an
optimizer w∗ of the above problems. However, due to the lower sensitivity of
O′

p(wp) to noise, P(w∗) will eventually capture better the relations manifested
in I. For these reason, in the sequel we focus on solving O′

p(wp).

4.1 Adaptation Algorithm

The problems O′
p(wp) are non-convex and obtaining a global optimizer for them

is computationally hard. Here, we provide a heuristic algorithm for solving them,
which relaxes the global optimizer requirement and combines global with local
optimization methods in a way that it can be used for the adaptation of the
weights of the network of Section 3. The outline of the algorithm has as follows:

1. Use an interval method with a relatively high minimum box width εD to
determine a set D of boxes, subsets of the weight space [0, 1]qp , that define
the area D̄ in which the global minima of the goal function are included.

2. Determine from the elements of D one or more initial points w0.
3. Starting from w0, perform a gradient descent iterative process until a local

minimum is reached, ensuring that at each step the new point lies within D̄.

Interval methods are deterministic global optimization methods; an elemen-
tary discussion may be find in [RV06]. In brief, they split repeatedly the parts
of the search space that may contain a global minimum of the goal function f in
ever smaller boxes, determine for each such box d a range rd = [rd, rd] ⊇ {f(x) |
x ∈ d}, and discard any boxes that certainly do not contain a global minimum.
The process stops when all the boxes that may contain a global minimum have
been split to a width less than εD. Depending on the properties of f these meth-
ods may not behave well; in the worst case it may be needed to split the entire
space into boxes of width εD. In our algorithm, the interval method is used only
in order to obtain good starting points for the gradient descent process, thus
only a relatively large εD that leads to an acceptable complexity is required.

From the set D that contains the candidate boxes that may include the global
minima of the goal function, in the second step the algorithm chooses some of
them, from which some initial points are determined. In our implementation we
select the boxes {d′ | rd′ = mind∈D rd}. The choice is justified because rd is an
underestimation of the global minimum of the goal function. Because maximum
solutions are preferred, in the case that many boxes achieve the minimum, we
keep only the boxes that may contain the maximum solutions. Within the even-
tually kept boxes, w0 is obtained by evaluating the goal function at ks random
points and keeping the one that produces the lowest value.

For the gradient descent algorithm we note that the goal function of O′
p(wp)

is in general non-smooth, hence subgradient methods (e.g. [Eit04]) are appli-
cable. While performing the subgradient descend, the area defined by D̄ acts
as a constraint: if we get out of this area we are guaranteed not to reach a
global minimum. Thus, the algorithm requires the implementation of a projection
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subgradient method in order to enforce this constraint: at step k of the iterative
process, the algorithm updates the weight vector according to the rule:

wk+1 ← ΠD̄(wk − αkξ
k) with ΠD̄(z) = arg min

x∈D̄
‖z − x‖

where ξk is a subgradient [Cla83] of the goal function at wk (a supergradient if
it is concave at wk) and ak the learning rate. The learning rate initially equals
α0 and decreases according to the rule ak+1 = a0√

j+1 , where j is the number of
times that the learning rule led to an increase of the goal function up to step k.

The above rule is the neural network weight adaptation rule. Because each
predicate in P corresponds to a different and independent problem O′

p(wp), it
follows that each neural network part that models rules for a different predi-
cate has its own adaptation rule: the starting point, the learning rate, the error
function to be minimized and the convergence time are different.

4.2 Simulation Results

Table 1 presents the results obtained by running the adaptation algorithm on
synthetic data. In particular, we constructed training data for the rule 1.0 :
a(x) ← (0.5; b(x)), (0.8; c(x)), (0.2; d(x)), (0.7; e(x)). The strength was assumed
to be known and the vector of “unknown” weights was w∗ = (0.5, 0.8, 0.2, 0.7).
For the body we took bi, ci, di, ei ∼ U [0, 1] for i = 1 . . .n and 3 datasets were com-
puted for a. In the first two its value was ai = max(0, min(1,∧[w∗](bi, ci, di, ei)+
σNz)), where z ∼ N(0, 1) with σN = 0.1 and σN = 0.25. In the third case a
was random: ai ∼ U [0, 1]. In all cases ks = 100 and the size of the dataset was
n = 250. The interval method was applied for εD equal to 1, 0.5, 0.25 and 0.125.

As we can see from the results presented in Table 1, in the first two cases
the algorithm converges to a weight vector ŵ close to w∗. As the variance of
the added noise increases, the approximation becomes worse. It is worth noting
that although reducing εD leads to better results, even for εD = 1 (when the
interval method is essentially skipped) the result is good enough. This may be
attributed to the high value of ks. An important issue is the evaluation of the
quality of the results, in the view of the fact that the algorithm always locates
a local minimum of the goal function, regardless of the existence of a relation
between the data. E.g. in the third dataset such a relation does not exist as all
the data were random. As a measure of evaluation, table 1 provides the mean
square error μ1 (the goal of the minimization) and the mean square error μ2 of
those data for which the computed rule R(ŵ) is not a model:

μ1 =
1
n

n∑
i=1

ε2i and μ2 =
1
|G|

∑
i∈G

ε2i with εi = âi − ai

where âi = ∧[ŵ](bi, ci, di, ei) and G = {i | âi − ai > 0}, and the variances:

σ1 =
1
n

n∑
i=1

(εi − μ1)2 and σ2 =
1
|G|

∑
i∈G

(εi − μ1)2
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Table 1. Results on synthetic data

σN εD ŵ μ1 σ1 μ2 σ2

0.10 0.125 (0.497, 0.859, 0.250, 0.695) 0.0093 0.0093 0.0095 0.0090
0.10 0.250 (0.497, 0.801, 0.250, 0.859) 0.0109 0.0108 0.0088 0.0100
0.10 0.500 (0.497, 0.801, 0.250, 0.859) 0.0109 0.0108 0.0088 0.0100
0.10 1.000 (0.517, 0.869, 0.260, 0.709) 0.0093 0.0093 0.0095 0.0093
0.25 0.125 (0.316, 0.668, 0.000, 0.456) 0.0404 0.0404 0.0434 0.0452
0.25 0.250 (0.316, 0.668, 0.000, 0.456) 0.0404 0.0404 0.0434 0.0452
0.25 0.500 (0.677, 0.617, 0.051, 0.481) 0.0455 0.0444 0.0380 0.0496
0.25 1.000 (0.607, 0.918, 0.293, 0.706) 0.0411 0.0410 0.0440 0.0463

0.250 (0.057, 0.232, 0.686, 0.000) 0.1064 0.0954 0.0715 0.1292
0.500 (0.100, 0.276, 0.729, 0.000) 0.1063 0.0954 0.0707 0.1276
1.000 (0.268, 0.445, 0.896, 0.128) 0.1063 0.0953 0.0695 0.1261

5 Conclusions

Given the increased expressiveness of weighted fuzzy programs in modelling fuzzy
datasets, using neural networks in order to learn logic programs is a significant
step in the field of integrating symbolic and connectionist models and perform-
ing connectionist-based reasoning. Nevertheless, the presented results are only
an initial attempt and further research is required. An important issue is that
weighted fuzzy programs currently allow the use of definite fuzzy atoms only.
The introduction of negation with the non-monotonicity properties that this im-
plies, is a major step that will increase the ability of weighted fuzzy programs
and of the corresponding neural networks to be used with real-life applications.
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Abstract. Cosmos-7 is an application that can create and filter MPEG-7 
semantic content models with regards to objects and events, both spatially and 
temporally. The results are presented as numerous video segments that are all 
relevant to the user’s consumption criteria. These results are not ranked to the 
user’s ranking of relevancy, which means the user must now laboriously sift 
through them. Using self organizing networks we rank the segments to the 
user’s preferences by applying the knowledge gained from similar users’ 
experience and use content similarity for new segments to derive a relative 
ranking. 

1   Introduction 

Filtering multimedia content is complex because the medium is transient both 
spatially and temporally. Therefore the content itself has different semantic meaning 
both spatially and temporally in relation to objects and events, respectively. In order 
to be able to filter multimedia content we require; 1) A content model that describes 
the content in terms of spatial and temporal semantic relationships of object and 
events, 2) A filter that sifts relevant information from the content model based on the 
user’s information requirements.  

COSMOS-7 [1] is an MPEG-7 compliant application that reduces the complexity 
of creating such a content model and filter. It exclusively uses part 5 of the MPEG-7 
[2] standard (Multimedia Description Schemes) that semantically describes objects 
and events and there relationships both temporally and spatially. Unlike other 
multimedia content modeling systems [3] it does not use low level (syntactic) 
features, only high level (semantic features) that are meaningful to the user. Using the 
COSMOS-7 filtering manager a filter is created that can exploit the rich detail 
captured in the content model by allowing a user to filter out undesirable content. 

On examination of the results after filtering it was found there were numerous 
entries returned that fitted the filter criteria. These results were not ranked by the 
relevancy to the context of the user’s information requirements. This is achievable by 
understanding the importance a user attaches to high level features. Using 
collaborative ranking, which is similar to filtering but without exclusion of items, we 
can predict the user’s preference for content by extracting similar users and using 
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their preference ranking for content. In this paper we examine the use of two self 
organizing neural networks to 1) collaboratively filter users into similar clusters and 
then rank the segments for the user using the previous experience of the peer group 2) 
Use content based video similarity measures to rank segments outside the peer groups 
experience in order to find a relative ranking based on experience of similar content 
by the peer group. 

In section 2 an overview is provided of what semantic aspects COSMOS-7 models 
and what MPEG-7 tools it uses to encapsulate these concepts. Section 3 describes the 
filtering process of COSMOS-7 to extract a video summary of user preferred content. 
Section 4 describes the two self organizing neural networks used to personalize the 
results to the user’s taste. The final section is our conclusion and future research. 

2   Overview of COSMOS-7 

In this section we begin by specifying the attributes that need to be modeled to 
provide a fully inclusive description of the semantic content which is both concise and 
flexible. We then describe the COSMOS-7 System, from two particular angles; 1) 
How COSMOS-7 is modeled using specific MPEG-7 tools to produce such a rich and 
multi faceted content model. 2) The COSMOS-7 filtering manager that creates and 
manages filters for extracting content to the user’s consumption requirement.  

2.1   Modeling Semantic Content Attributes 

The semantic content model has to be tightly integrated with the video streams using 
referencing strategies. In this way, the filtering process may determine the meaning 
conveyed by the media within the archive so as to compare against the specified 
filtering criteria. Previously [1] we have identified four key aspects; 

Events - Events within the semantic content model represent the context for objects 
that are present within the video stream at various structural levels. Events are 
therefore occurrences within the video stream that divide it into shorter semantically 
continuous content segments involving specific objects, and thus can frequently serve 
to represent object behaviour. 

Temporal Relationships - Temporal relationships between events enable the 
semantic content model to express the dynamism in content that is apparent at these 
higher levels, thereby enabling filtering of non-static semantic content which is more 
in line with “What will or did happen here?” Again, this may occur on both a general 
and a specific level. 

Objects - The expression of objects and object properties within the semantic content 
model provides for filtering with regards to objects that are readily identifiable within 
the video content stream. The term ‘object’ refers to any visible or hidden object 
depicted within a video frame at any necessary level of detail, from entire objects and 
groups of objects to the bottom-most component objects. Objects may themselves 
exist within a structural hierarchy thereby enabling inheritance of properties from 
higher level objects. 
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Spatial relationships - Representations of spatial relationships between objects 
within the semantic content model enable filtering concerning the relative location of 
objects (rather than the absolute location that comes from a co-ordinate based 
representation). This enables reference to be made to the relationships between 
objects within the content and can provide for three-dimensional spatial 
representations, including those concerning hidden objects, which are difficult to 
derive from co-ordinate representations. Spatial relationships have a duration due to 
their occurrence across multiple frames. Because of object motion, spatial relation- 
ships between two objects may differ over time within the same segment. 

2.2   The COSMOS-7 Content Modeling Tools 

The above semantic content aspects can be seen to have generic applicability since 
virtually all domains require some representation of objects and/or events, including 
relationships between them, For instance, entertainment-on-demand [4], multimedia 
 

 

Fig. 1. Key MPEG-7 description tools used in COSMOS-7 [1] 
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news [5], and organizational content [6]. Hence, when these semantic aspects are 
accommodated by a content modeling scheme the resultant model can be used to 
model semantic content for most mainstream domains and user groups and, 
consequently, facilitate filtering for those domains and user groups.  

Figure 1 shows the key MPEG-7 description tools that are used within COSMOS-7 
for each semantic aspect and illustrates how they are interrelated.  

3   Filtering Events  

A user will very often only be interested in certain video content, e.g. when watching 
a soccer game the user may only be interested in goals and free kicks. Identifying and 
retrieving subsets of video content in this way requires user preferences for content to 
be stated, such that content within a digital video resource may then be filtered against 
those preferences. While new approaches, such as those based on agents [7], are 
merging, filtering in video streams usually uses content-based filtering methods, 
which analyze the features of the material so that these may then be filtered against 
the user’s content requirements [8–10] 

Content filters are specified using the FILTER keyword together with one or more 
of the following: EVENT, TMPREL, OBJ, SPLREL, and VIDEO. These may be 
joined together using the logical operator AND. This specifies what the filter is to 
return. Consequently, the output of the filtering process may be either semantic 
content information and/or video segments containing the semantic content 
information. The criteria are specified using the WHERE keyword together with one 
or more of the following clauses: EVENT, TMPREL, OBJ, and SPLREL clauses. 
These clauses enable event, temporal relationship, object and their properties and 
 

 

Fig. 2. Filtering process [1] 
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spatial relationships, respectively, to be specified on the COSMOS-7 representation. 
Clauses may be joined together using the logical operators AND, NOT and OR and 
are terminated with semi-colons and grouped with braces. 

Figure 2 illustrates the process used by the filter manager. The specific clauses 
relating to the different aspects are extracted and then mapped to the COSMOS-7 
terms that represent these aspects, which in turn becomes a homogenous filter for the 
COSMOS-7 content model.  The filtering process begins with specific reasoning logic 
that matches the filter criteria for each type of semantic content aspect to 
corresponding elements found in the content model. In this way, the returned content 
can be considered to be a subset of the full content model and thus the filtering 
process reduces the content model to those segments relevant to the filtering criteria. 

4   Cosmos-7 Results Ranking Using SONN  

Cosmos-7 filter results are presented as a series of video segments allowing a user to 
selectively interact with them. The filter reduces the content to the user’s specific 
information needs. The number of returned segments can be high as all the 
information contained in the content model that matches the filter criteria is returned. 
The segments are presented in chronologic order which is of no real significance to 
the user.   Certainly, a user could browse and play every video segment, but this is not 
always convenient. Furthermore, the filter does not reflect the user’s changing 
requirements as there is no feedback element to the filter manager. This results in the 
user having to explicitly redefine their filter for even small requirement changes. 
What is required is a process of dynamically altering the filter criteria to match the 
user’s changing information preferences as they interact with the system. This is 
important in information filtering as the information space changes over time and the 
filter needs to remain current. Results’ sorting is an important factor to the user’s 
ability to access the content in a meaningful and effective manner.  

We have proposed COSMOS-7 ranking module that is utilized after the filter for 
sorting the results using prior knowledge. For doing so, it uses two self-organizing 
neural networks to order the segments in terms of the user’s requirements. In related 
works neural network have been applied to collaborative filtering to cluster users into 
groups based on similar tastes [11]. Their neural network uses the user demographic 
and preference attributes for similarity clustering.  Neural networks can be used to 
collaboratively structure user domains, with the clustering based on implicit 
knowledge of individuals and groups of users [12], this technique uses self-organized 
neural networks for clustering which combines methods for supervised learning and 
collaborative filtering. One application [13] uses a predictive self-organizing network 
that performs synchronized clustering of information and creates preference vectors 
which are encoded by a user, thus allowing a user to influence the clustering of 
information vectors.  

In figure 2 we present the basic idea of the ranking module based on the 
collaborative filtering and recommendation principles, which define that a user should 
be recommended items that are preferable by other people with similar tastes and 
preferences. Thus, by investigating the items previously rated by other similar users, a 
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utility value can be given to these items. Although there are many approaches, using 
various mathematical formulas,  we have specified that the rating value of an item Ik 
and user Uj is computed as an aggregate of the ratings of some other users Un 
belonging to the same user group G for the same item Ik. Group G is the set of users 
as derived by the first neural network, which clusters the users based on their 
similarities.  Naturally, self organizing networks are able to determine as many 
optimal classes as their internal neurons. We use neural networks for the user 
clustering since many studies have showed that self organizing neural Networks 
provide different result compared to statistical clustering. In [14] the authors 
demonstrate that the self organizing neural networks were able to recognize clusters 
in a dataset where other statistical algorithms failed to produce meaningful clusters. 
Furthermore, neural networks clustering results indicate clustering stability [15], 
which is an important factor for high quality clusters. Our system uses as aggregate 
function the average of ratings (see eq. 1).  
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A common problem that appears in a collaborative system is the need to calculate 
the ratings of a small number of examples (sparsity problem). Usually, the number of 
ratings that need to be calculated is bigger compared to the number of ratings already 
obtained. Some techniques exist for avoiding the problem of sparsity, such as the 
inclusion of demographics attributes in the group clustering.  Therefore the base 

vector consists of the user attributes B={A1, A2, A3,… An}, where iA  is an element of 

demographics or user preferences. Each user represents a neural network input vector 
of base vector B.  Based on the number of neurons, the neural network will learn to 
categorize the input vectors it sees. 

While the above framework is ideal for formulating the ranking of Cosmos-7 filter 
results, it is also being borne with some of collaborative filtering drawbacks. New 
items, not yet rated by anyone, cannot be evaluated. Therefore until the new item is 
rated by a substantial number of users, the system would not be able to use its rating 
value appropriately. Cosmos-7 content ranking algorithm is responsible for evaluating 
new items; the basic idea is that a user will be recommended items similar to the ones 
the user preferred in the past. The algorithm uses the same principles as the content 
recommendation and filtering principles.  A self organizing neural network clusters 
the video segments into a number of groups based on their similarities. 

The content ranking algorithm is utilized when the collaborative ranking cannot be 
used though. The item Ik and user Uj is computed as an aggregate of the ratings of 
some other items In belonging to the same item group G for the same user Ui. 
Equation 2 uses the average ratings of items for a user. The second neural network 
clusters the items into classes according to their similarities. The base vector includes 
attributes from COSMOS-7 model such as objects, events etc. Therefore each item 
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Fig. 3. COSMOS-7 hybrid ranking module for producing personalized ranking 

(visual segment) is a neural network input vector with attribute values taken from its 
content model.     

 ( )

 ( )

( , )

( , )
1

n k

n k

n i
I G I

content k i

I G I

r I U

R I U ∈

∈

=

 

(2) 

The advantage of the system is that the SONN adapts the user’s peer group as their 
preferences change over time. As the user interacts with the content the usage history 
log is updated. The usage history is reduced dimensionally into attribute pairs that are 
used to update the user profile. The changed user profile is then used to recalculate 
the user’s peer group. This allows the user’s changing requirements to be tracked 
automatically and reflected instantly in the ranking of the content. This process is 
iterative and makes peer matching more accurate over time. 

Table 1 shows how COSMOS-7 ranking module manages to utilize the hybrid 
algorithm, which uses the strengths of both content based and collaborative methods 
to combat the disadvantages of both. Basically, the algorithm uses either the 
collaborative or content ranking technique depending on the conditions of the 
information available from the resultant segments. Method getItemRank(Ik, Ui) 
searches the usage history and returns the rating of item Ik, and user Ui.  If the item 
hasn’t been ranked by the current user before, collaborative ranking is used as 
explained above. However, if none of the peer group have ranked the particular item 
before, the content ranking is used. 
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Table 1. Pseudocode 

Method rankItems(I [],Ui){ 
   For each Iz in I[]{   
         Ik.Rank= getItemRank(Ik, Ui) 
         If Ik.Rank!=null  
             break 

         else if n k n(( U G( )) ^ ( I U )!=null)iU r∋ ∈  

               Ik.Rank =Rcollaborative(Ik,Ui) 

         else If n k n( U G( )=> ( I U )=null)iU r∀ ∈  

               Ik.Rank =Rcontent(Ik,Ui) 
         else  
               Ik.Rank = defaultValue 
   } 
} 

 

 (3) 

Figure 4 shows some preliminary results showing the user satisfaction rating of the 
COSMOS-7 system. They rank the first 10 segments that are represented to them in 
order, using a 1 -10 scale (1 = not satisfied at all < 10 = totally satisfied). The 
evaluation criterion in this case is based on the user’s ranking of satisfaction to the 
 

 

Fig. 4. Graph of user evaluation of COSMOS-7 user experience (ranked and unranked) 

content presented to them. This experiment was carried out with a small number of 
users on two version of COSMOS-7; 1) Using the personalized ranking method and 
2) The original chronologically ordered method. The results show that the user 
satisfaction is high initially with the personalized ranking method with the score 
decreasing proportionally as the user goes down the ranking as the segments become 
less relevant to the users. The unranked system shows a non-uniform satisfaction 
rating graph with a peak around the centre. This is due to the more relevant content 
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usually being found for most users around the middle/beginning of the end of the 
content model as a whole. This making the middle segments most relevant. Though 
the result have been derived with a small pool of content models using a few users, 
which makes it not fully representative, it still shows that our approach is very 
promising. A full featured user-evaluation will provide more precise results. 

5   Conclusion 

In this paper we propose a method that personalizes the order that video segments are 
presented to the user. The experimental data shows that the user experience is 
enhanced by presenting the video segments that are more aligned to a user’s taste. 
This benefits the user by increasing the confidence they have in the systems ability to 
provide relevant data that fits the user’s requirement for knowledge. The system 
improves over time as the user provides more feedback to the system. This enables 
the system to more accurately define the ranking process by attaining a higher degree 
of user preference specification. This also allows the user’s change in preferences 
over time to be mapped over time. This enables the ranking process to evolve as the 
user’s knowledge requirements change. Possible future research includes further 
experiments with more users and items, which will simulate a practical real 
environment. We’ll also investigate how content based profiles, which are being 
updated during users interaction, can be utilized to calculate the similarity between 
users.  
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Abstract. Classifier combination has been investigated as a new research field
to improve recognition reliability by taking into account the complementarity
between classifiers, in particular for automatic semantic-based video content in-
dexing and retrieval. Many combination schemes have been proposed in the liter-
ature according to the type of information provided by each classifier as well as
their training and adaptation abilities. This paper presents an overview of current
research in classifier combination and a comparative study of a number of com-
bination methods. A novel training technique called Weighted Ten Folding based
on Ten Folding principle is proposed for combining classifier. Experiments are
conducted in the framework of the TRECVID 2005 features extraction task that
consists in ordering shots with respect to their relevance to a given class. Finally,
we show the efficiency of different combination methods.

1 Introduction

With the development of multimedia devices, more and more videos are generated every
day. Despite the fact that no tools are yet available to search and index multimedia data,
many individual approaches have been proposed by the research community. Video con-
tent interpretation is a highly complex task which requires many features to be fused.
However, it is not obvious how to fuse them. The fusion mechanism can be done at
different levels of the classification. The fusion process may be applied either directly
on signatures (feature fusion) or on classifier outputs (classifier fusion). The work pre-
sented in this paper focuses on the fusion of classifier outputs for semantic-based video
content indexing.

Combination of multiple classifier decisions is a powerful method for increasing
classification rates in difficult pattern recognition problems. To achieve better recog-
nition rates, it has been found that in many applications, it is better to fuse multiple
relatively simple classifiers than to build a single sophisticated classifier.

There are generally two types of classifier combination: classifier selection and clas-
sifier fusion [1]. The classifier selection considers that each classifier is an expert in
some local area of the feature space. The final decision can be taken only by one clas-
sifier, as in [2], or more than one "local expert", as in [3]. Classifier fusion [4] assumes
that all classifiers are trained over the whole feature space, and are considered as com-
petitive as well as complementary. [5] has distinguished the combination methods of
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different classifiers and the combination methods of weak classifiers. Another kind of
grouping using only the type of classifiers outputs (class, measure) is proposed in [4].

Jain [6] built a dichotomy according to two criteria of equal importance: the type
of classifiers outputs and their capacity of learning. This last criteria is used by [1,7]
for grouping the combination methods. The trainable combiners search and adapt the
parameters in the combination. The non trainable combiners use the classifiers outputs
without integrating another a priori information of each classifiers performances.

As shown in figure 1, information coming from the various classifiers are fused to ob-
tain the final classification score. Gaussian mixture models, neural network and decision
templates are implemented for this purpose and evaluated in the context of information
retrieval.

Fig. 1. General framework of the application

The paper presents the research we conducted toward a semantic video content in-
dexing and retrieval system. It starts from a brief state of the art of existing combination
methods and involved classifiers, including mixture of Gaussian, neural network and
decision templates. All three methods are employed in turn to fuse and compared on
the difficult task of semantic contents of video shots estimation . Then, we describe
the visual and motion features that were selected. The results of our experiments in the
framework of TRECVID 2005 are then presented and commented. Finally, we conclude
with a summary of the most important results provided by this study along with some
possible extension of work.

2 Combination of Different Classifiers

The classifiers may be of different nature, e.g. the combination of a neural network,
a nearest neighbour classifier and a parametric decision rule, using the same feature
space. This section starts by describing non-trainable combiners and continues with
trainable ones.

2.1 Non Trainable Combiners

Here, we detail the combiners that are ready to operate as soon as the classifiers are
trained, i.e., they do not require any further training. The only methods to be applied
to combine these results without learning are based on the principle of vote. They are
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commonly used in the context of handwritten text recognition [8]. All the methods of
votes can be derived from the majority rule E with threshold expressed by:

E =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ci if max (

∑K
i ei) ≥ αK

Rejection else
(1)

where Ci is the ith class, K is the number of classifiers to be combined and ei is the
classifier output.

For α = 1, the final class is assigned to the class label most represented among
the classifier outputs else the final decision is rejected, this method is called Majority
Voting. For α = 0.5, it means that the final class is decided if more half of the classifiers
proposed it, we are in Absolute Majority. For α = 0, it is a Simple Majority, where
the final decision is the class of the most proposed among K classifiers. In Weighted
Majority Voting, the answer of every classifiers is weighted by a coefficient indicating
there importance in the combination [9].

The classifiers of type soft label outputs combine measures which represent the con-
fidence degree on the membership. In that case, the decision rule is given by the Linear
Methods which consist simply in applying to the outputs classifiers a linear Combina-
tion [10]:

E =
K∑

k=1

βkmk
i (2)

where βk is the coefficient which determines the attributed importance to kth classifier
in the combination and mk

i is the answer for the class i.

2.2 Trainable Combiners

Contrary to the vote methods, many methods use a learning step to combine results. The
training set can be used to adapt the combining classifiers to the classification problem.
Now, we present four of the most effective methods of combination.

Neural Network (NN). Multilayer perceptron (MLP) networks trained by back prop-
agation are among the most popular and versatile forms of neural network classifiers.
In the work presented here, a multilayer perceptron networks with a single hidden layer
and sigmoid activation function [11] is employed. The number of neurons contained in
the hidden layer is calculated by heuristic. A description of the feature vectors given to
the input layer is given in section 4.

Gaussian Mixture Models (GMM). The question with Gaussian Mixture Models is
how to estimate the model parameter M. For a mixture of N components and a D dimen-
sional random variable. In literature there exists two principal approaches for estimating
the parameters: Maximum Likelihood Estimation and Bayesian Estimation. While there
are strong theoretical and methodological arguments supporting Bayesian estimation,
in this study the maximum likelihood estimation is selected for practical reasons.

For each class, we trained a GMM with N components, using Expectation Maxi-
mization (EM) algorithm [12]. The number of components N corresponds to the model
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that best matches the training data. The likelihood function of conditional density
models is:

p(x; M) =
N∑

i=1

αiN(μi, Σi)(x) (3)

where αi is the weight of the ith component andN(.) is the Gaussian probability density
function with mean μi and covariance Σi.

N(μi, Σi)(x) =
1√

(2π)D|Σi|
exp

(
−1

2
(x − μi)TΣ−1

i (x − μi)

)
(4)

During the test, the class corresponding to the GMM that best fit the test data (ac-
cording to the maximum likelihood criterion) is selected.

Decision Templates (DT). The concepts of decision templates as a trainable aggrega-
tion rule was introduced by [1,7]. Decision Template DTk for each class k ∈ Ω (whereΩ
is the number of classes) can be calculated by the average of the local classifier outputs
Pn

m(x).

DTk(m, n) =

∑
x∈Tk

Pn
m(x)

Card(Tk)
(5)

where Tk is a validation set different from the classifier training set. Decision Templates
is a matrix of size [S ,K] with S classifiers and K classes. To make the information
fusion by arranging of K Decision Profiles (DP), it remains to determine which Decision
Template is the most similar to the profile of the individual classification.

Several similarity measures can be used, e.g., the Mahalanobis norm (equ.6) and
Swain & Ballard (equ.7) or the Euclidian distance (equ.8).

S im(DP(xi),DT k) = (
S ,K∑

m,n=1

(DP(xi)m,n − DT k
m,n))TΣ−1(

S ,K∑
m,n=1

(DP(xi)m,n − DT k
m,n)) (6)

where: m = 1, ..., S , n = 1, ...,K and Σ is the Covariance matrix.

S im(DP(xi),DT k) =

∑S ,K
m,n=1 min(DP(xi)m,n,DT k

m,n)∑S ,K
m,n=1(DT k

m,n)
(7)

S im(DP(xi),DT k) = 1 − 1
S K

S∑
m=1

K∑
n=1

(DP(xi)m,n − DT k
m,n) (8)

Finally, the decision is taken by the maximum of the similarity difference.

Genetic Algorithm (GA). Genetic algorithm have been widely applied in many fields
involving optimization problems. It is built on the principles of evolution via natural
selection: an initial population of individuals (chromosomes encoding the possible solu-
tions) is created and by iterative application of the genetic operators (selection,
crossover, mutation) an optimal solution is reached, according to the defined fitness
function [13].
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3 Combination of Weak Classifiers

In this case, large sets of simple classifiers are trained on modified versions of the orig-
inal dataset. The three most heavily studied approaches are outlined here: reweighting
the data (boosting-Adaboost), bootstrapping (bagging) and using random subspaces.
Then, we introduce a new training method inspired from Ten Folding.

3.1 Adaboost

The intuitive idea behind AdaBoost is to train a series of classifiers and to iteratively
focus on the hard training examples. The algorithm relies on continuously changing
the weights of its training examples so that those that are frequently misclassified get
higher and higher weights: this way, new classifiers that are added to the set are more
likely to classify those hard examples correctly. In the end, AdaBoost predicts one of
the classes based on the sign of a linear combination of the weak classifiers trained
at each step. The algorithm generates the coefficients that need to be used in this lin-
ear combination. The iteration number can be increased if we have time and with the
overfiting risk [14].

3.2 Bagging

Bagging builds upon bootstrapping and add the idea of aggregating concepts [15]. Boot-
strapping is based on random sampling with replacement. Consequently, a classifier
constructed on such a training set may have a better performance. Aggregating actually
means combining classifiers. Often a combined classifier gives better results than indi-
vidual base classifiers in the set, combining the advantages of the individual classifiers
in the final classifier.

3.3 Random Subspace (RS)

The Random Subspace method consists to modify the learning data as in Bagging and
Boosting. However, this modifications are realized on the features space. [15] showed
that RS method allows to maintain a weak learning error and to improve the generaliza-
tion error for the linear classifiers. It noticed that this method can outperform than the
bagging and boosting if the number of features is big.

3.4 Ten Folding Training Approaches

Ten Folding (TF). In front of the limitation (number of samples) of TrecVid’05 test
set, N-Fold Cross Validation can be used to solve this problem.

The principle of Ten Folding is to divide the data in N = 10 sets, where N − 1 sets
are used for training data and the remaining to test data. Then, the next single set is
chosen for test data and the remaining sets as training data, this selection process is
repeated until all possible combination have been computed as shown in figure 2. The
final decision is given by averaging the output of each model.
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Weighted Ten Folding (WTF). With TrecVid’05 test set limitation in mind, the well-
known Bagging instability [15] (i.e. a small change in the training data produces a big
change in the behavior of classifier) and the overfitting risk for Adaboost (i.e. when the
iteration number is big [14]), we propose a new training method based on Ten Folding
that we call Weighted Ten Folding.

We use the Ten Folding principle to train and obtain N models weighted by a co-
efficient indicating the importance in the combination. The weight of each model is
computed using the single set. The final decision combines measures which represent
the confidence degree of each model.

The weighted average decision in WTF improves the precision of Ten Folding by
giving more importance for models with weak training error, contrary to the Ten Folding
who takes the output average of each model with the same weight.
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Fig. 2. The standard Ten Folding and Weighted Ten Folding combination classifier

4 Video Features

As far as this paper is concerned, we distinguish two types of modalities, visual and
motion features, to represent video content.

4.1 Visual Features

To describe the visual content of a shot, features are extracted from key-frames. Two
visual features are selected for this purpose: Hue-Saturation-Value color histograms and
energies of Gabor’s filters [16]. In order to capture the local information in a way that
reflects the human perception of the content, visual features are extracted on regions
of segmented key-frames [17]. Then, to have reasonable computation complexity and
storage requirements, region features are quantized and key-frames are represented by
a count vector of quantization vectors. At this stage, we introduce latent semantic in-
dexing to obtain an efficient region based signature of shots. Finally, we combine the
signature of the key-frame with the signatures of two extra frames in the shot, as it is
described in [18], to get a more robust signature.
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4.2 Motion Features

For some concepts like people walking/running, sport, it is useful to have an information
about the motion activity present in the shot. Two features are selected for this purpose:
the camera motion and the motion histogram of the shot. For sake of fastness, these
features are extracted from MPEG motion vectors. The algorithm presented in [19] is
used to estimate the camera motion. The average camera motion over the shot is com-
puted and subtracted from macro-block motion vectors to compute the 64 bins motion
histogram of moving objects in a frame. Then, the average histogram is computed over
frames of the shot.

5 Experiments and Discussion

Experiments are conducted on the TRECVID 2005 databases [20]. It represents a to-
tal of over 85 hours of broadcast news videos from US, Chinese, and Arabic sources.
About 60 hours are used to train the feature extraction system and the remaining for the
evaluation purpose. The training set is divided into two subsets in order to train classi-
fiers and subsequently the fusion parameters. The evaluation is realized in the context of
TRECVID and we use the common evaluation measure from the information retrieval
community: the mean precision.

The feature extraction task consists in retrieving shots expressing one of the fol-
lowing semantic concepts: 1:Building, 2:Car, 3:Explosion or Fire, 4:US flag, 5:Map,
6:Mountain, 7:Prisoner, 8:Sports, 9:People walking/running, 10:Waterscape.

Figure 3 shows Mean Precision results for the trainable combiners presented in sec-
tion (2.2), the NN improves the precision result for all semantic concept when compared
with results obtained by Genetic Algorithm [18]. This improvement is clearly visible
on the semantic concept (5, 10, 11: Mean Average Precision), where the GA approach
had an overfitting problem which damaged the average precision.

Figure 4 shows the variation of Mean Average Precision results for Decision Tem-
plates using different norms (Swain & Ballard, Euclidean and Mahalonibis) for similarity
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computation. Similar results are obtained for all three norms, which indicates that the
Decision Templates method is more sensitive to data than to the chosen norm.

In the next experiment, Adaboost and Bagging principles are employed to increase
the performances of GMM and Neural Network methods, considering them as weak
classifier. As seen in figure 5, on average for all semantic concept the WTF approach
outperforms in turn boosting, bagging and Ten Folding technique in spite of the lack of
datum. Significant improvement have been noticed for the following semantic concepts
(4, 5, 6, 8,11:Mean Average Precision). This can be explained by the weight computa-
tion, which is computed on a validation set independently to training set. This allows to
have more representative weights in the test for the whole classifier. So, we have best
level-handedness of whole classifier contrary to boosting, where the weights computa-
tion is made by the training set.
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Fig. 6. Examples of first retrieved shots for waterscape, car and map classes

To conclude this section, figure 6 gives examples of first retrieved shots on TRECVID
2005 dataset for the classes waterscape, car and map to illustrate the efficiency of our
classification method.
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6 Conclusion

Fusion of classifiers is a promising research area, which allows the overall improvement
of the system recognition performance. The work made on the combination also shows
the multitude of combination methods which are different by their learning capacity and
outputs classifier type.

Our experiments based on the TRECVID 2005 video database, show that Multilayer
Neural Network and GMM approaches can improve the combination performance in
comparison to the combination of multiple classifiers with averaging [21] and Genetic
algorithm [13]. The results are very promising on the difficult problem of video shot
content detection, using color, texture and motion features.

AdaBoost and Bagging as they were originally proposed did not show a significant
improvement, despite their special base model requirements for dynamic loss and pro-
hibitive time complexity. It is due to the TRECVID test set limitation and overfitting
risk if the iteration number is big. The WTF resolves this last problem and improves
Bagging and Adaboost results.

We have started to investigate the effect of the addition of many other visual features
(Dominant Color, RGB, Canny edges features,...) as well as audio features (MFCC,
PLP, FFT), to see their influence on the final result, and how the different approaches
are able to deal with potentially irrelevant data. In parallel, we have initiated a program
of work about descriptor fusion. We believe such an approach, which may be seen as
normalization and dimensionality reduction [22], will have considerable effect on the
overall performance of multimedia content analysis algorithms.
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Abstract. We propose a method of content-based multimedia retrieval
of objects with visual, aural and textual properties. In our method, train-
ing examples of objects belonging to a specific semantic class are associ-
ated with their low-level visual descriptors (such as MPEG-7) and textual
features such as frequencies of significant keywords. A fuzzy mapping of
a semantic class in the training set to a class of similar objects in the
test set is created by using Self-Organizing Maps (SOMs) trained from
automatically extracted low-level descriptors. We have performed sev-
eral experiments with different textual features to evaluate the potential
of our approach in bridging the gap from visual features to semantic
concepts by the use textual presentations. Our initial results show a
promising increase in retrieval performance.

1 Introduction

The amounts of multimedia content available to the public and to researchers
has been growing rapidly in the last decades and is expected to increase ex-
ponentially in the years to come. This development puts a great emphasis on
automated content-based retrieval methods, which retrieve and index multime-
dia based on its content. Such methods, however, suffer from a serious problem:
the semantic gap, i.e. the wide gulf between the low-level features used by com-
puter systems and the high-level concepts understood by human beings. In this
paper we propose a method of using different textual features to help bridge the
semantic gap from visual features to semantic concepts.

We have used our PicSOM [1] content-based information retrieval (CBIR)
system with video data and semantic classes from the NIST TRECVID 20051

evaluation set. The TRECVID set contains TV broadcasts in different languages
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76 M. Sjöberg et al.

and textual data acquired by using automatic speech recognition software and
machine translation where appropriate. Both the training and evaluation sets are
is accompanied with verified semantic ground truth sets such as videos depicting
explosions or fire.

The general idea is to take a set of example videos in the training set belonging
to a given semantic class and map these onto the test set by using Self-Organizing
Maps that have been trained with visual and textual feature data calculated
from the video objects. This mapping generates different relevance values for
the objects in the test set which can be interpreted as membership values of
a fuzzy set corresponding the given semantic class. I addition to a basic set of
visual and aural features, experiments comparing the retrieval accuracy with
different textual features were performed. In this paper we discuss experiments
using word histogram and keyword frequency features using SOMs and a binary
keyword feature using an inverted file.

Section 2 describes the PicSOM CBIR system and Section 3 the TRECVID
video data in more detail. Section 4 discusses how textual features can help in
bridging the semantic gap between visual features and high-level concepts. The
feature extraction methods are explained in Section 5 and the experiment results
in Section 6. Finally, conclusions are drawn in Section 7.

2 PicSOM CBIR System

The content-based information retrieval system PicSOM [1] has been used as a
framework for the research described in this paper. PicSOM uses several Self-
Organizing Maps (SOMs) [2] in parallel to index and determine the similarity
and relevance of database objects for retrieval. These parallel SOMs have been
trained with different data sets acquired by using different feature extraction
algorithms on the objects in the database. This results in each SOM arranging
the objects differently, according to the corresponding feature.

Query by example (QBE) is the main interactive operating principle in Pic-
SOM, meaning that the user provides the system a set of example objects of what
he or she is looking for, taken from the existing database. This relevance infor-
mation is used in the PicSOM system which expands the relevance assessment
to related objects, such as keyframe images and textual data of a video.

For each object type (i.e. video, image, text), all relevant-marked objects in
the database of that type get a positive weight inversely proportional to the
total number of relevant objects of the given type. Similarly the non-relevant
objects get a negative weight inversely proportional to their total number. The
grand total of all weights is thus always zero for a specific type of objects. On
each SOM, these values are summed into the best-matching units (BMUs) of the
objects, which results in sparse value fields on the map surfaces.

After that the value fields on the maps are low-pass filtered or “blurred” to
spread the relevance information between neighboring units. This produces to
each map unit a qualification value, which is given to all objects that are mapped
to that unit (i.e. have it as the BMU). Map areas with a mixed distribution of
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positive and negative values will even out in the blurring, and get a low average
qualification value. Conversely in an area with a high density of mostly positive
values, the units will reinforce each other and spread the positive values to
their neighbors. This automatically weights the maps according to relevance
and coherence with the user’s opinion.

The next processing stage is to combine the qualification values gained from
each map to the corresponding objects. These values are again shared with re-
lated objects. The final stage is to select a specific number of objects of the
desired target type with the highest qualification values. These will be returned
to the user as retrieval results.

The PicSOM system has typically been used in interactive retrieval where the
user can influence the response of the system with relevance feedback and the
results will improve in each iteration. In this paper, however, we run only one
non-interactive iteration, as we are merely interested in the mapping abilities of
the SOMs for semantic concepts using textual and other features.

3 TRECVID Video Data

In 2005 our research group at Helsinki University of Technology took part in the
TRECVID 2005 video retrieval evaluations [3]. The TRECVID data contains
about 790 videos divided into a total of almost 100 000 video clips. From this
set we picked only those that had some associated textual data and semantic
classifications, resulting in a set of about 35 000 video clips. These video clips
were used for the experiments described in this paper. Each video clip has one
or many keyframes, which were representative still images taken from the video.
Also the sound of the video was extracted as audio data. TRECVID provided
textual data acquired by using automatic speech recognition software and ma-
chine translation from Chinese (Mandarin) and Arabic to English.

In the PicSOM system the videos and the parts extracted from these were
arranged as hierarchical trees as shown in Fig. 1, with the main video as the
parent object and the different extracted media types as child objects. In this
way the relevance assessments can be transferred between related objects in the
PicSOM algorithm as described in the previous section. From each media type
different features were extracted, and Self-Organizing Maps were trained from
these as is shown with some examples in the figure.

A large set of semantic sets were provided with the TRECVID data. These
are each a set of video clips both in the training and test sets that belong to
a given semantic class, for example videos depicting an exterior of a building.
Table 1 shows the eight semantic classes that were used in our experiments. The
first and second columns in the table give the number of videos in the training
set and in the test set respectively. The given description is a shortened version
of the one that was used when the classes were selected by hand during the
TRECVID evaluations.
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Fig. 1. The hierarchy of videos and examples of multi-modal SOMs

Table 1. Semantic classes from the TRECVID 2005 data set

training set test set description
109 265 an explosion or a fire
376 282 depicting regional territory graphically as a map
123 151 depicting a US flag

1578 943 an exterior of a building
375 420 depicting a waterscape or waterfront
23 32 depicting a captive person, e.g., imprisoned, behind bars

460 437 depicting any sport in action
1279 1239 a car

4 Bridging the Semantic Gap with Textual Features

The PicSOM system was initially designed for images, and particularly using
visual features only. Such features describe images on a very low abstraction
level, for example local color distributions, and do not generally correspond very
well with the human perception of an image. In the experiments described in this
paper we have also used video and aural features, but the problem remains the
same: a very low-level feature description cannot match human understanding.

However, textual features do have a closer relationship to semantic concepts,
as they describe the human language which has a much closer relation to the se-
mantic concepts than for example low-level visual features. By including textual
features we hope to bring the feature and concept levels closer and thus help
to bridge the semantic gap. By using SOM techniques this is done in a fuzzy
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manner, providing only semantic class membership values for each video, which
is appropriate as such relationships can never be defined exactly, even by human
beings.

Different textual features and retrieval methods exists. In this paper we will
concentrate on the PicSOM system and try out three different textual features
described in more detail in the following section.

5 Feature Extraction

5.1 Non-textual Features

From the videos we calculated the standard MPEG-7 Motion Activity descriptor
using the MPEG-7 Experimentation Model (XM) Reference Software [4]. We also
calculated our own non-standard temporal features of color and texture data.

A temporal video feature is calculated as follows. Each frame of the video
clip is divided into five spatial zones: upper, lower, left, right and center. A still
image feature vector is calculated separately for each zone and then concatenated
to form frame-wise vectors. The video clip is temporally divided into five non-
overlapping video sub-clips or slices of equal length. All the frame-wise feature
vectors are then averaged within the slices to form a feature vector for each slice.
The final feature vector for the entire video clip is produced by concatenating
the feature vectors of the slices. For example using the 3-dimensional average
RGB color still image feature we would get a final vector with a dimensionality
of 3 × 5 × 5 = 75. The idea is to capture how the averaged still image features
change over time in the different spatial zones.

We used average RGB color, texture neighborhood and color moments each
separately as a basis for the temporal feature algorithm. Texture neighbour-
hood is a simple textural feature that examines the luminance values of the
8-neighbourhood of each inner pixel in an image. The values of the feature vec-
tor are then the estimated probabilities that the neighbor pixel is brighter than
the central pixel (given for each 8-neighborhood position).

If we treat the values in the different color channels of the HSV color space
as separate probability distributions we can calculate the three first central mo-
ments: mean, variance and skewness. And when we calculate these for each of
the five zones mentioned we get our third feature: color moments.

From the still images we calculated the following standardized MPEG-7 de-
scriptors using the MPEG-7 XM software: Edge Histogram, Homogeneous Tex-
ture, Color Structure and Color Layout. Additionally we used a Canny edge
detection feature which was provided by TRECVID.

From the audio data we calculated the Mel-scaled cepstral coefficient [5], i.e.
the discrete cosine transform (DCT) applied to the logarithm of the mel-scaled
filter bank energies. This feature is calculated using an external program created
by the Speech recognition group at the Laboratory of Computer and Information
Science at the Helsinki University of Technology2.
2 http://www.cis.hut.fi/projects/speech/
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5.2 Word Histogram

The word histogram feature is calculated in three stages. First a histogram is
calculated for each textual object (document) in the database giving the fre-
quencies of all the words in that text. Then the document-specific histograms
are combined into a single histogram or dictionary for the whole database. The
final word histogram feature vectors are calculated for each document by com-
paring its word frequencies to the dictionary, i.e. the words in the database-wide
histogram. For each word that does not belong to the list of stop words (i.e. not
commonly used words such as “the”) in the dictionary we calculate the tf-log-idf
weight [6] for the document. The resulting feature vector then gives the tf-log-idf
values for all dictionary words in that document.

The tf-idf weight is commonly used in information retrieval and is given as the
product of the term frequency and the inverse document frequency. The term
frequency for a word k in one document is calculated as

tfk =
nk∑

j∈KD
nj

, (1)

where nk is the number of occurrences of the word k and the denominator gives
the number of occurrences of all dictionary words KD in the document. The
corresponding document frequency is calculated as

dfk =
Nk

N
, (2)

where Nk is the number of documents where the word k appears, and N is the
total number of documents. The tf-log-idf is then given as the product of Eq. (1)
and the log-inverse of Eq. (2):

tf-log-idfk =
nk∑

j∈KD
nj

log
N

Nk
. (3)

The feature vector produced in this manner has a dimensionality of about
27 000. This is finally reduced to 100 by using singular value decomposition.

5.3 Keyword Frequency

Information about word occurrence frequencies were used to extract relevant
keywords from each text document. Specifically, the frequency of occurrence for
each word was compared to the corresponding frequency in another text corpus
which was assumed to be neutral of domain specific terms. In these experiments,
the Europarl corpus [7], extracted from European parliament proceedings, was
used as the reference corpus. For each word, the ratio of the word’s rank in
the list of most frequent words in the document to the corresponding rank in
the reference corpus was computed as an indicator of a semantically relevant
keyword. Using this scheme words such as ’nuclear’ would result in a high ratio
despite rare occurrence in the document while words such as ’the’, ’on’ or ’and’
would result in a low ratio regardless of frequent occurrence in the document.
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5.4 Binary Keyword Features

A recent extension of the PicSOM system allows the usage of an inverted file as
an index instead of the SOM [8]. The binary keyword feature is such a feature,
where an inverted file contains a mapping from words to the database objects
containing them.

The binary keyword features were constructed by gathering concept-depen-
dent lists of most informative terms. Let us denote the number of video clips
in the training set associated with semantic class c as Nc and assume that of
these videos, nc,t contain the term t in the textual data. Using only non-stop
words which have been stemmed using the Porter stemming algorithm [9], the
following measure can be calculated for term t regarding the class c:

Sc(t) =
nc,t

Nc
− nall,t

Nall
. (4)

For every semantic class, we record the 10 or 100 most informative terms
depending on which one gives better retrieval performance.

The inverse file is then created as mapping from these informative words to the
database objects (texts) that contain them. In the PicSOM system a measure
indicating the closeness of a textual object i to the semantic class c used in
generating the inverse file can be calculated as

Si,c =
∑

k

δi,k

Nk
, where δi,k =

{
1 if k exists in i,
0 otherwise,

(5)

and where sum is taken over all words k in the inverse file, and where Nk is
the total number of textual objects that contain the keyword k. The higher the
value of Si,c for a specific textual object is, the closer it is deemed to be to the
given class c. The value of this measure is then added to the qualification values
of objects produced by the visual and aural features.

6 Experiment Results

Four experiment runs are presented in this paper, each for a different combi-
nation of features used: (i) only non-textual features, and non-textual features
combined separately with (ii) word histogram, (iii) keyword frequency, and (iv)
binary keyword features. The binary keyword feature used different inverted files
for each semantic class as explained previously. Each experiment was performed
separately for each of the eight semantic classes, and the performance was eval-
uated using the average precision of retrieval.

The non-interpolated average precision is formed by calculating the precision
after each retrieved relevant object. The final per-class measure is obtained by
averaging these precisions over the total number of relevant objects, when the
precision is defined to be zero for all non-retrieved relevant objects. The per-class
average precision was finally averaged over all semantic classes to generate an
overall average precision.



82 M. Sjöberg et al.

The experiment results are summarized in Table 2, with the best results for
each class indicated in bold face. The results show how the retrieval performance
increases as the textual features are used. Overall the binary keyword features
make a substantial improvement, while the keyword frequency and word his-
togram features give much smaller improvements. If we look at the class-wise
results, the binary keywords feature performs best in half of the cases, often with
a considerable advantage over the other methods. Keyword frequency seems to
do worst overall of the three textual features, but in three cases it is still better
than the others, although with a small margin only.

One explanation for the relatively bad results of the keyword frequency and
word histogram features is the low quality of the textual data. Speech recognition
is never perfect, and machine translation reduces the quality even more. A visual
inspection of the texts shows many unintelligible words and sentences. On the
other hand, a sufficient number of correct words still seem to get through to
make a significant difference. The fact that the binary keyword feature compares
keywords with the rest of the database instead of a task-neutral external corpus,
as the keyword frequency feature does, can explain the differences as well.

Table 2. Average precision results for experiments

semantic class non-textual kw freq. word hist. binary kw
an explosion or a fire 0.0567 0.0567 0.0582 0.0680
map of regional territory 0.3396 0.3419 0.3418 0.3423
depicting a US flag 0.0713 0.0715 0.0716 0.0808
an exterior of a building 0.0988 0.0993 0.0989 0.0972
waterscape or waterfront 0.2524 0.2525 0.2524 0.2500
captive person 0.0054 0.0059 0.0058 0.0029
any sport in action 0.2240 0.2242 0.2258 0.2675
a car 0.2818 0.2820 0.2843 0.2820
overall average 0.1662 0.1667 0.1674 0.1739

7 Conclusions

In this paper, we have studied the mapping of semantic classes of videos from
a training set to a test set using Self-Organizing Maps. The nature of the re-
sulting presentation of a semantic class can be understood as a fuzzy set where
the relevance or qualification values of the retrieved videos can be interpreted as
membership values. Furthermore we have studied the effect of using textual fea-
tures in addition to our original non-textual, mostly visual, features. As textual
features have a closer relation to the semantic concepts as expressed in lan-
guage we hope to narrow the semantic gap and as a result increase the retrieval
performance of our PicSOM CBIR system.

Our initial experiments do indeed demonstrate that this arrangement im-
proves the performance of the system somewhat, although not in all cases as
much as one might have hoped for. Especially the keyword frequency feature
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has some future potential as new improvements are currently being implemented.
The choice of reference corpus should be pondered, for example using several cor-
pora would decrease the dependence of a specific choice. Also using the entire
TRECVID textual database set itself as a corpora should increase accuracy. Our
initial results however show a great potential for this method and inspires us to
continue research in this area.
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Abstract. In this paper a new relevance feedback (RF) methodology for content 
based image retrieval (CBIR) is presented. This methodology is based on 
Gaussian Mixture (GM) models for images. According to this methodology, the 
GM model of the query is updated in a probabilistic manner based on the GM 
models of the relevant images, whose relevance degree (positive or negative) is 
provided by the user. This methodology uses a recently proposed distance 
metric between probability density functions (pdfs) that can be computed in 
closed form for GM models. The proposed RF methodology takes advantage of 
the structure of this metric and proposes a method to update it very efficiently 
based on the GM models of the relevant and irrelevant images characterized by 
the user. We show with experiments the merits of the proposed methodology. 

1   Introduction 

The target of content-based image retrieval (CBIR) is to retrieve relevant images from 
an image database based on their visual content.  Users submit one or more example 
images for query. Then, the CBIR system ranks and displays the retrieved results in 
order of similarity. Most CBIR systems ([1] – [8]) represent each image as a 
combination of low-level features, and then define a distance metric that is used to 
quantify the similarity between images. A lot of effort has been devoted in developing 
features and strategies that capture human perception of image similarity in order to 
enable efficient indexing and retrieval for CBIR, see for example [5],[9],[10] and 
[16]. Nevertheless, low-level image features have a hard time capturing the human 
perception of image similarity. In other words, it is difficult using only low-level 
images features to describe the semantic content of an image. This is known in the 
CBIR community as the semantic gap problem and for a number of years it has been 
considered as the “holy grail” of CBIR [11]. 

Relevance feedback (RF), has been proposed as a methodology to ameliorate this 
problem, see for example [1] - [3] and [6] - [8]. RF attempts to insert the subjective 
human perception of image similarity into a CBIR system. Thus, RF is an interactive 
process that refines the distance metric of a query interacting with the user and taking 
into account his/her preferences. To accomplish this, during a round of RF users are 
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required to rate the retrieved images according to their preferences. Then, the retrieval 
system updates the matching criterion based on the user’s feedback, see for example 
[1] – [3], [6] – [8], [15] and [16]. 

Gaussian mixtures (GM) constitute a well-established methodology to model 
probability density functions (pdf).  The advantages of this methodology such as 
adaptability to the data, modeling flexibility and robustness have made GM models 
attractive for a wide range of applications ([17] and [18]). The histogram of the image 
features is a very succinct description of an image and has been used extensively in 
CBIR, see for example [4] and [9]. As mentioned previously GM provide a very 
effective approach to model histograms. Thus, GM models have been used for the 
CBIR problem ([4], [14] and [17]). The main difficulty when using a GM model in 
CBIR is to define a distance metric between pdfs that separates well different models, 
and that can be computed efficiently. The traditionally used distance metric between 
pdfs the Kullback-Liebler (KL) distance cannot be computed in closed form for GM 
models. Thus, we have to resort to random sampling Monte-Carlo methods to 
compute KL for GMs. This makes it impractical for CBIR where implementation time 
is an important issue. In [14] the earth movers distance (EMD) was proposed as an 
alternative distance metric for GM models. Although the EMD metric has good 
separation properties and is much faster to compute than the KL distance (in the GM 
case) it still requires the solution of a linear program. Thus, it is not computable in 
closed form and is not fast enough for a CBIR system with RF. 

In this paper we propose the use for RF of an alternative distance metric between 
pdfs which was recently proposed in [21]. This metric can be computed in closed 
form for GM models. In this paper we propose an efficient methodology to compute 
this metric in the context of RF. In other words, we propose a methodology to update 
the GM model of the image query based on the relevant images. Furthermore, we 
propose an effective strategy that requires very few computations to update this 
distance metric for RF. The rest of this paper is organized as follows: in section 2 we 
describe the distance metric. In section 3 we present the proposed RF methodology 
based on this metric. In section 4 we present experiments of this RF methodology that 
demonstrate its merits. Finally, in section 5 we present conclusions and directions for 
future research. 

2   Gaussian Mixture Models for Content-Based Image Retrieval 

GM models have been used extensively in many data modeling applications. Using 
them for the CBIR problems allows us to bring to bear all the known advantages and 
powerful features of the GM modeling methodology, such as adaptability to the data, 
modeling flexibility, and robustness that make it attractive for a wide range of 
applications ([18] and [19]). GM models have been used previously for CBIR, see for 
example [4] and [14], as histograms models of the features that are used to describe 
images. A GM model is given by 

( ) ( )
1

K

i j i j
j

p x xπ φ θ
=

=                                           (1) 
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where K is the number of components in the model, 0 1jπ≤ ≤  the mixing 

probabilities of the model with 
1

1
K

j
j

π
=

= , and ( ) ( ): ,i j i j j jx N xφ θ θ μ= = Σ a 

Gaussian pdf with mean jμ  and covariance jΣ . 

In order to describe the similarity between images in this context a distance metric 
must be defined. The Kullback-Leibler (KL) distance metric is the most commonly 
used distance metric between pdfs, see for example [10]. However, the KL distance 
cannot be computed in closed form for GMs. Thus, one has to resort to time 
consuming random sampling Monte Carlo methods. For this purpose a few 
alternatives have been proposed. In [14] the Earth Movers Distance (EMD) metric 
between GMs was proposed. This metric is based on considering the probability mass 
of one GM as piles of earth and of the other GM as holes in the ground and then 
finding the least work necessary to fill the wholes with the earth in the piles. EMD is 
an effective metric for CBIR however it cannot be computed in closed form and 
requires the solution of a linear program each time it has to be computed. This makes 
it slow and cumbersome to use for RF. 

In order to ameliorate this difficulty a new distance metric was proposed in [21]. 

This metric between two pdfs ( )1
p x  and ( )2

p x  is defined as 

( )
( ) ( )

( ) ( )
1 2

1 2 2 2

1 2

2
2 , log

p x p x dx
C p p

p x dx p x dx
= −

+
                         (2) 

and can be computed in closed form when ( )1p x  and ( )2p x  are GMs. In this case 

it is given by 

( )

( )
( )

( )
( )

( )
( )
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, 1 2

1 2
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i j k i j
i j i j
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V i j

e
C p p
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e e

π π

π π π π

Σ Σ
= −

+
Σ Σ Σ Σ

         (3) 

where 

( ) 11 1( , )ml mi ljV i j
−− −= Σ + Σ , 

( ) ( ) ( )1
( , )

T

ml mi lj mi lj mi ljk i j μ μ μ μ
−

= − Σ + Σ − , 

miπ  the mixing weight of the i-th Gaussian kernel of mp , and, finally, ,mi miμ Σ  are 

mean and covariance matrices for the kernels of the Gaussian mixture mp . 
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3   Relevance Feedback Based on the C2 Metric 

For a metric to be useful in RF, it is crucial to be easily updated based on the relevant 
images provided by the user. Thus, assume we have a query modeled as ( )GMM q , 

and the database images modeled by ( )iGMM d  for 1, ...,i N= . The search based on 

this query requires the calculation of a 1N ×  table of the distances 2( , )iC q d . Also 

assume that from the retrieved images the user decides that the images with models 

( )
m

GMM r  1, 2m M=  are the most relevant and desires to update his query based 

on them. One simple and intuitive way to go about it is to generate a new GM model 
given by 

( ) ( ) ( ) ( )
1

' 1
M

m m

m

GMM q GMM q GMM rλ
=

= − Λ +                      (4) 

where   0 1mλ≤ ≤ , 
1

M

m

m

λ
=

= Λ ,   0< 1Λ < , and  is the relevance that is assigned to 

the image mr  by the user. The attractive feature of the model in Eq. (4) is that 

relevance mλ  has a physical meaning; it is proportional to the relevance degree 

assigned by the user and this defines a “composite GM model” that also includes the 
user preferences.  

Furthermore, it is desirable to be able to efficiently compute the distances between 
the entries ( )iGMM d  for 1,2i N=  and the new query model ( )GMM q′ . Based 

on Eq. (3), the distance C2 is composed by sums of the type 

( )
( ),

,

,
ml

ml

ml mi lj k i j
i j mi lj

V i j
S

e
π π=

Σ Σ
 where m, l indicate the GM models and i, j the 

Gaussian components. Based on q. (4) the update of the distance measure for the 
new query 'q  is given by:. 

( )
( ) ( )2

' '
'

2 1 2
2( ', ) log

1 2 1

rqi ri
r

i

qq r qr r iir rr
r r r

S S
C q d

S S S S

λ

λ λ λ

− Λ +
= −

− Λ + − Λ + +

            (5) 

The relevant images, indicated by r  are the database images selected by the user. 

Since we can a priori compute (and store) the ijS  for all the images of the database 

and since all qiS  have already been computed in the previous query, the computation 

of the distance between ( )GMM q′  and the database image models is very fast since 

it involves only rescaling operations based on the relevance probabilities rλ . Another 

nice property (for relevance feedback) of the model in Eq. (4), is that it can be 
generalized for any 2( )C q  which models distance between histograms. In other 
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words, the pdfs ( )1
p x  and ( )2

p x  need not be GMs and could be even simple 

histograms. 
The images retrieved by the system at each retrieval epoch that are not selected by 

the user as relevant, can be regarded as irrelevant. The determination of the irrelevant 
images could also be done in a more sophisticated manner that involves explicit 
selection by the user. Thus, using such images negative feedback can be provided and 
exploited to update the query. We can thus define in a way similar to Eq. (4) an 
updated query ( ')GMM n  for the irrelevant images: 

( )( ') 1 ( ) ( )n n

n m m

m

GMM n GMM n GM rλ= − Λ +                               (6) 

where , 'n n  correspond to the negative query and , n

n m
λΛ  are analogous to the 

previously mentioned ,
m

λΛ . The best images to retrieve can be found by combining 

both positive and negative RF. This can be done by minimizing the following distance 
metric: 

( ) ( )( , ) 1 (1 ( , ))
pos pos

c i a d q i a d n i= + − −                                 (7) 

where 

( ) ( )
( )

2 ,
,

max 2 ,

i

i i

C q d
d q i

C q d
=   and  ( ) ( )

( )
2 ,

,
max 2 ,

i

i i

C n d
d n i

C n d
=  

with 0 1
pos

a≤ ≤ . After computing the metric ( )c i  for every database image, we can 

retrieve the images with the smallest value for this measure. These images will have 
the property of being near to the user ideal query, which is determined by the initial 
query and the positive examples, and far away of the user negative examples. 

4   Experimental Results 

In order to test the validity of this approach we used about 1000 annotated low 
resolution images from the image database in [22]. These images have been manually 
separated into 12 semantic categories according to their content (e.g. bears, 
butterflies, earth pictures etc). The features extracted by the images pixels correspond 
to the color scheme CIE-Lab ([14]). The GM parameters for each image were 
estimated with the very popular EM algorithm which for robustness was initialized 
with multiple runs of k-means algorithm. The number of components for every image 
was chosen empirically to be 5. In all the experiments, we chose to use full covariance 
for the GM components. A simple graphical user interface has been developed in 
order to visualize the results of our relevance feedback scheme. The user can choose 
the number of images which the system will retrieve at each round, the value of 

parameters ,
n

Λ Λ , the positive examples weight 
pos

a  and the database image which 
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Fig. 1. Initial set of retrieved images by the system and user relevant images selection 

 

Fig. 2. Retrieved images and user choices after the first RF stage 
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Fig. 3. Retrieved images after the second RF stage 

will constitute the initial query. The parameters , n

m m
λ λ  for the positive and negative 

examples are given equal values regardless of m, because user is not required to 
specify the relative degree of relevance or irrelevance of the chosen images. In the 
Figures 1-3, a typical evolution of the RF process is demonstrated for 

0.8
n pos

aΛ = Λ = = . The image on the top is the initial user query and the images 

regarded as the most relevant by the system are displayed from the left to the right 
and from the second row to the last row. The feedback of the user is provided by 
selecting the relevant images. The retrieval of the images is performed very rapidly 
due to the efficient way of computing the distances (Eq. 5).  

In order to quantify the performace of the system we designated a relevance 
feedback simulation. In this simulation scheme, each image of the database was used 
as a query and relevant images were retrieved until three specific Recall Levels [20] 
(RecLev= 0.05, 0.1 and 0.2) are reached. For these Recall Levels the Precision [20] 
was specified. The retrieved relevant images were also specified and the percentage of 
them used for relevance feedback in this simulation is denoted as rprc. Also with 
nrprc we denote the percentage of non relevant retrieved images used for negative 
relevance feedback. The relevant and irrelevant images used in RF are selected at 
random from the sets of retrieved relevant and irrelevant images respectively. Tables 
1 and 2 show the progression in Precision for three Recall levels during different 
rounds of relevance feedback averaged over the entire database. In the first table 

results we neglect the negative examples ( 1
pos

a = ) and in the second table we include 
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Table 1. Average Precision over the entire database at given Recall levels during different 
rounds of relevance feedback of positive examples 

RecLev Initial 1st RF 2nd RF 3rd RF 4th RF 5th RF 
0.05 0.6232 0.76736 0.81253 0.82745 0.83502 0.84404 
0.1 0.5572 0.73305 0.77221 0.78665 0.79092 0.80075 
0.2 0.46628 0.6438 0.66458 0.66935 0.67545 0.67633 

(a) rprc = 0.5 
 

RecLev Initial 1st RF 2nd RF 3rd RF 4th RF 5th RF 
0.05 0.6232 0.84622 0.87761 0.88669 0.88761 0.88848 
0.1 0.5572 0.78157 0.81357 0.82486 0.83003 0.83309 
0.2 0.46628 0.67363 0.69462 0.70154 0.70801 0.71063 

(b) rprc = 1.0 

Table 2. Average Precision over the entire database at given Recall levels during different 
rounds of relevance feedback of positive and negative examples 

RecLev Initial 1st RF 2nd RF 3rd RF 4th RF 5th RF 
0.05 0.6232 0.81673 0.85783 0.88485 0.90192 0.90261 
0.1 0.5572 0.7863 0.82877 0.84927 0.85469 0.85271 
0.2 0.46628 0.72084 0.76122 0.76303 0.77079 0.7687 

(a) rprc = 0.5, nrprc = 0.5 
 

RecLev Initial 1st RF 2nd RF 3rd RF 4th RF 5th RF 
0.05 0.6232 0.9036 0.93898 0.94864 0.95506 0.95733 
0.1 0.5572 0.84827 0.89067 0.90473 0.9089 0.91897 
0.2 0.46628 0.76406 0.80179 0.82141 0.825 0.83261 

(b) rprc = 1.0, nrprc = 1.0  

them in the feedback using 0.8
pos

a = . The weights given to the previous query 

models ( nq, ) and to each of the corresponding feedback examples have been chosen 

empirically to be equal. 

5   Conclusions – Future Work 

A probabilistic framework for relevance feedback based on GM models was proposed 
in this paper. The main advantages of the proposed methodology are accuracy as 
indicated by our simulation study, speed of implementation and flexibility. The 
treatment of the positive and the negative feedback examples is performed in a very 
intuitive way which in combination with the simple form of the distance C2 leads to 
the possibility of real time evaluation of the image ranking criterion, thus allowing for 
fast retrieval after user feedback has been specified. 
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In the future we plan to incorporate in the image models non-color features like 
texture, shape etc in addition to the color ones. Furthermore, we intend to provide the 
user with the possibility to determine explicitly the degree of relevance of his 
feedback examples. In addition, we aim to generalize our RF scheme to support 
region-based similarity and retrieval. Finally, we are aiming at testing the system to 
larger image databases.  
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Abstract. This paper describes a novel methodology for video summarization 
and representation. The video shots are processed in space-time as 3D volumes 
of pixels. Pixel regions with consistent color and motion properties are ex-
tracted from these 3D volumes by a space-time segmentation technique based 
on a novel machine learning algorithm. Each region is then described by a high-
dimensional point whose components represent the average position, motion 
velocity and color of the region. Subsequently, the spatio-temporal relations of 
the regions are deduced and a concise, graph-based description of them is gen-
erated. This graph-based description of the video shot’s content, along with the 
region centroids, comprises a concise yet powerful description of the video-shot 
and is used for retrieval applications. The retrieval problem is formulated as an 
inexact graph matching problem between the data video shots and the query in-
put which is also a video segment. Experimental results on action recognition 
and video retrieval are illustrated and discussed.  

Keywords: Spatio-Temporal, Graph Matching, Region, Machine Learning, 
ARVQ. 

1   Introduction 

Multimedia databases have been the subject of extensive research for the last several 
years. The major research goal is to progress towards content-based functionalities, 
such as search and manipulation of objects, semantic description of scenes, detection 
of unusual events, and recognition of objects. Current video indexing and retrieval 
methods typically do not analyze video structure at the object level. Low-level visual 
features, such as color, shape orientation, motion trajectory and texture are commonly 
used for indexing individual frames, without taking under consideration any temporal 
information though [2]. These approaches are not satisfactory because video is tempo-
ral media, therefore sequencing of individual frames creates new semantics concern-
ing the temporal evolution of the video that are doomed to be lost when processing 
the video frames individually.  
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There is supporting evidence [5] that human vision finds salient structures jointly 
in space and time. The unification of the analysis of spatial and temporal information 
in video sequences, by constructing a volume of spatio-temporal data in which con-
secutive frames are stacked to form a third, temporal dimension, was first pioneered 
by Adelson and Bergen [4. The benefits from analyzing the motion and color features 
of the whole video sequence as opposed to processing each frame individually are 
overwhelmingly compelling. Spatio-temporal segmentation is a more direct and ro-
bust way of tracking moving regions than the classical tracking approaches that ex-
tend inferences from image pairs to multiple frames, since it capacitates us to reason 
about much longer-term dynamics. 

In [3], a threshold-free hierarchical space-time segmentation technique is applied. 
Subsequently, the produced region information is used for the execution of retrieval 
operations. However, in [3] and other similar works, the retrieval procedure does not 
take under consideration the spatio-temporal relations between the video regions, thus 
it is not able to exploit the information about the overall context within which the 
regions are located. This context information provides significant extra semantics the 
use of which could increase dramatically the performance of the retrieval process. 
Furthermore, this approach cannot provide any information “on the fly” that is, while 
the video is captured, something that could be a significant deficiency in some  
applications. 

In our perception, the analysis of videos in terms of interaction of consistent color 
and motion regions comprises a critical enhancement in video retrieval applications. 
First of all, it capacitates us to detect the occurrence of dynamic events in videos. 
Such an event could be for example the collision of two cars of a specified color. Fur-
thermore, the proposed representation schema allows for the automatic acquisition of 
higher level semantics of the video. For instance, we could acquire the time a museum 
visitor spends in front of a specific antiquity. 

In this paper, we propose a novel methodology for the compact representation of a 
video’s spatio-temporal structure and describe a system that utilizes this representa-
tion to perform retrieval procedures on the basis of color and motion characteristics of 
the regions as well as of the spatio-temporal relations between them. The system is 
capable of detecting human regions on the fly, i.e. as it is captured. We consider video 
shots of small duration. When the video capturing is finished, the system extracts the 
consistent motion and color regions and determines the spatio-temporal relations be-
tween them. This information can be further used for the execution of image retrieval 
applications. Our system can be applied in surveillance and data mining applications. 
For example, in the case of a museum, it could be used for security purposes as well 
as for the analysis of the visitors’ preferences. 

2   Approach Overview 

2.1   Region Extraction 

During the capture of the video, our system detects the (plausibly) existing human 
regions (faces) on a per frame basis. One way to detect humans is to apply an intelli-
gent, adaptable neural network architecture, as we have proposed in one of our earlier 
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works [7]. When the video capturing is finished the system processes offline the over-
all video sequence to determine the rest video regions on the basis of color and mo-
tion features consistency. Hence, we conceive the video sequence as a 3D stack of 
frames where the pixels within this stack that correspond to a discrete object form a 
separate cluster of pixels with high motion and color affinity.  

Each pixel is mapped to a 7D feature space with its dimensions representing the 
pixel position, optical flow motion and color. On the sequel, the system applies a 
novel machine learning algorithm for the aggregation of the pixels into clusters of 
coherent motion and color behavior. The basic conception of this algorithm, which 
shall be extensively presented in chapter 3, is that the pixel clusters representing co-
herent regions form dense hyper-spheres within the 7D feature space of a maximum 
radius that can be defined by the radii of the already extracted human regions. The 
seven dimensions of the found cluster centroids describe the positions of the region 
trajectories and their velocity vectors, as well as the average colors of these regions. 
Hence, the cluster centroids comprise spatio-temporal descriptors of the extracted 
regions, summarizing the location, color and dynamics of independently moving re-
gions with only a small number of bytes. The similarities of sequences are defined 
using these descriptors. Finally, the regions are classified into two categories: back-
ground regions and foreground regions. 

2.2   Graph-Based Video Representation 

The recognition and understanding of complex scenes requires not only a detailed 
description of the objects involved, but also of the spatio-temporal relationships be-
tween them. Indeed, the diversity of the forms of the same object in different instan-
tiations of a scene, and also the similarities of different objects in the same scene, 
make relationships between objects of prime importance in order to disambiguate the 
recognition of objects with similar appearance. Due to this necessity, after the compu-
tation of the spatio-temporal descriptors set, representing the regions the video shot 
has been segmented into, our system determines the relations between these regions in 
a spatio-temporal context and creates a concise graph-based representation of them. 

Graph based representations are often used for scene representation in image proc-
essing [2]. Vertices of the graphs usually represent the objects in the scenes, while 
their edges represent the relationships between the objects. Relevant information for 
the recognition is extracted from the scene and represented by relational attributed 
graphs. In model-based recognition, both the model and the scene are represented by 
graphs. 

The presented system introduces a novel algorithm for the graph-based representa-
tion of the spatio-temporal relations between the extracted objects (regions) of the 
video shot. As opposed to the conventional algorithms, approaching the video se-
quence as stack of frames, that firstly generate a representation scheme for each frame 
and then they correlate these by frame representations on the basis of their temporal 
relations, our approach adopts a single, unified, time-integral representation scheme 
for the video sequence on the whole. The proposed algorithm comprises the genera-
tion of an undirected, attributed graph G(V, E) where the vertices represent the re-
gions the video sequence consists of and the edges represent the spatio-temporal rela-
tions between them. The generated graph representation has the following features: 
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• Its vertices represent the regions the video sequence has been segmented into. 
• Each vertex is integrated with the spatio-temporal descriptor (the region centroid’s 

feature vector) that describes the mean features of the region represented, as de-
scribed above.   

• The edges of the graph denote the pairs of regions that are spatio-temporally re-
lated. They connect: 
• Pairs of spatially adjacent background objects in a series of frames. 
• Pairs of foreground – background objects, where the foreground object is spa-

tially adjacent to the background one in a series of frames. 
• Pairs of foreground objects, both appearing in some frames, that either have a 

boundary (thus, they are also spatially adjacent) or they are adjacent with the 
same background object for overlapping time slots (thus, they have a strong 
spatio-temporal relation). 

• Each edge is embedded with the time slot the described relationship occurred 
within the video shot. 

The generated graph-based spatio-temporal representation, along with the inte-
grated in it spatio-temporal region descriptors, comprise a very concise yet powerful 
description of a video shot. The high-dimensionality of the used feature space in con-
junction with the concrete description of the spatio-temporal relations between the 
regions minimizes the chances that several of the cluster centers from one sequence 
would simultaneously fall in the neighborhood of the cluster centers of another se-
quence. In our approach we obviously assume that the moves of the regions are linear. 
In real cases, objects might accelerate and make turns, and the camera that tracks 
them also might introduce scene motion. But, because of the inertia of objects and 
cameras, space-time regions produced over short durations in video sequences typi-
cally have an approximately linear behavior.  

3   Offline Region Extraction Algorithm 

Each pixel is mapped to a 7D feature space. These dimensions represent the three 
color coordinates of the pixel, the position of it (x, y) and its velocity coordinates 

),( yx vv that are computed applying an optical flow analysis algorithm. The points of 
the described feature space that represent pixels of the same color region moving 
through time tend to be close together and to form a cluster. We exploit this feature by 
applying a clustering algorithm on the feature space. The centroids of the clusters are 
used for the region characterization. The seven components of the cluster centroids 
characterize average values of the motion velocity coordinates, object trajectory posi-
tion, and colors of the regions through time.  

For the region extraction we apply a novel machine learning algorithm, the Adap-
tive Resonance Learning Vector Quantization Algorithm (ARVQ). This new cluster-
ing algorithm proposed here is a modification of the Learning Vector Quantization 
Algorithm (LVQ) [8]. It extends the LVQ algorithm in the sense that   

• During the first phase of the algorithm, a systematic representation of the a priory 
acquired knowledge is generated (human regions), which though represents only a 
fraction of the overall information existing. 
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• During the second phase is performed the fine tuning of the representation gener-
ated above, as well as the detection of the rest existing regions. Thus, during the 
second phase the fraction of the overall existing information that was not known 
beforehand is acquired and generated in the first phase representation of the a pri-
ory known information is refined. 

The ARVQ algorithm, as applied in the context of the enhanced region extraction 
procedures of our system, is the following: 
a. (Phase 1). The pixels of the a priory known regions (tracked human objects) are 

clustered together and the centroids of them are computed. The centroid of a clus-
ter is defined as the mean of the vectors of the pixels belonging to it. Let us de-
fine as xci the i-th pixel of the c-th human face region with centroid wc.  The 
minimum resemblance (Euclidean distance) of a human region (face) pixel to its 
region’s centroid is computed, let it be denoted as  

}max{max cic
cic

RM xw −≡  (1) 

This quantity shall be used for the fine-tuning of the maximum intra-cluster re-
semblance threshold that shall be used for the extraction of the non human region 
clusters, during the second phase of the algorithm. The notion behind this proce-
dure is the following: typically, the variance of the feature vectors of a human 
face is expected to be low under constant illumination conditions. However, in 
cases the illumination changes noticeably, the color components of the pixels of a 
face, present during this phenomenon, will undergo a significant change, some-
thing that will be depicted in the magnitude of the RM metric. To exploit this fact, 
the maximum intra-cluster resemblance threshold, is computed as follows: 

T =Tr exp (1/2|RM – E{RM}|) (2) 

where Tr is the minimum intra-cluster resemblance threshold (determined heuris-
tically) and E{RM} is the expected (mean) value of the RM parameter, computed 
from a big random sample (database) of face images.   

 
b.  (Phase 2). Let us consider as x the feature vector of a pixel. Let us also denote as 

wk the centroid of the k-th cluster. Then for each pixel in the video stack: 
• Find the cluster k for which     

kwx −  = ci
i

wx −min  (3) 

• If pixel x belongs to a human region represented by cluster k’, different of k, 
then update the centroids of the clusters k and k’ using the fine tuning rule  

wk = - error(x – wk) 

wk’ = error (x – wk’) 

 (4a) 

 (4b) 

where error is the error case learning rate.  
• If cluster k is a human region cluster and pixel x does not belong to a human re-

gion, try to find a cluster k’ not representing human region such that: 
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'kwx −  = ci
i

wx −min  

where i is any cluster not representing a human region 

||x – wk’|| < T 

(5a) 

 

(5b) 

If such a cluster exists, allocate pixel x to this cluster (k’) and update its cen-
troid using the rule  

wk’,new = ((n-1) wk’,old)/n (6) 

 where n is the number of the pixels within the cluster after the addition of the 
 new pixel 
 Update also the human region cluster to which this pixel was erroneously allo 
 cated initially, by the fine-tuning rule (4a). 

If a cluster complying with (5) does not exist, create a new one and set x as its  
centroid. 

• If k is a non-human region cluster and pixel x does not belong to a human re-
gion, check whether the distance of pixel x from this cluster’s centroid is lower 
that the resemblance threshold T. If such a cluster exists, allocate pixel x to clus-
ter k and update its centroid by the rule 

wk, new = ((n-1) wk, old)/n (7) 

     where n is the number of the pixels within the cluster after the addition of the 
          new pixel 

     Else create a new cluster and set x as its centroid. 

4   Video Retrieval Using the Spatio-temporal Representation 
Graph 

The graph-based spatio-temporal video representation can be used for model-based 
video retrieval procedures. The user queries can be images or small video shots de-
picting information that the user is interested in, e.g. a collision of a blue and a red 
car. Our system generates the graph representation of the query input, which shall be 
referred to as the model, and conducts a graph matching operation against the graph 
representations of the data in the video database, which shall be referred to as the data 
videos. The retrieval problem is mathematically formulated as following: Given two 
undirected graphs with attributed vertices, the model graph G1 (V1,E1) and the data 
graph G2(V2,E2), and a vertex resemblance function  

    ℜ→× 21: VVr  

check whether exists a 1-1 function 21: VVf →  such that  
 

1 )},({max))(,(
2

Vuwurufur
Vw

∈∀=
∈  

1,  w hereex is ts , ),( iff ex ists ))(),(( Vvuvuvfuf ∈  

(8a) 
 

(8b) 
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Hence, we demand that the information contained in the model video is also con-
tained in the data video, although the data video might also include more information 
than that (i.e. more regions). The way we formulate the video retrieval problem, we 
avert affection by the over-segmentation of the data video sequence, since each model 
vertex is mapped to a single data vertex which, in case of over-segmentation is highly 
likely to be the vertex of the most representative sub-region of the over-segmented 
object. 

Our video retrieval algorithm, solving problem (8), is applied for each data graph 
stored in our database. Let us denote as G1(V1 ,E1) the model graph and as G2(V2 ,E2) 
the data graph. The algorithm is the following: 

1. For each pair of vertices (u, w), u∈V2, w∈V1, compute their resemblance r(u,w). 
2. For each model vertex w∈V1, find the data vertex, v∈V2 that resembles to it 

most, i.e. 

)},({max),(
2

uvrwvr
Vu∈

=
 

If n>1model vertices w1,..,wn are mapped to the same data vertex v, then map v to the 
model vertex w it resembles most and map the other model vertices to the second 
more similar to them data vertex. Let us denote v=f(w). 
3. For each edge (w,w’)∈E1 check whether the edge (f(w),f(w’))∈E2. If it doesn’t 

hold, then the model does not match with the data. Else 
4. For each edge (u,u’)∈E2 check whether the edge (f -1(u),f -1(u’))∈E1. If it doesn’t 

hold, then the model does not match with the data. Else there is a matching. 
The data videos matching with the model are retrieved and ranked using eq. (9) on 

the basis of the similarity between their regions and the corresponding model regions    

∈

=
1

))(,(),,(( 21
Vu

ufufrGGfh
 

(9) 

As resemblance metric of a vertices pair we use the Euclidean distance of their  
vectors.  

In the proposed algorithm, we suppose that the time position and duration of the 
spatio-temporal relation - ‘interaction’ between two regions is not a matching crite-
rion taken into account in the retrieval procedure. However, in applications where the 
time position of the interactions or the duration of them would also be of interest, the 
proposed algorithm can be extended so as to apply a resemblance metric also on the 
weights (time slots) of the graph edges, affecting the final ranking of each data item 
within the results list. 

5   Experimental Evaluation 

We have exhaustively tested the presented system using the CAVIAR [6] collection. 
In the following we shall elaborate on the results of two characteristic test cases. One 
of our evaluation test cases was based on the Walk1 and Walk3 test cases of the col-
lection. These video clips were filmed with a wide angle camera lens in the entrance 
lobby of the INRIA Labs at Grenoble, France. In figure 1a and 1b we depict some 
characteristic frames from the test case scenarios Walk1 and Walk3 of the CAVIAR 
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collection, respectively. In Walk1 collection, there is one human of interest that walks 
on a straight line. In Walk3 the human walks on a B-Line following therefore, a 
highly different route. In figure 1c we depict the regions extracted from the two vid-
eos by providing the generated segmentation result of one of their frames. In order to 
avert the affection from the different colors of the two regions (clothes of the two 
humans) we manually edited the frames, altering the colors of the two humans so as 
to be the same for both of them. We primarily wanted to check whether our system 
would be able to disambiguate between these two collections, since the rest of the test 
cases of the collection comprise more than one interacting humans, or different back-
grounds, thus these videos would be rejected as not depicting the same interactions 
(edges of the representation graph). The result was satisfactory. The system is able to 
disambiguate between the two videos and return the correct one as the first in the re-
sults list. 

 

    
  (a) 

 

    
         (b) 
 

  
                                                            (c)  

Fig. 1. (a) Characteristic frames from Walk1 test case video. (b) Characteristic frames from 
Walk1 test case video. (c) Segmentation Result on the two videos depicted on one of the frames 
they consist of. 

Another test case aimed to check whether the proposed representation scheme can 
provide information about the duration of an event. For this purpose, we used the test 
sets Browse_WhileWaiting1 and Browse_WhileWaiting2 and we extended the  
proposed algorithm so as to apply a resemblance metric on the weights of the corre-
sponding edges of the model and data graphs. This metric is the square of the time-
slot’s duration. The video-shots of these test cases are of the same background as the 
previous two and they depict a human browsing a specific region of the video-shot’s 
background for different time durations. Therefore, the segmentation result is similar 
to the result depicted in figure (1c). The result of the retrieval procedure was  
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successful again. The system manages to disambiguate between the two videos, since 
the durations of the event (the human browsing) are of different duration, and re-
turned the correct answer on the top of the results list and with a ranking score 36.1% 
bigger than the score of the second clip. 

On average, we performed 60 tests using this test data collection. The test cases 
can be divided into the following categories: (a) retrieval of videos depicting interac-
tions between blobs of desired features, (b) retrieval of videos depicting interactions 
between blobs of desired features and with a specific duration. The 87.2% of our tests 
were successful, since the correct result was returned at the top of the results list. In 
all the cases the correct (or “more fitting”) result was among the three top results. 

6   Conclusions 

Video search within large data repositories is a growing research area. In this paper, 
we have described a novel uniform approach for video representation and space-time 
segmentation of video data. Unsupervised clustering, using a novel machine learning 
algorithm, enables the extraction of video segments, which are considered as coherent 
regions across the video sequence in space-time and are described by means of a spa-
tio-temporal descriptor. An interesting differentiation from existing work in video is 
that space and time are treated uniformly, and the video is treated as a single entity as 
opposed to a sequence of separate frames.  

The spatio-temporally coherent video regions are further analyzed on the scope of 
their spatio-temporal adjacencies and their spatio-temporal relations are deduced. A 
graph-based representation of the video sequence content is generated within which, 
the spatio-temporal descriptors of the video-regions are integrated and their spatio-
temporal relations are depicted. This concise yet powerful video modeling scheme is 
the major contribution of this paper. 

A great variety of retrieval algorithms could be applied to carry out retrieval pro-
cedures using the proposed video representation and summarization scheme. In this 
paper we model the retrieval problem as an inexact graph matching problem and we 
use a simple best match algorithm to address it.  We have tested our system thor-
oughly using a set of videos taken by static cameras. In the 87.2% of our tests the 
correct answer to the user’s query was on the top of the returned results, while in all 
our tests it was among the three higher ranked results. Conducted tests with videos 
where the cameras introduce extra motion in the scene and the backgrounds are not 
static have shown that our system’s performance remains high when processing shots 
of narrow duration, affirming our theoretical assumptions. 

Major future work goals are the introduction of an algorithm eliminating the cam-
era motion effect and the refinement of the video segmentation algorithm, especially 
in terms of merging the on-line and off-line procedures into one single procedure, 
efficient enough to be able to provide information on real time. 

Acknowledgements. This work has been funded by the POLYMNIA research and 
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work Programme, Priority 2 “Information Society Technologies”. 
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Abstract. This paper proposes an information system, which aims to bridge the 
semantic gap in web search. The system uses multiple domain ontological 
structures expanding the user’s query with semantically related concepts, en-
hancing in parallel the quality of retrieval to a large extend. Query analyzers 
broaden the user’s information needs from classical term-based to conceptually 
representations, using knowledge from relevant ontologies and theirs’ proper-
ties. Besides the use of semantics, the system employs machine learning tech-
niques from the field of swarm intelligence through the Ant Colony algorithm, 
where ants are considered as web agents capable of collecting and processing 
relevant information. Furthermore, the effectiveness of the approach is verified 
experimentally, by observing that the retrieval precision for the enhanced que-
ries is in higher levels, in comparison with the results derived from the classical 
term-based retrieval procedure. 

1   Introduction 

A rapid growth of Internet activity can be observed in the last years, especially con-
cerning web applications and information dissemination on many topics [1], [2]. The 
reason of web success is the fact that there were no special rules or limitations during 
web enlargement. However, this anarchic expansion of the web resulted to its chaotic 
structure. The initial design and implementation of the web was focused on informa-
tion dissemination and accessibility from various sources (in every place in the world) 
for each interested final user. In other words, the web comprises a huge document 
collection that can be accessed by everyone. Nevertheless, web information collection 
consists of completely uncontrolled heterogeneous documents, thus, the search of 
specific information became difficult from its very first steps.   

Automated search engines were developed to provide web users an easier way to 
get specific information. Various search engines were designed, such as World Wide 
Web Worm (WWWW), MSN, and the catalogue based Yahoo. The revolution in web 
search started with Google [3]. But even though the search engines manage to extract 
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information for the end user, the web weaknesses, namely its chaotic structure and its 
lack of semantic context, disable the automated management and process of the web 
included information. In other words, the web is designed only for people and not for 
machines. Semantic web attempts to bridge this gap by converting the web structure 
from syntactic to semantic [4]. 

The Semantic Web is not a separate web but an extension of the current web, in 
which information is given a well-defined meaning, enabling computers and people to 
co-operate better. Specifically, the semantic web includes not only resources relevant 
to multimedia objects (web pages, images, documents etc) like the current web, but 
also resources relevant to other kind of objects like persons, organizations, facts and 
so on. Moreover, the semantic web includes relations between resources that are ex-
pressed with more than a simple hyperlink. The general idea is that all data in the 
semantic web are classified as a directed graph, where each node corresponds to a 
resource and each link between two nodes refers to a specific property type. The Re-
source Description Framework (RDF) [5] model is used for the representation of the 
resource graph. The basic model used in the RDF, consists of three basic object types: 
resources, properties and statements. Everything that can be described as an expres-
sion is defined as a resource. A unique Uniform Resource Identifier-URI is set to each 
resource. The properties of each resource, like relations to other resources or specific 
attributes, are described with the triple term “subject – predicate – object” which is 
called statement. The RDF Schema Specification Language (RDFS) [5] is used to 
expand the RDF model. In particular, it introduces a prototype ontology lexicon 
(class, property, Type, subClassOf, domain, range) and it defines ontology classes and 
class hierarchy. Moreover, the RDFS defines the class properties and relations. In 
other words, the RDFS constitute a system type for RDF statements. 

Although, the semantic web was designed recently and it is still in an early phase, 
many applications can be based on this initial structure. In our approach, we attempt 
to introduce and exploit the abilities of the semantic web in the area of web search. 
Specifically, the proposed system enhances the classic term-based web search, by 
using semantics. Moreover, the meta-search described in [6], is used instead of a 
typical search engine, to increase the precision and the coverage of the results. The 
translation of the term query to an enhanced query with semantics is based on the 
results ranking of the meta-search engine and on the interaction with ontology web 
databases like Swoogle. A modification of the ant colony algorithm enhances the 
results of the proposed query through a real-time local search using the enhanced 
query with semantics and the results of the meta-search engine. 

The paper is organized as follows: Section 2 describes our proposal along with all 
necessary algorithmic procedures and modules. In particular, the meta-search algo-
rithm used for the initial result collection is presented [6], defining in parallel the 
transformation of the term based query to an enhanced query with semantics. Finally, 
the proposed modification over an Ant Colony Optimization (ACO) schema [7] is 
introduced (Ant Seeker) its functions are analytically explained. In section 3 the pro-
posed system is applied to a specific case study and finally, in Section 4 the conclu-
sions and future work are presented. 
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2   Description of the System 

The proposed algorithmic procedure is based on the following concept. An informa-
tion source (web page or site) should probably lead to another information source, 
with a similar content. A meta-search engine collects and ranks the results of more 
than one search engine in order to present the results in terms of relevance. Each web 
page that contains relevant information is set as a starting point. Ant Seeker algorithm 
is used to correlate the starting point with a destination point (another web page), 
linked in a close depth. In the beginning, starting points are defined as the initial 
query results derived from the meta-search engine. The algorithm is executed for each 
starting point. If a web page satisfies the enhanced query with semantics, it is defined 
as destination point. When a destination point is reached, it is defined as a starting 
point and the algorithm is repeated. The enhanced query with semantics is based on 
the initial user’s query enhanced with terms of the same semantic meaning. The basic 
functions of the proposed system are illustrated in figure 1, in an attempt to group 
together similar information. The meta-search engine, the enhanced query with se-
mantics and the ant seeker algorithm are described in the following. 

 

Fig. 1. The architecture of the proposed system 

2.1   The Meta-search Algorithm 

A meta-search engine is chosen for the query results instead of a typical search en-
gine, like Google, because the meta-search engine utilizes more than one known 
search engine and the user gets an enhanced amount of information, recording in 
parallel his search preferences. The meta-search engine chosen for our approach is a 
user-defined meta search engine (UMSE) and it is described in [6]. UMSE uses a 
rank-based isolated merging method, since it uses information, which is readily avail-
able from search servers, without requiring any other server functionality [8],[9]. In 
other words the proposed method employs server-assigned ordinal ranks in order to 
generate the merged list of the meta-results. The UMSE ‘extracts’ the required  
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information from all the submitted services combined with the meta-results and the 
user profile information. Then the duplicate information sources are removed. The 
problem of UMSE is addressed to have a search engine ranking rRS ,= , consisted 

of a set R of results and an ordering r. Given N ranking from N different search en-

gines, the anticipated outcome is the generation of a single ranking mmm rRS ,= , 

such that Nm RRR 1=  and rm is the derived meta-results ranking. In other 

words, the merging algorithm compares whether the information source retrieved in 
the rth rank position of search engine with priority p, exists until the (r-1)th rank posi-
tion of the other selected search engines. The duplicate fields in the above sequence 
are eliminated while the procedure ends with the assignment of the last meta-result. 
The number of the meta-results is the total returned results from all the involved 
search engines, having removed the duplicated fields. UMSE allows the user to adjust 
the number of the returned results from each used search service. This number has a 
large impact on the total number and the presentation time of the meta-results. 

2.2   Bridging the Semantic Gap 

After the extraction of the meta-results we want to correlate the query terms with 
terms, which define the respective ontologies. Even though this seems expected, sub-
mitting multiple different queries is a quite time-consuming procedure for the user. 
Thus, in this step we propose the use of Swoogle, which is a semantic web search and 
meta-data engine [10]. This search engine reveals and analyses ontologies in semantic 
web files extracting meta-data. In its current form it uses the Google search engine 
and the Jena2 [11] parser in order to find and evaluate a large amount of files (seman-
tic web documents - SWDs), which have relevant extensions for the semantic web 
(*.rdf, *.owl, etc.). 

However, in our approach we use Swoogle in order to find relevant data, which 
identify an ontology or a relation between ontologies, in respect to a query term q. In 
particular, we search in the cached triples (subject, predicate, object) and we extract 
the object values q′  from all the triples where the predicate value is rdfs:subClassOf  

and the value of the hasLocalname Swoogle metadata is the term q. An example is 
presented in the following section case study. 

2.3   The Ant Seeker Algorithm  

The basic concept of ant colony algorithms was inspired by the observation of swarm 
colonies, specifically ants [12]. Since most species of ants are blind, they deposit a 
chemical substance called pheromone to find their way to the food source and back to 
their colony [13], [14]. The pheromone evaporates over time. It has been shown ex-
perimentally that the pheromone trail leads to the detection of shortest paths [15]. For 
example, a set of ants, initially, create a path to the food source. An obstacle with two 
ends is placed in their way, with one end more distant than the other. In the beginning, 
equal numbers of ants spread around the two ends of the obstacle. The ants, which 
choose the path of the nearer end of the obstacle, return before the others. The phero-
mone deposited to the shortest path increases more rapidly than the pheromone  
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deposited to the farther one. Finally, as more ants use the shortest path, the phero-
mone of the longest path evaporates and the path disappears. In artificial life, the Ant 
Colony Optimization (ACO) uses artificial ants, called agents, to find solutions to 
difficult combinatorial optimization problems [7], [16]. ACO algorithms are based on 
the following concept. Each path followed by an ant is associated with a candidate 
solution to a given problem. The amount of pheromone deposited on a path followed 
by an ant is proportional to the quality of the corresponding candidate solution for the 
target problem. Finally, when an ant has to choose between two or more paths, those 
with the larger amount of pheromone have a greater probability of being chosen by 
the ant. 

 
Initialize system 
Define Starting points: Start_List = [UMSE_Results] 
Destination_List = [] 
Total num of Ants = NoAnts 
Total number of iterations for algorithm = NoIterations 
Initial pheromone value for each node added in search  = IPV 
Maximum number of nodes should visit each ant = Nmax 
For i=0 to NoIterations 

For j=0 to NoAnts 
Init_ant 
Repeat 

Select_Next_Node(j) 
Query_Visited_Node(j, q′ ) 
visited nodes(j)++ 

Until ((visited nodes(j) = Nmax) or Query_Visited_Node(j, q′ )=True) 
Calculate route(j) 
Set Visited_node to Destination_List 

End for 
Short Destination_List 
Update pheromone 

End for 
Set Start_List =Destination_List 

Fig. 2. Ant Seeker algorithm’s pseudo-code 

In our approach, we propose a modification of the ACO algorithm [7], which we 
call Ant_Seeker. In this algorithm each artificial ant employs the following properties: 

• Each ant is capable of carrying memory (pheromone based) 
• The node selection is based on pheromone level deposited in each node. 
• Each ant has a maximum number of nodes that it can visit before discovering 

a destination node. 
• All ants start from a starting node 
• Each ant uses the enhanced query ( q′ ) described above to identify the nodes  
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The following paragraph describes how the ant seeker algorithm is applied to the 
web search. Figure 2 illustrates the pseudo-code of the ant seeker algorithm. In order 
to initialize our model we introduce the following parameters: 

 The parameter NoA establishes the number of ants. 
 An initial pheromone value equal to IPV, is set in every new linked page 

which is introduced in our search area 
 Each ant can visit a maximum number of nodes Nmax 

Let’s suppose that a starting node is given by a meta-search engine. All ants are ini-
tially set to the starting point. Each time, every ant must move from a node i to node j 
which should be directly linked to the node i. The directly movement between node i 
and j is called accessibility and described by hij parameter. If node j is directly linked to 
node i, the parameter hij is set to 1 otherwise is set to zero. Let i(t) be the pheromone 
amount on node i at time t. Each ant at time t chooses the next node until visit a maxi-
mum number Nmax of nodes. Therefore, we call an iteration of the Ant_Seeker algo-
rithm the completion of route for each ant. At this point the pheromone is updated 
according to Equation 1, where  is a coefficient such that (1 - ) represents the evapo-
ration of trail between time t and t+1, while i is given according to Equation 2. In 
Equation 2, k

iτΔ  is the quantity per unit of level of pheromone is laid on node i by the 

kth ant between time t and t+1 and    is expressed by Equation 3. 
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In Equation 4, Q is a constant and kN is the number of visited nodes for ant k. The 
coefficient  must be set to a value lower than 1 for avoiding unlimited accumulation 
of trail pheromone. An initial pheromone value equal to IPV is set in every new node 
is added to the search area.  In order to satisfy the constraint that an ant doesn’t visit a 
visited node, each ant is associated with a data structure called the vlist, that saves the 
nodes already visited and forbids the ant to visit them again before a tour have been 
completed. When a tour is completed, the vlist is used to extract the nodes are satisfy-
ing the enhanced query q′ . The vlist is then emptied and the ant is free to choose 

again.  
The transition probability from node i to node j for the kth ant is defined at Equa-

tion 4, where allowedk = {Nodes can be visited - vlist}. Therefore the transition prob-
ability is a trade-off between accessibility (which states that only directly linked 
nodes should be chosen) and pheromone level at time t (which states that if this node 
was previously selected then this node is highly desirable, thus implementing the 
autocatalytic process). 
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Where hij is the accessibility of node j from node i and is given by Equation 5. 

=
otherwise

hij 0

i node from linkeddirectly  is node j if1
  (5) 

As mentioned above, each ant has a specific number of nodes that can visit equal to 
Nmax. This number defines the depth search of each ant. When an ant discovers a node 
which satisfies the enhanced query q′  the search stops and the node is set as destina-

tion node.  

3   Case Study 

In this section we present an example of how we bridge the semantic gap between the 
syntactic and the semantic web by using the syntactic meta-search engine UMSE and 
the semantic web search engine Swoogle.  

 
 

Fig. 3. Relation between query terms and their ontologies (property: subClassOf) 

Let us suppose that a user wants to get some information in respect to the term 
‘dog’ (domestic animal). This term reflects to the meta description “a member of the 
genus Canis (probably descended from the common wolf) that has been domesticated 
by man since prehistoric times” as it is stated as literal value in the object field where 
the predicate value is rdfs:description while the value of the hasLocalname Swoogle 
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canid sausage 
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metadata is the term ‘dog’. However, there are three different semantic approaches 
where this term corresponds to three different ontologies, namely Sausage, Canine 
and canid. Table 1 presents the results extracted by UMSE using Google, Yahoo and 
MSN as search engine services (top 100 results per search engine), in respect to the 
four query terms (dog, canine, canid and sausage). The third column presents the 
relevant results in respect to the amount of the returned meta-results of the second 
column, while the fourth column presents the precision value over the recall level of 
the returned meta-results.   

By finding the frequency of co-occurrences between these four terms (e.g. fre-
quency of appearance of one term in respect to the meta-results of the others) we 
derived in figure 3, which illustrates the weighted relations between these terms. 
Then, a weight threshold value has been arbitrary chosen (0.8 in this case) in order to 
enhance our query term set. Only term ‘canine’ satisfied that threshold being in paral-
lel a defined sub-class for the term. Then, we tested the accuracy of the enhanced 
Boolean queries ‘dog AND canine’ as well as ‘dog OR canine’, which were measured 
at higher levels compared to the initial query (86.5% and 77.5% respectively). 

Table 1. Extracted results, relevancy and accuracy levels (per tested queries) 

Query term(s) UMSE meta-results Relevant results  Precision 
Dog 202 141 69.8% 
Canine 213 155 72.7% 
Canid 173 24 13.8% 
Sausage 164 7 4.3% 
dog AND canine 193 167 86.5% 
dog OR canine 222 172 77.5% 

4   Conclusions 

In this paper, a new approach of web search is introduced. Specifically, our aim is the 
conjunction of the classic term based web search and the semantic web. Semantic 
definitions like RDF schema and OWL language provide a powerful framework ena-
bling computers and people to co-operate better. The enhanced search can be im-
proved by using the well known optimization algorithms such as ant colony algo-
rithms. The final assessment of the proposed method will be evaluated on a large set 
of web pages. 

Despite the fact that the proposed system is in evaluation phase, the results depict 
an improvement of precision in respect to the initial query. However, the proposed 
system should be evaluated in a larger scale. Some parameters like the weight thresh-
old value for the enhancement of the query term set should be better defined. Another 
crucial point is the Ant_seeker definitions. The optimization of parameters like search 
depth or pheromone update function would possible improves the precision and the 
functionality of our system. 
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Abstract. During the last years, Content-Based Image Retrieval (CBIR) has 
developed to an important research domain within the context of multimodal in-
formation retrieval. In the coin retrieval application dealt in this paper, the goal 
is to retrieve images of coins that are similar to a query coin based on features 
extracted from color or grayscale images. To assure improved performance at 
various scales, orientations or in the presence of noise, a set of global and local 
invariant features is proposed. Experimental results using a Euro coin database 
show that color moments as well as edge gradient shape features, computed at 
five concentric equal-area rings, compare favorably to wavelet features. More-
over, combinations of the above features using L1 or L2 similarity measures 
lead to excellent retrieval capabilities. Finally, color quantization of the data-
base images using self-organizing maps not only leads to memory savings but 
also it is shown to even improve retrieval accuracy. 

1   Introduction 

With the introduction of the World Wide Web, the digital cameras and the large – and 
cheap – memory capacities of modern computers, multimedia databases and large 
image collections can now be found not only in various organizations of the public or 
private sector but also in many home PCs. Filing and indexing of such content with 
traditional manual image annotation and keyword-based techniques is a tedious and, 
in some cases, almost impossible work, considering that some image collections may 
contain hundreds of thousands or even millions of images. Moreover, the difficulty to 
annotate images so that to allow later retrieval that is acceptable by the subjective 
perception of the various future users makes text-based image retrieval an inappropri-
ate approach [1]. It is, therefore, necessary to develop tools for retrieving information 
based on image content. 

In the recent years, Content-Based Image Retrieval (CBIR) evolved to an impor-
tant research domain within the context of multimodal information retrieval [2] and a 
number of CBIR systems and tools have already been developed [1,3,4]. CBIR could 
then be used to assist the document matching stage in complex multimodal informa-
tion retrieval applications, such as cross language document retrieval [5], when the 
documents contain images. In such applications, the documents stored in a cross lan-
guage documents collection are typically represented using the vector space model. A 
set of N keywords (index terms) is then used to represent each document as an N-
dimensional vector with each element representing either the appearance of the  
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corresponding keyword in the document or its relative frequency of occurrence. To 
correctly translate a keyword from one language to another, besides the use of a dic-
tionary and a thesaurus (for the synonyms), word sense disambiguation techniques 
that assess the appropriate contextual meaning of the word have to be employed [5]. 
The similarity between a submitted query and each document in the collection, is 
usually an inner product based vector matching operation. However, due to a poor 
selection of keywords, keyword sense ambiguities, inaccurate lexicons or incomplete 
thesauri, the retrieval accuracy is rather low. In the case that the documents also con-
tain images, redesigning the similarity measures to include the contribution from 
CBIR systems could lead to significant improvements in document retrieval accuracy. 

Due to the inherent difficulties of dealing with any kind of image content and in 
order to improve retrieval accuracy, most CBIR research results reported in the litera-
ture have been obtained either for small image collections or for thematic image  
databases. Such is the case, in this paper, with the proposed CBIR system for coin 
identification. As a preliminary stage towards the development of a robust modern 
and ancient coin identification system, this paper aims at the design of a translation-, 
scale- and orientation-invariant coin identification system with improved retrieval 
capabilities under the presence of additive noise and changes in illumination condi-
tions. Unlike commercial coin recognizers, such as those found in automatic coin 
classifiers of vending machines, which extract features that correspond to the physical 
properties of the coins [6], all features in the proposed CBIR system are extracted 
exclusively from the coin images themselves. 

Previous work on automatic coin recognition through the use of a neural pattern 
recognition system, used the sum of gray level values within 37 ring segments of the 
coins to achieve rotation invariant recognition and was demonstrated in the case of 
four coin faces [7]. Translation and scale invariance was not dealt with since the coin 
images were obtained at a constant size and position by an automatic coin classifying 
machine. In a genetic programming application [8], concentric circular pixel statistics 
are shown to be more effective than square features for coin detection problems. In 
[9], following edge detection and numeral subimage extraction from three coins, a 
rotation invariant recognition is achieved using Gabor filters and a neural classifier. In 
[10], the coin recognition system was based on simple texture features and probability 
histograms, did not provide for rotation invariance and was demonstrated for four 
textural coin faces. Finally, [11] presents a hierarchical coin classification system that 
combines features from the physical properties of coins with intensity and edge eigen-
spaces extracted from the coin images. This system achieves rotation invariance by 
cross-correlation between the polar representations of the query and the hierarchically 
selected database coins and is demonstrated to have a good classification accuracy on 
a large coin database. 

Section 2 of this paper presents the experimental methodology for the original coin 
collection as well as for the coin collection after vector quantization with Kohonen’s 
self-organizing maps. In Section 3, the features extracted for content-based coin in-
dexing are presented. The experimental results for three test datasets are presented in 
Section 4. Finally, conclusions and future work are discussed in the last section. 
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2   Experimental Methodology 

As it is typical in database design applications, the experimental methodology con-
sists of two distinct phases: a) the design phase, whereby we create the database and 
decide upon its indexing scheme, and b) the retrieval phase, in which, following the 
presentation of query-images of coins, similar images are retrieved from the database. 
Moreover, in order to examine the effect of indexed image representation through 
vector quantization on the quality of the whole retrieval process, we used Kohonen’s 
self-organizing maps algorithm on the RGB coin images. The most evident benefit of 
an indexed image representation with a relatively small colormap is the memory sav-
ings especially for large image collections. 

2.1   Database Design  

In the first phase, a coin database is created using the following stages: 

− Specification of a digital coin image collection 
− Preprocessing of each image to detect the position of the coin 
− Feature extraction from coin pixels 
− Feature-based indexing of the database 

At the first stage, we downloaded coin images from the Internet and compiled a collection 
of 115 Euro coin faces. Among these images, several coin designs, not yet in circulation, 
were included. All images were in the RGB color space and had a size of approximately 
240x240 pixels. Fig. 1 shows a coin sample from the “original” collection. 

Fig. 1. A sample from the coin collection 

Next, each image is preprocessed in order to detect the position of the coin in the 
image and isolate it from the background. To this end, each image is first converted to 
gray-scale, then the edges are found using the Sobel operators and finally the Hough 
transform [12] is applied on the black-and-white image of edges in order to detect the 
outer circle of the coin. The circular disk mask, thus created, is then used to isolate the 
coin from the background (see Fig. 2). Due to the computational complexity of the 
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Hough transform and the memory demand of the accumulator array, when the image 
sizes are large, one could first sub-sample the gray-scale image to reduce its size, then 
apply the Sobel operators and Hough transform to the smaller image and, finally, 
upscale the so found circle parameters. Alternatively, other methods, such as those 
based on image thresholding [13], can be used to determine the circular mask. 

 

          

Fig. 2. Preprocessing steps: a) original color image, b) Sobel edge detection on gray-scale 
image, c) mask from Hough transform, and d) isolated coin 

Once the coin images are free from background interference, features are extracted 
from those pixels that belong exclusively to the coin area. A set of color and shape 
(edge magnitudes and orientations) features, invariant to translation, scale and orien-
tation, along with features extracted from the wavelet transform are presented in Sec-
tion 3. The extracted feature vector from each image is then stored in memory in 
order to form the index to the database. 

2.2   Database Retrieval 

Retrieval from the coin database is performed by: 

− Query-image presentation to the database system 
− Preprocessing to detect the position of the coin in the query-image 
− Feature extraction and query encoding with its feature vector 
− Specification of similarity measure 
− Computation of query features similarity with those of the database index 
− Retrieval of the most similar database coins 

The query coin image presented to the system undergoes the same preprocessing, as 
that for the database coins, to isolate the coin from the background and to extract its 
corresponding feature vector. The similarity measures employed in this work between 
two feature vectors are the L1 and L2 distances defined by 

Lp = ( 
i

| fi( I ) – fi( J ) |p )
1/p

         for p = 1, 2 
 

(1) 

where  f(⋅) represents the feature vector of an image and I, J are the database and 
query images respectively. In fact, the similarity measures that correspond to the 
groups of color (Sc), edge magnitude (Sm), edge orientation (So) and wavelet (Sw) 
features are combined through a linearly weighted function to produce the overall 
similarity: 

S = w1 Sc + w2 Sm + w3 So + w4 Sw (2) 

a b c d 
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with wi been the weights of the linear combination determined by the user. Hence, the 
user can tailor the similarity measure according to the needs of the particular applica-
tion by specifying the weight values. Finally, the database coins are ranked according 
to their similarities to the query image and the N most similar coins are retrieved from 
the database and shown to the user. 

2.3   Quantization of Coin Collection 

One of the goals of this work is to examine possibilities of memory savings, espe-
cially useful when the image collections are large, using an indexed image representa-
tion. Through vector-quantization, an RGB image will be represented with an index 
table and a colormap. The smaller the colormap the bigger the memory savings since 
fewer bits per index are needed. Additional advantages of quantizing the image data-
base are found in [14, 15]. The restriction, of course, is to not significantly compro-
mise the overall system’s retrieval performance. 

Kohonen’s self-organizing maps [16] was the vector quantization method used in 
this work. The coin collection was quantized in two ways. First, Kohonen’s algorithm 
was applied to each coin image separately resulting to indexed images with distinct 

Fig. 3. Original (up) and quantized (bottom) coins using a common colormap (right) 

colormaps. Second, the same algorithm was applied to the whole coin collection si-
multaneously, resulting to indexed images with a common colormap. The size of the 
map used in both cases was of 16x16 neurons and, hence, all images were represented 
using 256 colors, with one byte associated to each index to the colormap. Fig. 3 
shows some original coins (upper row) along with their indexed representations 
(lower row) for the second quantization case. Also shown to the right of this figure is 
the coins’ common colormap. 

The feature extraction and indexing phases for the database coins are the same as 
for the previously described methodology. During retrieval, the queries are also quan-
tized with Kohonen’s algorithm resulting in an indexed representation with their own 
associated colormap. The remaining processing steps are the same as before. 

3   Feature Extraction 

In order to allow for robust retrieval, the extracted features should be invariant to trans-
lation, scale and rotation and, to some degree, to changes in illumination conditions 
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and to the presence of noise. However, translation invariance is achieved at the pre-
processing stage through the Hough transform detection of the coin’s position and is 
of no concern in the sequel.  

Three different kind of features are used in this work, namely, color, shape and 
wavelet features. Color is known to be invariant to scale and orientation but is sensi-
tive to illumination changes. Four moments (mean, standard deviation, skewness and 
kyrtosis) from each of the hue, saturation and value components of the HSV color 
space were extracted, for a total of twelve color features. 

The shape features were extracted from the gradient image which was obtained by 
first transforming the color image to gray-scale and then using the Sobel operators. To 
achieve some invariance to illumination conditions, the [min, max] range of the gra-
dient image was normalized to [0, 1]. Assuming that scale and orientation changes 
preserve most of the edges, the normalized polar histogram, i.e. the probability distri-
bution of edge orientations (at 90o with respect to the edge gradients), not only should 
it be, adequately, scale and rotation invariant but also can give an estimate of the 
rotation angle. The latter results from the normalized polar histogram circular correla-
tion between the query image and each one of the database coins. Fig. 4 shows the 
normalized polar histograms of a database image and a query that is of a different size 
and orientation with respect to the original image. 

Fig. 4. A database (left) and a query (right) coin along with their polar histograms 

Actually, the procedure followed in this work uses the L1 or L2 distance measures 
instead of the typical inner product correlation in order to determine the angle of rota-
tion and the corresponding polar similarity score. In addition, in order to increase the 
robustness of the system, we extracted both, edge magnitudes and orientations from 
five equal-area concentric circular rings. The shape features extracted were: a) the 
mean, standard deviation, skewness and kyrtosis of the ring edge magnitudes, for a 
total of 5x4 = 20 features, and b) the normalized polar histograms of each ring for 5 
degrees angular bins (36 features/ring), for a total of 180 polar features. 

Finally, for comparison purposes, we also extracted features from a three level 
wavelet analysis with the ‘db3’ mother wavelet of the Daubechies family. In particu-
lar, we extracted the mean and standard deviation of the wavelet coefficients for each 
detail image of the wavelet decomposition as well as for the level-3 approximation 
image, for a total of 10x2 = 20 wavelet features. 
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4   Experimental Results 

The experiments on coin retrieval have been performed using three sets of queries. 
The first data set (DS1) contains 123 queries at a lower resolution (approximately of 
130x130 pixels) in order to test the effect of scale on the retrieval accuracy. The sec-
ond data set (DS2) consists of 95 queries at a different scale (70% the size of the 
original images), random rotations in the [-180o , 180o] range and corrupted with 
additive zero mean Gaussian noise with 0.1 standard deviation. Finally, the third data 
set (DS3) consists of 115 queries at random scales (between 50% and 100% of the 
original scale), random orientations (in the [-180o , 180o] range) and with a random 
change of color in order to test scale, rotation and illumination invariance.  

After each presentation of a query coin, the similarity scores were computed and 
sorted in decreasing order. Then the position of the correct database coin was re-
corded and the retrieval accuracy was measured as the average correct image position 
with respect to all queries from a particular data set. To give a better picture of the 
retrieval process, the standard deviation of the correct coin positions is also included 
in the results. Because in all experiments the mean ( ) and standard deviation ( )
were, as expected, more reliable features than skewness and kyrtosis, the latter fea-
tures are not used in the following experiments. Also, since the L1 distance measure 
gave slightly better results than L2 in most of the experiments, all results shown in the 
tables assume the L1 similarity measure. 

Tables 1 and 2 show the retrieval accuracy based on color and edge (ring) magni-
tude features respectively, for the three data sets and the original coin collection. The 
feature vectors consisted of the means, standard deviations or their combination. The 

Table 1.  Retrieval based on color  Table 2.  Retrieval using edge strengths 

 Feature vector composed of:   Feature vector composed of: 
+    +

DS1 4.6 (7.0) 5.7 (5.1) 3.3 (4.9)  DS1 10.1 (14.6) 23.9 (28.9) 13.8 (20.7) 
DS2 6.5 (6.6) 25.6 (29.7) 7.2 (7.8)  DS2 17.6 (19.6) 35.2 (30.6) 22.4 (23.0) 
DS3 19.1 (19.4) 30.7 (27.3) 18.3 (22.2)  DS3 32.3 (28.8) 35.6 (30.8) 30.9 (29.4) 

Table 3.  Retrieval using edge angles  Table 4.  Retrieval using wavelet features 

 Feature vector:   Feature vector composed of: 
 Normalized Polar Histogram   +

DS1 12.1 (17.1)  DS1 36.3 (28.2) 32.7 (26.7) 36.7 (28.9) 
DS2 22.7 (27.6)  DS2 34.1 (27.9) 38.8 (30.3) 32.8 (28.2) 
DS3 29.4 (31.9)  DS3 36.3 (29.3) 31.7 (27.0) 31.3 (27.9) 

corresponding retrieval accuracy for the edge (ring) orientations and wavelet features, 
is shown in Tables 3 and 4 respectively. As it is evident from these tables, the best 
results were obtained for DS1 and, in particular, for the color features since a change 
of scale does not significantly affect the HSV color histograms. The presence of noise 
on the queries of DS2 had a less severe effect on the retrieval accuracy than the 
change in color on the queries of DS3. Regarding the color features, this is explained 
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by the fact that color mean is not significantly affected by the zero mean noise as by a 
change in color. However, the color standard deviation is not a reliable feature in the 
presence of noise or color change. The retrieval accuracy is more affected in the case 
of edge features since the edges are sensitive to noise and color changes. Finally, 
although wavelet features are widely used in texture recognition, they do not perform 
well in the case of textureless retrieval applications. The average coin position seems 
to not be affected by the presence of noise or color changes on the query images. 
However, they can improve retrieval accuracy when combined with other features. 

Better retrieval results can be obtained by combining the above features through 
the weighted similarity measure of Section 2.2. Table 5 shows retrieval accuracy for 
five feature combinations with Sc , Sm and Sw been computed on a combination of 
mean and standard deviation features. For queries from DS1, by combining color, 
edge strength and polar features, the correct coin is retrieved (on the average) in the 
second position, gaining 2.5 positions with respect to the color features alone. Simi-
larly, for queries from DS2 and DS3, the combined color, edge strength and wavelet 
features, give an improved accuracy of 6 and 14.6 respectively. The latter shows the 
usefulness of the wavelet features in weighted similarity measures. 

Table 5.  Retrieval accuracy from original coin collection using combined features 

 Similarity measure: 
Sc + Sm + So Sc + Sm Sc + Sm + Sw Sc + So Sc + Sm + So + Sw

DS1 2.1 (2.2) 2.3 (2.5) 2.9 (3.7) 2.4 (3.1) 2.8 (3.3) 
DS2 7.8 (12.4) 6.3 (8.6) 6.0 (7.1) 6.0 (8.6) 10.1 (15.0) 
DS3 15.4 (20.6) 16.7 (21.1) 14.6 (18.1) 15.4 (20.3) 17.3 (24.8) 

Finally, Tables 6 and 7 show retrieval results for five features combinations when 
the coin collection is quantized, using Kohonen’s algorithm, with independent or one 
common colormap, respectively. For queries from DS1, the effect of either quantiza-
tion technique on retrieval accuracy is negligible. However, for queries from DS2 or 
DS3, there is a significant improvement, especially when all coins are quantized with  

Table 6.  Retrieval accuracy from independently quantized coin images 

 Similarity measure: 
Sc + Sm + So Sc + Sm Sc + Sm + Sw Sc + So Sc + Sm + So + Sw

DS1 2.1 (2.2) 2.3 (2.5) 2.9 (3.7) 2.4 (3.1) 2.8 (3.3) 
DS2 7.8 (12.4) 6.3 (8.6) 6.0 (7.1) 6.0 (8.6) 10.1 (15.0) 
DS3 15.4 (20.6) 16.7 (21.1) 14.6 (18.1) 15.4 (20.3) 17.3 (24.8) 

the same colormap. In the best case, for DS2 queries, the correct coin appears on the 
average within the first 5 retrieved coins while for DS3 queries it appears within the 
first 3 retrieved coins, a position comparable to that of the simply scaled down images 
of DS1. Fig. 5 shows two queries from DS2 and DS3 respectively, along with the first 
six retrieved coins. In the first case the correct database coin is in the fourth position 
and in the second case it is in the first position. 
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Table 7.  Retrieval accuracy from quantized coin images with same colormap 

 Similarity measure: 
Sc + Sm + So Sc + Sm Sc + Sm + Sw Sc + So Sc + Sm + So + Sw

DS1 2.2 (2.4) 2.4 (2.2) 3.6 (5.4) 2.5 (3.4) 3.3 (4.5) 
DS2 6.1 (9.3) 4.8 (6.7) 6.4 (11.5) 5.4 (7.6) 9.5 (16.1) 
DS3 2.6 (3.3) 6.6 (11.6) 6.3 (11.4) 3.1 (3.8) 2.8 (5.0) 

Fig. 5. Retrieval of 6 most similar coins with single-colormap quantized database for one DS2 
query (upper row) and one DS3 query (lower row) 

5   Conclusions 

In this work, we developed a content-based coin retrieval system using color, shape 
and wavelet features with consideration to translation, scale and rotation invariance. 
The original coin collection consisted of 115 Euro coins and was used during the 
design phase to create the index to the database. In the retrieval phase, a weighted 
similarity measure was used to match the query’s feature vector to those of the index 
and retrieve the most similar database coins. Several experiments have been per-
formed showing improved retrieval accuracy when using feature combinations. More-
over, contrary to intuition, vector quantization of the coin database using self-
organizing maps, showed a significant improvement of system’s performance when 
the scaled-down and rotated queries were corrupted by additive noise or had color 
alterations, especially when a common colormap was used.  

Our future work will focus in the use of CBIR  to assist the document matching 
stage in cross language document retrieval applications when the documents contain 
images. As a pilot document collection, we intend to use coin images along with the 
corresponding coin descriptions and/or related texts (contexts or small sentences) in 
any of two languages. The experiments will be designed to evaluate various similarity 
measures that combine keyword-based with content-based matching under particular 
keywords’ selection and word sense disambiguation techniques. 
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Abstract. Within this paper we present the approach of learning the
non-linear combination of time-series similarity values through a neural
network. A wide variety of time-series comparison methods, coefficients
and criteria can be found in the literature that are all very specific,
and hence apply only for a small fraction of applications. Instead of
designing a new criteria we propose to combine the existing ones in an
intelligent way by using a neural network. The approach aims to the goal
of making the neural network to learn to compare the similarity between
two time-series as a human would do. Therefore, we have implemented a
set of comparison methods, the neural network and an extension to the
learning rule to include a human as a teacher. First results are promising
and show that the approach is valuable for learning human judged time-
series similarity with a neural network.

1 Introduction

Time-series similarity have received a growing interest not only in the Music
Information Retrieval community but in a number of different disciplines and
applications as well. Depending on the problem and the time-series [4] a lot of
different approaches, measures and criteria have been developed to compute the
similarity of two given time-series. Unfortunately the approaches are often very
distinct and therefore only applicable in a very small problem field.

Instead of designing an additional criteria, we propose to combine the existing
criteria in a learning way.

2 The Basic Idea

The basic idea of the proposed approach is to combine the existing similarity
measures by using a neural network, and develop a learning scheme that ap-
plies for a human teacher. The architecture of the developed system is shown
in figure 1. The system receives two time-series X and A to compare. These
� This thesis and the corresponding work were done at the University of Bonn.
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c© Springer-Verlag Berlin Heidelberg 2006



124 M. Sagrebin and N. Goerke
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neural network

output of the system
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similarity values
v1 v2 v3 v4 vk

Fig. 1. Architecture of the developed system

two time-series are the input for a set of classical time-series similarity measures
(SMi,i=1,...,k). The output from these time-series similarity measures build the
input for the neural network, that learns to combine them in a non-linear way.
The output of the neural network is the output of the complete system. Of cru-
cial interest are two major aspects for designing this task:

1) What neural network topology, and what neural training parameters are ad-
equate for learning such a task?
2) How can we obtain teacher values from a human observer? We can neither
expect that humans give exact similarity values for a set of given time-series,
nor can we ask them to judge hundreds or thousands of time-series comparisons.
Therefore, a special learning scheme has to be developed and evaluated before
we can train the network with human generated teacher values. Directly aligned
with the goal to obtain human teacher values the development of the training
procedure is subdivided into five phases:

Phase I: Train the neural network with different SMs as teacher, to find the
best network topology, and to evaluate the influence of weight initialisation.

Phase II: Change the teacher from a continuous valued function into a dis-
cretised teacher with 5 classes (very unalike, unalike, neutral, alike, totally
alike) and train the best network found in Phase I to learn these 5 categories.

Phase III: Improve the discretised teacher by consulting a second opinion that
is judging the quality of two trials of time-series comparison. Modify the
teacher values accordingly and train the network for a while.

Phase IV: Reduce the number of second opinion hints as much as possible with
respect to the given data and the application for human teachers.

Phase V: Get a human teacher to rank a subset of all possible time-series
comparisons into 5 categories. Ask a human expert to judge some of the
neural network comparison proposals. Train the network with these results.
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3 Implementation Details

3.1 Time Series Data

The corpus of 18 exemplary audio time-series has been selected from five classes
of audio signals. Hereby we considered that any two audio signals of the same
class should be more similar to each other than any two audio signals which
belong to different classes. This constraint was reasonable to make sure that the
similarity values of these time-series can be easily judged by a human teacher.

1. Superposition of harmonic sounds. Sounds that are built up from dif-
ferent harmonic partial tones. Exemplary representatives of this class are
sounds of the telephone keys. The sampling rate is 22050 Hz; the size varies
from 2548 to 2956 data points.

2. Repetitive technical sounds. Signals which feature by means of repeated
irregular clatter. Exemplary representatives of this class are sound recordings
of an autonomous robot, driving with the speed of 20cm/s, 40cm/s and
60cm/s respectively. The sampling rate is 22050 Hz; the size varies from
16108 to 26248 data points.

3. Repetitive technical sounds 2. Signals from group 3 are similar to those
of group 2. The major difference results from the characteristic of the clatter.
Thus, signals of group 2 and 3 are more similar to each other than to those
of other groups. The sounds have been produced by the same robot but with
substantial different floor covering. Like the representatives of the second
group the audio signals of group 3 have a sample rate of 22050 Hz; the size
varies from 23837 to 29007 data points.

4. Non-Rhythmic, long lasting sounds. Signals which sound somehow
”clanking”, like banging together large pieces of metal. The signals vary
from each other by the number of bangs and the way of echo. These metallic
noise signals were recorded with a sampling rate of 44100 Hz; the size varies
from 21396 to 41988 data points.

5. Finite sound events. Noise, and sounds that have a clear start, and a
clear ending. Exemplary representatives of this class are sound recordings
that were produced by punching paper. The sampling rate is 44100 Hz; the
size varies from 13665 to 38775 data points.

3.2 Similarity Measures

We have implemented a set of 16 common time-series similarity measures (SM1-
SM16) based on recent literature [2] [3] [4] [6] about multi-media retrieval and
speech and language recognition. These methods have been chosen to represent
a variety of different approaches that measure the similarity between time-series.

SM1: Computation of the best possible alignment between the Fourier trans-
forms of the two signals by using dynamic time warping.

SM2: Computation of the best possible alignment between the two signals by
using dynamic time warping.
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SM3: Computation of the Euclidean distance between the two signals.
SM4: Computation of the Euclidean distance between the two low-energy fea-

tures [7] of the signals.
SM5: Computation of the Euclidean distance between the two spectral centroid

feature [7] vectors of the signals.
SM6: Computation of the Euclidean distance between the two spectral flux

feature [7] vectors of the signals.
SM7: Computation of the Euclidean distance between the two spectral rolloff

feature [7] vectors of the signals.
SM8: Computation of the Euclidean distance between the two time domain

zero crossing [7] feature vectors of the signals.
SM9: Computation of the best possible alignment between the hash-signatures

[5] of the signals by using dynamic time warping.
SM10: Computation of the hamming distance between the hash-signatures of

the signals.
SM11: Mapping of the Fourier transforms to the Bark scale and computation

of the Euclidean distance.
SM12: Computation of the Euclidean distance between the two Fourier trans-

forms of the signals.
SM13: Computation of the maximum correlation coefficient.
SM14: Computation of the best possible alignment between the Mel-frequency

cepstral coefficients of the two signals by using dynamic time warping.
SM15: Discretisation of the co-domain in 20 equally large sections; determina-

tion of the average of the signal values within such a section; computation
of the length of the longest common subsequence.

SM16: Discretisation of the co-domain in 20 equally large sections; determina-
tion of the average of the signal values within such a section; computation
of the Levenshtein distance between the two modified signals.

Each implemented similarity measure receives two complete time-series with
individual length and yields one scalar output value. Some of these measures
compute the distances between the time-series instead of a similarity value. This
fact does not cause any problems, because the neural network used as the learning
unit can interpret these values correctly during the learning process.

For each of the 16 similarity measures we computed a similarity matrix by
comparing each of the 18 time-series to the other 18 time-series. Thus, each sim-
ilarity matrix consists of 18× 18 = 324 similarity values. Two typical similarity
matrices (SM8 and SM4) are depicted in figure 2.

3.3 Learning Unit

The learning unit is a neural network of Multi Layer Perceptron (MLP) type.
The number of neurons N in the input layer is stated by the number of similarity
measures which are built into the system. The number of neurons h in the hidden
layer was determined by several series of experiments. The output layer contains
only one neuron, since the objective is one similarity value. We decided to use
the hyperbolic tangent as transfer function in the hidden and the output layer,
because it performed substantially better than the logistic transfer function.
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Fig. 2. Similarity matrices SM8 (a) and SM4 (b)

3.4 Learning and Validation

The neural network with an N -h-1 topology was trained using backpropagation
of error, with different learning rates for the hidden and the output layer. Dur-
ing the training process the learning rate for the hidden layer was deliberately
decreased three times, from 0.5 to 0.25 (after 20% of the epochs were passed),
to 0.125 (after 40%), and to 0.05 (after 70%). Accordingly, the learning rate for
the output layer was decreased from 0.1 to 0.05, to 0.025, to 0.01. The train-
ing process consisted of 30,000 epochs. During learning the following steps were
accomplished:

1. Allocation of the 18 audio signals in 18 different tuples of training- and test-
sets, following the leave-one-out-strategy [8]. Each test-set contains only one
of the 18 audio signals, and each training-set the 17 other signals. Thus,
each training-set consists of all remaining combinations, 17×17 = 289 train-
ing patterns. Each test-set consists of the remaining 17 + 18 = 35 possible
combinations.

2. Fix the neural network topology and initialise the weights randomly.
3. Random selection of the first pair of sets, the test- and the related training

quantity.
4. Training of the neural network with backpropagation of error by means of the

patterns from the training-set and simultaneous validation of the network
by means of the patterns from the test-set. The weight combination which
yields the best validation result was saved for further usage: early stopping
strategy [8].

5. New random selection of the next but different training- and test-set and
initialisation of the neural network with the weights saved during step 4.

6. Repeat step 5 until all training- and test-sets are processed.
7. Initialisation of the neural network with the weights saved during the last

iteration and computation of the overall error E(h) by presenting all of the
available 18× 18 = 324 patterns to the neural network.
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4 Phase I: Determine the Network Topology

During phase I two different Similarity Measures served as teachers for the neural
network. Taking SM8 as the teacher means, that the network has to learn the
similarity values for SM8 by combining the 15 other SMs in an intelligent way.
It showed to be an easy task for the network to learn SM8, because some of the
other 15 SMs results resemble SM8. The similarity measure SM4 was more
difficult to learn, because none of the other 15 SMs was alike.

To determine a valuable network topology (number h of hidden neurons) we
have conducted several training runs with the described leave-one-out-strategy
for all 18 test- and training-set combinations with an early-stopping BP learning
scheme for 7 different numbers of hidden neurons h = {1, 3, 5, 7, 10, 15, 30}. Thus
the following network configurations were tested: 15-1-1, 15-3-1, 15-5-1, 15-7-1,
15-10-1, 15-15-1 and 15-30-1. Figure 3 shows the overall error E(h) with respect
to the number of the hidden neurons. Table 1 contains the related error values
with respect to the network topology.
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Table 1. overall error with respect
to the network topology

network topology overall error
15-1-1 1.880
15-3-1 1.096
15-5-1 0.818
15-7-1 0.665
15-10-1 0.571
15-15-1 0.353
15-30-1 0.467

At first the increase in the number of hidden neurons causes a decrease in the
overall error. The error decreases from 1.880 at 15-1-1 to 0.353 at 15-15-1. Further
increase of the hidden layer size revealed a slight rising of the overall error. As a
second criteria we have taken into account the distribution of error values over all
324 patterns, and the percentage of results with an error larger than a confidence
threshold of Θ = 0.07 see Fig. 4. The found error value for a 15-1-1 networks
shows (see Fig. 3 and 4) that a linear combination of the 15 similarity measures
(SM) is inadequate to approximate one of the other similarity measures. One
can conclude from that, that learning a non-linear combination with a neural
network is a valuable approach.

Fig. 4 shows that the performance of 15-7-1, 15-10-1 and 15-15-1 networks
differ very little from each other. On the basis of these results only the 15-7-
1, 15-10-1 and 15-15-1 networks were examined in the following. The 15-30-1
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Fig. 5. Sorted error values for 13 ini-
tialisations for the three topologies 15-7-
1, 15-10-1, 15-15-1 (teacher SM4). Only
one initialisation shows an unacceptable
value.

network was no longer considered because the results are comparable to those
of the 15-10-1 network, but computing time is larger.

To investigate the effect of different network initialisations, we have conducted a
second series of experimentswithSM4 as teacher, andh = {7, 10, 15} respectively.

Each network was initialised 13 times, and the resulting error (BP, leave-
one-out, early-stopping) was recorded. Figure 5 shows the resulting errors for
all 13 runs, sorted by magnitude. Since only one of these initialisations lead to
an unacceptable large error value, we conduct all further experiments without
multiple initialisations. Still the larger networks perform obviously better (15-7-
1: 2.0968 and 15-15-1: 1.008). Please remember that the teacher SM4 is harder
to learn than teacher SM8.

5 Phase II: Learn a Discretised Teacher

To pay respect to the fact, that a human expert can neither give double preci-
sion similarity values as result, nor can be persuaded to judge hundreds of pairs
of time-series, we have to develop a training scheme for the neural network to
bypass this. Thus, we have changed the teacher (SM3) from a continuous valued
function into a discretised one, with the 5 classes:

Very unalike, Unalike, Neutral, Alike, Totally alike

and trained the best network topology found in Phase I to learn these 5 cate-
gories. The center of each class is used as teacher value. As expected, the neural
15-15-1 network performed well with the training details from Phase I; no wrong
classifications occured; 100% of correctly learned pattern classes.

6 Phase III: Second Opinion Teaching

To improve the neural network training beyond the 5 classes discretisation, we
have developed an extension to the training procedure of Phase II. Consider the
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case where the network generated class is the same as the teacher specified class.
Caused by the rather rough discretisation of the teacher, we lose the capability
to fine tune the result within the correctly learned classes. A human expert
will not be able to provide a similarity value with a higher resolution, but he
might provide a differential judgement: Based on results from psychophysics we
postulate, that a human teacher can provide the information if the similarity
S(X,A) between time-series X and time-series A is greater or smaller than
between X and B. With this extra information, the learning process can enter
a new stage of fine tuning. In Phase III, we simulate a very patient human
teacher, by asking the calculated teacher (SM3) to judge the relation between
two similarity calculations IF ST (X,A) < ST (X,B).

We compare if the relation of two time-series similarity calculations from the
teacher is the same as for the neural network generated similarity. Now again
two possible results can occur:

Correct Order: IF ST (X,A) < ST (X,B) AND SMLP(X,A) < SMLP(X,B)
The neural network has the same relation than the teacher: we are fine, no
further learning is necessary; proceed with next pattern.

Wrong Order: IF ST (X,A) < ST (X,B) AND SMLP(X,A) > SMLP(X,B)
The neural network has produced a different relation than the teacher: we
have to train the neural network further. Therefore we have to generate a
more sophisticated teacher value.

S
MLP

(X,A)S
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(X,B)

more alikeless alike

S
T
(X,A) S

T
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<

Fig. 6. Wrong order generated by the
MLP
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Fig. 7. Principle of the crossover teaching

Since we know, that the order is wrong, we can generate a set of two new
teacher values that have the correct order by crossover teaching:

Make the output of one trial become the teacher for the other trial.
The output from SMLP(X,A) will become the teacher for SMLP(X,B), and
vice versa. Please keep in mind that the network has learned the correct classes,
crossover teaching is for fine tuning, and will keep this performance.

For each class we generate one pair of crossover teacher values. With this
newly generated training-set we train the network using backpropagation of error
(learning rate like before) for a distinct number of epochs: a ”chunk”. As soon as
the chunk of learning steps has been processed, a new training-set is generated
with a new pair of randomly chosen crossover teacher values per class.

With respect to the chunk size of crossover teaching, we obtained a valuable
decrease of wrong ordered pairwise comparisons to one third, see Fig. 8.
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Fig. 8. Decrease of wrong ordered pairwise comparisons for different chunk sizes. All
classes remain correctly learned.

In the beginning of the crossover teaching process 864 wrong ordered com-
parisons occur. These are 15% of all possible ordered comparisons (5526 =
18× 17× 18). As one can see, the choice of the chunk size is important. Larger
chunks lead to better results. With a chunk size of 1000 epochs the number of
wrong ordered pairwise comparisons decreases from 864 to 333 which is only 6%
of all possible ordered comparisons.

7 Conclusions

As an alternative approach to time-series comparison we propose to combine
existing time-series similarity measures by a neural network in a learning way.
Instead of designing a new method we make benefit of the existing ones, and
combine them by a neural network. A variety of 16 methods have been imple-
mented to calculate the similarity between any two series from the set of chosen
exemplary audio time-series.

Within exhaustive simulations, following the leave-one-out-strategy, and early-
stopping, we have determined a network topology (15-15-1 MLP) that is capable
of learning to imitate any of the implemented similarity measures as real valued
teacher and as discrete classes (eg. 100% correct classifications for SM3).
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To pay respect to a human teacher who can judge the similarity of two time-
series to fall into one of five discrete classes, we have developed a new learning
scheme to fine tune the neural network result. Therefore we ask the teacher
to judge if the neural network results of two time-series comparisons have the
correct order or not. From this judgement, we can generate new teacher values
(crossover teaching) to improve the network further. The results are promising
and show that the approach is in principle capable for making a neural network
to learn the human time-series similarity judgement.

Phase IV and V are future work and include exhaustive tests with human
volunteers, which have not been conducted yet. Part of our current work is
aiming to realise these psychophysical, psychoacoustic experiments in the near
future.
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Abstract. In this paper we derive a novel smooth component analysis algorithm 
applied for prediction improvement. When many prediction models  are tested 
we can treat their results as multivariate variable with the latent components 
having constructive or destructive impact on prediction results. The filtration of 
those destructive components and proper mixing of those constructive should 
improve final prediction results. The filtration process can be performed by 
neural networks with initial weights computed from smooth component 
analysis. The validity and high performance of our concept is presented on the 
real problem of energy load prediction. 

1   Introduction 

The blind signal separation methods have growing range of applications in 
telecommunications, medicine, economics and engineering. Starting from separation 
problems, BSS methods are used in flirtation, segmentation and data decomposition 
tasks [4,5,10,20]. In this paper we apply the BSS method for prediction improvement 
when many models are tested. 

The prediction problem as other regression tasks aims at finding dependency 
between input data and target [14]. This dependency is represented by a specific 
model e.g. neural networks [2]. In fact, in many problems we can find different 
acceptable models where the ensemble methods can be used to improve final results 
[7]. Usually solutions propose the combination of a few models by mixing their 
results or parameters [1,8,23]. In this paper we propose an alternative concept based 
on the assumption that prediction results contain the latent destructive and 
constructive components common to all the model results. The elimination of the 
destructive ones should improve the final results.  To find those basis components we 
apply a new algorithm for smooth component analysis. The full methodology will be 
tested in load prediction framework. 

2   Blind Signal Separation and Data Representation 

Blind signal separation (BSS) methods aim at identification of the unknown signals 
mixed in the unknown system [4,10]. The BSS last developments tend to its general 
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formulation as the problem of the matrix NmR ×∈X factorization [5]. The research 
task is to find the interesting analytical representation of ],...,,[ 21 mxxxX =  

associated with the data model assumption. For the linear case we are looking for 

ASX = ,                                                                 (1) 

where NnT
n R ×∈= SsssS   ,],...,,[ 21  is the matrix with n  latent components ( is  is 

typically interpreted as source data), matrix nmR ×∈A  represents the mixing system, 
N  means the number of observations. Typically we assume that rows ix  of the 

factorized matrix represent observed variables e.g. physical signals. The estimation of 
the S  can be obtained by the transformation  

WXS = ,                                                         (2) 

where W matrix represents the separation system inverse to the mixing system. 
Though, in classic BBS problem estimated matrix S can be rescaled and permuted 
comparing to the original one [4,10], it is not a difficulty in our methodology. In 
practice the BSS separation can be obtained in many ways depending on the real 
characteristics of source signals like statistical independence, decorrelation, sparsity, 
nonstationarity, nonnegativity or smoothness. In this way in the BSS area there are 
many analytical methods exploring different properties of data. The most popular are 
Independent Component Analysis (ICA) [4,10], Sparse Component Analysis (SCA) 
[6,13,17,24], Nonnegative Matrix Factorisation (NMF) [12,25], Time Delay 
Decorrelation [3,4] or Smooth Component Analysis (SmCA) [4]. The choice of 
particular method depends on the nature of the problem and characteristics of the 
processed data. We apply the BSS methods for filtration of some unwanted 
components from the set of prediction results.  

3   Prediction Results Improvement 

We assume that after the learning process each prediction result includes two types of 
components: constructive associated with the target and destructive associated with 
the inaccurate learning data, individual properties of models, missing data, not precise 
parameter estimation, distribution assumptions etc. Now we collect particular model 
results together and treat them as multivariate variable X. In similar way we assume 
that the set of basis components is represented by S. The relation between observed 
prediction results and latent basis components is expressed by (1) and means matrix 
X factorisation by basis components matrix S and mixing matrix A.  Our aim is to 
find such mixing matrix A and unknown basis components set that matrix S (after 
rows ordering) can be described as 

=
V

T
S ,                                                            (3) 

where [ ]TptttT ,...,, 21=  is a Np ×  matrix constructive components, 

[ ]TqvvvV ,...,, 21= is a Nq ×  matrix destructive components. After basic 
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components are classified into destructive and constructive ones we can reject the 
destructive components V (replace them with zero) to obtain only constructive basis 
components matrix 

=
0

T
Ŝ .                                                            (4) 

Now we can mix the cleaned basis results back to obtain improved prediction 
results 

==
0

T
ASAX ˆˆ .                                                  (5) 

The replacement of the destructive signal by zero in (5) is equivalent to putting 
zero in the corresponding column of A. If we express the mixing matrix as 

[ ]naaaA ,...,, 21=  the purified results can be described as 

SASAX ˆˆˆ == ,                                                    (6) 

where [ ]nppp 000aaaA ,...,,,,...,,ˆ
2121 ++= .  

The effectiveness of the method highly depends on the application of proper 
transformation providing searched basis components and next it is important to 
perform proper distinction T from V. The choice of transformation type can be done 
in similar way like in other BSS problems, so it is based on some a priori assumptions 
or on the analysis of data characteristics. 

4   Data Variability and Smooth Component Analysis 

In our methodology we focus on data with temporal structure, characterised by their 
variability and therefore Smooth Component Analysis is developed. The analysis of 
signal smoothness is strongly associated with the definitions and assumptions about 
such characteristics. When we treat the data as random variable the popular measures 
of their variability are variance or Hurst exponent [9,18]. However, they are 
recommended mostly for data without temporal structure or when the data are 
randomly sampled e.g. noises. Whereas in many cases the data order is important and 
temporal structure can not be neglected what leads to stochastic processes analysis. 
On the other hand the data description as a stochastic processes is associated with 
many restrictive assumptions like ergodicity or nonstationarity often difficult to 
verify in practise [22]. For this reason we propose a new smoothness measure using 
random variables with delays (indexed random variables) [15]. Now  

))min()(max()min()max(

|)1k()k(|
N
1

)(P

N

2k

ssss

ss
s

−δ+−

−−
= = ,                               (7) 

where symbol (.)δ  means Kronecker delta.  Measure (7) has simple interpretation: it 

is maximal when the changes in each step are equal to range (maximal change), and 
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is minimal when data are constant. The possible values are from 1 to 0. The 
Kronecker delta term is introduced to avoid dividing by zero.  

Smooth Component Analysis (SmCA) is a method of the smooth components 
finding in a multivariate variable [4]. The components are taken as linear combination 
of signals ix  and should be as smooth as possible. Our aim is to find such   

[ ]n21 ,...,, wwwW =  that for WXS = we obtain T
n ],..., ,[ 21 sssS =  where 1s  

maximizes   s )(P 1 so we can write 

  ))((maxarg
1||||

1 xww
w

TP
=

= .                                            (8) 

Having estimated the first 1−n  smooth components the next one is calculated as 
most smooth component of the residual obtained in Gram-Schmidt orthogonalization: 

)))(((maxarg
1

11||||
xssxww

w

−

==
−=

n

i

T
ii

T
n P ,                                  (9) 

where niT
ii 1, == xws . As the numerical algorithm for finding nw  we can 

employ the conjugate gradient method with golden search as a line search routine. 
The algorithm outline for initial )0()0(,)0( iii rand gpw −== is as follows:  

1. Identify the indexes l  for extreme signal values: 

)()(maxarg
1

max lkl T
i

Nl

xw
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= ,                                            (10)  

)()(minarg
1

min lkl T
i

Nl

xw
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= ,                                            (11) 

2. Calculate gradient of )( xw T
iP : 
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where )1()()( −−=Δ lll xxx , 

3. Identify the search direction (Polak-Ribiere formula[19]) 

( ) )1()()(
)1()1(

)1()()( −+−=
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−− kkk ikk

kkk
ii

i
T

i

ii
T

i pgp
gg

ggg ,                            (13)  

4. Calculate the new weights: 

)()( )()1( kkkk iii pww ⋅+=+ α ,                                   (14) 

where )(kα  is found in golden search. 

If we employ the above optimization algorithm as a multistart technique we choose 

such iw  that )( xw T
iP  is minimal. The above algorithm can be recommended for 

separation problem with data including by temporal patterns. In our predictions 
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improvement problem basis components obtained via algorithm (10)-(14) are an 
interesting representation of data for further processing.  

5   Neural Networks as Generalization Mixing 

After basis component are estimated by e.g. SmCA we need to label them as 
destructive or constructive. The problem with proper signal classification can be 
difficult task because obtained components might be not pure constructive or 
destructive due to many reasons like improper linear transformation assumption or 
other statistic characteristics than explored by chosen BSS method [21]. Therefore 
particular component can have constructive impact on one model and destructive on 
the other or there may exist components destructive as a single but constructive in a 
group. In this way, for all the components’ subset we check the impact of elimination 

them on the final results. The mixing matrix Â is the best matrix we can find by 
simple test with eliminating each combination of the components.  

 

Fig. 1. The concept of filtration stage 

However, the basis components can be not pure so their impact should have weight 
other than 0. It means that we can try to find the better mixing system than described 

by Â . The new mixing system can be formulated more general than linear, e.g. we 
can take MLP neural network as the mixing system  

))]([( )2()1()1()1()2()2( bbSBgBgX ++= ,                            (15) 

where (.))(ig is a vector of nonlinearities, )(iB  is a weight matrix and )(ib  is a bias 

vector respectively for i-th layer, i=1,2. The first weight layer will produce results 

related to (4) if we take AB ˆ)1( = . But we employ also some nonlinearities and the 
second layer, so comparing to the linear form the mixing system gains some 

flexibility.  If we learn the whole structure starting from system described by Â  with 

initial weights of AB ˆ)0()1( = , we can expect the results will be better, see Fig1. 
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6   Electricity Consumption Forecasting 

The tests of proposed concept were performed on real problem of energy load 
prediction [11,16]. Our task was to forecast the hourly energy consumption in Poland 
in 24 hours basing on the energy demand from last 24 hours and calendar variables: 
month, day of the month, day of the week, and holiday indicator. In Fig. 2 you can 
observe some seasonal patterns of the energy demand. In long term high consumption 
in the winter while low usage in the summer. There are also shorter seasonalities: 
lower demand at non working days. Daily effects have two peaks: one in the morning 
and one in the afternoon.  

 

 

Fig. 2. Energy load in various time periods – you can observe the seasonalities  

We trained a hundred MLP neural networks with one hidden layer on the 
observations from 1988-1997. The quality of the results was measured with MAPE 
and MSE criteria and six models were chosen for further consideration, see Table 1.  

Table 1. Primary models 

Criterion MLP12 MLP18 MLP24 MLP27 MLP30 MLP33 BEST 
MAPE 2,393 2,356 2,368 2,397 2,402 2,359 2,356 
MSE [10-3] 1,129 1,111 1,115 1,132 1,146 1,108 1,108 

 
In Tables 2-3 you can observe the effects of modelling improvement by SmCA 

decomposition, negative components identification and then linear or neural mixing.  

Table 2. Models after SmCA improvement 

Criterion MLP12 MLP18 MLP24 MLP27 MLP30 MLP33 BEST 
MAPE 2,408 2,266 2,325 2,329 2,313 2,334 2,266 
MSE [10-3] 1,143 1,039 1,082 1,086 1,075 1,090 1,039 

Table 3. The BEST MODELS: primary, and improved by SmCA and NN-SmCA  

Criterion Primary SmCA Improved by % NN-SmCA Improved by % 
MAPE 2,356 2,266 -3,83% 2,225 -5,56% 
MSE [10-3] 1,108 1,039 -6,23% 1,017 -8,21% 

365 days 7 days    1 day 
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In Fig. 3 you can see the visualization of the results. 
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Fig. 3. The concept of  the filtration stage 

Proposed methods improved the modelling results both in MAPE (4-5%) and MSE 
(6-8%).  

7   Conclusions 

The Smooth Component Analysis can be successfully used as a novel methodology 
for prediction improvement. Presented method performs an efficient integration of 
the information generated by different models. The practical experiment of energy 
load prediction confirmed the validity of our method. In experiment we took into the 
consideration the filtration based on SmCa and the improvement obtained is 
considered as highly significant in this particular industry. Proposed method can be 
treated as an alternative for classical ensemble methods like boosting or bagging, but 
it has an advantage of clear interpretation of the identified components. 
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Abstract. The expression pattern of a gene across time can be considered as a
signal; a microarray experiment is collection of thousands of such signals where
due to instrument failure, human errors and technology limitations, values at
some time instances are usually missing. Furthermore, in some microarray exper-
iments the gene signals are not sampled at regular time intervals, which renders
the direct use of well established frequency-temporal signal analysis approaches
such as the wavelet transform problematic. In this work we evaluate a novel mul-
tiresolution method, known as the lifting transform to estimate missing values
in time series microarray data. Though the lifting transform has been developed
to deal with irregularly spaced data its usefulness for the estimation of missing
values in microarray data has not been examined in detail yet. In this framework
we evaluate the lifting transform against the wavelet transform, a moving average
method and a zero imputation on 5 data sets from the cell cycle and the sporula-
tion of the saccharomyces cerevisiae.

1 Introduction

Microarray experiments allow the simultaneous study of expression patterns of thou-
sands of genes. As a consequence microarray datasets are characterized by a large
number features (gene expression values) and a relatively small number of samples
(different experimental conditions) [13]. The multiresolution theory (see [14]) is one of
the most popular approaches for analyzing such a datasets. As its name implies, mul-
tiresolution theory is concerned with representation and analysis of signals at more than
one resolution. The appeal of such an approach is obvious: Characteristics (similarities,
regulatory patterns, etc.) that might go undetected at one resolution may be easy to spot
at another.

The multiresolution theory is based on the wavelet transforms. Unlike the Fourier
transform, whose basis functions are sinusoids, wavelet transforms are based on small
waves, called wavelets, of varying frequency and limited duration. This allows them
to be used for identifying patterns, in a signal, localized both in frequency and time
(1-D) or space (2-D). In a typical setting, the wavelet transform can be used to decom-
pose a discrete signal into detail and approximation coefficients. The detail coefficients
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(approximations) coefficients correspond to high (low) frequencies. This constitutes
the first step of the multiresolution analysis, the same process could be repeated for
the approximation coefficients, which are further divided into approximation and detail
coefficients. The first steps of the multiresolution analysis produced the finer signals
components (finer scale) and the latter steps correspond to more coarse components
(coarse scale).

Wavelets have been widely used in signal processing for more than 20 years. For
an accessible introduction to the application of wavelets in statistics see [1]. Moreover,
their usefulness has been proved in the domain of data mining [9] and they have been
also been applied in the Biomedical domain [10], as well as in the analysis of microarray
experiments [21].

An important problem of gene expression microarray experiments is that they can
generate data sets with multiple missing expression values. There are many possible rea-
sons for missing data in microarray experiments, such as technology limitations, human
errors, instrument failure. Unfortunately, many algorithms for gene expression analy-
sis, including multiresolution theory, require a complete matrix of gene array values as
input. A few missing values in the feature set, and especially in cases where missing
values do not correspond to the same genes across all samples, could lead to reduced
effectiveness of multiresolution analysis due to the loss of synchronization among the
features of the various samples. Methods for imputing missing data are needed, there-
fore, to increase the effectiveness of multiresolution analysis, as well as classification
algorithms such as hierarchical and K-means clustering, on microarray data mining.

In this study, we consider the issue of missing value estimation from the point of
view of signal processing. To this end we investigate the rather novel scheme of second
order wavelets also known as lifting schemes as a method for estimating missing data
in time series cDNA microarray experiments and we contrast it with the older scheme
of discrete wavelet transforms.

In section 2 we put our work in the context of missing value estimation methods for
microarrays, then in section 3 we refer briefly to the discrete wavelet transform but also
to the novel lifting scheme which is central to our evaluation. Subsequently, in section 5
we report on the experimental setup and the results we obtained. Finally conclusions
are drawn in section 6.

2 Missing Value Estimation Methods for Microarray Datasets

One solution to the missing data problem is to repeat the microarray experiment. How-
ever, this approach is very expensive and can be only used in validation of microarray
analysis and data imputing algorithms [5]. In the simplest approaches missing value
are either replaced by zeros [4] or, less often, by a moving average over the existing
gene values (often called row average). Both methods do not take into consideration the
correlation structure of the data and may lead to detection of synthetically generated
patterns (artefacts) during the microarray data analysis stage. Thus, methods for more
accurate estimation of missing values are required.

Although there are very few methods published in the literature concerning miss-
ing value estimation for microarray data, a lot of work has been conducted to similar
problems in other fields. Probably the most similar context, with the missing value
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estimation for microarray data problem, is the context of identifying missing data in ex-
periments [11]. Common methods, in this framework, include least squares estimates,
iterative analysis of variance methods [25], randomized inference methods, likelihood-
based approaches [24], nearest neighbours [12], etc. All the above are well established
methods that are, explicitly or implicitly, imply a generic probability density distribu-
tion for the data population. Unfortunately, this assumption can not easily justified for
the microarray data where the identification of regulatory patterns in gene expression
values is actually the question at hand.

In [22] the estimation of missing values in DNA microarrays is examined. The au-
thors compare k-NN and SVD (Singular Value Decomposition)-based methods to the
‘row average’ method. Once again both k-NN and SVD estimate the missing values
based on global characteristics of the data population, thus, ignoring the importance of
the local neighbourhoods of the missing data. Similarly in [8] the authors handle the
problem of missing values with a novel imputation scheme. According to this scheme
genes with the missing values are represented as linear combinations of similar genes.
In [6] an SVD impute method which is implemented as the Fixed Rank Approxima-
tion Algorithm is considered. A bayesian principal component analysis method has
been also used as it is reported in [17]. In a very recent approach the a Gene Ontology
(GO) is combined with a k-NN algorithm to predict missing values with encouraging
results [23].

In our approach, missing values are estimated using a wavelet lifting scheme. As al-
ready stated, the main advantage of the wavelets is that they allow the localization of a
signal in both the time and frequency domains. Thus, the importance of the local neigh-
bourhood of missing data is preserved. However, classic wavelet regression can not
directly applied to missing value estimation in irregularly spaced data sets. Fortunately,
second generation wavelets and lifting schemes are appropriate methods to account for
this problem.

3 Multiresolution Analysis and Microarrays

From the point of view of mathematics, a function can be represented as an infinite
series expansion in terms of a dilated and translated version of a basis function called
the mother wavelet denoted as ψ(x) and weighted by some coefficient bj,k.

f(t) =
∑
j,k

bj,kψj,k(t) (1)

Normally, a wavelet starts at time t = 0 and ends at time N . A shifted wavelet denote
as ψjo, starts at time t = k and ends at time t = k + N . A dilated wavelet wj0 starts at
time t = 0 and ends at time t = N/2j . A wavelet wjk that is dilated j times and shifted
k times is denotes as:

ψj,k(t) = ψ(2jt− k) (2)

For practical purposes, we can use the discrete wavelet transform, which removes
some of the redundancy found in the continuous transform. In this study we rely on
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wavelet shrinkage. The shrinkage is based on discarding some of the detail coefficients
and then by reconstructing the signal based on the reduced set of coefficients. Moreover,
in [2,3] it has been shown that the wavelet shrinkage method outperform other methods
for denoising signals.

Wavelet analysis is based on the assumption that that the signal coefficients are ob-
served in a regular grid, that is the data points are equidistant. However, this is not the
case with all from the domain of gene expression. A novel scheme known as the lifting
transform can deal with this issue.

3.1 Adaptive Lifting

Wavelet analysis can be applied to regularly distributed data, which means that the
following hypothesis must hold ti = i

n , n denotes the number of samples, and ti is the
sampling rate. However this might not be the case in some real world measurements
including DNA microarray experiments. Moreover, in the discrete wavelet analysis the
signal samples must be a power of two and each level of analysis considers 50% of the
data of the previous level.

Next, the lifting transform that we describe was conceived in [16], where we refer
to for more details. This transform can deal with irregularly spaced data. Similarly to
the wavelet transform, in a lifting scheme a function f can be represented as a linear
combination of scaling coefficients:

f(x) =
n∑

k=1

cn,kφn,k(x) (3)

The first step of the transform is step n all the way till step 1. At the first step it holds
that φn,k(xi) = δi,k and f(xn,i) = cn,i =

∑n
k=1 cn,kδi,k

The first phase is to Lift one point, which means that the point is removed. Up to
n − 2 points can be lifted for a signal of length n; let jn be the first point to be lifted.
The selection is based on removing first the points which correspond to the highest
detail. This is defined as the point which corresponds to the smallest interval, provided
we assign intervals to points, which start at midway after the previous point and end at
midway before the next point. This is expressed as

∫
φn,jn(x)dt = min

∫
φn,k(x)dx,

where k ∈ [1, n]. The rationale is that the denser regions of the function being a result of
higher frequency sampling can be seen as the detail coefficients which are removed first.
The scaling coefficients correspond to the sparsely sampled regions of the function.

The second phase is to Predict the lifted point, which will produce the detail coeffi-
cient at the lifted point. Prediction is based on discovering through regression a poly-
nomial curve that passes through the neighbouring points (let as denote them as Jn)
of jn. Prediction is of the following form:

∑
i∈Jn

an
i cn,i, where an

i are the polynomial
coefficients resulting from the regression. The detail coefficient at the lifted point is the
difference between the function value at this point and the prediction,

djn = cn,jn −
∑
i∈Jn

an
i cn,i (4)
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The third phase is to Update the function samples that were part of the neighbour-
hood of the lifted point.

cn−1,i = cn,i + bn
i djn , ∀i ∈ Jn, i �= jn (5)

where bn
i are the prediction coefficients and can be computed with a least squares

method. After the lift, predict and update phases the function can be represented as:

f(x) = djnψjn(x) +
∑

i∈1...n,i�=jn

cn−1,iφn−1,i(x) (6)

The first term corresponds to a detail coefficient and the second to the scaling coef-
ficient. In particular ψjn(x) is a wavelet function and the weights b result from the
requirement that the integral of the wavelet function is zero [7]). The three step process
Lift, Predict and Update can be repeated for more points. Adaptation is performed at the
prediction phase, where the regression polynomial is selected with the criterion of pro-
ducing the smallest detail coefficients. In addition, adaption can also be implemented
by having a variable number of neighbours, for every lifted point, again with a view
of obtaining the smallest detail coefficients. The power of the lifting transform is that
in can be adapted to irregularly distributed points by selecting a polynomials (between
degrees one to three in the current implementation) that conform to the local structure
of the signal as mentioned above. It is also important to note that since, the aforemen-
tioned lifting method lifts one coefficient at a time as opposed to the discrete wavelet
transform where 50% of the signal samples become detail coefficients, thus it is more
“continuous” than the wavelet transform.

3.2 Smoothing in the Lifting Scheme

The problem of signal denoising has been thoroughly addressed in the statistics lit-
erature, and it can be stated (for a univariate function) as follows: y(ti) = g(ti) +
ε(ti), i = 1, . . .n Thus it is assumed that the observed values y(ti) stem from the
unobserved values g(ti) with the addition of noise that follows the N(0,σ2) distribu-
tion. In the wavelets field, denoising can be achieved by assuming a wavelet transform
of the above equation, which leads to: djk = d∗jk + ejk, where djk are the observed
wavelet detail coefficients, d∗jk are the “true” detail coefficients and ejk is the wavelet
transform of the noise. All this is true in the classic framework of wavelets where ejk

follows the N(0,σ2) distribution. However, the lifting scheme is not orthogonal and the
noise will be correlated and different coefficients have different variances. Basically, it
has been suggested to adapt the empirical Bayesian wavelet shrinkage approach to the
lifting scheme [16].

In [18] the authors faced the problem of transmembrane protein prediction. The usual
approach is through hydrophobicity analysis of the aminoacids that constitute the pro-
tein. They have used a multiresolution method (lifting based) to regress the Kyte Doolit-
tle hydrophobicity index over the residues. The novelty they introduced is incorporation
of the 3D structure of the proteins in their calculations. However, the residues are not
equidistant rather they are irregularly distributed. Thus the direct use of wavelets was
not possible, therefore the authors have introduced the lifting transform that we have
briefly described.
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4 Lifting Methods Employed

The problem we have addressed is that of missing value estimation in time series mi-
croarray experiments. The form of the data set is a series of vectors corresponding to
genes, and each dimension corresponds to the expression level of a gene at a certain
time step gk = (xk

t1 . . .x
k
tn

), where gk is a gene that has been expressed by produced
RNA (and hence protein) and xk

t1 denote the expression of that gene at different time
steps. Usually, the number of genes is in the order of a few thousands and the number
of time steps is two orders of magnitude less. Let us assume that we have a one di-
mensional signal, where a single value at a specific time step is missing, let us call the
index of the missing value as pM . The lifting based processing methods that we have
employed to predict the missing value are described bellow:

In Lifting I the missing value is set to zero and all signals samples are lifted (apart
from the last two), according to the scheme described in the previous section. Then
the lifted coefficients, which correspond to details are set to zero, and the signal is
reconstructed with the reverse lifting transform. The Lifting II is exactly the same as
Lifting I, but instead of zeroing the detail coefficients, they are thresholded with a
bayesian threshold. Both lifting I and II implement a signal denoising technique similar
to wavelet based denoising, but instead of the wavelet transform we apply the lifting
transform [18].

In Lifting III we detect two points, one before the missing point pA and another one
after the missing point pB . Next, the neighbours of pA will be used to predict pA. The
definition of neighbourhood includes the two immediate neighbours (one on the left
of the predicted point and one on the right). The result of the prediction is a linear,
quadratic or cubic polynomial that minimises the distance between the real value of pA

and its prediction. More accurately, point pA is lifted and the polynomial that produces
the smallest detail coefficients is chosen. Let us call it fA(x). Similarly, a polynomial
will be produced for pB , let as call it fB(x). The the prediction for the missing value
is fA(pM )+fB(pM )

2 , where pM is the index of the missing point. The lifting III method
differs from lifting I and II in that only two points are lifted (the neighbours of the
missing point) and it that it does not involve a reverse transform.

5 Experiments and Results

Five time series data sets were used in our experiments. Four of them concern the cell
cycle of the yeast saccharomyces cerevisiae. A cell cycle is the sequences of stages
a cell passes from one division to the next. Microarray experiments were performed
to identify all genes whose mRNA levels are regulated by the cell cycle [20]. We de-
rived the data sets from the public site (http://genome-www.stanford.edu/
cellcycle/data/rawdata/). We have also used the microarray sporulation data
set [19] from (http://cmgm.stanford.edu/pbrown/sporulation/). In
particular, at the experiments we used the alpha factor, cdc 15, cdc 28, elutriation and
the sporulation time courses. We preprocessed all data sets by eliminating vectors with
missing values (of course the number of time steps was not affected), but in some cases
as much as 25% of the vectors were eliminated. In table 1, we report the characteristics
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of the data sets. Two issues are important, first the cdc 15 and the sporulation data sets
are irregularly distributed in time, and for all data sets the number of time steps is rather
small compared to other types of signals.

Table 1. Time series microarray data sets

data set # vectors # time steps Sampling rate (numbers denote minutes)
alpha 4489 18 from 0 to 119, every 7 min
cdc 28 1383 17 from 0 to 160 every 10 min
cdc 15 4382 24 from 10 to 70 every 20 min, from 70 to 240 every 10 min

and then every 20 min till 290
elutriation 5766 14 from 0 to 390 every 30 min
sporulation 6117 7 at 0, 0.5, 2, 5, 7, 8, 11.5

For experimentation purposes a randomly selected value (time point) was removed
from each one of the vectors (gene expression values across time) in the dataset and was
considered as a missing value. We avoided removing the first and last time points; thus
missing values correspond to time steps between 2 to n − 1, where n is the length of
the gene signal. Each experiment was performed 10 times to reduce randomness. The
performance of each method is computed as:

m∑
i=1

∥∥xi
tl
− estitl

∥∥
m

(7)

where xi
tl

is the real value, esttl
the estimated value and m is the number of miss-

ing values to be estimated which is equal to the number of vectors of the data set we
consider; tl ∈ [2, n− 1] is a randomly chosen point across a time series.

We have compared the lifting I, II and III approaches elaborated at the previous
section with a weighted moving average method and a discrete wavelet transform.

In the weighted moving average: The missing value of the signal is set to zero, and
then we employ a gaussian like weighted filter whose central value is set to zero. Then
the signal is convolved with the filter. After the convolution we obtain the missing value.
In the wavelet method: The missing value of the signal is set to zero, then the discrete
wavelet transform is applied with the Daubechy mother wavelet. We have applied one
level of decomposition as the time series are very short (see table 1). Then the detail
coefficients are set to zero and the signal is reconstructed with the reverse wavelet trans-
form. After that we obtain the missing value.

The results appear in tables 2,3, where under the label zero we report the results
obtained by filling the missing value with zero. The numbers denote average errors
as computed from eq. 7 and the numbers in parentheses are the standard deviations.
The ranges for the datasets are: alpha [-2.7100,4.7600], cdc 28 [-4.1200,3.0900], cdc
15 [-4.6300, 4.1400], elutriation [-6.2200,4.9500] and sporulation [-6.0012,4.4118]. As
mentioned above, in the cdc 15 and the sporulation data sets the vectors’ components are
irregularly distributed but we chose to ignore that when applying the wavelet method,
so as to discover the deterioration of the results as compared to the lifting schemes.
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Table 2. Average error on the cdc 15 and cdc 28 datasets

cdc 15 cdc 28
Zero 0.3102 (0.0049) 0.3244 (0.007)

Lifting I 0.3326 (0.0033) 0.3373 (0.004)
Lifting II 0.3178 (0.0036) 0.3222 (0.004)
Lifting III 0.3310 (0.0037) 0.2997 (0.005)

Moving Average 0.3771 (0.0038) 0.3113 (0.006)
Wavelet 0.3410 (0.0036) 0.3072 (0.005)

Table 3. Average error on the Alpha, Elutriation and Sporulation datasets

Alpha Elutriation Sporulation
Zero 0.1939 (0.0022) 0.2140 (0.0016) 0.7166 (0.0035)

Lifting I 0.2039 (0.0018) 0.2124 (0.0018) 0.4693 (0.0058)
Lifting II 0.1963 (0.0019) 0.2122 (0.0014) 0.5744 (0.0063)
Lifting III 0.1938 (0.0021) 0.1917 (0.0012) 0.4224 (0.0034)

Moving Average 0.2067 (0.0020) 0.1780 (0.0015) 0.3576 (0.0050)
Wavelet 0.1955 (0.0022) 0.1893 (0.0015) 0.4361 (0.0032)

The lifting based experiments were performed on the R software package (http://
www.r-project.org/) with the Adlift package developed by M.Popa and
M.Nunes (http://www.maths.bris.ac.uk/ maman/computerstuff/
Adlift.html). The rest of the experiments were performed on the Matlab 6.1 plat-
form, with the wavelet toolbox (v.2.1) (http://www.mathworks.com/)

6 Conclusions and Future Work

We have evaluated various multiresolution schemes along with some classic methods to
estimate missing values in signals derived from microarray experiments. We were espe-
cially interested in a rather novel multiresolution analysis scheme, the adaptive lifting
transform and in particular the “lifting of one coefficient at a time” version. This scheme
is adaptive in the sense that it conforms to the local structure of the signal by locally se-
lecting approximation polynomials, and thus it can cope with signals where the samples
are not evenly distributed. It is also more continuous that the wavelet transform, in that
one coefficient is lifted at a time and the relevant detail coefficient is obtained, instead
of obtaining detail coefficients for 50% of the signal components, as in the wavelet
transform. We compared the lifting methods against more established ones, such as the
discrete wavelet transform, a moving average method and the zero imputation (missing
value is filled with zero). In each signal from each data set a random value was chosen
to be estimated as if it was missing. The lifting I and II are based on denoising, in partic-
ular the lifting I employs a rather crude method: the detail coefficients are zeroed before
the signal reconstruction. The lifting II method is based on a bayesian thresholding of
the detail coefficients. Finally, the lifting III performs adaptive prediction of the missing
value from its neighbourhood.
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Two of the data sets, the cdc 15 and the sporulation, have irregularly distributed
samples, where the wavelet method was applied without regard to the irregular time
grid. On both the sporulation and cdc 15 the lifting III method outperformed the wavelet
method, albeit by a short margin. Also on the cdc 15 dataset the lifting I and II methods
were better than the wavelet method. On regularly distributed data sets, such as the
elutriation set the moving average method is the overall winner. Another remark is that
occasionally a trivial method such as the zero imputation is occasionally better than
other methods (e.g. on the cdc 15 data set). The moving average method was the overall
winner on the elutriation and sporulation data sets and the lifting III on the cdc 28 data
set. The overall conclusion is that on irregularly sampled time series the classic wavelet
transform is worse than the lifting transform.

It should be pointed out that the methods of missing value prediction that we evalu-
ated were based only on single signals in the sense that we did not take into account the
information that could be furnished by similar signals of the same data set as performed
by the relevant research we reported in the introduction. For instance in [22] on cell
cycle regulated genes, the error was in [0.05, 0.1] depending on the chosen parameters.
Clearly lower, than that furnished by the methods we proposed. However, the purpose
of our approach was to investigate the extend to which the correlation of the samples
in a single signal can predict missing values, whereas in the relevant literature such
information has not been investigated.

In future work we will investigate the extend to which the lifting transform can pre-
dict more that one missing values per signal, and especially when they are consecu-
tive. This will probably impose a heavy burden on the classic wavelet transform or the
moving average method since they do no adapt to the local signal structure. Moreover,
another path that we plan to follow is to dynamically determine for the lifting transform
the number of the components that should be lifted. In the current research all compo-
nents were lifted apart from two. From experiments that we conducted the number of
lifted coefficients is crucial for the accuracy of the prediction of the missing value. A
good place to start the relevant investigation is the work described in [15].

References

1. F. Abramovich, T.C. Bailey, and T. Sapatinas. Wavelet Analysis and its statistical applica-
tions. The Statistician, 49:1–29, 2000.

2. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymp-
topia? J. R. Statist. Soc. B., 57(2):301–337, 1995.

3. David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 1994.

4. A. A. Alizadeh et al. Distinct types of diffuse large b-cell lymphoma identified by gene
expression profiling. Nature, 403:503–511, 2000.

5. A. J. Butte et al. Determining significant fold differences in gene expression analysis. In
Pac. Symp. Biocomput., pages 6–17, 2001.

6. S. Friedland, A. Niknejad, and L. Chihara. A simultaneous reconstruction of missing data
in DNA microarrays. Institute for Mathematics and its Applications Preprint Series, (1948),
2003.

7. M. Jansen, G. P. Nason, and B. W. Silverman. Multivariate nonparametrix regression using
lifting. Technical report, Department of Mathematics, University of Bristol, UK, 2004.



150 D. Vogiatzis and N. Tsapatsoulis

8. H. Kim, G.H. Golub, and H. Park. Missing value estimation for DNA microarray gene
expression data: local least squares imputation. Bioinformatics, 21(2):187–198, 2005.

9. T. Li, Q. Li, S. Zhu, and M. Ogihara. A survey on wavelet applications in data mining.
SIGKDD Explorations, 4(2):49–68, 2003.
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Abstract. The Sigma-Point Kalman Filters (SPKF) is a family of filters that 
achieve very good performance when applied to time series. Currently most re-
searches involving time series forecasting use the Sigma-Point Kalman Filters, 
however they do not use an ensemble of them, which could achieve a better per-
formance. The REC analysis is a powerful technique for visualization and com-
parison of regression models. The objective of this work is to advocate the use 
of REC curves in order to compare the SPKF and ensembles of them and select 
the best model to be used. 

1   Introduction 

In the past few years, several methods for time series prediction were developed and 
compared. However, all these studies based their conclusions on error comparisons. 

Results achieved by Provost, Fawcett and Kohavi [15] raise serious concerns about 
the use of accuracy, both for practical comparisons and for drawing scientific conclu-
sions, even when predictive performance is the only concern. They indicate ROC 
analysis [14] as a superior methodology than the accuracy comparison in the evalua-
tion of classification learning algorithms. Receiver Operating Characteristic (ROC) 
curves provide a powerful tool for visualizing and comparing classification results. A 
ROC graph allows the performance of multiple classification functions to be visual-
ized and compared simultaneously and the area under the ROC curve (AUC) repre-
sents the expected performance as a single scalar. 

But ROC curves are limited to classification problems. Regression Error Charac-
teristic (REC) curves [1] generalize ROC curves to regression with similar benefits. 
As in ROC curves, the graph should characterize the quality of the regression model 
for different levels of error tolerance. 

The Sigma-Point Kalman Filters (SPKF) [10] is a family of filters based on deriva-
tiveless statistical linearization. It was shown that Sigma-Point Kalman Filters achieve 
very good performance when applied to time series [10]. 

Current research on time series forecasting mostly relies on use of Sigma-Point 
Kalman Filters, achieving high performances. Although most of these works use one 
of the filters from the SPKF family, they do not use an ensemble [4] of them, which 
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could achieve a better performance. Therefore, the main goal of this paper is to advo-
cate the use of REC curves in order to compare ensembles of Sigma-Point Kalman 
Filters and choose the best model to be used with each time series. 

This paper is organized as follows. The next section has a brief review of REC 
curves. Then, a summary of the main characteristics of the Sigma-Point Kalman Fil-
ters is presented in Section 3. An experimental evaluation comparing the REC curves 
provided by each algorithm and ensembles of them is reported in Section 4. Finally, 
in Section 5, the conclusions and the plans for future research are presented. 

2   Regression Error Characteristic Curves 

Results achieved by Provost, Fawcett and Kohavi [15] indicate ROC analysis [14] as 
a superior methodology to the accuracy comparison in the evaluation of classification 
learning algorithms. But ROC curves are limited to classification problems. Regres-
sion Error Characteristic (REC) curves [1] generalize ROC curves to regression with 
similar benefits. As in ROC curves, the graph should characterize the quality of the 
regression model for different levels of error tolerance. 

The REC curve is a technique for evaluation and comparison of regression models 
that facilitates the visualization of the performance of many regression functions si-
multaneously in a single graph. A REC graph contains one or more monotonically 
increasing curves (REC curves) each corresponding to a single regression model. 

One can easily compare many regression functions by examining the relative posi-
tion of their REC curves. The shape of the curve reveals additional information that 
can be used to guide modeling. 

REC curves plot the error tolerance on the x-axis and the accuracy of a regression 
function on the y-axis. Accuracy is defined as the percentage of points predicted 
within the error tolerance. A good regression function provides a REC curve that 
climbs rapidly towards the upper-left corner of the graph, in other words, the regres-
sion function achieves high accuracy with a low error tolerance. 

In regression, the residual is the analogous concept to the classification error in 
classification. The residual is defined as the difference between the predicted value 
f(x) and actual value y of response for any point (x, y). It could be the squared error (y 
− f(x))2 or absolute deviation | y − f(x) | depending on the error metric employed. 
Residuals must be greater than a tolerance e before they are considered as errors. 

The area over the REC curve (AOC) is a biased estimate of the expected error for a 
regression model. It is a biased estimate because it always underestimates the actual 
expectation. If e is calculated using the absolute deviation (AD), then the AOC is 
close to the mean absolute deviation (MAD). If e is based on the squared error (SE), 
the AOC approaches the mean squared error (MSE). The evaluation of regression 
models using REC curves is qualitatively invariant to the choices of error metrics and 
scaling of the residual. The smaller the AOC is, better the regression function will be. 
However, two REC curves can have equal AOC's but have different behaviors. The 
one who climbs faster towards the upper-left corner of the graph (in other words, the 
regression function that achieves higher accuracy with a low error tolerance) may be 
preferable. This kind of information can not be provided by the analysis of an error 
measure. 
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In order to adjust the REC curves in the REC graph, a null model is used to scale 
the REC graph. Reasonable regression approaches produce regression models that are 
better than the null model. The null model can be, for instance, the mean model: a 
constant function with the constant equal to the mean of the response of the training 
data. 

An example of REC graph can be seen in Fig. 1. The number between parentheses 
in the figure is the AOC value for each REC curve. A regression function dominates 
another one if its REC curve is always above the REC curve corresponding to the 
other function. In the figure, the regression function dominates the null model, as 
should be expected. 

Fig. 1. Example of REC graph 

3   Sigma-Point Kalman Filters 

It is known that for most real-world problems, the optimal Bayesian recursion is in-
tractable. The Extended Kalman Filter (EKF) [11] is an approximate solution that has 
become one of the most widely used algorithms with several applications. 

The EKF approximates the state distribution by a Gaussian random variable, which 
is then propagated through the “first-order” linearization of the system. This lineariza-
tion can introduce large errors which can compromise the accuracy or even lead to 
divergence of any inference system based on the EKF or that uses the EKF as a com-
ponent part. 

The Sigma-Point Kalman Filters (SPKF) [10], a family of filters based on deriva-
tiveless statistical linearization, achieve higher performance than EKF in many prob-
lems and are applicable to areas where EKFs can not be used. 

Instead of linearizing the nonlinear function through a truncated Taylor-series ex-
pansion at a single point (usually the mean value of the random variable), SPKF 
rather linearize the function through a linear regression between r points, called 
sigma-points, drawn from the prior distribution of the random variable, and the true 
nonlinear functional evaluations of those points. Since this statistical approximation 
technique takes into account the statistical properties of the prior random variable the 
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resulting expected linearization error tends to be smaller than that of a truncated Tay-
lor-series linearization. 

The way that the number and the specific location of the sigma-points are chosen, 
as well as their corresponding regression weights, differentiate the SPKF variants 
from each other. The SPKF Family is composed by four algorithms: Unscented Kal-
man Filter (UKF), Central Difference Kalman Filter (CDKF), Square-root Unscented 
Kalman Filter (SR-UKF) and Square-root Central Difference Kalman Filter (SR-
CDKF). 

Now we will present a brief overview of the main characteristics of the Sigma-
Point Kalman Filters. See [10] for more details. 

3.1   The Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) [12] derives the location of the sigma-points as 
well as their corresponding weights so that the sigma-points capture the most impor-
tant statistical properties of the prior random variable x. This is achieved by choosing 
the points according to a constraint equation which is satisfied by minimizing a cost-
function, whose purpose is to incorporate statistical features of x which are desirable, 
but do not necessarily have to be met. The necessary statistical information captured 
by the UKF is the first and second order moments of p(x). 

3.2   The Central Difference Kalman Filter 

The Central Difference Kalman Filter (CDKF) [8] is another SPKF implementation, 
whose formulation was derived by replacing the analytically derived first and second 
order derivatives in the Taylor series expansion by numerically evaluated central 
divided differences. The resulting set of sigma-points for the CDKF is once again a 
set of points deterministically drawn from the prior statistics of x. Studies [8] have 
shown that in practice, just as UKF, the CDKF generates estimates that are clearly 
superior to those calculated by an EKF. 

3.3   Square-Root Forms of UKF and CDKF 

SR-UKF and SR-CDKF [9] are numerically efficient square-root forms derived from 
UKF and CDKF respectively. Instead of calculating the matrix square-root of the state 
covariance at each time step (a very costly operation) in order to buid the sigma-point 
set, these forms propagate and update the square-root of the state covariance directly 
in Cholesky factored form, using linear algebra techniques. This also provides more 
numerical stability. 

The square-root SPKFs (SR-UKF and SR-CDKF) achieve equal or slightly higher 
accuracy when compared to the standard SPKFs. Besides, they have lower computa-
tional cost and a consistently increased numerical stability. 

4   Experimental Evaluation 

Since the experiments described in [1] used just one data set and their results were only 
for REC demonstration, we first did tests with two well-known regression algorithms 
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using 25 regression problems, in order to better evaluate the REC curves as a tool for 
visualizing and comparing regression learning algorithms. 

Then we present the results of the comparison by using REC curves of SPKFs and 
EKF applied to time series and finally we investigate the use of an ensemble method 
(stacking [18]) with the tested models, evaluating it with REC curves, as suggested by 
Bi and Bennett [1]. In this work, 12 time series with real-world data were used in 
order to try to establish a general ranking among the models tested. The names and 
sizes of the used time series are shown in Table 1. All data are differentiated and then 
the values are rescaled linearly to between 0.1 and 0.9. As null model we choose the 
mean model, a constant function with the constant equal to the mean of the response 
of the training data. 

4.1   Preliminary Results with Regression  

Initial experiments were carried out in order to reinforce the conclusions reached out 
by Bi and Bennett [1] in favor of the use of REC curves as a mean to compare regres-
sion algorithms (similarly to arguments for ROC curves in classification). 

Table 1. Time series used in the experimental evaluation 

Time series Data points  Time series Data points 
A1 1000  Series 12 96 
Burstin3 2001  Series 2 2 96 
Darwin3 1400  Series 3 2 96 
Earthquake3 2097  Soiltemp3 2306 
Leuven4 2000  Speech3 1020 
Mackey-Glass5 300  Ts1 3 1000 

We have used REC curves in order to compare the performance of the Naive Bayes 
for Regression [7] to the performance of Model Trees [16]. Naive Bayes for Regres-
sion (NBR) uses the Naive Bayes methodology for numeric prediction tasks by mod-
eling the probability distribution of the target value with kernel density estimators. 
Model Tree predictor is a state-of-the-art method for regression. Model trees are the 
counterpart of decision trees for regression tasks. They have the same structure as 
decision trees, but employ linear regression at each leaf node to make a prediction. In 
[7] an accuracy comparison of these two learning algorithms is presented and its re-
sults show that Model Trees outperform NBR significantly for almost all data sets 
tested. 

                                                           
1 Data from a competition sponsored by the Santa Fe Institute. 
  (http://www-psych.stanford.edu/%7Eandreas/Time-Series/SantaFe) 
2 Data of monthly electric load forecasting from Brazilian utilities [17]. 
3 Data from the UCR Time Series Data Mining Archive [13]. 
4 Data from the K.U. Leuven competition. 
  (ftp://ftp.esat.kuleuven.ac.be/pub/sista/suykens/workshop/datacomp.dat) 
5 Numerical solution for the Mackey-Glass delay-differential equation. 
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The 25 regression data sets used in this study were obtained from the UCI Reposi-
tory of Machine Learning Databases [2]. With 16 of the data sets the Model Tree 
predictor clearly outperforms NBR, as can be seen, for instance, in Fig. 2. The num-
ber between parentheses in the figure is the AOC value for each REC curve. Note that 
the REC curve for Model Tree covers completely the REC curve for NBR, becoming 
clear the superiority of the former algorithm when applied to this specific data set. 

 

Fig. 2. REC graph used to compare the 
performances of NBR and Model Tree when 
applied to data set pwLinear 

Fig. 3. EKF and SPKFs applied to Burstin 
time series 

4.2   Comparing SPKFs by Means of REC Curves 

First, we have compared UKF and CDKF with their square-root forms, SR-UKF and 
SR-CDKF respectively. As expected, the REC curves for UKF and for SR-UKF are 
very similar. This means that the difference between the performances of the models 
provided by UKF and SR-UKF was negligible. The same fact could be verified with 
the REC curves for CDKF and SR-CDKF. Therefore, because of these results and the 
other advantages mentioned before in Section 3, we have continued our experiments 
only with the square-root forms of the SPKF. 

By analyzing the generated REC graphs, we could verify that, for most time series, 
the model provided by SR-UKF dominates the models provided by SR-CDKF and 
EKF, that is, the REC curve for the SR-UKF model is always above the REC curves 
for SR-CDKF and EKF. Therefore, the model provided by SR-UKF would be prefer-
able. An example is shown in Fig. 3. 

SR-UKF was outperformed by SR-CDKF only for the Mackey-Glass time series 
(Fig. 4). SR-CDKF and EKF achieved similar performances for almost all time series, 
as can be seen, for instance, in Fig. 5. However, the analysis of the AOC’s gives a 
small advantage to SR-CDKF. The lower performance of EKF when compared to the 
others is probably caused by the non-linearity of the series. Therefore, SR-UKF con-
sistently showed to be the best alternative to use with these series, followed by SR-
CDKF and EKF, in this order. The Model Tree predictor and NBR were also tested 
for the prediction of the time series, but both provided poor models. 
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Fig. 4. EKF and SPKFs applied to Mackey-
Glass time series 

Fig. 5. EKF and SPKFs applied to Earth-
quake time series 

4.3   Stacking of Sigma-Point Kalman Filters 

Stacking [18] is an ensemble method [4] used to combine different learning algo-
rithms. It works as follows. Suppose we have a set of different learning algorithms 
and a set of training examples. Each of these algorithms, called base learners, is  
applied to the training data in order to produce a set of hypotheses. The results com-
puted by this set of hypotheses are combined into new instances, called meta-
instances. Each of the "attributes" in the meta-instance is the output of one of the 
learning algorithms and the class value is the same of the original instance. Another 
learning algorithm, called meta-regressor (or meta-classifier, for classification), is 
trained and tested with the meta-instances and provides the final result of the stacking. 

We have used stacking to build ensembles of SPKFs and EKF. A Model Tree pre-
dictor was chosen as a meta-regressor not only because it achieved good results in the 
initial experiments, but also because it is a state-of-the-art regression method and it 
has already been successfully used as a meta-classifier for stacking [6], outperforming 
all the other combining methods tested. 

Table 2. Stackings built 

Stackings Base learners 
Stacking 1 EKF, SR-CDKF 
Stacking 2 EKF, SR-UKF 
Stacking 3 SR-CDKF, SR-UKF 
Stacking 4 EKF, SR-CDKF, SR-UKF 

 

In order to determine which subset of algorithms can provide the best ensemble, 
we built four models by stacking: one containing the square-root SPKFs and EKF, 
and the others leaving one of them out. If we were testing several algorithms we could 
use a method to build the ensembles [3]. Table 2 shows the stackings built: Stacking 1 
is composed by EKF and SR-CDKF, Stacking 2 is composed by EKF and SR-UKF, 
Stacking 3 is composed by SR-CDKF and SR-UKF, and Stacking 4 is composed by 
EKF, SR-CDKF and SR-UKF. 
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Table 3. AOC’s of the REC curves provided for the stackings with SR-UKF as a base learner 

Time series Stacking 2 Stacking 3 Stacking 4 
A 0.001366 0.001497 0.001310
Burstin 0.001740 0.001613 0.001740
Darwin 0.013934 0.014069 0.014052
Earthquake 0.000946 0.000943 0.000946
Leuven 0.005172 0.005190 0.005142
Mackey-Glass 0.228064 0.133420 0.128672
Series 1 0.001167 0.001306 0.001111
Series 2 0.013139 0.012294 0.012639
Series 3 0.000800 0.000717 0.000767
Soiltemp 0.000884 0.000780 0.000782
Speech 0.000714 0.000713 0.000706
Ts1 0.005010 0.005044 0.004881

 

 

Fig. 6. Stackings applied to Series 2 time 
series 

Fig. 7. SR-UKF and Stacking 3 applied to 
Darwin time series 

The REC curves show that all stackings that have the SR-UKF as a base learner 
achieve similar high performances. This can be seen, for example, in Fig. 6. 

Table 3 shows the AOC values of the REC curves provided for the stackings with 
SR-UKF as a base learner. By analyzing the values we can see that among the three 
stackings that contain the SR-UKF, those who have SR-CDKF as a base learner 
achieve a slightly better performance. Since the number of time series for which 
Stacking 3 achieved the best performance is almost the same number of time series 
for which Stacking 4 was the best, we have considered that the inclusion of EKF as a 
base learner does not compensate the overhead in terms of computational cost. Thus, 
the model chosen as the best is that provided by Stacking 3 (SR-CDKF and SR-UKF 
as base learners). 

By comparing the best stacking model (SR-CDKF and SR-UKF as base learners 
and Model Tree predictor as meta-regressor) to the best individual algorithm (SR-
UKF) we could verify that the stacking achieved a significantly higher performance 
for all time series tested. This can be clearly noted in Fig. 7. 
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5   Conclusions and Future Works 

We have used REC curves in order to compare the SPKF family of filters (state-of-the-
art time series predictors) and ensembles of them, applied to real-world time series. 

The results of the experiments pointed SR-UKF as the best SPKF to use for fore-
casting with the series tested. Further experiments showed that a stacking composed 
by SR-CDKF and SR-UKF as base learners and a Model Tree predictor as meta-
regressor can provide a performance statistically significantly better than that pro-
vided by the SR-UKF algorithm working individually. The REC curves showed to be 
very efficient in the comparison and choice of time series predictors and base learners 
for ensembles of them. 

Currently, we are conducing tests with REC curves in order to compare Particle 
Filters [5], sequential Monte Carlo based methods that allows for a complete repre-
sentation of the state distribution using sequential importance sampling and resam-
pling. Since Particle Filters approximate the posterior without making any explicit 
assumption about its form, they can be used in general nonlinear, non-Gaussian sys-
tems. As a future work we intend to investigate further the use of ensembles with 
SPKFs, as well as with Particle Filters. 
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Abstract. In time series prediction, accuracy of predictions is often the
primary goal. At the same time, however, it would be very desirable if
we could give interpretation to the system under study. For this goal, we
have devised a fast input selection algorithm to choose a parsimonious,
or sparse set of input variables. The method is an algorithm in the spirit
of backward selection used in conjunction with the resampling proce-
dure. In this paper, our strategy is to select a sparse set of inputs using
linear models and after that the selected inputs are also used in the non-
linear prediction based on multi-layer perceptron networks. We compare
the prediction accuracy of our parsimonious non-linear models with the
linear models and the regularized non-linear perceptron networks. Fur-
thermore, we quantify the importance of the individual input variables
in the non-linear models using the partial derivatives. The experiments
in a problem of electricity load prediction demonstrate that the fast in-
put selection method yields accurate and parsimonious prediction models
giving insight to the original problem.

1 Introduction

Time series analysis is an important problem in natural and engineering sci-
ences, both from the viewpoint of prediction and understanding of the behavior
of the systems under study. There are numerous applications of time series anal-
ysis scattered in the published literature of econometrics, system identification,
chemistry, statistics, pattern recognition, and neural networks [1]. It would be
very appealing to be able to predict the behavior of the time series accurately,
and at the same time to give insight to the system itself. Our target is to esti-
mate time series prediction models that are both accurate and interpretable. By
interpretability we mean that the models contain only a relatively small subset
of input variables for the prediction. This gives emphasis to what is important
in the prediction of system behavior. These kind of parsimonious, or sparse time
series models are the focus of the paper. Inputs of the sparse models are selected
from a large set of autoregressive input variables for a given past horizon. This
approach tries to circumvent the problems of the high-dimensional input space,
i.e. curse of dimensionality.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 161–170, 2006.
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In the estimation of the sparse time series models, we rely on sparse regression
techniques [2] and a backward selection strategy. In addition, resampling pro-
cedures [3] are used to take into account the inherent uncertainty of the finite
data samples used in the estimation procedure. One of the main goals of the
proposed method is to offer a fast and reliable method for input selection. In
the first phase of the methodology, the linear model that is built is forced to be
sparse. That is, we do not select the most accurate model, rather we select a
compromise between sparsity and accuracy. In the second phase, the non-linear
prediction model is constructed using the selected sparse set of inputs.

In this paper, we present an analysis of our previously published input selec-
tion method used for the problem of long-term time series prediction [4]. It is
noteworthy, however, that the method is generally applicable to input selection
problems. Our interest is to apply the method to input selection within time
series prediction.

The rest of the article is organized as follows: Sect. 2 introduces relevant back-
ground in the time series prediction. Section 3 reviews our fast input selection
procedure in the context of linear prediction models. Section 4 focuses on non-
linear prediction models, i.e. multi-layer perceptron (MLP) networks, in which
the selected variables are finally used. Also, sensitivity analysis of the MLP net-
works is presented. Section 5 presents the empirical experiments on which the
findings are based on. Summary and Conclusions are presented in Sect. 6.

2 Time Series Prediction

In a time series prediction problem, future values of time series are predicted
using the previous values. The previous and future values of time series are
referred to inputs and outputs of the prediction model, respectively. One-step-
ahead prediction is needed in general and it is called short-term prediction. If
multi-step-ahead predictions are needed, it is known as long-term prediction.

Unlike short-term prediction, long-term prediction faces typically growing
amount of uncertainties arising from various sources. For instance, an accu-
mulation of errors and lack of information make the prediction more difficult. In
the case of long-term prediction, there are several strategies to build prediction
models. The direct and the recursive prediction are shortly described next.

2.1 Recursive Prediction Strategy

In the case of multi-step-ahead prediction, the recursive strategy uses the pre-
dicted values as known data to predict next ones. First, a one-step-ahead predic-
tion is done ŷt = f1(yt−1, yt−2, ..., yt−l), where yt−i, i = 1, . . . , l are the inputs. It
is also possible to use external variables as inputs, but they are not considered
here in order to simplify the notation. After that, the same model is used to
predict two-step-ahead ŷt+1 = f1(ŷt, yt−1, yt−2, . . . , yt−l+1), where the predicted
value of ŷt is used instead of the true value, which is unknown. Then, the k-step-
ahead predictions yt+k−1, k ≥ 3 are obtained iteratively. In the prediction of kth
step, l − k observed values and k predicted values are used as the inputs in the
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case of k < l. When k ≥ l, all the inputs are the predicted values. The use of
the predicted values as inputs may deteriorate the accuracy of the prediction.

2.2 Direct Prediction Strategy

In the direct strategy, the model ŷt+k−1 = fk(yt−1, yt−2, . . . , yt−l) is used for
k-step-ahead prediction. The predicted values are not used as inputs at all in
this approach, thus the errors in the predicted values are not accumulated into
the next predictions. When all the values from yt to yt+k−1 need to be predicted,
k different models must be constructed. This increases the computational com-
plexity, but more accurate results are achieved using the direct than the recursive
strategy as shown in [4] and [5]. We only apply the direct strategy in this paper.

3 Fast Input Selection

Consider the situation that there are N measurements available from an output
variable y and input variables xi, i = i, . . . , l. In the regression problems the
usual task is to estimate the values of the output y using the inputs xi. If the
dependency is assumed to be linear it can be written mathematically

yj =
l∑

i=1

βixj,i + εj , j = 1, . . . , N . (1)

The errors εj are assumed to be independently normally distributed with zero
mean and common variance. All the variables are assumed to have zero mean and
unit variance, thus the constant term is dropped out from the model. The ordi-
nary least squares (OLS) estimates of the regression coefficients β̂i are obtained
by minimizing the mean squared error (MSE) [2].

The OLS estimates are not typically satisfactory [2]. Firstly, the generalization
ability of the model may be improved by shrinking some coefficients toward
zero or setting them exactly to zero. Secondly, if the number of inputs is large
interpretation of the model might be difficult. Understanding or interpretability
of the underlying process can be increased by selecting the subset of inputs which
have the strongest effect in the prediction. Many approaches to input selection
are presented in [2] and [6].

We propose an efficient input selection procedure in [4]. The algorithm is based
on the bootstrap resampling procedure and it requires separate training and
validation sets. However, it is straightforward to use other resampling procedures
[3], e.g. k-fold cross-validation, instead of bootstrap.

The input selection procedure starts by estimating the linear model using all
the available inputs. The sampling distributions of OLS estimates β̂i and the
standard deviation str of the training MSEs are estimated using M times k-fold
cross-validation. We have Mk different training sets and, thus, Mk estimates for
the each coefficient βi, which formulate the sampling distribution. In addition,
we have Mk estimates for both training and validation MSE.
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The median mβi is calculated from Mk estimates β̂i. The median is used as
the location parameter for the distribution, since it is a reasonable estimate for
skewed distributions and distributions with outliers. The width of the distribu-
tion of β̂i is evaluated using the difference Δβi = β̂high

i − β̂low
i , where β̂high

i is
Mk(1− q)th and β̂low

i is Mkqth value in the ordered list of the Mk estimates β̂i

[3] and q can be set, e.g., q = 0.165. With this choice of q, the difference Δβi is
twice as large as the standard deviation in the case of the normal distribution.
The difference Δβi describes well the width of both asymmetric and symmetric
distributions.

The next step is to delete the least significant input variable. The ratio
|mβi |/Δβi is used as a measure of significance of the corresponding input vari-
able. The input with the smallest ratio is pruned from the set of inputs. After
that, the cross-validation procedure using the remaining inputs and pruning is
repeated as long as there are variables left in the set of inputs.

The previous procedure removes inputs sequentially from the set of possi-
ble inputs. In the end, we have l different models. The purpose is to select a
model which is as sparse as possible, but it still has comparable prediction accu-
racy. The initial model is selected based on the minimum validation error Emin

v .
The final model is the least complex model whose validation error is under the
threshold Emin

v + smin
tr , where smin

tr is the standard deviation of training MSE
of the model having the minimum validation error. This means that we also
include our uncertainty in the training phase into the selection of final model.
The algorithmic details of the proposed method are presented in [4].

Advantage of the described algorithm is the ranking of the inputs according
to their explanatory power. The pruning starts from the least significant inputs
and the resulting model includes only a few most significant ones. This might
be useful information for interpretation of the underlying process. Also, the
computational complexity of the proposed algorithm is linear O(l) with respect
to the number of available inputs l. Therefore, it is applicable in the case of large
number of inputs.

4 Non-linear Modeling Using MLP Networks

Although the linear models are easy to interpret and fast to calculate they are
not accurate enough in some problems. The dependencies between the variables
are described better using a non-liner model. However, many non-linear models
are black-box models and interpretation is almost impossible. Our proposal is to
use the selected inputs also in the non-linear model. Goals of this approach are
to avoid the curse of dimensionality, over-parameterization, and overfitting in
the non-linear modeling phase. In addition, the interpretability of the non-linear
model increases, since only a subset of inputs is included to the model.

MLP networks are used in the non-linear modeling phase

ŷ = μ +
p∑

j=1

αj tanh(
l∑

i=1

wijxi + bj) , (2)
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where p is the number of neurons in the hidden layer, ŷ is the estimate of the
output y and μ, αj , and wij are the weights of the network. It is known that
only one hidden layer is required to approximate any continuous function if the
number of connection weights is sufficient [7].

The number of connection weights is controlled by the number of neurons in
the hidden layer. The selection of number of neurons is based on k-fold cross-
validation. The optimal connection weights minimize MSE in the validation sets.
Another option is to set the number of neurons to be large enough and to use
weight decay (WD) to reduce the effective number of connection weights [8].
When WD is applied the cost function is

E =
1
N

⎛⎝ N∑
j=1

(yj − ŷj)2 + λθT θ

⎞⎠ , (3)

where θ is the vector containing all the parameters of the network and λ is the
weight decay parameter. A proper value for λ can be selected by cross-validation.
In WD, the values of weights are shrunk toward zero, but they are not set exactly
to zero. So, it is very likely that WD does not perform input selection.

4.1 Sensitivity Analysis

It may not be enough that the most relevant inputs are found. In many appli-
cations, it is important to evaluate the way inputs contribute to explanation or
prediction of the output.

The contribution of each input to the output can be evaluated using partial
derivatives of the MLP network [9]. Partial derivatives (PAD) method gives two
results. First, a profile of the output variations for a small changes of each input.
Second, classification of the inputs in increasing order of relative importance. It
is found that the PAD method gives stable results [9].

The partial derivative of MLP network (2) with respect to the input xi is

di =
∂ŷ

∂xi
=

p∑
j=1

αj(1− I2
j )wij , (4)

where Ij = tanh(
∑l

i=1 wijxi + bj). A set of graphs of the partial derivatives
versus each corresponding input can be plotted. The graphs show the influence
of the inputs on the output.

The sensitivity of the MLP output for the data set with respect to an input
is calculated

SSDi =
N∑

j=1

d2
i,j , SSDi ← SSDi∑l

i=1 SSDi

. (5)

Sum of squared derivatives (SSD) value is achieved for each input. SSDi is the
sum over all the observations. In the end, the SSDi values are scaled such that∑l

i=1 SSDi = 1. The input having the highest SSDi value influences most on
the output. The ranking based on SSD values can be compared to the ranking
obtained using the input selection method presented in Sect. 3.
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Fig. 1. Illustration of input selection, training error (gray line) and validation error
(black line) as a function of the number of inputs in the linear model. The vertical line
marks the minimum validation error and the horizontal dash-dotted line represents the
threshold, which is used in the selection of the final model.

5 Experiments

The two-phase modeling strategy described in the previous sections is applied
to time series prediction. The data set used is the Poland electricity load time
series1 [5]. It contains daily measurements from the electricity load in Poland
in the 1990’s. The data set has 1400 observations in the training set and 201
observations in the test set. The training and test sets are not consecutive. The
objective is to predict the electricity load one- (yt), two- (yt+1), and seven-day-
ahead (yt+6). We use direct prediction approach, i.e. we have to construct own
model for each case. The data is normalized to zero mean and unit variance
before the analysis.

5.1 Phase I: Input Selection

The maximum number of inputs is set to be l = 15, i.e. the available inputs are
yt−l, l = 1, . . . , 15 in each of the three prediction cases. In the input selection,
10-fold cross-validation repeated M = 100 times is used. This choice produces
1000 estimates for the coefficients βi, which is considered to be large enough for
reliably estimating the distribution of the parameters in the linear model.

Figure 1 illustrates the input selection procedure. In all the three cases, it is
notable that the validation error starts to increase only in the end. Almost all
the inputs are pruned from the model then. If the final model had been selected
according to the minimum validation error the number of inputs would have been
11, 7, and 5 in the case of one-, two, and seven-day-ahead prediction, respectively.
However, even more parsimonious models are achieved when the thresholding is
used. The final numbers of inputs are 5, 5, and 2 and the validation errors do
not increase significantly.

In Fig. 2, the selected inputs for all the three models are visualized. The
smaller the white number is in the selected inputs (in the black rectangles) the
more important the corresponding input is in the prediction. In other words, the
1 http://www.cis.hut.fi/projects/tsp/?page=Timeseries
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Fig. 2. The final models. The outputs yt+k, k = 0, +1, +6 are in the vertical axis and
the possible inputs yt−l, l = 1, . . . , 15 are in the horizontal axis. The selected inputs are
denoted by black rectangles on each row and the white numbers indicate the ranking
of the inputs according to the importance in the prediction.

number 1 indicates that the input was the last to prune from the model. For
instance, the upper row shows that the one-day-ahead model has 5 inputs, which
are yt−7, yt−1, yt−8, yt−14, and yt−15 in the decreasing order of importance. The
model has nice interpretation, since the inputs correspond to values of 7, 1, 8,
14, and 15 days before the predicted value. It is plausible that the two most
important inputs are the values of one week and one day before.

5.2 Phase II: Non-linear Modeling

Based on the results of the input selection, non-linear models are trained. Three
MLP networks are constructed for each output: i) MLP using the selected inputs
without weight decay, number of neurons (the maximum were 15) in the hidden
layer selected by 10-fold cross-validation repeated five times, ii) MLP using the
selected inputs with weight decay, number of neurons in the hidden layer was 20,
and iii) MLP with all the inputs with weight decay, number of neurons in the
hidden layer was 20. In the cases ii) and iii) MLPs are evaluated using 30 values
of the regularization parameter λ, which are logarithmically equally spaced in
the range λ ∈ [10−4, 103]. The optimal value of λ is selected using 10-fold cross-
validation repeated five times to increase the reliability of the results.

All the networks are trained using the Levenberg-Marquardt optimization
method by back-propagating the error gradients [8]. Ten different initializations
are used in the training of the networks in order to avoid local minima. The
training errors were monotonically decreasing as a function of increasing com-
plexity. In Fig. 3, the validation errors are shown as a function of λ for the cases
ii) (left) and iii) (right). It is notable that the minimum errors are roughly on
the same level, but the curve is flater in the left figure. Thus, a sparser grid for
λ could be used, which would reduce the computational burden. In the case i),
the minimum validation error is obtained using p = 6, p = 6, and p = 7 neurons
in the hidden layer for the outputs yt, yt+1, and yt+6, respectively.

The prediction accuracy of the final models were evaluated using the test set,
which is not used at all in the training and selection of the final models. Thousand
bootstrap replications were drawn from the test set and MSE was calculated for
each replication. The means and the standard deviations of MSE for each model
are reported in Table 1. The sparse linear models are equally accurate as the full
linear models, which indicates that the selected inputs are the most informative.
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Fig. 3. Validation errors as a function of λ for one-day-ahead (black line), two-day-
ahead (dark gray line), and seven-day-ahead (light gray line) prediction in the case of
selected inputs (left) and all the inputs (right). Circles mark the minimums.

Table 1. MSEs and standard deviations of MSEs for the test set calculated using the
bootstrap resampling procedure. n is the number of inputs, p is the number of neurons
in the hidden layer, and λ is the regularization parameter.

full linear sparse MLP n-p-1 MLP n-20-1 MLP 15-20-1
linear n = 15 linear model no WD with WD with WD

1-day- 0.054 (0.012) 0.055 (0.012) 0.038 (0.010) 0.040 (0.010) 0.038 (0.010)
ahead n = 5 n = 5, p = 6 n = 5, λ = 0.24 λ = 0.73
2-day- 0.085 (0.019) 0.086 (0.018) 0.074 (0.018) 0.077 (0.017) 0.079 (0.016)
ahead n = 5 n = 5, p = 6 n = 5, λ = 1.27 λ = 1.27
7-day- 0.118 (0.023) 0.116 (0.023) 0.116 (0.022) 0.117 (0.023) 0.114 (0.023)
ahead n = 2 n = 2, p = 7 n = 2, λ = 0.73 λ = 3.86

In the cases of one- and two-day-ahead prediction, MLP with selected inputs
without WD is the most accurate. It decreases MSE 30% and 13% compared to
the full linear model in one- and two-day-ahead predictions, respectively. Also, it
is slightly better than MLP with all the inputs. For seven-day-ahead prediction,
MLP with all the inputs and WD has the lowest prediction error, although the
errors of the other methods are nearly the same.

In Fig. 4, the relative importances of the inputs calculated by (5) are shown.
The importances are averages over thousand bootstrap replications of the test
set. In the case of one-day-ahead prediction and 5-6-1 MLP, the inputs are
ranked in the order of decreasing importance as follows: yt−1, yt−7, yt−15, yt−8,
and yt−14. The ranking is nearly the same as with the linear models, see Fig
2. In 15-20-1 MLP, the five most important inputs in the order of decreasing
importance are yt−1, yt−7, yt−2, yt−8, yt−15. Four of them are same as obtained
with the linear models. Also, in the cases of two- and seven-day-ahead prediction
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Fig. 4. Relative importances of the input variables yt−l, l = 1, . . . , 15 in 5-6-1 MLP
network without WD (above), in 15-20-1 MLP with WD (below)
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Fig. 5. The profiles of the inputs yt−1 (left) and yt−8 (right) in 5-6-1 MLP in one-day-
ahead prediction

the relative importances of inputs in the MLP networks are nearly the same as
with the linear model.

The contribution of the inputs yt−1 and yt−8 in the prediction of yt with 5-
6-1 MLP are shown in Fig. 5. The shown result is for the test set. The values
of ∂yt/∂yt−1 are positive, which means that yt tends to increase while yt−1
increases. Although the relative importance of yt−8 is notably smaller than yt−1,
still the partial derivatives ∂yt/∂yt−8 are clearly non-zero and negative. Thus,
yt−8 has also contribution in the prediction. While yt−8 increases the output yt

tends to decrease.



170 J. Tikka, A. Lendasse, and J. Hollmén

6 Summary and Conclusions

A backward selection type algorithm with resampling for input selection in the
context of time series prediction was presented. Experiments in an electricity
load prediction demonstrated that the two phase strategy using input selection
in a linear prediction model and subsequent non-linear modeling using MLP
yields accurate prediction. In addition, this strategy was competitive to MLP
network with all the inputs and a large number of neurons in the hidden layer
trained with weight decay. The importance of inputs obtained using the linear
models reflected also very well the importance of inputs in the non-linear models.
The advantage of presented approach is sparsity in terms of the number of inputs
and parameters in the final network. Sparsity of inputs makes the models more
interpretable. A low number of parameters allows fast training of the networks
and makes the models less prone to overfitting.
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Abstract. The purpose of this paper is to propose a new, human con-
sistent way to capture the very essence of a dynamic behavior of some
sequences of numerical data. Instead of using traditional, notably sta-
tistical type analyses, we propose the use of fuzzy logic based linguis-
tic summaries of data(bases) in the sense of Yager, later developed by
Kacprzyk and Yager, and Kacprzyk, Yager and Zadrożny. Our main in-
terest is in the summarization of trends characterized by: dynamics of
change, duration and variability. To define the dynamic of change of the
time series we propose to use for a preprocessing of data a SOM (self-
organizing maps) learned with a LVQ (Learning Vector Quantization)
algorithm, and then our approach for linguistic summaries of trends.

1 Introduction

We consider time series meant as sequences of numeric data, at equally spaced
time moments. We try to discover trends, and also some other characteristic fea-
tures of time series, notably their variability, periods of growth/ decrease/stabi-
lity, etc. We try to derive some human consistent characterizations of them that
are, in general, expressed in a (quasi)natural language that is obviously the only
fully natural means of human articulation and communication. The main tool
employed is that of a linguistic summary meant as a concise, human-consistent
description of a data set. The very concept has been introduced by Yager [14]
and further developed by Kacprzyk and Yager [2], and Kacprzyk, Yager and
Zadrożny [3]. In this approach the content of a database is summarized via a
natural language like expression, semantics of which is provided in the framework
of the Zadeh’s calculus of the linguistically quantified propositions [15].

Here we apply linguistic summaries to a specific type of data, namely time
series, i.e. certain real valued functions of time. The summaries we propose refer
to trends identified here with straight line segments of a piece-wise linear ap-
proximation of time series. Thus, the first step is a preprocessing, that is the
construction of such an approximation. Our idea is to use for this purpose self-
organizing maps (SOMs) learned using the LVQ algorithm as a clustering tool

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 171–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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or classifier to derive classes of trends. The use of the LQV algorithm makes it
possible to obtain supervised learning that in our case means that we classify to
a predefined number of classes (labels describing the dynamics of change, in fact
inclination, as in Figure 1). Clearly, there may be more or less linguistic terms
assumed but, as it is well known, the so called Miller’s magic number 7± 2 is a
good choice.

Basically the summaries proposed by Yager are interpreted in terms of the
number or proportion of elements possessing a certain property. In the frame-
work considered here a summary might look like: “Most of the trends are short”
or in a more sophisticated form: “Most long trends are increasing”. Such expres-
sions are easily interpreted using Zadeh’s calculus of the linguistically quantified
propositions. The most important element of this interpretation is a linguistic
quantifier exemplified by “most”. In Zadeh’s approach it is interpreted in terms of
a proportion of elements possessing a certain property (e.g., a length of a trend)
among all the elements considered (e.g., all trends). In [9] we proposed to use
Yager’s linguistic summaries, interpreted in the framework of Zadeh’s calculus,
for the time series.

Another type of summaries we propose here do not use the linguistic quantifier
based aggregation over the number of trends but over the time instants they take
altogether. For example, an interesting summary may take the following form:
“Trends taking most of time are increasing” or “Increasing trends taking most of
the time are of a low variability”.

In this paper we combine the use of the SOMs with the LQV function used
for a supervised learning, with the use of Zadeh’s calculus of linguistically quan-
tified propositions to derive linguistic summaries of trends. Clearly, the former
is basically meant as a tool for preprocessing, while the latter is more relevant
for the approach proposed in this paper.

2 Characterization of Time Series

Time series in a sequence of data items, for simplicity we assume scalars, mea-
sured typically at uniformly spaced time moments. In our approach, a time
series {(xt, t = 0, 1, . . . )} is divided into a fixed-size vectors by a time window of
a length p time units. These segments, are characterized with the three following
features:

– dynamics of change
– variability
– duration

In what follows we will briefly discuss these factors.

2.1 Dynamics of Change

Under the term dynamics of change we understand the speed of changes. It
can be described by the slope of a line representing the trend, understood as
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characteristic feature of consecutive values of time series over some time span
(eg. the trend is quickly increasing or weakly decreasing, etc.).

The dynamic of change can be expressed as a real number 〈−90, 90〉, an angle
in degrees between the line representing the trend and horizontal line. However
a usage of such a scale of real numbers directly while describing trends, may be
beyond human comprehension and impractical. The user may construct a scale
of linguistic terms corresponding to various directions of a trend line as, e.g.:

– quickly decreasing
– decreasing
– slowly decreasing
– constant
– slowly increasing
– increasing
– quickly increasing

They represent, on the one hand, a human-consistent granules of trend line
inclination, from - 90 to + 90, (cf. Miller’s magic number 7 ± 2). On the other
hand, they may be viewed as prototypes of trends that are comprehensible by a
human user.

Figure 1 illustrates the lines corresponding to the particular linguistic terms.
We propose to use self-organizing maps (SOMs), introduced in 1982 by Koho-

nen [10], as a clustering or classifying tool (cf. [1,12,13]). The vector quantiniza-
tion property of SOMs may be used to perform clustering of time series vectors
of a constant size. The self-organizing map will associate a vector with one of
the groups, in other words classify it to one of the classes.

We will briefly describe the SOMs just to introduce the terminology and
notation to be used. The goal of self-organizing maps is to convert a complex
high-dimensional input signal into a simpler low-dimensional discrete map. The
neurons are connected with one another, usually in form of one-dimensional
chain or two-dimensional lattice. Learning of the SOM is an iterative process
associated with the time points t = 1, 2, . . . . During the learning stage, the user
presents to the network some prototypes, e.g. given by the expert.

In each step, distances from the weight vectors of the current map and a ran-
domly chosen input vector (prototype) are calculated and the best matching unit
(a so called winning node) is found. The distance can be computed according to
any metric, very often, also here the Euclidean distance is used. After finding
the best matching unit, its weight vector is updated so that the best matching
unit is moved closer to the current input vector. The topological neighbors of the
best matching unit will be also updated. This adaptation procedure stretches the
best matching unit and its topological neighbors towards the input sample vec-
tor. The SOM update rule for the weight vector of the unit i in the neighborhood
of the best matching unit is

mi(t + 1) = mi(t) + hc(t),i(t)[x(t) −mi(t)]; ∀i ∈ [1 . . . n] (1)

where x(t) is the input vector randomly drawn from the input data set at time
t; n is the number of neurons, hc(t),i(t) is the neighborhood kernel around the
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Fig. 1. A visual representation of trend line prototypes defining dynamics of change

winner unit c. The neighborhood kernel is a non-increasing function of time
and of the distance of unit i from the winner unit c. It defines the region
of influence that the input sample has on the SOM and often is defined as
hc(t),i(t) = α(t)exp

(
−||ri − rc||2/2σ2(t)

)
, where 0 < α < 1 is the learning rate,

monotonically decreasing, ri and rc are vectorial locations on the grid and σ(t)
corresponds to the width of the neighborhood function, also monotonically de-
creasing.

At the end of the learning stage, each cluster, or better to say a class, is
associated with a region of neurons. Afterwards, SOM may cluster the real data.

Generally, SOM employs an unsupervised learning process. Nevertheless, the
learning algorithm can be easily modified to represent supervised learning (cf.
[10,11]) – cf. the LVQ methods, a class of algorithms, such as LVQ1, LVQ2,
LVQ3. We assume that we know the class, defined by the model vector mi(t),
that each of the sample vectors or prototypes x(t) belong to. In our case the
classes are labels describing the dynamics of change, as presented in Figure 1.
Clearly, there may be more or less linguistic terms assumed but, as it is well
known, the so called Miller’s magic number 7± 2 is a good choice.

In the basic LVQ1 algorithm the weights of connections are changed as follows:

mi(t + 1) = mi(t) + α(t)s(t)δci[x(t) −mi(t)], (2)
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where s(t) = 1 if x and mi belong to the same class and s(t) = −1 if x and mi

belong to different classes. α ∈ (0, 1) is the learning rate, and δci is the Kronecker
delta.

We combine LVQ and SOM in a very simple way, as presented in [10]. We
consider the basic learning equation (1) of unsupervised SOM and assume that
if x(t) and mi(t) belong to the same class, then hc(t),i(t) is positive, otherwise it
is negative.

2.2 Variability

Variability refers to how “spread out” (in the sense of values taken on) a group
of data is. There are five frequently used statistical measures of variability:

– the range (maximum - minimum). Although this range is computationally
the easiest measure of variability, it is not widely used as it is only based
on two extreme data points. This make it very vulnerable to outliers and
therefore may not adequately describe real variability.

– the interquartile range (IQR) calculated as the third quartile (the third quar-
tile is the 75th percentile) minus the first quartile (the first quartile is the
25th percentile) that may be interpreted as representing the middle 50% of
the data. It is resistant to outliers and is computationally as easy as the
range.

– the variance is calculated as 1/n
∑

i(xi − x̄)2, where x̄ is the mean value.
– the standard deviation – a square root of the variance. Both the variance

and the standard deviation are affected by extreme values.
– the mean absolute deviation (MAD), calculated as 1/n

∑
i |xi − x̄|. While it

has a natural intuitive definition as the “mean deviation from the mean”, the
introduction of the absolute value makes analytical calculations using this
statistics much more complicated.

We propose to measure the variability of a subseries in the time window as the
distance of the data points covered by this subseries from the points describing
standard trend hidden under a certain label.

We will treat variability as a linguistic variable. We map a single value char-
acterizing the variability of a trend in the time window. Then we will say that a
given trend has, e.g., “low variability to a degree 0.8”, if μlow variability(v) = 0.8,
where μlow variability is the membership function of a fuzzy set representing the
linguistic term “low variability” that is a best match for the variability charac-
terizing the trend under consideration.

2.3 Duration

Duration describes the length of a single trend found by the SOM. We aggregate
the neighboring trends, if they were associated with the same cluster by the
SOM. The variability of aggregated longer trend is equal to the arithmetic mean
of variabilities of aggregated trends.

Again we will treat duration as a linguistic variable. An example of its lin-
guistic labels is “long trend” defined as a fuzzy set, whose membership function
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μ(t)

1

t

Fig. 2. Example of membership function describing the term “long” concerning the
trend duration

might be assumed as in Figure 2, where OX is the axis of time measured with
units that are used in the time series data under consideration.

3 Linguistic Summaries

A linguistic summary, as presented in [7,8] is meant as a natural language like
sentence that subsumes the very essence of a set of data. This set is assumed to
be numeric and is usually large, not comprehensible in its original form by the
human being. In Yager’s approach (cf. Yager [14], Kacprzyk and Yager [2], and
Kacprzyk, Yager and Zadrożny [3]) we assume that:

– Y = {y1, . . . , yn} is a set of objects (records) in a database, e.g., the set of
workers;

– A = {A1, . . . , Am} is a set of attributes characterizing objects from Y , e.g.,
salary, age, etc. in a database of workers, and Aj(yi) denotes a value of
attribute Aj for object yi.

A linguistic summary of a data set D consists of:

– a summarizer S, i.e. an attribute together with a linguistic value (fuzzy
predicate) defined on the domain of attribute Aj (e.g. “low” for attribute
"salary");

– a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
– truth (validity) T of the summary, i.e. a number from the interval [0, 1] as-

sessing the truth (validity) of the summary (e.g. 0.7); usually, only summaries
with a high value of T are interesting;

– optionally, a qualifier R, i.e. another attribute together with a linguistic value
(fuzzy predicate) defined on the domain of attribute Ak determining a (fuzzy
subset) of Y (e.g. “young” for attribute “age”).

We will often for brevity identify summarizers and qualifiers with the linguistic
terms they contain. In particular we will refer to the membership function μP

or μR of the summarizer or qualifier to be meant as the membership functions
of respective linguistic terms.

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (3)
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A richer linguistic summary may include a qualifier (e.g. young) as, e.g.,

T (most of young employees earn low salary) = 0.7 (4)

Thus, basically, the core of a linguistic summary is a linguistically quantified
proposition in the sense of Zadeh [15]. A linguistically quantified proposition,
corresponding to (3) may be written as

Qy’s are S (5)

and the one corresponding to (4) may be written as

QRy’s are S (6)

Then, the component of a linguistic summary, T , i.e., its truth (validity),
directly corresponds to the truth value of (5) or (6). This may be calculated by
using either original Zadeh’s calculus of linguistically quantified propositions (cf.
[15]), or other interpretations of linguistic quantifiers.

4 Trend Summarization

In order to characterize the summaries of trends we will refer to Zadeh’s concept
of a protoform (cf., Zadeh [16]). Basically, a protoform is defined as a more
or less abstract prototype (template) of a linguistically quantified proposition.
Then, summaries mentioned above might be represented by two types of the
protoforms of the following forms:

– We may consider summaries based on frequency and we obtain:
• a protoform of short form of linguistic summaries:

Q trends are S (7)

and exemplified by:

Most of trends have a large variability

• an extended form:
QR trends are S (8)

and exemplified by:

Most of slowly decreasing trends have a large variability

– We may also consider the duration based summaries represented by the
following protoforms:
• a short form of linguistic summaries:

The trends that took Q time are S (9)

and exemplified by:
The trends that took most time have a large variability
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• an extended form:

R trends that took Q time are S (10)

and exemplified by:

Slowly decreasing trends that took most time have a large vari-
ability

Using Zadeh’s [15] fuzzy logic based calculus of linguistically quantified propo-
sitions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to be
a fuzzy set in the interval [0, 1] as, e.g.

μQ(x) =

⎧⎨⎩
1 for x> 0.8
2x− 0.6 for 0.3 < x < 0.8
0 for x< 0.3

(11)

The truth values (from [0,1]) of (7) and (8) are calculated, respectively as

T (Qy’s are S) = μQ

(
1
n

n∑
i=1

μS(yi)

)
(12)

T (QRy’s are S) = μQ

(∑n
i=1(μR(yi) ∧ μS(yi))∑n

i=1 μR(yi)

)
(13)

The computation of truth values of duration based summaries is more compli-
cated and requires a different approach. While analyzing a summary “the trends
that took Q time are S” we should compute the time, which is taken by those
trends which “trend is S”. It is obvious, when “trend is S” to degree 1, as we can
use then the whole time taken by this trend. However, what should we do, if
“trend is S” to some degree? We propose to take only a part of the time, defined
by the degree to which “trend is S”. In other words we compute this time as
μ(yi)tyi , where tyi is the duration of trend yi. The obtained value (duration of
those trends, which “trend is S”) is then normalized by dividing it by the over-
all time T . Finally, we may compute to which degree the time taken by those
trends which “trend is S” is Q. A similar line of thought might be followed for
the extended form of linguistic summaries.

The truth value of the short form of duration based summaries (9) is calcu-
lated as

T (y that took Q time are S) = μQ

(
1
T

n∑
i=1

μS(yi)tyi

)
(14)

The truth value of the extended form of summaries based on duration (10) is
calculated as

T (Ry that took Q time are S) = μQ

(∑n
i=1(μR(yi) ∧ μS(yi))tyi∑n

i=1 μR(yi)tyi

)
(15)
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T is the total time of the summarized trends and tyi is the duration of the ith
trend.

Both the fuzzy predicates S and R are assumed above to be of a rather
simplified, atomic form referring to just one attribute. They can be extended
to cover more sophisticated summaries involving some confluence of various,
multiple attribute values as, e.g, "slowly decreasing and short".

Alternatively, we may obtain the truth values of (9) and (10), if we divide
every trend, which takes tyi time units, into tyi trends, each lasting one time
unit. For this new set of trends use frequency based summaries with the truth
values defined in (12) and (13).

5 Concluding Remarks

We proposed to apply linguistic summaries of time series data to characterize
in a human consistent, linguistic form some basic characteristics like trends,
variability, duration, etc. We proposed to use for a preprocessing self-organizing
maps (SOMs) learned using the LVQ algorithm as a classifier to derive some
predefined classes of trends(labels describing the dynamics of change). We derive
linguistic summaries of the type: “most of the trends are short”, “most long trends
are increasing”, “trends taking most of time are increasing” or “increasing trends
taking most of the time are of a low variability”, etc. We combined the use of the
SOMs with the LQV function used for a supervised learning for a preprocessing,
with the use of Zadeh’s calculus of linguistically quantified propositions to derive
linguistic summaries of trends.
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Abstract. State-space models offer a powerful modelling tool for time
series prediction. However, as most algorithms are not optimized for long-
term prediction, it may be hard to achieve good prediction results. In this
paper, we investigate Gaussian linear regression filters for parameter es-
timation in state-space models and we propose new long-term prediction
strategies. Experiments using the EM-algorithm for training of nonlinear
state-space models show that significant improvements are possible with
no additional computational cost.

1 Introduction

Time series prediction [1] is an important problem in many fields like ecology
and finance. The goal is to model the underlying system that produced the
observations and use this model for prediction.

Often, obtaining prior information of a time series is difficult. In this kind of a
situation, a black-box model can be used. An often used approach for prediction
is nonlinear regression, which works well especially for deterministic time series.

An alternative to nonlinear regression is state-space modeling. A state-space
model can model a wide variety of phenomena, but unfortunately learning a
state-space presentation for data is challenging. Previous work on this topic
includes dual Kalman filtering methods [2], variational Bayesian learning [3] and
EM-algorithm for nonlinear state-space models [4].

In [4] an EM-algorithm for training of state-space models is proposed. From
the point of view of time series prediction, the drawback of this algorithm is that
the model is not exactly optimized for prediction.

In this paper, we have two goals. It is shown that the EKS which was used in [4]
can be replaced by a more efficient linear regression smoother. We also show that
with simple methods it is possible to improve the long-term prediction ability of
the algorithm. The improvement comes with no additional computational cost
and our methods can be applied also to other algorithms. In the experimental
section, we test the proposed methods with the Poland electricity and Darwin
sea level pressure datasets.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 181–190, 2006.
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2 Gaussian Linear Regression Filters

Consider the nonlinear state-space model

xk = f(xk−1) + wk (1)
yk = h(xk) + vk, (2)

where wk ∼ N(0, Q) and vk ∼ N(0, r) are independent Gaussian random vari-
ables, xk ∈ Rn and yk ∈ R. Here, N(0, Q) means normal distribution with the
covariance matrix Q. Correspondingly, r is the variance of the observation noise.

The filtering problem is stated as calculating p(xk|y1, . . . , yk). If f and h are
linear, this could be done using Kalman filter [5]. The linear filtering theory
can be applied to nonlinear problems by using Gaussian linear regression filters
(LRKF, [6]) that are recursive algorithms based on statistical linearization of
the model equations. The linearization can be done in various ways resulting in
slightly different algorithms.

Denote by p̃(xk|y1, . . . , yk) a Gaussian approximation of p(xk|y1, . . . , yk). The
first phase in a recursive step of the algorithm is calculating p̃(xk+1|y1, . . . , yk),
which can be done by linearizing f(xk) ≈ Akxk + bk so that the error

tr(ek) = tr (
∫

Rnx

(f(xk)−Akxk − bk)(f(xk)−Akxk − bk)T p̃(xk|y0, . . . , yk) dxk)

(3)
is minimized. Here, tr denotes the sum of the diagonal elements of a matrix.
In addition Q is replaced by Q̃k = Q + ek. The linearized model is used for
calculating p̃(xk+1|y1, . . . , yk) using the theory of linear filters. The measurement
update

p̃(xk+1|y1, . . . , yk) → p̃(xk+1|y1, . . . , yk+1)

is done by a similar linearization. The update equations for the Gaussian ap-
proximations can be found in [7].

Approximating equation 3 using central differences would lead to the central
difference filter (CFD, [5]) which is related to the unscented Kalman filter [5].
A first order approximation on the other hand would yield the widely used
extended Kalman filter algorithm [8]. However, by using Gaussian nonlinearities
as described in the following sections, no numerical integration is needed in the
linearization. The filter based on closed form calculations is called a (Gaussian)
linear regression filter.

The smoothed density p(xl|y1, . . . , yk) (l < k) is also of interest. In our exper-
iments we use the Rauch-Tung-Striebel smoother [8] with the linearized model.
Other alternatives are of course also of interested and will be possibly investi-
gated in future research. See for example [9] in which three different smoothing
methods are compared.
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3 EM-Algorithm for Training of Radial Basis Function
Networks

In this section, a training algorithm introduced in [4] is described. The EM-
algorithm is used for parameter estimation for nonlinear state-space models.
When Gaussian filters are used, the M-step of the algorithm can be solved in
closed form resulting in an efficient method which in practice converges fast.

3.1 Parameter Estimation

Suppose that a sequence of observations (yk)N
k=1 is available. The underlying

system that produced the observations is modelled as a state-space model. The
functions f and g in equations 1 and 2 are parametrized using RBF-networks:

f = wT
f Φf (4)

g = wT
g Φg, (5)

where Φf = [ρf
1 (x), . . . , ρf

l (x) xT 1]T and Φg = [ρg
1(x), . . . , ρg

j (x) xT 1]T are the
neurons of the RBF-networks. The nonlinear neurons are of the form

ρ(x) = |2πS|−1/2 exp(−1
2
(x − c)TS−1(x− c)). (6)

The free parameters of the model are the weights of the neurons, wf and wg

in equations 4 and 5, and the noise covariances Q and r in equations 1 and 2.
In addition, the initial condition for the states is chosen Gaussian and the pa-
rameters of this distribution are optimized.

The EM-algorithm is a standard method for handling missing data. Denoting
by θ the free parameters of the model, the EM-algorithm is used for maximizing
p(y1, . . . , yT |θ). The EM-algorithm for learning nonlinear state-space models is
derived in [4].

The algorithm is recursive and each iteration consists of two steps. In the E-
step, the density p(x0, . . . , xN |y1, . . . , yN , θ) is approximated and in the M-step
this approximation is used for updating the parameters.

Due to the linearity of the model with respect to the parameters, the M-step
can be solved analytically. The update formulas for the weights wf and wg and
covariances Q and R can be found in [4]. In our implementation Q is chosen
diagonal.

The E-step is more difficult and an approximative method must be used. In
addition to Gaussian filters, there exists many different methods for nonlinear
smoothing, for example the particle smoother and numerical quadrature based
methods [10]. In the case of neural networks, the problem is that function evalua-
tion may be relatively expensive if a high number of neurons is used. We propose
the use of the smoother derived in section 2 instead of the extended Kalman
smoother used in [4]. The extended Kalman smoother uses rough approxima-
tions to propagate nonlinearities which may cause inaccuracy (see for example
[11]). Our choice does not significantly increase the computational complexity of
the algorithm which did not pose problems in our experiments.
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3.2 Initialization

The state variables must be initialized to some meaningful values before the
algorithm can be used. Consider a scalar time series (yt). First the vectors

zt = [yt−L, . . . , yt, . . . , yt+L] (7)

are formed. L is chosen large enough so that the vectors contain enough infor-
mation. Based on Taken’s theorem [12], it can be claimed that setting L to the
dimension of the state-space is a good choice [3], but as many time series contain
noise, this is not always the case. In our experiments, we use the value L = 10
which produced good results in our experiments and is large enough for most
time series. In case of bad results, a lower value for L might sometimes give
better initializations.

Next the dimension for the hidden states is chosen. Once the dimension is
known, the vectors zt are projected onto this lower dimensional space. This
is done with the PCA mapping [13]. In highly nonlinear problems, it may be
essential to use kernel PCA like was done in [14].

The rough estimates for the hidden states are used to obtain an initial guess
for the parameters of the network.

3.3 Choosing Kernel Means and Widths

Choosing the centers of the neurons (c in equation 6) is done with the k-means
algorithm [13]. The widths Sj are chosen according to the formula (see [15])

Sj =
1
l
(

l∑
i=1

‖cj − cN(j,i)‖2)
1
2 I, (8)

where I is the identity matrix and N(j, i) is the ith nearest neighbor of j. In the
experiments, we use the value l = 2 as proposed in [15].

3.4 Choosing the Number of Neurons and the Dimension of the
State-Space

To estimate the dimension of the state-space, we propose the use of a valida-
tion set to estimate the generialization error. For each dimension, the model is
calculated for different number of neurons and the one which gives the lowest
one-step prediction validation error is chosen. The linear regression filter is used
for calculating the error.

For choosing the number of neurons, we propose the use of the likelihood of
the model, which has the advantage that the whole data set is used for training.
Usually there is a bend after which the likelihood decreases only slowly (see
figure 1c). This kind of a bend is used as an estimate of the point after which
overfitting becomes a problem.
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4 Long-Term Prediction of Time Series

By long-term prediction of a time series we mean predicting yt+k for k > 1 given
the previous observations y1, . . . , yt. The model in equations 1 and 2 can be
used for prediction by calculating a Gaussian approximation to p(yt+k|y1, . . . , yt)
with the linear regression filter or the EKF. However, the drawback of this
approach is that the EM-algorithm does not optimize the long-term prediction
performance of the model and thus the prediction error is expected to grow fast
as the prediction horizon k grows. Our claim is motivated for example by the
results in [16], which show that for nonlinear regression direct prediction instead
of recursive gives much better results on long-term prediction.

Instead of the previous method, we propose three alternative methods. For the
first two methods the observation model in equation 5 is replaced by an RBF-
network with the same centers and widths for the neurons than the original
model but different weights that are optimized for long-term prediction. In the
first method, the weights are optimized to minimize the prediction error when the
linear regression filter with the original model is used to estimate p(xt|y1, . . . , yt)
and the EKF with the modified model for estimating p(xt+k|y1, . . . , yt) and
p(yt+k|y1, . . . , yt).

In the second method, a similar optimization is performed in the case where
the linear regression filter is used for estimating all three distributions.

As a third methods, we propose extending the first method so that also the
weights of the network in equation 4 are reoptimized. This leads to a nonlin-
ear optimization problem, which can be solved using standard methods, see for
example [17].

The optimization of the weights for the methods is done using the same train-
ing set as for the EM-algorithm. The cost function is

N−k∑
i=1

(yi+k − ŷi+k)2,

where ŷi+k are the predictions given the parameter values and observations up
to time i. The three different methods are used for calculating ŷi+k. The first two
lead to quadratic optimization problems which are easy to solve in closed form,
whereas to optimize the cost for the third method any nonlinear optimization
method can be used.

There certainly exists different methods than the ones we use. Our goal is not
to test all different possibilities, only to show that when state-space models are
used, an ordinary recursive prediction is not the best choice.

5 Experiments

In this section the proposed methods are tested on two different time series.
The first time series represents the electricity consumption in Poland and is
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interesting also from practical point of view as electricity companies can certainly
make use of this kind of information. The other time series, Darwin sea level
pressure, is also measurements of a real world phenomena. The data sets can
downloaded from [18]. Unless we state explicitly otherwise, the linear regression
filter based algorithm is used for training.

5.1 Poland Electricity Consumption

The Poland electricity consumption time series is a well-known benchmark prob-
lem [19]. For prediction results with nonlinear regression we refer to [16]. The
series is plotted in figure 1a. The values 1− 1000 are used for training and the
values 1001− 1400 for testing. For dimension selection, the values 601-1000 are
kept for validation.

The model is tested using the dimensions 2 to 8 for the state-space. For each
dimension, the validation errors are calculated for different number of neurons
so that the number of neurons goes from 0 to 36 by step of 2 (we use the same
amount of neurons for both networks). For each number of neurons, the training
is stopped if the likelihood decreased twice in row or more than 40 iterations
have been made.

The dimension 7 yields the lowest validation error and was thus chosen as the
dimension for the states. In figure 1c is the corresponding likelihood curve for
this dimension. Based on the likelihood, we choose 8 as the number of neurons.
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Fig. 1. a) The Poland electricity consumption time series. b) Validation errors for state
dimensions 2-8. c) Likelihoods for dimension 7. d) One step prediction test errors for
dimension 7.
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From figure 1d, it can be seen that the short-term prediction performance of the
model is good.

The chosen model is used for long-term prediction with different prediction
horizons. We test the three methods introduced in section 4. The results are in
figure 2a. In figure 2a, the test errors are calculated by estimating the state at
each time point of the test set with the linear regression filter. After that the
methods in section 4 are used to calculate the prediction estimates corresponding
to the number of prediction steps.

In figure 2b for comparison we have implemented the EKS-based algorithm
in [4], where for prediction the EKF has been used. Also for this algorithm we
choose 7 as the dimension of the state-space and 8 as the number of neurons.
Because the error for the algorithm in [4] has a quite high variance compared to
our method, the curves in figure 2b are averaged over 5 simulations.

It can be seen that the linear regression filter in training improves the result
compared to using EKS. Also, the stability of the algorithm is improved. The
linear regression filter gives higher covariances for the smoothed state estimates
which has a regularizing effect on the model.

For short-term prediction the prediction error is not significantly improved by
the methods proposed in section 4. However, as the prediction horizon grows, the
differences between the methods grow. Thus in this time series, the long-term
prediction methods in section 4 should be used as they introduce no additional
computational cost.
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Fig. 2. Long-term prediction errors. a) The solid line is the recursive prediction error
with the linear regression filter. The dashed, dashdotted and dotted lines give the
prediction error for the other three methods in section 4 so that dashed corresponds
to the first of these methods, dashdot to the second etc. b) Results with the original
algorithm in [4] (solid line) and the basic version of our algorithm (dashed line). The
curves in figure b are averaged over 5 simulations.

5.2 Darwin Sea Level Pressure

The Darwin sea level pressure time series consists of 1400 values which are drawn
in figure 3a. The values from 1 to 1000 are used for training and the rest for
testing the model.
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Fig. 3. a) The Darwin sea level pressure time series. b) Validation errors for state
dimensions 2-5. c) Likelihoods for dimension 4. d) One step prediction test errors for
dimension 4.
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Fig. 4. a) The solid line is the recursive prediction error with the linear regression
filter. The dashed, dashdotted and dotted lines give the prediction errors for the other
three methods in section 4 so that dashed corresponds to the first of these methods,
dashdot to the second etc. b) Results with the original algorithm in [4] (solid line) and
the basic version of our algorithm (dashed line). The curves in figure b are averaged
over 5 simulations.

As in the previous section, the dimension of the state-space is chosen using a
validation set. The dimensions from 2 to 5 are tested. The lowest validation error
is that of dimension 4. The corresponding likelihood curve is in figure 3c. There
is a clear bend in the likelihood curve, which can be used for model selection.
Based on the curve we choose 4 as the number of neurons.
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From figure 4b, it can be seen that the original algorithm with EKS is again
worse than our algorithm.

The long-term prediction results with the methods in section 4 are in figure 4a.
In this problem, the difference between different prediction methods is much
smaller. No significant improvement was obtained over recursive prediction. This
is probably due to the linearity and periodicity of the data. In this time series,
an accurate long-term prediction is possible.

Based on the experiments, we claim that the best of the methods proposed in
section 4 is the one based on minimizing the prediction performance of the EKF.
It seems that using Gaussian distributions instead of point values as a training
set is not very useful.

6 Conclusion

In this paper the Gaussian linear regression smoother with the EM-algorithm is
used as a method for learning a state-space presentation for a time series. It is
shown that our approach brings real improvement over the original EKS based
algorithm presented in [4] for significantly nonlinear problems. The proposed
smoother gives implicitely additional regularization compared to the extended
Kalman smoother. Still it is clear that the EM-algorithm does not minimize the
long-term prediction error of the model which results in high prediction errors
once the prediction horizon grows.

In this paper we proposed strategies for improving the long-term prediction
capability of state-space models. The methods can be applied for many algo-
rithms in addition to the EM-algorithm used in this paper. The experimental
results show that clear improvement over the ordinary recursive approach is
possible. However, for nearly linear time series the results were not as convinc-
ing and it can be concluded that big improvements can be obtained mainly for
significantly nonlinear systems.

In the future methods for optimizing state-space models for long-term predic-
tion will be investigated. Most current methods use a cost function that poorly
fits to long-term prediction.
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Abstract. The fuzzy wavelet neural network (FWNN) for time series prediction 
is presented in this paper. Using wavelets the fuzzy rules are constructed. The 
gradient algorithm is applied for learning parameters of fuzzy system. The ap-
plication of FWNN for modelling and prediction of complex time series and 
prediction of electricity consumption is considered. Results of simulation of 
FWNN based prediction system is compared with the simulation results of other 
methodologies used for prediction. Simulation results demonstrate that FWNN 
based system can effectively learn complex nonlinear processes and has better 
performance than other models. 

1   Introduction 

Time-series prediction is one of important research and application area. Traditional 
methods used for prediction are based on technical analysis of time-series, such as 
looking for trends, stationarity, seasonality, random noise variation, moving average. 
Most of them are linear approaches. These are exponential smoothing method, well-
known Box-Jenkins method [1] which have shortcomings.  

Softcomputing methodologies such as neural networks, fuzzy logics, genetic algo-
rithms are applied for prediction chaotic time series [2-7]. These methods have shown 
clear advantages over the traditional statistical ones [2]. In this paper the development 
of fuzzy system based on wavelet neural network is considered for time-series predic-
tion, in particularly, for prediction of electricity consumption.  

Neural networks are widely used for generating IF-THEN rules of fuzzy systems. 
One of type of neural networks is wavelet neural networks (WNNs) [8-13]. WNNs 
are feed-forward neural networks that use wavelets as activation function in hidden 
layer. The network based on wavelet has simple structure and good learning speed. It 
can converge faster and be more adaptive to new data. WNN can approximate com-
plex functions to some precision very compactly and can be more easily designed and 
trained than other networks, such as multilayer perceptrons and radial based networks. 
The number of methods is implemented for initializing wavelets, such as orthogonal 
least square procedure, clustering method [8]. The optimal dilation and translation of 
the wavelet increases training speed and obtains fast convergence.  

Wavelet neural networks are used for prediction of time-series, from limited num-
ber of data points [12,13]. Multiresolution character of wavelets permits to catch short 
term and long term variations. Fuzzy wavelet neural network (FWNN) combines 
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wavelet theory to fuzzy logic and neural networks.  The synthesis of FWNN system 
includes the finding of the optimal definitions of the premise and consequent part of 
fuzzy IF-THEN rules through the training capability of wavelet neural networks. In 
neuro-fuzzy systems one of difficulties is the correct linguistic interpretation of rules. 
The multiresolution techniques allow determining appropriate membership functions 
for given data points. The dictionary of membership functions forming multiresolu-
tion is used to determine which membership function most appropriate to describe the 
data points. The membership function defined for each linguistic term is well defined 
beforehand and are not modified during learning. In the paper fuzzy wavelet neural 
inference structure is applied for prediction of time series. 

The paper is organized as follows. Section 2 describes structure of WNN.  Section 3 
presents the learning algorithms of FWNN system. Section 4 contains simulation 
results of FWNN used for prediction of chaotic time series and electricity consump-
tion. Finally a brief conclusion is presented in section 5.  

2   Wavelet Neural Network 

A wavelet networks are nonlinear regression structure that represents input-output 
mappings. Wavelet networks use three-layer structure and wavelet activation func-
tion. Wavelet function is a waveform that has limited duration and average value of 
zero. There are number of wavelet functions. In this paper Mexican Hat wavelet  
(Fig. 1) is used for neural network. 
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2 −= πα . This wavelet function is used in hidden layer of network.  

The structure of wavelet neural network (WNN) is given in fig. 2. Here x1, x2, …, 
xm are network input signals. Ψ(zj) are wavelet functions which are used in hidden 
layer. zi are calculated by the following expression. 
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here aij  and bj are network parameters, i=1,2,…,m; j=1,2,…,k 
Using expression (1) and (2) the output signals of hidden layer are determined. 

These signals are input for the last- third layer. The output signal of network is calcu-
lated as 
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jj zwy
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wi are weight coefficients between hidden and output layers, j=1,2,…,k.  
The described WNN structure will be used in FWNN that will be presented in the 

next section. 

3     Fuzzy Wavelet Neural Network 

The kernel of fuzzy controller is fuzzy knowledge base. In fuzzy knowledge base the 
information that consists of input-output data points of the system is interpreted into 
linguistic interpretable fuzzy rules. In the paper the fuzzy rules that have IF-Then 
form are used. These fuzzy rules are constructed by using wavelets as: 

If x1 is Ai1 and x2 is Ai2 and…and xm is Aim Then yi is 
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Here xj (j=1,..,m) are input variables, yi (i=1,..,n) are output variables which are sum 
of Mexican Hat wavelet functions, Aij is a membership function for i-th rule of the k-
th input defined as Gaussian membership function. K is number of hidden neurons in 
WNN. Conclusion parts of rules contain WNNs. 

The fuzzy model that is described by production rules can be obtained by modify-
ing parameters of conclusion and premise parts of the If-Then rules. Sometimes the 
premise parts of these rules are constructed by experts, and only conclusion parts that 
are wavelet functions are adjusted in order to obtain correct fuzzy model.  

The structure of fuzzy wavelet neural network is given in fig. 3. The FWNN con-
sists of combination of two network structures. Upper side of figure 3 contains n 
wavelet neural networks that are denoted by WNN1, WNN2,…,WNNn. These net-
works are included to the consequent parts of the fuzzy rules. Down side of figure 
contains network structure of fuzzy reasoning mechanism. These are premise parts of 
fuzzy rules. 

In the first layer of fuzzy reasoning mechanism the number of nodes is equal to the 
number of input signals. In the second layer each node corresponds to one linguistic 
term. For each input signal entering the system the membership degree to which input 
value belongs to a fuzzy set is calculated. To describe linguistic terms the Gaussian 
membership function is used. 
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Here m is number of input signals, J is number of nodes in second layer. ijσ and cij  

are centre and width of the Gaussian membership functions of the j-th term of i-th 
input variable, respectively. μ1j(xi) is membership function of i-th input variable for j-
th term. m is number of external input signals. J is number of linguistic terms assigned 
for external input signals xi. 

In the third layer the number of nodes correspond to the number of rules R1, 
R2,…,Rn. Each node represents one fuzzy rule. Here to calculate the values of output 
signals of the layer AND (min) operation is used. 
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Π is min operation. The μl(x) signals are input signals for the next layer.  This 
layer is a consequent layer. In this layer the output signals of previous layer are multi-
plied to the output signals of wavelet neural network and defuzzification is made to 
calculate the output of whole network.  
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Here yl is the outputs of wavelet neural networks,  u is output of whole network. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

Fig. 3. Structure of fuzzy wavelet neural network 
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The outputs of each wavelet neural networks WNN1, WNN2,…,WNNn in fig. 3 are 
calculated by using equations (1-3). After calculating output signal of FWNN the 
training of network start.  

Training includes the adjusting of the parameters values of membership function 
cij(t) and σij(t) (i=1,..,n,  j=1,..,m) in the premise part and parameters values of wavelet 
neural network wj(t), aij(t), bj(t) (i=1,..,n, j=1,..,k) in consequent part. At first step, in 
the network output the value of error is calculated. 
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Here O is number of output signals of network (in given case O=1), iu and d
iu  are 

desired and current output values of network, correspondingly. The parameters 

jij b ,a ,jw , (i=1,..,m, j=1,..,k) and ijij σ and c  (i=1,..,m, j=1,..n) of neuro-fuzzy 

structure are adjusted by using following formulas. 
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Here γ is learning rate, λ is momentum rate, k is number of neurons in hidden layer of 
wavelet neural network, m is number of input signals of the network (input neurons) 
and n is number of rules (hidden neurons).   

The derivatives in (9-11) are determined by the following formulas. 
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The derivatives in (12) are determined by the following formulas.  
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Using equations (13-18) the derivatives in (9-12) are calculated and the correction 
of the parameters of FWNN is carried out. 

4   Simulation  

4.1   Time Series Prediction 

The FWNN structure and its learning algorithms are applied for predicting the future 
values of chaotic time series. As an example the Mackey-Glass time series data set 
was taken. This is a benchmark problem in the areas of neural network and fuzzy 
systems. This time series data set was created with the use of the following Mackey-
Glass time-delay differential equation. 
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    (19) 

This time series is chaotic, and the trajectory is highly sensitive to initial condi-
tions. To obtain the data set, the fourth-order Runge-Kutta method is applied to find 
the numerical solution to the above Mackey-Glass equation. Here we assume that 
x(0)=1.2,  τ=17, and x(t)=0 for t<0. The task is to predict the values x(t+pr) from 
input vectors [x(t-18)   x(t-12)   x(t-6)  x(t)]  for any value of the time t. Here pr is 
predicting step. The value of pr is taken as 6. Using statistical data, obtained from 
(19), the learning of FWNN has been carried out.  

The 16 rules are used in neuro-fuzzy part of FWNN. As a performance criterion the 
nondimensional error index (NDEI) which is defined as the root mean square error 
(RMSE) divided by the standard deviation of target series is used. The 1000 data 
points (t=117 to 1118) are extracted from time-series and used as learning data. The 
first half 500 data points were used for learning, and second half 500 data points were 
used for testing. During learning the values of RMSE=0.003189 and NDEI=0.014364.  
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After learning in the generalization step the values of RMSE=0.003359 and 
NDEI=0.015076. In fig. 4 (a) the trajectories of desired and predicted values for both 
training and checking data for pr=6 are shown. Here solid line indicates the trajectory 
of statistical data and dashed line the predicted value of time series. The differences 
between them are very little. These differences might only be seen in large scale. In 
fig. 4(b) the prediction error is shown. For comparative analysis the feed-forward NN 
and WNN based prediction models are developed. The result of feed-forward NN 
based model is obtained when number of hidden neurons was 60. The result of WNN 
based prediction model is obtained for 16 hidden neurons. Table 1 demonstrates the 
offline prediction results of different models.  

In second experiment, using 58 fuzzy rules the learning of FWNN for pr=84 have 
been performed. The value of RMSE=0.0114 and NDEI=0.046. Table 2 demonstrates 
the offline prediction results of different models used for Mackey-Glass time-series. 
As shown FWNN prediction error is lower than other models. 

 
       a) 

 
        b) 

Fig. 4. a) Six-step ahead prediction for Mackey-Glass time-series for t=117-1118, b)  
Pre-diction error (first 500 points is used for training, second 500 data points for testing) 

Table 1. Six step ahead prediction results for Mackey-Glass time-series 

Method Epochs Testing NDEI 

Feed-forward  Neural Network 
Linear Predictive method 
WNN 
FWNN 

10000 
2000 
2000 
1000 

0.041 
0.55 
0.031 
0.015 
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Table 2. Prediction results for pr=84 

Method Epochs Testing NDEI 

FWNN 
Cascaded-Correlation NN 
Sixth-order polynomial 
Back-Propagation NN 
Linear Predictive method 

500 
500 
500 
500 
2000 

0.046   
0.32 
0.85 
0.05 
0.60 

4.2   Modelling of Electricity Consumption  

A number of studies [19-21] have been published about modelling electricity con-
sumption using econometric models. Electricity consumption models using climatic 
variables [19], using weather and population [20], using economical and weather 
variables [21] have been considered. These models are required for variety of utility 
activities and need measuring the number of climatic and economical variables. 
Sometimes obtaining the values of these variables is very difficult and these are not 
enough for accurate model development. In this problem one of main goal is to meet 
customer needs in future and organize the planning of utilities. In this study the 
FWNN is used to construct electricity consumption prediction model. 

Cyprus imports petroleum from the abroad. The statistical data were obtained from 
KIB-TEK company reports for the period of 1996-2005. Problem was to determine 
volume of electricity consumed in the near future.  

Five input data points [x(t-12)  x(t-6)  x(t-5) x(t-2) x(t)] are used  as input for pre-
diction model. The output training data corresponds to x(t+12). In other word since 
the electricity consumption is taken monthly, the value that is to be predicted will be 
after pr=12 months. The training input/output pairs for the prediction system will be a 
five dimension input vector, and one dimension predicted output vector.  

To start the training, the FWNN structure is generated. It includes five input neu-
rons and one output neuron. The 16 hidden neurons are used in hidden layer of neuro-
fuzzy part of FWNN. Eleven neurons are used in hidden layer of WNN network. The 
initial values of membership function are generated in equally spaced and cover the 
whole input space. Membership functions are Gaussian functions. The training of the 
parameters was performed by using learning algorithms described in section 3.  

For training of the system the statistical data describing monthly electricity con-
sumption from January 1996 to December 2004 are taken. The data from January 
2005 to December 2005 are taken for diagnostic testing. All input and output data are 
scaled in the interval [0 1]. The training is carried out for 1000 epochs. Once the 
FWNN has been successfully trained, it is then used for prediction the 2005 monthly 
electricity consumption. The training and test values of NDEI were 0.2251 and 0.2401 
correspondingly. In fig. 6(a) the output of FWNN system for twelve-step ahead pre-
diction of electricity consumption for learning and generalization step is shown. Here 
solid line is desired output, dashed line is FWNN output. Fig. 6(b) demonstrates 
twelve-step ahead prediction of FWNN for 2005. The plot of prediction error is 
shown in fig. 7. As shown from figure in generalization step (end part of error curve) 
the value of error is increased. The result of simulation of FWNN prediction model is 
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compared with result of simulation of NN based prediction model. In table 3 the com-
parative results of simulations are given. As shown from table the performance of 
FWNN prediction is better than performance of NN model. The obtained result from 
the simulation satisfies the efficiency of application of FWNN technology in con-
structing prediction model.  

  a)  

       b)            

Fig. 6. Twelve step ahead prediction by FWNN (dotted line) and predicted signal (solid line).  
a) Curves describing learning and testing data together, b) curves describing testing data. 

 

Fig. 7. Plot of prediction error 

Table 3. Comparative results of simulation 

 Number of rules Epochs RMSE NDEI 
Feedforward Neural Network 60 10000 0.03768 0.3187 

FWNN Model 16 1000 0.02837 0.2401 
FWNN Model 58 1000 0.01713  0.1449 

5   Conclusion 

In this paper FWNN is developed for time-series prediction. By using wavelets the 
fuzzy rules are constructed.  The gradient algorithm is applied for learning parameters 
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of premise and consequent parts of fuzzy rules in FWNN structure. The structure and 
learning algorithms of FWNN system is applied for modeling and prediction of com-
plex time-series. The developed FWNN structure is also applied for predicting future 
values of electricity consumption. This process is high order nonlinear. Using statisti-
cal data the prediction model is constructed. The simulation results are compared with 
the results of simulations of other prediction models. Comparative results demonstrate 
that the FWNN prediction model has better performance than other models. 
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Abstract. The universal approximation property makes neural networks
very attractive for system modelling and identification. Channel estima-
tion and equalization for digital communications are good examples. We
explore the application of a Radial Basis Function Network to approxi-
mate the frequency response of a wireless channel, under the settings
established by the IEEE 802.11 family of standards for wireless LAN ar-
chitecture. We aim to exploit the channel impulse response correlation in
the frequency domain to reduce the effect of noise. We obtain a smoother
reconstructed function than by using a single tap Zero Forcing frequency
domain equalizer. This is achieved by using a smaller number of basis
functions, in the approximating Radial Basis Function Network, than
the number of sub-carriers used by the OFDM modulation technique
adopted in the transmission system. Although the training of the net-
work following the Least Squares criterion requires the inversion of a
matrix, this is feasible given the relatively small number of sub-carriers
in the WLAN. Simulations show that the proposed algorithm behaves
considerably better with respect to a simple single tap Zero Forcing al-
gorithm, by reducing the bit error rate by more than a half. We also
outline a possible solution based on the Kalman filter to update the net-
work parameters adaptively and thus exploit any time correlation of the
channel impulse response.

Keywords: channel equalization, OFDM modulation, Radial Basis
Function.

1 Introduction

Classical approaches to channel estimation are statistical approaches based on
the maximum likelihood, maximum a posteriori (MAP) or minimum mean-
squared error (MMSE) criteria. Improvements of these techniques keep being
investigated; as an example, Baccarelli and Galli [1] introduce a new algorithm
for blind de-convolution based on the MAP method and a nonlinear Kalman like
estimator. Applications of the Expectation-Maximization algorithm [2], have also
recently been considered for channel estimation in high rate wireless data com-
munication systems utilizing transmitter diversity [3,4,5,6]. Approaches based
on the minimization of the error-entropy have also been investigated [7,8], as
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c© Springer-Verlag Berlin Heidelberg 2006



202 G. Moffa

opposed to the popular MMSE criterion. This type of information theoretic cri-
terion has also been considered as a training process for a multi-layer perceptron
based equalization scheme for nonlinear channel models [9].

The universal approximation property [10] explains the numerous neural net-
work based adaptive equalizers that have have been introduced in the literature
to overcome inter-symbol interference, non-linear distortion and filter noise [11].
Radial Basis Function (RBF) based implementations of the Bayesian equalizer
for a time-invariant channel have been suggested [12,13,14], and a complex val-
ued version has been considered for being structurally similar to the optimal
Bayesian equalizer [15,16].

Applications of Fuzzy Logic Systems to communications have also been widely
studied and techniques to implement a Bayesian equalizer or eliminate co-channel
interference have been proposed [17,18]. Type-2 Fuzzy Adaptive Filters have
also been suggested for the equalization of non-linear time-varying channels
[19,20,21]. Nonlinear channel models are frequently encountered in data trans-
mission over digital satellite links because of the nonlinear behaviour of Traveling
Wave Tube amplifiers when working close to saturation.

It is worth noting here that due to the prohibitive computational complexity
associated with the optimal solution under the Bayesian framework, great effort
has been put in developing sub-optimal solutions for signal reception problems.
However the Bayesian Monte Carlo methodologies which have recently gained
much interest in statistics outline feasible solutions that can approach the theo-
retical optimum [22,23].

This paper is organized as follows. In section 2 the specific scenario studied is
described, with a particular focus on OFDM modulation (§2.1), while section 3
describes the implementation of a Recursive Least Squares (RLS) algorithm in
this setting. Section 4 presents a possible application of RBF networks to OFDM
channel equalization; we also outline a proposal for an adaptive updating of the
network coefficients by means of the Kalman filter (§4.3).

2 Description of the Scenario

A key problem in communications is the efficient and reliable transmission of
information signals over imperfect channels. Given the random nature of radio
channels they are typically treated by means of stochastic models, based on mea-
surements made for a specific environment [24]. Due to reflection and diffraction
the electromagnetic waves travel from the transmitter to the receiver follow-
ing different paths, leading to multipath fading. Coupled with the fast varying
nature of the channel this results in a signal at the receiver antenna whose am-
plitude and phase can vary significantly making the accurate reconstruction of
the transmitted signal a very challenging task.

2.1 OFDM Modulation

OFDM modulation [25,26] relies on the division of the channel bandwidth into
several narrow (therefore slower) sub-channels. The frequency response for each
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of them turns out to be relatively flat, and spreading the signal over different
sub-carriers increases its robustness to possible forms of impulse noise. For these
reasons OFDM efficiently addresses the issues concerned with multipath recep-
tion. The modulation/demodulation can be practically performed numerically
by resorting to inverse/direct Fast Fourier Transform algorithms with rather
low computational complexity.

At the receiver the symbols can be expressed as:

Y [m, k] = X [m, k]H [m, k] + v[m, k]
m = 1, . . . , Nf , k = 0, . . . , Nc − 1 (1)

where X [m, k] is the symbol (properly modulated) transmitted during the m-th
time slot on the k-th sub-carrier, H [m, k] is the frequency response of the trans-
mission path for carrier number k during the m-th time slot, v[m, k] is the com-
plex noise component, Nc is the number of sub-carriers and Nf is the number of
OFDM symbols in a time frame.

The OFDM scheme includes two types of pilot symbols to help channel es-
timation: OFDM symbols consisting entirely of pilot sub-carriers periodically
transmitted and “scattered pilots” evenly distributed in each symbol, as shown
in figure 1. The latter are usually meant for synchronization, to make the co-
herent detection robust against frequency offsets and phase noise. However one
could think of deriving channel estimates for the scattered pilots and obtaining
a frequency response for all sub-carriers by interpolation. Cui and Tellambura
[27] suggest an adaptively trained RBF channel estimator for this purpose.

(Sub-carrier)

k = Nc − 1 • · · · • • • · · · · · · • • · · ·
• · · · • ◦ ◦ · · · · · · ◦ • · · ·
...

...
...

...
...

...
...

...
...

... • pilot symbol
• · · · • ◦ ◦ · · · · · · ◦ • · · ·
• · · · • • • · · · · · · • • · · · ◦ data symbol
• · · · • ◦ ◦ · · · · · · ◦ • · · ·
...

...
...

...
...

...
...

...
...

...
k = 1 • · · · • ◦ ◦ · · · · · · ◦ • · · ·
k = 0 • · · · • • • · · · · · · • • · · ·

m (symbol)

Fig. 1. OFDM transmission scheme

2.2 Wireless LAN

This work focuses on the WLAN architecture defined by the IEEE 802.11a stan-
dard, the first one to use OFDM in packet based communications [25,26]. Since
the packet length is short enough to consider the channel constant, it seems that,
for this specific kind of transmission systems, resorting to a preamble of pilots
symbols is the most suitable approach to estimate the channel. Moreover only
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using scattered pilots would introduce unacceptable delays before the estimates
converge to reasonable values.

If a sequence of training symbols is available, it follows from equation (1) that
the frequency response can be estimated by

Ĥ [m, k] = Y [m, k]/X [m, k] (2)

where Y [m, k] is the observed output corresponding to the known transmitted
symbol X [m, k], hence the recovered symbol will be X̂[m, k] = Y [m, k]/Ĥ[m, k].
This actually corresponds to implement a single tap Zero Forcing (ZF) frequency
domain equalizer, with complex coefficient Ck,ZF = 1/Ĥk.

Assuming the preamble scheme for the pilots, the general structure of a time
frame transmitted on each sub-carrier is as shown below:

• · · · •︸ ︷︷ ︸
Ntrain

◦ ◦ · · · · · · · · · ◦︸ ︷︷ ︸
Ndata

Ntrain Training symbols
Ndata Data symbols
Nf = Ntrain + Ndata Frame size

The choice of the preamble length is obviously a tradeoff between a short training
time and an accurate channel estimation. The estimates of the channel frequency
response corresponding to the pilot symbols are simply:

Ĥ [lNf + i, k] =
Y [lNf + i, k]
X [lNf + i, k]

i = 1, . . . , Ntrain

where l is the frame index.

3 State-Space Model and RLS Algorithm

Since OFDM is designed on purpose to be extremely resistant to multipath
and highly spectrally efficient, it conveniently meets the demands of high speed
wireless communication systems. Nevertheless it still needs a proper equalization
at the receiver for the signal to be adequately reconstructed.

If we consider the OFDM scenario described in the previous chapter and call
Ĥ [l, k] the mean of the frequency response over the training symbols:

Ĥ(l, k) =
1

Ntrain

Ntrain∑
i=1

Ĥ(lNf + i, k) (3)

the following state-space model can be defined for each sub-carrier k:{
H [l, k] = H [l − 1, k] + w[l, k]
Y [l, k] = H [l, k]X [l, k] + v[l, k]

(4)

where H [l, k] and Y [l, k] are defined as in equation 3, w[l, k] and v[l, k] are the
corresponding noise components.

A rich collection of algorithms to adapt filter coefficients and improve perfor-
mances with respect to a simple ZF algorithm is available in the literature [28].
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As an example we apply the classic RLS method for channel estimation; which
results in the following estimator:

Ĥ(l + 1, k) = Ĥ(l, k) + KRLS · [Y (l + 1, k)−X(l + 1)Ĥ(l, k)]

where the constant gain KRLS = Kvalue ·X(l + 1, k) and Kvalue ∈ (0, 1]. When
Kvalue = 1 the equation yields Ĥ(l + 1, k) = Y (l + 1, k)X(l + 1) which corre-
sponds to an RLS algorithm with a zero forgetting factor. This means the past
is completely neglected and just the current observation is taken into account,
and it might be the best choice in a very fast varying channel. On the other
hand Kvalue = 0 gives a non-adaptive estimate, taking the channel as static.

Figure 2 shows the bit error rate (BER) against Kvalue, obtained with the
following simulation parameters: doppler bandwidth Bd = 100Hz, SNR = 20dB,
Bit Rate R = 24Mb/s. It is clear that the performances improve for higher values,
indeed they can be considered equivalent for 0.7 � Kvalue ≤ 1; this is consistent
with the time varying nature of the channel and leads to the conclusion that it
is not worth keeping track of the past in such conditions.

It is worth comparing the RLS solution against the simple ZF algorithm for the
optimal value of Kvalue (namely 0.7). From figure 3 we see that the RLS method
behaves only slightly better, but it is likely that its performance improves for
lower values of SNR and slowly time-varying channels, where the minimum value
of the BER will probably be reached in correspondence of smaller Kvalue.

Fig. 2. RLS performance Fig. 3. Comparison of RLS and simple ZF

4 OFDM Equalization Via an RBF Network

The RLS based channel estimation depicted in the previous chapter only ex-
ploits the temporal correlation of the channel. Naturally one would try to take
advantage of any correlation in the frequency domain as well, as suggested by
Zhou and Wang [29]. Here we take a similar approach, by constructing a RBF
Network (RBFN) which interpolates the frequency response of the channel.

4.1 RBF Networks

The attractiveness of neural networks arises from properties such as parallel
distributed architecture, self-organization, adaptivity and the universal approx-
imation characteristic already mentioned. A RBFN is a two-layer feed forward
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network whose hidden layer is made of a set of basis functions, which produce a
localized response to an input signal. The output is obtained as a linear combi-
nation of the basis functions evaluated in the hidden units.

Given a continuous non-linear function φ(·) : R+ → R, an RBFN with M neu-
rons in the hidden layer and an F -dimensional input can be defined to implement
a mapping f : RF → R, according to:

f(x) =
M∑

j=1

θjφ(||x − μj||,σj) �
M∑

j=1

θjφj(x)

where x ∈ RF is the input vector, || · || is the L2 norm, {θj}Mj=1 is the vector
of link weights, {μj}Mj=1 a vector representing the locations of the radial basis
functions and {σj}Mj=1 the vector of standard deviations, which determines the
spread of the basis functions.

It is worth emphasizing that devising the most suitable architecture to model
the underlying function of a certain mapping is not always obvious; the network
topology is rather a parameter to be determined. An RBFN is thus specified by
the hidden unit activation function, the number of processing units, a specific
topology adequate for the problem at hand and a training algorithm to find
the network parameters. The learning procedure is typically of an unsupervised
form for the location update in the hidden layer and of a supervised form for
the weight update in the ouput layer. The mean square error is often assumed
as a cost function to evaluate the goodness of fitness.

A common choice for the non-linearity of the hidden layer is a Gaussian,
which results in the mapping f(x) =

∑M
j=1 θjexp(−||x−μj||2

σ2
j

). It is clear that the
maximum activation for each unit is achieved when the data sample coincides
with the mean vector μj.

4.2 The Equalizer

We present here a simple RBFN based equalizer when the network has got a
smaller number of basis functions than the number of sub-carriers of the trans-
mission system. The network acts as a smoother of the frequency response of the
channel thus filtering out some noise. Referring to the state-space model defined
by equation (4) a RBFN can be defined as shown in figure 4. The real and the
imaginary part of the frequency response estimate H̃ , are represented as follows:

Re{H̃[l, k]} =
M∑

j=1

θR
j φj(k), Im{H̃ [l, k]} =

M∑
j=1

θI
jφj(k) (5)

The inputs to the network are two real vectors:

HR
l � Re{(Ĥ[l, 0], . . . , Ĥ[l, Nc − 1])}′, HI

l � Im{(Ĥ [l, 0], . . . , Ĥ [l, Nc − 1]]}′

corresponding to the real and imaginary part of the estimates obtained from
equation (3). The network is actually equivalent to a couple of independent
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Fig. 4. Radial Basis Function Network

networks, for the real and imaginary part of the frequency response. In our
simulations we have used gaussian basis functions. For simplicity’s sake we have
assumed their location is fixed at regular intervals, corresponding to one in three
frequency indices. The standard deviations are assumed to be fixed as well and
the same for all the functions. The weights θR

j and θI
j can then be derived by

resorting to a supervised learning algorithm simply based on the Least Squares
method, that is by minimizing the sums of squared residuals:

CR =
Nc−1∑
k=0

[Re{Ĥ[l, k]}−Re{H̃[l, k]}]2, CI =
Nc−1∑
k=0

[Im{Ĥ[l, k]}−Im{H̃[l, k]}]2

Figure 6 shows how the BER obtained by the RBF equalizer compares to the
one given the simple ZF algorithm. It is clear that the RBFN behaves better;
at SNR = 24 dB for example the BER falls from 2.8 × 10−4 to 1.3 × 10−4,
which means it has been reduced by more than 50%. Performances can probably
be improved further by a fine tuning of the spread σ. Indeed if the spread is
too small or too big the network will provide an accurate approximation only
for the frequencies corresponding to the location of the basis functions, on the
other hand it will perform poorly for the interpolated values, resulting in an
interpolated function which is too peaky or too flat with respect to the true
shape of the function. Figure 5 shows a plot of the performances for different
value of the standard deviation suggesting that σ = 4 is the optimal value for
the given topology.

Fig. 5. BER vs basis function spread Fig. 6. Comparison of RBFN and ZF
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4.3 Adaptive Algorithm Based on Kalman Filter

In order to exploit the frequency and the time correlation of the channel, at
the same time, the RBF coefficients can be adaptively updated, for example
by means of a Kalman filter. Given the RBF network structure described by
equation (5), and by replacing the true value of the channel frequency response
H [m, k] with the estimate H̃ [m, k], the output symbols at the receiver can be
written as:

Y (m, k) =
(∑M

j=1 θR
j φj(k) + i

∑M
j=1 θI

jφj(k)
)
X(m, k) + v[m, k]

0 ≤ k ≤ Nc − 1

By defining the matrix

Φ �

⎡⎢⎣ φ1(0) . . . φM (0)
...

. . .
...

φ1(Nc − 1) . . . φM (Nc − 1)

⎤⎥⎦
and the vectors

θR � (θR
1 , . . . , θR

M )′, θI � (θI
1 , . . . , θ

I
M )′

the output vector Y (m) = [Y [m, 0], . . . , Y [m, Nc − 1]]′ can be written as:

Y (m) = Φ(θR + iθI)X ′(m) + ν(m)

where X(m) = [X [m, 0], . . . ,X [m, Nc − 1]]′ is the vector of data that make up
the m-th OFDM symbol and ν(m) is a complex gaussian process with zero mean
and a given correlation matrix Σν . Then the following state-space model can be
defined: {

HR
l = ΦθR(l) + η

l

θR(l + 1) = θR(l) + wl

where η
l
, wl are gaussian processes with zero mean and covariance matrix Ση =

σηI, Σw = σwI respectively. The Kalman estimator for the state θR has the
form:

θ̂
R
(l + 1) = θ̂

R
(l) + KGain(HI

l −Φθ̂
I
(l))

where KGain = Φ′
ΦΦ′+σ2

η/p is the Kalman gain and p is the solution of the Riccati
equation. For the imaginary part of the frequency response a completely analo-
gous state-space model can be defined and the corresponding Kalman estimator
can be straightforwardly derived.

5 Conclusions

We have explored an RBFN approach for OFDM channel equalization in a
WLAN environment, as defined by the standard IEEE 802.11a. We have built
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a neural network to approximate the channel frequency response, which aims to
exploit the frequency domain correlation by using a smaller number of basis func-
tions than the number of sub-carriers in the OFDM system. It acts as a smoother
of the channel frequency response estimated by a single tap ZF frequency do-
main equalizer, mitigating the noise disturbance. Simulations have shown that
the proposed algorithm behaves considerably better than a simple single tap ZF
equalizer. Since channels encountered in WLAN environment typically do not
suffer from very fast fading, further improvements could be obtained by adap-
tively improving the network parameters and exploiting the time correlation,
rather than starting a new estimation procedure at every packet. We have out-
lined a solution based on the Kalman filter for this purpose. As a further step it
would also be interesting to investigate the possibility of estimating the channel
by only making use of the “scattered pilots” in the OFDM symbols, rather than
resorting to the training sequences.
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Abstract. We discuss the blind source separation problem where the
sources are not independent but are dependent only through their vari-
ances. Some estimation methods have been proposed on this line. How-
ever, most of them require some additional assumptions: a parametric
model for their dependencies or a temporal structure of the sources,
for example. In previous work, we have proposed a generalized least
squares approach using fourth-order moments to the blind source sepa-
ration problem in the general case where those additional assumptions
do not hold. In this article, we develop a simple optimization algorithm
for the least squares approach, or a quasi-stochastic gradient algorithm.
The new algorithm is able to estimate variance-dependent components
even when the number of variables is large and the number of moments
is computationally prohibitive.

1 Introduction

In blind source separation methods, the observed signals xi(t) (i = 1 · · ·m) are
typically assumed to be linear mixtures of sources sj(t) (j = 1 · · ·n). Let āij

denote the coefficients in the linear mixing between the sources sj(t) and the
observed signals xi(t). Then the mixing can be expressed as

xi(t) =
n∑

j=1

āijsj(t). (1)

The problem of blind source separation is now to estimate both the source signals
si(t) and the mixing coefficient āij based on observations of the xi(t) alone [1].

The model (1) is called independent component analysis (ICA) model if sj(t)
are assumed to be non-gaussian and independent [2]. The ICA model has been
extensively studied for last two decades, and many estimation techniques for the
model are available [3].

Recently, many extensions of the ICA model have started to be considered
[4,5,6]. A quite interesting extension among them is the case where the source
signals are not independent but dependent only through their variances [6]. To
model such dependencies, [7] assumed that each source signal si(t) can be rep-
resented as a product of two random signals vi(t) and yi(t):

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 211–220, 2006.
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xi(t) =
n∑

j=1

āijvj(t)yj(t), (2)

where vi(t) and yi(t) are independent, yi(t) are independent over time and are
mutually independent of each other. No assumption on the distribution of yi(t)
is made other than yi(t) have zero means. The variance signals vi(t) are non-
negative signals giving general activity levels and are allowed to be statisti-
cally dependent. Thus, the vi(t) could produce dependencies between sources
si(t) = vi(t)yi(t). No particular assumptions on the dependencies between vi(t)
are made. This setting was called double-blind source separation problem be-
cause one neither observes the source signals si(t) nor postulates a parametric
model of their dependencies.

In [7], it was further assumed that the source signals have some time de-
pendencies (autocorrelations) and a method was proposed that uses the time
structure of the observed signals for separating the source signals. The time
dependency assumption is the key to the method, and the method is not appli-
cable to the case where the source signals are not temporally structured and has
a more limited domain of applications, since many kinds of data do not have
temporal structure in practice.

In [8], estimating functions for the model (2) was studied, and the quasi max-
imum likelihood estimation that requires no time dependencies was proposed.
However, one has to appropriately choose the nonlinearity depending on whether
the underlying independent signals yi(t) are supergaussian or subgaussian as in
maximum likelihood methods for the ordinary ICA model. Moreover, they have
to make certain extra assumptions on the signs of certain complicated nonlinear
cross-moments of the sources, and it is not very clear when these are fulfilled.

In previous work [9], we proposed a generalized least squares approach using
second- and fourth-order moment structures of observed signals in the general
case where no temporal structure is available and it is unknown whether the
underlying signals are supergaussian or subgaussian. However, its optimization
using the ordinary gradient descent method is more difficult for larger variables
since the number of moments increases enormously. In this paper, we provide a
computationally efficient algorithm, or a quasi-stochastic gradient algorithm.

2 Model

We shall define the following model, which we will refer to as variance-dependent
component analysis (VDCA) here. Let us collect the source signals in a vector s =
[s1, · · · , sn]T , and also construct the observed signal vector x in the same manner.
(We omit the time indices in the subsequent part since we do not consider time
structures.) Let us further collect the mixing coefficients in a matrix Ā = [āij ].
The VDCA model for the m-dimensional observed vector x is written as

x = Ās, (3)

where non-gaussian components si can be expressed as products of two signals vi

and yi, si = viyi, as in (2), where the yi are zero-mean and mutually independent,
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and that the set of the yi is independent from the set of the vj . No assumptions
on the dependencies of the vj with each other are made. An important point in
the VDCA model is that no temporal structure is assumed, which is different
from [7]. Here, we further assume Ā to be square, which is a typical assumption
in blind source separation [3].

An Illustrative Example

To illustrate the VDCA model, let us consider two stereotypical signals for which
ordinary ICA does not work but VDCA does work. Let us define v1, v2, y1 and
y2 as follows:

v1 = 0.2 + exp{−4(t− 7)2}+ 0.5 exp{−4(t− 4)2} (4)
v2 = 0.2 + exp{−4(t− 6.8)2}+ 0.5 exp{−4(t− 4.2)2} (5)
y1 = sin(50t) (6)
y2 = cos(37t) (7)
(t = 0, 0.01, 0.02, · · · , 10).

Then we define variance-dependent signals s1 = v1y1, s2 = v2y2. Here, the un-
derlying signals yi are subgaussian and variance signals vi are highly correlated.
See Figure 1 for the original source signals si, estimated sources si by VDCA
and FastICA with the hyperbolic tangent nonlinearity [10].

The point is that ICA tries to find a maximally non-gaussian linear combi-
nation of the source signals. Now it finds two conflicting goals: in the source

Fig. 1. Top left and bottom left: the original sources. Top center and bottom center:
the estimated sources by VDCA. Top right and bottom right: the estimated sources
by FastICA (tanh). The quasi-stochastic gradient algorithm with the stepsize 0.01 was
run 10 times, and the estimates with the smallest value of the objective function were
taken to avoid getting stuck in local minimum. Then our algorithm separated 100% of
the sources (100 replications), whereas FastICA worked poorly (2%).
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signals, the sinusoids yi inside the envelopes are subgaussian, hence the original
signals maximize subgaussianity inside the envelopes. In contrast, modulation
by vi make the signals si supergaussian, and hence an ICA algorithm should
maximize supergaussianity to maximize non-gaussianity. This conflict between
sub- and super-gaussianity makes ICA fail.

3 A Generalized Least Squares Approach

In previous work [9], we have proposed the generalized least squares approach
(GLS) in estimation that utilizes higher-order moment to estimate Ā in (3).

Let us denote by σ2(τ ) the vector that consists of elements of the covariance
matrix based on the model where any duplicates due to symmetry have been
removed and by σ4(τ ) the vector that consists of the tensor of fourth-order
(cross-) moments where duplicate entries have been removed and by τ the vector
of source statistics and mixing coefficients that uniquely determines the second-
and fourth-order moment structures of the model σ2(τ ) and σ4(τ ). Then the
σ2(τ ), σ4(τ ) and τ can be written as

σi(τ ) = HiE[
i times︷ ︸︸ ︷

x⊗ · · · ⊗ x ] (i = 2, 4),
(8)

where the symbol ⊗ denotes the Kronecker product1 and Hi is a selection matrix

of order
(

m + i − 1
i

)
×mi (i = 2, 4) that selects non-duplicated elements. The

parameter vector τ consists of Ā and E(s2
ps

2
q).

In [9], we proposed that the model is estimated using the principle of gen-
eralized least-square estimation. This is a method of matching the moments of
the observed data mi and those based on the model σi(τ ) in a weighted least-
squares sense (i = 2, 4).

Let x1, . . . ,xN be a random sample from the VDCA model as defined in
Section 2, and define the sample counterparts to the moments in (8) as

mi =
1
N

Hi

N∑
t=1

i times︷ ︸︸ ︷
xt ⊗ · · · ⊗ xt (i = 2, 4). (9)

Let us denote by τ 0 the true parameter vector. The σi(τ 0) can be estimated by
the mi when N is enough large: σi(τ 0) ≈mi (i = 2, 4).

The GLS estimator of τ is obtained as

τ̂ = argmin
τ

∥∥∥∥[m2
m4

]
−

[
σ2(τ )
σ4(τ )

]∥∥∥∥2

Û−1

. (10)

(For simplicity, the norm yT My of a vector y associated with a nonnegative
definite matrix M is here expressed as ‖y‖2M.) Here Û is a weight matrix in
1 The Kronecker product X ⊗ Y of matrices X and Y is defined as a partitioned

matrix with (i, j)-th block equal to xijY.
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GLS estimation and converges in probability to a certain positive definite matrix
U. The resultant GLS estimator τ̂ determined by (10) is then consistent and
asymptotic normal [11]. We simply take the identity matrix as Û in the following.

4 A Quasi-stochastic Gradient Algorithm

In this section, we propose a simple optimization algorithm for the least squares
approach above. We assume that the data is prewhitened by a whitening matrix
V in an ordinary way [3] and denote by z = Vx the prewhitened signals. Then
we can constrain A = VĀ to be orthogonal, which stabilizes the algorithm
below.

The total objective function (10) in the GLS approach becomes monstrous
because we have sum over all the moments2, and it only works for small di-
mensions. Denote by ãi the i-th row of A and by C a symmetric matrix whose
(i, j)-th element is E(s2

i s
2
j). (Note that τ consists of the elements of A and the

lower triangular elements of C.) A simple way to solve this problem would be
to consider the objective function as a sum over the variable indices i, j, k, l:∑

i,j,k,l

Jijkl(A,C), (11)

where

Jijkl(A,C) =

{
1
N

N∑
t=1

zitzjtzktzlt − E(ãis, ãjs, ãks, ãls)

}2

. (12)

Let us compute the gradient of Jijkl with respect to A and C, denoted by
∇AJijkl and ∇CJijkl , respectively (see Appendix A for the complete formulas).
We can now update the estimate of A and C by taking random indices i, j, k, l
at each iteration and using a simple gradient descent for Jijkl (see Step 4 in the
algorithm below). At each gradient step, we take new random indices i, j, k, l.
This kind of a stochastic gradient descent finds the minimum of the sum of the
Jijkl that we wanted to minimize in the first place, because the gradient is on
the average the same as the gradient of the whole sum.

To improve the convergence, it is quite useful to perform a projection of the
gradient on the tangent surface of the set of orthogonal matrices [12]. This means
replacing the gradient ∇AJijkl by

∇ort
A Jijkl = ∇AJijkl −A(∇AJijkl)T A. (13)

Thus, the estimation consists of the following steps:

0. Remove the mean from the data and whiten it. Choose (random) initial
values for the matrices A and C.

1. Randomly choose four indices i, j, k, l.
2 The number of fourth-order moments is of order n4.
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2. Compute the gradients with respect to A and C as given in Appendix A.
3. Compute the projected gradient with respect to A by (13).
4. Do a gradient step

A← A− μ∇ort
A Jijkl (14)

C← C− μ∇CJijkl , (15)

where μ is a small stepsize constant.
5. Orthogonalize A by

A← (AAT )−1/2A. (16)

The five steps 1-5 are repeated until A and C have converged. Then we obtain
the estimate of Ā by V−1A.

5 Simulations

We conducted simulations to study the empirical performance of the algorithm
above. The simulation consisted of 100 source separation trials with three differ-
ent methods: 1) the quasi-stochastic gradient algorithm proposed in the paper;
2) FastICA using kurtosis and 3) FastICA using hyperbolic tangent function [10].
For the two FastICA, the symmetric orthogonalization was made. (The FastICA
with the symmetric orthogonalization using hyperbolic tangent function as the
nonlinearity is basically the same as the quasi-maximum likelihood estimation
[13].) We took 0.1 as the stepsize and stopped the quasi-stochastic gradient iter-
ation when the average change of orthogonalized mixing matrices measured by
1−min{diag(AT

oldAnew)} over the last 100 iterations is smaller than 0.00013.
In each trial, we generated 10 sources that were dependent through their

variances and created observed signals following the VDCA model as defined in
Section 2. First, we created a random signal v0 with several sample sizes (3,000,
5,000, 10,000, 30,000) where their components were independently distributed
according to the gaussian distribution with zero mean and unit variance. Out-
liers, defined as values larger than a threshold of 3 times the standard deviation,
were eliminated from the resulting signals by reducing their values to the above-
mentioned threshold. The variance signals vi were then defined as the absolute
values of the signal, that is, vi = |v0| (i = 1, · · · , 10). The variance signals were
completely dependent on each other since they were identical, but they were in-
dependent over time. (Therefore, the double-blind method [7] that used temporal
correlations was not applicable to this case.)

Next the source signals si were created by multiplying the variance signals vi

by ten-dimensional random signals yi, that is, si = viyi. Here, the ten underlying
signals yi were i.i.d. (white) zero-mean subgaussian random processes to create
enough variance dependencies [7]. (The subgaussian signals were signed fourth
root of zero mean-uniform variables.) The source signals were normalized to have

3 Here, the quasi-stochastic gradient algorithm was run once for each data.
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zero means and unit variances. Finally, a random mixing matrix Ā was created,
and the signals were mixed to provide the observed signals xi, i = 1, · · · , 10.

The three methods were then applied on the data after prewhitening it. The
performance of each method was assessed as follows. Denoting by W the trans-
pose of the obtained estimate of the orthogonalized mixing matrix A (with
permutation and sign indeterminacies), we looked at the matrix WVĀ. We
computed how many elements in this matrix had an absolute value that was
larger than 0.90. First of all, it must be noted that the matrix WVĀ is rather
exactly orthogonal (up to insignificant errors occurred in the estimation of the
whitening matrix), so there can be no more than 10 such elements in the ma-
trix, and no row or column can contain more than one such element. In the ideal
case where WVĀ is a signed permutation matrix, there would be exactly 10
such elements. Thus, this gave a measure of how many source signals had been
separated.

The results are shown in Table 1. Our method separated more than 97.0% of
the components for the reasonable sample sizes (5,000, 10,000, 30,000). On the
other hand, both FastICAs could not separate the components at all (0%) since
FastICA is based on independence of sources. Thus, our method was quite good,
while not being perfect.

Table 1. Percentage of components recovered (100 replications)

Sample size
3,000 5,000 10,000 30,000

Stoc. grad. alg. 87.4 97.6 97.8 97.6
FastICA (kurtosis) 0 0 0 0
FastICA (tanh) 0 0 0 0

6 Conclusions

We proposed a quasi-stochastic gradient algorithm for the GLS approach using
second- and fourth-order moment structures of observed signals to the blind
source separation of sources that are dependent only through their variances. In
the approach, we do not have to assume that the sources have some temporal
structures nor postulate any parametric models for their dependencies. This
could be a big advantage of our approach over the conventional methods.

Although our method works well in simulations, moment-based methods often
suffer from sensitivity to outliers when applied on certain kinds of real data. An
important question for future research is to investigate how serious this problem
is and, eventually, how it can be alleviated.
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A Gradient of the Objective Function

The gradients of the objective function in (12) are as follows:

∇AJijkl = −2

{
1
N

N∑
t=1

zitzjtzktzlt − E(zizjzkzl)

}
∂E(zizjzkzl)

∂A
(17)

∇CJijkl = −2

{
1
N

N∑
t=1

zitzjtzktzlt − E(zizjzkzl)

}
∂E(zizjzkzl)

∂C
. (18)

In what follows, we provide E(zizjzkzl) that were given by the VDCA model
and their first derivatives with respect to A and C to compute ∇AJijkl and
∇CJijkl above.

We first provide the model-based expectations E(zizjzkzl):

E(z4
i ) =

∑
p

a4
ipE(s4

p) + 6
∑
p<q

a2
ipa2

iqE(s2
ps

2
q)

E(z3
i zj) =

∑
p

a3
ipajpE(s4

p) + 3
∑
p<q

(a2
ipaiqajq + aipajpa2

iq)E(s2
ps

2
q)

E(z2
i zjzk) =

∑
p

a2
ipajpakpE(s4

p) +
∑
p<q

(a2
ipajqakq + 2aipajpaiqakq

+2aipakpaiqajq + a2
iqajpakp)E(s2

ps2
q)

E(z2
i z2

j ) =
∑

p

a2
ipa2

jpE(s4
p) +

∑
p<q

(a2
ipa2

jq + a2
iqa

2
jp + 4aipajpaiqajq)E(s2

ps2
q)

E(zizjzkzl) =
∑

p

aipajpakpalpE(s4
p) +

∑
p<q

(aipajpakqalq + aipajqakpalq

+aipajqakqalp + aiqajqakpalp + aiqajpakqalp + aiqajpakpalq)E(s2
ps2

q).

Next, we give the first derivatives:

∂E(z4
i )

∂aip
= 4a3

ipE(s4
p) + 12

∑
q �=p

aipa2
iqE(s2

ps2
q),

∂E(z4
i )

∂E(arp)
= 0 (r �= i, l),

∂E(z4
i )

∂E(s4
p)

= a4
ip,

∂E(z4
i )

∂E(s2
ps2

q)
= 6a2

ipa2
iq

∂E(z3
i zj)

∂aip
= 3a2

ipajpE(s4
p) + 3

∑
q �=p

(2aipaiqajq + ajpa2
iq)E(s2

ps
2
q)

∂E(z3
i zj)

∂ajp
= a3

ipE(s4
p) + 3

∑
q �=p

aipa2
iqE(s2

ps2
q)

∂E(z3
i zj)

∂arp
= 0 (r �= i, j),

∂E(z3
i zj)

∂E(s4
p)

= a3
ipajp

∂E(z3
i zj)

∂E(s2
ps2

q)
= 3(a2

ipaiqajq + aipajpa2
iq)
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∂E(z2
i zjzk)

∂aip
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∑
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Abstract. Two independent component analysis (ICA) algorithms have
been applied for blind source separation (BSS) in a synthetic, multi-
sensor scenario, within a non-destructive pipeline test. The first one,
CumICA, is based in the computation of the cross-cumulants of the
mixed observed signals, and needs the aid of a digital high-pass filter
to achieve the same SNR (up to -40 dB) as the second algorithm, Fast-
ICA. Vibratory signals were acquired by a wide frequency range trans-
ducer (100-800 kHz) and digitalized by a 2.5 MHz, 8-bit ADC. Different
types of commonly observed source signals are linearly mixed, involving
acoustic emission (AE) sequences, impulses and other parasitic signals
modelling human activity. Both ICA algorithms achieve to separate the
impulse-like and the AE events, which often are associated to cracks or
sudden non-stationary vibrations.

1 Introduction

Vibratory and acoustic emission (AE) signal processing usually deals with sepa-
ration of multiple events which sequentially or simultaneously occur in different
measurement points during a non-destructive test. In most situations, the tests
involve the study of the behavior of secondary events, or reflections, resulting
from an excitation (the main event). These echoes carry information related with
the medium through which they propagate, as well as surfaces where they reflect
[1].

But, in almost every measurement scenario, an acquired sequence contains
information regarding not only the AE under study, but also additive noise
processes (mainly from the measurement equipment) and other parasitic signals,
e.g. originated by human activity or machinery vibrations. As a consequence, in
non-favorable SNR cases, BSS should be accomplished before characterization
[2], in order to obtain the most reliable spectral fingerprint of the AE event.

The purpose of this paper is twofold. First we show how two ICA algorithms
separate the true AE event from the parasitics, taking a multi-sensor array of
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inputs (SNR=-40 dB). Secondly, we compare performances of Cum-ICA and
Fast-ICA, resulting that Cum-ICA needs the aid of a post high-pass filter to
achieve the same SNR as Fast-ICA. This comparison could be interesting for a
future implementation of the code in an automatic test system.

The paper is structured as follows: in Section 2 we make a brief progress report
on the characterization of vibratory emissions. Section 3 summarizes the ICA
models and outlines their properties. Results are displayed in section 4. Finally,
conclusions and achievements are drawn in section 5.

2 Acoustic Emission Signal Processing

Elastic energy travels through the material as a stress wave and is typically de-
tected using a piezoelectric transducer, which converts the surface displacement
(vibrations) to an electrical signal. AE signal processing is used for the detec-
tion and characterization of failures in non-destructive testing and identification
of low-level biological signals [2]. Most AE signals are non-stationary and they
consist of overlapping bursts with unknown amplitude and arrival time. These
characteristics can be described by modelling the signal by means of neural net-
works, and using wavelet transforms [1],[3]. These second-order techniques have
been applied in an automatic analysis context of the estimation of the time
and amplitude of the bursts. Multiresolution has proven good performance in
de-noising (up to SNR=-30 dB, with modelled signals) and estimation of time
instances, due to the selectivity of the wavelets filters banks [4].

Higher order statistics (HOS) have enhanced characterization in analyzing
biological signals due to the capability for rejecting noise [5]. This is the reason
whereby HOS could be used as part of an ICA algorithm.

3 The ICA Model and Algorithms

3.1 Outline of ICA

BSS by ICA is receiving attention because of its applications in many fields such
as speech recognition, medicine and telecommunications [6]. Statistical meth-
ods in BSS are based in the probability distributions and the cumulants of the
mixtures. The recovered signals (the source estimators) have to satisfy a condi-
tion which is modelled by a contrast function. The underlying assumptions are
the mutual independence among sources and the non-singularity of the mixing
matrix [2],[7].

Let s(t) = [s1(t), s2(t), . . . , sm(t)]T be the transposed vector of sources (sta-
tistically independent). The mixture of the sources is modelled via

x(t) = A · s(t) (1)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is the available vector of observations and
A = [aij ] ∈ �m×n is the unknown mixing matrix, modelling the environment in
which signals are mixed, transmitted and measured [8]. We assume that A is a
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non-singular n×n square matrix. The goal of ICA is to find a non-singular n×m
separating matrix B such that extracts sources via

ŝ(t) = y(t) = B · x(t) = B ·A · s(t) (2)

where y(t) = [y1(t), y2(t), . . . , ym(t)]T is an estimator of the sources. The separat-
ing matrix has a scaling freedom on each row because the relative amplitudes of
sources in s(t) and columns of A are unknown [7]. The transfer matrix G ≡ BA
relates the vector of independent (original) signals to its estimators.

3.2 CumICA

High order statistics, known as cumulants, are used to infer new properties about
the data of non-Gaussian processes. Before, such processes had to be treated as if
they were Gaussian, but second order statistics are phase-blind. The relationship
among the cumulant of r stochastic signals and their moments of order p, p ≤ r,
can be calculated by using the Leonov-Shiryayev formula [9]:

Cum(x1, ..., xr) =
∑

(−1)k · (k − 1)! ·E{
∏
i∈v1

xi}

·E{
∏
j∈v2

xj} · · ·E{
∏

k∈vp

xk}
(3)

where the addition operator is extended over all the set of vi (1 ≤ i ≤ p ≤ r)
and vi compose a partition of 1,. . . ,r.

A set of random variables are statistically independent if their cross-cumulants
are zero. This is used to define a contrast function, by minimizing the distance
between the cumulants of the sources s(t) and the outputs y(t). As sources are
unknown, it is necessary to involve the observed signals. Separation is developed
using the following contrast function based on the entropy of the outputs [2]:

H(z) = H(s) + log[det(G)]−
∑ C1+β,yi

1 + β
(4)

where C1+β,yi is the 1 + βth-order cumulant of the ith output, z is a non-linear
function of the outputs yi, s is the source vector, G is the global transfer matrix
of the ICA model and β > 1 is an integer verifying that β + 1-order cumulants
are non-zero.

Using equation 4, the separating matrix can be obtained by means of the
following recurrent equation [8]

B(h+1) = [I + μ(h)(C1,β
y,yS

β
y − I)]B(h) (5)

where Sβ
y is the matrix of the signs of the output cumulants. Equation 5 is inter-

preted as a quasi-Newton algorithm of the cumulant matrix C1,β
y,y . The learning

rate parameters μ(h) and η are related by:

μ(h) = min(
2η

1 + ηβ
,

η

1 + η‖C1,β
y,y‖p

) (6)
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with η < 1 to avoid B(h+1) being singular; ‖.‖p denotes de p-norm of a matrix.
The adaptative equation 5 converges, if the matrix C1,β

y,yS
β
y tends to the identity.

3.3 FastICA

One of the independent components is estimated by y = bT x. The goal of
FastICA is to take the vector b that maximizes the non-Gaussianity (indepen-
dence)of y, by finding the maxima of its negentropy [7]. The algorithm scheme is
an approximative Newton iteration, resulting from the application of the Kuhn-
Tucker conditions. This leads to the equation 7

E{xg(bT x)− βb = 0} (7)

where g is a non-quadratic function and β is an iteration parameter.
Provided with the mathematical foundations the experimental results are out-

lined.

4 Experimental Results

The inputs of the ICA algorithms comprise synthetics (laboratory mixtures),
which have been obtained by mixing real AE events (the ones we are interested
in getting the spectral track), impulse-like events, noise processes and damping
sinusoids. The sensor used to capture the AE events was attached to the outer
surface of the pipeline, which is under mechanical excitation.

A number of 20 AE events were captured. One of these vibratory signals is
depicted in Fig. 1, where we can observe the main AE event and the secondary
reflections or echoes.

Each digitalized sequence comprises 2502 points (sampling frequency of 2.5
MHz and 8 bits of resolution), and assembles the main AE event and the subse-
quent reflections (echoes).

Four types of sources have been considered and linearly mixed in the synthet-
ics. These subsequent mixtures constitute the inputs of the algorithm: A real
AE event, an uniform white noise (SNR=-40 dB), a damped sine wave and an
impulse-like event. The damping sine wave models a mechanical vibration which
may occur, e.g. as a consequence of a maintenance action. It has a damping
factor of 2000 and a frequency of 8000 Hz. Finally, the impulse is included as a
very common signal registered in vibration monitoring. Fig. 2 shows one possible
input quartet.

One of the 20 results (output quartet) of CumICA is depicted in Fig. 3.
The damping sinusoid is considered as a frequency component of the impulse-
like event because IC3 and IC4 are almost the same. The final independent
components are obtained filtering the independent components by a 5th-order
Butterworth high-pass digital filter (20 kHz).

The resulting separated sources resulting from one of the Fast-ICA processing
are depicted in Fig. 4.

Finally, to test the independence of the independent components, some rel-
evant joint distributions have been included in Fig. 5 and in Fig. 6. The left
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Fig. 1. One of the 20 AE events and its associated spectrum. Usually, these are the
signals under study which constitute a main perturbation and its associated reflections.
The main event (1) and two reflections (2,3) can be seen.
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Fig. 2. Left column: One of the 20 quartets of original sources to be mixed, which in
turn constitutes one of the 20 inputs to the ICA algorithms. Right column: The linear
mixtures.
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Fig. 3. Estimated and filtered sources via CumICA (ICs; Independent Components).
Left column: AE event, noise, damping sine wave plus impulse, idem. Right column:
Filtered signals.
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Fig. 4. Estimated and filtered sources (independent components, ICs) via FastICA.
Right column (very similar to the left) top to bottom: Impulse, noise, AE event, noise.
Post-filtering is not necessary to recover the AE event and the impulse.

column of both figures shows how for any IC, the values are quite random. This
means that for a value (a point in the signal-to-signal graphic) of an IC, al-
most all the values of the another IC are allowed. On the other hand, the joint



Two ICA Algorithms Applied to BSS in Non-destructive Vibratory Tests 227

−0.5 0 0.5 1

−0.5

0

0.5

1

y fn
2

−0.5 0 0.5 1

−0.5

0

0.5

1

y fn
3

−0.5 0 0.5 1

−0.5

0

0.5

1

y
fn1

y fn
4

−0.5 0 0.5 1

−0.5

0

0.5

1

x n2

−0.5 0 0.5 1

−0.5

0

0.5

1

x n3

−0.5 0 0.5 1

−0.5

0

0.5

1

x
n1

x n4

Fig. 5. Signal-to-signal diagram for the CumICA outputs. Left column: Independent
components. Right column: Mixtures.
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Fig. 6. Signal-to-signal diagram for the FastICA outputs. Left column: Independent
components. Right column: Mixtures.

distributions of the mixtures are linearly shaped, which leads us to infer a de-
pendency before separating sources by ICA.

These results lead us to conclude about the use of the algorithms.



228 J.J. González de-la-Rosa et al.

5 Conclusions and Future Work

ICA is far different from traditional methods used to separate sources or to
de-noise signals, as power spectrum or wavelet transforms, which obtain an en-
ergy diagram of the different frequency components, with the risk that low-level
sounds or events could be masked. This experiment shows that both algorithms
are able to separate the sources with small energy levels in comparison to the
background noise. This is explained away by statistical independence basis of
ICA, regardless of the energy associated to each frequency component. The post
filtering action applied to Cum-ICA lets us work with very low SNR signals.
FastICA kernel maximizes the non-Gaussianity, so it is not necessary a filter
stage.

The next step regarding this research is oriented in a double direction. First,
a stage involving four real mixtures will be developed. Secondly, and simulta-
neously, the computational complexity of the algorithms have to be reduced to
perform a real implementation in a digital signal processor.
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Abstract. Phase synchronisation is a phenomenon observed in mea-
surements of dynamic systems, composed of several interacting oscilla-
tors. It can be quantified by the phase locking factor (plf), which re-
quires knowledge of the instantaneous phase of an observed signal. Linear
sources separation methods treat scenarios in which measurements do not
represent direct observations of the dynamics, but rather superpositions
of underlying latent processes. Such a mixing process can cause spuri-
ously high plfs between the measurements, and camouflage the phase
locking to a provided reference signal. The plf between a linear projec-
tion of the data and a reference can be maximised as an optimisation
criterion revealing the most synchronous source component present in
the data, with its corresponding amplitude. This is possible despite the
amplitude distributions being Gaussian, or the signals being statistically
dependent, common assumptions in blind sources separation techniques
without a-priori knowledge, e.g. in form of a reference signal.

1 Introduction

Interest in phase synchronisation phenomena has a long history, when study-
ing the interaction of complex, natural or artificial, dynamic systems. A detailed
documentation of the topic is given in Ref. [1]. Although not completely adopted,
synchronisation was attributed a role in the interplay between different parts of
the central nervous system (cns) as well as across central and peripheral nervous
systems. In that formulation, the elementary units are self-sustained oscillators
xi(t), exhibiting stable limit cycles. If the coupling between the oscillators is of
weak nature, any distortion that a mutual forcing would cause on the amplitudes,
will be immediately compensated. Then the interactions of m self-sustained os-
cillators can be described with the Kuramoto model (cf. Ref. [2,3] for a review),
solely on the phases dynamics

φ̇i(t) = ωi(t) +
1
m

m∑
j=1

κij sin
(
φj(t)− φi(t)

)
, (1)

where φi(t) and ωi(t) denote the oscillators’ instantaneous phases and frequen-
cies; and κ can either be the scalar-valued global coupling strength or a matrix in

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 230–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Reference-Based Extraction of Phase Synchronous Components 231

which [κ]ij describes the coupling between oscillators i and j. Postulated that the
system in Eq. (1) is an adequate description of the dynamics of a phenomenon,
it becomes meaningful to focus investigations of their interaction principles to
phase synchronisation.

In the cns, the basic unit — the neuronal oscillator — can be a single neu-
ron, with an oscillating membrane potential, or a whole population of already
synchronous neurons, that synchronises to another population at a different site
of the brain. Examples of models for neuronal dynamics based on self-sustained
oscillators can be found in Refs. [4,5].

The phase synchronisation is commonly quantified by the phase locking fac-
tor (plf, for definition see Sec. 2). In many applications, direct measurements
of the individual sources x(t) are not available, but instead global multi-sensor
measurements y(t) of the whole system, which represent mixtures of x(t). See
[6] for a general treatment of such problems. Often, this mixing process can be
described by a linear transformation y(t) = Ax(t). If the plf is evaluated w.r.t.
y(t) two problems arise: (i) calculating the plf between observations yi(t) will,
due to the presence of individual oscillators in several sensors, lead to an erro-
neous detection of interactions between them; (ii) since each sensor measurement
contains more than one of the oscillators the plf of the yi(t) to a reference will
be reduced, obscuring the true interactions.

Here, an algorithm for the extraction of sources synchronised with a given
reference is introduced (Sec. 2). The plf is only evaluated in the source space,
not for the observations, circumventing spurious synchronisations by cross-talk,
and allowing the recovery of the true sources and their coupling strengths. The
search for coupled oscillator networks is facilitated by the use of a reference
signal, embodying existing information on the targeted networks. This can be a
continuous stimulus to the complex system, an already extracted component of
the system, or an external, more accessible part of the system. The algorithm
is presented in a general gradient-based formulation, and can be applied to a
variety of problems. Experimental results in a controlled simulated data set
(Secs. 2.1,2.2), as well as in a preliminary investigation into cortico-muscular
control are presented (Sec. 3).

2 Extraction of One Source Synchronised to a Reference

As stated above, assume that the observations result from a linear superposition
of generative sources, y(t) = Ax(t), with the restriction that A is invertible. The
time index shall be discrete in the following and reside in a fixed interval 1 � t �
T ∈ . Further postulate that, for a given reference signal u(t), a phase locking
is taking place between the reference and at least one of the source signals, xi(t).
Denote the analytic signals1 as ŷi(t) = Yi(t) eiϕi(t) = yi(t) + iH[yi](t), û(t) =
U(t) eiψ(t) and ŝ(t) = S(t) eiφ(t). s(t) is the extracted source, an approximation
of xi(t). For the phase difference between reference and the extracted source
signal Δφ(t) = φ(t) − ψ(t), define a function
1 Here, H[x](t) is the Hilbert transform of a signal, x(t).
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� eiΨ =
1
T

T∑
t=1

eiΔφ(t) =
1
T

T∑
t=1

ŝ(t)û∗(t)
|ŝ(t)û(t)| , (2)

so that the amplitude � measures the phase locking between the reference signal
and the projection s(t) = wTy(t). It is called the phase locking factor plf
and, since depending on the source signal, it is also a function of w and the
data. Because the complex vector ŝ(t) and û(t) in Eq. (2) are scaled to one, the
plf � ∈ lies in the interval 0 � � � 1. As the maximisation criterion for
our algorithm we can use its square �2. The gradient w.r.t. w is given by the
following expression

∇�2 =
2�
T

T∑
t=1

sin(Ψ −Δφ(t))
S2(t)

Γ (t)w, (3)

with the amplitude � and the mean phase Ψ as defined by Eq. (2), and a matrix
[Γ (t)]ij = Yi(t)Yj(t) sin(ϕi(t) − ϕj(t)), fully defined by the observations. The
details of the derivation are shown in appendix A.

Eq. (9) can be used in a batch gradient ascent iteration to maximise �. The
learning rule reads

Δw = η
2�
T

T∑
t=1

sin(Ψ −Δφ(t))
S2(t)

Γ (t)w. (4)

For smoother convergence, the learning factor η can be chosen to decay in a
variety of annealing strategies. Since � � 1, a sufficient stopping criterion for
the iteration, iff a phase locked component is present in the data, is � > 1 − δ
for 0 < δ � 1. A maximum number of iterations has to be specified, in case the
reference signal has no phase locked component in the data, because then the
objective function will not reach a high value. The batch algorithm is summarised
in Algo. 1.

For larger data sets, with potential nonstationary phase locking behaviour, as
can be produced by Eq. (1), the learning rule can be formulated in an online way

Algo. 1. Extraction of a phase locked component.
1: input: y(t), û(t), η, nitr;
2: init: w ∼ N(0, I); k = 1;
3: repeat
4: s(t) ← wTy(t);
5: ŝ(t) ← s(t) + iH[s](t);
6: P ← 1

T

∑
t ŝ(t)û(t)/|ŝ(t)û(t)|;

7: Ψ ← angle(P ); � ← |P |;
8: Δ ← Eq. (9);
9: w ← w + ηΔ;

10: w ← w/‖w‖;
11: k ← k + 1;
12: until (� > 1 − δ) ∧ (‖Δ‖ < ε) ∧ (k > nitr)
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Fig. 1. Kurtosis values of the sources
are kurt(x1) = −0.02, kurt(x2) =
0.007, kurt(x3) = 0.02, kurt(x4) =
0.005, kurt(x5) = 0.006 and kurt(x6) =
−0.18
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y3
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Fig. 2. The Linear mixtures y(t), with
their plf to the reference displayed as
the area of opposite squares

comparable to stochastic gradient algorithms. Then, �t e
iΨt will be evaluated in

a time window and the update rule is

Δwt ∝ βt
2�t sin(Ψt −Δφ(t))

S2(t)
Γ (t) wt. (5)

The evolution of the synchrony, or loss of it, for a component can be assessed by
monitoring the quantity �t. The choice of forgetting factor βt is then a critical
element in the algorithm. A good choice will result in slowly varying component
estimates.

If one suspects several components in the data to be synchronous with the
reference signal, the algorithm can be applied several times, in a deflation man-
ner. Each time a synchronous source s(t) is found it needs to be removed from
the data. The standard solution of projecting s(t) back to the observation space
and subtracting it from y(t), would require the data to be whitened. This can be
achieved by an invertible linear transformation of y(t), prior to running Algo. 1.
Since this presents just an additional linear mixing, Algo. 1 can, without any loss
of generality, compensate for it. Let the whitened data be z(t), then each com-
ponent can be subtracted, e.g. by z′(t) = z(t)−(wwT)−1w s(t), and the process
continues. Even for two components with exactly the same phase evolution, i.e.
identical plfs, if their amplitudes vary, the algorithm would not converge to a
mixture of those.

2.1 Simulation Examples

True blind source separation (bss) algorithms use no explicit information about
the sources to be extracted. The estimation relies typically on general assump-
tions such as statistical independence or non-Gaussianity of the sources’ distribu-
tions. When in presence of oscillatory data, often a criterion based on temporal
decorrelation can be employed (see [6] for an overview of various implementa-
tions of independent component analysis, one of the most used solutions to the
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s1

s2

50

Fig. 3. Left: Examples of the two
sources found by Algo.1. in the noise-
less case (η = 0.1). Right: Correspond-
ing objective function.

s1

s2

250

Fig. 4. Left: Examples of the two
sources found by Algo.1. in the noisy
case (η = 0.1). Right: Corresponding
objective function.

bss problem). No such requirements are necessary if knowledge of the source
phase is available, up to an arbitrary constant phase lag.

To show the applicability of Algo. 1. to the search for components syn-
chronous to a reference, we have generated a set of oscillatory signals xi(t) =
Ai(t) sin(φi(t)) (see Fig. 1). These can not be estimated from instantaneous linear
mixtures by neither non-Gaussianity, nor temporal decorrelation criteria. This is
because most of the sources have modulated amplitudes that insure histograms
close to Gaussian. All have kurtosis close to that of x6(t), which corresponds to
random Gaussian noise. Temporal decorrelation methods will fail also due to the
varying frequency content of the sources.

The oscillators xi(t)|i=1,··· ,6 are not phase coupled, thus the change of the
instantaneous phase is proportional to their own natural frequency φ̇i = ωi(t).
Only components 2 and 3 are coupled, such that φ2(t)−φ3(t) = const. Opposite
to Fig. 1, is depicted the plf of each source signal to the reference as the area of
a square. The reference has the same phase dynamic as x2 and x3, but a different
phase offset and an arbitrary amplitude, thus �x2 = �x3 ≈ 1. This choice is just
illustrative. Comparable results were reached using all other oscillators.

Figure 2 shows a set of linear mixtures of the signals in Fig. 1. Note that
all mixtures have now a medium amount plf to the reference, although clearly
bellow those attained by the sources (no mixture has a plf in excess of 0.75).

The perfect coupling between x2(t) and x3(t) suggests that any of the two
can be found when the algorithm in Algo. 1 is used with a reference sharing
their phase dynamics. Since any mixture of x2(t) and x3(t) is less synchronous
to the reference, a single one is estimated at a time. The results depicted in
Fig. 3 illustrate this fact. Note the correct estimation of the amplitude of the
source signal, in addition to the phase recovery with the proper offset. In order to
extract the second phase locked component, the first estimate should be removed
by projecting it back to the observation space and subtracting it. This allows to
extract the whole two dimensional subspace from the data, that is maximally
phase locked to the reference.

As in many source extraction algorithms the global amplitude scale and the
sign of the sources will remain undetermined. For that reason, the projection
vector is arbitrarily normalised to unit norm in step 10 of the algorithm.

The convergence speed for a particular run of the method can be inspected
on the right part of Fig. 3. The exact values can vary, depending on the choice
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Fig. 5. Ordinate: plf; Abscissa: σ2. Maximal number of iterations and learning rate
η are kept constant.

of η. If the phase of the reference signal is not present in the data, the algorithm
will not reach a high plf.

2.2 Sensitivity to Noise

The phase of a Gaussian white noise signal is typically mildly locked (plf of ca.
0.1) to any other signal, including other Gaussian noise processes.

Let us assume that the observed mixtures y(t) = Ax(t) + σ ε(t), as well as
the reference signal v(t) = u(t) + ς ν(t), are corrupted with noise of variance σ2

and ς2 respectively. ε(t) and ν(t) are both drawn form a Gaussian distribution
having zero mean and Cov[εi(s)εj(t)] = δijδst, Cov[ν(s)ν(t)] = δst.

Figure 4 shows a replication of the experiment reported in Fig. 3, for the
case of added observational noise of the same unit variance σ2 = 1 as the data.
The estimation is not as perfect as in the noiseless environment, possibly due
to a non-zero phase locking between the reference signal and the noise (see
Fig. 1). The plf serves as a quality measure for the extracted components. The
obtained plfs are �s1 = 0.83 and �s2 = 0.59, which are significantly beneath
those of the true sources. A common problem of deflation schemes is that the
estimation error accumulates with the number of extracted components. Also
the convergence speed is, as should be expected, reduced slightly with the noise
source present.

In Figure 5 the plf is plotted as a function of the observation noise magnitude
σ2. The different graphs correspond to values of ς2 (the steeper slops for lower
ς2). The maximally achieved objective function value (keeping the maximum
number of iterations fixed) deteriorates with increasing noise variance in both
observations and reference.

The presence of noise has a profound influence in many real world applications.
Furthermore, is it possible for real signals to exhibit very broad spectra, with
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oscillatory dynamics in different frequency ranges. The Hilbert transform is not
able to estimate a meaningful phase for such broad band signals. In conclusion,
it is therefore advisable to remove, or reduce the noise and filter the signal in
a targeted frequency band of interest, prior to the phase analysis. A way to
combine filtering and phase estimation, that was reported to perform reliably on
biological signals, is the convolution with complex Morlet wavelets [7]. Another
valuable preprocessing approach is singular spectrum analysis (ssa), since it
allows to decompose a signal into trends, oscillators and noise components, cf.
Ref. [8].

3 Cortico-muscular Phase Locking in MEG Revisited

Strong coherence, i.e., spectral cross-correlation (see [9] and references therein),
and synchronisation have been observed between electrophysiological measure-
ments from the brain and muscles (using electroencephalograms, eeg; mag-
netoencephalograms, meg; and electromyograms, emg). Cortico-muscular and
cortico-cortical interactions were found in frequency bands centred around 15Hz,
20Hz and 40Hz. These have been supported by physiological consideration upon
the biological processes involved.

An obstacle in these studies, e.g., addressed in [10], is that the synchronisa-
tion among eeg or meg channels is likely to result partially from cross-talk and
volume conduction, i.e. the same oscillator being present in different measure-
ments, because of a natural mixing process. Synchronisation between eeg/meg
and emg, on the contrary, will be decreased as a result of the same process,
since there is no single eeg/meg channel that presents directly the underlying
oscillator that is synchronous to the emg.

In [11] the imaginary part of coherence has been introduced as a promising
measure for brain interactions. It has the appealing property of not being sen-
sitive to volume conduction, though it could possibly oversee interactions with
very small phase lags. Such zero phase lag synchronisation could arise if the
neuronal coupling between the two subsystems is strong and symmetric. On the
other hand, the amount of phase lag between the compared signals does not
affect the estimate of the plf, on which Algo. 1. is based. Since it only measures
synchrony between the source signals and the reference, the volume conduction
and cross-talk should also be decreased. The algorithm’s assumptions of a linear
and instantaneous nature of the mixing process, are both substantiated from a
theoretical viewpoint (see, e.g., [12,13]).

We tested Algo. 1 on real measurements, using the data set described in [9].
It consists of simultaneous meg recordings, with a 306-sensor Vectorview neu-
romagnetometer (Neuromag Ltd; 204 planar gradiometers and 102 magnetome-
ters), together with left and right hand emg’s. The subject was instructed to
simultaneously keep isometric contraction in left and right hand muscles, using
a special squeezing device. Only the measurements of the planar gradiometers
were analysed. The sampling rate is 600 Hz for a duration of 3 minutes.
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Fig. 6. Topographic map of the Neuromag meg helmet at 18–20Hz

Based on physiological considerations, we have scanned a series of frequency
ranges for targeting the algorithm. The results attained for the range 18–20Hz
are shown in Fig. 6. This corresponds to the estimated projection between the
extracted source and the measurements. This topographic map is conventionally
called the component’s field map. The view is taken from above, preserving right
and left orientations, and with front facing up.

A comparison between the results shown, and the ones presented in [9], sug-
gests the phase locked component to represent activity originating from the
primary motor cortex. The variance of the extracted source is of the same mag-
nitude as the measurements, indicating that the component has a significant
presence in the recordings.

4 Concluding Remarks

Synchronisation plays a capital role in interacting oscillatory systems. It has been
proposed in the literature that brain communication is implemented through
synchronisation. We introduced a gradient based algorithm for the extraction of
components, from measurements that are phase synchronous to a given reference
signal. This can potentially elicit information about neuronal oscillator interac-
tions from brain signals. The problem of noise was addressed in a controlled
simulated environment. A preliminary study of its usage in cortico-muscular
interactions was also presented.

In the future the robustness and convergence behaviour of the algorithm shall
be determined in more detail. On a practical side, one should investigate which
preprocessing techniques are useful when applying the algorithm to real world
problems. Beyond the cortico-muscular example, we intend to investigate com-
munication inside the central nervous system. This will require an extension of
the algorithm in which the reference signal is estimated also from the measured
signals in an unsupervised manner.
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A Gradient of 
2

The gradient can be written out as ∇�2 = ∇
(
� cos(Ψ)

)2 +∇
(
� sin(Ψ)

)2, which
equals

2�
(
cos(Ψ)[∇� cos(Ψ)] + sin(Ψ)[∇� sin(Ψ)]

)
. (6)

From the definition in Eq. (2) it follows that � cos(Ψ) = 1
T

∑T
t=1 cos(Δφ(t)).

Inserting this and the equivalent identity for � sin(Ψ) into Eq. (6) and further
evaluating the gradient yields

2�
T

T∑
t=1

[
sin(Ψ) cos

(
Δφ(t)

)
− cos(Ψ) sin

(
Δφ(t)

)]
∇φ(t). (7)

The phase φ(t) is the angle of ŝ(t) in the complex plane. This is given as φ(t) =
angle ŝ(t) = arctan2(H[s](t), s(t)), where the two arguments arctan maps the
angle into the correct quadrant. Let the Hilbert transform H[·] operate on the
coordinates of a vector. For the gradient of φ(t) = arctan2(wTy(t),wTH[y](t)),
the arctan2-function can be substituted by the normal arctan, so that

∇φ(t) = ∇ arctan
(wTH[y](t)

wTy(t)

)
=

(wTy(t))H[y](t)− (wTH[y](t))y(t)(
1 +

(wTH[y](t)
wTy(t)

)2
)
(wTy(t))2

.

The first factor in the denominator is the derivative of arctan and the second is
the result of the quotient rule of differentiation. This can be rearranged to

∇φ(t) =
(H[y](t)yT(t)− y(t)H[y]T(t)) w

(wTy(t))2 + (wTH[y](t))2
, (8)

reviling the denominator to be the square magnitude of extracted source s2(t)+
H[s]2(t) = S2(t). The matrix Γ (t) = (H[y](t)yT(t) − y(t)H[y]T(t)) in the nu-
merator can also be written in terms of the phase of the observation signal as

[Γ (t)]ij = Yi(t)Yj(t) sin(ϕi(t)) cos(ϕj(t))− Yi(t)Yj(t) cos(ϕi(t)) sin(ϕj(t))
= Yi(t)Yj(t) sin(ϕi(t)− ϕj(t)).

The same simplification can be applied to Eq. (7), to finally arrive at

∇�2 =
2�
T

T∑
t=1

sin(Ψ −Δφ(t))
S2(t)

Γ (t)w. (9)
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Abstract. In singular models, the Bayes estimation, commonly, has the advan-
tage of the generalization performance over the maximum likelihood estimation,
however, its accurate approximation using Markov chain Monte Carlo meth-
ods requires huge computational costs. The variational Bayes (VB) approach, a
tractable alternative, has recently shown good performance in the automatic rel-
evance determination model (ARD), a kind of hierarchical Bayesian learning, in
brain current estimation from magnetoencephalography (MEG) data, an ill-posed
linear inverse problem. On the other hand, it has been proved that, in three-layer
linear neural networks (LNNs), the VB approach is asymptotically equivalent to a
positive-part James-Stein type shrinkage estimation. In this paper, noting the sim-
ilarity between the ARD in a linear problem and an LNN, we analyze a simplified
version of the VB approach in the ARD. We discuss its relation to the shrinkage
estimation and how ill-posedness affects learning. We also propose the algorithm
that requires simpler computation than, and will provide similar performance to,
the VB approach.

1 Introduction

It is known that the Bayes estimation provides better generalization performance than
the maximum likelihood (ML) estimation when we use a model having singularities,
on which the Fisher information matrix is singular, in the parameter space. However,
Markov chain Monte Carlo (MCMC) methods, used for approximation of the Bayes
posterior distribution, require huge computational costs. The variational Bayes (VB)
approach was proposed as a tractable alternative [1, 2], and is often applied to singu-
lar models, for example, mixture models and hidden Markov models. Recently, the
VB approach has been applied also to the automatic relevance determination model
(ARD) [3] in a linear inverse problem, i.e., brain current estimation from magnetoen-
cephalography (MEG) data [4]. Although the advantage of the VB approach has been
experimentally shown in many applications, its generalization performance had been
theoretically clarified in no singular model until quite recently. Last year, proving the
asymptotic equivalence between the VB approach and a positive-part James-Stein (JS)
type shrinkage estimation [5], we have clarified the generalization error of the VB ap-
proach in three-layer linear neural networks (LNNs), the simplest singular models [6].

In this paper, noting the similarity between the ARD in a linear problem and an
LNN, we clarify some properties of the VB approach in the ARD and then propose

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 240–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the alternative that requires less computational costs. In Section 2, we shortly describe
the framework of the VB approach. In Section 3, we explain the brain current estima-
tion and the ARD, and then, discuss the similarity between the ARD and an LNN. In
Section 4, we, in detail, describe the setting assumed in our theoretical analysis. After
that, in Section 5, we analyze the VB approach in the ARD, and show its relation to
the JS type shrinkage estimation. Discussion including our proposal is in Section 6, and
finally, conclusions and future work are in Section 7.

2 Variational Bayes Approach

Let Y n = {y1, . . . , yn} be arbitrary n training samples independently and identically
taken from the true distribution. In the framework of the Bayes estimation, the posterior
distribution of the parameter w of a model p(y|w) is given by

p(w|Y n) =
φ(w)

∏n
i=1 p(yi|w)

Z(Y n)
, where Z(Y n) =

∫
φ(w)

∏n
i=1p(yi|w)dw (1)

is the marginal likelihood, and φ(w) is the prior distribution. The predictive distribution
is defined as the average of the model over the posterior distribution.

In the variational Bayes (VB) approach [2], called the mean field approximation in
statistical physics, we first define the following functional, called the generalized free
energy in this paper, of an arbitrary trial posterior distribution r(w|Y n):1

F̄ (r) = −S(r) + nE(r), where (2)

S(r) =− 〈log r(w)〉r(w) and E(r) = −n−1 〈log (φ(w)
∏n

i=1 p(yi|w))〉r(w)

are the entropy and the energy, respectively. Here, 〈·〉p denotes the expectation value
over a distribution p. Note that n−1F̄ (r) corresponds to the Helmholtz free energy if
we consider n to be the inverse temperature, hence, the Bayes posterior distribution,
Eq.(1), which minimizes the Helmholtz free energy, corresponds to the equilibrium
distribution [7]. Then, in the VB approach, restricting the space of allowed r(w), we
minimize the generalized free energy, Eq.(2). The optimum of r(w) is called the VB
posterior distribution, over which the expectation value of w is called the VB estimator.

3 Model

3.1 MEG Inverse Problem

Magnetoencephalography (MEG) is one of the major recording means of brain activity,
in which we estimate the electric current distribution in a brain from the magnetic fields
that are induced by the current and observed on the head [8]. For simplicity, we assume
that the current and the field are scalar. Let a′ ∈ RM be the current vector of which each
element corresponds to the current value at each site in a brain, and y ∈ RN the field

1 We will hereafter abbreviate r(w|Y n) by r(w) or by r.
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vector of which each element corresponds to the field value at each site on the head. We
utilize the following linear regression model:

y = V a′ + ε, (3)

where V is the N ×M constant matrix, called the lead field matrix, that represents the
field induced by the current, and ε ∈ RN is an observation noise [8,4]. ByNd(μ,Σ) we
denote the d-dimensional normal distribution with average μ and covariance matrix Σ,
and byNd(·; μ,Σ) its probability density. Assume that the noise, ε in Eq.(3), is subject
to NN (0,σ2

yIN ), where 0 < σ2
y < ∞ and Id is the d × d identity matrix. Then, the

probability density of the field is given by

p(y|a′) = NN (y;V a′,σ2
yIN ). (4)

In typical MEG estimation problems, the number of sites at which the fields are ob-
served is smaller than the number of sites at which we want to know the brain currents,
i.e., N < M , hence, the MEG estimation is an ill-posed problem. Therefore, in the a′

space, the region in which any point gives the maximum likelihood is not a point, given
an observed field. So, a prior assumption is needed to select one point in that region. One
of the most popular methods is the minimum norm method, in which the point giving
the minimum norm is selected from the points giving the maximum likelihood [8]. We
can easily find that the maximum a posterior (MAP) estimation with the following prior
distribution provides the minimum norm solution as well: φ(a′) = NM (a′; 0, IM ).

3.2 Automatic Relevance Determination

The automatic relevance determination model (ARD), a kind of hierarchical Bayesian
learning, was proposed to eliminate irrelevant connections from neural networks [3].
In the ARD, we first introduce a prior distribution of the parameters, i.e., the weight
vectors, with the hyperparameters corresponding to the variances. Then, we introduce
a prior distribution of the hyperparameters, called a hyperprior. If we apply the Bayes
estimation to this model, many weight vectors tend to be eliminated as irrelevant con-
nections, because of the singularities caused by the hierarchy. (See [9] for detail.)

Now, we focus on its application to the MEG inverse problem, whose distribution is
given by Eq.(4). We use the following prior distribution of a′:

φ(a′‖B−2) = NM (a′; 0, B2), (5)

where B−2 is the hyperparameter. We consider in this paper the simplest ARD, where
B−2 is diagonal.2 Then, increasing the (m,m)-th element of B−2 eliminates the m-th
element, a′m, of the current as an irrelevant one. We can estimate the value ofB−2 based
on the empirical Bayes (EB) approach [10], where the hyperparameter is estimated by
maximizing the marginal likelihood, Z(Y n) in Eq.(1), or can estimate the posterior
distribution of B−2 by introducing the hyperprior, such as

φ(B−2) =
∏M

m=1 Γ
(
B−2

mm; κ̄0m, ν̄0m

)
, (6)

2 The differences between the setting assumed in this paper and that in [4] is summarized at the
end of Section 4.2.
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where we denote by Γ (κ, ν) the Gamma distribution with shape parameter κ and scale
parameter ν, and by Γ (·;κ, ν) its probability density. To the latter method, we can apply
the VB approach and obtain the iterative algorithm, restricting the posterior distribution
such that a′ and B−2 are independent of each other [4].

The following point is important: MEG data are time series, and we want to know the
current at each point of time; on the other hand, the hyperparameter B−2 is considered
to be invariant during some time period in [4], which essentially affects learning and
enhances elimination of irrelevant elements, as will be shown in the following sections.

3.3 Similarity to Linear Neural Networks

Let x′ ∈ RM be the formal input vector of which all the elements are equal to one.
Then, the transform a′ → Ba, where a ∈ RM , makes the model distribution, Eq.(4),
and the prior distribution, Eq.(5), as

p(y|x′, A,B) = NN (y;V BAx′,σ2
yIN ), (7)

φ(a) = NM (a; 0, IM ), (8)

where A is the M ×M diagonal matrix whose (m,m)-th element is equal to the m-th
element of a. We thus find that the model, Eq.(7), is similar to a linear neural network
model (LNN),3 in which the VB approach has been analyzed in [6]. However, there is an
important difference, i.e., the existence of the lead field matrix, V in Eq.(7), although the
ARD is equivalent to an LNN when V is general diagonal. We do not like to transform
the basis of the current vector, a′, space, so that V is general diagonal, since the purpose
of that application is to find the few sites where synapses fire.

4 Setting

4.1 Restriction on Posterior Distribution

As discussed in Section 3.3, the ARD in the linear inverse problem, Eq.(4), with the
prior distribution, Eq.(5), is equivalent to the model, Eq.(7), with the prior distribution,
Eq.(8). By b we denote the M -dimensional vector whose m-th element is equal to the
(m,m)-th element of B. We introduce the following prior distribution of b, which is
substituted for the hyperprior of B−2 in the ARD:

φ(b) = NM (b; 0, c2bIM ), (9)

where 0 < c2b < ∞ is a constant hyperparameter. Note that B2
mm is then subject to

Γ (c2b/2, 2). For symmetry, we also introduce a constant hyperparameter 0 < c2a < ∞
in the prior distribution of a as follows:

φ(a) = NM (a; 0, c2aIM ). (10)

Actually, it will be shown in the following sections that the values of the constant hyper-
parameters, c2a and c2b , do not asymptotically affect learning as far as they are positive

3 The definition of the LNN is described in Appendix A.
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and finite; while whether the hyperparameter B−2 is constant or estimated from obser-
vation strongly affects learning even in the asymptotic limit.

Now we apply the VB approach to the transformed ARD model, Eq.(7), with the
prior distributions, Eqs.(10) and (9). We restrict the trial posterior distribution such that
a and b are independent of each other:

r(a, b) = r(a)r(b). (11)

Then, the generalized free energy, Eq.(2), can be written as follows:

F̄ (Y n) =
∫

r(a)r(b) log
r(a)r(b)

p(Y n|a, b)φ(a)φ(b)
dadb. (12)

Using the variational method [2], we obtain the following condition:

r(a) ∝ φ(a) exp〈log p(Y n|a, b)〉r(b), r(b) ∝ φ(b) exp〈log p(Y n|a, b)〉r(a). (13)

We find from Eq.(13) that the VB posterior distribution is the normal, because the log-
likelihood, log p(Y n|a, b), is a biquadratic function of a and b, and we use the normal
prior distributions, Eqs.(10) and (9). In this paper, we furthermore restrict r(a, b) such
that all the elements are independent of each other for simplicity, which results that

r(am) ∝ φ(am) exp〈log p(Y n|a, b)〉r(a)r(b)/r(am), (14)

r(bm) ∝ φ(bm) exp〈log p(Y n|a, b)〉r(a)r(b)/r(bm). (15)

4.2 Summary of Setting

We summarize our setting in the following. Let A(u) be an M ×M diagonal parameter
matrix at the time u, B another M ×M diagonal parameter matrix, which is assumed
to be invariant during the time period u = 1, . . . ,U , and y(u) an N -dimensional ob-
served vector. By a(u) we denote the M -dimensional parameter vector representing the
diagonal elements of A(u), i.e., a(u)

m = A
(u)
mm, and by b the M -dimensional parameter

vector representing the diagonal elements of B, i.e., bm = Bmm. Suppose that we have
n training samples, i.e., n sets of U time series data, denoted by Y n.

In this paper, restricting the trial posterior distribution r(a, b) such that all the ele-
ments are independent of each other, we analyze the VB approach in the model

p({y(u)}|{a(u)}, b) =
∏U

u=1NN (y(u);V
∑M

m=1 bma
(u)
m 1m,σ2

yIN ) (16)

with the prior distributions

φ({a(u)}) =
∏U

u=1NM (a(u); 0, c2aIM ), φ(b) = NM (b; 0, c2bIM ), (17)

where V = (v1, . . . , vM ) is an N × M constant matrix, and 1m denotes the M -
dimensional vector whose m-th element is equal to unity and all the other elements
are equal to zero. The noise variance, σ2

y , is assumed to be known.
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Finally, we summarize the major differences of our setting from that in [4]:

1. The spatial correlation of the brain current distribution is considered by introducing
the smoothness prior, where the hyperparameter B−2 in Eq.(5) is not assumed to
be diagonal, in [4]; while B is assumed to be diagonal in this paper.

2. The restriction on the VB posterior distribution is only the independence between
a′ and B−2 in [4]; while the independence among the elements of a, as well as
those of b, is also assumed in this paper.

3. The prior distribution of b−2
m is Γ

(
b−2
m ; κ̄0m, ν̄0m

)
in [4]; while that of its inverse,

b2m, is Γ (b2m; c2b/2, 2) in this paper.
4. The number of samples for estimation of each site and each point of time is only

one, i.e., n = 1, in [4]; while we consider the case that we have sufficiently large
n training samples in this paper. However, we will derive also the non-asymptotic
solution in the case that U = 1, at the end of Section 5.2.

5 Theoretical Analysis

5.1 Variational Condition

Define the following M -dimensional vector:

j(u)(Y n) = n−1 ∑n
i=1 V

ty
(u)
i , i.e., j(u)

m (Y n) = n−1 ∑n
i=1 v

t
my

(u)
i , (18)

where t denotes the transpose of a matrix or vector. We hereafter abbreviate j(u)(Y n)
as j(u). We find from Eqs.(14) and (15) that the VB posterior distribution factorizes as

r({a(u)}, b)=
∏M

m=1

{(∏U
u=1N1(a

(u)
m ; μ(u)

am ,σ2(u)
am

IM )
)
N1(bm; μbm ,σ2

bm
IM )

}
, (19)

where μ
(u)
am , μbm , σ2(u)

am
, and σ2

bm
are scalar for m = 1, . . . ,M and u = 1, . . . ,U .

Note that the VB estimator of the m-th element of the current at the time u is given
by (â′(u)

m )VB = (b̂mâ
(u)
m )VB = μbmμ

(u)
am . By ·̃ we denote the U -dimensional time series

vector, for example, ãm = (a(1)
m , . . . , a

(U)
m )t. Then, we obtain the following variational

condition by substituting Eq.(19) into Eqs.(14) and (15):

μ̃am= nσ−2
y ‖vm‖2σ2

am
z̃mμbm , (20)

σ2(u)
am

= n−1σ2
y

(
‖vm‖2(μ2

bm
+ σ2

bm
) + n−1σ2

yc
−2
a

)−1
, (21)

μbm= nσ−2
y ‖vm‖2σ2

bm
z̃t

mμ̃am , (22)

σ2
bm

= n−1σ2
y

(
‖vm‖2(‖μ̃am‖2 + Uσ2

am
) + n−1σ2

yc
−2
b

)−1
, (23)

where z̃m = ‖vm‖−2(j̃m −
∑

m′ �=m μbm′ μ̃am′ v
t
mvm′). (24)

Here, we denote σ2(u)
am

by σ2
am

in Eqs.(20) and (23), since Eq.(21) implies that it is
invariant for u. Similarly, substituting Eq.(19) into Eq.(12), we also have the following
form of the generalized free energy:

2F̄ (Y n) =
∑M

m=1

{
− log σ2U

am
σ2

bm
− 2nσ−2

y ‖vm‖2
(
z̃t

mμ̃amμbm

)
+nσ−2

y ‖vm‖2(‖μ̃am‖2 + Uσ2
am

)(μ2
bm

+ σ2
bm

)
}

+ const.. (25)
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5.2 Variational Bayes Solution

The variational condition, Eqs.(20)–(23), can be analytically solved, which leads to the
following theorem:

Theorem 1. The VB estimator of the m-th element of the current is given by

(b̂m
ˆ̃am)VB =

{
0 for m such that vm = 0

S(z̃m; σ2
yU/‖vm‖2) + Op(n−1) for m such that vm �= 0 , (26)

where S(z;χ) = θ(n‖z‖2>χ)
(
1−χ/n‖z‖2

)
z (27)

is the positive-part James-Stein (JS) type shrinkage operator with the degree of shrink-
age χ > 0.4 Here θ(·) denotes the indicator function of an event.

(Outline of the proof) We will find the solution of the variational condition, Eqs.(20)–
(23). We easily have the solution for the elements such that vm = 0. For the other
elements such that vm �= 0, we have the following variances by solving Eqs.(21) and
(23):

σ̂2
am

=
−(η̂2

m−n−1σ2
y‖vm‖2(U−1))+

√
(η̂2

m+n−1σ2
y‖vm‖2(U+1))2−4n−1σ4

yU‖vm‖4

2U‖vm‖2(‖vm‖2μ̂2
bm

+ n−1σ2
yc−2

a )
, (28)

σ̂2
bm

=
−(η̂2

m+n−1σ2
y‖vm‖2(U−1))+

√
(η̂2

m+n−1σ2
y‖vm‖2(U+1))2−4n−1σ4

yU‖vm‖4

2‖vm‖2(‖vm‖2‖ˆ̃μam‖2 + n−1σ2
yc−2

b )
, (29)

where η̂2
m = (‖vm‖2‖ ˆ̃μam‖2 + n−1σ2

yc
−2
b )(‖vm‖2μ̂2

bm
+ n−1σ2

yc
−2
a ). (30)

By using Eqs.(20), (22), (28), and (29), we have

η̂2
m =

(
1−

σ2
y

n‖vm‖2‖z̃m‖2

)(
1−

σ2
yU

n‖vm‖2‖z̃m‖2

)
‖z̃m‖2, (31)

σ2
y(Uc−2

a δ̂m − c−2
b δ̂−1

m ) = n(U − 1)(‖z̃m‖ − ‖vm‖2γ̂m), (32)

where γ̂m = ‖ ˆ̃μam‖μ̂bm and δ̂m = ‖ ˆ̃μam‖/μ̂bm . (33)

Solving Eqs.(30)–(32), we obtain the VB estimator in Theorem 1. (Q.E.D.)
Moreover, we obtain the following non-asymptotic expression of the VB estimator

when U = 1:

Theorem 2. The VB estimator of the m-th element of the current when U = 1 and
vm �= 0 is given by

(b̂mâm)VB = sign(zm) ·max
(
0, ‖S(zm; σ2

y/‖vm‖2)‖ − σ2
y(ncacb‖vm‖2)−1) , (34)

where sign(·) denotes the sign of a scalar.

(Outline of the proof) We find from Eq.(32) that ‖δ̂m‖ = ca/cb, which makes Eqs.(30)
and (31) rigorously solvable and leads to Theorem 2. (Q.E.D.)

Note that neither Theorem 1 nor Theorem 2 provides any explicit expression of the
VB estimator, since z̃m, given by Eq.(24), depends on the other elements of the VB
estimator, i.e., (b̂m′ ˆ̃am′)VB for m′ �= m. So, further consideration is needed.

4 The positive-part JS type shrinkage estimator, as well as operator, is explained in Appendix B.
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5.3 Comparison with Shrinkage Estimation

By (·)− we denote the Moore-Penrose generalized inverse of a matrix. Consider the
following positive-part JS type shrinkage estimator based on the minimum norm maxi-
mum likelihood (MNML) estimator:

(b̂m
ˆ̃am)PJS = S

(
(b̂m

ˆ̃am)MN; σ2
yU/‖vm‖2

)
, where (B̂â(u))MN = (V tV )−j(u) (35)

is the MNML estimator. Hereafter, we compare the VB estimator, Eq.(26), and the
shrinkage estimator, Eq.(35). From the definition of z̃m, given by Eq.(24), we find that
z̃m is the unique ML estimator and hence the VB and the shrinkage estimators of the
m-th element are asymptotically equivalent to each other, if vt

mvm′ = 0 for ∀m′ �= m.
However, nonorthogonality and linear dependence, which causes ill-posedness, of the
set of the lead field column vectors, i.e., {vm}, makes a difference between them.

Consider the simplest ill-posed case where all the lead field vectors, {vm} for m =
1, . . . ,M , are parallel to each other. Then, the MNML estimator at u is given by

(B̂â(u))MN = (
∑M

m=1 ‖vm‖2)−1j(u), (36)

from which we find that all the elements of the MNML estimator, naturally, have the same
sign. Hence, we find from Eq.(24) that the fact that ‖(b̂mâ

(u)
m )VB‖ < ‖(b̂mâ

(u)
m )MN‖ leads

to the fact that ‖(b̂mâ
(u)
m )MN‖ < ‖z(u)

m ‖. Consequently, we conclude that, in this case,
the amplitude of the positive-part JS type shrinkage estimator gives the lower bound of
the amplitude of the VB estimator, i.e.,

‖(b̂mâ(u)
m )PJS‖ < ‖(b̂mâ(u)

m )VB‖, (37)

because ‖S(z;χ)‖ is an increasing function of ‖z‖. However, if there is any pair of vm

and vm′ that are neither orthogonal nor parallel to each other, neither the asymptotic
equivalence between the VB solution and the shrinkage estimator nor Inequality (37)
necessarily hold. Further consideration is future work.

6 Discussion

6.1 Features

The authors of [4] compared their approach with a previous work, the MAP estimation
or the Wiener filter method with inaccurate prior information, where the hyperparam-
eter, B−2 in Eq.(5), is regarded as a constant. Consider the situation, with which all
the model selection and the regularization methods have been proposed to cope, when
we do not accurately know the true prior and may use a model with irrelevant elements
or redundant degree of freedom. Because the MAP estimation causes no singularity, it
provides the generalization performance asymptotically equivalent to that of the regular
models. On the other hand, because an LNN is singular, it provides different generaliza-
tion performance even in the asymptotic limit [6]. The case in this paper corresponds
to the case of a single-output (SO) LNN, i.e., an LNN with one output unit and one
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hidden unit, with U input units. (See Appendix A.) Because it has been shown that
the VB approach asymptotically dominates the ML, as well as the MAP, estimation in
SOLNNs when U is sufficiently large [9],5 we expect that the ARD will provide bet-
ter performance than the MAP estimation. Moreover, in SOLNNs, the suppression of
overfitting caused by the singularities is stronger in the VB approach than in the Bayes
estimation, which means that the elimination of irrelevant elements is enhanced in the
VB approach. In addition, note that the time period U significantly affects performance
because the degree of shrinkage, χ, is proportional to U , as we find from Eq.(26).

6.2 Proposition

We propose to simply use the positive-part JS type shrinkage estimator, Eq.(35), based
on the MNML estimator. It only requires the calculation of the Moore-Penrose gener-
alized inverse like the MAP estimation; while it is expected to eliminate irrelevant ele-
ments to suppress overfitting like the VB approach, which has been shown to provide
better performance than the MAP estimation [4] and requires relatively costly iterative
calculation. If the noise variance, σ2

y in Eq.(35), is unknown, its ML estimator should
be substituted for it.

Note that the shrinkage estimation, as well as the VB approach, is not coordinate-
invariant unlike the ML estimator, and there is a difference between the shrinkage es-
timation and the VB solution in nonorthogonal cases, as shown in Section 5.3. Al-
though Inequality (37) states that, in a special case, ill-posedness makes the elimination
effect of the shrinkage estimation stronger than that of the VB approach, the discus-
sion in Section 5.3 also seems to imply that the VB approach can be less affected by
the nonorthogonality, and hence more desirable than the shrinkage estimation. Further
analysis is future work.

7 Conclusions and Future Work

In this paper, noting the similarity between the automatic relevance determination model
(ARD) in a linear problem and a linear neural network model, we have found the re-
lation between the variational Bayes (VB) approach in the ARD and a positive-part
James-Stein (JS) type shrinkage estimation. It has let us propose to use the shrinkage
estimation as an alternative, which requires less costs and behaves like the VB approach.

The relation between the empirical Bayes (EB) approach in a linear model and the JS
estimation was previously discussed in [10], where the JS estimator was derived as an
EB estimator. We have recently pointed out the equivalence between the EB approach
in a linear model and a subspace Bayes (SB) approach in a single-output LNN [9], and
found the asymptotic equivalence between the VB and the SB approaches in LNNs [6].
The previous works above and this paper have revealed the similarity between the VB
approach and the shrinkage estimation. But in this paper, it has also been found that the
nonorthogonality of the basis makes a difference, on which we will focus from now.
Consideration of what our simplification, i.e., the differences in setting between in [4]
and in this paper, itemized at the end of Section 4.2, causes is also future work.

5 It was conjectured that, in SOLNNs, the VB approach asymptotically dominates the ML esti-
mation when U ≥ 5 [9].



Hierarchical Variational Bayes in Linear Inverse Problem 249

Acknowledgments

The authors would like to thank Dr. Okito Yamashita of ATR, Japan for the discussion
on [4], which produced the motivation of this work.

References

1. Hinton, G.E., van Camp, D.: Keeping Neural Networks Simple by Minimizing the Descrip-
tion Length of the Weights. In: Proc. of COLT. (1993) 5–13

2. Attias, H.: Inferring Parameters and Structure of Latent Variable Models by Variational
Bayes. In: Proc. of UAI. (1999)

3. Neal, R.M.: Bayesian Learning for Neural Networks. Springer (1996)
4. Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M.: Hierar-

chical Bayesian Estimation for MEG inverse problem. Neuro Image 23 (2004) 806–826
5. James, W., Stein, C.: Estimation with Quadratic Loss. In: Proc. of the 4th Berkeley Symp.

on Math. Stat. and Prob. (1961) 361–379
6. Nakajima, S., Watanabe, S.: Generalization Error and Free Energy of Variational Bayes

Approach of Linear Neural Networks. In: Proc. of ICONIP, Taipei, Taiwan (2005) 55–60
7. Callen, H.B.: Thermodynamics. Wiley (1960)
8. Hamalainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoen-

cephalography — Theory, Instrumentation, and Applications to Noninvasive Studies of the
Working Human Brain. Rev. Modern Phys. 65 (1993) 413–497

9. Nakajima, S., Watanabe, S.: Generalization Performance of Subspace Bayes Approach in
Linear Neural Networks. IEICE Trans. E89-D (2006) 1128–1138

10. Efron, B., Morris, C.: Stein’s Estimation Rule and its Competitors—an Empirical Bayes
Approach. J. of Am. Stat. Assoc. 68 (1973) 117–130

A Definition of Linear Neural Networks

Let x ∈ RM be an input vector, y ∈ RN an output vector, and w a parameter vector.
Assume that the output is observed with a noise subject toNN (0,Σ). Then, the proba-
bility density of a three-layer linear neural network model (LNN) with H hidden units,
also known as the reduced rank regression model with rank H , is given by

p(y|x,A,B) = NN (BAx,Σ), (38)

whereA andB are anH×M and anN×H parameter matrices, respectively. It has been
proved that, in LNNs, the VB approach is asymptotically equivalent to a positive-part
James-Stein type shrinkage estimation, and its generalization error has been clarified
[6].

B James-Stein Type Shrinkage Estimator

A positive-part James-Stein type shrinkage estimator [5, 10], which can dominate the
maximum likelihood (ML) estimator, of the parameter w is defined by

ŵPJS = θ(n‖ŵMLE‖2>χ)
(
1−χ/n‖ŵMLE‖2

)
ŵMLE ≡ S(ŵMLE;χ), (39)

where ŵMLE is the ML estimator, θ(·) is the indicator function of an event, and χ > 0
is a constant, called the degree of shrinkage in this paper.
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Abstract. In this paper, we present a method of feature extraction for
motor imagery single trial EEG classification, where we exploit nonneg-
ative matrix factorization (NMF) to select discriminative features in the
time-frequency representation of EEG. Experimental results with motor
imagery EEG data in BCI competition 2003, show that the method in-
deed finds meaningful EEG features automatically, while some existing
methods should undergo cross-validation to find them.

1 Introduction

Brain computer interface (BCI) is a system that is designed to translate a sub-
ject’s intention or mind into a control signal for a device such as a computer, a
wheelchair, or a neuroprosthesis [1]. BCI provides a new communication channel
between human brain and computer and adds a new dimension to human com-
puter interface (HCI). It was motivated by the hope of creating new communi-
cation channels for disabled persons, but recently draws attention in multimedia
communication, too [2].

The most popular sensory signal used for BCI is electroencephalogram (EEG)
which is the multivariate time series data where electrical potentials induced
by brain activities are recorded in a scalp. Exemplary spectral characteristics
of EEG involving motor, might be μ rhythm (8-12 Hz) and β rhythm (18-25
Hz) which decrease during movement or in preparation for movement (event-
related desynchronization, ERD) and increase after movement and in relaxation
(event-related synchronization, ERS) [1]. ERD and ERS could be used as rele-
vant features for the task of motor imagery EEG classification. However those
phenomena might happen in a different frequency band for some subjects, for
instance, in 16-20 Hz, not in 8-12 Hz [3]. Moreover, it is not guaranteed that
a subject always concentrates on imagination during experiments. Thus, it is
desirable to determine appropriate activated frequencies and associated features
for each subject, during motor imagery experiments.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 250–259, 2006.
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In this paper we present a method of discriminative feature extraction where
we exploit the sparseness,L1 norm, and nonnegative matrix factorization (NMF).
Morlet wavelets are used to construct a nonnegative data matrix from the time-
domain EEG data. We use the NMF with α-divergence that was recently pro-
posed in [4,5,6]. The method is applied to the task of single-trial online classi-
fication of imaginary left and right hand movements using Data Set III of BCI
competition 2003. As in [7], we use Gaussian probabilistic models for classifi-
cation, where Gaussian class-conditional probabilities for a single point in time
t are integrated temporally by taking the expectation of the class probabili-
ties with respect to the discriminative power at each point in time. Numerical
experiments show that our NMF-based method learns basis vectors indicating
discriminative frequencies and determine useful features for the task of single-
trial online classification of imaginary left and right hand movements.

2 Nonnegative Matrix Factorization

NMF is one of widely-used multivariate analysis methods for nonnegative data,
which has many potential applications in pattern recognition and machine learn-
ing [8,9,10]. Suppose that N observed m-dimensional data points, {x(t)}, t =
1, . . . , N are available. Denote the data matrix by X = [x(1) · · · x(N)] = [Xij ] ∈
Rm×N . NMF seeks a decomposition of the nonnegative data matrix X that is
of the form:

X ≈ AS, (1)

where A ∈ Rm×n contains basis vectors in its columns and S ∈ Rn×N is the
associated encoding variable matrix. Both matrices A and S are restricted to
have only nonnegative elements in the decomposition.

Various error measures for the factorization (1) with nonnegativity constraints,
can be considered. Recently, Amari’s α-divergence and its multiplicative algo-
rithm were proposed in [5,6]. The α-divergence between X and AS is given
by

Dα[X ‖ AS] =
1

α(1− α)

∑
i,j

[
αXij + (1− α)[AS]ij −Xα

ij [AS]1−α
ij

]
. (2)

The α-divergence is a parametric family of divergence functional, including sev-
eral well-known divergence measure: (1) KL divergence of X from AS for α = 0;
(2) Hellinger divergence for α = 1/2; (3) KL divergence of AS from X for α = 1;
(4) χ2-divergence for α = 2. The parameter α is associated with the character-
istics of a learning machine, in the sense that the model distribution is more
inclusive (as α goes to ∞) more exclusive (as α approaches −∞). The multi-
plicative algorithm regarding the minimization of the α-divergence of AS from
X in (2), is given by

Sij ← Sij

[
Σk[Aki(Xkj/[AS]kl)α]

ΣlAli

] 1
α

, (3)
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Aij ← Aij

[
Σk[Sjk(Xik/[AS]ik)α]

ΣlSjl

] 1
α

. (4)

More details on algorithms (3) and (4) can be found in [6].

3 Proposed Method

The overall structure of our proposed single trial EEG classification is illustrated
in Fig. 1, where the method consists of three steps: (1) preprocessing involving
wavelet transform; (2) NMF-based feature extraction; (3) probabilistic model-
based classification. Each of these steps is described in detail.

t [sec]

Feature matrix t [sec]
C3

C4

1 trial

Wavelet
transform

NMF

basis

f   [
 H

 z ]
 

XSpectral matrix S

A

s(1) s(2) s(T)

P(L|s(1))

P(L|s(2))

P(L|s(T))

P(L|s(1))

P(L|s(1),s(2))

P(L|s(1) ,..., s(T))

y(1)

y(2)

y(T)

Feature Extraction

Classification

Preprocessing

Classification Result

w1

w2

wT

Fig. 1. The overall structure of the proposed EEG classification method is shown. In
preprocessing, time-domain EEG waveforms are transformed into time-frequency repre-
sentation by the Morlet wavelet transform. NMF is applied to determine representative
basis vectors and associated with discriminant features. A probabilistic model-based
classifier takes NMF-based features as inputs to make a decision.

3.1 Data Description

For our empirical study, we used one of BCI competition 2003 data sets, which
was provided by the Department of Medical Informatics, Institute for Biomedical
Engineering, Graz University of Technology, Austria [11]. The data set involves
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left/right imagery hand movements and consists of 140 labelled trials for training
and 140 unlabelled trials for test. Each trial has a duration of 9 seconds, where
a visual cue (arrow) is presented pointing to the left or the right after 3-second
preparation period and imagination task is carried out for 6 seconds. It contains
EEG acquired from three different channels (with sampling frequency 128 Hz)
C3, Cz and C4. In our study we use only two channels, C3 and C4, because
ERD has contralateral dominance and Cz channel contains little information for
discriminant analysis.

3.2 Preprocessing

We obtain the time-frequency representation of the EEG data, by filtering it
with complex Morlet wavelets, where the mother wavelet is given by

Ψ0(η) = π−1/4eiw0ηe−η2/2, (5)

where w0 is the characteristic eigenfrequency (generally taken to be 6). Scaling
and temporal shifting of the mother wavelet, leads to Ψτ,d(f) controlled by the
factor η = (t− τ)/d(f) where

d(f) =
w0 +

√
2 + w2

0

4πf
, (6)

where f is the main receptive frequency.
We denote by C3,k(t) and C4,k(t) the EEG waveforms measured from C3 and

C4 channels, in the kth trial. The wavelet transform of Ci,k(t) (i = 3, 4) at time
τ and frequency f is their convolution with scaled and shifted wavelets. The
amplitude of the wavelet transform, xi,k(f, τ), is given by

xi,k(f, τ) =‖ Ci,k(t) ∗ Ψτ,d(f)(t) ‖, (7)

for i = 3, 4 and k = 1, . . . ,K where K is the number of trials. Concatenating
those amplitudes for i = 3, 4 and (f1, . . . , f27) = [4, . . . , 30] Hz, leads to the
vector xk(t) ∈ R54 that is of the form

xk(t) = [x3,k(f1, t) · · · x3,k(f27, t) x4,k(f1, t) · · · x4,k(f27, t)]�. (8)

Incorporating with T data points in each trial, we construct

Xk = [xk(1) · · · xk(T )] ∈ R54×T . (9)

Collecting K trials leads to the data matrix

X = [X1 · · · XK ] ∈ R54×KT . (10)

Labelled and unlabelled data are distinguished by Xtrain and Xtest, respectively.



254 H. Lee, A. Cichocki, and S. Choi

3.3 Feature Extraction

We extract feature vectors by applying NMF to the data matrix X constructed
from the wavelet transform of EEG over the frequency range f ∈ [4, . . . , 30] Hz.
The data matrix X ∈ R54×KT contains a large number of data vectors reflecting
K trials and T data points of EEG. Instead of using the whole data vectors,
we first select candidate vectors which are expected to be more discriminative,
then use only those candidate vectors as inputs to NMF, in order to determine
the basis matrix A. The power spectrum in the localized frequency range such
as μ or β band of C3 and C4 channels, is activated during the imagination of
movement. Thus, we investigate the power and sparseness of each data vector
to select candidate vectors. We use the sparseness measure proposed by Hoyer
[12], described by

ξ(x) =
√
m− (

∑
|xi|)/

√∑
x2

i√
m− 1

, (11)

where xi is the ith element of the m-dimensional vector x.
The candidate vector selection is performed in the following way. First, we

compute the power of each column of X , by summing its elements. For example,
the power of xi, φ(xi), is the sum of all elements in xi, i.e., φ(xi) =

∑54
j=1 xji

where xji is the jth element of the vector xi. The average power φ̄ is computed
by

φ̄ =
1

KT

KT∑
i=1

φ(xi). (12)

The sparseness is computed for C3 and C4 channels, and each averaged sparse-
ness is added, leading to the average sparseness. Data contributed by C3 channel,
corresponds to first 27 row vectors of X and the rest of row vectors are related
to C4 channels. For each column of X, the sparseness is calculated for C3 and
C4 channels, by considering the first 27 rows and the last 27 rows of X, respec-
tively. Averaged sparseness values for each channel are computed, then they are
added, leading to the final average sparseness. We select candidate vectors from
X if the data vector has the power greater than the average power and has the
sparseness greater than 70% of the average sparseness.

We apply the NMF algorithm in (3) and (4), to the candidate data matrix X̃,
leading to X̃ = AS̃. Then the basis matrix A is used to infer associated features
S, by applying the algorithm (3) to the original data matrix X with A fixed. In
other words, the candidate matrix X̃ is used to determine the basis matrix A
and the encoding variable matrix S (feature vectors) is inferred using the original
data matrix S. In our experiments, about 31% of data vectors were selected as
candidate vectors. In our empirical study, basis vectors determined by the NMF
of candidate vectors, showed better characteristics than those computed by the
NMF of whole data vectors.
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3.4 Classification

We denote by yk ∈ {L,R} the class label for the left or the right in the kth trial.
Feature vectors S ∈ R54×KT consists of sk(t) for k = 1, . . . ,K and t = 1, . . . , T .

For classification, we use the probabilistic model-based classifier proposed in
[7], where Gaussian class-conditional densities for a single data point in time t are
integrated temporally by taking the expectation of the class probabilities with
respect to the discriminative power at each point in time. We assume feature
vectors s(t) (the subscript k associated with trials, is left out if not necessary)
follow Gaussian distribution at any time point t ∈ [3, 9] sec, i.e.,

p(s(t) | y) =
1

| 2πΣy,t |
1
2

exp
{
−1

2
(
s(t)− μy,t

)�
Σ−1

y,t

(
s(t)− μy,t)

)}
, (13)

where μy,t and Σy,t are the mean vector and the covariance matrix for each
class labelled by y ∈ {L,R}. These are estimated using features associated with
labelled data, i.e.,

μy,t = E[sy,k(t)], (14)

Σy,t = E[(sy,k(t)− μy,t)(sy,k(t)− μy,t)
T ]. (15)

The prediction of the class label at time t, is performed using the posterior
probability determined by Bayes rule:

p(y | s(t)) =
p(s(t) | y)

p(s(t) | L) + p(s(t) | R)
. (16)

This posterior probability allows us to make a decision for the class label, at
a single point in time. However, it is more desirable to take information across
time into account. To this end, we consider

p(y | s(1), . . . , s(t0)) =

∑
t≤t0

wtp(y | s(t))∑
t≤t0

wt
, (17)

where wt are weights reflecting the discriminant power that is determined by
minimizing Bayes misclassification error.

The Bayes error is defined by

p(error) =
∫

p(error | s(t))p(s(t))ds, (18)

where

p(error | s(t)) = min [p(L | s(t)), p(R | s(t))] , (19)

Following from the Chernoff bound

min[a, b] ≤ aβb1−β , a, b ≥ 0, 0 ≤ β ≤ 1, (20)
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its upper-bound is given by

p(error) ≤
∫
{p(L | s(t))p(s(t))}βt {p(R | s(t))p(s(t))}1−βt ds

= p(L)βtp(R)1−βt

∫
p(s(t) | L)βtp(s(t) | R)1−βtds. (21)

The larger the discriminant power is , the smaller the Bayes error is. Thus,
weights are determined by

2wt = 1− min
0≤βt≤1

∫
p(s(t) | L)βtp(s(t) | R)1−βtds. (22)

The class label y by combining the information through t0 is determined by

y =
{
L if p(L | s(1), . . . , s(t0)) > p(R | s(1), . . . , s(t0)),
R otherwise. (23)

4 Numerical Experiments

We apply the proposed method to the single-trial online classification of imagi-
nary left and right hand movements in BCI competition 2003 (Data Set III). The
time-domain EEG data is transformed into the time-frequency representation by
complex Morlet wavelets with w0 = 6, f = [4, . . . , 30] Hz, and τ = [3, . . . , 9] sec
using (7). We select candidate spectral vectors using the method described in
Sec. 3.3. Then we apply the NMF algorithm in (4) and (3) with α = 0.5, 1, 2 and
n = 2, 4, 5, 6 (the number of basis vectors), in order to estimate basis vectors that
are shown in Fig. 2. As the number of basis vector increases, the spectral com-
ponents such as μ rhythm (8-12 Hz), β rhythm (18-22 Hz), and sensori-motor
rhythm (12-16 Hz), appear in the order of their importance. All rhythms have
the property of contralateral dominance, so they are present in basis vectors
associated with C3 or C4 channel, separately.

In our empirical study, the best performance was achieved when α = 0.5or1
and n = 5 (5 basis vectors). The single trial on-line classification result, is
shown in Fig. 3, where the classification accuracy is shown in (a) and the mutual
information between the true class label and the estimated class label is plotted
in (b). The classification accuracy is suddenly raised from 3.43 sec. The maximal
classification accuracy is 88.57 % at 6.05 sec, which is higher than the result
without the data selection step in the training phase (86.43 % at 7.14 sec). The
mutual information (MI) hits the maximum, 0.6549 bit, which occurs at 6.05
sec. The result is better than the one achieved by the BCI competition 2003
winner (0.61 bit). Table 1 show the maximum mutual information in the time
courses per a trial varying the value of α and the number of basis. The smaller
the value of α, the better the mutual information, however, α is not critical of
determining the performance.
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Fig. 2. Basis vectors determined by NMF are shown in the case of α = 0.5, 1, 2 (from
top to bottom) and n = 2, 4, 5, 6 (from left to right). In each plot, top 1/2 is associated
with C3 and bottom 1/2 is contributed by C4. In each of those, the vertical axis
represents frequencies between 4 and 30 Hz, the horizon axis is related to the number
of basis vectors. Basis vectors reveals some useful characteristics: (1) μ rhythm (8-
12 Hz); (2) β rhythm (18-22 Hz); (3) sensori-motor rhythm (12-16 Hz). ERD has
the contralateral dominance, hence each rhythm occurs in each channel separately.
Different values of α do not have much influence on basis vectors. However, it is observed
that the lager the value of α is, the more smooth the distribution of basis vector is.



258 H. Lee, A. Cichocki, and S. Choi

3 4 5 6 7 8 9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

3 4 5 6 7 8 9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) (b)

Fig. 3. The on-line classification result is shown in terms of: (a) the classification accu-
racy; (b) the mutual information between the true class label and the estimated class
label. In both plots, dotted lines (green color) are results without candidate data selec-
tion and solid lines (blue color) are results with the proposed data selection method.
The data selection method improves the classification accuracy as well as the mutual
information. The dot-dashed line (red color) in (a) is the result of the classifier based
on the Gaussian probabilistic model taking a single time point into account. Combining
the information across time, really improves the classification accuracy.

Table 1. Mutual information for different values of α and for different number of basis
vectors

number of basisα
2 4 5 6 7

0.5 0.5545 0.5803 0.6549 0.6256 0.5875
1 0.5545 0.5803 0.6549 0.6256 0.5803
2 0.5408 0.5745 0.6404 0.6256 0.5803

5 Conclusion

We have presented an NMF-based method of feature extraction for on-line clas-
sification of motor imagery EEG data. We have also introduced a method of
data selection where the power and the sparseness was exploited. Empirical re-
sults confirmed that the data selection scheme really improved the classification
accuracy by 2.14 % and the mutual information by 0.1127 bit. Existing methods
should undergo the cross-validation several times, in order to select discrimina-
tive frequency features. However, we have shown that our NMF-based method
could find discriminative and representative basis vectors (which reflected ap-
propriate spectral characteristics) without the cross-validation, which improved
the on-line classification accuracy. Our method improved the mutual information
achieved by BCI competition 2003 winner, by 0.0449 bit, where two frequencies
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(10 and 22 Hz) were selected using the leave-one-out cross validation. The value
of α in the NMF algorithm, was not critical in our empirical study. However,
it was confirmed that the parameter α is associated with the characteristics of
a learning machine, showing that distributions of basis vectors become more
smooth, as α goes to ∞.
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operative Research Program and KOSEF Basic Research Program (grant R01-
2006-000-11142-0).
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Abstract. A further investigation is made on an adaptive local factor
analysis algorithm from Bayesian Ying-Yang (BYY) harmony learning,
which makes parameter learning with automatic determination of both
the component number and the factor number in each component. A
comparative study has been conducted on simulated data sets and sev-
eral real problem data sets. The algorithm has been compared with not
only a recent approach called Incremental Mixture of Factor Analysers
(IMoFA) but also the conventional two-stage implementation of maxi-
mum likelihood (ML) plus model selection, namely, using the EM algo-
rithm for parameter learning on a series candidate models, and selecting
one best candidate by AIC, CAIC, and BIC. Experiments have shown
that IMoFA and ML-BIC outperform ML-AIC or ML-CAIC while the
BYY harmony learning considerably outperforms IMoFA and ML-BIC.
Furthermore, this BYY learning algorithm has been applied to the popu-
lar MNIST database for digits recognition with a promising performance.

1 Introduction

Clustering and dimension reduction have been considered as two of the funda-
mental problems in the literature of unsupervised learning. It is well known that
Gaussian mixture model (GMM) with full covariance matrices requires sufficient
training data to guarantee the reliability of the estimated model parameters,
while GMM with diagonal covariance matrices requires a relatively large num-
ber of Gaussians to provide high recognition performance. Local factor analysis
(LFA) (also called mixture of factor analyzers (MFA)) combines the widely-used
GMM model with one well known dimension reduction approach, namely factor
analysis (FA). Via local structure analysis, LFA is able to reduce the freedom
degree of covariance matrices to achieve a good generalization. Several efforts
have been made on such a topic of local dimensionality reduction [2,3,13].

In the literature of LFA research, the conventional method performs the maxi-
mum likelihood (ML) learning in help of one of typical statistical criteria to select
both component number and local dimensions of local factor analysis. However,
it suffers a huge computing cost. Bayesian Ying-Yang (BYY) learning was pro-
posed as a unified statistical learning framework firstly in 1994 and systemat-
ically developed in the past decade. Providing a general learning framework,

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 260–269, 2006.
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BYY harmony learning consists of a general BYY system and a fundamental
harmony learning principle as a unified guide for developing new regularization
techniques, a new class of criteria for model selection, and a new family of algo-
rithms that perform parameter learning with automatic model selection. Readers
are referred to [15,17] for a recent systematical review. Applying the BYY har-
mony learning to local factor analysis, an adaptive learning algorithm has been
developed that performs local factor analysis with both the local dimensions
of each component and the number of components automatically determined
during parameter learning [14,16].

This paper investigates the automatic BYY harmony learning based LFA, in
comparison with the ML learning via criteria of AIC, CAIC, BIC, as well as
a recently proposed approach called Incremental Mixture of Factor Analyzers
(IMoFA)[11] that makes an increasing model selection during learning. A com-
parative study is conducted via experiments on not only simulated data but also
several real problem data sets, as well as a popular digit recognition database,
respectively. The rest of this paper is organized as follows. In Section 2, we review
FA and LFA, together with typical statistical criteria and the recent proposed
algorithm IMoFA. Section 3 will further introduce the BYY harmony learning
based LFA. After a series of comparative experiments in Section 4, we apply
the BYY-LFA to the popular MNIST database of digit recognition in Section 5.
Finally, we conclude in Section 6 and make further discussion in Section 7.

2 FA and LFA

2.1 Factor Analysis Model

Factor analysis (FA) is a classical dimension reduction technique aiming to find
the hidden causes and sources [8]. Provided a d-dimensional vector of observable
variables x, the FA model is given by x = Ay + e, where A is a d × k loading
matrix, y is a m-dimensional unobservable latent vector assumed from Gaussian
G(y|0, Ik) with m < d generally, e is a d-dimensional random noise vector as-
sumed from Gaussian G(e|0,Ψ) with Ψ being a diagonal matrix. Moreover, y
and e are mutually independent. Therefore, x is distributed with zero mean and
covariance AAT +Ψ. The goal of FA is to find θ = {A,Ψ} that best models the
structure of x. One widely used method to estimate θ is the maximum likelihood
(ML) learning that maximizes the log-likelihood function, usually implemented
by the expectation-maximization (EM) algorithm [1,8].

2.2 Local Factor Analysis

Local factor analysis (LFA) (or also called mixture of factor analyzers (MFA)),
is a useful multivariate analysis tool to explore not only clusters but also local
subspaces with wide applications including pattern recognition, bioinformatics,
and financial engineering [14,10]. LFA performs clustering analysis and dimen-
sion reduction in each cluster (component) simultaneously. Provided x as a d-
dimensional random vector of observable variables, the mixture model assumes
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that x is distributed according to a mixture of k underlying probability distri-
butions p(x) =

∑k
l=1 αlpl(x), where pl(x) is the density of the lth component

in the mixture, and αl is the probability that an observation belongs to the lth
component with αl ≥ 0, l = 1, . . . , k, and

∑k
l=1 αl = 1. For LFA, it is further

assumed that each pl(x) is modelled by a single FA [14]. That is, we have

pl(x|y) = G(x|Aly + cl,Ψl), pl(y) = G(y|0, Iml
), (1)

pl(x) =
∫

pl(x|y)pl(y)dy = G(x|cl,AlAT
l + Ψl), (2)

where y is a ml-dimensional unobservable latent vector, Al is a d×ml loading
matrix, cl is a d-dimensional mean vector, Ψl is a diagonal matrix, l = 1, 2, . . . , k.

For a set of observations {xt}nt=1, supposing that the number of components
k and the numbers of local factors {ml} are given, one widely used method
to estimate the unknown parameters θ = {αl,Al, cl,Ψl}kl=1 is the maximum
likelihood (ML) learning, which can be effectively implemented by expectation-
maximization (EM) algorithm [1,3].

2.3 Conventional Statistical Criteria

Two important problems for LFA are how to select the number of Gaussian com-
ponents k and how to decide the numbers of sub-factors {ml}kl=1. They can be
addressed in a two-phase procedure in help of typical statistical model selection
criteria such as Akaike’s information criterion (AIC) [4], Bozdogan’s consistent
Akaike’s information criterion (CAIC) [6], Schwarz’s Bayesian inference criterion
(BIC) [9] which coincides with Rissanen’s minimum description length (MDL)
criterion [5]. These criteria are based on the maximum likelihood (ML) estimates
of parameters which can be obtained by the EM algorithm [3,8], summarized into
the following general form:

J(θ̂, k) = −2L(θ̂) + C(n)D(k) (3)

where L(θ̂) is the log likelihood based on the ML estimate θ̂ under a given k,
D(k) is the number of the independent parameters in a corresponding model,
and C(n) is a function with respect to the number of observations as follows:

C(n) =

⎧⎨⎩
2, for AIC;
ln(n) + 1, for CAIC;
ln(n), for BIC and MDL;

(4)

For LFA, the number of free parameters is

D(k, {ml}) = k − 1 + kd + kd +
k∑

l=1

(dml −ml(ml − 1)/2).

In the first phase, two ranges of k ∈ [kmin, kmax] and ml ∈ [mmin, mmax]
are selected to form a domain M, assumed to contain the optimal k∗, {m∗

l }k
∗

l=1.
At each specific choice of k, {ml} in M, the parameters are estimated θ via the
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ML learning. In the second phase, selection is made among all candidate models
obtained in the first phase according to their criterion values, that is:

k̂, ˆ{ml} = arg min
k,{ml}

{J(θ̂, k, {ml}), {k, {ml}} ∈ M}, (5)

However, in this domain M, we have to implement EM algorithm at least∑kmax

k=kmin
(mmax−mmin+1)k times, which is usually too time-consuming without

any knowledge or assumption about the underlying model structure.

2.4 Incremental Mixture of Factor Analysers

Recently, an adaptive algorithm referred as incremental mixture of factor analy-
sers (IMoFA) was proposed in [11]. Starting with a 1-factor, 1-component mix-
ture model, in process, IMoFA either splits component or adding local factors
according to the validation likelihood, which is terminated when there is no im-
provement on the validation likelihood. There are two variants IMoFA-L and
IMoFA-A for unsupervised and supervised approaches, respectively. In this pa-
per, we consider the unsupervised learning with IMoFA-L, shortly denoted by
IMoFA. The detailed procedure and algorithm is referred to [11].

3 BYY Harmony Learning for LFA

Bayesian Ying-Yang (BYY) harmony learning provides a promising tool for local
factor analysis with an ability of determining the number of components as
well as the number of local factors during parameters learning [14,16,17], which
considers the following alternative but equivalent probabilistic FA model:

pl(x|y) = G(x|Uly + cl,Ψl), UT
l Ul = Iml

, pl(y) = G(y|0,Λl),

pl(x) =
∫

pl(x|y)pl(y)dy = G(x|cl,UlΛlUT
l + Ψl), (6)

where y is still a ml-dimensional unobservable latent vector, cl is a d-dimensional
mean vector, Λl and Ψl are both diagonal matrices.

Parameters θ = {αl,Ul,Λl, cl,Ψl}kl=1 can be estimated by BYY harmony
learning, which may be implemented in several ways. Here, we consider the B-
architecture without regularization [15,17], given as follows.

θ̂ = argmax
θ

H(θ, k), H(θ, k) =
n∑

t=1

k∑
l=1

P (l|xt) ln[αlpl(xt|yl,t)pl(yl,t)]

subject to UT
l Ul = Iml

, αl ≥ 0, and
k∑

l=1

αl = 1, l = 1, ..., k. (7)

In a B-architecture, P (l|xt) is free and thus it follows from the above maxi-
mization that we have

P (l|xt) =
{

1, l = lt;
0, otherwise.

lt = argmax
l

ln[αlpl(xt|yl,t)pl(yl,t)], yl,t = argmax
y

ln(pl(xt|y)pl(y)). (8)
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Performing (7) results in maximizing lnαl, ln pl(x|y) and ln pl(y), which will
push αl or Ψl towards zero if component l is extra. Thus we can delete com-
ponent l if its corresponding αl or Ψl is approaching to zero. Also, if the latent
dimension y(j) is extra, maximizing ln pl(y) will push the variance Λ(j)

l towards
zero, thus factor j can be deleted. As long as k and {ml} are initialized at values
large enough, they will be determined appropriately and automatically during
parameter learning, with details referred to [14,15].

We can estimate θ̂ by an adaptive algorithm obtained from Eq.(7) on Eq.(6).
One example is given by Eq.(24) in Section 3.1.3 of [16], which is actually a
non-temporal degeneration of the general algorithms given in [14] by its Sec. IV,
especially its Table 2 and Eq.(72).

To compare with the EM algorithm in a batch way, here we also consider a
batch algorithm to implement Eq.(7), which iterates the following steps:

Yang-step: Get yl,t by (8) and P (l|xt) by (8) for l = 1, ..., k and t = 1, ..., n.
Ying-step: Delete the lth component if αl → 0.

By using a Lagrange multiplier λ and letting the derivatives of the La-
grangian H(θ) + λ(

∑k
l=1 αl − 1) respect to λ, αl, cl, Λl, and Ψl equal zero,

we get to update

αnew
l =

1
n

n∑
t=1

P (l|xt), cnew
l =

1
nαnew

l

n∑
t=1

[P (l|xt)(xt −Ulyl,t)],

Λnew
l = diag{ 1

nαnew
l

n∑
t=1

[P (l|xt)yl,tyT
l,t]},

Ψnew
l = diag{ 1

nαnew
l

n∑
t=1

[P (l|xt)(xt −Ulyl,t − cl)(xt −Ulyl,t − cl)T ]}.

Update Ul by using gradient ascending on the Stiefel manifold, that is,

GUl
=

1
n
Ψ−1

l {
n∑

t=1

[P (l|xt)(xt − cl)yT
l,t]−Ul

n∑
t=1

[P (l|xt)yl,tyT
l,t]},

Unew
l = Ul + η0(GUl

−UlG
T
Ul

Ul). (9)

Discard the j-th factor of the lth component if the jth element of Λl ap-
proximately equals zero.

For classification, we first obtain Mlj , l = 1, · · · , kj by BYY-LFA for each
class j = 1, · · · ,C. As a test data yi comes, we compute the the likelihoods
p(yi|Mlj), l = 1, · · · , kj , j = 1, · · · ,C and find the κ largest ones. Then, we
classify yi to the class j∗ = arg maxj κj, where κj is the account that the κ
largest ones share the class label j. This decision rule actually shares the idea of
the well known k-NN approach, shortly denoted by a BYY-LFA Rank-κ rule.

4 Empirical Comparative Experiments

In all following experiments, we compare the performances for LFA, including
not only the conventional two stage implementation of maximum likelihood (ML)
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plus AIC, CAIC, BIC (namely ML-AIC, ML-CAIC, ML-BIC, respectivly), but
also IMoFA and BYY. To avoid local optima caused by initialization, we im-
plement both the IMoFA and BYY harmony algorithm for 10 times on each
simulation, as well as the EM algorithm for 10 times on each candidate model.
Among the ten rounds’ learned model, we choose the one with the best likelihood
as the result. In order to compare these algorithms in average and facilitate our
observing on statistical behaviors, each simulation is repeated 100 times.

4.1 Simulated Data

We arbitrarily generate simulated data sets from Gaussian components with
the same k = 3 and the same m = 2 for each component. We investigate the
performances of each method, including ML-AIC, ML-CAIC, ML-BIC, IMoFA,
and BYY-LFA, on simulated data sets. The noise variances ψ2

l are selected based
on ζl, which denotes the smallest value in Λl. After running 100 times for each
situation, the experimental results are shown in Fig. 1, where the two rows
(A) and (B) represent two situations generated differently. We can observe that
BIC, IMoFA, and BYY have the highest correct rates, while AIC has a risk
of overestimating both the number of Gaussian components and the number of
local factors, but CAIC has a risk of underestimating the number of components.

Fig. 1. Comparisons on simulated data sets. Both the two situations are implemented
for 100 experiments with k = 3 and a same ml = 2. Each row in the figure expressing
one situation: (A) n = 1000, d = 5, ψ2

l = 0.2ζl; (B) n = 1000, d = 10, ψ2
l = 0.5ζl.

Furthermore, we design a 10-dimensional data set, with data generated from
k = 5 different 200-sample Gaussian components. The numbers of factors are 3,
3, 4, 5, 6, respectively. For the two-phase approaches, we set kmax = 8, kmin = 2,
and 2 ≤ ml ≤ 8 for each component, while for BYY-LFA we initially set kinit =
kmax = 8 and each ml = mmax = 8. After 100 repititions, the correct selection
frequencies for ML-AIC, ML-CAIC, ML-BIC, IMoFA and BYY-LFA are 78, 86,
91, 94, 96, respectively. The conventional two-phase approaches tends to over-
select or under-select the components number, while IMoFA and BYY-LFA can
obtain desired results automatically.

4.2 Real World Data

We further test all these LFA implementations with eight real world data sets, in
comparison with [11]. As shown in in Fig. 2(a), we consider Pendigits, Optdigits,
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Segment and Waveform from UCI repository of machine learning databases1,
ORL from the Olivetti Research Laboratory2, Vistex from MIT Media Lab3,
Yeast4, and LVQ from Helsinki Univ. of Technology5. We use 10-fold cross-
validation on ORL and Yeast to generate the test sets. As noted previously, we
repeat EM, IMoFA and BYY 10 times for each simulation, and then the results
with the highest likelihood are selected.

Fig. 2. Comparisons on real world data sets

The average classification accuracy of the 10 repetitions on the test sets are
shown in Fig. 2(b), which indicates that the BYY harmony learning algorithm
can automatically select not only the proper number of components but also
the proper local dimension for each component to fit the data. The computing
time are shown in Fig. 2(c), where we report the average time of the three
criteria’s implementations because they take very similar CPU time. All the
above experiments were conducted via MATLAB 7.0.1(R14) on a P4 3.2GHz
512MB DRAM PC. We observe that ML learning by AIC, CAIC or BIC costs
much more than those of IMoFA and BYY, because they require to compute
a whole set of candidate models. BYY harmony learning is the most favorable
one. For IMoFA, it has to compute several different choices’ likelihood and judge
functions in order to decide whether to add a component or to add a factor to
one component step by step. This problem turns more serious when either the
number of components or some local factor numbers are large.

5 BYY-LFA for Digits Recognition

Handwritten digits recognition is a convenient and important subproblem in op-
tical character recognition (OCR) and has also been regarded as a typical test
1 http://www.ics.uci.edu/ mlearn/MLRepository.html.
2 http://www.cam-orl.co.uk/facedatabase.html.
3 http://www.white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.
4 http://www.soe.ucsc.edu/research/compbio/genex/expressdata.html.
5 http://www.cis.hut.fi/research/lvq pak/.
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case for pattern recognition theories. In this section, we further implement the
BYY-LFA in comparison with IMoFA by the widely used handwritten digits
database MNIST6, in which there are 60,000 training images, i.e. 6,000 for each
from “0” to “9”, and 10,000 test images that are drawn from the same distribu-
tion as the training set. Shown in the first three rows of Fig. 3(a), where images
are size-normalized and translated, with each represented by 28× 28 pixels.

A LFA model is used for each digit from “0” to “9”. To avoid local maxima, we
still repeat IMoFA and BYY-LFA for 10 rounds, and then pick the best result for
each approach. The fourth row of Fig. 3(a) describes several component means

(a) Digits illustration.

(b) Comparing testing misclassification rates.

Fig. 3. Digits recognition via the BYY-LFA in MNIST database. The first three rows
are some samples drawn from MNIST of “2”. The 4th row describes component means
for “2” by BYY-LFA. The last three rows include some misclassified digits.

of digit “2” obtained by the BYY-LFA learning. To observe clearly, we represent
them into 8× 8 grey-scale-reverse images.

Given a test image yi, for IMoFA we calculate the likelihood p(yi|Ml) for each
mixture Ml and determine l∗ = arg maxl p(yi|Ml), l = 0, . . . , 9. For classification
by BYY-LFA, we implement BYY-LFA Rank-1, 2, and 3 as described at the
end of Sec.3. Shown in Fig. 3(b) are comparisons with many known algorithms
registered in the MNIST database. Here, one result of 0.8 by V-SVM deg 9 poly
(distortion) is not included because it is referred in personal communication [12]
6 Freely available at http://yann.lecun.com/exdb/mnist/.
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and lacks further information. Some of the misclassified digits has been provided
in the last three rows of Fig. 3(a).

From the experiments, we find that BYY-LFA outperforms IMoFA and
achieves obviously better results than those models with a large number of pa-
rameters such as MLP and RBF. Compared with the currently best results,
BYY-LFA is much favorable in training time and storage. BYY-LFA is trained
only in around one hour in our PC described before, while the multi-layer net
and convolutional net need much longer time, e.g., 2 weeks for LeNet-5 and a
month for boosted LeNet-4 on a Sparc 10 machine [12]. Although there is no
time cost available on the Conv CE methods, i.e., the methods providing the
best two results in Fig.3(b)), it is expected to be comparable to that by LeNet
because they share similar nature of the convolutional networks. Furthermore,
compared with the multi-layer net and SVM method, BYY-LFA requires far less
memory. Consequently, viewing from both the efficiency and the computational
cost, BYY-LFA is more preferable, with the results comparable to the best ones.

6 Conclusion

A comparative study has been conducted on Bayesian Ying-Yang (BYY) har-
mony learning for local factor analysis (LFA) with automatic determination of
both the component number and the local factors in each component, in com-
parison with ML-AIC, ML-CAIC, ML-BIC as well as a recent approach called
Incremental Mixture of Factor Analyzers (IMoFA). A series of comparative ex-
periments on simulated data sets, real world data sets, and the popular digits
recognition database MNIST have shown that the BYY-LFA is the best in terms
of both the performances and the computing time, while IMoFA and ML-BIC
are better ML-AIC and ML-CAIC.

7 Further Discussion

We also find that, when the sample size is small, these discussed local factor anal-
ysis methods all face a risk of mis-selection, not only for the automatic methods
including BYY harmony learning and IMoFA, but also for the typical criteria in-
cluding AIC, CAIC and BIC. A better BYY model selection criterion considering
the small-sample-size problems with the help of the two-phase implementation
has been proposed in [16,17]. It has shown its advantages of producing much
more accurate selection for small-sample-size cases compared to above discussed
methods. However, to save space, the details are not covered in this paper.
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Abstract. We develop a hybrid strategy combing thruth-functionality,
kernel, support vectors and regression to construct highly informative
regression curves. The idea is to use statistical methods to form a confi-
dence region for the line and then exploit the structure of the sample data
falling in this region for identifying the most fitting curve. The fitness
function is related to the fuzziness of the sampled points and is regarded
as a natural extension of the statistical criterion ruling the identifica-
tion of the confidence region within the Algorithmic Inference approach.
Its optimization on a non-linear curve passes through kernel methods
implemented via a smart variant of support vector machine techniques.
The performance of the approach is demonstrated for three well-known
benchmarks.

1 Introductory Comments

This work concerns the use of techniques of granular computing [1] in the refine-
ment of standard regression models [2]. The underlying concept and the design
rationale can be concisely outlined in the following manner (see Fig. 1). Given
the experimental data, we commonly confine to the linear regression model as
the first possible alternative worth exploring. Once accepted, we then focus on
the refinement of the model. From the functional standpoint, there are several
essential phases reflecting the rationale. First, the confidence region of the pre-
liminary linear model (formed through the use of the confidence curves for some
predefined confidence level) eliminates data points falling outside this region.
The remaining data are subject to further usage in model building by endowing
them with some properties of information granules. We consider the surround-
ings of those selected points as true information granules and equip them with
bell-shaped membership functions similar to those encountered e.g. in radial ba-
sis functions (RBF) [3] (see Fig. 2(a)). In own turn, we connect the shape of the
bells around points to the mutual relations between these points as it emerges
from a suitable clustering of them. Considering the landscape constituted by a
norm on the bells, we may look for a regression curve maximizing the integral
of this norm along the curve (see Fig. 2(b)).

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 270–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A synopsis of the proposed method

We consider all this to form a dual objective in respect to support vector
machines (SVM) [4]. With the latter we try to draw a line passing along the
valleys, with the former along the crests of the fitness landscape. In both cases
we manage more complex curves by making use of kernel techniques. The main
idea is to exploit well established SVM techniques in order to develop an efficient
solution. As it is, however, our dual objective has the drawback of not presenting
a saddle point as identifier of the optimal solution. This makes harmless the
SVM search for the null value of the duality gap. In this study we overcome this
drawback by adopting a proper shift trick. Finally, we use the kernel mathematics
to deal with non-linear curves as well.

Clear advantage of this procedure relies on the formation of a unifying pro-
cessing framework that exploits both types of information, namely granular and
statistical. This is particularly beneficial as these two are generally viewed to
be mutually exclusive. In the literature, indeed we have a huge vein of works
on statistical regression theory (refer to [5] and [6] as some representative ex-
amples). Also fuzzy regression has gained some visibility, where the drifts of the
model with respect to the observed data come within the fuzziness with which
the whole the data generation system (the coefficients of the regression line in-
cluded) can be defined [7,8]. Both approaches start, however, from the general
assumption of the existence of the true model, concealed to the humans apart
some air-holes releasing sample observations alternatively framed into either an
exact though indeterminate framework or into a context not susceptible of sharp
computations. On the contrary our starting point is the sample data that we try
to organize into operationally suitable descriptions, distinguishing between local
information – in the fuzzy sets realm – and global information – in the realm of
statistics – that are jointly owned by them. The benefit of the approach is the
substantial easiness with which we may integrate many tools separately assessed
in the single frameworks.

The paper is organized as follows: Section 2 describes how the regression model
is determined, while Section 3 covers some preliminary numerical experiments.



272 B. Apolloni et al.

2 4 6 8 10

2

4

6

8

10

y

x

(a)

0
2.5

5
7.5

10

0

2.5

5
7.5

10

0

0.002

0.004

0.006

0.008

0.01

0
2.5

5
7.5

0

2.5

5
7.5

x

y

h

(b)

Fig. 2. Fitting the granules’ information with a line. (a) Fitness contour lines; x in-
dependent variable, y dependent variable. (b) Crossing landscape with the regression
line; h: fitness

Finally, we offer some conclusions and elaborate on future developments of the
proposed approach.

2 The Design Method of the Model

Let us use as leading workbench the SMSA dataset [9] (see Fig. 3(a)) listing
age adjusted mortality specifications (M) as a function of a demographic index
(%NW, the non-white percentage). After reading it as a sample z = {(xi, yi) i =
1, . . . , n}, the proposed method works through a sequence of steps: i) identifying
the information granules, ii) endowing each granule with a relevance measure,
iii) determining a regression line on the basis of the data selected in i) and ii), iv)
revisiting the linear granular regression problem in terms of solving a dual prob-
lem, v) moving to non-linear curves via kernel methods, and vi) reconsidering
different bell heights, as detailed in the following subsections.

2.1 Identifying Information Granules

The first step is devoted to the selection, among the sample points, of the infor-
mation granules upon which the rest of the procedure will be based. For the fixed
value of δ, we identified these granules with the m sample points included in a
1 − δ confidence region Ω for the regression line describing the relation among
the sample points’ coordinates. Namely, we explain the coordinates (xi, yi) of
each sample point through

yi = a + bxi + εi (1)

with εi representing a random (for instance Gaussian) noise, and compute a
confidence region where the regression line entirely falls with probability 1 − δ
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Fig. 3. (a) A sample of features extracted from the SMSA dataset where %NW refers to
a demographic index (the percentage of non-white persons) and M to the age adjusted
mortality; (b) 0.90 confidence regions for a regression line assuming a Gaussian noise.
Gray points refer to the items in the SMSA dataset shown in (a) contained in the
confidence region.

according to the Algorithmic Inference approach [10]. Hence, discarding points in
z not belonging to Ω we obtain a pruned version z∗ = {(x∗i , y∗

i ) i = 1, . . . ,m} of
the sample. For instance, Fig. 3(b) illustrates the 0.90-confidence Ω correspond-
ing to the sample in Fig. 3(a) as obtained through the Algorithmic Inference
regression method [11], and the afterwards pruned sample.

2.2 Assigning Relevance to the Granules

The points in z∗ constitute the statistically drawn base of knowledge, while
the remaining ones are essentially assumed to be outliers. We also assume the
former to be information granules, namely the centers of m fuzzy sets described
by bell-shaped membership functions μi defined as follows:

μi(x, y) = hie−πhi((x−x∗
i )2+(y−y∗

i )2). (2)

Each of these functions resembles a Gaussian symmetric bell centered around the
point z∗i = (x∗i , y

∗
i ), i.e. a bidimensional normal density function, whose variates’

coordinates have the same variance σ2 = (2πhi)−1 and covariance ρ = 0.
Determining the set {hi, i = 1, . . . ,m} is the operational way of making the

model definite. This corresponds to embedding in the i-th granule some infor-
mation about its relevance hi. Indeed, the higher this value, the smaller the
variance of the corresponding density.

A possible way of determination of hi would consider the topology of the
pruned samples by some clustering mechanisms, say Fuzzy C-Means (FCM)
[12]. Having fixed the number of clusters to be equal to c, once their centroids
{v1, . . .vc} has been identified, we compute the relevance hi as the maximal
value of its membership grades to the various clusters, that is:

hi = max
1≤k≤c

⎧⎪⎨⎪⎩
⎛⎝ c∑

j=1

(
||z∗i − vk||
||z∗i − vj ||

) 2
α−1

⎞⎠−1
⎫⎪⎬⎪⎭ , (3)
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Fig. 4. (a) Output of the Fuzzy C-Means procedure applied to the points shown in
Fig. 3 starting with a number of centroids c = 3. Gray disks: 0.90 cuts. Black circles have
a radius proportional to the relevance of the points. (b) Bells membership functions
obtained by applying (2) to the points shown in (a) where the height of each bell
depends on the relevance of the points.

where α ∈ N is a fuzzification factor (> 1) whose original value has been selected
when running the clustering procedure. The typical value of this factor is taken
as 2.0.

For c = 3, Fig. 4(a) shows the output of such a procedure applied to our
leading example together with the fuzzy centroids (gray disks), while Fig. 4(b)
shows the bells membership functions corresponding to points located near the
second centroid 1.

2.3 Finding the Optimal Regression Line

Among all the possible lines entirely contained in Ω, we will look now for the
optimal regression line, i.e. the line r maximizing the sum of the integrals I∗i
of the curves obtained intersecting the membership functions μ∗

i (x, y) with the
plane which contains r and in addition is orthogonal to the plane X×Y to which
both r and the sample points belong. If we refer to the points of r through the
equation a + bx + y = 0, i.e. r has slope and intercept respectively equal to −b
and −a, the above integral will depend on the latter quantities, thus we write
I∗i (a, b).

In the plane having as axes r and any line orthogonal to it, say having coor-
dinates ξ and ψ, given the radial symmetry of the bell membership function, we
may express the latter again as a bidimensional Gaussian density function

μ∗
i (ξ,ψ) = hie−πhi((ξ−ξ∗

i )2+(ψ−ψ∗
i )2) (4)

where ξ∗i and ψ∗
i are the analogous of x∗i and y∗

i in the new space.
Summing up, the integral I∗i (a, b) corresponding to the i-th granule is

I∗i (a, b) =
∫ ∞

−∞
μ∗

i (ξ,ψi)dξ = μ∗
i (ψi)

∫ ∞

−∞
μ∗

i (ξ|ψi)dξ = μ∗
i (ψi), (5)

1 We focus on this subset of points to facilitate visualization.
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Fig. 5. Comparison between: (a) optimal regression line (9) (black line) and maximum
likelihood estimator (MLE) line (dashed line), and (b) the line minimizing the farthest
points from itself.

where μ∗
i (ξ|ψi) has the shape and mathematical properties of a conditional den-

sity function of a random variable Ξ given the value of the companion variable
Ψ = ψi and, analogously, μ∗

i (ψi) is the marginal distribution of Ψ evaluated on
ψi. Hence

μ∗
i (ψi) = h

1/2
i e−πhiψ

2
i (6)

and
∫ ∞
−∞ μ∗

i (ξ|ψi)dξ = 1 by definition.
Finally, as ψi is the distance of the point (x∗i , y

∗
i ) from r, we have

ψi =
|bx∗i + y∗

i + a|√
1 + b2

, (7)

so that the integral value is

I∗i (a, b) = h
1/2
i e−πhi

(bx∗
i +y∗

i +a)2

1+b2 . (8)

Therefore, the optimal regression line has parameters

(a∗, b∗) = argmax
a,b

m∑
i=1

h
1/2
i e−πhi

(bx∗
i +y∗

i +a)2

1+b2 . (9)

In order to solve the related optimization problem, we can turn to an incre-
mental algorithm, like a simple gradient descent or simulated annealing [13],
exploiting the easy form of the derivatives of the integrals w.r.t. the parameters
a and b of the regression line. The sole constraint we put is that the final line
must not trespass the borders of the confidence region Ω. In our leading example,
after some thousands iterations of the gradient descent algorithm we obtained
the results shown in Fig. 5(a).

2.4 Identifying a Suitable Dual Problem

First of all, in order to draw on the SVM literature, we focus on the problem of
minimizing the distances of the farthest points from the line. This is a definitely
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relevant change in respect to the usual mean square minimization target used
to identify a regression line. This change proves not so disrupting, however, in
consideration of the fact that: i) on the one hand we identify a confidence region
for the regression line on the basis of the regression lines’ distribution law, and
ii) within this region we are looking for a meaningful curve. Now, as we have
assumed relevant all points in the δ-cut represented by the confidence region,
preserving the influence of the farthest ones looks like a worth target to pursue.
Rather, for expository reasons we will start with equal bells around each point,
so that what counts is their topological distance from the regression line. We
will remove this constraint later on.

In order to fit the standard SVM notation, let us move from the (x, y) reference
framework to the (x1, x2); grouping these variables in the vector x the regression
line equation can be written as w·x+b = 0. With these specifications, the primal
form of the problem is the following:

Definition 1 (Primal problem). Given a set of points S = {xi, i = 1, . . . ,m},
maximize the norm of w under the constraint that all points have functional
distance |w · xi + b| less or equal to 1 from the line. In formulas

max
w,b

{
1
2
||w||2 such that yi(w · xi + b) ≤ 1 ∀i

}
(10)

where yi = Sign(w · xi + b).
In terms of Lagrangian multipliers αi ≥ 0, (10) reads:

max
w,b

{
1
2
||w||2 −

m∑
i=1

αi (yi(w · xi + b)− 1)

}
(11)

The drawback of this problem is that the function we want to minimize has not
a saddle point in the space w×α. Hence, to fulfill this condition and work with
a dual problem in α we consider the equivalent problem:

Definition 2 (Dual problem). For line, points and labels as in Definition 1
and a suitable instantiation of the line, map S into S′ by translating under the
line the points that are over it and vice versa, along a direction normal to the
line by a fixed quantity that is sufficient to swap the positions w.r.t. the line of
the farthest points. Then find solution to:

min
w,b

{
1
2
||w||2 such that yi(w · xi + b) ≥ 1 ∀i

}
(12)

i.e.

min
w,b

{
1
2
||w||2 −

m∑
i=1

αi (yi(w · xi + b)− 1)

}
. (13)

Of this problem we have the dual formulation

max
α

m∑
i=1

αi −
1
2

m∑
i,j=1

yiyjαiαjxi · xj such that
m∑

1=1

yiαi = 0; αi ≥ 0, ∀i (14)
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Fig. 6. (a) Optimal regression parabola (gray bold line), and (b) MLE (dashed line),
optimal regression line (plain line), straight line minimizing the distance between the
farthest points (gray line) and the optimal regression parabola (gray bold line) com-
puted from the SMSA dataset

It is trivial to show that the procedure that computes yi’s, translates points
according to the running line and update the latter on the basis of the above op-
erations has a fixed point in the solution of problem in Definition 1. In particular,
continuing our illustrative example we obtain the line in Fig. 5(b).

2.5 Toward More Complex Regression Curves

As can be seen in Figs. 5(b) and 6(b) the line computed on the basis of the
support vectors lies in an opposite position than the optimal regression line
w.r.t. the MLE curve, thus denoting some lack of information brought by the
remaining points. This may suggest that SMSA dataset points could be better
fitted through a parabola. A proper introduction of kernels allows us to solve
the related regression problem in the same way as for linear curves. As it is well
known, this boils down to the fact that the optimization object in (14) depends
on the points only through the inner product xi ·xj . Assume it as a special issue
of a symmetric function k(xi,xj) – the kernel – and repeat the computation
for any other issue of this function intended as the inner product zi · zj with
zi = φ(xi) ranging in a suitable feature space and you obtain a fitting of the
point according to a linear function on z, hence a possibly non-linear function
on x.

The vector z has typically higher dimension than x (actually the additional
components take into account the nonlinearities of the fitting function). We will
come back to our leading example after having introduced the last point of the
procedure.

2.6 Freeing the Shapes of the Granular Bells

In principle, having different bells around each sample point locates them at vir-
tual distances that are different from the topological ones. As it emerges from (4),
the more is relevant a point so farther it must be considered from the hyperplane
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in the extended space. We may induce this virtual metric by simply multiply-
ing the distance of a point xi times its relevance hi, i.e. by pushing or pulling
consequently the points along the orthogonal direction to the hyperplane. The
problem is that the virtual distances depend now not only on the versor but
also on the position of the hyperplane (i.e. on the b coefficient). Thus we must
find both parameters in the fixed point of the whole procedure, and this may
require some dumping operator, such as exponential smoothing, to converge to
a fixed point. This happens for instance in Fig. 6 with our example, where we
subsituted the dot product in the last procedure with an ad hoc polynomial ker-
nel computing the class of parabolas. Fig. 6(a) shows such a curve minimizing
the distance (in the feature space) between the farthest points according to the
relevance correction, while Fig. 6(b) summarizes the types of forms obtained so
far.

3 Numerical Experiments

We ran a number of experimental studies making use of a number of well known
benchmarks, from which we show the Swiss dataset [14], describing the depen-
dence between fertility and socio-economic quantities in 47 provinces of Switzer-
land during 1888. In particular, Fig. 7(a) shows the 0.90 confidence region for the
fertility percentage (F) as a function of the percentage of infant mortality (IM).
Fig. 7(b) compares the optimal regression line (plain line) with the line minimiz-
ing the distance between the farthest points (gray line) both computed on the
points lying in the confidence region and enriched with relevance information
(obtained by applying the Fuzzy C-Means algorithm with again c = 3). Look-
ing at the two lines, we recognize a different behavior on this dataset, coming
from the different objective the two procedures aim to achieve. Finally, Fig. 8(a)
compares the MLE parabola (dashed curve) with the one obtained through the
optimization procedure keeping into account the additional relevance informa-
tion (gray bold line).
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Fig. 7. (a) 0.90 confidence regions computed on the Swiss dataset. (b) Optimal re-
gression line (plain line), line minimizing the farthest points (gray line) and MLE line
(dashed line).
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Fig. 8. (a) Comparison between MLE parabola (dashed line) and the curve obtained
considering the additional relevance information (gray bold curve). (b) 3D paraboloid
fitting the points drawn from the SMSA dataset and enriched with relevance informa-
tion obtained by applying the iterative procedure aiming at minimizing the distance
between farthest points
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Fig. 9. Non-linear regression curves. Dashed curves: regression curves found by mini-
mizing the distances of the farthest points from the curve using kernels; black curves:
curves obtained by minimizing the weighted distance of points from curves. Points’ size
is proportional to membership function. (a) all the points, and (b) only those lying in
the first quadrant are considered.

We also tried other kernel operators. For instance in Fig. 9 we used the typical
polynomial kernel with degree 2 k(xi,xj) = (xi,xj +c)2 for any constant c 2 on a
specially featured dataset [15]. Note that the equidistance of the farthest points
is obtained in the Z space, hence from the hyperplane fitting the points in this
space. Thus, what we really exploit of this hyperplane is its versor (the angular
coefficients) while the constant term must be renegotiated in the X space. At
this point we are free to add more stringent requirements, for instance that the
weighted sum of the quadratic distances from the fitting curve is minimized as in

2 Actually a slight variant embedding also the shifts of points to pivot the curves on
farthest points, as explained in Definition 2.
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the original goal. In this way we obtain an approximate solution of the original
problem in a reasonable time thanks to the use of kernels in the dual optimization
problem. Note that, thanks to the quadratic shape of the membership functions
the curve is very close to the one obtained with a b minimizing the distances of
farthest points (gray curve) like in all previous examples. Moreover, assuming
the point lying in the second quadrant as outlier and therefore deleting it, we
obtain the different scenario depicted in Fig. 9(b).

The procedure can be applied with no further variation to multidimensional
data points. For the sake of visualization we focus on a three-dimensional dataset,
constituted by the above SMSA dataset, where the age adjusted mortality now
depends on both the non-white percentage and the solfure dioxide concentration
SO2. Fig. 8(b) shows a paraboloid surface solving the dual problem (14).

4 Conclusions

In the perspective of probability as a way of organizing available information
about a phenomenon rather than a physical property of the phenomenon, we con-
sider additional information which is local, hence not gathered through a measure
summing to 1 over a population. In particular respect to the linear regression
problem, we focus on: i) 1 − δ-cuts identified through statistical methods, and
ii) a local density of clusters of points that reverberates in a membership func-
tion of population points to the information granules represented by the sample
points. In the perspective that still the representation of these informations has
to be negotiated with the suitability of their exploitation, we used an augmented
kernel trick to have the possibility of locating the information granules in the
virtual space we feel most proper, and the dual formulation of the SVM problem
to get results quickly. The proposed method is very general and the implementa-
tion is available at the url http://laren.dsi.unimi.it/GranularRegression.
This could help move forward toward full exploitation of information available
within data.
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Abstract. For two-class problems we propose two feature selection cri-
teria based on kernel discriminant analysis. The first one is the objective
function of kernel discriminant analysis (KDA) and the second one is the
KDA-based exception ratio. We show that the objective function of KDA
is monotonic for the deletion of features, which ensures stable feature
selection. The KDA-based exception ratio defines the overlap between
classes in the one-dimensional space obtained by KDA. The computer
experiments show that the both criteria work well to select features but
the former is more stable.

1 Introduction

Feature selection, i.e., deletion of irrelevant or redundant input variables from
the given input variables, is one of the important steps in constructing a pattern
classification system with high generalization ability [1,2]. And many selection
methods for kernel-based methods have been proposed [2,3,4,5,6,7]. The margin
[5,8,9] is often used for feature selection for support vector machines. Instead
of the margin, in [7], block deletion of features in backward feature selection
is proposed using the generalization ability by cross-validation as the selection
criterion.

Feature selection has a long history of research and many methods have been
developed. In [10], an exception ratio is defined based on the overlap of class
regions approximated by hyperboxes. This exception ratio is monotonic for the
deletion of input variables. By this monotonicity, we can terminate feature se-
lection when the exception ratio exceeds a predefined value.

In this paper we propose two feature-selection criteria based on kernel dis-
criminant analysis (KDA) for two-class problems. The first criterion uses the
objective function of KDA. Namely the ratio of the between-class scatter and
within-class scatter. We prove that this criterion is monotonic for the deletion
of input variables. The second criterion is the exception ratio defined on the
one-dimensional space generated by KDA according to [10].

The feature selection is done by backward selection. We start from all the
input variables. We temporally delete one input variable, calculate the selection

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 282–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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criterion, and delete the input variable that improves the selection criterion the
most. This process is iterated until the stopping condition is satisfied.

In Section 2, we summarize KDA and in Section 3, we discuss two selection
criteria and their monotonicity. In Section 4, we explain backward feature selec-
tion used and in Section 5 we demonstrate the validity of the proposed methods
by computer experiments.

2 Kernel Discriminant Analysis

In this section we summarize kernel discriminant analysis, which finds the com-
ponent that maximally separates two classes in the feature space [11,12], [13,
pp. 457–468].

Let the sets ofm-dimensional data belong to Class i (i= 1, 2) be {xi
1, . . . ,x

i
Mi
},

where Mi is the number of data belonging to Class i, and data x be mapped into
the l-dimensional feature space by the mapping function g(x). Now we find the
l-dimensional vector w, in which the two classes are separated maximally in the
direction of w in the feature space.

The projection of g(x) on w is wT g(x)/‖w‖. We find such w that maximizes
the difference of the centers, and minimizes the variances, of the projected data.

The square difference of the centers of the projected data, d2, is

d2 = (wT (c1 − c2))2 = wT (c1 − c2) (c1 − c2)T w, (1)

where ci are the centers of class i data:

ci =
1
Mi

Mi∑
j=1

g(xi
j) for i = 1, 2. (2)

We define
QB = (c1 − c2) (c1 − c2)T (3)

and call QB the between-class scatter matrix.
The variances of the projected data, s2

i , are

s2
i = wT Qi w for i = 1, 2, (4)

where

Qi =
1
Mi

(g(xi
1), . . . ,g(xi

Mi
)) (IMi − 1Mi)

⎛⎜⎝ gT (xi
1)

...
gT (xi

Mi
)

⎞⎟⎠ for i = 1, 2. (5)

Here, IMi is the Mi ×Mi unit matrix and 1Mi is the Mi ×Mi matrix with all
elements being 1/Mi. We define

QW = Q1 + Q2 (6)

and call QW the within-class scatter matrix.
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Now, we want to maximize

J(w) =
d2

s2
1 + s2

2
=

wT QB w
wT QW w

, (7)

but since w, QB, and QW are defined in the feature space, we need to use kernel
tricks. Assume that a set of M ′ vectors {g(y1), . . . ,g(yM ′ )} spans the space
generated by {g(x1

1), . . . ,g(x1
M1

),g(x2
1), . . . ,g(x2

M2
)}, where {y1, . . . ,yM ′} ⊂

{x1
1, . . . ,x

1
M1

,x2
1, . . . ,x

2
M2
} and M ′ ≤M1 + M2. Then w is expressed as

w = (g(y1), . . . ,g(yM ′ ))α, (8)

where α = (α1, . . . ,αM ′ )T and α1, . . . ,αM ′ are scalars. Substituting (8) into (7),
we obtain

J(α) =
αT KB α

αT KW α
, (9)

where

KB = (kB1 − kB2) (kB1 − kB2)
T , (10)

kBi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
Mi

Mi∑
j=1

H(y1,xi
j)

· · ·
1
Mi

Mi∑
j=1

H(yM ′ ,xi
j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for i = 1, 2, (11)

KW = KW1 + KW2 , (12)

KWi =
1
Mi

⎛⎝ H(y1,xi
1) · · ·H(y1,xi

Mi
)

· · ·
H(yM ′ ,xi

1) · · ·H(yM ′ ,xi
Mi

)

⎞⎠ (IMi − 1Mi)

×

⎛⎝ H(y1,xi
1) · · ·H(y1,xi

Mi
)

· · ·
H(yM ′ ,xi

1) · · ·H(yM ′ ,xi
Mi

)

⎞⎠T

for i = 1, 2. (13)

Taking a partial derivative of (9) with respect to w and equating the resulting
equation to zero, we obtain the following generalized eigenvalue problem:

KB α = λKW α, (14)

where λ is a generalized eigenvalue.
Substituting

KW α = kB1 − kB2 (15)

into the left-hand side of (14), we obtain

(αT KW α)KW α. (16)
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Thus, by letting λ = αT KW α, (15) is a solution of (14).
Since KW1 and KW2 are positive semi-definite, KW is positive semi-definite.

If KW is positive definite, α is given by

α = K−1
W (kB1 − kB2). (17)

Even if we choose independent vectors y1, . . . ,yM ′ , for non-linear kernels, KW

may be positive semi-definite, i.e., singular. One way to overcome singularity is
to add positive values to the diagonal elements [11]:

α = (KW + εI)−1 (kB1 − kB2 ), (18)

where ε is a small positive parameter.

3 Selection Criteria and Their Monotonicity

3.1 KDA Criterion

The first selection criterion is the value of (7) for optimum w. We call this KDA
criterion. The KDA criterion with linear kernels, i.e., the LDA criterion is often
used for a feature selection criterion but its monotonicity for deletion of features
is not known.

We can easily prove that the KDA criterion is monotonic for the deletion of
input variables. Let xi be the m-dimensional vector, in which the ith element of
x is replaced with 0 and other elements are the same with those of x. Then the
resulting feature space Si = {g(xi) |xi ∈ Rm} is the subspace of S = {g(x) |x ∈
Rm}, where the feature space variables in Si that include the ith element of xi

are zero for polynomial and RBF kernels.
Let the coefficient vectors obtained by KDA in S and Si be wopt and wi

opt,
respectively. Then

J(wopt) ≥ J(wi
opt) (19)

is satisfied. This is proved as follows. Assume that the above relation does not
hold. Namely, J(wopt) < J(wi

opt) is satisfied. Then wopt is not optimal in S

since wi
opt ∈ S.

Monotonicity of the selection criterion is very important because we can ter-
minate the selection procedure by setting a threshold, or we can use optimization
techniques such as branch and bound for feature selection.

3.2 KDA-Based Exception Ratio

In this section, we discuss the exception ratio defined in the one-dimensional
space, wT g(x)/‖w‖, obtained by KDA, which is an extension of the exception
ratio [10] defined in the input space. We call the space obtained by KDA KDA
space. We define the class overlap by the overlap of class data in the KDA space.
Namely, for class i (i = 1, 2), we define the activation regions with level 1, Aii(1),
calculating the maximum Vii(1) and minimum vii(1) of class i data in the KDA
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space. If the activation regions A11(1) and A22(2) overlap we define the over-
lapping regions as the inhibition region I12(1) with the interval [W12(1), w12(1)].
If there are data in the inhibition region, we define the activation regions with
level 2, A12(2) and A21(2). If there is an overlap between A12(2) and A21(2), we
define the inhibition region I12(2). We repeat the above procedure until there
are no data in the inhibition region.

The ratio of activation regions and inhibition regions indicates the difficulty
of classification. Therefore, we define the exception ratio oij for classes i and j
as the sum of the ratios of the activation and inhibition regions as follows:

oij =
∑

l=1,···,lij

pij(l)
bIij (l)
bAij′ (l)

, (20)

where j′ = i for l = 1, j′ = j for l ≥ 2,

bIij =
{
Wij(l)− wij(l) for Wij(l)− wij(l) > ε,
ε otherwise,

bAij′ =
{
Vij′ (l)− vij′ (l) for Vij′ (l)− vij′ (l) > ε,
ε otherwise,

pij(l) =
number of class i training data in Iij(l)

total number of training data
.

Here, ε is a small positive parameter. If there is no data in the inhibition region,
the region does not affect separability of classes. Thus, in (20), we add pij(l) to
reflect this fact. We call the exception ratio given by (20) KDA-based exception
ratio.

The exception ratio is zero if there is no overlap between classes. Thus, by
this criterion, separability is considered to be the same even if the margins
between classes are different. The exception ratio defined in the input space is
monotonic for the deletion of input features [10], but unfortunately the KDA-
based exception ratio is not monotonic as the computer experiments discussed
later show.

4 Backward Feature Selection

We select features using backward feature selection. In the backward feature se-
lection, first we calculate the value of the selection criterion using all the features.
Then starting from the initial set of features we temporally delete each feature,
calculate the value of the selection criterion, and delete the feature with the
highest value of the selection criterion from the set. We iterate feature deletion
so long as class separability is higher than the prescribed level.

Let the initial set of selected features be Fm, where m is the number of in-
put variables, and the value of the selection criterion be Tm. We delete the
ith (i = 1, . . . ,m) feature temporally from Fm and calculate the selection cri-
terion. Let the selection criterion be Tm

i . We iterate this procedure for all i
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(i = 1, . . . ,m). Then we delete the feature arg maxi∈F m Tm
i from Fm: Fm−1 =

Fm − {argmaxi∈F m Tm
i }, if Tm

i /Tm > δKDA or Tm
i /Tm < δEXT, where the

first inequality is for the KDA criterion, the second inequality is for the KDA-
based exception ratio, and δKDA and δEXT are thresholds for the KDA criterion
and KDA-based exception ratio, respectively.

We iterate the above feature selection procedure so long as the above inequal-
ity is satisfied.

5 Performance Evaluation

We evaluated performance of the selection criteria using the two-class problems
listed in Table 1 [11].1 Each problem has 100 or 20 training and test data sets.

For the features selected by backward feature selection, we trained the L1
support vector machines, scaling the input range into [0, 1], calculated the means
and standard deviations of the recognition rates, and statistically analyzed the
results with the significance level of 0.05. We used an AthlonMP2000+ personal
computer running on Linux.

Table 1. Two-class benchmark data sets

Data Inputs Train. Test Sets
B. cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 18 1300 1010 20
Ringnorm 20 400 7000 100
F. solar 9 666 400 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 7000 100
Waveform 21 400 4600 100

Table 2. Parameter setting

Data Kernel ε η

B. cancer γ10 10−8 10−8

Diabetes γ10 10−8 10−6

German γ10 10−8 10−8

Heart γ10 10−8 10−8

Image γ10 10−8 10−8

Ringnorm γ10 10−8 10−4

F. solar γ10 10−8 10−7

Thyroid γ10 10−8 10−8

Titanic γ10 10−8 10−4

Twonorm γ10 10−8 10−6

Waveform γ10 10−8 10−3

We selected the kernel and its parameter, from among polynomial kernels
with d = [2, 3, 4] and RBF kernels with γ = [0.1, 1, 10], so that the maximum
value of the objective function of KDA [14] is realized. We selected the value of
ε, which is used to avoid matrix singularity in KDA and the threshold value of
Cholesky factorization, η, from among ε = [10−8, 10−7, 10−6, 10−5, 10−4, 10−3,
10−2], η = [10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2] so that the KDA criterion
is maximized as follows:

1. Calculate the KDA criterion, using all the features, for the first five training
data sets. Thus we obtain 5 values of the objective function.

2. Select the values of ε and η that correspond to the maximum value of the
KDA criterion.

1 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Table 2 lists the parameter values obtained by the above procedure. For all the
problems, RBF kernels with γ = 10 (γ = 10) were selected.

In evaluating the selected features by the support vector machine, we de-
termined the kernel and parameter values by 5-fold cross-validation; for the
original set of features, we used the same kernel types and parameter ranges as
those for KDA and determined the value of the margin parameter C from C =
[1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000, 100000]. For the se-
lected feature set, we used the same kernel and kernel parameter as those for
the initial set of features and determined the value of C by cross-validation.

Since each problem consists of 100 or 20 data sets, we combined the first 5
training data sets into one and selected features by backward feature selection
for the two selection criteria with δKDA = 0.5 and δEXT = 1.5.

Figures 1 and 2 show the recognition rates of the thyroid data set when
features were deleted using the KDA criterion and KDA-based exception ratio
criterion, respectively. The horizontal axis shows the deleted features at each
selection step and the vertical axis shows the recognition rates of the training
data set in the right and test data sets in the left for each selection step. The
vertical axis also shows the value of the selection criterion with the initial value
normalized to 1.

In Fig. 1, the selection criterion is monotonic for the deletion of features. Since
δKDA = 0.5, three features: 4th, 3rd, and 1st features were deleted and 2nd and
5th features were left. In Fig. 2 the deletion sequence of features is the same
with that by the KDA criterion. But the selected features are different. From
the figure, for δEXT = 1.5 only the 4th feature was deleted compared with three
features by the KDA criterion. Since the exception ratio decreased when the
fourth feature was deleted, the exception ratio was not monotonic.
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Fig. 1. Feature deletion for the thyroid
data set by KDA criterion
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Fig. 2. Feature deletion for the thy-
roid data set by exception ratio

Tables 3 and 4 show the feature selection results using the KDA and KDA-
based exception ratio criteria, respectively. In the tables, the “Deleted” column
lists the features deleted. If for a classification problem two feature strings are
shown, the numbers of features selected by the two criteria are different. The
second feature string shows the features that are deleted after the first feature
string is deleted. And the asterisk shows that the number of features deleted
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Table 3. Recognition performance for feature selection using the KDA criterion

Data Deleted Parm C Train. Test KDA #F
B. cancer None γ0.1 500 77.57±1.87 72.36±4.67 12.3 4

5,9 2000 78.68±1.83 72.94±4.56 8.3
2,7∗ 100 74.56±4.04 72.77±5.39 3.7

Diabetes None d3 100 78.95±1.27 76.42±1.79 3.31 5
4,3∗ 50 78.44±1.05 76.67±1.76 2.50
5,1 100 78.35±1.11 77.00±1.67 1.78

German None γ0.1 50 77.80±1.03 76.19±2.27 676 9
4,20,16,5,18,15,10,17 500 78.71±0.90 75.82±2.14 359
19∗ 100 76.99±1.00 75.77±2.17 137

Heart None γ0.1 50 85.96±1.91 83.69±3.41 1081 5
6,11,9 100 86.15±1.93 83.76±3.52 694
4,1∗ 100 85.17±2.07 83.43±3.53 65

Image None γ10 1000 98.60±0.17 97.13±0.47 18.9 6
8,6,12,9,10,3 2000 99.28±0.09 97.37±0.37 22.2

Ringnorm None γ10 10 99.51±0.33 97.67±0.33 27.6 0
18∗ 10 99.38±0.35 97.41±0.37 25.8
20, 15, 11, 5, 17, 14 10 98.33±0.54 95.50±0.39 13.9

F. solar None d2 10 67.50±1.05 67.61±1.72 0.730 1
9,6,8,3,7,2,1 100000 67.46±1.09 67.67±1.81 0.436

Thyroid None γ10 10 97.93±0.78 95.80±2.09 26.1 3
4∗ 10 98.21±0.82 96.04±2.08 25.2
3,1 8000 98.87±0.64 95.75±2.16 14.2

Titanic None d3 100 79.49±3.66 77.47±1.43 0.839 2
2,1 100000 78.09±3.60 77.57±0.26 0.542

Twonorm None d3 10 98.09±0.59 97.59±0.12 42.7 0
18,7∗ 10 97.62±0.71 96.95±0.14 35.3
12,5,2 50 96.86±0.82 95.67±0.19 23.8

Waveform None γ10 1 93.53±1.36 90.00±0.44 22.8 1
3,16∗ 1 93.18±1.28 89.77±0.45 19.1
6,15,19,8 1 91.63±1.43 88.41±0.39 12.5

is the same with that deleted by the other criterion not used in deleting the
features. For example, in Table 3 for b. cancer the 5th and the 9th features are
deleted using the KDA criterion and since four features are deleted by the KDA-
based exception ratio criteria as shown in Table 4, we delete two more features:
the 2nd and 7th. The best average recognition rate and standard deviation are
shown in boldface and the second best italic. If there is no statistical difference
they are shown in Roman.

In Table 3, “Parm” and “C” columns list the kernels and the values of C
selected by 5-fold cross validation. For example, γ0.1 means the RBF kernels
with γ = 0.1 and d3 means the polynomial kernels with degree 3. (In Table 4,
the “Parm” column is not included because it is the same with that in Table
3.) The “Train.” and “Test” columns list the average recognition rates with the
standard deviations. The “KDA (EXT)” column lists the values of the selection
criterion. The “#F” column lists the number of features that are successively
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Table 4. Recognition performance for feature selection using the exception ratio

Data Deleted C Train. Test EXT #F
B. cancer None 500 77.57±1.87 72.36±4.67 0.288 1

1,9∗ 100000 82.73±1.92 70.55±4.73 0.170
4,2 100000 78.45±1.69 72.72±4.73 0.358

Diabetes None 100 78.95±1.27 76.42±1.79 14.6 5
5,3 10 77.51±1.04 76.10±1.83 19.4
1,6∗ 100 77.59±1.26 75.90±1.82 27.2

German None 50 77.80±1.03 76.19±2.27 0 8
4,20,16,5,18,15,10,17∗ 500 78.71±0.90 75.82±2.14 0
2 500 76.98±1.11 73.91±2.21 0

Heart None 50 85.96±1.91 83.69±3.41 0 6
6,11,9∗ 100 86.15±1.93 83.76±3.52 0
4,1 100 85.17±2.07 83.43±3.53 0

Image None 1000 98.60±0.17 97.13±0.47 1.43 6
3,10,6,8,9,14 2000 99.23±0.13 97.40±0.37 0.79

Ringnorm None 10 99.51±0.33 97.67±0.33 0.0993 0
17 10 99.40±0.34 97.52±0.32 0.131
20,5,6,12,2,8∗ 50 99.25±0.42 94.80±0.38 1.26

F. solar None 10 67.50±1.05 67.61±1.72 2.97 0
4,7,2,1,6,5,3∗ 50000 49.69±6.65 48.76±6.64 0.0158

Thyroid None 10 97.93±0.78 95.80±2.09 0.000257 3
4 10 98.21± 0.82 96.04±2.08 0.000218
3,1∗ 8000 98.87±0.64 95.75±2.16 0.113

Titanic None 100 79.49±3.66 77.47±1.43 0.894 1
1,3∗ 100000 46.6±30.0 45.92±29.5 0.0520

Twonorm None 10 98.09±0.59 97.59±0.12 0.00805 0
8,3 50 97.96±0.65 96.91±0.17 0.0536
10,4,2∗ 50 96.65±0.89 95.46±0.19 0.154

Waveform None 1 93.53±1.36 90.00±0.44 0.264 0
9,7 1 92.88±1.27 89.41±0.39 0.301
6,21,4,8∗ 1 91.72±1.29 88.54±0.41 1.28

deleted without deteriorating the generalization ability in each deletion step. For
example, in Table 3, according to the KDA criterion the four features are deleted
for diabetes but by statistical analysis, additional one feature can be deleted.

From Table 3, except for the image data, the KDA criterion is monotonic for
the deletion of features. For the image data, because of the memory overflow, we
could not delete more than 6 features. Except for the ringnorm, twonorm, and
waveform data sets, the selected features by the KDA criterion show comparable
performance for the test data with the original features.

In Table 4, for german and heart data sets, since the exception ratio was 0,
we deleted the features using KDA criterion until the exception ratio became
non-zero. The exception ratio was monotonic for b. cancer, diabetes, ringnorm,
twonorm, and waveform. For f. solar and titanic data sets, since the exception
ratio monotonically decreased for the deletion of features, we could not stop the
deletion procedure. The selected features by the exception ratio show comparable
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performance for the test data with the original features for b. cancer, diabetes,
heart, image, and thyroid data sets. The “#F” for the KDA criterion is in most
cases better than that for the exception ratio. And the feature selection is more
stable.

6 Conclusions

In this paper, we proposed two measures for feature selection: the KDA criterion
which is the objective function of KDA and the KDA-based exception ratio,
which defines the overlap of classes in the one-dimensional space obtained by
KDA. We show that the KDA criterion is monotonic for the deletion of features.
According to the computer experiments for two-class problems, we showed that
both criteria work well to selects features but the KDA criterion was more stable.
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Abstract. Here we present a novel probability density estimation model. The 
classical Parzen window approach builds a spherical Gaussian density around 
every input sample. Our proposal selects a Gaussian specifically tuned for each 
sample, with an automated estimation of the local intrinsic dimensionality of 
the embedded manifold and the local noise variance. This leads to outperform 
other proposals where local parameter selection is not allowed, like the mani-
fold Parzen windows. 

1   Introduction 

The estimation of the unknown probability density function (PDF) of a continuous 
distribution from a set of data points forming a representative sample drawn from the 
underlying density is a problem of fundamental importance to all aspects of machine 
learning and pattern recognition (see [1], [2] and [3]).  

Parametric approaches make assumptions about the unknown distribution. They 
consider, a priori, a particular functional form for the PDF and reduce the problem to 
the estimation of the required functional parameters. On the other hand, nonparamet-
ric methods make less rigid assumptions. Thus they are more flexible and they usually 
provide better results. Popular nonparametric methods include the histogram, kernel 
estimation, nearest neighbor methods and restricted maximum likelihood methods, as 
can be found in [4], [5], [6] and [7].   

The kernel density estimator, also commonly referred as the Parzen window esti-
mator, [9], places a Gaussian kernel on each data point of the training set. Then, the 
PDF is approximated by summing all the kernels, which are multiplied by a normaliz-
ing factor. Thus, this model can be viewed as a finite mixture model (see [8]) where 
the number of mixture components will equal the number of points in the data sample. 
The parameter which defines the shape of those components, i.e. the covariance of the 
Gaussian kernel, is the same for all of them and the estimation of the arbitrary distri-
bution is, therefore, penalized because of the poor adaptation to local structures of the 
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data. Besides, most of the time, Parzen windows estimates are built using a “spherical 
Gaussian” with a single scalar variance parameter 2σ , which spreads the density 
mass equally along all input space directions and gives too much probability to irrele-
vant regions of space and too little along the principal directions of variance of the 
distribution. This drawback is partially solved in Manifold Parzen Windows algo-
rithm, [10], where a different covariance matrix is calculated for each component. On 
the other hand, this model considers that the true density mass of the dataset is con-
centrated in a non-linear lower dimensional manifold embedded in the higher dimen-
sional input space. In this sense, only information about directions of the lower di-
mensional manifold will be preserved in order to reduce the memory cost of the 
model. There is also a unique regularization parameter which is used to represent the 
variance in the discarded directions of the components, as it will be explained more 
detailed in section 2. 

We present, in section 3, a model that selects automatically the adequate values for 
some parameters of the Manifold Parzen Windows model. Our method chooses the 
right dimensionality of the manifold according to a quality criterion specified by the 
user, which is the percentage of neighbourhood variance we want to be retained in 
each component. In a similar way, the regularization variance parameter will be se-
lected by the method itself without the aid of human knowledge. Therefore the time 
invested in tuning the parameters to obtain good density estimations will be dimin-
ished. We show some experimental results, in section 4, where the selection achieved 
by our method produces more precise estimations that the Manifold Parzen Windows 
one. 

2   The Manifold Parzen Windows Method 

Let X be an n-dimensional random variable and pX() an arbitrary probability density 
function over X which is unknown and we want to estimate. The training set of the 
algorithm is formed by l samples of the random variable and the density estimator has 
the form of a mixture of Gaussians, whose covariances Ci may be identical or not: 
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where  is the mean vector, C is the covariance matrix and |C| the determinant of C. 
The density mass is expected to concentrate close  to an underlying non-linear lower 

dimensional manifold and, thus, the Gaussians would be “pancakes” aligned with the 
plane locally tangent to that manifold. Without prior knowledge about the distribution  
pX() the information about the tangent plane is provided by the samples of the training 
set. Thus the principal directions of the samples in the neighbourhood of each sample xi 
will be computed. The local knowledge about the principal directions will be obtained 
when we calculate the weighted covariance matrix 

i
Cκ for each sample: 
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where (xj-xi)’ (xj-xi) denotes the outer product and (x, xi) is a neighbourhood kernel 
centered in xi  which will associate an influence weight to any point x in the vicinity 
of xi. 

Vincent and Bengio propose in [10] the utilization of a hard k-neighbourhood 
which assigns a weight of 1 to any point no further than the k-th nearest neighbour of 
the  sample xi  among the training set, according to some metric such as the Euclidean 
distance in input space, and setting the weight to 0 to those points further than the k-
neighbour. This approach usually involves 

i
Cκ to be ill-conditioned so it is slightly 

modified by adding a small isotropic Gaussian noise of variance 2σ   
2

iiC C Iκ σ= +  (4) 

When we deal with high dimensional training datasets it would be prohibitive in com-
putation time and storage to keep and use each full covariance matrix iC . Therefore, a 

compacted representation of them is preserved, storing only the eigenvectors associ-
ated with the first d  largest eigenvalues of them, where d is chosen by the user of the 
algorithm and is fixed for each covariance matrix. The eigenvectors related to the 
largest eigenvalues of the covariance matrix correspond to the principal directions of 
the local neighbourhood, i.e. the high variance local directions of the supposed under-
lying d-dimensional manifold. The last few eigenvalues and eigenvectors are but 
noise directions with a small variance and a same low noise level, which is also the 
same 2σ  it was used before,  is employed for them. 

Once the model has been trained any sample of the distribution may be tested. The 
probability density estimation for the sample will be computed by the average of the 
probability density provided by the l local Gaussians as was mentioned in (1). 

3   Dynamic Parameter Selection in Manifold Parzen Windows 
Algorithm 

We extend the training of Vincent and Bengio’s method [10], by providing a more 
automatic way to estimate density functions.  

First we incorporate the capacity of estimating the intrinsic dimensionality, i.e. the 
needed number of principal directions d, of the underlying manifold for each 
neighbourhood. The cause is that we use a qualitative parameter, , which represents 
the explained variance by the principal directions of the local manifold. Then, the 
method will be able to choose by itself the minimum number of eigenvectors which 
retain a particular amount of the variance presented in the vicinity of each training 
sample.  This method has been employed in [11] and [12] with good results. 

A second level of automated adaptation to the data will be added by means of a  
parameter . This parameter will enable the method to select the right noise level for 
discarded directions. So, a better adaptation of the model to the unknown distribution 
will be achieved. 
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3.1   The Explained Variance Method 

The explained variance method considers a variable number, Di, of eigenvalues and 
their corresponding eigenvectors to be kept which is computed independently for each 
sample xi. This number reflects the intrinsic dimensionality of the lower dimensional 
manifold where the data lies for the neighbourhood of xi. Through the training process 
the method ensures that a minimum amount of variance is conserved in order to sat-
isfy the level of accuracy, [0,1]α ∈ , chosen by the user. The number of principal di-
rections which are preserved is set consequently to the minimum value which allows 
us to reach that level at least. 

The most precise estimation of the data in the neighbourhood of a sample can be 
achieved if we conserve the full covariance matrix, i. e. we keep information about 
every direction, because it will be more likely to discover the right dimensionality of 
the underlying manifold. On the other hand, the worst estimation will be obtained 
when all the directions are ignored and the sample xi is the only statistical information 
which is kept, i.e. when we lose all the variance relative to the directions of the em-
bedded manifold. Thus, the lost variance when no directions are kept, V0, can be de-
fined as: 

0
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V λ
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=  (5) 

with  p
iλ  the p eigenvalue of the covariance matrix 

i
Cκ , which are supposed to be 

sorted in decreasing order, and D the dimension of the training samples. 
In any other situation the discarded variance, VZ, depends on the number, Z, of 

principal directions conserved: 
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Our goal is to obtain the most compressed representation of the covariance 
i

Cκ , 

while the model maintains a minimum level of quality α. with respect to the maxi-
mum accuracy the method can achieve. Let V0 – VZ be the amount of error (we must 
remember that the more variance is lost the less precise the estimation will be) elimi-
nated when we conserve information about the Z principal directions. Then 

{ }{ }0 0min 0,1,..., |i ZD Z D V V Vα= ∈ − ≥  (7) 

Substitution of (5) and (6) into (7) yields 

{ }
1 1 1

min 0,1,..., |
D D D

p p p
i i i i

p p Z p

D Z D λ λ α λ
= = + =

= ∈ − ≥  (8) 

It is well known that the sum of variances of a dataset equals the trace of  the co-
variance matrix for this dataset, therefore equation (8) can be simplified as follows: 
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The quotient between λi
p and  trace(

i
Cκ ) is the amount of variance  explained by the 

pth principal direction of the estimated manifold. Thus, if we sum these quotients for 
all the retained directions, we can see the parameter α as the amount of variance 
which we want to be retained in each neighbourhood.  Hence, we select Di so that the 
amount of variance explained by the directions associated to the Di largest eigenval-
ues is at least α. 

3.2   The Qualitative Parameter  

With the variance explained parameter our aim is to add the model the ability to adapt 
by itself to the local properties of the distribution. Thus, it saves memory space which 
is not required, i. e. only the necessary information of the covariance of each 
neighbourhood will be stored. 

The same idea was applied to deal with the parameter 2σ , which controls the width 
of the Gaussians in Manifold Parzen Windows method. In order to take into consid-
eration the local structure and to obtain better estimators, the noise variance for each 
neighbourhood is determined by 

2 iD
i iσ γ λ= ⋅  (10) 

where [0,1]γ ∈  and iD
iλ is the last of the preserved eigenvalues, i.e. the smallest of the 

first Di largest eigenvalues. 
As can be noticed there is a close relation between  and . If we use a value for  

near to 0 then we likely retain only the first eigenvalue, which is associated to the first 
principal direction of the data. Therefore, it encompasses a great percentage of the 
total variance of the distribution. This means that iD

iλ  will be large and the noise vari-

ance will be set to a relatively large value. This implies that the Gaussian for the  i 
neighbourhood will be widened along the discarded directions. In the opposite case, if 
a value near to 1 is assigned to , then we store nearly all the eigenvalues and eigen-
vectors of the covariance matrix. The last retained eigenvalue will be very small and 
independently of the value of  the noise variance will be set to a value near 0. This is 
in consonance with the fact that if we conserve all the information about the direc-
tions of change then there is not noise variance, because there is not any discarded 
dimension. In subsection 4.2, we present some plots where the fact just commented 
can be observed. 

3.3   Parzen Manifold Windows with Qualitative Parameters 

The proposed algorithm is designed to estimate an unknown density distribution pX() 
which the l samples of the training dataset are generated from. The generated estima-
tor will be formed by a mixture of l Gaussians, one for each sample. Their shapes are 
adapted to the adequate local structure of the neighbourhoods through the training 
process and rely on the user specified qualitative parameters. The user chooses both 
the quality of the estimation, expressed by the explained variance parameter ; and , 
which means the width of the Gaussians in the discarded directions relative to the 
width in the last conserved direction. 
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The training method can be summarized as follows: 

1. Take the training sample xi with { }1,2,...,i l∈ . Initially the first sample x1 is 

selected. 
2. Compute the covariance matrix 

i
Cκ following (3) where only the k nearest 

neighbours  xj  of xi are considered. 
3. Extract the eigenvalues and eigenvectors from 

i
Cκ  and estimate the dimen-

sionality of the underlying manifold Di, by means of (9) 
4. Use (10) to calculate 2

iσ , the noise variance for the discarded directions. 

5. Store the local model, i. e., the  first Di eigenvectors and eigenvalues, the lo-
cal noise level 2

iσ , the l samples and the number of  neighbours k. 

6. Go to step 1, and continue the training process for the next sample. If there 
are not more samples to process, the algorithm finishes. 

4   Experimental Results 

This section shows some experiments we have designed in order to compare quality 
of density estimation presented by our method, we term MparzenQuality throughout 
this whole section and by the Vincent and Bengio’s one, which will be referred as 
MParzen. For this purpose the measure used was the average negative log likelihood 

1

1
ˆlog ( )

m

ii
ANLL p x

m =
= −  (11) 

where ˆ ( )p x  is the estimator, and the training dataset is formed by m examples xi. 

4.1   Experiment on 2D Artificial Data 

A training set of 300 points, a validation set of 300 points and a test set of 10000 
points were generated from the following distribution of two dimensional (x,y) points: 

0.04 sin( ) , 0.04 cos( )x yx t t y t tε ε= + = +  
 

 

where (3,15), (0,0.01), (0,0.01), ( , )x yt U N N U a bε ε  is uniform in the interval (a,b) 

and ( , )N μ σ  is a normal density. 
We trained a MParzenQuality model with explained variance 0.1 and 0.9 on the 

training set. The parameters k and  were tuned to achieve the best performance on the 
validation test. On the other hand, MParzen with d = 1 and d = 2 was trained and the 
rest of its parameters were also tuned. 

Quantitative comparative results of the two models are reported en Table 1, where 
it can be seen that our model outperforms the previous one in density distribution 
estimation. Figure 1 shows the results obtained when we applied the models on the 
test set. Darker areas represent zones with high density mass and lighter ones indi-
cates the estimator has detected a low density area. 
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Fig. 1. Density estimation for the 2D artificial dataset, MParzen model (left) and MParzenQuality 
(right) 

We can see in the plots that our model has less density holes (light areas) and less 
‘bumpiness’. This means that our model represents more accurately the true distribu-
tion, which has no holes and is completely smooth. We can see that the quantitative 
ANLL results agree with the plots. So, our model outperforms clearly the MParzen 
approach. 

Table 1. Comparative results on the espiral dataset 

Algorithm Parameters used ANLL on test-set 
MParzen d =1, k =11, 2σ = 0.009 -1.466 
MParzen d =2, k =10, 2σ = 0.00001 -1.419 
MParzenQuality  =0.1, k = 10,   = 0.1 -2.204 
MParzenQuality  =0.9, k = 10,   = 0.1 -2.116 

4.2   Density Estimation on Astronomical Data 

The dataset comes from the VizieR service [13], which is an information system for 
astronomical data. In particular, we have selected the Table 6 of the Complete near-
infrared and optical photometric CDFS Catalog from Las Campanas Infrared Survey 
[14]. We have extracted 22 numerical features from 10,000 stars. Hence, we have 
10,000 sample vectors. These data have been normalized in order to cope with the 
variability and the very heterogeneous scaling of the original data. This dataset has 
been split randomly in a training set (10% of the dataset), validation set (10%) and 
test set (the remaining 80%). 

We have carried out simulation runs for MParzen with the number of dimensions 
retained from 1 to 6. For each of those values we have tried the following noise lev-
els: 2σ  = 0.09, 0.1, 0.11, 0.13, 0.15, 0.17, 0.19, 0.3 and 0.5 (values near 0.11, which 
generates good performance). The simulations with the MParzenQuality model have 
been carried out with the following parameter values:  = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8 and 0.9; γ = 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.1, 0.2, 0.3, 0.4 and 0.5. In 
both models we have tried the following numbers of neighbours: 10, 15 and 20. 

In Figure 2 the ANLL of the models is plotted versus the number of retained prin-
cipal directions. For each value of d or , only the best performing combination of the  
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rest of the parameters is shown in the plot. Please note that for the MParzenQuality 
model the average of the principal directions retained is averaged over all the sam-
ples, so fractional values of dimensionality are shown. It can be observed that our 
proposal is clearly superior in all conditions. 

It should also be noted that with the MParzen model we have detected serious 
problems with the outliers. The original VizieR dataset is fairly uniform, but there are 
3 outliers. These data samples caused the MParzen model to completely fail the 
ANLL performance test, because the model assigned a zero probability to these  
samples, up to double precision calculations, yielding a plus infinite ANLL. Our 
MParzenQuality model did not suffer from this problem, showing a better probability 
density allocation. These outliers have been removed in order to perform the tests 
corresponding to Figure 2. 
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Fig. 2. Results with the VizieR astronomical dataset 

A set of curves which represents the contribution of the qualitative parameters 
when we employ 15 neighbours for each data sample is presented in Figure 3. 
 

Fig. 3. Relationship of the qualitative parameters and the quality of the results 
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Similar conclusions may be extracted for both plots. First when the explained vari-
ance is fixed to a small percentage, then smaller values for parameter γ produces more 
adequate width for the “pancakes” and, thus, better results (see the minimum values 
for the curves of the left plot). On the other hand, if  parameter  is greater than 0.5 
then the last preserved eigenvalue is  small, and the width of the Gaussians will be too 
narrow if the value assigned to γ is not chosen high enough. A compromise value γ is 
0.2, which maintains an average performance, although it does not achieve the best 
results. 

5   Conclusions 

We have presented a probability density estimation model. It is based in the  Parzen 
window approach. Our proposal builds a local Gaussian density by selecting inde-
pendently for each training sample the best number of retained dimensions and the 
best estimation of noise variance. This allows our method to represent input distribu-
tions more faithfully than the manifold Parzen window model, which is an improve-
ment of the original Parzen window method. Computational results show the superior 
performance of our method, and its robustness against outliers in the test set. 
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Abstract. We have recently developed several ways of using Gaussian
Processes to perform Canonical Correlation Analysis. We review several
of these methods, introduce a new way to perform Canonical Corre-
lation Analysis with Gaussian Processes which involves sphering each
data stream separately with probabilistic principal component analysis
(PCA), concatenating the sphered data and re-performing probabilistic
PCA. We also investigate the effect of sparsifying this last method. We
perform a comparative study of these methods.

1 Introduction

A stochastic process Y (x) is a collection of random variables indexed by x ∈ X
such that values at any finite subset of X form a consistent distribution. A
Gaussian Process (GP) therefore is a stochastic process on a function space
which is totally specified by its mean and covariance function [11,8,6].

We have recently investigated several ways of using GPs to perform Canonical
Correlation Analysis (CCA). Canonical Correlation Analysis is used when we
have two data sets which we believe have some underlying correlation. Consider
two sets of input data, x1 ∈ X1 and x2 ∈ X2. Then in classical CCA, we
attempt to find the linear combination of the variables which gives us maximum
correlation between the combinations. Let y1 = wT

1 x1 and y2 = wT
2 x2. Then, for

the first canonical correlaton, we find those values of w1 and w2 which maximises
E(y1y2) under the constraint that E(y2

1) = E(y2
2) = 1.

2 The Semi-parametric Method

Consider a stochastic process which defines a distribution, P (f), over functions,
f , where f maps some input space, χ to �. If e.g. χ = �, f is infinite dimensional
but the x values index the function, f(x), at a countable number of points and
so we use the data at these points to determine P (f) in function space. If P (f) is
Gaussian for every finite subset of X , the process is a GP and is then determined
by a mean function θ(x) and covariance function Σ(x). These are often defined

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 302–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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by hyperparameters, expressing our prior beliefs on the nature of θ and Σ, whose
values are learned from the data.

A commonly used covariance function is Σ : Σij = σ2
y exp(− (xi−xj)2

2l2 ) + σ2
nδij

which enforces smoothing via the l parameter. The σy parameter determines
the magnitude of the covariances and σn enables the model to explain the data,
y = f(x) + n, with n ∼ N(0,σ2

n).

2.1 GP for Canonical Correlation Analysis

In [2], we used a GP to perform CCA in the following manner. Let the input
data be x1 and x2. Then we define two sets of parameters for the Gaussian
Process: let θi(xi), i = 1, 2, define the mean function of the estimate for CCA
and let Σi, i = 1, 2, be the corresponding covariance function. For example, in
our first, expository example, we let x1 and x2 have a linear relationship so that
θi(xi) = bixi + ci, i = 1, 2, with bi, ci being the parameters of the process, and
Σi

kj = σ2
i,y exp(− ‖x1,k−x1,j‖2+‖x2,k−x2,j‖2

2l2i
)+σ2

i,nIN , k, j = 1, ..., N, i = 1, 2 where

N is the number of samples, x1,j (resp. x2,j) is the jth sample from the first
(resp. second) data stream and li determines the degree of interaction between
the samples. Note that we have continued to index the data stream by i so that
Σ1 �= Σ2 since l1,σ1,y,σ1,n may evolve differently from l2,σ2,y,σ2,n.

Then we wish to maximise the covariance in function space of (θ1(x1) −
μ1)(θ2(x2)−μ2) under the constraint that E(θ1(x1)−μ1)2 = E(θ2(x2)−μ2)2 = 1.
This is done by maximising the likelihood of the model given the two data sets:
we assume that the current estimate of θ2(x2) is the target for training θ1(x1)
but is corrupted by Gaussian noise. This gives a log likelihood function of

L = log p(θ1(x1)|x1, θ2)

= −1
2

log |Σ1| −
1
2
(θ2(x2)− θ1(x1))T (Σ1)−1(θ2(x2)− θ1(x1))−

n

2
log(2π)

Let γi be a generic parameter of the covariance matrix, Σi. Then we use the
standard method of gradient descent on the log likelihood with θ2(.) as the target
for training θ1(.),

∂L

∂b1
= (θ2(x2)− θ1(x1))T (Σ1)−1x1;

∂L

∂c1
= (θ2(x2)− θ1(x1))T (Σ1)−1 (1)

∂L

∂γ1
= −0.5trace((Σ1)−1 ∂Σ1

∂γ1
)

+ 0.5(θ2(x2)− θ1(x1))T (Σ1)−1 ∂Σ1

∂γ1
(Σ1)−1(θ2(x2)− θ1(x1)) (2)

where
∂Σ1

∂l1
= 2Σ1T

1/(2l21);
∂Σ1

∂σ1,y
= 2σ1,y exp(−T 1/(2l21));

∂Σ1

∂σ1,n
= 2σ1,nIN (3)

where T 1
kj = ‖x1,k−x1,j‖2+‖x2,k−x2,j‖2

2l21
. Thus we are using the current estimates

given by θ2(x2) as targets for the training of the mean and covariance functions
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for the estimated functions on x1. We alternate this training with the equivalent
rules for for the estimated functions on x2 when θ1(x1) becomes the target. We
can view the covariance matrix as the local product of the covariance matrices
of Xi, thus creating a covariance matrix[6] for the product space X1 ×X2. An
alternative would be to use the sum of the individual covariances.

We must also heed the constraint that E(θ1(x1)−μ1)2 = E(θ2(x2)−μ2)2 = 1
during training and so we scale the parameters of θi() after each update to satisfy
this constraint.

In [2], we showed that this method works very well on artificial data. However,
crucially the artificial data had only a single correlation in one dimension of each
of the two data streams. Subsequently, [5], we showed that this method is not
as accurate as our previous artificial neural networks methods [4,3] on real data
sets. We find that the fields which exhibit the greatest correlations between the
two data sets are identified accurately but the other fields are not identified with
any accuracy.

In Table 1, we show converged weights with this method on a standard data
set from [7]; this data set is composed of 88 students’ exam marks in 5 exams.
The marks of two exams in which books were allowed form one data set and
the marks on the other 3 exams in which books were not allowed form the other
data set. We see that the fields with the largest correlation in each data set
is identified with the above method (the line ’Gaussian Process CCA - one l’)
but the fields with smaller contributions to the correlation are not accurately
identified. It might be thought that this would be remedied by using a diagonal
covariance matrix so that

Σi
kj = σ2

i,y exp(−1
2
{(x1,k − x1,j)T M1(x1,k − x1,j) + (x2,k − x2,j)T M2(x2,k − x2,j)})

+σ2
i,nIN , k, j = 1, ..., N, i = 1, 2 (4)

where both M1 and M2 are diagonal matrices of width parameters which are
separately updated. We see from Table 1 however, (’GP CCA with diag. cov.’)
that little improvement is achieved.

Remarkably, however, we can actually get a very good approximation to the
CCA filters by simply modeling the noise with this method i.e. with Σi

kj =
σ2

i,nIN , k, j = 1, ..., N, i = 1, 2. We show results with our standard data set (de-
noted ’GP CCA - noise cov.’) in Table 1. Clearly we can use this approximation
to initialise our parameters if we wish to use GP CCA on a large data set.

3 The Sphere-Concatenate Method

Now it may be shown [7] that a method of finding the canonical correlation
directions is to solve the generalised eigenvalue problem[

0 Σ12
Σ21 0

] [
w1
w2

]
= ρ

[
Σ11 0
0 Σ22

] [
w1
w2

]
(5)
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where Σij is the covariance matrix between the ith and jth data streams. Note
that this is equivalent to the standard eigenproblem[

0 Σ
− 1

2
11 Σ12Σ

− 1
2

22

Σ
− 1

2
22 Σ21Σ

− 1
2

11 0

] [
v1
v2

]
= ρ

[
v1
v2

]
(6)

where

v1 = Σ
1
2
11w1

v2 = Σ
1
2
22w2

This standard eigenproblem can now be seen to be equivalent to a decomposition
of a cross-covariance matrix of sphered data.

This suggests the following algorithm:

1. Use Probabilistic PCA1 on both data streams, independently. This gives us
eigenvector matrices, V1,V2 and eigenvalues on the main diagonal of Λ1, Λ2.

2. Project each data stream onto their respective eigenvectors and divide by
the square root of the eigenvalues. This gives us sphered data.

3. Concatenate these two sphered data streams.
4. Perform PPCA on this data, to get eigenvectors V3 and eigenvalues Λ3.
5. To recover the CCA directions, W1 = V1Λ

− 1
2

1 V3,1, W2 = V2Λ
− 1

2
2 V3,2, where

we have used the notation V3,i to denote the appropriate part of V3.

This algorithm is easily shown to perform well on both artificial and real data
(see Table 1, ‘Sphere-concatenate’ for a comparison on our standard data set).

3.1 Sparsifying the Data

The computational intensity of Gaussian process methods are very dependent
on the number of data samples we have and so one criticism of the method of
this section might be that we are now performing PPCA in the Step 4 of the
algorithm on a data set which is twice as long as previously.

We may address this problem with the Sparse Kernel Principal Component
method [10]. Tipping proposes to sparsify Kernel PCA by specifying the covari-
ance matrix of the data as

C = σ2
nI +

N∑
i=1

aiφ(xi)φ(xi)T = σ2
nI + ΦTAΦ (7)

where the weights ai are adjustable parameters which are positioned on the main
diagonal of diagonal matrix , A, in the last equation and he has performed a
nonlinear mapping of the data using the function, φ(.). Kernel PCA [9] utilises
the “kernel trick”: provided you can find the scalar product Kij = φ(xi).φ(xj),
you need never actually require the individual functions φ(.). By maximising

1 Note that we retain all eigenvalues,vectors at this stage.
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the likelihood of the data under this model, he shows that we are performing
a reduced PCA. Tipping derives an algorithm based on Kernel PCA [9] to find
these weights by iterating

Σ = (A−1 + K)−1 (8)
μn = σ−2Σkn (9)

anew
i =

∑N
n=1 μ2

ni

N(1−Σii/ai
(10)

where K is the positive definite kernel matrix. We first calculate appropriate
Kernel matrices of the two data streams separately giving K1 and K2. We may
use Tipping’s method in our algorithm replacing Step 1 with the iteration

Σ1 = (A−1 + K1)−1 (11)
μ1,n = σ−2Σ1k1,n (12)
Σ2 = (A−1 + K2)−1 (13)

μ2,n = σ−2Σ2k2,n (14)

anew
i =

∑N
n=1 μ2

1,ni

N(1−Σ1,ii/ai)
+

∑N
n=1 μ2

2,ni

N(1−Σ2,ii/ai)
(15)
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Fig. 1. The top row shows the two data sets. The bottom row the weights found with
the linear kernel (left) and the squared exponential kernel (right).
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Note that while we are sparsifying two data streams with different covariance
matrices, we are utilising a single A matrix. We require this since we wish to
identify pairs of important data points simultaneously.

We illustrate the effects of this algorithm in Figure 1: we create 90 samples
of two data sets, the first 30 of which are such that the corresponding elements
come from related clusters (the black ’*’s in Figure 1) while the last 60 samples
contain no such relationship - 1

2 of these samples in one data set come from one
cluster while the other 1

2 come from another cluster; in the other data set these
samples are drawn from a widely dispersed cluster. We show the weights from
both the linear and the squared exponential covariance matrices in that figure.
The degree of sparsification can be controlled by the σ parameter. Even if we
set it low (and thereby do not get an appropriate degree of sparsification) we
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Fig. 2. Left: weights found by linear covariance method. Plots of first sphered coordi-
nate in both data sets. The wrongly included elements are clearly identified.
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may identify samples which have been wrongly included by plotting the sphered
data from the first data set against the sphered data in the second data set.
This is illustrated in Figure 2 in which we show a simulation in which three
samples from the non-matching clusters have been identified. We see that they
are easily identified if we plot the first elements of the sphered data from each
data stream.

For comparison, we have used this method (with the linear kernel) on the
students’ exams data; results are shown in Table 1 from a simulation which used
σ = 20. The level of sparsity may be gauged from Figure 3 in which we show
the weights, ai after the first stage of the algorithm. We see from Table 1 that
the sparsity has been achieved with the loss of some accuracy.

Table 1. In each section, the middle line gives the weight vector for the open book
exams, the bottom line gives the weight vector for the closed book exams. The last
column shows the cosine of the angle between the standard statistical method and the
other methods.

Standard Statistics cosine
w1 0.0260 0.0518 1
w2 0.0824 0.0081 0.0035 1

Neural Network - Lagrangian Method
w1 0.0264 0.0526 1.0000
w2 0.0829 0.0098 0.0041 0.9998

Neural Network - Gen. Eigenproblem
w1 0.0270 0.0512 0.9998
w2 0.0810 0.0090 0.0040 0.9999

Gaussian Process CCA - one l
w1 0.0272 0.0499 0.9994
w2 0.1163 0.0063 -0.0035 0.9964

Gaussian Process CCA -diag. cov.
w1 0.0260 0.0513 1.0000
w2 0.0896 0.0143 -0.0103 0.9862

GP CCA - noise cov
w1 0.0161 0.0620 0.9778
w2 0.1047 -0.0541 0.242 0.8299

Sphere-Concatenate
w1 0.0183 0.0364 1.0000
w2 0.0579 0.0057 0.0024 1.0000

Sparse Sphere-Concatenate
w1 0.0199 0.0547 0.9933
w2 0.0449 0.0253 0.0039 0.9149

Probabilistic CCA[1]
w1 0.0211 0.0420 1.0000
w2 0.0668 0.0065 0.0028 1.0000
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4 Discussion

Comparative results from the 5 methods are given in Table 1.
We require some method for comparing these results. We have chosen to accept

the standard statistical method as the ground truth since all other methods are
developed as neural or probabilistic implementations of the standard statistical
method. Therefore we compare in the last column of that table the cosine of
the angles between the weights found by the other methods and those of the
standard statistical technique. We also include in this table the Probabilistic
CCA method of [1] and two artificial neural network methods which we have
previously investigated [4,3]. We see that generally the methods are reasonably
accurate other than the Gaussian Process method of [2]. Sparsification of the
sphere-concatenate method also diminishes accuracy of the result. However both
probabilistic methods, the Sphere-Concatenate method and the Probabilistic
CCA method of [1] lose amplitude which is caused by their noise models which
captures some of the amplitude of the correlations. This aspect requires further
study.

5 Conclusion

We have shown how canonical correlation analysis can be performed using Gaus-
sian Processes in several different manners. We have shown how a previous
method gives results which are not as accurate as either our previous neural
methods or a new sphere-concatenate method. We have illustrated a method for
sparsifying this last method. However both probabilistic methods which perform
accurate CCA also lose amplitude compared to the standard statistical method.
Clearly this may be remedied by enforcing E(y2

1) = E(y2
2) = 1, however the

need for another step is less than satisfactory. This aspect will form the basis
for further study.
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Abstract. We introduce novel dissimilarity to properly measure dissimilarity
among multiple clusters when each cluster is characterized by a probability dis-
tribution. This measure of dissimilarity is called redundancy-based dissimilar-
ity among probability distributions. From aspects of source coding, a statistical
hypothesis test and a connection with Ward’s method, we shed light on the theo-
retical reasons that the redundancy-based dissimilarity among probability distri-
butions is a reasonable measure of dissimilarity among clusters.

1 Introduction

In clustering tasks, dissimilarity among multiple clusters is a fundamental measure to
evaluate how different clusters are over a sample space [1,2]. It is sometimes referred to
as the clustering evaluation function or clustering validity index [3, 4] [5, Ch. 10.6]. A
cluster means a group of samples that obey the same (probabilistic) law. If the measure
of dissimilarity (or similarity) is well defined, it is useful for effectively constructing
clusters from samples without a supervisor [6, 7, 8]. Some effective applications based
on dissimilarity (or similarity) have recently been studied [9,10,11,12]. The aims of this
paper are to derive a novel measure of dissimilarity among multiple clusters when each
cluster is characterized by a probability distribution (PD), as well as to theoretically
justify it. Accordingly, our dissimilarity is one of the probabilistic-dependence mea-
sures. In this paper, we formulate a clustering task from a probabilistic point of view,
and we then introduce a novel measure of dissimilarity called the redundancy-based
dissimilarity. The measures of redundancy-based dissimilarity are defined for samples
and for PDs. They are connected with a law that the redundancy-based dissimilarity
among samples (RDSS) asymptotically coincides with the redundancy-based dissimi-
larity among PDs (RDSP). From aspects of source coding, a statistical hypothesis test
and a connection with Ward’s method, we shed light on the theoretical reasons for
the RDSP being a reasonable measure of dissimilarity among clusters. This is because
clarifying reasons could play a role as a guide for practical applications, especially in
selecting an appropriate measure in a given clustering task.

The organization of this paper is as follows. In Section 2, we present some notations
and describe definitions of the RDSS and the RDSP. We show main results in Section 3.
The theorems related to the main results are summarized in Section 4. Finally, we give
some conclusions in Section 5.
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c© Springer-Verlag Berlin Heidelberg 2006



312 K. Iwata and A. Hayashi

2 Redundancy-Based Dissimilarity

Without loss of generality, we formulate a clustering task from a probabilistic point
of view. The clustering task deals with a sequence of samples where each sample is
classified into one of some clusters. The probabilistic law of information sources varies
at each time-step according to a point probability for the choice of a cluster. At each
time-step, one of the clusters is independently chosen with the point probability, and
then it generates a sample according to the underlying structure of the cluster that is
characterized by a PD. To facilitate its exposition, we number the clusters by what we
call the label number. The label number of each sample in a sequence means that the
sample was generated from the cluster having the label number. In general, the label
number of each sample is unknown. We use X to express a stochastic variable (SV)
over an arbitrary sample space X and also use Xi to denote X at the time-step i ∈ N.
Let L � {1, . . . ,M} be the entire set of label numbers. Let P(L) be the set of cluster
probability density functions (PDFs), that is,

P(L) � {Pm|m ∈ L} , (1)

where Pm denotes the PDF of cluster m overX . If the label number of a sample x ∈ X
is m ∈ L, then henceforth we express it by x ∼ Pm. For every time-step i and every
m ∈ L, we define the point probability as

ω(m) � Pr (Xi ∼ Pm) . (2)

This implies that a cluster is chosen at each time-step to generate each sample indepen-
dently and according to an identical PDF ω. For simplicity, we assume that ω(m) > 0
for every m ∈ L. Throughout this paper, this is an underlying assumption. Hence, it
satisfies ∑

m∈L
ω(m) = 1. (3)

For any positive number n let Xn = (X1,X2, . . . ,Xn) be an information source that
consists of the clusters, and is sometimes written as X for brevity when we do not need
to indicate n explicitly. The expected value of any function y(x) over X with respect to
Pm is denoted by

EPm [y(x)] �
∫

x∈X
Pm(x)y(x) dx, (4)

for every m ∈ L. We use IC to denote an indicator function such that for any condition
C,

IC =

{
1, if C is true

0, otherwise
. (5)

Fig. 1 draws an information source treated in the clustering task.
We now introduce novel measures that we call the redundancy-based dissimilar-

ity in this paper. The measures are so called because they are closely related to an
information-theoretic redundancy of codeword length, as is discussed in Section 3.2.
They are defined as dissimilarity among samples and among PDs, respectively.
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Fig. 1. Information source in the clustering task

Definition 1 (RDSS). For any subset L ⊆ L, when each sample obeys one element of
P(L), we define the squared dissimilarity measure among multiple samples, (x1, . . . ,
xn) ∈ Xn where n =

∑
m∈L

∑n
i=1 Ixi∼Pm , by

{
rdsP(L)(x1, . . . , xn)

}2 �
∑
m∈L

∣∣∣∣∣
n∑

i=1

Ixi∼Pm log
Pm(xi)
QL(xi)

∣∣∣∣∣ , (6)

where for any x ∈ X the PDF QL is,

QL(x) =
∑
m∈L

λL(m)Pm(x), (7)

where λL(m) is a normalized probability defined by

λL(m) � ω(m)∑
m∈L ω(m)

. (8)

This rdsP(L)(x1, . . . , xn) is referred to as redundancy-based dissimilarity among sam-
ples (RDSS).

Definition 2 (RDSP). For any subset L ⊆ L, we define the squared dissimilarity mea-
sure among multiple PDFs P(L) by

{RDS(P(L))}2 �
∑
m∈L

λL(m)D(Pm‖QL), (9)

where λL is defined in (8) and D(Pm‖QL) denotes the information divergence given
by

D(Pm‖QL) = EPm

[
log

Pm(x)
QL(x)

]
, (10)

where the PDF QL is defined in (7). This RDS(P(L)) is referred to as redundancy-
based dissimilarity among PDs (RDSP).

Note that the value of RDS(P(L)) vanishes if and only if all the PDFs in P(L) are
equal. It is well-known that when |L| = 2, for any m ∈ L and m′ ∈ L the distance
RDS(Pm, Pm′) is a metric betweenPm andPm′ . It is referred to as the Jensen-Shannon
divergence. For the details and the proof, see [13, 14, 15].
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3 Main Results

In Section 3.1 we consider an appropriate measure of dissimilarity among multiple clus-
ters in terms of Sanov’s Theorem, when each cluster is characterized by a PD. From
aspects of source coding, a statistical hypothesis test and a connection with Ward’s
method, we explain that the RDSP is a reasonable measure of dissimilarity among clus-
ters in Sections 3.2–3.4.

3.1 Sanov’s Theorem in Clustering Task

We focus on any two clusters m ∈ L and m′ ∈ L in the information source shown
in Fig. 1. This is for simplicity of development and the discussion below holds even if
we deal with more than two clusters. When clusters are characterized by PDs, a popular
and straightforward way for measuring dissimilarity between the two clusters is to apply
information divergence defined as

D(Pm‖Pm′) = EPm

[
log

Pm(x)
Pm′(x)

]
for any m ∈ L and m′ ∈ L, (11)

where Pm and Pm′ denote the PDFs of the cluster m and the cluster m′, respectively
(An alternative way is to apply the symmetric sum, D(Pm‖Pm′)/2 + D(Pm′‖Pm)/2,
but it still does not satisfy the triangle inequality). This means that the dissimilarity be-
tween the two clusters is measured by the difference of empirical distributions between
two sequences of samples. One sequence is generated from the PDF of the cluster m
and the other is generated from the PDF of the cluster m′, since the difference of the
empirical distributions becomes the difference between the two PDFs as n → ∞. In
such cases, from a probabilistic point of view, the justification of applying D(Pm‖Pm′)
as a dissimilarity measure in clustering tasks might be based on Theorem 1 which is a
variant of Sanov’s theorem. For the original Sanov’s theorem, see [16] or [17, Ch. 6.2].

Theorem 1 (Clustering Task Version of Sanov’s Theorem). Let X = (X1,X2, . . .)
be an information source, in which each SV is drawn independently according to an
identical PDF Pm′ over X . Let M(X ) be the set of all possible PDs over a Polish
space X [17, Appendix B.3]. For any subset X ⊆ X , define an empirical PD inM(X )
by

Rn(X ) � 1
n

n∑
i=1

IXi∈X , (12)

where Xi ∼ Pm′ holds for i = 1, . . . , n. Also, for any subset X ⊆ X , define a PD in
M(X ) as

R(X ) �
∫

x∈X
Pm′(x) dx. (13)

It holds that Rn(X ) → R(X ) in probability as n → ∞. Then, for any PD S inM(X )
the empirical PD Rn satisfies a large deviation principle whose rate function is given
by

U(S |R) =

{∫
X dS(X ) log dS(X )

dR(X ) if g = dS
dR exists,

∞ otherwise,
(14)



Theory of a Probabilistic-Dependence Measure of Dissimilarity 315

where g represents the Radon-Nikodym derivative of S with respect to R. Also, the
empirical PD Rn(X ) asymptotically goes away from

S(X ) �
∫

x∈X
Pm(x) dx, (15)

and the asymptotic speed with respect to n is described as

lim
n→∞

1
n

log Pr (Rn = S) = −U(S |R), (16)

= −D(Pm‖Pm′). (17)

Theorem 1 states that under the probabilistic law given by Pm′ , the probability of all
sequences of samples which obey the other law given by dS = Pm vanishes exponen-
tially with n. In addition, the vanishing speed depends on D(Pm‖Pm′) in the exponent.
Hence, information divergence does not simply express some difference between two
PDs. Also, applying D(Pm‖Pm′) as a dissimilarity measure among clusters is indeed
reasonable, but only when an information source is drawn according to an identical PDF
Pm′ , that is, when the PDF of the information source consists of a PDF of one cluster.
However, it is not reasonable, at least in the clustering task treated in this paper, because
here the information source consists of multiple cluster PDFs. Accordingly, this raises
the question of what dissimilarity we should employ in the clustering task. In fact the
RDSP defined in Definition 2 gives quite a reasonable answer to the question because
the RDSP regards the multiple PDFs P(L) as one unified PDF QL of the information
source.

3.2 Source Coding

In Fig. 1, the probabilistic law of the information source varies at each time-step ac-
cording to a point probability ω for the choice of a cluster. Such a source is called an
arbitrarily varying source [18, Ch. 3] in information theory. For brevity, we employ
xn � x1, . . . , xn to denote a sequence of n samples from the information source.
Suppose that a sequence xn is observed from the information source X but the label
number of each sample xi in the sequence is unknown. When we use a predictive esti-
mation to describe the information source, for any subset L ⊆ L the unified PDF of the
information source is described as

QL(xi) �
∑
m∈L

λL(m)Pm(xi), (18)

where λL is defined in (8). This is exactly equal to (7). Clearly, the redundancy caused
by the label numbers being unknown is always non-negative,

redundancy = H(QL)−
∑
m∈L

λL(m)H(Pm) ≥ 0, (19)

where the entropies are

H(QL) = −EQL
[
logQL(x)

]
, (20)

H(Pm) = −EPm [logPm(x)] for every m ∈ L. (21)
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In the equation (19), the first term exhibits the entropy of a unified PDF given by QL,
and the second term also exhibits the entropy of different PDFs given by P(L). The
second term is the limit of the achievable coding rate when the label number of each
sample is known. The redundancy states that if all the PDFs in P(L) are equal, then
it vanishes and hence we can regard the different clusters as one unified cluster. In the
clustering task, the redundancy gives an important meaning to the RDSP as a measure
of dissimilarity among clusters, because for a given P(L) and QL, transforming (19)
yields

redundancy = {RDS(P(L))}2 . (22)

The RDSP is so called for this reason. Therefore, the RDSP is a reasonable measure
of dissimilarity among clusters since it stands for a theoretical bound of the amount of
loss of information when different clusters are regarded as one unified cluster.

3.3 The Statistical Hypothesis Test

We again consider the information source that is shown in Fig. 1. Recall that the unified
PDF of the information source is described as (18). If we observe a sequence xn from
the information source and know the label number of each sample xi, then according
to the label number we divide xn into subsequences

{
x(m)|m ∈ L

}
where each subse-

quence is, for every m ∈ L, x(m) � {xi ∈ X|xi ∼ Pm, i = 1, . . . , n}. For notational
convenience, let nm =

∣∣x(m)
∣∣ hereafter and hence it satisfies∑

m∈L
nm = n. (23)

To measure dissimilarity among clusters, for a given n,P(L), and QL, we reason which
hypothesis is better: one is to regard xn as an output from a unified cluster given by
QL, and the other is to regard it as an output from different clusters given by P(L).
Accordingly, we take the corresponding two hypotheses designated by

H0 : x(m) ∼ QL for every m ∈ L,
H1 : x(m) ∼ Pm for every m ∈ L, (24)

respectively. We are now interested in accepting H1 since it is indeed true in the infor-
mation source. In fact it is easy to construct a test for increasing the probability that
H1 is accepted, but it simultaneously increases the probability of error in the test. For
any test δ, let αδ(x(m)) be the probability of the power so that the test δ accepts H1
successfully when H1 is true. On the other hand, let βδ(x(m)) be the probability of the
error so that the test δ incorrectly accepts H1 when H0 is true. Needless to say, the result
of the test depends on n, P(L), and QL. From Neyman-Pearson’s lemma [19, Theo-
rem 12.7.1], in the sequel the most powerful test (MPT) δ∗ is given as follows: for every
m ∈ L, if

1
n

log
Pm(x(m))
QL(x(m))

=
1
n

n∑
i=1

Ixi∼Pm log
Pm(xi)
QL(xi)

≤ k(m)
n , (25)
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then the hypothesis H0 is accepted. On the other hand, if

1
n

log
Pm(x(m))
QL(x(m))

=
1
n

n∑
i=1

Ixi∼Pm log
Pm(xi)
QL(xi)

> k(m)
n , (26)

then the hypothesis H1 is accepted. In these equations, the criterion k
(m)
n is a positive

number such that for a given αδ∗(x(m)),

αδ∗(x(m)) = Pr
(

1
n

log
Pm(x(m))
QL(x(m))

> k(m)
n

∣∣∣∣ H1 is true.

)
, (27)

when H1 is true. Then, we have to decrease the probability of error with respect to n,

βδ∗(x(m)) = Pr
(

1
n

log
Pm(x(m))
QL(x(m))

> k(m)
n

∣∣∣∣ H0 is true.

)
, (28)

when H0 is true. Notice that a dissimilarity measure among the clusters is characterized
by the criterion, and by the decreasing speed of the probability of error with respect to
n. In fact, for every m ∈ L these satisfy

lim
n→∞ k(m)

n = λL(m)D(Pm‖QL), (29)

lim
n→∞

1
n

log βδ∗(x(m)) = −λL(m)D(Pm‖QL). (30)

These equations will be proved in Theorem 3. Hence, the criterion k
(m)
n of the MPT

converges to each term of the squared RDSP defined in (9). Also, the decreasing speed
of the probability βδ∗(x(m)) of error with respect to n is determined by each term of
the squared RDSP. In short, if the RDSP is large, then the MPT for the hypotheses
works well even in the case where n is not sufficiently large. Therefore, the RDSP is a
reasonable measure of dissimilarity among clusters since it determines the theoretical
bound of the MPT for accepting the hypothesis H1, that is, the true hypothesis in the
information source.

3.4 A Connection Between the RDSP and Ward’s Method

We explain the good ability of the RDSP via a connection between it and Ward’s method
[20]. Ward’s method is one of the most popular methods in hierarchical cluster analysis
and has been applied to many practical tasks (see [21], for example). It is well-known
that Ward’s method exhibits the ability to accurately construct the hierarchical structure
of clusters. The key point of the method is to minimize the increase of the sum of
squared differences from each cluster’s mean whenever unifying any two clusters. That
is, when we create a new cluster by unifying any two clusters, we always select two
clusters m′ and m′′ that minimize the increase (Ward’s measure),

ΔW (m′,m′′) = Sm′,m′′ − Sm′ − Sm′′ , (31)

where Sm means the sum of squares within the cluster m ∈ {m′,m′′} and Sm′,m′′ also
means that within the unified cluster. Since a deviation of PDF over a sample space is
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characterized by the entropy, replacing the sum of squares, which is a measure of the
deviation of the samples, by the entropy yields

ΔR(m′,m′′) = H(Qm′,m′′)− λm′,m′′(m′)H(Pm′)− λm′,m′′(m′′)H(Pm′′ ). (32)

This is exactly equal to the squared RDSP in the case of L = {m′,m′′}. Intuitively,
the redundancy expresses the increase of entropy in unifying PDs of clusters. Thus, the
RDSP is a reasonable measure of dissimilarity among clusters since it is based on the
same principle as Ward’s measure in hierarchical cluster evaluations, though the two
measures are essentially distinct measures because Ward’s measure is a dissimilarity
measure for samples and the RDSP is a dissimilarity measure for PDs.

4 Theorems

Theorem 2 implies that the RDSP is asymptotically approximated by the left side in
(35). It is useful in practice because we can avoid serious computational complexity for
the integration in respect to the information divergence of the RDSP.

Theorem 2. Let nm �
∑n

i=1 Ixi∼Pm for every m ∈ L. If

EλL [(nm/n− λL(m))2] <∞, (33)

EPm

⎡⎣( 1
nm

n∑
i=1

Ixi∼Pm log
Pm(xi)
QL(xi)

−D(Pm‖QL)

)2
⎤⎦ <∞, (34)

for any subset L ⊆ L, then

1
n

{
rdsP(L)(x1, . . . , xn)

}2 → {RDS(P(L))}2 , (35)

in probability as n→∞.

Proof. One of the clusters is independently chosen at each time-step and according
to an identical PDF λ. In addition, each sample is independently drawn by a chosen
cluster. Hence, if (33) and (34) hold, then by the weak law of large numbers there exists
a positive number ε such that

lim
n→∞ Pr

⎧⎨⎩
∣∣∣∣∣∣ 1n

∑
m∈L

n∑
i=1

Ixi∼Pm log
Pm(xi)
QL(xi)

−
∑
m∈L

λL(m)D(Pm‖QL)

∣∣∣∣∣∣ > ε

⎫⎬⎭ = 0,

(36)
and hence we obtain (35).

Theorem 3 is an analogy of Stein’s lemma [17, Lemma 3.4.7].

Theorem 3. We consider the hypotheses designated by (24). For any subset L ⊆ L, if
the hypothesis H1 is true, then for every m ∈ L the equation (29) holds. Also, if the
hypothesis H0 is true, then for every m ∈ L the equation (30) holds.
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Proof. If the hypothesis H1 is true, then by the weak law of large numbers the left side
of (25) and (26) is,

1
n

log
Pm(x(m))
QL(x(m))

→ λL(m)D(Pm‖QL), (37)

in probability as n → ∞. If the equation (29) does not hold, then we cannot set an
arbitrary number in αδ(x(m)) since αδ(x(m)) must go to zero or one as n → ∞ to
satisfy (27). Therefore, the equation (29) holds. Next, we obtain (30) via Gärtner-Ellis
theorem [22, 23]. For every m ∈ L, let

Y (m)
n � log

Pm(x(m))
QL(x(m))

− nk(m)
n . (38)

We examine the convergence speed that Y (m)
n /n goes into (0,∞) as n → ∞. The

moment generating function of Y (m)
n with respect to Qnm

L is

MQnm
L

(θ) = EQnm
L

[
exp(θY (m)

n )
]
. (39)

With the definition,

φ(m)(θ) � lim
n→∞

1
n

logMQnm
L

(θ), (40)

by (29) we have

φ(m)(θ) = −θλ(m)D(Pm‖QL) + λ(m) log
(∫

X
Pm(x)θ

QL(x)1−θ
dx

)
. (41)

Accordingly, the rate function is described as

Um(θ, y) = sup
θ∈R

(
θy − φ(m)(θ)

)
. (42)

From Gärtner-Ellis theorem (for example, see [17, Ch. 2]), we have

lim
n→∞

1
n

log Pr

{
Y

(m)
n

n
∈ (0,∞)

}
= − inf

y∈(0,∞)
Um(θ, y), (43)

= − sup
θ∈R

(
−φ(m)(θ)

)
. (44)

By solving −dφ(m)(θ)/dθ = 0 on the sup-function, we immediately obtain θ = 1.
Therefore, since the rate function is convex, substituting θ = 1 into (44) yields (30).

5 Conclusion

We have introduced the RDSP, a probabilistic-dependence measure among multiple
PDs, for measuring dissimilarity among multiple clusters. Also, we have elucidated
the theoretical reasons that the RDSP is a reasonable measure of dissimilarity among
multiple clusters. These reasons could play a role as a guide for practical applications
of the clustering task.
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Abstract. Kernel PCA has been proven to be a powerful technique as a 
nonlinear feature extractor and a pre-processing step for classification 
algorithms. KPCA can also be considered as a visualization tool; by looking at 
the scatter plot of the projected data, we can distinguish the different clusters 
within the original data. We propose to use visualization given by KPCA in 
order to decide the number of clusters. K-means clustering algorithm on both 
data and projected space is then applied using synthetic and real datasets. The 
number of clusters discovered by the user is compared to the Davies-Bouldin 
index originally used as a way of deciding the number of clusters.  

Keywords: Clustering, visualization, Kernel PCA, K-means, DB index.

1   Introduction 

Clustering has emerged as a popular technique for pattern recognition, image 
processing, and data mining. It is one of the well-studied techniques, which concerns 
the partitioning of similar objects into clusters such that objects in the same cluster 
share some unique properties.  

For most clustering algorithms two crucial problems require to be solved: (1) 
determine the number of clusters K and (2) determine the similarity measure based on 
which patterns are assigned to corresponding clusters. Many clustering algorithms 
require that K to be provided as an input parameter. It is obvious that the quality of 
resulting clusters is largely dependent on the value of K. Many algorithms have been 
proposed for the estimation of the optimal number of partitions. In [4] a self-organizing 
feature map is trained. The final network structure allows visualizing high-dimensional 
data as a two dimensional scatter plot. The resulting representations allow a 
straightforward analysis of the inherent structure of clusters within the input data. [1] 
shows that minimization of partition entropy or maximization of partition certainty 
may be used to estimate the number of data generators, i.e. the number of clusters. A 
set of kernel functions are fitted to the data using the Expectation-maximization 
algorithm (EM) to model the probability density function PDF. Then the approach 
seeks the number of partitions whose linear combination yields the data PDF; densities 
and classification conditioned on this partition set can then easily obtained. 
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Girolami in [2] suggests estimating the number of clusters within the data by 

considering the most dominant terms { }2
i

T
ii u1λ of the eigenvalue decomposition of 

the kernel matrix created by the dataset. Fig. 1 shows an example of the block 
structure of the Kernel matrix which distinguishes that there are three clusters in the 
data. 

 

Fig. 1. Scatter plot of the kernel matrix of 3 clusters artificially generated according Gaussian 
density clearly showing the inherent block structure 

In this paper, we propose using Kernel principal component analysis (KPCA) 
projection method as a visualization tool. KPCA can provide a means to decide the 
number of clusters in the data by looking at the scatter plot of the lower dimensional 
projected space. Therefore one can distinguish groups within the projected data and 
then initialize K-means clustering algorithm. The number of clusters used to initialize 
this algorithm is evaluated by the Davies and Bouldin index [8]. This index does not 
depend on either the number of clusters or the clustering algorithm.  

The remaining part of the paper is organized as follows. Section 2 describes KPCA 
projection method. Section 3 presents K-means clustering algorithm, where section 4 
shows how the number of clusters can be estimated from the KPCA visualization and 
describes the Davies and Bouldin index. Simulations on synthetic and real datasets are 
discussed in section 5. 

2   Kernel Principal Component Analysis (KPCA) 

Kernel principal component analysis (KPCA) first introduced in [3] has been shown 
to be an elegant way to extract nonlinear features from the data. KPCA can maintain 
and enhance those features of the input data which make distinct pattern classes 
separate from each other. It can provide a means to decide the number of clusters in 
the data by looking at the scatter plot of the lower dimensional space. 

KPCA utilizes kernel trick to perform operation in a new feature space F where 
data samples are more separable. By using a nonlinear kernel function instead of the 
standard dot product, we implicitly perform PCA in a high-dimensional space F 
which is non-linearly related to the input space. Consequently, KPCA produces 
features which capture the nonlinear structure in the data better than linear PCA. 

Given a dataset of L observations x   = 1…L. x   RN.  The mapping function is 
defined by:  
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The correlation matrix in the feature space F is:  
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KPCA method is based on solving eigenvector system on the transformed space:  
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Defining the kernel function by:  
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In order to extract principal components of any point x we have to project the image 
)(xφ of this point on the M obtained eigenvectors mv~ :
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The Eigenvectors { }Mm1 y~,,y~,y~  in F are called nonlinear principal components. 

A number of different kernels have been used in many areas of Kernel Machines, 
such as polynomial, Gaussian, or sigmoid types [3]. We will consider the Gaussian 
kernel type in this paper. 

3   K -Means Clustering Algorithm in Data Space 

K-means [9] is an unsupervised clustering algorithm that partitions the dataset into a 
selected number K of clusters by minimizing a formal objective means-squared-error 
distortion MSE: 

∑ ∑
= ∈

−=
K

1k Cx

2
ki

ki

cxMSE . (7)

This objective means-squared-error represents the Euclidean distance between the 
samples and the centroids in the input dataset. K-means is an iterative simple, 
straightforward algorithm. It is based on the firm foundation of analysis of variances. 
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The result of K-means strongly depends on the initial guess of centroids. It is not 
obvious what a good K to use is. 

4   Estimating the Number of Clusters by KPCA Projected Data 
Visualization 

A plethora of new clustering methods has been proposed in recent years which give 
very impressive results with highly different data shapes. The important among them 
include Spectral clustering [5], KPCA which has been observed to perform clustering 
[6], Kernel Clustering in Feature Space [2] etc.; whilst, the problem of estimating the 
number of clusters within the dataset still remain. In this section, we will use the 
KPCA method for data projection and visualization in order to distinguish clusters 
within the data and therefore determine the cluster’s number K. The approach 
proposed by Girolami in [2] to estimate the number of clusters, suggests considering 

the most dominant terms { }2
i

T
ii u1λ , where Nx1 dimensional vector 1N has elements of 

value 1/N, λi and ui are the eigenvalues/eigenvectors decomposition of the Kernel 
matrix. In fact, these dominant terms depend highly on the choice of the kernel 
Gaussian width  and a bad value will imply a bad estimation of the number of 
clusters. Fig. 2 shows an example of 2-spheres in R3 we can see that small variation of 
the value of the kernel width lead to different estimation of number of clusters by the 
latter proposed method. 

     

Fig. 2. The most dominant terms { }2
i

T
ii u1λ for 3D 2-spheres dataset. A Gaussian kernel with 

width 0.1 (left) and 0.2 (right) were used. (Left) indicates that there are 2 dominant terms and 
one less dominant i.e. the existence of 2 or less probably 3 clusters. Whereas, (right) indicates 
the existence of one cluster. Thus for even small variation of  we got different number of 
clusters. 

One way to get around this problem is to look at the scatter plot of KPCA projected 
data. Fig. 3 shows the first 2 principal components of KPCA with Gaussian kernel of 
width 0.1 (left) and 0.2 (right) applied to the 2-spheres dataset. Note that, here we can 
clearly distinguish the existence of two clusters. Therefore, for different width values, 
visualization of projected data by KPCA can indicate the number of clusters within 
the dataset. This is due to the capacity of KPCA to map the data into a higher space 
where the separation is linear.  
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Fig. 3. Scatter plots of the two first kernel principal components for the 2-spheres in R3 with 
different kernel width values. First image (left)  = 0.1, the second (right)  = 0.2. We see that 
for the same variation of  as in Fig. 2, we can easily distinguish 2 clusters. 

4.1   Davies and Bouldin Index 

In order to evaluate the number of clusters taken by the KPCA scatter plot, we will 
use the Davies and Bouldin index (DB) [8]. This index doesn’t depend on either the 
number of clusters or the clustering method. It was originally proposed for deciding 
when to stop clustering algorithm. The index is plotted against the number of clusters 
and minimal value indicates the optimal number of clusters within the data. The DB 
index for K-cluster is: 

⎭
⎬
⎫

⎩
⎨
⎧ += ∑

=
≠ ik

ik
K

1k
ik d

SS
max)

K

1
()K(DB . (8) 

Where Sk is the average error for the kth cluster and dik is the Euclidean distance 
between the centers of the ith and the kth clusters. 

5   Simulation 

The purpose of this section is to test the effectiveness of KPCA to visualize high-
dimensional data as a two dimensional scatter plot. The resulting representations 
allow a straightforward analysis of the inherent structure of clusters within the input 
data and thus determining the number of clusters. Once this number is identified, we 
apply the well known K-means clustering algorithm. Simulations on synthetic and 
real datasets are presented. The kernel function used for all experiments is the 
Gaussian one of width . As we saw before the value of  is tricky, and all results 
depend highly on it. In our experiments we choose the value that are adequate with 
the dataset, hence the width  is tuned. 

5.1   Three Gaussian Dataset 

This example is a synthetic dataset in which clusters are linearly separable. It is 
composed of 90 3-D data points generated from 3 Gaussian distribution (30 for each 
class) of mean vectors (-0.5, -0.2, 0); (0, 0.6, 0) and (0.5, 0, 0) and of variance values 
equal to 0.1 on each component. 
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Fig. 4. The scatter plot of the KPCA projection using a Gaussian kernel of width 0.1 showing 
that there are three clusters with in the data (left). The DB index on K-means clustering 
algorithm which is minimal for 3 clusters (right). 

5.2   2-Spheres 

The second example we investigate is composed of two spheres in 3D. The dataset 
consists of 800 points in three dimensions. 400 points are selected randomly within a 
hemisphere of radius 0.6 and the rest 400 from a shell defined by two hemispheres of 
radius 2 and 2.013.  

The number of clusters K can be easily estimated by looking at the scatter plot of 
2-dimensional projected data by KPCA (Fig. 3).  For different , KPCA visualization 
shows the distinct cluster within the data. This number is then used to initialize K-
means algorithm. 

Fig. 5 shows the scatter plots of DB indexes on both input data and 2-D projected 
data by KPCA. In input space, this index fails to estimate the correct cluster’s number 
and the value is minimal for 3 clusters. Whereas, scatter plot of DB in projected 
space, indicates the existence of 2 clusters. 

 

Fig. 5. DB index in input space (left) and KPCA projected space (right). We see that after 
projection the DB index is minimal for 2 clusters which indicates the existence of 2 clusters.  

5.3   Petals Dataset 

The dataset consist of 100 datapoints in 2-dimensional space [10]. There are 4 clusters 
within the data. Fig. 6 shows that KPCA succeed to separate the clusters (left) on the 
other hand, DB index in input space (middle) and DB in projected space give minimal 
value for 4 clusters.  
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Fig. 6. KPCA projected data (left), DB index in input space (middle), DB index in KPCA 
projected space (right) the value of  used is 0.5 

5.4   Wine Dataset 

As a final example, we present results from a wine recognition problem from the UCI 
databases. The dataset consists of 178 data points in 12-dimensional space which are 
the results of a chemical analysis of wines grown in the same region in Italy but 
derived from three different cultivars. The analysis determines the quantities of 12 
constituents found in each of the three types of wines.  The plot onto the first two 
principal components of KPCA shows that the number of clusters is equal to three.  

   

Fig. 7. A Gaussian kernel of width 0.4 was used. Plot of the most dominant terms { }2
i

T
ii u1λ for 

this dataset indicates that there are 3 dominant terms i.e. the existence of 3 clusters (left). 
Scatter plot of KPCA projection into the plan indicating the existence of three clusters (right).  

      
Fig. 8. The BD index in data space (left) and the DB index in 2-D KPCA projected space which 
is minimal for 2 clusters (right) 
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5.5   Discussion 

Table 1. summarizes the clustering accuracy obtained by applying K-means on 
original and projected data by KPCA method. It also shows the number of clusters 
discovered by KPCA and those calculated by the DB index in data and projected 
spaces respectively.  We can state that for the four datasets KPCA correctly gives the 
number of clusters especially for complex and nonlinearly separable data. This is due 
to the nonlinear transformation of KPCA which maps the input space to a high 
dimensional feature space where the transformed data could be linearly separable. 
Whereas for complex data, the DB index in data space fails to estimate the correct 
number of clusters. This number correctly estimated by the DB index on projected 
data by KPCA method. 

Table 1. Well-classification rate (WCR) of K-means on input and projected data, estimation of 
the cluster’s number by KPCA and DB index in data space (DB data) and in projected space 
(DB projected) 

Dataset cluster’ 
Nb. 

Cluster’s 
by KPCA 

DB data DB 
projected 

K-means 
WCR 

KPCA + 
K-means 
WCR 

3 Gaussian 3 3 3 3 100 100 

2 Spheres 2 2 3 2 78.87 100 

Petals 4 4 4 4 100 100 

Wines 3 3 2 3 49.43 95.5 

We mention that K-means has been executed many times with different initialized 
centers, and we pick the partitions that give the smallest DB value. On the other hand, 
the results of projected data by KPCA were slight sensitive to the Gaussian width of 
the kernel function used. We conducted a series of experiments for the same data set 
with different width values; we noticed that results were similar except for large value 
of  where KPCA approaches the linear case as it has been proven in [11]. 

6   Conclusion 

We investigate the use of the nonlinear principal component analysis KPCA as a 
visualization tool; by looking at the scatter plot of the projected data, we can 
distinguish the different clusters within the original data. Visualization given by 
KPCA projection method is used in order to decide the number of cluster. K-means 
clustering algorithm in both data and projected space is then examined and tested. The 
number of cluster used to initialize this algorithm is evaluated by the Davies-Bouldin 
index and the most dominant terms. The results show that KPCA visualization on 
synthetic and real datasets are most accurate than those given by DB index in data 

space and the most dominant terms { }2
i

T
ii u1λ . Whereas BD index for projected data 

gave good estimation of the number of clusters; This is due to the nonlinear 



 Kernel PCA as a Visualization Tools for Clusters Identifications 329 

transformation of KPCA which maps the input space to a high dimensional feature 
space where the transformed data could be linearly separable. 
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Abstract. We propose a fast fixed-point algorithm to improve the Rel-
evant Component Analysis (RCA) in two-class cases. Using an objective
function that maximizes the predictive information, our method is able
to extract more than one discriminative component of data for two-class
problems, which cannot be accomplished by classical Fisher’s discrim-
inant analysis. After prewhitening the data, we apply Newton’s opti-
mization method which automatically chooses the learning rate in the
iterative training of each component. The convergence of the iterative
learning is quadratic, i.e. much faster than the linear optimization by gra-
dient methods. Empirical tests presented in the paper show that feature
extraction using the new method resembles RCA for low-dimensional
ionosphere data and significantly outperforms the latter in efficiency for
high-dimensional facial image data.

1 Introduction

Supervised linear dimension reduction, or discriminative feature extraction, is a
common technique used in pattern recognition. Such a preprocessing step not
only reduces the computation complexity, but also reveals relevant information
in the data.

Fisher’s Linear Discriminant Analysis (LDA) [3] is a classical method for
this task. Modeling each class by a single Gaussian distribution and assum-
ing all classes share a same covariance, LDA maximizes the Fisher criterion of
between-class scatter over within-class scatter and can be solved by Singular
Value Decomposition (SVD). LDA is attractive for its simplicity. Nevertheless,
it yields only one discriminative component for two-class problems because the
between-class scatter matrix is of rank one. That is, the discriminative informa-
tion can only be coded with a single number and a lot of relevant information
may be lost during the dimensionality reduction.

Loog and Duin [2] extended LDA to the heteroscedastic case based on the
simplified Chernoff distance between two classes. They derived an alternative
� Supported by the Academy of Finland in the projects Neural methods in information

retrieval based on automatic content analysis and relevance feedback and Finnish
Centre of Excellence in Adaptive Informatics Research.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 330–339, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Fast Fixed-Point Algorithm 331

criterion which uses the individual scatter matrices of both classes. The gener-
alized objective can still be optimized by SVD and their method can possibly
output more than one projecting direction.

LDA and the above Chernoff extension, as well as many other variants such
as [4,7], only utilize up to second-order statistics of the class distribution. Pel-
tonen and Kaski [5] recently proposed an alternative approach, Relevant Com-
ponent Analysis (RCA), to find the subspace as informative as possible of the
classes. They model the prediction by a generative procedure of classes given
the projected values, and the objective is to maximize the log-likelihood of the
supervised data. In their method, the predictive probability density is approxi-
mated by Parzen estimators. The training procedure requires the user to specify
a proper starting learning rate, which however is lacking theoretical instruc-
tions and may be difficult in some cases. Moreover, the slow convergence of the
stochastic gradient algorithm would may lead to time-consuming learning.

In this paper, we propose an improved method to speed up the RCA training
for two-class problems. We employ three strategies for this goal: prewhitening
the data, learning the uncorrelated components individually, and optimizing the
objective by Newton’s method. Finally we obtain a fast Fixed-Point Relevant
Component Analysis (FPRCA) algorithm such that the optimization conver-
gence is quadratic. The new method inherits the essential advantages of RCA.
That is, it can handle distributions more complicated than single Gaussians and
extract more than one discriminative component of the data. Furthermore, the
user does not need to specify the learning rates because they are optimized by
the algorithm.

We start with a brief review of RCA in Section 2. Next, we discuss the ob-
jective function of RCA in two-class cases and its fast optimization algorithm in
Section 3. Section 4 gives the experiments and comparisons on ionosphere and
facial image data. Section 5 concludes the paper.

2 Relevant Component Analysis

Consider a supervised data set which consists of pairs (xj , cj), j = 1, . . . , n,
where xj ∈ Rm is the primary data, and the auxiliary data cj takes values
from binary categorical values. Relevant Component Analysis (RCA) [5] seeks a
linear m× r orthonormal projection W that maximizes the predictive power of
the primary data. This is done by constructing a generative probabilistic model
of cj given the projected value yj = WT xj ∈ Rr and maximizing the total
estimated log-likelihood over W:

maximize
W

JRCA =
n∑

j=1

log p̂(cj |yj). (1)

In RCA, the estimated probability p̂(cj |yj) is computed by the definition of
conditional probability density function as:
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p̂(cj |yj) =
Ω(yj , cj)∑
c

Ω(yj , c)
. (2)

Here

Ω(yj , c) =
1
n

n∑
i=1

ψ(i, c)ω(yi,yj) (3)

is the Parzen estimation of p̂(yj , c) and the membership function ψ(i, c) = 1 if
ci = c and 0 otherwise. Gaussian kernel is used in [5] as the Parzen window
function

ω(yi,yj) =
1

(2πσ2)r/2 exp
(
−‖yi − yj‖2

2σ2

)
, (4)

where σ controls the smoothness of the density estimation.
Peltonen and Kaski [5] derived the gradient of JRCA with respect to W,

based on which one can compute the gradients for Givens rotation angles and
then update W for the next iteration. The RCA algorithm applies stochastic
gradient optimization method and the iterations converge to a local optimum
with a properly decreasing learning rate.

3 Two-Class Discriminant Analysis by RCA with a Fast
Fixed-Point Algorithm

3.1 Objective Function

For two-class problems, we point out that not only the maximum, but also the
minimum of JRCA optimizes the predictiveness. Peltonen and Kaski has proven
the following asymptotical result [5]:

1
n

JRCA −→
n→∞ I(C, Y )− Ep(y) [DKL(p(c|y), p̂(c|y))] −H(C). (5)

The second term is close to zero if one applies a good density approximation and
the first term I(C, Y ) = H(C)−H(C|Y ). Therefore

1
n

JRCA ≈−H(C|Y )

=− Ep(y)

{∑
c

p(c|y) log p(c|y)

}

≈− 1
n

n∑
j=1

∑
c

p(c|yj) log p(c|yj), (6)

where the last step is obtained by approximating the expectation by sample
averaging. The inner summation is recognized as the conditional entropy of the
class symbols given yj . Maximizing JRCA is hence asymptotically equivalent to
minimizing the mean uncertainty of prediction at each projected data point. For
two-class cases, both the minimum and the maximum of p(cj |yj) lead to the
same least entropy at the point yj , and the same applies to the sum over j.
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3.2 Preprocessing the Data

Suppose the data has been centered to be zero mean. Our algorithm requires
prewhitening the primary data, i.e. to find an m×m symmetric matrix V and
to transform z = Vx such that E{zzT } = I. The matrix V can be obtained for
example by

V = ED− 1
2 ET , (7)

where [E,D,ET ] = svd(E{xxT }) is the singular value decomposition of the
scatter matrix of the primary data.

Prewhitening the primary data greatly simplifies the algorithm described in
the following section. We can acquire a diagonal approximation of the Hessian
matrix and then easily invert it. Another utility of whitening resides in the fact
that for two projecting vectors wp and wq,

E{(wT
p z)(wT

q z)} = wT
p E{zzT }wq = wT

p wq, (8)

and therefore uncorrelatedness is equivalent to orthogonality. This allows us
to individually extract uncorrelated features by orthogonalizing the projecting
directions. In addition, selecting the σ parameter in the Gaussian kernel function
becomes easier because the whitened data has unit variance on all axes and σ
has a readily fixed range for any data sets.

3.3 Optimization Algorithm

Let us first consider the case of a single discriminative component where yj =
yj = wT zj ∈ R. Our fixed-point algorithm for finding the extreme point of JRCA
iteratively applies a Newton’s update followed by a normalization:

w† = w −
[
∂2JRCA

∂w2

]−1
∂JRCA

∂w
, (9)

wnew =
w†

‖w†‖ . (10)

Denote Jj = log p̂(cj |yj). The gradient in of JRCA (1) with respect to w can
then be expressed as

∂JRCA

∂w
=

n∑
j=1

∂Jj

∂w
=

n∑
j=1

n∑
i=1

dJj

d(yi − yj)
· ∂(yi − yj)

∂w
. (11)

Notice that the chain rule in the last step applies to the subscript i, i.e. treating yi

as an intermediate variable and yj as a constant. We write gij = dJj/d(yi − yj)
for brevity. If the estimated predictive probability density p̂(cj |yj) is obtained
by Parzen window technique as in (2) and (3), we can then (see Appendix) write
out gij as

gij =
ψ(i, cj)ω′(yi, yj)∑n

k=1 ψ(k, cj)ω(yk, yj)
− ω′(yi, yj)∑n

k=1 ω(yk, yj)
. (12)
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For notational simplicity, denote

Δij =
∂(yi − yj)

∂w
= zi − zj (13)

and the average of all objects (vectors or scalars) aij , (i, j) ∈ [1, . . . , n]×[1, . . . , n]
as

E{a} =
1
n2

n∑
i=1

n∑
j=1

aij . (14)

We can then write

∂JRCA

∂w
=

n∑
i=1

n∑
j=1

gijΔij = n2E{g ◦Δ}, (15)

where ◦ stands for element-wise product and Δ consists of n× n vectors of size
m.

By taking the derivative of gij with respect to yi − yj , we obtain

g′ij =
∂gij

∂(yi − yj)
=

ψ(i, cj)ω′′(yi, yj)∑n
k=1 ψ(k, cj)ω(yk, yj)

− ψ(i, cj)ω′2(yi, yj)

(
∑n

k=1 ψ(k, cj)ω(yk, yj))
2

− ω′′(yi, yj)∑n
k=1 ω(yk, yj)

+
ω′2(yi, yj)

(
∑n

k=1 ω(yk, yj))
2 . (16)

Based on g′ij one can compute

∂2JRCA

∂w2 = n2E{g′ ◦ΔΔT }. (17)

Notice that E{ΔΔT } = 2E{zzT } = 2I if the data is centered and prewhitened
(see Appendix for a proof). Furthermore, if we approximate E{g′ ◦ΔΔT } ≈
E{g′}E{ΔΔT }, assuming g′ and ΔΔT are pair-wisely uncorrelated, the Hessian
(17) can be approximated by

∂2JRCA

∂w2 = 2n2E{g′}I (18)

with E{g′} ∈ R. Inserting (15) and (18) into (9), we obtain

w† = w − n2E{g ◦Δ}
2n2E{g′} =

1
2E{g′} (2E{g′}w − E{g ◦Δ}) . (19)

Because the normalization step (10) is invariant to scaling and the sign of pro-
jection does not affect the subspace predictiveness, we can drop the scalar factor
in the front and change the order of terms in the parentheses. Then the update
rule (9) simplifies to

w† = E{g ◦Δ} − 2E{g′}w. (20)

In this work we employ a deflationary method to extract multiple discrim-
inative components. Precisely, the Fixed-Point Relevant Component Analysis
(FPRCA) algorithm comprises the following steps:
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1. Center the data to make its mean zero and whiten the data to make its
scatter to an identity matrix.

2. Compute Δ, the matrix of pair-wise sample difference vectors as in (13).
3. Choose r, the number of discriminative components to estimate, and σ if the

Gaussian kernel (4) is used. Set p ← 1.
4. Initialize wp (e.g. randomly).
5. Compute g and g′ and then update wp ← E{g ◦Δ} − 2E{g′}wp.
6. Do the following orthogonalization:

wp ← wp −
p−1∑
q=1

(wT
p wq)wq. (21)

7. Normalize wp ← wp/‖wp‖.
8. If not converged, go back to step 5.
9. Set p ← p + 1. If p ≤ r, go back to step 4.

4 Experiments

We have tested the FPRCA algorithm on facial images collected under the
FERET program [6] and ionosphere data which is available at [1]. The iono-
sphere data consists of 351 instances, each of which has 34 real numeric at-
tributes. 225 samples are labeled good and the other 126 as bad. For the FERET
data, 2409 frontal facial images (poses “fa” and “fb”) of 867 subjects were stored
in the database after face segmentation. In this work we obtained the coordi-
nates of the eyes from the ground truth data of the collection, with which we
calibrated the head rotation so that all faces are upright. Afterwards, all face
boxes were normalized to the size of 32×32, with fixed locations for the left eye
(26,9) and the right eye (7,9). Two classes, mustache (256 images, 81 subjects)
and no mustache (2153 images, 786 subjects), have been used in the following
experiments.

4.1 Visualizing Discriminative Features

First we demonstrate the existence of multiple discriminative components in
two-class problems. For illustrative purpose, we use two-dimensional projections.
The first dimension is obtained from LDA as w1 and the second is trained by
FPRCA as w2 and orthogonal to w1 as in (21). All the experiments of FPRCA
in this paper use one-dimensional Gaussian kernel (4) with σ = 0.1 as the Parzen
window function.

Figure 1 (a) shows the projected values of the two classes of facial images.
The plot illustrates that the vertical w2 axis provides extra discriminative infor-
mation in addition to the horizontal w1 axis computed by the LDA method. It
can also be seen that the mustache class along the vertical axis comprises two
separate clusters. Such projecting direction can by no means be found by LDA
and its variants because they limit the projected classes to be single Gaussians.
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Fig. 1. Projected values of the classes mustache and no mustache. (a) The horizontal
axis is obtained by LDA and the vertical by FPRCA. (b) Both dimensions are learned
by HLDR with the Chernoff criterion [2].

For comparison, the result of HLDR using Chernoff criterion [2] (CHER-
NOFF) is shown in Figure 1 (b). The first (horizontal) dimension resembles the
LDA result, while the second (vertical) provides little discriminative information.
It can be seen that the clusters are more overlapping in the latter plot.

4.2 Discriminative Features for Classification

Next we compared the classification results on the ionosphere data using the
discriminative features extracted by FPRCA and three other methods: LDA,
CHERNOFF [2], and RCA. Two kinds of FPRCA features were used. For r = 1,
the one-dimensional projection was initialized by LDA and then trained by
FPRCA. For r = 2, the first component was the training result of r = 1 and the
additional component was initialized by a random orthogonal vector, and then
trained by FPRCA.

The supervised learning and testing were carried out in three modes: ALL –
the training set equals the testing set; LOO – leave one instance out for testing
and the others for training, and loop for each instance; HALF – half of the
samples are for training and the other half for testing. Both LOO and HALF
measure the generalization ability. The latter mode is stochastic and tests the
performance with a much smaller training set. For it, we repeated the experiment
ten times with different random seeds and calculated the mean accuracy.

Figure 2 (a) illustrates the Nearest-Neighbor (NN) classification accuracies
for the compared methods in the above three testing modes with the ionosphere
data. The left two bars in each group show that FPRCA outperforms LDA in all
the three modes when a single discriminative component is used. This verifies
that the high-order statistics involved in the information theoretic objective can
enhance the discrimination. The right three bars demonstrate the performance
of two-dimensional discriminative features. It can be seen that the additional
component learned by CHERNOFF even deteriorates the classification from that
of LDA. Furthermore, CHERNOFF shows poor generalization when the amount
of training data becomes small. In contrast, RCA and FPRCA (r = 2) exceed
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Fig. 2. Nearest-Neighbor (NN) classification accuracies for the compared methods in
three testing modes: (a) the ionosphere data and (b) the FERET data

LDA and FPRCA (r = 1) with the second component added. The accuracies of
FPRCA (r = 2) are comparable to those of RCA as the differences are within
3.5% units. RCA performs slightly better than FPRCA (r = 2) in the LOO and
HALF modes because we applied a grid search for optimal parameters of RCA
while we did not for FPRCA.

We also performed the classification experiments on the FERET data. We
employed 5-fold cross-validations (CV) instead of LOO because the latter would
be very time-consuming for such a large dataset. The data division for HALF
and 5-fold CV modes is based on subject identities. That is, all the images of
one subject belong either to the training set or to the testing set, never to both.

Figure 2 (b) shows the NN classification accuracies. In the one-dimensional
case, FPRCA is again superior to LDA in all modes. The CHERNOFF method
ranks better in the ALL mode, but behaves badly and becomes the worst one
among the compared methods in the 5-fold CV and HALF modes. By contrast,
RCA and FPRCA attain not only the least training errors, but also better gener-
alization. The additional dimension introduced by FPRCA is more advantageous
when the training data become scarce. The accuracies of FPRCA (r = 2) exceed
the other compared methods and the difference is especially significant in the
HALF mode. The result for the RCA method may still be suboptimal due to its
computational difficulty which will be addressed in the next section.

4.3 RCA vs. FPRCA in Learning Time

We have recorded the running times of RCA and FPRCA using a Linux ma-
chine with 12GB RAM and two 64-bit 2.2GHz AMD Opteron processors. For
the 34-dimensional ionosphere data, both RCA and FPRCA converged within
one minute. The exact running times were 38 and 45 seconds, respectively. How-
ever, the calculation is very time-demanding for RCA when it is applied to
the 1024-dimensional facial image data. Ten iterations of RCA learning on the
FERET database required 598 seconds. A 5, 000-iteration RCA training, which
merely utilizes each image roughly twice on the average, took about 83 hours,
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i.e. more than three days. In contrast, the FPRCA algorithm converges within
20 iterations for the mustache classification problem and the training time was
4, 400 seconds.

On the other hand, RCA is problematic when a wrong σ or learning rate pa-
rameter is selected and one has to re-run the time-consuming procedure. Mean-
while, the user of FPRCA does not need to exhaustively try different parameters
because the learning rate is automatically chosen by the algorithm and the range
of σ in FPRCA is readily fixed.

5 Conclusions

The objective of maximizing predictive information is known to yield better
discriminative power than methods based on only second-order statistics. We
presented a fast fixed-point algorithm that efficiently learns the discriminative
components of data based on an information theoretic criterion. Prewhitening
the primary data facilitates the parameter selection for the Parzen windows and
enables approximating the inverse Hessian matrix. The learning rate of each
iteration is automatically optimized by the Newton’s method, which eases the
use of the algorithm. Our method converges quadratically and the extracted
discriminative features are advantageous for both visualization and classification.

Like other linear dimensionality reduction methods, FPRCA is readily ex-
tended to its kernel version. The nonlinear discriminative components can be
obtained by mapping the primary data to a higher-dimensional space with ap-
propriate kernels.
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A Appendix

First we derive gij in (12):

gij =
dJj

d(yi − yj)
=

d
d(yi−yj)

p̂(cj |yj)

p̂(cj |yj)
, (22)

where we have

dp̂(c|yj)
d(yi − yj)

=
d

d(yi−yj)
Ω(yj , cj)∑

c Ω(yj , c)
− p̂(cj |yj)

∑
c

d
d(yi−yj)

Ω(yj , c)∑
c Ω(yj , c)

. (23)

Inserting (23) and (2) into (22), we obtain

gij =
d

d(yi−yj)
Ω(yj , cj)

Ω(yj , cj)
−

∑
c

d
d(yi−yj)

Ω(yj , c)∑
c Ω(yj , c)

=
ψ(i, cj)ω′(yi, yj)∑n

k=1 ψ(k, cj)ω(yk, yj)
− (

∑
c ψ(i, c))ω′(yi, yj)∑n

k=1(
∑

c ψ(k, c))ω(yk, yj)
. (24)

∑
c ψ(i, c) = 1 and

∑
c ψ(k, c) = 1 if each sample is assigned to only one class.

Finally we have (12).
Next we show that E{ΔΔT } = 2E{zzT }:

E{ΔΔT } =
1
n2

n∑
i=1

n∑
j=1

(zi − zj)(zi − zj)T

=
1
n

n∑
i=1

zizT
i −

1
n2

n∑
i=1

zi

n∑
j=1

zT
j −

1
n2

n∑
i=1

zj

n∑
j=1

zT
i +

1
n

n∑
j=1

zjzT
j

=
2
n

n∑
i=1

zizT
i (25)

=2E{zzT }, (26)

where the step (25) is obtained if the primary data is centered, i.e. of zero mean.
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Abstract. This study investigates a new method of feature extraction
for classification problems with a considerable amount of outliers. The
method is a weighted version of our previous work based on the indepen-
dent component analysis (ICA). In our previous work, ICA was applied to
feature extraction for classification problems by including class informa-
tion in the training. The resulting features contain much information on
the class labels producing good classification performances. However, in
many real world classification problems, it is hard to get a clean dataset
and inherently, there may exist outliers or dubious data to complicate
the learning process resulting in higher rates of misclassification. In ad-
dition, it is not unusual to find the samples with the same inputs to have
different class labels. In this paper, Parzen window is used to estimate
the correctness of the class information of a sample and the resulting
class information is used for feature extraction.

1 Introduction

In this paper, the feature extraction for classification problems are dealt with
and the focus is on the feature extraction by a linear transform of the origi-
nal features. These methods are generally referred to as the subspace methods
which includes principal component analysis (PCA) [1], independent component
analysis (ICA) [2], Fisher’s linear discriminant analysis (LDA) [3] and so on.

In our previous work, we developed ICA-FX (feature extraction based on
independent component analysis) [4], a supervised feature extraction method for
classification problems. Like ICA, it utilizes higher order statistics, while unlike
ICA, it was developed as a supervised method in that it includes the output class
information to find an appropriate feature subspace. This method is well-suited
for classification problems in the aspect of constructing new features that are
strongly related to output class.

In this paper, the ICA-FX is extended to incorporate the outliers and dubious
data in the learning process. For a given training sample, the probability of the
sample belonging to a certain class is calculated by Parzen window method
[5] and this information is directly used as an input to the ICA-FX. By this
preprocessing, the samples with higher class-certainty are enforced and those
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with lower class-certainty are suppressed in the learning process. The proposed
method is applied to an artificial dataset to show effectiveness of the method.

This paper is organized as follows. In Section 2, Parzen window method is
briefly reviewed. ICA-FX, our previous feature extraction algorithm, is reviewed
in Section 3 and a new method, weighted ICA-FX, is presented in Section 4.
Simulation results are presented in Section 5 and conclusions follow in Section 6.

2 A Review of Parzen Window

For a given sample in a dataset, to correctly estimate in what extent the sample
belongs to a class, one need to know the pdf s of the data. The Parzen window
density estimate can be used to approximate the probability density p(xxx) of a
vector of continuous random variables XXX [5]. It involves the superposition of a
normalized window function centered on a set of random samples. Given a set of
n d-dimensional training vectors D = {xxx1,xxx2, · · · ,xxxn}, the pdf estimate of the
Parzen window is given by

p̂(xxx) =
1
n

n∑
i=1

φ(xxx− xxxi,h), (1)

where φ(·) is the window function and h is the window width parameter. Parzen
showed that p̂(xxx) converges to the true density if φ(·) and h are selected properly
[5]. The window function is required to be a finite-valued non-negative density
function such that ∫

φ(yyy,h)dyyy = 1, (2)

and the width parameter is required to be a function of n such that

lim
n→∞ h(n) = 0, (3)

and
lim

n→∞nhd(n) =∞. (4)

For window functions, the rectangular and the Gaussian window functions are
commonly used. In this paper, the Gaussian window function of the following is
used:

φ(zzz,h) =
1

(2π)d/2hd|Σ|1/2 exp(−zzzT Σ−1zzz

2h2 ), (5)

where Σ is a covariance matrix of a d-dimensional random vector ZZZ whose in-
stance is zzz.

Figure 1 is a typical example of the Parzen window density estimate. In the
figure, a Gaussian kernel is placed on top of each data point to produce the
density estimate p̂(x).
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Fig. 1. An example of Parzen window density estimate

3 A Review of ICA-FX

ICA outputs a set of maximally independent vectors that are linear combina-
tions of the observed data. Although these vectors might have some applications
in such areas as blind source separation and data visualization, it is not suitable
for feature extraction of classification problems, because it is the unsupervised
learning that does not use class information. The effort to incorporate the stan-
dard ICA with supervised learning has been made in our previous work [4],
where a new feature extraction algorithm, ICA-FX for classification problems
was proposed. ICA-FX tries to solve the following problem:

(Problem statement). Assume that there are a normalized input feature vec-
tor, xxx = [x1, · · · , xN ]T , and an output class, c ∈ {c1, · · · , cNc}. The purpose of
feature extraction is to extract M(≤ N) new features fafafa = [f1, · · · , fM ]T from
xxx, by a linear combination of the xi’s, containing the maximum information on
class c. Here Nc is the number of classes.

The main idea of the ICA-FX is simple. It tries to apply the standard ICA
algorithms to feature extraction for classification problems by making use of the
class labels to produce two sets of new features; features that carry as much
information on the class labels (these features will be useful for classification) as
possible and the others that do not (these will be discarded). The advantage is
that the general ICA algorithms can be used for feature extraction by maximizing
the joint mutual information between the class labels and new features.

First, suppose Nc(≥ 2) denotes the number of classes. To incorporate the
class labels in the ICA structure, the discrete class labels need to be encoded
into numerical variables. The 1-of-Nc scheme is used in coding classes, i.e., a
class vector, ccc = [c1, · · · , cNc ]T , is introduced and if a class label, c, belongs to
the lth value, then cl is activated as 1 and all the other ci’s, i �= l, are set to -1.
After all the training examples are presented, each ci, i = 1, · · · , Nc, is shifted
in order to have zero mean and are scaled to have a unit variance.

Now consider the structure shown in Fig. 2. Here, the original feature vector
xxx is fully connected to uuu = [u1, · · · ,uN ], the class vector ccc is connected only
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Fig. 2. Feature extraction algorithm based on ICA (ICA-FX)

to uuua = [u1, · · · ,uM ], and uN+l = cl, l = 1, · · · , Nc. In the figure, the weight
matrix WWW ∈ �(N+Nc)×(N+Nc) becomes

WWW =
(

W V
000Nc,N INc

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,N+1 · · · w1,N+Nc

...
...

W wM,N+1 · · · wM,N+Nc

000N−M,Nc

000Nc,N INc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

where W ∈ �N×N and V = [V T
a ,000T

N−M,Nc
]T ∈ �N×Nc . Here the first nonzero

M rows of V is denoted as Va ∈ �M×Nc .
In information theoretic view, the aim of feature extraction is to extract M

new features fffa from the original N features, xxx, such that I(fffa; c), the mutual
information between newly extracted features fffa and the output class c, ap-
proaches I(xxx; c), the mutual information between the original features xxx and the
output class c [4].

This can be satisfied if we can separate the input feature space xxx into two
linear subspaces: one that is spanned by fffa = [f1, · · · , fM ]T , which contains
the maximum information on the class label c, and the other spanned by fffb =
[fM+1, · · · , fN ]T , which is independent of c as much as possible.

The condition for this separation can be derived as follows. If it is assumed
that WWW is nonsingular, then xxx and fff = [f1, · · · , fN ]T span the same linear space,
which can be represented with the direct sum of fffa and fffb, and then by the
data processing inequality [6],

I(xxx; c) = I(Wxxx; c) = I(fff ; c) = I(fffa, fffb; c) ≥ I(fffa; c). (7)
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The first equality holds because W is nonsingular. The second and the third
equalities are from the definitions of fff , fffa and fff b. In the inequality on the last
line, the equality holds if I(fff b; c) = I(uM+1, · · · ,uN ; c) = 0.

If this is possible, the dimension of the input feature space can be reduced
from N to M(< N) by using only fffa instead of xxx, without losing any information
on the target class.

To solve this problem, the feature extraction problem is interpreted in the
structure of the blind source separation (BSS) problem as shown in Fig. 3. The
detailed description of each step is as follows:

Independent 
sources

A

b

W

v

S

C

� �

W

UX F

������ ��	�����

Fig. 3. Interpretation of Feature Extraction in the BSS structure

(Mixing). Assume that there are N independent sources sss = [s1, · · · , sN ]T

which are also independent of the class label c. Assume also that the observed
feature vector xxx is a linear combination of the sources sss and ccc with the mixing
matrix A ∈ �N×N and B ∈ �N×Nc ; i.e.,

xxx = Asss + Bccc. (8)

(Unmixing). The unmixing stage is slightly different from the BSS problem as
shown in Fig. 2. In the figure, the unmixing equation becomes

uuu = Wxxx+ V ccc. (9)

Suppose uuu is somehow made equal to eee, the scaled and permuted version of the
source sss; i.e.,

eee � ΛΠsss (10)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is
a permutation matrix. The ui’s (i = 1, · · · , N) are then independent of the
class label c by the assumption. Among the elements of fff = Wxxx(= uuu − V ccc),
fffb = [fM+1, · · · , fN ]T will be independent of c because the ith row of V , Vi =
[wi,N+1, · · · , wi,N+Nc ] = 000 and fi = ui for i = M + 1, · · · , N . Therefore, the
M(< N) dimensional new feature vector fffa can be extracted by a linear trans-
formation of xxx containing the most information on the class if the relation uuu = eee
holds.
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The learning rule for the ICA-FX is obtained in a similar way as that of ICA
using the MLE approach as follows.

If it is assumed that uuu = [u1, · · · ,uN ]T is a linear combination of the source
sss; i.e., it is made equal to eee, a scaled and permutated version of the source, sss,
as in (10), and that each element of uuu is independent of the other elements of uuu,
which is also independent of the class vector ccc, the log likelihood of the data for
a given WWW becomes the following:

L(uuu, ccc|WWW ) = log | detWWW |+
N∑

i=1

log pi(ui) + log p(ccc) (11)

because

p(xxx,ccc|WWW ) = | detWWW | p(uuu, ccc) = | detWWW |
N∏

i=1

pi(ui) p(ccc). (12)

Now, L can be maximized, and this can be achieved by the steepest ascent
method. Because the last term in (11) is a constant, differentiating (11) with
respect to WWW leads to

∂L

∂wi,j
=

adj(wj,i)
| detWWW | − ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+j
= −ϕi(ui)cj 1 ≤ i ≤M, 1 ≤ j ≤ Nc

(13)

where adj(·) is adjoint and ϕi(ui) = − dpi(ui)
dui

/pi(ui) . Note that each ci has
binary numerical values depending on the class label c.

It can be seen that | detWWW | = | detW | and adj(wj,i)
| detWWW | = W−T

i,j . Thus the learning
rule becomes

ΔW ∝ W−T −ϕϕϕ(uuu)xxxT

ΔVa ∝ −ϕϕϕ(uuua)cccT .
(14)

Here ϕϕϕ(uuu) � [ϕ1(u1), · · · , ϕN (uN )]T and ϕϕϕ(uuua) � [ϕ1(u1), · · · , ϕM (uM )]T .
Applying a natural gradient on updating W , by multiplying WTW on the

right side of the first equation of (14), the following is obtained.

W (t+1) =W (t) + μ1[IN −ϕϕϕ(uuu)fffT ]W (t)

V (t+1)
a =V (t)

a − μ2ϕϕϕ(uuua)cccT .
(15)

Here μ1 and μ2 are the learning rates that can be set differently. By this weight
update rule, the resulting ui’s will have a good chance of fulfilling the assumption
that ui’s are not only independent of one another but also independent of the
class label c.

Note that the learning rule for W is the same as the original ICA learning rule
[2], and also note that fffa corresponds to the first M elements of Wxxx. Therefore,
the optimal features fffa can be extracted by the proposed algorithm when it
finds the optimal solution for W by (15).
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4 Weighted ICA-FX

In ICA-FX presented in the above section, the 1-of-Nc scheme was used to code
the discrete class labels into numerical ones, but in many real world problems
the same sample may be classified as either one or another class with probability.
In addition, the training data may contain incorrect class information resulting
errors in classification. This problem may be solved if the probabilistic coding
scheme is used for coding the discrete class information into numerical values.
That is, suppose there are 3 classes and a training sample says that it belongs to
class 1. Because the class information of this sample may or may not be correct,
instead of using (1, 0, 0) for coding the class of this sample, probabilistic coding
such as (0.7, 0.1, 0.2) using the other training data can be used to train ICA-FX.
This is done if we know the conditional distribution of classes for a given dataset
p(c|xxx).

For this purpose, Parzen window presented in Section 2, is used to estimate
the probability that the sample belongs to either class 1, class 2 or class 3 as
follows.

By the Bayesian rule, the conditional probability p(c|xxx) can be written as

p(c|xxx) =
p(xxx|c)p(c)

p(xxx)
. (16)

If the class has Nc values, say 1, 2, · · · , Nc, the estimate of the conditional pdf
p̂(xxx|c) of each class is obtained using the Parzen window method as

p̂(xxx|c) =
1
nc

∑
i∈Ic

φ(xxx− xxxi,h), (17)

where c = 1, · · · , Nc; nc is the number of the training examples belonging to
class c; and Ic is the set of indices of the training examples belonging to class c.
Because the summation of the conditional probability equals one, i.e.,

Nc∑
k=1

p(k|xxx) = 1,

the conditional probability p(c|xxx) is

p(c|xxx) =
p(c|xxx)∑Nc

k=1 p(k|xxx)
=

p(c)p(xxx|c)∑Nc

k=1 p(k)p(xxx|k)
.

The second equality is by the Bayesian rule (16). Using (17), the estimate of the
conditional probability becomes

p̂(c|xxx) =

∑
i∈Ic

φ(xxx − xxxi,hc)∑Nc

k=1
∑

i∈Ik
φ(xxx − xxxi,hk)

, (18)

where hc and hk are the class specific window width parameters. Here p̂(k) =
nk/n is used instead of the true density p(k).
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If the Gaussian window function (5) is used with the same window width
parameter and the same covariance matrix for each class, (18) becomes

p̂(c|xxx) =

∑
i∈Ic

exp(− (xxx−xxxi)T Σ−1(xxx−xxxi)
2h2 )∑Nc

k=1
∑

i∈Ik
exp(− (xxx−xxxi)T Σ−1(xxx−xxxi)

2h2 )
. (19)

Note that for multi-class classification problems, there may not be enough sam-
ples such that the error for the estimate of class specific covariance matrix can
be large. Thus, the same covariance matrix is used for each class throughout this
paper.

Using p̂(c|xxx) obtained above, the class vector ccc in Section 3 becomes proba-
bilistic depending on the whole dataset. And this can be used in training ICA-FX
directly. The advantage of this coding scheme over 1-of-Nc scheme is that the
class information of a sample is affected by its neighboring samples and it be-
comes more tolerant to outliers. This smoothing process acts as giving more
(less) weights on samples whose class information is trustworthy (uncertain).
From now on, the proposed algorithm will be referred to as the weighted ICA-
FX (wICA-FX).

5 Simulation Results

In this section, the performance of wICA-FX is compared with those of other
methods. Consider the simple problem of the following:

Suppose we have two independent input features x1 and x2 uniformly dis-
tributed on [-0.5,0.5] for a binary classification, and the output class c is deter-
mined as follows:

c =

{
0 if x1 + 3x2 < 0
1 if x1 + 3x2 ≥ 0.

For this problem, 5 datasets were generated where the class c was randomly
flipped with probability of 0 to 0.4. Each dataset contains 500 samples on which
PCA, LDA, ICA, ICA-FX and wICA-FX were performed. These feature ex-
traction methods were tested on a separate test dataset with no flip of class
information.

Table 1 is the classification performances of various feature extraction methods
on these datasets. One feature is extracted with each method. Averages of 10
experiments with standard deviations are reported here. Standard multi-layer
perceptron (MLP) with one hidden layer was used for the classification. Three
hidden nodes were used with learning rate of 0.02 and momentum of 0.9. The
number of iterations was set to 100. In wICA-FX, h was set to 1

log10 n as in [7],
where n is the number of training samples.

In the table, the performances of LDA, ICA-FX, and wICA-FX are almost
the same when there are no flipped classes. As the number of flipped samples
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increases, the error rates of wICA-FX increase more slowly than those of ICA-
FX. Comparing to ICA-FX and wICA-FX, the error rates of LDA suddenly jump
to 48% when only 10% of the samples are flipped. Note that the error rates of
PCA and ICA stays the same around 20 % because these are unsupervised
learning methods.

Table 1. Classification performance for the simple dataset (Averages of 10 experiments.
Numbers in the parentheses are the standard deviations)

% of flips Classification error (%) (MLP)
PCA ICA LDA ICA-FX wICA-FX

0 20.41 21.53 2.90 2.54 2.64
(0.32) (0.70) (0.42) (0.84) (0.86)

10 20.22 19.06 48.10 3.16 2.28
(0.28) (2.82) (0.98) (1.15) (0.74)

20 19.74 18.67 48.71 4.24 3.42
(0.98) (0.71) (1.83) (1.74) (1.05)

30 20.30 22.18 47.72 7.82 4.16
(0.14) (2.12) (0.71) (2.51) (2.47)

40 20.02 20.37 48.21 10.56 5.68
(0.56) (0.70) (1.13) (3.21) (2.09)
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6 Conclusions

This study investigates a new method of feature extraction for classification
problems with a considerable amount of outliers. In our previous work ICA-FX,
class information was added in training ICA. The added class information plays
a critical role in the extraction of useful features for classification. With the
additional class information we can extract new features containing maximal in-
formation about the class. However in many real world classification problems, it
is hard to get a clean dataset and inherently, there may exist outliers or dubious
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data to complicate the learning process resulting errors in classification. In addi-
tion, a sample may be classified as either one or another class with probability.
The proposed method focuses on this problem and it is a weighted version of
ICA-FX. Parzen window is used to estimate the correctness of the class infor-
mation of a sample and the resulting class information is used to code the class
in ICA-FX. The advantage of this coding scheme over 1-of-Nc scheme is that
the class information of a sample is affected by its neighboring samples, thus
becomes more tolerant to outliers. This smoothing process acts as giving more
(less) weights on samples whose class information is trustworthy (uncertain).
Experimental result on the simple artificial dataset shows that the wICA-FX is
very effective in dealing with the incorrect class information.
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Abstract. We propose a neural network which can approximate Maha-
lanobis discriminant functions after being trained. It can be realized if a
Bayesian neural network is equipped with two additional subnetworks.
The training is performed sequentially and, hence, the past teacher sig-
nals need not be memorized. In this paper, we treat the two-category
normal-distribution case. The results of simple simulations are included.

1 Introduction

The goal of this paper is to show that a neural network can be trained so that it
can approximate Mahalanobis discriminant functions. Though it is well known
that a neural network can be trained to approximate the Bayesian discriminant
function [2,4-9], there has been no known result as to the approximation of the
Mahalanobis discriminant function by a trained neural network.

We treat the classification of d-dimensional Euclidean vectors by the Ma-
halanobis discriminant in the context of two-category normal-distribution. The
network is realized if a Bayesian neural network is equipped with two additional
subnetworks. The Bayesian neural network to be used is the one proposed in
[5]. It has one output unit, d hidden layer units, d input layer units, and direct
connections between the input layer and the output unit: only 2d+1 units in to-
tal. Except for the direct connections, the neural of this structure is well known.
A trained Bayesian neural network can approximate the posterior probability
[2,4-9]. This implies that the inner potential of the output unit can approxi-
mates the log ratio of posterior probabilities in the two-category case provided
the activation function of the output unit of the network is the logistic function
[2,4-6]. Both the posterior probability and the log ratio of posterior probabili-
ties can be used as Bayesian discriminant functions [1]. Below, in Preliminaries,
we show that the latter differs from one form of the Mahalanobis discriminant
function only by an additive constant. This fact is used in the construction of
the Mahalanobis neural network.

The constant, as shown in Preliminaries, consists of two parts: one is related
to the prior probabilities and the other to the covariance matrices. The purpose
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of the subnetworks is to approximate the two constants. The former is the log
ratio of the prior probabilities. The method of approximating the log ratio is in
principle the same as that of approximating the Bayesian discriminant function
but considerably simple. So it is realized by a subnetwork having only a single
unit.

The other subnetwork approximates the second component, the log ratio of the
determinants of the covariance matrices. It is unavoidable for this subnetwork to
include a process to approximate the sample means, variances and covariances.
Hence, it needs rather many units (at least d(d + 3) units). However, learning
of these statistics is easy and, to calculate the log ratio from them, learning is
unnecessary. Hence, this subnetwork does not cause any difficulty in learning
even in the higher dimensional cases.

From the perspective of probabilistic classifications, the Bayesian decision is
usually better than the discriminant analysis with the Mahalanobis generalized
distance. We also experienced this well known fact in the simulations presented in
Section 5. However, the Mahalanobis generalized distance is often used for the
discriminant analysis and this analysis includes comparison of measurements.
Classification by measurements is often more important than that by proba-
bilities, particularly in the case of health science data. Hence, this article is
meaningful and of practical value.

This paper includes the results of simple simulations to illustrate that the
proposed algorithm actually works well. The probability distributions used in
the simulations are one-dimensional normal distributions.

2 Preliminaries

The two categories are denoted by θ1 and θ2 respectively and we set Θ = {θ1, θ2}.
Let Rd be the d-dimensional Euclidean space (R = R1) and let x ∈ Rd be the
vectors to be classified. Denote by N(μi,Σi), i = 1, 2, the normal distributions,
where μi and Σi are the mean vectors and the covariance matrices. They are
the distributions of the vectors x from the respective categories. The probability
density functions of the normal distributions are

1√
2πΣi

e−
1
2 (x−μi)tΣ−1

i (x−μi), i = 1, 2. (1)

For simplicity, suppose that the covariance matrices are not degenerate. Hence,
Σi as well as Σ−1

i are positive definite. Let x and y be two vectors. The respective
normal distributions define the Mahalanobis generalized distances of the two
vectors by

di(x, y) = |(x− y)tΣ−1
i (x− y)|1/2. (2)

The distances from a vector x to the mean vectors of the respective categories are
di(x,μi), i = 1, 2. In the case of the discriminant analysis with the Mahalanobis
generalized distances, if d1(x,μ1) < d2(x,μ2) then the vector x is allocated to the
category θ1. Hence, the difference d2(x,μ2)− d1(x,μ1) is a natural discriminant
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function for the discriminant analysis. However, the difference of the squares of
the respective distances divided by 2

g1(x) = −1
2
{d1(x,μ1)2 − d2(x,μ2)2} (3)

is also one form of the Mahalanobis discriminant function. If g1(x) > 0, the
vector x is allocated to the category θ1 and vice versa. By (2), we have

g1(x) = −1
2
{(x− μ1)tΣ−1

1 (x− μ1)− (x− μ2)tΣ−1
2 (x − μ2)}. (4)

In the case of the Bayesian decision, the posterior probabilities are compared.
Let P (θi), i = 1, 2, be the prior probabilities and let p(x|θi), i = 1, 2, be the
state-conditional probabilities. We set p(x) = P (θ1)p(x|θ1)+P (θ2)p(x|θ2). In the
two-category case, one of the posterier probabilities, say p(θ1|x), as well as the
difference p(θ1|x)−p(θ2|x) can be used as the Bayesian discriminant function [1].
Furthermore, the ratio P (θ1|x)/P (θ2|x) of the posterior probabilities can also be
a Bayesian discriminant function. Since a monotone transform of a discriminant
function is again a discriminant function [1],

g2(x) = log
P (θ1|x)
P (θ2|x)

(5)

can be used as the Bayesian discriminant function. If g2(x) > 0, x is allo-
cated to the category θ1. Though the functions (3) and (5) are based on dif-
ferent ideas, they differ only by a constant. By the Bayes formula, P (θi|x) =
P (θi)p(x|θi)/p(x), we have

g2(x) = log
P (θ1)
P (θ2)

+ log
p(x|θ1)
p(x|θ2)

. (6)

Hence, by (1), we have

g2(x) = −1
2
{(x− μ1)tΣ−1

1 (x− μ1)− (x− μ2)tΣ−1
2 (x− μ2)}

+ log
P (θ1)
P (θ2)

− 1
2

log
|Σ1|
|Σ2|

. (7)

Consequently, by subtracting a constant

C = log
P (θ1)
P (θ2)

− 1
2

log
|Σ1|
|Σ2|

, (8)

from the Bayesian discriminant function g2(x), we obtain the Mahalanobis dis-
criminant function g1(x).
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3 Bayesian Neural Network

The main part of the Mahalnobis neural network is a Bayesian neural network. It
is used to approximate the log ratio (5). Furthermore, a simplified version of the
Bayesian neural network is used to approximate the log ratio, log P (θ1)/P (θ2),
the first term of the constant (8). To provide the necessary back ground, we
summarize here the Bayesian neural network for the two-category case.

The logistic function σ is defined by

σ(t) =
1

1 + e−t
.

Since a monotone transform of a discriminant function is again a discriminant
function [1],

σ(g2(x)) = σ

(
log

P (θ1|x)
P (θ2|x)

)
(9)

is also a Bayesian discriminant functions. As

σ

(
log

P (θ1|x)
P (θ2|x)

)
=

P (θ1|x)
P (θ1|x) + P (θ2|x)

, (10)

we have
σ(g2(x)) = P (θ1|x). (11)

The inner potential of the output unit of the Bayesian neural network, pro-
posed in [5], having d hidden layer units can approximate any quadratic form in
Rd and, hence, log P (θ1|x)/P (θ2|x) in the sense of Lp(Rd,μ). Here, we omit the
proof but it is based on the theory of quadratic forms and Lemma 1 [3] below.

Lemma 1. Let μ be a probability measure on R. If tn ∈ Lp(R,μ), 0 ≤ p < ∞,
φ ∈ Cn(R) and φ(k), 0 ≤ k ≤ n, are bounded, then, for any ε > 0, there exists
a constant δ for which

‖ 1
n!
φ(n)(0)tn − 1

δn
φ(δt) −

n−1∑
i=0

1
i!
φ(i)(0)(δt)i‖Lp(R,μ) < ε. (12)

Of course, a quadratic form cannot be approximated on the whole space Rd

uniformly by a finite sum of activation functions such as the logistic func-
tion. However, if the probability measure μ decreases more rapidly than the
quadratic form and the activation function increase, then their contribution to
the Lp(Rd,μ) norm outside a bounded domain is small, and, hence, the approx-
imation can be achieved.

The activation function of the output unit of the Bayesian neural network is
the logistic function. Hence, if the inner potential of the output unit approxi-
mates the log ratio, log P (θ1|x)/P (θ2|x), in the sense of Lp(Rd,μ), then, by (11),
the output approximates the posterior probability P (θ1|x). This approximation
also holds in the sense of Lp(Rd,μ), because the logistic transform is a contrac-
tion. Conversely, if the output approximates P (θ1|x), the inner potential of the
output unit has no other choice other than approximating logP (θ1|x)/P (θ2|x).
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Let F (x, w) denote the output of the neural network with weight vector w. For
an integrable function ξ(x, θ) defined on Rd×Θ, let E[ξ(x, ·)|x] and V [ξ(x, ·)|x]
be the conditional expectation and variance of ξ(x, θ). The following proposition
is proved in [8]:

Proposition 2. Set

E(w) =
∫
Rd

2∑
i=1

(F (x, w) − ξ(x, θi))2P (θi)p(x|θi)dx. (13)

Then,

E(w) =
∫
Rd

(F (x, w) − E[ξ(x, ·)|x])2p(x)dx +
∫
Rd

V [ξ(x, ·)|x]p(x)dx. (14)

If ξ(x, θ1) = 1 and ξ(x, θ2) = 0, then E[ξ(x, ·)|x] is equal to the posterior
probability P (θ1|x). Hence, when E(w) is minimized, the output F (x, w) is ex-
pected to approximate P (θ1|x). Accordingly, the network learning is carried out
by minimizing

En(w) =
1
n

n∑
t=1

(F (x(k), w)− ξ(x(k), θ(k)))2, (15)

where {(x(k), θ(k))}nk=1 ⊂ Rd × Θ is the training set. Minimization of (13) can
be realized by sequential learning. This method of training has actually been
stated by many authors [2,4-9].

4 Mahalanobis Discriminant Function

In this section we discuss how to construct a neural network which can approx-
imate the Mahalanobis discriminant function g1(x). The starting point of this
section is an equation

g1(x) = g2(x)− log
P (θ1)
P (θ2)

+
1
2

log
|Σ1|
|Σ2|

, (16)

which can be obtained from (4) and (7). The first term on the right hand side
of (16) can be approximated by the inner potential of the output unit of the
Bayesian network as stated. As the second and third terms are constant in x, it
may not be difficult to approximate them. If the network can perform this task,
the discriminant function g1(x) can be realized as their algebraic sum.

To approximate the second term, we use a single unit network having the
logistic function as the activation function. It has no input. Hence, its inner
potential is the bias itself. Though its structure is simple, its learning rule is
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in principle the same as that of the Bayesian network. Let ζ(θ) be a function
defined on Θ. Then, for

e(v) =
∫
Rd

2∑
i=1

(v − ζ(θi))2P (θi)p(x|θi)dx, (17)

we have
e(v) = (v − E[ζ(·)])2 + V [ζ(·)], (18)

where E[ζ(·)] and V [ζ(·)] are respectively the expectation and variance of ζ(·).
This is a simplification of Proposition 2. If (17) is minimized with respect to
v, then the minimizing v approximates E[ζ(·)]. Moreover, when ζ(θ1) = 1 and
ζ(θ2) = 0, E[ζ(·)] = P (θ1). The equations (17) and (18) correspond to (13) and
(14) respectively. By the method of least squares, (17) can be easily minimized
and, hence, the output v can approximate P (θ1). Then, by the same reason as
in the case of the Bayesian neural network, the inner potential approximates the
log ratio, log P (θ1)/P (θ2).

The approximation of the log ratio of the determinants |Σ1| and |Σ2|, the
third term on the right-hand side of (16), is achieved by a different method.
In this case the network does not need to approximate probabilistic function.
Hence, learning is easy. The sample means, variances and covariances can be
approximated by the method of least squares, which can be realized by sequential
learning. To calculate the log ratio, log |Σ1|/|Σ2|, from these statistics, learning
is unnecessary. The module for this calculation can be fixed beforehand. Hence,
no difficulty is expected in learning of the third term on the right-hand side of
(16).

There may be another direct method. Let ni be the number of pairs (x(k), θ(k))
from the category θi up to time n. Define determinants by

|Si| = |
1
ni

n∑
k=1

(x(k)
ir −mir)(x

(k)
is −mis)|r,s=1,···,d, i = 1, 2, (19)

where xi = (xi1, · · · , xid) are the vectors from the category θi. If mi are the sam-
ple mean vectors, then, |Si| are the determinants of sample covariance matrices.
If mi are variables, then (19) are functions in mi respectively. We can prove that
when mi is equal to the respective sample mean vectors μ̂i, the gradients of the
functions (19) are null and the Hessians of (19) are positive definite. This implies
that the determinants can be obtained by the method of least squares with the
gradient descent.

In conclusion, each term of the right-hand side of (16) can be approximated
by sequential learning respectively. Hence, the past teacher signals are unneces-
sary for updating these terms. We can realize the Mahalanobis neural network,
putting together these results. The inner potentials of the output units of the
main part and one of the subnetworks are fed into a linear unit with the output
of the other subnetwork. Then, the output of the linear unit approximates the
Mahalanobis discriminant function.
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5 Simulations

Simple simulations are performed to confirm that the idea of this article works
well. In each simulation, 1000 numbers are randomly chosen from two one-
dimensional normal distributions. They are not vectors as d = 1. The two normal
distributions are denoted by N(μ1,σ

2
1) and N(μ2,σ

2
2), where σ2

i , i = 1, 2, are
the variances. The results of two simulations are illustrated in this section. The
prior probabilities, the means and variances in the two simulations are listed
in Table 1. In this table, only the variances are distinct in the two simulations.
In Simulation 1, the inner potential of the output unit is to approximate a lin-
ear function but, in Simulation 2, it has to approximate a quadratic function.
Hence, the approximation tasks in the two simulations are distinct in difficulty.
However, the distributions of the categories θ1 are common to compare the two
results conveniently.

Table 1. Parameters of the probability distributions in the respective simulations

P (θ1) P (θ2) μ1 μ2 σ2
1 σ2

2

Simulation 1 0.3 0.7 -1 1 1 1

Simulation 2 0.3 0.7 -1 1 1 2

The probability density functions of the two categories in each simulation are
illustrated in Figures 1a and 1b respectively. The curve S1C1, for example, is
the probability density function used in the simulation 1 for the category θ1.

1a 1b

Fig 1. Probability density functions in the respective simulations

The Bayesian and Mahalanobis discriminant functions obtained theoretically
with the parameters in Table 1 in the respective simulations are compared in
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Figures 2a and 2b. The curves BT illustrate the Bayesian discriminant functions
and the curves MT the Mahalanobis discriminant functions obtained theoretically.

The training sequences are cyclic. First, a sequence of 1000 pairs (x, θ) ∈
Rd × Θ are generated using 2000 random numbers in each simulation. The
random numbers used in both simulations are the same. Hence, the sequences
{θ(k)} are common in the two simulations. When θ(k) = θi, x(k) is chosen from
the distribution N(mi,σ

2
i ). Hence, when θ(k) = θ1, the pairs (x(k), θ(k)) are the

same in the two simulations. These are convenient, when we compare the results
in the two simulations. These sequences are repeatedly used respectively. Hence,
the training sequences are cyclic. Using cyclic training sequences has a merit
in that the sample statistics can be exactly calculated and compared with the
results of simulations.

2a 2b

Fig 2. Theoretically obtained discriminant functions

The sequences included 289 pairs from the category θ1 and 711 pairs from the
category θ2. Let μ̂i be the sample means. In the case d = 1, the determinants
|Σi| are the sample variances σ̂2

i . These sample statistics and the approximation
P̂ (θ1) of the prior probability are listed in Table 2 with P̂ (θ2) = 1− P̂ (θ1). The
networks obtained these quantities with accuracy of several significant digits.
The log ratio of the variance, log σ̂2

1/σ̂2
2 , was calculated outside the network in

our simulation. However, it can be obtained by the subnetwork if it has log units.

Table 2. Parameters of the probability distributions based on the outputs of the trained
Mahalanobis neural networks

P̂ (θ1) P̂ (θ2) μ̂1 μ̂2 σ̂2
1 σ̂2

2

Simulation 1 0.289 0.711 -0.977 1.049 1.036 0.991

Simulation 2 0.289 0.711 -0.977 1.070 1.036 1.982

When the two tables are compared, one may find slight differences between
the corresponding values. These differences are caused by randomness of the
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training set. In Figures 3a and 3b, the Bayesian and Mahalanobis discriminant
functions obtained by the respective simulations are shown. The curves BS illus-
trate the Bayesian discriminant functions and the curves MS the Mahalanobis
discriminant functions obtained by simulation. The formers are the outputs of
the trained Bayesian neural networks and the latters are those of the trained
Mahalanobis neural networks. They are obtained by shifting the inner poten-
tials of the output units of the formers. The sizes of the shifts are decided based
on Table 2 which is a list of statistics obtained by the networks themselves. Note
that they are not based on the parameters given in Table 1. Using these four
discriminant functions the test data were classified. The test sequences were con-
structed from 2000 random numbers distinct from those used for generating the
teacher sequences. The test sequences were constructed in the same way as the
teacher sequences. Hence, the sequences of the categories {θ(k)} are the same in
both simulations.

3a 3b

Fig. 3. Discriminant functions obtained by simulations

The test sequences contained 298 pairs from the category θ1 and 702 pairs
from the category θ2. The numbers of correctly classified x among the 1000 are
listed in Table 3. The numbers in the MT, MS, BT and BS columns in Table 3 are
respectively the classification results by the Mahalanobis dicriminant functions
obtained theoretically (MT) and by simulation (MS), and those by the Bayesian
discriminant functions obtained theoretically (BT) and by simulation (BS). The
capabilities of the discriminant functions obtained by simulation are comparable
to the corresponding theoretical discriminant functions respectively.

Table 3. Classification results by the four discriminant functions. See Text.

MT MS BT BS

Simulation 1 825 825 839 838

Simulation 2 772 773 796 799
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6 Discussions

The theoretically proposed learning algorithm of the neural network for the Ma-
halanobis discriminant function was proved to work at least in the simple cases.
The simulation results suggest its usefulness for practical applications. Since the
training of the network is sequential, the network does not need to memorize
the individual past teacher signals. It is well-known that the Bayesian decision
is generally better than any other methods of decision. We have unexpectedly
experienced this fact by comparing the Bayesian and Mahalanobis decisions with
the discriminant functions obtained theoretically and by simulation (Table 3).
However, the discriminant analysis by the Mahalanobis generalized distance is
also often used in many occasions. In such cases, our network may be useful.

The main part of the neural network has d hidden layer units. This number is
about a half of that of the Bayesian neural network proposed by Funahashi [2].
However, our network has met some difficulty in training when the discriminant
function is not very simple. Even in Simulation 2 in this paper, the approximation
of the discriminant function was not very accurate, though the trained neural
network worked well as listed in Table 3. If the initial values of parameters
are adjusted, the accuracy of the approximation may be improved. It can be
theoretically proved that our network can approximate the discriminant function
with any accuracy. But the accurate approximation is realized in the world of
”δ and ε”. The free learning may rarely step into such a world. We have just
occasionally observed that the absolute value of the coefficient of x, the constant
corresponding to δ in Lemma 1, is minimized to less than 0.001.

The log ratios, log P (θ1)/P (θ2) and log p(θ1|x)/p(θ2|x)(= g2(x)), can be di-
rectly approximated as the inner potentials of the output units by the method of
least squares with respect to the prior probability P (θ1) and postrior probability
p(θ1|x) respectively. However, the approximation of the log ratio, log |Σ1|/|Σ2|, of
the determinants may not be achieved in such a way. There may be two ways of
approximating the determinants. One is to approximate the sample means, vari-
ances and covariances respectively using a neural network simple but having many
output units. The determinants can be calculated from these statistics. If this is a
task of the network, the module for this calculation must be complicated. However,
the module can be fixed beforehand and does not cause any difficulty in learning.
The other way is to use the fact that the Hessian of (19) is positive definite as de-
scribed in Section 4. In this case the determinants can be obtained directly but
the structure of the network must be complicated. Moreover, unless the network
has log units, it is also a complicated task to obtain their log ratio. A reasonable
algorithm for the log ratio of the determinants is still under our consideration.
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Abstract. Feature selection (FS) has long been studied in classification and 
regression problems. In comparison, FS for unsupervised learning has received 
far less attention. For many real problems concerning unsupervised data 
clustering, FS becomes an issue of paramount importance. An unsupervised FS 
method for Gaussian Mixture Models, based on Feature Relevance 
Determination (FRD), was recently defined. Unfortunately, the data 
visualization capabilities of general mixture models are limited. Generative 
Topographic Mapping (GTM), a constrained mixture model, was originally 
defined to overcome such limitation. In this brief study, we test in some detail 
the capabilities of a recently described FRD method for GTM that allows the 
clustering results to be intuitively visualized and interpreted in terms of a 
reduced subset of selected relevant features. 

1   Introduction 

Finite mixture models have settled in recent years as a standard for statistical 
modelling [1]. Gaussian Mixture Models (GMM), in particular, have received 
especial attention for their computational convenience to deal with multivariate 
continuous data. This study focuses on their clustering capabilities.  

Multivariate data visualization can be especially important in the exploratory 
stages of an analytical data mining process [2], and GMMs lack this capability. The 
GTM model was originally defined [3] as a constrained GMM allowing for 
multivariate data visualization on a low dimensional space. The model is constrained 
in that mixture components are equally weighted, share a common variance and their 
centres do not move independently from each other. This last feature also makes 
GTM a probabilistic alternative to the widely used Self-Organizing Maps [4]. 

The interpretability of the clustering results provided by GTM, even in terms of 
exploratory visualization, can be reduced when the data sets under analysis consist of 
a large number of features: a situation that is not uncommon in real clustering 
problems. The data analyst would benefit from a method that allowed ranking the 
features according to their relative relevance and, ultimately, from a feature selection 
method based on it. Feature selection (FS) has for long been the preserve of 
supervised methods and, in comparison, FS for unsupervised learning has received far 
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less attention despite the fact that, in many real clustering problems, FS becomes an 
issue of paramount importance, as results have to meet interpretability and 
actionability requirements. Both the interpretability and the actionability (understood 
as the capability to act upon the clustering results) of clusters would be improved by 
their description in terms of a reduced subset of relevant variables. 

A recent main advance on feature selection in unsupervised model-based clustering 
was presented in [5] for GMM and extended to GTM in [6] for a biomedical problem, 
but it has never been evaluated in detail. This brief study provides such evaluation. 

The remaining of the paper is structured as follows. First, brief introductions to the 
standard Gaussian GTM and its extension for FRD are provided. This method is then 
tested on several artificial and real data sets and the results are presented and 
discussed. The paper wraps up with a brief conclusions section. 

2   GTM as a Constrained Gaussian Mixture Model 

In mixture models, the observed data are assumed to be samples of a combination or 
finite mixture of k=1,…,K components or underlying distributions, weighted by 

unknown priors ( )kP . Given a D-dimensional dataset { }N
nn 1== xX , consisting of N 

random observations, the corresponding mixture density is defined as: 

( ) ( ) ( )
=

=
K

k
k kPkpp

1

;θxx , (1) 

where each mixture component k is parameterized by kθ . For continuous data, the 

choice of Gaussian distributions is a rather straightforward option, in which case: 

( ) ( ) ( ) ( )−−−= −−−
kk

T
kk

D
kkkp μμπμ xxx 1212

2

1
exp2,; ΣΣΣ , (2) 

where the adaptive parameters kθ  are the mean vector and the covariance matrix of 

the D-variate distribution for each mixture component, namely kμ  and kΣ . From Eq. 

(2), a log-likelihood can be defined, from which Maximum Likelihood estimates of 

kμ  and kΣ  can be obtained using the Expectation-Maximization (EM:[7]) algorithm. 

2.1   The Standard GTM Model 

One of the practical limitations of general finite mixture models is their lack of 
visualization capabilities, which reduces the interpretability of the model. The GTM 
was defined as a constrained mixture of distributions in order to provide such 
visualization capabilities, akin to those of the widely used SOM. The GTM is a 
constrained mixture of distributions model in the sense that all the components of the 

mixture are equally weighted by the constant term ( ) 1−= KkP , and all components 

share a common variance 1−β  (therefore I1−= βΣ ). The GTM can also be seen as a 

non-linear latent variable model that defines a mapping from a low dimensional latent 
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space onto the high-dimensional data space. As such, it is further constrained in that 
the centres of the mixture components do not move independently from each other, as 
they are limited by definition to lie on a low-dimensional manifold embedded in the 
D-dimensional space. Such manifold constraint is made explicit through the definition 

of a prior distribution in the latent space in the form ( ) ( )=
− −= K

k kKp 1
1 uuu δ , 

where the K latent points ku  are sampled, forming a regular grid, from the latent 

space of the GTM. This latent space discretization makes the model computationally 
tractable and provides an alternative to the clustering and visualization space of the 
SOM. 

The mapping defined by the model is carried through by a set of basis functions 
generating a (mixture) density distribution. For each feature d, the functional form of 

this mapping is the generalized linear regression model ( ) ( )= M
m mdmd w,y uWu φ , 

where mφ  is one of M basis functions, defined here as spherically symmetric 

Gaussians, and W  is the matrix of adaptive weights mdw  that defines the mapping. 

The probability distribution for a data point x, induced by ( )up  and given the 

adaptive parameters of the model, which are the matrix W  and the common inverse 
variance of the Gaussians β , can be written as: 

( ) { }2
2

2exp
2

; xyWux β
π
ββ −=

D

,p , (3) 

where the D elements of y are given by the aforementioned functional form of the 
mapping. Integrating the latent variables out, we obtain the following mixture density: 

( ) ( ) ( ) { }
=

−==
K

k
k

D

K
dp,p,p

1

2
2

2exp
2

1
; xyuuWuxWx β

π
βββ  (4) 

where the D-dimensional centres of the GTM mixture components ky  are usually 

known as reference vectors or prototypes of a cluster. This leads to the definition of 
the log-likelihood as: 

( ) { }
= =

−=
N

n

K

k
nk

D

K
L

1 1

2
2

2exp
2

1
ln, xyXW β

π
ββ  (5) 

The EM algorithm can then be used to obtain the Maximum Likelihood estimates 
of the adaptive parameters of the model. Defining Z  as the matrix of indicators 
describing our lack of knowledge of which latent point ku  is responsible for the 

model generation of data point nx , the complete log-likelihood becomes: 

( ) { }
= =

−=
N

n

K

k
nk

D

knc z,L
1 1

2
2

2exp
2

ln, xyZXW β
π
ββ . (6) 

 

−

−

−
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The expected value of knz  (or responsibility knr ) is calculated in the E-step of EM as:  

( )
= −−

−
==

K
k nk

nk

nkkn Pr

1'
2

'

2

2
exp

2
exp

,;
xy

xy
Wxu

β

β

β , (7) 

whereas the update expressions for W  and β  are obtained in the Maximization step 

of the algorithm. See details of these calculations in [3]. 

2.2   Feature Relevance Determination in GTM: The FRD-GTM 

Despite having been defined to provide multivariate data exploratory visualization, 
the interpretability of the clustering results provided by the GTM can be limited for 
data sets of large dimensionality. Consequently, an unsupervised FRD method should 
help to improve model interpretability. 

The problem of feature relative relevance determination for GMM was recently 
addressed in [5] and extended to GTM in [6]. Feature relevance in this unsupervised 
setting is understood as the likelihood of a feature being responsible for generating the 
data clustering structure. A similar counterpart procedure for supervised models is 
Automatic Relevance Determination (ARD: [8]). 

In this unsupervised setting, relevance is defined through the concept of saliency. 
Formally, the saliency of feature d can be defined as ( )1== dd P ηρ , where 

( )Dηη ,...,1=  is a further set of binary indicators that, like Z , can be integrated in 

the EM algorithm as missing variables. A value of 1=dη  ( 1=dρ ) indicates that 

feature d has the maximum possible relevance. According to this definition, the 
mixture density in Eq. (4) can be rewritten as: 

( ) ( ) ( ) ( ){ }∏
= =

−+=
K

k

D

d
dodoodddkddoo wxq,xp

K
p

1 1
,, ,;1;

1
,,,, βρβρβ uwuwWx  (8) 

where dw  is the vector of W  corresponding to feature d and { }Dρρ ,...,1≡ . The 

distribution p is a feature-specific version of Eq. (3). A feature d will be considered 

irrelevant, with irrelevance ( )dρ−1 , if ( ) ( )dodooddkd wxqxp ,, ,;,; ββ uwu =  for all 

the mixture components k, where q  is a common density followed by feature d. 

Notice that this is like saying that the distribution for feature d does not follow the 
cluster structure defined by the model. This common component requires the 
definition of two extra adaptive parameters: { }Dooo ww ,1, ,...,≡w  and 

{ }Dooo ,1, ,..., ββ≡  (so that ( ) oooo wuy φ= ). For fully relevant ( 1→dρ ) features, 

the common component variance vanishes: ( ) 01
, →−
doβ . The Maximum Likelihood 

criterion can now be stated as the estimation of those model parameters that 
maximize: 

 

−
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( ) ( )+=
=

kn kndknd

D

d
knooc bar,L ,

1

ln,,, ZX,wW β  (9) 

where 

( ) ( )( )−−= 221

2
exp2

m ndmdkmdknd xwa uφβπβρ  (10) 

and 

( )( ) ( )( )−−−= 2
,

,21
, 2

exp21 nddooo
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dodknd xwb uφ
β

πβρ  (11) 

The responsibility knr  in Eq. (7) becomes: 
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The maximization of the expected log-likelihood for GTM yields update formulae for 
the model parameters. The saliency is updated according to:  

=
kn kndkn

new
d ur

N ,

1ρ , (13) 

where ( )kndkndkndknd baau += . For details on the calculations for the rest of the 

parameters, see [9]. 

3   Experimental Results and Discussion 

Two initialization strategies for FRD-GTM were used in the experiments for this 
study. The first one fixes the initial values of all the adaptive parameters of the model, 
following a standard procedure [3,9], thus ensuring the replicability of the results. The 
second strategy entails initializing W and ow  with small values randomly sampled 

from a normal distribution. This way, different local minima might be reached by the 
model. For both strategies, saliencies were initialized at 5.0=dρ , Ddd ,...,1, =∀ . 

For the experiments with synthetic data, the grid of GTM latent centres was fixed 
to a square layout of 33×  nodes (i.e., 9 constrained mixture components). The 
corresponding grid of basis functions mφ  was fixed to a 22×  layout. Alternative 

layouts were tested without significant differences (concerning the goals of the 
current analyses) being observed. For the experiments with real data, the grid of GTM 
latent centres was fixed to square layouts of 55×  and 1010×  nodes (i.e., 25 or 100 
constrained mixture components). The corresponding grid of basis functions mφ  was 

fixed to 33× and 55×  layouts. 
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3.1   Results for Synthetic Data Sets 

The aim of these first experiments was discerning whether the FRD-GTM model 
could approximate the feature relevance determination results for the more general 
GMM. Data with very specific characteristics were required and, for comparative 
purposes, we resorted to synthetic sets similar to those used in [5]. The first one 
(hereafter referred to as synth1), with 1,200 data points, consisted of a contrasting 
combination of features: the first two define four neatly separated Gaussian clusters 
with centres located at ( ) ( ) ( )4,6,9,1,3,0  and ( )10,7 ; they are meant to be relevant. The 
next four features are Gaussian noise and, therefore, irrelevant in terms of defining 
cluster structure. The second synthetic set (hereafter referred to as synth2: a variation 
on the Trunk data set used in [5]) was designed for its 10 features to be in decreasing 
order of relevance. It consisted of 10,000 data points sampled from two Gaussians 

( )I,1μΝ  and ( )I,2μΝ  , where 
−

=
19

1
,...,

12

1
,...,

3

1
,11

d
μ  and 21 μμ −= . 

The FRD results for synth1 for the fixed initialization strategy are shown in Table 1 
and for the varying one in Fig. 1. For both, the first two features yielded the largest 
saliencies whereas the remaining features yielded very small ones, as expected. This 

was corroborated by the estimated values of 1−
o : quite small for the relevant features 

in comparison to the variances for the remaining features. 

Table 1. FRD-GTM estimated values of  and 1−
o , using the fixed initialization strategy 

described in the main text, for the synth1 data set 

 Relevant features Irrelevant features 

feat # 1 2 3 4 5 6 

d  0.743 0.759 0.106 0.056 0.082 0.066 

1
,

−
do

 0.102 0.072 1.035 1.028 1.061 0.941 
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Fig. 1. FRD-GTM estimated values (represented by their means, over 20 runs, plus and minus 
one standard deviation) of parameters  (left) and 1−

o  (right), using the random varying 
initialization strategy described in the main text, for the synth1 data set 
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Table 2 and Fig. 2 provide similar information for synth2. Even though the trend is 
not perfect, a clear decreasing order of relevance was provided by both the saliencies 

and 1−
o . Overall, these results did not reveal major differences between the 

performance of FRD-GTM and its counterpart procedure for GMM and, 
consequently, they are not enough to justify the development of FRD-GTM by 
themselves. As mentioned in previous sections, the extra edge is provided by the 
visualization capabilities of this model. Fig. 3 illustrates this by showing, in separate 
plots, the FRD-GTM latent space representation of the 10-dimensional 5,000 data 
points corresponding to each of the twin Gaussians of synth2. This representation is 

based on the posterior mean projection = k nknoon r,, xwWxu ,,, β  for each 10-

dimensional data point nx . The points corresponding to each Gaussian turn out to be 
strictly ascribed, with very few exceptions, to a half of the visualization latent space, 
sharply defined by a vertical boundary. This result confirms that the FRD-GTM 
reproduces the natural cluster structure of synth2 fairly well. 

Table 2. FRD-GTM estimated values of  and 1−
o , using the fixed initialization strategy 

described in the main text, for the synth2 data set 

 Feature # 

 1 2 3 4 5 6 7 8 9 10 

d  1.000 0.692 0.643 0.512 0.461 0.408 0.358 0.355 0.392 0.417 

1
,

−
do

 0.038 0.625 0.724 0.760 0.843 0.858 0.821 0.867 0.896 1.124 
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Fig. 2. FRD-GTM estimated values (represented by their means, over 20 runs, plus and minus 
one standard deviation) of parameters  (left) and 1−

o  (right), using the random varying 
initialization strategy described in the main text, for the synth2 data set 

3.2   Results for Real Data Sets 

The FRD-GTM procedure defined in section 2.2 has already been successfully applied 
in two problems of real biomedical signal analysis [6,9]. Here, it will be further tested 
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Fig. 3. FRD-GTM representation, on its 2-dimensional visualization latent space, of the 10-
dimensional points corresponding to the twin Gaussians of synth2. This representation is based 
on the posterior mean projection described in the main text. (Right) 5,000 points sampled from 
the 1st Gaussian; (left) 5,000 points sampled from the 2nd Gaussian. 

Table 3. Feature saliency rankings (in decreasing order of relevance) for the Ionosphere data 
set. On the top row, results for the FRD-GTM procedure; bottom row: results for the SUD 
procedure [11]. *Notice that, for FRD-GTM, features 1 and 2 were removed for the analysis. 
For SUD, these are precisely the most irrelevant features. 

GTM* 15,13,21,11,17,19,9,5,23,7,31,27,25,29,3,33,10,8,6,12,22,4,14,20,16,28,30,24,18,26,34,32 

SUD 13,15,11,9,7,17,19,21,5,3,23,25,27,29,31,33,10,4,6,12,14,8,16,20,18,22,28,26,24,30,32,34,2,1 
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Fig. 4. FRD-GTM estimated values of parameter , as in Figs. 1 and 2, for the Ionosphere 
data set. Dotted lines linking the mean values have been kept to appreciate the differences in 
saliency between the real and complex parts of the radar signal values. 

on the well known Ionosphere data set from the UCI machine learning repository. It 
contains radar data consisting of 351 instances and 34 features, the latter consisting of 
17 pairs of values. Each pair is formed by the real and complex parts of the values of 
an autocorrelation function for a pulse number of the radar system signal. The first pair 
was removed (as in [10]) due to uninformative character of its complex part. The 
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ionosphere data were meant for classification, as they can be ascribed to one of two 
categories or classes: “bad radar returns” and “good radar returns”. Such classes, in 
turn, indicate the lack of or the existence of ionosphere structure.  

The estimation of the feature saliencies for the Ionosphere data yielded some 
striking results, shown in Fig.4. Consistently, all real parts had higher saliencies than 
their complex counterparts, meaning that the real parts describing the original signal 
have a richer cluster structure. To the best of the author’s knowledge, this 
interpretation has not been reported elsewhere, although similar feature ranking 
results can be found for both unsupervised [11] and supervised [12] models. Table 3 
provides comparative ranking results obtained with the application of FRD-GTM and 
a procedure called Sequential Backward Selection for Unsupervised Data (SUD: [11]) 

FRD-based feature selection should also ease the interpretability of the clustering 
results in terms of exploratory visualization. To illustrate this, we cluster a further 
data set consisting of 30 features and over 100 instances corresponding to physical, 
chemical and biological measurements from European, human-altered water streams 
(www.streames.org). The application of FRD-GTM yielded a saliency ranking in 
which the highest positions corresponded to three features, namely: NO3

--N: nitrate 
concentration, conductivity, and D.O.C.: dissolved organic carbon.  

Fig. 5 shows the cluster map (in which cluster membership is defined using the 
posterior mode projection knnk

r
kuu maxarg

,
=∗ ) for these data. Each cluster can be 

visually characterized using reference maps, which are colour-coded latent space 
representations of each of the D elements of the reference vectors ky . A 
characterization of a cluster on the basis of the 30 original features could be of no use; 
instead, a characterization on the basis of the 3 most relevant features, such as 
illustrated in Fig.5, can be far more actionable. 

 
Fig. 5. (left): GTM 1010× cluster map. The relative size of each cluster (square) indicates the 
ratio of instances assigned to it. Three clusters, labelled as ‘1’, ‘2’, and ‘3’, are selected to 
illustrate their interpretation using (right): the 1010×  reference maps of the three features with 
highest saliency. The reference maps are coded in grey-scale, from black (lowest values) to 
white (highest values), allowing a straightforward interpretation: for instance (and simplifying 
for the sake of brevity), ‘1’ is characterized by low values of all three features, while ‘2’ is 
characterized by high values of NO3

--N and ‘3’ by high levels of D.O.C. and conductivity. 
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4   Conclusions 

The clustering of high-dimensional databases can be difficult to interpret and act 
upon, and the use of unsupervised feature selection should help to alleviate this 
problem. A definition of feature relevance for unsupervised clustering with GMMs 
was recently provided in [5]. In this paper, we have assessed in some detail an 
extension of this method for the constrained mixture GTM model. The FRD-GTM is 
capable of simultaneous multivariate data clustering and data visualization, while 
providing a feature relevance ranking. A series of experiments have been carried out 
on artificial and real data sets, yielding similar results to GMM. Some of the data 
visualization capabilities of the GTM that GMMs lack have also been illustrated. 
They have the potential to ease the interpretation of the clustering results. 

Future research should compare in more detail the performance of FRD-GTM with 
that of alternative FS and clustering methods such as those described in [10]. 
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Abstract. To decide the optimal size of learning machines is a central
issue in the statistical learning theory, and that is why some theoret-
ical criteria such as the BIC are developed. However, they cannot be
applied to singular machines, and it is known that many practical learn-
ing machines e.g. mixture models, hidden Markov models, and Bayesian
networks, are singular. Recently, we proposed the Singular Information
Criterion (SingIC), which allows us to select the optimal size of singular
machines. The SingIC is based on the analysis of the learning coefficient.
So, the machines, to which the SingIC can be applied, are still limited.
In this paper, we propose an extension of this criterion, which enables
us to apply it to many singular machines, and evaluate the efficiency in
Gaussian mixtures. The results offer an effective strategy to select the
optimal size.

1 Introduction

Practical learning machines, e.g., mixture of distributions, Bayesian networks
and hidden Markov models, are used in information engineering. In spite of their
various applications, the theoretical properties have not been clarified yet. From
the statistical point of view, there are two types of machines. One is regular,
the other is singular. A machine is generally described by a probability density
function, which has parameters. Roughly speaking, if the mapping from the
parameters to the function is one-to-one, the machine is regular. Otherwise, it
is singular. For example, Gaussian mixtures are singular. Let the mixture be
p(x|w) = aG(x, b)+ (1−a)G(x, c), where w = (a, b, c) is the parameter, and 0 ≤
a ≤ 1. The function G(x, b) is a Gaussian distribution, and b indicates the mean
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Fig. 1. (a) The Gaussian mixture (b) The parameter space: The bold lines are the
union (c) The Gaussian distribution expressed by the union

(Fig. 1-(a)). Assume that x ∈ R and that the variances of G(x, b) and G(x, c) are
common and constant. The union {a = 0, c = c∗}∪{a = 1, b = c∗}∪{b = c = c∗}
expresses a Gaussian distribution G(x, c∗) in the parameter space (Fig. 1-(b) and
(c)). On the union, the mapping is not one-to-one. Moreover, the intersection
of these three subspaces indicates singular points. Therefore, the machine is
referred to as singular. The properties are unknown because of the singularities,
and the importance to analyze them is pointed out [1],[2]

To decide the optimal size of the machine is a central issue, so called the model
selection problem, in statistical learning theory [3]. For instance, it is important
to estimate the number of Gaussian distributions in the classification. In the
Bayes estimation, the BIC [4] uses the stochastic complexity [5] as an evaluation
function. However, BIC cannot approximate the complexity in singular machines.
In these years, the theory about algebraic geometry and the Bayes estimation was
established [6]. As one of the applications, we proposed the Singular Information
Criterion (SingIC), which is based on a relation between singularities and the
stochastic complexity [7].

In the Bayes estimation, some evaluation functions, such as the stochastic
complexity and the generalization error, have the coefficient which includes in-
formation about the size of the true machines. Note that the true machine means
the one which generates the sample data. In this paper, the coefficient is referred
to as a learning coefficient. The SingIC leverages this information to select the
true size. Thus, the criterion requires the value of the evaluation function to be
calculated by experiments, and the exact form of the coefficient to be written as a
function of the size. The form of the coefficient was obtained in some singular ma-
chines such as the reduced rank regression [8], and left-to-right HMMs [9]. How-
ever, to obtain the exact form is not easy in general singular machines. Instead
of the exact one, the bound form was clarified in many machines [10,11,12,13]. In
this paper, we propose an extension of the SingIC based on the bound. It enables
us to apply the SingIC to more useful models such as hidden Markov models,
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Bayesian networks, mixture models, etc. We also show experimental results in
Gaussian mixtures to confirm whether our extension works, because the mixture
models are widely used in information engineering.

2 The Learning Coefficient

Let Xn = {X1, · · · ,Xn} be a set of sample data, that are independently and
identically generated by the true distribution q(x). Let p(x|w) be a learning
machine. An a priori distribution is ϕ(w) on the set of parameters W . Then, the
a posteriori distribution is defined by

p(w|Xn) =
1

Z(Xn)
exp(−nHn(w))ϕ(w),

where

Z(Xn) =
∫

exp(−nHn(w))ϕ(w)dw,

Hn(w) =
1
n

n∑
i=1

log
q(Xi)

p(Xi|w)
.

The stochastic complexity is defined by

F (Xn) = − log Z(Xn), (1)

which is the minus log marginal likelihood. We can select the optimal model in
terms of the likelihood to minimize this function. So, it is important to know
the mathematical behaviors. To analyze it, the average stochastic complexity is
essential. It is defined by

F (n) = EXn [F (Xn)] ,

where EXn [·] stands for the expectation value over all sets of samples. Based
on the algebraic geometrical method [6], the asymptotic expansion of F (n) is
written by

F (n) = λ log n− (m− 1) log log n + o(1),

where the rational number −λ and natural number m are the largest pole and
its order of

J(z) =
∫

H(w)zϕ(w)dw,

respectively, and

H(w) =
∫

q(x) log
q(x)

p(x|w)
dx.

The coefficient λ is referred to as the learning coefficient. As you can see in the
definition of H(w), the learning coefficient depends on the relation between the
true and the learner. According to previous studies [8,9], it is expressed as the



374 K. Yamazaki et al.

function of their sizes, though λ = d/2, where d is the dimension of parameter
space in regular cases. In other words, λ is determined by both sizes and by only
learner’s size in singular and regular cases, respectively. This means the learning
coefficient includes information about the true size in singular machines. The
concept of the SingIC is to leverage this unique behavior.

3 Main Results

3.1 Proposed Model Selection

SingIC requires an observable function [7],

y = G(λ),

where y stands for the calculated value by experiments and the right-hand side is
the asymptotic form. Let λ̄, λ be the upper and lower bounds of λ, respectively.
We propose a method to select the true size based on the following inequality,

λ ≤ G−1(y) ≤ λ̄. (2)

Assume that K0 is the size of q(x) and that K(> K0) is that of p(x|w). In
general, λ and λ̄ can be functions of K0 and K. According to (2), inequalities
with respect to K0 are obtained. Therefore, the true size K0 can be estimated on
the basis of the inequalities. Note that K, y, and a form of the inverse function
G−1(·) are given.

3.2 Example

Our method can be applied to Gaussian mixtures. Let us defined an observable
function [7],

y = EXn

[
∂F0(Xn, t)

∂t

]
,

F0(Xn, t) = − log
∫

exp (−nHt(w)) dw,

Ht(w) = − 1
n

(
t

n∑
i=1

log p(Xi|w) + log ϕ(w)

)
.

The derivation ∂F0(Xn,t)
∂t is computable by using Markov Chain Monte Carlo

(MCMC) method since it is written as the expectation value of a Boltzmann dis-
tribution [14]. In practical situations, it is difficult to calculate EXn [·]. Thus, we
regard the computed value of ∂F0(Xn,t)

∂t as y. Moreover, this observable function
is the derivation of EXn [F0(Xn, t)]. The function EXn [F0(Xn, t)] corresponds to
F (n). The asymptotic form can easily calculated by substituting nt for n,

EXn [F0(Xn, t)] = ntS + λ log(nt) + o(log(nt)),
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where t > 0, and

S = −
∫

q(x) log q(x)dx.

Note the difference between Hn(w) and Ht(w), i.e., we have to add S to the
asymptotic form because the definition of the latter function does not include
q(Xi). Thus, the observable function has the asymptotic form,

y = nS +
λ

t
+ o

(
1
t

)
.

Note that the desired λ is the slope of line with respect to 1/t. Using the least-
squares method, λ is calculated by

λty =
L
∑L

l=1 xlyl −
∑L

l=1 xl

∑L
l=1 yl

L
∑L

l=1 x2
l − (

∑L
l=1 xl)2

, (3)

where

xl =
1
tl

,

yl =
∂F0(Xn, t)

∂t

∣∣∣∣
t=tl

for (1 ≤ l ≤ L). Note that eq. (3) corresponds to the inverse function G−1(y)
and that λty is the function of {tl, yl}(1 ≤ l ≤ L). In the experiments, t1, · · · tL
are fixed, and they are the inverse temperatures of the Boltzmann distribution.
Thus, λty is regarded as the function of the computed values yl.

The learning machine is a K component Gaussian mixture define by

p(x|w) =
K∑

k=1

akG(x, bk),

G(x, bk) =
1

(
√

2πσ)M
exp

(
−‖x− bk‖2

2σ2

)
,

where aK = 1 −
∑K−1

k=1 , ak ≥ 0 for 1 ≤ k ≤ K, and bk = (bk1, · · · , bkM ). The
parameter is w = {ai, bj}(1 ≤ i ≤ K − 1, 1 ≤ j ≤ K). The variance σ is a
constant. The true mixture has K0(< K) components,

q(x) =
K0∑
k=1

a∗
kG(x, b∗K),

where 0 < a∗
k < 1,

∑K0
k=1 a∗

k = 1. Since q(x) is fixed, a∗
k and b∗k ∈ RM (1 ≤ k ≤ K0)

are constants. Then, the following upper bound of λ was obtained [12],

λ ≤ λ̄ = (K + MK0 − 1)/2.

Thus,
(2λty −K + 1)/M ≤ K0 < K. (4)

The inequality is the proposed criterion based on (2). It shows an interval of the
true size.



376 K. Yamazaki et al.

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

Fig. 2. Experimental results

3.3 Evaluation

Let us evaluate the extension of the SingIC. The true size was fixed as K0 = 3.
The sizes of the learner were K = 2, 3, 4, 5, 6. The experimental parameters were
set as n = 500, tl = 0.8l(0 ≤ l ≤ L = 21). The exchange MC (Monte Carlo)
method was applied to calculate the value yl [15]. The parameters tl and L were
determined by this MC method. In the MCMC method, the number of iterations
in all inverse temperatures tl was 10, 000. The sample data were different from
each trial. The variance in G(x, bi) is fixed as σ2 = 1. The a priori distributions
were a uniform distribution on [0, 1] for ai, and a standard normal distribution
for bi. The results are summarized in Fig. 2. The vertical axis is the (estimated)
size of the true distribution and horizontal one shows trials. The triangle marks
stand for K. So, the learner’s size is K = 2 from the first trial to tenth, K = 3
from eleventh to twentieth, and so on. There is a horizontal line, which indicates
the true size K0 = 3. The square marks are the calculated lower bound of K0 in
(4). Therefore, the true size is inferred between the triangle and square dots.

4 Discussion and Conclusion

First, let us consider the experimental results. The estimated lower bounds (the
square dots) are all in range [2.5, 4] independent of learners K = 3, 4, 5, 6. This
means the bound of λ̄ is tight, since the theoretical lower bound is always equal to
the true size in λ̄ = λ. When the learner is smaller than the true (K = 2 < K0 =
3), the estimated lower bound is clearly unusual: the square dots are much larger
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than K. It is easy to find that the assumption, where the learner can achieve
the true, does not hold. Hereafter, we discuss the results in K = 3, · · · , 6. The
square dots actually tend to be larger than the theoretical bound. So, there are
some data, which make the lower bound larger than the true size. The predicted
reasons are

– The bound is asymptotic.
– The MCMC methods includes the error.

The former can be solved to collect more data, and the latter to take more time or
to modify the method. However, it is necessary to select the size without enough
data or without enormous time in practical situations. Then, the experimental
results offer the strategy,

1. Initialize a size of the learning machine.
2. Estimate the lower bound with the size.
3. If the bound is unusual (much larger than the learner’s size or minus),

set a larger size. Go to 2
4. If the bound is around the same size as learner’s, the size will be true.

[The end of the procedure]
5. Otherwise, set the size around the bound. Go to 2.

This strategy is based on the facts that the calculated lower bound (the square
dots) can be larger than the true size (the horizontal line) and that they are not
far from each other.

Next, we compare our method to other methods to decide the optimal size.
The stochastic complexity, eq.(1), can also be a criterion. After the values at the
all candidate sizes are obtained, the minimum point shows the optimal size in
the sense of the marginal likelihood (Fig.3-(a)). The calculation of the stochastic
complexity at any size corresponds to the estimation of the lower bound in
our method. Our method does not need the estimation at all candidate sizes.
Consequently, it reduces the computational cost.

The schematic figure (Fig.3) shows that the optimal size K0 = 3 is selected
from candidate sizes K = 1, . . . , 6 in both methods. On the one hand, the
method with the stochastic complexity needs the whole points to draw the
curve (a). On the other hand, our method with the strategy does not need
all sizes (b). The cross-validation also needs computation at all candidate sizes
to decide the optimal size. The Bayes predictive distribution at each size is
based on the posterior realized by the MCMC method. Therefore, we need
the MCMC calculation at all sizes in the cross-validation. It is well known
that the MCMC method requires huge amount of computational cost when
the dimension of the parameter space is large. Our method has an advan-
tage in such a case, i.e., to reduce the candidate sizes is efficient in terms
of the total amount, even though the cost for one size increases. The well
known BIC also reduce the cost in regular models. However, note that it can-
not approximate the stochastic complexity in singular cases. The parameter
which expresses the true distribution is not one point but a set of parameters.
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Fig. 3. (a) The method with the stochastic complexity. (b) The proposed method with
the strategy.

The BIC uses the expansion around this one true point. This is why the BIC
cannot have reasonable approximation in singular cases.

Last, we summarize the conditions to use our method.

– The learning coefficient or its bound in the machine has to be known.

The method leverages information of the true size in a bound of the learning
coefficient. The original SingIC needs the exact form of λ though the analysis
is quite complex [8],[9]. Our proposed extension requires the form of λ̄ or λ.
The upper bound is obtained in many machines [12], [13], [16], [17]. So, we can
easily apply this extension to these machines. The tighter bound of λ achieves
the more precise estimation of the true size. Conversely, our method provides an
evaluation how tight the bound is according to eq. (4).

– The computable function should have the coefficient or its bound.

Our experiments used the exchange MC method, which is referred to as one
of precise methods in order to calculate the observation function. The analysis
of the variational Bayesian method was recently developed [10], [11]. In this
analysis, it is shown that the bound of the stochastic complexity has a similar
coefficient including the true size. Our method can be applied to the results.

– The learner can attain the true distribution.

It is very important to consider the situations where this condition is violated,
though we often regard our learner as an attainable model. In the experimental
results, K = 2 is an example of such situations. Actually, the results at K = 2
do not seem to have reasonable computed lower bounds. It might be thought
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that our method does not work in the situations. However, this behavior as the
SingIC depends on the observable function, i.e., another observable function can
make it different. For the fist step to tackle this issue, we need to investigate a
relation between the behavior and the function. It is one of our future studies.

This paper showed an extension of the SingIC and evaluated its efficiency in
Gaussian mixtures. Our future goal is to apply the theoretical concept to a more
practical model and more realistic data.
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Abstract. We present a subspace-based variant of LS-SVMs (i.e. reg-
ularization networks) that sequentially processes the data and is hence
especially suited for online learning tasks. The algorithm works by se-
lecting from the data set a small subset of basis functions that is sub-
sequently used to approximate the full kernel on arbitrary points. This
subset is identified online from the data stream. We improve upon ex-
isting approaches (esp. the kernel recursive least squares algorithm) by
proposing a new, supervised criterion for the selection of the relevant
basis functions that takes into account the approximation error incurred
from approximating the kernel as well as the reduction of the cost in the
original learning task. We use the large-scale data set ’forest’ to compare
performance and efficiency of our algorithm with greedy batch selection
of the basis functions via orthogonal least squares. Using the same num-
ber of basis functions we achieve comparable error rates at much lower
costs (CPU-time and memory wise).

1 Introduction and Related Work

Introduction. In this paper we adress the problem of sequential learning when
the predictor has the form of least squares SVM (LS-SVM). Since there is no
way we can achieve this using in our model one independent parameter for each
training example (i.e. basis function), we use a projection-based technique that
only considers a small subset of all possible basis functions. This subset is selected
online from the training data by just inspecting the most recent example. Our
resulting algorithm is conceptually similar to the kernel recursive least squares
(KRLS) algorithm proposed in [4], yet improves it in two important ways: one
is that we consider a supervised criterion for the selection of the relevant basis
functions that takes into account the reduction of the cost in the original learning
task in addition to the error incurred from approximating the kernel. Since the
per-step complexity only depends on the size of the subset, making sure that no
unnecessary basis functions are selected ensures more efficient usage of otherwise
scarce resources. And second, by considering a pruning operation we can also
delete basis functions from the subset to have an even tighter control over its
size. Overall the algorithm is very resource efficient, and only depends on the
number of examples stored in the subset.
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Related work. The unfavorable O(n3) scaling of kernel-based learning has
spawned a number of approaches where the exact solution is approximated by a
solution with lower complexity. Well known examples are the Nyström method
[13] or the subset of regressors method (SR), mentioned e.g. in [7,12,10]. Both
methods work by projecting the kernel onto a much smaller subset of kernels cho-
sen from the full data, say of size m� n, and reduce computational complexity
to O(nm2). To select the subset we can categorize the various approaches as be-
ing unsupervised and supervised. Unsupervised approaches like random selection
[13] or the incomplete Cholesky decomposition (IC) [5] do not use information
about the task we want to solve, i.e. the response variable we wish to regress
upon. Random selection does not use any information at all whereas IC aims
at reducing the error from approximating the kernel matrix. Supervised choice
of the subset does take into account the response variable and usually proceeds
by greedy forward selection, using e.g. matching pursuit techniques [11] or the
recent Cholesky decomposition with side information [1]. However, none of these
approaches are directly applicable for sequential learning, since they all use infor-
mation from the complete data set. Working in the context of Gaussian process
regression (GPR), [2] and also [4] have proposed an online variant, which adds
examples directly from the data stream and is the basis of our work presented
here.

2 Background

Traditional setup. Given t examples {(xi, yi)}ti=1 with xi ∈ X ⊂ Rd being the
inputs and yi ∈ Y ⊂ R being the outputs, the goal is to reconstruct (learn) the
underlying function. Consider as the space of candidate functions the reproduc-
ing kernel Hilbert space (RKHS)Hk of functions f : X → Y endowed with repro-
ducing kernel k, where k : X ×X → Y is a symmetric, positive definite function
(e.g. think of Gaussian RBF). The underlying function can be reconstructed solv-
ing the Tikhonov functional: minf∈Hk

J [f ] =
∑t

i=1

(
yi − f(xi)

)2 + γ ‖f‖2Hk
with

γ > 0 being the regularization parameter. The Representer theorem tells us
that any solution to this variational problem has a representation in the form
f(·) =

∑t
i=1 βik(xi, ·) i.e. as a sum of kernels centered on the data. Plugging this

back into the original variational problem leads to the optimization problem

min
β∈Rt

‖y −Kβ‖2 + γβT Kβ (1)

with y being the t × 1 vector of observations, K being the dense t × t kernel
matrix [K]ij = k(xi,xj) of pairwise similarities and β being a t×1 vector. From
(1) the coefficients β can be obtained by solving(

KT K + γK
)
β = KT y (2)

which gives the solution as β = (K + γI)−1y due to K being symmetric and
positive definite. Solving (2) is generally a matter of O(t3) operations. The over-
bearing computational burden stems from the fact that every training example
will contribute one parameter to the resulting model.
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The subset of regressors method (SR). Consider a subset {x̃i}mi=1, m� t,
of data points selected from the full set {xi}ti=1, without loss of generality as-
sume that these are the first m examples. We approximate the kernel on arbitrary
points through linear combination of kernels from the subset (termed the dic-
tionary or set of basis vectors BV in [2] which we adopt for the remainder of
this paper) in the following way: k(x, ·) ≈

∑m
i=1 aik(x̃i, ·). The m × 1 vector

a = (a1, . . . , am)T is determined such that the distance in Hk for a given x

δ = min
a

∥∥∥∥∥k(x, ·)−
m∑

i=1

aik(x̃i, ·)
∥∥∥∥∥

2

Hk

(3)

is minimized. The solution to this problem follows as

a = K−1
mmkm(x) (4)

where the m ×m matrix Kmm is the kernel matrix corresponding to the dic-
tionary (i.e. the upper left m ×m submatrix of K) and m × 1 vector km(x) is
shorthand for vector km(x) = (k(x̃1,x), . . . , k(x̃m,x))T . For arbitrary x,x′ we
thus have the approximation

k(x,x′) ≈ [km(x)]T K−1
mmkm(x′). (5)

If either x or x′ are in BV then (5) is exact. Replacing the true kernel by (5) gives
KtmK−1

mmKT
tm ≈K as an approximation to the true kernel matrix K, where Ktm

is the t×m submatrix of the first m columns of K (again, corresponding to the
BV). Defining the t × m matrix A with rows aT

i = K−1
mmkm(xi), i = 1, . . . , t

from (4) we can write
Ktm = AKmm. (6)

In the SR-method [7,11,10] instead of using the full representation one only uses
the kernels in BV, i.e. f(·) =

∑m
i=1 βik(x̃i, ·), and obtain in place of (1) the

penalized least squares problem

min
β∈Rm

‖y −Ktmβ‖2 + γβT Kmmβ (7)

which has the solution β =
(
KT

tmKtm + γKmm

)−1
KT

tmy. Despite its cursory
similarity with (2) we have gained much since now we are only dealing with m
parameters and computational complexity is down to O(tm2).

Csató and Opper’s sparse greedy online approximation. Still, the SR-
method is not directly applicable for online learning. Assume that the data
arrives sequentially at t = 1, 2, . . . and that only one pass over the data set is
possible, so that we cannot select the subset BV in advance. Working in the
context of GPR, [2] and later [4] have proposed sparse greedy online approxi-
mation: start from an empty set BV and examine at every time step t, if the
current example needs to be included in BV or if it can be processed without
augmenting BV. The approximation in (5) is modified such that it uses the most
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recent version of BV and sets to zero those entries from a that correspond to
basis vectors added in future time steps (denoted by Ã). Thus the matrix used
in (7) no longer equals the submatrix Ktm from (6), since now K̃tm =def ÃKmm

is only an approximation.
The one crucial advantage of this approach is that now we can use (penal-

ized) least squares methods as in (7) together with online growing and pruning
operations for sequential learning by using only the examples memorized in the
set BV. (Otherwise, to augment or prune an existing model we would need to
work with all previously seen data or resort to a window of a fixed given size.)

3 Time-Recursive LS-SVM

In this section we present the main contribution of our work: online LS-SVM
using sparse online approximation and a novel criterion for the selection of rel-
evant basis functions to include in the subset. The algorithm works along the
lines of recursive least squares, i.e. propagates forward the inverse of the cross
product matrix.

Let t be the current time step, (xt+1, y
∗) the currently observed input-output

pair and assume that from the past t examples {(xi, yi)}ti=1 the m examples
{x̃i}mi=1 were selected into the dictionary BV. Consider the penalized least squares
problem that is LS-SVM (restated here from (7) for clarity)

min
β∈Rm

Jtm(β) =
∥∥∥yt − K̃tmβ

∥∥∥2
+ γβT Kmmβ (8)

with K̃tm = ÃKmm being the (approximated) t×m design matrix from (6) and
yt being the t× 1 vector of the observed output values. Note that we are using
a double index to indicate the dependence on the number of examples t and
the number of basis functions m. If we define the m ×m cross product matrix
Ptm = (K̃T

tmK̃tm+γKmm) then the solution to (8) is given by βtm = P−1
tmK̃T

tmyt.
Finally we introduce the costs ξtm = Jtm(βtm). Assuming that {P−1

tm, βtm, ξtm}
are known from previous computations, every time a new example (xt+1, y

∗) is
presented we will perform one or more of the following update operations:

1. Normal step: Process (xt+1, y
∗) in the usual way using the fixed set of basis

functions BV.
2. Growing step: If the new example is sufficiently different from the previous

examples in BV (i.e. the reconstruction error in (3) exceeds a given threshold)
and strongly contributes to the solution of the problem (i.e. the decrease of
the loss when adding the new basis function is greater than a given threshold)
then the current example is added to BV and the number of basis functions
in the model is increased by one.

3. Pruning step: If the current size of the BV set exceeds the allowed maximum
number of BVs specified prior to starting the algorithm, remove from BV the
basis function that contributes the least to the reduction of the cost function.
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Integral to these updates are two well-known matrix identities for recursively
computing the inverse of a matrix: (for suitable matrices)

if Bt+1 = Bt + bbT then B−1
t+1 = B−1

t − B−1
t bbT B−1

t

1 + bT B−1
t b

(9)

which is used when adding a row to the design matrix. Likewise,

if Bt+1 =
[
Bt b
bT b∗

]
then B−1

t+1 =
[
B−1

t 0
0 0

]
+

1
Δb

[
−B−1

t b
1

] [
−B−1

t b
1

]T

(10)

with Δb = b∗ − bT B−1
t b. This second update is used when adding a column to

the design matrix.

3.1 Normal Step: From {P−1
tm, βtm, ξtm} to {P−1

t+1,m, βt+1,m, ξt+1,m}
Let kt+1 be kt+1 = (k(x̃1,xt+1, ), . . . , k(x̃m,xt+1))T , then

K̃t+1,m =
[
K̃tm

kT
t+1

]
and yt+1 =

[
yt

y∗

]
.

Thus Pt+1,m = Ptm + kt+1kT
t+1 and we obtain from (9) the well-known RLS

updates

P−1
t+1,m = P−1

tm −
P−1

tmkt+1kT
t+1P

−1
tm

Δ
, βt+1,m = βtm +

�

Δ
P−1

tmkt+1

ξt+1,m = ξtm +
�2

Δ
(11)

with scalars Δ = 1 + kT
t+1P

−1
tmkt+1 and � = y∗ − kT

t+1βtm. The set BV is not
altered during this step. Operation count is O(m2).

3.2 Growing Step: From {P−1
tm, βtm, ξtm} to {P−1

t,m+1, βt,m+1, ξt,m+1}
How to add a BV. When adding an additional basis function (centered on
xt+1) to the model we augment the set BV with x̃m+1 (note that x̃m+1 is the
same as xt+1 from above). Again, define kt+1 = (k(x̃1, x̃m+1), . . . , k(x̃m, x̃m+1))T

and k∗ = k(x̃m+1, x̃m+1). Adding a basis function means appending a new t× 1
vector q to the design matrix and appending kt+1 as row/column to the penalty
matrix Kmm, thus

Pt,m+1 =
[
K̃tm q

]T [
K̃tm q

]
+ γ

[
Kmm kt+1
kT

t+1 k∗

]
.

Invoking (10) we obtain the updated inverse P−1
t,m+1 via

P−1
t,m+1 =

[
P−1

tm 0
0 0

]
+

1
Δb

[
−wb

1

] [
−wb

1

]T

(12)
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where simple but tedious vector algebra reveals that

wb = P−1
tm(K̃T

tmq + γkt+1)

Δb = qT q + γk∗ − (K̃T
tmq + γkt+1)T wb. (13)

Without sparse online approximation this step requires us to recall all past
examples {xi}ti=1 since q is given by qT = (k(x̃m+1,x1), . . . , k(x̃m+1,xt))T and
just obtaining (13) would come at the undesirable price of O(tm). However, we
are going to get away with merely O(m) operations and only need to memorize
examples in BV. Due to the sparse approximation q is actually of the form qT =[
K̃t−1,mat+1 k∗]T

with at+1 = K−1
mmkt+1 from (4). Hence new information is

injected only through the last component. Exploiting this special structure of q
equation (13) becomes

wb = at+1 +
δ

Δ
P−1

t−1,mkt+1

Δb =
δ2

Δ
+ γδ (14)

where δ = k∗ − kT
t+1at+1 from (3). If we cache and reuse those terms already

computed in the preceding step (see Sect. 3.1) then we can obtain wb,Δb in
O(m) operations.

To obtain the updated coefficients βt,m+1 we first multiply (12) from the right

side by K̃T
t,m+1yt =

[
K̃T

tmyt qT yt

]T
and get

βt,m+1 =
[
βtm

0

]
+ κ

[
−wb

1

]
(15)

where scalar κ is defined by κ = yT
t (q− K̃tmwb)/Δb. Again we can now exploit

the special structure of q to show that κ is equal to

κ = − δ�

ΔbΔ

And again we can reuse terms computed in the previous step (see Sect. 3.1).
Skipping the necessary computations, we can show that the reduced (regular-

ized) cost ξt,m+1 is recursively obtained from ξtm via the expression:

ξt,m+1 = ξtm − κ2Δb. (16)

Finally, every time we add an example to the BV set we must also update the
inverse kernel matrix K−1

mm needed during the computation of at+1 and δ. This
can be done using the formula for partitioned matrix inverses (10).

When to add a BV. To decide whether or not the current example xt+1 should
be added to the BV set, we employ a two-part criterion, similar to the one used
in resource-allocating networks [8]. The first part measures the ’novelty’ of the
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current example: only examples that are ’far’ from those already stored in the BV
set are considered for inclusion. To this end we compute as in [2,4] the squared
norm of the residual from projecting (in RKHS) the example onto the span of
the current BV set, i.e. we compute (restated from (3)) δ = k∗ − kT

t+1at+1. If
δ < TOL1 for a given threshold TOL1, then xt+1 is well represented by the given
BV set and its inclusion would not contribute much to reduce the error from
approximating the kernel by the reduced set. On the other hand, if δ > TOL1
then xt+1 is not well represented by the current BV set and leaving it behind
could incur a large error in the approximation of the kernel.

However, using as sole criterion the reduction of the error incurred from ap-
proximating the kernel is probably too wasteful of resources, since examples
could get selected into the subset that are unrelated to the original task [1]. We
want to be more restrictive, particularly because the computational complexity
per step scales with the square of basis functions in BV (so that the size of BV
will soon become the limiting factor). Aside from novelty, here we thus consider
as second part of the selection criterion the ’usefulness’ of a basis function candi-
date. Usefulness is taken to be its contribution to the reduction of the regularized
costs, i.e. the term κ2Δb from (16). Both parts together are combined into one
rule: only if δ · κ2 ·Δb > TOL2 then the current example will become a new basis
function and will be added to BV.

3.3 Pruning Step: From {P−1
tm, βtm, ξtm} to {P−1

t,m\i, βt,m\i, ξt,m\i}
How to delete a BV. First consider the case when we are trying to delete the
last one. Take as starting point eqs. (12),(15),(16) and switch the role of old and
new: eq. (12) becomes[

P−1
t,m−1 0
0 0

]
= P−1

tm −
1
Δb

[
wb

−1

] [
wb

−1

]T

.

Both Δb and wb can be obtained directly from P−1
tm: defining the (m − 1) × 1

vector u by P−1
tm(1 : m−1, m) (i.e. the first m−1 rows of the m-th column) and

scalar u∗ by P−1
tm(m, m) (i.e. the m-th diagonal element) we find Δb = 1/u∗ and

wb = u/u∗. Hence [
P−1

t,m−1 0
0 0

]
= P−1

tm −
1
u∗

[
u
−1

] [
u
−1

]T

(17)

where the left side is truncated to yield the (m− 1)× (m− 1) matrix P−1
t,m−1.

Likewise, to obtain βt,m−1 from βtm we turn around update (15)[
βt,m−1

0

]
= βtm − κ

[
−wb

1

]
.

Again, we can see from update (15) that κ actually is the last component of
βtm. So, defining b∗ = βtm(m) we get[

βt,m−1
0

]
= βtm +

b∗

u∗

[
u
−1

]
(18)
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where the left side is truncated to yield the (m− 1)× 1 vector βt,m−1.
Finally, to obtain ξt,m−1 from ξtm we turn around update (16) to yield

ξt,m−1 = ξtm + (b∗)2/u∗. (19)

If we need to delete an arbitrary basis function i ∈ {1, . . . , m} instead of
just the m-th one, we exploit the fact that reordering the indices of the basis
function within the set BV is equivalent to reordering the columns/rows of P−1

tm.
So, to delete basis function i we just swap column/row i and m in all necessary
places (i.e. in P−1

tm, βtm,Kmm and BV). Afterwards we apply (17),(18),(19) as
described above. Overall, deleting a basis function requires O(m2) operations.

When to delete a BV. To identify from the BV set the basis function best
suited for removal we consider their contribution to the cost function. Compute
as in (19) the score

εi =
βtm(i)2

P−1
tm(i, i)

i = 1, . . . , m

for every basis function in BV and delete the one with the lowest score. The
computation of this criterion is very cheap and requires only O(m) operations.

4 Experiments

Comparing subset selection criteria. First, we compare our supervised ap-
proach with the unsupervised method used in the related KRLS algorithm [4].
As third competitor we consider greedy forward selection via orthogonal least
squares (OLS). All three methods use the same dictionary of basis function can-
didates (built from RBF-kernels centered on the training data) to choose the
subset from; note though that OLS is a batch method, whereas our method and
KRLS process the data sequentially. We chose three well-known problems: the
artifical sinc data set (noise σ = 0.2), and the small scale benchmarks boston
(train 400, test 106) and abalone (train 3000, test 1177) from the UCI repository
[3]. The data was scaled to have zero mean and unit variance. Parameters gov-
erning subset selection were TOL1=10−2 and TOL2=10−4; for OLS we used the
GCV as stopping criterion. The remaining parameters were set as in [6]. Since
our method and KRLS depend on the ordering of the data we averaged over 100
different permutations of every training set. Table 1 shows the resulting predic-
tion error (MSE) along with the size of the subset. Our method shows a similar
performance as KRLS but uses fewer (sometimes far fewer) basis functions.

Table 1. Prediction error (MSE) and number of selected basis functions (given in
parentheses) for different subset selection variants

Data set OLS+GCV(subset) KRLS (subset) Our (subset)
Sinc 5.6e-4(10) 9.1e-4±1.5e-4 (14.36) 7.5e-4±3.1e-4 (11.06)

Boston 0.88 (44) 0.65±0.039 (220.65) 0.63±0.2 (59.24)
Abalone 0.35 (62) 0.35±0.014 (124.3) 0.37±0.05 (31.54)
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Table 2. Classification error for different sizes of the subset (given in parentheses)

Data set OLS-59(100) Our(100) OLS-59(300) Our(300) OLS-59(500) Our(500)
Forest-10k 22.80±0.18 24.61±2.31 21.26±0.23 22.33±0.51 20.35±0.11 21.77±0.34
Forest-50k 22.63±0.11 23.99±1.96 20.58±0.15 21.93±0.36 19.63±0.12 21.24±0.42
Forest-200k — 24.49±1.64 — 21.83±0.36 — 21.19±0.30
Forest-500k — 23.80±0.64 — 21.77±0.39 — 21.17±0.32
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Fig. 1. Comparing our method with OLS

Large-scale real-world benchmark. Though our method is particularly tai-
lored to online learning we show that it is also useful when dealing with large-
scale data sets. To this end we chose the biggest data set available from UCI,
the data set forest. 1 Before we started training we set aside 81,012 randomly
chosen examples to serve as independent test set. All of the remaining 500,000
examples were used to train. Since this is a rather large number (for OLS), we
also considered smaller training sets of size 10,000, 50,000 and 200,000. In case
of OLS we used the ’rule of the 59’ [11] heuristic to restrict the search among all
remaining candidates to a subset of 59 randomly drawn ones (termed OLS-59).
For our approach we set RBF width σ = 1/d (with d = 54 the input dimension-
ality), γ = t · 10−5 (with t being the number of training examples), TOL1 = 10−2

and TOL2 = 10−4. The generalization performance and also the CPU time will of
course largely depend on the number of basis functions in the model. Hence we
examine different models using an increasing number of maximum basis func-
tions. To rule out the influence of randomness each single run was repeated 10
times. Table 2 and Fig. 1 show the achieved classification error (given as per-
centage of misclassified examples) on the independent test set along with the
amount of variation over the different trials (given in parentheses as one stan-
dard deviation). Using the same number of basis functions m, we could achieve
a classification performance that is comparable with OLS (only slightly worse).

1 Forest is a multi-class classification problem with 581,012 examples and 7 classes. As
in [9] we transformed the problem into a two-class classification task: classify class 2
against the rest, which makes the resulting partitions of roughly the same size. Forest
contains continuous as well as categorical attributes; the latter were transformed via
a binary encoding so that the input dimensionality of the problem became d = 54.
The inputs of the data were scaled to have zero mean and unit variance.
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However, our approach being an online method needs far less resources (both
CPU-time and memory) to achieve this result (see Fig. 1): the time needed for
training is faster at nearly an order of magnitude, while the memory consump-
tion is only O(m2) as opposed to O(tm) when using OLS. In both cases our
results are in line with the error rates achieved in the comparable experiments
from [9].

5 Conclusion

We presented a subspace based variant of least squares SVM especially geared
to online learning. It uses a novel criterion to select a subset of relevant basis
functions from the full data set. Experiments indicate that our method improves
upon the related KRLS algorithm by choosing a smaller subset and that it
can even compete with powerful greedy forward selection; an alternative only
amenable to offline learning and at considerably higher computational costs.

References

1. F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel meth-
ods. In Proc. of ICML 22, 2005.
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Abstract. Memory base learning is one of main fields in the area of machine 
learning. We propose a new methodology for addressing the classification task 
that relies on the main idea of the k - nearest neighbors algorithm, which is the 
most important representative of this field. In the proposed approach, given an 
unclassified pattern, a set of neighboring patterns is found, but not necessarily 
using all input feature dimensions. Also, following the concept of the naïve 
Bayesian classifier, we adopt the hypothesis of the independence of input 
features in the outcome of the classification task. The two concepts are merged 
in an attempt to take advantage of their good performance features. In order to 
further improve the performance of our approach, we propose a novel 
weighting scheme of the memory base. Using the self-organizing maps model 
during the execution of the algorithm, dynamic weights of the memory base 
patterns are produced. Experimental results have shown superior performance 
of the proposed method in comparison with the aforementioned algorithms and 
their variations.  

1   Introduction 

The classification task is one of the most important problems in the area of data 
mining. For addressing this problem numerous algorithms and methodologies have 
been proposed. A significant number of these methods belong to the category of 
memory base learning algorithms. This group of algorithms mainly relies on the 
concept of nearest neighbor rule. The k–nearest-neighbor (k-NN) algorithm locates a 
set of neighbors with the smallest distance from the examined data pattern and 
classifies that pattern according to the majority class of the set of neighbors [1], [4], 
[15]. Many variations of this concept derive from the use of different distance 
measures. The most commonly used distance measure is the Euclidean distance, but 
more sophisticated approaches have also been tested [20]. 

Another well-known approach in the field of classification, with the use of the 
theory of probabilities, is the naïve Bayesian classifier [10], [23]. This method is 
based on the estimation of the posterior probability of a data pattern to belong to a 
specified class by calculating the probabilities for each feature value of the input 
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pattern. The naïve Bayesian classification rule relies on the assumption that these 
probabilities are independent to each other and by using this assumption calculates the 
probability of an unlabeled data pattern to belong to a specific class. VFI and KNNFP 
[5], [7] are also algorithms that examine each feature value independently and then 
determine their response by combining the independent results. 

Both aforementioned approaches to the classification task have been shown to 
produce good results in spite of their simplicity.  This paper presents a methodology 
that merges these two approaches. We propose a novel method of finding a set of 
nearest neighbors and we introduce a more complex way of determining the class of 
an unlabeled data pattern than the simple majority vote among the neighboring data 
patterns. The algorithm finds data patterns that have the most input values 
“independently close” to the values of the unlabeled pattern and classify this pattern 
accordingly. Namely, from the feature values of all data patterns in the memory-base 
the algorithm finds the values that have the smallest difference to the input data 
pattern feature values and afterwards locates which of these values belong to the same 
patterns of the memory-base. This process results in finding the neighbors of the input 
pattern but not necessarily using all the input features. This differs from a weighted 
calculation of the nearest neighbors because in that case the weights of the features 
are a priori set and standard for all input data patterns. A preliminary study on this 
concept was presented in [13]. 

For improving the performance of the nearest neighbors algorithm a weighting 
scheme must be used. Wide range of methods for weighting the impact of the input 
feature values in the calculation of the distance have been proposed [3], [7], [19]. 
Reduction techniques for excluding data patterns from the memory-base have been 
suggested in order to reduce the space required to store data patterns, accelerate the 
classification process and also increase the overall classification performance. An 
extensive review of these techniques can be found in [21]. 

Self-organized Maps (SOMs) employ an unsupervised learning algorithm that 
achieves dimensionality reduction by compressing the data to a reasonable number of 
units (neurons) [9]. The map consists of a grid of units that contain all the significant 
information of the data set, while eliminating noise data, outliers or data faults. 
Applications of SOM clustering include, but are not limited to, feature extraction or 
feature evaluation from the trained map [12],[14] and data mining [18]. 

In [8] the Self-organizing maps were used for editing of the memory base in order 
to accelerate the classification task without decreasing the classification performance. 
In our approach the self- organizing maps are used in order to organize and evaluate 
different feature combinations and provide a dynamic weighting scheme in which, 
pattern weights are produced during the execution of the classification task described 
above. In a preprocessing stage, using leave one out cross-validation testing the 
feature combinations used for classification are gathered and assemble a new labeled 
data set. This data set of feature combinations forms a new memory base but this 
memory base is edited with the use of a self-organizing map. The map is then used to 
provide evaluation for the feature combinations that will appear during the 
classification of new, unclassified data patterns. 

In Section 2 of this paper we describe the classification method, in Section 3 we 
explain how we incorporated the self-organizing maps for the evaluation of feature 
combinations. Section 4 includes the results from our experimental study and finally 
in Section 5 we conclude this paper with remarks about the method and future work.  
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2   Proposed Methodology 

In our approach, the labeled data patterns that are similar to an unlabeled input data 
pattern are discovered, by using only a number of feature values, which are 
independently close to the unclassified pattern. Four factors have an impact on the 
classification outcome.  

• The maximum number of feature values of a data pattern from the memory-base 
that are close to an unclassified data pattern’s feature values. 

• The number of patterns that achieve this maximum number with respect to the 
unclassified data pattern. 

• The mean Euclidean distance of these data patterns from the unclassified pattern. 
• The mean difference of independent feature values between the patterns of a class 

and the unclassified pattern. 

In addition to the classification procedure, we incorporate to our methodology 
another procedure that has been developed for evaluating the memory-base data 
patterns, so as to eliminate outliers and possible noisy data. 

Let x  be an unclassified data pattern and y  a data pattern belonging to set D, 

which is the set of data patterns of the memory-base. Similarity between these 
patterns is calculated by counting the number of their feature values, such that the 
difference between these values is below a confidence factor. This number represents 
the count of feature values of the first pattern that “resemble” the feature values of 
second pattern. It is the Count of Confident Features (CCF) value between patterns x  
and y and is the sum of the values of a kernel function W over all their input features: 

=
i
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where xi and yi are the values of the i-th feature of patterns x  and y  respectively. 

Apparently, the maximum value for this number is the total number of input features. 
Consider the kernel function W( xi, yi ) defined as: 
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Measures of spread, such as the standard deviation of the values of feature i in the 
set D, can be used as widthi. The width is used for normalization of the feature values 
to allow a common Confidence factor to be used for all features. The maximum value 
for Confidence is 1 and in that case the algorithm selects only the feature values that 
are identical to xi. Our experimental study has shown that smaller Confidence values 
(between 0.2 and 0.6) result to the best classification outcomes. Function W( xi, yi ) 
resembles the simple kernel function, known as Parzen window, used in kernel based 
estimation of probability density functions [11]. The first condition of (2) could be 
enhanced in order to limit even more the number of feature values that are considered 



394 C. Pateritsas and A. Stafylopatis 

close enough to the values of the input data pattern. This is done by calculating the 
value of function W for all patterns in the memory-base and considering only the k 
smaller differences as being close enough. The modified condition is: 

)(1 i
i

k
i

i

ii
xyConfidence

width

yx
G∈∧≥

−
− , (3) 

where ∧ corresponds to the and logical operator and )( i
i

k
xG is the set containing 

only the k nearest values to xi of the feature i from the patterns of set D. Its use 
corresponds to the k value in the k-nearest-neighbors algorithm. Both the Confidence 
factor and the k parameter serve the same role, setting the boundaries in order to limit 
the individual feature values that are considered similar to the feature value of x , but 
their values are inversely proportional to that. Small values of k limit the possible 
similar feature values, whereas small values of Confidence allow more feature values 
to be considered. The use of the confidence condition allows variable number of 
independently close values for each feature dimension. In other words, the kernel 
defined by function W is the intersection of two kinds of kernels. One fixed width 
simple kernel and a variable width kernel where its width is adapted in order to 
include the k nearest values.  

In order for pattern x  to be classified to one of the c classes, the maximum CCF 
(MaxCCF) between the pattern x  and the patterns of each class is calculated: 

( )),(max)( yxCCFxMaxCCF
Djy

j
∈

= , (4) 

where j is one of the c classes and Dj is the subset of D whose patterns belong to class j. 
This number represents the maximum number of feature value differences that are below 
the confidence factor, between the pattern x  and each pattern of a class.  

It is imperative not only to find the maximum number of features of pattern x  that 
are considered close to one or more patterns among all patterns of a specific class, but 
also to take into account the count of these patterns. More formally, the number of 
patterns of a class j, such that the CCF value between them and the unclassified 
pattern x  is equal to the MaxCCF value between x  and class j. This factor is the 
Count of Similar Patterns (CSP):  

x
jKxCSP =)(  

( ){ } nmmxMaxCCFyxCCFDyK jj
x
j ,...,1,0,)(),(: =−=∈=  , 

(5) 

where | . | denotes the cardinality of a set and x
jK  is the set of nearest neighbors of 

pattern x  among the patterns of class j, as it is defined by our methodology. If 
computed over all classes then the resulting set will be the total set of neighbors. The 
m parameter is an offset used to increase the number of data patterns that take part in 
the decision process by including patterns with CCF value smaller than the MaxCCF, 
in addition to the data patterns with CCF value equal to MaxCCF (which correspond 
to m = 0). The parameter n denotes the upper limit of the offset parameter m. 
Experiments have shown that the optimal value for n is 2. 
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Another factor to be considered, in addition to the cardinality of the above set of 
patterns (the CSPj value), is the average Euclidean distance of these patterns from the 
unclassified data pattern. In this calculation, all feature values are used with the 
purpose of limiting the impact of outliers or noisy data patterns that could have small 
differences in some of the feature values and very large differences in the rest of the 
features. The Average Distance of Similar Patterns (ADSP) is defined as: 

( )yx
xADSP

jK

j ,avg

1
)( =  . 

(6) 

where || . || denotes the Euclidean distance and avg the average value. We use the 
inverse of this value, so that all factors computed are proportional to the probability of 
pattern x  to belong to a class. 

The fourth factor to be considered is the normalized distance between all feature 
values of patterns belonging to a class and satisfying the conditions of (2) and input 
pattern x , independently of the data pattern they belong to. For each class, the average 
and standard deviation of these differences are calculated in the All Features 
Differences (AFD) factor: 
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where std denotes standard deviation. This factor is used to calculate the overall 
similarity between the features values of the input pattern and the neighboring set of 
labeled patterns of each class. Given that the condition ( )1),( =ii yxw  is calculated on 

each feature value separately, not all feature values of a labeled pattern contribute to 
this factor. Finally, in order to predict the class of pattern x , we combine the four 
factors from (4), (5), (6) and (7): 

( )
=

+⋅⋅−⋅⋅=
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0
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The β parameter is a trade-off parameter for adjusting the influence of the CSP 
factor in the final result. The class with the maximum P is selected.  

Each factor combined in (8) serves a different role. The combination of the 
likeliness of the labeled patterns feature values with the unlabeled pattern, the average 
distance of the nearest patterns as well as the number of these patterns, results in a 
multilateral approach to the definition of the unknown class in the classification 
procedure. 

3   Memory-Base Evaluation 

Although memory-based algorithms are also called “lazy” learning algorithms due to 
their lack of preprocessing on the labeled data, an important part of the corresponding 
literature describes preprocessing weighting methods. A possible categorization of 
these methods refers to whether the method receives feedback from the memory base 
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algorithm or not [19]. Some of the methods that do receive feedback implement even 
an iterative learning process in order to improve their weighting schemes [17]. 

Another categorization of the weighting of the methods can be done on the grounds 
of the generality of the weighting scheme: starting from a single set of global weights 
up to weighting schemes that differ among different regions of the space defined by 
the memory base or even for each pattern of the memory base. 

Our methodology implements two different weighting schemes. One procedure for 
the evaluation of the data patterns of the memory-base has been developed, which 
aims at increasing the classification performance and handling noisy data patterns and 
outliers. The second procedure provides a dynamic weighting scheme derived from 
the core idea of our classification procedure and with use of a Self-Organizing Map. 

3.1   Memory Editing 

The first procedure belongs to the category of reduction methods of the memory-base 
algorithms and applies the classification methodology described above using the 
leave-one-out cross-validation (LOOCV) test.  

An evaluation factor for each pattern of the memory-base is calculated. This factor 
is initially zero for all patterns. When a pattern is classified correctly, then the patterns 
that voted for it increase their evaluation factor by one. If a pattern is classified 
wrongly, then the voting patterns decrease their evaluation factor. After the end of the 
procedure, patterns with negative evaluation factor are excluded from the memory-
base. Methods used for this purpose, such as ENN and ALLk-NN, [22],[16] exclude 
from the memory-base data patterns that during the testing procedure did not get 
classified correctly. Our method uses the opposite approach; it excludes data patterns 
that voted for the incorrect classification of other patterns. 

3.2   Incorporating Self Organizing Maps 

Our proposed methodology uses the combinations of the “confident” features in order 
to address the classification problem. As in most memory-based learning methods 
during the classification process a group of patterns take part in the classification 
procedure. During the same leave-one-out cross-validation test of the first evaluation 
procedure, our methodology stores the combinations of the “confident” features 
between the tested pattern and the patterns of the memory base. These combinations 
derive from the use of the kernel function W defined in equations (2) and (3). For 
patterns x  and y , a vector w is defined as: 

),...,,( 21 nxy wwww = , where ),( iii yxWw =  , (9) 

where n is the total number of features. This vector indicates the combination of 
feature values of x  that are considered to be similar to the feature values of y . A 

vector w of feature combinations is calculated for each pattern belonging to the set 
defined by equation (5), which are considered to be similar to x  (the nearest 
neighbors) according to our methodology. After the end of the classification 
procedure of all the patterns used in the LOOCV test, these combinations assemble a 
new data set that will be used to train a self-organizing map.  
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This procedure aims at finding clusters of similar feature combinations. In most 
domains with a large number of features a considerable variety of different 
combinations is observed. The self-organizing map units can quantize these 
combinations in a smaller number of vectors. The trained map is combined with the 
outcome produced when these combinations where used in the classification process 
during the evaluation procedure. This information is used in order to characterize the 
units of the trained map. Following the training procedure, every combination is 
assigned to its best matching unit (BMU). Consequently each unit can be labeled from 
these combinations. Each combination is labeled with the classification outcome 
(meaning correct or wrong) and the class of the pattern from the memory base that 
was compared with the unclassified pattern and produced it. 

label of wxy= (classification result for x , j),  jDy ∈  . (10) 

Consequently, every map unit gathers a number of correct and a number of wrong 
classifications for each class. An evaluation factor u for the i-th unit with respect to 
the j-th class is calculated by dividing the number of the correct classifications to the 
total number of classifications of this class.  
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Where Ui is the set of combinations assigned to the i-th unit of the map. The map can 
act as an evaluator of feature combinations during the classification process of new 
unclassified patterns. As described above, for a pattern to be classified a set of nearest 
neighbors must by found. This set generates a new set of features combinations. 
These combinations can be labeled with the class label of the pattern that each time is 
compared with the unclassified pattern. Assigning each combination to its best 
matching unit of the SOM map provides an estimation of the correctness of the 
classification if this combination is used. This estimation is based on the past 
experience of the use of similar combinations in the classification and the experience 
is represented by the map units and their evaluation factors for each class.  

The next step is to take advantage of the map structure during the classification 
process of a new pattern. In the same way as during the evaluation process, from the 
set of nearest neighbors that corresponds to a new pattern, a set of feature 
combinations is also generated. The feature combinations are labeled with the class 
labels of the patterns of the nearest neighbors as before. The difference in this case is 
that the classification outcome is unknown and is to be predicted.  

Using the trained map, each feature combination is assigned the evaluation factor u 
of its best matching unit for the corresponding class label of the feature combination.  

j
ixy uwu =)( , where DjyUw ixy ∈∧∈ . (12) 

Computing the average value of the u( ) for each class provides us with an extra 
factor to be embedded in the classification procedure (eq. 8).  

( )( )xyj wuavgcu = , Djywxy ∈∀ , . (13) 
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The evaluation of the feature combinations could also be exploited in another way. 
In equation (6) the average distance of the nearest neighbors of each class is 
calculated. This equation could be enhanced with the evaluation factor as a weighting 
scheme of the distance between the patterns of the memory base and the unclassified 
pattern. The modified equation will be: 
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By using the evaluation factor in this way, we provide a dynamic weighting 
scheme of the patterns of the memory base. This scheme assigns weights to patterns 
depending on the combination of features that each pattern appears to have similar to 
the unclassified pattern. 

4   Experimental Results 

We tested our method on five benchmark problems of real data from the UCI 
machine-learning repository [2]. The problems belong to different application 
domains and are mainly characterized by overlapping clusters and a large number of 
attributes. In all experiments we used 10-fold cross-validation and the results of our 
method are the average of 10 experiments. We include results from our method with 
and without the SOM-weighting scheme. We compare the obtained results with the 
simple k-NN classifier using Euclidean distance metric, as well as variations using 
different distance metrics, and the naïve Bayes classifier. Results for these algorithms 
originate from [6], [20]. In these studies no standard deviations where provided.  

Table 1. Comparative results 

Accuracy (%)(
2s ) 

Method Vehicle Pima 
Indians 

Breast 
Cancer 

Ionosphere Image 
Segmentation 

k – NN, Euclidean 70.93 71.09 94.99 86.32 92.86 
k – NN, HOEM 70.22 70.31 95.28 86.33 93.57 
k – NN, HVDM 70.93 71.09 94.99 86.32 92.86 
k – NN, DVDM 63.72 71.89 95.57 92.60 92.38 
k – NN, IVDM 69.27 69.28 95.57 91.17 92.86 
k – NN, WVDM 65.37 70.32 95.57 91.44 93.33 
Bayes 44.20 73.83 96.40 89.45 91.82 
Our approach 74.01 (4.92) 73.92 (5.32) 97.02  (1.12) 89.90  (3.85) 95.58  (1.22) 
Our approach using SOM 75.12 (4.15) 74.75 (5.18) 97.28  (1.07) 94.02  (3.14) 94.63  (1.20) 

The results from the experiments, using the data sets described above, can be seen 
in Table 1. In for four of the five date sets used, our method without the weighting 
scheme outperforms the other algorithms. The use of the weighting scheme improves 
even more the performance of the method. The controlling parameters of our method 
used in each case are presented in Table 2. The Confidence is always set to 0.5 and 
the n, which controls the upper bound of the m is set to 2 for all experiments. The k 
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nearest values parameter is set to larger values than the corresponding k parameter in 
the k-NN algorithm. The value All implies that only the Confidence parameter was 
used for limiting the nearest values. 

Table 2. Parameters 

 Vehicle Pima Indians Breast 
Cancer 

Ionosphere Image 
Segmentation 

k nearest values 215 All All 165 254 
 trade-off parameter 0.1 0.1 0.2 0.1 0.1 

5   Conclusion 

In this paper we presented a new hybrid approach to the classification task. Our 
methodology can be categorized as a memory-based classifier and its concept mainly 
derives from the idea of the k-NN classifier. It also combines elements from the group 
of probabilistic classifiers that are based on the assumption of the independence of 
input features, such as naïve Bayes classifiers. The novelty of this approach lies in the 
way of determining nearest neighbors, which does not simply use a new distance 
metric, but rather deals with the matter from a new perspective.  

Furthermore, we described a methodology to take advantage of the self-organizing 
maps model in order to provide a dynamic weighting scheme for our approach. The 
evaluation procedure receives feedback from the classification task so as to push 
forward feature combinations which demonstrate better classification results. 

The results of our experimental study have shown that the proposed approach 
achieves better results in comparison to similar algorithms, which are further 
improved with the use of the weighting scheme. This indicates that further study and 
improvement of our approach can produce even better results.  

Future work includes testing larger data sets and also a study of the computational 
complexity of the method. Moreover, other ways of utilizing the trained self-
organizing map can be investigated. For example the visual inspection of the most 
common feature combinations used in the classification process which can provide 
assistance to the domain expert regarding the correlation of features in respect to the 
classification problem.  
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Abstract. Several researchers have shown that substantial improvements can be 
achieved in difficult pattern recognition problems by combining the outputs of 
multiple neural networks. In this work, we present and test a multi-net system 
for the detection of plant viruses, using biosensors. The system is based on the 
Bioelectric Recognition Assay (BERA) method for the detection of viruses, 
developed by our team. BERA sensors detect the electric response of culture 
cells suspended in a gel matrix, as a result to their interaction with virus’s cells, 
rendering thus feasible his identification. Currently this is achieved empirically 
by examining the biosensor’s response data curve. In this paper, we use a 
combination of specialized Artificial Neural Networks that are trained to 
recognize plant viruses according to biosensors’ responses. Experiments 
indicate that the multi-net classification system exhibits promising performance 
compared with the case of single network training, both in terms of error rates 
and in terms of training speed (especially if the training of the classifiers is done 
in parallel). 

1   Introduction 

Several paradigms for multi-classifier systems have been proposed in the literature 
during the last years. Classifier combination approaches can be divided along several 
dimensions, such as the representational methodology, the use of learning techniques 
or the architectural methodology [1], [2]. A major issue in the architectural design of 
multiple classifier systems concerns whether individual learners are correlated or 
independent. The first alternative is usually applied to multistage approaches (such as 
boosting techniques [3], [4], whereby specialized classifiers are serially constructed to 
deal with data points misclassified in previous stages. The second alternative 
advocates the idea of using a committee of classifiers which are trained independently 
(in parallel) on the available training patterns, and combining their decisions to 
produce the final decision of the system. The latter combination can be based on two 
general strategies, namely selection or fusion. In the case of selection, one or more 
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classifiers are nominated “local experts” in some region of the feature space (which is 
appropriately divided into regions), based on their classification “expertise” in that 
region [5], whereas fusion assumes that all classifiers have equal expertise over the 
whole feature space. A variety of techniques have been applied to implement 
classifier fusion by combining the outputs of multiple classifiers [1], [6], [7], [8]. 

The methods that have been proposed for combining neural network classifiers can 
provide solutions to tasks which either cannot be solved by a single net, or which can 
be more effectively solved by a multi-net system. However, the amount of possible 
improvement through such combination techniques is generally not known. Sharkey 
[9], and Tumer and Ghosh [10], [11] outline a mathematical and theoretical 
framework for the relationship between the correlation among individual classifiers 
and the reduction in error, when an averaging combiner is used. 

When multiple independent classifiers are considered, several strategies can be 
adopted regarding the generation of appropriate training sets. The whole set can be 
used by all classifiers [2], [12] or multiple versions can be formed as bootstrap 
replicates [13]. Another approach is to partition the training set into smaller disjoint 
subsets but with proportional distribution of examples of each class [12], [14]. 

The present work introduces a multi-net classifier system for the detection of plant 
viruses, using biosensors and Artificial Neural Networks (ANNs). The key feature of 
the method is the combination of specialized Artificial Neural Networks that are 
trained to recognize plant viruses according to biosensors’ responses. Thus, instead of 
training a single neural network involving a lot of parameters and using the entire 
training set, neural networks with less parameters are trained on smaller subsets. 
Through the splitting of the original data, storage and computation requirements are 
significantly reduced. Moreover, in order to increase the stability and the 
generalization capability of the classification model we applied a smoothing 
technique of the data. This approach produces a set of correlated specialized 
classifiers which attack a complex classification problem by applying an appropriate 
decision combination. 

2   Bioelectric Recognition Assay (BERA) 

The Bioelectric Recognition Assay (BERA) is a novel technology that detects the 
electric response of culture cells, suspended in a gel matrix, to various ligands, which 
bind to the cell and/or affect its physiology. Preliminary studies [15], [16], [17], [18] 
have demonstrated the potential application of the method for ultra rapid (1-2 
minutes), ultra cheap tests for infectious viruses in humans. Assays have been carried 
in an entirely crude sample and a high sensitivity of the method (0.1 ng) has been 
indicated, making it an attractive option for routine sample screening that could help 
reduce the exceeding use of advanced and costly molecular techniques, such as the 
reverse transcription polymerase chain reaction (RT-PCR). 

After producing a series of different sensor generations, BERA sensors were 
radically redesigned in order to produce a fifth generation which is optimal for 
diagnostic applications. Fifth generation sensors are extremely miniaturized, 
consisting of a disposable array of gel beads loaded with cells. They are characterized 
by a very high degree of reproducibility (>99.9%), extremely low cost and speed of 
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manufacturing (with a production performance of approx. 1000 sensors per technician 
per hour). In addition, the duration of the assay has been reduced from approx. 40 
seconds to a mere two seconds. A further variation of the method, called the “6th 
sensor generation” employs 5th generation sensors which contain engineered cells 
expressing target-specific antibodies on their membrane [19], [20]. 
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Fig. 1. Time series data produced from the BERA sensors (resampling rate=2) 

The major applications of BERA technology are for detection of viruses and 
metabolic changes linked to disease; and for screening candidate molecules for use as 
commercial pharmaceutical agents [21]. In this work, BERA will be used to detect 
plant viruses, such as the tobacco rattle (TRV) and the cucumber green mottle mosaic 
(CGMMV) viruses, using appropriate plant cells as the sensing elements. In respect to 
virology applications, each virus demonstrates a unique pattern of biosensor response 
over a specific range of concentrations, like a signature.  That is, individual viruses 
leave a characteristic signature, which can be read as a graphical curve, see Figure 1. 
The units of the X-axis are time stamps and for Y-axis are measurements produced 
from the sensor respectively. 

3   Sensor Fusion 

By the term multisensor fusion we mean the actual combination of different sources of 
sensory information into one representational format (this definition also applies to the 
fusion of information from a single sensory device acquired over a period of time) [22]. 

The potential advantages of fusing information from multiple sensors are that the 
information can be obtained more accurately, concerning features which are 
impossible to perceive with individual sensors, in less time and at a lesser cost. The 
above correspond respectively to the notions of redundancy, complementarity, 
timeliness and cost of the information provided to the system. The fusion can take 
place at different levels of representation (sensory information can be considered as 
data from a sensor that has been given a semantic content through processing and/or 
the particular context in which it was obtained). A useful categorization is to consider 
multisensor fusion as taking place at the signal, pixel, feature and symbol levels of 
representation. Signal level fusion refers to the combination of the signals provided by 
different sensors in order to provide a signal that is usually of the same form but of 
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higher quality. The sensor signals can be represented by random variables corrupted 
by uncorrelated noise, with the fusion process considered as an estimation procedure. 

During the multisensor fusion process three possible problems can be encountered: 
a) error in fusion process: the major problem in fusing redundant information is that 
of "registration", i.e. the determination that the information from each sensor is 
referring to the same features in the environment, b) error in sensory information: the 
error in sensory information is generally assumed to be caused by a random noise 
process that can be modeled as a probability distribution, c) error in system operation: 
when error occurs during operation, it may still be possible to make the assumption 
that the sensor measurements are independent, if the error is incorporated into the 
system model through the addition of an extra state variable. 

4   Data Pre-processing  

In our system, the measurements produced from the sensors are time series data, see 
Figure 1. So, given a sequence of measurements, we can apply a smoothing 
technique, like resampling, to extract the necessary features. According to the 
resampling rate we define the number of the produced features and also the 
dimensionality of the problem. Furthermore, noise accompanies almost every real 
measurement and the presence of noise also affects the similarity significantly. Using 
smoothing techniques like a good resampling rate we can produce better quality of 
data without a considerable loss of information, see Figure 2.     
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Fig. 2. Time series data produced from the BERA sensors (resampling rate=6) 

5   Artificial Neural Networks (ANNs) 

In what concerns the classification module, the primary idea is to train a neural 
classifier, in particular a multi-layered perceptron (MLP), to predict the presence of a 
virus. We applied Artificial Neural Networks (ANN) with different architecture in order 
to develop an intelligent system using biosensors for the detection of plant viruses.  

It has been shown that a monolithic approach to challenging data mining problems 
is ineffective. Especially, in the domain of classification, a multiclassifier system can 
exhibit shorter training time and higher accuracy than a single classifier. Furthermore, 
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the multiple classifier system might be easier to understand and maintain. So, in order 
to increase the classification stability of the method and the generalisation 
performance, we used a combination of neural classifiers.  

In this work, the proposed classification system will be used to detect plant viruses, 
such as the tobacco rattle (TRV) and the cucumber green mottle mosaic (CGMMV) 
viruses, using appropriate plant cells as the sensing elements. For the training of a 
classification model we used 200 different examples (plant cells), 100 examples for 
each plant virus. In addition, the proposed intelligent system is composed of three 
different types of BERA sensors according to the target-specific antibody that is 
contained on their membrane. So, for each example we get three different biosensor’s 
response data curves. In particular, for each virus example we can get three different 
data measurements corresponding to three different patterns. In order to build a 
classification module to solve a two-class problem we employed two methods. First, 
we used a simple classifier trained with all the data set consisted of 600 patterns (300 
patterns for each plant virus). Next, we used a multi-net classification system 
composed of three classifiers, each of them specialized with a specific type of BERA 
sensor. The later is accomplished by training each classifier with patterns produced 
from the corresponding sensor only.           

5.1   Multilayer Perceptron 

We considered MLP architectures consisting of the input layer (number of units 
according to the resampling rate), one hidden layer (20 to 30 sigmoid hidden units) 
and two output units (two viruses). We have applied the BFGS quasi-Newton 
algorithm [23] to train the MLP using the early stopping technique.  Weights were 
randomly initialised in the range [-1, 1].  

In our experimental study we want to discover the appropriate resampling rate and 
the MLP architecture (number of hidden units) that gives us the best results. To 
accomplish that we trained and tested several neural networks with different 
architectures and we also used several resampling rates to produce training data sets 
with different dimensionality. 

5.2   Combination of MLPs 

In this work, we combine specialized Artificial Neural Networks that are trained to 
recognize plant viruses according to biosensors’ responses. In this sense, we produced 
a set of correlated classifiers which attack the classification problem. The latter is 
accomplished by splitting the original problem into subproblems, which are assigned 
to the single classifiers. Subsequently, the multiclassifier system combines the 
performance of multiple single classifiers so as to reach a global decision. A major 
issue here is the way of combining those individual decisions. In this work, we 
followed the simplest method witch is the scheme of the majority wins. 

An important advantage of this method is that the training of each subnetwork can 
be done separately and in parallel. Thus, in the case of parallel implementation, the 
total training time of the system equals to the worst training time achieved among the 
neural classifiers. It must be noted that this total training time cannot be greater than 
the training time of a single neural classifier of the same type dealing with the entire 
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training set. Since such a single network usually requires more parameters, to learn 
the whole data set (which is much larger), the multi-net approach may lead to reduced 
execution times even in the case of implementation on a single processor.  

In particular, each subnetwork is a fully connected multilayer perceptron (MLP), 
with one hidden layer of sigmoidal units. We have applied the BFGS quasi-Newton 
algorithm [22] to train the MLPs using the early stopping technique. The 
classifications produced by the multiple individual MLPs are appropriately combined 
to get the final decision. 

6   Experimental Evaluation  

To compare the different network architectures, several series of experiments had to 
be conducted. For each type of MLP, we employed the 10-cross-validation method, in 
particular, ten experiments were performed with splits of data into training and test 
sets of fixed size (70% for training and 30% for testing). The effectiveness of 
generalization can be expressed as the ratio of the correctly recognized input patterns 
to the total number of presented patterns during the test phase. The average 
generalization results were calculated from these ten trials and the best results are 
summarized in Table 1. 

Table 1. Average generalization results using BFGS quasi-Newton algorithm for training MLP. 
For each case the resampling rate is indicated in parentheses. 

MLP 
Number of units in the 

hidden layer 

BFGS (2) BFGS (4) BFGS (6) BFGS (8) 

20 75.8% 84.3% 86.3% 78.9% 

25 80.1% 86.1% 87.7% 81.2% 

30 85.9% 87.2% 90.3% 81.7% 

Next, in Table 2 we give the best average generalization results produced from the 
multi-net classification system. Each subclassifier of the proposed multi-system is an 
ANN specialized to a biosensor. Given a new unclassified pattern, a class label is 
produced from each subclassifer. The final decision of the system is produced using a 
simple voting scheme, named the majority wins. We used different architectures for 
each subclassifier and the best results are shown in Table 2.      

Table 2. Average generalization results using the multi-net classification system. For each case 
the resampling rate is indicated in parentheses. 

Multi-net System 
Number of units in the 
hidden layer for each 

subclassifier  

BFGS (2) BFGS (4) BFGS (6) BFGS (8) 

(10,10,10) 85.8% 92.3% 92.6% 88.9% 

(10,15,20) 90.1% 91.5% 94% 91.2% 

(20,15,10) 85.9% 93.2% 90.3% 91.7% 
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Comparing the results in Table 1 with Table 2, we observe that using the proposed 
multi-net classifier system we can get more robust classification models with better 
generalization performance. The use of a smoothing technique like a good resampling 
rate improves even more the performance of the system.  

Furthermore, the results of our experimental study have shown that the proposed 
approach using ANN achieves better results in comparison to the empirical 
techniques. Also, the corresponding time of the proposed classification system, which 
is critical in real applications, is very competitive to the time an expert needs, so as to 
make a decision by examining a data curve.          

7   Conclusions  

In this work, we applied Artificial Neural Networks (ANN) with different architecture 
in order to develop an intelligent system using biosensors for the detection of plant 
viruses. The system is based on already developed by the team method for detection 
of viruses named BERA. The main drawback of this method was the employment of 
an empiric way to intact a virus by examining the biosensor’s response data curve. To 
overcome this problem, we used Artificial Neural Networks that are trained and 
specialized so that they recognize plant viruses. In order to increase the classification 
stability of the method and the generalisation performance, we proposed a 
combination of specialized Artificial Neural Networks that are trained to recognize 
plant viruses according to biosensors’ responses. We also used resampling as a 
smoothing technique to produce better quality of data without a considerable loss of 
information.     

An important strength of the proposed classification approach is that it does not 
depend on the type of the classifier, therefore, it is quite general and applicable to a 
wide class of models including neural networks and other classification techniques. 
The next target of our work will be to train the system to classify human viruses. 

Acknowledgement  

The project is co-funded by European Social Fund & National Resources – O.P. 
“Education” II. 

References 

1. Alpaydin E. Techniques for combining multiple learners. In Proceedings of Engineering of 
Intelligent Systems,  volume 2, pages 6-12, ICSC Press, 1998. 

2. Kuncheva L. Combining Classifiers by Clustering, Selection and Decision Templates. 
Technical report, University of Wales, UK, 2000. 

3. Maclin R. and Opitz D. An empirical evaluation of bagging and boosting. In Proceedings 
of the Fourteenth International Conference on Artificial Intelligence, pages 546-551, 
AAAI Press/MIT Press, 1997. 



408 D. Frossyniotis et al. 

4. Freund Y. and Schapire R.E. Experiments with a new boosting algorithm. In Proceedings 
of the Thirteenth International Conference on Machine Learning, pages 148-156, Morgan 
Kaufmann, 1996. 

5. Kuncheva L. Clustering-and-selection model for classifier combination. In Proceedings of 
the 4th International Conference on Knowledge-based Intelligent Engineering Systems 
(KES'2000), Brighton, UK, 2000. 

6. Vericas A., Lipnickas A., Malmqvist K., Bacauskiene M. and Gelzinis A. Soft 
combination of neural classifiers: A comparative study, Pattern Recognition Letters, 
volume 20, pages 429-444, 1999.  

7. Tumer K. and Ghosh J. Classifier combining through trimmed means and order statistics. 
In Proceedings of the International Joint Conference on Neural Networks, Anchorage, 
Alaska, 1998. 

8. Tumer K. and Ghosh J. Order statistics combiners for neural classifiers. In Proceedings of the 
World Congress on Neural Networks, pages I:31-34, Washington D.C., INNS Press , 1995. 

9. Sharkey A.J.C. Combining Artificial Neural Nets : Ensemble and Modular Multi-Net 
Systems, Springer-Verlag Press, 1999. 

10. Tumer K. and Ghosh J. Limits to performance gains in combined neural classifiers. In 
Proceedings of the Artificial Neural Networks in Engineering '95, pages 419-424, St. 
Louis, 1995. 

11. Tumer K. and Ghosh J. Error correlation and error reduction in ensemble classifiers. 
Connection Science, Special Issue on Combining Artificial Neural Networks: Ensemble 
Approaches, volume 8, number 3-5, pages 385-404, 1996. 

12. Alpaydin E. Voting over multiple condensed nearest neighbour subsets. Artificial 
Intelligence Review, volume 11, pages 115-132, 1997. 

13. Breiman L. Bagging predictors. Technical report, no. 421, Department of Statistics, 
University of California, Berkeley, 1994. 

14. Chan P.K. and Stolfo S.J. A comparative evaluation of voting and meta-learning on 
partitioned data. In Proceedings of the Twelfth International Machine Learning 
Conference, pages 90-98, Morgan Kaufmann, San Mateo, CA, 1995. 

15. Kintzios S., E. Pistola, P. Panagiotopoulos, M. Bomsel, N. Alexandropoulos, F. Bem, I. 
Biselis, R. Levin. Bioelectric recognition assay (BERA). Biosensors and Bioelectronics 
16¨325-336, 2001. 

16. Kintzios S., E. Pistola, J. Konstas, F. Bem, T. Matakiadis, N. Alexandropoulos, I. Biselis, 
R. Levin. Application of the Bioelectric recognition assay (BERA) for the detection of 
human and plant viruses: definition of operational parameters. Biosensors and 
Bioelectronics 16: 467-480, 2001. 

17. Kintzios, S., Bem, F., Mangana, O., Nomikou, K., Markoulatos, P., Alexandropoulos, N., 
Fasseas, C., Arakelyan, V., Petrou, A-L., Soukouli, K., Moschopoulou, G., Yialouris, C., 
Simonian, A. Study on the mechanism of Bioelectric Recognition Assay: evidence for 
immobilized cell membrane interactions with viral fragments. Biosensors & Bioelectronics 
20: 907-916, 2004. 

18. Kintzios S., Makrygianni Ef., Pistola E., Panagiotopoulos P., Economou G. Effect of 
amino acids and amino acid analogues on the in vitro expreesion of glyphosate tolerance in 
johnsongrass (Sorghum halepense L. pers.) J. Food, Agriculture and Environment 3: 180-
184, 2003. 

19. Kintzios S., J. Goldstein, A. Perdikaris, G. Moschopoulou, I. Marinopoulou, , O. Mangana, 
K. Nomikou, I. Papanastasiou, A-L. Petrou V. Arakelyan, A. Economou, A. Simonian. 
The BERA Diagnostic System: An all-purpose cell biosensor for the 21th Century. 5th 
Biodetection Conference, Baltimore, MD, USA, 9-10/06/05, 2005. 



 A Multisensor Fusion System for the Detection of Plant Viruses by Combining ANNs 409 

20. Moschopoulou G., Kintzios S. (2005): Membrane engineered Bioelectric Recognition Cell 
sensors for the detection of subnanomolar concentrations of superoxide: A novel biosensor 
principle. International Conference on Instrumental Methods of Analysis (IMA) 2005, 
Crete, Greece, 1-5/10/2005. 

21. Kintzios S., I. Marinopoulou, G. Moschopoulou, O. Mangana, K. Nomikou, K. Endo, I. 
Papanastasiou, A. Simonian. Construction of a novel, multi-analyte biosensor system for 
assaying cell division. Biosensors and Bioelectronics.(in press). 

22. Tzafestas G.S., Anthopoulos Y., Neural Networks Based Sensorial Signal Fusion: An 
Application to Material Identification’,  DSP’97, Santorini, Greece, July 2-4 1997. 

23. Dennis J.E., Schnabel R.B., Numerical methods for unconstrained optimization and 
nonlinear equations. Englewood Cliffs, NJ: Prentice-Hall, 1983. 



A Novel Connectionist-Oriented Feature
Normalization Technique

Edmondo Trentin

Dipartimento di Ingegneria dell’Informazione
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Abstract. Feature normalization is a topic of practical relevance in real-
world applications of neural networks. Although the topic is sometimes
overlooked, the success of connectionist models in difficult tasks may de-
pend on a proper normalization of input features. As a matter of fact, the
relevance of normalization is pointed out in classic pattern recognition
literature. In addition, neural nets require input values that do not com-
promise numerical stability during the computation of partial derivatives
of the nonlinearities. For instance, inputs to connectionist models should
not exceed certain ranges, in order to avoid the phenomenon of “satu-
ration” of sigmoids. This paper introduces a novel feature normalization
technique that ensures values that are distributed over the (0, 1) interval
in a uniform manner. The normalization is obtained starting from an es-
timation of the probabilistic distribution of input features, followed by an
evaluation (over the feature that has to be normalized) of a “mixture of
Logistics” approximation of the cumulative distribution. The approach
turns out to be compliant with the very nature of the neural network (it
is realized via a mixture of sigmoids, that can be encapsulated within the
network itself). Experiments on a real-world continuous speech recogni-
tion task show that the technique is effective, comparing favorably with
some standard feature normalizations.

1 Introduction

Feature normalization, as pointed out in classic pattern recognition literature
[4,5,7], is a topic of practical relevance in real-world applications of artificial
neural networks (ANN). Although the topic is sometimes overlooked, the success
of connectionist models in difficult tasks may depend on a proper normalization
of input features. Let us assume that input (or output) patterns are in the form
x = (x1, . . . , xd), and that they are extracted from a d-dimensional, real-valued
feature space X . Individual feature values xi, i = 1, . . . , d, are measurements
of certain attributes, according to a problem-specific feature extraction process.
Such measurements are expressed, in general, in terms of different units, and the
latter ones may span different possible ranges of values. Major motivations for
applying a normalization method include the following:

1. Reducing all features x1, . . . , xd to a common range (a, b), where a, b ∈ calR.
In so doing, increased homogeneity of values is gained, yielding a common

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 410–416, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(e.g., Euclidean) “distance measure” over patterns along the different axis.
Furthermore, all features are given the same credit, or weight: unnormal-
ized features that span a wider numerical range would otherwise overpower
features defined over smaller intervals.

2. Tackling, or reducing, numerical stability problems of the learning algorithms
in the ANN (i.e., during the computation of partial derivatives of the non-
linearities of the model). In particular, input values should not exceed a
certain (a, b) interval, in order to avoid the phenomenon of “saturation” of
sigmoids. As a matter of fact, saturation occurs when the activation value
a (input argument) of a sigmoid f(a) is along the tails of f(.), where the
partial derivative δf(a)

δa is numerically null. In case of saturation, the sigmoid
is basically “stuck” and it cannot provide any further contribution to the
gradient-driven learning of connection weights.

3. Stabilizing the numerical behavior of the delta-rule in the backpropagation
algorithm [12]. Since Δwij = ηδifj(aj) for a generic hidden or output weight,
while Δwjk = ηδjxk for weights in the first (input) layer, and given a com-
mon learning rate η, it is seen that unnormalized large-value features xk

would overpower the learning process for input weights wjk w.r.t. the other
weights of the ANN.

4. Allowing application of a nonlinear output layer of the ANN to model out-
puts in a wider range. Actually, sigmoids in the form 1

1+e−a are limited to
the (0, 1) interval, and hyperbolic-tangent sigmoids range over the (−1, 1)
interval, while target outputs may exceed these ranges.

5. Leading to data distributions that are basically invariant to rigid displace-
ments of the coordinates.

Classic normalization techniques mostly rely on the following approaches: (i)
for each feature i = 1, . . . , d, find the maximum absolute value Mi (i.e., Mi ∈
R+) over the training sample, and normalize each pattern x to obtain a new
pattern x′ defined as x′ = (x1/M1, . . . , xd/Md). This ensures features within the
(−1, 1) range. A similar technique is described in [2]; (ii) compute the sample
mean mi and the sample variance si for each feature i = 1, . . . , d, and normalize
x to obtain x′ = (x1−m1

s1
, . . . , xd−md

sd
). This ensures zero mean and unit variance

along all coordinate axis of the normalized feature space [7]. Approaches (i) and
(ii), i.e. mean subtraction and division by maximum, are sometimes combined.

Other (often similar) approaches can be found in the literature. For instance,
[6] presents an algorithm based on a heterogeneity measure, while [8] proposes a
combined normalization/clustering procedure. Different methods rely on linear
projections, e.g. the eigenvector projection or Karhunen-Loeve method [7], where
the original features are linearly transformed to a lower dimensionality space.
These transformations imply a certain loss of information w.r.t. the original
feature space representation of patterns.

This paper introduces a novel feature normalization technique that ensures
values that are distributed over the (0, 1) interval in a uniform manner. The tech-
nique is inspired by an approach suggested by Yoshua Bengio1, who used the
1 Y. Bengio, personal communication to the author (Como, Italy, 2000).
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rank of discrete observations as their numeric feature value. The normalization
is obtained starting from a maximum-likelihood estimation of the probabilistic
distribution of input features, according to a particular parametric model. The
technique is described in detail in Section 2. In addition to the above-listed bene-
fits, the technique turns out to be compliant with the very nature of the ANN (it
is realized via a mixture of sigmoids, that can be encapsulated within the ANN
itself). The uniform distribution obtained for the normalized data is basically
sample-invariant, i.e. the ANN architecture and training parameters (e.g. the
learning rate) are expected to fit different datasets. An experimental evaluation
on a real-world, continuous speech recognition task (Section 3) shows that the
technique is effective, and more suitable to the task than classic normalization
approaches.

2 The Proposed Normalization Method

Normalization is accomplished by transforming individual components of each
input pattern into the corresponding value of the cumulative distribution func-
tion (cdf) of the inputs, estimated on a feature-by-feature basis. A mixture of
Logistics is assumed as a model of the cdf for a given component of the feature
space. Maximum-likelihood estimation of the mixture parameters is performed
from the available samples [4]. Each feature is eventually normalized by re-
placing it with the value of the corresponding cdf evaluated over the feature
itself. In so doing, the normalization step can be encapsulated within the ANN,
in a suitable and straightforward manner, by adding an extra (pre)input layer
with sigmoid activation functions. The proposed approach leads to (potentially)
sample-invariant ANN topologies/learning parameters, since different data sets
are reduced to the same distribution.

More precisely, let T = {x} be the data sample, where x ∈ Rd are the patterns
to be normalized. The i-th feature xi is drawn from a certain (generally unknown)
probability distribution, having probability density function (pdf) pi(x). We as-
sume a parametric model for pi(x) in the form of a mixture of Normal components,
i.e. pi(x) =

∑c
j=1 Pi(j)N(x;μij ,σ

2
ij), where c Normal densities N(x;μij ,σ

2
ij)

(with mean μij and variance σ2
ij) are considered, along with their corresponding

mixing parameters Pi(j). The condition
∑c

j=1 Pi(j) = 1 holds. Although the as-
sumption of a specific parametric from for pi(x) may look strong, the mixture of
Normal components is popular in statistical inference. In fact, it may approximate
arbitrarily well any given continuous pdf if c is sufficiently large [4].

Once the parametric model has been fixed, any given statistical technique for
parameter estimation may be applied in order to estimate Pi(j), μij , and σ2

ij from
the sample T , for i = 1, . . . , d and j = 1, . . . , c. Parameter estimation approaches
include the maximum-likelihood (ML) technique [4], Bayesian learning [4], and the
minimax procedure [10,9]. ML is used in the experiments presented in this paper.

At this point, let us assume that the parameters of the model pi(x) =
∑c

j=1
Pi(j)N(x;μij ,σ

2
ij) have been determined from the data in a suitable manner.

The corresponding cdf fpi(x) is defined as fpi(x) =
∫ x

−∞ pi(u)du, hence
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fpi(x) =
∑c

j=1 Pi(j)
∫ x

−∞ N(u;μij ,σ
2
ij)du. It is easily seen that, according to

[10], the indefinite integral cannot be expressed in a simple functional form, but
the cdf of a Normal pdf N(x;μ,σ2) has a sigmoid-like shape that is close to a
logistic function F (x) = 1/(1 + e−(x−α)/β) having mean α = μ and variance
σ2 = β2π2

3 . The ML estimates for μ and σ2 can be used to compute α and
β accordingly. Thus, we can obtain an approximation of fpi(x) by assuming a

mixture of logistics, namely fpi(x) �
∑c

j=1 Pi(j){1/(1 + e−(x−μij)/
√

3σ2
ij/π2

)}.
Finally, transformation of the unnormalized feature vector x = (x1, . . . , xd)

into a normalized feature vector x′ is accomplished as follows:
x′ = (fp1(x1), fp2(x2), . . . , fpd

(xd)). Due to the properties of cdfs, it is immedi-
ately seen that the normalized features are uniformly distributed over the (0, 1)
interval.

It is worth pointing out that the logistic F (x) is basically a standard ANN sig-
moid, with bias α and smoothness β. As a consequence, the normalization step
can be encapsulated within the ANN by adding an extra (pre)input layer with
sigmoid activation functions 1/(1 + e−(x−μij)/

√
3σ2

ij/π2
) which feed connection

weights that are set equal to the mixing parameters Pi(j). This further empha-
sizes the numerical stability of the proposed approach, since all nonlinearities in
the overall model are the same in nature and in numerical properties.

In so doing, the normalization transformation may be also refined by means of
a few, further learning epochs via backpropagation. This is accomplished through
a 3-step procedure: (1) estimate the cdfs as above, and apply normalization; (2)
train the ANN over the normalized data; (3) keeping the weights of the ANN
fixed, apply encapsulation of the mixture of logistics within the connectionist
architecture, and apply backpropagation to improve the values of the weights
Pi(j), as well as of the bias μij and smoothness σij (i.e., learn a gradient-driven
normalization transformation that better fits the data and the overall training
criterion of the ANN).

3 Experimental Evaluation

We evaluate performance of the proposed technique in a real-world continu-
ous speech recognition task. The ANN/hidden Markov model hybrid that we
introduced in [13] is used for carrying out the recognition task. It relies on a
feed-forward ANN that learns to estimate the emission probabilities of a hid-
den Markov model (HMM) [11] according to the ML criterion [14]. Performance
obtained with/without different feature normalization techniques is reported,
and compared with a baseline yielded by a standard Gaussian-based HMM, and
with the results obtained using a classic Bourlard and Morgan’s ANN/HMM
paradigm [1], where the ANN is heuristically trained to estimate the conditional
transition probabilities.

The recognition task is the same that we discussed in [14]. Speech signals from
the cdigits part of the SPK database2, collected in laboratory conditions, were
2 SPK is available from the European Language Resources Association (ELRA).
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considered. It is a continuous speech task, namely 1000 utterances of connected
Italian digit strings having length 8 (for a total of 8000 words), acquired over 40
different speakers (21 male and 19 female). The whole dataset was divided into
two equally-sized subsets, to be used for training and test, respectively. A close-
talk microphone was used for the recordings, under quiet laboratory conditions.
Spectral analysis of the speech signals (acquired at a sampling rate of 16kHz)
was accomplished over 20ms Hamming windows having an overlap of 10ms, in
order to extract 8 Mel Frequency Scaled Cepstral Coefficients (MFSCCs) [3] and
the signal log-energy as acoustic features (i.e., d = 9). The unnormalized values
of this feature space roughly range in the (−198, 246) interval.

Words in the dictionary were modeled using individual, left-to-right HMMs
having 3 to 6 states, according to the phonetic transcription of each Italian
digit, plus a 1-state model for the “silence” (or “background noise”, @bg) for
a total of 40 states. Mixtures of 8 Gaussian components were used to model
emission probabilities for each state of the standard HMM, that was initialized
via Segmental k-Means [11] and trained by applying the Baum-Welch algorithm
[11]. After a preliminary cross-validation step, the topology of the feed-forward
ANN included 9 inputs, 93 sigmoids in the hidden layer, and 40 output sigmoids
(one per each state of the underlying HMM). This architecture was kept fixed
during all the following experiments.

Table 1. Word recognition rate (WRR) on test set of the SPK connected digits,
speaker-independent problem. 9-dim acoustic space: 8 MFSCCs and signal log-energy.

Architecture/normalization technique WRR (%)
HMM with 8-Gaussian mixtures, no norm 90.03

Bourlard and Morgan’s, no norm 46.75
Bourlard and Morgan’s, division by max 88.01

Bourlard and Morgan’s, mean-variance norm 89.16
Bourlard and Morgan’s, proposed norm 90.20

ANN/HMM hybrid, no norm 52.16
ANN/HMM hybrid, division by max 89.92

ANN/HMM hybrid, mean-variance norm 92.05
ANN/HMM hybrid, proposed norm 94.65

Experimental results with/without feature normalization are reported in Ta-
ble 1 in terms of Word Recognition Rate (WRR). In the Table, “no norm” means
that no normalization was applied to the original features; “division by max”
means that each feature value was divided by the maximum absolute value (for
that specific feature) that was met on the training sample; “mean-variance norm”
refers to the mean-subtraction and division-by-variance normalization scheme
(as described in Section 1); “proposed norm” is the normalization technique
presented in this paper.

The Gaussian-based HMM is best suited to unnormalized data (results ob-
tained using normalized data are worse, and they are not reported in the Table).
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A comparison with Bourlard and Morgan’s architecture is provided. The variant
“Case 4” of the algorithm, described in [1] on page 164, was applied. Normaliza-
tion of ANN outputs, i.e. division by the corresponding state-priors (estimated
from the training set) in order to reduce to “likelihoods”, was accomplished at
recognition time, as recommended in [1], Chapter 7. Finally, the ANN/HMM hy-
brid proposed by [14] was applied. As already reported in [14], the ANN/HMM
hybrid (trained with the MAP version of the gradient-ascent, global optimiza-
tion algorithm [14]) improves performance over the other recognition paradigms.
In any case, it is seen that the proposed normalization technique is particularly
effective for ANN training in the speech recognition task.

4 Conclusion

The success of connectionist models in difficult tasks may depend on a proper
normalization of input features. Moreover, ANNs require input values that do not
compromise numerical stability during the computation of partial derivatives of
the nonlinearities, as well as inputs that do not exceed certain ranges in order to
avoid the phenomenon of “saturation” of sigmoids. This paper introduced a novel
feature normalization technique that ensures values that are distributed over the
(0, 1) interval in a uniform manner. The normalization is obtained starting from
a ML estimation of the probabilistic distribution of input features according
to a parametric mixture density model, turning out to be compliant with the
very nature of the data. A mixture of Logistics is then used to approximate
the corresponding cumulative distribution fpi(x) (it is realized via a mixture of
sigmoids, that can be encapsulated within the ANN itself). Each feature xi is
then normalized by taking x′

i = fpi(xi).
Experiments were accomplished on a speaker-independent, continuous speech

recognition task from the SPK database. Hybrid ANN/HMM models were ap-
plied, including ANNs that estimate probabilistic quantities involved in the un-
derlying HMM. Comparison of the results obtained with the different models
with/without major feature normalization methods show that the proposed tech-
nique is effective.

The proposed approach leads to (potentially) sample-invariant ANN topolo-
gies/learning parameters, since different data sets are reduced to the same dis-
tribution.
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Abstract. Kernel-based learning presents a unified approach to machine learning
problems such as classification and regression. The selection of a kernel and asso-
ciated parameters is a critical step in the application of any kernel-based method
to a problem. This paper presents a data-driven evolutionary approach for con-
structing kernels, named KTree. An application of KTree to the Support Vector
Machine (SVM) classifier is described. Experiments on a synthetic dataset are
used to determine the best evolutionary strategy, e.g. what fitness function to use
for kernel evaluation. The performance of an SVM based on KTree is compared
with that of standard kernel SVMs on a synthetic dataset and on a number of
real-world datasets. KTree is shown to outperform or match the best performance
of all the standard kernels tested.

1 Introduction

A major advance in recent research into pattern analysis has been the emergence of
an approach known as kernel-based learning. This unified approach to problems, such
as classification, regression and clustering, is based on a kernel that defines how two
objects of a dataset are related. Kernel-based learning first appeared in the form of sup-
port vector machines, a powerful classification algorithm that is capable of representing
non-linear relationships (via kernels) and producing models that generalise well to un-
seen data. A key decision in the use of any kernel-based method is the choice of kernel.
In the case of SVMs, the performance exhibited by different kernels may differ consid-
erably. Generally, kernel method practitioners will pick from a set of standard kernels,
the Radial Basis Function (RBF) and Polynomial kernel being two widely used exam-
ples. An alternative to using one of these pre-defined kernels is to construct a custom
kernel especially for a particular problem domain, e.g. the string kernel used for text
classification [1]. This approach can yield good results, but obviously depends on the
availability of expert knowledge of a particular domain.

This paper presents an approach, named KTree, that uses the evolutionary method
of Genetic Programming (GP) to find a kernel for a particular data domain. KTree is
a modified and extended version of the Genetic Kernel SVM (GKSVM) developed by
the authors [2]: it uses a more sophisticated kernel representation that can represent
standard kernels, such as RBF; a Mercer filter is used to improve performance; it uses
a different fitness function (based on cross-validation), which results have shown to be
superior. This study also includes a more extensive evaluation, using both a synthetic
dataset and wider range of real-world datasets. KTree allows for the generation of non-
standard kernels; the objective is to provide for the automatic discovery of kernels that

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 417–426, 2006.
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achieve good classification accuracy when tested on unknown data. The major goal of
this research is to determine the best strategy in the use of GP to evolve kernels; key
issues include choice of fitness function and the filtering of non-Mercer kernels.

Kernel methods are described in Section 2, with particular emphasis on kernel func-
tions. Section 3 describes KTree. Experimental results and analyses are presented in
Section 4. Section 5 evaluates research related to this work and Section 6 presents the
main conclusions.

2 Kernel Methods and Classification

In kernel methods, the kernel function is used to recode the data into a new feature space
that reveals regularities in the data that were not detectable in the original representa-
tion. This allows the use of algorithms based on linear functions in the feature space;
such linear methods are both well understood and computationally efficient. With kernel
functions, no explicit mapping of the data to the new feature space is carried out – this is
known as the “kernel trick”. It enables the use of feature spaces whose dimensionality is
more than polynomial in the original set of features, even though the computational cost
remains polynomial. This unified kernel approach approach can be applied to a number
of machine learning problems, such as supervised classification and regression, semi-
supervised learning and unsupervised methods, such as clustering. The classic example
of this kernel approach is found in the SVM classifier.

2.1 Kernel Functions

One key aspect of the SVM model is that the data enters both the optimisation problem
and the decision function only in the form of the dot product of pairs. This enables
SVMs to handle non-linear data. The dot product is replaced by a kernel function,
K(x, z) = 〈φ(x),φ(z)〉, that computes the dot product of two samples in a feature
space, where φ(x) represents the mapping to this feature space. The SVM finds the
maximum margin separating hyperplane in the feature space defined by this kernel,
thus yielding a non-linear decision boundary in the original input space. With the use
of kernel functions, it is possible to compute the separating hyperplane in a high di-
mensional feature space without explicity carrying out the mapping, φ, into that feature
space [3]. Typical choices for kernels are the Linear, Polynomial, RBF and Sigmoid
kernels. Note that using a Linear kernel is equivalent to working in the original input
space. Apart from this kernel, all of the above kernels require the setting of one or more
parameters, such as σ, the kernel width of the RBF kernel. One alternative to using
these standard kernels is to employ a kernel that has been customised for a particular
application domain, e.g. the string kernel of Lodhi et al. [1].

Whether building complex kernels from simpler kernels, or designing custom ker-
nels, there are conditions that the kernel must satisfy before it can be said to corre-
spond to some feature space. Firstly, the kernel must be symmetric, i.e. K(x, z) =
〈φ(x),φ(z)〉 = 〈φ(z),φ(x)〉 = K(z, x). Typically, kernels are also required to satisfy
Mercer’s theorem, which states that the matrix K = (K(xi, xj))n

i,j=1 must be positive
semi-definite, i.e. it has no negative eigenvalues [4]. In SVM classification, this condi-
tion ensures that the solution of the optimisation problem produces a global optimum.
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However, good results have been achieved with non-Mercer kernels, and convergence
is expected when the SMO algorithm is used, despite no guarantee of optimality when
non-Mercer kernels are used [5]. Furthermore, despite its wide use, the Sigmoid kernel
matrix is not positive semi-definite for certain values of the parameters γ and θ [6].

3 KTree and SVM Classification

A critical stage in the use of kernel-based algorithms is kernel selection, as this can
be shown to correspond to the encoding of prior knowledge about the data [7]. SVM
users typically employ one of the standard kernels listed in Section 2.1. Kernels can also
be constructed by using simpler kernels as building blocks, e.g. the kernel, K(x, z) =
K1(x, z)+K2(x, z) or by using the custom kernel approach. Ideally, a kernel is selected
based on prior knowledge of the problem domain, but it is not always possible to make
the right of choice of kernel a priori.

Evolving Kernel Tree Population
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Fittest Kernel

Kernel
Tree

Evaluate SVM on Training Data

Kernel
Tree

K(x,z) =

Training Dataset
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Kernel Tree
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calculated for different pairs of training samples
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5. Replace old population with 
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6. Repeat Steps 2 to 5 until 
convergence.
7. Build final SVM using the 
fittest kernel tree found.

Ktree: Main Steps

Fig. 1. Application of KTree to the SVM

The approach presented here uses an evolutionary technique to discover a suitable
kernel for a particular problem. In this case, KTree is used to evolve kernels specifically
for SVM classifiers, but this approach can be used with other kernelised pattern analysis
algorithms. The aim of KTree is to eliminate the need for testing various kernels and
parameter settings, while also allowing for the discovery of new non-standard kernels.
With KTree, a tree structure, known as a kernel tree (see Figure 2) is used to represent
a kernel function. The objective of KTree is to find a kernel tree that best represents the
data. An overview of the application of KTree to the SVM is shown in Figure 1, which
also includes the main steps in the building of a SVM using KTree.
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3.1 Kernel Tree Representation

The kernel tree used to represent a kernel function must take two data samples as inputs
and provide a scalar value as output. An example of a kernel tree is shown in Figure 2.
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Fig. 2. Kernel Tree generated for Ionosphere Data

This particular kernel tree was generated from experiments on the Ionosphere data-
set. The diagram shows that the kernel tree is split into two parts, the vector and the
scalar tree. The inputs to the vector tree are the two samples, x and z, for which the ker-
nel is being evaluated. These inputs are passed through vector operators, such as add or
subtract, which in turn pass vectors onto the next node. To ensure that the output of this
tree is symmetric, the entire vector tree is evaluated twice, swapping the inputs x and z
for the second evaluation. The final output of the vector tree, fv(x, z), is the dot product
of these two evaluations. This output becomes an input, along with randomly generated
constant terminals, for the scalar tree. This design was chosen to allow for the use of
complex mathematical operators, such as exp and tanh, in the scalar tree. Applying
these operators directly to the vector inputs could result in overly complex and unus-
able kernels. A second motivation for this design is that it is also capable of representing
the standard kernels, e.g. the RBF kernel and Polynomial kernel. Although symmetry is
satisfied, this kernel tree design is not guaranteed to produce Mercer kernels. However,
non-Mercer kernels can be filtered out (see Section 3.2).

For the initial population, each kernel tree (both vector and scalar parts) is generated
by randomly creating a root node and by growing a tree from this node until either no
more leaves can be expanded (i.e. all leaves are terminals) or until a preset initial max-
imum depth has been reached (2 for the experiments reported here). The evolutionary
process shown in Figure 1 involves the application of mutation and crossover opera-
tors on selected kernel trees. For mutation, a point in either the vector or scalar tree
is randomly chosen and the sub-tree at that point is replaced with a newly generated
tree (vector or scalar, depending on where mutation occurred). Mutation of individual
nodes (e.g. constant terminals) is not employed. Crossover between two kernel trees be-
gins with the selection of a random point from either the vector or scalar part of the first
kernel tree. The location of the crossover point on the second kernel tree is constrained
so that crossover does not occur between the scalar part of one kernel tree and the vector
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part of another. Rank-based selection was employed for the selection of the candidates
for crossover. To prevent the proliferation of massive tree structures, pruning is carried
out on kernel trees after mutation, maintaining a maximum depth of 12 (for either the
vector or scalar part). A population of 500 kernel trees was used for all experiments,
each being evolved over 32 generations, on average.

3.2 Fitness Function

Another key element of KTree is the choice of fitness function. Three different fitness
functions were tested in experiments on a synthetic dataset (see Section 4.1). Two of
the fitness functions are based on training set classification error in combination with a
different tiebreaker fitness (to limit overfitting on the training set). The first tiebreaker
fitness is based on kernel tree size, favouring smaller trees, in the spirit of Ockham’s
Razor. The second tiebreaker fitness is based on the sum of the support vector values,∑

αi (where αi = 0 for non-support vectors). It favours kernels with a smaller sum
and also incorporates a penalty corresponding to the radius of the smallest hypersphere,
centred at the origin, that encloses the training data in feature space. The third fitness
function employed is based on a 3-fold cross-validation test on the training data and
also uses tree size as a tiebreaker fitness. In this case, the same kernel is used to build an
SVM three times over the course of one fitness evaluation. The experimental analysis
of Section 4.1 details the results of applying the above fitness functions on a synthetic
dataset.

In addition to the above fitness evaluations, the use of a filter for non-Mercer kernels
(referred to as the Mercer filter) was investigated. To estimate the Mercer condition
of a kernel, the eigenvalues of the kernel matrix over the training data are calculated;
if any negative eigenvalues are discovered, the kernel is marked as non-Mercer and is
assigned the worst possible fitness, e.g. a cross-validation error of 100%. To reduce
the computational cost when dealing with larger datasets, the kernel matrix is based on
only a subset of the training data. This approach was to found to be effective in the
experiments (detailed in Section 4). The kernel matrix was limited to a maximum size
of 250x250.

4 Experimental Results

4.1 Synthetic Dataset

To determine the best strategy for evolving kernels for use in SVM classifiers, a number
of experiments were carried out on a synthetic dataset, the checkerboard dataset, shown
in Figure 3(a). A checkerboard dataset (similar to that used by Mangasarian et al. [8]) of
10,000 samples was generated with an equal distribution of both classes. This synthetic
dataset allows for the creation of a large test set that is suitable for comparing different
kernel classifiers and is also useful for visually comparing kernel performance. In addi-
tion to finding a strategy that generates kernels with good classification accuracy, this
research is concerned with issues such as the selection of fitness function, the effect of
using non-Mercer kernels, and the contribution of genetic operators.
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Table 1. Results on Checkerboard Dataset

(a) Standard Kernels

Standard Fitness Error
Kernel

Linear (C=1) 43.3% 48.4%
Poly (C=32,d=13) 19.6% 27.48%
RBF (C=16,σ=8) 14.8% 11.67%
Sigmoid (C=0.1,
(γ=10,θ=1E-6) 40.8% 48.92%

(b) KTree

KTree Fitness Error

Default 9.6% 10.74%
Training + No. Nodes – 14.19%
Training +

∑
αi – 41.26%

No Mercer Filter 8.00% 7.43%
No Crossover 11.6% 7.71%
No Mutation 11.2% 12.57%

Table 1 shows the results on the checkerboard dataset for the standard kernels and
KTree. In both cases, the SVM was trained on a subset of 250 samples from the checker-
board dataset and then tested on the full dataset. For each standard kernel, a simple
technique is employed for choosing parameters: an SVM with the standard kernel is
tested on the training dataset over a range of settings for both kernel and SVM (C pa-
rameter). The degree parameter, d, ws tested with the values: 1, 2, . . . , 19, 20. C and σ
were tested with the values 2−20, 2−19, . . . , 219, 220, except for the Sigmoid kernel, in
which case C and the two other parameters (γ and θ) were tested with the following
values: 10−6, 10−5, . . . , 105, 106. For each kernel type, the kernel setting of the best
fitness (based on 3-fold cross-validation error) is chosen and used to build an SVM on
the entire training dataset, the resulting model used for the test dataset. Table 1 shows
the fitness of the final selected kernel (for both standard and KTree) along with its test
error. Table 1(a) shows the RBF kernel outperforming all other standard kernels. The
KTree results are based on different variations of KTree, depending on choice of fit-
ness estimate, use of Mercer filter and crossover/mutation rates. The default KTree of
Table 1(b) uses a fitness function based on 3-fold cross-validation error, employs a Mer-
cer filter and uses both mutation and crossover. The next two KTree variations use the
other two fitness estimates (based on training error with either number of nodes or

∑
αi

as tiebreaker) outlined in Section 3.2. The results show that the default setting achieves
the best results out of the three, with KTree using training error with α-radius estimate
performing very badly. Further analysis of fitness vs. test error showed the fitness based
on 3-fold cross-validation to be more stable; this fitness estimate is used as the default
in the remaining experiments (both synthetic and UCI datasets).

This study is also concerned with the behaviour of the genetic operators used in
KTree. The traditional view of Genetic Algorithms (GAs) is that crossover is primarily
responsible for improvements in fitness, and that mutation serves a secondary role of
reintroducing individuals that have been lost from the population. However, an impor-
tant difference with GPs (compared with GAs) is that crossover in GP swaps trees of
varying sizes, shape, and position, whereas the typical GA swaps alleles at exactly the
same locus [9]. Furthermore, changing a function or a terminal in a GP can have a dra-
matic effect on the operations of other functions and terminals not only within its own
subtree, but throughout an individual. The default setting for KTree shown in Table 1
adopts the classical approach, i.e. a high crossover rate (0.8) relative to the mutation
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rate (0.2). The results for KTree with two other different settings are shown in the last
two rows of this table: one without crossover and the other without mutation. KTree
without crossover achieved a very good test error, but the actual fitness of its best indi-
vidual is worse than that produced by the default KTree. In terms of final kernel fitness,
there is very little difference between KTree based on crossover alone and that based
on mutation alone. This is in agreement with Luke & Spector’s conclusion that there
is often no significant difference between the performance obtained by an all-crossover
strategy or an all-mutation strategy. As selecting a very high mutation rate can have
adverse effects on convergence and also result in a significant increase in the number of
kernel evaluations required in one run, KTree used for tests on the UCI datasets uses a
higher crossover rate (0.8) than mutation rate (0.2).1

In addition to these results, the output for four different kernels, shown in Figure 3,
was used to compare the performance of KTree with that of standard kernels. Two
variations of the KTree are shown: the default KTree with Mercer filter and the same
KTree, except without a filter for Mercer kernels. It can be seen from these figures that
both kernels achieve an output that is much closer to the original checkerboard pattern
than the standard kernels’ output. A comparison of the fitness versus test error of the
kernels produced during the non-Mercer KTree run shows a reasonable trend, but does
indicate a greater danger for finding highly fit kernels with poor test performance.

Fig. 3. Output of standard and KTree kernels

4.2 UCI Datasets

The overall conclusion from the experiments on the synthetic dataset is that KTree is
capable of producing kernels that outperform the best standard kernels. A further test on
nine binary classification datasets from the UCI machine learning repository [10] was
carried out. The results of Table 2 show the average error from a single 10-fold cross
validation test on each dataset. For each dataset, the lowest average error is highlighted
in bold. A pairwise comparison between kernels over all datasets (see Table 3) was
carried out using a two-tailed Wilcoxon Signed Rank test [11] at a confidence level of
5%. Table 3 shows that KTree (with Mercer filter) significantly outperforms all other
kernels, with the exception of the RBF kernel (no significant difference found). These
results show that KTree is capable of outperforming or matching the best results of the
most widely used standard kernels. Further tests on the UCI data showed that KTree
without Mercer filter yielded poor results (not shown) in comparison with the KTree
that incorporates the Mercer filter.

1 We note that this is still a reasonably high mutation rate.
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Table 2. Classifier 10-fold Error Rates(%): see Table 3 for pairwise comparisons of kernels over
all datasets

Dataset Linear Polynomial RBF Sigmoid KTree

Ionosphere 13.66±3.62 8.30±4.12 5.72±2.68 9.49±5.02 5.70±2.32
Heart 17.78±7.96 17.78±7.96 18.15±8.27 18.52±5.52 17.78±8.69
Hepatitis 17.91±9.84 25.33±22.00 18.66±12.18 21.09±14.05 14.08±8.82
Sonar 21.72±9.56 16.84±10.61 14.43±8.98 18.25±9.18 11.58±7.25
Glass2 29.55±12.89 27.36±13.66 15.72±13.06 27.12±13.08 16.31±11.42
Pima 25.91±11.15 23.44±3.44 23.05±3.96 22.66±4.44 22.53±4.48
WBCP 26.85±9.20 32.09±17.99 22.62±5.44 30.93±9.33 24.2±2.72
Liver 31.54±7.71 30.63±9.31 29.18±8.30 27.15±8.41 27.73±8.93
Tic-Tac-Toe 1.67±1.12 0.10±0.33 0.21±0.65 0.00±0.00 0.42±0.72

Table 3. Performance on Independent Test Sets: pairwise comparison of kernels using Wilcoxon
Test (W=Win, L=Loss, D=Draw–no sig. difference). Overall, KTree exhibits the best results.

Kernel Lin Poly RBF Sig KTree

Lin - D W D W
Poly D - W D W
RBF L L - D D
Sig D D D - W
KTree L L D L -

W/L/D 0/2/2 0/2/2 2/0/2 0/1/3 3/0/1

Table 4. Average kernel fitness (based on 3-fold error) on the Training Sets: this shows that KTree
kernels achieve the best fitness

Dataset Linear Polynomial RBF Sigmoid KTree

Ionosphere 12.38±0.64 8.00±0.58 4.72±0.47 11.05±3.6 4.12±0.77
Heart 16.13±0.77 16.09±0.79 15.56±0.93 15.68±0.94 13.91±0.84
Hepatitis 15.63±1.49 14.27±1.79 14.70±1.88 17.06±1.64 12.76±2.03
Sonar 22.54±2.32 14.69±2.06 12.82±1.77 19.66±2.70 8.01±1.70
Glass2 28.09±2.58 20.31±2.04 15.13±2.47 27.06±2.33 13.98±2.82
Pima 22.51±0.45 22.02±0.43 22.05±0.50 22.18±0.51 21.76±0.52
WBCP 23.63±0.16 23.23±0.53 21.44±1.24 23.12±0.66 22.17±0.99
Liver 30.08±1.61 24.80±1.24 24.83±1.17 25.60±1.16 23.41±1.17
Tic-Tac-Toe 1.67±0.12 0.94±0.21 0.51±0.25 0.59±0.28 0.38±0.19

All methods compared in Table 2 use the same basic fitness evaluation for selecting
the best model for a given training set, namely 3-fold cross-validation error. Therefore,
ten different kernels are selected over the course of a 10-fold cross-validation run. Ta-
ble 4 shows the average fitness (or 3-fold error rate) of the ten models selected for each
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kernel type. The best fitness (or lowest error) is highlighted in bold. It was found that
KTree significantly outperformed (using the same Wilcoxon test as before) all of the
standard kernels in terms of the average fitness of the final kernels selected. This re-
sult suggests that with with a better fitness function (i.e. one that follows the actual test
error more closely), KTree may be able improve its performance on test data. On the
other hand, the datasets used in these tests may be the cause of some of the problems;
the presence of noise in these datasets may be adversely affecting the usefulness of this
particular fitness estimate. Although the 3-fold error fitness results in good performance,
further investigation is required to find a more suitable (and possibly more efficient) fit-
ness measure. For example, it may be possible to use the training error (which is quicker
to compute) as a fitness estimate when dealing with larger datasets, where there is less
danger of overfitting.

5 Related Research

Some research has been carried out on the use of evolutionary approaches in tandem
with SVMs. Frohlich et al. use GAs for feature selection and train SVMs on the re-
duced data [12]. The novelty of this approach is in its use of a fitness function based
on the calculation of the theoretical bounds on the generalisation error of the SVM.
This approach was found to achieve better results than when a fitness function based
on cross-validation error was used. A RBF kernel was used in all reported experiments.
Other work has used evolutionary algorithms to optimise a single kernel, typically the
RBF Kernel [13,14]. Similarly, Lessmann et al. [15] used a GA to optimise a set of pa-
rameters for five kernel types and the SVM C parameter, and is also used to determine
how the result of each kernel is combined (addition or multiplication) to give the final
kernel output. A separate hold-out validation set is used to assess the fitness of each
kernel candidate.

6 Conclusions

This paper has described an evolutionary method for constructing the kernel of a kernel-
based classifier, in this case the SVM. KTree is a data-driven approach that uses GP to
evolve a suitable kernel for a particular problem. Experiments on a synthetic dataset
were carried out to determine suitable settings for KTree. Using a fitness function
based on an internal cross-validation test was found to yield the best result. In addi-
tion, both mutation and crossover operators were found to be useful for the discovery
of better kernels. Tests on a number standard datasets show that KTree is capable of
matching or beating the best performance of any of the standard kernels tested. When
compared using the fitness measure, the kernels produced with KTree clearly outper-
form the best standard kernels. The results also highlight the need for future work into
finding a more effective fitness estimate, with which the performance of KTree could be
improved.Future work will also involve testing on more datasets and using the KTree
approach for regression problems and cluster analysis.
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Abstract. We show how to employ leave-K-out cross-validation in Un-
supervised Kernel Regression, a recent method for learning of nonlin-
ear manifolds. We thereby generalize an already present regularization
method, yielding more flexibility without additional computational cost.
We demonstrate our method on both toy and real data.

1 Introduction

Unsupervised Kernel Regression (UKR) is a recent approach for the learning
of principal manifolds. It has been introduced as an unsupervised counterpart
of the Nadaraya-Watson kernel regression estimator in [1]. Probably the most
important feature of UKR is the ability to include leave-one-out cross-validation
(LOO-CV) at no additional cost. In this work, we show how extending LOO-CV
to leave-K-out cross-validation (LKO-CV) gives rise to a more flexible regular-
ization approach, while keeping the computational efficiency.

The paper is organized as follows: In the next section we recall the UKR al-
gorithm and briefly review its already existing regularization approaches. After
that, we introduce our generalization to LKO-CV as well as a simple comple-
mentary regularizer. Then, we report some results of our experiments and finally
we conclude with some remarks on the method and an outlook to further work.

2 The UKR Algorithm

In classical (supervised) kernel regression, the Nadaraya-Watson estimator [2,3]

f(x) =
∑

i

yi
K(x− xi)∑
j K(x− xj)

(1)

is used to describe a smooth mapping y = f(x) that generalizes the relation
between available input and output data samples {xi} and {yi}. Here, K(·) is a
density kernel function, e.g. the Gaussian kernel K(v) ∝ exp

[
− 1

2h2 ‖v‖2
]
, where

h is a bandwidth parameter which controls the smoothness of the mapping.
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In unsupervised learning, one seeks both a faithful lower dimensional rep-
resentation (latent variables) X = (x1,x2, . . . ,xN ) of an observed data set
Y = (y1,y2, . . . ,yN ) and a corresponding functional relationship. UKR ad-
dresses this problem by using (1) as the mapping from latent space to data space,
whereby the latent variables take the role of the input data and are treated as
parameters of the regression function. By introducing a vector b(·) ∈ RN of basis
functions, the latter can conveniently be written as

f(x;X) =
∑

i

yi
K(x− xi)∑
j K(x− xj)

= Yb(x;X) . (2)

While the bandwidth parameter h is crucial in classical kernel regression, here
we can set h=1, because the scaling of X itself is free. Thus, UKR requires no
additional parameters besides the choice of a density kernel1. This distinguishes
UKR from many other algorithms (e.g. [4,5]) that, albeit using a similar form of
regression function, need an a priori specification of many parameters (e.g. the
number of basis functions).

Training an UKR manifold, that is, finding optimal latent variables X, involves
gradient-based minimization of the reconstruction error (or empirical risk)

R(X) =
1
N

∑
i

‖yi − f(xi;X)‖2 =
1
N
‖Y −YB(X)‖2F , (3)

where the N ×N -matrix of basis functions B(X) is given by

(B(X))ij = bi(xj) =
K(xi − xj)∑
k K(xk − xj)

. (4)

To avoid getting stuck in poor local minima, one can incorporate nonlinear
spectral embedding methods (e.g. [6,7,8]) to find good initializations.

It is easy to see that without any form of regularization, (3) can be trivially
minimized to R(X) = 0 by moving the xi infinitely apart from each other. In
this case, since K(·) is a density function, ∀i�=j‖xi − xj‖ → ∞ implies that
K(xi − xj) → δijK(0) and thus B(X) becomes the N ×N identity matrix.

2.1 Existing Regularization Approaches

Extension of latent space. A straight-forward way to prevent the aforemen-
tioned trivial interpolation solution and to control the complexity of an UKR
model is to restrict the latent variables to lie within a certain allowed (finite)
domain X , e.g. a sphere of radius R. Training of the UKR model then means
solving the optimization problem

minimize R(X) =
1
N
‖Y −YB(X)‖2F subject to ∀i‖xi‖ ≤ R . (5)

1 which is known to be of relatively small importance in classical kernel regression.
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A closely related, but softer and numerically easier method is to add a penalty
term to the reconstruction error (3) and minimize Re(X, λ) = R(X) + λS(X)
with S(X) =

∑
i ‖xi‖2. Other penalty terms (e.g. the Lp-norm) are possible.

With the above formalism, the model complexity can be directly controlled
by the pre-factor λ or the parameterization of X . However, normally one has no
information about how to choose these parameters. Bigger values of λ lead to
stronger overlapping of the density kernels and thus to smoother manifolds, but
it is not clear how to select λ to achieve a certain degree of smoothness.

Density in latent space. The denominator in (1) is proportional to the Rosen-
blatt-Parzen density estimator p(x) = 1

N

∑N
i=1 K(x − xi). Stronger overlap of

the kernel functions coincides with higher densities in latent space, which gives
rise to another method for complexity control. As in the last paragraph, the
density p(x) can be used both in a constraint minimization of R(X) subject to
∀ip(xi) ≥ η or in form of a penalty function with some pre-factor λ. Compared
to a regularization based on the extension of latent space, the density based
regularization tends to work more locally and allows a clustered structure of the
latent variables (non-contiguous manifolds). Again, suitable values for λ and η
can be difficult to specify.

Leave-one-out cross-validation. Perhaps the strongest feature of UKR is the
ability to include leave-one-out cross-validation (LOO-CV) without additional
computational cost. Instead of minimizing the reconstruction error of a UKR
model including the complete dataset, in LOO-CV each data vector yi has to
be reconstructed without using yi itself:

Rcv(X) =
1
N

∑
i

‖yi − f−i(xi;X)‖2 =
1
N
‖Y −YBcv(X)‖2F (6)

f−i(x) =
∑
m �=i

ym
K(x− xm)∑
j �=i K(x− xj)

(7)

For the computation of the matrix of basis functions Bcv, this just means zero-
ing the diagonal elements before normalizing the column sums to 1. A similar
strategy works also for calculating the gradient of (6).

As long as the dataset is not totally degenerated (e.g. each yi exists at least
twice), LOO-CV can be used as a built-in automatic complexity control. How-
ever, under certain circumstances LOO-CV can severely undersmooth the man-
ifold, particularly in the case of densely sampled noisy data. See Fig. 1 (first
plot, K=1) for a UKR curve fitted to a sample of a noisy spiral distribution as
a result of minimizing the LOO-CV-error (6).

Regularization by special loss functions. Recently, we showed in [9] how to
regularize UKR manifolds by incorporating general loss functions instead of the
squared Euclidean error in (3). In particular, the ε-insensitive loss is favorable if
one has information about the level of noise present in the data.
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3 UKR with Leave-K-Out Cross-Validation

Generally, leave-K-out cross-validation consists of forming several subsets from
a dataset, each missing a different set of K patterns. These K patterns are used
to validate a model that is trained with the corresponding subset. The resulting
models are then combined (e.g. averaged) to create a model for the complete
dataset. The special case K = 1 is identical to LOO-CV.

Since UKR comes with LOO-CV “for free”, it is interesting to investigate if
the concept is applicable for K > 1. Hereto, we first have to specify how to
form the subsets. With the aim to both maximize and equally distribute the
effect of omitting each K data vectors on how UKR fits the manifold, we opt
to reconstruct each data vector without itself and its K − 1 nearest neighbors.
Concerning this, please recall that the UKR function (2) computes a locally
weighted average of the dataset. Therefore, normally, each data vector is mainly
reconstructed from its neighbors. By omitting the immediate neighbors we shift
the weight to data vectors farther away, which forces the kernel centers xi to
huddle closer together and thus leads to a smoother regression function.

Please note that in contrast to standard LKO-CV, this procedure yields N
different subsets of size N − K, each being responsible for the reconstruction
of one data vector. A corresponding objective function, which automatically
combines the subset models, can be stated as

Rlko(X) =
1
N

∑
i

‖yi − fi(xi;X)‖2 =
1
N
‖Y −YBlko(X)‖2F (8)

fi(x) =
∑

m �∈Ni

ym
K(x− xm)∑
j �=i K(x− xj)

, (9)

where Ni describes the index set of neighbors excluded for reconstructing yi.
In principle, we may consider neighborhoods both in latent space and data

space, since a good mapping will preserve the topology anyway. However, it
is much simpler to regard only the original neighborhood relationships in data
space, because these are fixed. The latent space neighborhoods may change with
every training step, and thus have to be recomputed. Furthermore, convergence
is not guaranteed anymore, because the latent variables X might jump between
two “optimal” states belonging to different neighborhood structures.

As with LOO-CV, data space neighborhood LKO-CV can be implemented
in UKR with nearly no additional cost. All one has to do is zeroing certain
components of the matrix Blko before normalizing its column sums to 1. In
particular, set bij = 0, if i ∈ Nj , with fixed and precomputed index sets Nj .

One might argue that the whole idea seems somehow strange, especially if the
UKR model is initialized by a spectral embedding method (e.g. LLE) which takes
into account some K ′ nearest neighbors for constructing the lower dimensional
representation. Thus, in a way, UKR with LKO-CV works against its initializa-
tion method. On the other hand, this can be viewed as being complementary.
Furthermore, our experiments not only show that the idea is sound, but even
indicate that selecting K = K ′ is not a bad choice at all.
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3.1 How to Get Smooth Borders

As we will show in the next section, LKO-CV does work well at the interior of
a manifold, but not at its borders. This results naturally from the topology: At
the borders of a 1D manifold (that is, at the ends of a curve) for example, all K
neighbors lie in the same direction. Thus, the nearest data points taking part in
reconstructing the end points are exceptionally far away. If, after training, the
curve is sampled by evaluating the normal UKR function (2), the ends get very
wiggly, especially for larger K.

To overcome this problem, we propose to employ an additional regularizer
that smoothes at the borders without disturbing LKO-CV in regions that are
already fine. Hereto, penalizing the extension of latent space (e.g. by using a
penalty term of the form S(X) = ‖X‖2F ) is a bad choice, since this would affect
the manifold as a whole and not only the borders. The same argument applies to
a penalty term of the form S(X) = −

∑
i log p(xi), which favors high densities

and thus again smoothes the complete manifold. A possible choice, however, is
to penalize the variance of the density in latent space. For this, we apply the
following penalty term:

S(X) =
1
N

∑
i

(p(xi)− p̄(X))2 , p̄(X) =
1
N

∑
j

p(xj). (10)

The UKR model is thus regularized by two factors: 1) the LKO parameter K
determines the overall smoothness and 2) the penalty term S(X), scaled by an
appropiate pre-factor λ, ensures that the smoothness is evenly distributed.

Because these regularizers have more or less independent goals, one may hope
that the results show considerable robustness towards the choice of λ. Indeed, for
a UKR model of a noisy spiral (Fig. 2), there was no visual difference between
results for λ = 0.001 and λ = 0.0001. Only a much smaller value (λ = 10−6),
led to wiggly ends, again.

4 Experiments

In all following experiments, we trained the UKR manifolds in a common way:
For initialization, we calculated multiple LLE [6] solutions corresponding to dif-
ferent neighborhood sizes K ′, which we compared with respect to their LKO-CV
error (8) after a coarse optimization of their overall scale. While this procedure
may seem rather computationally expensive, it greatly enhances the robustness,
because LLE and other nonlinear spectral embedding methods can depend criti-
cally on the choice of K ′. In our experiments, the best LLE neighborhood size K ′

did not depend on which LKO neighborhood size K we used. Further fine-tuning
was done by gradient-based minimization, applying 500 RPROP [10] steps. For
simplicity, we used only the Gaussian kernel in latent space.

4.1 Noisy Spiral

As a first example, we fitted a UKR model to a 2D “noisy spiral” toy dataset,
which contains 300 samples with noise distributed uniformly in the interval
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[−0.1; 0.1]. We tried LLE neighborhood sizes K ′ = 4 . . . 12, of which K ′ = 7
led to the best initialization. Fig. 1 shows the results for different values of the
LKO-CV parameter K as indicated in the plots. Note how the manifold gets
smoother for larger K, without suffering from too much bias towards the inner
of the spiral. A bit problematic are the manifolds ends, which get quite wiggly
for larger K. Note that K = K ′ = 7 yields a satisfactory level of smoothness.

K=1 K=2 K=3 K=4 K=7

K=10 K=13 K=16 K=20 K=24

Fig. 1. UKR model of a noisy spiral using LKO-CV. The data points are depicted as
grey dots, the black curve shows the manifold which results from sampling f(x;X).

To show the effect of the density variance penalty term (10), we repeated the
experiment adding the penalty with pre-factors λ = 10−3, 10−4 and 10−6. Fig. 2
shows the results for λ = 10−4, which are visually identical to those for λ = 10−3.
However, a pre-factor of only 10−6 turned out to be too small, resulting in wiggly
ended curves similar to those in Fig. 1.

K=1 K=2 K=3 K=4 K=7

K=10 K=13 K=16 K=20 K=24

Fig. 2. UKR model of a noisy spiral using both LKO-CV and the density variance
penalty term (10) scaled by a pre-factor λ = 10−4
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Some insight on the influence of the density variance penalty is provided by
Fig. 3: Most of the latent variables stay in the same region, but the outliers (the
little bumps to the far left and right) are drawn towards the center, compacting
the occupied latent space. Figure 4 shows a magnified comparison of the UKR
models (K = 24) with and without the penalty term. In addition to the original
data points and the resulting curve, it also depicts the data as it is reconstructed
during training, that is, using the LKO function (9). Note that these LKO re-
constructions show a strong bias towards the inner of the spiral, which is not
present in the final mapping (2) based on the complete data set.
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Fig. 3. Comparison of latent densities for UKR models of a noisy spiral using a) only
LKO-CV (K = 24, depicted in black) and b) LKO-CV together with the densisty
variance penalty (K = 24, λ = 10−4, depicted in gray). The curves result from sampling
p(x), the dots indicate the latent variable positions.

K=24 K=24

Fig. 4. Comparison of UKR models of a noisy spiral. Left: pure LKO-CV (K = 24).
Right: with additional density variance penalty (λ = 10−4). The dots depict the ob-
served data points, the black curve depicts the manifold, and the gray pluses depict
the LKO reconstructions (9).
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4.2 Noisy Swiss Roll

As a second experiment, we fitted a UKR model to a noisy “Swiss Roll” dataset.
We first computed LLE solutions with K ′ = 3 . . . 18, of which K ′ = 7 was se-
lected as the best initialization for all UKR models. Figure 5 shows the dataset as
reconstructed with LOO-CV (K =1) and LKO-CV (K =7). Instead of compar-
ing the results for multiple K’s visually again, we projected the reconstructed
datasets onto the underlying data model (i.e. the smooth continuous “Swiss
Roll”). Figure 6 shows the resulting mean distance as a function of K. The min-
imum is at K =9, with our proposed automatic choice K =K ′ =7 being nearly
as good.
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Fig. 5. UKR reconstruction of a “Swiss Roll”. Left: K = 1 (LOO-CV). Right: K = 7.
The black dots depict the UKR reconstructions, whereas the gray dots depict their
projection (along the black lines) onto the underlying smooth data model. Note the
much smaller projection error (distance to the “true” manifold) in the right plot.
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Fig. 6. Mean distance between LKO-CV-UKR reconstructions and their projections
onto the underlying smooth data manifold. The corresponding projection error of the
observed (noisy) data points is 0.498. Please note that the y-axis does not start at 0.
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4.3 USPS Digits

To show that LKO-CV-UKR also works with higher dimensional data, our last
experiment deals with the USPS handwritten digits. In particular, we work with
the subset corresponding to the digit “2”, which contains 731 data vectors in
256 dimensions (16x16 pixel gray-scale images). As with the “Swiss Roll”, we
compared the results of LOO-CV and LKO-CV with K = K ′ = 12, that is,
we chose the LKO parameter to be identical to the automatically selected LLE
neighborhood size. Both models use the density variance penalty with a pre-
factor2 λ = 0.01. Figure 7 visualizes the resulting manifolds (we chose a 2D
embedding) by sampling f(x;X) in latent space and depicting the function value
as the corresponding image. Note the smaller extension in latent space and the
blurrier images of the model belonging to K = 12 (right plot).
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Fig. 7. UKR model of the USPS digit “2”, shown by evaluating f(x;X) on a 20x20
grid enclosing the latent variables. Grid positions of low density p(x) are left blank.
Left: K = 1 (LOO-CV). Right: K = 12.

5 Conclusion

In this work, we described how leave-K-out cross-validation (LKO-CV) can be
employed in the manifold learning method UKR, generalizing the already present
LOO-CV regularization. We demonstrated our approach on both synthetic and
real data. When used with pre-calculated data space neighborhoods, LKO-CV
involves nearly no additional computational cost, but can yield favorable results.
This was revealed especially in the noisy “Swiss Roll” experiment, where LKO-
CV significantly reduced the projection error, i.e. the mean distance between the
reconstructed (de-noised) dataset and the “true” underlying manifold.
2 Here, we used a larger λ because the data’s variance is larger, too.
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While we gave no final answer to the question how to choose the new regu-
larization parameter K, our experiments indicate that simply setting K = K ′

(the neighborhood size of the best LLE solution, which UKR can automatically
detect) yields satisfactory results. In addition, we showed how a complementary
regularizer, which is based on penalizing a high variance of the latent density,
can further enhance the UKR models trained with LKO-CV. By promoting an
even distribution of smoothness, this regularizer diminishes the problem of rather
wiggly manifold borders, which otherwise may result from a pure LKO-CV regu-
larization. When used as a penalty term, the complementary regularizer is quite
robust towards the choice of an appropiate pre-factor.

Further work may address other possibilities to deal with the border problem,
e.g. by a smart local adaption of the neighborhood parameter K. We also succes-
fully experimented with leave-R-out CV, a scheme where not a fixed number of
neighbors are left out, but all neighbors within a sphere of fixed size. Finally, it
will be interesting to see how UKR with LKO-CV performs in real applications.
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Abstract. We present an algorithm of clustering of many-dimensional objects, 
where only the distances between objects are used. Centers of classes are found 
with the aid of neuron-like procedure with lateral inhibition. The result of 
clustering does not depend on starting conditions. Our algorithm makes it 
possible to give an idea about classes that really exist in the empirical data. The 
results of computer simulations are presented. 

1   Introduction 

Data clustering deals with the problem of classifying a set of  N objects into groups so 
that objects within the same group are more similar than objects belonging to different 
groups. Each object is identified by a number m of measurable features, consequently, 
ith object can be represented as a point i ∈ mx R , 1, 2,...,i N= . Data clustering aims at 

identifying clusters as more densely populated regions in the space mR . 
This is a traditional problem of unsupervised pattern recognition. During last 40 

years a lot of approaches  to solve this problem were suggested. The general strategy 
is as follows: at first, somehow or other one finds the optimal partition of the points 
into K classes, and then changes the value of the parameter K  from N to 1. Here the 
main interest is the way how small classes (relating to big values of K) are combined 
into bigger classes (relating to small values of K). These transformations allow us to 
get some idea about the structure of empirical data. They indicate mutual location of 
compact groups of points in many-dimensional space. They also indicate which of 
these groups are close and which are far from each other. Interpretation of the 
obtained classes in substantial terms, and it is no less important, the details of their 
mutual location allows the researcher to construct meaningful models of the 
phenomenon under consideration. 

Different methods of data clustering differ from each other by the way of finding 
of the optimal partition of the points into K classes. It is literally to say that almost all 
of them own the same poor feature: the result of partition into K classes depends on 
arbitrary chosen initial conditions, which have to be specify to start the partition 
procedure. Consequently, to obtain the optimal partition, it is necessary to repeat the 
procedure many times, each time starting from new initial conditions. In general, it 
cannot be guaranteed that the optimal partition into K classes would be found. Here 
the situation is close to the one, which we face when founding the global minimum of 
multiextremal functional. The problems of such a kind exhibit a tendency to become 
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NP-complete. This means that for large N only a local optimal partition can be found, 
but not necessary the best one. 

Thus, almost all clustering methods based on the local partition of objects into K 
classes. Among them there are the well-known and most simple K-means approach 
[1]-[3], mathematically advanced Super-Paramagnetic Clustering [4] and Maximum 
Likelihood Clustering [5], popular in Russia the FOREL-type algorithms [3] and 
prevailing in the West different variants of Hierarchical Clustering [6].  Let us show 
the problem,  using two last approaches as examples. 

The general scheme of the FOREL-algorithm is as follows: 1) we specify a value T 
that is the radius of m-dimensional sphere, which in what follows is used as a 
threshold for interaction radius between points; 2) we place the center of the sphere 
with the radius T at an arbitrary input point; 3) we find coordinates of the center of 
gravity of points that find themselves inside the sphere; 4) we transfer the center of 
the sphere in the center of gravity and go back to item 3; 5) as far as when going from 
one to the next iterating the sphere remains in the same place, we suppose that the 
points inside it constitute a class; we move them away from the set and go back to the 
item 2. 

It is clear that after finite number of steps we obtain a partition of  the points into 
some classes. In each class the distances between points are less than 2T. However, 
the result of partition depends on the starting point, where the center of the sphere is 
situated (see item 2). Since the step 2 is repeated again and again, it is evident that the 
number of different partitions (for fixed T) can be sufficiently large. 

The Hierarchical Clustering is based on a very simple idea too. Given some 
partition into K  classes, it merges the two closest classes into a single one. So, 
starting from the partition into K N=  classes, the algorithm generates a sequence of 
partitions as K  varies from N  to 1. The sequence of partitions and their hierarchy 
can be represented by a dendrogram.  Applications of this approach are discussed for 
example in [6]. However, there is no explanation why just two closest classes have to 
be combined. After all, this is only one of possible reasonable recipes. This leads to 
local optimal partition too. 

Of course, there is no reason to dramatize the situation with regard to local 
optimality of partitions. During 40 years of practice, approaches and methods were 
developed allowing one to come to correct conclusions basing on local optimal 
partitions of objects into classes. However, it is very attractive to construct a method, 
which would not depend on an arbitrary choice of initial conditions. Just such an 
algorithm is presented in this publication. 

The same as the FOREL-algorithm our method is based on introduction of an 
effective interaction radius T between points ix  and the partition of the points 

between spheres of radius T. The points that get into a sphere belong to one class. The 
centers of the spheres are obtained as a result of a neuron-like procedure with lateral 
inhibition.  As a result, the centers of the spheres are the input points, which for a 
given radius T interact with maximal number of surrounding points. It can be said that 
the centers of the spheres are located inside the regions of concentration of the input 
points. At the same time, we determine the number of classes K that are characteristic 
for the input data for a given interaction radius T. Then, the value T changes from 
zero to a very large value. We plot the graph K(T), which shows the dependence of 
the number of classes on T.  We can estimate the number of real classes that are in the 
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empirical data by the number of lengthy “plateau” on this graph. The calculation 
complexity of the algorithm is estimated as 2( )O N . 

In the present publication we describe the clustering algorithm and the results of it 
testing with the aid of model problems and empirical data known as “Fisher’s irises” [2]. 

2   Clustering Algorithm 

For a given set of m-dimensional points 1{ }N
i ∈ mx R  we calculate a quadratic 

( )N N× -matrix of Euclidean distances between them: , 1( )N
ij i jD ==D . In what follows 

we need these distances ijD  only.  We suppose that in each point ix   there is a neuron 

with initial activity (0)iS , which will be defined below. 

1) For a fixed interaction threshold 0T >  let us set the value of a connection ijw   

between  ith and jth neurons as 

2 2

2 2 2 2
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2 2

, when 0.5,

0 , when 0.5.

ij ij

ij

ij

T T

D T D T
w

T

D T

≥
+ +

=
<

+

  

As we see, there are no connections between neurons, if the distance between points 
is greater than T.  Note, ( ) 1iiw T ≡ . 

2)  Let us set initial activity of each neuron to be 

1

(0) 1
N

i ij
j

S w
=

= ≥   

Neurons, which are inside agglomerations of the points, have large initial activity, 
because they have more nonzero connections than neurons at the periphery of 
agglomerations. 

3)  We start the activities “transmitting” process: 

1

( 1) ( ) ( ( ) ( ))
N

i i ij i j
j

S t S t w S t S tα
=

+ = + −   

where α  is the parameter characterizing the transmitting speed. It is easy to see that 
during the transmitting process a neuron with large initial activity “takes away” 
activities from neurons with whom it interacts and whose activities are less. The 
activities of these surrounding neurons decrease steadily. 

4) If during the transmitting process the activity of a neuron becomes negative 
( ) 0iS t < , we set 0iS ≡ , and eliminate this neuron from the transmitting process (it 

has nothing to give away). 
It is clear that little by little the neurons from the periphery of agglomerations shall 

drop out giving away their activities to neurons inside the agglomerations. This means 
that step by step the neurons from the periphery will leave the field.  Gradually, we 
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shall have a situation, when only some far from each other non-interacting neurons 
with nonzero activities remain. Subsequent transmitting is impossible and the 
procedure stops. 

5) Suppose as a result of the transmitting process K neurons remain far away from 
each other. The input points ix  corresponding to these neurons will be called the 

centers of the classes. All other input points jx  are distributed between classes basing 

on the criterion of maximal closeness to one or another center. 
The items 1)-5) are carried out for a fixed interaction threshold T.  It is clear that if 
0T ≈ , no one neuron interacts with another one ( 0ijw =  when i j≠ ). All the 

neurons have the same activities (0) 1i iiS w= = . No transmitting process will have 

place. So we get a great number N of classes, each of which consists of one input 
point only. On the other hand, if the interaction threshold T is very large (for example, 
it is greater than max ( ) / 2ijD ) all neurons are interacting with each other, and as the 

result of transmitting only one neuron remains active. We can say that it is located 
inside “the cloud” of the input points.  In this limiting case there is only one class 
including all the input points. 

Changing T  from zero to it maximal value, we plot the dependence of the number 
of classes on the value of the interaction threshold, ( )K T .  It was found that for these 

graphs the presence of long, extensive “plateaus” is typical. In other words, the 
number of classes K does not change for some intervals, where T changes. These 
“plateaus” allows one to estimate the number of classes existing really in empirical 
data  (for the first time this criterion was proposed by the author of  [3]). 

3   The Results of Computer Simulations 

The simplest case is shown in Fig.1. On the left panel we see 50 points distributed on 
the plane into five clusters, on the right panel the obtained graph K(T) is shown. We 
see that at the initial stage of changing of T  the number of classes changes very 
rapidly. Then it becomes stabilize at the level  K = 5 and does not change in the some 
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Fig. 1. On the left panel there are 5 compact clusters formed by 50  points at the plane (X,Y); 
on the right panel the graph K(T) is presented 
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interval of changing of T. Here empirical points are distributed into 5 input clusters 
exactly. The next plateau corresponds to K = 4. In this case the points that belong to 
two close internal agglomerations combine into one class. The next plateau is when K 
= 3; here the points belonging to two pairs of close to each other agglomerations are 
combined into two classes. Finally, the last plateau is at the level K = 2; here all the 
points from the lower part of the figure are combined into one class. 

In the case of 10 classes (see Fig.2) on the graph small plateaus can be observed 
when K = 10, 9, 8, 7, 5, 4. However, the widest plateau we observe when K = 2. This 
plateau corresponds to the partition of the points between two classes that are 
sufficiently clearly seen in the left panel of the figure.  
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Fig. 2. The same as in the previous figure for 100 points and 10 compact clusters 

The last example is the classical «Fisher’s irises» clustering problem. The input 
data is a set of 150 four-dimensional points (four parameters characterize each iris).  It 
is known that these 150 points are distributed between 3 compact classes. Two of 
them are slightly closer to each other than the third. Our algorithm showed just the 
same picture of irises distribution between classes (Fig.3). The first plateau is at the 
level K=3, and the next plateau corresponds to K=2. 
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Fig. 3. The graph for Fisher’s irises 
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These examples demonstrate that of interest is not only the separation of the 
objects into a certain number of classes, but also the way in which small classes join  
into larger ones. These transformations indicate which of small compact classes of 
objects are close to each other and allow one to understand the intrinsic structure of 
empirical data.  

4   Discussion 

In real empirical data in addition to compact agglomerations certainly there are 
“noisy” points, which can be found in the space between the agglomerations. In this 
case our algorithm gives plateaus when the threshold T is small. The number of 
classes K corresponding to these values of  T  is sufficiently large: K>>1. These 
classes are mostly fictitious ones. Each of them consists from one noisy point only. 

The reason is clear: when the value of the threshold T is small each noisy point has 
a chance to make its own class consisting from this one point only. For beginning 
values of  T  some noisy points take their occasion. That is why there are short, but 
distinct plateaus corresponding to the large number of  classes K.  It is easy to ignore 
these fictitious classes: it is enough  to take into account only classes where there are 
a lot of points. Thus, our algorithm is able to process noisy data sets.  

The algorithm is based on the hypothesis  of a compact grouping points in the 
classes and is oriented on the unsupervised pattern recognition. In a general case it is 
unable to process overlapping sets of data belonging to different classes. This is a 
problem of supervised pattern recognition. It is possible, however, that different 
classes overlap slightly, only by their periphery. Then our algorithm can be modified, 
so that it can separate cores of the classes. Such an approach can be of considerable 
use, and we plan to examine it in details. 

Our algorithm has a usefull property: it works not only for points 1{ }N
ix  in the 

coordinate presentation, but also when we know the distances between points only.  
These two types of input data, the coordinate presentation of the points, on the one hand, 
and the distances between the points, on the other, are not equivalent. Indeed, if only the 
distances between the points are known, it is not so simple to reconstruct the coordinates 
of the points themselves. As a rule, this can be done only under some additional 
assumptions, and  these assumptions have an influence on the solution of the problem. 

Still more general is the clustering problem, when the input data is an arbitrary 
symmetrical matrix (not necessary the matrix of distances between the points). In this 
case matrix elements can be negative. As a rule the diagonal elements of such a 
matrix are equal to zero. Then  (ij)th matrix element is treated as a measure of 
connection between  jth and  ith objects. The clustering of this matrix aims at finding 
of strongly connected groups of objects. Of course, matrix elements can be 
normalized in such a way that they can be treated as “scalar products” of vectors. 
However, the problem is that with the aid of these “scalar products” it is impossible to 
reconstruct uniquely even the distances between the vectors. Consequently, to solve 
the most general clustering problems our algorithm has to be modified. We plan to do 
this in the following publication. 

The work was supported by Russian Basic Research Foundation (grants 05-07-
90049 and 06-01-00109). 
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Abstract. A computational scheme for rotation-invariant pattern recog-
nition based on Kohonen neural network is developed. This scheme is
slightly inspired on the vertebrate olfactory system, and its goal is to
recognize spatiotemporal patterns produced in a two-dimensional cel-
lular automaton that would represent the olfactory bulb activity when
submitted to odor stimuli. The recognition occurs through a multi-layer
Kohonen network that would represent the olfactory cortex. The recog-
nition is invariant to rotations of the patterns, even when a noise lower
than 1% is added.

1 Introduction

Olfactory systems are responsible for discriminating, memorizing and recognizing
odors and are crucial for the survival of animals, because foods, friends, sexual
partners, predators and territories can be identified by characteristic smells[9,13].
There are models of olfactory systems based on differential equations[8], coupled
maps[3] and cellular automata[6]. Usually, the main goal of these models is to
reproduce the neural responses occurring after an odor stimulus[9,13]. In verte-
brates, the processing of odor information is a multi-level task and, at each level,
a modified representation of the odor is generated[12,13]. The processing begins
in the olfactory epithelium, where odor molecules are detected by specific neural
receptors. This detection stimulates neurons composing the olfactory bulb, and a
spatiotemporal pattern of neural activity appears. Each odor produces a distinct
activity pattern. Then, the odor is recognized or learned due to the interaction
with the olfactory cortex[12,13].

There are several rotation-invariant patter recognition systems using classical
signal processing techniques [4,5,17], and Hopfield[2,7] and multilayer perceptron
neural networks[1,15].

Here, we use a cellular automaton (CA) for simulating the neural activity
of a two-dimensional olfactory bulb and a multi-layer Kohonen neural network

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 444–450, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(KNN) for playing the role of the olfactory cortex, where the recognition of
the spatiotemporal patterns produced by the CA takes place. Our identification
scheme is intended to be invariant to rotation of the spatial patterns. Such a
scheme and the results obtained in numerical experiments are presented in the
next sections.

2 Cellular Automaton

Cellular automata have been employed for representing living systems because it
is possible to propose rules of state transitions that are biologically motivated and
easily programmable in digital computers[16]. Here, we use a CA to model the
olfactory bulb. Assume that each cell (each neuron) forming a two-dimensional
lattice is connected to its eight surrounding cells, and that each one can be at rest,
excited (firing) or refractory. For simplicity, there are only excitatory synapses.
Thus, a resting cell becomes excited if the number of excited cells connected to
it (its neighborhood) exceeds or is equal to the threshold L. The connections are
local and regular; therefore, the medium is spatially homogeneous. An excited
cell spends T1 time steps firing and then becomes refractory. After T2 iterations,
a refractory cell returns to rest. This model was already used in studies about
travelling waves in excitable media[10]. Here, we take L = 3, T1 = 5, T2 = 4 and
a lattice composed by 100× 100 cells (that is, the lattice is a 100× 100 matrix).

3 Kohonen Neural Network

The self-organizing map, known as KNN[11], uses an unsupervised learning al-
gorithm in order to translate the similarities of the input data (here produced
by the CA) into distance relationships among the neurons composing its out-
put layer. Thus, after appropriately training the network, two input data with
similar statistical features stimulate either the same neuron or a neighbor. The
learning algorithm is given by:

wij(t + 1) = wij(t) + η(t)h(t)(xj(t)− wij(t)) if i ∈ V (i∗) (1)
wij(t + 1) = wij(t) if i �∈ V (i∗) (2)

The integer number j labels the position of a neuron in the input matrix. Each
neuron in this matrix is connected with all neurons of the output layer by synap-
tic weights wij , where the index i expresses the position in the output matrix.
The value of the input corresponding to the neuron j is given by xj . Thus, the
vector x(t) represents the complete input at the learning step t. For an input
x, the output neurons compete among themselves for being activated. The win-
ner is the one presenting the maximum value of the dot product x.wi and it
becomes labeled in this step by i∗. Such a winning neuron defines a neighbor-
hood V (i∗) of radius R(t) centered around it. At each step t, the weights of all
neurons pertaining to V (i∗) are updated according to the expressions (1) and
(2); the weights of the neurons outside V (i∗) are not altered. This adaptation
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rule modifies the weight vector of i∗ to more closely resemble the input vector
that just stimulated it[11]. And the weight vectors of the other neurons in V (i∗)
are modified in order to be stimulated by similar vectors in the following steps,
leading to the formation of a topographic map of the input data[11]. The neigh-
borhood function h(t) attains its maximum value at i∗ and decays along the
distance r from i∗. The function η(t) is a learning-rate factor and is taken in the
range 0 < η(t) < 1. The values of R(t) and η(t) usually decrease as the learning
process progresses.

4 Our Scheme

The three different patterns (P1, P2 e P3) obtained from the CA temporal
evolution and used in our numerical experiments are shown in Fig. 1, where the
black cells represent the excited ones; the white background is formed by resting
cells; and refractory gray cells shadow the excited ones. Each pattern is supposed
to represent a different odor. These patterns are similar to recordings of neural
activity in the olfactory system of, for instance, a rabbit stimulated by smell of
banana[9] or a honeybee stimulated by nonanol (C9H20O)[14] (vertebrate and
insect olfactory systems present considerable similarities[12]).

Fig. 1. Pattern P1 (left), P2 (centre) and P3 (right)

These patterns are presented to a multi-layer KNN in order to train it. We
wish to develop an identification scheme invariant to the rotation of the spatial
patterns. Thus, P1 and P1 rotated by 90o, by 180o, and by 270o should be
identified as the same pattern. In our scheme, firstly each pattern (100 × 100)
is splitted into four parts and arranged as shown in Fig. 2, where each part
corresponds to a 50 × 50 matrix; and each one is used as input to four KNN
with 10 × 10 output matrix. After training these networks (see details below)
using P1, P2 and P3, then each pattern is rotated by 90o, and the training
algorithm is applied again, until all patterns are rotated three times. The initial
values of the synaptic weights wij for a network in the second layer are randomly
picked; however, these initial values are the same for all four networks. In the
second layer, the winning neurons are obtained after applying the input patterns.
Therefore, P1 determines four winning neurons, one neuron in each 10 × 10
matrix; P1 rotated by 90o corresponds to other four neurons; P1 rotated by
180o to other four neurons; and P1 rotated by 270o to more four neurons. These
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Fig. 2. Proposed scheme for pattern recognition invariant to rotation

16 numbers (the coordinates of the 16 winning neurons in the second layer)
identify P1 and its three rotations. Then, these 16 numbers are added, and this
sum is called λ. Thus, P1 is related to the sum λ1; P2 is related to the sum
λ2 and P3 to the sum λ3. These numbers λi (i = 1, 2, 3) are used to form the
vectors ai = (λi, λi, λi, λi), which are the inputs for the third layer. The output
of the third layer is also a 10×10 matrix. It is in this third layer that the pattern
identification is accomplished. We find that this scheme is able of identifying a
pattern and its three rotations as the same pattern.

For training the second layer, each pattern is presented T times and the
functions h(t) and η(t) are chosen as:

h(t) = 1− r(t)/R(t) (3)
η(t) = 1− 2t/(3TR(t)) (4)

where 0 ≤ r(t) ≤ R(t) and 1 ≤ t ≤ T , with T = 44. The neighborhood radius
R(t) is initially taken as 10 and is kept constant during T/11 steps of training;
then R(t) is diminished of 1 and kept constant for more T/11 steps and so on.
The learning factor η(t) is taken as a linearly decreasing function of t.

Finally, the vectors ai (i = 1, 2, 3) are used as the inputs for the third layer.
After training it following a similar procedure, we obtain that each pattern and
the corresponding rotations are represented by the same neuron in the 10× 10
output matrix of the third layer. The functions h(t), η(t) and R(t), the number
of components composing the vectors ai, and the matrix dimensions were chosen
after a lot of numerical tests.
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Fig. 3. Winning neurons corresponding to P1, P2 and P3

Fig. 4. The distance d as a function of μ

We also employed this scheme for training dynamic patterns. Hence, instead of
P1 and its three rotations, we used as inputs the spatial patterns obtained from
the CA representing the temporal evolution of this pattern for five consecutive
time steps. Thus, there are 3 × 4 × 5 distinct inputs (for each one of the five
time steps, there are 3 patterns at 0o, 90o, 180o, 270o). The winning neurons in
the output matrix of the third layer related to the patterns P1, P2 and P3 are
shown in Fig. 3. Thus, this identification scheme is able of recognizing a pattern,
its rotations, and the similar patterns obtained from its temporal evolution as
the same pattern.

The performance of this identification scheme was tested when a noise D is
added to the original patterns. Thus, new patterns were created following the
expression:
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Pinoise = Pi + μD (5)

where Pi (i = 1, 2, 3) are the original patterns shown in Fig. 1; D is an uniform
noise represented by a 100×100 matrix, and 0 ≤ μ ≤ 1. In order to quantify the
performance when noise is present, the distances d between the winning neurons
for the original patterns Pi and the winning neurons for the noise images Pinoise

were calculated in function of μ. The results are exhibited in Fig. 4. Notice that
if μ > 1%, then the network starts to fail.

5 Conclusions

We developed a scheme slightly inspired on the vertebrate olfactory system for
identifying spatiotemporal activity patterns. In this biological system, the rep-
resentation of odor information is modified at each processing level[12,13]. Here,
the representation of the spatiotemporal patterns are also modified at each level
(layer): a pattern and its three rotations are firstly translated in 16 numbers
(the coordinates of the winning neurons in the second output layer), that are
represented by a unique number λ (the sum of the 16 coordinates), that is used
for forming the vector a employed for training the last neural network where the
recognition will be actually performed. Such a scheme is based on a multi-layer
KNN, which is able of identifying dynamic patterns produced by the tempo-
ral evolution of the CA. The identification is invariant to the rotation of the
patterns and presents good performance, even when a noise lower than 1% is
added. Notice that this scheme can fail if two distinct patterns give the same
number λ. The chance of occurring this coincidence can be reduced by splitting
the original 100 × 100 pattern into more parts, because in this case there are
more coordinates to be summed in order to obtain λ.
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Abstract. In this paper, we propose a new classification method using composite
features, each of which consists of a number of primitive features. The covariance
of two composite features contains information on statistical dependency among
multiple primitive features. A new discriminant analysis (C-LDA) using the co-
variance of composite features is a generalization of the linear discriminant anal-
ysis (LDA). Unlike LDA, the number of extracted features can be larger than the
number of classes in C-LDA. Experimental results on several data sets indicate
that C-LDA provides better classification results than other methods.

1 Introduction

In pattern classification, an input pattern is represented by a set of features. For better
classification, feature extraction has been widely used to construct new features from
input features [1]. This reduces the number of features while preserving as much dis-
criminative information as possible. Among the various existing methods, the linear
discriminant analysis (LDA) is a well-known method for feature extraction. The objec-
tive of LDA is to find an optimal transform that maximizes the ratio of the between-class
scatter and the within-class scatter [2]. It is very effective in classifying patterns when
the within-class samples are concentrated in a small area and the between-class samples
are located far apart.

However, there are two limitations in LDA. If the number of features is larger than
the number of training samples, the within-class scatter matrix becomes singular and
LDA cannot be applied directly. This problem is called the small sample size (SSS)
problem [2]. The other limitation of LDA is that the number of features that can be ex-
tracted is at most one less than the number of classes. This becomes a serious problem in
binary classification problems, in which only a single feature can be extracted by LDA.
These two limitations are derived from the rank deficiencies of the within-class and
between-class scatter matrices. In order to solve the SSS problem, several approaches
such as the PCA preprocessing [3], null-space method [4], and QR decomposition [5]
have been introduced. There are also several approaches that can increase the number of
extracted features by modifying the between-class scatter matrix. Fukunaga and Man-
tock proposed the nonparametric discriminant analysis which uses the nonparametric
between-class scatter matrix [2], [6]. Brunzell and Eriksson proposed the Mahalanobis
distance-based method [7]. Recently, Loog and Duin [8] used the Chernoff distance [9]
between two classes to generalize the between-class scatter matrix.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 451–460, 2006.
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On the other hand, Yang et al. proposed 2DLDA using an image covariance matrix
for face recognition [10]. An image is represented as a matrix and its transpose is mul-
tiplied by itself to obtain an image covariance matrix [11]. Each element in an image
covariance matrix is obtained from the covariance of vertical line-shaped input features,
and so the size of the image covariance matrix is determined by the number of columns
in the image matrix. In their study, an input feature is composed of pixels inside a verti-
cal strip of an image and the dimension of input space is equal to the number of columns
in the image matrix.

In this paper, we propose a new feature extraction method using composite features
for pattern classification. A composite feature consists of a number of primitive fea-
tures, each of which corresponds to an input feature in LDA. The covariance of two
composite features is obtained from the inner product of two composite features and
can be considered as a generalized form of the covariance of two primitive features.
It contains information on statistical dependency among multiple primitive features. A
new discriminant analysis (C-LDA) using the covariance of composite features is de-
rived, which is a generalization of LDA. Unlike LDA, the SSS problem rarely occurs
and the number of extracted features can be larger than the number of classes. In this
method, each extracted feature is a vector, whose dimension is equal to that of com-
posite features. Hence, the L1, L2, and Mahalanobis distance metrics are redefined in
order to measure the similarity between two samples in the new feature space. In order
to evaluate the effectiveness of C-LDA, comparative experiments have been performed
using several data sets from the UCI machine learning repository [12]. The experimental
results show that the proposed C-LDA provides better classification results than other
methods.

In the following section, we explain how patterns are represented and derive C-LDA
using composite features. Experimental results are described in Section 3, and the con-
clusions follow in Section 4.

2 New Classification Method Using Composite Features

2.1 Pattern Representation

An input pattern is usually represented by a vector, whose elements are primitive fea-
tures. Let U denote a set of primitive features {u1,u2, . . . ,up}. Traditional methods
such as PCA and LDA use the covariance of two primitive features, which contains
second-order statistical information. Now, let us consider a composite feature and the
covariance of two composite features. First, ui’s are ordered by some method and we
denote the jth primitive feature as sj . Then, a composite feature xi ∈ Rl (i = 1, . . . , n)
consists of l primitive features as shown in Fig. 1. Note that the number of composite
features n is p− l + 1.

In LDA, which uses the covariance of two primitive features, it is irrelevant how
those primitive features are ordered. However, it becomes important in the case where
composite features are used. Among the many ways of ordering primitive features, we
can order the features so that the sum of correlations between neighboring features is
maximized. This means that each primitive feature has more correlation with its neigh-
boring features and so a composite feature is composed of primitive features with high
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s1 sl+1sl...s2

1st composite
feature

... sp

2nd composite
feature

Fig. 1. The composite feature in a pattern, whose size is l

correlation. However, finding such an order is a combinatorial optimization problem
and requires large computational effort for large values of p [13]. Instead of finding the
optimal solution, we order the primitive features using the greedy algorithm [14]. The
greedy ordering algorithm using the correlation coefficient is realized as follows:

1. (Initialization) set S ←− { }, U ←− {u1,u2, . . . ,up}.
2. (Selection of the first primitive feature) select u1 from U , and set s1 ←− u1, S ←−
{s1}, U ←− U\ {u1}.

3. (Greedy ordering) for j = 2 to j = p,
(a) ∀ui ∈ U , compute the correlation coefficient between ui and sj−1.
(b) choose the primitive feature ua that has the maximum correlation coefficient,

and set sj ←− ua, S ←− S∪ {sj}, U ←− U\ {ua}.
4. Output the set S.

2.2 Linear Discriminant Analysis Using Composite Features (C-LDA)

Let the set of composite features X be {x1,x2, . . . ,xn}, where x1 = [s1 . . . sl]T ,
x2 = [s2 . . . sl+1]T , and so on. We first consider the covariance matrix C based on the
composite features. The element cij of C is defined as

cij = E[(xi − x̄i)T (xj − x̄j)], i, j = 1, 2, . . . , n. (1)

where x̄i and x̄j are the mean vectors of xi and xj , respectively, Note that cij corre-
sponds to the total sum of covariances between the corresponding elements of xi and
xj . The covariance matrix C is computed as [15]

C =
1
N

N∑
k=1

(X(k) −M)(X(k) −M)T , (2)

where X(k) = [x(k)
1 . . . x(k)

n ]T for the kth sample, M = [x̄1 . . . x̄n]T , and N is the
total number of samples. Note that X(k) ∈ Rn×l and C ∈ Rn×n.

Let us consider the rank of C. Let χ
(k)
i , χ̄i ∈ Rn denote the column vectors of X(k)

and M , respectively. Then X(k) = [χ(k)
1 . . . χ

(k)
l ] and M = [χ̄1 . . . χ̄l]. We rewrite

(2) as

C =
1
N

l∑
i=1

N∑
k=1

(χ(k)
i − χ̄i)(χ

(k)
i − χ̄i)

T . (3)
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There are at most Nl linearly independent vectors in (3), and consequently the rank
of C is at most Nl. Also, (χ(k)

i − χ̄i)’s are not linearly independent because they are

related by
∑N

k=1(χ
(k)
i − χ̄i) = 0 for i = 1, . . . , l. Therefore, the rank of C is

rank(C) ≤ min(n, (N − 1)l). (4)

Now, a new discriminant analysis (C-LDA) using the composite features is derived
from the within-class scatter matrix CW and between-class scatter matrix CB . Assume
that each training sample belongs to one of D classes, c1, c2, . . . , cD, and that there are
Ni samples for class ci. As in the covariance matrix C, CW ∈ Rn×n is defined as

CW =
D∑

i=1

p(ci){
1
Ni

∑
k∈Ii

(X(k) −Mi)(X(k) −Mi)T }, (5)

where

Mi =
1
Ni

∑
k∈Ii

X(k). (6)

Here p(ci) is a prior probability that a sample belongs to class ci, and Ii is the set of
indices of the training samples belonging to class ci. CB ∈ Rn×n is also defined as

CB =
D∑

i=1

p(ci){(Mi −M)(Mi −M)T }. (7)

As in (4), the rank of CW is

rank(CW ) ≤ min(n, (N −D)l). (8)

If l ≥ p+1
N−D+1 , then rank(CW ) = n and the SSS problem does not occur. And the

rank of CB is
rank(CB) ≤ min(n, (D − 1)l). (9)

In LDA (l = 1), the rank is smaller than or equal to min(p, (D − 1)), which is the
maximum number of features that can be extracted. However, one can extract features
up to rank(CB), which is larger than D−1, in C-LDA. It is important to emphasize that
we can avoid the problems due to rank deficiencies of CW and CB by using composite
features.

In order to extract m features in C-LDA, the set of projection vectors WL ∈ Rn×m

is obtained as follows:

WL = argmax
W

|WT CBW |
|WT CWW | . (10)

This can be computed in two steps as in LDA [15]. First, CW is transformed to an iden-
tity matrix by ΨΘ− 1

2 , where Ψ and Θ are the eigenvector and diagonal eigenvalue ma-
trices of CW , respectively. Let C′

W and C′
B denote the within-class and between-class

scatter matrices after whitening, respectively. Now C′
W = I and C′

B = (ΨΘ− 1
2 )T CB

(ΨΘ− 1
2 ). Second, C′

B is diagonalized by Φ, which is the eigenvector matrix of C′
B .
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Fig. 2. Classification process using the composite features

Then, WL consists of m column vectors of ΨΘ− 1
2 Φ, corresponding to the m largest

eigenvalues of C′
B . The set of feature vectors Y (k) is obtained from X(k) as

Y (k) = WL
T X(k), k = 1, 2, . . . , N, (11)

where Y (k) ∈ Rm×l has m feature vectors [y(k)
1 y(k)

2 . . . y(k)
m ]T .

As an example, Fig. 2(b) shows the first extracted feature y(k)
1 obtained from the

Sonar data set [12]. For the purpose of visualization, the size of the composite feature
is set to 2. Note that y(k)

1 is a vector of dimension 2, which is equal to the size of the
composite feature. As can be seen in the figure, there are strong correlations between
the two elements of the first extracted feature. It is because each composite feature is
composed of two primitive features which are strongly correlated. Figure 2 shows a
schematic diagram of the classification process using the composite features.

2.3 Distance Metrics and Classification

In C-LDA, the set of extracted features consists of m vectors of dimension l. Therefore,
we need to define the distance metrics in this new subspace. The Manhattan (L1), Eu-
clidean (L2), and Mahalanobis (Mah) distances between Y (j) = [y(j)

1 . . . y(j)
m ]T and

Y (k) = [y(k)
1 . . . y(k)

m ]T are defined as

dL1(Y (j), Y (k)) =
m∑

i=1

‖ y(j)
i − y(k)

i ‖2,

dL2(Y (j), Y (k)) = {
m∑

i=1

(‖ y(j)
i − y(k)

i ‖2)2}1/2,

dMah(Y (j), Y (k)) = {
m∑

i=1

(
λi

l
)−1(‖ y(j)

i − y(k)
i ‖2)2}1/2,

(12)
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where ‖ · ‖2 is the 2-norm, and λi is the ith largest eigenvalue of a covariance matrix. In

(12), the distance between y(j)
i and y(k)

i is obtained from the Euclidean distance in the
l-dimensional space, irrespective of the metric. The L1 distance is calculated by taking
the sum of these between-feature distances, and the L2 distance is calculated by taking
the square root of the squared sum of these distances. The Mahalanobis distance can
be defined as (12) [16] because the covariance matrix becomes a diagonal matrix with
the diagonal elements λi’s and λi corresponds to the total variation of l elements in the
ith projection space. In the case of C-LDA, λi corresponds to the ith eigenvalue of C′,
where C′ is a covariance matrix after whitening. Since C′ = C′

B + I [15], λi can be
calculated from γi + 1, where γi is the ith eigenvalue of C′

B .
For classification, any good classifier can be used but we choose the Parzen classifier

and the k-nearest neighbor classifier which are well-known nonparametric methods [1],
[17]. Let us consider the Parzen classifier in this subspace. The Parzen classifier is based
on the Bayes decision rule and assigns a pattern to the class with the maximum posterior
probability [15]. We first derive the posterior probability in the vector space obtained by
LDA. Let y(k) and z denote the extracted feature vector of the kth training sample and
the extracted feature vector of a test sample, respectively. By using the Parzen window
density estimation with the Gaussian kernel [18], [19], the posterior probability p̂(cj |z)
can be defined as

p̂(cj |z) =

∑
k∈Ij

exp(−(z− y(k))T Σ−1(z− y(k))/2h2)∑N
k=1 exp(−(z− y(k))T Σ−1(z − y(k))/2h2)

=

∑
k∈Ij

exp(−d2
M (z,y(k))/2h2)∑N

k=1 exp(−d2
M (z,y(k))/2h2)

,

(13)

where Σ is a covariance matrix, h is a window width parameter, and dM (·) is the
Mahalanobis distance in the vector space.

Now, let us derive the posterior probability in C-LDA. Let Z = [z1 z2 . . . zm]T be
the set of extracted features of a test sample, where zi’s are l-dimensional vectors. As
in (13), the posterior probability p̂(cj |Z) can be defined as

p̂(cj |Z) =

∑
k∈Ij

exp(−d2
Mah(Z, Y (k))/2h2)∑N

k=1 exp(−d2
Mah(Z, Y (k))/2h2)

. (14)

In (14), we use h = 1.0 [18]. Then, the Parzen classifier is to assign Z to class ct if

t = argmax
j

p̂(cj |Z), j = 1, 2, . . . , D. (15)

On the other hand, the k-nearest neighbor classifier is also implemented, where pat-
terns are assigned to the majority class among k nearest neighbors. We use k = 3,
which is often considered to be a reasonably regularized version of the 1-nearest neigh-
bor classifier [20]. And, the L1 metric is used to measure the distance between two
samples.
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Table 1. Data Sets Used in the Experiments

Data set # of classes # of primitive f. # of instances

Pima 2 8 768

Breast cancer 2 9 683

Heart disease 2 13 297

Ionosphere 2 34 351

Sonar 2 60 208

Iris 3 4 150

Wine 3 13 178

Glass 6 9 214

3 Experimental Results

In this section, we evaluate the performance of C-LDA. We used eight data sets from
the UCI machine learning repository [12] as shown in Table 1. These data sets have
been used in many other studies [8], [20], [21].

3.1 Experimental Setup

In order to extract features in classification problems, we implemented two types of
C-LDA, i.e., C-LDA(g) and C-LDA(r). In C-LDA(g), the primitive features were or-
dered by using the greedy algorithm, as explained in Section 2.1. On the other hand,
the primitive features were ordered at random in C-LDA(r). In C-LDA, there are two
parameters, the size of the composite feature (l) and the number of extracted features
(m). For the purpose of comparison, we implemented the principal component analysis
(PCA), the linear discriminant analysis (LDA), and the linear discriminant analysis us-
ing the Chernoff distance (Cher-LDA) [8]. Here, the design parameter for PCA, LDA,
and Cher-LDA is the number of extracted features (m).

For each data set and each classification method, the experiments were conducted in
the following way:

1. Ten-fold cross validation was performed in each experiment. We performed 10-
fold cross validation 10 times and computed the average classification rate and its
standard deviation. Additionally, the Ionosphere and Sonar data sets were split into
training and test sets as described in [12], and the classification rates for test sets
were computed.

2. Each primitive feature in the training set was normalized to have zero mean and
unit variance, and the primitive features in the test set were also normalized using
the means and variances of the training set.

3. For classifiers with the extracted features, we used the Parzen classifier (Parzen)
and the k-nearest neighbor classifier with k = 3 (3-nn) as described in Section 2.3.

4. The optimal parameter values (l∗, m∗), with which each classification method
showed the best performance, were recorded.
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Fig. 3. Classification rates of C-LDA(g) for various values of l and m (Pima)

3.2 Classification Results

We first used the Pima data set for the performance evaluation. Figure 3 shows the clas-
sification results of C-LDA(g) using the Parzen classifier. Since there are 8 primitive
features in the data set, l was varied from 1 to 7. When l = 1, only one feature can be
extracted because the rank of CB is 1, and C-LDA becomes LDA. As l increases, m
can be larger. If l is larger than 5, CB has full rank. In the figure, we observed the fol-
lowing; 1)The classification rates of C-LDA(g) are 75∼77% for l ≥ 2 and m ≥ 2. This
implies that the classification rates are not very sensitive to l and m, which is a desirable
property. 2)Larger values of l and m do not necessarily show better performance. When
both l and m are 2, the best classification rate of C-LDA(g) is 77.0%.

The classification results for the Pima data set by the other methods are displayed in
Table 2. The results show that C-LDA(g) with the Parzen classifier performed best.

We also tested all the methods on the other seven data sets. The best result for each
data set is indicated in boldface. As can be seen in Table 2, C-LDA shows better perfor-
mance than PCA and LDA. In case of relatively easy problems such as the Iris and Wine
data sets, C-LDA shows the best performance with l = 1. It is noted that C-LDA with
l = 1 corresponds to LDA. When C-LDA gives good results with small l, LDA also
performs well. However, in other cases, LDA gives poor results. Especially in the case
of Sonar data set, LDA performs even worse than PCA. This means that D−1 extracted
features do not contain sufficient information when D is small. On the other hand, we
can extract more than D − 1 features in the case of C-LDA, as explained in Section
2.2. This seems to make C-LDA outperform LDA. For the Breast cancer, Ionosphere,
Iris, and Wine data sets, Cher-LDA also shows good performance. However, Cher-LDA
gives poor results for the Sonar and Glass data sets. The last rows in Table 2(a) and Ta-
ble 2(b) show the average classification rates for all data sets, in which C-LDA(g) with
the Parzen classifier shows the best result of 89.6%. On average, C-LDA(r) performs
comparably to C-LDA(g).

Table 2 also shows the optimal parameter value, with which each classification
method showed the best performance. We can see that l∗ of C-LDA(r) is larger than that
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Table 2. Classification Rates and Optimal Parameters

(a) Parzen classifier

Data set
C-LDA(g) C-LDA(r) PCA LDA Cher-LDA

rate (%) l∗/m∗ rate (%) l∗/m∗ rate (%) m∗ rate (%) m∗ rate (%) m∗

Pima 77.0±0.2 2 / 2 76.7±0.4 4 / 4 73.5±0.4 7 75.0±0.4 1 75.1±0.3 1
Breast 96.2±0.1 8 / 1 96.4±0.1 8 / 1 93.3±0.4 7 94.1±0.2 1 94.0±0.1 1
Heart 84.2±0.7 1 / 1 84.5±0.4 2 / 2 83.7±0.6 4 84.2±0.7 1 83.9±0.5 1
Iono. 90.3±0.7 5 / 5 89.3±0.8 14 / 8 85.8±0.5 5 83.2±0.4 1 85.8±0.5 33

Iono. + 96.0 5 / 5 95.4 10 / 3 96.0 6 91.4 1 96.7 16
Sonar 87.8±1.5 28 / 12 86.8±0.5 57 / 2 85.6±1.3 15 75.6±1.9 1 79.4±2.0 33

Sonar + 97.1 28 / 8 97.1 58 / 3 93.3 17 77.9 1 82.7 59
Iris 97.6±0.3 1 / 1 97.6±0.3 1 / 1 92.1±0.5 1 97.6±0.3 1 97.9±0.5 1

Wine 99.3±0.4 1 / 2 99.3±0.4 1 / 2 98.0±0.5 5 99.3±0.4 2 99.6±0.4 2
Glass 70.8±0.7 5 / 3 69.3±1.3 3 / 4 65.7±0.6 7 60.6±1.4 5 64.0±1.1 9

Average 89.6 89.2 86.7 83.9 85.9

(b) 3-nn classifier

Data set
C-LDA(g) C-LDA(r) PCA LDA Cher-LDA

rate (%) l∗/m∗ rate (%) l∗/m∗ rate (%) m∗ rate (%) m∗ rate (%) m∗

Pima 73.5±0.8 4 / 2 74.5±0.6 4 / 4 72.0±1.1 8 72.4±0.7 1 73.0±1.8 1
Breast 96.9±0.3 6 / 1 96.9±0.3 4 / 2 96.8±0.5 2 96.2±0.5 1 97.1±0.2 5
Heart 83.7±1.1 9 / 2 83.0±1.4 2 / 2 81.4±1.5 9 80.7±1.2 1 81.1±1.2 1
Iono. 91.4±0.8 3 / 3 89.3±0.6 3 / 3 88.2±0.8 5 85.6±1.0 1 93.1±0.7 3

Iono. + 96.7 3 / 2 95.4 9 / 5 95.4 33 79.5 1 98.0 7
Sonar 86.3±0.8 58 / 1 85.5±0.8 57 / 2 86.3±0.9 16 73.2±2.4 1 79.5±2.1 15

Sonar + 95.2 16 / 14 91.3 58 / 1 87.5 10 77.9 1 84.6 39
Iris 97.3±0.6 1 / 1 97.3±0.6 1 / 1 95.1±0.5 3 97.3±0.6 1 97.5±0.4 2

Wine 98.9±0.5 1 / 2 98.9±0.5 1 / 2 96.4±0.9 7 98.9±0.5 2 99.3±0.3 2
Glass 72.1±1.9 5 / 3 71.5±1.7 3 / 6 72.0±1.4 8 63.2±3.0 5 68.0±2.0 9

Average 89.2 88.4 87.1 82.5 87.1

(+: Experimental results are for the given training and test sets instead of 10-fold cross validation.)

of C-LDA(g), especially in the case of Ionosphere and Sonar data sets. In C-LDA(r), it
seems that the size of the composite feature should be large.

4 Conclusions

In this paper, we proposed a new linear discriminant analysis using composite features.
A composite feature is composed of a number of neighboring primitive features. The
covariance of two composite features is obtained from the inner product of two com-
posite features and can be considered as a generalized form of the covariance of two
primitive features. The proposed C-LDA has several advantages over LDA. First, more
information on statistical dependency among multiple primitive features can be ob-
tained by using the covariance of composite features. Second, the number of extracted
features can be larger than the number of classes. Third, C-LDA is expected to provide
similar or better performance compared to the other methods in most cases as shown in
the previous section. This indicates that the covariance of composite features is able to
capture discriminative information better than the covariance of two primitive features.
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Abstract. An engineering control approach to attention is developed here, 
based on the original CODAM (COrollary Discharge of Attention Movement) 
model. Support for the existence in the brain of the various modules thereby in-
troduced is presented, especially those components involving an observer. The 
manner in which the model can be extended to executive functions involving 
the prefrontal cortices is then outlined, Finally the manner in which conscious 
experience may be supported by the architecture is described.  

1   Introduction 

Attention, claimed William James, is understood by everybody. But it is still unclear 
how it works in detail and it is still trying to be understood by attention researchers in 
a variety of ways. This is partly because most of the processes carried out by the brain 
involve attention in one way or another, but are complex in their overall use of the 
many different modules present in the brain. This complexity has delayed the separa-
tion of these active networks of modules into those most closely involved in attention 
and those which are lesser so. However considerable progress has now occurred using 
brain imaging and it  has been shown convincingly that there are two regions of brain 
tissue involved in attention: those carrying activity being attended to and those doing 
the attending [1, 2].  

The modules observed as being controlled by attention are relatively easy to under-
stand: they function so as to have attended activity being amplified by attention and 
unattended activity reduced. This is a filter process, so that only the attended activity 
becomes activated enough to become of note for higher level processing. It is the 
higher level stage that is of concern in this paper. That is now thought to occur by 
some sort of threshold process on the attended lower-level activity. Attended activity 
above the threshold is thought to gain access to one of various working memory buff-
ers in posterior sites (mainly parietal). The resulting buffered activity is then accessi-
ble to manipulation by various executive function sites in prefrontal cortex.   

It is how these executive functions work that is presently becoming of great inter-
est. Numerous studies are showing how such functions as rehearsal, memory encod-
ing and retrieval and others depend heavily on attention control sites. This is to be 
expected if the executive functions themselves are under the control of attention, 
which enables the singling out, by the attention amplification/inhibition process, of 
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suitable manipulations of posterior buffered activity (and its related lower level com-
ponents). Thus rehearsal itself could be achieved by having attention drawn to the 
decay below a threshold of buffered activity, thereby amplifying it, and so rescuing it 
from oblivion. 

At the same time awareness of stimuli is only achieved if they are attended to. 
Given a good model of attention, is it possible to begin to understand how the model 
might begin to explain the most important aspects of awareness? 

In this paper I present a brief review of the earlier CODAM engineering control 
model of attention, and consider its recent support from brain science. I then extend 
the model so as to be able to handle some of the executive processes involved in 
higher order cognitive processes. I conclude the paper with a discussion of the way 
that CODAM and its extensions can help begin to explain how consciousness, and 
especially the pre-reflective self, can be understood in CODAM terms. 

2   The CODAM Engineering Control Model of Attention 

Attention, as mentioned in section 1, arises from a control system in higher order 
cortex (parietal and prefrontal) which initially generates a signal which amplifies a 
specific target representation in posterior cortex, at the same time inhibiting those of 
distracters. We apply the language of engineering control theory to this process, so 
assume the existence in higher cortical sites of an inverse model for attention move-
ment, as an IMC (inverse model controller), the signal being created by use of a bias 
signal from prefrontal goal sites. The resulting IMC signal amplifies (by contrast gain 
singling out the synapses from lower order attended stimulus representations) poste-
rior activity in semantic memory sites (early occipital, temporal and parietal cortices). 
This leads to the following ballistic model of attention control: 

Goal bias (PFC)  Inverse model controller IMC (Parietal lobe )  Amplified 
lower level representation of attended stimulus  (in various modalities in posterior 
CX)                                                                                                                              (1) 

We denote the state of the lower level representation as x( , t), where the unwritten 
internal variable denotes a set of co-ordinate positions of the component neurons in a 
set of lower level modules in posterior cortex. Also we take the states of the goal and 
IMC modules to be x( , t; goal), x( ,t; IMC).  

The set of equations representing the processes in equation (1) are 

dx(goal)/dt = -x(goal) + bias (2a) 

dx(IMC)/dt = - x(IMC) + x(goal) (2b) 

dx( ,t)/dt = -x( , t) + w*x((IMC) + w’**x(IMC)I(t) (2c) 

In (2c) the single-starred quantity w*x denotes the standard convolution product 
w(r, r’)IMC(r’)dr’ and w**x(IMC)I(t) denotes the double convolution product w(r, 

r’, r’’) x(r’; IMC)I(r’’), where I® is the external input at r. These two terms involving 
the weights w and w’ and single and double convolution products correspond to the 
additive feedback and contrast gain suggested by various researchers. 
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Equation (2a) indicates how a bias signal (from lower level cortex) as in exogenous 
attention, an already present continued bias as in endogenous attention, or in both a 
form of value bias as is known to arise from orbito-frontal cortex and amygdala. The 
goal signal is then used in (2b) to guide the direction of the IMC signal (which may be 
a spatial direction or in object feature space). Finally this IMC signal is sent back to 
lower level cortices in either a contrast gain manner (modulating the weights arising 
from a particular stimulus, as determined by the goal bias, to amplify relevant inputs) 
or in an additive manner. Which of these two is relevant is presently controversial, so 
we delay that choice by taking both possibilities. That may indeed be the case. 

The amplified target activity in the lower sites is then able to access a buffer work-
ing memory site in posterior cortices (temporal and parietal) which acts as an attended 
state estimator. The access to this buffer has been modelled in the more extended 
CODAM model [2, 3] as a threshold process,  arising possibly from two-state neurons 
being sent from the down to the up-state (more specifically by two reciprocally cou-
pled neurons almost in bifurcation, so possessing long lifetime against decay of activ-
ity). Such a process of threshold access to a buffer site corresponds to the equation 

x(WM) = xY[x – threshold] (3) 

where Y is the step function or hard threshold function. Such a threshold process has 
been shown to occur by means of modelling of experiments on priming [4] as well as 
in detailed analysis of the temporal flow of activity in the attentional blink (AB) [5]; 
the activity in the buffer only arises from input activity above the threshold. Several 
mechanisms for this threshold process have been suggested but will not occupy us 
further here, in spite of their importance. 

The resulting threshold model of attended state access to the buffer working mem-
ory site is different from that usual in control theory. State estimation usually involves 
a form of corollary discharge of the control signal so as to allow for rapid updating of 
the control signal if any error occurs. But the state being estimated is usually that of 
the whole plant being controlled. In attention it is only the attended stimulus whose 
internal activity representation is being estimated by its being allowed to access the 
relevant working memory buffer. This is a big difference from standard control theory 
and embodying the filtration process being carried out by attention. Indeed in modern 
control theory partial measurement on a state leads to the requirement of state recon-
struction for the remainder of the state. This is so-called reduced-order estimation [6]. 
In attention control it is not the missing component that is important but that which is 
present as the attended component.  

The access to the sensory buffer, as noted above, is aided by an efference copy of 
the attention movement control signal generated by the inverse attention model. The 
existence of an efference copy of attention was predicted as being observable by its 
effect on the sensory buffer signal (as represented by its P3) [3]; this has just been 
observed in an experiment on the Attentional Blink, where the N2 of the second target 
is observed to inhibit the P3 of the first when T2 is detected. [3, 4, 5]. 

The ballistic model of (1) is extended by addition of a copy signal – termed corol-
lary discharge - of the attention movement control signal (from the IMC), and used to 
help speed up the attention movement and reduce error in attention control [2, 3]. The 
corollary discharge activity can be represented as  
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x(CD) = x(IMC) (4) 

The presence of this copy signal modifies the manner in which updates are made to 
the IMC and to the Monitor  

dx(IMC)/dt = - x(IMC) + x(goal) + w’’*x(CD) (5a) 

dx( ,t)/dt = -x( , t) + w*x((IMC) + w’**x(IMC)I(t) + x(MON) (5b) 

x(MON) = |x(goal) – x(CD)| + |x(goal) – x(WM)| 5(c) 

where the monitor is set up so as to take whichever is first of the error signals from 
the corollary discharge and the buffer activations, but then discard the first for the 
latter when it arrives (the first having died away in the meantime). 

It is the corollary discharge of the attention control model that is beyond that of 
earlier models, such as of ‘biased competition’ [7]. It is important to appreciate this as 
acting in two different ways (as emphasized in [2, 3]): 

1) As a contributor to the threshold ‘battle’ ongoing in the posterior buffer in order 
to gain access by the attended lower level stimulus. In [2, 3] it was conjectured that 
this amplification occurred by a direct feedback of a corollary discharge copy of the 
IMC signal to the buffer (at the same time with inhibition of any distracter activity 
arriving there). 

2) Used as a temporally early proxy for the attention-amplified stimulus activity, 
being used in a monitor module to determine how close the resulting attended stimu-
lus achieves the pre-frontally held goal.  

Both of these processes were shown to be important in a simulation of the atten-
tional blink [2]; the spatially separated and temporally detailed EEG data of [4] re-
quired especially the first of these as the interaction of the N2 of the second target T2 
and the P3 of the first target T1. 

The resulting CODAM model [1, 2, 8] takes the form of figure 1. 
Visual input enters by the INPUT module and feeds to the object map. At the same 

time this input alerts exogenous goals which alert the attention movement generator 
IMC so as to amplify the input to the object map. The corollary discharge of the IMC 
signal is sent to a corollary discharge short-term buffer, which is then used either to 
aid the access to the WM buffer site of the object map activity, or to update the error 
monitor (by comparison of the corollary discharge signal with an endogenous goal) so 
as to boost the attention signal in the IMC so as to better achieve the access of the 
posterior activation in the object map of the attended stimulus so it achieves access to 
the WM buffer.  

Numerous other features have been added to the CODAM model:  

a) More detailed perception/concept processing system (GNOSYS) 
b) Addition of emotional evaluation modules, especially modeled on the amygdala [9] 
c) Addition of a value-learning system similar to the OFC [10] 

The relation of this approach contained in equations to standard engineering con-
trol theory is summarised in table 1. 



 Towards a Control Theory of Attention 465 

 

Fig. 1. The CODAM Model 

Table 1. Comparison of Variables in Engineering Control Theory and Attetion 

Variable In Engineering control In Attention 
x( , t) State of plant State of lower level  

cortical activity  
x(IMC)    Control signal to control 

plant in some manner 
Control signal to move 

attention to a spatial 
position or to object  

features  
x(goal) Desired state of plant Desired goal causing 

attention to move 
x(CD) Corollary discharge signal 

to be used for control 
speed-up 

Corollary discharge to 
speed-up attention  

movement 
x(WM) Estimated state of plant 

(as at present time or as 
predictor for future use) 
often termed an observer 

Estimated state of at-
tended lower level  

activity (at present time or 
as predictor for future use) 

We note in table 1 that the main difference between the two columns is in the en-
tries in the lowest row, where the buffer working memory in attention control con-
tains an estimate of only the state of the attended activity in lower level cortex; this is 
clearly distinguished from that for standard engineering control theory, where the 
estimated state in the equivalent site is that of the total plant and not just a component 
of it. There may in control theory be an estimate of the unobserved state of the plant 
only [6], but that is even more different from attention, where the estimate is only of 
the attended – so observed – state of lower level brain activity.  

3   Executive Functions Under Attention Control  

There are numerous executive functions of interest.  These arise in reasoning, think-
ing and planning, including:  
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1) Storage and retrieval of memories in hippocampus (HC) and related areas;  
2) Rehearsal of desired inputs in working memory;  
3) Comparison of goals with new posterior activity;. 
4) Transformation of buffered material into a new, goal-directed form (such as spa-

tial rotation of an image held in the mind);  
5) Inhibition of pre-potent responses [11];  
6) The development of forward maps of attention in both sensory and motor mo-

dalities, so that possibly consequences of attended actions on the world can be imag-
ined, and used in reasoning and planning;  

7) Determination of the value of elements of sequences of sensory-motor states as 
they are being activated in forward model recurrence;  

8) Learning of automatic sequences (chunks) so as to speed up the cognitive  
process  

The rehearsal, transformation, inhibition and retrieval processes are those that can 
be carried out already by a CODAM model [2, 3] (with additional hippocampus for 
encoding & retrieval). CODAM can be used to set up a goal, such as the transformed 
state of the buffered image, or its preserved level of activity on the buffer, and trans-
form what is presently on the buffer by the inverse attention controller into the desired 
goal state. Such transformations arise by use of the monitor in CODAM to enable the 
original image to be transformed or preserved under an attention feedback signal, 
generated by an error signal from the monitor and returning to the inverse model 
generating the attention movement control signal so as to modify (or preserve) atten-
tion and hence what is changed (or held) in the buffer, for later report. Longer term 
storage of material for much later use would proceed in the HC, under attention con-
trol. The comparison process involves yet again the monitor of CODAM. The use of 
forward models mentioned in (6) allows for careful planning of actions and the reali-
zation and possible valuation of the consequences. Multiple recurrence through for-
ward models and associated inverse model controllers allow further look-ahead, and 
prediction of consequences of several further action steps. Automatic processing is 
created by sequence learning in the frontal cortex, using FCX  basal ganglia  
Thalamus  FCX, as well as with Cerebellum involvement, so as to obtain the recur-
rent architecture needed for learning chunks (although shorter chunks are also learnt 
in hippocampus). Attention agents have been constructed {12], and most recently 
combined with reward learning [13]. 

Cognitive Architecture: A possible architecture is a) CODAM as an attention controller 
(with both sensory and motor forms and containing forward models) b) Extension of 
CODAM by inclusion of value maps and the reward error prediction delta; c) Exten-
sion of CODAM to include a HC able to be attended to and to learn short sequences d) 
Further extension of CODAM by addition of cerebellum to act as an error learner for 
‘glueing’ chunked sequences together, with further extension to addition of basal gan-
glia (especially SNc) so as to have the requisite automated chunks embedded in at-
tended control of sequential progression. The goal systems in PFC are composed of 
basal ganglia/thalamus architecture, in addition to prefrontal cortex, as in [14], [15], 
and observed in [16]. This can allow both for cortico-cortico recurrence as well as 
cortico-basal ganglia-thalamo-cortical recurrence as a source of long-lifetime activity 
(as well as through possible dopaminergic modulation of prefrontal neuron activity). 



 Towards a Control Theory of Attention 467 

4   Modelling the Cognitive Task of Rehearsal 

Rehearsal is a crucial aspect of executive function. It allows the holding of various 
forms of activity buffered in posterior sites to have its lifetime extended for as long as 
some form of rehearsal continues. As such, delayed response can be made to achieve 
remembered goals using activity held long past its usual sell-by date. Such a sell-by 
date is know to occur for the posterior buffered activity by numerous experimental 
paradigms [17]. The central executive was introduced by Baddeley as a crucial com-
ponent of his distributed theory of working memory. The modes of action of this 
rehearsal process were conjectured as being based in prefrontal sites. More recent 
brain imaging ([18] & earlier references) have shown that there is a network of parie-
tal and prefrontal sites involved in rehearsal. Let us consider the possible mechanism 
for such rehearsal to occur. 

One of the natural processes to use is that of setting up a goal whose purpose is to 
refresh the posterior buffered activity at the attended site or object if this activity 
drops below a certain level. Thus if the buffered posterior activity satisfies equations 
(3) and (5b) then when the activity drops below a threshold then the monitor is turned 
on and there is the driving of attention back to the appropriate place or object needing 
to be preserved. 

There are a number of components of this overall process which are still unex-
plored, so lead to ambiguities. These are as follows: 

1) Is the rehearsal signal directed back from the rehearsal goal site to the IMC, and 
thence to boost the decaying but required input activity, or is there a direct refreshing 
of activity on the posterior WM buffer? 
  2) This question leads to the further question: is there a distinction between the pos-

terior WM buffer site and that coding for the inputs at semantic level? It is known, for 
spatial maps, that there is a visuo-spatial sketchpad buffering spatial representations; 
is this distinct from a shorter-decaying representation of space? Also is there a sepa-
rate set of object representations from that of an object WMM buffer?  
 3) A further question is that, if there is refreshment attention directed to the WM 

buffer, how does this act? Is it by contrast gain on recurrent synaptic weights that are 
generators of the buffering property? Or does it occur by an additive bias so as to 
directly boost activity in the buffer WM  

The difference between the answers to question 3) above – how attention is fed 
back to the WM buffered activity to refresh it – can be seen by analysis. For the 
membrane potential u of a recurrent neuron (with recurrent weight w) in the WM 
buffer there is the graded simple dynamic equation: 

du/dt = -u + wf(u)                                                            (6) 

If attention feedback is by contrast gain then the effect in equation (6) is to increase 
the weight w by a multiplicative factor, as in the double convolution term in equation 
(2a). This will have one of two possible effects on the steady-state solution to 9^): 
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a) The bifurcating value (the non-zero steady state solution to u = wf(u)) is in-
creased, so amplifying the final steady state value of the WM buffer activity; 
b) If there is no bifurcation, then the decay lifetime of activity in (6) will increase.  

But either case a) or b) above will not necessarily help. If bifurcation has occurred, 
so case a) applies, then there will not be any decay of WM buffer activity, so there is 
no need for refreshing in the first place. If the system has not bifurcated but has a long 
lifetime for decay, as in case b) above, an increase in the lifetime may not help boost 
back the original activity, but only prolong its decay. Thus it would appear that, bar-
ring a more complex picture than present in (6), it will be necessary to have some 
additive feedback to the WM buffer. This would then boost the threshold activity of 
the WM buffer, and so help prevent its loss (by keeping it above noise). Thus both a 
contrast gain and an additive feedback mode of action of refreshment attention would 
enable the WM buffer to hold onto its activity, and so allow later use of the continued 
activity in the WM buffer.    

5   Discussion  

We discussed in section 2 the CODAM mode of attention, based on engineering 
control. We briefly reviewed the CODAM model, and then considered some details 
of the comparison between attention and standard engineering controls. An impor-
tant distinction was that the estimated state of the plant (in engineering control terms 
usually called the observer) was replaced in attention control by the estimated state 
of the attended activity in lower cortical sites. This difference is crucial, since on this 
attention-filtered estimate is based the higher-level processing of activity going un-
der the terms of thinking reasoning and planning. Moreover the initial stage of creat-
ing these working memory activations involves a process of taking a threshold on 
incoming attended activity form lower level sites, and this is regarded as a crucial 
component of the creation of consciousness, A further crucial component is the pres-
ence of a ‘pre-signal’ – the corollary discharge – suggested in CODAM as the basis 
of the experience of the pre-reflective self.. In section 3 there was a development of 
the manner in which executive control might be achieved in terms of this attention 
control architecture. 

In section 4 the details of how rehearsal might occur was suggested in terms of an 
earlier monitoring model [8], together with a refreshment attention rehearsal process. 
Various alternatives for the way this refreshment attention could function were con-
sidered. It is necessary to wait for further data, updating that form [18], [19], [20] in 
order to be able to distinguish between these various possibilities. In particular the 
brain site where the refreshment attention signal is created, as well as the site where 
such refreshment actually occurs, need to be determined. The analysis of solutions of 
equation (6) showed a variety of mechanisms could lead to quite different dynamical 
and steady state activity; these could be part of the clue to how these processes occur 
in specific sites, so allowing regression techniques to be extended to such refreshment 
processing.   
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There is much more to be done, especially by the implementation of language, for 
developing such high-level cognitive processing, beyond the simple outlines of cogni-
tive processing discussed here.  
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Abstract. This paper demonstrates how attended stimuli may be localized even 
if they are complex items composed of elements from several different feature 
maps and from different locations within the Selective Tuning (ST) model. As 
such, this provides a step towards the solution of the ‘binding problem’ in 
vision. The solution relies on a region-based winner-take-all algorithm, a 
definition of a featural receptive field for neurons where several representations 
provide input from different spatial areas, and a localized, distributed saliency 
computation specialized for each featural receptive field depending on its 
inputs. A top-down attentive mechanism traces back the connections activated 
by feed-forward stimuli to localize and bind features into coherent wholes. 

1   Introduction 

Many models have been proposed to explain biological attentive behavior. Some have 
found utility in computer vision applications for region of interest detection. This 
article focuses on the Selective Tuning model (ST). Its ‘first principles’ foundations 
[1] provided the first formal justification for attention by focusing on computational 
complexity arguments on the nature of attention, the capacity of neural processes and 
on strategies for overcoming capacity limitations. The ‘first principles’ arise because 
vision is formulated as a search problem (given an image, which subset of neurons 
best represent image content?). This foundation suggests a specific biologically 
plausible architecture and its processing stages [1,2]. The architecture includes 
pyramid representations, hierarchical search and attentive selection. 

This contribution focuses on how ST addresses the visual feature binding problem. 
This is a long-standing problem in cognitive science, first described by Rosenblatt [3]. 
In vision, as well as in other cognitive tasks, features such as an object’s shape, must 
be correctly associated with other features to provide a unified representation of the 
object. This is important when more than one object is present in order to avoid 
incorrect combinations of features. Using the classical view of the binding problem, 
one can show that for a purely data-directed strategy the problem of finding the 
subsets of each feature map that correspond to the parts of an object has exponential 
complexity. It is an instance of the NP-Complete visual matching problem [4] so 
search is over the powerset of features and locations. In simple detection problems, 
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the complexity is manageable by a data-directed strategy because there are few 
features. In the general case, attentional selection is needed to limit the search. 

Part of the difficulty facing research on binding is the confusion over definitions. 
For example, in Feature Integration Theory [5], location is a feature because it is 
assumed faithfully represented in a master map of locations. But, this cannot be true; 
location precision changes layer to layer in any pyramid representation. In any case, 
an object’s edges do not share the same location with its interior. In the cortex, it is 
not accurate in a Euclidean sense almost anywhere, although the topography is 
qualitatively preserved [6]. The wiring pattern matters in order to get the right image 
bits to the right neurons. Thus binding needs to occur layer to layer because location 
coding changes layer to layer; it is not simply a high-level problem. In addition, 
features from different representations with different location coding properties 
converge onto single cells. The resulting abstraction of location information was 
shown to play an important role in the solution to complexity [1]. It also means that a 
binding solution requires recovery of location, as opposed to assuming it is a feature. 

We define the binding task to involve the solution of three sub-problems: 1) 
detection (is a given object/event present?); 2) localization (location and spatial extent 
of detected object/event); and, 3) attachment (explicit object/event links to its 
constituent components). Further, binding is not a problem in simple situations and 
only appears when there is sufficient complexity in the image. Specifically, images 
must contain more than one copy of a given feature, each at different locations, 
contain more than one object/event each at different locations, and, contain 
objects/events composed of multiple features and sharing at least one feature type. 

Others have proposed solutions to the feature binding problem. The Temporal 
Synchrony hypothesis proposes recognition of synchronized neural firing patterns [7, 
8]. The Biased Competition model proposes task-biased inhibitory competition, plus 
the responses of higher-order neurons that encode only the attended stimuli, implicitly 
binds features [9]. The Saliency Map model proposes that feedback modulation of 
neural activity for visual attributes at the location of selected targets will suffice [10]. 
The difficulty with these proposals is that none present a mechanism to accomplish 
binding. There is even the view that recognition does not need attention for binding, 
and that attention is needed only for task priming and cluttered scenes [11]. This view 
can be rejected based on the timing observed in attentive tasks among different visual 
areas. As predicted by ST, higher-level areas show attentive effects before early ones. 
This is demonstrated in [12, 13] who show this latency pattern and show that attentive 
effects are mostly after 150ms from stimulus onset, the time period ignored in [11] 
and by those who study detection tasks exclusively. 

The remainder of the paper will briefly present the ST model, and then overview 
the solution to binding. An example, a discussion of the limitations and behavioural 
predictions of the model, and a concluding discussion round out the paper. 

2   The Selective Tuning Model 

The details of the model have been presented previously ([1, 2, 14, 15, 16]) and thus 
only an overview sufficient to lead into the new work will be presented here. 
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2.1   The Model 

The processing architecture is pyramidal, units receiving both feed-forward and 
feedback connections from overlapping space-limited regions. It is assumed that 
response of units is a measure of goodness-of-match of stimulus to a neuron’s 
selectivity. Task-specific bias, when available, allows the response to also reflect the 
relative importance of the contents of the corresponding receptive field in the scene. 

The first stage of processing is a feed-forward pass. When a stimulus is applied to 
the input layer of the pyramid, it activates all of the units within the pyramid to which 
it is connected. The result is a feed-forward, diverging cone of activity within the 
pyramid. The second stage is a feedback pass embodying a hierarchical winner-take-
all (WTA) process. The WTA can accept task guidance for areas or stimulus qualities 
if available but operates independently otherwise. The global winner at the top of the 
pyramid activates a WTA that operates only over its direct inputs. This localizes the 
largest response units within the top-level winning receptive field. All of the 
connections of the visual pyramid that do not contribute to the winner are inhibited. 
This refines unit responses and improves signal-to-noise ratio. The top layer is not 
inhibited by this mechanism. The strategy of finding the winners within successively 
smaller receptive fields, layer by layer, and then pruning away irrelevant connections 
is applied recursively. The result is the cause of the largest response is localized in the 
sensory field. The paths remaining may be considered the pass zone while the pruned 
paths form the inhibitory zone of an attentional beam.  

2.2   ST’s Winner-Take-All Process 

ST’s WTA is an iterative process realizable in a biologically plausible manner. The 
basis for its distinguishing characteristic is that it implicitly creates a partitioning of 
the set of unit responses into bins of width determined by a task-specific parameter, θ. 
The partitioning arises because inhibition between units is not based on the value of a 
single unit but rather on the difference between pairs of unit values.  

Competition depends linearly on the difference between unit strengths. Unit A 
inhibits unit B if the response of A, denoted by r(A), satisfies r(A) − r(B) > θ . 
Otherwise, A will not inhibit B. The inhibition on unit B is the weighted sum of all 
inhibitory inputs, each of whose magnitude is determined by r(A) − r(B). It has been 
shown that this WTA is guaranteed to converge, has well-defined properties with 
respect to finding largest items, and has well-defined convergence characteristics [2]. 
The time to convergence is specified by a simple relationship involving θ and the 
maximum possible value Z across all unit responses. The is because the partitioning 
procedure uses differences of values, and the smallest units will be inhibited by all 
other units while the largest valued units will not be inhibited by any unit. As a result, 
small units are reduced to zero quickly and the time to convergence is determined by 
the values of the largest and second largest units.  

The WTA process has two stages: the first is to inhibit all responses except those in 
the largest θ-bin; and, the second is to find the largest, strongest responding region 
represented by a subset of those surviving the first stage. The general form is:  
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Gi(t +1) =Gi(t) wij

j=1, j i

n

ij

 
(1) 

where Gi(t) is the response of neuron i at time t, wij is the connection strength between 
neurons i and j, (the default is that all weights are equal; task information may provide 
different settings), n is the number of competing neurons, and Δij is given by: 

ij =Gj (t) Gi(t),
if 0 < <Gj (t) Gi(t)
0       otherwise

 .

 
(2) 

Gi(0) is the feed-forward input to neuron i. Stage 2 applies a second form of inhibition 
among the winners of the stage 1 process. The larger the spatial distance between 
units the greater is the inhibition. A large region will inhibit a region of similar 
response strengths but of smaller spatial extent on a unit-by-unit basis. Equation  (1) 
governs this stage of competition also with two changes: the number of survivors 
from stage 1 is m, replacing n everywhere, and Δij is replaced by: 

ij = Gj (t) Gi(t)( ) 1 e

dij
2

dr
2

  ,
if 0 < < Gj (t) Gi(t)( ) 1 e

dij
2

dr2

0        otherwise

 .

 

(3) 

μ controls the amount of influence of this processing stage (the effect increases as μ 
increases from a value of 1), dij is the retinotopic distance between the two neurons i 
and j, and dr controls the spatial variation of the competition.  

3   The Selective Tuning Approach to Visual Feature Binding 

The binding strategy depends on the hierarchical WTA method to trace back the 
connections in the network along which feed-forward activations traveled. This 
provides the solution to the localization problem and links all the component features 
from different representations of an object via the pass pathways of the attentional 
beam. The additional elements that comprise this method are now presented. 

3.1   Featural Receptive Fields 

For single feature maps or for the assumption of a single saliency map [5, 10] the 
hierarchical WTA described above will suffice. However, in our case, no such 
assumption is made. Saliency is not a global, homogeneous computation in this 
framework. A strategy for combining features from different representations and 
different locations is required. This requires the functionality provided by 
acknowledging the contributions to a neuron’s response from separate locations and 
separate feature maps. Define the Featural Receptive Field (FRF) to be the set of all 
the direct inputs to a neuron. This can be specified by the union of k arbitrarily 
shaped, contiguous, possibly overlapping sub-fields as 
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FRF = f j
j=1,k
U   ,

 
(4) 

where {fj ={(xj,a , yj,a), a=1,...,bj}, j=1,...,k},  (x,y) is a location in sub-field fj, bj is the 
number of units in sub-field fj. The fj’s may be from any feature map, and there may 
be more than one sub-field from a feature map. F is the set of all sub-field identifiers 
1 though k. Response values at each (x,y) location within sub-field    i ∈ F  are 
represented by r(i,x,y).  

The FRF definition applies to each level of the visual processing hierarchy, and to 
each neuron within each level. Suppose a hierarchical sequence of such computations 
defines the selectivity of a neuron. Each neuron has input from a set of neurons from 
different representations and each of those neurons also have a FRF and their own 
computations to combine its input features. With such a hierarchy of computations, a 
stimulus-driven feed-forward pass would yield the strongest responding neurons 
within one representation if the stimulus matches the selectivity of existing neurons, 
or the strongest responding component neurons in different representations if the 
stimulus does not match an existing pattern. The result is that the classical receptive 
field (the region of the visual field in which stimulation causes the neuron to fire) now 
has internal structure reflecting the locations of the stimulus features. 

3.2   Hierarchical WTA Traces Back Feed-Forward Activations 

The idea of tracing back connections in a top-down fashion was present, in part, in the 
Neocognitron model of Fukushima [17]; the first description of the ST hierarchical 
WTA method was presented in [16]. 

Fukushima’s model included a maximum detector at the top layer to select the 
highest responding cell and all other cells were set to their rest state. Only afferent 
paths to this cell are facilitated by action from efferent signals from this cell. The 
differences between Neocognitron and ST are many. Neural inhibition is the only 
action of ST, with no facilitation. The Neocognitron competitive mechanism is lateral 
inhibition at the highest and intermediate levels that finds strongest single neurons 
thus assuming all scales are represented explicitly, while ST finds regions of neurons 
removing this unrealistic assumption. For ST, units losing the competition at the top 
are left alone and not affected at all.  ST’s inhibition is only within afferent sets to 
winning units. Finally, Fukushima assumes the top layer is populated by so-called 
grandmother cells whereas ST makes no such assumption. Overall, the Neocognitron 
model and its enhancements cannot scale and would suffer from representational and 
search combinatorics [1].  

ST’s WTA computation requires a competition among all the representations 
(feature maps) at the top layer of the pyramids, i.e., there can be multiple pyramids 
(such as ventral and dorsal stream). Task biases can weight each computation. The 
type of competition is determined by the relationships among the active 
representations. Two types are considered here. Two representations are mutually 
exclusive if, on a location-by-location basis, the two features they represent cannot 
both be part of the same object or event (eg., an object cannot have a velocity in two 
directions or two speeds at the same location at the same time). This also implies that 
the competing FRF sub-fields completely overlap in space. Two representations may 
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co-exist if the two features they represent can both be part of some object or event 
(eg., an edge may have colour, a line may be at some disparity, features belonging to 
eyes and co-exist with those from noses, etc.).  

The following method is applied at the top of all pyramids at first, then recursively 
downwards following the FRF representations of the winning units. If F at some level 
of the hierarchy contains sub-fields from more than one feature map representing 
mutually exclusive features (call this subset A), then, the two WTA stages represented 
by Eqs. (1-3) are applied to each sub-field separately. This will yield a winning region 
within each sub-field, gf = {(xi,f,yi,f) | i=1,2,...,nf), where nf is the number of locations 
in the winning region in sub-field f. Call this a Type A process. Since the features are 
mutually exclusive, the winning feature region is the region with the largest sum of 
responses of its member units. This winning value VA is given by 

VA =
max
j F

r( j,x,y)
x,y g j

.

 
(5) 

If F contains sub-fields representing features that can co-exist at each point (call 
this subset B), then the two stages of the WTA, represented by Eqs. (1-3), are applied 
to each representation separately. Here, however, the extent of the winning region is 
the union of all the winning regions. These winning regions are further constrained: 
each winning region is required to either overlap with, or to be entirely within or 
entirely enclose, another winning region. Call this the Type B process. The winning 
value is given by the sum of responses over all of the winning regions,  

VB = r( j,x,y)
x,y g jj F

 .

 
(6) 

If F contains sub-fields representing features that are mutually exclusive (set A) as 
well as features that co-exist (set B), a combination of the above strategies is used. 
The winning value is given by the sum of Equations (5) and (6) and the extent of the 
winning region is the union of winning regions in sets A and B.  

There is no saliency map in this model. Saliency is a dynamic and task-specific 
determination and one that may differ between processing layers as required. Further, 
this does not imply that a feature map must exist for any possible combination of 
features. Features are encoded separately in a set of maps and the relationships of 
competition or cooperation among them provide the potential for combinations. 
Although the above shows two forms of competition, other types can be included. 

3.3   Detection, Localization and Attachment  

ST seeks the best matching scene interpretations (highest response) as a default 
(defaults can be tailored to task). This is the set of neurons chosen by the WTA 
competition throughout the hierarchy. If this happens to match the target of the 
search, then detection is complete. If not, the second candidate region is chosen and 
this proceeds until a decision on detection can be made. Localization is accomplished 
by the downward search to identify the feed-forward connections that led to the 
neuron’s response following the network’s retinotopic topology, using the FRFs all 
the way down the hierarchy. FRFs provide for a distributed, localized saliency 
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computation appropriate for complex feature types and complex feature 
combinations. What is salient for each neuron is determined locally based on its FRF; 
saliency is not a global, homogeneous computation. Once localization is complete for 
all features, the object is attached to its components through the attention pass beams. 

3.4   An Example 

A very brief explanation of one example appears here. The full background for this 
example is available in [2, 14] and due to space limits, cannot be included here. The 
input is an image sequence that has three graphical objects (textured octagons) in 
motion; the largest item is translating and rotating, the medium sized object is rotating 
and the smallest object is translating. It satisfies the constraints for stimulus 
complexity requiring solution of the binding problem set out earlier. The visual 
processing hierarchy is specialized for motion alone and contains filter banks that 
simulate the motion selectivity of areas V1, MT, MST and 7a following experimental 
observations in the monkey. The V1 layer is selective for translation in 12 directions 
and 3 speeds (see Fig. 1a). MT, MST and 7a layers have pyramidal abstractions of 
this translation. MT also includes selectivity for the spatial derivative of local velocity 
(i.e., the representation is affine motion specific), in 12 gradient directions for each of 
the 12 directions and 3 speeds of translation. MST includes selectivity for generalized 
spiral motion (rotations, expansion, contraction and their combinations). 7a represents 
abstraction of generalized spiral as well as of translation. There are a total of 690 filter 
types in total (72 in V1, 468 in MT, 72 in MST and 78 in 7a), each operating over the 
visual field. Thus, there are multiple pyramids in this representation, with multiple top 
layers (78 top level representations). Generalized spiral neurons in MST have 
complex FRFs, building upon many features from the MT layer. However, there is no 
representation for the conjunction of translation with generalized spiral motion. 

The feature binding process described earlier begins with a cooperative process 
(Type B) across the output layers: translation and generalized spiral motion can co-
exist. This identifies the translation peak and the rotation peak belonging to the 
combined motion. The two winning regions then begin their downward search 
following their own FRFs. See Fig. 1b. The translation pyramid (on the right side of 
both sub-figures) needs competitive interaction (Type A) to select the best 
representations. The generalized spiral pyramid (on the left side of both sub-figures) 
also begins with competition at the top. Both pathways require competition layer by 
layer except for the MT layer of spatial derivatives. There, a Type B process is needed 
in order to find the set of common spatial gradients across a region (a rotating object 
has homogenous spatial derivatives to local velocity, the derivative direction being 
perpendicular to the direction of local motion). The winning attentional beams then 
split and converge on the image plane to show localization of the input stimulus (Fig. 
1b). In the continuation of this example, this location would be inhibited to allow the 
second strongest input item to be found, and so on. The point of this example is to 
show how a motion not explicitly represented in the system can be found, detected 
and localized, involving many representations and locations bound by the attention 
beam. 
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Fig. 1. a. The figure shows the full set of filter banks that are part of the motion processing 
system. Each small rectangle is one filter type at one pyramid layer. The rings of filters all 
appear at the same pyramid layer. The center rings of 36 filters show the output of V1; the 
translation pyramid then continues upwards on the right. The generalized spiral pyramid is on 
the left. V1 is their common base. The set of 432 coloured rectangles in MT depict the set of 
velocity gradient filters. The sequence of arrows shows the processing trail of the hierarchical 
WTA and the types of competition at each stage. b. The figure depicts the final configuration of 
attentive selection for the object that is translating and rotating even though no such feature 
conjunction has been included in the representation. The largest rectangle at the bottom 
represents the image plane on which are three textured octagons in motion. The other rectangles 
represent filter banks that contain the features of the attended stimulus. They are a subset of the 
full hierarchy of the left side figure with the inhibited ones removed. In some of the larger 
rectangles, response from the stimuli can be seen. The beams that tie together the filter bank 
representations are the pass zones of the attentional beam that converge on the largest of the 3 
octagons. There are two roots to these beams because there is no single representation for 
rotating, translating objects.  
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4   Discussion 

The solution to the feature binding problem has remained elusive for almost half a 
century. This paper proposes a solution and presents a very brief demonstration of the 
proposal. The binding problem was decomposed into three stages: detection, 
localization and attachment. The key element for its solution is the method for tracing 
connections that carry feed-forward activation downward through multiple 
representations so that they converge on the selected stimulus. This action links all the 
stimulus’ component features within the pass zone of ST’s attention beam. 

The validation of such a model can be not only computational in the sense of 
performance on real images (however, see [14]). Such a model can also be validated 
by showing that it makes counter-intuitive predictions for biological vision that gain 
experimental support over time. The following predictions, among others, appeared in 
[1]. 1) Attention imposes a suppressive surround around attended items in space as 
well as in the feature dimension. 2) Selection is a top-down process where attentional 
guidance and control are integrated into the visual processing hierarchy. 3) The 
latency of attentional modulations decreases from lower to higher visual areas. 4) 
Attentional modulation appears wherever there is many-to-one, feed-forward neural 
convergence. 5) Topographic distance between attended items and distractors affects 
the amount of attentional modulation. In each of these cases, significance supporting 
evidence has accrued over the intervening years, recounted in [14, 15]. 

The binding solution has some interesting characteristics that may be considered as 
predictions requiring investigation in humans or non-human primates. 1) Given a 
group of identical items in a display, say in a visual search task, subsets of identical 
items can be chosen as a group if they fit within receptive fields.  Thus, the slope of 
observed response time versus set size may be lower than expected (not a strictly 
serial search).  2) There is no proof that selections made at the top of several pyramids 
will converge to the same item in the stimulus array. Errors are possible if items are 
very similar, if items are spatially close, or if the strongest responses do not arise from 
the same stimulus item. 3) Binding errors may be detected either at the top by 
matching the selections against a target, or if there is no target, by the end of the 
binding attempt when the pass beams do not converge. The system then tries again; 
the prediction is that correct binding requires time that increases with stimulus density 
and similarity. In terms of mechanism, the ST model allows for multiple passes and 
these multiple passes reflect additional processing time. 4) ST’s mechanism suggests 
that detection occurs before localization and that correct binding occurs after 
localization. Any interruption of any stage will result in binding errors. 

The use of localized, distributed saliency within ST is precisely what the binding 
problem requires. Saliency is not a global, homogeneous process as in other models. 
Neurons in different representations that respond to different features and in different 
locations are selected together, the selection in location and in feature space, and are 
thus bound together via the pass zone of the attention mechanism. Even if there is no 
single neuron at the top of the pyramid that represents the concept, the WTA model 
allows for multiple threads bound through the spatial topology of the network wiring. 



480 J.K. Tsotsos 

References 

1. Tsotsos, J.K.:  A Complexity Level Analysis of Vision. Behavioral and Brain Sciences Vol 
13 (1990) 423-455 

2. Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual 
attention via selective tuning. Artificial  Intelligence  Vol 8:1-2 (1995) 507 - 547 

3. Rosenblatt, F.: Principles of Neurodynamics: Perceptions and the Theory of Brain 
Mechanisms. Spartan Books (1961) 

4. Tsotsos, J.K.: The Complexity of Perceptual Search Tasks. Proc. International Joint 
Conference on Artificial Intelligence Detroit  (1989) 1571 - 1577 

5. Treisman, A., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 
Vol 12 (1980) 97-136 

6. Felleman, D., Van Essen, D.: Distributed Hierarchical Processing in the Primate Visual 
Cortex. Cerebral Cortex Vol 1 (1991) 1-47 

7. von der Malsburg, C.: The correlation theory of brain function, Internal Rpt. 81-2, Dept. of 
Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 
(1981) 

8. Gray, C.M.,: The Temporal Correlation Hypothesis of Visual Feature Integration, Still 
Alive and Well. Neuron Vol 24:1, (1999) 31-47 

9. Desimone, R., Duncan, J.:  Neural mechanisms of selective visual attention. Annual 
Reviews of Neuroscience Vol 18 (1995) 193-222 

10. Itti, L. Koch, C.: Computational modelling of visual attention. Nature Reviews 
Neuroscience Vol 2 (2001) 194-204 

11. Riesenhuber, M. Poggio, T.: Are Cortical Models Really Bound by the "Binding 
Problem"? Neuron 1999, Vol 24:1 (1999) 87-93 

12. Mehta, A. D. Ulbert, I. Schroeder, C. E.: Intermodal Selective Attention in Monkeys. I: 
Distribution and Timing of Effects across Visual Areas. Cerebral Cortex Vol 10:4, (2000) 
343-358 

13. Connor, D.O., Fukui, M., Pinsk, M., Kastner, S.: Attention modulates responses in the 
human lateral geniculate nucleus, Nature Neurosci.ence Vol 5:11, (2002) 1203–1209 

14. Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., Zhou, K.: Attending 
to Motion, Computer Vision and Image Understanding Vol 100:1-2,  (2005) 3 - 40 

15. Tsotsos, J.K., Culhane, S., Cutzu, F.: From Theoretical Foundations to a Hierarchical 
Circuit for Selective Attention. Visual Attention and Cortical Circuits,  (2001) 285 – 306, 
ed. by J. Braun, C. Koch, and J. Davis, MIT Press 

16. Tsotsos, J.K.: An Inhibitory Beam for Attentional Selection. in Spatial Vision in Humans 
and Robots, ed. by L. Harris and M. Jenkin, (1993) 313 - 331, Cambridge University Press 
(papers from York University International Conference on Vision, June 1991, Toronto) 

17. Fukushima, K.: A neural network model for selective attention in visual pattern 
recognition. Biological Cybernetics Vol 55:1 (1986) 5 - 15 



S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 481 – 487, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Attention Based Similarity Measure for Colour 
Images 

Li Chen and F.W.M. Stentiford 

University College London, Adastral Park Campus, UK  
{l.chen, f.stentiford}@adastral.ucl.ac.uk 

Abstract. Much effort has been devoted to visual applications that require 
effective image signatures and similarity metrics. In this paper we propose an 
attention based similarity measure in which only very weak assumptions are 
imposed on the nature of the features employed. This approach generates the 
similarity measure on a trial and error basis; this has the significant advantage 
that similarity matching is based on an unrestricted competition mechanism that 
is not dependent upon a priori assumptions regarding the data. Efforts are 
expended searching for the best feature for specific region comparisons rather 
than expecting that a fixed feature set will perform optimally over unknown 
patterns. The proposed method has been tested on the BBC open news archive 
with promising results. 

1   Introduction 

Similarity matching is a basic requirement for the effective and efficient delivery of 
media data and for the identification of the infringement of intellectual property 
rights. Considerable effort has been devoted to defining and extracting image 
signatures, which are based on the assumption that similar images will cluster in a 
pre-defined feature space [1-5].  It is common for unseen patterns not to cluster in this 
fashion despite apparently possessing a high degree of visual similarity. 

In this research we propose an attention based similarity matching method with 
application to colour images based on our previous work [6,7]. The approach 
computes a similarity measure on a trial and error basis; this has the significant 
advantage that features that determine similarity can match whatever image property 
is important in a particular region whether it is a colour, texture, shape or a 
combination of all three. Efforts are expended searching for the best feature for the 
region rather than expecting that a fixed feature set will perform optimally over 
unknown patterns in addition to the known patterns. In this context, the proposed 
method is based on the competitive evolution of matching regions between two 
images rather than depending on fixed features which are intuitively selected to 
distinguish different images or cluster similar images. In addition the proposed 
method can cope with different distortions of images including cropping, resizing, 
additive Gaussian noise, illumination shift and contrast change. These functions 
potentially help detect copied images.  

The remainder of this paper is arranged as follows. In Section 2, the cognitive 
visual attention model is presented. Experiments are conducted on BBC open news 
archive and results are shown in Section 3.  Conclusions are addressed in Section 4.  
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2   Visual Attention Similarity Measure 

Studies in neurobiology [8] suggest that human visual attention is enhanced through a 
process of competing interactions among neurons representing all of the stimuli 
present in the visual field. The competition results in the selection of a few points of 
attention and the suppression of irrelevant material. In this context of visual attention, 
we argue that humans are able to spot anomalies in a single image or similarity 
between two images through a competitive comparison mechanism, where similar and 
dissimilar regions are identified and scored by means of a new similarity measure. 

Our model of visual attention is based upon identifying areas in an image that are 
similar to other regions in that same image [6,7].  The salient areas are simply those 
that are strongly dissimilar to most other parts of the image.  In this paper we apply 
the same mechanism to measure the similarity between two different images.  The 
comparison is a flexible and dynamic procedure, which does not depend on a 
particular feature space which may be thought to exist in a general image database.  

Let a measurement ( )321 ,, aaaa =  correspond to a pixel ( )21 , xxx =  in image A 

and a function F is defined so that a = F(x). 
Consider a neighbourhood N of x  where 

{ }i
'
ii

' )( ε≤−∈= xxifonlyandifNxN . 

Select a set (called a fork) of m random pixels AS  from N where 

},...,,{ '
m

'
2

'
1 xxxS A = . 

Select another random pixel y in image B and define the fork BS  

},...,,{ '
m

'
2

'
1 yyySB =  where '

i
'
i yyxx −=−  i∀ . 

The fork AS  matches BS  if  

( ) ( ) jixFxF ijij ,j ∀≤′− δ . 

That is, a match occurs if all colour values (suffix j) of corresponding pixels in AS  

and BS  are close. The similarity score of a pixel x is incremented each time one of a 

set of M neighbourhoods AS  matches a neighbourhood BS  surrounding some y in 

pattern B.  This means that pixels x in A that correspond to large numbers of matches 

between a range of M neighbouring pixel sets AS  and pixel neighbourhoods 

somewhere in B are assigned high scores.  In Fig. 1, m = 3 pixels x' are selected in the 
neighbourhood of a pixel x in pattern A and matched with 3 pixels in the 
neighbourhood of pixel y in pattern B.   

A parameter s is introduced to limit the area in pattern B within which the location 
y is randomly selected.  s = 2 defines the dotted region in Fig. 1.  This improves the 
efficiency of the algorithm in those cases where it is known that corresponding 
regions in the two images are shifted by no more than s pixels.  In effect s represents 
the maximum expected mis-registration or local distortion between all parts of the 
two images.  
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Fig. 1. Neighbourhood at location x matching at location y 

The similarity contributions from all pixel regions in A are summed and 

normalized to give the total similarity score ABC  between images A and B: 
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3   Experiments 

Experiments were carried out on images downloaded from BBC open news archives 
[9]. 75 videos (more than 230,000 frames) cover different topics including conflicts 
and wars, disasters, personalities and leaders, politics, science & technology, and 
sports. Since many frames within a scene differ only slightly, and to utilise the 
diversity in the database, 2000 non-contiguous frames were extracted by taking every 
100th frame from these videos to form the database for image retrieval. 21 images 
were randomly chosen from the database and 4 distorting transforms were applied to 
each image (see Fig. 2) including additional Gaussian noise, contrast change, crop and 
shift, and resize. These distorted images were then added to the image database 
making a total of 2084 images.   

Fig. 3 illustrates the precision and recall performance of the proposed method with 
15 queries of the database and M = 20. Recall is the ratio of the number of relevant 
images retrieved to the total number of relevant images in the database; and it is 
expressed as: 

the number of relevant images retrieved
recall

the number of relevant images in the database
=  

Precision is the ratio of the number of relevant images retrieved to the total number 
of irrelevant and relevant images retrieved, and it is defined as: 

the number of relevant images retrieved
precision

the number of images retrieved
=  
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(a)                         (b)      (c) 

                               
(d)                                                             (e)  

Fig. 1. An example of an image and four transforms: (a) original image (b) with additional 
radius-1 Gaussian blur (c) with contrast increased 25% (d) cropped and shifted to the right (e) 
resized to 80% of original image 

 

Fig. 2. Recall and precision for retrieval performance 

Only very similar frames that were immediately adjacent in time to the query frame 
were considered to be relevant images. 

Fig. 4 shows the relationship between the similarity score and the computation (M) 
for the original image when compared with itself, the blurred, contrast shifted, 
cropped and resized versions, a similar image taken from the same video ahead of 
example frame by 70 frame distance, and two other different images in the database.  
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It is interesting that for low values of M the original is seen to be less similar to itself 
than to the distorted versions.  This repeated an earlier result [6] when it was found 
that some similarities were found more easily in blurred images. 

    
(a)    (b)     (c)     (d) 

   
(e)     (f)     (g)    (h) 

 

Fig. 3. CVA scores against computation (M).  (a) original image (b) image with Gaussian blur 
(c) image with 25% contrast increase (d) cropped image (e) resize down to 80% of original 
image (f) similar image ahead of original frame by 70 frame distance (g) and (h) dissimilar 
images taking from the same video. 

The approach is further illustrated in Fig. 5 where image (a) has been pasted into 
another image giving a composite version (b).  Image (c) shows the fork pixel 
locations where matching has taken place during the computation of the similarity 
score between images (a) and (b).   This indicates that the mechanism is potentially 
able to detect sub-images with application to copy detection. 
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Fig. 4. (a) Image, (b) composite,(c) matching fork pixel locations 

4   Conclusions 

This paper has shown that a new similarity measure that is not based on pre-selected 
feature measurements can be used to obtain promising retrieval performance.  The 
similarity is determined by the amount of matching structure detected in pairs of 
images. Such structure that is found to be in common between specific pairs of 
images may not be present elsewhere in the database and would be unlikely to be 
taken into account by a fixed set of features applied universally.  The work also 
provides evidence in support of a mechanism that encompasses notions of both visual 
attention and similarity. 

More results are needed to obtain statistical significance in the precision and recall 
performances. 
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Across Fixations
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Abstract. In this work we introduce a Bayesian Integrate And Shift
(BIAS) model for learning object categories. The model is biologically
inspired and uses Bayesian inference to integrate information within and
across fixations. In our model, an object is represented as a collection
of features arranged at specific locations with respect to the location of
the fixation point. Even though the number of feature detectors that we
use is large, we show that learning does not require a large amount of
training data due to the fact that between an object and features we
introduce an intermediate representation, object views, and thus reduce
the dependence among the feature detectors. We tested the system on
four object categories and demonstrated that it can learn a new category
from only a few training examples.

1 Introduction

In this work we introduce a Bayesian Integrate And Shift (BIAS) model for
learning object categories. The model is biologically inspired and uses Bayesian
approach to: a) integrate information from different local regions of the scene,
given a fixation point, and b) integrate information from different fixations.

Our model falls into a category of feature-based approaches [2,3,5,12]. More
specifically, we represent an object as a collection of features that are arranged at
specific locations with respect to the location of the fixation point. Even though
the number of feature detectors that we use is large, we show that learning
does not require a large amount of training data. This is due to the fact that
between an object and features we introduce an intermediate representation,
object views, and thus reduce the dependence among the feature detectors. In
order to learn object views, the system utilizes experience from a teacher. Al-
though this paradigm at first appears more user intensive than paradigms that
provide only class information to the system, it is actually very fast since the
system can learn object categories using only few training examples.

Feature-based models have become increasingly popular within the computer
vision community [5,12,13]. They have been successfully used in various appli-
cations such as face recognition [11,14], car detection [1,11], and handwriting
recognition [7]. Recently, two groups [3,12] have proposed models that can learn
new object categories using only a few training examples. Both models use highly
informative and complex features that have to be learned. While the approach
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proposed by Fei-Fei et al. introduces a new learning model based on Bayesian
inference, the approach of Serre et al. uses standard classification approaches
(SVM and gentleBoost) and derives strength from a novel set of features. Both
models achieve very good performance although each model handles the number
of parts differently. Whereas the system of Serre et al. is not affected by the
number of features, and can easily use several hundreds of them, the system of
Fei-Fei et al. can utilize only a small number of parts (e.g. up to seven) due to
computational complexity that grows exponentially with the number of parts. In
contrast to these two approaches, our model uses simple feature that do not have
to be learned. Furthermore, unlike the model of Fei-Fei et al., our system can
use an arbitrarily large number of features without an increase in computational
complexity.

Biologically inspired models [4,10], and models of biological vision [6,9] have
been much less successful (in terms of real-world applications) compared to com-
puter vision approaches. A model that captures some properties of human sac-
cadic behavior and represents an object as a fixed sequence of fixations has been
proposed by Keller et al. [4]. Similarly, Rybak et al. [10] presented a model
that is inspired by the scanpath theory [8]. Although these models utilize many
behavioral, psychological, and anatomical concepts such as separate processing
and representation of “what” (object features) and “where” (spatial features:
elementary eye movements) information, they still assume that an object is rep-
resented as a sequence of eye movements. In contrast to these approaches, our
model does not assume any specific sequence of saccades and therefore is more
general.

2 The Model

The motivation for designing the proposed model comes from human perception
and the role played by saccadic eye movements during perception. The first
observation is that whenever we look at an object, it is always from the point
of view of a specific location that serves as the fixation point. Therefore, if
an object is captured through an array of feature detectors, then each fixation
elicits a different profile of activations of the feature detectors. We will call a
configuration consisting of the outputs of feature detectors associated with a
specific fixation point a view. The fixation point associated with a specific view
is called the view center. The fact that any point within an object can be chosen
as a fixation point means that the number of views can be very large even for
objects of small sizes. In order to reduce the number of views, we will assume that
some views are sufficiently similar to one another so that they can be clustered
into the same view. The second observation is that all saccadic explorations that
occurred prior to the current fixation influence the perception. In our model, the
location of each fixation is labeled as representing a center of the specific view
and this information about the locations of the centers of the previous views is
supplied to the recognition system.



490 P. Neskovic, L. Wu, and L.N. Cooper

Distribution of the Receptive Fields (RFs). Let us assume that we are
given an array of feature detectors whose RFs form a fixed grid and completely
cover an input image. One RF has a special role during the recognition process.
We call it the central RF and it is always positioned over the fixation point.
Since the location of each feature is measured with respect to the central RF,
the uncertainty associated with feature’s position increases with its distance
from the fixation point. In order to capture variations in feature locations, the
sizes of the RFs in our model increase with their distance from the central RF.
Similarly, the overlap among the RFs increases with their distance from the
central location.

Notations. With symbol H we denote a random variable with values H = (n, i)
where n goes through all possible object classes and i goes through all possible
views within the object. Instead of (n, i), we use the symbol Hn

i to denote the
hypothesis that the outputs of all the feature detectors represent the ith view of
an object of the nth (object) class. The background class, by definition, has only
one view. With variable y we measure the distances of the centers of the RFs
from the fixation point. The symbol Dr

k denotes a random variable that takes
values from a feature detector that is positioned within the RF centered at yk

from the central location, and is selective to the feature of the rth (feature) class,
Dr

k = dr(yk). The symbol At denotes the outputs of all the feature detectors for
a given fixation point xt at time t. With variable z we measure the distances
of the previous fixation locations (view centers) with respect to the location of
the current fixation point. For example, the symbol zj

t−1 denotes the location
of the center of the jth view at time t− 1. The collection of the locations of all
the view centers, up to time t, we denote with the symbol Bt. In order to relate
positions of fixation locations with respect to one another, their positions are
recorded and indexed with time variable, xt.

What we want to calculate is how information coming from different feature
detectors as well as information from previous fixations (the centers of the pre-
vious views) influence our hypothesis, p(Hn

i |At, Bt). In order to gain a better
insight into dependence of these influences, we will start by including the evi-
dence coming from one feature detector and then increase the number of feature
detectors and fixation locations.

Combining information within a fixation. Let us now assume that for a
given fixation point x0, the feature of the rth class is detected with confidence
dr(yk) within the RF centered at yk. The influence of this information on our
hypothesis, Hn

i , can be calculated using the Bayesian rule as

p(Hn
i |dr(yk),x0) =

p(dr(yk)|Hn
i ,x0)p(Hn

i |x0)
p(dr(yk)|x0)

, (1)

where the normalization term indicates how likely it is that the same output
of the feature detector can be obtained (or “generated”) under any hypothesis,
p(dr(yk)|x0) =

∑
n,i p(d

r(yk)|Hn
i ,x0)p(Hn

i |x0).
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We will now assume that a feature detector representing the feature of the
pth class and positioned within the RF centered at yq has a value dp(yq). The
influence of this new evidence on the hypothesis can be written as

p(Hn
i |dp(yq), d

r(yk),x0) =
p(dp(yq)|dr(yk), Hn

i ,x0)p(Hn
i |dr(yk),x0)

p(dp(yq)|dr(yk),x0)
. (2)

The main question is how to calculate the likelihood p(dp(yq)|dr(yk), Hn
i ,x0)?

In principle, if the pattern does not represent any object but just a random
background image the outputs of the feature detectors dp(yq) and dr(yk) are
independent of each other. If, on the other hand, the pattern represents a specific
object, say an object of the nth class, then the local regions of the pattern within
the detectors RFs, and therefore the features that capture the properties of
those regions, are not independent from each other, p(dp(yq)|dr(yk), Hn,x0) �=
p(dp(yq)|Hn,x0). However, once we introduce a hypothesis of a specific view,
the features become much less dependent on one another. This is because the
hypothesis Hn

i is much more restrictive and at the same time more informative
than the hypothesis about only the object class, Hn. Given the hypothesis Hn,
each feature depends both on the locations of other features and the confidences
with which they are detected (outputs of feature detectors). The hypothesis Hn

i

significantly reduces the dependence on the locations of other features since it
provides information about the location of each feature within the object up to
the uncertainty given by the size of the feature’s RF.

The likelihood term, under the independence assumption, can therefore be
written as p(dp(yq)|dr(yk), Hn

i ,x0) = p(dp(yq)|Hn
i ,x0). Note that this property

is very important from the computational point of view and allows for a very
fast training procedure. The dependence of the hypothesis on the collection of
outputs of feature detectors A0 can be written as

p(Hn
i |, A0,x0) =

∏
r,k∈A p(dr(yk)|Hn

i ,x0)p(Hn
i |x0)∑

n,i

∏
r,k∈A p(dr(yk)|Hn

i ,x0)p(Hn
i |x0)

, (3)

where r, k goes over all possible feature detector outputs contained in the set A0
and n, i goes over all possible hypotheses.

Combining information across fixations. Let us now calculate how the ev-
idence about the locations of different fixations influence the confidence about
the specific hypothesis, Hn

j , associated with fixation point xt. We will assume
that at time t−1 a hypothesis has been made that the fixation centered at xt−1
represented the center of the ith view of the object of the nth class. Similarly,
we will assume that at time t− 2 a hypothesis has been made that the fixation
centered at xt−2 represented the center of the kth view. The location xt−1 is
measured with respect to some fixed reference point while this same location
measured with respect to the position of the current fixation xt is zi

t−1 . Sim-
ilarly, the location of the fixation, xt−2, when transformed into the reference
frame of the current fixation is zk

t−2 = xt−2 − xt. We denote with the symbol
At the outputs of all the feature detectors that are used to calculate the (new)
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hypothesis Hn
j . The influence of the evidence about the locations of the previous

hypotheses on the current hypothesis can be written as

p(Hn
j |zk

t−1, z
i
t−2, At,xt) =

p(zk
t−1|Hn

j , z
i
t−2, At,xt)p(Hn

j |zi
t−2, At,xt)

p(zk
t−1|zi

t−2, At,xt)
. (4)

The question is now whether the location of any object view depends on loca-
tions of other views or just on the location of the current fixation point. Un-
fortunately, conditioning on the hypothesis in this case does not always reduce
the dependence on the locations of other views. However, in order to make the
model computationally tractable, we will assume that the view locations are
independent from one another given the hypothesis.

Since the location of the kth view of the object does not depend on the configu-
ration of feature detectors that is associated with the current view, and assuming
that view locations are independent from one another, the likelihood term from
Equation (4) becomes p(zk

t−1|Hn
j , z

i
t−2, At,xt) = p(zk

t−1|Hn
j ,xt). The probabil-

ity that the input pattern represents the jth view of the object of the nth class,
given the outputs of the feature detectors At and locations of other views, Bt,
can be written as

p(Hn
j |At,xt, Bt, f(s)) =

∏
s<t p(z

f(s)
s |Hn

j ,xt)p(Hn
j |At},xt)∑

i

∏
s<t p(z

f(s)
s |Hn

j ,xt)p(Hn
j |At,xt)

, (5)

where i goes through views of the nth object, s goes through the locations of all
the fixations and the function f(s) maps a location ys to a specific hypothesis.
With symbol Bt we denoted the set of the locations of all the fixations (object
views) with respect to the location of the current fixation, xt. The second term
in the numerator is calculated using Equation (3).

3 Implementation

Modeling Likelihoods. We model the likelihoods in Equation (3) using Gaus-
sian distributions. The probability that the output of the feature detector repre-
senting the feature of the rth class and positioned within the RF centered at yk

has a value dr(yk), given a specific hypothesis and the location of the fixation
point, is calculated as

p(dr(yk)|Hn
i ,xt) =

1
σr

k

√
2π

exp
−(μr

k − dr(yk))2

2(σr
k)2

. (6)

This notation for the mean and the variance assumes a particular hypothesis so
we omitted some indices, σr

k = σr
k(n, i). The values for the mean and variance

are calculated in the batch mode but, as we will see in the next section, only
a small number of instances are used for training so the memory requirement
is minimal. For modeling the location likelihoods in Equation (5) we use the
multivariate Gaussian distributions since in this case the mean location is a
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vector and similarly the variance is a covariance matrix. Note also the difference
in measuring the location of the center of a specific RF, yk, and in measuring the
location of the fixation point zk. Although both distances are calculated with
respect to the same reference point (the fixation point) the centers of the RFs
form a fixed grid while the locations of fixation points can vary continuously.

Feature Detectors and Receptive Fields. In this work we extract features
using a collection of Gabor filters of four orientations. The orientations and
bandwidths of the filters are set to: θ = {0,π/4,π/2, 3π/4} and σ = {2, 4, 6, 8}.
Each RF has a square form and the size of the smallest RF is 31x31 pixels. The
RFs are arranged along 8 directions and the sizes of the RFs are increased at
the ratio of 1.4 (controlled by the enlarge parameter). For example, the sizes of
the RFs that are nearest neighbors to the central RF are (31x1.4)x(31x1.4). The
overlap between two neighboring receptive fields is 50% meaning that for two
neighboring RFs, the larger RF covers 50% of the area of the smaller receptive
field. The recognition results are not very sensitive to the small changes in the
overlap, enlarge parameter, and the sizes of the receptive fields.

With each RF we associate 16 feature detectors where each feature detector
signals the presence of a feature (i.e. a Gabor filter of specific orientation and
size) to which it is selective no matter where the feature is within its receptive
field. One way to implement this functionality is to use a max operator. The
processing is done in the following way. On each region of the image, covered
by a specific RF, we apply a collection of 16 Gabor filters (4 orientations and
4 sizes) and obtain 16 maps. Each map is then supplied to a corresponding
feature detector and the feature detector then finds a maximum over all possible
locations. As a result, each feature detector finds the strongest feature (to which
it is selective) within its RF but does not provide any information about the
location of that feature.

The Training Procedure. The training is done in a supervised way. We con-
structed an interactive environment that allows the user to mark a section of an
object and label it as a fixation region associated with a specific view. Therefore,
every point within this region can serve as the view center. Once the user marks
a specific region, the system fixates on the points within it and calculates the
mean and variance for each Gaussian. Since the number of training examples is
small the training is very fast.

Note that during the training procedure the input to the system is the whole
image and the system learns to discriminate between an object and the back-
ground. It is important to stress that the system does not learn parts of the
object, but the whole object from the perspective of the specific fixation point.

4 Results

We tested the performance of our system on four object categories (faces, cars,
airplanes and motorcycles) using the Caltech database as in [3,12]. For illustra-
tive purposes, we choose a face category to present some of the properties of our
system in more detail.
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The system was first trained on background images in order to learn the
“background” hypothesis. We used 20 random images and within each image the
system made fixations at 100 random locations. The system was then trained
on specific views of specific objects. For example, in training the system to learn
the face from the perspective of the right eye, the user marks with the cursor the
region around the right eye and the system then makes random fixations within
this region and learns the parameters of the Gaussians. During the testing phase,
the system makes random fixations (but this time over the whole image) and
for each fixation point calculates the probability that the configuration of the
outputs of feature detectors represents a face from the perspective of the right
eye. To make sure that among the random fixations are also positive examples,
each testing image is divided into the view center region(s) (in this case the
right eye region) and the rest of the image represents the ”background” class.
Therefore, positive examples consisted of random fixation within the region of
the right eye and negative examples consisted of random fixations outside the
region of the right eye. The system was tested on people that were not used for
training. We used 200 positive examples and 1000 negative examples for testing.
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As a measure of performance we use both the Receiver Operator Character-
istic (ROC), Figure 1, and the error rate at equilibrium point (EP), Figure 2,
which means that the threshold is set so that the miss rate is equal to the false
positive rate. However, since much more information can be represented in one
graph using the EP measure compared to the ROC measure, we choose the latter
to present most of our results.

As illustrated in Figure 2, learning depends both on the number of training
examples and on the number of sampling points that is used in order to learn
the view. Since the system was not able to learn much from one example, we
set the performance to zero for one training example. In order for the system
to learn a face (and “discard” information from the background) it has to be
presented with more than one face. As it turns out, two examples are not quite
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enough, as can be clearly seen in Figure 1, but with three examples the system
can learn the face category (the specific view of the face) with high confidence.

One can see that using more sampling points is not necessarily better espe-
cially if the number of training examples is small. This is to be expected since
the system becomes biased to the training examples(s). On the other hand, us-
ing just a single fixation per view is not sufficient if the number of examples
is small. For learning a view using one fixation and only one training face we
set the variance by hand and in Figure 2 this number just happened to be a
good guess. In all of the experiments that follow, we set the number of fixations
per view (the number of sampling points) to 10. The performance of the system
using different views of a face is illustrated in Figure 3. It is clear that the easiest
views are those centered at the right and the left eye while the tip of the nose
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required more training examples. Most errors occurred for the fixation points
around the boundaries of the view center regions which is to be expected.

The dependence of the performance on the size of the region that is selected
to represent the view center is illustrated in Figure 5 (last column, bottom).
The examples of the selected regions are shown in Figure 5 (last column, top).
Clearly, learning a view by fixating on a large uniform region, such as the right
cheek is more difficult than learning a view using the smaller fixation region such
as the nose tip. In Figure 4 we show that the system can easily learn classes other
than faces. For each class we used two views as illustrated in Figure 5 (first two
columns).

Although the performance of the system is very good using only a single view,
we tested whether and how much information from other fixations improve the
performance. The tests were done on faces and cars and we used 4 views per class.
During the training phase, the user marks the fixation (view) regions and the
system then calculates the location likelihoods for each pair of regions separately
by randomly selecting points from each region. During the testing phase, in order
to estimate the location of the view center, the system selects 10 points with the
highest probabilities (as representing the view center) and takes the average over
their locations. As expected, the recognition rates consistently increased with the
number of views and for some views the error rate was decreased by more than
15%. Due to the lack of space, detailed results will be presented elsewhere.

5 Summary and Future Work

In this work we introduced a Bayesian Integrate And Shift (BIAS) model for
learning object categories. The model is biologically inspired and uses Bayesian
inference to integrate information within and across fixations. One of the main
contributions of the paper is that we introduce a new representation of an object
in terms of a finite number of object views. The strength of this representation
comes from the fact that once the outputs of the feature detectors are condi-
tioned on a specific object view, their dependence on one another is significantly
reduced. This makes the independence assumption more realistic and allows that
the parameters of each feature detector can be learned independently. The price
that has to be paid for using this representation is that the labeling of an object
is now more detailed and the training procedure appears to be more involved.
However, the training is very simple and the involvement of a teacher is minimal.
The fact that the number of parts per object is very small combined with the
fact that the number of examples necessary to learn a new class is also very
small makes the training procedure very fast.

We tested the algorithm on various objects and demonstrated that it can learn
new categories from only a few examples. Moreover, it can do so using only a
single view. Although the focus of this paper is on learning and not on recognition
aspects of our system, we also demonstrated that the system achieves very high
recognition rates, comparable to those presented in [3] and [12]. However, in
contrast to these two approaches, our model uses much simpler features and
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does not require a feature learning stage. Some of the additional advantages of
our system are: a) it utilizes information from the whole image as opposed to
several local regions (as in [3]) which makes it more robust to missing features
and occlusions, and b) it is hierarchical in the sense that it can progressively
improve recognition by adding information from new fixations.

Among the properties that would improve our system are scale-invariant
recognition, and an efficient search algorithm for automatically localizing view
center regions within the image. We are currently extending our system to in-
clude above properties as well as conducting more comprehensive test to evaluate
the robustness to varying lighting conditions and occlusions.
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Abstract. Selective Tuning (ST) [1] presents a framework for modeling
attention and in this paper we show how it performs in visual search
tasks. Two types of tasks are presented, a motion search task and an ob-
ject search task. Both tasks are successfully tested with different feature
and conjunction visual searches.

1 Introduction

Visual attention involves much more than simply the selection of next location
to fixate the eyes or camera system, regardless of the fact that the vast major-
ity of all computational approaches to attention focus on this issue exclusively.
The breadth of functionality associated with attentional processing can easily be
seen in several overviews (e.g., [2][3]). One of the most studied topics and with
a very significant literature is that of visual search. Visual search experiments
formed the basis and motivation for the earliest of the influential models [4][5].
Yet, no satisfactory explanation of how the network of neurons that comprise the
visual cortex performs this task exists. Certainly, no computational explanation
or model exists either. The recent models derived from these two classic works
are compared to human eye movement tracks - overt attention - as validation;
but this is not the same as visual search data which is almost exclusively covert,
with no eye movement. That humans are able to attend to different locations
in their visual field without eye movements has been known since [6]. Further,
eye movements require a shift of visual attention to precede them to their goal
([2] surveys relevant experimental work). Attentional models have matured suf-
ficiently so that this problem can now be confronted. This paper makes several
steps towards the development of such an explanation expanding the Selective
Tuning model [1][7] and comparing performance with existing visual search psy-
chophysical performance. This is done with simple motion stimuli as well as with
simple coloured shape stimuli.

2 Motion Visual Search

Here we present a short description of the Motion Model and explain the main
concepts and output conventions in order to be able to explain the experimen-
tal results. Mathematical details are omitted since they have been published
elsewhere [7].
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2.1 Description

The Motion Model (MM) is a computational model of attention that works in
the motion domain. As input it accepts a video stream in the form of sequences
of images and is able to detect, localize and classify moving objects in the scene.
The processing of information is inspired by biological research and therefore
the computational structure of the model mimics some known properties of the
monkey visual pathway. There are four distinct areas of the cortex that are
simulated in the model: V1, MT, MST and 7a. All these areas are known to
participate in processing of visual information and specifically that which is
perceived as motion. The model consists of 690 feature maps each of which
encodes the whole visual field in a unique way. Those feature maps are organized
into the areas based on their properties and areas are positioned in the form of
a pyramid with information flowing from the input to the top of the pyramid
and from the top back to the bottom providing feedback.

The internal architecture of the model is rather complicated and full descrip-
tion of it is beyond the scope of this paper (see [7]). However, the aspect that is
important to the current discussion is how the model processes complex motion
patterns such as rotation, expansion and contraction. Every point in the complex
motion pattern moves with a unique velocity (i.e. the direction or the magnitude
or both are different for every point). So as complex motion is processed by the
model many different feature maps are activated by that motion. For example,
the neurons of the area V1 encode only simple linear motion in 12 different
directions. Therefore all of V1 will have some activation since there are points
moving in each of 12 directions encoded by V1. Further, in MT the moving ob-
ject is decomposed into regions of common spatial derivatives of local velocity.
The full representation of the complex motion is thus the conjunction of differ-
ent features. Therefore the search for the target that exhibits complex motion
among the complex motion distractors can be viewed as a conjunction search
and can be expected to produce serial-like performance.In the following example
we present the results of the performance of the model in an odd-man-out search
of rotating octagons.

2.2 Motion

Method : To test the performance of the MM we carried out two experiments.
First we examined how the model performs a standard visual search task. We
used a singleton design where each trial contained only one target and number of
distractors was varied from trial to trial. Images of size 445x445 pixels contained
one target and from 1 to 8 distractors. A typical input is shown on Fig.1a
(the arrows depict the direction of rotation). The target and distractor images
were identical textured octagons of 65 pixels in diameter. The target image was
rotating counterclockwise and distractors were rotating clockwise both with the
angular speed of 3 deg/frame. The target and the distractors were randomly
positioned on the white background without overlapping. Fig. 1 b, c and d show
the progress of the search. In the second example we compared the performance
of the model with the human data by reproducing the experiment described
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a b c d

Fig. 1. Typical output of the search task. The most conspicuous locations are attended
first a,b,c)the target is not found and the distractors are inhibited to allow for the new
location to be examined. d) the search is terminated when the target is found.

a b

c d

Fig. 2. Search Results a) standard visual search for the stimulus in 1 b,c,d) the model’s
performance on the stimuli used in Thornton and Gilden paper. The top half of each
graph shows the output of the model and the bottom half of the graph is the data
reported by Thornton and Gilden[8].
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by Thornton and Gilden [8]. We used similar random noise patches exhibiting
complex motion. Instead of measuring the reaction time for finding the target
we counted the number of frames processed by the model until the target was
localized. The least mean squares method was used to fit the straight line into
the set of points.

Results : Fig.2a the results of the first experiment, standard visual search,
on the stimulus on Fig.1. Positions of the points on the graph suggest linear
dependence. The best fit line has a slope of 1.34 frames/item and intersects with
y-axis at 12.3 frames. Fig.2b, c, and d show how the model performs on the
stimulus similar to one in the Thornton and Gilden experiment.

Discussion: The above results show the ability of the Motion Model to perform
a standard visual search task. The equivalent of reaction time (RT) is expressed
in the number of frames needed to find the target. The values appear to be
linearly increasing as we increase set size, which seems to be in agreement with
psychophysical data [8], [9]. The typical output of the model is shown on the
Figure 1. We can see that objects are selected in groups rather than one at the
time. This behavior is caused by the fact that the model is attending to the
specific motion type at the specific spatial location. The location is defined by
the receptive field of the winner neuron at the top of the pyramid. Therefore,
every object or part of an object that lies within the attended receptive field
and exhibits the attended motion will be selected and processed in parallel.
Several other researchers proposed that multiple items can be processed in a
single attentional fixation, see review [10].

The model shows similar results in processing complex motion to those re-
ported by Thornton and Gilden. Fig.2b-d shows that the qualitatively perfor-
mance of the model is similar to human data. The top half of each graph shows
the output of the model and the bottom half of the graph is the data reported by
Thornton and Gilden[8]. The largest increase in RT is observed for the rotating
stimulus. Expansion and contraction graphs are also very similar to psychophys-
ical data. Overall the comparison is qualitatively correct, an encouraging sign
for the biological plausibility of the model.

3 Object Visual Search

3.1 Description

The input for the model is a scene with several objects, and the task of the model
is to find a particular object whose representation has been learned previously.

The model we propose tries to mimic the human visual pathway for object
recognition. It is composed of two hierarchical pyramids with information flowing
from the input to the top of the pyramid and from the top back to the bottom
providing feedback. One path is for shape processing and the other for color
processing. There are four visual areas simulated in the model: LGN, V1, V4
and IT. The model consists of 22 feature maps, each feature map encodes the
visual field in a unique and hierarchical way.
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Information first flows from the input to area LGN and V1. LGN extracts
three color feature maps (red, green and blue). V1 is composed of edge detec-
tors organized in 8 feature planes (each containing neurons tuned to one of 8
directions). Two additional feature maps in V1 compute center-surround color
differences from the LGN color feature maps. Information from V1 flows to V4,
which comprises 8 feature maps for curvature. Finally, IT neurons encode a rep-
resentation of the whole object based on curvature and color differences. The
shape and color analysis are explained in more detail in the following sections.

Shape analysis. The shape processing pathway (Fig. 3a) is more complex and
is inspired by [11]. Visual Area V1 contains neurons that perform edge analysis.
Gabor filters [12] are used with 8 different orientations. Size of the neurons is
16×16 pixels. The output of V1 neurons is 8 feature planes, representing edges at
8 orientations. After non-maximal suppression [13], the output from V1 neurons
feed into V4 neurons that compute curvature values based on orientation changes
in groups of adjacent V1 neurons from the 8 V1 planes. For example, if a V1
neuron in a V4 receptive field had its highest response for θ = 0 and another
adjacent one had a high response for θ = π

4 , we would have a corner. If both
orientations were equal, it would correspond to a straight line. Curvature for V4
is then defined as:

curv = min(|θ1 − θ2|, 2π − |θ1 − θ2|); curv ∈ [0,π) (1)

Where θ1 and θ2 are the orientations of two V1 cells. A value of π can be added to
θ1 and/or θ2 depending on the neurons’ relative positions inside the V4 receptive
field due to the fact that the same gabor filter orientation can account for two
different angles. The activation value of the V4 neuron is the summed activations
from the V1 neurons used to obtain the curvature. V4 neurons receptive field
comprise groups of 4× 4 V1 neurons.

V4 neurons’ output is 8 2D feature maps that encode for the difference of
curvature among groups of V1 neurons. This output feeds into IT at the very
top of the hierarchy (Fig. 3a). The receptive fields of IT neurons comprise an area
of 32×32 V4 neurons (that is, 128×128 pixels). The center of mass is calculated
for every group of V4 neurons as the mean of the V4 neuron coordinates where
responses are different from zero. Then, at each angular position (in 10 deg bins),
its curvature is computed [11], obtaining a histogram-like representation for IT
neurons where one axis correspond to the angular position (λ) and the other
coordinate is the curvature (curv) for that position (Fig. 3a):

λ = round[
tan−1( y−centroidy

x−centroidx
) ∗ 18

π
]; IT (λ) = curv (2)

The term 18
π is for the angular position to be in 10 deg bins.

All neuron relative sizes were chosen to correspond closely to the neurophysio-
logical measured sizes of [14] considering a distance of 30 cm (usual psychophys-
ical distance) to a 1280× 1024 display. Neurons’ receptive fields are overlapped.
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Bias. An important part of the Selective Tuning Model [1] is top-down bias (Fig.
3a). Given a target stimulus, the features not relevant for target recognition are
inhibited by multiplying an inhibitory bias (greater than 0.0 and less than 1.0)
and the actual feed-forward response of the neurons. The target representation is
obtained from the responses of the IT level neurons on seeing the target stimulus
alone in the visual field.

Color analysis. The processing of color follows a centre-surround analysis [15].
A first layer (LGN) extract 3 feature maps for red (R), green (G) and blue (B)
responses. In the upper layer (V1), surround values for red-green (RG), green-
red (RG), blue-yellow (BY) and yellow-blue (YB) are extracted following most
models (e.g [16]). RG feature plane also accounts for GR differences, the same
applies to the BY feature plane. Color layers are also biased in a similar way as
shape for particular targets.

3.2 Recognition

Finding an object works in two phases: On a first stage, a sample of the object
is supplied to the network. The object’s representation for color and shape is
extracted at every layer. After the object has been learned by the network, the
network is able to search for it in test scenes and on presentation of the test
stimulus, the processing is biased by the learned object or target. The search
begins after an initial feed-forward activation by considering the best matching
IT neuron.

To determine how close is the shape to the desired shape, distance to the target
IT histogram is computed, for this distance, a measure similar to cummulative
distance is used. The number of peaks (&peaks) and the difference in peak values
will be considered as follows:

d = (&peakssample − &peakscandidate)2 +
∑
|peaksample(x) − peakcandidate(x)|

(3)
The activation of the neuron is inversely proportional to d. Both activation

values for color and shape ∈ [0, 1] and the activation of the candidate IT neuron
is the addition of both values. Even though the object can be in the receptive
field of the highest activated IT neuron, due to its large receptive field and
even after the bias, it can accommodate other objects (that may even disturb
the firing values of the IT neuron). Information is further filtered in the lower
layers (V4, V1) by computing winner-take-all in a hierarchical fashion [1]. The
WTA processes in V4 are grouped by curvature angle. There is a separate WTA
process for each 10 deg bin (as determined by Eq. 2), i.e., a V4 neuron will only
compete with neurons in the same bin. In V1 only those neurons connected with
the V4 winners are considered, and the same process is applied when going from
V1 to the image, finding the contour of the candidate object. Figure 3b shows
an example of this process. Inhibition of return was implemented in by blanking
the part of the input image corresponding to the analyzed object.
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3.3 Visual Search: Efficient and Inefficient Searches

Recently, it has been shown that conjunction searches (See [10] for a review)
may exhibit shallower slopes than those found by [4], and there seems to exist a
continuum from efficient to inefficient visual search. An interesting theory is the
one proposed by Duncan and Humphreys ([17]), they argue that visual search
is influenced by the similarity between target and distractors. Here we will test
the model with several experiments concerning this continuum. The sample was
given as input in a 128× 128 pixel image, and the scenes were 640× 640 pixels.

Experiment 1: Color differences
Method : In this experiment we study how the model performs in a color

similarity search. We try here to simulate Nagy and Sanchez’s experiment [18],
who showed that feature search can be inefficient if the differences in color are
small. We used the CIE values [18] from their experiments converted to RGB
with a fixed luminance (Y) of 0.25. The task is to find the redder circle among 5,
10, 15, 20 and 25 distractors for two conditions: small and large color differences.
The target and distractors were randomly positioned on a black background. The
least mean squares method was used to fit the straight line into the set of points.

Results : An example is shown in Figure 4a, where, when there are small differ-
ences between the target and the distractors, a much larger number of fixations
are needed to find the target. Figure 4b shows how the number of fixations in-
creases as the set size increases. This experiment reports similar results to Nagy
and Sanchez’s where color search is inefficient if color difference is small be-
tween target and distractors (slope=0.39) and efficient if the difference is large
(slope=0.01).

Experiment 2: Feature, conjuntion and inefficient search
Bichot and Schall showed that monkey visual search reaction times are compa-

rable to human [19] [20], namely they show that the conjunction of two different
features (shape and color) is steeper than feature search, but shallower than
what was obtained by [4]. They report slopes of 3.9 ms/item. Searching for a
rotated T among rotated Ls, [21] reported that this search was quite inefficient
(20 msec/item), and less efficient than conjunction searches. To find a T among
Ls is more inefficient than a conjunction search, which is less efficient than a
simple feature search.

Method : In this experiment we study how the model performs in a simple
feature search, a conjunction search and an inefficient search. Conjunction search
was similar to that of [19]. The stimuli were crosses and circles, red or green
colored. The task was to find a red circle among green circles and red crosses, here
we used 8, 12, 16, 18, 22 and 24 distractors. Feature search was a simplification
of the previous conjunction search, that is, to look for a circle among crosses.
For inefficient search, a rotated T was to be found among Ls rotated at 0, 90
and 180 degrees, in this case we used 6, 9, 12, 15, 18 and 21 distractors. Analysis
was the same as for previous experiments.

Results : An example searching for a T among Ls is shown in Figure 4c, many
fixations are needed to find the target. Figure 4d shows the number of fixa-
tions as the set size increases for the feature search(find a circle among arrows),
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a b

Fig. 3. Shape analysis on target stimulus a) Sample: edges are extracted in V1 at
each different orientation, then in V4 curvatures are calculated (bottom-up), finally IT
computes the curvature × position representation [11] and a bias is constructed for
V4 and V1 layers (top-down). b) Analysis of a scene: find the square. Lower layers in
the hierarchy are first biased and information is later filtered through a winner take all
process (See [1] for a full explanation) to attend to the position of the square inside the
IT receptive field (RF). Bottom: Scene with a square. Left: IT neuron RF containing
the square. Right: IT neuron attending for the square.

a b c d

Fig. 4. Visual Search Results a) Example where the target and distractors have small
color differences, 10 fixations were needed to find the redder item (white outline). b)
The number of fixations as a function of set size. Gray line: large color difference, black
line: small color difference c) Inefficient search: Find the rotated T among 21 Ls, 14
fixations were needed to find the T. d) The number of fixations as a function of set size
for feature search (light gray), conjunction search (gray) and inefficient search (black).
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conjunction search (find a red circle among red arrows and green circles) and
inefficient search (find a rotated T among Ls). The figure shows how the steep-
est fitted line is the one corresponding to looking for a T among Ls (inefficient
search, slope of 0.49) experiment, followed by conjunction search (slope of 0.36)
and feature search is practically flat (slope of 0.00). These results are in ac-
cordance with the continuum from efficient to inefficient search psychophysical
experiments have shown (see [10] for a review).

Discussion. The above results show the ability of the Object Recognition
Model to perform visual search. The reaction time is shown based on the num-
ber of fixations. We performed easy feature search, difficult feature search, con-
junction search and inefficient search. The obtained results seem to agree with
the increasing degrees of difficulty reported by psychophysical data from [18],
[19] and [21], whose experiments were simulated above. Our experiments seem
to agree also with the proposal that search is more efficient when objects are
more dissimilar [17] and the continuum efficient-inefficient search found in the
literature [10].

4 Conclusions

Two examples of how the Selective Tuning model can account for the visual
search observations of a significant set of psychophysical experiments have been
presented. One of the examples dealt with motion patterns while the other with
coloured objects. In each case, both feature singleton and feature conjunction
image items can be correctly handled. The work is in stark difference to other
seemingly related research (such as [16], [22]). Here the performance comparison
is not eye movement based as in Itti et al. They model bottom-up saliency and
cannot include top-down effects of general knowledge while at the same time use
tracking data that is confounded by such knowledge. Riesenhuber and Poggio
also model bottom-up recognition with no need for attention and thus have no
natural mechanism for serial search through a collection of stimulus items in a
display. The contribution in this paper of mechanisms that can provide an expla-
nation for visual search performance has the promise of enhancing performance
of recognition algorithms in complex scenes.
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Abstract. We present a biologically motivated system for object recog-
nition that is capable of online learning of several objects based on inter-
action with a human teacher. The training is unconstrained in the sense
that arbitrary objects can be freely presented in front of a stereo camera
system and labeled by speech input. The architecture unites biological
principles such as appearance-based representation in topographical fea-
ture detection hierarchies and context-driven transfer between different
levels of object memory. The learning is fully online and thus avoids an
artificial separation of the interaction into training and test phases.

1 Introduction

The capacity for learning and robust recognition of numerous objects makes the
human visual system superior to all currently existing technical object recogni-
tion approaches. One aspect of this is the capability of quickly analyzing and
remembering completely unknown new objects. In this contribution we refer to
this ability as online learning, which is of high relevance for cognitive robotics and
computer vision. A typical application domain we are heading for is to increase
the knowledge of an assistive robot in a changing and unpredictable environ-
ment [1]. The capability of learning online constitutes a fundamental difference
to offline learning, since it enables an interactive process between teacher and
learner. The immediate feedback about the current learning state can induce an
instanteneous and active learning process that reduces the amount of necessary
training data and allows an iterative error correction based on user feedback.

To realize such learning, we present a system that combines a flexible neural
object recognition architecture with a biologically motivated attention system
for gaze control, and a speech understanding and synthesis system for intuitive
interaction. The target is to obtain a flexible object representation system that
is capable of high-performance appearance-based object recognition of complex
objects together with a particularly rapid online learning scheme that can be
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carried out by cooperative training with a human teacher. A high level of inter-
activity is achieved by avoiding an artificial separation into training and testing
phase, which is still the state-of-the-art for most current trainable object recog-
nition architectures. We do this by using an incremental learning approach that
consists of a two-stage memory architecture of a context-dependent working or
sensory memory and a persistent object memory that can also be trained online.

The learning is unconstrained in the sense that we do not impose any precon-
ditions on the environment, except that objects are presented to the system by
showing them by hand. To allow online learning in this difficult scenario, we use
a dynamic segmentation approach that performs a fast figure-ground separation
based on an initial stereo-based coarse object hypothesis. The object recognition
architecture is motivated from the ventral pathway of the human visual cortex
and can be applied to arbitrary complex-shaped objects. Fast online learning
can be achieved with this architecture, because object-specific learning occurs
only on the highest levels of the hierarchical feature detection stages. The lower
stages of the model correspond to earlier and intermediate feature detection
stages in the visual cortex and are trained by sparse coding learning rules [2].
This results in a particularly robust appearance-based representation of objects
using a consistent library of typical local shape elements.

In the following we review related work in Section 2 and give an overview over
our system in Section 3. In Section 4 we describe the components of the visual
memory in more detail, show results on the performance and learning behaviour
in Section 5 and give a short final discussion in Section 6.

2 Related Work

Compared to the large body of work on offline training of model-free object
recognition architectures, only few work has been done on online learning for
complex-shaped objects. The main problems are poor generalization due to the
inherent high dimensionality of visual stimuli, and the difficulty to achieve in-
cremental online learning with standard classifier architectures like multi layer
perceptrons or support vector machines.

To make online learning feasible, the complexity of the sensorial input has
been reduced to simple blob-like stimuli [3], for which only positions are tracked.
Based on the positions, interactive and online learning of behavior patterns can
be performed. A slightly more complex representation was used by Garcia et
al. [4], who have applied the coupling of an attention system using features like
color, motion, and disparity with a fast learning of visual structure for simple
colored geometrical shapes like balls, pyramids, and cubes.

Histogram-based methods are another common approach to tackle the prob-
lem of high dimensionality of visual object representations. Steels & Kaplan [5]
have studied the dynamics of learning shared object concepts based on color
histograms in an interaction scenario with a dog robot. Another model of word
acquisition that is based on multidimensional receptive field histograms for shape
representation and color histograms was proposed by Roy & Pentland [6]. The
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learning proceeds online by using a short-term memory for identifying reoccur-
ring pairs of acoustic and visual sensory data, that are then passed to a long-term
representation of extracted audiovisual objects.

Arsenio [7] has investigated a developmental learning approach for humanoid
robots based on an interactive object segmentation model that can use both
external movements of objects by a human and internally generated movements
of objects by a robot manipulator. Using a combination of tracking and segmen-
tation algorithms the system is capable of online learning of a few objects by
storing them using a geometric hashing representation.

An interesting approach to supervised online learning for object recognition
was proposed by Bekel et al. [8]. Their VPL classifier consists of three major
stages. The two feature extraction stages are based on vector quantization and
a local PCA measurement. The final stage is a supervised classifier using a local
linear map architecture. The image acquisition of new object views is triggered
by pointing gestures on a table, and is followed by a short training phase, which
take some minutes. The main drawback is the lack of an incremental learning
mechanism to avoid the complete retraining of the architecture.

Kirstein et al. [9] have presented an online learning architecture that is op-
erated in a more constrained scenario with defined black background to ease
the figure-ground segmentation. Their focus was the transfer from a short-term
to more condensed long-term memory representation using incremental vector
quantization methods.

3 System Overview

The visual input is a left and right image pair, obtained from a stereo cam-
era head mounted on a pan-tilt unit. The gaze control of the head is driven by
an independent circuit that combines the cues of motion, color, and depth for
attention-driven selection of the gaze direction. We use the concept of periper-
sonal space [10] to establish shared attention on a presented object during learn-
ing. This means that the system will focus its attention on an object that is
presented within a particular short-distance range interval that roughly corre-
sponds to the biological concept of the manipulation space around the body.
If nothing is present within this space, the cues of motion and color/intensity
determine the gaze selection of the system (see [10] for more details).

The online learning system is working with the camera output that is gener-
ated according to the gaze selection of the independent attention system. Based
on the current stereo view pair, a depth map is computed that is aligned with
the left camera image. The left camera image and the depth map are passed to
the peripersonal blob detection stage that generates a square region of interest
(ROI), based on the estimated distance of the current object hypothesis. By
estimating the distance, the apparent size of objects within the ROI can be nor-
malized with remaining uncertainties due to the limited precision of the depth
computation. The square ROI with distance dependent size in the original image
is scaled to a normalized size of 144x144 pixels.
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The normalized ROI around the object hypothesis together with the cor-
responding part of the depth map is passed to the figure-ground segmentation
stage of processing, the adaptive scene-dependent filters (ASDF) [11]. The ASDF
method makes no strong assumptions on the objects like e.g. being single-colored.
Based on the depth map, a relevance map is obtained that covers the object only
coarsely with considerable overlap to the background. For each pixel location in
the ROI, a local feature vector is computed based on RGB color channels, depth,
and pixel position. Using a dynamic vector quantization model first an unsuper-
vised segmentation is computed using the local feature vectors in the ROI as
input ensemble and then the input image is segmented according to the map-
ping to the Voronoi cells of the found vector quantization centers. Due to a
sufficient number of centers, we obtain an oversegmentation and can then se-
lect object segments as those that are sufficiently contained within the relevance
map (see [11] for more details). The method obtains an intrinsic stability by
continuously iterating the vector quantization based on state on the previous
frame. We additionally use skin color detection to remove parts of the hand that
hold the object. The output of the ASDF stage is a mask describing the current
figure-ground hypothesis on the ROI.

The selected ROI and the segmentation mask from the ASDF stage are fed
into the model of the ventral visual visual pathway of Wersing & Körner [2] to
obtain a complex feature map representation that is based on 50 shape and 3
color feature maps. The color channels are just downsampled images in the three
RGB channels. The output is a high-dimensional view-based representation of
the input object, that is then passed to the further object memory representation
stages for learning and recognition.

To allow a particularly interactive online learning we use a memory concept
that is separated into a sensory memory carrying the currently attended ob-
ject and a persistent memory that carries consolidated and consistently labeled
object view representations. As long as an object is presented within the periper-
sonal space and has not been labeled or confirmed, the obtained feature map
representations of views are stored incrementally within the sensory memory. At
the same time, all newly appearing views are being classified using the persis-
tent object memory. If the human teacher remains silent, then the system will
either generate a class hypothesis, or reject the presented object as unknown
and verbalize this using the speech output module. The human teacher can con-
firm the hypothesis or make a new suggestion on the correct object label. As
soon as feedback by the teacher is available, the learning architecture starts the
concurrent transfer from the sensory memory buffer into the consolidated ob-
ject memory. This extends over the whole history of collected views during the
presentation phase and also proceeds with all future views, as long as the object
is still present in the peripersonal space. The labeling of the current object can
be done by the teacher at any time during the dialogue and is not restricted to
being a reaction on a class hypothesis of the recognition system. The concept of
a context-dependent memory buffer makes a separation into training and test-
ing phases unnecessary. The transfer from the sensory to the object memory is
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Fig. 1. Overview over the visual online learning architecture. See text for explanation.

sufficiently fast to remain unnoticed to the human trainer and the learning suc-
cess can be immediately tested, allowing for a real online learning interaction.

The speech input and output is very important for the intuitive training in-
teraction with the system. We use a system with a headset, which is the current
state-of-the-art for speaker-independent recognition. The vocabulary of object
classes is specified beforehand, to be able to label arbitrary objects we also use
wildcard labels such as “object one”, “object two” etc.

4 Object Memory Representation

In the following we describe in more detail the main components of the object
memory and recognition system. For a more detailed description of the attention,
gaze selection and stereo processing system we refer the reader to [10].

4.1 Hierarchical Feature Processing

The output of the ASDF figure-ground segmentation stage is a mask signal that
is combined with the candidate ROI (of size 144x144 pixels) and fed into the
hierarchical model of the ventral visual pathway developed by Wersing & Körner
[2]. To obtain invariance against rotations in the image plane, which is normally
quite a challenge for appearance-based recognition, we determine the principal
axes of the figure-ground mask and rotate the ROI and mask aligned with the
horizontal direction. This normalization introduces much better robustness for
the recognition of elongated objects like e.g. bottles.

The rotation-normalized ROI is processed using a hierarchy of feature detec-
tion and pooling stages that achieves a robust appearance-based representation
of an object view as a collection of several sparsely activated feature map rep-
resentations (see Fig. 1). In the system that we consider here, we use 50 shape
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features, that are sensitive to particular local structural elements in the image,
and the three RGB channels. The 50 shape feature maps are represented at
a resolution of 18x18, due to the spatial convergence in the hierarchy. As was
shown before, the output of the feature representation of the complex feature
layer can be used for robust object recognition that is competitive with other
state-of-the-art models, when offline training is being used [2].

The efficiency of the representation is achieved by sparse coding that en-
sures that object views are represented using only sparse activation in the high-
dimensional feature space. To represent also coarse color information, the 3 RGB
channels are used as a downsampled ROI at the same resolution of 18x18 as the
shape features. Although the complete dimensionality of a single view represen-
tation is thus (50+3)x18x18=17172, the effective dimensionality is much smaller,
due to the sparsity of the representation vector and the restriction of activity
around the figure-ground mask. Nevertheless it is a key feature of our biologically
motivated visual processing model that robustness, generalization and speed of
learning is not achieved by a dimension reduction as in most other current online
learning models [3,4,5,6,7,8]. The key element is a transformation of the input
into a sparse robust feature map representation that captures locally invariant
relevant structures of the objects.

4.2 Sensory and Object Memory

The object representation system for online learning and recognition is separated
into two subsystems: A sensory memory for temporarily remembering the cur-
rently attend object within focus and a persistent object memory that integrates
all object knowledge incrementally over time.

The high-dimensional output vectors of the feature hierarchy are continu-
ously stored within the sensory memory. The task of this memory is to capture
all current views of an object to be able to use them for transfer to the object
memory when a speech label has been given. This means that also those views
can be used for training that were recorded before a labeling of the object was
obtained from the human trainer, relaxing the constraints on the training di-
alogue. The sensory memory is realized as an incremental vector quantization
model, where new representatives are added, when they are sufficiently dissim-
ilar to all current entries in the sensory memory. The similarity is measured
based on Euclidean distance in the feature map vector space. Due to the spar-
sity of the feature map vectors this similarity computation can be very efficiently
implemented [9].

When a labeling signal arrives, because the human teacher has labeled an ob-
ject or has confirmed a hypothesis generated from the object memory, the infor-
mation accumulated in the sensory memory is transferred to the object memory
in real time. Here we use the same incremental vector quantization model. If
there are already some views available in the object memory, the comparison
is performed against the already existing representation. The main advantage
of the template-based representation is that training is fully incremental and
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Fig. 2. Presentation scenario for our online learning architecture (a), and average recog-
nition performance versus training time (b) for training the 10th object after 9 were
already trained, with and without segmentation and temporal integration.(c) demon-
strates the typical rotation variation that is applied during all experiments.

non-destructive with regard to previous information. This representation can
be later condensed and consolidated using additional learning mechanisms that
operate on a slower time scale [9].

Every arriving view is being classified based on the information in the object
memory using a nearest-neighbour classifier for the labeled representatives. Since
the system is running at a sufficient frame rate, we can use a temporal integration
over different views to improve the classification results considerably. Our results
have shown that a majority voting scheme is particularly efficient in combination
with the nearest-neighbour classification approach in the object memory, since
it allows to use more ensemble information of the exemplar-based representation
stored in memory. In our experiments we use a history of 10 classifications, and
assign the output class that achieves most single classification votes. An object
is rejected as unknown if this majority vote is less than 50% or if the mean
similarity to the majority representatives, measured in the Euclidean feature
space, is below a fixed threshold.

5 Results

The complete system has been realized on a cluster of one dual processor PC
for gaze control and image capture, one desktop PC running the speech recog-
nition and synthesis system, and one dual processor PC performing all visual
processing and online learning after the gaze selection. The recognition system
is running at a frame rate of roughly 6Hz, which enables interaction and online
learning with direct feedback on the learning result. A generic training scenario
is shown in Fig. 2a, with typical ROI views of objects that are being processed.
During all experiments the objects were freely rotated by hand to obtain a strong
appearance variation.
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In Fig.2b we show plots of the recognition performance versus training time
during online learning. For this evaluation we train nine objects from a training
set of 10 objects (upper row in Fig. 3) that was generated by storing 300 views
per object from a typical training session. Then the tenth object is trained in
steps of 10 images (1.67 sec in Fig. 2c) and a testing step is performed. The test
is done by classifying a completely disjoint test set of 300 views per object that
was collected using a different training person. Test performance is measured
over all 300 test images of the currently trained object giving the classification
rate as percentage of correctly recognized objects at this point of online learning.
Then training proceeds until all 300 training images are used. The plots shown
in Fig. 2b show the resulting classification rate, averaged over an ensemble of
experiments, where each of the 10 objects was one time the final object.

We compare in Fig. 2b the conditions of either using ASDF segmentation or
omitting it (and thus also rotation normalization), and with or without tempo-
ral integration with voting over a past history of 10 classifications. The results
demonstrate that due to the cluttered background, training with the ASDF
speeds up learning considerably and gives a significantly higher recognition rate.
Using the temporal integration can additionally reduce the error from 15% after
50 seconds of training to 4% error. If we remove the color features and use only
the shape representation in combination with ASDF and temporal integration
we obtain a residual error of 10%, underlining the independent quality of the
shape representation.

We visualize the actual time course of the different memory types during a
training session of 18 objects in Figure 3. The plot displays the number of used
representatives in the sensory and object memories together with the training
dialogue (abbreviated, the actual dialogue is a little more elaborate). Starting
from a completely empty object memory, we first perform a training of 10 objects.
In this first phase the system first consistently matches the cola can to the
previously trained “sun cream” object, and thus classifies the cola can initially
as “sun cream”, which is then corrected by the teacher. Due to the similar red-
white color and shape composition the “mini car” is also first confused with
the cola can, and is corrected. Due to the shape similarity the green bottle is
first labeled as blue bottle, which is a reasonable error, as long as no correction
signal is given. After the feedback by the teacher, the system has learned to
discriminate the first 10 objects after 5 minutes of training from many different
viewing angles, which is evaluated directly afterwards. In the second training
phase 8 objects are added. The initial confusion occurs quite reasonably between
cola can and a yellow can, another red car and the mini car, a new blue mug and
the first blueishly patterned mug, and a new blue rubber duck and the initial
yellow one. After the initial training in the second phase, the garlic press and
police car object have to be additionally refined. After that second retraining
phase, all 18 objects are classified from any reasonable viewing angle without
further errors.

An important property of the system is that learning occurs most of the time
and is not separated into artificial training and testing phases. This can be seen
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Fig. 3. Temporal learning dynamics during a training session for 18 objects. The plot
shows the number of representatives for the sensory memory (“sawtooth” at bottom
of plot) and representatives for each object in the object memory over time. The
corresponding training dialogue is stated synchronously at the top. The top row states
the given labels by the human trainer, while the bottom row gives the classification
results of the system, before a human labeling is given. Errors of the system are printed
in bold italics. From 0 to 310s the first 10 objects are trained, the recognition of these
10 objects is evaluated from 320s to 420s without any errors. From 420s to 730s another
8 objects are added, and all 18 objects are checked after 730s without errors.

from the time course in Fig. 3, where during the first evaluation of the first
10 objects between 320s and 420s the object memory is still expanding, due
to the confirmation signals of the human teacher on the system classifications.
The same applies to the second evaluation and error correction phase between
640s and 850s. The complete duration of the session until no further recognition
errors are encountered is about 12 minutes. This highlights the gain in learning
speed that can be achieved due to the active error correction process during
learning. When the object memory is enlarged over time, we encounter a slight
slowing down of the system frame rate from 6Hz to approximately 4Hz, since
the comparison to the memory takes longer.
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6 Discussion

We have presented an architecture for online learning of arbitrary objects that
uses aspects of biologically motivated visual processing in a very efficient and
robust way. To our knowledge it is the first system that focuses on real online
learning of several objects of arbitrary color and shape and their later robust
recognition in an unconstrained scenario. The representation is based on a neu-
ral model of the ventral pathway and combines a large storage capacity with
robustness in difficult real-world scenarios. Due to the integration of speech di-
alogue with a context-dependent memory architecture we achieve a high level
of interactivity that makes the training procedure simple and intuitive. We con-
sider this as an important step towards cognitive vision systems for robotics and
man-machine interfaces that gain considerable flexibility by learning.

Acknowledgments. We thank J. Eggert, A. Ceravola, and M. Stein for provid-
ing the processing system infrastructure. We thank F. Joublin and H. Janssen for
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Abstract. We present an attention-based face detection and localiza-
tion system. The system is biologically motivated, combining face detec-
tion based on second-order circular patterns with the localization capa-
bilities of the Selective Tuning (ST) model of visual attention [1]. One of
the characteristics of this system is that the face detectors are relatively
insensitive to the scale and location of the face, and thus additional pro-
cessing needs to be performed to localize the face for recognition. We
extend ST’s ability to recover spatial information to this object recogni-
tion system, and show how this can be used to precisely localize faces in
images. The system presented in this paper exhibits temporal character-
istics that are qualitatively similar to those of the primate visual system
in that detection and categorization is performed early in the processing
cycle, while detailed information needed for recognition is only available
after additional processing, consistent with experimental data and with
certain theories of visual object recognition[2].

1 Introduction

One of the major limitations in current object recognition schemes is the inherent
difficulty of extracting reliable and repeatable features from highly textured real-
world images. One of the sources of this limitation is the fact that methods rely
mainly on linear filtering through various kernels (e.g. for edge detection). The
major area in which non-linear feature extraction techniques have been used is
perceptual grouping (e.g. [3]), inspired by Gestalt psychology [4,5]. A continuous
source of inspiration for researchers has been the study of the primate visual
system, with results used mainly to augment edge detection algorithms [6,7].
While these results are very promising, they generally limit themselves to simple
edge-based perceptual grouping and center-surround competition.

In the current paper we propose a novel approach: non-linear processing tar-
geted at object detection/recognition within a biologically plausible framework.
In particular, we address the task of frontal face detection. This paper is or-
ganized as follows: In Sect. 2 we briefly describe previous work done in face
detection and provide a brief overview of the Selective Tuning model of visual
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attention. Section 3 describes our contribution – the algorithm proposed in or-
der to perform face detection and the coupling with visual attention. Section
4 describes the implementation of the system and presents some of the results
obtained. The results are discussed in Sect. 5.

2 Background

Detection is generally the first step in a face recognition system, an area that
has received significant attention recently, especially for biometrics and secu-
rity applications (see [8,9] for recent reviews). The best results seem to come
from appearance-based and learning approaches. The work of Turk and Pent-
land [10] on PCA-based eigenfaces has been very influential not only in face
detection and recognition, but also in the more general context of object recog-
nition. Subsequent work [11,12] improves on the eigenfaces approach, mainly by
using learning classifiers and clustering. The most successful recent face detec-
tion system, that of Viola and Jones [13,14], uses AdaBoost learning to build
a very rapid “cascade” classifier based on weak classifiers (Harr-like basis func-
tions). The original work on frontal faces has been extended to detect tilted and
non-frontal faces by extending the set of basic features and by the introduction
of a pose estimator [15]. Variations of the framework that use different basis sets
have been presented, e.g. Gabor wavelets [16], and local orientations of gradient
and Laplacian based filters [17].

The primate visual system consists of a multi-layer hierarchy with pyramidal
abstraction [18], a structure that makes computations tractable, but character-
ized by a loss of spatial information. As information progresses up the hierarchi-
cal structure, neurons represent more and more abstract information, but with
less and less spatial accuracy. Due to the nature of the pyramidal structure, a
neuron activated at the highest level of the pyramid corresponds to a large sub-
region in the first layer of the pyramid. In an extreme situation, the top layer
can consist of a single neuron that only fires if a face exists in the input image. A
mechanism is needed to be able to go down the pyramidal structure and locate
the detected item at high spatial resolution, a mechanism provided by the Selec-
tive Tuning (ST) model of visual attention [1,19] – see [20] for a comprehensive
review of computational models of visual attention. This is performed in practice
via a Winner-Take-All mechanism that will select the most activated region at
the highest level. Results are propagated down the pyramidal structure through
winner-take-all competitions within the winning receptive fields, until the first
layer is reached. Regions that do not contribute to the high level decision are
inhibited, thus eliminating distractors and improving the signal-to-noise ratio.
This process effectively segments out the detected structure in the input layer,
as demonstrated on video sequences (simulated and real) in [19]. A second feed-
forward pass through the pyramidal structure will allow only the signals that
participate in the detection task to propagate upwards. A second feed-forward
pass through the network will provide a much cleaner detection result, since
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features from the input layer that do not participate to the detection task and
that would normally propagate up the pyramid are now blocked from the top
layer.

3 Face Detection

The face detection system relies on circular pattern detectors based on second-
order processing, corresponding to the behaviour of complex, end-stopped cor-
tical neurons [21,22]. Dobbins demonstrated that end-stopped cells can be used
to encode boundary curvature [23], while Koendrink provided a theoretical basis
[24]. Second-order filtering has been previously used in computer vision in mo-
tion analysis [25], texture boundary extraction [26] and non-Cartesian feature
detection [27,28]. The circular pattern detection is accomplished with the neural
network presented in Figure 1. Each pathway detects end-stopped segments, and
these are combined spatially to detect circular patterns [29]. The rectification
step makes the system insensitive to the direction of contrast in the input image.
The equations describing the filters are presented in the Appendix.

The idea behind the detection system presented here is that a face (in frontal
view) is characterized by constellations of quasi-circular features at different
scales (an idea originally proposed by Wilson [29]. Note that while the solution
is biologically-inspired, we are not proposing that the primate visual system
detects faces in this manner).

As it can be observed in Figure 2, we model a face by grouping circles at 3
spatial resolutions: small for eyes and nose-tip; medium for the eye-sockets and

Fig. 1. Diagram of the circular pattern detectors. Only four pathways are represented
for clarity. See text for details. Adapted from [29].
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Fig. 2. Diagram illustrating the layout of the face detector based on the circular pattern
detector at different three different scales

the mouth region and large for the overall face contour. A second-order circle
detector is broadly tuned for a particular circle radius. By combining these circle
detectors, we obtain a reliable face detector able to easily overcome changes in
illumination, color and facial expressions.

So far have presented the face detection system focusing on the overall layout
of the system. We have assumed that all the feature planes are of the same di-
mensions, and we have not worried about the computational cost of each feature
and layer. To overcome the performance limitations of this approach, we imple-
mented the system in a pyramidal fashion, coupled with The Selective Tuning
(ST) model, which is able to recover the correct location of the detected stimuli.
In Figure 3 we show the final layout of current the system. The sizes of the fea-
ture planes are also depicted, in order to illustrate overall pyramidal structure.
All the connecting arrows between the feature planes are bi-directional, denoting
the presence of top-down connections.

4 Implementation and Results

All simulations were implemented in the TarzaNN neural network simulator
[30]. The simulator, instructions and all additional files needed to reproduce
the results presented here are available online at http://www.TarzaNN.org. The
simulations were performed on a Macintosh PowerMac G5. Note that the simu-
lator will also work on other platforms, including Windows, Linux and Solaris.
Testing has been performed on images from the Yale face database [31,32], on
composite images derived from the database, and on a group photo. The size
and spatial distribution of the circular detectors was tuned manually based on
three examples from the Yale database, and we expect results to improve with
the inclusion of a learning algorithm. All the results presented are “out of the
box” using the system as designed, the only exception being the thresholding
of the outputs in some figures, which was tuned manually where indicated. The
manual thresholding was performed to enhance the graphical representation of
the results, and has no functional role in the system.
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Fig. 3. Diagram illustrating the layout of the face detector based on the circular pattern
detector at different scales

Input Output Thresholded output

Fig. 4. Responses of the system to two composite images, including faces at two scales
and other objects

Figure 4 illustrates the responses of the system to two composite images,
including faces at two scales and other objects. In both cases, responses to faces
are significantly stronger than those to other objects, including other circular
features such as the wheels and front of the car. The thresholded results show
that the system is able to detect and localize the faces.

Figure 5 is a group photo, with superimposed thresholded system output.
Thresholding parameter was adjusted in favour of false-positives, so that all faces
are shown as detected. Most false-positives are in the neck and chest areas. In
the same Figure we present a couple of representative false-positives. Figure 5(b)
illustrates a shirt, where the collars, shirt patterns, and occlusions form patterns
that the system classifies as face-like. In Figure 5(a), symmetrical chin shadows
and shirt neck line form a pattern that the system responds to. This pattern is
caused mainly by the strong vertical lighting from above (the picture was taken
in an atrium with glass ceiling).
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(a) (b)

Fig. 5. Group photo with superimposed thresholded system output. Thresholding pa-
rameter was adjusted in favour of false-positives, so that all faces are shown as detected.
Most false-positives are in the neck area and fall into one of the two categories illus-
trated above. These errors demonstrate both the flexibilty of the feature extraction
process and the frailty of the template matching process. (a) “Face” created by chin
shadows and shirt neck line (dominant lighting from above) and (b) “Face”-like shirt.

The inclusion of the attentional mechanism is demonstrated in Fig. 6 and 7.
Fig. 6(b) shows the output without attention, note the very noisy output. Fig.
6(c) illustrates the effect of the ST attentional filtering on the face detector
output, with a much clearer peak of activation corresponding to the detected
face. Fig. 6(d) presents the localization of the face in the original input image,
together with the inhibited region.

Figure 7 shows the behavior of the system with overlapping faces. In the first
fixation, (Fig. 7(b)) the first face is detected and localized. Following this, ST
inhibits the connections corresponding to the winning units, and a second pass
through the network detects the and localizes the second face (Fig. 7(c)). Note
that only the visible part of the second face is selected, since only those pixels
contributed to the second detection.

The focus of the current implementation was on demonstrating the principles
and feasibility of the method, and little effort has been invested in the perfor-
mance aspects. In general the computational load of the method is significantly
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(a) (b) (c) (d)

Fig. 6. Effects of attention on the face detection task. (a) Input image. (b) Output
of the face detector layer without attention.(c) Output of face detector layer with
attention. (d) Location of the face in the input layer using the attentional beam (the
outer square represents the inhibited region).

(a) (b)

(c)

Fig. 7. Input with overlapping faces. (a) Input image. (b) First attentional fixation
selects the first face (the outer square represents the inhibited region). (c) Second
attentional fixation. Note that the second fixation only selects the visible part of the
occluded face.

higher than that of other current face detection methods due to the multi-scale
convolutions with fairly large kernels, and the ST adds a significant memory load
due to the need to have all the intermediate results of the convolution available
for the feedback pass.

5 Conclusions

One of the major limitations in current object recognition schemes is the in-
herent difficulty of extracting reliable and repeatable features from highly tex-
tured real-world images. Here we propose the use of second order processing
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as a solution to this problem, and demonstrate the validity of the approach
by applying it to the problem of face detection, with encouraging results. The
currently presented detection system is able to correctly detect faces from the
Yale Face database [31,32], under numerous variations (changes in illumination,
colour, etc). The main limitation specific to this system is imposed by the ad-
hoc nature of the template, generated manually and based on visual inspection.
Stronger templates, based on learning and statistical analysis of face images
would most likely improve the performance of the system. Implementing the
system in a pyramidal, hierarchical fashion has posed the additional problem of
recovering the exact location of the face in the input images, task accomplished
by using the attentional feedback mechanism of Selective Tuning [1]. This is the
first demonstration of Selective Tuning in a complex object recognition network.

While the current system does not solve the generic object recognition prob-
lem, it provides certain intuitions for how higher level cognition tasks can be
performed within a biologically plausible framework. It is important to observe
that the temporal structure of the proposed solution (i.e. detection followed by
selection and recognition) is consistent with recent psychophysical results [2]
that show a temporal lag between the detection and identification of faces. Also,
see [33] for a review and discussion of results that highlight the importance of
feedback connections and of early visual areas in conscious perception.
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Appendix

Eq. 1 represents an edge detector composed of a central elongated excitatory
lobe flanked by two inhibitory areas. Eq. 2 represents the second stage filters,
composed of a similar arrangement of activation lobes, but each filter has two
detectors symmetrically shifted by the radius of the circle for which the detector
is tuned. Filters for each pathway are rotated by an appropriate amount, and
the second stage filters are orthogonal to those in the first stage. See [29] for
details on the choice of parameters and on the weighting of the pathways.
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Abstract. The ability to transmit video and support related real-time
multimedia applications is considered important in mobile networks.
Video streaming, video conferencing, online interactive gaming, and mo-
bile TV are only a few of the applications expected to support the vi-
ability, and survival, of next generation mobile wireless networks. It is,
therefore, significant to analyze the interaction of the particular media
and applications. This paper presents the characteristics of mobile wire-
less networks and relates these characteristics to the requirements of
video transmission. The relationship derived is based not only on the ob-
jective QoS metrics measured in the network, but also on the subjective
quality measures obtained by video viewers at end hosts. Through this
work we establish guidelines for the transmission of video based on the
limits of mobile and wireless networks. We believe that the results help
researchers and professionals in the fields of video production and en-
coding to create videos of high efficiency, in terms of resource utilization,
and of high performance, in terms of end-user satisfaction.

1 Introduction

The basic factor behind the success of Third Generation mobile networks, like
the Universal Mobile Telecommunications System(UMTS), is the availability of
attractive, useful, and low cost services for the final user. Today, a very limited
number of multimedia services for digital mobile communication networks exist,
because of the limited abilities of user terminals, the low data transmission rates,
and the relative cost. Recently, an increasing demand for digital services for the
distribution stored video over the Internet is observed. With the spread of Third
Generation mobile networks and the increased capabilities of mobile equipment
with the ability of capture and playback video, an increase on the demand of
these services is expected. Video has been an important media for communica-
tions and entertainment for many decades. The growth and popularity of the
Internet in the mid-1990s motivated video communication over best-effort packet
networks. Video over best-effort packet networks is complicated by a number of
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factors including unknown and time-varying bandwidth, delay, and losses, as
well as many additional issues such as how to fairly share the network resources
amongst many flows and how to efficiently perform one-to-many communica-
tion for popular content. Video communication over a dynamic environment,
such as a mobile and wireless network is much more difficult than over a static
channel, since the bandwidth, delay, and loss are not known in advance and are
unbounded.

When the streaming path involves both wired and wireless links, some ad-
ditional challenges evolve. The first challenge involves the much longer packet
delivery time with the addition of a wireless link. The long round-trip delay
reduces the efficiency of a number of end-to-end error control mechanisms. The
second challenge is the difficulty in inferring network conditions from end-to-end
measurements. In high-speed wired networks, packet corruption is so rare that
packet loss is a good indication of network congestion, the proper reaction of
which is congestion control. In wireless networks, however, packet losses may
occur due to corruption in the packet. In the future, we will have access to a
variety of mobile terminals with a wide range of display sizes and capabilities.
In addition, different radio-access networks will make multiple maximum-access
link speeds available. Because of the physical characteristics of cellular radio
networks, the quality and, thus, the data rate of an ongoing connection will
also vary, contributing to the heterogeneity problem. A related problem is how
to efficiently deliver streamed multimedia content over various radio-access net-
works with different transmission conditions. This is achievable only if the media
transport protocols incorporate the specific characteristics of wireless links.

This paper intends to give an understanding of the transmission of video over
mobile wireless networks. Adopting the transmission of MPEG4-encoded video
streams over wireless network environments, we investigate the types of errors
that can be observed, using objective video quality metrics such as PSNR. Fur-
thermore, we provide subjective video quality estimation based on the evaluation
of decoded video streams by informed viewers.

The paper is organized as follows. Section 2 provides an overview of the char-
acteristics of the most common mobile and wireless networks. Section 3 provides
background information on the objective and subjective quality evaluation meth-
ods used in this paper. Section 4 describes the video characteristics, the setup,
and the scenarios used to evaluate the transmission of streaming video in a
wireless network. Section 5 presents the results of the objective and subjective
evaluations. The paper ends with a last section on conclusions.

2 Characteristics of Mobile and Wireless Networks

2.1 Cellular Wireless Networks

Second Generation (2G) Cellular Networks. The main aim in the design
of the 2G systems was the maximization of the system capacity, measured as
the number of users per spectrum per unit area. 2G makes heavy use of dig-
ital technology through the use of digital vocoders, Forward Error Correction
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(FEC), and high level digital modulation to improve voice quality, security and
call reliability. The GSM technology has been a very stable, widely accepted
and probably the most popular standard for mobile communication. The major
drawback of GSM with respect to data and video is that GSM-enabled systems
do not support high data rates. GSM supports only low rates for data services
(up to 9.6 Kbps) and Short Message Services (SMS), thus, it is unable to handle
complex data such as video. In addition, the GSM networks are not compatible
with the current TCP/IP and other common networks because of differences in
network hardware, software and protocols.

2.5G Cellular Networks (GPRS). The General Packet Radio Service
(GPRS) is a standard developed by the European Telecommunications Stan-
dards Institute (ETSI) on packet data in GSM systems. GPRS is designed to
provide a high data rate packet-switched bearer service in a GSM network. GPRS
has a number of important benefits with respect to data and video. The most
important are: (a) that it uses the same core infrastructure for different air in-
terfaces, (b) it operates on an integrated telephony and Internet infrastructure,
(c) it is always on, reducing the time spent in setting up and tearing down
connections, (d) it is designed to support bursty applications, such as e-mail,
telemetry, broadcast services and web browsing, and (e) it supports high-speed
data services with rates up to 384Kbps.

3G Mobile Networks. 3G Systems are intended to provide a global mobility
with wide range of services including telephony, paging, messaging, Internet and
broadband data. UMTS offers teleservices and bearer services, which provide
the capability for information transfer between access points. It is possible to
negotiate the characteristics of a bearer service at session or connection estab-
lishment and renegotiate them during the session or connection. Bearer services
have different QoS parameters for maximum transfer delay, delay variation and
bit error rate. UMTS network services have different QoS classes for four types of
traffic: Conversational class (voice, video telephony, video gaming) , Streaming
class (multimedia, video on demand, webcast), Interactive class (web browsing,
network gaming, database access), Background class (email, SMS, downloading).

Offered data rate targets are: 144 Kbps for satellite and rural outdoor, 384
Kbps for urban outdoor, and 2048 Kbps for indoor and low range outdoor. These
are the maximum theoretical values in each environment for downlink speeds.
The actual data rates may vary from 32Kbps, for a single voice channel, to 768
Kbps in urban low speed connections depending always on the class of service
supported.

2.2 IEEE 802.11

Wireless local area networks (WLANs) based on the IEEE 802.11 standard are
a significant and viable alternative to wireless connectivity. The standard has
currently three variations widely deployed. The 802.11b operates on the 2.4GHz
band and has a maximum theoretical data rate of 11Mbps, but operates also
on 1, 2 and 5Mbps. The 802.11a and g operate on the 5GHz and 2.4GHz bands
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respectively and both have a maximum theoretical data rate of 54Mbps. Using
different modulation schemes they can also operate on the lower scales of 6, 10,
12, 18, 36, and 48 Mbps.

Based on CSMA/CA, a common resource sharing MAC protocol, 802.11 also
adheres to the characteristic that the data rate allocated to each user is inversely
proportional to the number of users in the local network. Therefore, the practical
data rates are usually lower than those mentioned above.

3 Video Quality Assessment Schemes

3.1 Objective QoS Measures

In an optimal case, the quality of video is monitored during transmission. Ac-
cording to measurements, adjustment of parameters and possible retransmission
of the data is carried out. Objective quality assessment methods of digital video
can be classified into three categories. In the first category, the quality is evalu-
ated by comparing the decoded video sequence to the original. The objectivity of
this method is owed to the fact that there is no human interaction; the original
video sequence and the impaired one are fed to a computer algorithm that cal-
culates the distortion between the two. The second category contains methods
that compare features calculated from the original and the decoded video se-
quences. The methods of the third category make observations only on decoded
video and estimate the quality using only that information. The Video Qual-
ity Experts Group (VQEG) calls these groups the full, the reduced and the no
reference methods [1]. Traditional signal distortion measures use an error signal
to determine the quality of a system. The error signal is the absolute differ-
ence between the original and processed signal. The traditional quality metrics
are the Root Mean Square Error (RMSE), the Signal-to-Noise Ratio(SNR), and
the Peak Signal-to-Noise Ratio (PSNR) in dB. In this work we employ a Full
reference method and use the PSNR as the objective quality metric.

3.2 Subjective QoS Measures

There are numerous metrics used to express the objective quality of an image or
video, which cannot, however, characterize fully the response and end satisfaction
of the viewer. Perceived measure of the quality of a video is done through the
human ”grading” of streams which helps collect and utilize the general user view.
There is a number of perceived quality of service measurement techniques. Most
of them are explained in [2]. The following are the most popular: a) DSIS (Double
Stimulus Impairment Scale) b) DSCQS (Double Stimulus Continuous Quality
Scale) c) SCAJ (Stimulus Comparison Adjectival Categorical Judgement) d)
SAMVIQ (Subjective Assessment Method for Video Quality evaluation)

In this work we have used the SAMVIQ [3] method. SAMVIQ is based on
random playout of the test files. The individual viewer can start and stop the
evaluation process as he wishes and is allowed to determine his own pace for per-
forming grading, modifying grades, repeating playout when needed, etc. With
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the SAMVIQ method, quality evaluation is carried out scene after scene includ-
ing an explicit reference, a hidden reference and various algorithms (codecs).
As a result, SAMVIQ offers higher reliability, i.e. smaller standard deviations.
A major advantage of this subjective evaluation scheme is in the way video se-
quences are presented to the viewer. In SAMVIQ video sequences are shown in
multi-stimulus form, so that the user can choose the order of tests and correct
their votes, as appropriate. As the viewers can directly compare the impaired
sequences among themselves and against the reference, they can grade them ac-
cordingly. Thus, viewers are generally able to discriminate the different quality
levels better with SAMVIQ than with the other methods. In addition, in this
method there is only one viewer at a time, which alleviates a ”group effect”.

4 Evaluation Setup and Scenarios

4.1 Topology

The evaluation topology consists of one Video Streaming Server, two backbone
routers and video clients of variable types and connectivity methods (fixed, mo-
bile, wired, wireless) as shown in Fig. 1. The video streaming server is attached
to the first backbone router with a link which has 10Mbps bandwidth and 10ms
propagation delay. These values remain constant during all scenarios. This router
is connected to a second router using a link with unspecified and variable band-
width, propagation delay, and packet loss. The different parameter values used
to characterize this variable link are shown in Table 1. Using this topology,
we conducted several experiments for two different sample sequences and with
fixed-wired clients, fixed-wireless clients and mobile-wireless clients.

4.2 Variable Test Parameters

The choice of the parameters used in the video quality evaluations (Table 1) was
based on the typical characteristics of mobile and wireless networks, as these are

Fig. 1. Video Stream Evaluation Setup
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Table 1. Variable Parameters

Video Stream Bit Rate Link Bandwidth Propagation Delay Packet Loss
64 Kbps 64 Kbps 10 ms
128 Kbps 100 Kbps 50 ms 10−5

256 Kbps 256 Kbps 100 ms 10−3

512 Kbps 512 Kbps 200 ms
768 Kbps 1 Mbps 400 ms

described in Section 2. For example, the Link Bandwidth can be considered as
either the last hop access link BW or the available BW to the user. The values
chosen can represent typical wired home access rates (modem, ISDN, xDSL) or
different bearer rates for UMTS.

4.3 Test Sequences

The test sequences used in this work were the sample sequences Foreman and
Claire. The sequences were chosen because of their different characteristics. The
first is a stream with a fair amount of movement and change of background,
whereas the second is a more static sequence. The characteristics of these se-
quences are shown in Table 2. The sample sequences were encoded in MPEG4
format with a free software tool called FFMPEG encoder [4]. The two sequences
have temporal resolution 30 frames per second, and GoP (Group of Pictures)
pattern IBBPBBPBBPBB. Each sequence was encoded at the rates shown in
Table 1. The video stream bit rate1 varies from 64Kbps to 768Kbps. This rate
is the average produced by the encoder. Since the encoding of the sample video
sequences is based on MPEG4, individual frames have variable sizes.

Table 2. Video Characteristics

Trace Resolution Total Frames # I Frames # P Frames # B Frames
Foreman.yuv 176x144 400 34 100 266
Claire.yuv 176x144 494 42 124 328

4.4 Data Collection

All the aforementioned experiments were conducted with an open source network
simulator tool NS2 [5]. Based on the open source framework called EvalVid [6]
we were able to collect all the necessary information needed for the objective
video quality evaluation like PSNR values, frames lost, packet end to end delay
and packet jitter. Some new functionalities were implemented in NS2 from [7]
in order to support EvalVid. The whole data collection procedure and PSNR
evaluation is illustrated in Fig. 2.
1 The terms video stream bit rate and video encoding rate are used interchangeably

in this paper.
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Fig. 2. PSRN calculation through evalvid

5 Results

In this section we analyze results obtained from the above scenario evaluations.
Given the very large number of produced streams, we chose to present and
analyze only one scenario. The results presented are for the following case: single
user, single video stream, No background traffic, Foreman test sequence, mobile
and wireless terminal. All other parameters are variable as shown in Table 1. To
identify if and how the different parameters affect the objective value of PSNR
we compare them in pairs.

5.1 Link Bandwidth and Propagation Delay

The effect of propagation delay and link bandwidth on the PSNR while keeping
the encoding rate steady at 64Kbps and 256Kbps is presented in Fig. 3. These
graphs show that the objective values remain relatively constant with the change
in either variable, with a slight general increase for high link BW values and
counter-intuitively in high delay values as well. There is also an overall upward
shift by 1dB when the encoding rate is increased from 64Kbps to 256Kbps. The
PSNR is extremely low in the case where the encoding rate is higher than the
link BW, as it is evident by Fig. 3b.

5.2 Video Encoding Rate and Propagation Delay

The effect of propagation delay and video encoding rate on the PSNR when
keeping the link BW constant at 500Kbps and 1Mbps is presented in Fig. 4.
The results show that for the 1M case the results are similar to those of Fig. 3.
For the 500K case we observe that the PSNR remains at the same levels with
respect to delay, but is significantly reduced when the video encoding rate is at
512Kbps and 768Kbps with the PSNR of the latter being the worst at around
15dB. This leads us to believe that there is a stronger relationship between link
BW and encoding rate, than between the link BW and the propagation delay.
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Fig. 3. Mean PSNR values vs Link Bandwidth and Delay (a) 64K Video Encoding
Rate, (b) 256K Video Encoding Rate
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Fig. 4. Mean PSNR values vs Encoding Rate and Delay (a) 500K link BW, (b) 1M
link BW

5.3 Link Bandwidth and Video Encoding Rate

Fig. 5 contains the most notable results. More specifically, for both values of
delay considered (10ms and 400ms) the PSNR drops dramatically when the
encoding rate is higher than the link bandwidth. This is somewhat intuitive if
we consider that in those instances the packet losses of the video stream are very
big, and approaching 100%, which in turn means that the PSNR is low as well.

5.4 Evaluation of Perceived Quality of Service

The set of video streams that were recorded on the receiving site of the eval-
uation setup was used as input to the PQoS evaluation method explained in
Section 3.2. We used the software tool called ”MSU Perceptual Video Quality
tool” [8] which is a tool for subjective video quality evaluation implementing
SAMVIQ. The score grades in this method range from 0 to 100. The videos
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Fig. 5. Mean PSNR values vs Encoding Rate and Link Bandwidth (a) Delay 10ms,
(b) Delay 400ms

Table 3. Relationship of PSNR with MOS

PSNR (dB) MOS P-QoS Category

> 27.2 81-100 1 Excellent

26.9 - 27.2 61-80 2 Good

26.1 - 26.9 41-60 3 Fair

16.2 - 26.1 21-40 4 Poor

< 16.2 0-20 5 Bad

were evaluated by a group of 20 students at the University of Cyprus. Table 3
presents the relationship between the average value of the students’ subjective
grading and the objective value obtained through EvalVid. values corresponding
to each category is not similar and do not have a liner relationship with the
MOS. The video streams which scored high had also an extremely high PSNR.
The Good and Fair categories have also a small range of PSNR values (0.3dB
and 0.8dB respectively) whereas the low categories get the bulk of the scores.
This phenomenon illustrates clearly how inappropriate is PSNR to evaluate the
actual QoS as perceived by the user.

6 Conclusions

In this paper we described the characteristics of mobile wireless networks and
related these characteristics to the requirements of video transmission. The tests
and simulations analyzed in this paper were designed to correlate objective video
quality metrics with subjective video quality. Standard objective metrics such
as PSNR were taken into consideration in order to evaluate objective quality.
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A novel methodology called SAMVIQ was used for subjective evaluations. This
method can be efficiently used for the evaluations of video sequences in both
clear and error-prone environments. This set of values, when correlated with
the conditions affecting PSNR help us reach some conclusions. Due to space
limitations we could not include all additional metrics values for the resultant
packet loss, delay, and jitter.

The experimental results show that the higher the video bit-rate the higher
the QoS in terms of objective and subjective video quality evaluation measures.
Of course the QoS depends primarily on the link bandwidth. The best quality in
terms of PSNR as well as user-perceived quality is achieved when the encoding
rate is less than or equal to the link BW or available BW. Needless to say that
the most prevalent objective video quality metric does not correlate directly with
viewer’s perceived quality. Nevertheless the higher the PSNR values the higher
the viewer perceived quality.

Through this work we establish guidelines for the transmission of video based
on the limits of mobile and wireless networks. We believe that the results help
researchers and professionals in the fields of video production and encoding to
create videos of high efficiency, in terms of resource utilization, and of high
performance, in terms of end-user satisfaction.
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Abstract. This paper deals with the problem of saliency map estimation in 
computational models of visual attention. In particular, we propose a wavelet 
based approach for efficient computation of the topographic feature maps. 
Given that wavelets and multiresolution theory are naturally connected the 
usage of wavelet decomposition for mimicking the center surround process in 
humans is an obvious choice. However, our proposal goes further. We utilize 
the wavelet decomposition for inline computation of the features (such as 
orientation) that are used to create the topographic feature maps. Topographic 
feature maps are then combined through a sigmoid function to produce the final 
saliency map. The computational model we use is based on the Feature 
Integration Theory of Treisman et al and follows the computational philosophy 
of this theory proposed by Itti et al. A series of experiments, conducted in a 
video encoding setup, show that the proposed method compares well against 
other implementations found in the literature both in terms of visual trials and 
computational complexity. 

Keywords: Visual attention, saliency maps, perceptual video coding. 

1   Introduction 

In saliency-based visual attention algorithms efficient computation of the saliency 
map is critical for several reasons. First, the algorithm itself should model in an 
appropriate manner the visual attention process in humans. This is by no means easy. 
Visual attention theory has been constructed mainly by neuroscientists without taking 
into account computational modeling difficulties. On the other hand, computational 
models have been developed mainly by engineers and computer scientists which in 
several cases compromise theory in favor of implementation efficiency. Second, 
algorithm's implementation should conform to real life situations and settings. 
Perceptual based video coding is one of the areas that visual attention fits well. 
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However, in applications like video-telephony real-time video encoding is a 
requirement. Therefore, if a computational model of visual attention is to be used, 
then its implementation should be both fast and effective. Finally, integration of the 
topographic feature maps into the overall saliency map should be performed in a 
reasonable way and not ad hoc as it happens in most existing models where 
normalization and additions is the combination method of preference. 

2   Saliency-Based Visual Attention 

2.1   Existing Computational Models 

The basis of many visual attention models proposed over the last two decades [1] – 
[3] is the Feature Integration Theory (FIT) of Treisman et al [4] that was derived from 
visual search experiments. According to this theory, features are registered early, 
automatically and in parallel along a number of separable dimensions (e.g. intensity, 
color, orientation, size, shape etc).  

One of the major saliency-based computational models of visual attention is 
presented in [5] and deals with static color images. Visual input is first decomposed 
into a set of topographic feature maps. Different spatial locations then compete for 
saliency within each map, such that only locations that locally stand out from their 
surround can persist. All feature maps feed, in a purely bottom-up manner, into a 
master saliency map. Itti and Koch [6, 7] presented an implementation of the proposed 
saliency-based model. Low-level vision features (color channels tuned to red, green, 
blue and yellow hues, orientation and brightness) are extracted from the original color 
image at several spatial scales, using linear filtering. The different spatial scales are 
created using Gaussian pyramids, which consist of progressively low-pass filtering and 
sub-sampling the input image. Each feature is computed in a center-surround structure 
akin to visual receptive fields. Using this biological paradigm renders the system 
sensitive to local spatial contrast rather than to amplitude in that feature map. Center-
surround operations are implemented in the model as differences between a fine and a 
coarse scale for a given feature. Seven types of features, for which evidence exists in 
mammalian visual systems, are computed in this manner from the low-level pyramids.  

2.2   The Proposed Wavelet-Based VA Model Implementation 

In this work we begin from the model of Itti & Koch and make use of the YCrCb 
colour model [8], instead of RGB, and the hierarchical wavelet decomposition of 
Mallat [9] to provide an efficient way of computing saliency maps in static images 
and video sequences. 

Let’s consider a colour image f, represented in using the YCrCb colour model. 
Channel Y corresponds to the illumination, and can be used for identifying 
outstanding regions according to illumination and orientation, while Cr (Chrominance 
Red) and Cb (Chrominance Blue) correspond to the chrominance components and can 
be used to identify outstanding regions according to colour. 
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In the proposed method salient areas based on intensity, orientation, and colour are 
computed in several scales. In this way, outstanding objects of different sizes are 
recognized as such. Combining the results of intensity, orientation, and colour feature 
maps at various scales provide the intensity (CI), orientation (CO) and colour (CC) 
conspicuity maps. The motivation for the creation of the separate conspicuity maps is 
the hypothesis that similar features compete strongly for saliency, while different 
modalities contribute independently to the saliency volume. Hence, after the intra-
feature competition the three conspicuity maps are normalized and summed into the 
saliency map. Both feature and conspicuity maps are combined using a saturation 
function (sigmoid) to preserve the independency and added value of each separate 
feature channel and scale. 

The proposed method is analysed in detail in the following paragraphs. 

3   Saliency-Map Computation 

In order of multiscale analysis to be performed a pair of low-pass )(⋅φh  and high-pass 

filter )(⋅ψh  are applied to each one of the image’s colour channels Y, Cr, Cb, in both 

the horizontal and vertical directions. The filter outputs are then sub-sampled by a 
factor of two, generating the high-pass bands H (horizontal detail coefficients), V 
(vertical detail coefficients), D (diagonal detail coefficients) and a low-pass subband 
A (approximation coefficients). The process is then repeated to the A band to generate 
the next level of the decomposition. 

The following equations describe mathematically the above process for the 
illumination channel Y. It is obvious that the same process applies also to Cr and Cb 
chromaticity channels: 
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where ∗  denotes convolution, ),( nmY j
A
−  is the approximation of Y channel at j-th 

level (note that  YnmYA =− ),(0 ), and m2↓  and n2↓  denote down-sampling by a 

factor of two along rows and columns respectively.  
 
Following the decomposition of each colour channel at specific depth we use center-
surround differences to enhance regions that locally stand-out from the surround. 
Center-surround operations resemble the preferred stimuli of cells found in some parts 
of the visual pathway (lateral geniculate nucleus-LGN) [4]. Center-surround 
differences are computed in a particular scale (level j) using the morphological 
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gradient (difference between morphological opening and closing [8]) for the intensity 
and colour feature maps and the sum of differences of detail bands for the orientation 
feature map, as shown in the following equations: 

bnmYbnmYnmI jjj
AA

),(),(),( −−− −•=  (2.1) 
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   bnmCbbnmCbnmCB j
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j ),(,),(),( −−− −•=  (2.4) 

  C-j = CR-j + CB-j  (2.5) 

In the above equations by ),( nmI j− , ),( nmO j− , ),( nmC j− ,  we denote the 

intensity, orientation and colour feature maps computed at scale j while  •  and  
denote the closing and opening operators respectively. 

The structuring element b is a disk of radius equal to Jmax where Jmax is 
maximum analysis depth and is computed as follows: 

= NJ 2log
2

1
max , ),min( CRN = , (3) 

where in xy =  y is the highest integer value for which yx ≥ , and R, C are the 

number of rows and columns of input image respectively.  

 

     
(a) (b) (c) (d) (e) 

Fig. 1. Locally stand-out regions, at level 3, based on: (a) intensity, (b) orientation, and (c) 
colour. In (d) and (e) are shown the individual chromaticity feature maps (CR and CB). 

Fig. 1 (a)-(c) shows the intensity, orientation and colour feature maps at scale 3 

( ),(3 nmI − , ),(3 nmO − , ),(3 nmC − ) along with the individual chromaticity feature 

maps ( ),(3 nmCR− , ),(3 nmBC − ) whose point by point addition produced the colour 

feature map.  
In Fig. 2 (a)-(c) the intensity, orientation and colour feature maps at scale 1 are 

shown. It is important to note that the areas that stand-out from their surround are 
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(a) (b) (c) 

Fig. 2. Locally stand-out regions, at level 1, based on: (a) intensity, (b) orientation, and (c) 
colour 

significantly smaller (proportionally) than the ones shown in Fig. 1. Therefore, a 
combination of the features maps at the various scales (conspicuity maps) is needed to 
cover both small and large stand-out objects. Combination of different scales is 
achieved by interpolation to the finer scale, point-by-point subtraction and application 
of a saturate function to the final result. The following equations describe 
mathematically process of combining the results of two successive scales for the 
orientation conspicuity map. It is obvious that the same process applies also to 
intensity and colour conspicuity maps: 

( ) )()()),(),(ˆ 22)1( nhmhnmCnmC nmj
O

j
O φφ ∗↑∗↑= +−−  (4.1) 

( )( ) 1
1

2
),(
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O
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e
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where ),( nmO j−  is the orientation feature map computed at level j (see eq. 2.2), 

),( nmC j

O

−  is the orientation conspicuity map at level j, ),(ˆ nmC j

O

−  is the interpolation 

of ),()1( nmC j

O

+−  at a finer scale j, and m2↑  and n2↑  denote up-sampling along rows 

and columns respectively.  
An example of intensity, orientation and colour conspicuity maps computed using 

analysis depth equal to 3 is shown in Fig.3. 
After creating this intermediate multi-resolution representation (conspicuity maps 

per feature), where salient areas are enhanced and pop-out from the surround, an 
across-scale combination is applied to create a single saliency map. For this purpose a 
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(a)  (c) 

Fig. 3. Conspicuity maps computed using analysis depth (Jmax) equal to 3 (a) intensity (b) 
orientation, and (a) colour 

 

 

 
(a)  (c) 

Fig. 4. (a) An input frame, (b) Saliency map computed at depth 1. Note that though the 
floodlight it is a clearly stand-out object it is not recognized as such at this level. 
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saturate function is applied so as to preserve the independency and added value of the 
particular concpicuity maps. This process is described mathematically by the 
following equation: 

( )( ) 1
1

2
),(

),(),(),( 000
−

+
= −−− ++− nmCnmCnmC COIe

nmS  (5) 

where ),(0 nmCI
− , ),(0 nmCO

− , and ),(0 nmCC
−  are the intensity, orientation and colour 

conspicuity maps respectively.  
Figs. 4 and 5 show examples of saliency maps computed using depths 1, 3, and 4. 

In the latter case objects covering as much as 20% of the whole image can be 
identified as standing-out from their surround.    

 

 

 

 
(a)  (c) 

Fig. 5. Saliency maps computed using analysis depth (Jmax) equal to (a) 3 and (b) 4. In (a) the 
floodlight starts appearing as a stand-out object but the overall saliency maps is rather noisy. In 
(b) the floodlight it is clearly a stand-out object while the saliency map is smooth. 

4   Visual Trials Tests and Experimental Results 

To evaluate the algorithm, we simply use it as a front end; that is, once the VA-ROI 
areas identified the non-ROI areas in the video frames are blurred. Although this 
approach is not optimal in terms of expected file size gains, it has the advantage of 
producing compressed streams that are compatible with existing decoders [10].  
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Visual trial tests were conducted to examine the quality of the VA-ROI based 
encoded videos. These tests are based upon ten short video clips, namely: 
eye_witness, fashion, grandma, justice, lecturer, news_cast1, news_cast2, 
night_interview, old_man, soldier (see [11]).  All video clips were chosen to have a 
reasonably varied content, whilst still containing humans and other objects that could 
be considered to be more important (visually interesting) than the background. They 
contain both indoor and outdoor scenes and can be considered as typical cases of 
news reports based on 3G video telephony. However, it is important to note that the 
selected video clips were chosen solely to judge the efficacy of VA ROI coding in 
MPEG-1 and are not actual video- telephony clips.  

For each video clip encoding aiming at low-bit rate (frame resolution of 144x192, 
frame rate 24 fps, GOP structure:  IBBPBBPBBPBB) has been taken place so as to 
conform to the constraints imposed by 3G video telephony. Two low-resolution 
video-clips were created for each case, one corresponding to VA based coding and the 
other to standard MPEG-1 video coding. 

4.1   Experimental Methodology 

The purpose of the visual trial test was to directly compare VA ROI based and 
standard MPEG-1 encoded video where the ROI is determined using the proposed 
VA algorithm. A two alternative forced choice (2AFC) methodology was selected 
because of its simplicity, i.e., the observer views the video clips and then selects the 
one preferred, and so there are no issues with scaling opinion scores between different 
observers [12]. There were ten observers, (5 male and 5 female) all with good, or 
corrected, vision and all observers were non-experts in image compression (students). 
The viewing distance was approximately 20 cm (i.e., a normal PDA / mobile phone 
viewing distance) and the video clip pairs were viewed one at a time in a random 
order. 

The observer was free to view the video clips multiple times before making a 
decision within a time framework of 60 seconds. Each video pair was viewed twice, 
giving (10x10x2) 200 comparisons. Video-clips were viewed on a typical PDA 
display in a darkened room (i.e., daylight with drawn curtains). Prior to the start of the 
visual trial all observers were given a short period of training on the experiment and 
they were told to select the video clips they preferred assuming that it had been 
downloaded over a 3G mobile / wireless network.  

4.2   Results 

Table 1 shows the overall preferences, i.e., independent of (summed over) video clips 
for standard MPEG-1 and VA ROI-based encoded MPEG-1. It can be seen in that 
there is slight preference to standard MPEG-1 which is selected at 52.5% of the time 
as being of better quality. However, the difference in selections, between VA ROI-
based and standard MPEG-1 encoding, is actually too small to indicate that the VA 
ROI-based encoding deteriorates significantly the quality of produced video. At the 
same time the bit rate gain, which is about 27% on average (see also Table II), shows 
clearly the efficiency of VA ROI based encoding. 
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Table 1. Overall preferences (independent of video clip) 

Encoding Method Preferences Average Bit Rate (Kbps) 

VA-ROI  95 224.4 
Standard MPEG -1 105 308.1 

Table 2. Comparison of VA-ROI based and Standard MPEG-1encoding in ten video seqs 

Video Clip Encoding Method Bit Rate (Kbps) Bit Rate Gain  
VA-ROI 319Eye_witness,  
Standard 386 

17 (%) 

VA-ROI 296fashion 
Standard 354 

16 (%) 

VA-ROI 217grandma 
Standard 256 

15 (%) 

VA-ROI 228 justice 
Standard 318 

28 (%) 

VA-ROI 201  lecturer 
Standard 274 

27 (%) 

VA-ROI 205 news_cast1 
Standard 297 

31 (%) 

VA-ROI 170 news_cast2  
Standard 270 

37 (%) 

VA-ROI 174 night_interview 
Standard 335 

48 (%) 

VA-ROI 241  old_man   
Standard 321 

25 (%) 

VA-ROI 193  soldier 
Standard 270 

29 (%) 

VA-ROI 224.4 Average 
Standard 308.1 

27.2 (%) 

Table 2 presents the bit-rates achieved for both the VA ROI based encoding and 
standard MPEG-1 in the individual video clips. It is clear that the bit rate gain obtained 
is significant, ranging from 15% to 48%. Furthermore, it can be seen from the results 
obtained in the night_interview video sequence, that increased bit-rate gain does not 
necessarily mean worse quality of the VA ROI encoded video. 

Bit-rate gain achieved by JPEG encoding of the individual video frames (not 
shown in Table 2) is on average about 21% (ranging from 14% to 28%). This 
indicates that the bit-rate gain is mainly due to the compression obtained for Intra-
coded (I) frames than for the Inter coded (P,B) ones. This conclusion strengthens the 
argument that smoothing of non-ROI areas may decrease the efficiency of motion 
compensation. 
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Abstract. We present a biologically plausible computational model for
solving the visual binding problem. The binding problem appears due
to the distributed nature of visual processing in the primate brain, and
the gradual loss of spatial information along the processing hierarchy.
The model relies on the reentrant connections so ubiquitous in the pri-
mate brain to recover spatial information, and thus allow features rep-
resented in different parts of the brain to be integrated in a unitary
conscious percept. We demonstrate the ability of the Selective Tuning
(ST) model of visual attention [1] to recover spatial information, and
based on this propose a general solution to the binding problem. The
solution is demonstrated on two classic problems: recovery of form from
motion and binding of shape and color. We also demonstrate how the
method is able to handle difficult situations such as occlusions and trans-
parency. The model is discussed in relation to recent results regarding
the time course and processing sequence for form-from-motion in the
primate visual system.

1 Introduction

Convergent evidence from many different kinds of studies suggests the visual cor-
tex is divided into a large number of specialized areas processing different feature
dimensions, organized into two main processing streams, a dorsal pathway, re-
sponsible for encoding motion, space, and spatial relations for guiding actions,
and a ventral pathway, associated with object recognition and classification,
conclusions supported by functional imaging, neurophysiology, and by strikingly
selective localized lesions. This high selectivity of the various cortical areas has
led to the obvious questions of how, despite this specialization, the visual percept
is unitary, and what are the mechanisms responsible for, in effect, putting all this
distributed information together. Following Roskies [2], “the canonical example
of binding is the one suggested by Rosenblatt [3] in which one sort of visual
feature, such as an object’s shape, must be correctly associated with another
feature, such as its location, to provide a unified representation of that object.”
Such explicit association is particularly important when more than one visual
object is present, in order to avoid incorrect combinations of features belonging
to different objects, otherwise known as “illusory conjunctions” [4]. Limiting the
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resources available for visual processing through increased loads and/or reduced
time leads observers to erroneously associate basic features present in the image
into objects that do not exist, e.g. a red X and a blue O are sometimes reported
as a blue O and a red X. Studies have shown that these are real conjunction
errors, and can not be attributed to guessing or memory. A general discussion
of the binding problem appears in Neuron 24(1) (1999).

Three classes of solutions to the binding problem have been proposed in the
literature. Proponents of the convergence solution suggest that highly selective,
specialized neurons that explicitly code each percept (introduced as cardinal
cells by Barlow [5] – also known as gnostic or grandmother neurons) form the
basis of binding (e.g. [6,7]). The main problem with this solution is the combi-
natorial explosion in the number of units needed to represent all the different
possible stimuli. Also, while this solution might be able to detect conjunctions
of features in a biologically plausible network (i.e. a multi-layer hierarchy with
pyramidal abstraction) it is unable to localize them in space on its own [8], and
additional mechanisms are required to recover location information. Synchrony,
the correlated firing of neurons, has also been proposed as a solution for the
binding problem [9,10,11]. Synchrony might be necessary for signaling binding,
but is not sufficient by itself, as it is clear that this phenomenon can at most
tag bound representations, but not perform the binding process. The colocation
solution proposed in the Feature Integration Theory (FIT) [12] simply states
that features occupying the same spatial location belong together. Due to its
purely spatial nature, this solution can not deal with transparency and other
forms of spatial overlap. Also, since detailed spatial information is only available
in the early areas of the visual system, simple location-based binding is agnostic
of high-level image structure, which means that it can not impose boundaries
(obviously, the different edges of an object occupy different spatial locations),
and arbitrary areas that belong to none, one or more objects can be selected.

Selective Tuning (ST) [1] is a computational model of visual attention that
integrates feedforward and feedback pathways into a network that is able to take
high level decisions, and, through a series of winner-take-all (WTA) processes,
identify all the neurons that have participated in that decision. This identifica-
tion satisfies the key requirement for a kind of visual feature binding that ST was
demonstrated to solve [13], despite the loss of spatial information inherent in a
pyramidal system. The ST feedback process does not need collocation if neural
convergence is guaranteed, so ST is able to select all parts of a stimulus, even
if they do not share a location (e.g. stimuli with discontinuities due to overlap,
or stimuli that are separated spatially due to the nature of the cortical feature
maps). The partial solution to binding proposed in [13] is able to correctly bind
all the activations that have contributed to a high level decision (convergence)
and even non-convergent representations if the problem can be solved at the
spatial resolution of the top level of the pyramid (a weak form of collocation)
– i.e. there is sufficient spatial separation between the target and the distrac-
tors (see [14] for the importance of spatial separation in attention and recogni-
tion). Note that the feedback process will select only the units responding to the
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selected stimulus, and not units that just happen to share locations with it, thus
ensuring that overlapping and transparent stimuli will be handled correctly.

2 Proposed Solution

This section motivates and introduces an original approach to the binding prob-
lem. FIT [12] considers location as a feature that is faithfully represented in a
“master map” of locations but, as Taraborelli [15] points out: “the idea of bind-
ing itself is nothing but a spatial conjunction of information concerning visual
attributes of the same item.” Tsotsos et al. [13] note that considering location as
a feature can not be valid as location precision (resolution) changes layer to layer
in any pyramid representation, and propose that location should be considered
as the anchor that permits features to be bound together. At the same time,
Robertson lists three phenomena that demonstrate the special role of spatial
attention in binding [16]: illusory conjunctions under divided attention, depen-
dence on number of distractors for conjunction searches, and the elimination of
the influence of distractors with spatial cueing. In effect, a solution to the bind-
ing problem must address this seemingly incompatible requirement: binding is
ultimately only a spatial conjunction, but at the same time it must be based on
high-level information, allowing for object and feature-based selection.

The solution proposed is based on the general collocation principle of FIT,
but using Selective Tuning to integrate high-level representations in the spa-
tial selection process, and performing the spatial selection without requiring a
“master map” of locations. The proposal, illustrated in Fig. 1 is to allow one
feedforward pass through the network (arrow A in the figure), detect and select
one salient high-level representation (in this case, one motion representation),
and proceed backwards through the system in Selective Tuning manner (arrow
B), selecting compatible representations that have contributed to the winning
units, and inhibiting all the activations that are incompatible. As this feedback
proceeds, lower level representations that participated in the salient activation
are selected, and distractors inhibited, all the way to the first layer of processing.
This allows further feedforward processing to be selectively directed towards the
selected object (arrow C), eliminating the influence of spatially near competing
stimuli and allowing the ventral pathway to detect the shape corresponding to
the motion signal. When processing ends, the remaining active high-level repre-
sentations all describe the selected stimulus in a sparse, distributed fashion ideal
for maximizing the capacity of associative memories [17]. At the same time all
the components of the attended stimulus will be selected throughout the visual
system for recognition, and the location information can be used for the planning
of actions towards the selected stimulus.

3 Examples

The general structure of the neural network used in the following examples is
presented in Fig. 1, consisting of two biologically inspired processing pathways,
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Fig. 1. Diagram of the network. On the left side is the shape recognition pathway,
while on the right side the motion pathway. The arrows show the flow of information.
See the text for details.

corresponding to the ventral and dorsal visual pathways. The pathways are pyra-
midal, meaning that successive layers represent more and more abstract concepts,
and location, size and (direct) shape information is lost. The motion pathway rec-
ognizes affine motions, and is described in detail in [13]. The form pathway is an
abstraction of the primate object recognition stream, and consists of layers that
combine the edge information to detect simple geometric shapes.

As shape and motion are processed in different areas of the brain, the recovery
of shape from motion is a particularly good illustration of binding. The subset of
the motion processing hierarchy in Fig. 1 consists of a layer of motion sensitive
neurons, followed by two layers of translation detection neurons, corresponding
to visual areas V1, MT (local motion) and MST (global motion), respectively.
The simplified shape processing hierarchy, detecting square and diamond shapes,
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consists of two layers of first and second order edge detectors (four directions,
one scale), and two layers of shape detectors, corresponding to visual areas V1
and V2 (edges), V4 (local shape) and IT (global shape), respectively. All the
weights in the neural network are preset, no learning was used. Our system will
process the image in parallel, along all the independent processing pathways,
detecting the presence of the different shapes and motion patterns. The atten-
tional process will select one top-level representation for further analysis, and
the ST process will localize the corresponding pixels in the input image through
feedback. ST will also inhibit pixels in the surround of the attended item, thus
enhancing the relative saliency of the attended stimulus and introducing the
contour information needed by the shape pathway. A second feedforward pass
through the pyramids will refine the representation of the selected object, and
at the same time select all the (distributed) representations that belong to it,
thus achieving binding. The process can be repeated until the desired target is
found, implementing a visual search mechanism. In the following experiments,
the stimuli consists of random dot kinematograms with the dots in one or two
windows performing translation motion in one or two different directions. The
window can be square or diamond shaped – Fig. 2.

(a) No overlap (b) Occlusion (c) Transparency

Fig. 2. Random dot kinematograms used as stimuli in the form-from-motion experi-
ments. Dots in one or two windows perform translation motion. The window can be
square or diamond shaped.

3.1 Example 1 – Form from Motion

The stimulus consists of a random dot kinematogram with the dots in a square
window performing translation motion to the right. After the initial feedforward
and feedback passes, the moving dots will be localized in the input layer, and
neighboring dots will be inhibited, as illustrated in Fig. 3(a). Once the neighbor-
ing neurons have been inhibited, the V1 edge detectors will detect these pseudo-
edges, and the shape recognition pathway will become activated, detecting the
presence of the square in the input sequence. Similarly, Fig. 3(b) illustrates the
result of detecting motion in a diamond shaped window. To test the capabilities
of the attentional system to deal with multiple input patterns we used an image
sequence containing two moving regions: a square region of rightward moving
dots and a diamond shaped region of upward moving dots. MST neurons will
fire indicating the two incompatible motion patterns, and the attentional system
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Attentional selection windows for random-dot kinematograms. (a) Single stim-
ulus, Square (b) Single stimulus, Diamond (c) Two objects, fixation 1 (d) Two objects,
fixation 2 (e) Occluder, fixation 1 (f) Occluded, fixation 2 (g) Transparent, fixation 1
(h) Transparent, fixation 2. The internal white area represents the localized stimulus,
blue (dark) the inhibitory surround.

will select the top level movements one after the other, allowing the system to
detect first one, then the other shape – Fig. 3(c) and Fig. 3(d).

An important test that must be passed by any artificial vision system is
its handling of occlusions and transparency. The two stimulus sequences from
Example 1 were modified by making the two stimuli overlap spatially, either
through occlusion or through transparency.

3.2 Example 2 – Occlusion

In this case, the diamond partially occludes the square. The process follows as
illustrated above for the occluder – Fig. 3(e), but it is important to observe
that for the occluded stimulus only the visible portion is selected Fig. 3(f). This
is a very important point that highlights a key difference between ST and the
Neocognitron [18] system. While in both systems, feedback “tunes” the process-
ing pyramid, the latter increases the activation of units that correspond to the
selected hypothesis by reducing their firing thresholds, thus introducing the risk
of hallucinations. In ST the only manipulation permitted is the reduction of
the activations of units that do not match the hypothesis, and so the risk of
hallucination is eliminated, and if the hypothesis turns out to be incorrect, the
responses of the selected output units should decrease, indicating the failure to
find support for the hypothesis. This example clearly shows that based on the
detected motion patterns, the object recognition pathway will get as input a
correct representation of the shape present in the stimulus.
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3.3 Example 3 – Transparency

In this case, the square partially overlaps the diamond, but the moving dots
in the diamond shaped window remain visible. Again, the high level detection
combined with the ST feedback process are able to highlight the correct areas
in the input, thus allowing the object recognition pathway to correctly recognize
the shapes – Fig. 3(g) and 3(h). While not an issue in this example, note that
in some cases humans perceive two overlapping and different motion patterns as
a single motion in a third direction (e.g. plaid motion), functionality currently
missing from our motion model. Due to the fact that the ST process selects all
inputs that have contributed to a high level decision as belonging to the stimulus,
we expect the system to function correctly once this functionality is added.

3.4 Example 4 – Binding Color and Shape

The binding problem is often illustrated with images consisting of different ge-
ometric shapes, each of a different color [4]. Similar to the previous examples,
we will use red square and green diamond objects (see Fig. 4(a) top), and we
add a color detection pyramid (simple Gaussian blurring and downsampling).
The system will initially detect the presence of the different shapes and colors
by processing the whole image in parallel – Figs. 4(b) - 4(e) top. The attentional
WTA process will select one top-level representation (the red representation,
in this case), the ST process will localize the corresponding pixels in the input
image and inhibit all nearby pixels, thus enhancing the relative saliency of the
attended stimulus.

A second pass through the pyramids will refine the representation of the
selected object, and select all the (distributed) representations that belong to
it, while the green and diamond representations are strongly inhibited, thus
achieving binding – Figs. 4(b) - 4(e) bottom. Fig. 4(a) bottom represents the
difference between the activation of the red detector with and without attention,
and it can be observed that in the attended condition the representation that was
initially distributed (the dark inhibited area) is much more focused, as indicated
by the arrow. The initial representation corresponded to all the items in the

(a) (b) Red (c) Green (d) Square (e) Diamond

Fig. 4. Effects of attentional selection on colored shape stimuli. See text for details.
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field, but as a result of attention only the representations corresponding to red
square remain active, making binding possible.

4 Discussion

While the importance of space in binding is captured in the Feature Integration
Theory, high level representations, object- and feature-based attention mecha-
nisms are not easily integrated into FIT. In this paper we have presented an
original solution to the binding problem in visual perception, by recovering spa-
tial information from high level representations through Selective Tuning style
feedback. Another important contribution of this research is a process of recov-
ering spatial information that does not require a “master map” of locations or
any other separate representation of space. We have demonstrated this solution
through a number of examples, including the difficult cases of occlusion and
transparency. While these preliminary results are encouraging, the representa-
tions used (especially the shape recognition pathway) are very simplistic, and
significant work needs to be done to prove the generality of the solution. It is
important to observe that the mechanisms employed are very general, and could
potentially be applied in the context of very different object recognition schemes,
including structural and view based, as long as they have a multi-layer hierarchy
with pyramidal abstraction structure (e.g. [19,20]).

A recent study regarding the time course and processing sequence of form-
from-motion in humans using similar stimuli [21] concludes that dorsal activation
(area V5/MT) precedes ventral activation (areas LO and IT) by 50-60ms. This
time interval is consistent with the proposed mechanism [22]. The strongest in-
dications about the nature of the internal representations used in object/shape
perception comes from a series of imaging and neurophysiology experiments [23].
These results consistently show that for each in a very broad categories of stim-
uli, a small number of regions in IT become active, pointing to a sparse coarse
coding. In order to solve the binding problem for object recognition, the vari-
ous areas of activity corresponding to one stimulus must be selected together
[13], but this is very difficult if not impossible at the level of IT due to the
loss of spatial information. If, as indicated by recent studies (e.g. [24,25]), cat-
egoric information is available early in visual processing, the holistic nature of
this representation might be able to act as anchor for the mechanism proposed
in this paper, and select all the individual activations, while at the same time
inhibiting competing representations, thus increasing the signal-to-noise ratio of
the selected stimulus. The idea that attention binds together distributed corti-
cal activations at multiple levels of the visual hierarchy involved in processing
attended stimuli has recently received significant experimental support [26], and
reentrant connections between extrastriate areas and V1 are gaining support as
the substrate for attention and conscious perception – see [27] for a review.

Object recognition is one of the most important problems in computer vi-
sion, and in this context probably the biggest challenge is the representational
gap between low-level image features and high-level concepts such as generic
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models [28]. The proposal presented here allows a system to extract intermediate
level representations based on available/extractable information and perceptual
grouping, and use the feedback process to refine and bind together those inter-
mediate level representations that belong to the same object. This would create
a distributed sparse representation similar to that present in IT, representation
known to be optimal for maximizing the capacity of associative memory net-
works [17]. Given the representational gap that computer vision systems must
bridge, this method has the potential to make important contributions to the
field.
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Abstract. The paper presents a parallel system of two compound classifiers for 
recognition of the circular shape road signs. Each of the two classifiers is built 
of an ensemble of 1-nearest-neighbour (1-NN) classifiers and the arbitration 
unit operating in the winner-takes-all mode. For the 1-NN we employed the 
Hamming neural network (HNN) which accepts the binary input. Each HNN is 
responsible for classification within a single group of deformable prototypes of 
the road signs. Each of the two compound classifiers has the same structure, 
however they accept features from different domains: the spatial and the log-
polar spaces. The former has an ability of precise classification for shifted but 
non-rotated objects. The latter exhibits good abilities to register the rotated 
shapes and also to reject the non road sign objects due to its high false negative 
detection properties. The combination of the two outperformed each of the 
single versions what was verified experimentally. The system is characterized 
by fast learning and recognition rates. 

1   Introduction 

In this paper we present our approach to the recognition problem of simple planar 
objects encountered in natural scenes. Our objective was to build a road sign (RS) 
classification system for circular shape signs based on the a priori prototypes given in 
the printed regulation (or norm) exclusively. Thus we do not assume any additional 
training patterns; specifically we do not use real examples to train our classifiers. This 
assumption has its advantages and drawbacks at the same time: on the one hand it is 
very appealing since the same approach can be used in many different situations, e.g. 
we can easily exchange the input data base of patterns with the rest of the system 
untouched and without any need of tedious gathering of real examples and the 
training. On the other hand, we may not be able to recognize some objects if they 
differ significantly from their printed prototypes. However, we noticed that humans 
can do such operation with no difficulty – one can simply read and memorize a page 
of symbols and then recognize these patterns in natural scenes with no or negligible 
mistakes. Although colour information helps in many situations, we assume that the 
signs can be recognized solely from the grey valued images of the natural scenes. The 
motivation behind this assumption comes also from the fact that humans can perform 
such recognition without any problems. The second reason is simplification of the 
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processing path when dealing with scalar valued images only. However, colour plays 
a very important role in our system during RS detection from a natural scene [5]. 

Automatic detection and recognition of road signs have found much attention in 
the literature. For review one can refer to [4][7][10][17]. Usually the subject is 
divided into shape detection [3][5][10][4], then followed by classification, although a 
combined systems are also possible [2]. The back-propagation NN is proposed in 
[3][10]. The more robust classifier, which to some degree is resistive to occlusions 
and small shape rotations, is based on the Kohonen NN [3]. The other NNs which 
have been used for the sign recognition are the receptive field NNs [15], NNs with the 
radial basis functions [19], and the adaptive resonance ART NN [9]. 

The prototype based nearest-neighbours methods have been used with success in 
many classification systems since 1950s [12]. The great advantage of this class of 
methods comes from the potential incorporation of invariances under some 
transformation of input patterns. This is achieved by design of specific invariant 
manifolds in the pattern space and a metric used to measure the distances between 
elements in that space. Then, instead of Euclidean distance the distance of tangents is 
computed between feature points. Such approach, called a tangent distance, was 
devised by Simard for recognition of hand written digits [12]. 

In this paper we focus on the circular shaped RS from the group “B” and “C” of 
the Polish regulation system [18]. The other groups (“A” and “D”) of RS were 
addressed in previous publications [6]. The main difference between these groups is 
that triangular “A” and rectangular “D” signs can be registered by the detection 
module to the common base line and therefore can have only small vertical or 
horizontal shifts with which we can deal quite easily. On the other hand, the circular 
“B” and “C” signs can be rotated by small angles, a phenomenon which is quite often 
encountered in natural scenes. Thus we had to develop different means of 
preprocessing to deal with small rotations. In our approach we employ two different 
systems that can cope with shifted and rotated patterns. The first one operates in the 
spatial domain as described in [6]. The second one operates after the log-polar 
transformation which alters rotation and scale into translations in the output space 
[20]. The data base of our RS prototypes is transformed into log-polar representation 
with origin placed at a centre of gravity computed on grey valued signal. Then the 
log-polar representation is binarized. Finally, the binary representation is shifted to 
produce deformable models representing small variations of angle and scale. By this 
we implement the idea of “hints” proposed in [1]. 

Based on the assumption of a single prototype for each pattern we decided to use 
the 1-nearest-neighbour approach for classification [12][8]. In this class of methods 
the training prototypes can be seen as points in the feature space. Each prototype point 
has associated a label; When a query pattern is put into the classifier it responds with 
the closest pattern in the sense of employed metric in that space. Each expert classifier 
in the system is responsible for recognition of all road signs from the group, however 
under a single deformation.  

Since we have only one prototype per pattern, we expect some degree of 
generalization from our experts. In our system they are implemented as Hamming 
neural networks that efficiently compute the Hamming distance among binary 
patterns. The expert classifiers are then formed into a committee machine orchestrated 
by the winner-takes-all rule. 
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2   Feature Collection 

Fig. 1. presents the stages of feature selection for the classifiers. There are two paths: 

1. The binarized features from the original input space; 
2. The binarized features from the log-polar representation of an input image; 

 

Fig. 1. Feature selection path in our system 

The shape registration is performed by affine image transformation, as follows:  
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where x=(x1,x2,x3)
T is a point in homogeneous coordinate system, A is the 

warping(affine) matrix, and x̂  denotes a point x after the warping. A value at x is 
determined by a bilinear interpolation, while matrix A by solving the linear system of 
equations composed from at least three non co-linear points. For circular shaped 
objects these are three corner points of a rectangle delimiting that shape – see Fig. 2. 

 
Fig. 2. Registration of the circular shapes by an affine mapping and interpolation 

The points P1-P3 are mapped to 
1 3P - P  as follows: 
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where B=A-1. The mapping with the matrix B is more practical since it allows the 
inverse warping scheme. To find B we need at least three pairs of matched points:  
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(3) 

where bij are elements of B. The above can be written as follows: 

Pb = P  (4) 

where b9×1 contains aligned elements of B, 9 9×P and P9×1 are given in (3). 

  The log-polar transformation is given by the following equations [20]: 

( ) ( )( )2 2

0 0logLr x x y y= − + − , (5) 

0
0

0

arctan ,
y y

for x x
x x

ϕ −
= ≠

−
 (6) 

for a point (x,y), where C=(x0,y0) is a centre of transformation, L denotes base of a 
logarithm – it can be any positive value different from 1.0, however in practice it is 
chosen as to fit the maximum value of rmax to the maximal distance from the centre C 
and any point in the input image. 

In our system we used an inverse warping scheme when transforming to the log-
polar representation. In this scheme for a point in the output image a point in the input 
is computed and the value is interpolated (we used a bilinear interpolation). So, we 
had to use an inverse log-polar transformation given as follows: 
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ϕ

ϕ ϕ
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As alluded to previously, L is chosen as follows: 

( )max
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ln
exp

2

d
L

r
= . (8) 

where dmax=(xmax-x0)
2+(ymax-y0)

2 is the maximal distance of a point from the centre. In 
our system we set the same size of an input image as well as its log-polar 
representation. In the latter the values of r and ϕ are quantized appropriately. In our 
experiments the centre C for the log-polar transformation is found as a centre of 
gravity C=(x0,y0)=(m10/m00, m01/m00) where m10, m01, and m00 are 2D moments [16].  
Fig. 3. depicts relation of a rotation in the original space versus vertical image trans-
lation in the log-polar space on the example of the B-13a sign of resolution 164×164. 
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-22° -10° 0 10° 22° 

     

     

Fig. 3. Rotation in the input space is translation (vertical shift) in the log-polar space 

The binarization process is carried out in the direct and log-polar spaces. However, 
it reflects intensity distribution of the original image. The binarization method must 
be the same for the whole class of images since for an input pattern we don’t know 
beforehand what class it belongs to. In experiments the good results for the “B” group 
were achieved when binarization led to partitioning into white/non-white areas. In our 
experiments we found out that the best results are obtained with the following 
binarization methods: 

1. Binarization around the median intensity value for the log-polar space; 
2. Binarization around the mean intensity value for the (direct) feature space. 

The sampling of the binarized version of a sign is performed line by line with a 
predefined horizontal and vertical margins (for 64×64 signs the margins are 4 and 4). 

3   The 1-Nearest Neighbour Neural Classifier 

The prototype and nearest-neighbours methods belong to the very common group of 
model-free classifiers [12]. These are called also memory-based methods since all the 
 

 

Fig. 4. The binary (Hamming) neural network 
as a classifier-expert module 

prototypes have to be stored prior to the 
recognition process.  The classification is 
then based on finding the closest 
prototypes and majority voting scheme. 
 For the binary inputs the very 
practical elementary single classifier 
showed to be the Hamming NN (HNN) 
[14]. In our system the HNN in Fig. 4.  
constitutes the basic building block of 
more complex classifiers. Each instance 
of HNN is designated for classification 
within a single group of deformations of 
the reference prototypes [6]. Training of 
the input layer consists of copying 
reference patterns into the weights of the 
matrix Wpn in Fig. 4. : 
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, 1i i i p= ≤ ≤w x  (9) 

where p is the number of input patterns-vectors x, each of the same length n, wi is the 
i-th row of the matrix W of dimensions p rows and n columns. The recursive layer N2. 
(Fig. 4) selects a winning neuron. Mpp is initialized with negative values  

( ) ( ) 1
, 1 , 1 , , 1kl km t p t for k l for k l where k l p pε −= = − − ≠ = ≤ ≤ >  (10) 

where t is a classification time step, except the main diagonal which is set to 1.0 [11]. 
 During the classification phase, the layer N1. of neurons computes the Hamming 
distance between the input pattern z and the training patterns, as follows: 

( ) ( )1, 1 , , 1i Hb n D i p−= − ≤ ≤iz W z w  (11) 

where bi∈[0,1] is a value of an i-th neuron in the N1. layer, DH(z,wi)∈{0,1,...,n} is the 
Hamming distance. The N2. layer selects only one winning neuron in the process: 

[ ] [ ] [ ] [ ]
1 1,

1
n n

i ij j i ij j
j j i j

a t m a t a t m a tϕ ϕ
= = ≠

+ = = +  (12) 

where ai[t] is an output of the i-th neuron of the N2. layer at the iteration step t, and 
ϕ(x)=x for positive x and takes on 0 elsewhere. 

The same winner-takes-all strategy is applied also in the arbitration unit to select a 
winning classifier (see Fig. 6). Some modifications are presented in [6]. 

4   The Combined Classifier for the Road Sign Classification 

During experiments we noticed that classification exclusively in the log-polar space 
with binary inputs does not show the acceptable level of precision. This is caused by a 
fact of nonlinearity near the centroid of the processed sign (i.e. for small values of r) 
and also by the binarization. 

 

Fig. 5. Architecture of the system. Two ensembles of classifiers: log-polar and spatial domains. 

The problem could be alleviated if the prototypes and test images had enough 
resolution. However, in such a case the number of features grows rapidly (a curse of 
dimensionality) what is not acceptable for the recognition with deformable models. 
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The log-polar classifier exhibits many desirable properties, as for instance low level 
of false negative matches [13].  

On the other hand, the part of the system operating directly in the spatial domain 
also exhibits number of limitations [6]. Therefore we decided to build a combined 
system of classifiers, composed of the log-polar and the spatial domain classifiers 
operating in parallel – Fig. 5. A pattern is properly recognized if and only if the two 
recognition modules give the same answer. Otherwise a pattern is rejected. 

 

Fig. 6. Recognition module. Deformable prototypes are generated during the training phase. 

The practical advantage of this system is that the two compound classifiers 
(ensembles of experts in Fig. 5,) have exactly the same structure which is depicted in 
Fig. 6. The only one difference is the processing space. The same is also the scheme 
of generation of deformable patterns from the reference prototypes: In both cases we 
generate only horizontally and vertically shifted versions of a pattern. For log-polar 
space transformations horizontal shifts denote rotation in the spatial space, while 
vertical – change of scale. 

To cope with all possible deformations that a road sign can experience in real 
scenes we would need to generate deformations with three different parameters (two 
shifts plus rotation). However, this would result in excessive number of classifiers 
(experts) in the recognition modules. To avoid such situation we employ the serial-
parallel approach for generation of the deformable patterns. Thus, deformations of 
two parameters are embedded into the ensemble of classifiers whereas the third one 
controls sequential deformations of the input pattern. For the recognition module 
operating in the log-polar space the embedded are shifts of the log-polar patterns (this 
is equivalent to variations of the angle and scale) while sequentially are generated 
minor shifts of the input pattern prior to being log-polar transformed. The situation is 
just reversed for the recognition module operating in the spatial domain. In this case 
the spatial shifts are embedded into the ensemble of classifiers whereas the input 
pattern is sequentially rotated before put into the classifiers. Such mixed operation 
was possible due to very fast response of the ensemble of classifiers [6]. 

The arbitration unit follows the already described winner-takes-all strategy (3) 
augmented by the mechanism promoting the most numerous group of unanimous 
experts; details given in [6]. 
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5   Experimental Results 

The system was implemented with the C++ and tested on the IBM PC with Pentium 4 
3.4G and 2GB RAM. The system has two types of detectors for the circular signs: 
The first is based on the structural tensor [5] and is used during classification; The 
second is a manual detection where a user selects a rectangle containing a sign. It was 
used to create the data base of the “B” and “C” prototypes from their formal 
specification (Fig. 7a) [18]. From experiments we determined the optimal size of a 
single (binary) reference image to 64×64 pixels. This gives 2756 bits for each pattern 
in log-polar Fig. 7 b and spatial Fig. 7c representations. This is also a number of input 
neurons for each of the experts (Fig. 4). The smaller sizes gave much worse results 
because of lack of sufficient salient features. In this case classification was also more 
problematic since many different patterns had the same binary distance. On the other 
hand, bigger sizes gave little better results, however at increased computation costs.  

 a  b  c 

Fig. 7. The data base of the group “B” of RS: prototypes (a), log-polar (b), spatial features (c) 

We tested the system for the groups “B” and “C” of road signs. Our maximal setup 
was as follows: 

1. In the log-polar module for the ensemble of classifiers we had only vertical shifts 
(which correspond to the rotations in the spatial domain) from -8 to +8 (±45°) with 
a step of 2. The sequential change was limited to the ±4 pixels vertical and 
horizontal shifts with 2 pixels step of the input pattern before the log-polar. This 
gave a total of 9⋅5⋅5=225 tested deformations. The average exec. time was 0.9 s. 

2. In the spatial domain the ensemble of classifiers supports ±8 pixels vertical and 
horizontal shifts whereas the input pattern was sequentially rotated from -30° to 
30° with a step of 5°. This gave a total of 9⋅9⋅13=1053 possible deformations. 
The average execution time was also 0.9s due to lack of log-polar computations. 

To assess quality of the system our methodology consists of measuring Precision 
vs. Recall from the two sets of road signs data-bases (DBs):  

1. The first DB consist of 50% of deformable (-8 to 8 pixels shifted, -15-15° 
rotations with 5° step) road signs that were used during the system training and 
50% of non-road-signs. Each image was added the Gaussian noise at certain 
level. Results are presented in Table 1 for different peek-signal-to-noise (PSNR). 
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Table 1. RS recognition accuracy from the DB with 50/50 of road-signs and non-road-signs 
images (4900 total). These road-signs were also used to train the system (LP = log-polar). 

Parameters “B” LP + spatial “B” spatial “C” LP + spatial “C” spatial 
PSNR[dB] Prec. Recall Prec. Recall Prec. Recall Prec. Recall 
100 1.0000 0.8922 0.5998 1.0000 1.0000 0.9005 0.6601 1.0000 
80 1.0000 0.8788 0.6061 0.9900 1.0000 0.8788 0.6990 0.9833 
70  1.0000 0.8149 0.6171 0.9890 1.0000 0.8147 0.6712 0.9901 
60  0.9700 0.7700 0.5499 0.9747 1.0000 0.8454 0.6005 0.8999 
50  1.0000 0.8113 0.5501 0.9600 0.9990 0.8740 0.5998 0.9213 

2. The second DB is also 50/50, however the road-signs are taken from the real 
scenes. The Gaussian noise was also added. Results are contained in Table 2. 

We found also that the best results are if the acceptance threshold is 0.001 (i.e. all 
lower scores are rejected) in the log-polar ensemble. For the ensemble operating with 
the spatial features this acceptance threshold is 0.05 - higher values of this parameter 
caused fall of recall value, since some “good” objects are classified as “don’t know”.  

Table 2. Road signs recognition accuracy from the DB with 50/50 of road-signs and non-road-
sign images (400 total). These road-signs in the DB where extracted from the real road scenes. 

Parameters “B” LP + spatial “B” spatial “C” LP + spatial “C” spatial 
PSNR[dB] Prec. Recall Prec. Recall Prec. Recall Prec. Recall 
100 0.8560 0.8239 0.4390 0.8990 0.7789 0.8911 0.6995 0.9211 
80 0.8000 0.7996 0.4400 0.8171 0.7698 0.8910 0.6633 0.9049 
70  0.7987 0.8013 0.4004 0.8200 0.7735 0.8880 0.6278 0.9002 
60  0.7503 0.8200 0.3550 0.7998 0.6990 0.8100 0.5890 0.8756 
50  0.7299 0.7098 0.3000 0.7099 0.6500 0.7927 0.5520 0.8234 

Table 2 presents results of recognition accuracy for real images. The results are 
quite promising, although due to some geometric deformations and intrinsic noise 
they are a little bit worse than the presented in Table 1. For both tables it is visible 
that the system with the LP exhibits much better Precision at a little lower Recall 
compared to the version with the single classifier operating in the spatial domain only. 

6   Conclusions 

The paper presents a neural system for recognition of the circular road signs of the 
“B” and “C” groups. It is a part of the complex system for the advanced driving 
assistance. The recognition is performed by two committee machines operating in the 
spatial and log-polar input spaces, respectively. Both committee machines are built of 
the HNN operating as 1-nearest-neighbour classifiers. They operate on deformed 
versions of the input prototypes. In both cases the deformations are horizontal and 
vertical shifts – in the log-polar space they mean rotation and scale change in respect 
to the spatial domain. The crucial for the system is proper operation of the detector 
and feature extraction modules. In our system the input images were preprocessed by 
a simple binarization around the median (for the log-polar) and mean intensities. This 
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helped in data reduction however at a cost of the system performance (some signs can 
not be detected due to low feature discrimination). Thus, a future improvement can be 
achieved with most discriminative feature detectors. 

Nevertheless, the experiments showed low computational demands, fast execution 
and high robustness of the system which allows reliable classification of the circular 
RS even from the highly deformed or partially occluded (<15% of occlusions) inputs. 
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Abstract. In this paper a robust regions-of-suspicion (ROS) diagnosis system 
on mammograms, recognizing all types of abnormalities is presented and evalu-
ated. A new type of statistical descriptors, based on Independent Component 
Analysis (ICA), derive the source regions that generate the observed ROS in 
mammograms. The reduced set of linear transformation coefficients, estimated 
from ICA after principal component analysis (PCA), compose the features vec-
tor that describes the observed regions in an effective way. The ROS are diag-
nosed using support-vector-machines (SVMs) with polynomial and radial basis 
function kernels. Taking into account the small number of training data, the 
PCA preprocessing step reduces the dimensionality of the features vector and 
consequently improves the classification accuracy of the SVM classifier. Exten-
sive experiments using the Mammographic Image Analysis Society (MIAS) da-
tabase have given high recognition accuracy above 87%. 

1   Introduction 

Breast cancer has been a leading cause of fatality among all cancers for women. X-ray 
mammography is the most effective, low-cost, and highly sensitive technique for 
detecting small lesions [1]. The radiographs are searched for signs of abnormality by 
expert radiologists but complex structures in appearance and signs of early disease are 
often small or subtle. That’s the main cause of many missed diagnoses that can be 
mainly attributed to human factors [1,2]. However, the consequences of errors in 
detection or classification are costly, so there has been a considerable interest in de-
veloping methods for automatically classifying suspicious areas of mammography 
tissue, as a means of aiding radiologists by improving the efficacy of screening pro-
grams and avoiding unnecessary biopsies.  

Among the various types of breast abnormalities clustered microcalcifications and 
mass lesions are the most important ones. Masses and clustered microcalcifications 
often characterize early breast cancer [3] that can be detectable before a woman or 
the physician can palp them. Masses appear as dense regions of varying sizes and 
properties and can be characterized as circumscribed (Fig 1a), spiculated (Fig 1b), or 
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ill defined (Fig 1c). On the other hand, microcalcifications (Fig 1f), appear as small 
bright arbitrarily shaped regions on the large variety of breast texture background. 
Finally, asymmetry, and architectural distortion (Fig 1e-d), are also very important 
and difficult abnormalities to detect.  

a b c d e f 

Fig. 1. Types of breast cancer on mammograms 

Computer-aided methods in the field of digital mammography are divided into two 
main categories; computer aided detection methods [4-6] that are capable of pinpoint-
ing regions of suspicion (ROS) in mammograms for further analysis from an expert 
radiologist and computer aided diagnosis methods [5-7] which are capable of making 
a decision whether the examined ROS consist of abnormal or healthy tissue. How-
ever, the development of methods for recognizing the identity of a ROS and the ex-
ploration of other types of classifiers [8,9], especially in the case of all kinds of ab-
normalities has been very limited [7,10]. In this study, a method to classify regions of 
suspicion (ROS) that contain abnormal or healthy tissue using Support Vector Ma-
chines (SVM) is proposed.  

SVMs is a new technique for data classification and regression, which has gained 
great interest during the last decade [11,12]. The main idea behind SVMs for classifi-
cation is to map the input space into a feature space of much greater dimension and 
then construct a hyperplane in such a way that the margin of separation is maximized. 
However this is the ideal scenario and it has to be slightly modified to encompass the 
non-separable case. In that case the SVM can provide a good generalization perform-
ance and seems to be quite insensitive to overfitting.  

An important role in the performance of the SVM plays the selection of the so 
called “inner-product kernel”. Depending on how this kernel is generated, different 
machines with different nonlinear decision surfaces in the input space can be con-
structed (in the feature space the decision surface is always a hyperplane). The most 
common machines are the polynomial learning machines, the radial basis function 
networks and two layer perceptrons [12]. In this study, the polynomial learning ma-
chines and the radial basis function implementation is evaluated for the binary classi-
fication problem of discrimination between abnormal and healthy tissue in digital 
mammograms.  

The descriptors of normal and abnormal tissue were estimated directly from the 
image data using ICA, a signal processing technique employed in various signal proc-
essing applications [13]. The purpose of ICA is to estimate a linear non-orthogonal 
coordinate system in multivariate data. The directions of the axes are determined not 
only by the data’s first and second order statistics, but also by higher order statistics. 
In our approach we consider the normal and the abnormal regions of mammograms to 
be generated by a set of independent images, namely the source regions that are  
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estimated using standard ICA techniques. The coefficients of the linear combination 
of the independent source regions are the features that are fed into the SVM classifier. 
Additionally, a preprocessing step implementing Principal Component Analysis 
(PCA) is presented for reducing the dimensionality of these features without affecting 
the classification accuracy. Extensive experiments have shown great accuracy of 
87.39% in recognizing normal and abnormal breast tissue in mammograms which is 
similar to the performance of neural network classifiers [7]. 

The structure of this paper is as follows: In the next section, a detailed description 
of the features extracted from mammograms using ICA techniques is given. Addi-
tionally, the implemented technique for reducing the dimensionality of the extracted 
features is presented. In section 3, a brief description of the SVM classifier is given. 
In section 4 the data set and the experimental results are presented and finally, in 
section 5 some conclusions are provided. 

2   Feature Extraction from Mammograms 

2.1   ICA Based Feature Extraction 

The aim of the proposed feature extraction technique is to estimate a set of descriptors 
that can be used to describe the healthy and tumorous regions of mammograms in an 
effective way. To this direction, we assume that the observed regions of mammo-
grams are generated by a linear combination of an unknown set of statistically inde-
pendent source regions according to the equation 

SAX ⋅= , (1)

where A is the mixing matrix that generates the X observed regions from the S inde-
pendent source regions, with the coefficients used in the linear combination being in 
the rows of A. These coefficients are employed as feature descriptors that describe 
uniquely the abnormal and the normal regions in X, in a most fitting way. The source 
regions are estimated using standard ICA techniques as follows:  

Let us consider a set of N regions of mammograms used for the training procedure, 
containing normal and abnormal tissue with dimensions KxL pixels. The regions are 
first converted to one-dimensional vectors with length D={KxL}. These vectors form 
the rows of the observation matrix Xtrain with dimensions NxD and are fed into the 
ICA neural network seen in Figure 2.  

The source regions are estimated by: trainXWS ⋅= , where W is the NxN ICA sepa-

rating matrix. To estimate this matrix in an unsupervised manner, we have applied the 
Maximum Likelihood Estimation criterion (MLE). The log-likelihood of the observed 
regions is given by: 

( ) ( ))(loglog));(log( SpWWXpL StrainX +== (2)

The weights of the ICA network are estimated using the stochastic gradient of L 
with respect to the matrix W:
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Fig. 2. The ICA based feature extraction scheme for the training procedure 
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function of the ith source region. The marginal pdf of the source regions was chosen 
experimentally to follow the hyperbolic cosine distribution with pi(si;W)∝ 1/cosh(si), 
so )tanh()( ii ss = . From equation (3) and using the natural gradient approach, we 

conclude to the following weight adaptation rule for W: 
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By applying the above learning rule, we can find the separating matrix W with dimen-
sions NxN and the N independent source regions in the matrix S with dimensions 
{KxL}. The features that are used to describe the observed regions of mammograms 

are contained in the rows of the inverse of the separating matrix 1−= WAtrain . 

Fig. 3. The ICA based feature extraction scheme for the testing procedure 
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For the testing procedure presented in Figure 3, each observed ROS is generated by 
a linear combination of the learned source regions S using the coefficients 

#SXA testtest ⋅= , where the operator # denotes the pseudoinverse of a matrix. The 

feature vectors in Atest are then fed into the SVM classifier and the final decision is 
made whether the tested ROS is normal or abnormal. 

2.2   Dimensionality Reduction 

The dimensionality of the extracted features depends strongly on the number of the 
regions used in the training procedure. In case of a large training set, the dimensional-
ity of the extracted features vector increases enormously, which complicates the task 
of the implemented classifier. On the other hand, when using a small training set, the 
performance of the ICA network deteriorates and the independent source regions 
cannot be estimated correctly. In order to face this problem a PCA preprocessing step 
is added. In this case, instead of performing ICA on the N observed regions, ICA is 
applied on a subset of K linear combinations where K<N. This technique does not 
significantly affect the ICA network’s performance, as the initial regions have been 
replaced with another linear combination. The use of the PCA preprocessing step does 
not destroy the higher order relationship between the initial regions, but eliminates 
only the second order dependences (same as the whitening technique). The higher 
order relations still exist in the data and are not separated.  

PCA can be implemented using eigenvalue decomposition on the covariance ma-
trix of the observed regions in Xtrain. Let P be the matrix DxN with the N principal 
components in its columns, sorted by descending order with respect to their variances. 
By taking the first K more significant principal components and performing ICA on 
the data in PT coefficients, the K independent source images in the rows of S are esti-
mated. The new feature vectors of the observed regions in Xtrain are determined as 
follows: 

The representation Rm of Xtrain based on the principal components in P is defined as 
PXR trainm ⋅= . The regions in Xtrain can be approximated using the minimum squared 

error [14] as T
mrec PRX ⋅= . By applying the rule in equation (4) on the first K prin-

cipal components, the matrix W is estimated such that TPWS ⋅= , therefore 

SWPT ⋅= −1 . Using the above equation we find that SWRPRX m
T

mrec ⋅⋅=⋅= −1 .

The rows of the transformation matrix  
1−⋅= WRB mtrain (5)

contain the coefficients of the linear combination of the statistically independent re-
gions in S that generate the observations in Xrec, therefore they can be used as feature 
vectors with reduced dimensionality K to describe the observed regions in a compact 
and more efficient way. 

In the testing procedure, each region in Xtest is processed with the principal compo-
nents Pm estimated from the training procedure mtesttest PXR ⋅= . The feature vector is 

calculated by 
1−⋅= WRB testtest . (6)
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3   Support Vector Machines 

SVMs are learning systems that are trained using an algorithm from optimization 
theory [11]. The main idea behind SVMs, when dealing with a pattern classification 
problem, is to find an “optimal” hyperplane as the solution to the learning problem. 
By the term “optimal”, it is suggested that for a separable classification task, the hy-
perplane (w, b) with the maximum margin from the closest data points belonging to 
the different classes is selected. 

Consider a data set ( ){ }n
iii yD 1, == x  of labeled examples { }1,1−∈iy . In the simple 

case of linearly separable patterns, a hyperplane 0=+⋅ oo bxw can be constructed 

where the vector ow minimizes 2

2

1
w subject to the constraints  

( )( ) 1≥+⋅ by ii xw ni ,...,1= (7)

As a linear function is often not adequate in real problems to perform this separa-
tion, a mapping of the input space into a high dimensional feature space is involved 
via a non linear mapping ( )⋅ . Therefore for each training example ix , a non-linear 

mapping ( )ix  is considered, and in order to achieve perfect classification the follow-

ing condition should be satisfied 

( )( )( ) 1≥+⋅ by ii xw φ ni ,...,1= (8)

Still the quantity to be minimized is 2

2

1
w . However, only the mapping into a 

higher feature space through a nonlinear function does not guaranty perfect separation 
of the classes, therefore we can introduce slack-variables i that measure the deviation 
of a data point from the ideal condition of pattern separability and relax the hard mar-
gin constraints as follows: 

( )( )( ) iii by ξφ −≥+⋅ 1xw , 0≥iξ , ni ,...,1= (9)

allowing some misclassifications. Now the new quantity that has to be minimized is 

=
+

n

i
iC

1

2

2

1 ξw , (10)

where C  is a positive user specified parameter that penalizes margin errors, i.e. pat-
terns that lie within the margin as well as those that are on the wrong side of the deci-
sion surface. The solution to this optimization problem subject to the constraints is 
given by the saddle point of the primal Lagrangian equation:   

( ) ( )( )( )
===

−+−+−+=
n

i
i

n

i
ii

T
ii

n

i
i

T
p byCbL

111
1

2

1 βξξαξ xwww,,,w, (11)

This leads to the dual maximization problem of the dual Langrangian equation: 

( ) ( ) ( )( )ii

n

ji
jiji

n

i
id yyL xx ⋅−=

== 1,1 2

1 ααα (12)
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subject to the constraints 

=
=

n

i
ii y

1
0α  and 0≥≥ iC α   , ni ,...,1= (13)

The solution of the above optimization problem leads to the “optimal” discriminat-
ing function: 

( ) ( ) ( )( )
1

n
T

i i i
i

f sign y a b
=

= +x x x (14)

The points for which 0ia >  are called Support Vectors and they are usually a 

small portion of the original data set. The inner product in the feature space can be 
written in the form of: 

( ) ( ) ( ),T
i j i jK=x x x x (15)

where K is called the inner-product kernel. Instead of calculating the inner product in 
the feature space T(xi) (xj), one can indirectly calculate it using the kernel function 
K(xi, xj). Therefore, by selecting an appropriate symmetric positive semi-definite 
kernel function, it is not necessary to know the actual mapping [12]. 

Depending on the choice of the kernel function, different learning machines with 
different nonlinear decision surfaces can be constructed. Among others the most 
popular are the polynomial learning machines, the radial basis function networks and 
the two-layer perceptrons. In our experimental procedure we have employed polyno-
mial learning machines (the power p is specified a priori by the user [15,11]) 

niK p
i

T
i ,...1,)(),( =+= 1xxxx (16)

and radial basis function machines (the width 2, which is common to all kernels is 
specified also a priori by the user [15])  

niK ii ,...1),
2

1
exp(),(

2
2

=−−= xxxx
σ

(17)

4   Experimental Results 

4.1   The MIAS Data Set 

In our experiments the MIAS MiniMammographic Database [16], provided by the 
Mammographic Image Analysis Society (MIAS), was used. The mammograms are 
digitized at 200- micron pixel edge, resulting to a 1024x1024-pixel resolution.  

In the MIAS Database there is a total of 119 ROS containing all kinds of existing 
abnormal tissue from masses to clustered microcalcifications. The smallest abnormal-
ity extends to 3 pixels in radius, while the largest one to 197 pixels. These 119 ROS 
along with another 119 randomly selected sub-images from entirely normal mammo-
grams were used throughout our experiments.  
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4.2   Classification Results 

From a total number of 238 ROS included in the MIAS database, 119 regions are 
used for the training procedure (jackknife method): 60 groundtruthed abnormal re-
gions along with 59 randomly selected normal ones. In the evaluation procedure, the 
remaining 119 regions are used that contain 59 groundtruthed abnormal regions to-
gether with 60 entirely normal regions. Therefore, no ROS was used both in the train-
ing and testing procedure.  

In order to reduce the dimensionality of the extracted feature vectors (119 dimen-
sional), we implemented the PCA preprocessing step as described earlier. The princi-
pal components were estimated by calculating the eigenvectors of the covariance 
matrix of the training set. ICA was then performed successively on the first 5 to 15 
most significant of these eigenvectors, which resulted in 5 to 15 dimensional feature 
vectors and 119 independent source regions with 1125 pixels length. These features 
were used to train the implemented SVM classifier. 

For the testing procedure, the remaining 119 ROS were first preprocessed with the 
eigenvectors estimated from the previous step and then their features were extracted 
using equation (6). 

The extracted features were used in the SVM classifier, the percent recognition rate 
of which is shown in Table 1. Specifically, the implemented feature extraction tech-
nique, resulted in features that can describe effectively both healthy and tumorous 
regions achieving high recognition accuracy above 80% in all of the cases. The best 
results were obtained when using only 5 principal components, derived in the PCA 
preprocessing step, which resulted in an extremely low-dimensionality feature vector 
and a low complexity neural and SVM classifier, achieving a total recognition accu-
racy of 87.39% in the SVM-RBF kernel configuration.  

On the other hand, in order to find the best configuration for our SVM classifier 
(the values for (p,C) for the case of polynomial machine and ( 2,C) for the RBF ma-
chine where the recognition accuracy is maximized), a “grid-search” approach was 
used in a systematic manner with different values for the parameters followed by a 
cross validation to pick the best combination. 

In detail, the SVM based classifier using the RBF kernel recognized correctly 53 
out of 59 abnormal and 51 out of 60 normal ROS, giving a total number of 104 out of 
119 correct classifications for the case we retain the five most significant principal 
components. The SVM based classifier using the Polynomial Learning Machines 
recognized correctly 50 out of 59 abnormal and 49 out of 60 normal ROS, giving a 
total number of 99 out of 119 correct classifications. These were obtained using a 
polynomial kernel of degree 2.  

Further experiments were performed using more than 15 components in the PCA 
preprocessing step, but the results showed no further improvement of the recognition 
accuracy. The experimental results using the complete features set (the 119 dimen-
sional features vector) without the PCA preprocessing step showed a recognition 
accuracy far below that achieved when only the first 5 principal components were 
used.  

The SVM based classifier’s accuracy can be compared to that of the Radial Basis 
Function neural networks [7] (total of 88.23% recognition rate; 88.13% for normal 
tissue and 88.33% for the abnormal one) when used on the exact same descriptors.  
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Table 1. Recognition accuracy for the ICA features and both types of SVM kernels 

 15 components 10 components 5 components

Normal 81.66% 81.66% 81.66% 

Abnormal 83.05% 84.74% 84.74% 
Polynomial 
Learning 
Machines 

Total 82.35% 83.19% 83.19% 

Normal 81.66% 81.66% 85% 

Abnormal 88.13% 88.13% 89.83 % RBF kernel 

Total 84.87% 84.87% 87.39 % 

5   Conclusion 

In this paper we investigated the performance of a classifier based on Support Vector 
Machines and a new set of statistical features based on ICA, in the problem of recog-
nizing breast cancer in ROS of digital mammograms. It is well known that the disease 
diagnosis on mammograms is a very difficult task even for experienced radiologists 
due to the great variability of the mass appearance. The experimental results showed 
quite similar accuracy for both implemented SVM kernels (RBF and polynomial 
kernels) when used to recognize all different types of breast abnormalities. Neverthe-
less, the achieved recognition accuracy is promising and needs to be improved in 
order to become a great assistance for radiologists in their diagnosis.  

References 

1. Martin, J., Moskowitz, M. and Milbrath, J.: Breast cancer missed by mammography. AJR, 
Vol. 132. (1979) 737 

2. Kalisher, L.: Factors influencing false negative rates in xero-mammography. Radiology, 
Vol.133. (1979) 297 

3. Tabar, L. and Dean, B.P.: Teaching Atlas of Mammography.2nd edition, Thieme, NY (1985) 
4. Christoyianni, I., Dermatas,  E., and Kokkinakis, G.: Fast Detection of Masses in Com-

puter-Aided Mammography. IEEE Signal Processing Magazine, vol. 17, no 1. (2000)  
54-64 

5. Sonka, M., Fitzpatrick, J. : Handbook of Medical Imaging. SPIE Press (2000). 
6. Doi, K., Giger, M., Nishikawa, R., and Schmidt, R. (eds.): Digital Mammography 96. El-

sevier  Amsterdam (1996)  
7. Christoyianni, I., Koutras, A., Dermatas,  E., and Kokkinakis, G.: Computer Aided Diag-

nosis of Breast Cancer in Digitized Mammograms”, Computerized Medical Imaging and 
Graphics. Elsevier, vol. 26, no 5. (2002) 309-119 

8. Bazzani, A., Bevilacqua, A., Bollini, D., Brancaccio, R., Campanini, R., Lanconelli,  N., 
Riccardi, A., Romani, D., Zamboni, G. : Automatic detection of clustered 
microcalcifications in digital mammograms using a SVM classifier. European Symposium 
on Artificial Neural Networks, Bruges, Belgium,  (2000) 195-200 



 Computer Aided Classification of Mammographic Tissue Using ICA and SVMs 577 

9. Wei L., Yang Y., Nishikawa R. M., Jiang Y., “A Study on Several Machine-Learning 
Methods for Classification of Malignant and Benign Clustered Microcalcifications”, IEEE 
Transactions on Medical Imaging, pp. 1-10, Jan 2005. 

10. Christoyianni, I., Dermatas, E. and Kokkinakis, G.: Neural Classification of Abnormal Tis-
sue in Digital Mammography Using Statistical Features of the Texture. IEEE Int. Confer-
ence on Electronics, Circuits and Systems. vol 1, (1999) 117-120 

11. Sch lkopf, B., Burges, C.J.C. and Smola, A.J.: Advances in Kernel Methods. Support 
Vector Learning. London The MIT Press (1999). 

12. Burges, C.J.C : A Tutorial on Support Vector Machines for Pattern Recognition. Data min-
ing and Knowledge Dicovery. vol. 2. (1998) 121-167 

13. Lee, Te-Won: Independent Component Analysis: Theory and Applications. Kluwer Aca-
demic Publishers (1998) 

14. Bartlett, M., Lades, M., Sejnowski, T.: Independent component representation for face 
recognition. Proc. SPIE Symposium on Electronic Imaging: Science and Technology 
(1998) 

15. Haykin, S.: Neural Networks: A Comprehensive Foundation. Englewoo Cliffs, NJ: Pren-
tice Hall, (1999) 

16. http://peipa.essex.ac.uk/info/mias.html 



S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 578 – 586, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Growing Neural Gas for Vision Tasks with Time 
Restrictions 

José García, Francisco Flórez-Revuelta, and Juan Manuel García  

Department of Computer Tecnology and Computation. University of Alicante.  
Apdo. 99. 03080 Alicante, Spain 

{jgarcia, florez, juanma}@dtic.ua.es 

Abstract. Self-organizing neural networks try to preserve the topology of an 
input space by means of their competitive learning. This capacity is being used 
for the representation of objects and their motion. In addition, these applications 
usually have real-time constraints. In this work, diverse variants of a self-
organizing network, the Growing Neural Gas, that allow an acceleration of the 
learning process are considered. However, this increase of speed causes that, in 
some cases, topology preservation is lost and, therefore, the quality of the repre-
sentation. So, we have made a study to quantify topology preservation using 
different measures to establish the most suitable learning parameters, depending 
on the size of the network and on the available time for its adaptation.  

1   Introduction 

Self-organizing neural networks, by means of a competitive learning, make an adapta-
tion of the reference vectors of the neurons, as well as, of the interconnection network 
among them; obtaining a mapping that tries to preserve the topology of an input 
space. Besides, they are able of a continuous re-adaptation process even if new pat-
terns are entered, with no need to reset the learning.  

These capacities have been used for the representation of objects [1] (figure 1) and 
their motion [2] by means of the Growing Neural Gas (GNG) [3], that has a learning 
process more flexible than other self-organizing models, like Kohonen maps [4].  

These two applications, representation of objects and their motion, have in many 
cases high temporal constraints, reason why the adaptation of the network within the 
available time cannot be assured. This is feasible by modifying the learning parame-
ters of the GNG to conclude into the deadline. Nevertheless, this can affect the quality 
of the adaptation, measured as the topology preservation of the input space [5]. 

In other applications, no deadline has to be accomplished, but it is allowed the in-
terruption of the adaptation. This means that to give a correct representation of the 
input space, a good preservation of the topology should be maintained throughout the 
learning process. 

In this work first we present in section 2 the original algorithm of GNG and the dif-
ferent learning parameters and conditions of finalization tested for different input 
spaces, in section 3 we present different topology preservation measures for self-
organizing maps, next in section 4 the results of the experiments are showed and fi-
nally we extract some conclusions from the experiments and further work.  
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Fig. 1. Representation of two-dimensional objects with a self-organizing network 

2   Growing Neural Gas 

The Growing Neural Gas is an incremental neural model that avoids the necessity to 
previously specify the network size, as other methods require. On the contrary, from a 
minimal network, a growth process takes place that is continued until an ending con-
dition is fulfilled. Also, learning parameters are constant in time, in contrast to other 
methods whose learning falls basically in decaying parameters. 

2.1   GNG Algorithm 

The GNG learning algorithm to approach the network to the input manifold is as 
follows: 

1. Start with two neurons a  and b  at random positions aw and bw  in dR . 
2. Generate an input signal ξ  according to a density function )(P ξ . 
3. Find the nearest neuron (winner neuron) 1s  and the second nearest 2s . 
4. Increase the age of all the edges emanating from 1s .   
5. Add the squared distance between the input signal and the winner neuron to a 

counter error of 1s : 

2

1 1
ξΔ −= sw)s(error  (1) 

6. Move the winner neuron 1s  and its topological neighbours (neurons connected to 

1s ) towards ξ  by a learning step wε  and nε , respectively, of the total distance: 

)w(w sws 11
−= ξεΔ   (2) 

)w(w
nn sns −= ξεΔ  (3) 

7. If 1s  and 2s  are connected by an edge, set the age of this edge to 0. If it does not 
exist, create it. 

8. Remove the edges larger than maxa . If this results in isolated neurons (without 
emanating edges), remove them as well. 

9. Every certain number λ  of input signals generated, insert a new neuron as fol-
lows: 
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• Determine the neuron q  with the maximum accumulated error. 
• Insert a new neuron r  between q  and its further neighbour f : 

( )fqr ww.w += 50  (4) 

• Insert new edges connecting the neuron r  with neurons q  and f , remov-
ing the old edge between q and f . 

• Decrease the error variables of neurons q and f multiplying them with a 
constant α . Initialize the error variable of r with the new value of the error 
variable of q and f . 

10. Decrease all error variables by multiplying then with a constant β . 
11. If the stopping criterion is not yet achieved, go to step 2. (In our case the insertion 

  of 100 neurons or 1 second of available time) 

2.2   Modification of the Parameters of the Growing Neural Gas to Accelerate the 
Learning Process 

The conclusion of the competitive learning of the GNG usually comes determined by 
the insertion of all the neurons until obtaining a predetermined size. Nevertheless, if a 
temporal factor is included as condition of conclusion, it will not be possible, in some 
cases, to complete the adaptive process with the consequent loss of topology preserva-
tion; creating connections between neurons that would not have to be joined (figure 2) 
or removing other that should be created. So, there will be differences between the 
final configuration of the network and the Delaunay triangulation that must have been 
established.  

If a complete network, with all its neurons, wants to be obtained in a predetermined 
time, its learning algorithm has to be modified to accelerate its conclusion. The main 
factor in the learning time is the number of input signals generated by iteration, since 
new neurons are inserted (step 9 of the learning process) at smaller intervals, taking 
less time in completing the network. 

  

Fig. 2. Incomplete (incorrect) adaptations due to an early conclusion of the learning process 

Another alternative is to insert more than a neuron by iteration, repeating the step 9 
of the learning algorithm in several occasions. There is a work in this line [6] in where 
two neurons are inserted by iteration, according to diverse circumstances. In our case, 
step 9 is repeated several times, inserting neurons in those zones where greater accu-
mulated error exists, creating the corresponding connections.  
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Nevertheless, these alternatives cause that the topology preservation of the input 
space, that is to say, the quality of the representation is affected (figure 3). For that 
reason, different measures of topology preservation are used to evaluate the correction 
of different adaptations throughout the time. 

    
(a)                                 (b)                                  (c)                                  (d) 

Fig. 3. Final adaptations depending on the number of neurons inserted by iteration: 1 (a), 2 (b), 
5 (c) y 9 (d) 

3   Measures of Topology Preservation 

The adaptation of a self-organizing neural network is made mainly from two points of 
view: its resolution and its topology preservation of an input space.  

The measure of resolution usually employed is the quantization error [4], expressed 
like: 

( )
ξ

ξ

ξ ξ
∀ ∈

= −
d

sE w p  (5) 

where ξs  is the nearest neuron to the input pattern ξ . 
One of the first developed measure to evaluate topology preservation was the to-

pographic product [7] that compares the neighbourhood relationship among all pair of 
neurons of the network with concerning, on one hand to their position inside the map, 
and on the other hand, according to their reference vectors: 

( )( )
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N N d j n jd w w
 (6) 

where j  is a neuron, jw  is its reference vector, V
ln  is the l -th closest neighbour 

to j  in the input manifold V  according to a distance Vd  and A
ln  is the l -th nearest 

neuron to j  in the network A  according to a distance Ad . In order to use this 
measure to non-linear input spaces the geodesic distance [8] is employed as Vd .  

On the other hand, the topographic function [9] compares the resulting neural net-
work with the Delaunay triangulation induced by the input space, measuring the num-
ber of neurons that have adjacent receptive fields but are not connected and vice versa.  

It would be desirable that all the measures considered both aspects: resolution and 
preservation of the topology. This is not true for the measures above: the topographic 
product and the topographic function.  However, their resolution aspect is implicit in 
the competitive learning of self-organizing models.  
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Kaski and Lagus [10] proposed a goodness measure C  that combines both aspects, 
obtaining the closest reference vector to every input pattern, and thereafter to the sec-
ond-closest reference vector along the map. The result is the sum of these distances.  

Deviations of these three measures from the zero value indicate a loss of topology 
preservation, indicating their sign, in the case of the product and the topographic func-
tion, if the dimensionality of the network is greater or smaller than the one of the 
input space represented. 

4   Experiments and Results 

In this section we are going to compare the quality of the representation of different 
networks, where their learning parameters have been modified to accelerate their 
adaptation. So, some of the learning parameters have been fixed ( 101 .=ε , 

0102 .=ε , 0.5α = , 0.0005β = , =max 250a ), modifying for each alternative the 
number of input signals and the neurons inserted by iteration. The different alterna-
tives will be denoted like xGNG λ   where λ  indicates the number of input signals and 
x  represent the amount of neurons inserted by iteration. 

Different networks have been adapted to the input spaces displayed in figure 1. 
Since the results are very similar in all the cases, next we only present the results 
obtained for one of the objects, the ring.  

Figure 4 shows the legend used for all the graphs where the first number represents 
the random input signals (step 2) and the second number the number of neurons 
inserted by iteration (step 9). For example 1000p1npi means 1000 input signals and 1 

neuron inserted by iteration that in the notation used is 1000
1GNG . 

 

Fig. 4. Legend used for the graphs that present the results of the experiments 
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Fig. 5. Time used in the insertion of 100 neurons 
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4.1   Topology Preservation Depending on the Number of Neurons 

In figure 5 learning time for different options is indicated. In this case the condition of 
conclusion is a pre-established size of the network (100 neurons).  
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Fig. 6. Topology preservation depending on the number of neurons 
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Figure 6 shows topology preservation of the diverse variants depending on the 
number of neurons that the network has, throughout the learning process. This study 
is of interest in the case that temporal constraints that limit the adaptive process do not 
exist but a possible maximum size of the network is established, e.g. 100 neurons.  

In initial stages of the adaptation the networks try to represent broadly the input 
space, this is the reason why topology preservation fluctuates considerably. When a 
small number of neurons are inserted, it is stabilized. Nevertheless, if the fastest op-
tions are employed, their topology preservation stays worse throughout the adaptive 
process, since there are edges between neurons that should not be connected and vice 
versa.  

We represent with a vertical line the number of neurons that we consider necessary 
to achieve a correct topology preservation with any of the different measures. 

4.2   Topology Preservation Depending on the Available Time 

In figure 7 is showed the number of neurons that each network is able to insert in 1 
second time. As it is obvious, inserting several neurons or reducing the signals by 
iteration allow to obtain networks of greater size in less time. 
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Fig. 7. Number of neurons inserted in 1 second time 

Figure 8 shows topology preservation throughout the adaptation process of the net-
work without establishing limits in the number of neurons, but with a time of 1 sec-
ond as temporal limit. 

Differences in topology preservation of the different options are not too significant 
when measuring with the topographic product. Nevertheless, topology preservation is 
lost when the number of neurons is high, because the number of input signals by itera-
tion is insufficient to adapt all those neurons.  

On the other hand, the topographic function shows differences in the topology 
preservation, indicating that the fastest networks have incorrect connections.  

As in the case of a fixed number of neurons, we represent with a vertical line the nec-
essary time to obtain good topology preservation with any of the different measures. 

In general the results are quite unstable because in most of the cases only a few 
neurons had been inserted by the time first samples was taken. 
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Fig. 8. Topology preservation depending on the available time 
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5   Conclusions and Further Work 

Topology preservation of the Growing Neural Gas is affected by the learning parame-
ters and available time. Faster methods, in many cases, deteriorate topology preserva-
tion, because the relation between number of neurons and input signals by iteration 
decreases.  

From a practical point of view the study is interesting to define the necessary num-
ber of neurons or time to be used when trying to represent different objects with GNG 
keeping good topology preservation. 

At the moment, we are doing similar studies with other self-organizing models 
(Neural Gas [11], GWR [12]), studying their degree of topology preservation. We 
want to extract which are the characteristics of these networks that allow a suitable 
and fast representation of an input space, in order to develop a new self-organizing 
neural network based on the combination of them. 
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Abstract. Topographic ICA is a well-known ICA-based technique, wh-
ich generates a topographic mapping consisting of edge detectors from
natural scenes. Topographic ICA uses a complicated criterion derived
from a two-layer generative model and minimizes it by a gradient de-
scent algorithm. In this paper, we propose a new simple criterion for
topographic ICA and construct a fixed-point algorithm minimizing it.
Our algorithm can be regarded as an expansion of the well-known fast
ICA algorithm to topographic ICA, and it does not need any tuning of
the stepsize. Numerical experiments show that our fixed-point algorithm
can generate topographic mappings similar to those in topographic ICA.

1 Introduction

Independent component analysis (ICA) is a recently-developed method in the
fields of signal processing and artificial neural networks, and has been shown
to be quite useful for the blind separation problem [1,2,3,4]. The linear ICA is
formalized as follows. Let s = (si) and A are N -dimensional source signals and
an N ×N mixing matrix, respectively. Then, an N -dimensional vector x = (xi)
of observed signals is defined as

x = As. (1)

The purpose is to find out A (or the inverse matrix W ) when only observed
(mixed) signals are given. In other words, ICA blindly extracts source signals
from observed signals as follows:

y = Wx, (2)

where W = (wij) is an N ×N mixing matrix to be estimated and y = (yi) is an
N -dimensional vector of estimated source signals. This is a typical ill-conditioned
problem, but ICA can solve it by assuming that the source signals are generated
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according to independent and non-Gaussian probability distributions. In general,
the ICA algorithms find out W by maximizing a criterion (called the contrast
function) such as the higher-order statistics (e.g. the kurtosis) of each component
of y.

Topographic ICA is a well-known ICA-based technique, which can generate
interesting topographic mappings of whitened components from natural scenes
[5,6]. It assumes a two-layer generative model and minimizes a rather com-
plicated contrast function by a gradient descent algorithm. Recently, we have
proposed a simple criterion for topographic mappings by a novel information-
theoretic approach named “InfoMin” [7,8,9]. In this paper, we propose a simple
criterion based on InfoMin and construct a fixed-point algorithm minimizing the
criterion. The new algorithm is derived in the similar way as fast ICA [10,11] and
it can generate topographic mappings from natural scenes without the stepsize
control.

This paper is organized as follows. In Section 2, topographic ICA and fast
ICA are briefly explained. In Section 3, we propose a new contrast function for
topographic ICA, then we construct a new fixed-point algorithm minimizing it.
In Section 4, numerical experiments show that our new algorithm can generate
topographic mappings from natural scenes in the similar way as topographic
ICA. Lastly, this paper is concluded in Section 5.

2 Background

2.1 Topographic ICA

Topographic ICA [5] assumes that observed signals are given by a two-layer
generative models and the variances of sources are dependent on each other
through neighborhood functions. As a consequence, topographic ICA is given as
the following update equation:

wij := wij + αE (xjyiri) (3)

where E (u) is the expectation operator, α is the stepsize, yi =
∑

j wijxj , and

ri =
∑

k

h (i, k) g

⎛⎝∑
j

h (k, j) y2
j

⎞⎠ . (4)

h (i, j) is a neighborhood function, and g (u) is given as a nonlinear function such
as tanh (u).

2.2 Fast ICA

Fast ICA [11] is a technique for minimizing a contrast function φ, which is given
in the following form:

φ =
∑

i

E (G (yi)) (5)
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where G (u) is a nonlinear function such as u4 or log (cosh (u)). In addition,
it is assumed that x is whitened (which means that E

(
xxT

)
is the N × N

identity matrix I) and W is orthogonal. For each i, the update equation of
fast ICA is derived as follows. Let wi be the i-th row of W . According to the
Kuhn-Tucker conditions in the optima of E (G (yi = wix)) under the constraint
E

(
y2

i

)
= wiw

T
i = 1, the optimal wi needs to satisfy

E (xg (yi))− βwT
i = 0 (6)

where g (u) is the derivative of G (u) w.r.t u and β is a constant given as
E (yig (yi)). Then, Eq. (6) is optimized by Newton’s method. Its Jacobian matrix
J w.r.t wi is given as

J = E
(
xxT g′ (yi)

)
− βI (7)

where g′ (u) is the derivative of g (u). The crucial approximation used in fast
ICA is given as

E
(
xxT g′ (yi)

)
� E

(
xxT

)
E (g′ (yi)) � E (g′ (yi)) I. (8)

Thus, because the Jacobian matrix J becomes diagonal, the inversion of J is eas-
ily calculated. In consequence, the following update equation based on Newton’s
method is derived:

wi := E
(
xT g (yi)

)
− E (g′ (yi))wi (9)

where wi is normalized by wi := wi√
wiwT

i

at each update. Note that Eq. (9) does

not depend on β any longer. In the frequently-used deflation approach, each wi

is estimated one by one under the constraint that wi is orthogonal to previously
estimated wp’s (p < i). By contrast, in the symmetrical approach, every wi is
simultaneously updated by Eq. (9) and then W is orthonormalized by

W :=
(
WW T

)− 1
2

W . (10)

In our algorithm in Section 3, the symmetrical approach is employed.

3 Fixed-Point Algorithm

3.1 New Criterion

We have previously proposed the InfoMin principle in [7,8,9], and the following
criterion η was derived:

η = −
∑
ω∈Ω

⎛⎝∑
i∈ω

(
E

(
y4

i

)
− 3

)2
+ 3

∑
i∈ω

∑
j∈ω,j �=i

(
E

(
y2

i y2
j

)
− 1

)2

⎞⎠ (11)

where y is whitened, and every component yi is placed on a two-dimensional
array. ω is a neighborhood area on the array and Ω is a set of ω. It was shown that
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topographic mappings could be generated from natural scenes by the criterion
η. See [9] for the details of InfoMin. η is regarded as a basic criterion for forming
topographic mappings in this paper. Eq. (11) is rewritten as

η = −
∑

i

ai

(
E

(
y4

i

)
− 3

)2 −
∑
i,j �=i

bij

(
E

(
y2

i y
2
j

)
− 1

)2
(12)

where ai and bij are constants depending on Ω. Because it is difficult to deal
with (E (u))2 directly, it is first assumed that all sources are super-gaussian. It is
easily shown that

(
E

(
y4

i

)
− 3

)
and

(
E

(
y2

i y2
j

)
− 1

)
are always positive under this

assumption. Next, η (< 0) is replaced with −√−η. Then, −√−η is approximated
as

−
√
−η � −

∑
i

√
ai

(
E

(
y4

i

)
− 3

)
−

∑
i,j �=i

√
bij

(
E

(
y2

i y2
j

)
− 1

)
. (13)

Lastly, by generalizing y4
i in the first term, the following contrast function ψ is

given:
ψ = −

∑
i

ciE (G (yi))−
∑
i,j �=i

h (i, j)E
(
y2

i y2
j

)
(14)

where ci is a constant and h (i, j) is a neighborhood function determined by Ω.

3.2 Derivation of Algorithm

Here, a fixed-point algorithm minimizing ψ in Eq. (14) is derived in the same
way as for φ in fast ICA (see Section 2.2). By replacing φ with ψ, Eqs. (6), (7),
and (8) are modified as follows:

E

⎛⎝x

⎛⎝cig (yi) + 2
∑
j �=i

h (i, j) yiy
2
j

⎞⎠⎞⎠− βwT
i = 0, (15)

J = E

⎛⎝xxT

⎛⎝cig
′ (yi) + 2

∑
j �=i

h (i, j) y2
j

⎞⎠⎞⎠− βI, (16)

and

E

⎛⎝xxT

⎛⎝cig
′ (yi) + 2

∑
j �=i

h (i, j) y2
j

⎞⎠⎞⎠ � E

⎛⎝cig
′ (yi) + 2

∑
j �=i

h (i, j) y2
j

⎞⎠ I

= E

⎛⎝cig
′ (yi) + 2

∑
j �=i

h (i, j)

⎞⎠ I (17)

where y2
i is removed because of E

(
y2

i

)
= 1. Thus, the following update equation

is derived:

wi := E

⎛⎝xT

⎛⎝cig (yi) + 2
∑
j �=i

h (i, j) yiy
2
j

⎞⎠⎞⎠− E

⎛⎝cig
′ (yi) + 2

∑
j �=i

h (i, j)

⎞⎠wi.

(18)
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Because every yi depends on each other through the neighborhood function
h (i, j) in this algorithm, the symmetrical approach is employed for updating
W . In other words, Eq. (18) is calculated simultaneously for every i and then
W is orthonormalized by Eq. (10).

3.3 Discussion

The computation at each update in the above fixed-point algorithm needs some
matrix manipulations, the dominant ones of which are multiplications of an N×
N matrix and an N×M one (M is the number of samples). It is easily shown that
the computational complexity of each update in our fixed-point algorithm is the
same as those in topographic ICA (Section 2.1) and the symmetrical approach
of fast ICA (Section 2.2). Therefore, the estimation of the number of updates is
crucial for comparing these algorithms. Because both our algorithm and fast ICA
are approximations of Newton’s method, they are expected to rapidly converge
to minima. On the other hand, it is expected that the convergence of topographic
ICA using a simple gradient algorithm is slower. In addition, it is a significant
advantage in practical applications that our fixed-point algorithm does not need
any additional techniques for the stepsize control.

It is also worthwhile to examine whether this fixed-point approach can be ap-
plied directly to the original topographic ICA. It is difficult because topographic
ICA utilizes a convolution to incorporate a neighborhood function with ICA.
This convolution seems to be derived necessarily from the two-layer generative
model. On the other hand, our algorithm avoids this problem by using ψ in Eq.
(14), where a typical contrast function (

∑
i ciE (G (yi))) is separated from the

term depending on the neighborhood function (
∑

i,j �=i h (i, j)E
(
y2

i y2
j

)
).

4 Results

Here, our fixed-point algorithm is applied to processing natural scenes. The
results are shown in Fig. 1. The three functions u3, tanh (u), and u exp(−u2

2 )
were given as g (u) in our method. Though the initial W was given randomly,
the same initial W was used for each g (u). 1000 updates by Eq. (18) were done.
At the final stage of updates, the rate of the fluctuation of W was less than
10−5 for every g (u). Each experiment took about 4 hours with 2.8GHz CPU.
For comparison, topographic ICA was done for the same natural scenes.

Figs 1-(a), (b), and (c) show that our fixed-point algorithm could form to-
pographic mappings where edge detectors with similar orientation preferences
are nearer. Though there is no obvious difference among them, it seems that
the topography in Fig 1-(a) is weaker than Figs 1-(b) and (c). The mapping
by topographic ICA is also shown in Fig. 1-(d). Topographic ICA generated a
topographic mapping of distinct but short edge filters. On the other hand, the
edge filters in our methods are noisy but longer.

It is interesting that a topographic mapping was formed even if g (u) = u3, for
it is known to be difficult for such a cumulant-based ICA algorithm to extract
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a. g (u) = u3 b. g (u) = tanh (u)

c. g (u) = u exp(−u2

2 ) d. topographic ICA

Fig. 1. Formation of topographic mappings: Here, 100 PCA-whitened components of
30000 samples of natural scenes of 12 × 12 pixels were used as x. Every yi is placed on
10×10 array. Ω was given as the set of all the areas of 5×5 components over the array.
1000 updates were done for each g (u). The estimated mixing matrix A is visualized.
(a): A topographic mapping generated by our fixed-point algorithm with g (u) = u3.
(b) Fixed-point topographic ICA with g (u) = tanh (u). (c) Fixed-point topographic
ICA with g (u) = u exp(−u2

2 ). (d) A mapping generated by topographic ICA with a
3 × 3 neighborhood ones matrix and 10000 updates.

edge detectors from natural scenes. On the other hand, an obvious disadvan-
tage of our algorithm is that every result was rather noisy. Though it is well
known that cumulant-based ICA is quite sensitive to outliers, the results were
also noisy even if robust nonlinear functions such as g (u) = tanh (u) were used.
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This noise could not be removed by increasing the number of updates. In order
to generate noiseless results, we may have to also replace E

(
y2

i y2
j

)
with some

robust functions.

5 Conclusion

In this paper, we proposed a new fixed-point algorithm of topographic ICA. First,
we proposed a new criterion ψ which is the sum of a typical contrast function
and the terms based on a neighborhood function. Then, we derived a fixed-
point algorithm minimizing ψ, which is an extension of fast ICA. Numerical
experiments showed that our methods could generate topographic mappings
similar to those in topographic ICA.

Our algorithm currently lacks the theoretical foundations of the definition of
the criterion ψ. Though it is roughly based on the InfoMin principle, rather
coarse approximations are applied. Its relation to the model of the original to-
pographic ICA is also unclear. So, further theoretical analysis would be needed.
Besides, numerical experiments show that the results of our algorithm were noisy
even if a robust g (u) was utilized. So, we may have to replace E

(
y2

i y2
j

)
with

some robust functions as well. It is easily shown that our method is applicable
even if E

(
y2

i y2
j

)
is extended to a form f (yi) f (yj), where f (u) is an arbitrary

differentiable function. We are now trying to find a useful f (u).
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Abstract. In this work we propose a recurrent multivalued network,
generalizing Hopfield’s model, which can be interpreted as a vector quan-
tifier. We explain the model and establish a relation between vector quan-
tization and sum-of-squares clustering. To test the efficiency of this model
as vector quantifier, we apply this new technique to image compression.
Two well-known images are used as benchmark, allowing us to compare
our model to standard competitive learning. In our simulations, our new
technique clearly outperforms the classical algorithm for vector quan-
tization, achieving not only a better distortion rate, but even reducing
drastically the computational time.

1 Introduction

Compressing an image is a significantly different task than compressing raw bi-
nary data. Although general purpose compression techniques can be used to
compress images, the result is less than optimal. The reason is that images
have certain statistical properties which in turn may be exploited by encoders
specifically designed for this task. Also, some of the finer details in the im-
age can be sacrificed for the sake of saving a little more bandwidth or storage
space. This fact also means that lossy compression techniques can be used in
this area.

Lossless compression involves with compressing data which, when decom-
pressed, will be an exact replica of the original data. Lossless compression is
applied to binary data as executables or documents, which need to be exactly
reproduced when decompressed. On the other hand, images need not to be repro-
duced exactly in their original form, but an approximation of the original image
is enough for most purposes, as long as the error, obtained in the compression
phase, between the original and the reproduced image is tolerable.
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Some error measures, commonly used in image compression, are:

– The mean square error (MSE), given by:

MSE =
1

MN

M∑
i=1

N∑
j=1

[I(i, j)− I ′(i, j)]2

where I is the original image, I ′ is the approximated version (which is actu-
ally the decompressed image) and M , N are the dimensions of the images.
A lower value for MSE means lesser error.

– The Peak Signal to Noise Ratio (PSNR), given by:

PSNR = 20 log10

(
255√
MSE

)
which achieves high value when MSE is low. So a good technique will obtain
a high value for PSNR.

– The mean distortion, used in Vector Quantization (VQ), which will be de-
fined in the next section.

We can use any of these three error measures to quantify the goodness of a
compression technique. In the present work, we use the mean distortion measure,
since it is more appropriate when dealing with VQ.

According to Egmont-Petersen et al. [5], two different types of image compres-
sion approaches with neural networks (ANNs) can be identified: direct pixel-
based encoding-decoding by one ANN [2,7,16,17] and pixel-based encoding-
decoding based on a modular approach [3,4,12,18,20,21]. Different types of ANNs
have been trained to perform image compression: feed-forward networks
[3,4,16,17,18,20,21], Kohonen Self-Organizing Maps (SOMs) [2,7], adaptive fuzzy
leader clustering (a fuzzy ART-like approach) [12], a learning vector quantifier
[21] and a radial basis function network [16].

Other approaches are based on competitive neural networks. The aim of com-
petitive neural networks is to cluster the input vectors and it can be used for
data coding and compression through vector quantization. It has been shown
that competitive learning is an appropriate algorithm for VQ of unlabeled data.
Ahalt, Krishnamurthy and Chen [1] discussed the application of competitive
learning neural networks to VQ and developed a new training algorithm for
designing VQ codebooks which yields near-optimal results and can be used to
develop adaptive vector quantifiers. Yair, Zeger and Gersho [22] have proposed
a deterministic VQ design algorithm, called the soft competition scheme, which
updates all the codevectors simultaneously with a step size that is proportional
to its probability of winning. In [15], Pal, Bezdek and Tsao proposed a gener-
alization of learning VQ for clustering which avoids the necessity of defining an
update neighbourhood scheme and the final centroids do not seem sensitive to
initialization. Ueda and Nakano presented a new competitive learning algorithm
with a selection mechanism based on the equidistortion principle for designing
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optimal vector quantizers [19]. The selection mechanism enables the system to
escape from local minima.

Recently, Muñoz-Perez et al. [13] proposed an expansive and competitive
learning for VQ capable to avoid local minima of the distortion function, and
presented some optimality conditions for the set of codewords.

ANN approaches have to compete with well-established compression tech-
niques such as JPEG, which should serve as a reference. The major advantage
of ANNs is that their parameters are adaptable, which may give better compres-
sion rates when trained on specific image material. However, such a specialization
becomes a drawback when novel types of images have to be compressed.

In this work, we propose a vector quantization approach to image compression
by means of a discrete recurrent model, comparing its efficiency to that of the
classical competitive learning.

2 Vector Quantization and Competitive Learning

A vector quantifier of dimension d and size K is a mapping Q from the d-
dimensional Euclidean space Rd into a finite subset C = {c1, . . . , cK} of Rd

containing K output or representative vectors, called code vectors, reference vec-
tors, reproduction vectors, prototypes or codewords. The collection of all possible
reproduction vectors is called the reproduction alphabet or more commonly the
codebook. Hence, the input vector space, Rd, is divided into K disjoint regions,
C1, . . . ,CK , where

Ck = {x ∈ Rd : Q(x) = ck}
All inputs vectors in Ck are approximated by ck. The cost introduced by this ap-
proximation is given by a nonnegative distortion measure, usually the Euclidean
distance between x and the corresponding ck = Q(x).

For a finite training set, X = {x1, . . . , xN}, the vector quantization is a
combinatorial problem that attempts to represent X (with large information
contents) by a reduced set of codewords C. In other words, the goal is to select
a set C of codewords such that the mean distortion function:

D(C) =
1
N

K∑
k=1

∑
i|xi∈Ck

||xi − ck||2 (1)

is minimum. This distortion function is generally not convex.
The standard competitive learning algorithm is a stochastic gradient descent

approach to minimize this function. It consists in:

1. Selecting a point x ∈ X and determining ck = Q(x).
2. Updating ck with the rule Δck = αn(x− ck), where αn is the learning rate

at the n-th training epoch.
3. Repeat the previous points until a maximum of training epochs is reached

or convergence is detected.

With this algorithm, it is guaranteed that ck is the centroid of Ck, and it is
the best representative vector of Ck.
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3 The MREM Model

Let us consider a recurrent neural network formed by N neurons, where the state
of each neuron i = 1, . . . , N is defined by its output si taking values in any finite
set M = {m1, m2, . . . , mL}. This set does not need to be numerical.

The state of the network, at time t, is given by a N -dimensional vector,
S(t) = (s1(t), s2(t), . . . , sN(t)) ∈ MN . Associated to every state vector, an
energy function, is defined:

E(S) = −1
2

N∑
i=1

N∑
j=1

wijf(si, sj) +
N∑

i=1

θi(si) (2)

where wi,j is the weight of the connection from the j-th neuron to the i-th
neuron, f :M×M → R can be considered as a measure of similarity between
the outputs of two neurons, usually verifying the conditions mentioned in [9]:

1. For all x ∈M, f(x, x) = c ∈ R.
2. f is a symmetric function: for every x, y ∈M, f(x, y) = f(y, x).
3. If x �= y, then f(x, y) ≤ c.

and θi : M → R are the threshold functions. Since thresholds will not be used
for image compression, therefore we will consider θi to be the zero function for
all i = 1, . . . , N .

The introduction of this similarity function provides, to the network, of a
wide range of possibilities to represent different problems [9,10]. So, it leads to
a better and richer (giving more information) representation of problems than
other multivalued models, as SOAR and MAREN [6,14], since in those models
most of the information enclosed in the multivalued representation is lost by the
use of the signum function that only produces values in {−1, 0, 1}.

If function f(x, y) = 2δx,y−1, which equals 1 if and only if its two parameters
coincide, and −1 in the rest of cases, is used and M = {−1, 1}, MREM reduces
to Hopfield’s bipolar model (BH) [8]. So, MREM is a powerful generalization
of BH and other multivalued models, because it is capable of representing the
information more accurately than those models.

The energy function characterizes the dynamics of the net, as happened in
BH. In every instant, the net evolves to reach a state of lower energy than the
current one.

In this work, we have considered discrete time and semi-parallel dynamics,
where only one neuron is updated at time t. The next state of the net will be
the one that achieves the greatest descent of the energy function by changing
only one neuron output.

Let us consider a total order inM. The potential increment when p-th neuron
changes its output from sp to l ∈ M at time t, is

Up(l) = −ΔE =
1
2

N∑
i=1

[wp,if(l, si(t)) + wi,pf(si(t), l)−
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−(wp,if(sp(t), si(t)) + wi,pf(si(t), sp(t)))] −
1
2
wp,p[f(l, l)− f(sp(t), sp(t))] (3)

If f verifies the similarity conditions and if matrix W is symmetric and wp,p =
0 (as in the case of the problem studied in this paper, it will be made clearer in
the next section), then the reduced potential increment is obtained:

U∗
p (l) =

1
2

N∑
j=1

wp,j [f(sp, sj)− f(l, sj)] (4)

We use the following updating rule for the neuron outputs:

sp(t + 1) =
{

l, if Ua(l) ≥ Uq(k)∀k ∈M and ∀q ∈ {1, . . . , N}
sp(t), otherwise (5)

This means that each neuron computes in parallel the value of a L-dimensional
vector of potentials, related to the energy decrement produced if the neuron state
is changed. The only neuron changing its current state is the one producing the
maximum decrease of energy.

It has been proved that the MREM model with this dynamics always con-
verges to a minimal state [9]. This result is particularly important when dealing
with combinatorial optimization problems, where the application of MREM has
been very fruitful [9,10].

4 Two-Stage Image Compression with MREM

In this section we will describe the two-stage VQ algorithm that uses the multi-
valued model MREM in its first phase.

4.1 Clustering with MREM

In the first stage, MREM is used to obtain a good clustering of the input pattern
set.

In order to apply MREM at this step, this clustering problem must be for-
mulated as an optimization task.

Although there are lots of possible formulations for this clustering problem,
one of the most used formulations consists in minimizing the sum of intra-cluster
distances, that is, if X = {x1, . . . , xN} is the pattern set to be clustered into K
groups, we look forward to minimizing the quantity:

d =
K∑

k=1

∑
i|xi∈Ck

∑
j|xj∈Ck

||xi − xj ||

which is the sum of the distances between patterns in the same cluster. With
this formulation, we will obtain homogeneous clusters.
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The above expression can be easily re-written as

d =
N∑

i=1

N∑
j=1

||xi − xj ||ρxi,xj (6)

where ρx,y equals 1 if and only if x and y belong to the same cluster, otherwise
it will be 0.

This new expression can be used to an energy function for the MREM model.
Thus, let us consider a neural network with N neurons. The output si of the

i-th neuron belongs to the set M = {1, . . . , K}, meaning that the pattern xi is
assigned to the si-th cluster.

If we compare Eq. (2) and Eq. (6), and taking into account that θi is the zero
function for all i, we can obtain the value for the synaptic weights wi,j and an
appropriate definition of the similarity function.

This comparison leads us to define:

wi,j = −2||xi − xj ||

and

f(a, b) = δa,b =
{

1, if a = b
0, otherwise

So, the energy function will be as follows:

E =
N∑

i=1

N∑
j=1

||xi − xj ||δsi,sj (7)

that is, the sum of intra-cluster distances.
In order to minimize this energy function, we propose semi-parallel dynamics

for the network, as mentioned before:

– In parallel, each neuron computes a vector of reduced potential increments,
Vp = (U∗

p (1), . . . ,U∗
p (K)), by using Eq. (4), which in this case is

U∗
p (l) =

1
2

N∑
j=1

||xp − xj ||
[
δsp,sj − δl,sj

]
– Each neuron computes in parallel the maximum potential in its correspond-

ing Vp. It will be stored in vp = max(Vp) and np will be the value of
l ∈ {1, . . . , K} which produces the maximum potential increment in Vp.

– The scheduling selects the neuron q for which vq ≥ vp for all p ∈ {1, . . . , N},
and updates its output according to sq = nq. This last step is not made in
parallel.

With this dynamics, the energy function is minimized and therefore a clus-
tering of the input pattern space is obtained.
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4.2 Computation of the Codebook

In this second stage, we use the recently obtained clustering to compute the set
of codewords.

As we want the mean distortion, given by Eq. (1), to be minimized, we com-
pute ck as the centroid of the k-th cluster Ck, that is,

ck =
1

Nk

∑
i|xi∈Ck

xi

where Nk is the number of patterns that belong to Ck.
So, we have guaranteed the (local) optimality of the codebook.

(a) (b)

Fig. 1. Test images used in this work: (a) cameraman, (b) lenna

5 Experimental Results

Two well-known images have been used in this work to show the efficiency of
the proposed technique: cameraman and lenna, see Fig 1.

The size of these images was 256x256 pixels, with 256 graylevels. Each image
was divided into windows of size L ∈ {8, 10, 12, 16}, obtaining a total of 2562

L2

windows. Every window is represented by a L2-dimensional vector.
Every component of these vectors is normalized to avoid the negative effect

of a bad scaling.
This set of vectors is then clustered to obtain K ∈ {16, 32} prototypes and the

mean distortion is measured. The results of mean distortion achieved in these
experiments are shown in Tables 1 and 2.

In these Tables, a comparison with Standard Competitive Learning (SCL) is
made. The learning rate αn of SCL decreased from 0.9 to 0.01 for 100 train-
ing epochs, and 10 executions were performed for each image and algorithm.
Columns labeled Min. and Av. show the minimum and average mean distortion
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Table 1. Mean distorsion for cameraman image

MREM SCL
L K N Min. Av. t Min. Av. t Impr.
16 16 256 5.31 5.35 0.1946 14.65 14.75 16.4758 175.7%
16 32 256 4.68 4.78 0.3860 14.61 14.69 29.9586 207.3%
12 16 441 3.52 3.56 0.4532 10.79 10.85 20.2672 204.7%
12 32 441 3.19 3.21 0.8867 10.66 10.76 39.5268 235.2%
10 16 625 2.76 2.81 1.1248 8.80 8.88 27.2470 216.0%
10 32 625 2.47 2.50 1.9042 8.84 8.91 50.5668 256.4%
8 16 1024 2.07 2.08 3.7546 6.94 7.02 47.9990 237.5%
8 32 1024 1.86 1.88 7.7969 6.89 6.94 64.9956 269.1%

Table 2. Mean distorsion for lenna image

MREM SCL
L K N Min. Av. t Min. Av. t Impr.
16 16 256 7.12 7.19 0.1725 16.37 16.50 20.2954 129.4%
16 32 256 6.33 6.37 0.3377 16.28 16.41 35.6092 157.6%
12 16 441 4.69 4.72 0.4157 12.15 12.23 22.2540 159.1%
12 32 441 4.12 4.14 0.8644 12.08 12.13 45.0909 192.9%
10 16 625 3.72 3.75 0.8182 9.84 9.99 27.6838 166.4%
10 32 625 3.24 3.26 1.7484 9.86 9.94 46.1765 204.9%
8 16 1024 2.66 2.67 3.2199 7.75 7.82 46.6706 192.8%
8 32 1024 2.32 2.34 7.9586 7.75 7.78 76.5742 232.4%

achieved by the two algorithms. Columns labeled t contain the time spent by
each of them. In the last column, Impr., a measure of the improvement achieved
by MREM over SCL:

Impr. =
AvSCL −AvMREM

AvMREM
· 100

It is remarkable that MREM highly outperforms SCL on average quality in
all cases, achieving improvements of about 150-200%. The time spent by MREM
is also a fraction of the spent by SCL. So, MREM is much more efficient than
SCL.

In order to show the efficiency of this technique, we have made a simulation
in which L = 4. If K = 32 representatives are used, and L = 4, then 128 bits
are needed to represent each window, but only 5 to represent the codewords, so
we may obtain a compression rate of 128 to 5, that is, 25 to 1 approximately.
By using JPG compression, we obtained 45Kb for the original cameraman im-
age, 34Kb for the SCL-compressed and 29Kb for the MREM-compressed. For
lenna image, these quantities were 43, 32 and 35Kb, respectively. In Fig. 2, the
compressed images, obtained by both techniques, are shown.
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(a) (b)

Fig. 2. Compressed test images with L = 4 and K = 32: (a) by using Standard
Competitive Learning (distortions=3.18 and 3.56, from up to down) and (b) by using
MREM (distortions=0.67 and 0.81, respectively)

6 Conclusions

In this work we have proposed an alternative method to competitive learning in
vector quantization tasks.

This approach is based on a multivalued recurrent network suitable for
combinatorial optimization problems, as proved in other works. The intrinsic
semi-parallelism provided by this model improves the efficiency of the net when
compared to SCL, since the time consumption is drastically reduced. We have
applied this approach to image compression, achieving great advantages over
SCL, not only on computational time, but even on quality of the quantization,
obtaining improvements above 100%. One of the reasons for this improvement
is that our algorithm divides the entire task of vector quantization into a two-
stage problem: first, it finds a (locally) optimal clustering of the input pat-
tern space, and then it computes the optimal codebook associated to the given
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partition. Our future work in this problem consists in finding new formulations
to help MREM avoid local minima in the clustering task, which will lead to an
improvement of the quantization results.

References

1. S.C. Ahalt, A.K. Krishnamurthy, P. Chen, and D.E. Melton, Competitive learning
algorithms for vector quantization, Neural Networks, 3, 277-290, 1990.

2. C. Amerijckx, M. Verleysen, P. Thissen et al., Image compression by self-organized
Kohonen map, IEEE Trans. Neural Networks 9(3), 503–507, 1998.

3. J.G. Daugman, Complete discrete 2-D Gabor transforms by neural networks for
image analysis and compression, IEEE Trans. Acoustics, Speech Signal Process.
36(7), 1169-1179, 1988.

4. R.D. Dony, S. Haykin, Optimally adaptive transform coding, IEEE Trans. Image
Process. 4(10), 1358-1370, 1995.

5. M. Egmont-Petersen, D. de Ridder and H. Handels, Image processing with neural
networksa review, Pattern Recognition 35, 2279-2301, 2002.

6. M. H. Erdem and Y. Ozturk, A New family of Multivalued Networks, Neural Net-
works 9,6, 979–989, 1996.

7. G. Hauske, A self organizing map approach to image quality, Biosystems 40(1-2),
93-102, 1997.

8. J.J. Hopfield, Neural networks and physical systems with emergent collective com-
putational abilities, Proc. of National Academy of Sciences USA, 79, 2254–2558,
1982.

9. E. Mérida Casermeiro, Red Neuronal recurrente multivaluada para el re-
conocimiento de patrones y la optimización combinatoria, Ph. D. dissertation (in
Spanish). Univ. Málaga, España, 2000.
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Abstract. In this paper, we propose a novel feature extraction method
called Class-Augmented PCA (CA-PCA) which uses class information.
The class information is augmented to data and influences the extraction
of features so that the features become more appropriate for classifica-
tion than those from original PCA. Compared to other supervised feature
extraction methods LDA and its variants, this scheme does not use the
scatter matrix including inversion and therefore it is free from the prob-
lems of LDA originated from this matrix inversion. The performance of
the proposed scheme is evaluated by experiments using two well-known
face database and as a result we can show that the performance of the
proposed CA-PCA is superior to those of other methods.

1 Introduction

Feature extraction is an important issue for classification of data with large
input dimension such as face images. The purpose of feature extraction is to
generate a set of features that have smaller dimension than original data and
include the data characteristics sufficient to classify data. These extracted fea-
tures can reduce the computation for classification and improve the classification
performance by removing non-relevant characteristics in a data set.

The Principal Component Analysis (PCA) [1], also called as Karhunen-Loeve
transform (KLT), is a well-known statistical method to extract the features for
face recognition. This method is very effective to find the features for reducing the
dimension, however, these features may be inappropriate for classification since
the class information is not considered during the determination of features.
Another well-known method is the Linear Discriminant Analysis (LDA) [2][3]
which can resolve the difficulty of PCA by using the scatter matrix including
the class information, however, it has its own drawbacks such as singularity
problem originated from the use of scatter matrix including the matrix inversion
[4]. To resolve the difficulties and improve the performance, some variants of
LDA have been developed such as Fisherface [5], Direct-LDA [6], Generalized
LDA [7], etc.

In this paper, a novel supervised feature extraction scheme is proposed to
ease the difficulties mentioned in the above. In order to utilize the class infor-
mation, the new dimension which encodes the class information is augmented to

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 606–615, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the original data. This augmented data should be carefully normalized in order
to maximize the effect of class information in feature extraction. By applying
the PCA to this augmented data, we can find a transformation matrix to gen-
erate the feature which can describe the data distribution well and improve the
classification performance. This scheme does not include matrix inversion, and
therefore it is free from the problems of LDA mentioned in the above. We will
call this scheme as Class-Augmented Principal Component Analysis (CA-PCA)
and describe in the subsequent sections. The improved classification performance
by using the features from CA-PCA will be demonstrated by experiments and
explained.

2 Key Concept of CA-PCA

The goal of PCA is to find a set of orthogonal axis such that the variance of the
data along which is maximized. The values of data along these axis are called
principal components and they can be determined by the following equation.

Xfeature = WTX (1)

where X is the original representation of data and Xfeature is the vector consist-
ing of principal components of X . W = [w1 w2 ... ] is a transformation matrix
consisting of a set of basis vector corresponding to the axis for principal compo-
nents. A small number of principal components can describe the most of variance
in the original data set and they can be used as feature for replacing the original
data representation.

However, this feature from PCA may not be inappropriate for classification.
If PCA is applied to the data set presented in Fig.1a, two principal compo-
nents along axis w1 and w2 are obtained. For reducing the dimension of data
representation we need to select only one axis w1 among w1 and w2, and use
the corresponding principal component as the feature of X . This feature is not
suitable for classiciation since the data belonging to different classes cannot be
separated by the value of this feature. If we can find the other axis w′

1 in Fig.1c
instead of w1, the value of data along w′

1 can be used as the feature approriate
for classification since the data set can be easily separated by this value. To find
out w′

1 instead of w1, the class information of the data set is necessary to be
considered in the application of PCA.

In this paper, we will propose a scheme for enabling PCA to select the ap-
propriate axis for classification. The following is an example to show overall
procedure of this scheme applied to the data set in Fig.1a.

STEP 1. A new data representation is defined by augmenting a new axis which
is orthogonal to all original axis and assigning a value along this new axis
according to the class information of each data. According to this new rep-
resentation, each data is plotted as a point in Fig.1b. Along this new class
axis the data belonging to class 1 has different value from the value which
the data belonging to class 2 has.
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Fig. 1. An exemplary application of the proposed scheme. New class axis orthogonal
to the data plane is augmented and the new data is defined from the original data
value and its value on class axis which is determined according to the class of data.
Then, the PCA is applied to new data and from the resultant principal components
w′′

1 and w′′
2 , the basis w′

1 and w′
2 for extracting feature can be obtained.

Fig. 2. Overall scheme of CA-PCA. CA-PCA consists of followsing steps: augmenting
the encoded class information, normalizing the data, applying PCA, and determining
the transformation matrix W
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STEP 2. By applying PCA to these new data representation, we can find the
axis w′′

1 and w′′
2 in Fig.1b. Since the variance along each axis is the sum of

the variance along the orginal data axis and the variance along the class axis,
the directions of new axis can be influenced by the variance along the class
axis. In Fig.1b the value of each data along class axis is carefully adjusted
such that w′′

1 and w′′
2 can be selected.

STEP 3. The projection onto the axis w′′
1 and w′′

2 requires the value of data
on class axis, and therefore these axis cannot be immediately applied to the
test data whose class information is unknown. If the value of each data along
class axis is carefully adjusted such that the variance along class axis is very
small, w′′

1 and w′′
2 can be approximated to w′

1 and w′
2 which are composed

of the original data axis and they can be used for determining the feature
as in in Fig.1c.

This simple example shows the overall steps of the proposed scheme which
are depicted in Fig.2, however, it includes the issues whose details should be
clearly specified: 1) encoding and normalizing of class information on class axis;
2) selecting of basis on the data plane from the principal components in the
augmented space. They will be explained in the following subsections.

3 CA-PCA: Class-Augmented PCA

In this section, we will explain the detail of the proposed scheme. For augmenting
the class information, the 1-of-n encoding scheme will be used and the normal-
ization, for maximizing the effect of class information in feature extraction, will
be applied. The PCA will extract principal components appropriate for classi-
fication, and among them the transformation matrix for feature extraction will
be constructed.

3.1 Encoding of Class Information

There are various coding schemes which can be used for class labels, among
which the thermometer coding and 1-of-n coding (n is the number of classes)
are well known and widely used. With thermometer coding some class labels are
closer to others than to the others and the difference between class labels can
result in the side-effect which is not desirable for our scheme. For example, if the
two data set belonging to two class are far while the labels for these two class
are near from each other, the difference between data with class label become
smaller than those without class label. This change can make it hard to find out
the feature appropriate for classification. To avoid this kind of difficulty, we use
the 1-of-n coding for other scheme. In this coding, each class label has the same
distance from each other, therefore, the side-effect described in the above can be
avoided.

Let the number of classes be nclass. Each class information for data X is
represented by

C(X) = [c1 c2 ... cnclass
]T (2)



610 M.S. Park, J.H. Na, and J.Y. Choi

where class label ci of X is a constant p if X belongs to class i, otherwise ci is
another constant ni. Values of ni are determined so that the mean of ci becomes
0. p is determined so that the sum of the variances

∑nclass

i=1 var(ci) becomes σ2

in which σ is selected as a scalar value much less than 1. The role of σ will be
specified in the subsequent subsection. Since the number of equation is nclass +1
and the number of variables is nclass + 1, all ni and p can be determined.

Example: Assume that three data X1,X2,X3 are given and the number of
total classes nclass is 2. X1 belongs to the first class, and the others belong to the
second class. In this case the class information C(X) for input data is expressed
as follows:

C(X1) = [p n2]T

C(X2) = [n1 p]T

C(X3) = [n1 p]T
. (3)

For this representation, if p =
√

10σ/5, n1 = −
√

10σ/10, and n2 = −2
√

10σ/5,
the average of c1 and c2 becomes 0 and the sum of the variances

∑2
i=1 var(ci)

become σ2.

3.2 Normalization

The purpose of normalization is to maximize the effect of class information in
the selection of principal components. The principal components in Fig. 1a are
rotated to those in Fig. 1c by the variances on the class axis. For this rotation can
be possible between any of principal components, the variance of data along
the class axis needs to be set larger than the difference between the
variances along axis on data plane. For example in Fig.1b, if the variance
along class axis is equal to or greater than the difference between variances along
w1 and w2, w′′

1 can be selected and w′
1 can be determined from w′′

1 .
This condition can be described by the following equations. For all i and j,

σ2 ≥ |σ2
wi
− σ2

wj
| (4)

where σ2
wi

means the variance along the axis wi.
This condition can be simultaneously satisfied for all pairs (i, j) by normalizing

the variance along each data axis to be 1. After normalizing of data, the difference
between variances along each axis becomes 0 and therefore the condition specified
in the above can be satisfied for any value of σ which is larger than 0. There
are another condition σ needs to satisfy, however, it will be explained in the
later subsection. The normalization is carried out by the following equation for
j = 1, 2, ..., ninput,

xj = xj/σj (5)

where ninput is the data dimension, X is the normalized data of X and xj means
the jth element of X , and σj is the standard deviation of the jth element over the
entire data set. The variance of each element in X is changed to 1 by applying
this scaling equation.
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The encoded class information for each X is augmented to the normalized
data as follows,

X
a

i =
[

Xi

C(Xi)

]
(6)

where X i is the normalized data with dimension ninput × 1 that corresponds to
class information C(Xi).

3.3 Application of PCA

After normalization and class augmentation, the normal PCA is applied to the
set of X

a
in order to obtain the principal components. The dimension of each

principal component is (ninput + nclass), and the maximum number of principal
components is also (ninput + nclass).

If reduction of the input dimension from ninput to nfeature < ninput ie desired,
the nfeature principal components are selected along which the variance of the
data is large. The obtained transformation matrix W

a
is as follows.

W
a

=
[
wa

1 wa
2 ... wa

nfeature

]
(7)

where the dimension of principal component wa
i is (ninput + nclass) × 1. The

dimension of W
a

is (ninput + nclass)× nfeature. The feature can be found by

Xfeature = W
aT

X
a
. (8)

To avoid repeating the normalization for new data, the scaling factor of nor-
malization can be included in W by the following equation for i = 1, 2, ..., nfeature

and j = 1, 2, ..., ninput,
wa

ij = wa
ij/σj (9)

where wa
ij is the jth element of wa

i and wa
ij is the jth element of wa

i . The
other elements corresponding to class information, need not be modified for
j = ninput + 1, ninput + 2, ..., ninput + nclass. It is because these elements are
multiplied with class information and the class information of test data will not
be given. These elements will be removed by the procedure explained in the next
subsection.

With the calculated wi, equation(8) can be rewritten as

Xfeature = W aTXa. (10)

where W a = [wa
1 wa

2 ... wa
nfeature

] = [WT
input WT

class]
T

3.4 Finding Transformation Matrix from Principal Components

If the obtained W a is used to the augmented data consisting of datum X and
class information C(X), the augmented data can be transformed into features
with a reduced dimension. This transformation is as follows.
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Xfeature = W aTXa (11)

= [WT
input WT

class]
[

X
C(X)

]
(12)

= WT
inputX + WT

classC(X). (13)

For the data given for finding a transformation matrix, called training data, the
class information is known and C(X) can be determined. However, for the data
given for classification called test data, class information is not given or permitted
to be used and therefore C(X) cannot be determined. The above equation needs
to be modified for being applicable to test data.

If σ2 in the previous subsection is set to a much smaller value than 1, the ele-
ments from WT

classC(X) tend to become much smaller than those from WT
inputX

and the second term in (13) can be omitted. Experimentally we verified that the
variance var{WT

classC(X)} from class information can be made less than 0.1%
of the variance var{WT

inputX} from data X for σ = 0.01, and the omittance of
the second term does not significantly affect the effectiveness of features. The
selected features from σ = 0.1 and these from σ = 0.001 were almost the same.

After omitting second term, the equation finally becomes as follows:

Xfeature = WT
inputX + WT

classC(X) (14)

�WT
inputX (15)

= WTX. (16)

This equation can be applied for any test data X without class information, in
order to obtain the corresponding value on the feature space.

4 Experiment

In this section, the CA-PCA is applied to face recognition problems and the
classification performance of features extracted by CA-PCA is compared with
those by the other methods such as PCA, LDA, ICA, and their variants.

4.1 Data Sets

We use two well-known face database for our experiments: YALE face database
and ORL database. There exist two kinds of YALE face databases, a closely
cropped set and a full face set, and among them we select the cropped set for
our experiments. The YALE Face database contains 165 grayscale images of 15
subjects (individuals). There are 11 images per subject obtained under different
facial expression or illumination conditions: center-light, with glasses, happy,
left-light, without glasses, normal, right-light, sad, sleepy, surprised, and wink.
ORL face database contains 400 grayscale images of 40 subjects. There are 10
images per subject with different poses.



Feature Extraction Using CA-PCA 613

There are experimental results using these databases, however, the direct
comparison of our performance with these results is not easy since these results
are obtained by using the differently downsampled images and by using different
evaluating strategies. In this paper, we survey the recent results evaluated by the
leave-one-out strategy (or called one-against-all strategy) and compare our result
with them. Leave-one-out strategy is an appropriate cross-validation strategy for
a data set in which the number of data is less than the dimension of data as in
YALE and ORL face databases. For showing the result more clearly, we provide
the results for images which are downsampled into two different scales.

4.2 Performance

The result using two databases are summarized in the following Table.1. In
tables, the first column indicates the feature extraction methods which include
CA-PCA, PCA variants (Eigenface, Kernel Eigenface, 2DPCA), LDA variants
(Fisherface, Kernel Fisherface, RLDA, Generalizaed LDA, LDA/GSVD), DCT,
and etc. The next columns indicate the image scale in which original image is
downsampled, the number of features used for classification, and the type of
classifier. Nearest Neighborhood Classifier is used for all cases except one cases
using Radial Basis Function Network. The accuracies for the feature extraction
method and the references in which the results are reported given in the last two
columns.

In the first table, the result of experiments on the YALE face database is given.
We can observe that the best classification accuracy 100.0% can be achieved by
using the features extracted by CA-PCA from the image whose scale is 40x30.
Compared to other methods which use images with the scale similar to or larger
than 40x30, it is also noted that the number of features necessary for achieving
this accuracy is the smallest in CA-PCA among those in the other methods
presented in this table. For comparison with the performance of ICA-FX which
is performed on the images with scale 30x21, the experiment for the images with
the same scale is performed and given in the table. CA-PCA can achieve the
best result 100.0% also for this case and the number of features for CA-PCA is
a little smaller than that for ICA-FX.

In the second table, the experiment on the ORL face database shows the
similar result with that from the experiments on YALE face database. 99.75%,
the best classification accuracy among those presented in this table is achieved
by using the features extracted by CA-PCA from the image whose scale is 40x30.
Compared to other methods which uses images with similar or larger scale than
40x30, it is also noted that the number of features necessary for achieving this
accuracy is much smaller in CA-PCA than those in the other methods presented
in this table. For comparison with the performance of other methods which is
performed on the images with scale 28x23, the experiment for the images with
the same scale is also performed and given in the table. CA-PCA can achieve
the best accuracy 99.75% also for this case. The number of features for CA-PCA
is not the best since the feature for ICA-FX is a little smaller than that for
CA-PCA.
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Table 1. The reported classification performance on two face databases using different
subspace methods and leave-one-out strategy. * means that the corresponding value or
method is not specified in the report.

Feature Extraction Methods Image Scale Feature Classifier Accuracy Reference
CA-PCA 30x21 9 NN 100.0%
CA-PCA 40x30 8 NN 100.0%
Eigenface 41x29 30 NN 71.52% [8]

Kernel Eigenface (d=3) 41x29 60 NN 72.73% [8]
2DPCA 100x80 * NN 84.24% [9]

Fisherface 41x29 14 NN 91.52% [8]
Kernel Fisherface (G) 41x29 14 NN 93.94% [8]

RLDA 106x81 * NN 97.60% [7]
Generalized LDA:To-R(Sw) 106x81 * NN 89.70% [7]
Generalized LDA:To-N(Sw) 106x81 * NN 97.60% [7]

Generalized LDA:To-NR(Sw) 106x81 * NN 98.20% [7]
LDA/GSVD 106x81 * NN 98.80% [7]

DCT 195x231 55 NN 80.00% [10]
DCT (without 1st 3 comp.) 195x231 55 NN 86.10% [10]

DCT + FLD 195x231 15 NN 96.40% [10]
DCT + FLD 195x231 15 NN 97.00% [10]

(without 1st 3 comp.)
DCT + FLD 195x231 15 RBF 98.20% [10]

(without 1st 3 comp.)
Isomap (ε = 20) 41x29 60 NN 72.73% [8]

LLE (# of neighbor=70) 41x29 30 NN 73.94% [8]
ICA 41x29 100 NN 71.52% [8]

ICA-FX 30x21 14 NN 96.36% [11]

(a) Result for YALE face database

Feature Extraction Methods Image Scale Feature Classifier Accuracy Reference
CA-PCA 28x23 13 NN 99.75%
CA-PCA 40x30 16 NN 99.75%
Eigenface 28x23 40 NN 97.50% [8]

Kernel Eigenface (d=3) 28x23 40 NN 98.00% [8]
2DPCA 112x92 * NN 98.30% [9]

Fisherface 28x23 39 NN 98.50% [8]
Kernel Fisherface (P, G) 28x23 39 NN 98.75% [8]

RLDA 56x46 * NN 98.00% [7]
LDA/GSVD 56x46 * NN 93.50% [7]

Generalized LDA:To-R(Sw) 56x46 * NN 98.00% [7]
Generalized LDA:To-NR(Sw) 56x46 * NN 98.80% [7]
Generalized LDA:To-N(Sw) 56x46 * NN 99.00% [7]

Isomap (ε = 10) 28x23 30 NN 98.25% [8]
LLE (# of neighbor=70) 28x23 70 NN 97.75% [8]

ICA 28x23 80 NN 93.75% [8]
ICA-FX 28x23 10 NN 99.00% [11]

(b) Result for ORL face database
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5 Conclusion

In this paper, a new supervised feature extraction scheme called CA-PCA (Class
Augmented PCA) has been proposed. The issues for using class information with
PCA are dealt with, and the scheme is proposed to consider these issues; the
scheme is used for encoding class information and augmenting it to normal-
ized data, and selecting the useful components from the principal components
obtained by standard PCA.

The performance of the proposed scheme is evaluated by experiments using
two well-known YALE and ORL face databases. For both databases, the CA-
PCA can generate features which result in the 100.00% and 99.75% classification
accuracies, respectively, and the number of necessary features for these results is
also smaller in CA-PCA than those in other methods. This performance of CA-
PCA is superior to the reported performance of other methods and therefore
we can conclude that CA-PCA is an effective feature extraction method for
classification.
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Abstract. This paper deals with the methods for classifying whether a
video is harmful or not and also evaluates their performance. The objec-
tionable video classification can be performed using two methods. One
can be practiced by judging whether each frame included in the video is
harmful, and the other be obtained by using the features reflecting the
entire characteristics of the video. The former is a single frame-based fea-
ture and the latter is a group frame-based feature. Experimental results
show that the group frame-based feature outperforms the single frame-
based feature and is robust to the objectionable video classification.

1 Introduction

The development of multimedia and Internet has led to the flood of contents,
making it much easier for users to get access to tons of contents than ever before.
This also made much easier for users including teenagers to be exposed to sexual
contents; therefore, it is desperately needed to devise some measures to protect
users, especially teenagers. The sexual contents are not only distributed properly
but also produced by amateurs. Thus, we need to come up with a method, which
can be practiced quickly, simply, and precisely at the moment of replay, rather
than the prior censorship.

This paper provides algorithms which meet the requirements to classify whe-
ther videos are objectionable or not. For this, two methods are proposed and
evaluated. The first method is to classify videos by using shape information of
the skin color region[6]. In this method, we need to determine if the frames of
the videos are harmful in order to judge whether the entire videos are harmful or
not. That is, the method uses color information by extracting skin color region
from the frame images, and then utilizes shape information by learning the
shape of the skin color region with SVM(Support Vector Machine)[10,11]. By
using this algorithm, it is possible to get the degree of harmfulness of individual
images and to judge whether the entire video is harmful or not. The second
method makes use of GoF(Group of Frame) information defined in MPEG-7[9].
By obtaining average SCD(Scalable Color Descriptor) histograms from several
harmful and non-harmful videos, we get the GoF information and find criteria
for classification using the SVM.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 616–623, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The paper is composed as follows. The 2nd section provides related works and
explains why we chose the two methods. The 3rd section deals with the process
of data collection and the characteristics of videos. The 4th section explains algo-
rithms devised for the classification of harmful videos. The 5th section describes
the experimental results. The 6th section is a conclusion.

2 Related Works

In the past, several researchers have worked on face and nude image detection for
video content indexing, analysis and classification[1,2,3,4,5]. Most of them use
aggregate features obtained from the binary skin region image which represent
the percentage of skin within an image. Therefore, it is not sufficient for high
accuracy harmful image detection in the objectionable video.

To increase the accuracy of the objectionable image detection, other informa-
tion such as shape should be considered because shape patterns in the objection-
able video are regular and repeated. In addition to the shape information, skin
color model should be robust, accurate in lighting and race variations. Appearance-
based nude image detection method[6] proposed the feature vector that contained
shape and skin color information. Experimentally it shows that the method can
achieve an excellent classification performance. And the previous works[7,8] dis-
covered that under arbitrary conditions of illumination and race variation, the
HSV was most discriminative color space of the RGB, HSV, YIO, YCbCr and
CMY. Therefore, we used the shape and color information proposed by [6] and
GoF descriptor computed from HSV color space defined in MPEG-7[9].

3 Collecting the Data

In order to get the reasonable experimental results, the testing data should be
large enough and gathered from various genre. A total of 2,000 videos, whose
replay length is an average of 53 minutes, were collected for the experiment.
Half of them include harmful images, and the other half don’t, consisting of five
sub-categories such as documentary, movie, soap-opera, music, and sports. Out
of all the collected videos, still images numbering in 630,733 were extracted at
an interval of 10 seconds. Then, the still images were classified whether they are
harmful by individual examiners. The classification work might have some errors
according to the examiners; therefore, some detailed rules for classification were
made in advance and learned by the examiners so as to minimize possible errors.
Through this process, it turned out that 208,318 still images are harmful and
the proportion of harmful images contained in the harmful videos is 66%. The
file format was restricted to AVI and MPEG.

4 Methods for Classifying Objectionable Videos

As mentioned, objectionable video classification can be performed using two
methods. One can be practiced by judging whether each frame included in the
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video is harmful or not, and the other be obtained by using the features reflecting
the entire characteristics of the video.

4.1 The First Method: Where and How Many Objectionable
Frames Are Included?

To find out the proportion of the harmful frames contained and their emerging
locations, it must be first determined whether each frame is harmful or not.
Although there are several existing algorithms to determine whether images are
harmful, the newly proposed classification method[6] employing shape informa-
tion of the skin color region is used for this paper. First, we need to get skin color
region using texture characteristics of the human skin, which then generates the
skin likelihood image. The third picture in Figure 1 represents the high and low
of the probability by means of shading. These images are standardized and used
as input for Support Vector Machines (SVM). The standardizing is carried out
by converting the size of the images into 40 × 40 and then into the vector of
1,600 in length. These vectors (1,600 in length) are defined as feature values.
By extracting these values from the learning image set and analyzing them with
SVM, the criteria for the classification are found.

Fig. 1. The process of feature extraction for objectionable image classification using
shape and skin color information

Figure 2 shows the SVM learning and X modeling procedure for generating
the single frame based decision values. We first select training images manually
from the extracted frames. Next, we extract feature values from the training
images and conduct SVM learning process. After leaning process, we can get
hyperplane value and decide each frame whether harmful or not. If the SVM
learning machine returns positive value, the input frame is harmful. If we extract
m frames from a test video In, we can get return values from SVM from In,1 to
In,m.

We summarize these values with two functions, Xavg and Xratio. Finally, we
can decide whether the test video In is harmful or not based on the return
value from one of two functions. The variable xi stands for ith input frame. The
function fsvm represent the SVM classification function that extract feature vec-
tor from input frame and conduct SVM classification. The function Bi represents
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Fig. 2. X modeling procedure

the binary classification function that returns 1 or 0. The m is the number of
the frames extracted.

Xavg =
∑m

i=1 Ii

m
where Ii = fsvm(xi) (1)

Xratio =
∑m

i=1 Bi

m
where Bi =

{
1 if Ii ≥ 0
0 if Ii < 0 (2)

4.2 The Second Method: Is the Entire Characteristics of the Video
Objectionable Or Not?

If it is needed to know whether or not a video are objectionable, it might be an
efficient way to use only some features reflecting the entire characteristics of the
video without examining every frame. Figure 3 shows the SVM learning and Y
modeling procedure for generating the group frame based decision values.

Objectionable videos generally contain more skin color information than the
others. We use HSV color space for skin color detection because color in HSV
space is robust to illumination, lights and noise and is most discriminative in
face detection. HSV color space consists of hue(H), saturation(S), value(V). Hue
shows the attribute of a visual sensation. Saturation measures the lack of white in
the color and value is a linear combination of RGB components. The HSV color
space is the color space associated with the group of frames histogram descriptor.
For this descriptor, the HSV space is uniformly quantized into 256 bins - 16 levels
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Fig. 3. Y modeling procedure

in H, 4 levels in S and 4 levels in V. The group of frame (GoF) color descriptor
is used for the joint representation of color-based features for multiple frames in
a video segment. The GoF color descriptor is obtained by aggregating the 256
bins of multiple video frames and by averaging the aggregated bin values. The
average histogram is computed by accumulating the frame histograms in the
group and subsequently normalizing each accumulated bin value by m, where
m is the number of frames in the GoF. We obtain GoF values of 256 features
from the training set and perform SVM learning based on Radial Basis Function
(RBF) kernel using the values, as illustrated in Figure 3. We define Y as a
classification result that is a distance between GoF and support vectors.

5 Experimental Results

The process of the experiment runs as follows. The number of videos used for
experiment was 1,186 out of total 2,000 videos as shown in table 1. The single
frame-based learning models denoted as the variable X were generated using
1,000 frames from 598 videos. The GoF-based learning models denoted as the
variable Y were learned by extracting frames from 598 videos at an interval of 60
seconds. The Table 2 stands for the result of classification for 47,465 images using
shape and skin color information. These images are produced from test video set.
This method shows lower performance (74.4%) than it is expected because we
omit pre-processing modules(face detection and skin filter) to improve system
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Table 1. Video data set for learning and test

Category Sub-category Learning set Test set
Documentary 60 60
Soap opera 60 60

Non-objectionable Sports 60 60
Movie 60 60
Music 60 51

Objectionable Porno 298 297

Table 2. Image classification performance using shape and skin color information

Precision Recall Accuracy
0.722 0.721 0.744

Table 3. Video classification performance using X, Y models with cross point threshold

Method Precision Recall Accuracy
Xavg 0.842 0.893 0.861
Xratio 0.892 0.883 0.886
Y 0.950 0.889 0.920

Fig. 4. Finding thesholds

speed and test set contains low quality videos that are difficult to extract shape
and skin color information.

To decide whether input video is harmful or not, we need a threshold for each
function. To find the optimal threshold, we repeat the experiment changing the
threshold. Figure 4 shows the optimal threshold of two X functions for learning
data set where the x axis shows threshold and the y axis shows performance.
The cross point of the lines(precision, recall) can be a optimal threshold. The
Table 3 stands for the result of classification for test data set by X and Y
modeling with the optimal threshold. The optimal threshold is obtained from
the experiment with learning data. Y shows best performance and Xratio shows
better performance in precision and accuracy than Xavg.
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Fig. 5. Performance of sub categories using Y model

Figure 5 shows hit ratio using Y model for six sub categories where DO is
documentary, SO is soap opera, SP is sports, MO is movie, MU is music, OB
is objectionable, x axis shows sub categories and y axis shows performance. Y
model shows even performance for all sub categories.

6 Conclusion

This paper compares two methods to judge whether videos are harmful or not:
One is using shape and skin color information for the classification and the other
is based on the GoF feature. As the classification method for the objectionable
image considers shape information as well as skin color, it was expected to show
higher performance in the classification of a single image. When applying this
to the binary classification, a single frame-based method shows the lower per-
formance than the GoF-based method. Although the single frame-based method
shows high performance in judging a single image, it does not reflect the en-
tire characteristics of the videos. That is why it has lower performance than
GoF reflecting the traits of the group frames. And the performance of GoF-
based method is robust to the objectionable video classification. Based on the
fact that it is important to reflect the whole features of videos, we would like
to achieve better classification performance by considering motion and audio
information and all the properties of videos.
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Abstract. In this paper, we propose a hybrid architecture combining
radial basis function network (RBFN) and Principal Component Anal-
ysis (PCA) re-constructure model to perform facial expression recogni-
tion from static images. The resultant framework is a two stages coarse
to fine discrimination model based on local features extracted from eyes
and face images by applying PCA technique . It decomposes the acquired
data into a small set of characteristic features. The objective of this re-
search is to develop a more efficient approach to classify between seven
prototypic facial expressions, such as neutral, joy, anger, surprise, fear,
disgust, and sadness. A constructive procedure is detailed and the sys-
tem performance is evaluated on a public database ”Japanese Females
Facial Expression (JAFFE)”. As anticipated, the experimental results
demonstrate the potential capabilities of the proposed approach.

1 Introduction

Facial data analysis is one of the essential medium of perceptual processing and
emotion modeling [1,2]. Facial expression recognition methods can be generally
divided into two categories: static images vs. video sequences, based on differ use
of data and feature extraction methods. Typical techniques include optical flow
estimation, spatial feature analysis, and local filter analysis. Yacoob and Davis [3]
utilized optical flow method to track the dynamic movement of facial features
from video sequences and classified the representation of facial feature movement
into six expressions (i.e., joy, surprise, anger, fear, sadness, and disgust). Barlett
et al. [4] combined optical flow and principal component analysis (PCA) for
facial expression recognition. The Facial Action Coding System (FACS) derived
by Ekman and Friesen has been widely used to describe the facial expression
by movement of action units (AUs) [5]. The FACS is often incorporated with
the above mentioned techniques to delineate the details of human expression for
video sequences. Donato et al. [6] provided a more detail review of the recent
techniques for facial expression recognition based on video sequences and FACS
encoding. Anderson and McOwan presented a fully automated and multistage
system for real-time recognition of facial expression utilizing SVM to distinguish
the motion signatures [7]. Devillers et al. addressed how the emotion express is
perceived from spoken dialogs based on machine learning approach [8].
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Fig. 1. Examples of seven principal facial expressions in JAFFE [20]: joy, disgust,
anger, surprise, fear, neutral, and sadness (from left to right)

Facial expression recognition from still images is a more difficult problem than
from video sequences due to the fact that less information during expression
actions is available [9]. Cottrell and Metcalfe [10] applied PCA and backpropa-
gation neural network to recognize facial expression, gender, and identity from
static images. Chen and Huang [9] modified linear discriminate analysis (LDA)
algorithm and presented a new clustering based feature extraction method for
facial expression recognition. A constructive feed-forward neural network was
further proposed for facial expression recognition with pruning technique by
Ma and Khorasani [11]. Other approaches such as multiple discriminate analy-
sis, ICA, Adaboost, Fisher Weight Maps, Appearance model etc. can also been
found in the recent literatures [12,13,14,15,16,17,18,19].

In this paper, we are concerned with automatic classification of facial ex-
pressions from still images. The psychologists have indicated that as least six
emotions are universally associated with distinct facial expressions. Examples
of Japanese Females Facial Expression (JAFFE) databases are shown in Fig. 1.
The rest of this paper is arranged as follows. Section 2 illustraes the main com-
ponents of the proposed system. We utilized PCA in the pre-processing stage to
extract features from face imagery. We further proposed a hybrid model of radial
basis function network and PCA re-construction network to fulfill the facial ex-
pression differentiation task. In section 3, the experimental results are presented.
Finally, conclusion remarks are drawn in section 4.

2 Hybrid Network Model

2.1 Radial Basis Function Network

The radial basis function neural network (RBFN) theoretically provides a suf-
ficient large network structure such that any continuous function can be ap-
proximated to within an arbitrary degree of accuracy by appropriately choosing
radial basis function centers [21]. The RBFN is trained using sample data to
approximate a function in multidimensional space. The RBFN is a three-layered
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network. The first layer constitutes input layer in which the number of nodes
is equal to the dimension of input vector. In the hidden layer, the input vec-
tor is transformed by radial basis function as activation function: ϕ(x; cj) =
exp(− 1

2σ2 ‖x− cj‖2), where ‖ · ‖ denotes a norm (usually Euclidean distance) of
the input data sample vector x and the center cj of radial basis function. The
kth output is computed by equation

Fk(x) = Σm
j=1wkj · ϕ(x; cj), (1)

where wkj represents a weight synapse associates with the jth hidden unit and
the kth output unit with m hidden units. Given a set of N different points {xi ∈
Rp|i = 1, 2, · · · , N} as input pattern and the corresponding set of desired target
values {di ∈ Rk|i = 1, 2, · · · , N}, the goal is to find a function F : Rp → Rk

that satisfies the condition: F (xi) = di, i = 1, 2, · · · , N . Thus, we obtain the
following result derived from Equation (1):⎡⎢⎢⎢⎣

ϕ11 ϕ12 · · · ϕ1m

ϕ21 ϕ22 · · · ϕ2m

...
ϕN1 ϕN2 · · · ϕNm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w11 w12 · · · w1k

w21 w22 · · · w2k

...
wm1 wm2 · · · wmk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
d11 d12 · · · d1k

d21 d22 · · · d2k

...
dN1 dN2 · · · dNk

⎤⎥⎥⎥⎦ (2)

where ϕij = ϕ(xi; cj), and i = 1, 2, ..., N , j = 1, 2, ..., m. We can then rewrite
Equation (2) to the form ϕ ·W = D. Thus, the weight matrix can be obtained
by the least square approximation algorithm W = (ϕT ϕ)−1ϕT D.

We employed the RBFN to classify the facial expressions images in the Eigen-
space domain extracted via PCA as described in the next section. The major
advantages of RBFN are its fast training speed and local feature convergence [21].

2.2 Classification with PCA Reconstruction

Principal Component Analysis (PCA) has been commonly used to faces recog-
nition problems. Typical PCA algorithm (Eigenface/Fisherface) is one of the
main streams of research on face feature processing [22]. PCA has advantage
over other face recognition schemes in its speed and simplicity. We utilize PCA
in the pre-processing stage to extract features from face imagery. The basis of
the ordinary image space is composed of all single pixel vectors. However, the
image space is not a optimal space for face representation and categorization.
The aim of applying PCA is to build a face space which better describes the
face images. The basis vectors of this face space are called the principal compo-
nents. These components will be uncorrelated and will maximize the variance
accounted in the original basis. It can also reduce the dimension of the feature
space. The details of PCA derivation can be found in literatures [22].

To illustrate the feasibility of using eigen feature to fulfill expression classifica-
tion task, we modify the PCA reconstruction method for preliminary evaluation.
Notice that if the input image is much similar to some expression training set,
the reconstructed image will has less distortion than the image reconstructed
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Fig. 3. Schematic block diagram of the proposed hybrid model

from other eigen vectors of training expressions. Based on this episode, we di-
vide the training set into seven classes according to different expression and
compute the eigen space of each class. For a test face image, we first project it
onto the eigen space of each class independently and then derive reconstructed
image from each eigen space. By measuring the similarity (mean-square error)
between input image and the reconstructed image of each class, we can identify
the class of input image whose reconstructed image is most similar to the input
one. The procedure of the developed PCA reconstruction method is delineate
in Fig. 2.

2.3 Hybrid Architecture

The cognitive and emotional states of a person can be correlated with visual
features derived from images of the mouth and eye regions [23]. Many researches
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on facial expression representation has focused on the specific feature motion of
upper face (ie., eyes and brows) and lower face (lips) [24]. To improve the per-
formance of recognition, we further proposed a hybrid model combining RBFN
and PCA re-construction network. The schematic diagram of the proposed hy-
brid architecture is presented in Fig. 3. We divide the classification process into
two stages. In the first stage, we intend to categorize the expressions into k
(2 ≤ k ≤ 6) coarse classifiers according to Eigen-features of eyes. Each classifier
is aimed to differentiate candidates of a subset of expressions. In the second stage,
each classifier is further discriminated by using PCA re-construction method ac-
cording to their corresponding face features. The number of expressions to be
recognition is denoted as nk for classifier k. The notation is shown in Fig. 3.

3 Experimental Results

In this section, we demonstrate the performance of the proposed hybrid approach
in classifying seven facial expressions. The JAFFE database used in the experi-
ments consists of of 213 frontal pose images of ten Japanese females. Each person
posed some examples of each of the seven fundamental facial expressions, such
as neutral, joy, sadness, surprise, fear, anger, and disgust. We noticed that there
are two original pictures may have been labeled incorrectly. To avoid confusion,
we removed them from the database. Then, he database are partitioned into ten
folds without overlapping. Images of different expressions are randomly selected
from ten persons and divided into ten sets with roughly equal same sizes. Nine
sets are used for training and the remaining images are used for testing. This
process is repeated until all of the images are tested. The recognition rate are
measured based on the overall database. To investigate the local effect of the
source images, two types of images are acquired from the database for the ex-
periments (examples are illustrated in Fig. 4): Type A – face images without
hair and shoulders, image size is 80×80; Type B – images of eyes and mouth
region with size of 80×20 and 45×30, respectively. Experiments were first per-
formed according to the procedure introduced in the previous sections with PCA
reconstruction and single stage RBFN approaches. Table 1 and Table 2 list the
corresponding simulation results. As we can observe from Table 1 and Table 2,
the classification rate of using PCA reconstruction method based on face images
is up to 93.81% (top three matches). The correct classification rates based on
local lips and eyes features with single stage RBFN are 91.90% and 93.33%, re-
spectively, by counting the top three matched candidates. Thus, it is possible to
re-organize the training mechanism and construct a hybrid network for further
investigation and improvement.

Notice that the recognition performance of RBFN for eyes images could be
as high as 92.86% when we count the rank of top three matches. This phe-
nomenon indicates that it is possible to improve the performance by group-
ing several classes of expressions together and constitute a pre-classification fil-
ter. To obtain the design guideline of the multiple layers delineation structure,
we want to observe whether local eyes image eigen-feature can help to do the
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(a) Type A – face images.

(b) Type B – eyes and lips images.

Fig. 4. Sample images extracted from JAFFE database: (a) Type A – face images, and
(b) Type B – eyes and lips images

Table 1. Classification rate (%) of PCA reconstruction method

Data type top one match top two matches top three matches
Type A - face 84.83 90.95 93.81
Type B - lips 78.57 88.10 91.90
Type B - eyes 83.33 90.95 93.33

Table 2. Classification rate (%) of single stage RBFN with PCA pre-processing method

Data type top one match top two matches top three matches
Type A - face 73.81 87.14 93.33
Type B - lips 64.29 84.29 90.95
Type B - eyes 76.19 89.52 92.86

preliminary clustering task. The confusion matrices of the single stage RBFN
top one match test results are recorded in Table 3. As we can see from the con-
fusion matrices, not all expressions were equally well recognized by the system.
Expressions ”fear” and ”neutral” were often mis-classified to other classes. Be-
sides, expressions ”sadness”, ”disgust”, ”anger” were often mis-classified with
each other. ”Joy” is seldom mis-classified by other expressions. Thus, we intend
to divide the first stage classification into various categories by grouping several
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Table 3. Confusion matrix of facial expression classification measured by single stage
RBFN method on type B eyes test images from JAFFE database

I \ O Sadness Joy Disgust Neutral Surprise Fear Anger
Sadness 22 0 3 0 0 1 4

Joy 1 22 0 3 4 1 0
Disgust 4 1 18 1 1 0 4
Neutral 0 1 0 18 1 2 8
Surprise 1 0 0 1 19 3 5

Fear 6 1 1 0 3 17 3
Anger 0 0 5 3 0 1 21

Table 4. Comparison of the recognition rate (%) of different arrangements

scenario stage Sadness Joy Disgust Neutral Surprise Fear Anger average
A eyes 100 100 96.55 93.33 89.66 90.32 93.33 94.74

face 86.67 84.21 82.76 83.33 89.66 83.87 83.33 84.78
B eyes 100 80.65 93.10 100 100 96.77 100 95.79

face 86.67 82.76 82.76 83.33 90.00 87.10 90.00 87.18
C eyes 100 90.32 100 86.67 82.76 93.55 100 93.33

face 90.00 77.42 86.21 86.67 82.70 90.32 90.00 85.72

Table 5. Comparison of the recognition rate of different approaches tested on JAFFE
data set

method recognition rate
HLAC+Fisher Weight Maps [14] 69%

LNNF [13] 70% ∼ 80%
Gabor wavelet [20] 82%
Boosted ICA [25] 86%

LBP+Linear Programming [16] 93.8%
our method 95.79% (eyes), 87.18% (face)

mis-classified categories. Later, train the face image individually for each clas-
sifier to perform less intensive identification task in the second stage. Various
scenarios can be verified. Three of the well trained cases are: scenario A separates
”surprise” from the reset of expressions; scenario B uses ”joy” as one set and the
rest becomes one set; scenario C contains two subsets (”surprise, neutral”) and
the rest of expressions. The recognition results of the proposed hybrid model
are illustrated in Table 4. The best recognition of the first stage, eyes phase,
is 95.79%. The performance of the second stage recognition is 87.18%. For the
purpose of comparison, Table 5 shows the performance reported in previous lit-
eratures tested on the same JAFFE database. Recently, Wang et al. reported
92.4% recognition rate of facial expression, but they tested on different dataset,
although trained on JAFFE database [12]. Besides, Feng et al. proposed a Linear
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Programming method and achieved 93.8% recognition rate based on 21 two-class
classifiers [16]. The evaluation scheme is different than ours. As we can observe
from Table 4, our method is very competitive and outperforms the previous
methods.

4 Conclusion

In this paper, we proposed a hybrid model combining PCA feature re-construc-
tion and RBFN method to tackle facial expressions recognition problems. From
our experimental results, this cascade strategy works properly. As we can see
from the records, our method is very competitive. We learn that it is possible to
re-organize the training scenarios and construct a multi-layer hybrid network for
further investigation and improvement. Thus, we arrange the first stage classi-
fication by dividing into several groups of categories using local features of eyes
images. Later, train the face image individually for each classifier to perform
less intensive identification task in the second stage. Various arrangements have
been verified. From these results, we conclude the local face features is useful for
differentiating expressions when a more appropriate classifier is arranged. In the
future, we can adopt a more sophisticate learning algorithm of neural network
and fuzzy theory to induce the best combination of sub-category in the first
stage. Leverage of the recognition performance can be expected. Furthermore,
more work will be conducted to validate the technique on other databases such
as CMU AMP Face Expression Database [26], POFA image set of Ekman and
Friesen [27], and other emotion research databases [28].
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Abstract. For the past 10 years it has become clear that biological movement is
made up of sub-routine type blocks, or motor primitives, with a central controller
timing the activation of these blocks, creating synergies of muscle activation.
This paper shows that it is possible to use a factorial hidden Markov model to
infer primitives in handwriting data. These primitives are not predefined in terms
of location of occurrence within the handwriting, and they are not limited or
defined by a particular character set. Also, the variation in the data can to a large
extent be explained by timing variation in the triggering of the primitives. Once an
appropriate set of primitives has been inferred, the characters can be represented
as a set of timings of primitive activations, along with variances, giving a very
compact representation of the character. Separating the motor system into a motor
primitive part, and a timing control gives us a possible insight into how we might
create scribbles on paper.

1 Introduction

As with all planning tasks, there is a debate as to the degree of pre-planning in move-
ment control. Humans and animals find solutions to movement tasks that are both re-
peatable to some extent across trials and circumstances, and subjects [17, 16, 12]. De-
spite this repeatability, we are also very adaptable to new tasks, and can quickly adjust
learnt movements to cope with new environments [5]. There must therefore be some
compromise between preprogrammed movement, and instantaneous movement plan-
ning in biological organisms.

Evidence suggests that once a particular movement has commenced, it cannot be
unexpectedly switched off. Rather, to quickly modify a movement trajectory, the move-
ments are superimposed [11]. This suggests that there is a subroutine type of movement
activation, where the subroutines are not quickly adaptable, but their individual acti-
vation can be a fast and globally relevant process. This modularisation of movement
control could provide a good compromise between movement pre-planning and online
error correction. These subroutines of motion will be referred to as motor primitives.
Strong biological evidence exists to suggest that these primitives exist, with motor prim-
itives first being conclusively found in frogs [2, 3, 4] where stimulation of a single spinal
motor afferent triggered a complete sweeping movement of the frog’s leg. For a review
of modularisation of motor control in the spine, see [1].

There have been many studies on recording the dynamics of all aspects of natural
human movement. People have tried to infer motor primitive type sub-blocks from the
sequences of movement [18, 12, 8, 15, 10]. Most of these attempts have pre-partitioned
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the sequences into movement sub-blocks, then extracted principal components. This
means either considering the entire movement as a primitive, in the domain of hand-
writing, the entire character, or finding segmentation points, such as points of highest
curvature, or maximum torque. The disadvantage of this method is that strong assump-
tions must be made about the partitioning of the data, and the duration of the primitives.
Rather than pre-partitioning the data into sub-blocks, it would be better to allow this
partitioning to be inferred.

We have used a probabilistic framework to define a generative model for primitive
activation. The parameters for the generative model can be learnt using Expectation-
Maximisation. This method provides a way to infer primitives without any pre-partition-
ing of the data. We hypothesise that motor primitives make up the movement commands
being sent to the hand and arm muscles during handwriting. We record a vector describ-
ing the position, pressure, and tilt of the pen over time. The dynamics of this vector will
reflect the hand motion and therefore contain projections of motor primitives.

In Section 2, we describe the model from motivation to modelling details. Sections 3
and 4 present the data, and the results obtained so far, showing typical primitives ob-
tained, the separation of primitive from primitive timing, using primitives inferred from
one dataset to model a different set of data, and some examples of the generative model
running without specific timing information. Section 5 discusses the results, the parti-
tioning of the model into primitive and timing parts, and the possible biological parallels
with structures in the mammalian brain.

2 The Model

Unlike many previous studies which analysed motor primitives directly from given data,
we base our approach on a generative model of motion. With probabilistic inference
methods, we infer the primitives inherent in given data. We assume that the activation
of motor primitives can be overlapping, and that they do not have uniform fixed length.
The primitives are therefore the output vocabulary, which may either be inherited, or
learnt over long time-scales. We assume that the primitives have little or no dependence
on each other. The independence of one primitive from another, and post-activation
persistence of the motor primitives, give rise to a model that is similar in nature to that
of a piano. (See Figure 1)

2.1 A Simple Generative Model: The Piano Model

To formalise the model in a generative way, the output of the system Y at time t is
defined as

Y (t) =
∑
m,n

αmnWm(t− τmn) , (1)

where Wm(t) are the primitives, and τmn represents the time of the nth activation of
primitive m, and αmn defines the activation strengths of the primitives.

In this definition, m enumerates the primitives, whilst n enumerates the occurrence
of the primitive within the sample window, at time τmn. We have called this model
the Piano Model because of its similarities to the operation of a piano being played,
where the timing controller (the pianist) presses each key at the appropriate time in the
piece of music. The keys on the piano produce time extended clips of sound, which are
superimposed to create the music that is heard by the listener. The crucial point is that
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Fig. 1. The Piano Model. The model is segmented into a timing part and a movement subrou-
tine, or primitive part. The timing information is encoded in spike positions, possibly in a sim-
ilar way to how biological neurons may encode the movement. The movements are encoded as
multidimensional muscle activation synergies in biology. Here they have been simplified to one-
dimensional signals. The analogy with written music being translated into auditory music is also
shown.

Fig. 2. Graphical representation of a Factorial Hidden Markov Model, showing the independence
of the separate Markov chains. Although the observable output is dependent upon the state of the
entire system, the internal states evolve with no interdependencies. Sm

t denotes the hidden state
vector at time t, in factor m.

the only dependence that the music has on the pianist is the timing and choice of keys
he presses, with associated pressure1. In the same way, in our motor primitive model,
a central controller does not control the precise movements but rather the timings of
particular temporal movement sequences. Figure 1 shows a diagram to illustrate the
Piano Model.

The Piano Model neglects noise effects and learning the parameters of the model is
better realised in a probabilistic framework. Assuming discrete time steps, an appropri-
ate modelling framework is that of Factorial Hidden Markov Models (fHMMs). These
are the same as standard HMMs, but with multiple, parallel and independent hidden
state chains, as seen in Figure 2.

2.2 The Factorial Hidden Markov Model

A graphical model of the fHMM can be seen in Figure 2. At each time step, the ob-
servable output Yt, a vector of dimension D, is dependent on M hidden variables
S

(1)
t , ..,Sm

t . The output is a multivariate Gaussian, such that

1 This is debatable, as pianos may respond to the speed of key press, the duration of the key
press, and what other keys are being pressed at the time. Pianos also have pedals to create
different effects. The analogy is not intended to be exact.
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Yt ∼ N (μt,C) , (2)

where C is a D ×D parameter matrix of output covariance, and

μt =
M∑

m=1

WmSm
t (3)

is the D-dimensional output mean at time t. Wm is a D ×K parameter matrix giving
the output means for each factor m, such that the output mean μt is a linear combination
of its columns weighted with the hidden state activations.

Each of the M hidden variables can be in K different states. In equation (3) this is
encoded in the K-dimensional state vector Sm

t using a 1-in-K code, i.e., Sm
t,i = 1 if

the m-th factor is in state i and zero otherwise. This allows us to write expectations
of the hidden states as 〈Sm

t 〉, which is also the probability distribution over the indi-
vidual states Sm

t . Each latent factor is a Markov chain defined by the state transition
probabilities and the initial state distribution as

P (Sm
1 = i) = πm

i , P (Sm
t = i |Sm

t−1=j) = Pm
i,j , (4)

where πm is a K-dimensional parameter vector giving the initial hidden state distribu-
tion, and Pm is a K×K parameter matrix denoting the state transition probabilities. As
can be seen in Figure 2, each factor is independent. This means that the joint probability
distribution can be factorised as

P ({Yt,St}) = P (S1)P (Y1|S1)
T∏

t=2

P (St|St−1)P (Yt|St) (5)

=
M∏

m=1

πmP (Y1|S1)
T∏

t=2

M∏
m=1

PmP (Yt|St) . (6)

The fHMM model was based upon that described in [9], which provides arguments
for using a distributed state representation as is used here, and discusses the model in
further detail.

To use the fHMM framework as a probabilistic implementation of the Piano Model,
we must attribute each hidden Markov chain, or factor, to one primitive. The observ-
ables, being real-valued output vectors describing pen position derivatives are modelled
by the multivariate output Gaussian distribution, dependent upon the hidden state val-
ues at time t. The model has M primitives, with each primitive having K states. This is
similar to the Piano Model, given some extra constraints.

2.3 Constraints

The Piano Model differs from the fHMM model by allowing the primitives to be inac-
tive, giving a zero output contribution. In fact, it is a tacit assumption that the primitive
activation is fairly sparse, making the periods of inactivity important to the model. In the
fHMM model, the output is always a linear combination of all the factors, thus a major
constraint imposed was that state 0 for all Markov chains should contribute towards a
zero output mean (i.e., to not contribute, as the data mean is zero).

In the Piano Model, each primitive should keep its shape. This means that the pos-
sible hidden state transitions in the fHMM model needed to be constrained. When a



638 B.H. Williams, M. Toussaint, and A.J. Storkey

Fig. 3. State change probabilities. This shows how the state change probabilities were constrained
so that the individual Markov chains can correspond to a time extended primitive.

particular primitive was triggered, the hidden state vector for that factor changes from
state 0 to state 1, then is constrained to progress monotonically through the states until
the last state is reached,and returns to state 0. These state change restrictions can be
seen graphically in Figure 3.

2.4 Learning the Model

Given the fully parameterised modelling framework, learning of the parameters can
be done using an Expectation-Maximisation (EM) method. The structured variational
approximation was chosen for the E-step inference. For more details on the various
arguments for and against this choice, refer to [9]. With the structured variational ap-
proximation, the inference in the fHMM is split up into M separate Hidden Markov
Models, with single hidden state chains, with each HMM contributing a learnt pro-
portion towards the output. With separate HMMs, the normal Baum-Welch Forward-
Backward algorithm can be used to infer the hidden state expectations [6]. The only
addition necessary is a responsibility factor hm

t , which models the amount that the mth

HMM contributes towards the output. hm
t takes the place of the observation likelihood

in a standard HMM. See (7) for the details of calculating ht. The M-step updates the
parameters Wm, πm, Pm, and C. The update equations are in Appendix A.

3 Implementation

Handwriting data were gathered using an INTUOS 3 WACOM digitisation tablet
http://www.wacom.com/productinfo/9x12.cfm. This provided 5 dimen-
sional data at 200Hz. The dimensions of the data were x-position, y-position, pen tip
pressure, pen tilt angle, and pen orientation (0-360◦). The normalised first differential
of the data was used, so that the data mean was close to zero, providing the requirements
for the zero state assumption in the model constraints (see section 2.1). The data col-
lected were separated into samples, or characters, for processing purposes, and then the
parameters were fitted to the data using our algorithm. Once the parameters were learnt,
the hidden state expectations 〈S〉were finalised, and the pen space reconstruction of the
data could be calculated, along with the primitive timing statistics.

To clarify the operation of our algorithm, and the iterative nature of the EM infer-
ence, here are the pseudo-code and parameter settings.

Constants. T =times of each sample, N=number of samples, K=max primitive length,
M=number of primitives, D=dimension of data.
Initialisations. The primitives Wm are initialized with a zero mean Gaussian distribu-
tion of the same variance as the data. The transition probabilities πm and Pm are set as
defined in Section 2.3 with primitive onset probability N/T , giving a prior expectation
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Fig. 4. A sample of 4 typical primitives taken from a set of 36, inferred from the ‘g’ dataset. At
the top, the 5 dimensional velocity space primitives are shown. The maximum length of these
primitives was 10 samples. The centre row shows a pen-space reconstruction of each primitive,
with the thickness of the line representing the pressure of the pen tip. The starting point of the
reconstruction is at (0, 0). The bottom row shows the distribution of the onset of the primitive
over all the character samples.

of each primitive to be used once in each character. The output covariance C is taken
directly from the covariance of the data.

loop (EM loop)
E-step: initialize 〈Sm

t 〉 to P (Sm
t =0) = 1 for all t, m.

loop

compute hm
t from equation (7).

∀m : forward-backward algorithm gives 〈Sm
t 〉 using hm

t as obs. likelihood.
until expectations not changing significantly, or max 20 iterations

M-step: update the parameters as in (10)
until primitives don’t changing significantly, or max 50 iterations.

A large dataset of over 1000 samples of the character ‘g’ was created, and a smaller
dataset of over 100 samples of the character ‘m’ was also used, for speed issues. To
examine whether primitives can be disassociated from any particular character set, a
dataset of over 100 samples of scribbling was also created.

4 Results

Typical primitives. From the ‘g’ samples, it was found that the primitives tend to model
similar parts of the character across most, but not all samples. In Figure 4, we can see
a sample of primitives in velocity and their pen-space reconstructions along with their
timing distributions, from a set used to model the ‘g’ samples dataset.

Compact encoding with onset timing. P (Sm
t ) for state 1 represents the onset probability

at time t for the mth primitive, and are inferred during the E-step. Figure 5 shows this
timing information, which efficiently encodes the reproduction of the sample shown.
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Fig. 5. Two examples of primitive timing codes. In both (a) and (b), the timing information is
shown on the left, and the reproduction of the sample on the right, with the onset of each primitive
marked with an arrow. In (a), 20 primitives of length 40 time steps were used to model the ‘g’
dataset, of over 1000 characters. In (b), 9 primitives of length 30 were used to model the ‘m’
dataset, of over 100 characters.
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Fig. 6. A reconstruction of some samples from the scribble dataset is shown in (a). This was
a set of unconstrained scribbles. The primitives are coloured differently, to show different acti-
vation areas. (b) shows a sample generated using primitives from this dataset. Starting point of
reconstruction is (0, 0).

The distributions of activation of a primitive over the different samples tends to be
bell shaped, either uni- or bimodal, meaning that the primitives have a preference for a
particular part of the character, with the variation in timing accounting for the variations
across characters, at least to a certain extent.

Primitives from scribbling to generate characters. To explore whether the algorithm
was picking up features of a particular character set, or more generalised motor prim-
itives, a dataset of scribbles were used. These consisted of unconstrained scribbling,
without any character set goal objectives. Our algorithm was run on this dataset, and in
Figure 6(a), we can see a reconstruction of scribble samples.

Using the primitives from this dataset, it was possible to represent the other dataset.
In Figure 7, we can see examples of the character ‘g’, and ‘m’ being drawn with scribble
primitives.
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Fig. 7. A reconstruction of some samples, using primitives from the scribble set. One of the 36
primitives is highlighted. (a) shows characters from the ‘g’ dataset, (b) shows characters from the
‘m’ dataset.
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Fig. 8. Two samples generated using primitives without specific timing information. (a) was gen-
erated using primitives inferred from the ‘g’ dataset, (b) was generated using primitives from the
‘m’ dataset. Starting point of both reconstructions is (0, 0).

Random expression of primitives with different timing statistics. To further explore
what aspects of the character set are captured by the primitives, it is possible to sim-
ply run the model generatively, using the inferred parameters. In Figure 8 we see two
samples generated using the sets of primitives and other associated parameters inferred
from the ‘g’ and ‘m’ datasets. In both samples, we see aspects of the character, but no
clear examples of a character drawn perfectly. This is partly because the primitives are
assumed to be generatively independent, meaning the primitive that models the start of
the character cannot convey information about its state to the primitive modelling the
subsequent part. The primitives, although capturing an ‘aspect’ of the character, lack
the precise timing information that dictates how the character is drawn. This timing
information can be seen in Figure 5.

The generative scribbling could be likened to absent-minded doodles, where we con-
trol a pen, and produce writing output, but without any constraints dictating what char-
acter we should draw. Indeed, it is impossible to tell whether or not the sample shown
in Figure 6(b) is from a scribbled dataset drawn by a human, or a generative sample
‘drawn’ by the algorithm.
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5 Discussion and Conclusions

It is possible to model characters with primitives using a Factorial Hidden Markov
Model that does not pre-specify the timing of the primitives. The primitives, although
not constrained to be active for the whole character, or to be active between pre-defined
segmentation points in the character, tend to model particular areas of the character. The
variation of the character within the dataset is modelled partly by variations in primitive
timing, and partly by different primitives being active.

The primitives do capture an aspect of the character set they were trained upon, al-
though, they do not contain the precise timing information required for the reproduction
of a character accurately. This timing information can be learnt by looking at the prim-
itive activation statistics taken from a particular dataset, (work in progress), and forms
a compact representation of the character, as it simply encodes the onset timing of each
primitive. Without this timing information, the generative output of the model acquires
the aspect of scribbling. It is possible that when humans doodle absent-mindedly, it is
a lack of timing information that is causing the scribble type output from the motor
system.

This model lends itself towards breaking up of the motor system into 2 main mod-
ules. Firstly, the Primitive Module, encompassing parameters such as likelihood of a
particular motion, likely amplitude of a particular motion, with implementation capa-
bilities (control of muscles) of segmented, independent motions. Secondly, the Tim-
ing Module, encoding the overall motor ‘strategy’, and allowing compensation through
feedback, and online error correction to the timing of the motions, rather than the actual
motions themselves. In the brain, this segmentation could be paralleled by the motor
cortex and lower motor systems encoding the actual motor commands, while the cere-
bellum encodes the motor command timing. There is strong evidence to suggest that
the cerebellum is involved not only with motor timing, but perception of timed events
[13, 7, 14]. As the lack of a cerebellum does not completely impair movement, this
implies that muscle control is located elsewhere, such as in the motor cortex.
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A Appendix

In the E-step, the responsibility factor, ht was calculated using a residual error,

h
(m)new
t = exp{W (m)TC−1Ỹ

(m)
t − 1

2
 (m)} (7)

 (m) ≡ diag(W (m)TC−1W (m)) (8)

Ỹ
(m)
t ≡ Yt −

M∑
l �=m

W (l)〈S(l)
t 〉 (9)

where Ỹt is the residual error.
In the M-step, the parameter update equations used were

W ← (
T∑

t=1

Yt〈ST
t 〉)(

T∑
t=1

〈StS
T
t 〉)† (10)

π(m) ← 〈S(m)
1 〉 P

(m)
i,j ←

∑T
t=2〈S

(m)
t,i S

(m)
t−1,j〉∑T

t=2〈S
(m)
t−1,j〉

(11)

C ← 1
T

T∑
t=1

YtY
T
t −

1
T

T∑
t=1

M∑
m=1

W (m)〈S(m)
t 〉Y T

t (12)

〈St〉 is the expected value of the hidden states at time t. † denotes pseudo-inverse.
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Abstract. In this paper a new approach to the problem of ordering data in neural
network training is presented. According to conducted research, generalization
error visibly depends on the order of the training examples. Construction of an
order gives some possibility to incorporate knowledge about structure of input
and output space into the training process. Simulation results conducted for the
isolated handwritten digit recognition problem confirmed the above claims.

1 Introduction

The problem of optimal ordering of the training data has a great meaning in sequential
supervised learning. It has been shown ([1],[2]), that improper order of elements in the
training process can lead to catastrophic interference. This mechanism can also occur
during each training epoch and disturb neural network training process. Random or-
der of elements prevents from interference but can lead to non-optimal generalization.
Consequently, for example, most of efficient algorithms for training RBF networks ar-
bitrarily choose initial patterns ([3]).

In this paper a new approach to patterns ordering is proposed and experimentally
evaluated in the context of supervised training with feed-forward neural networks. The
idea relies on interleaving two training sequences: one of particular order and the other
one chosen at random.

In order to show the feasibility of this approach four models of an order are defined
in the next section together with a sample test problem - isolated handwritten digit
recognition. Numerical results of proposed interleaved training are presented in Sect. 2.
Conclusions and directions for future research are placed in the last section.

Input and output spaces of a network can be considered as metric spaces. It is always
possible to introduce a metrics since each of them can be immersed in Rn (where n is
a space dimension) with natural metrics

M : Rn × Rn → R+ ∪ {0}, M : ((x)n
k=1, (y)

n
k=1) !→

√√√√ n∑
k=1

(xk − yk)2.

Moreover, if some other knowledge about the data is possessed - e.g. if input data
consists of p, (p > 1) values of different scales - metrics with normalization or non-
euclidean metrics may be used, which would model the space considerably better.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 644–653, 2006.
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In such a case it is possible to divide a space into p subspaces and calculate the fol-
lowing metrics:

M : (x, y) !→
√√√√ p∑

i=1

(di(x, y)
di

)2
, (1)

where di(x, y) denotes the distance between elements x and y according to the i-th
metric and di represents the average pairwise distance between elements belonging to
the i-th scale data.

After choosing and normalizing metrics on input and output spaces it is possible to
introduce metrics on pattern space as it was done on space divided into subspaces.

1.1 Four Models of an Order

In this section four schemes of ordering training patterns together with their character-
istics are introduced.

Let input and output spaces be denoted by I and O, resp., and let {Tk} be the set
of training patterns. The models presented below rely on the fact that given a metrical
space of patterns it is possible to determine a pattern that is the nearest to the center of
the average probability of occurrence - analogously to the mass center point.

Model I. Let us denote by SI
k a sum of distances from a given element Tk to the rest

of elements of the set:

SI
k =

n∑
l=1

M(Tk, Tl)

A sequence of q training patterns (Tl)
q
l=1 that fulfils the following set of inequalities:

∀1≤l≤q−1 SI
l ≥ SI

l+1 (2)

is called ordered set of model I. A sequence created with rule (2) will begin with out-
lying patterns and end with close-to-average ones. Since the ending of the sequence
finally tunes weights of the network (and if not randomly chosen can have a biased
impact on the final network’s weights) it is important to characterize these average ele-
ments. In the space of patterns an ending of the sequence is expected to concentrate on
neighborhoods that are chosen combining two following tendencies of concentration:

1. Concentration on global maxima of probability density. In such a neighborhood an
average distance should be minimized.

2. Concentration on geometrical centers. These points minimize the sum of distances
to all other points. If probability of patterns is uniformly distributed the sequence
ending would be concentrated on geometrical centers.

In case of multicluster data it is expected that the training sequence ending would
be dominated by elements of one of the clusters (except for the cases of symmetrical
distributions of clusters). In such a case the sequence ordered in the above way will
generalize an approximated function better than a randomly ordered sequence only on
elements of preferred cluster.

Since the construction of an ordered set according to model I is straightforward its
description is omitted.
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Model II. Given a metrics M defined on pattern space and a set {Tk} an average
pairwise distance SII

n between the first n elements of the sequence can be expressed as:

SII
n =

2
(n− 1)n

n∑
k=1

n∑
l=k+1

M(Tk, Tl).

A sequence of q training patterns (Tl)
q
l=1 that fulfils the set of inequalities:

∀1≤l≤q−1 SII
l ≥ SII

l+1 (3)

is called ordered set of model II. Similarly to the previous model a sequence created
with rule (3) is expected to prefer outlying patterns at the beginning of the sequence and
place the average ones at the sequence ending. Rule (3) is more sensitive to geometrical
centers than probability centers compared to rule (2). A reason for such statement is an
observation that elements in the sequence ordered using rule (3) that occur after given
element do not have an influence on its position (as if they had been removed from the
set). What is more, a selection of an element according to presented algorithm implies
that the difference in the average distance after selection is minimal - the change of
geometrical center of a set should also be small. Removal of an element changes local
density of probability.

Algorithm for ordering a set in Model II. Given set {Tk} can be ordered to suffi-
ciently approximate ordered set of model II with the use of the following algorithm:

1. Put all q elements in any sequence (Tl)
q
l=1.

2. Create an empty sequence O.
3. Create distance array D[1..q]:

∀1≤l≤q Dl :=
q∑

k=1

M(Tl, Tk)

4. Choose a minimal value of element of D:

v := min1≤l≤q Dl.

5. Pick one element k from the set {1 ≤ l ≤ q |Dl = v}.
6. Update distance matrix:

∀1≤l≤q Dl := Dl −M(Tk, Tl)

7. Take element Tk out of sequence T and place it at the beginning of sequence O.
8. Remove element Dk from distance array.
9. Put q := q − 1.

10. Repeat steps 4-10 until q = 0.

Model III. Ordered set of model III is obtained by reverting ordered set of model I.
Model IV. Ordered set of model IV is obtained by reverting ordered set of model II.
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1.2 Test Problem

In order to test an influence of training data ordering on the learning process, a sample
problem consisting in isolated handwritten digits recognition was chosen. The pattern
set consisted of 6000 elements, randomly divided into training set T , |T | = 5500 and
test set V , |V | = 500. Binary {0, 1} input vectors of size 19×17 represented bitmaps of
patterns, and the 10-element binary {0, 1} output vector represented the classification
of the input digit (i.e. exactly one of its elements was equal to 1). All patterns were
centered. It should be noted that no other preprocessing took place. In particular digits
were not scaled, rotated or skewed appropriately. A detailed description of this data set
and results achieved by other recognition approaches can be found in [4]. A general
overview of methods applied to handwritten text recognition can be found in [5].

An ensemble of neural networks with 1 hidden layer composed of 30 neurons was
trained using backpropagation method. Both hidden and output neurons were sigmoidal.

Input subspace became metrical with the use of the following metrics:

I(v, w) = minx,y∈{−2,−1,0,1,2}H(v, R(x, y, w)) + |x|+ |y|

where H(·, ·) denotes Hamming distance, and R(x, y, w) denotes translation of vector
w by x rows and y columns. In the output subspace a discrete metrics O(v, w) was
used. Based on metrics defined on subspaces a metrics on pattern space was defined
according to (1) as follows:

M : (x, y) !→
√(I(x, y)

I

)2
+

(O(x, y)
O

)2
.

For the training set it was obtained I = 62.55, O = 0.9.

2 Results

All numerical results concerning RMSE and STDEV are presented as the averages over
100 networks, each with randomly selected initial weights. Unless otherwise stated
each training period was composed of 600 epochs. For comparison purposes all figures
representing one pass of training/testing for different orders of the training data are
presented for the same, randomly selected network (i.e. with the same initial choice of
weights).

According to previously formulated hypothesis in case of ordered sequences ele-
ments of particular clusters were not uniformly distributed over the sequence, which is
illustrated in Fig. 1. For example, elements representing digits 1 and 7 are concentrated
at the endings of both ordered sequences (Fig. 1(b) and Fig. 1(c)) and elements repre-
senting 0 and 2 are located mainly at the beginnings, whereas distributions of all digits
in case of random order (Fig. 1(a)) are uniform. Distributions of ordered sequences are
similar to each other, but they remarkably differ on digits 8 and 9.

2.1 Initial Results for Pure Random and Ordered Training Data

The case of randomly ordered training data (henceforth referred to as pure random case)
proves that the considered problem can be solved using assumed network architecture
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Fig. 1. Clusters’ elements distribution over sequences
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Fig. 2. RMSE obtained in each cycle using randomly ordered training data

and learning algorithm. This case also provides a possibility of comparison between
ordered training models and the pure random one. The plot of RMSE of the training
and test data in pure random order case are presented in Fig. 2.

The plots of RMSE of the network trained with sequence ordered according to model
II are presented in Fig. 3. It can be concluded from the figure that convergence of
training is worse compared to random order.

In hope to improve the convergence of the training process switching of training
sequences with a random one was tried. Fig. 4 presents changes of RMSE in case the
first 300 training epochs was performed with the sequence defined according to model
IV, which was then replaced with a randomly ordered sequence for the remaining 300
epochs. Please note the high decrease of the error in the middle of the plot - i.e.
when the model IV training sequence was replaced by the random one.
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Fig. 3. RMSE when using training data ordered according to Model II
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Fig. 4. RMSE in case the training data ordered according to Model IV is used in the first 300
epochs followed by training with the random sequence in the remaining 300 epochs

Following the idea of switchings sequences applied in the previous experiment a sim-
ulation of the training process with more frequent sequence exchange was performed.
In this case the sequence ordered according to model II was exchanged with the ran-
dom sequence after every 20 training epochs. The results in terms of RMSE plot are
presented in Fig. 5. A comparison of RMSE in the above case with a pure random case
is presented in Fig. 6. It is remarkable that after each alteration of model II sequence
with a random one RMSE becomes lower than in pure random case. The possi-
ble explanation is that non-uniformity of elements’ distribution has the effect in local
changes of weights’ change direction during presentation of training sequences which
consequently allows the network to escape from local shallow minima.

2.2 Proposition of Training Sequence Switching

Due to observed activity of ordered sequences it should be considered to interleave them
with random ones in the training process. It is therefore proposed to apply a model with
decreasing probability of using ordered sequences in the training process. Let

P (t) = pe−ηt (4)

be the probability of presenting ordered sequence, where t is the number of the training
epoch, p - the initial probability, η - positive coefficient of probability decrease. Hav-
ing two training sequences - one ordered according to any of the above described four
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Fig. 5. RMSE in case when training data ordered according to Model II is periodically (after every
20 cycles) exchanged with a random sequence
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Fig. 6. Difference between RMSEs calculated in Fig. 2 (pure random case) and Fig. 5 (model II
interleaved with random sequence)

models and the other one being a purely random) in each epoch the ordered training
sequence is chosen according to the above probability. Since the remainder of the paper
will be devoted to the proposed algorithm, henceforth, model I, model II, model III and
model IV will refer to the above training method in which the respectively ordered se-
quence is interleaved with the random one. As a special case also two randomly chosen
(fixed) sequences are considered as the two interleaved sequences. This case will be
denoted by switched random.

3 Performance of Proposed Algorithm

In each case training process consisted of 600 epochs, initial probability p was equal to
1.0 and η was chosen so that P (600) = 0.03.

3.1 Independent Training

Statistics (mean RMSEs and Standard Deviations) of populations of neural networks
obtained by training with given model of an order are presented in Table 1. Sequences
are ordered according to RMSE values on the test set. Visualization of the RMSE values
is presented Figure 4, in which all populations are presented. Each dot represents one
neural network. Initial weights of these networks were independently chosen at random.
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Table 1. Statistics of RMSE

model mean RMSE SD RMSE mean RMSE SD RMSE
on train set on train set on test set on test set

model III 0.0798 0.0140 0.2591 0.0109
model I 0.0844 0.0115 0.2602 0.0116

model IV 0.0818 0.0138 0.2621 0.0098
model II 0.0841 0.0206 0.2640 0.0128

switched random 0.0882 0.0244 0.2640 0.0165
pure random 0.0939 0.0209 0.2668 0.0118

It is remarkable that among populations obtained with use of randomly ordered
sequences and ones obtained using sequences ordered according to proposed mod-
els exists a statistically significant difference. P-values for hypothesis about signifi-
cant difference are presented in Table 2.

Table 2. P-value of hypothesis that distributions of RMSE on the training set are different

model switched model model model pure
III random IV II I random

model III 1
switched random 0.002 1

model IV 0.288 0.0170 1
model II 0.069 0.1688 0.3256 1
model I 0.009 0.1449 0.130 0.874 1

pure random 0.000 0.0613 0.000 0.000 0.000 1

It can be concluded that an improvement of average RMSE in the best case of ran-
domly ordered sequence and the best case of the ordered one (model III vs switched
random) is equal to 9.52% and 1.84%, resp. on the training and tests sets.

The average pattern classification result of the best model (model III) on the test set
was equal to 92.55%.

3.2 Training Represented as Dependent Variables

In order to eliminate randomness of neural network initial weights (which can be consid-
ered as a noise in case of independent samples) the research of dependent samples was
performed. Population consisted of 64 neural networks and each of them has been trained
6 times (once for each training model) - each time with the same set of initial weights.

In order to analyze the influence of ordering on possibility of obtaining a network
with good generalization abilities the top 20 recognition results on the test set were
selected. The average and the maximum pattern classification results on the test set of
these networks were equal to 93.93% and 94.49%, resp. Fractions of networks trained
according to particular models’ orders, which belonged to this group are presented in
Table 3. Note, that reverted models are dominating (70%) and also no neural net-
work trained exclusively with random sequences has qualified to the set.
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Fig. 7. RMSE on training and test sets in last epoch in case of using ordered sequence switched
by random one according to formula (4)

Table 3. Percentage of sequences among the top 20 networks on the test set

model switched model model model pure
III random IV II I random

percentage 25% 0% 45% 10% 20% 0%

4 Conclusions

The problem of ordering training patterns is essential in supervised learning with neu-
ral networks. In the paper a new method of ordering training patterns is proposed and
experimentally evaluated. It was shown that proposed approach produces in average
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better results than training without its use in the sample problem representing clustered
pattern space. Some theoretical considerations supporting this result has been provided.

Tests in other problem domains are under research. Other possible uses of ordered
sequences (e.g. as a measure of generalization ability of network architecture) are con-
sidered as future research plans.
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Anton Maximilian Schäfer1,4, and Christoph Tietz1

1 Information & Communications, Learning Systems
Siemens AG, Corporate Technology, 81739 Munich, Germany

Hans Georg.Zimmermann@siemens.com
2 JPMorgan, London, UK

3 DekaBank, Frankfurt, Germany
4 University of Ulm, Optimisation and Operations Research, Germany

Abstract. In econometrics, the behaviour of financial markets is described by
quantitative variables. Mathematical and statistical methods are used to explore
economic relationships and to forecast the future market development. However,
econometric modeling is often limited to a single financial market. In the age
of globalisation financial markets are highly interrelated and thus, single market
analyses are misleading. In this paper we present a new way to model the dynam-
ics of coherent financial markets. Our approach is based on so-called dynamical
consistent neural networks (DCNN), which are able to map multiple scales and
different sub-dynamics of the coherent market movement. Unlikely to standard
econometric methods, small market movements are not treated as noise but as
valuable market information. We apply the DCNN to forecast monthly move-
ments of major foreign exchange (FX) rates. Based on the DCNN forecasts we
develop a technical trading indicator to support investment decisions.

1 Introduction

Recurrent neural networks (RNNs) allow the identification of any open dynamical sys-
tems in form of high dimensional, nonlinear state space models [1,2]. However, the
question often arises if the standard RNNs are a sufficient framework for the model-
ing of complex nonlinear and high dimensional dynamical systems like financial mar-
kets, which can only be understood by analysing the interrelationship of different sub-
dynamics. Consider the following economic example: The dynamics of the USDEUR
foreign exchange (FX) market is clearly influenced by the development of other major
FX, stock or commodity markets [3]. In other words, movements of the USDEUR FX
rate can only be comprehended by a combined analysis of the behavior of other mar-
kets. This means that a model of the USDEUR FX market must also learn the dynamics
of related markets and intermarket dependencies.

In this paper we present a new way to model the dynamics of coherent financial
markets. Our approach is based on so-called dynamical consistent neural networks
(DCNN), which are able to map multiple scales and different sub-dynamics of the co-
herent market movement. In addition, unlikely to standard econometric methods, small
market movements are not treated as noise but as valuable market information.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 654–663, 2006.
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We successfully apply the DCNN to forecast monthly movements of major FX rates.
Based on the DCNN forecasts we develop a technical trading indicator to support in-
vestment decisions.

2 Modeling the Dynamics of Observables

Standard recurrent neural networks (RNNs) [4] are able to forecast single time series.
Still, the difficulty with RNN, especially in high-dimensions, is the training with back-
propagation through time [5], because we do not have the same learning behavior for
the weight matrices in the different time steps [6]. Besides that, inputs and outputs are
considered independently. This distinction between externals uτ and the network output
yτ is arbitrary and mainly depends on the application or the view of the model builder
instead of the real underlying dynamical system.

Therefore, the following model merges inputs and targets into one group of variables,
which we call observables yτ , and incorporates besides a bias c only one connector
type, a single transition matrix A. In doing so, we now look at the network as a high
dimensional dynamical system where the dynamics is modelled by the single transition
matrix A and input and output represent the observable variables of the environment.
We arrive at an integrated view of the dynamical system:

τ ≤ t : sτ = tanh(Asτ−1 + c +

⎡⎣ 0
0
Id

⎤⎦ yd
τ )

τ > t : sτ = tanh(Asτ−1 + c)

yτ = [Id 0 0]sτ∑
t

∑
τ

(yτ − yd
τ )2 → min

A,c

(1)

The corresponding model architecture is shown in figure 1:
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Note, that because of the one step time delay between input and output, yd
τ and

yτ are not directly connected. Furthermore it is important to understand, that we now
take a totally different view on the dynamical system. In contrast to standard RNN,
this network (eq. 1) not only generates forecasts for the dynamics of interest but for
all external observables yd

τ . Consequently, the first r state neurons are used for the
identification of the network outputs. They are followed by q computational hidden
neurons and r state neurons which read in the external inputs.

3 Dynamical Consistent Neural Networks (DCNN)

When the dynamics of an open dynamical system is iterated into the future, the develop-
ment of the system environment is unknown. In this context, one of the standard statis-
tical paradigms is to assume, that the external influences are not significantly changing
in the future. This means, that the expected value of a shift in an external input yd

τ with
τ > t is zero per definition. For that reason, we have so far neglected the external inputs
yd

τ at all future time steps, τ > t, of the unfolding (eq. 1).
Especially when we consider fast changing external variables with a high impact on

the dynamics of interest, the latter assumption is very questionable. Considering equa-
tion 1 it even poses a contradiction, as the observables are assumed to be constant on
the input and changing on the output side. The model is therefore not consistent from
a dynamical point of view. The longer the forecast horizon is, the more the statisti-
cal assumption is violated. Even in case of a slowly changing environment, long-term
forecasts become doubtful. For a dynamical consistent approach, one has to integrate
assumptions about the future development of the environment into the modeling.

We propose a network that uses its own predictions as replacements for the unknown
future observables. This is modeled with an additional fixed matrix in the state equation.
The resulting dynamical consistent neural network (DCNN) is shown in equation 2:

τ ≤ t : sτ = C≤ tanh(Asτ−1 + c) +

⎡⎣ 0
0
Id

⎤⎦ yd
τ

τ > t : sτ = C> tanh(Asτ−1 + c)

yτ = [Id 0 0] sτ∑
t

∑
τ

(yτ − yd
τ )2 → min

A,c

(2)

The recursion of the state equations (eq. 2) acts in the past (τ ≤ t) and future (τ > t)
always on the same partitioning of the inner state vector sτ which can, for all τ , be
described as:

sτ =

⎡⎢⎢⎣
yτ

hτ{
τ ≤ t : yd

τ

τ > t : yτ

}
⎤⎥⎥⎦ =

⎡⎢⎢⎣
expectations
hidden states{

τ ≤ t : observations
τ > t : expectations

}
⎤⎥⎥⎦ (3)
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That means, that in the first r components of the state vector we have the expec-
tations yτ , i.e. the predictions of the model. The q components in the middle of the
vector represent the hidden units hτ . They are actually responsible for the description
of the dynamics. In the last r components of the vector we find in the past (τ ≤ t) the
observables yd

τ , which the model receives as external input. In the future (τ > t) the
model replaces the unknown observables by its own expectations yτ . This replacement
is modelled with two consistency matrices:

C≤ =

⎡⎣ Id 0 0
0 Id 0
0 0 0

⎤⎦ and C> =

⎡⎣ Id 0 0
0 Id 0
Id 0 0

⎤⎦ (4)

Let us explain one recursion of the state equation (eq. 2) step by step: In the past
(τ ≤ t) we start with a state vector sτ−1, which has the structure as described in equa-
tion 3. This vector is first multiplied with the transition matrix A. After adding the
bias c, the vector is sent through the nonlinearity tanh. The consistency matrix then
keeps the first r + q components (expectations and hidden states) of the state vector
but deletes (multiplication with zero) the last r ones. These are finally replaced by the
observables yd

τ , such that sτ has the partitioning of equation 3. Note, that in contrast
to the normalised recurrent neural network (eq. 1) the observables are added to the
state vector after the nonlinearity. This is important for the consistency structure of
the model.

In the future part of the unfolding (τ > t) we replace the missing external inputs by
an additional identity-block in the future consistency matrix C> which maps the first r
components of the state vector, the expectations yτ , to its last r components. So we get
the desired partitioning of sτ (eq. 3) and the model becomes dynamical consistent.

Figure 2 illustrates the corresponding network architecture. Note, that the nonlinear-
ity and the final calculation of the state vector are separated and hence modelled in two
different layers. This follows from the dynamical consistent state equation (eq. 2), in
which the observables are added separately from the nonlinear component.
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Fig. 2. Dynamical Consistent Neural Network (DCNN)
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Note, that, in order to provide the network with sufficient memory and computa-
tional power, A has to be not only large but also sparse. Besides that, sparseness of the
high-dimensional transition matrix is an essential condition for the performance of the
backpropagation algorithm [6].

4 Monthly Forecasting and Trading of FX Rates with DCNN

In the following we present an application of DCNN to forecast the monthly devel-
opment of the G4 FX rates (EURUSD, USDJPY, GBPUSD, EURJPY, EURGBP and
GBPJPY) and the corresponding currency crosses.

Data and preprocessing. The data used for our model is depicted in table 1:

Table 1. List of observables (New York closing data)

Category Input description
Foreign exchange EURUSD foreign exchange rate
rates USDJPY foreign exchange rate

GBPUSD foreign exchange rate
10-year yield 10-year yield difference between U.S.A. and Germany
differences 10-year yield difference between U.S.A. and Japan

10-year yield difference between G.Britain and U.S.A.
Relative strength of Relative value of the Euro Stoxx 50 vs. the S&P 500
the main stock indices Relative value of the S&P 500 vs. the Nikkei 225

Relative value of the FTSE 100 vs. the S&P 500
Commodities Brent Oil price in USD

Gold price in USD

Our data selection is guided by the idea, that a major currency is driven by at least
four influences [3], which are in particular the development of other major currencies,
the 10-year bond yields, main stock indices in the respective countries and commodities.
As a preprocessing we compute the logarithmic returns and, to make the data stationary,
present the first differences as inputs to the neural network.

We divide the dataset, which ranges from 01.01.1999 to 12.08.2005, into a train-
ing set (01.01.1999 to 02.09.2004, 275 complete observations) and a generalisation set
(03.09.2004 to 12.08.2005, 44 observations).

Model architecture and parameters. Our model uses an underlying weekly time grid.
It is unfolded 16 weeks into the past and has an overshooting length of 6 weeks. To
receive monthly forecasts we always add up four of the weekly outputs. The resulting
sequence of forecasts is used for decision support. The internal state of the DCNN
consists of 400 hidden neurons. By initialising the transition matrix A with a sparsity
level of 12.5%, we enable the network to build up a memory of eight weeks [6].

Since all G4 currency crosses can be derived from the three main G4 FX rates, EU-
RUSD, USDJPY and GBPUSD, we extend the DCNN architecture by an additional
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output layer which is used to compute the FX-rates of all six currencies from the re-
spective currency crosses. The output layer containing the price shifts is connected to
this so-called interaction layer by a fixed handmade matrix.

Training procedure. We apply the LnCosh error function on the output and the in-
teraction layer. Thus the network is trained to learn both the correct values of all the
observables and the correct relation of the main currency crosses to each other, rep-
resenting the remaining G4 FX rates EURJPY, GBPJPY and EURGBP. The applied
training algorithm is pattern-by-pattern learning [7] with a learning rate of η = 0.002.

To desensitise the network from the unknown initial state we add adaptive noise,
which we derive from the model’s residuals, to the first hidden neurons in the unfolded
network [6]. The uncertainty concerning the optimal sparsity structure is handled by
averaging the forecasts of several DCNNs with randomly initialised weight matrices.
As a result we obtain so-called monte carlo (MC) DCNN forecasts.

Measuring forecast performance. We use the error ratio as defined in equation 5 as a
performance measure of our networks. Note, if the FX markets follow a random walk it
should not be possible to systematically achieve values of the error ratio under one [8].

error ratio =
∑N

t=1 |yt − yd
t |∑N

t=1 |yd
t |

(5)

In addition we compute the root mean squared error RMSE and the hitrate which counts
how often the sign of the relative change of the FX market is correctly predicted. Our
MC DCNN forecasts are benchmarked against a 3-layer-MLP with 10 hidden neurons
which uses the monthly first and second differences of the variables in table 1 as inputs.
The forecast performance of both network architectures are given in table 2.

Table 2. Root mean squared error, error ratio and hitrate for the 3-layer-MLP and the MC DCNN
forecasts on the out of sample period

3-layer-MLP MC DCNN
RMSE Error Ratio Hitrate in % RMSE Error Ratio Hitrate in %

EURGBP 0.0240 1.3725 52.57 0.0167 0.9593 54.55
EURJPY 0.0368 1.5984 61.36 0.0211 0.9193 65.91
EURUSD 0.0379 1.1562 50.00 0.0273 0.9928 52.27
GBPJPY 0.0298 1.3658 61.36 0.0214 0.9522 61.36
GBPUSD 0.0314 1.1580 47.73 0.0244 0.9273 52.27
USDJPY 0.0288 1.1889 52.27 0.0227 0.9673 63.64

As depicted in table 2, for all currency pairs the error ratio of our MC DCNN ap-
proach becomes smaller than one, which means that the MC DCNN outperforms a
random walk. Also the hitrate is for all FX rates higher than 50%. In three cases the
MC DCNN even reaches a hitrate of more than 60%. The results of the MLP are worse
than the MC DCNN forecasts for all three performance ratios although the hitrates are
still above 50% for five of the six currency pairs. The good performances in terms of
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Fig. 3. GBPUSD and EURGBP FX rates vs. DCNN TI : As it can been seen in the marked
areas, the DCNN TI clearly indicates the right development of the respective market

forecast accuracy and hitrates underline that our MC DCNN forecasts are of high value
in financial market modeling.

Introduction of a technical trading indicator based on DCNN. Based on our MC
DCNN forecasts we want to support trading decisions. For such a decision support
we have to combine our forecasts with intelligent financial evaluation criterions like
return on investment, standard deviation of returns and the sharpe ratio as a risk adjusted
measure of return.

In order to measure the confidence of our forecasts we compute a DCNN technical
indicator, which uses, besides the average forecast ȳ, the ratio of the models agreeing
with the direction of the mean forecast in the numerator and the standard deviation in
the denominator:

DCNN TI =
1

N2

∑N
i=1 yt · 1{sign(yt)=sign(ȳi)}√

1
N

∑N
i=1(yi − ȳd

i )2
(6)

The DCNN TI filters out the reliable from the less reliable forecasts. We expect
the forecast reliability to rise when it takes on high absolute values, because in these
cases the forecasts of more models agree with the direction of the mean forecast. The
assumption is tested by looking at the development of the hitrate of the DCNN forecasts
while changing the threshold value for the DCNN TI . The results and analysis are
given in figure 3.



A Technical Trading Indicator Based on DCNN 661

FX trading strategy based on the DCNN TI. Now we use the DCNN TI for the
development of a trading strategy. Assuming a starting capital of 100.000 Euro, we
specify the following trading rules based upon DCNN forecasts and the DCNN TI .
Every week we take new long or short positions in the currencies as indicated by the
DCNN TI . Each position is automatically closed after 4 weeks. The corresponding
trading strategy is given by the following values:

DCNN TI > 0: Take a long position in the respective FX rate.
DCNN TI < 0: Take a short position in the respective FX rate.
Position Exits: Automatic closure of this position after one month.

An essential issue when making trading decisions is position sizing, i.e., answering
the question about how much capital to invest in each trade [9]. In conjunction with our
market entries and exits we test three different position sizing techniques. Apart from
the well established fixed units and fixed fraction techniques we propose a dynamic
fraction position sizing technique controlled by the DCNN TI:

Fixed units: Risk 1000 Euro in each trade.
Fixed fraction: Risk 1 percent of capital in each trade.
DCNN TI fraction: Risk DCNN TI percent of capital in each trade.

Thereby we calculate the risk of a currency by taking the Euro value of two historical
standard deviations over the last twenty months of the relevant currency pair. The results
for the three strategies are given in table 3.

Table 3. Annualised financial mean return μ, standard deviation σ, resulting sharpe ratio SR
and investment degree ID for the three strategies on each FX rate and for the portfolio with all
currencies. The strategies include transaction costs and slippage of 10 basis points (pips) per unit
and interest rates in the respective countries. Since FX-spot trading allows for high leverage, the
investment degrees of over 100% of the portfolios are realistic.

Position sizing techniques
Fixed units Fixed fraction DCNN TI-fraction

μ
σ

in % SR ID in % μ
σ

in % SR ID in % μ
σ

in % SR ID in %
EURGBP 0.55 / 2.03 0.27 22.56 0.65 / 2.16 0.30 23.84 1.14 / 1.86 0.61 14.14
EURJPY 4.36 / 2.48 1.76 26.15 4.50 / 2.65 1.70 27.66 3.27 / 2.82 1.16 27.96
EURUSD 0.18 / 1.76 0.10 14.29 0.03 / 1.86 0.02 14.97 2.01 / 2.00 1.00 16.81
GBPJPY 1.75 / 1.29 1.36 16.11 1.83 / 1.34 1.36 17.09 2.77 / 1.77 1.57 18.30
GBPUSD 0.22 / 0.82 0.27 9.34 0.17 / 0.89 0.19 9.92 2.30 / 0.85 2.69 8.88
USDJPY 4.18 / 2.46 1.70 27.92 4.49 / 2.61 1.72 29.70 3.51 / 2.65 1.32 26.76

PORTFOLIO 10.82 / 4.9 2.20 116.36 11.24 / 5.17 2.17 123.19 14.28 / 5.78 2.47 112.85

The DCNN TI-fraction strategy outperforms the fixed units and the fixed frac-
tional strategies for several reasons. Apart from generating the highest sharpe ratio as
a portfolio, the DCNN TI-fraction strategy yields stable results also when traded on
single currencies since all individual sharpe ratios are above 0.60. The DCNN TI-
fraction portfolio is also the one with the lowest average investment degree. This
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Fig. 4. Return on investment of the three trading strategies

theoretically allows to invest more capital in the strategy and generate higher returns.
Due to the relatively short trading period the fixed fractional strategy can not produce
strong exponential capital growth and therefore generates similar results as the fixed
units strategy. Figure 4 shows the return on investment of the three trading strategies
including transaction costs, slippage and interest rates.

5 Conclusion

In this paper we applied dynamical consistent neural networks for FX rate forecast-
ing. We achieved very good out of sample results concerning forecasting accuracy and
financial criterions. Furthermore we showed that our technical indicator based on the
DCNN forecasts provides valuable decision support in currency trading and the devel-
opment of trading strategies. Our results also generally underline the high performance
quality of DCNN and the advantages of a coherent market modeling approach.

Further research is done on the analysis of optimal inputs, the modeling of a big-
ger universe of currencies and in depth investigation of the implementation of DCNN
forecasts in trading.
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Abstract. Although, there is an ongoing belief in the investment community 
that technical analysis can be used to infer the direction of future prices, the 
academic community always treated it (at best) with skepticism. However, if 
there is a degree of effectiveness in technical analysis, that necessarily lies in 
direct contrast with the efficient market hypothesis. In this paper, we use neural 
network estimators to infer from technical trading rules how to extrapolate fu-
ture price movements. To the extend that the total return of a technical trading 
strategy can be regarded as a measure of predictability, technical analysis can 
be seen as a test of the independent increments version of random walk. 

Keywords: neural networks, market efficiency, random walk, technical analy-
sis, stock index, trading strategies. 

1   Introduction 

The efficient market hypothesis states that the current market price reflects the assimi-
lation of all the information available. As a consequence, given the information, no 
prediction of the future price changes can be made. On the other hand, technical 
analysis, which is essentially the search for recurrent and predictable patterns in asset 
prices, attempts to forecast future price changes. Because it is based on public infor-
mation, it should not generate excess profits if markets are operating efficiently. In 
particular, technical analysis can be used as a kind of “economic” test of the random 
walk version of independent but not identically distributed increments [2].  

Thus, it is not surprising that contrary to the traditional dismissive attitude of the 
financial academics towards technical analysis, today there is a growing interest and a 
fast expanding empirical literature. For relevant studies see Neftci [4], Brock et al [1], 
Sullivan et al [6], Lo et al [2] among others. In this paper we use neural network es-
timators to infer from technical trading rules how to extrapolate future 5-day loga-
rithmic returns. In section 2 we describe the data and in section 3, we discuss in detail 
the technical trading strategies considered in this analysis. In section 4, we present our 
results and finally in section 5, we conclude. 

2   Index Data and Empirical Statistics 

We considered the two most widely used US market stock indices (Dow Jones S&P 
500), which are probably the most observed financial indicators in the world. For each 
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index, from the available daily price data we generated 5-day non-overlapping loga-
rithmic returns covering the period from 1 March 1990 to 2 November 2005. The full 
sample for each index contained 3,955 price observations and it was split into a train-
ing sample comprising 2,739 price observations and a test sample comprising 1,216 
price observations. Each training sample covered the period from 1 March 1990 to 29 
December 2000. Each test sample covered the period from 2 January 2001 to 2 No-
vember 2005.  

The sample statistics of the 5-day continuously compounded returns for Dow Jones 
and S&P 500 are presented in Table 1. The means of the 5-day returns for the two 
indices are 0.17% and 0.16%, or 8.84% and 8.32% per year, correspondingly. The 
means of the 5-day returns in the training samples are considerably higher, i.e., 0.26% 
and 0.25%, or 13.52% and 13% per year, correspondingly. The means of the 5-day 
returns in the test samples are all negative, i.e., -0.01% band -0.03%, or -0.52% and -
1.56% per year, correspondingly. The standard deviations of Dow Jones and S&P 500 
are identical for the full sample, i.e., 2.20% or 15.52% per year. Both distributions 
show signs of skewness and heavy tails. 

In Panel 1B, we can see that the estimated autocorrelations (i) at lag i in most cases 
are significantly different from zero. This implies that we can reject the hypothesis of 
uncorrelated increments (5-day returns), i.e., the weakest and the most often tested 
version of random walk in the empirical literature, for both samples. The other two 
versions of the random walk hypothesis, i.e., identically and independently distributed 
increments and independent increments are special cases of this version. To the extend 
that the total return of a technical trading strategy can be regarded as a measure of 
predictability, technical analysis can be seen as a test of the independent increments  
version of random walk hypothesis.  

As we can see in Panel 1C, the correlation between the 5-day returns of the two in-
dices is very high.  

3   A Neural Network Based Technical Trading Strategy 

3.1   A General Technical Forecasting Framework 

Let It be the index closing price at day t. Define rt = ln(It/It-h) as the realized h-day 
logarithmic return at the end of day t. Let xt = (x1,t, x2,t, …, xm,t) be a vector of m tech-
nical indicators evaluated at the end of day t given the index close It. Also, suppose 
that rt is generated by the function 

( )1| , ,...,t h t t t t k tr I I Iϕ ε+ − −= +x  (1) 

where, the term t denotes random disturbances. If the function (°) is sufficiently 
behaved then nonparametric neural network regression can be used to estimate (°) 
consistently.  

Let now g (°) be the output of a fully-connected one-hidden-layer neural network 
with  hidden units and a bias term. For a given vector of technical indicators x we 
can estimate the h-day index return non-parametrically as follows: 

( ) ( ) ( )ˆ ˆln ;ˆ lnt h t nt h tr gI I λ+ += − = x w  (2) 



666 A. Zapranis 

T
ab

le
 1

. S
am

pl
e 

st
at

is
ti

cs
 f

or
 n

on
-o

ve
rl

ap
pi

ng
 5

-d
ay

 r
et

ur
ns

 o
f 

D
ow

 J
on

es
 a

nd
 S

&
P

 5
00

 

D
O

W
 J

O
N

E
S 

S&
P 

50
0 

P
an

el
 A

 
to

ta
l 

tr
ai

n 
te

st
 

to
ta

l 
tr

ai
n 

te
st

 
M

ea
n 

0.
00

17
 

0.
00

26
 

-0
.0

00
1 

0.
00

16
 

0.
00

25
 

-0
.0

00
3 

St
d.

 
0.

02
2 

0.
02

0 
0.

02
5 

0.
02

2 
0.

02
0 

0.
02

4 
Sk

ew
. 

-0
.4

22
 

(0
.0

39
) 

-0
.3

58
 

(0
.0

47
) 

-0
.4

22
 

(0
.0

70
) 

-0
.3

13
 

(0
.0

39
) 

-0
.3

42
 

(0
.0

47
) 

-0
.1

97
 

(0
.0

70
) 

K
ur

t. 
3.

50
5 

(0
.0

78
) 

1.
96

7 
(0

.0
94

) 
4.

61
7 

(0
.1

40
) 

2.
68

7 
(0

.0
78

) 
2.

09
0 

(0
.0

94
) 

2.
95

6 
(0

.1
40

) 
P

an
el

 B
 

(1
) 

0.
78

7∗
 

0.
79

1∗
 

0.
78

0∗
 

0.
78

0∗
 

0.
78

0∗
 

0.
77

9∗
(2

) 
0.

57
3∗

 
0.

56
6∗

 
0.

57
8∗

 
0.

55
9∗

 
0.

55
0∗

 
0.

56
7∗

(3
) 

0.
35

6∗
 

0.
34

2∗
 

0.
37

2∗
 

0.
33

0∗
 

0.
31

1∗
 

0.
35

3∗
(4

) 
0.

14
6∗

 
0.

11
9∗

 
0.

18
0∗

 
0.

11
2∗

 
0.

08
1∗

 
0.

15
2∗

(5
) 

-0
.0

67
∗ 

-0
.0

93
∗ 

-0
.0

34
∗ 

-0
.1

07
∗ 

-0
.1

48
∗ 

-0
.0

52
∗

(0
.0

16
) 

(0
.0

19
) 

(0
.0

29
) 

(0
.0

16
) 

(0
.0

19
) 

(0
.0

29
) 

P
an

el
 C

 
0.

93
a /0

.9
2b /0

.9
6c

In
 P

an
el

 A
, “

T
ot

al
” 

re
fe

rs
 t

o 
th

e 
fu

ll
 s

am
pl

e,
 “

tr
ai

n”
 a

nd
 “

te
st

” 
to

 t
he

 n
on

-o
ve

rl
ap

pi
ng

, c
on

se
cu

ti
ve

 t
ra

in
in

g 
an

d 
te

st
 p

er
io

ds
 c

or
re

sp
on

di
ng

ly
. I

n 
P

an
el

 B
, 

(i
) 

is
 th

e 
es

ti
m

at
ed

 a
ut

oc
or

re
la

ti
on

 a
t 

la
g 

i f
or

 e
ac

h 
se

ri
es

 a
nd

 
fi

gu
re

s 
in

 p
ar

en
th

es
es

 a
re

 s
ta

nd
ar

d 
er

ro
rs

 f
or

 t
he

 a
ut

oc
or

re
la

ti
on

, 
1 

/ 
√N

. 
In

 P
an

el
 C

, 
(a ) 

re
fe

rs
 t

o 
th

e 
fu

ll 
sa

m
pl

e,
 (

b ) 
re

fe
rs

 to
 th

e 
tr

ai
ni

ng
 s

am
pl

e 
an

d 
(c ) 

re
fe

rs
 to

 th
e 

te
st

 s
am

pl
e.

 

 

where ˆ
n

w  denotes the network parameter vector which was estimated from the train-

ing dataset D of size n. Note that the hat over It+h indicates that an estimate of the 
index level at t + h can be extracted from the return forecast and not that we are at-
tempting to forecast index levels.  

Given the forecast of the h-day future return, t̂ hr + , a signal, St, is generated at the 

end of day t (Buy, Sell, Neutral) according to the following rule: 

if t̂ hr c+ >  then St = Buy 

else if t̂ hr c+ < −  then St = Sell 

else if ˆ0 t hr c+< <  or ˆ 0t hc r +− < <  then St = Neutral 
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where, c represents a threshold return corresponding to the breakeven transaction 
costs.  

The composition of the invested portfolio at any point in time (denoted as Ct) can 
be either the index portfolio or cash equivalents (short-selling is not considered). 
Based on the composition of the portfolio Ct and the signal St at the end of day t, one 
of three actions At is performed: create index portfolio, liquidate index portfolio, no 
action. In Table 2 we can see the allowed actions (denoted as At) and the resulting 
new portfolio compositions, Ct. 

The number of hidden units  was estimated on the basis of “the minimum predic-
tion risk principle”. Prediction risk is the expected out-of-sample mean squared error 
and it is computed algebraically as in Refenes and Zapranis [5]. The model which 
minimized prediction risk was a single-hidden-layer network with  = 5 hidden units. 
Throughout this paper the forecasting horizon is fixed to h = 5 days.  

Table 2. Resulting portfolio compositions based on the combination of Ct-h and St. 

Ct-h Index Portfolio (I. P.) T-Bills 
St At Ct At Ct 
 

Buy 
 

no action 
 

Ct = Ct-h 
(I. P.) 

buy 
index 

portfolio 

 
Ct ≠ Ct-h 
(I. P.) 

 
Sell 

liquidate 
index 

portfolio 

 
Ct ≠ Ct-h  
(T-Bills) 

 
no action 

 
Ct = Ct-h 
(T-Bills) 

 
 

Neutral 
 

no action 
 

Ct = Ct-h 
(I. P.) 

 
no action 

 
Ct = Ct-h 
(T-Bills) 

 

In the context of the simple framework we have just described, we are faced now 
with two problems. First, we must define the vector of technical indicators, xt, and 
second we must define the deterministic function (xt|It). We tested out-of-sample two 
simple trading strategies. In the first one (TS1) we set the return threshold to c = 0 and 
in the second one (TS2) to c = 40 basis points. The benchmark strategy (TSB&H) was a 
buy-and-hold portfolio. For TS2 there are three possible signals (Buy, Sell, Neutral) 
and the resulting portfolio compositions at the end of day t are given in Table 2. Note, 
that each time the portfolio composition changes from cash to stocks or from stocks to 
cash, the strategy incurs transaction costs 0.04% computed on the current portfolio 
valuation. That is, TS2 returns are inclusive of transaction costs. For TS1 there are only 
two possible signals (Buy, Sell) which are generated from the following rule: 

if ˆ 0t hr + >  then St = Buy 

else if ˆ 0t hr + <  then St = Sell 
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The resulting portfolio compositions at the end of day t are given in Table 2, for 
signals Buy and Sell. TS1 returns do not account for transaction costs. 

3.2   Determining the Relevant Indicators 

Since, there are literally hundreds of technical indicators that can be used in the context 
of the aforementioned framework, we are faced with the problem of selecting the more 
relevant. However, relevance can only be determined in the context of a model. In 
order to select relevant technical indicators, we have used stepwise variable selection 
in the context of a multivariate linear regression model. The model parameters were 
estimated from the training samples. Then the statistical significant technical indicators 
at the 95% level were selected as the most relevant for the DJIA and S&P 500 indices. 
From a universe of 54 technical indicators (simple moving average, exponential mov-
ing average, projection oscillator, MACD, Qstick, TRIX, etc) 13 were found to be 
statistical significant for predicting the 5-day return of the DJIA, and 17 for the S&P 
500. Only 4 technical indicators were found to be relevant to both indices.  

4   Results 

In Table 3 we can see the net returns for the out-of-sample period from 2 January 
2001 to 2 November 2005.  

Table 3. Overall returns for the out-of-sample period for DJIA and S&P 500  

Strategy TS1 TS2 TSB&H 
DJIA 65.34 % 60.41 % -1.62 % 

S&P 500 43.80 % 36.71 % -5.33 % 

For the particular period the returns of the two indices are negative, with S&P 500 
being the worst performer. In particular, the buy-and-hold strategy returns (TSB&H) are 
-1.62 percent for the DJIA and -5.33 percent for the S&P 500. At the same time, the 
returns of the strategies TS1 and TS2 are on average over 62 percent for the DJIA and 
over 40 percent for S&P 500. When trading costs of 40 basis points are taken into 
account (strategy TS2) then the performance deteriorates slightly. However, the over-
all return for the out-of-sample period is still very satisfactory, i.e., 60.41 percent for 
the DJIA and 36.71 percent for the S&P 500, when at the same time the correspond-
ing returns of the buy-and-hold strategies are both negative. As we will see in the 
following analysis the inclusion of a threshold return of c = 40 in TS2 enhances the 
performance of the trading strategy, mainly because less signals are generated, but 
overall the trading costs offset any advantage.  

In Table 4 we summarize standard test results for the out-of-sample pe-
riod.Cumulative returns are reported for fixed 5-day periods after signals. “N(Buy)” 
and “N(Sell)” (columns 2 and 3) are the number of buy and sell signals generated 
from the trading strategy. Numbers in parentheses are standard t-statistics testing the 
difference between of the mean buy and sell from the unconditional 5-day mean, and 
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buy-sell from zero. “Buy > 0” and “Sell > 0” (columns 6 and 7) are the fraction of buy 
and sell returns greater than zero. “Buy-Sell” (column 8) is the difference between the 
mean “Buy” and “Sell” returns (columns 4 and 5). The t-statistics for the buys (sells) 
are as in Brock et al, 
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2 2

r

rN N

μ μ

σ σ

−

+
 (3) 

where r and r are the mean return and number of signals for the buy and sell, and  
and N are the unconditional mean and number of observations. 2 is the estimated 
variance for the entire sample. For the buy-sell the t-statistic is, 

2 2

b s

b sN N

μ μ

σ σ

−

+
 

(4) 

where b and b are the mean return and number of signals for the buys and s and s 
are the mean return and number of signals for the sells. 

The first thing that we observe in Table 4 is that on average in more than 67 per-
cent of the cases a buy signal corresponded to a positive return and in more than 30 
percent of the cases a sell signal corresponded to a positive return.  

Obviously we expect from a trading strategy that the generated buy signals corre-
spond to positive returns more than 50 percent of the time, and the sell signals less than 
50 percent of the time. In that respect both TS1 and TS2 performed very satisfactorily. 

Furthermore, the number of generated buy and sell signals is on average for the 
DJIA 3.9 per year for c = 0 and 2.7 per year for c = 40 basis points. For the S&P 500 
the corresponding figures are 5.2 per year for c = 0 and 4.8 per year for c = 40 basis 
points. These figures indicate that the strategies are not performing noise-trading. This 
is important, since the frequency of transactions can eliminate the profitability of most 
trading strategies. We also see that all the buy-sell differences are positive and the t-
statistics for those differences are highly significant, rejecting the null hypothesis of 
equality with zero. Setting the threshold return to c = 40 basis points increased the 
spread between buy and sell returns.  

We also observe that, the mean buy returns are all positive and statistically signifi-
cant, i.e., we reject the null hypothesis that the returns equal the unconditional 5-day 
returns at the 5 percent significance level using a two-tailed test. In particular, for the 
DJIA the annualized returns are 2.912 percent for c = 0 (0.056 × 52) and 4.264 per-
cent for c = 40 basis points. From Table 1, the unconditional 5-day return for the 
DJIA is -0.01 percent for the test period or -0.52 percent annualized. For the S&P 500 
the annualized returns are 1.456 percent for c = 0 and 2.028 percent for c = 40 basis 
points. From Table 1, the unconditional 5-day return for the S&P 500 is -0.003 per-
cent for the test period or -1.56 percent annualized. Overall, compared with the un-
conditional returns for the same period, the mean returns of both strategies are quite 
substantial.  

Finally, the mean sell returns are also noteworthy. They are all negative, statisti-
cally significant and they are based on about 40% of all trading days.  

5   Conclusions  

In this paper we have used neural networks as a non-parametric platform for imple-
menting simple technical trading strategies. Incorporating trading costs, a simple 
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trading strategy based on the 5-day return forecasts of a neural network returned a 
profit of 61.41% when applied to the Dow Jones, while in the same out-of-sample 
period the index dropped by -6.43%. A similar picture immerged for S&P 500. The 
neural network returned a profit of 36.71 percent, while the index dropped by -5.33 
percent. Moreover, buy signals consistently generated higher returns than sell signals 
and the returns following sell signals were negative, which is not easily explained by 
any of the currently existing equilibrium models. Overall, the results of our study 
indicate that the nonparametric approach reveals the existence of a more complicated 
return generating mechanism than those suggested from studies using linear models.  
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Abstract. In the past few years, many researchers have used Artificial Neural 
Networks (ANNs) to analyze traditional classification and prediction problems 
in accounting and finance. This paper explores the efficacy of ANNs in detect-
ing firms that issue fraudulent financial statements (FFS) and in predicting cor-
porate bankruptcy. To this end, two experiments have been conducted using 
representative ANNs algorithms. During the first experiment, ANNs algorithms 
were trained using a data set of 164 fraud and non-fraud Greek firms in the re-
cent period 2001-2002. During the second experiment, ANNs algorithms were 
trained using a data set of 150 failed and solvent Greek firms in the recent pe-
riod 2003-2004. It was found that ANNs could enable experts to predict bank-
ruptcies and fraudulent financial statements with satisfying accuracy.  

Keywords: fraud detection, bankruptcy prediction. 

1   Introduction 

Neural networks are one of the most innovative analytical tools to surface in the fi-
nancial arena. The availability of vast amounts of historical data in recent years, cou-
pled with the enormous processing power of desktop computers, has enabled the use 
of automated systems to assist in complex decision making environments. The auto-
mated system examines financial ratios as predictors of performance, and assesses 
posterior probabilities of financial health. Neural Network Applications in the finan-
cial world include [6], [16]: currency prediction, futures prediction, bond ratings, debt 
risk assessment, credit approval and bank theft. The articles [9] and [16] review the 
literature on artificial neural networks (ANNs) applied to accounting and finance 
problems. Moreover, Vellido et al. [25] surveyed 123 articles from 1992 through 
1998. They included 8 articles in accounting and auditing, and 44 articles in finance 
(23 on bankruptcy prediction, 11 on credit evaluation, and 10 in other areas).  

Researchers have used various techniques and models to detect accounting fraud 
and predict corporate bankruptcy in circumstances in which, a priori, is likely to exist. 
However few studies have tested the predictive ability of different ANNs used by 
means of a common data set. In this study, we carry out an in-depth examination of 
publicly available data from the financial statements of various firms in order to (a) 
detect FFS and (b) predict corporate bankruptcy by using ANN learning methods.  
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The following section attempts a brief literature review of the techniques for de-
tecting firms that issue fraudulent financial statements and describes the data set of 
our study. Section 3 attempts a brief literature review of the techniques for predicting 
corporate bankruptcy and describes the data set of our study. Section 4 presents the 
experimental results for the representative compared algorithms in our data sets. Fi-
nally, section 5 discusses the conclusions and some future research directions.   

2   Literature Review for the Issue of FFS 

Although it is not a new phenomenon, the number of corporate earnings restatements 
due to aggressive accounting practices, accounting irregularities, or accounting fraud 
has increased significantly during the past few years, and it has drawn much attention 
from investors, analysts, and regulators [23]. 

The financial statement audit is a monitoring mechanism that helps reduce infor-
mation asymmetry and protect the interests of the principals, specifically, stockhold-
ers and potential stockholders, by providing reasonable assurance that management’s 
financial statements are free from material misstatements. However, in real life, de-
tecting management fraud is a difficult task when using normal audit procedures [2] 
since there is a shortage of knowledge concerning the characteristics of management 
fraud. Additionally, given its infrequency, most auditors lack the experience neces-
sary to detect it. Moreover, managers deliberately try to deceive auditors [4].  

Nieschwietz et al. [19] provide a comprehensive review of empirical studies related 
to external auditors’ detection of fraudulent financial reporting while Albrecht et al. 
[2] review the fraud detection aspects of current auditing standards and the empirical 
research conducted on fraud detection. Ansah et al. [4] investigate the relative influ-
ence of the size of audit firms, auditor’s position tenure and auditor’s year of experi-
ence in auditing on the likelihood of detecting fraud in the stock and warehouse cycle. 
Green and Choi [15] developed a Neural Network fraud classification model. The 
model used five ratios and three accounts as input. The results showed that Neural 
Networks have significant capabilities when used as a fraud detection tool. Fanning 
and Cogger [13] also used a Neural Network to develop a fraud detection model. The 
input vector consisted of financial ratios and qualitative variables. They compared the 
performance of their model with linear and quadratic discriminant analysis, as well as 
logistic regression, and claimed that their model is more effective at 174 detecting 
fraud than standard statistical methods. 

For Greek data, Spathis [24] constructed a model to detect falsified financial state-
ments. He employed the statistical method of logistic regression. The reported accu-
racy rate exceeded 84%. Kirkos et al [17] investigate the usefulness of Decision 
Trees, Neural Networks and Bayesian Belief Networks in the identification of fraudu-
lent financial statements. In terms of performance, the Bayesian Belief Network 
model achieved the best performance managing to correctly classify 90.3% of the 
validation sample in a 10-fold cross validation procedure. For both studies [17] and 
[24], 38 FFS firms were matched with 38 non-FFS firms. 

The application of ANN techniques for financial classification is a fertile research 
area [9], [13], [15]. As a consequence, a main objective for this study is to evaluate 
the predictive ability of ANN techniques by conducting a number of experiments 
using representative learning algorithms. 
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Table 1. Research Variables description 

Variables Variable Description 
RLTC/RCR02 Return on Long -term capital / Return on Capital and Reserves  2002 
AR/TA 01 Accounts Receivable/Total Assets 2001 
TL/TA02 Total  liabilities/Total assets 2002 
AR/TA02 Accounts Receivable/Total Assets 2002 
WC/TA 02 Working capital/total assets 2002 
DC/CA02 Deposits and cash/current assets 2002 
NFA/TA Net Fixed Assets/Total Assets 
NDAP02 Number of days accounts payable 2002 
LTD/TCR02 Long term debt/total capital and reserves 2002 
S/TA02 Sales/total assets 2002 
RCF/TA02 Results carried forward/total assets 2002 
NDAR02 Number of days accounts receivable 2002 
CAR/TA Change Accounts Receivable/Total Assets 
WCL02 Working capital leveraged 2002 
ITURN02 Inventory turnover 2002 
TA/CR02 Total Assets/Capital and Reserves 2002 
EBIT/TA02 Earnings before interest and tax/total assets 2002 
CFO02 Cash flows from operations 2002 
CFO01 Cash flows from operations 2001 
CR02 Current assets to current liabilities 2002 
GOCF Growth of Operational Cash Flow 
CAR/NS Change Accounts Receivable/Net Sales 
EBT02/EBIT02 Earnings before  tax 2002/Earnings before interest and tax 2002 
Z-SCORE02 Altman z-score 2002 
CR/TL02 Capital and Reserves/total liabilities 2002 

2.1   Data Description 

Our sample contained data from 164 Greek listed on the Athens Stock Exchange 
manufacturing firms (no financial companies were included). Auditors checked all the 
firms in the sample. For 41 of these firms, there was published indication or proof of 
involvement in issuing FFS. The classification of a financial statement as false was 
based on the following parameters: inclusion in the auditors’ report of serious doubts 
as to the accuracy of the accounts, observations by the tax authorities regarding seri-
ous taxation intransigencies which significantly altered the company’s annual balance 
sheet and income statement, the application of Greek legislation regarding negative 
net worth, the inclusion of the company in the Athens Stock Exchange categories of 
“under observation and “negotiation suspended” for reasons associated with the falsi-
fication of the company’s financial data and, the existence of court proceedings pend-
ing with respect to FFS or serious taxation contraventions. The 41 FFS firms were 
matched with 123 non-FFS firms. All the variables used in the sample were extracted 
from formal financial statements, such as balance sheets and income statements. This 
implies that the usefulness of this study is not restricted by the fact that only Greek 
company data was used. The selection of variables to be used as candidates for par-
ticipation in the input vector was based upon prior research work, linked to the topic 
of FFS [13], [15], [24]. Additional variables were added in an attempt to catch as 
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many as possible predictors not previously identified. Table 1 provides a brief de-
scription of the financial variables used in the present study.  

3   Literature Review for Bankruptcy Prediction 

The problem of Bankruptcy prediction is a classical one in the financial literature (see 
e.g. [1] for a review). The main impact of Bankruptcy prediction is in bank lending. 
Banks need to predict the possibility of default of a potential counterparty before they 
extend a loan. This can lead to sounder lending decisions, and therefore result in sig-
nificant savings. O’Leary [20] analyzed 15 articles that applied ANNs to predict cor-
porate failure or bankruptcy. For each study, he provided information about the data, 
the ANN model and software (means of development), the structure of the ANN (in-
put, hidden and output layers) training and testing, and the alternative parametric 
methods used as a benchmark. He then analyzed the overall ability of the ANN mod-
els to perform the prediction task. The primary objectives of [8] were to develop fail-
ure prediction models for UK public industrial firms using a recent company sample, 
via logit analysis and the ANN methodology, and also to explore the incremental 
information content of operating cash flows in predicting the probability of business 
failure. NNs achieved the highest overall classification rates for all three years prior to 
insolvency, with an average classification rate of 78%. Zhang et al. [28] include in 
their paper a nice review of existing work on NN bankruptcy prediction. The majority 
of the NN approaches to default prediction use multilayer networks. Many other stud-
ies have been conducted for bankruptcy prediction using neural networks [3], [7], [27] 
and Support Vector Machines (SVM) [22]. 

Recently the performance of alternative non-parametric approaches has been ex-
plored in the Greek context to overcome the aforementioned shortcomings of the 
statistical and econometric techniques such as rough sets [11] and multicriteria dis-
crimination method [12]. As we have already mentioned, in this paper we analyzed 
the performance of several ANN models on the problem of Bankruptcy prediction in 
the Greek context. 

3.1   Data Description 

Bankruptcy filings in the years 2003 and 2004 were provided directly from the Na-
tional Bank of Greece directories and the business database of the financial informa-
tion services company called ICAP, in Greece. Financial statement data for the fiscal 
years prior to bankruptcy were obtained from ICAP financial directories. The finan-
cial statements of these firms were collected for a period of three years. The critical 
year of failure denoted as year 0, three years before as year –3 and year –1 is the final 
year prior to bankruptcy filing. As the control sample, each selected bankrupt firm 
was matched with two non-bankrupt (healthy) firms of exactly the same industry, by 
carefully comparing the year of the reported data (year –1) assets size and the number 
of employees. The selected non-bankrupt corporations were within 20% of the selec-
tion criteria. Following the prior literature, we examine the probability of a firm’s 
initial filing for bankruptcy and eliminate any observations for a firm after it has filed 
for bankruptcy during our sample period. 
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Table 2. Research Variables description 

Category Independent  
variables 

Variable Description 

Profitability OPIMAR Operating income divided by net sales 
Variables NIMAR Net income divided by sales 
 GIMAR Gross income divided by sales  
 ROE Net income pre tax divided by Shareholder’s equity capital 
 ROCE Net income pre tax divided by capital employed  

Liquidity- EQ/CE Shareholder’s equity to capital employed  
Leverage  CE/NFA Capital employed to net fixed assets 
Variables TD/EQ Total debt to shareholder’s equity capital 
 CA/CL Current assets to current liabilities 
 QA/CL Quick assets to current liabilities  

 WC/TA Working capital divided by total assets 

Efficiency COLPER Average collection period for receivables 
Variables INVTURN Average turnover period for inventories 
 PAYPER Average payment period to creditors 
 S/EQ Sales divided by Shareholder’s equity capital  

 S/CE Sales divided by capital employed 
 S/TA Sales divided by Total Assets  

Growth   
variables 

GRTA Growth rate of total assets  
(TAt – TA t-1)/(ABS(TAt)+ ABS(TA t-1)  

 GRNI Growth rate of net income 
 GRNS Growth rate of net sales  

Size variable SIZE Size of firm is the ln(Total Assets/GDP price index)  

Our final bankruptcy sample consists of 50 initial bankruptcies in the year period 
2003-2004 and is similar in size but more complete and recent compared to previous 
studies. The final pooled sample of failed and solvent firms is composed of 150 indi-
vidual firms with financial data for a three-year period, which attributes 450 firm-year 
observations. Table 2 provides a brief description of the financial variables used in the 
present study classified in 5 groups. 

4   Experimental Results 

WINNOW is the representative of perceptron-based algorithms in our study [18]. It 

classifies a new instance x into the second-class if i i
i

x w θ> and into the first class 

otherwise. It initializes its weights wi and  to 1 and then it accepts a new instance (x, 
y) applying the threshold rule to compute the predicted class y’. If y  = 0 and y = 1, 
then the weights are too low; so, for each feature such that xi = 1, wi = wi · α, where 
α is a number greater than 1, called the promotion parameter. If y  = 1 and y = 0, then 
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the weights were too high; so, for each feature xi = 1, it decreases the corresponding 
weight by setting wi = wi · β, where 0<β<1, called the demotion parameter. The vec-
tor, which is correct on all examples of the training set, is then used for predicting the 
labels on the test set. 

Voted-perceptron [14] stores more information during training and then use this 
elaborate information to generate better predictions on the test data. The information 
it maintains during training is the list of all prediction vectors that were generated 
after each and every mistake. For each such vector, the algorithm counts the number 
of iterations the vector “survives” until the next mistake is made; they refer to this 
count as the “weight” of the prediction vector. To calculate a prediction it computes 
the binary prediction of each one of the prediction vectors and combines all these 
predictions by a weighted majority vote. The weights used are the survival times 
described above. This makes intuitive sense, as “good” prediction vectors tend to 
survive for a long time and thus have larger weight in the majority vote. 

ANN depends upon three fundamental aspects, the input and activation functions 
of the unit, the network architecture and the weight on each of the input connections. 
Given that the first two aspects are fixed, the behavior of the ANN is defined by the 
current values of the weights. The weights of the net to be trained are initially set to 
random values, and then instances of the training set are repeatedly exposed to the 
net. The values for the input of an instance are placed on the input units and the out-
put of the net is compared with the desired output for this instance. Then all the 
weights in the net are adjusted slightly in the direction that would bring the output 
values of the net closer to the values for the desired output. The most well-known and 
widely used learning algorithm to estimate the values of the weights is the Back 
Propagation (BP) algorithm [5]. 

RBF network [5] uses the k-means clustering algorithm to provide the basis func-
tions and learns a logistic regression on top of that. Symmetric multivariate Gaussians 
are fit to the data from each cluster. It uses the given number of clusters per class. It 
standardizes all numeric attributes to zero mean and unit variance. 

The SVM technique revolves around the notion of a ‘margin’ that separates two 
data classes. Maximizing the margin, and thereby creating the largest possible dis-
tance between the separating hyperplanes can reduce the upper bound on the expected 
generalization error [21]. However, most real-world problems involve non-separable 
data for which no hyperplane exists that successfully separates the positive from 
negative instances in the training set. The solution is then to map the data into a 
higher-dimensional space and define a separating hyperplane there. Sequential Mini-
mal Optimization (or SMO) algorithm was the representative of the SVMs as one of 
the fastest methods to train SVMs [21]. 

All accuracy estimates were obtained by averaging the results from stratified 10-
fold cross-validation in our datasets. It must be mentioned that we used the free avail-
able source code for our experiments in order to find the best parameters for each 
algorithm by the book [26]. The results for the first case study (fraud detection) are 
presented in Table 3. In Table 3, we also present the accuracy of Logistic Regression 
(LR) as benchmark algorithm.  
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Table 3. Accuracy of models in fraud detection (discretized) 

 Winnow BP Voted Perceptron RBF SMO LR 

Total Acc. 75.32 82.91 81.01 77.85 79.11 75.3 

Fraud (F) 56.1 56.1 39.0 34.1 39.0 36.6 

Non-Fraud (NF) 82.1 92.3 95.7 93.2 93.2 88.9 

The Winnow algorithm (with alpha: 2, beta: 0.5) correctly classifies 75.32% of the 
total sample, 56.1% of the fraud cases and 82.1% of the non-fraud cases. The RBF 
algorithm (with minimum standard deviation for the clusters: 2, number of clusters for 
K-Means to generate: 2) manages to correctly classify 77.85% of the total validation 
sample, 34.1% of the fraud cases and 93.2% of the non-fraud cases. Moreover, BP 
algorithm (with 1 hidden layer, learning rate: 0.3, momentum: 0.2) succeeds in cor-
rectly classifying 56.1% of the fraud cases, 92.3% of the non-fraud cases and 82.91% 
of the total validation sets. Furthermore, Voted Perceptron algorithm (with maximum 
number of alterations to the perceptron: 10.000) succeeds in correctly classifying 39% 
of the fraud cases, 95.7% of the non-fraud cases and 81.01% of the total validation 
sets. SMO algorithm (with exponent for the polynomial kernel: 1) correctly classifies 
79.11% of the total sample, 39% of the fraud cases and 93.2% of the non-fraud cases.  

Recently in the area of Machine Learning the concept of combining classifiers is 
proposed as a new direction for the improvement of the performance of individual 
classifiers [10]. For this reason, we combined the previous algorithms using the sim-
ple voting methodology [10]. Let us consider the voting step as a separate classifica-
tion problem, whose input is the vector of the responses of the base classifiers. Simple 
voting uses a predetermined algorithm for this, namely to count the number of predic-
tions for each class in the input and to predict the most frequently predicted class. The 
intuition is that the models generated using different learning biases are more likely to 
make errors in different ways. 

The proposed voting ensemble of Winnow, BP, Voted Perceptron, SMO and RBF 
correctly classifies 91.2% of the total sample, 85.2% of the fraud cases and 93.3% of 
the non-fraud cases. In a comparative assessment of the models’ performance we can 
conclude that the ensemble outperforms the simple models and achieve outstanding 
classification accuracy. 

To facilitate the presentation and discussion of the results for the second case study 
(bankruptcy prediction), each year prior to financial distress is denoted as year –1, 
year –2, year –3, Year –1 refers to the first year prior to financial distress (e.g., for the 
firms that faced financial distress in 2004, year –1 refers to 2003); year –2 refers to 
the second year prior to financial distress (e.g., for the firms that faced financial dis-
tress in 2004, year –2 refers to 2002), etc.  

In Table 4, there is the classification accuracy for each representative learning al-
gorithm (with the previous referred parameters) for each examined year. We also 
present the accuracy of Logistic Regression (LR) as benchmark algorithm. 
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Table 4. Accuracy of the algorithms in bankruptcy prediction 

    Winnow BP Voted 
Perceptron 

SMO RBF LR 

Total Acc. 36.55 64.14 39.31 68.28 67.59 66.21 

Bankrupt 89.8 28.6 81.6 10.2 22.4 22.4 
Year  

(-3) 
Non- Bankrupt 9.4 82.3 17.7 97.9 90.6 88.5 

Total Acc. 42.07 69.65 64.83 69.66 71.72 67.59 

Bankrupt 69.4 22.4 2.0 10.2 26.5 22.6 
Year  

(-2) 
Non- Bankrupt 28.1 93.8 96.9 100 94.8 90.5 

Total Acc. 62.75 71.03 68.28 72.41 72.41 68.28 

Bankrupt 57.1 61.2 44.9 49.0 24.5 12.2 
Year  

(-1) 
Non- Bankrupt 65.6 76.0 80.2 84.4 96.9 96.9 

It was found that learning algorithms could enable users to predict bankruptcies 
with satisfying accuracy long before the final bankruptcy. The experts are in the posi-
tion to known 3 years before, which of the industries will bankrupt or not with suffi-
cient precision, which reaches the 68% in the initial forecasts (3 years before the ex-
amined year) and exceeds the 72% the last year. 

The proposed voting ensemble reaches the 71.72% (28.6% of Bankrupt firms and 
93.8% of Non-Bankrupt) in the initial forecasts (3 years before the examined year) 
and exceeds the 73.79% (67.3% of Bankrupt firms and 77.1% of Non-Bankrupt) the 
last year. In a comparative assessment of the models’ performance we can conclude 
that the ensemble outperforms the simple tested algorithms and achieve outstanding 
classification accuracy. 

5   Conclusion 

ANN based financial forecasting has been explored for about a decade. Many re-
search papers are published on various international journals and conferences pro-
ceedings [7]. Some research results of financial forecasting found in references.  

The aim of this study has been to compare the performance of ANNs techniques in 
detecting fraudulent financial statements and predicting corporate bankruptcy by 
using published financial data. According to our experiments, the attributes that 
mostly influence the induction in bankruptcy prediction are: WC/TA, EQ/CE and 
GRNI, while, the attributes that mostly influence the induction in detecting fraudulent 
financial statements are: RLTC/RCR02, AR/TA01, TL/TA02, AR/TA02, WC/TA02, 
DC/CA02, NFA/TA02, NDAP02. Finally, all the experimental results indicate that 
published financial statement data contains falsification indicators. In terms of per-
formance, a voting ensemble achieved the best performance. It must be mentioned 
that our input vector solely consists of financial ratios. Enriching the input vector with 
qualitative information, such as previous auditors’ qualifications or the composition 
of the administrative board, could increase the accuracy rate. The other open issue is 
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to consider macroeconomic indicators as inputs to the ANN. The prevailing economic 
conditions (as well as the current interest rates) can have a significant effect on the 
probability of bankruptcy.  

Of course, all the techniques employed in the problem of predicting bankruptcy 
and FFS can be straight forwardly used in other financial classification problems such 
as bond rating or credit scoring. 
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Abstract. Credit risk analysis is an important topic in the financial risk man-
agement. Due to recent financial crises and regulatory concern of Basel II, 
credit risk analysis has been the major focus of financial and banking industry. 
An accurate estimation of credit risk could be transformed into a more efficient 
use of economic capital. In this study, we try to use a triple-phase neural net-
work ensemble technique to design a credit risk evaluation system to discrimi-
nate good creditors from bad ones. In this model, many diverse neural network 
models are first created. Then an uncorrelation maximization algorithm is used 
to select the appropriate ensemble members. Finally, a reliability-based method 
is used for neural network ensemble. For further illustration, a publicly credit 
dataset is used to test the effectiveness of the proposed neural ensemble model. 

1   Introduction 

In the financial risk management field, the credit risk analysis is beyond doubt an 
important topic. Especially for any credit-granting institution, such as commercial 
banks and certain retailers, the ability to discriminate good customers from bad ones 
is crucial. The need for reliable models that predict defaults accurately is imperative 
so that the interested parties can take either preventive or corrective action [1]. 

Due to its importance of credit risk analysis, there is a growing research stream 
about credit risk analysis. Accordingly, many different approaches including individ-
ual models, such as linear discriminant analysis [2], logit analysis [3], probit analysis 
[4], linear programming [5], integer programming [6], k-nearest neighbor (KNN) [7], 
classification tree [8], artificial neural networks (ANN) [9-10], genetic algorithm 
(GA) [11-12] and support vector machine (SVM) [13-14], and some hybrid models, 
such as neuro-fuzzy system [15-16] and fuzzy SVM [1],were widely applied to credit 
risk analysis tasks. Two recent surveys on credit scoring and credit modeling are  
[17-18]. 

In the above individual models [2-14], it is difficult to say that the performance of 
one model is consistently better than that of another model in all circumstances. In 
most situations, the performance of these individual models is problem-dependent. In 
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the hybrid models [1, 15-16], some researchers have revealed that these hybrid classi-
fiers which hybridize two or more classification methods can show higher correctness 
of classification than that of individual models. Motivated by this finding, we try to 
integrate multiple classifiers into an aggregated output to obtain the further perform-
ance improvement. In this study, ANN is selected as the basic learner to construct an 
ensemble classifier. The main reason of selecting ANN reflects the following two 
aspects. First of all, a neural network is often viewed as a “universal approximator” 
[19]. Usually, a three-layer back propagation neural network (BPNN) with an identity 
transfer function in the output unit and logistic functions in the middle-layer units can 
approximate any continuous function arbitrarily well given a sufficient amount of 
middle-layer units [19-20]. That is, neural networks have the ability to provide flexi-
ble mapping between inputs and outputs. Secondly, neural networks are far from 
being optimal classifier [21]. Many experimental results have shown the generaliza-
tion of individual networks is not unique. Even for some simple problems, different 
neural networks with different settings (e.g., different network architecture and differ-
ent initial conditions) may result in different generalization results. This characteristic 
makes neural networks have large improvement space in performance.  

The motivations of this study are to propose a triple-phase neural network ensem-
ble model for credit risk analysis and meantime to compare the performance with 
individual and hybrid credit analysis models. The rest of this study is organized as 
follows. Section 2 describes the building process of the proposed triple-phase neural 
network ensemble model in detail. For further illustration, two real credit datasets are 
used for testing in Section 3. Finally, some conclusions are drawn in Section 4.  

2   The Building Process of Neural Network Ensemble Model 

In this section, a triple-phase neural network ensemble model is proposed for credit 
risk analysis. First of all, multiple individual neural classifiers are generated. Sec-
ondly, an uncorrelation maximization algorithm is used to select the appropriate  
ensemble members. Finally, a reliability-based method is used for neural network 
ensemble for classification purpose. Particularly, a three-layer back propagation neu-
ral network (BPNN) with an identity transfer function in the output unit and logistic 
functions in the hidden layer units are used in this study [19-20]. 

2.1   Generating Diverse Individual Neural Network Classifiers 

According to the principle of bias-variance trade-off [22], an ensemble model consist-
ing of diverse models with much disagreement is more likely to have a good generali-
zation performance. Therefore, how to generate the diverse model is a crucial factor. 
For neural network model, there are three methods for generating diverse models. 

(1) Initializing different starting weights for each neural network models. 
(2) Training neural network with different training subsets. 
(3) Varying the architecture of neural network, e.g., changing the different numbers 

of layers or different numbers of nodes in each layer. 
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Usually, a neural network can usually be trained by the in-sample dataset and ap-
plied to out-of-sample dataset to verification. The model parameters (connection 
weights and node biases) will be adjusted iteratively by a process of minimizing the 
error function. Basically, the final output of the BPNN model can be represented as 
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where xi (i = 1, 2, …, p) represents the input patterns, y is the output, ja (j = 0, 1, 2, 

…, q) is a bias on the jth unit, and ijw  (i = 1, 2, …, p; j = 1, 2, …, q) is the connec-

tion weight between layers of the model, (•) is the transfer function of the hidden 
layer, p is the number of input nodes and q is the number of hidden nodes.  

In the classification problem, the neural network classifier can be represented by 
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If f(x) is larger than zero, then F(x) belongs to positive class, representing by “+1”; 
otherwise F(x) belongs to negative class, representing by “-1”. In our study, we use 
neural network output value f(x) as its credit classification score, instead of the classi-
fication results F(x) directly. For credit risk classification problem, a credit analyst 
can adjust the parameter a0 to modify the cutoff to change the percent of accepted. 
Only when the applicant’s score is larger than the cutoff, his application will be | 
accepted. 

In addition, the neural network output value f(x) is a good indicator of the confi-
dence or reliability of ensemble classifiers. The larger the f(x), the higher the reliabil-
ity of neural network classifier for positive class (denoted by gi

+(x)) is. Therefore the 
neural network output value f(x) as a reliability measure is used to integrate the en-
semble members, as further illustrated in Section 2.3.  

2.2   Selecting Appropriate Ensemble Members 

After training, each individual neural classifier has generated its own result. However, 
if there are a great number of individual members, we need to select a subset of repre-
sentatives in order to improve ensemble efficiency. Furthermore, in the neural net-
work ensemble model, it does not follow the rule of “the more, the better”, as pro-
posed by [23]. In this study, an uncorrelation maximization method is used to select 
the appropriate number of neural network ensemble members. 

The basic starting point of the uncorrelation maximization algorithm is the princi-
ple of model diversity. That is, the correlations between the selected classifiers should 
be as small as possible, i.e., uncorrelation maximization. Supposed that there are p 
neural classifiers (C1, C2, …, Cp) with n forecast values. Then the error matrix (e1, e2, 
…, ep) of p predictors is as 
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From the matrix, the mean, variance and covariance of E can be calculated as 
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Considering Equations (5) and (6), we can obtain a variance-covariance matrix: 

)( ijpp VV =×  (7) 

Based upon the variance-covariance matrix, correlation matrix R can be calculated 
using the following equations: 

)( ijrR =  (8) 

jjii

ij
ij

VV

V
r =  (9) 

where rij is correlation coefficient, representing the degree of correlation classifier Ci 
and classifier Cj. 

Subsequently, the plural-correlation coefficient Ci (C1,C2,…,Ci-1,Ci+1,…, Cp) between 
classifier Ci and other p-1 classifiers can be computed based on the results of Equa-
tions (8) and (9). For convenience, Ci (C1,C2,…,Ci-1,Ci+1,…, Cp) is abbreviated as i, repre-
senting the degree of correlation between Ci and (C1, C2, …, Ci-1, Ci+1, …, Cp). In 
order to calculate the plural-correlation coefficient, the correlation matrix R can be 
represented with block matrix, i.e., 
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where R-i denotes the deleted correlation matrix. It should be noted that rii = 1 (i = 1, 
2, …, p). Then the plural-correlation coefficient can be calculated by 

i
T

i
T
ii rRr −=2ρ   (i = 1, 2, …, p) (11) 

For a pre-specified threshold , if i
2> , then the classifier Ci should be taken out 

from the p classifiers. On the contrary, the classifier Ci should be retained. Generally, 
the uncorrelation maximization algorithm can be summarized into the following 
steps: 
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(1) Computing the variance-covariance matrix Vij and correlation matrix R with 
Equations (7) and (8); 

(2) For the ith classifier (i =1, 2, …, p), the plural-correlation coefficient i can be 
calculated with the Equation (11); 

(3) For a pre-specified threshold , if i < , then the ith classifier should be deleted 
from the p classifiers. Conversely, if i > , then the ith classifier should be retained. 

(4) For the retained classifiers, we can also perform the procedure (1)-(3) itera-
tively until satisfactory results are obtained. 

2.3   Fusing the Selected Members into an Aggregated Output 

Depended upon the work done in previous two phases, a set of appropriate number of 
ensemble members can be collected. The subsequent task is to combine these selected 
members into an aggregated classifier in an appropriate ensemble strategy. Usually, 
majority voting is the most widely used fusion strategy for classification problems 
due to its easy implementation. It takes over half the ensemble to agree a result for it 
to be accepted as the final output of the ensemble regardless of the diversity and accu-
racy of each network’s generalization. The main disadvantage of the majority voting 
is that it ignores the fact some neural network that lie in a minority sometimes do 
produce the correct results. In addition, at the stage of integration, it ignores the exis-
tence of diversity that is the motivation for ensembles [21].  

In such situations, this study proposes a reliability-based ensemble strategy to fuse 
these ensemble members. According to Section 2.1, the reliability of positive class is 
fi(x). But note that the reliability measure falls into the interval (- , + ). The main 
drawback of this reliability measure is that ensemble classifier with large absolute 
value often dominate the final decision of the ensemble model. In order to overcome 
this shortcoming, we scale this measure into the unit interval [0, 1] with logistic func-
tion, i.e., gi

+(x)=1/(1+e -fi(x)) in the classification problem. Accordingly, the reliability 
of negative class can be represented as gi

-(x) =1- gi
+(x). In terms of the reliability of 

positive and negative class, the following five rules can be used to fuse the m individ-
ual ensemble members into an aggregated output: 

(1) Maximum fusion rule: 
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(2) Minimum fusion rule: 
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(3) Median fusion rule: 
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(4) Mean fusion rule: 
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(5) Product fusion rule: 
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3   Experiment Study 

In this section, a publicly credit dataset is used to test the performance of the proposed 
reliability-based neural network ensemble model. For comparison purposes, three 
individual classification models: logit regression (LogR) [3], artificial neural network 
(ANN) [9-10] and support vector machine (SVM) [13-14], two hybrid classification 
models: neuro-fuzzy system [15-16] and fuzzy SVM [1] are also conducted. 

The experimental dataset in this study is about Japanese credit card application ap-
proval obtained from UCI Machine Learning Repository (http://www.ics.uci.edu/ 
~mlearn/databases/credit-screening). For confidentiality all attribute names and values 
have been changed to meaningless symbols. After deleting the data with missing 
attribute values, we obtain 653 data, with 357 cases were granted credit and 296 cases 
were refused. To delete the burden of resolving multi-category, we use the 13 attrib-
utes A1-A5, A8-A15. Because we generally should substitute k-class attribute with k-
1 binary attribute, which will greatly increase the dimensions of input space, we don’t 
use two attributes: A6 and A7. 

In this empirical analysis, we randomly draw 400 data from the 653 data as the ini-
tial training set, 100 data as the validation set and the else as the testing set. In order 
to increase model accuracy for credit risk evaluation, forty different neural network 
models with different initial weights are generated. Using the uncorrelation maximi-
zation algorithm, 18 diverse neural network classifiers are selected. For individual 
neural network models, a three-layer back-propagation neural network with 25 
TANSIG neurons in the hidden layer and one PURELIN neuron in the output layer is 
used. The network training function is the TRAINLM. Besides, the learning rate and 
momentum rate is set to 0.1 and 0.15. The accepted average squared error is 0.05 and 
the training epochs are 2000. The above parameters are obtained by trial and error. In 
the SVM, the kernel function is Gaussian function with regularization parameter C = 
50 and 2=5. Similarly, the above parameters are obtained by trial and error.  

The classification accuracy in testing set is used as performance evaluation crite-
rion. Typically, three evaluation criteria are used to measure the classification results. 

  
bad observed ofnumber 

bad as classified and bad observedboth  ofnumber 
accuracy  I  Type =  (17) 
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good observed ofnumber 

good as classified and good observedboth  ofnumber 
accuracy  II  Type =  

(18) 

sample evaluation ofnumber  the

tionclassificacorrect  ofnumber 
accuracy  Total =  (19) 

To reflect model robustness, each class of experiment is repeated 10 times and the 
final Type I, Type II and total accuracy is the average of the results of the 10 individ-
ual tests. According to the experiment design, the final results are presented in Table 
1. Note that the results of two hybrid classification models are from the original litera-
ture [1, 15]. Because the results of type I and type II in [15] are not reported, the result 
of neuro-fuzzy system is kept to be blank in Table 1. Based on the similar reason, the 
standard deviations of the fuzzy SVM model are not shown in Table 1. 

Table 1. Credit risk evaluation results with different approaches* 

Category Model Rule Type I (%) Type II (%) Total (%) 

Single LogR  74.58 [6.47] 76.36 [5.81] 75.82 [6.14] 

 ANN  80.08 [7.23] 82.26 [6.25] 80.77 [6.86] 

 SVM  78.41 [5.71] 81.43 [6.13] 79.91 [5.87] 

Hybrid Neuro-fuzzy [15]    77.91 [5.10] 

 Fuzzy SVM [1]  82.70 85.43 83.94 [4.75] 

Ensemble Voting-based Majority 84.37 [5.73] 86.58 [6.11] 85.22 [6.01] 

 Reliability-based Maximum 88.43 [4.34] 86.54 [5.25] 87.24 [4.89] 

  Minimum 88.86 [4.41] 87.44 [4.74] 88.08 [4.63] 

  Median 86.52 [4.96] 85.63 [5.03] 86.03 [4.99] 

  Mean 86.17 [5.28] 87.85 [5.43] 86.89 [5.35] 

  Product 85.75 [5.11] 86.46 [6.08] 85.96 [5.73] 

* Standard deviations appear in brackets. 

As can be seen from Table 1, we can find the following conclusions.  

(1) Of the three single models, neural network model performs the best, followed 
by single SVM and logit regression. Using two tailed t-test, we find that the differ-
ence between performance of ANN and SVM is insignificant at five percent level of 
significance, while the difference between logit regression and ANN is significant at 
ten percent level of significance.  

(2) In the two listed hybrid models, the neuro-fuzzy system performs worse than 
that of two single AI models, i.e., ANN and SVM. The main reason reflects the fol-
lowing aspects. First of all, the neurofuzzy system used the approximations of both 
the inputs as well as the output, as it fuzzified the inputs and defuzzified the output. 
Comparatively, the ANN and SVM did not use any such approximations. Secondly, 
the classification accuracies using neurofuzzy system is also influenced by the overlap 
in the way the range of values of a given attribute is split into its various categories 
(e.g., range of values for small, medium, and large). Again, these are pitfalls associated 
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with the mechanisms used for both fuzzification and defuzzification of input and 
output data, respectively [15]. However, the fuzzy SVM obtain good performance 
relative to single classification models. The main reason is that the fuzzy SVM can 
reduce the effect of outliers and yield higher classification rate than single SVM and 
ANN do.  

(3) In the ensemble model, five reliability-based neural network ensemble models 
consistently outperform the majority voting based ensemble model, implying that the 
proposed reliability-based neural network ensemble model is a class of promising 
approach to handle credit risk analysis. Among the five reliability-based neural net-
work ensemble models, the neural network ensemble model with minimum fusion 
rule perform the best, followed by maximization fusion rule and mean fusion rule. 
Although there is no significant difference in performance of the five reliability-based 
neural network ensemble models, the main reason resulting in such a small difference 
is still unknown, which is worth further exploring in the future.  

(4) Generally speaking, the proposed reliability-based neural network ensemble 
model perform the best in terms of Type I accuracy, Type II accuracy, and total accu-
racy, revealing that the proposed reliability-based neural network ensemble learning 
technique is a feasible solution to improve the accuracy of credit risk evaluation. 

4   Conclusions 

In this study, a triple-phase neural network ensemble model is proposed to evaluate 
the credit risk problem. First of all, multiple individual neural classifiers are gener-
ated. Secondly, an uncorrelation maximization algorithm is used to select the appro-
priate ensemble members. Finally, a reliability-based method is used for neural net-
work ensemble for classification purpose. Through the practical data experiment, we 
have obtained good classification results and meantime demonstrated that the pro-
posed neural network ensemble model outperforms all single and hybrid models listed 
in this study. These results obtained reveal that the proposed triple-phase neural net-
work ensemble technique can provide a promising solution to credit risk analysis. 
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Abstract. We compare the performance of competitive and collabora-
tive strategies for mixtures of autoregressive experts with normal innova-
tions for conditional risk analysis in financial time series. The prediction
of the mixture of collaborating experts is an average of the outputs of
the experts. If a competitive strategy is used the prediction is gener-
ated by a single expert. The expert that becomes activated is selected
either deterministically (hard competition) or at random, with a certain
probability (soft competition). The different strategies are compared in
a sliding window experiment for the time series of log-returns of the
Spanish stock index IBEX 35, which is preprocessed to account for the
heteroskedasticity of the series. Experiments indicate that the best per-
formance for risk analysis is obtained by mixtures with soft competition,
where the experts have a probability of activation given by the output
of a gating network of softmax units.

1 Introduction

During the last decades risk management has acquired great importance in fi-
nancial institutions. Market risk analysis attempts to characterize the variations
in the value of the investment portfolio of a financial institution associated with
fluctuation in market conditions: asset prices, interest rates, exchange rates,
volatilities, correlations and other risk factors. It is common to summarize the
risk exposure by standard risk measures, such as Value-at-Risk (VaR) or Ex-
pected Shortfall (ES) [1]. To calculate the values of these measures, one assumes
that the time series of returns of the institution’s investment portfolio can be
modeled as a stochastic process. The parameters of these models are usually de-
termined by a fit to recent historic return data. For a given time horizon τ (for
instance, one day) and a probability level p (usually high, e.g. 95% or 99%) the
value of p-VaR is the negative (1− p)-quantile of the distribution of the returns
for that time horizon. Because of its simplicity, Value-at-Risk has become the
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standard measure of market risk [1]. However, it is not a coherent measure of
risk [2]. In particular, it is not subadditive, which means that it is possible to
find two portfolios A and B that satisfy V aR(A+B) > V aR(A)+V aR(B). This
contradicts the intuitive notion that diversification should lead to a reduction
of risk. An alternative to VaR that satisfies the subadditivity requirement and
other desirable properties is Expected Shortfall (ES), which is also known in the
literature as Expected Tail Loss (ETL) or conditional VaR (c-VaR). This quan-
tity is defined as the average portfolio loss in a fixed time period τ , assuming
that the loss exceeds the p-VaR.

To determine the value of VaR or Expected Shortfall it is necessary to model
the distribution of portfolio returns. Empirical evidence shows that the distri-
bution of daily returns is leptokurtic; that is, its tails are heavier than those
predicted by a normal distribution [3]. A number of alternatives have been pro-
posed to take into account heavier tails: mixtures of Gaussians [4], stable distri-
butions [5], etc. The assumption of independence of returns is contradicted by the
presence of correlations between consecutive returns [6] and a time-dependent
structure in volatility [7,8,9]. Previous work by the authors [10,11] focused on
autoregressive models based on mixtures of experts [12,13]. In those models au-
toregressive experts with soft competition are used to account for correlations
and for the excess of kurtosis in the distribution of portfolio returns. The goal
of the current research is to perform an exhaustive comparison among models
using collaboration, soft competition or hard competition for conditional risk
estimation. We carry out a detailed risk analysis of the different models based
on different risk measures and advanced statistical tests.

2 Models for Time Series of Financial Prices

The future prices of a financial asset that is freely traded in an ideal market
are unpredictable. By arguments of market efficiency any expectations on the
future evolution of the asset value should be immediately reflected in the current
price. Hence, the time series of asset prices follows a stochastic process, where
the variations correspond to new unexpected information being incorporated
into the market price. The time series of prices {St; 1 ≤ t ≤ T } is generally not
stationary. It is common to model the quasi-stationary series of log-returns that
can be obtained by log-differencing the original series

Xt = log
St

St−1
, 1 ≤ t ≤ T . (1)

Before formulating a model based on mixtures of autoregressive experts for
the series of returns, we perform a transformation to take into account its het-
eroskedastic structure. GARCH(1,1) processes [9,15] are among the most suc-
cessful models for describing the time-dependent structure of the volatility in
financial time series. If the time series {Xt, 1 ≤ t ≤ T } with mean μ follows a
GARCH(1,1) model, then
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Fig. 1. Daily log-returns (multiplied by 100) of the Spanish IBEX 35 stock index
from 12/29/1989 to 1/31/2006 (4034 values) provided by [14]. Graphs on the left
column correspond to the original series of log-returns (first row) and to the sample
autocorrelation functions (ACF) of the absolute values of the log-returns (second row)
and of the log-returns themselves (third row). The outer lines in the top left plot
correspond to μ±4σt, where μ and σt are obtained from a fit to a GARCH(1,1) model
(2). The right column displays the corresponding plots for the homoskedastic series
obtained after normalization (3).

Xt = μ + σtεt

σ2
t = γ + α(Xt−1 − μ)2 + βσ2

t−1 , (2)

where {εt, 1 ≤ t ≤ T } are iidrv’s generated by a N(0, 1) distribution and the
parameters γ,α and β satisfy the constraints γ > 0, α,β ≥ 0 and α + β < 1.
Assuming that the time series of returns approximately follows a GARCH(1,1)
process, it is then possible to obtain a homoskedastic time series {Zt, 1 ≤ t ≤ T }
by performing the transformation

Zt =
Xt − μ

σt
, 1 ≤ t ≤ T, (3)
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where σt follows equation (2). The parameters μ, γ,α and β are estimated by
maximizing the likelihood of the GARCH(1,1). Note that the GARCH process is
not being trained in an optimal way. In particular the residuals {εt, 1 ≤ t ≤ T }
are not independent and their distribution is leptokurtic. Nonetheless, given
that the deviations from independence and normality are small, the variance
σ2

t estimated under the hypothesis of normal independent residuals should be a
good approximation to the actual variance of the process.

On the left column, Fig. 1 displays the graph and autocorrelations of the time
series of log-returns of the Spanish stock index IBEX 35 and, on the right column,
the corresponding plots for the normalized time series (3). The features of this
series are representative of typical time series of financial portfolio returns. The
presence of medium-term correlations for the absolute values of the log-returns
({Xt, 1 ≤ t ≤ T }) is a clear mark of heteroskedasticity. These autocorrelations
are not present in the normalized series, which appears to be homoskedastic.
If we focus on the sample autocorrelations of the normalized log-returns, it is
apparent that they still exhibit small but non-negligible short-term correlations,
which can be modeled by an autoregressive process [15].

3 Mixtures of Autoregressive Experts

In this work we propose to model the series of normalized log-returns by a
mixture of M autoregressive processes with a single delay, AR(1), in a single
level [12]. These types of models can be thought of as dynamical extensions of the
mixture of Gaussians paradigm, which has been successfully applied to modeling
the excess of kurtosis in the unconditional distribution of log-returns [4]. Our
goal is to give an accurate and robust description of the conditional distribution
of log-returns that can be used for risk analysis. For this reason we evaluate
the performance of the mixture models based not only on point predictions, but
also on their capacity to model the whole distribution of returns, especially of
extreme events, which are determinant for the risk profile of a portfolio.

The way in which the outputs of the AR(1) models are combined to generate
a prediction is controlled by a gating network [13] with a single layer. The input
for this network is the same as the input for the experts (i.e., the delayed value
of the normalized series, Zt−1). The output layer contains as many nodes as the
number of experts in the mixture. Their activation is modulated by a softmax [16]
function so that the outputs are within the interval [0, 1] and add up to 1. Because
of these properties they can be interpreted either as activation probabilities or
as weights. In particular, if ζ(m)

0 and ζ
(m)
1 are the weights of the m-th node of

the gating network, its outgoing signal is

gm(Zt−1) =
exp(ζ(m)

0 + ζ
(m)
1 Zt−1)∑

j exp(ζ(j)
0 + ζ

(j)
1 Zt−1)

, m = 1, 2, . . . , M. (4)

Let φ(m)
0 , φ(m)

1 and σm be the parameters of the m-th AR(1) expert. There are
different strategies to determine how the outputs of the experts in the mixture
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are combined. We consider and compare three different paradigms: collaboration,
hard competition and soft competition.

Collaboration: The output of the mixture is a weighted average of the outputs
from each of the experts. These weights are determined by the output of the
gating network. The output of the mixture is

Zt =
M∑

m=1

gm(Zt−1)
[
φ

(m)
0 + φ

(m)
1 Zt−1 + σmεt

]
, (5)

Hard competition: Experts compete, so that only one expert is active at a
given time. The output of the gating network is either 1 for m∗

t , the expert
that generates the output, or 0 for the other experts. This strategy was also
proposed in [17]

Zt = φ
(m∗

t )
0 + φ

(m∗
t )

1 Zt−1 + σm∗
t
εt. (6)

Soft competition: The output is generated by a single expert. However, in
contrast to hard competition, every expert has a probability of being chosen
to generate the output of the system. This probability is given by the output
of the gating network

Zt =
M∑

m=1

ξ
(m)
t

[
φ

(m)
0 + φ

(m)
1 Zt−1 + σmεt

]
, (7)

where the random variables {ξ(m)
t , m = 1, 2, . . . , M} take value one with

probabilities {gm(Zt−1), m = 1, 2, . . . , M}, respectively. At a given time t
only one of them can have value 1, and the rest are zero. This strategy was
proposed in [12] and used in [10,11].

In all these models, we assume that {εt} ∼ IID N(0, 1) and require that {|φ(m)
1 | <

1; m = 1, 2, . . . , M} to guarantee stationarity.
In order to fit the parameters of the AR(1) processes and of the gating net-

works to the time series {Zt, 1 ≤ t ≤ T } we condition the distribution of Zt to
Zt−1 and maximize the likelihood function. The expressions of the conditional
likelihood for collaborative (CL), hard competitive (HC) and soft competitive
(SC) mixtures of M experts, given a series of observations {Zt, 2 ≤ t ≤ T } and
an initial value Z1 are, respectively,

LCL(Θ; {Zt} | Z1) =
T∏

t=2

ψ

⎛⎝Zt,

M∑
m=1

gm(Zt−1)ARm(Zt−1),

√√√√ M∑
m=1

g2
m(Zt−1)σ2

m

⎞⎠
LHC(Θ; {Zt} | Z1) =

T∏
t=2

M∏
m=1

ψ (Zt, ARm(Zt−1), σm)gm(Zt−1)

LSC(Θ; {Zt} | Z1) =
T∏

t=2

M∑
m=1

gm(Zt−1)ψ (Zt, ARm(Zt−1), σm) , (8)
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where ψ(x,μ,σ) is the normal probability density function with mean μ and
standard deviation σ evaluated at x, Θ = {φ(m)

0 ,φ
(m)
1 ,σm, ζ

(m)
0 , ζ

(m)
1 , m =

1, 2, . . . , M} are the parameters that determine the model and ARm(Zt−1) =
φ

(m)
0 +φ

(m)
1 Zt−1. The previous expressions are maximized by a gradient-descent

optimization algorithm to the log-likelihood, taking into account the restrictions
of the AR parameters. We also restrict the parameters of the gating network to
be in the interval [-50,50] in order to avoid floating point overflows in the cal-
culation of the softmax function values. The optimization routine fmincon from
the Matlab Optimization Toolbox [18] is used.

One well-known problem in the maximization of the observed likelihood in
mixture models is that there is no global maximum [19]. Expert m can get
anchored to a single data point in the sample if φ(m)

0 + φ
(m)
1 Zt−1 = Zt, σm → 0

and gm(Zt−1) > 0, which causes a divergence in the likelihood function. To
address this problem we adopt the solution proposed in [19] and modify the a
priori probabilities of the variances of each expert in order to avoid that their
values get too close to zero. The prior information is equivalent to a direct
observation of T points known to have been generated by each expert and with
sample variance σ̂2. Accordingly, the logarithmic conditional likelihood of each
mixture of AR processes is modified and includes a term of the form

M∑
m=1

−T

2
log(σ2

m)− T σ̂2

2σ2
m

. (9)

In our experiments the values T = 0.1 and σ̂2 = 1.5 are used. The results are
not very sensitive to reasonable choices of these parameters.

4 Testing the Models

To test how accurately the different mixtures of experts fit the data {Zt, 1 ≤
t ≤ T }, we transform each point from the series to its percentile in terms of
the conditional distribution specified by the mixture of experts (ME) and then
apply the inverse of the standard normal cumulative distribution function [20].

Yt = Ψ−1[cdfME(Zt|Zt−1)], (10)

where Ψ−1(u) is the inverse of the cumulative distribution function for the
standard normal. This transformation is monotonic and preserves the rank or-
der of the normalized log-returns (i.e. the tails of the distribution in Zt are
mapped into the tails of the distribution in Yt. If the hypothesis that the val-
ues {Zt, 2 ≤ t ≤ T }, given Z1, have been generated by the model considered
is correct, then the transformed values {Yt, 2 ≤ t ≤ T } should be distributed
as a standard normal random variable. In consequence, it is possible to apply
statistical tests for normality to these transformed values, to determine whether
the original hypothesis should be rejected.
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The cumulative distribution functions of the collaborative (CL) and compet-
itive (CP) mixtures evaluated on Zt and conditioned to Zt−1 are

cdfCL(Zt | Zt−1) = Ψ

⎛⎝Zt,
M∑

m=1

gm(Zt−1)ARm(Zt−1),

√√√√ M∑
m=1

g2
m(Zt−1)σ2

m

⎞⎠
cdfCP (Zt | Zt−1) =

M∑
m=1

gm(Zt−1)Ψ (Zt, ARm(Zt−1), σm) , (11)

respectively, where Ψ(x,μ,σ) is the normal cumulative distribution function with
mean μ and standard deviation σ evaluated at x.

4.1 Statistical Tests for Risk Analysis

In order to assess and compare the performance of the models we have imple-
mented three statistical tests described in [21]. These tests are especially designed
to evaluate the quality of risk estimation models. The risk measures considered
can be characterized by a functional, φ : Q → R, of the cumulative distri-
bution function Q. The data used in the tests are the normalized log-returns
transformed to follow a N(0, 1) distribution (10). Hence, in our experiments Q
is a standard normal. The functionals for VaR, for expected shortfall and for
exceedances over a level V are

φV aR(Q) = −Q−1(1− p)

φES(Q) = − 1
1− p

∫ Q−1(1−p)

−∞
y dQ(y)

φExc(Q) =
∫ ∞

−∞

(
T∑

t=1

I(−∞,V ](y)

)
dQ(y) , (12)

where p is the probability used to calculate VaR. The last functional corresponds
to the average number of elements in a sample {Yt, 1 ≤ t ≤ T, Yt ∼ Q} that are
smaller than the constant value V . If V = Q−1(1−p) this functional implements
the binomial test for exceedances over VaR [22]. Provided that φ is Hadamard
differentiable on Q and QT = T−1 ∑ δYt is the empirical distribution of a sample
{Yt, 1 ≤ t ≤ T, Yt ∼ Q}, we can apply the functional delta method [23] so that

√
T (φ(QT )− φ(Q)) ≈ φ′

Q(
√

T (QT −Q)) ≈
√

T
1
T

T∑
t=1

φ′
Q(δYt −Q) , (13)

where the function y → φ′
Q(δy − Q) is the influence function of the functional

φ. This influence functional measures the change in φ(Q) if an infinitesimally
small part of Q is replaced by a point probability mass at y. In the last step
of the previous expression we have made use of the linearity of the influence
function. The quantity φ(QT ) − φ(Q) behaves as an average of independent
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random variables φ′
Q(δYt − Q) which are known to have zero mean and finite

second moments. Therefore, the central limit theorem states that
√

T (φ(QT )−
φ(Q)) has a normal limit distribution with mean 0 and variance Et[(φ′

Q(δt −
Q))2]. We can then use the statistic

ST =
√

T (φ(QT )− φ(Q))√
Ey[(φ′

Q(δy −Q))2]

d−→ N (0, 1) (14)

to determine how well QT approximates Q according to the functional φ. The
expression of the variances for the three proposed functionals are given in [21].

5 Experiments and Results

We assess the accuracy of the models investigated by means of a sliding window
analysis of the series of IBEX 35 log-returns (see Fig. 1). Each of the models is
trained on a window containing 1000 values and then tested on the first out-of-
sample point. The origin of the sliding window is then displaced by one point
and the training and evaluation processes repeated. To avoid getting trapped in
local maxima of the likelihood, we restart the optimization process several times
at different initial points selected at random and retain the best solution. Every
50 iterations in the sliding window analysis, we perform an exhaustive search
by restarting the optimization process 2000 times for the HC models, 500 times
for the CL and SC and 5 times for the GARCH(1,1) process. In the remaining
49 iterations we use the solution from the previous iteration as an initial value
for a single optimization. Once an exhaustive optimization process is completed
we restart the previous 50 optimizations (49 simple and 1 exhaustive) using the
new solution found as the initial point and replace the older fits if the values of
the likelihood are improved.

Table 1 displays the results of the statistical tests performed and the mean
square prediction error (MSE) of each model. All the models investigated per-
form well in the prediction of VaR and exceedances over VaR at a probability
level of 95%. At a probability level of 99% the only models that cannot be
rejected are mixtures of 2 and 3 experts with soft competition and mixtures
of 2 experts with hard competition. The tests for Expected Shortfall are more
conclusive and reject all models except mixtures of 2 and 3 experts with soft
competition. Furthermore, the p-values obtained for the rejected models are
very low, which indicates that they are clearly insufficient to capture the tails of
the conditional distribution. This observation is confirmed by the normal proba-
bility plots displayed in Fig. 2. To summarize, soft competition between experts
outperforms the other strategies considered. According to the experiments and
statistical tests it is not possible to tell which of the mixtures (2 or 3 experts)
performs best. More than 3 experts would probably lead to overfitting.

A Wilcoxon rank test [24] has been carried out to detect differences in mean
square prediction error between models with the same number of experts. The
only significant difference appears between soft competitive and collaborative
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Table 1. p-values for the different statistical tests and Mean Square prediction Er-
ror (MSE). The values highlighted in boldface correspond to the highest p-values for
mixtures of 2 and 3 experts, respectively.

#experts Strategy VaR 99% VaR 95% Exc 99% Exc 95% ES 99% ES 95% MSE
1 - 0.01 0.93 0.07 0.95 3 · 10−8 2 · 10−3 0.9909

CL 0.01 0.19 0.03 0.39 2 · 10−9 10−4 0.9950
2 SC 0.26 0.56 0.50 0.72 0.15 0.13 0.9916

HC 0.05 0.48 0.07 0.60 3 · 10−6 2 · 10−3 0.9925
CL 0.02 0.08 0.02 0.17 8 · 10−7 2 · 10−4 0.9962

3 SC 0.44 0.31 0.39 0.54 0.16 0.10 0.9925
HC 0.02 0.07 0.03 0.39 4 · 10−6 5 · 10−4 0.9952
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Fig. 2. Normal probability plots of the transformed sample points for the models with
2 experts. Collaboration and Hard Competition strategies fail to correctly describe the
loss tail of the distribution. Plots for the models with 3 experts are very similar.

models with 2 experts (i.e. it is possible to reject the hypothesis that those models
have the same error. The p-value obtained is 0.03). A similar test indicates that
there are no significant differences between the prediction error of a single AR(1)
compared with the mixtures of 2 and 3 experts with soft competition.

It is interesting to analyze why collaboration and hard competition are com-
paratively less accurate than soft competition in capturing the tails of the dis-
tribution. The collaborative strategy models the conditional distribution as a
single Gaussian whose mean and variance are a weighted average of the means
and variances of the Gaussians that correspond to each of the experts. In hard
competition the conditional distribution predicted is the Gaussian corresponding
to the expert that is active at that particular time. Apparently a single Gaus-
sian distribution, even with time-dependent mean and variance, can not account
for the heavy tails of the distribution of returns (see Fig. 2). By contrast, the
soft competition strategy predicts a time-dependent mixture of Gaussians, one
per expert. The resulting hypothesis space is more expressive and can account
for the excess of kurtosis in the conditional distribution of log-returns. Hence,
we conclude that the proper dynamical extension of the mixture of Gaussians
paradigm to model the conditional probability of log-returns is a mixture of
autoregressive experts with soft competition.
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11. Vidal, C., Suárez, A.: Hierarchical mixtures of autoregressive models for time-series

modeling. Lecture Notes in Computer Science 2714 (2003) 597–606
12. Jacobs, R.A., Jordan, M.I., Nowlan, S., , Hinton, G.E.: Adaptive mixtures of local

experts. Neural Computation 3 (1991) 1–12
13. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.

Neural Computation 6 (1994) 181–214
14. Sociedad de Bolsas: Histórico Cierres Índices Ibex. http://www.sbolsas.es (2006)
15. Hamilton, J.D.: Time Series Analysis. Princeton University Press (1994)
16. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press

(1996)
17. Jacobs, R.A., Jordan, M.I., Barto, A.G.: Task decompostiion through competition

in a modular connectionist architecture: The what and where vision tasks. In:
Machine Learning: From Theory to Applications. (1993) 175–202

18. Mathworks: Matlab Optimization toolbox 2.2. Mathworks, Inc., Natick, MA (2002)
19. Hamilton, J.D.: A quasi-bayesian approach to estimating parameters for mixtures

of normal distributions. Journal of Business & Economic Statistics 9(1) (1991)
27–39

20. Rosenblatt, M.: Remarks on a multivariate transformation. The Annals of Math-
ematical Statistics 23(3) (1952) 470–472

21. Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal
of Banking & Finance 28(8) (2004) 1845–1865

22. Kupiec, H.: Techniques for verifying the accuracy of risk management models.
Journal of Derivatives 3 (1995)

23. van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press (2000)
24. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin

1(6) (1945) 80–83



Kernel Regression Based Short-Term Load
Forecasting

Vivek Agarwal, Anton Bougaev, and Lefteri Tsoukalas

Purdue University, Applied Intelligent Systems Laboratory (AISL),
West Lafayette, IN 47907, USA

{agarwal1, bougaev, tsoukala}@purdue.edu

Abstract. Electrical load forecasting is an important tool in managing
transmission and distribution facilities, financial resources, manpower,
and materials at electrical power utility companies. A simple and ac-
curate electrical load forecasting scheme is required. Short-term load
forecasting (STLF) involves predicting the load from few hours to a
week ahead. A simple non-parametric kernel regression (KR) approach
for STLF is presented. Kernel regression is a linear approach with the
ability to handle nonlinear information. A Gaussian kernel whose band-
width selected by the Direct Plug-in (DPI) method is utilized. The per-
formance comparison of the proposed method with artificial neural net-
work (ANN), ordinary least squares (OLS), and ridge regression (RR)
predictions on the same data set is presented. Experimental results show
that kernel regression performs better than ANN forecaster on the given
data set. The method proposed provides analytical solution, features op-
timal bandwidth selection, which is more instructive compared to ANN
architecture and its other parameters.

1 Introduction

An efficient management of transmission and distribution facilities, financial re-
sources, manpower, and material by electrical power utility companies is vitally
important to meet the growing demand for electric power. Electrical load fore-
casting schemes developed to predict the power demand ahead of time have
earned importance and popularity among utility companies over years. It can be
classified into three types, namely, short term forecasting which is usually from
one hour to one week, medium term forecasting which is usually from a week
to a year, and long term forecasting which is more than one year. Apart from
these, Charytoniuk et al. [4] proposed a very short-term load forecasting scheme
predicting load for single minute to several dozen of minutes using ANN.

Electrical load forecasting is affected by number of factors, such as weather
factors, time factors, and other random factors. Weather factors includes tem-
perature, humidity, wind, and so on. Weather factors are considered to be of
primary importance especially for STLF. Hippert et al. [8] showed that most of
the STLF techniques take temperature information into consideration. Time fac-
tors include the time of the year, day of the week, and hour of the day. The load
pattern differs over holidays, weekdays, and weekends (Saturday and Sunday).
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Even the days preceeding and following holidays and weekends show different
load patterns. The load pattern for a week is shown in Figure 1. Other random
factors affecting STLF are population of the area, consumer products and their
age, economic and demographic data.
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Fig. 1. Weekly load pattern

Load forecasting research has led to the development of different forecasting
methods and models, that have been applied with varying degree of success.
Hippert et al. [8] classified these models and methods into time series (univariate)
models and causal models. In first class, the load is modeled as a function of
its past observed values and in second class, the load is modeled as a function
of factors such as past load, temperature, and social variables. Reviews [8] [14]
show that artificial neural networks have been one of the most widely used tool
for load forecasting. Researchers in the field of electric load forecasting have
applied different types of ANNs for STLF. Vila et al. [12] applied recurrent
neural network for STLF. Ranaweera et al. [10] presented radial basis function
neural network based STLF. Researchers have also ensembled ANNs with fuzzy
and wavelet approaches for load forecasting. Daneshdoost et al. [5] used fuzzy
set along with ANN for STLF. Gao et al. [6] proposed neural-wavelet approach
for load forecating and Zhang et al. [15] presented an adaptive neural-wavelet
for STLF. Papalexopoulos et al. [9] proposed a regression based approach for
STLF. Gao et al. [7] used short-term elasiticity for STLF using intelligent tools.
Alves da Silva et al. [1] and Bartkiewicz et al. [3] presented methods to compute
the confidence interval for ANN based STLF.

We present a simple non-parametric kernel regression approach for short-term
load forecasting. This approach is equivalent to locally weighted learning that
fits the data points only near the query point based on the distance function.
The distance function is weighted using a kernel function and the bandwidth
of the kernel function controls the amount of local averaging to be performed.
There are many types of kernel functions that can be applied, but [2] illustrates
that the choice of type of kernel function becomes insignificant, if the data set
is sufficiently large. The kernel regression estimate depends upon the location
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of the query point and the process defers the estimation until a query point is
provided, hence it is also known as lazy learning. In this paper, the Euclidean
distance computed between the query point and the neighboring data is weighted
using a Gaussian kernel. The bandwidth of the Gaussian kernel is selected using
DPI method [11]. The kernel regression estimate is compared with the multilayer
perceptron (MLP) feedforward ANN, OLS, and RR estimations. The metric
mean absolute percentage error (MAPE) is used to evaluate the accuracy of the
prediction.

The rest of the paper is organized as follows. A discussion on kernel regression
is presented in Section 2. A theory on the selection of a smoothing parameter
(bandwidth) of the kernel function using Direct Plug-in method is discussed in
Section 3. Experimental results obtained using kernel regression, ANN, OLS,
and RR are discussed and presented in Section 4. Finally, conclusion is drawn
in Section 5.

2 Kernel Regression

Kernel regression is equivalent to locally weighted polynomial fitting and is a
non-parametric regression technique [2] [13]. There are two forms of local re-
gression models, namely, univariate regression and multivariate regression. We
use multivariate regression for STLF. The multivariate kernel regression model
is given by,

εi + yi = f (xi,β (q)) , (1)

where yi is the response values, xi = (xi1, xi2, . . . , xik) is a vector of predictors
for the ith of n observations having a common density confined to a compact
set S ⊃ �, k denotes the number of bins, εi is normally and independently
distributed noise, β(q) are the kernel coefficients at every query xq, and f(.) is
the function relating the values of response yi to the predictors. f(xi,β(q)) is
a local model and can have a different set of parameters β(q) for each query.
In kernel regression, every computation is with respect to a query. The output
response at every query for a nonlinear model is obtained by minimizing the cost
function,

c (q) =
n∑

i=1

(
(f (xi,β (q))− yi)K

(
d (xi,xq)

H

))
, (2)

where K is the kernel function, H is the bandwidth matrix, and d is the distance
function. The best estimate ŷi(q) is obtained by minimizing the cost at every
query xq. Thus, the process of fitting a multivariate kernel regression involves, (i)
defining a distance function, (ii) selecting the kernel or the weighting function,
(iii) selecting bandwidth of the kernel function, and (iv) specifying the order
of the polynomial fit. There are different distance measures [2]. We use scalar
Euclidean distance measure between the given data vector and the query xq,

d(xi,xq) =
√∑

i

(xi − xq)2 =
√∑

i

(
(xi − xq)T (xi − xq)

)
. (3)
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The distance computed is weighted using a kernel function. There are different
kernel functions [2] [13]. The choice of kernel function becomes insignificant if
the data set is large [2]. We choose Gaussian kernel function,

wq = KH

(
d(xi,xq)

H

)
= exp

(
−

(
d(xi,xq)/H

))2
, (4)

where wq the weight computed at a particular query and KH is the Gaussian
kernel function. The kernel regression coefficients are obtained using,

β(q) = (Xq
T WqXq)−1Xq

T WqY , (5)

where,

Y = (yi, . . . , yn)T is the output vector,

Wq = diag(wq1, wq2, . . . , wqm) is the weight matrix,

Xq =

⎛⎜⎝1 xi − xq . . . (xi − xq)p

...
...

. . .
...

1 xn − xq . . . (xn − xq)p

⎞⎟⎠ ,

and p is the order of the polynomial fit. The output estimate (Ŷ ) is obtained
using the expression,

Ŷ (xq, p, H) = eT
j β(q) , (6)

where eT
j is the (p+1)×1 vector having 1 in the first entry and all other entries

equal to zero.

3 Parameter Selection

In any non-parametric regression procedure, an important choice to be made
is the amount of local averaging to be performed to obtain the regression esti-
mate. For kernel type estimator, this is controlled by a parameter known as the
bandwidth. The choice of the bandwidth controls whether the data is over fitted
or under fitted. Mean Square Error (MSE) is the most common approach to
measure the closeness of the predicted value to its actual value. MSE is a sum of
squared bias and the variance. The bias consideration favors the choice of small
value of the bandwidth which may lead to over fitting while the variance con-
sideration favors the large choice of the bandwidth which leads to under fitting.
Optimal selection of the bandwidth is essential in order to avoid either of the
extreme cases.

Ruppert et al. [11] proposed a data driven “Plug-in” bandwidth selector that
estimates the correct amount of smoothing. In this section, we will show the
bandwidth estimation for a univariate case. Thus equation (6) for a univariate
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case is Ŷ (xq, p,h), where xq is a query point and h is the single bandwidth value.
The h that is used for entire range of data is known as global bandwidth. We
in our implementation perform univariate estimation of h and apply the same
value to the bandwidth matrix, i.e., all the elements of bandwidth matrix H
have same h. An optimal h has to be found. Ruppert et al. [11] used conditional
weighted mean integrated squared error (MISE) of Ŷ (xq, p,h) given by,

MISE{Ŷ (xq, p,h)|x1, . . . , xk} =

E

[∫
{Ŷ (xq)− Y (xq)}2f(xq)dxq|x1, . . . , xk

]
, (7)

to obtain an asymptotically optimal bandwidth. They showed that MISE-optimal
bandwidth has the asymptotic approximation as,

hMISE ≈
[

(p + 1)(p!)2R(Khp) ∫S v(xq)dxq)
2μp+1(Khp)2 ∫S Y (p+1)(xq)2f(xq)dxqn

]1/(2p+3)

, (8)

where Khp is the (p + 1)th order kernel, ∫S v(xq)dxq is the variance, and
∫S Y (p+1)(xq)2f(xq)dxq is the regression functional whose kernel estimate is
shown in detail in [11]. The (8) can be written as,

hMISE ≈ C1

[
(p + 1)(p!)2 ∫S v(xq)dxq)
∫S Y (p+1)(xq)2f(xq)dxqn

]1/(2p+3)

, (9)

where C1 = [R(Khp)/μp+1(Khp)2] is equal to {1/2
√
π}1/5 in the case of Gaussian

kernel. The derivation of variance and kernel estimate of the regression can be
found in [11].

4 Experimental Results

In this section, we present the implementation details of the kernel regression
and other algorithms for STLF. The data set was provided by ComEd/Excelon
in the scope of research effort conveyed by the Consortium for the Intelligent
Management of the Electric Power Grid (CIMEG). The data set contains infor-
mation about hourly load, hourly temperature, and other weather details like
wind chill index and humdity. In our experiment, we use only the historic load
data of the year 2000 for future short-term load predictions. The experimenta-
tion involves two main steps, namely, training and testing. The load data is split
into three subsets: training data, validation data, and test data. The training
load data is used to obtain a trained model. The parameters of the trained model
are optimized and evaluated using the validation data. The optimized trained
model is used to predict load of previously unseen test data. The prediction
accuracy is measured using MAPE given by,

MAPE(%) =
1
N

|Lactual − Lpredicted|
Lactual

× 100 , (10)
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where N is the length of the test sample, Lactual is the actual load value, and
Lpredicted is the predicted load value. By using a fixed size window and ahead
prediction time, i.e., lead time, which is 24 hours and 1 hour to 48 hours respec-
tively in our case, the input design matrix X and corresponding output vector Y
are obtained. The dimensions of X and Y are 24× 400 and 1× 400 respectively
for the training data. Similarly, for testing its 24 × 150 and 1 × 150 for design
and output matrices respectively.

In the case of kernel regression, during the training process, a column vector is
selected as a query vector and its distance from other column vectors is computed
using the expression in (3). The distance computed is weighted using a Gaussian
kernel as in (4). The global bandwidth of the Gaussian kernel is selected using
DPI method discussed in Section 3. Using (5) and (6), the estimate of the load
for a single query vector is obtained. The same procedure is repeated by taking
remaining 399 column vectors as query vectors individually and computing the
estimate each time. The optimal global bandwidth (h) obtained using a univari-
ate DPI method for each lead time of 1 hour, 1 day, and 2 day is 0.01, 0.0085,
and 0.02 respectively. The global bandwidth values obtained during the training
process are used in the testing process. A zero order (p = 0) polynomial fit is
applied in our implementation. Thus, we obtain kernel regression forecasting for
every lead time.
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Fig. 2. Hourly load prediction using (a) OLS, (b) RR, (c) ANN, and (d) KR
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Table 1. MAPE(%) obtained by each of the algorithm

Algorithms / Lead
time

1 hour 1 day 2 day

OLS 2.8 8.5 10.9
RR 2.7 8.5 10.7

ANN 2.4 4.9 4.5
KR 2.6 4.7 4.1

The ANN used for comparison in this paper is MLP feedforward network using
backpropagation training algorithm and sigmoid activation function. The ANN of
architecture 24-24-1 is used for STLF on the same data set, where 24 corresponds
to the number of input nodes, 24 corresponds to the number of hidden nodes in a
single hidden layer, and 1 corresponds to the number of output node.

The ridge regression and ordinary least squares are also tested for STLF. The
ridge regression coefficients are obtained using,

Wridge =
(
XT X + λI

)−1
XT Y , (11)

where λ is the regularization parameter and I is an identity matrix. Equation
(11) is equivalent to OLS estimate, when λ = 0. The regularization parameter
is selected using a cross validation method. The performance of the each of the
algorithm in predicting 1 hour load ahead is shown in Figure 2. The MAPE
values obtained by each of the algorithm for predicting 1 hour, 1 day, and 2 day
ahead load is presented in Table 1. From Figure 2 and Table 1, we observe that
kernel regression not only matched the performance of ANN, but also betters it.
In Figure 2(d), we observe that at certain sections of the load profile, KR over-
estimates the load, which is primarily due to the choice of global bandwidth. If
bandwidth is selected locally, the issue of over estimation can be resolved.

Thus this locally weighted scheme with the ability to handle nonlinear infor-
mation shows the ability to perform STLF in a simple and accurate way.

5 Conclusions

In this paper, we reported an experimental study of a non-parametric kernel
regression method for STLF. The method is simple, local, and linear with the
ability to handle nonlinear information. A Gaussian kernel was used in our im-
plementation and bandwidth was selected using DPI method. Experiments show
that kernel regression method is able to perform more accurate STLF compared
to ANN, OLS, and RR on the given data set.
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C/Compañ́ıa 5, 37002, Salamanca, Spain
manuel@upsa.es, jaromanga.eui@upsa.es

Abstract. Electricity load forecasting has become increasingly impor-
tant for the industry. However, the accurate load prediction remains a
challenging task due to several issues such as the nonlinear character of
the time series or the seasonal patterns it exhibits.

Several non-linear techniques such as the SVM have been applied to
this problem. However, the properties of the load time series change
strongly with the seasons, holidays and other factors. Therefore global
models such as the SVM are not suitable to predict accurately the load
demand.

In this paper we propose a model that first splits the time series into
homogeneous regions using the Self Organizing Maps (SOM). Next, an
SVM is locally trained in each region.

The algorithm proposed has been applied to the prediction of the max-
imum daily electricity demand. The experimental results show that our
model outperforms several statistical and machine learning forecasting
techniques.

1 Introduction

Electricity load forecasting has become increasingly important in the last years
for the industry due to the deregulation of the electricity markets. In particular,
accurate short term load forecasting has a significant impact on the operational
efficiency of the power system [5,6]. However, the accurate load prediction re-
mains a difficult task due to several issues such as the nonlinear character of the
time series or the periodical and seasonal patterns it exhibits [5,1].

A large variety of techniques have been proposed to this aim such as statisti-
cal models [2], fuzzy systems [13] or artificial neural networks [5]. More recently,
several authors have applied Support Vector Machines (SVM) to time series fore-
casting [15,1] with remarkable results. SVM are powerful non-linear techniques
proposed under a soundness statistical theory that keep a high generalization
ability [17]. Unfortunately, the properties of the load time series change locally
with time due to seasonal effects, holidays and other factors [1,10]. For instance,
the load patterns differ significantly in winter and summer seasons or in weekends
and working days. Therefore global models such as the SVM are not suitable to
predict accurately the load demand.
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It has been suggested in the literature that splitting the time series into homo-
geneous regions helps to improve the forecasting accuracy [1,10,8]. Thus [10,8]
have applied the Self Organizing Maps (SOM) to identify days of similar load
profiles. However, human experts are needed to classify the SOM prototypes
which is a serious drawback. In [9,4] a SOM is employed to create Voronoi re-
gions for input and output spaces. Next a frequency table is built that relates
both spaces. However the results are not satisfactory when the sample size is not
large. Besides, the neighborhood relations induced by the SOM are not conside-
red. Finally, the method proposed by [3] takes advantage of the neighborhood
relations induced by the SOM to adjust a locally weighted linear regression.
However the SOM is organized without considering the target to be predicted.
Therefore relevant information is lost.

In this paper, we present an algorithm to split the time series into homoge-
neous regions using the SOM. The new model builds a partition of the input
space considering the target to be predicted, avoids the overfitting and takes
advantage of the neighborhood relations induced by the SOM. The method pro-
posed has been applied to the prediction of the maximum daily electricity de-
mand and compares favorably with wide spread statistical and machine learning
techniques.

This paper is organized as follows. Section 2 presents the segmentation algo-
rithm to split the time series into homogeneous regions. In section 3 the proposed
algorithm is applied to predict the maximum daily load demand and finally sec-
tion 4 gets conclusions and outlines future research trends.

2 Time Series Segmentation Using the SOM

As we have mentioned earlier, the patterns of electricity demand change locally
due to seasons, holidays and other factors. This suggests that the time series
should be segmented into homogeneous regions before any forecasting technique
is applied.

In this section we apply the SOM algorithm to the segmentation of the time
series. Section 2.1 introduces briefly the SOM batch algorithm. Next, section 2.2
presents the SOM algorithm proposed to segment the time series and discusses
the related work.

2.1 Self Organizing Maps

The SOM [7] is a nonlinear visualization technique for high dimensional data.
Input vectors are represented by neurons arranged according to a regular grid
(usually 1D-2D) in such a way that similar vectors in input space become spa-
tially close in the grid.

In the case of discrete data, the SOM can be obtained from the optimization
of the following energy function [12]:

E(W) =
∑

r

∑
xμ∈Vr

∑
s

hrsD(xμ,ws) , (1)
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where D denotes the square Euclidean distance and Vr is the Voronoi region
corresponding to prototype wr. hrs is a neighborhood function (for instance a
Gaussian kernel) that transforms nonlinearly the neuron distances (see [7] for
other possible choices). The SOM energy function (1) is minimized when objects
that are close together in input space (according to the Euclidean distance) are
mapped to neighboring neurons in the grid.

The SOM energy function may be optimized by an iterative algorithm made
up of two steps [12].

– First a quantization algorithm is run that represents each pattern by the
nearest neighbor prototype.

– Next, the prototypes are organized along the grid of neurons by minimizing
the error function (1). The optimization problem can be solved explicitly
resulting in a simple iterative adaptation rule for each prototype:

ws =

∑M
r=1

∑
xμ∈Vr

hrsxμ∑M
r=1

∑
xμ∈Vr

hrs

(2)

where M is the number of neurons and hrs is for instance a Gaussian kernel
of width σ(t). The kernel width is adapted in each iteration using for instance
the rule proposed by [11] σ(t) = σi(σf/σi)t/Niter , where σi ≈M/2 is usually
considered in the literature [7]. Finally, σf is a parameter that determines
the degree of smoothing of the principal curve generated by SOM [11].

2.2 A SOM Algorithm to Segment the Load Time Series

In this section we describe the algorithm proposed to segment the load time
series. To this aim, first a daily load profile is defined considering the load of
the previous days and the load to be predicted. Next a SOM batch algorithm
(with circular topology) organizes the load profiles along a grid of neurons using
a metric that weighs more heavily the more relevant variables. Next, the SOM
prototypes are clustered together considering the neighborhood relations induced
by the network. Finally, a linear SVM is trained locally in each cluster.

Let X(t) = [l(t − p + 1), . . . , l(t),u(t − p + 1), . . . ,u(t)] be the input vector
for time t that groups together the load and exogenous variables for the pth
previous observations. Most common exogenous variables are the temperature
and calendar (day of the week). Let x(t+1) be the target load. The segmentation
algorithm we propose proceeds as follows:

First, the input patterns to train the SOM are defined as:

y(t) = (X(t), x(t + 1)) , (3)

where x(t + 1) is known only for the training data and allow us to organize the
SOM taking into account the relation between the input patterns X(t) and the
predictions x(t + 1) [18].

Next the input patterns are organized by a modification of the SOM batch
algorithm introduced in section 2.1. A circular topology for the network has been
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chosen to take into account the periodicity of the load demand. Besides, the
proximities of the load profiles are evaluated by a weighted Euclidean distance
defined as:

d(xi,xj) =
p∑

k=1

ωk(xik − xjk)2 , (4)

where ωk is a coefficient that should give more weight to those variables con-
sidered more relevant in the input patterns. Obviously, the variables that are
strongly correlated with the prediction should be weighted more heavily. There-
fore ωk is defined as the correlation coefficient between the kth variable and the
prediction.

wk =
∑N−1

t=k (xt+1 − x̄)(xt−k+1 − x̄)∑N−1
t=k (xt+1 − x̄)2

(5)

where x̄ denotes the average of the load time series. These coefficients will give
rise to local neighborhoods that improve particularly the performance of linear
models.

Substituting the distance (4) in the energy function (1) we can easily derive
an updating rule for each prototype coordinate considering the new metric:

wsk =

∑M
r=1

∑
xμ∈Vr

ωkhrsxμk∑M
r=1

∑
xμ∈Vr

ωkhrs

(6)

Once the SOM is organized, the prototypes are clustered into a certain number
of groups. Several algorithms have been proposed in the literature (see for ins-
tance [7,20,19]) that cluster the data using the SOM. In this paper we follow the
approach of [19]. The SOM prototypes are grouped considering an agglomerative
hierarchical clustering algorithm. Merges are carried out in the tree considering
the ratio of the between clusters distance and the within-cluster distance. The
distance between clusters is defined as the average distance among the objects
belonging to both clusters and the withing-cluster distance as the average dis-
tance for the objects assigned to the same cluster.

However, the method proposed by [19] does not consider the relations in-
duced by the grid of neurons and therefore, relevant information about the local
topology of the data is lost. To avoid this problem, the Euclidean distance be-
tween the prototypes in the hierarchical algorithm is substituted by a geodesic
distance. This measure evaluate the distance between prototypes as the sum of
the Euclidean distances between adjacent prototypes following the shortest path
along the grid of neurons. The idea is similar to the one proposed in [16] but
substituting the adjacency graph by the SOM.

Once the prototypes have been clustered, a linear SVM is trained locally in
each cluster. The linear character of the SVM will help to avoid overfitting the
data. The forecasting for new test patterns can be done in two steps. First the
new data is assigned to the cluster corresponding to the nearest prototype. Next
the SVM associated to this cluster is considered to perform the prediction.

The model presented above is related to [18] but there are several differences
that are worth to mention.
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First, our model organizes the SOM considering a weighted Euclidean measure
which will help to improve the prediction of linear models inside each cluster.
Second, the model presented in [18] does not cluster the SOM and adjusts one
model inside each Voronoi region. Therefore the model is prone to overfitting
when the sample size is not large. Our method clusters the data thus preventing
the overfitting when the sample size is not large. Moreover, the high generaliza-
tion of the linear SVM will help to avoid this problem. Finally, notice that the
clustering of the SOM has been done considering a geodesic distance which will
allow to discover the local non-linear structure of the data.

3 Experimental Results

In this section we have applied the algorithm proposed to the prediction of the
maximum daily electricity demand.

The experimental data were provided by the Eastern Slovakian Electricity
Corporation for the EUNITE competition [14]. The data set is available from
the Internet (neuron.tuke.sk/competition/index.php).

The company provided the maximum daily load demand for the years 1997
and 1998. The average daily temperature is provided as well for the whole period.
The problem is to predict the maximum daily demand for the test set (January
1999).

The evaluation of the forecasting techniques should be done carefully in order
to guaranty the objectivity of the results. Notice that the industry complains
because the results about the model performance are often meaningless. In this
paper we have considered three objective measures that are well accepted by the
industry [5].

– MAPE (Mean Absolute Percent Error): It is somewhat of a standard in the
electricity supply industry and is defined as:

MAPE = 100

∑n
i=1

∣∣∣ l(i)−l̂(i)
l(i)

∣∣∣
n

(7)

where l(i) denotes the load and l̂(i) is the predicted load for t = i. n is the
sample size.

– RMSE (Root Mean Square Error): It is a quadratic error function that gives
more weight to large errors. This measure complements the previous one
because large error may have disastrous consequences for an utility. It can
be written as:

RMSE =

√√√√∑n
i=1

(
l(i)−l̂(i)

l(i)

)2

n
(8)

– ME (Maximum Error): It evaluates the maximum error. As we have men-
tioned earlier a single large error could be disastrous for the industry. It is
defined as:

ME = max
i
|l(i)− l̂(i)|, i = 1, . . . , n (9)
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Table 1. Prediction errors for the proposed method (SOM+SVM). Three widely used
techniques such as Heuristic, Holt-Winters and SVM have been considered as reference.

Method MAPE ME RMSE
Heuristic 2,78% 47 25.08
Holt Winters 1.84 % 34.02 15.91
Linear SVM 1.69% 33.98 14.95
SVM (RBF kernel) 1.56% 37.24 15.15
SOM + SVM 1.46% 32.36 13.66

Parameters: ε = 0.2; linear SVM , C = 1; SVM (RBF), C = 0.5, γ = 0.1; Holt-Winters
p = 7; SOM + SVM k = 7, ε = 0.4, C = 0.5.

Table (1) compares the performance of the proposed algorithm with three well
known techniques. The first row is a Heuristic method that predicts the maxi-
mum daily electricity demand by the observed load seven days ago. This simple
heuristic is frequently considered by the industry. Row 2 corresponds to the
Holt-Winters method that has been widely used in the time series literature [2].
Rows 3 and 4 show the performance of the SVM with linear and non-linear RBF
kernels. Finally row 5 yields the results for the proposed algorithm. All the pa-
rameters of the forecasting techniques have been determined by crossvalidation.

Input patterns to the SOM are defined as:

xt = (ut−7, . . . ,ut, lt−6, . . . , lt, lt+1) (10)

where (ut−7, . . . ,ut) are eight binary variables that codify the day of the week
including holidays. lt denotes the maximum load for day t, lt+1 is the target load
and obviously is only known for the training data. Notice that the temperature
has been discarded because the correlation with the output depends strongly
with time and therefore the predictions are worse considering the temperature.
This has been observed by other authors when working on the same dataset [1].
The window size of 7 has been chosen empirically.

From the analysis of table (1) we can draw the following conclusions:

– The algorithm proposed improves significantly the heuristic method em-
ployed by some electric companies according to all the objective functions
considered.

– Our algorithm outperforms a representative of the statistical methods such as
the Holt-Winters. Particularly the the MAPE error is significantly reduced.

– The segmentation algorithm proposed allow us to improve the performance
of both, linear and non-linear Support Vector Machines (SVM). We report
that our algorithm reduces the MAPE error of the kernel SVM and improves
significantly the ME error. This suggests that our model is more robust to
overfitting than the SVM with RBF kernel.

Finally figure (1) illustrates the performance of the proposed algorithm from
a qualitative point of view. The observed load has been drawn in continuous
trace. The proposed algorithm seems to perform well both for working days and
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Fig. 1. Electricity load prediction for January 1999

for weekends. Moreover we remark that the prediction error for holidays such
as the 6 January is very small. The error is larger just for 1 and 2 January
because the load profile of previous days include several holidays which distorts
the predictions.

4 Conclusions and Future Research Trends

In this paper we have proposed a new method to segment the load time series
into homogeneous regions using the Self Organizing Maps. The new model has
been applied to the forecasting of the maximum daily electricity demand. The
proposed technique has been compared with several well known alternatives
and evaluated exhaustively through several objective functions accepted by the
industry.

The empirical results suggest that our model outperforms widely used sta-
tistical and machine learning forecasting techniques. Particularly, the proposed
method is able to reduce the error of non-linear methods keeping a high gener-
alization ability.

Future research will focus on the prediction of outliers that involve for instance
large holidays.
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37500–903, Itajubá, MG, Brazil
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Abstract. A novel hierarchical hybrid neural model to the problem of
long-term electrical load forecasting is proposed in this paper. The neu-
ral model is made up of two self-organizing map nets — one on top of
the other —, and a single-layer perceptron. It has application into do-
mains which require time series analysis. The model is compared to a
multilayer perceptron. Both the hierarchical and the multilayer percep-
tron models are endowed with time windows in their input layers. They
are trained and assessed on load data extracted from a North-American
electric utility. The models are required to predict once every week the
electric peak-load and mean-load during the next two years. The results
are presented and evaluated in the paper.

1 Introduction

Time series analysis and prediction has found application in many areas of knowl-
edge, such as economy, meteorology, and engineering. The problem involves pre-
diction of future points of the series. It is related with the horizon of predictions
— the larger the time horizons, the less accurate the predictions [1].

Many linear and non-linear statistical models have been tried on the problem
of time series prediction. Research on statistical models, however, has considered
their low accuracy and parameters adjustment to be the points of major concern.

Recently, non-linear neural models have also been tried on such problem [2].
Neural models should include some kind of mechanism to analyse, and possi-
bly, memorize the context information of the series in order to produce reliable
predictions.

Neural models which include such mechanisms to time series analysis and
prediction are often referred to as spatiotemporal neural models. Time windows
[3] and time integrators [4] are by far the most employed mechanisms. Surveys
of spatiotemporal neural models are available in literature [5,6,7].

In the electric engineering domain particularly, neural models have been suc-
cessfully applied to predicting future points of historical load series in short-term
horizons [8,9,10,11,12]. Many electric utilities are now employing short-term load
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forecasting tools based on neural models [13]. Hippert et al. [14] provide a compre-
hensive review of the application of neural models to short-term load forecasting.
The authors examine a collection of papers published between 1991 and 1999.

Long-term forecasting of electric load is nevertheless a different, a much more
difficult, and challenging problem. There are very few works in literature which
approach it through the use of neural models [15]. The problem is also significant,
particularly in Brazil, for Brazilian electric utilities have to predict the load de-
mand for horizons varying from two to five years, according to the new regulations.

This paper introduces a new hierarchical hybrid neural model (HHNM) to
approach the problem of long-term load forecasting. The model is an extension
of the Kohonen’s original self-organizing map [16].

HHNM is a hierarchical model. The hierarchical topology gives to the model
the power to process efficiently the context information embedded in the input
time series. HHNM holds a very good memory for past events, enabling it to
produce better forecasts.

HHNM is compared with the multilayer perceptron (MLP), which has been
extensively applied to short-term load forecasting [14], as well as to general time
series forecasting [17]. Both HHNM and MLP include time windows in their
input layers as memories for analysing and predicting the historical load series.

The paper is divided as follows. The second section presents the data represen-
tation. HHNM is introduced in the third section. Training of HHNM and MLP is
detailed in the fourth and fifth sections respectively. The sixth section describes
the experiments. The seventh section discusses the results on load forecasting.
The last section presents the main conclusions of the paper, and indicates some
directions for future work.

2 Data Representation

The input data consists of window sequences of load data extracted from a
North-American electric utility [18]. Several input files including such data are
set. The files contain either weekly peak-loads or weekly mean-loads.

Input windows of four, six, and eight neural units are used in the represen-
tation. Two of these units represent a trigonometric coding for the week to be
forecast, i.e., sin(2π·week/52)/4 and cos(2π·week/52)/4. The other ones repre-
sent either the peak- or mean-load at the current and previous weeks. Each unit
receives real values.

The electric peak-load and mean-load range in the intervals [1528, 4635] and
[1265.917, 3974.333] MWatts, respectively. The load data is pre-processed using
ordinary normalization (minimum and maximum values in the [-0.5,0.5] range).
There is no particular treatment for holidays.

3 The Hierarchical Hybrid Neural Model

The hierarchical hybrid neural model (HHNM) is shown in Figure 1. It is made
up of two distinct neural models — a hierarchical self-organizing model (HSOM),
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and a single-layer perceptron (SLP). The HSOM, in its turn, is made up of two
self-organizing maps (SOMs).

The input to the model is a sequence in time of m-dimensional vectors, S1 =
X(1), X(2), . . . , X(t), . . . , X(z), where the components of each vector are real
values. The sequence is presented to the input layer of the bottom SOM, one
vector at a time. The input layer has a window of m units, one unit for each
component of the input vector X(t).

For each input vector X(t), the winning unit i∗(t) in the map is the unit which
has the smallest distance Ψ(i, t). For each output unit i, Ψ(i, t) is given by the
Euclidean distance between the input vector X(t) and the unit’s weight vector
Wi.

Each output unit i in the neighbourhood N∗(t) of the winning unit i∗(t) has
its weight Wi updated by

Wi(t + 1) = Wi(t) + αΥ (i)[X(t) −Wi(t)] (1)

where α ∈ (0, 1) is the learning rate. Υ (i) is the neighbourhood interaction func-
tion [19], a Gaussian type function, and is given by

Υ (i) = κ1 + κ2e
−κ3[Φ(i,i∗(t))]2

2σ2 (2)

where κ1, κ2, and κ3 are constants, σ is the radius of the neighbourhood N∗(t),
and Φ(i, i∗(t)) is the distance in the map between the unit i and the winning
unit i∗(t). The distance Φ(i′, i′′) between any two units i′ and i′′ in the map is
calculated according to the maximum norm,

Φ(i′, i′′) = max {|l′ − l′′| , |c′ − c′′|} (3)
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where (l′, c′) and (l′′, c′′) are the coordinates of the units i′ and i′′ respectively
in the map.

The neighbourhood interaction function has proved to be useful, indeed. It
provokes two main effects. First, it speeds up the training of the network by
reducing the number of epochs required. Second, it improves the quality of the
map by enforcing its topological order [20]. In rough terms, the neighbourhood
interaction function avoids the existence of local winning units. The values of
the distances Ψ(i, t) increase orderly as the values of the distances Φ(i, i∗(t))
increase.

The input to the top SOM is determined by the distances Φ(i, i∗(t)) of the n
units in the map of the bottom SOM. The input is thus a sequence in time of
n-dimensional vectors, S2 = Λ(Φ(i, i∗(1))), Λ(Φ(i, i∗(2))), . . . , Λ(Φ(i, i∗(t))), . . . ,
Λ(Φ(i, i∗(z))), where Λ is a n-dimensional transfer function on a n-dimensional
space domain. Λ is defined as

Λ(Φ(i, i∗(t))) =
{

1− κΦ(i, i∗(t)) if i ∈ N∗(t)
0 otherwise (4)

where κ is a constant, and N∗(t) is a neighbourhood of the winning unit.
The sequence S2 is then presented to the input layer of the top SOM, one

vector at a time. The input layer has a window of n units, one unit for each
component of the input vector Λ(Φ(i, i∗(t))). The dynamics of the top SOM is
identical to that of the bottom SOM.

The input to the SLP is also determined by the distances Φ(i, i∗(t)) of the p
units in the map of the top SOM. The input is thus a sequence in time of p-
dimensional vectors, S3 = Λ(Φ(i, i∗(1))), Λ(Φ(i, i∗(2))), . . . , Λ(Φ(i, i∗(t))), . . . ,
Λ(Φ(i, i∗(z))), where Λ is a p-dimensional transfer function on a p-dimensional
space domain, and is also given by equation 4.

The sequence S3 is then presented to the input layer of the SLP, one vector
at a time. The input layer has a window of p units, one unit for each component
of the input vector Λ(Φ(i, i∗(t))).

The SLP is employed to map the output produced by the top SOM. It is
trained with the usual delta rule [21,22].

4 HHNM Training

The input to HHNM comes through the input layer of the bottom SOM. The
input layer of the bottom SOM holds a window of input units. Window sizes of
four, six, and eight input units are tested.

The training of the two SOMs takes place in two phases — coarse-mapping
and fine-tuning. In the coarse-mapping phase, the learning rate and the radius
of the neighbourhood are reduced linearly whereas in the fine-tuning phase, they
are kept constant. Several architectures are tested. The bottom SOM is trained
with map sizes of 9×9 in 420 epochs, 12×12 in 560 epochs, and 13×13 in 600
epochs. The top SOM is trained with map sizes of 15×15 in 700 epochs, 19×19
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in 850 epochs, and 21×21 in 950 epochs. The initial weights are given randomly
to both SOMs.

The SLP holds a single unit in its output layer. The output unit has linear
activation function. Training is performed through cross validation. Therefore, it
is halted whenever the error increases on the testing set. Training is carried out
on an epoch-by-epoch basis. Learning rate is reduced by 50% when total error
increases, and increased by 2% when error decreases. Momentum is disabled
until the end of training if total error increases. The initial weights are given
randomly.

5 MLP Training

The MLP holds a window of input units and one output unit. Window sizes of
four, six, and eight input units are tested. Hidden units have sigmoid activa-
tion functions, whereas the output unit has linear activation function. Several
architectures including from one up to twenty-five hidden units are tested.

Training is performed through cross validation on the testing set. It is carried
out on an epoch-by-epoch basis. Learning rate is reduced by 50% when total error
increases, and increased by 2% when error decreases. Momentum is disabled until
the end of training if total error increases. The initial weights are given randomly.

6 Experiments

Four experiments are carried out. In the first experiment, the training set con-
tains 104 weekly peak-loads from 1985 to 1986. The testing set contains 52 weekly
peak-loads from 1987. The models are required to foresee the weekly peak-loads
from 1988 to 1989. The second experiment is quite similar to the first. In it, the
training set includes 208 weekly peak-loads from 1985 to 1986, and from 1988 to
1989. The testing set remains the same, and forecasting spans the time horizon
from 1990 to 1991.

In the third experiment, the training set contains 104 weekly mean-loads from
1985 to 1986. The testing set contains 52 weekly mean-loads from 1987. The
models are required to foresee the weekly mean-loads from 1988 to 1989. The
fourth experiment is quite similar to the third. In it, the training set includes
208 weekly mean-loads from 1985 to 1986, and from 1988 to 1989. The testing
set remains the same, and forecasting spans the time horizon from 1990 to 1991.

The forecasts are performed on two models — HHNM and MLP. A comparison
of such models is carried out to verify their performance in each experiment.

7 Results

Figures 2 and 3, and Table 1 present the best results achieved by the models on
load forecasting. Figures 2 and 3 display the actual load and forecast loads in the
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Fig. 3. Third experiment

first and third experiments. Table 1 shows the forecasting errors — mean, max-
imum, and minimum absolute error, mean absolute percentual error (MAPE),
mean square error (MSE), and standard deviation of error — of the models in
the four experiments.

The results from HHNM are very promising. HHNM performs much better
than MLP both on peak-load and mean-load forecasts.

Figures 2 and 3 show that the forecast load curves produced by HHNM follow
the actual ones more accurately than those produced by MLP. Table 1 shows
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Table 1. Forecasting errors — mean, maximum, and minimum absolute error, mean
absolute percentual error (MAPE), mean square error (MSE), and standard deviation
of error — of the models in the four experiments

Models Errors
Experiments

1 2 3 4

HHNM

Mean 0.01 0.03 0.02 0.02
Max 0.12 0.20 0.12 0.18
Min 0.00 0.00 0.00 0.00

MAPE 1.37 2.93 2.68 2.59
MSE 0.00 0.00 0.00 0.00

St.Dev. 0.02 0.03 0.03 0.03

MLP

Mean 0.04 0.08 0.10 0.06
Max 0.28 0.41 0.25 0.46
Min 0.00 0.00 0.00 0.00

MAPE 4.05 8.49 13.39 6.87
MSE 0.00 0.01 0.01 0.01

St.Dev. 0.04 0.06 0.06 0.07

that the forecasting error values obtained by HHNM are much lower than those
obtained by MLP.

The superior performance displayed by HHNM seems to be justified by its hi-
erarchical topology. By encoding and memorizing efficiently context information,
HHNM is capable of producing better predictions.

8 Conclusion

The paper presents a novel artificial neural model to the problem of long-term
load forecasting. The model has a topology made up of two self-organizing map
networks — one on top of the other —, and a single-layer perceptron. It encodes
and manipulates context information effectively.

The novel hierarchical model is compared to a multilayer perceptron. Both
models are endowed with time windows in their input layers. They are trained
and assessed on load data extracted from a North-American electric utility. No
pre-processing is made on data apart from ordinary normalization.

The experiments show that the performance of the hierarchical model both
on long-term peak-load and mean-load forecasts is much better than that of the
multilayer perceptron. The superior performance displayed by the model seems
to be justified by its hierarchical topology.

The results achieved by the hierarchical model still have space for improve-
ments. Fine adjustments on its parameters — map sizes, radius of the Gaussian,
and radius of the neighbourhood — as well as the usage of pre-processing tech-
niques on load data will certainly lead to improvements.
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Finally, it is worth mentioning that multilayer perceptrons have been widely
employed in short-term load forecasting so far. The results achieved may thus
suggest that the hierarchical model may offer a better alternative to approach
the problem of load forecast in general.
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Abstract. In this paper, an advanced system based on artificial intelligence and 
fuzzy logic techniques is developed to predict the wind power output of a wind 
farm. A fuzzy logic model is applied first to check the reliability of the 
numerical weather predictions (NWPs) and to split them in two sub-sets, of 
good and bad quality NWPs, respectively. Two Radial Basis Function (RBF) 
neural networks, one for each sub-set are trained next to estimate the wind 
power. Results from a real wind farm are presented and the added value of the 
proposed method is demonstrated by comparison with alternative methods. 

1   Introduction 

Wind energy generation has more than tripled all over the world the last five years. In 
1999 the global installed capacity was 13600 MW and at the end of 2005 it was 
expanding to 59300 MW. The highest amounts of that capacity are concentrated in 
European countries. In 2004 the installed capacity in Germany was 16,629 MW, in 
Spain 8,263 MW and in Denmark 3,117 MW [1]. European countries account for 
more than 6000 MW new wind power capacity added in the year 2005, which 
represents an annual growth rate of 20%. This has come as a result of the European 
Commission’s White Paper in 1997, setting the target to double the share of 
renewable energy in Europe from 6% to 12% by 2010. This meant that the wind 
power installed capacity would reach 40,000 MW until the year 2010, which could 
produce 80 TWh of electricity [1]. However, this target was already met in 2005 
raising Commission’s estimates for installed wind power 75,000 MW. Also, EWEA 
published an advanced scenario (Wind Force 12) that the global wind power 
penetration will amount the 12% of the overall electricity demand until the year 2030. 
In U.S. the current installed capacity is 9,500 MW, of which about 2,500 MW were 
installed in 2005 alone. AWEA expects that wind energy will grow to 6% of the US 
electricity supply by 2020 [2]. The Canadian Wind Energy Association targets to 
increase the installed capacity from the current 1000 MW to 10000 MW until the year 
2010. In addition, the global energy demand is growing fast. The International Energy 
Agency (IEA) estimates that by 2030 some 4,800 GW of new power generation 
capacity will be needed. Wind energy can substantially help meet this demand [3]. 
                                                           
* Senior member, IEEE. 
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The high growth of intermittent wind power penetration in electricity systems 
poses a number of challenges to the grid operators, who are called to manage this 
energy as efficiently as possible. Due to the dependence of wind power on the 
volatility of wind, extent fluctuations of wind farm output may increase costs for the 
electricity system and for the consumers and pose potential risks to the reliability of 
electricity supply. A priority of a grid operator is to anticipate the changes in wind 
power production, in order to schedule the spinning reserve and to manage the grid 
operations. Besides like Transmission and Distribution System Operators, different 
end-users, like Independent Power Producers and Energy Traders need wind power 
forecasting, in order to participate effectively in the Energy Markets. Persistence-type 
methods are frequently used; however such methods cannot provide satisfactory wind 
predictions.  

A number of research efforts to provide an accurate wind power forecasting tool 
have been made. Depending on their input, these efforts are classified in physical or 
statistical approaches or a combination of both. The physical models use physical 
considerations, as meteorological (numerical weather predictions) and topological 
(orography, roughness, obstacles) information, and technical data from the wind 
turbines (hub height, power curve, thrust coefficient). Their purpose is to find the best 
possible estimate of the local wind speed and then use model output statistics (MOS) 
to reduce the remaining error. Statistical models use explanatory variables and on-line 
measurements and usually employ recursive techniques, like Recursive Least Squares 
or Artificial Neural Networks. Furthermore, Physical models must and Statistical 
models may use Numerical Weather Prediction (NWP) models. Models not using 
NWP might have good accuracy for the first 3-4 hours, but generally produce very 
inaccurate results for longer prediction horizons. Often, the optimal model is a 
combination of both, using physical considerations to capture the airflow in the region 
of the Wind Turbines and using advanced statistical modeling to supplement the 
information given by the physical models. 

2   Reliability of Weather Predictions 

The wind power production of a wind farm is straightforward dependent on the speed 
and direction of local wind. Therefore, in order to predict accurately the wind power 
production of a wind farm, any available information should be taken account. The 
main data used by the existing prediction tools are the numerical weather predictions 
(NWP). Usually NWPs consist of wind speed, wind direction and temperature. They 
come from meteorological models simulating atmospheric processes in order to 
estimate the atmospheric conditions in several levels. This simulation is accomplished 
firstly with the collection of measurements from synoptic meteorological stations and 
data from satellites. After erroneous data are removed, the information from the 
stations has to be processed. The performance of the meteorological models is 
dependent on this data assimilation and the quality of the measurements. 

In order to estimate the future atmospheric processes and to predict accurately the 
wind speed in the area of a wind farm, the model represents the selected area as a 
grid. For each point of the grid the atmospheric state variables are calculated. The 
minimum spatial distance of these grid points is defined in order to obtain a stable 
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solution from the algorithm used. Reduction of this spatial resolution is a major 
challenge for the developed meteo models. High-resolution meteo models provide 
more accurate forecasts, however these models need long execution times to provide 
results and they need high computational capacity. For this reason the numerical 
weather predictions, which come from meteorological models, like HIRLAM, are 
updated only a limited number of times per day by meteorological services.  

Concluding, the low density of the meteo stations, the low quality of their 
measurements, the incapability to reduce spatial resolution and the long execution 
times influence the performance of the meteorological models, especially in short-
term predictions, e.g. up to 6 hours. 

For this reason, a fuzzy logic based model is proposed in this paper that identifies 
NWPs with low accuracy. The fuzzy logic based model accepts as input the wind 
speed, the number of steps ahead (1-48 hours) and the ratio of the cumulative 
probability density functions of the last (known or predicted) value of wind power and 
of the wind speed value coming from NWPs, as expressed in (1): 

windspeed

windpower
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Pr   is the cumulative probability density function 
x    is the sample for detection,  

    is the standard deviation of curve, 
    is the mean value of curve. 

 
Each input (linguistic variable) has three fuzzy sets (small, medium, high). The 

fuzzy sets are defined by trial and error and the fuzzy model can be expressed by 27 
rules of the type: 

       “IF  xi  is Ai  THEN  y is Bi” 
 

where: 

xi   represents the input variable of the system 
A, B   are the fuzzy sets 
y       is the output of the model with a value between 0 and 1. 
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The ratio of the two probability functions operates as normalized correlation 
between the power measurements and the forecasted wind speed. The ratio fuzzy 
numbers are compared with the fuzzy numbers of the wind speed, in order to detect 
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‘poor’ forecasts. For example if the ratio is high and the value of wind speed is low, it 
is concluded that this power could not be produced by this wind speed. In the same 
way, the fuzzy model detects cases when the wind speed is high and the wind power 
low. Normally, the wind speed changes faster than the wind power and based on this 
fact, the wind power of the current time is compared with the wind speed of the next 
hour.  

The last linguistic variable of the fuzzy model is the number of steps ahead and it is 
used to make more resilient the decision of the model for long-term horizons. For the 
first hour ahead, the fuzzy model, receives as input the last available wind power 
value and for the rest hours ahead it uses the previous wind power predictions. Due to 
the increase of the prediction uncertainty in longer term horizons, the impact of the 
fuzzy rules that determine the unreliable NWPs, at the fuzzy aggregation process is 
reduced for forecasts above 16 hours by 20% and above  28 hours by 40%. 

The results of the fuzzy model for the first hour ahead are shown in figure 1. The 
system divides the data set into one set with good quality NWPs (Fuzzy logic model 
output above 0,5) and to another set with poor quality NWPs (Fuzzy logic model 
output below 0,5). 

 

Fig. 1. Fuzzy model output 

3   Wind Power Prediction Model 

Radial basis (RBf) neural networks have been applied in the power system area for 
load forecasting [5, 6, 7] and other applications. In this paper RBfs are applied for 
wind power prediction. RBf networks are capable to give an acceptable solution for 
such a highly nonlinear system as the prediction of wind power owning to their 
structure that is characterized by a combination of non-supervised (in the hidden 
layer) and supervised (in the output layer) training. In the hidden layer a classification 
of the training set’s samples to universes is accomplished and the kernels of these 
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universes (the most remote samples) consist of the weight matrix of the hidden layer. 
The second layer is linear and is trained thanks to the real power values (target 
vector). The characteristic function of an RBf network is Gaussian of the following 
form: 

               
2

)( xexf −=  (4) 

For the application of the wind power forecasting the neural networks are capable 
to capture all these parameters affecting the wind power estimation, like cases that the 
weather predictions are inaccurate. For this purpose two radial basis networks are 
trained, one only with the cases that the forecasted wind speed is considered 
unreliable by the fuzzy model of Section II and one with the cases the forecasted wind 
speed in considered reliable. Depending on the quality of the NWPs detected by the 
fuzzy model, the respective RBf network provides wind power prediction. Both RBf 
networks have the same structure consisting of 13 neurons in the hidden layer and 
both receive as input the same variables. Their only difference is that they are trained 
with different learning sets. 

The RBf networks receive as input the most recent value of wind power, data from 
numerical weather predictions, such as wind speed and wind direction, and the hour 
that we make the prediction.  Two values of wind speed provided by NWPs are used, 
which correspond to the hour wind power is predicted and to the next hour. The 
second wind speed value is applied to determine the tendency of wind to increase or 
to decrease. The input of each network has the following form: 

 

(t)= [P(t),WS(t+1),WS(t+2),WD(t+1),H(t+1)] 
 

Where: 

P(t) is the wind power production in MW for short-term horizons and in GW for 
long-term, 

 

WS is the wind speed from NWPs, 
 

WD  is the wind direction from NWPs in “rad” and 
 

H is the hour that prediction is made. 
 

The architecture of the implemented RBf networks is shown in figure 2. The 
networks have two layers. The neurons of the first hidden layer have been produced 
by the classification of the training set. For each testing sample, that is evaluated, its 
Euclidean distance from the weighted input matrix is calculated and the result passes 
through the Gaussian function ƒ (4). The output of the hidden layer has the following 
form: 
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IW is the weighted matrix and b the bias; I is the input vector; n is the size of the 
input vector and i is the number of neurons of the hidden layer. So, the output of the 
hidden layer is dependent on the kernels (neurons) of the first layer, which are closest 
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Fig. 2. RBf architecture 

to the testing sample. The final result of the network is obtained from the superposition 
of the output of the hidden layer to the linear equation in the second layer.  

An RBf characteristic that makes this neural network suitable for a wind power 
forecasting application is that its performance can be improved by normalization of 
the input variables, as follows:  

P(t+1)=ƒ(P(t),WS(t+1)*20,WS(t+2)*10,WD(t+1),H(t+1)/480)      (6) 

P(t) is the wind power production in MW  
WS is the forecasted wind speed in m/sec, 
WD is the forecasted wind direction in “rad” and 
H is the hour for which prediction is made. 

4   Results 

Wind power prediction of an actual wind farm in Ireland is presented. The farm 
contains 25 wind turbines and is located in the northwestern part of Ireland (Donegal 
County) 370 m above the sea level in complex terrain. The power production is 
measured in the period from 1st August 2002 to 31st March 2003. The time series 
cover a period of 5830 hours from which 4200 were used for training and 1630 for 
testing. Irish HIRLAM forecasts with spatial resolution 0.2o longitude/latitude have 
been used at level 30. They are updated four times a day, every six hours and cover a 
48 hours horizon [8]. The developed forecasting method is able to operate with 
numerical weather predictions from different systems.  

Due to the complexity of the terrain where the wind farm is located, the wind speed 
estimation is very difficult and the respective numerical weather predictions are in 
many cases very inaccurate [9]. However the proposed system performs acceptably, 
as shown next. 

In the following figures the system performance error normalized by the installed 
capacity of wind farm Pnom is shown. The results are compared with the results 
obtained from the Persistence method. Persistence is a simple method, which  
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considers that the wind power production remains the same in all look-ahead times, as 
in the present time and is used as benchmark [10,11]. Figure 3 shows the normalized 
mean absolute error of the model and of persistence as a function of look-ahead times, 
expressed as: 
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Fig. 3. The Normalized Mean Absolute Error of the proposed model and of Persistence for 
various look ahead times 

Figure 4 shows the normalized root mean square error of the model and of persistence 
as a function of look-ahead times. 
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It can be seen in these figures that the proposed model performs better than 
persistence except of the first time step. This is very important, because ‘physical’ 
models start to have positive improvement with respect to persistence after 3-5 hours 
ahead. Regarding the NMAE criterion, the proposed model provides results with 
errors ranging between 5% and 14% for all look ahead times, while the persistence 
model provides results with errors in the range between 5% and 32%. Also the 
NRMSE criterion is always less than 20%, while the results obtained by Persistence 
reach 40%. 

The following formula gives the Improvement or Skill of a model for look-ahead 
time k and the table 1 contains the skill for various look ahead times: 
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Fig. 4. The Normalized Root Mean Square Error of the proposed model and of Persistence for 
various look ahead times 

Table 1. Improvement of proposed system with respect to Persistence for both criterions MAE 
and RMSE for various look-ahead times 

Improvement 
Time horizon For NMAE 

criterion 
For RMSE 
criterion 

1 hour -1.48% 5.64% 
4 hour 21.6% 27.25% 
8 hour 38.16% 40.34% 
18 hour 52.1% 50.64% 
32 hour 57.21% 54.93% 
41 hour 55.25% 52.09% 

 
Fig. 5 shows the improvement of the proposed model with respect to Persistence 

for each look-ahead time, which rises up to 57% for 32 hours look-ahead time for 
NMAE criterion. Also for both criteria the improvement of the model outreaches 20% 
for the forecasts after four hours ahead. The model’s performance for the Irish study 
case is considered very satisfactory, if we take into account the complexity of the 
terrain and that the improvement remains above 40% after 16 hours ahead. 
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Fig. 5. Improvement of the proposed system with respect to Persistence for both criteria and 
various look ahead times 

5   Conclusions 

In this paper Radial Base Neural Networks have been applied to wind power 
forecasting using numerical weather predictions (NWPs). A fuzzy logic model is 
tuned in order to recognize erroneous wind speed forecasts. The proposal method 
divides the learning set to two subsets, one with accurate numerical weather 
predictions and one with ‘poor’ forecasts, depending on the fuzzy decision. Different 
Two similar RBf networks are used to learn separately the unreliable wind speed 
forecasts and the more reliable cases. Application of the method to a wind farm 
located in complex terrain shows clear benefits over the persistence method and the 
direct use of NWPs, especially after 4-6 hours, when forecasting of wind power 
production is most needed.  
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Abstract. A neural network approach is being developed to enable real time 
simulations for large scale dynamic system simulations of the electric power 
grid.  If the grid is decomposed into several subsystems, neural networks can be 
utilized to simulate computationally intensive subsystems.  An electrical gen-
erator sub-system was created in MATLAB using the SIMULINK interface.  
The SIMULINK model provided corresponding input/output pairs by varying 
parameters in sample transmission lines.  A feed-forward backpropagation neu-
ral network was created from this data.  Integration of the generator neural net-
work into the SIMULINK interface was also performed.  The original 
SIMULINK model requires about 342,000 iterations to simulate a 30 second 
simulation and consumes about 27 minutes of execution time.  Conversely, the 
neural network based system is able to determine accurate solutions in less than 
75 seconds and 300 iterations, which is more than an order of magnitude reduc-
tion in the execution time.  

1   Introduction 

Increased assessment of the national security of the United States has highlighted in-
adequate protection within the infrastructure of several large-scale systems, such as 
the electric power system grid [1]. The ability to simulate large-scale systems in a 
timely manner can provide an important contribution to national security.  Real-time 
simulation of the electric power grid would increase response time during an event 
such that electrical disturbances could potentially be isolated.  

The prospects of accurately simulating large-scale systems has improved due to 
advancements in technology and computing power.  However, exact mathematical 
representations of large-scale systems include computationally demanding systems of 
differential equations.  One method of reducing the computational burden would be to 
replace the exact equations with computationally less demanding neural networks. 

Neural networks effectively decrease the required computational time of a system 
solution by utilizing pre-computed results to train a network describing a subsystem 
response, which can then be used in real time such that the overall system can be 
solved without the complete set of differential equations.  The objective is to reduce 
the computational burden without sacrificing solution accuracy.   

In the work here, an artificial neural network approach was utilized to simulate the 
response of an electrical generator to its load.  The mathematical representation of an 
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electrical generator involves solving several computationally costly differential equa-
tions at each time step.  A neural network representing an electrical generator was in-
tegrated as a module into the SIMULINK simulation environment, which allows the 
module to be easily coupled to other components of an electrical grid system for more 
general simulation purposes.   

1.1   Objectives 

The objective of this project was to investigate the use of neural networks to achieve 
significant reductions in the computation time required for simulation of the electric 
power grid.  Physics based modeling of an electrical generator system typically re-
quires very long execution times.  The work here was to perform a preliminary inves-
tigation into execution time reductions that could be achieved using neural networks 
with the ultimate goal of enabling real time power grid simulation.   

A neural network approach approximates the response of an electrical generator to 
various load configurations.  The network provides pre-computed states to a simula-
tion system that originated from the physics based modeling of the generator.  This 
computer logic system maps the neural network input to the appropriate output with 
minimal computational run time.  Several simplifications were employed during the 
preliminary phase of this research.  Although the physical modeling of the generator 
utilized time-dependent equations, the neural network modeling of the generator was 
initially developed assuming that only steady state simulations would be performed.  
This simplification eliminated the need for a complex, time-dependent neural network 
structure during the preliminary phase and decreased the amount of needed network 
training.  The amount of data collection required from the physics based generator 
model is also decreased.  

The real time electrical generator simulation interacts with its electrical load 
through the use of the simulation program SIMULINK.  This object-oriented program 
allows straightforward integration of the real time electrical generator into a large-
scale electrical system.  The work here was also targeted for eventual integration into 
the well established Distributed Heterogeneous Simulation (DHS) [2].  This approach 
allows heterogeneous subsystems, such as an electric power grid system, a mechani-
cal system, and a thermal system, to be solved simultaneously with detailed, dynamic 
results.  These subsystems can also be solved in a geographically dispersed manner.  
Thus, the development of a real time generator as an interface could ease stability 
analyses as well as analyses outside the electrical system scope. 

1.2   Methodology 

A flow chart of the different processes that were completed during the course of this 
project is shown in Figure 1.  The present phase of the project is to design a neural 
network based model to effectively replace the modeling of an electrical generator 
under steady state conditions which would provide accurate feedback to various load 
conditions but in a fraction of the time than is currently used. 

The Original Model was developed within the simulation program SIMULINK.  
The model uses blocks located within the SimPowerSystems module library of 
SIMULINK.  This model will provide a template for the development of the neural 
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network based model as well as provide a means of run time comparisons between the 
two systems.  The Measurement Model was developed from the Original Model tem-
plate and was modified such that steady state data could be obtained for each load 
configuration tested.  These load configurations provided boundary conditions for the 
generator system.  Neural network creation was performed after the collection of all 
necessary data was completed.  The network could then be integrated into a neural 
network driven model within SIMULINK that could replace the electrical generator in 
the Original Model.  

 

Fig. 1. Process Flow Chart 

2   Project Preparation 

2.1   Original Model 

The Original Model was created to serve as a template for the development of the 
neural network simulation model.  The goal of the neural network generator system 
would be to provide similar responses to the load as the original generator system in 
the Original Model, but would provide these responses much faster rate than the 
original generator system.   The template simulation model was created from pre-built 
blocks with the SIMULINK library.  The model consists of an electrical generator and 
its load.  The pre-built generator blocks are based upon the set of complex differential 
equations shown in Figure 2 that are used to describe the physical actions of an elec-
trical generator system.  The pre-built load blocks are based upon the physical interac-
tions of an example system of transmission lines.   

The original physics based model is shown in Figure 3.  The graphical representa-
tion of the model shows the organization and interactions of all the components.  The 
generator system consists of a coupled system between the Synchronous Machine 
block and the Excitation System block. These blocks are located on the top of the fig-
ure.  An example load was created to provide interactions between the load and gen-
erator.  The example load consists of two Breaker blocks, a PI Section block, and AC 
Voltage Source blocks on each of the three phases.  These blocks are located on the 
bottom of Figure 2.   
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Fig. 2. Electrical Generator Equation Set 

 

Fig. 3. Original Physics Based Model 

2.2   Measurement Model 

The Measurement Model was created to obtain data from the Original Model tem-
plate. The obtained data was used to develop the neural network portion of the real 
time generator. The Measurement Model shown in Figure 4 contains many of the 
same components as the Original Model. For instance, the Generator Subsystem 
shown on the far left side of the figure contains the same generator components and 
parameters as described in Section 2.1.  The Load Subsystem on the upper right of the 
figure also contains the same load components as previously described.   
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In addition to the components found in the Original Model, the Measurement 
Model contains some additional subsystems.  The Current Measurement Subsystem 
(top-middle of Figure 4) and the Voltage Measurement Subsystem (bottom-right of 
Figure 4) provide the means to collect the appropriate data from the simulation.   The 
Voltage Measurement Subsystem compares the voltage between ground and the gen-
erator load on each phase of the system.  The voltage measurement data from each 
phase is then stored to a file during each simulation run.  Thus, the file will contain 
the voltage magnitude and angle for Phase A, B, and C at each time step specified by 
the system parameters.  The Current Measurement Subsystem measures the current 
passing between the generator and the load on each phase of the system.  The current 
measurement data from each phase is then stored to a file during each simulation run 
in a similar fashion as the storage of the voltage measurement data.   

 

Fig. 4. Measurement Model 

2.3   Data Collection 

Data was collected from variations of the Measurement Model for use in training of 
the neural network.  Variations of the Measurement Model were used to simulate a 
variety of boundary conditions for the electrical generator.  Component parameters 
within the generator load were varied to produce different responses from the genera-
tor.  Data was collected across a large distribution of parameters within the load.   

The parameters of the Measurement Model were specified such that accurate 
steady state data could be collected.  The solver utilized here, ode23tb, solved the 
problem using a variable time step selection method such that appropriate step sizes 
were used based upon changes in the previous steps of the simulation.  The measure-
ments collected from these simulations were to represent the system in a stable, 
steady state situation.  Most simulations that were capable of a stable system reached 
steady state within a 30 second simulation.  However, longer simulations were re-
quired for some boundary condition settings.  A 30 second simulation using the above 
configurations typically required about 27 minutes of execution time and about 
342,000 time steps on a 531 MHz computer when storing data to the two measure-
ment files. A parametric study of various load configurations produced voltage  
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measurements within a range between 0.990 volts and 0.998 volts where stable solu-
tions could be obtained.  Over 160 different data points were collected in this range.   

3   Solution System 

The simulation of the electrical generator was performed using artificial neural net-
works which were able to interact and respond to variations in the electrical load.  
This interaction was achieved by placing the neural network within a SIMULINK 
model.  A MATLAB script was also needed to perform an iterative search for the cor-
rect voltage and current values. All three of these components interact with each other 
to accomplish the simulation.   

The Master MATLAB Script serves as the direct interface between the user and the 
solution system during a simulation. The major purpose of the Master Script is to 
serve as the primary command and control of the solution system.  The secondary 
purpose of the script is to perform an iterative search for the appropriate voltage val-
ues for a given load set-up and return the final solution to the MATLAB command 
window.  The SIMULINK model provides a platform for the neural network to di-
rectly interact with the generator load. The model performs simulations between the 
network and the load, as well as provides measurement values. These measurements 
provide feedback to the Master MATLAB Script such that the next iteration step can 
be determined.  The SIMULINK model incorporates a neural network through the use 
of a neural network block. Any neural network created in MATLAB can be trans-
formed into a SIMULINK block. The block can then be directly incorporated into the 
SIMULINK model, just as if it were a standard library block.   

3.1   Master MATLAB Script 

The principal purpose of the Master MATLAB Script is to provide solution system 
command and control.  This included initiation and termination of the solution sys-
tem, as well as controlling the proper sequence of events within both SIMULINK and 
MATLAB.  The secondary purpose of the script is to execute the portion of the script 
devoted to an iterative search of the final solution.  The search directly iterates voltage 
values for each of the three phases until convergence is met.  

The command and control functions of the Master Script are key to the proper exe-
cution of the solution system.  The command and control functions include the fol-
lowing duties:  give control to the SIMULINK model, load MATLAB Workspace 
variables into the SIMULINK model, perform the SIMULINK simulation, overwrite 
Workspace variables with SIMULINK output determined during the simulation, and 
return control to the Master MATLAB Script.   

The Master MATLAB Script is also used to perform an iterative search for a solu-
tion.  This iterative search is executed by supplying the specified SIMULINK model 
with a “next guess” for each iteration step.  Feedback from previous SIMULINK 
simulations of the model is used to calculate this guess.  For instance, the “next 
guess” voltage values supplied to the model are compared to the measured voltage 
values provided by the simulation.  Once the errors between these two values meet the 
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specified convergence tolerance, the final solution is printed to the MATLAB com-
mand window. 

3.2   SIMULINK Model 

The SIMULINK model is used to simulate the interactions between a generator load 
and a neural network that has been trained to represent an electrical generator.  The 
load used in this model is the same configuration that was used to collect data.  The 
generator subsystem in this model, called the Steady State NN Generator subsystem, 
was specifically created for this project. 

The Steady State Neural Network Generator Subsystem is shown in Figure 5.  This 
subsystem contains all of the necessary components and interactions such that a neu-
ral network can interact with a load created in SIMULINK.  The subsystem contains 
connection ports to the far right of the figure that connect the subsystem to the genera-
tor load.  The generator subsystem contains the following four subsystems:  Current 
Production, Voltage Signal Production, Script Interactions, and Signal Based NN 
Generator.   

 

Fig. 5. Steady State NN Generator Subsystem 

The Current Production Subsystem (top-right of Figure 5) contains three controlled 
AC current sources, one for each electrical phase.  The sources produce an electrical 
current that is sent to the load.  It is interesting to note that the use of electrical con-
nections within the SIMULINK model only exist between the controlled AC current 
sources within the Current Production Subsystem, the Voltage Signal Production Sub-
system, and the generator load.  All other connections within the model utilize meas-
ured values to communicate information.  Thus, one interpretation of the SIMULINK 
model is to consider the model to represent a three-phase controlled AC current 
source, its controller, and its load.  This interpretation suggests that the neural net-
work merely serves as a controller for the three AC current sources.   

The Voltage Signal Production Subsystem (bottom-middle of Figure 5) contains 
voltage measurement blocks that determine the voltage between the generator load 
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and ground.  The purpose of this subsystem is to provide the Master MATLAB Script 
with the necessary feedback to determine the next iteration step.   

The Script Interactions Subsystem (top-left of Figure 5) provides the model a 
means of interaction with the Master MATLAB Script.  One set of blocks provides 
the Master Script with data, while a second set of blocks obtains data from the Master 
Script.  A natural break in the simulation loop occurs between the two sets of blocks 
within the Script Interactions Subsystem.  This break is used by the Master Script to 
determine the “next guess” voltage values to be used in the next simulation.   

The Signal Based NN Generator Subsystem (top-middle of Figure 5) utilizes the 
voltage input signals provided by the SIMULINK model in order to obtain appropri-
ate current output signals through the use of a neural network.  The components of 
this subsystem acquire the input values provided by the Script Interactions Subsys-
tem, modify the input so that it can be properly utilized by the neural network, obtain 
output from the neural network, modify the output as necessary, and produce output 
signals to be utilized by other system components.   

3.3   Artificial Neural Network 

A fully connected, feed-forward backpropagation neural network was created to ap-
proximate the response of an electrical generator.  The purpose of this neural network 
approximation is to allow simulations to be performed with less computational time 
but similar accuracy to the generator modeled in the Original Model.  The basic equa-
tions of an electrical generator require computationally costly derivatives.  Neural 
networks, however, require only multiplication and addition and thus greatly decrease 
the computational burden.   

The supervised training of the network assumes that the SIMULINK generator 
found in the Original Model is exact, since the Original Model is the sole source of 
training and testing input/output pairs.  The input to the neural network consists of the 
six components of the voltage measurements taken between the load and ground.  
These six components are the voltage magnitude and angle for each of the three 
phases in the system.  The network output is the six components of the electrical cur-
rent produced by the generator.  These six components are the current magnitude and 
angle for each of the three system phases.   

The neural network structure exploited for the electrical generator approximation is 
illustrated by Figure 6.  Due to the nonlinear response of the electrical generator to its 
load, a hidden layer utilizing a hyperbolic tangent-sigmoid transfer function was em-
ployed.  A hidden layer containing eight nodes minimizes the testing error.  In addi-
tion, the outer layer utilizes a linear transfer function.  This combination of transfer 
functions, which typically behave as a “general function approximator” [3], was ca-
pable of modeling the generator response with a high level of accuracy.   

Accuracy was also improved by scaling the input such that all of the inputs into the 
network have similar values.   The voltage angle values were normalized by dividing 
the values by 180 degrees.  However, the voltage magnitude values did not require 
normalization since these values range between 0.9902 and 0.9982 due to the Original 
Model utilizing normalized power values. To further improve the accuracy and preci-
sion of the neural network system, some additional modifications were used. The 
small range of possible voltage magnitude values caused the neural network to  
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become overly sensitive to the voltage angle values.  By increasing the range of pos-
sible voltage magnitude values, the neural network was modified to be equally sensi-
tive to all six of the voltage measurement components.  The magnitude range was in-
creased by taking the natural logarithm of the voltage magnitude and then multiplying 
this value by a factor of 100.  These scaling factors increase the voltage magnitude 
value range to between -0.9848 and -0.1801. 

 

Fig. 6. Neural Network Structure 

4   Results and Conclusions 

The neural network was trained and tested utilizing data collected from the Measure-
ment Model.  This training resulted in the mean square errors shown in Table 1.  Inte-
grating the neural network into the solution system resulted in a maximum relative 
voltage error of 0.06% and a maximum relative current error of 0.23% as compared to 
the data generated using the Measurement Model.  These results were obtained when 
the user-specified data within the Master MATLAB Script were the following:  the 
initial maximum relative change is set to 0.01, the convergence tolerance is set to a 
relative voltage difference of 0.0004 between consecutive iteration steps, and the 
maximum number of iteration steps is set to 300 steps.   

Table 1. Mean Square Error Between Testing Data and Trained Neural Network 

Mean Square Error 
Current Magnitude vs. 
Voltage Magnitude 

Current Phase Angle vs. 
Voltage Magnitude 

Phase A 2.27E-05 2.34E-05 

Phase B 2.27E-05 0.000123 

Phase C 2.27E-05 0.001586 
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The use of a neural network decreased the run time required to obtain a solution.  
The Measurement Model used to collect data required about 342,000 iterations to 
simulate a 30 second simulation and consumes about 27 minutes of execution time.  
These simulations were performed on a 531 MHz computer that was storing data to 
files using SIMULINK 5.0.  Conversely, the neural network based system using 
SIMULINK 6.2.1 was able to determine solutions in less than 75 seconds and 300 it-
erations on a 2.16 GHz computer.  Over half of the cases were capable of reaching a 
solution in less than 15 seconds.   

The results here are encouraging and suggest that neural networks can provide sig-
nificant relief in the computational burden without compromising the solution accu-
racy in power grid simulation.  In the next phase of the work neural networks will be 
used to replace other parts of the system and the steady-state simulation will be ex-
tended to transient conditions. 
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Abstract. This paper introduces the Wavelet Transform (WT) and Artificial 
Neural Networks (ANN) analysis to the diagnostics of electrical machines 
winding faults. A novel application is presented, exploring the potential of 
automatically identifying short circuits of windings that can appear during 
machine manufacturing and operation. Such faults are usually the result of the 
influence of electrodynamics forces generated during the flow of large short 
circuit currents, as well as of the forces occurring when the transformers or 
generators are transported. The early detection and classification of winding 
failures is of particular importance, as these kinds of defects can lead to 
winding damage due to overheating, imbalance, etc. Application results on 
investigations of windmill generator winding faults are presented. The ANN 
approach is proven effective in classifying faults based on features extracted by 
the WT. 

1   Introduction 

The aim of modern monitoring and diagnostic methods is to ensure the optimal and 
reliable utilization of motors or generators in respect to the outgoing power and their 
lifetime. In this regard several diagnostic methods are investigated and applied. Each 
method can be applied for a specific type of problem and has its own merits [1]. 
Insulation resistance measurement is useful for detecting cracked insulation that has 
e.g. absorbed moisture. Surge comparison test is useful for detecting areas where 
insulation has been removed or scraped from windings. A high-voltage test is 
performed to detect weak points in an insulation system, while winding resistance is 
mainly useful for checking the connections of windings. The frequency response 
analysis (FRA) of the transfer function or the winding admittance is used for windings 
fault detection [1]. The transfer function/admittance contains a number of peaks 
occurring at the natural oscillation frequencies resulting from the resonance between 
capacities and winding leakage inductance. The FRA enables us to detect faults that 
could not be detected by measuring just the winding inductance. Such faults usually 
result from the influence of electrodynamic forces generated during the flow of large 
circuit currents, as well as the forces occurring when the transformers are transported 
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[2]. Of special importance is the early detection of winding failures, because this type 
of defects can lead to winding damage due to overheating, imbalance, etc [1]. 

However, there are some limitations in the interpretation and sensitivity using these 
methods for the detection of winding turn-to-turn faults. This class of faults is the 
most critical and frequently occurring failure during motor or generator 
manufacturing and operation. The research into the application of the WT and ANN 
method for the investigation of windmill generator windings aims to overcome such 
limitations in fault detection and classification and is, therefore, of high importance in 
practice.  

In this paper, the WT followed by ANN classifiers are used to detect selected 
failures of windings in windmill generators. The WT is used for feature extraction, 
while the ANN is the tool for decision making and classification of the faults. Based 
on the work of [1, 2], we provide a fully automated approach for computing 
characteristic features of faults and classifying them. The influence of turn-to-turn 
faults between adjacent winding wires on the admittance is investigated. The 
proposed scheme has the ability to detect the generator winding fault and classify the 
type of fault with higher sensitivity and stability boundaries as compared to other 
techniques. Details concerning the design, implementation and testing of the proposed 
scheme are also presented. The required admittance curves are obtained using the 
numerical model of windings of electrical machines, which has been fully described 
in [1]. 

2   Numerical Model of Windings of Electrical Machines 

Winding transfer functions (TF) are defined as frequency dependences of the ratios of 
respective currents or voltages at winding to the supply voltage Ue. In the case where 
the current I and the voltage Ue refer to the same winding, the transfer function 
represents the winding admittance. A substitute scheme of winding numerical model 
presented in Fig. 1 is used to obtain the admittance of electrical machine windings. It 
was constructed by replacing a section of the winding with the corresponding self and 
mutual inductance, capacitance to earth, longitudinal capacitance, insulation 
conductance and the resistance.  

The winding admittance is defined as follows:  

( ) ( )
( )e

I f
Y f =  ,

U f
                                                    (1) 

where 

( )-1
L Lu eI=Z T U+T U  ,                                               (2) 

( ) ( )-1t -1 t -1
L L L Lu e u eU= - Y+T Z T T Z T U +Y U  .                         (3) 

Y, Yu, Z are matrices representing, respectively, the admittance and impedance of the 
system that are expressed using the following equations: Y = j C + G; Yuz = j Cu + 
Guz; Z = j L + R,  while C, G, R, L are matrices of capacitances (Cc), conductances 
(Gc, gc), resistances (Rc) and the matrix of self inductances (Lc) and mutual 
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inductances (Mc) between coils. TL is the connection matrix and Ve is the vector of a 
sinusoidal supply voltage of a frequency f that changes stepwise within a specified 
frequency band. Here, the frequency was changed in the ranges from 0.1 kHz up to 6 
MHz.  Equations (2) and (3) represent the currents I in the inductance–resistance 
branches and the vectors of voltages U to earth in the nodes of the winding equivalent 
circuits. In the literature this method is often referred to as sweep frequency response 
analysis. 

 

Fig. 1. The substitute scheme of windings of electrical machines 

Our numerical simulations of the winding admittance of one phase of the electrical 
machine are based on the numerical model of machine windings presented in Fig. 1. 
The simulations were performed on Matlab 7 software. The winding parameters are 
calculated using the model presented in paper [1] as well as experimental data in [3] 
for short circuit conditions. In our experiments, each section of the winding model is 
composed of one winding coil [1].  

 

Fig. 2. Theoretical admittance curves of the winding of a windmill generator after successive 
stages of failure: 1) winding admittance before failure (no fault), 2) winding admittance after 
short circuit of two (1 fault), 3) three (2 faults), 4) four neighbouring turns (3 faults) 
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The results of numerical simulations of the admittance of a damaged windmill 
generator coil are shown in Fig. 2. The figure shows the frequency dependence of 
admittance of the winding without fault as well as the curves calculated for the 
winding after faults resulting from short circuit of neighbouring conductors. 3 types of 
fault are investigated: short circuit of two, three and four neighbouring turns of the 
winding. The shapes of the theoretical admittance curves are similar to the 
experimental ones, presented in [1], considering actual short circuits on experimental 
machines. The location of shorted turns in the coil is random; therefore the changes in 
maximum admittance values and the frequencies at which they appear are not regular. 
Based on this we simulate various short circuit instances by allowing a random 
perturbation of up to 6% in maximum amplitude and up to 2% in the location of this 
maximum, as shown in Table 2. Notice that the experiments in [1] with actual 
machines revealed a perturbation of mutual inductance between consequent damage 
states of up to 2%.  

3   Introduction to the Wavelet Transform 

Traditional Fourier analysis, which deals with periodic signals and has been the main 
frequency-domain analysis tool in many applications, fails to describe the eruptions 
commonly existing in transient processes as in winding faults. Since the Fourier 
Transform (FT) gives only frequency information of a signal, time information is lost. 
The approach widely as windowed FT or short-time FT (STFT) has been developed to 
deal with this problem. However, the STFT has the limitation of a fixed window 
width. Thus, it does not provide good resolution in both time and frequency.  

Wavelets, on the other hand, provide higher resolution in time for high frequency 
components and higher resolution in frequency for low frequency components of a 
signal. In a sense, wavelets use a window that automatically adjusts in duration to 
provide the appropriate resolution. Wavelet analysis is based on the decomposition of 
a signal according to scale, rather than frequency, using basis functions with 
adaptable scaling properties. This method of analysis is generally referred to as 
multiresolution analysis. A wavelet transform expands a signal not in terms of infinite 
duration sinusoids but by projecting on wavelets, generated using the translation 
(shift in time) and dilation (compression in time) of a fixed wavelet function. For 
many signals, the low-frequency content is the most important. It is this content that 
gives the signal its identity. The high-frequency content, on the other hand, reveals 
detail-signal information, as in the case of faulty machine operation. In wavelet 
analysis, we often speak of approximations and details. The approximations are the 
high-scale, low-frequency components and the details are the low-scale, high-
frequency components of the signal. DWT analyzes the signal at different frequency 
bands with different resolutions by decomposing the signal into coarse approximation 
and detail coefficients. These coefficients represent different frequency subbands. 
This ability allows accurate fault detection. 

DWT is used for the extraction of frequency features from the winding admittance 
signal by decomposing the signal into multiple frequency subbands. All wavelet 
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transforms can be specified in terms of a low-pass filter h, which satisfies the standard 
quadrature mirror filter condition: 

( ) ( ) ( ) ( )-1 -1H z H z +H -z H -z =1 ,                                (4) 

where H(z) denotes the z-transform of the filter h. Its complementary high-pass filter 
can be defined as:  

          ( ) ( )-1G z =zH -z  .                                                 (5) 

A sequence of filters with increasing length (indexed by i) can be obtained and 
expressed as a two-scale relation in time domain: 

( ) [ ] ( )
( ) [ ] ( )

i

i

i+1 i2

i+1 i2

h k = h *h k  ,

g k = g *h k  ,
↑

↑

                                        (6) 

where the subscript [·] m indicates the up-sampling by a factor of m, and k is the 
equally sampled discrete time. DWT employs two sets of functions, called scaling 
functions i,l(k) and wavelet functions i,l(k), which are associated with low-pass and 
high-pass filters, respectively:  

( ) ( )
( ) ( )

i/2 i
i,l i

i/2 i
i,l i

k =2 h k-2 l  ,

k =2 g k-2 l  ,

ϕ
                                         (7) 

where factor 2i/2 is an inner product normalization, and i and l are the scale parameter 
and the translation parameter, respectively. The discrete wavelet transform 
decomposition of a signal x(t) can be described as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i,li

i,li

s l =x k * k  ,

d l =x k * k  ,

ϕ
                                         (8) 

where s(i)(l) and d( )(l) are the approximation coefficients and the detail coefficients at 
resolution i, respectively. In Fig. 3, the details and approximation signal up to level 4 
are represented. At each level, a detail and an approximation signal are reconstructed. 
In the next level, the detail signal is decomposed to new detail and approximation 
signal. 

 

Fig. 3. Representation of four details and one approximation signal at the fourth level 
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4   Fault Detection and Classification Scheme 

By using wavelet analysis, subband information can be extracted from the simulated 
curves, which contain useful fault features. By analyzing these features of the detail 
signals using Artificial Neural Networks, different types of fault can be detected and 
classified. The overall proposed scheme is shown in Fig. 4. 

 

Fig. 4. Procedure of fault detection and classification scheme 

4.1   Discrete Wavelet Analysis of Winding Admittance Signals 

The choice of analyzing wavelets plays a significant role in fault detection and 
identification. The optimum wavelet maximize the cross correlation between the 
signal of interest and the wavelet. The wavelet functions we examine are: Haar, 
Daubechies 2, 4, Symlet 4 and Coiflet 3. The results for all 4 classes are shown in 
Table 1. It is obvious, that Daubechies 2 maximizes the cross correlation between the 
4 signals and the wavelets, which is expected, since Daubechies 2 is localized, i.e. 
compactly supported, in time and so is appropriate for short and fast signals analysis 
[5]. Thus, Daubechies 2 is chosen in this scheme. 

Table 1. Maximum cross correlation values between the signals and several wavelets 

Wavelet  no-fault signal 1-fault signal 2-fault signal 3-fault signal 
Haar 16.696 17.684 18.507 17.877 

Daubechies 2 19.926 20.840 20.971 21.125 
Daubechies 4 14.773 15.458 15.395 15.056 

Symlet 4 17.457 18.320 18.652 18.353 
Coiflet 3 16.305 17.160 17.291 16.901 

 

Fig. 5. Decomposition of winding admittance signals with 0, 1, 2 and 3 faults with ‘db2’ 
wavelet at level 7 
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Each original signal has 4096 samples and is decomposed into Daubechies 2 
wavelet components at 12 levels (4096 = 212). When a fault occurs, different 
frequency components are produced. The wavelet level to be selected must reflect the 
fault characteristics under various fault conditions. In this respect, according to the 
analyses of different wavelet levels of the admittance curves, the level 7 (D7) detail is 
utilized to extract useful features. The detail wavelet coefficients at level 7 of the 
signals obtained from control windmill generators and generators with 1, 2 or 3 
winding faults are given in Fig. 5. The horizontal axis is the number of samples, 
whereas the vertical axis is the amplitude. It can be seen that when a fault occurs, the 
spikes of D7 occur at different frequency and have different amplitude. 

4.2   The Fast Fourier Transform of Winding Admittance Signals 

After the decomposition of the signals, the Fourier Transform is applied to the details 
of the decomposed signals. The Fast Fourier Transform (FFT) can be used to simply 
characterize the magnitude and phase of a signal [6]. Notice that we only use the FT 
for feature extraction from the WT and not for signal characterization. Thus, the 
stationarity requirement on the signal is relaxed. The corresponding magnitude and 
phase of FFT of the detail 7 of the signals are shown in Fig. 6 and 7, respectively. For 
presentation convenience, only a small frequency range of the magnitude of FFT is 
presented in Fig. 6. These features (maximum of amplitude and mean of slope) are 
used to detect and classify different types of fault, as presented in next section. 

 

Fig. 6. FFT magnitude of the signals D7 

 

Fig. 7. FFT phase of the signals D7 
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4.3   Automatic Classification with ANN 

The ANN is trained to classify signals into four categories: control (0-fault), 1-fault, 
2-fault and 3-fault signals. ANN is an information processing system where 
information spreads in a parallel direction. It can determine its conditions and adjust 
itself to provide different responses by using inputs and desired outputs, which are 
provided to the system. The most important attribute of ANN is that it works as an 
expert system, which can eventually help the technicians with the decision-making 
process about the existence of the fault. ANN is trained with the available data 
samples to explore the relation between inputs and outputs, so that it reaches the 
proper output when presented with some new data [7]. 

In our approach, the multilayer feed forward ANN is implemented in the Matlab 7 
environment. This choice is appropriate for solving pattern classification problems, 
where supervised learning is implemented with a Leverberg–Marquart (LM) 
backpropagation algorithm. The advantage of using this type of ANN is the very fast 
testing of new data, almost in real time, which is particularly advantageous in signal 
processing applications. Applications in the literature demonstrate the suitability of 
ANNs in detecting faults of transient signals, when ANNs are trained satisfactorily [7]. 

In this study, LM backpropagation neural network is used for the interpretation of 
admittance waveforms. ANN underdoes supervised learning to perform successful 
pattern recognition of the signals. During supervised learning, ANN is trained on 
input vectors with target output vectors and through its interpolation ability it is able 
to correctly classify previously unseen input vectors. The network is iterated for 
single hidden layer with combinations of one to 10 neurons. For each layer 
combination, the target mean square error is set to 0.001 and the epoch number is 
taken as 100.  

The data set consists of 150 control signals, 150 signals with 1 fault, 150 signals 
with 2 faults and 150 signals with 3 faults. Each signal is a vector of the maximum 
amplitude and the mean slope of the phase of FFT of wavelet level 7 details, as seen 
above. The deviations of the signals of each class are uniformly distributed around the 
mean of each state, as presented in Table 2.  

Table 2. The deviations of maximum amplitude and mean phase-slope of FFT 

 Maximum 
Amplitude 

Deviations (%) 
Mean Slope of 
Phase (degrees) 

Deviations (%) 

Control state 6.8042 ± 05.75 % 1.1600 ± 01.41 % 
1-fault state 4.9384 ± 05.68 % 1.1002 ± 01.32 % 
2-faults state 5.4990 ± 05.10 % 1.1292 ± 01.28 % 
3-faults state 3.6203 ± 05.78 % 1.3042 ± 01.52 % 

For the ANN classifier we use a 3-fold cross validation scheme with stratification. 
The data set is split in 3 approximately equal partitions. Sampling is random in such a 
way as to guarantee that each class is properly represented in every partition. 2/3 of 
the data is used for training, while the remaining is used for testing. The whole 
procedure is repeated 200 times. The overall error rate is the average of error rates on 
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each partition. Each time, the training input data set consists of 100 control and 100 
signals from each fault case, while the test data set is made of 50 control and 50 
signals from each fault case. The minimum training and testing errors are 
accomplished with the combination of a hidden layer consisting of 10 neurons. For 
activation in the hidden layer, we use 5 non-linear functions: tag-sigmoid (tansig), 
log-sigmoid (logsig), triangular basis (tribas), satlins and radial basis (radbas). In the 
output layer we use a linear function.  

5   Results and Discussion 

In the present study, a new method was developed for the automatic classification of 
the signals based on DWT and ANN. First, the winding admittance signals were 
decomposed into details and approximation coefficients using DWT, as seen in 
section 4.1. Second, we obtained the magnitude and the phase of the FFT wavelet 
details coefficients, as seen in section 4.2. The maximum value of the magnitude and 
the mean slope (gradient) of the phase of the FFT of DWT detail coefficients level 7 
for 150 control states and 450 fault states (150 of each type of fault) were calculated 
and used to train and test the ANN, using 3-fold cross-validation with stratification.  

The backpropagation ANNs that built from 5 different non-linear neurons and 
trained with LM have demonstrated to provide excellent fault detecting and 
classifying results. In Table 3, the average success rate (ASR) in the training and 
testing stage, the average specificity (ASPE) (a measure of the ability of the classifier 
to accurately specify states, i.e. to retrieve only the correct samples from each state), 
the average sensitivity (ASEN) and the average detection rate (ADR) for 200 
experiments for each type of hidden layer activation function are demonstrated. The 
end results are classified as 0 (no fault) and 1, 2 and 3 faults. It is obvious that the tag-
sigmoid activation function provides the best results. A 95.72 % success rate of 
classification was accomplished with the designed feature extraction and the neural 
network structures. In Fig. 8, the specificity per experiment for tansig function is 
demonstrated. Exploring the results we can deduct some interesting conclusions. The 
sensitivity seems to be the same for all functions but specificity differs. The decision 
boundaries with some activation functions extend form one class distribution into the 
other, reducing its specificity. Furthermore, the success rate estimated through cross 
validation accurately reflects each classifier’s performance, being in fact a little 
under-estimated in training. 

Table 3. Results for each activation function 

 tansig logsig tribas satlins radbas 
ASR in training 95.59% 93.73% 90.16% 87.06% 84.68% 
ASR in testing 95.72% 94.14% 91.97% 87.25% 87.55% 

ASPE 93.21% 90.11% 89.30% 82.39% 84.01% 
ASEN 99.98% 99.98% 99.93% 99.91% 99.89% 
ADR 96.60% 95.04% 94.62% 91.15% 91.95% 

 



 Early Detection of Winding Faults in Windmill Generators 755 

 

Fig. 8. Specificity Vs Number of experiment (tansig function) 

The training and testing of the network demonstrate the accuracy of the proposed 
automatic classification method. While this paper provides a new and alternative 
automated method for the classification of winding admittance signals, it should be 
noted that the accuracy of this method is associated with the admittance recording and 
spectral analysis method applied for the training of ANN. Admittance is a non-
stationary signal and so we use DWT analysis to get the most accurate results. 
Because the signals in this study are generated by a simulation model, employing real 
winding admittance signals measured by a digital recorder to improve the proposed 
method is one of our future plans. 

6   Conclusion – Summary 

The results of our investigations on detecting winding faults in windmill generators 
are presented. DWT is used for the extraction of frequency features from the winding 
admittance signal by decomposing the signal into details and approximation 
coefficients. Subsequently, ANN is employed for the automated classification of the 
signals.  

Investigative features of the transfer function/winding admittance form the basis of 
the proposed method. The outputs of the admittance contain a number of peaks 
occurring at the natural oscillation frequencies resulting from the serial resonance 
between capacities and winding leakage inductance. The detection process is 
performed through signal decomposition and analysis of the decomposed components 
of the signal. The influence of turn-to-turn and inter-turn faults between adjacent 
winding wires on the admittance is investigated. The maximum value and the 
corresponding frequency of admittance resulting from these failures are analyzed. 
Based on proposed measures, the location and the number of winding faults are then 
possible to be detected with a simple, automated, very fast method (testing duration is 
approximately 0.15 seconds), with great accuracy and small computation cost.  

The presented results demonstrate that the proposed method can provide an 
effective interpretation of machine performance, in terms of early fault detection. 
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Abstract. In this work, an Artificial Neural Network (ANN) is combined to 
Heuristic Rules producing a powerful hybrid intelligent system for short and 
mid-term electric load forecasting. The Heuristic Rules are used to adjust the 
ANN output to improve the system performance. The study was based on load 
demand data of Energy Company of Pernambuco (CELPE), which contain the 
hourly load consumption in the period from January-2000 until December-
2004. The more critical period of the rationing in Brazil was eliminated from 
the data file, as well as the consumption of the holidays. For this reason, the 
proposed system forecasts a holiday as one Saturday or Sunday based on the 
specialist's information. The result obtained with the proposed system is com-
pared with the currently system used by CELPE to test its effectiveness. In ad-
dition, it was also compared to the result of the ANN acting alone. 

Keywords: Artificial Neural Networks, Hybrid System, Heuristic Rules, Elec-
tric Load Forecast. 

1   Introduction 

Recently, the Brazilian electric power system experienced important changes, regard-
ing the administrative part as well as the planning part, its commercial regulation 
being a very complex issue. The changes in the regulation of the electric power mar-
ket brought, as a consequence, an increase in competitiveness that was imposed by the 
decentralization of the distribution and by the growing demand on power quality 
required by the consumer market, resulting in an increasing search for improvements 
in the system planning.  

The daily operation and planning activities of an electric utility requires the predic-
tion of the electrical demand of its customers. Several researches have been carried 
out in order to improve planning and operation of these systems. Specifically, the 
required load forecasts may be divided into short, mid and long-term forecasts. 

Traditionally, load forecasting techniques use statistical methods of time series 
analysis, which include linear regression, exponential damping and Box Jenkins [1]. 
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In recent years, techniques of artificial intelligence such as artificial neural network 
(ANN) have been used, obtaining promising results [2]-[6].  

Currently, the procedure adopted by CELPE for hourly load forecasts is a mixing 
of statistical techniques with specialists’ knowledge. The aim of this work is to im-
prove the hourly load forecast, automating it and incorporating the implicit knowl-
edge of the specialist. The developed system (named PREVER is implemented in 
MATLAB®) makes use of a hybrid approach of ANN based techniques and heuristic 
rules to adjust the short and mid-term electric load forecasting in the 3, 7, 15, 30, and 
45 days  ahead. 

2   Data Base Configuration 

The problem approached in this work is based on the hourly load forecasting in 3, 7, 
15, 30, and 45 days ahead. The data used in this work were made available by CELPE 
and they correspond to the hourly load demand data in the period from January 2000 
until December 2004. 

All the data were unified in a single file, where each pattern was arranged by the 
information of the year, day, month and the load of the day for every hour (24 hours) 
and the day of the week to be forecast (Sunday, Monday,.... Saturday). The data re-
garding the more critical period of the rationing (from May to July of 2001) were 
eliminated from the file. The hourly load data were normalized (LN) to fall in the 
range 0 to 1 by using (1): 

minmax

min
N LL

LL
L

−
−=  , (1) 

where LN is the hourly load value registered by the CELPE’s system, Lmax and Lmin are 
the maximum and the minimum hourly load value among all the observed values, 
respectively. In this work Lmin = 0 and Lmax = 1.1 LA_max, where LA_max is the maximum 
value of the actual load data. The objective of factor 1.1 is to turn the values of future 
loads up to 10% above LA_max into values below the unit after their normalization. 

In this work, a holiday is considered by the specialist as one Saturday or one Sun-
day, according to [7]. In other words, the specialist indicates if the load behavior of 
that specific holiday is more correlated with the load behavior of Saturday or Sunday. 
Because the load curves of the holidays are close to the load curves of one Saturday 
or one Sunday, the hourly load data of holidays were just used in the test set. The 
training of Multilayer Perceptron (MLP) networks follows a paradigm of supervised 
learning, where each pattern in the training set is represented by an input and a de-
sired output pairs. The patterns of the input set have the following arrangement: The 
first 24 values correspond to the hourly consumption of (n+1) days before the day to 
be forecast, the next 24 values correspond to the hourly consumption of n days before 
the day to be forecast (n = 3, 7, 15, 30, or 45 days), and finally, the next 7 values 
define the day of the week that will be forecast (Sunday, Monday,.... Saturday). This 
information used 1-of-m code. 
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The data base, formed by 969 examples of each period of time, is distributed in the 
following way: 60% for the training set, 30% for the validation set and 10% for the 
test set. The patterns of each group were selected in a random way. 

The main objective of the load forecasting system based on ANN is to learn from 
pattern of known values and to generalize for new ones. The performance of the sys-
tem will be measured by percentage of the mean-square error (MSE) [8] specified in 
(2), and by the mean absolute percentage error (MAPE) in (3). 
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where maxL  and minL  are the maximum and minimum of the hourly load values, in 

the representation of the problem, respectively; N  is the number of output units of the 

ANN; P is the total number of patterns in data base; piL  and  piT  are actual and 

desired target output  of the ith neuron in the output layer, respectively. 
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where P is the total number of patterns in data base; Lp  and Tp are the actual and 
desired output value for a given input, respectively. 

The ANNs involved are designed using the method of training-and-testing. The ba-
sic idea of this method is to divide the set of patterns into three mutually exclusive 
subsets. The first subset is the training set used for computing the gradient and updat-
ing the network weights and biases. The second subset is the validation set. The error 
on the validation set is monitored during the training process to avoid overfitting. The 
third subset is the test set used exclusively for measuring the error of the system. The 
idea is that the performance of the system in a test set is its performance in real world. 
This means that no information on the test set can be available during the training [8]. 

Attempting to achieve an estimated error nearest to the true error, the 10-fold cross 
validation method was chosen to generate the training, validation and test sets. This 
method has become a standard method in practical terms [9], [10]. Therefore, the 
patterns were divided in ten independent partitions, each partition having 10% of the 
data. For validation, in each experiment three partitions were used, one, to test and the 
six remaining partitions were used to train the ANNs.  

 3   Neural Network Structure and Training 

All of the experiments accomplished in this work created ANNs with the MLP archi-
tecture, using the resilient backpropagation (RPROP) training algorithm [11]. The 
RPROP performs a local adaptation of the weight-updates according to the behavior 
of the error function. The RPROP algorithm operates in the batch mode and falls in a 
supervised training category. 

All of the ANNs used have an input layer, a hidden layer and an output layer. The 
nodes of the hidden layer use the tan-sigmoid activation function and those of the out-
put layer use the log-sigmoid activation function. The maximum number of iterations 
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for all of the trainings was set to 2500 epochs. The training stopped if the early stop-
ping  implemented by MATLAB® happened 20 times consecutively, or if the maxi-
mum number of epochs is reached, or if the error gradient reaches a minimum, or still 
if the error goal in the training set is met. The early stopping method has the objective 
of improving generalization of the neural networks. MATLAB® implements this tech-
nique, monitoring the error on the validation set during the training process. 

3.1   Set-Up of the Hourly Load Forecasting Systems 

All of the neural networks developed have 55 nodes in the input layer that are distrib-
uted in the following way: 24 nodes correspond to the hourly consumption of (n+1) 
days before the day to be forecasted, 24 nodes correspond to the hourly consumption 
of n days before the day to be forecasted (n = 3, 7, 15, 30, or 45 days ahead), and 
finally, the next 7 values define the day of the week that will be forecasted using 1-of-
m code (e.g. Sunday=’1000000’). The output layer is characterized by 24 values, one 
for each hour of the day, which indicates the hourly load consumption of the day to be 
forecasted. Fig. 1 shows the basic layout of all networks.  

 

Fig. 1. Basic Layout of all Networks 

To decide on the best configuration of nodes in the hidden layer in several days 
ahead, ten experiments were carried out with random initialization of weights and 
with varying number of hidden nodes from 30 to 130 with an increment of 5. The 
number of hidden nodes in the best neural network for the respective forecast horizon 
is presented in Table 1. 
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Table 1. Number of hidden nodes 

Days ahead 3 7 15 30 45 

Hidden Nodes 120 95 100 125 100 

4   Heuristic Rules Development 

In the area of expert system design, representations of heuristic rules have been exten-
sively studied [12]. In this paper, these rules have been developed with the specific 
aim of reducing the error of the hourly load forecasting accomplished by the neural 
network. Two types of heuristic rules have been developed. In the first one (3 and 7 
days ahead), the adjustment of the neural network output is made using the average 
and the standard deviation of the hourly historical load consumption. In the second 
one (15, 30, and 45 days ahead), the adjustment is accomplished by the average and 
the monthly historical load consumption. 

Rule 1:  Short-Term Load Forecast 

This heuristic rule is used to adjust the ANN hourly load forecasting output for 3 and 
7 days ahead. The adjustment is accomplished by evaluating the average of the con-
sumption of the last 3 days which have the same characteristic as the prediction day 
and whose date are lower or equal to the difference between the date of the prediction 
day and the period of time. For instance, let the date of the prediction day be 
24/04/2005 (Sunday) in the period of 7 days ahead. The average is computed in the 
following way: taking the prediction day minus the time periods gives 17/04/2005 
(Sunday). As the prediction day is a Sunday, 3 previous consecutive Sundays should 
be taken before the date 17/04/2005. Thus, the average will be computed using the 
consumption of the days 17/04/2005, 10/04/2005 and 03/04/2005. 

In the case of a normal day, the consumption is taken on the days that have ap-
proximately the same load curve as the prediction day. That is, to forecast a Monday, 
the average will be computed by the consumption of previous Mondays. For the case 
of holiday, the average will be calculated using Sunday or Saturday, which depends 
on how the specific holiday was registered in the system by the specialist. 

After the calculation of the average hourly consumption, the standard deviation can 
be computed. In the next step, the upper and lower limits of the confidence interval are 
computed, where the upper limit is the average consumption plus the standard devia-
tion and the lower limit is the average consumption minus the standard deviation. If the 
value of the neural network output is out of the confidence interval, its output is ad-
justed by the average, otherwise, it remains unaffected. This procedure makes the 
hourly load forecasting, by the neural network, fall in the confidence interval. 

Rule 2: Mid-Term Load Forecast 

This heuristic rule is used to adjust the ANN hourly load forecasting output for 15, 30, 
and 45 days ahead. Here again the consumption average was considered, and beside 
this, the consumption increase or decrease from one month to the next according to 
the historical seasonality. 
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Due to the lack of the month of the prediction day in the neural network input, it 
was necessary to add this information to create this heuristic rule, which was made by 
an increase or a decrease factor. 

To find the increase or decrease factor, the daily load mean consumption was cal-
culated, dividing the monthly consumption by the day’s number of the month. Next 
the load behavior of one month to the next was analyzed. The factors were computed 
as a function of the time periods and can be summarized as follows: 

15 days - The average daily consumption of the current month is divided by the 
previous one, and makes this result minus one. If the final result is positive, it means 
that there was an increase in the consumption of the previous month in comparison 
with current month, otherwise, there was a reduction. In the next step, the single 
monthly factor which corresponds to the average of the factor calculated previously in 
the periods from January 1994 until December 2004 was calculated. As the consid-
ered load forecast is 15 days ahead, then the monthly factors are divided by two.  

30 days - The procedure to find the monthly factors for the load forecast in 30 days 
ahead is similar to that discussed in the 15 days ahead, except that the factors are not 
divided by two. 

45 days - The mean diary consumption from the current month was divided by the 
penultimate month, reducing this result by the unit. In 45 days ahead, the calculation 
of the monthly factor is performed at two monthly intervals, since there are more than 
30 days ahead. Thus, there are factors for the 60 days ahead. These values were calcu-
lated using the same analysis as in 15 and 30 days ahead. The monthly factors for 60 
days ahead are the monthly average in the period. Finally, the monthly factor for 45 
days ahead is the average of the factors between the monthly factor of 30 and 60 days.  

After computing the factor, an algorithm was achieved so that the network output 
improves the hourly load forecasting. The rules are then used to adjust the output of 
the network. 

The rules are based on the comparison between the hourly load forecasting by the 
neural network and a reference value. This reference value is given by the average of 
the last consumptions added to the portion of the monthly behavior, which corre-
sponds to the multiplication of the monthly factor and the average of the consump-
tions. This average is the same average described in Rule 1, which is applied to 3 and 
7 days ahead. 

Finally, the Rule 2 can be stated: 

• Positive monthly factor: If the simulated value by the neural network is smaller 
than the reference value, the neural network output will be adjusted to the refer-
ence value. Otherwise, it remains unaffected; 

• Negative monthly factor: If the simulated value by the neural network is larger 
than the reference value, the neural network output will be adjusted to the refer-
ence value. Otherwise, it remains unaffected; 

Specific Rules for January first and second 
January 1, the first day of the New Year has the smallest load consumption of the 
year, in other words, it is a pattern different from the others kind of patterns presented 
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during the training process. On the other hand, January 2 suffers the consequence of 
January 1, and presents a low consumption in relation to the other days of January. So 
a specific rule for these days had to be made. 

The forecast values to these two specific days were calculated as the above rules 
first, and then reduced from approximately 3%, in accordance with the knowledge of 
CELPE´s historical load.  

It is important to point out that this new adjusted value be the value after the ad-
justment is accomplished according to the forecast horizon. For instance, if these days 
are being forecasted in 3 days ahead, the adjusted value will be the value of the net-
work output after the adjustment in accordance with rule 1.  

The system is implemented in the way that a user can accomplish his/her own ad-
justments manually for each day or hours of the day to be forecasted, similar to those 
made for January 1 and 2. 

5   Performance 

In order to verify the performance of the forecasting system on the load data pertain-
ing to CELPE, forecasts were accomplished, short and mid-term, in the period from 
January until December 2005.  However, just the results of the 45 days ahead will be 
compared here, because CELPE distribution utility carries out its load forecasting just 
in this period. This permits making a comparison of the developed system (PREVER) 
and the forecasting model currently being used by CELPE. Moreover, the perform-
ance of all the other forecast horizons was discussed in [7], [13] and presented here. 
Fig. 2 shows the graphs of the real consumption of the load forecasting system per-
formed by CELPE, ANN and ANN plus adjustment (PREVER) in 45 days ahead.  

After examining the curves of the normalized monthly consumption (Fig. 2), it can 
be seeing that the curve of ANN plus adjustment is the closest to the curve of the real 
consumption. This fact demonstrates the superiority of the hybrid system imple-
mented in PREVER over the other systems.  
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Fig. 2. Normalized Monthly Consumption in 45 days ahead 
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Table 2 shows the mean hourly MAPE for 3, 7, 15 and 30 days ahead. As shown 
the last row of this table, 3 days ahead was the only time period in which the mean 
hourly MAPE of all month corresponding to the ANN was slightly better than 
PREVER. In all other time periods, PREVER was far superior to ANN acting alone. 
This can also be observed in Table 3 for 45 days ahead. 

Table 2. Mean Hourly MAPE in 3, 7, 15 and 30 days ahead 

Mean Hourly MAPE 
  3 days ahead 7 days ahead 15 days ahead 30 days ahead 

Month ANN PREVER ANN PREVER ANN PREVER ANN PREVER 

January 2.80 2.04 3.80 2.21 3.64 3.44 3.25 2.86 
February 2.97 2.49 3.36 2.54 3.20 2.44 2.98 2.55 
March 3.33 3.71 4.33 3.99 5.11 4.36 6.37 3.49 
April 3.08 2.45 3.40 2.50 3.64 3.65 3.39 3.25 
May 2.39 4.46 2.59 4.22 3.51 3.37 3.84 3.69 
June 2.76 2.69 2.76 2.73 2.46 2.39 2.63 2.59 
July 1.85 1.74 2.14 1.87 2.06 2.12 2.33 2.31 
August 1.84 1.99 2.53 2.13 2.29 2.02 2.90 2.37 
September 2.14 3.15 3.45 3.35 4.39 2.98 5.43 2.72 
October 2.88 2.26 2.98 2.46 3.53 2.21 4.58 2.88 
November 2.69 2.30 3.37 2.40 3.74 2.14 4.04 2.12 

December 3.09 3.13 3.55 3.29 3.31 3.44 2.88 3.74 

Mean 2.65 2.70 3.19 2.81 3.41 2.88 3.72 2.88 

Table 3. Mean Hourly MAPE in 45 days ahead 

Mean Hourly MAPE in 45 days ahead 
Month ANN PREVER CELPE 

January 3.09 2.55 3.32 
February 3.43 3.23 3.28 
March 6.13 3.45 5.13 
April 3.74 3.75 2.96 
May 2.95 2.89 7.32 
June 4.04 3.55 5.24 
July 2.18 2.32 2.72 

August 3.15 2.55 2.98 
September 4.90 2.52 3.16 

October 5.90 2.27 2.35 
November 3.50 2.49 2.49 
December 3.59 4.63 4.88 

Mean 3.88 3.02 3.82 
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Table 3 shows the mean hourly MAPE for the same system computed by ANN, 
PREVER and CELPE. In the period of 12 months from January to December 2005, 
only in April was the system of CELPE better then PREVER. Moreover, the mean 
hourly MAPE of all months for the PREVER system in the period was 3.02 against 
3.82 presented by the CELPE system. Thus, the new system, PREVER, is certainly an 
improvement on the CELPE system. 

To gain a better appreciation of the previous statement, Fig. 3 shows the mean 
hourly MAPE in each month for the system of CELPE, ANN and ANN plus adjust-
ment (PREVER) in 45 days ahead. 
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Fig. 3. Mean Monthly Error of MAPE in 45 days ahead 

6   Conclusion 

This work presents the final product of the research and development project between 
CELPE and DEESP/UFPE that resulted in short and mid-term load forecasting by 
software, named PREVER. Applying a hybrid intelligent system approach of ANN 
based technique and heuristic rules, this software is able to forecast the electric load 
of CELPE system in 3, 7, 15, 30, and 45 days  ahead. 

PREVER was evaluated in all forecast horizons mentioned previously. However, 
only the period of 45 days ahead could be compared with the currently CELPE´s load 
forecast system, because CELPE distribution utility carries out its load forecasting just 
in this time period. The results confirmed the potential and suitability of the hybrid 
intelligent system implemented in PREVER compared to CELPE´s load forecasting 
system and ANN acting alone. In the period from January until December 2005, 
PREVER was more precise than CELPE´s load forecasting system over 11 months.  
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Abstract. In this paper voltage recovery after voltage dip that cause magnetiz-
ing inrush current which is a new phenomenon in power transformers are dis-
cussed and a new technique is proposed to distinquish internal fault conditions 
from no-fault conditions that is also containing these new phenomenons. The 
proposed differential algorithm is based on Artificial Neural Network (ANN). 
The training and testing data sets are obtained using SIMPOW-STRI power sys-
tem simulation program and laboratory transformer. A novel neural network is 
designed and trained using back-propagation algorithm. It is seen that the pro-
posed network is well trained and able to discriminate no-fault examples from 
fault examples with high accuracy. 

1   Introduction 

Power transformers are the most important components in power system. Avoiding 
damage to power transformers is vital. In a power system, when continuity in power 
delivery is disrupted because of transformer fault, it may be necessary to repair or 
replace the transformer or other electrical equipments. So protection of power trans-
formers is vital for continuity in power delivery. 
    Generally, differential relays are used for primary protection of large transformers. 
The technique is based on the measurement and comparison of currents at both sides 
of the transformer primary and secondary lines. The problem that may occur in a 
differential protection is to distinquish internal faults from magnetizing inrush current 
that may occur in non-linear working conditions like transformer energization, volt-
age recovery after clearing an external fault and change of the character of an external 
fault [1]. As such currents have no secondary winding counterpart, the differential 
relay is exposed to faulty operation.  

The most common technique used for preventing false trips during energization is 
the harmonic restraint relay. The even harmonic component, especially the second 
harmonic component, is used to restrain the relay operation when the inrush current 
appears. The second harmonic component of the inrush current is considerably larger 
than in a typical fault current [2]. If the second harmonic content of the differential 
current exceeds a pre-defined percentage of the fundamental, inrush is assumed and 
the protection is prevented from tripping.  
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Schemes and studies based on the detection of the second harmonic were proposed 
and implemented in both analog and digital differential relays. In these studies various 
digital filtering algorithms were used for extract current signals to harmonic compo-
nents. New numerical protection can also lead to unnecessary operation or operation 
failures. In addition to these methods, some algorithms reported in the literature use 
electro-magnetic equations of transformers. These algorithms use currents in the 
transformer windings to make appropriate decisions. Terminals of delta-connected 
windings are not usually brought out of the transformer tank, so the winding currents 
are not available for use in protective relays. This is the limitation of these algorithms.  

The enormous capabilities of the artificial ANNs in non-linear mapping through a set 
of input/output examples are successfully employed to develop different types of protec-
tion schemes. The ANN approach work as a pattern classifier and is able to detect the 
changing power system condition quickly and accurately and consequently results in the 
improvement of the performance of conventional digital relays. Considering these fac-
tors, many researchers continued their work to develop new algorithms for transformer 
protection [3,4,5]. All these algorithms are either based on the transformer equivalent 
circuit model and/or some transformer data obtained by using EMTP. 

This paper presents a new algorithm based on ANN for the protection of single-
phase and three-phase transformers. This method is suitable for the two winding 
transformers with any type of connections. Proposed algorithm is based on the some 
transformer data obtained by using SIMPOW-STRI and laboratory transformer. An-
other difference of this study is training and testing data sets are containing new phe-
nomenon that may cause false tripping of differential relay. 

2   Simulated System 

The simulated system was created in SIMPOW-STRI. The electrical system is com-
posed of a 210 kV and 170 MVA generator, a 210:10.2 kV and 170 MVA three phase 
power transformer, transmission lines of different lengths and a 120 MVA load with 
0,6 inductive power factor. The power transformer has a delta connection in the pri-
mary winding and a star connection in the secondary winding. The saturation of the 
core is considered. The basic scheme of system is shown in Figure 1.  

 

Fig. 1. Single line diagram of the simulated system 

Bus N0 is slack bus; Bus N1-N2 is breaker; Bus N2-NH is transmission line; Bus 
NH-NT2 is series reactor; Bus NT2-NT1 is power transformer; Bus NT1-NT is series 
reactor; Bus  NY is load bus.            

The fault, linear and non-linear working conditions that power transformer may subject 
are analyzed using SIMPOW-STRI and MATLAB-SimPower simulation programs. In 
these conditions, primary and secondary currents are recorded. These currents are  
first sampled. Current signals were sampled at 1 kHz, which means 20 samples on  
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50 Hz power frequency. These currents samples are reduced to a lower level using ratio of 
current transformers and then differential currents are calculated. Using full cycle data 
window discrete fourier transform, currents are extracted to harmonic components.  

2.1   The Case of Magnetizing Inrush  

When circuit breakers interrupt the flow of current in a transformer, the core retains 
some residual flux. Later, when the transformer is reenergized, the core can saturate. 
If it does, the primary winding draws large magnetizing currents containing a large 
and long lasting dc component, is rich in harmonics, from the power system. This 
phenomenon is called as magnetizing inrush. Fig. 2 is a diagram of inrush current 
recorded in the SIMPOW program. The waveform is belonging to proposed trans-
former that is energized through short transmission line. The diagram is recorded at 
energization angle of  0° and at no-load condition. 

 

Fig. 2. The diagram of transformer inrush current 

If sampled data sets that belong to diagram is analyzed it will seen that inrush cur-
rent contain much harmonic component. According the analysis, inrush current con-
tains the odd and even harmonic components. Diagram of harmonic analysis is shown 
in Fig.3a. Inrush current magnitude depends on several parameters. Some of them are: 
magnetic properties of the core material, remanence in the core, moment when a 
transformer is switched in etc. The most important one is point-on-voltage wave at the 
instant of energization. The change in magnitude of inrush current at different energi-
zation angles is shown in Fig.3b. 

     

Fig. 3. (a)Harmonic components of inrush current.(b) Inrush current at different energization 
angles. 
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For getting training and testing data sets, the transformer that is fed from different 
transmission line lengths was energized different energization angles. 

2.2   The Case of Internal and External Faults 

The fault types generated in primary and secondary were single-phase to ground fault, 
double-phase to ground fault, phase to phase fault and three-phase fault. For each 
fault type, varying the fault start time varied the fault inception angle.  

 

2.3   The Phenomenon of Magnetizing Inrush Current Caused by Voltage Sag 

Voltage sags are the main cause of more than 80% of the problems experienced in 
power systems. It has been observed that voltage recovery after voltage sag can pro-
duce transformer saturation. This saturation produces an inrush current similar to that 
of the transformer energization.  
    Reference [6] describes the effect of symmetrical voltage sags on three-phase three 
legged transformers. It shows the effects, which are depth, duration and initial point-
on-wave of sag duration, to the peak value of the inrush current. 

2.3.1   Simulated System Results 
Simulations were made based on proposed system that is explained in Section 2 in 
SIMPOW. In Fig.4 diagrams that were obtained using this program are shown. The 
simulation time is 1,5 sec. The transformer is energized at the instant 0,0128 sec., then 
it is loaded at the instant 0,6 sec. (120 MVA load with 0,6 inductive power factor) and 
voltage sag begins at the instant 0,8 sec. And ends at the instant 0,925 sec. Voltage 
sag magnitude is 50%. 

 

Fig. 4. Primary currents of the transformer in the case of voltage recovery after voltage sag 

The effects of point-on voltage wave with changing of sag duration are examined 
for several voltage magnitudes. The start-point of voltage sag is taken, 0° of the sine 
wave and the duration of voltage sag is changed for one cycle. The effective values of 
current according to the duration of voltage sag are shown in Fig.5. 
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Fig. 5. Transformer phase-a current at different voltage sag duration (T, one period time) 

It is seen that the highest value of inrush current occurs when the voltage sag dura-
tion is (n+1/2)T where n is real number. For getting training and testing data sets 
different voltage sag durations and depths are applied to the simulated system. 

2.3.2   Test System Results 
The transformer used for the test was 1kVA single-phase 240/120V. It is loaded resis-
tively 30% of nominal power. Voltage sag is applied by a 4,5kVA programmable 
three-phase source with an integrated arbitrary waveform generator (4500LX Califor-
nia Instrument). The data sets are obtained by using a 200 MHz scope meter (Scope 
meter 199-C). It is seen in Fig.6. 

 

Fig. 6. Test transformer voltage and currents in the case of voltage recovery after voltage sag 

3   Artificial Neural Network 

The artificial neural network represents a parallel, multi-layer information processing 
structure that enables the inclusion of expert knowledge into processing, recognition 
and classification of signals. 

Among the various artificial neural networks, the multilayer perception (MLP) can 
be considered as an information processing system whose function is defined from a 
set of examples describing both the inputs and the desired output. After a training 
step, the MLP is able to compute the right output not only from the input vectors of 
the examples set, but also from any unknown input vector [3,4]. 

We have used an improved method of error backpropagation (BP) learning algo-
rithm. The learning process of BP neural network is a error correction learning 
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method. The process includes forward propagation and back propagation. In the for-
ward propagating process, acted by node function, the input signals pass through the 
input layer and propagate to the hidden layer and output layer. The states of neurons 
at one layer only influence the next ones. If the expected results cannot get at the 
output layer, then the back propagation begins. The error signals are transmitted along 
with the coming paths for modifying the connecting weight coefficients between 
nodes to make the output error smallest. 

3.1   Simulation Cases for Generating Training and Testing Data 

The system simulated in order to get the pattern to train and test the ANN architecture 
was created in SIMPOW-STRI and MATLAB-SimPower System Toolbox. In both 
simulation programs saturable transformer was used. Since there is not saturable cur-
rent transformer model in SIMPOW-STRI program, the internal faults followed by 
current transformer saturation condition was analyzed using MATLAB. Many simula-
tion cases were investigated in this work: energization, overexcitation, normal, exter-
nal fault, voltage recovery after voltage sag, parallel energization, internal fault, ener-
gization with internal fault, internal faults followed by current transformer saturation.  

3.2   Network Architecture and Training 

A set of 224 training cases (160 case of them for no-fault conditions and 64 of them 
fault-conditions) and a set of 159 testing cases (81 case of them for no-fault condi-
tions and 78 of them fault-conditions) were used. Transformer primary and secondary 
current signals were sampled at 1kHz, which means 20 samples on 50 Hz power fre-
quency. In each case the total of samples was limited to have 200 samples. By using 
sampled current signals, differential currents were calculated. By using full-cycle data 
window discrete fourier transform, differential currents were extracted to harmonic 
components. Inverse Discrete Fourier Transform was used to obtain the samples of 
harmonic components in time domain. Differential currents and the ratio of its second 
harmonic components to fundamental were taken as inputs of the ANN. All inputs 
were normalized to the input that had the highest magnitude. The output of the ANN 
is trained to respond “1” for no-fault current (no trip command) and “0” for fault 
current (trip command of the differential relay).  

The MATLAB Neural Network Toolbox was used for generating network architec-
ture. There is no particular formula to choose suitable network architecture for an 
application. The suitable network size is found by trial and error. Small sized network 
may not be enough to map the function, but bigger sized network may not be a better 
choice as well. By trial and error, it was found that the suitable network size for this 
system with 2 inputs and 1 output was a network with two hidden layers of size 5 and 3. 
In this work, tansig functions are used for both the hidden layers and linear function is 
used for output layer. The study was made using both sigmoid and linear transfer 
function in output layer. Since we used hardlim function in the output of the network 
there appear no differences on the results. It means that linear combination of hidden 
layer gives sufficient result for this work. The feed-forward backpropagation tech-
nique is used for training ANN. The criterion function for the sum square errors is 
minimised according to the gradient descent procedure. The proposed neural network 
architecture is shown in Fig.7.  
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Fig. 7. Proposed neural network architecture 

In Fig.8 the training inputs and target is given and the output shows that proposed 
network is well trained. 

 

Fig. 8. Training inputs, target and output of the network 

In Fig.9 the testing inputs is given and the output shows that proposed network is 
successful and it can follow the fault and no-fault cases very well. 

 

Fig. 9. Test inputs and output of the network 
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3.3   Laboratory Transformer Test Results and Network Response  

In this section some practical simulation results and the response of proposed ANN 
are given. Showing the reliability of the proposed network and network adaptation to 
protect any transformer, laboratory tests were made. The system was described in 
section 2.3.2. 

3.3.1   The Case of Primary Internal Fault 
In this working condition internal short circuit between turns 1 and 104 was made in 
loaded test transformer. In Fig.10 the primary and secondary currents are shown. 

 

Fig. 10. Primary internal fault  (between 1. and 104. turns)  

In Fig.11 currents that belong to this condition and the response of the proposed 
network is shown. The proposed network operating time is about 0,002s. 

 

Fig. 11. Reduced primary and secondary currents and response of the network  

3.3.2   The Case of Voltage Recovery After Voltage Sag 
In this working condition 30% sag was created at the 0º of voltage and applied to 
loaded transformer. Voltage sag duration was applied during 5,5 periods. In Fig.12 
the primary and secondary currents are shown. 
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Fig. 12. Primary and Secondary Currents (voltage sag duration is 5.5T and depth is 30%) 

In Fig.13 currents that belong to this condition and the response of the proposed 
network is shown. It is seen that the network can discriminate this condition from 
fault condition. 

 

Fig. 13. Reduced primary and secondary currents and response of the network 

4   Conclusions 

A new approach of power transformer differential protection is proposed in this paper. 
The proposed relay can be suitable for all connection types of power transformers 
choosing a suitable current transformer normalization values and eliminating the phase 
shift between primary and secondary currents. According to the analysis of the training 
data set, the neural network was able to learn no-fault examples with accuracy 99% and 
fault examples with accuracy 98%. According to the analysis of the test data set, the 
neural network was able to discriminate no-fault examples with accuracy 100% and 
fault examples with accuracy 97%. The present work also includes effect of the voltage 
recovery after voltage dip. Important advantages of this protection are reliability in the 
case of voltage recovery after voltage dip and improved operating speed. The operating 
time of the relay is a half or less than a half cycle. 
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Abstract. An efficient and accurate algorithm for radiation dose eval-
uation is presented in this paper. Such computations are useful in the
radiotherapic treatment planning of tumors. The originality of our ap-
proach is to use a neural network which has been trained with several
homogeneous environments to deduce the doses in any kind of environ-
ment (possibly heterogeneous). Our algorithm is compared in several
representative contexts to a reference simulation code in the domain.

1 Introduction

Among all the treatments of tumors, external radiotherapy is certainly one of
lightest for the patient which gives good recovery results. However, such a treat-
ment must be accurately planned in order to maximize the radiation dose re-
ceived by the tumor while preserving the surrounding tissues.

In computer science, that problem corresponds to a global optimization prob-
lem whose objective is to find a series of particle beams which will produce the
desired radiation dose distribution in the environment of the tumor. That pro-
cess requires the possibility to evaluate the interest of a given beam and thus
implies the ability to compute its impact on the treated environment, that is to
say, to evaluate the radiation dose distribution resulting from that beam.

The standard method to evaluate the dose distribution in a given environment
represented in a numerical form on a computer is to perform a simulation of
the physical phenomenon. The most accurate and flexible simulations are those
based on the Monte-Carlo algorithm such as in BEAM-nrc [1]. Unfortunately,
they are very slow (several hours or days) and thus not usable in practice to
compute treatment plannings in a medical environment. There exist other kinds
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of simulations based on approximated analytic formulations which are faster but
which are not accurate enough to be used for treatment planning.

We propose in this paper an efficient and accurate algorithm to perform ra-
diation dose evaluation in any environment. Our approach consists in using a
particular algorithm together with a neural network previously trained with the
doses obtained in several homogeneous (only one material) environments. With
that method, it is possible to accurately evaluate the radiation dose distribution
in any environment, possibly heterogeneous (containing several materials).

In that context, the neural network is used as a universal approximator. It
cannot directly deduce the radiation doses in a heterogeneous environment but
it can be used in a specific algorithm to fastly give the dose received at a given
position in a given material if that position and material are in the range of
the learned domain. Moreover, since the accuracy of its results directly depends
on the accuracy of its training set, it suffices to build this set with accurate
simulation codes to obtain accurate results. The computation times required to
build the training set and to perform the learning itself do not reduce the interest
of our approach because those two steps are made only once and not during the
medical exploitation of the algorithm.

The following section describes the neural network used in our main algo-
rithm. Section 3 details our radiation dose evaluation algorithm. The results of
our algorithm are then qualitatively and quantitatively compared to those of a
Monte-Carlo simulation code (BEAM-nrc) in Section 4.

2 Homogeneous Evaluation Dose Neural Network

We present in this section the different features of the neural network to be
used in our main algorithm. Since this part of the problem has already been
the subject of previous studies, particularly in [2], we present here the latest
improvements brought to it. However, to clearly settle the problem, the global
form of the function to approximate is firstly given. Then, the structure of our
neural network is described followed by the learning method used.

2.1 Objective Function

Our objective function must give the radiation dose at a given point in a given
material. Hence, its inputs consists in the spatial position and the density of a
point and its output is the dose at that point. In order to simplify the problem
and to provide intuitive graphical representations, we consider the dose dis-
tribution situated on a plane in the middle of the tridimensional environment
and aligned with the axis of the accelerator as shown in Fig.1. That spatial
restriction does not reduce the generality of our method since the transition
from 2D to 3D environments does not imply any fundamental modification in
our process. The data structure used to represent the plane of interest is a two
dimensional discrete grid in which the absorbed dose is given at each discrete po-
sition in that grid. Then, using that representation, the dose distribution in any
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Fig. 2. Aspect of the radiation dose distribution
in a homogeneous water environment for a dis-
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homogeneous environment always has the same global aspect shown in Fig.2.In
the latter, sharp variations can be seen which are classically difficult cases in
function approximation.

The main features of that distribution, which vary from a material to another,
are the depth at which the dose distribution reaches is maximal value (usually
near the surface) and the way the dose decreases after the maxima. The width
of the function (around the axial position) is determined by the width of the
beam and not by the material in the environment.

2.2 Structure

Many results have shown that a multi-layer neural network can be used as a
universal approximator [3,4]. In our case, three layers (input, hidden and output)
are sufficient to obtain the desired results. The number of neurons in the input
layer is determined by the number of parameters of the objective function (spatial
position and density). The number of neurons in the output layer is reduced to
one neuron which delivers the dose. Finally, the number of neurons in the hidden
layer is the most difficult one to determine. It does not directly depend on the
number of inputs and outputs of the problem and there is no precise rule to
compute it. In fact, this number of neurons rather influences the ability of the
network to approximate high degree functions. However, it is not a good idea
to coarsely overestimate that number since that sharply increases the learning
time and may thus make the network unusable. Thus, to bypass that problem,
we have designed an incremental learning method which automatically sets up
the number of hidden neurons (see Section 2.3).

Also, it appears that the structure of the network has a direct impact over
the learning time. Some slight modifications of the classical structure of the
network can enhance its capacity to approximate high degree functions with
fewer neurons and thus to be trained faster. In our context, the HPU (Higher-
order Processing Unit) structure has obtained the best results among all the
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tested ones. We recall that a HPU neural network has additional inputs which
are polynomial combinations of the original inputs, see [5] for further details.

2.3 Learning

As mentioned above, the learning is also a critical step to obtain an accurate ap-
proximation of the function. The classical learning method used with this kind of
multi-layer network is the back-propagation. Nevertheless, although this method
gives good results, the learning process remains slow. Among all the tested op-
timizations of that process (see [6] for a survey of the existing optimizations),
the Resilient back Propagation (RPROP) has obtained the best results.

Contrary to the classical back-propagation, the RPROP algorithm [7] only
uses the sign of the error derivative to update the weights with an independent
value. That modification value is respectively increased or decreased whether
the error evolves in the same direction or not.

However, the efficient combination of the HPU structure and the RPROP
learning does not avoid the problem of fixing the number of hidden neurons.
Effectively, there is no a priori information which may indicate the best suited
number of hidden neurons to approximate a given function. To solve that prob-
lem, incremental constructive algorithms have been proposed [8,9]. Nonetheless,
due to the particular structure of our network, we had to design a quite different
version from those previously proposed.

The principle of our algorithm is, as in the other incremental algorithms,
to start with a given number of hidden neurons and to add new ones (one by
one) during the learning process. However, in our case, a RPROP learning is
performed over the initial HPU neural network until the error either reaches
the required accuracy or does not sensibly evolve any more according to a given
threshold. In the first case, the neural network has the desired accuracy and
the learning process stops. In the second case, the learning limit of the current
neural network is considered to be attained. Then, a neuron is added to the
hidden layer without modifying the other neurons and links. The added neuron
is initialized with null weights and threshold. After that, the learning process
is resumed with that new configuration of neural network and so on until the
desired accuracy is reached or the evolution of the error between two consecutive
configurations of networks becomes too small (under another given threshold).
In that last case, it is assumed that the overall limit of the network has been
reached and that adding hidden neurons will not improve the results.

Additionally, the possibility to specify an upper bound to the number of hid-
den neurons has also been included in the learning process in order to limit the
size of the network and, by the way, the learning time in cases of extremely slow
convergences (mostly with very high desired accuracies).

Finally, the resulting neural network can learn and accurately approximate
radiation doses in different homogeneous environments. However, a particular
algorithm which uses that neural network is required to compute doses in het-
erogeneous environments in order to take into account the particular behaviors
due to the material changes.
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3 Radiation Dose Evaluation Algorithm

This section details our general dose evaluation algorithm. A first part is devoted
to the presentation of the physical phenomenon and particularly to its behavior
at the interfaces between material changes. The second part details how that
behavior is taken into account in our algorithm.

3.1 Physical Phenomenon at the Interfaces Between Materials

As said in the introduction, the goal of the external radiotherapy is to expose
some cells to a radiation beam. When the beam enters the cellular tissues, only
a part of it is actually absorbed by the cells. Another part is deviated towards
the surrounding cells, that is called the diffusion, and a last part directly goes
through the cells without interacting with them. The resulting radiation dose
distribution in the cells mainly depends on two parameters, the beam intensity
and the density of the materials in the environment.

As we focus on the heterogeneity of the environment in the study, only one
beam intensity has been considered. This restriction only implies one less input
in the used neural network and does not modify the general process.

Concerning the density of each material in the environment, it sharply influ-
ences the dose distribution as can be seen in Fig.3 (left). The higher the density
is, the shallower the maximal dose absorption in the material is and the sharper
the dose decrease along the depth is. Moreover, the global dose distribution
is always continuous, even in heterogeneous environments. So, when there is a
longitudinal interface (perpendicular to the depth) between two materials there
must be a continuity between the dose of the last point in the first material and
the dose of the first point in the following material, as shown in Fig.3 (right).
As can be seen in that figure, there might be small artefacts at the interfaces
between materials. However, those artefacts are very localized and relatively
negligible in a first approximation. Thus, they are not taken into account in the
presented algorithm but will be the subject of a future work to obtain still more
accurate results.

As our computational algorithm can only have access to the dose distribu-
tions in homogeneous environments via the neural network, it has to compute
the depth shifting between the two materials corresponding to the dose at the
interface, as exhibited in Fig.3 (left), in order to get the following doses.

The modification of dose distribution in the environment does not only come
from the longitudinal interfaces but also from the lateral ones. Their influence
is due to the diffusion of the beam in the environment and it results in soft dose
transitions at the lateral interfaces. Here again, there are small artefacts at those
transitions. Nevertheless, for the same reasons as for longitudinal interfaces, that
local behavior is not taken into account in the presented algorithm and will be
the subject of a future work. Lateral dose distributions are given at a same depth
for two different materials in Fig.4 (left) and the resulting dose distribution at
the same depth for an environment composed of those two materials with the
lateral interface in the middle is shown in Fig.4 (right).
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titanium with a longitudinal interface at depth 8.7 (right)
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Fig. 4. Dose distributions along the lateral axis in homogeneous environments of water
and titanium (left) and dose distribution in a heterogeneous environment with a lateral
interface in the middle (right)

As already said, since the neural network has only been trained with homoge-
neous environments, it cannot directly manage the particular behaviors due to
material changes. So, a particular algorithm is needed to appropriately control
the use of the neural network and take into account those behaviors.

3.2 Description of the Algorithm

As said above, the dose distribution in a heterogeneous context nearly corre-
sponds to a collection of dose distributions in homogeneous contexts which are
depth shifted by the longitudinal interfaces and smoothed at the lateral ones.

Thus, the approximation of the radiation dose at each point in the environ-
ment can be made using the neural network trained with dose distributions in
homogeneous environments. However, in order to get the correct answer from
the neural network for a given point, it is needed to compute the inputs which
actually correspond to the current context of that point according to the material
changes in the environment.
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As seen in the description of the physical phenomenon, two kinds of material
changes must be taken into account in the dose evaluation. Since the compu-
tations related to each of those interfaces are different and can be performed
independently, they are separately described in the two following parts.

Longitudinal interfaces. As mentioned above, the problem with longitudinal
interfaces lies in the depth shifting implied in the dose distribution of a material
which is behind another one. Thus, when computing the dose at a given point
in the grid, our algorithm must take into account the dose and the density at
the point at the previous depth.

According to that dependency, the computation of the doses in the environ-
ment must be performed from the shallowest depths to the deepest ones. So, the
plane of interest in the environment is organized as a 2D grid whose lines are
along the depths and whose columns are along the lateral axis. Then, the dose
computations are performed line by line from the first line to the last one.

Since it is assumed that there is no material before the first line of the envi-
ronment, each point in that line is in the same context as the homogeneous one
and the doses can be directly computed by the neural network.

Concerning the following lines, the dose evaluation at each point depends
on the respective densities of the current point and the previous one along the
current column.

When those densities are different, our algorithm must initially find the depth
shifting needed to retrieve the dose at the previous point in the homogeneous
environment of the current material. Once that depth shifting is found, one just
has to add to it the distance between two consecutive lines in the grid to obtain
the depth in the homogeneous environment of the current material associated
to the actual physical context of the current point.

When the densities are the same, there is no material change and the depth
parameter of the neural network is directly deduced by adding the associated
depth of the previous point and the depth step between the lines of the grid.

Finally, the neural network can be used with that associated depth together
with the current density and lateral position to obtain the correct dose.

Lateral interfaces. As the lateral material interfaces produce soft dose transi-
tions, they can be approximated by a local dose ponderation at those interfaces
along the lateral axis. Thus, the process which takes into account that behavior
performs a filtering of the dose distribution obtained by the previous dose es-
timation. The principle is to resample the doses around the interface by using
a specified filter. The size of the filter (the number of neighbors taken into ac-
count) and its definition (the weights in the filter) can be adjusted to accurately
conform to the experimental or simulated results.

4 Results

In this section, our algorithm, implemented in standard C++ on a classical work-
station, is qualitatively and quantitatively compared to the standard Monte-Carlo
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code BEAM-nrc. The following results are obtained with a network trained with
two 100× 200 sized homogeneous environments of water and titanium.

4.1 Qualitative Evaluation

In order to get a complete evaluation of our algorithm, we have tested it in
several representative environments having the same grid size as the training.
The simplest one is a homogeneous environment of water. That case allows us to
verify the good learning of the neural network since there is no other treatment,
due to material changes, interfering with the computation.

There are three other cases which deal with heterogeneous contexts. All those
heterogeneous environments are composed of water and titanium. The water
(electronic density=1) has been chosen since most of the densities in the human
body are near it. The titanium has been chosen because it has a density which is
far higher (ed=3.7) than what is normally in a human body, but it is used in some
prosthesis. Thus, it represents quite an extreme case. Moreover, the important
density difference between those two materials amplifies the dose changes at the
interfaces, which represents a more difficult case for a dose evaluation algorithm.

The first heterogeneous environment only contains a longitudinal interface,
as in Fig.3 (right), and allows us to test the part of our algorithm dealing with
longitudinal interfaces. In a symmetrical way, the second environment only con-
tains a lateral interface, as in Fig.4 (right), and allows us to test the part of the
algorithm dealing with lateral interfaces. Finally, the last environment is more
complex and contains a cylinder of titanium immersed in water, as shown in
Fig.5. It permits to test the whole algorithm when there are combinations of
longitudinal and lateral interfaces.

The qualitative results of our algorithm are presented in Table 1. For each
test, two kinds of information are reported. The first one is the bias which
corresponds to the average of the relative errors of the doses computed by our
algorithm according to the doses computed by the Monte-Carlo code (used as the
reference). The second one is the error which is computed in the same way except
that the absolute values of the errors are used. It indicates the global accuracy

Lateral position

considered plane

Accelerator

Dmax

0

Lmax

−Lmax

0

Depth

cylinder of titanium

water
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Table 1. Bias and error of our algorithm in percentage of the reference doses

Tested environment bias (%) error (%)
homogeneous water 0.018 0.765
longitudinal interface -1.459 1.855
lateral interface without ponderation -0.154 1.479
lateral interface with ponderation 0.112 1.884
complex form 1.319 2.873

of our algorithm. Both information are computed on a representative area in the
environment which corresponds to the width of the beam and to 30 cm in depth.
Beyond that depth, the doses are, in most cases, no more representative.

First of all, it can be seen that our neural network is well trained since it has
a very small bias and an error below 1% in the homogeneous case. It can be seen
that the result of our algorithm presented in Fig.6 is very similar to the result
of the Monte-Carlo code shown in Fig.2.

The results for the other tests show that our dose evaluation algorithm pro-
vides accurate results since the errors stay below 3%. We recall that the tolerated
error for medical use is up to 5% and our results are quite far under this bound.

Concerning the longitudinal interface, it presents a slightly larger bias which
comes from the current accuracy of our dose shifting computation. Nonetheless,
since the error is quite close in absolute value to the bias, there can be expected
a final error similar to the homogeneous case once that bias is removed.

Concerning the lateral interface, a distinction has been made depending on
whether the ponderation is used or not. It can be seen that the ponderation tends
to reduce the bias but also slightly increases the error. That behavior mainly
comes from the inherent approximations in the ponderation method. However,
that test case is quite extreme and better accuracies can be expected in practice.

Finally, the last test concerns the cylinder of titanium in water. The results of
the Monte-Carlo code and of our algorithm are respectively presented in Fig.7.
Here again, most of the error comes from the bias which is itself due to the
shiftings errors. However, even if the error is larger than in the other cases, it
remains quite small and completely acceptable in practical use.
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4.2 Quantitative Evaluation

As said in the introduction, the standard accurate techniques to evaluate dose
distributions are highly time-consuming, typically several hours or days. In our
algorithm, all the time-consuming parts of the process can be performed only
once and before the use of the dose evaluation algorithm in medical applications.
Hence, we obtain a largely faster algorithm than the standard Monte-Carlo tech-
niques. In the previous tests, the computation times range from 1.002s for the
homogeneous case to 1.409s for the complex one, on a classical Pentium IV 3,6Gz
with 1Go of RAM.

5 Conclusion

An accurate and efficient algorithm for radiation dose evaluation in heteroge-
neous environments has been described. It uses a neural network trained with
dose distributions from several homogeneous environments.

The neural network used in our algorithm is a three-layer HPU whose training
is performed with the RPROP algorithm. Moreover, an incremental learning
algorithm has been developed to automatically set the number of hidden neurons.
That learning starts with a given number of hidden neurons and automatically
adds new ones as required to reach the desired accuracy.

It has been pointed out that a particular algorithm is required to properly
use the neural network to compute the doses in heterogeneous environments.
Effectively, from the nature of its training set, the neural network cannot directly
manage the particular behaviors at the interfaces between materials.

Experimental results show that the resulting process is accurate since it ob-
tains less than 3% of error according to a standard Monte-Carlo code for rep-
resentative test examples. Moreover, it has the great advantage to be largely
faster since its computation times are of the order of the second for a complete
2D environment.

All those results are very promising and future works are already planned to
enhance some parts of the process which let expect still better performances.
With such a dose evaluation process, an efficient and accurate fully automatic
system to plan radio-therapeutic treatments of cancerous tumors can be seriously
envisaged in future developments.
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Abstract. Analysis on magnetic resonance spectra (MRS) data gives a deep in-
sight into pathology of many types of tumors. In this paper, a new method 
based on independent component analysis (ICA) and correlation analysis is 
proposed for MRS tumour data structure analysis. First, independent compo-
nents and their coefficients are derived by ICA. Those components are inter-
preted in terms of metabolites, which interrelate with each other in tissues. Then 
correlation analysis is performed to reveal the interrelationship on coefficient of 
ICs, where residue dependence of components of metabolites remains. The 
method was performed on MRS data of hepatic encephalopathy. Experimental 
results reveal the intrinsic data structure and describe the pathological interrela-
tion between parts of the structure successfully. 

1   Introduction 

Magnetic Resonance Spectra (MRS) has a strong ability of monitoring the metabo-
lism of tissues for clinical purpose, in which chemical information can be obtained 
from a well-defined region of interest. In MR spectrum, peaks corresponding to dif-
ferent chemical substances can be observed. Particularly, in 1H MR spectra of normal 
and pathological brain resonances from metabolites, such as N-Acetylaspartate 
(NAA), Choline (Cho), Creatine (Cr), Lactate and etc., are presented together. 
Thereby, MRS can provide much clear characteristic information of tissues than mag-
netic resonance imaging technique does. MRS patterns are much reliable in clinical 
tumor diagnosis and have been used extensively in identification of tumors, where 
standard MR imaging methods usually fail [3]. However, studies indicated that the 
densities of certain metabolites vary in pathological tissues with respect to tumor type 
and grade, which reflect as different structure of peaks corresponding to those me-
tabolites in MRS. Complicated MRS structure makes a big obstacle for clinicians on 
MRS interpretation. 

There has been much of research interest in the use of statistical methods, particu-
larly pattern recognition techniques for analysis, interpretation and classification of 
MRS data [2,4-7]. The fundamental idea of previous research is that MRS data is a 
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linear combination of a group of components corresponding to metabolites. Based on 
the idea, many works have been contributed to the decomposition of MRS and at-
tempted to recover these individual components respectively [1]. Contrasted to statis-
tical methods, model-based decomposition methods were usually used [14]. However, 
model-based methods require priori knowledge and human interferences. Further-
more, the accuracy of results from model-based methods is reduced in the situation 
where there are noise presented and peaks overlapped in MRS. Whereas, statistical 
methods, such as principal component analysis (PCA) and bayesian analysis, which 
have more flexibility to tackle complicated situations using statistical information of 
dataset, have been widely studied. However, clinical MRS usually has poor signal-to-
noise-ratio and overlapping peaks, which contains circumstance artifacts and irregular 
baselines. Meanwhile, the dataset usually is small size. Hence, those statistical meth-
ods could not present good performance, and sometimes fail on MRS data analysis.  

ICA is a new statistical method which has been widely used in the field of bio-
medical signal processing [1,8,9]. It deals with the problem that recovers the hidden 
constituent components from observed linearly mixing signals under the assumption 
of mutual independence of those components. As mentioned above, MRS is an inte-
grating structure of a group of peaks corresponding to certain metabolites. Each un-
derlying metabolite could be considered as a random variable. So based on this model 
ICA is considered as a suitable method for MRS structure analysis. There exist some 
successfully applications which decomposed MRS into biomedical interpretable inde-
pendent components [1]. Unfortunately, metabolites in tissues reflected in MRS are 
not mutually independent. Actually, there is biological interrelation between their 
changes corresponding to pathological mechanism. So in spite of the assumption of 
independence, components derived by ICA have residue dependence. The problem 
here is that how to find the residue dependence and then to present a more accurate 
interpretation of MRS data. 

In this paper, a new method to solve the above problem by combining ICA and 
correlation analysis is proposed. The main idea is that the interrelation between com-
ponents derived by ICA was measured by correlation coefficient (CorCoef), through 
spearman correlation analysis. According to those coefficients, similar meaningful 
components should be combined and different kinds of components should be consid-
ered as interrelated with each other. Thus, a further insight into the mechanism of 
diseases can be gained. 

2   Material and Methods 

2.1   Data Acquisition 

This research was performed on a clinical 1.5T GE Horizon MRI scanner (General 
Electric, Waukesha, WI) with high speed gradients. The dataset are acquired from 33 
subjects, including 10 normal volunteers and 23 brain tumor (hepatic encephalopathy: 
HE) patients. All subjects authorized the collected MRS data using in our research. 
The data collected for the study is Single-voxel In Vivo Human HE MR spectra data. 
Two types of data acquisition (PRESS and STEAM) were used with an echo time 
(TE) at 35ms and a repetition time (TR) at 1500ms. Therefore, every subject could 
contribute more than one sample to dataset. The final dataset comprises a total of 80 
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spectra, including 23 normal samples and 57 tumor samples, which assigned classes 
by clinical examination. Some of data are with poor signal-to-noise-ratio. After post 
processing, spectra are still additionally corrupted by technical artifacts or uneven 
liquid baselines. All the spectra data are sampled into 512 dimensions, representing 
the ppm range from 4.295ppm to -0.571ppm. 

2.2   Independent Component Analysis and FastICA 

ICA extracts independent components from their mixing data. A good survey has 
been presented by Hyvarinen [9]. One of implementation of ICA is the FastICA by 
Hugo Gävert etc [13]. It takes mutual information as the measure of independence 
between components and furthermore introduces a new kind of contrast function for 
ICA which is approximated through negentropy. The approximation is of the form: 

2( ) [E{ ( )} E{ ( )}]J s c G s G v≈ − , where s denotes the random variable of zero mean and 

unit variance, Gaussian variable (0,1)v N , and c is irrelevant constant. Non-

quadratic function ( )G  should be chosen with respect to the applications. 

2.3   Spearman Correlation Analysis 

There are two kinds of commonly used correlation analysis methods: Pearson correla-
tion analysis and Spearman correlation analysis. The difference between them is that 
the former is a parametric method while the latter is a nonparametric one. In detail, 
the former assumes the distribution of correlated variances belong to a Gaussian fam-
ily while the latter has no such assumptions on variances. 

Let ,x y  represent two different rows of A, and ,i ix y  denote the observation of 

,x y  respectively and ,i is t denote rank order of ,i ix y . Then calculation of the spear-

man rank order CorCoef is as follows: 
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where [ 1,1]xyr ∈ − .

The CorCoef xyr , ranging from -1 to 1, can be interpreted in terms of the interrela-

tion between x and y as listed in Table 1.

Table 1. Rules for the interpretation of CorCoef 

Value of rxy Interpretation 
r = 1.0 x and y vary in the exact same way. 

0 < r < 1 x and y increase or decrease together. 
r= 0 No correlation. 

-1 < r < 0 One increases as the other decreases. 
r = -1.0 x and y vary in the inverse way. 
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3   MRS Data Structure Analysis 

As there are some abnormal spectra called outlier in the data, PCA was utilized to 
remove them from the dataset at first. Note that these outliers caused by unsuccess-
fully post processing contain abrupt peaks or heavily contained noise or uneven base-
lines, which should bias the sequential results seriously. First, PCA transforms the 
dataset into a new space coordinated by vectors which represents the main distribu-
tions of data. 512 PCs were derived from 512 dimension data. In this space, Outliers 
should have much bigger loadings at certain direction of vector than normal data, as 
illustrated in Fig. 1(b). Thus, they can be removed by thresholding on loadings of 
principal components (PCs). The value of thresholding should be chosen carefully in 
case that the samples which have the abnormal MRS indicating the difference be-
tween normal and patients were removed. Only the loadings of the front part of total 
512 PCs are referenced because PCs are ordered and mainly represents the distribu-
tion of dataset. We calculated the mean and standard variance of loadings and then the 
threshold of loading was determined as three times the standard variance according to 
experience.  

After outlier removed, the FastICA algorithm was performed on the remaining 
samples. First, the type of nonlinearity function ( )g , the derivative of ( )G , was 

chosen. The criteria to choose the nonlinearity is to investigate which one can make a 
better meaningful decomposition than others. There are four options for nonlinearity: 
‘pow3’, ‘tanh’, ‘gauss’ and ‘skew’ listed in Table 2. The FastICA algorithm was 
performed on the dataset with every nonlinearity function four times to make sure 
good results because the FastICA initiate the separating matrix W randomly.  

Table 2. Nonlinearity functions using in the  FastICA package

nonlinearity Function 
pow3 3( )g x x=
tanh ( ) tanh( )g x x=

gauss 2
( ) exp( )2

xg x u=

skew 2( )g x x=

To evaluate the results, we proposed two criteria: 1) SNR of ICs and 2) nICR: ratio 
of first N IC on the whole dataset. SNR of ICs was defined as 

snr
std

MaxI V= (2)

where Max and Vstd denotes the max absolute value and standard variation of IC 
respectively. nICR is calculated as follows: the first N IC with their coefficients 
was used to reconstruct a new dataset D, Dsum and Ssum is the sum vector of D with 
respect to rows (samples), and then nICR is defined as
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.sum sumnICR D S= (3)

Isnr describes the whole quality of IC set. nICR reflects the ability of nonlinearity 
extracting meaningful components because those meaningful components always list 
at front relatively. 

The proper number of independent components should be decided. There are two 
reasons: first, the FastICA algorithm assumes that the number of underlying compo-
nents is equal to that of observations. However, the intrinsic dimension of MRS is 
comparably low, as far as the number of observations is concerned. Therefore, not all 
IC are necessary. Second, ICA as a kind of data-driven methods is very sensitive to 
the quality of inputs data. Especially when there is insufficient data artifacts like 
bumps and spikes are generated in IC sets from dataset not as expected. They must be 
eliminated from the results. So it is necessary tuning the parameter to decide the num-
ber of independent components in order that all the meaningful components could be 
reserved and artifacts and noise elements could be excluded from the final component 
set. The meaningful components have interpretable peaks and artifacts are those that 
have a narrow sharp and uninterpretable peak. Each metabolite corresponds to a peak 
with a fixed position in MR spectrum. The meaningful component is labeled as the 
metabolite, peak of which is no more than 0.01ppm closer to the dominated peak of 
the component. The reference positions of some important metabolites are listed in 
Table 3. Thus the intrinsic dimension of MRS is about 8. 

Table 3. Reference position of some metabolites 

metabo-
lites

NAA Cho Lac. myo-
In 

Cr. Taur. liquids Glx 

position 
(ppm)

2.009 3.209 1.318 3.275 3.0 3.418 1.4-0.9 2.45-
2.28

Correlation analysis was used to identify the correlationship of metabolites. As 
mentioned above, there are residue dependences on components in spite of the as-
sumption of mutual independence of ICA on them. While a group of proper inde-
pendent components was obtained, a mixing matrix A was generated which is com-
posed of coefficient of the components. Each row of the matrix A corresponding to 
one component represents the density vector of metabolites or other elements. The 
nonparametric spearman CorCoefs were calculated on rows of matrix A. Thus a 
square correlation matrix is obtained, dimension of which are indexed by labeled 
components. Each element of the matrix corresponds to a pair of components. Obvi-
ously, the diagonal elements of matrix are ‘1’. 

Based on correlation matrix, the relation between metabolites could be analyzed. In 
most cases, only a few pair of variables is interrelated and thus has a relatively high 
value of CorCoef. In this study, only if the absolute value of a matrix element is 
above 0.5 the corresponding two variables are considered as strongly correlated with 
each other. Depending on the positive or negative sign of the value, the correlation-
ship is regarded as in the same or inverse way. The variables were grouped which 
mutually interrelated. 
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4   Experimental Results 

PCA removed bad samples out of our dataset. 512 PCs are derived by PCA decompo-
sition from 512 dimension dataset. First 20 PCs contributing 90% energy of the total 
dataset was selected as references of the removing methods. Each PC contains some 
dominated peaks, as shown in Fig. 1(a).Hence, a big loading on those PCs means that 
the sample has unusual big peaks. 36 samples are marked as outlier, loadings of 
which are bigger than 3 times than standard variance. One PC, its corresponding 
scores, and the corresponding removed samples are illustrated in Fig. 1.  

Fig. 1. Removing outlier by PCA. (a) the 2nd principal component. (b) The loading of the 
above PC of samples. (c) the removed samples according to (b). 

All the samples were manually checked to guarantee that no bad sample was ne-
glected. It could be learn from the results that those heavily contaminated by noise or 
corrupted by unsuppressed liquid signals peaks or distorted are eliminated. 

ICA decomposed the remaining data into a group of interpretable ‘independent’ 
components. The FastICA package provides four types of nonlinearity. After compar-
ing on IC results, we learned that the nonlinearity ‘tanh’ is a better option than others. 
The detail results are listed in Table 4. The default number of ICs in the experiments 
is 46, the size of the dataset. However, only pow3 gave 46 ICs in four times most 
quickly, skew failed to converge before the default number of IC reaching, and the 
other two nonlinearities run in moderate time and did not always converge. 

The two criteria proposed above show us an interesting result which was listed in 
Table 4. The average SNR of components range about 6. Pow3 presents the highest 
value of SNR, followed by skew, tanh and gauss orderly. It seems that pow3 gives the 
best ICs while gauss the worse. However, It can learn from every ICs that the ICs of 
pow3 tends to be an over fitting result with sharp-peaked artifacts and that some ICs 
of gauss contained more than one peaks which means the failure of MRS decomposi-
tion to some extent. nICR of pow3 (N=15) is too low in that overfitting caused too 
much meaningless ICs, while tanh and gauss are much better than skew. Notice that 
when all the ICs of skew were used to remix the dataset, the ratio of remixing data to 
 

 
(a) 

(b) (c) 
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Table 4. Decomposition results derived from the FastICA algorithm in terms of nonlinearity 

Experiments # of IC set SNR nICR 
nonlinearity #time   15 All 

1 46 6.9357 0.3567 1.0 
2 46 6.8485 0.5288 1.0 
3 46 6.8426 0.5437 1.0 

pow3 

4 46 6.8081 0.3567 1.0 
1 46 6.0040 0.7402 1.0 
2 43 6.2982 0.7245 0.9993 
3 46 6.0632 0.6985 1.0 

tanh 

4 42 6.2744 0.6473 0.9901 
1 41 5.7593 0.7569 0.9931 
2 42 5.8079 0.6993 0.9421 
3 44 5.6556 0.8211 0.9746 

gauss 

4 46 5.5588 0.6609 1.0 
1 40 6.7985 0.5911 0.6326 
2 39 6.8461 0.5775 0.7252 
3 43 6.6652 0.6601 0.8355 

skew 

4 41 6.7979 0.6527 0.8794 

the original data is only about 0.6-0.88. There may be two reasons for this: the failure 
of convergence and the bad quality of ICs. So, skew is untrustworthy. Considering the 
above results, it could be concluded that tanh is much reliable and effective than the 
others and therefore its results were adopted for the sequent analysis. 

A proper number of ICs is chosen while tanh used. It was observed that the mean-
ingful components always ranked at front. Considering that the intrinsic dimension of 
MRS data is about 10, we choose the first 15 ICs which correspond to the most im-
portant metabolites related to tumors and thus all valuable components are included 
while others irrelevant elements were excluded. Fig. 2 shows one of the 15 IC results 
extracting from the remaining dataset. Most of those ICs can be interpreted in terms 
of metabolites.  

Spearman CorCoefs matrix was calculated on the above components. Every pairs 
of components with a strong correlation (CorCoef larger than 0.5) were illustrated in 
Fig. 3. As shown in Fig. 3, there are two kinds of correlation: Glux and Cho corre-
lated negatively, that is to say, when one of them increasing, the other would de-
crease. All the other correlations are positive, which means correlated components 
vary in the same way. Study had shown that the MR spectrum of hepatic encephalo-
pathy is significantly characterized by markedly reduced myo-Inositol, decreased Cho 
and Taurine, and elevated glutamine [10-12]. This relation is certified by our results 
that When tumour occurs in tissues, Glux will increase, Cho, Taurine and myo-In will 
decrease simultaneously. Twin components mentioned above, now connected with 
each other. It should be mentioned that CorCoef between Glux and *Glux, Cr. and 
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Fig. 2 The first 15 ICs obtained by the FastICA algorithm with nonlinearity tanh, are labeled 
with interpreting metabolites. The initial ‘*’ in label means a components with a slight shift 
from a reference position. 

 

Fig. 3. Correlation between components. Correlation is significant at the 0.01 level. Each node 
represents a component, which labeled in the form of the abbreviation of interpreted metabolite 
and the rank in IC set. Each association line represents a big CorCoef. There are two styles of 
lines: solid line means positive CorCoef and dash line means negative CorCoef. 

*Cr. are not above 0.5, but very close to it. Except the above CorCoef, the other Cor-
Coefs are relatively or much lower than 0.5. Hence, it can be learn from above that 
correlation analysis on residue dependence could not only reveal the intrinsic struc-
ture of relationship between metabolites but also links the components which are from 
the same metabolite but split by variation. 

5   Discussion 

Based on ICA, the dependency between metabolites of HE in MRS was studied. In 
theory, components that derived from ICA are mutually independent. Hence, when 
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there is dependency between the underlying components of the real problem, the 
model of ICA is unfit. However, if a proper nonlinearity is chosen ICA could still 
separate those components appropriately from their mixing with dependency remain-
ing in coefficients of ICs or with combining components from more than one compo-
nent. Especially when data are insufficient for fully analysis, ICA may not decompose 
them thoroughly into mutually independent components and thus much dependency 
would remain. Residue dependency at coefficients of ICs provides a way of having an 
insight into the intrinsic structure of data. 

There are some means for the study of dependence between components. In our 
study, correlation analysis was used to measure the dependence relation between 
metabolites in MR spectra. It is because that pathological study on metabolites in 
MRS only concerns the density of metabolites and their relative ratios. Though our 
method could not generate rules for diagnosis, it could mine the coherence of metabo-
lites and thus furthers the study on MRS data analysis. The Spearman test in stead of 
the Pearson test in our study was used in that the components derived by ICA are 
assumed to be non-Gaussinity. The correlation between improperly separated compo-
nents might be taken into account. Although when study was confined on carefully 
examined meaningful components, the result should be reliable. 

6   Conclusions 

In this paper, a new method using ICA and correlation analysis was presented for 
MRS data analysis. First, PCA was used to eliminate bad quality samples. Then ICA 
extracts interpretable components from remaining MRS data. Two criteria were pro-
posed for evaluating ICs. They present much insight on ICs. Consequently, the Spear-
man correlation analysis was performed on the coefficient of ICs to investigate the 
relation between metabolites. Correlation coefficients indicate that when the density 
of Glux increases, that of myo-In, Cho, and Taurine will decrease accordingly. This 
coincides with the pathological analysis of hepatic encephalopathy. According to 
correlation coefficient, the split components caused by variations in data should be 
identified by the quantities of correlation. 

Our study shows that residue dependence of ICA is helpful to analysis the intrinsic 
structure and interrelation of metabolites of MRS data for clinical purpose. The new 
method furthers the application of ICA on MRS data.  
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Abstract. Data analysis in modern biomedical research has to integrate
data from different sources, like microarray, clinical and categorical data,
so called multi-modal data. The reef SOM, a metaphoric display, is ap-
plied and further improved such that it allows the simultaneous display of
biomedical multi-modal data for an exploratory analysis. Visualizations
of microarray, clinical, and category data are combined in one informative
and entertaining image. The U-matrix of the SOM trained on microarray
data is visualized as an underwater sea bed using color and texture. The
clinical data and category data are integrated in the form of fish shaped
glyphs. The resulting images are intuitive, entertaining and can easily
be interpreted by the biomedical collaborator, since specific knowledge
about the SOM algorithm is not required. Visual inspection enables the
detection of interesting structural patterns in the multi-modal data when
browsing through and zooming into the image. Results of such an anal-
ysis are presented for the van’t Veer data set.

Keywords: data mining, exploratory data analysis, semantic data inte-
gration, information visualization, self organizing maps, neural networks,
multi-modal data, complex data.

1 Introduction

In modern biomedical research data from different sources, so called multi-modal
data or complex data, is often linked together to allow a holistic analysis. Espe-
cially in clinical studies concerning cancer research, clinical and categorical data
is completed by gene expression data from microarray experiments in the last
decade [1,2]. The clinical data may contain age, weight or sex of the patient, the
size or the grade of the tumor, information about the lymph nodes, or results
from a histological analysis [3]. The categorical data contain a classification of
the tumor regarding its malignancy. This might be the patients survival time af-
ter the analysis or the success of a chemotherapy. In the last years, the number
of experiments and studies using microarray technology has increased consider-
ably. Especially for breast cancer research there are at least 39 studies, and for
about two third of them data is available on the internet [4]. Up to 25,000 genes
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can be analyzed simultaneously, even though often only a fraction of these genes
is selected and used for further analysis [5]. The major challenge is how all this
clinical, categorical and genomic data can be analyzed in an integrative manner.
This problem is further increased by the high dimensionality of the data. Usually
the number of available experiments (number of samples) is approximately of
the same magnitude or even smaller than the number of genes (dimensionality
of data space) analyzed, which makes the application of statistical test meth-
ods impracticable. Many machine learning methods can handle such difficulties,
but most of them are based on pairwise similarities, which cannot be defined
appropriately for multi-modal data. Considering all these aspects makes a more
interactive, exploratory data analysis seem more reasonable. To allow an ex-
ploratory study, the multi-modal data, which is usually distributed in several
media (tables, flat files) must be integrated into one representation, combining
visualizations of all kinds of available data. A simultaneous visual inspection of
all modalities enables the detection of patterns and structure in the data when
browsing through and zooming into the image.

In this paper we propose an integrative multi-modal visualization approach
based on the Self-Organizing Map (SOM) [6]. The basic idea is to render a
multi-modal visualization to display multi-modal data. In this work we design a
visualization consisting of dimension reduction and multivariate object display,
i. e. data glyphs. The SOM algorithm comprises the aspects dimension reduction,
clustering and visualization and is well suited for the analysis and visualization
of the microarray data [7,8].

Thus the first data modality, the microarray data is fed into the SOM. Dis-
playing the trained SOM with the U-matrix approach [9] visualizes structural
features of the high dimensional microarray data space. We expand the visual-
ized U-matrix by introducing multivariate data glyphs in order to display clinical
and categorical data.

Using a metaphoric display approach [10] the SOMs U-matrix is rendered
as an underwater sea bed with color and texture. In contrast to the reef SOM
presented in [10] the underwater landscape can then be completed with glyphs
generated from data from different sources, which was not used for training of
the SOM. In this work we use a kind of metaphoric glyph, a so called fish glyph.
The fish glyphs have two groups of parameters that describe shape or colors.
We use this to display clinical data by shape and categorical features with color.
The resulting images are both informative and entertaining and can easily be
interpreted by the biomedical collaborator, since specific knowledge about the
SOM algorithm is not required. Its visual inspection might reveal interesting
structural pattern in microarray, clinical and categorical data.

2 SOM-Based Sea Bed Rendering

The self-organizing map as proposed in [11] provides an unsupervised learning
algorithm for dimension reduction, clustering and visualization which is easy
to implement [12]. To visualize the trained SOM, several approaches have been



800 C. Martin, H. grosse Deters, and T.W. Nattkemper

proposed: The feature density of the trained SOM prototype vectors is displayed
based on smoothed histograms [13], the U-matrix [9], or by clustering the pro-
totype vectors [14,15]. For the special case of very large SOMs, fish eye view or
fractal view have been proposed [16]. In addition, the SOM visualization can be
augmented by text labels, as for instance the WEBSOM [17] or a single feature
analysis with a component plane view [18]. Also automatic feature selection has
been proposed to render icons for displaying the SOM prototype vectors on a
grid [19].

The U-matrix as proposed by Ultsch [9] is probably the most applied visual-
ization framework for SOM, especially for SOM with a large number of neurons.
The U-matrix visualizes the data structure by a display of approximated data
densities at the SOM grid nodes. For each node, the average distance to all
its neighboring nodes is computed. These average distances are displayed by a
height profile or by a colored plane. In this work we combine both techniques
and visualize the U-matrix as a colored height profile. Since we consider an un-
derwater scenario we visualize the U-matrix the other way round, i. e. we draw
the depths of the sea bed proportional to the average distances. So in the display
clusters of very different data are separated by valleys. However, it should be
noticed that in the case of overlapped and interconnected clusters as they often
occur when analyzing microarray data, the U-matrix approach might show some
limitations.

3 The Fish Glyph

Glyphs (or icons) are parameterized geometrical models that are used for an
integrated display of multivariate data items. The idea is to map the variables
of one data item to the parameters of one glyph so that the visual appearance
of the glyph encodes the data variables.

Glyph approaches can be classified as being abstract or metaphoric. Abstract
glyphs are basic geometric models without direct symbolic or semantic interpre-
tation like profiles [20], stars [21], boxes [22]. To display more variables or also
data relations, abstract glyphs can get quite complex like the customized glyphs
[23,24], shapes [25] or infochrystals [26]. Such glyphs can be powerful tools for a
compact display of a large number of variables and relations. However, the user
must spend considerable time for training to be able to use these tools effectively.

Since the idea of using metaphoric display is quite natural, metaphoric glyphs
have been proposed in the earliest years of information visualization already. In
1970, the well known Chernoff faces [27] were introduced for multivariate data
display. The idea of rendering data faces may get new stimuli from advances in
computer graphics and animation [28] since a large range of algorithms exist to
render faces in different emotional states. However, the successful application of
Chernoff faces seems to be restricted to data with a one-dimensional substruc-
ture, like social and economic parameters as in [29,30,31]. Similar approaches use
stick figures [32], a parameterized tree [33] or wheels [34]. To visualize the SOM
in a metaphoric manner, we need to synchronize the designs of the U-matrix
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clinical data set selection

microarray data set selection
glyph type visualization

colors

RGB

model
fish

geometrical

parameters

fine tuning
reef SOM

menu for associating features to parameters start rendering

Fig. 1. The fish glyph GUI: In the left half a fish cartoon shows the geometrical pa-
rameters pk of the fish glyph. This is used for associating the clinical variables and
categories to the parameters x

(i)
j . Parameters p0, . . . , p11, p15 and p16 encode the geo-

metrical properties of the fish and can be used to display different clinical variables.
Parameters p12 to p14 encode the RGB color of the fish and can be used to display
a category. The right side is used to map clinical variables and categories to the 17
fish glyph parameters. A value of −1 encodes, that no variable is associated to this
parameter. In this case a default value is taken. In the lower part of the GUI, fine
tuning can be applied, parameter settings can be stored and loaded and the rendering
process of the reef SOM can be triggered.

landscape and the data glyphs. To this end we developed a fish shaped glyph.
The fish glyph is used to display (i) the prototypes of the SOM or (ii) all the
items of the data set or (iii) both. In mode (ii) and (iii) the data set items are
to be visualized on top of the sea bed, i. e. the SOM. But, the computation of
an appropriate two dimensional grid position for each data item on the SOM
(relative to the SOM node coordinates) is a nontrivial problem. The most naive
approach is to take the grid coordinates of the winner node This approach must
fail, if the number of data items per winner node exceeds one, since in this case
two fish must be rendered at the same position. A more advanced solution is to
interpolate the two dimensional position from the grid node positions of several
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b

c

d

e

a

Fig. 2. A flight into the reef SOM of the microarray data set is shown. The sea bed
is barely divided by one abyss (a) into two plateaus (b and c). An inspection of the
fish glyphs reveals, that the top left plateau is dominated by green fish corresponding
to patients who survived the next five years (d). The front is dominated by red fish
(patients who died within the next five years) which are placed in the abyss as well as
on the plateau (e).

nodes. In the literature, some approaches have been proposed, most of them
applying advanced interpolation algorithms. In our first version of the software,
we disclaim an exact positioning of the data items on the SOM and render each
data item at a random position in the close vicinity of its winner node. On first
sight, this strategy looks a bit crude, but it is motivated by several arguments.
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First, several solutions to the interpolation problem have been proposed and
there is not one solution which is accepted by the entire community. Second,
one important feature of each data item is its cluster prototype, i. e. its nearest
neighbor. If the interpolation leads to suboptimal results, the data item, or its
glyph, is rendered at a position closer to another node , which makes it visually
infeasible to identify the winner node correctly. Third, the random strategy is
the computationally least expensive one.

The fish model consists of two kinds of parameters, 14 geometric parameters
(six angles and eight arc lengths) and three color values (RGB). The mapping
of the clinical values to the fish parameters can either be done automatically or
can be defined by the user using the fish glyph GUI (Figure 1). Prior knowledge
can be used to map similar clinical values to related fish parameters.

In Figure 2 a flight into the reef SOM illustrates, how the color and shape of
fish, rendered on top of a U-matrix sea bed, varies.

4 Application

To illustrate the application and usefulness of the reef SOM for the exploratory
analysis of biomedical multi-modal data, results are shown for the van’t Veer
breast cancer data set [3]. It consists of microarray, clinical and categorical data
and is available via internet. The microarray data comprises the analysis of 25000
genes for 78 primary breast samples. For each gene and sample the logarithm of
basis 10 of the intensity and the ratio ([−2, 2]) are provided. The original gene
pool was reduced (mainly by using statistical methods) in three steps to 5000,
230 and finally 70 genes forming sets of marker genes that are somehow related
with breast cancer outcome [3]. Since gene selection usually helps to improve the
results in the domain of microarray data, we focus on the gene set with 70 genes
to compute the SOM reef. More sophisticated gene selection techniques might
further improve the SOM reef results but are not considered here. The clinical
data contain the age of the subject (28 to 62 years), the grade (I to III) and
diameter (2 to 55 mm) of the tumor, the oestrogen (0 to 100) and progesterone
receptor status (0 to 100), angioinvasion (yes or no), metastasis (yes or no) and
lymphocytic infiltrate (yes or no). A subset of these variables is used to render
the shape of the fish glyphs. The categorical data consists in the subjects survival
during the following five years (yes or no). This information is used to define the
color of the fish.

4.1 Mapping

In Table 1 the mapping of the clinical and categorical features to the parameters
of the fish glyph is summarized. In order to enhance the contrast between differ-
ent fish glyphs the software allows to map a feature to more than one parameter
of the fish glyph. Here this is done for the clinical features grade, diameter and
age which are mapped to four parameters (two lengths and two arcs) each.
Figure 3 shows four visualizations of fish glyphs and illustrates the significance
of their shape and color.
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Table 1. The mapping of the clinical and categorical features to the parameters of the
fish glyph

type feature visualization parameter fish glyph parameter
clinical grade shape x0 . . . x3 top
clinical diameter shape x4 . . . x7 bottom
clinical age shape x8 . . . x11 tail (caudal) fin
clinical lymphocytic infiltrate shape x15 top (dorsal) fin
clinical angioinvasion shape x16 lower (pectoral) fin
category survival ≤ 5 years color x12 red
category survival > 5 years color x13 green

a) b) c) d)

Fig. 3. Fish a) represents a subject with a high age (large tail fin), who survived the
following five years (green color). There is no lymphocytic infiltrate (no top fin) and
no angioinvasion (no lower fin). The tumor has grade III (huge top) and has a medium
diameter (medium bottom). Fish b) represents a subject with a high age (large tail fin),
who survived the following five years (green color). There is no lymphocytic infiltrate
(no top fin) and no angioinvasion (no lower fin). The tumor has grade I (small top) and
has a tiny diameter (tiny bottom). Fish c) represents a subject with a low age (small
tail fin), who died within the following five years (red color). There is no lymphocytic
infiltrate (no top fin) and no angioinvasion (no lower fin). The tumor has grade II
(medium sized top) and has a small diameter (small bottom). Fish d) represents a
subject with a low age (small tail fin), who died within the following five years (red
color). There is a lymphocytic infiltrate (top fin) and angioinvasion (lower fin). The
tumor has grade III (large top) and has a large diameter (large bottom).

4.2 Results

The SOM is trained with one million training steps whereas a linear decreasing
neighborhood and learning rate are used. Preliminary experiments with SOMs
of sizes between 5 × 5 and 100 × 100 trained on the microarray data set with
70 genes revealed the best results for a SOM of size 15 × 15 using visual in-
spection. The SOM result could probably be further improved by fine-tuning of
the parameters and by using objective measures for the map organization and
topology preservation [35]. Fish glyphs are integrated to represent the clinical
and categorical data. The clinical data is used to render the shape of the fish and
the categorical data specifies the color of the fish. A flight into the computed
reef SOM is shown in Figure 2. In Figure 4 results from an exploratory data
analysis are described.
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Fig. 4. Subjects who survived the following five years (green fish) are separated from
those who died within the following five years (red fish), except a few outliers (a and
b). The single red outlier (a) is placed in a region dominated by green fish indicating
that its gene expression profile might be similar to those subjects who survived the
following five years. Also its clinical features do not indicate any deviation from the
surrounding green fish. The group of outliers (b) consists of five fish. All of them
have tumor grade III (huge top) and three of them have lymphocytic infiltrate (top
fin). Interestingly subjects with lymphocytic infiltrate (top fin) cluster together (c)
except two outliers (d). This indicates that the gene expression profile of subjects with
lymphocytic infiltrate might be similar. The upper left half is dominated by subjects
who survived the following five years. Many of them have a tumor of grade I or II (small
or middle size top with a small tumor diameter (small bottom) (e). In contrast to that
most of the subjects in the front have tumor grade III (huge top). Many subjects who
died within the following five 5 years (red fish) are still young (small tail fin) (f).

5 Summary and Discussion

The reef SOM [10], a metaphoric display, is applied and further improved such
that it allows the simultaneous display of biomedical multi-modal data for an
exploratory analysis. Visualizations of microarray, clinical, and category data are
combined in one informative and entertaining image. The U-matrix of the SOM
trained on microarray data is visualized as an underwater sea bed using color
and texture. The clinical data and category data are integrated in the form of
fish shaped glyphs. The color represents a category (the main information one is
interested in) and the shape is modified according to selected clinical features.
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In order to compare the reef SOM with other data analysis approaches a test
scenario is imaginable where test persons are asked to detect structures and
patterns in either artificial or real-life data sets.

The reef SOM has the fundamental advantage that it is multi-modal itself, and
thus expecially well suited for the display of multi-modal data. The geology modus
(U-matrix displayed as sea bed) is combined with a fauna modus (fish glyphs) or
fauna modi (fish shape representing the clinical data and fish color representing
the category). The user can direct his attention to the modus of his choice or to
both. Additional modi allow the integration of further data sources, e.g a flora
modus might be introduced for displaying features of biomedical images (X-ray,
CT, MRI).

We believe that the reef SOM is well suited for the exploratory data analysis
of multi-modal data since its ability to combine visualizations of microarray,
clinical and category data. The resulting images are intuitive, entertaining and
can easily be interpreted by the biomedical collaborator, since specific knowledge
about the SOM algorithm is not required. Visual inspection enables the detection
of interesting structural pattern in the multi-modal data when browsing through
and zooming into the image.

Acknowledgments. A first prototype of the system has been presented on the
5th Workshop on Self-Organizing Maps (WSOM 2005). A detailed description of
the visualization technique has been submitted to Brain Minds & Media online.
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Abstract. In gene expression analyses for DNA microarray data, var-
ious statistical scores have been proposed for evaluating significance of
genes exhibiting differential expression between two or more controlled
conditions. To consider an unsupervised case or a semi-supervised case
rather than a well-studied supervised case, we assume a latent variable
model and apply the optimal discovery procedure (ODP) proposed by
Storey (2005) to the model. Theoretical consideration leads to two differ-
ent interpretations of the hidden variable, i.e., it only implicitly affects
the alternative model through the model parameters, or is explicitly in-
cluded in the alternative model, so that they correspond to two differ-
ent implementations of ODP. By comparing the two implementations
through experiments with simulation data, we found that sharing the
latent variable estimation as in the latter case is effective in increasing
the detectability of truly active genes. We also propose unsupervised and
semi-supervised rating of genes and show its effectiveness as a significance
score.

1 Introduction

Selecting significant genes is an important task in gene expression analyses typ-
ically by means of DNA microarray technology. Significance of each gene is usu-
ally defined as differential expression between different conditions. Here, we call
a gene ‘active’ when its expression has relationship to the biological conditions
of interest, or ‘inactive’ when there is no relationship. Detecting active genes is
a statistical decision problem to minimize risk to make errors, and the statis-
tical significance test framework evaluates the risk to accept or reject the null
hypothesis that the gene is inactive, namely, it has no relation to the difference
between the conditions.

Considering multiplicity is crucial in statistical tests dealing with thousands
of genes, and sharing commonality among multiple tests is an important issue in
recent years, in order to increase the detectability from highly-correlatedly ex-
pressed genes. Significance analysis of microarray (SAM) [5] considered a shrink-
age estimation of intra-class variance to improve stability, and derived such a
simple score that it has become very popular today. Empirical Bayes score [1]
assumed a hierarchical Bayes model in which priors of parameters for each gene
were also estimated using expression of multiple genes. Storey (2005) [3,4] ex-
tended the Neyman-Pearson’s lemma [2] to be applicable to multiple tests and
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proposed a new framework, optimal discovery procedure (ODP). When null and
alternative hypotheses are not simple, i.e., they have their own parameters to be
estimated by statistical inference like maximum likelihood, ODP can improve
the gene discovery accuracy by sharing the estimated parameters among the
multiple tests.

In this study, we apply the ODP framework to a Gaussian mixture model for
the ‘active’ genes’ expression, which includes a hidden variable that indicates a
class label of conditions which each sample belongs to. We discuss two important
but different ways to deal with the hidden variable in our model, i.e., the esti-
mated hidden variable may or may not be shared among multiple tests as well
as the estimated parameters. We compare these two variations through a simu-
lation and show that sharing commonality in the hidden variable improves the
detection accuracy of active genes. This model leads to new significance scores
of genes; an unsupervised significance score which does not consider class labels,
and a semi-supervised significance score which considers both types of samples,
with and without class labels.

2 Neyman-Pearson’s Lemma and Supervised Differential
Gene Significance Score

Our objective is to decide accurately whether a gene i is active or inactive,
according to expression data xi = (xi1, xi2, ..., xiM ) and label information Y =
(y1, ..., yM ), yj ∈ {1, 2}, j = 1, ...,M , over M measurements (samples), where
there are some possibly different conditions, typically two like in this setting.

According to the conventional framework of statistical testing, let the null
hypothesis that the gene is actually inactive, be denoted as H0, and the alter-
native hypothesis that the gene is actually active, as H1. Our question is what
kind of significance score S is the best to discriminate active genes from inac-
tive genes based on a limited number of measurements like in usual microarray
experiments.

When the null and the alternative models are represented as null and alter-
native probability density functions (pdf’s), f(Xi) = p(Xi|H0) and g(Xi) =
p(Xi|H1), respectively; namely, they are simple hypotheses with no variable pa-
rameter, the following likelihood ratio score is known as the most powerful score
of significance:

SLR(Xi) =
g(Xi)
f(Xi)

, (1)

which was stated and proven as Neyman-Pearson’s lemma [2].
However, many useful statistical tests assume non-simple hypothetical models

so that the null and alternative pdf’s include variable parameters to be estimated
statistically. For example, in a typical way for supervised differential gene dis-
covery, the null and the alternative models are defined as

H0 : f(Xi; φi) =
∏
j

N(xij |0,σ2
0i), H1 : g(Xi; θi) =

∏
j

N(xij |μi(yj),σ2
1i), (2)
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where φi = {σ2
0i} and θi = {μi(1),μi(2),σ2

1i} are the parameters of the null and
alternative models, respectively. N(x|μ,σ2) denotes a normal density function
with a mean μ and a variance σ2. μi(1) and μi(2) are centers of normal distri-
butions for yj = 1 (class 1) and yj = 2 (class 2), respectively. σ2

0i and σ2
1i are

intra-class variances under the null and alternative hypotheses, respectively. We
assume that the expression data are normalized such that (1/M)

∑M
j=1 xij = 0

holds, for description simplicity.
In this case, the log likelihood ratio can define a significance score of a single

gene i:

SLR−S(Xi) =
M∑

j=1

(
lnN(xij |μi(yj),σ2

1i)− lnN(xij |0,σ2
0i)

)
, (3)

where the maximum likelihood estimates (mle’s) of the parameters are given as

μ̂i(k) =
∑M

j=1 xijI(yj=k)∑M
j=1 I(yj=k) , (k = 1, 2), σ̂2

0i = 1
M

∑M
j=1 x

2
ij , and σ̂2

1i = 1
M

∑M
j=1(xij −

μ̂i(yj))2. Here, I(A) is an index function which outputs 1 when condition A
is satisfied, otherwise 0. By assigning the mle into the significance score, the
following estimated log likelihood ratio function is available as a score:

ŜLR−S(Xi) =
M∑

j=1

(
lnN(xij |μ̂i(yj), σ̂2

1i)− lnN(xij |0, σ̂2
0i)

)
=

1
2

ln
(
σ̂2

0i/σ̂
2
1i

)
, (4)

which is often called an S/N ratio.

3 Unsupervised and Semi-supervised Likelihood Model

3.1 Unsupervised Differential Gene

For an active gene, the gene expression is assumed to relate to the condition
of each sample, namely, it is ‘on’ in samples in certain conditions and ‘off’ in
the others. Let a hidden variable Zi = (zi1, ..., ziM ), zij ∈ {1, 2}, j = 1, ...,M
denote whether the gene i is ‘on’, zij = 1, or ‘off’, zij = 2, in a sample j. We in
particular consider a binary categorization of conditions, but allow uncertainty
in conditions, namely, the supervised label y takes either of 1 (class 1), 2 (class
2), or 0 (label unknown). An unsupervised case is defined as being y = 0 for all
j, and a semi-supervised case is defined as the y values being zero for some j.

We assume a mixture of normal distributions for active gene i’s expression
xij in a sample j:

p(xij , |θi) =
2∑

k=1

p(zij = k|θi)p(xij |zij = k, θi

=
2∑

k=1

ν(k)N(xij |μ(k),σ2
1), (5)
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where ν(k) is the prior probability that the latent variable zij takes k ∈ {1, 2}.
We assume ν(k) is independent of i or j. Under the alternative hypothesis H1,
the likelihood function of the parameter θi = (ν(1), ν(2),μ(1),μ(2),σ2

1), given
the expression vector Xi ≡ {xi1, ·, xiM} of gene i, is given by

g(Xi; θi) =
M∏

j=1

2∑
k=1

νkN(xij |μ(k),σ2
1). (6)

The null hypothesis is given as the same as in the supervised case, i.e., a normal
distribution:

H0 : f(Xi; φi) =
∏
j

N(xij |0,σ2
0). (7)

The log-likelihood ratio score is then defined as

ŜLR−U(Xi) = ln
g(Xi; φ̂i)

f(Xi; θ̂i)
, (8)

where φ̂i = argmaxφi f(Xi; φi) and θ̂i = argmaxθi g(Xi; θi) are mle’s for the
two hypotheses.

When we have an mle θ̂ for the alternative hypothesis, a posteriori probability
of the hidden variable, given a datum xij , is obtained as

ẑij(k) def= P (zij = k|xij , θ̂i)
ν(k)N(xij |μ(k),σ2

1)∑2
k=1 ν(k)N(xij |μ(k),σ2

1)
. (9)

Let Ẑi = (ẑij(k); j = 1, ...,M, k = 1, 2) be the vector of the estimated posterior,
where ẑij(k) ≥ 0 and

∑
k ẑij(k) = 1 holds. It will be used for considering multiple

testing later.

3.2 Semi-supervised Differential Gene

In a semi-supervised case, an active gene can be modeled by modifying the prior
of the hidden variable into incorporating label-unobservability:

P (zij = k|yj , θi) = I(yj = k) + I(yj = 0)ν(k), k = 1, 2. (10)

This prior states the hidden label is the same as the observed one when it is
observed, but is predominantly predicted by the prior knowledge ν(k) when it is
unobserved; the point is that we regard the observation as a prior information.
Accordingly, a semi-supervised case is dealt with by simply employing the same
prior as in the unsupervised case, equation (10), but the first term vanishes
because I(yj = 0) = 1 for every j.
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4 Optimal Discovery Procedure

4.1 ODP Lemma and Its Application

According to the Neyman-Pearson’s lemma, a statistic is defined as most pow-
erful when its detection probability β is the largest with a fixed significance
rate α, and the likelihood ratio was proven to be most powerful when the null
and alternative hypotheses are both simple. Storey [3,4] extended the Neyman-
Pearson’s framework to multiple testing and proposed a new general framework,
ODP. They defined that a statistic is optimal if it maximizes the expected true
positive (ETP) rate when fixing the expected false positive (EFP) rate. They
also showed that an ODP function is available as in the following ODP lemma,
which is not the same as the likelihood ratio.

ODP lemma. Let SODP be a common statistic, called an ODP function, for
all genes i = 1, ...,M :

SODP(X) =

∑
i′∈G1

g(X |θi′)∑
i′∈G0

f(X |φi′)
, (11)

where X is a gene expression vector (its dimensionality corresponds to the num-
ber of samples) of a gene. Then, the criterion that the gene is significant when
SODP(Xi) > λ for any threshold λ > 0 is an ODP. In equation (11), G0 and G1
are index sets of inactive and active genes, respectively.

This lemma defines an ideal ODP but not a practical one, because it needs
information not available in actual situations of multiple testing. True values of
parameters θ and φ are not available and they are substituted by mle’s estimated
from the observed data. G0 and G1 are not available in a real situation either,
because there is no need to calculate significance scores if we know G0 and G1.
As a practical use, therefore, they proposed an approximate ODP criterion:

ŜODP(Xi) =
∑

i′ g(Xi|θ̂i′)∑
i′∈Ĝ0

f(Xi|φ̂i′ )
, (12)

where θ̂i = arg maxθi g(Xi|θi) and φ̂i = arg maxφi f(Xi|φi) are the mle’s. Note
here that the summation in the numerator is taken over all genes, and that in
the denominator is taken for a roughly estimated set of inactive genes, Ĝ0. As
an example, they proposed Ĝ0 = {j|g(Xj |θ̂i)/f(Xj |φ̂i) > ε}, i.e., a set of genes
which are not significant by the standard gene-wise likelihood ratio test, where
ε is an arbitrary positive threshold.

The key of the ODP, in contrast to the individual likelihood ratio, is that
the ODP shares among all genes common information about distribution repre-
sented as null and alternative models, so that the common information is used
when evaluating a single gene. They actually showed that when the hypotheti-
cal models have some global characters shared by the genes, such as asymmetric
and/or cluster structure, the ODP can incorporate them so as to improve the
performance of gene discovery, i.e., increasing the ETP for a fixed EFP.
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4.2 ODP on Latent Variable Models

For parametric hypothetical models, hypotheses are distributed attributable to
the distribution of model parameters. When there are hidden variables as in
our model’s case, however, another definition of what is the hypothesis is pos-
sible, namely, (a) unknown values of hidden variables are marginalized out in
the hypotheses, or (b) the hidden variables are explicitly included like the model
parameters in the hypothetical models. In the case (b), the distribution of hy-
potheses is attributed to the distribution of both model parameters and hidden
variables. These two definitions of the hypothesis distribution lead to different
results from each other. We formalize these two cases in this section and compare
them in the next section.

In the likelihood ratio score, we evaluate the ratio of the two likelihood func-
tions, g(·|θ̂i′) and f(·|φ̂i′), for each gene i′, where we estimate the parameters
of null and alternative models, θ̂i′ and φ̂i′ , respectively, as mle’s, and the hid-
den variable in the alternative model, as its posterior, Ẑi′ . In the ODP, only
a single significance function, (12), is constructed by using a set of hypotheses
each corresponding to a single gene, and hence the likelihood functions, g(·|θ̂i′)
and f(·|φ̂i′), for gene i′ are shared by all genes. Namely, in the ODP, we should
evaluate g(Xi|θ̂i′) and f(Xi|φ̂i′) for i �= i′, and the key difference between the
cases (a) and (b), appears in the way to do this process.

In case (a), i.e., when only the model parameters are shared by all genes, the
likelihood function becomes

ĝ(Xi|θ̂i′) =
M∏

j=1

p(xij |θ̂i′) =
M∏

j=1

2∑
k=1

ν̂(k)N(xij |μ̂i′(k), σ̂2
1i′ ). (13)

In case (b), i.e., when the estimated posterior of the hidden variable, Ẑi′ , is
also shared, another likelihood function is given as

ĝ(Xi|θ̂i′ , Ẑi′) =
M∏

j=1

p(xij |ẑi′j , θ̂i′) =
M∏

j=1

2∑
k=1

ẑi′j(k)N(xij |μ̂i′(k), σ̂2
1i′ ). (14)

As we pointed at the beginning of this section, the difference between the two
cases above comes from the difference in the interpretation of what the model is
and what the hypothesis is. In fact, if one assumes that the posterior of hidden
variable Ẑi′ is a part of the unknown parameter θi′ , the second case is a special
case of the original ODP. Namely, in case (b), the alternative hypothesis of a
single gene is dependent on expression distributions of the two groups of samples,
while that in case (b) is dependent not only on expression distributions but also
on class labels of the samples. When we ignore the multiplicity of statistical
testing, these two cases are identical, because the hidden variable is uniquely
determined, even probabilistically, from the estimated parameter of the single
gene model.

The model in case (b) may have a biological meaning. The hidden variable
vector Zi can be regarded as an on/off (binary) pattern vector of gene i over the
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samples. Since some biology such as gene regulatory factors may be represented
as characteristic distribution of binary pattern vectors, the ODP framework
will be able to utilize such characteristic and possibly biological information
by making it shared by multiple tests.

5 Numerical Experiment

5.1 Unsupervised Differential Gene Discovery

First of all, we compare various unsupervised scores devised for detection of
significant genes.

Figure 1(A) shows a structure of an artificial data set consisting of expression
of 6400 genes for 16 samples. The 6400 genes are made up of 3200 inactive
((1) and (2)) and 3200 active ((3) and (4)) genes. Expressions of inactive genes
are generated from normal distribution with mean 0 and variance 1.22 or 0.82

for gene group (1) or (2), respectively. Since they are generated from a single
distribution regardless of the sample index, they are in fact inactive. Expressions
of active genes are generated from normal distribution with mean μ or −μ for
highly or lowly expressed genes in each sample, respectively, and a common
variance 1.0. The expression pattern for each gene is different between groups (3)
and (4); in group (3), there are eight subgroups of 200 genes and each subgroup
has a high/low pattern different from the other subgroups, and in group (4),
1600 genes have the same high/low pattern. These situations represent (4) all the
genes reflect a common biology leading to similar expressions over all samples,
and (3) there are eight gene clusters each of which reflects its own biology.

We compared three scores listed below:

– ŜLR−U, a gene-wise likelihood ratio, which is independent of the other genes;
– ŜODPp−U, an ODP based on the case (a) model which shares estimation of

model parameters; and,
– ŜODP−U, an ODP based on the case (b) model which shares estimation of

both model parameters and hidden variables.

Figures 1(B) and 1(C) show the results. In Fig. 1(C), we can see ŜODP−U
outperformed the others, i.e., it achieved the best sensitivity for each specificity,
and ŜLR−U was the worst. From the histogram in Fig. 1(B), the ŜLR−U score
is found to be insensitive to the difference between the groups (1) and (2), or
between (3) and (4). On the other hand, the score ŜODPp−U behaves differently
between (1) and (2); namely, genes in group (1), which exhibit expressions with
larger variance, tended to be evaluated as more significant, because a larger
variance compared to a typical variance of inactive genes likely causes a high
chance to detect active (possibly false) genes. However, the ŜODPp−U was also
insensitive to the difference between (3) and (4) which have the same expression
distribution. The principal character of the ŜODP−U score is that it extracted a
larger number of active genes in group (4). Since the 1600 genes in group (4)
have the identical pattern of true hidden variables, the commonality boosted the
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Fig. 1. Unsupervised extraction of significant genes. (A) An artificial data set and its
generative models. See text for detail. (B) Histogram of three unsupervised significance
scores: LR-U, ODPp-U, and ODP-U, which are separately described for the four gene
groups. A vertical line denotes the mean of distribution. (C) ROC curves of active
gene detection by changing the threshold for each score; the horizontal and vertical
axes denote specificity, (true negative/(true negative + false positive)), and sensitivity,
(true positive/(true positive + false negative)), respectively.

significance scores of genes in the same group. In group (3), the number of genes
sharing the true hidden variables was 200, which led to weaker boosting of the
significance scores than in group (4).

These results show that sharing the estimation of both the parameter and the
hidden variable is effective in gene discovery, when they have some structures
that can be embossed by making multiple tests cooperative. In addition, we have
found that the more genes there are in the same group, the more effective sharing
of hidden variable estimation becomes.

5.2 Semi-supervised Differential Gene Discovery

Next, we consider a semi-supervised case. We assumed eight samples (index:
1,2,...,8) have the true class label 1 and the other eight samples (index: 9,10,...,16)
have the class label 2, in the 16 samples above. For each class, five samples were
correctly labeled but the others’ labels were unknown. We compared the four
scores listed below:
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Fig. 2. Semi-supervised extraction of significant genes from the same artificial data as
in Figure 1(A). The true labels of the 16 samples are 1 for the earlier 8 samples and
2 for the rest, but for three samples of the both classes are assumed to be unknown
(labeled as * in the title of the figure). This experiment evaluates how many genes in
the truly active 1600 genes of group (4) can be detected by four significance scores:
LR-S, SAM, ODP-S, and ODP-SS. Note that the genes in group (3) are regarded as
inactive in this experiment because the high/low patterns are different from the true
label pattern. Therefore, there are 4800 inactive genes (groups (1), (2), and (3)) and
1600 active genes (group (4)). (A) ROC curves of the four scores. The number for each
score denotes area under the curve (AUC). (B) Distributions of the ODP-SS scores for
the four gene groups, (1), (2), (3), and (4).

– SSAM, SAM statistics;
– ŜLR−S, likelihood ratio score;
– ŜODP−S, an ODP using only the samples with labels; and,
– ŜODP−SS, an ODP using all samples with the labels being known or unknown.

The three supervised scores, SSAM, ŜLR−S, and ŜODP−S, used the ten samples
with labels to calculate their gene scores, while ŜODP−SS used, in addition, the
remaining six unlabeled samples to estimate the unknowns in the hypothesis
models.

The ROC curves in Figure 2(A) clearly show that ŜODP−SS achieved the best
specificity for every sensitivity. Although SSAM showed a better detectability
than the conventional likelihood ratio, ŜODP−S exhibited further better. Figure
2(B) shows the distributions of ŜODP−SS for the four gene groups, (1), (2), (3),
and (4). The active genes in group (4) were evaluated clearly as more significant
than in the others by our ŜODP−SS score. The score distribution of gene group
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(3) is interesting. Although the distribution of expressions of inactive group (3)
was identical to that of active group (4), the score distribution of group (3) is
quite different from (4), but instead, similar to those of (1) and (2), which are
also inactive with respect to the biology represented as the true label pattern.
Even when the labeling includes uncertainty, the information of labels affected
the significance of genes, which is stronger than the information of the expression
distribution.

6 Concluding Remarks

In this study, we showed an improvement of gene significance criteria in unsuper-
vised and semi-supervised cases. Both of gathering samples and labeling samples
by clinical researchers require large amount of time, money, and other costs. A
semi-supervised case, which incorporates unlabeled samples, will be useful for
gene selection in such a situation. Unsupervised score may be used as an alter-
native way of filtering insignificant genes out as a pre-process of gene expression
analyses.

Our experiments are currently made using artificial data set. For real data
sets, however, it is not easy to show clearly the effectiveness of gene ranking, be-
cause, in many actual cases, we have no mean to know whether a single gene is
truly active or not. We have made an experiment to compare various scores and
found that semi-supervised score can improve the concordance between rank-
ings calculated from a large real data set and its smaller data subset, by using
unlabeled data in addition to labeled data; the results will be shown elsewhere.

Various latent variable models such as mixture of t-distribution model, Cox’s
proportional hazards model, and so on, may lead to useful gene ranking within
our framework, and such an application would be our future work.
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Abstract. Clustering analysis of time series data from DNA microarray 
hybridization studies is essential for identifying biological relevant groups of 
genes. Microarrrays provide large datasets that are currently primarily analyzed 
using crisp clustering techniques. Crisp clustering methods such as K-means or 
self organizing maps assign each gene to one cluster, thus omitting information 
concerning the multiple roles of genes. One of the major advantages of fuzzy 
clustering is that genes can belong to more than one group, revealing this way 
more profound information concerning the function and regulation of each 
gene. Additionally, recent studies have proven that integrating a small amount 
of information in purely unsupervised algorithms leads to much better 
performance. In this paper we propose a new semi-supervised fuzzy clustering 
algorithm which we apply in time series gene expression data. The clustering 
that was performed on simulated as well as experimental microarray data 
proved that the proposed method outperformed other clustering techniques. 

1   Introduction 

DNA microarray technology enables the rapid and efficient measurement of 
expression levels of a large number of genes in a simultaneous manner, thus 
providing a means of detecting specific patterns of gene expression in a cell, as well 
as enabling the extraction of crucial information regarding the conjunctive 
functioning of genes [1]. Initial computational efforts employed classical clustering 
techniques (see ref [2] for an extensive overview) for grouping genes according to 
their expression patterns, based on the biologically validated assumption that genes 
involved in the same biological process exhibit similar patterns of variation. The 
approach is meant to infer functional category for genes of unknown functionality, 
based on the labels of already annotated genes. A recent direction is to employ 
expression clustering as an important step in extracting cluster-representative genes 
that are further used to reconstruct gene regulatory networks [3].  

The present study proposes a novel approach that is able to overcome specific 
clustering techniques drawbacks. These include the incorporation of supervised 
information (whenever available) regarding the genes functional category, in order to 
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improve the biological accuracy of the derived clusters, as well as the capability of the 
method to assign genes to multiple clusters (since it is well known that certain genes 
might be involved in several biological pathways and hence belong to more than one 
functional category). A third issue that is of high interest is the one of automatically 
determining the number of clusters in the data (especially in the scenario of 
identifying cluster-representative genes for regulatory networks reconstruction). 

Having in mind the above considerations, we propose a fuzzy partitioning 
framework based on the Fuzzy Kohonen Clustering Network [4]. The approach 
allows us to profit from the advantages of fuzzy clustering [5,6], which facilitates the 
identification of overlapping clusters, thus allowing genes to belong to more than one 
group. Therefore, each gene is considered to be a member of various clusters, with a 
variable degree of membership. Additionally, fuzzy logic methods inherently account 
for noise in the data because they extract trends rather than the precise values. The 
incorporation of supervised information is accomplished by considering sets of 
constraints either forcing genes to cluster together or assigning them to different 
clusters, according to available biological knowledge, fact which significantly 
improves the accuracy of clustering even when given a relatively small amount of 
supervision. 

2   Methods 

2.1   Fuzzy Kohonen Clustering Network 

Fuzzy clustering is a partition – optimization technique that aims to group data based 
on their similarity in a non-exclusive manner by permitting each sample to belong to 
more than one cluster. Considering a finite set of elements X = {x1, x2,…, xn}, the 
problem is to perform a partition on this set into c fuzzy sets with respect to a given 
criterion. 

One of the most widely used fuzzy clustering methods is Fuzzy c-means (FCM) 
due to its efficacy and simplicity [7]. The FCM algorithm partitions a collection of n 
data points into c fuzzy clusters in such a way as to minimize the following objective 
function: 

 ( ) 2

1 1

, ,    1
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m
ij k ij j i

i j

J u u m
= =

= − >v x v  (1) 

where vi is the prototype of the ith cluster generated by fuzzy clustering, uij is the 
membership degree of the jth data point belonging to the to the ith cluster represented 
by ui, ,iku U∈ U is a c x n fuzzy partition matrix which satisfies the constraints: 
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In (1), m is called exponential weight and controls the fuzziness degree of the 
membership matrix, in [8] there is a study on the value of m and how it influences 
clustering of microarray data.  



820 I.A. Maraziotis, A. Dragomir, and A. Bezerianos 

On the other hand one of the most common crisp techniques is the well known self 
organizing map SOM [9], which has been used in numerous fields, the structure of 
SOM consists of two layers an input layer and an output (competitive) layer. When a 
new input vector arrives the nodes in the output layer compete with each other and the 
winner (whose weight has the minimum distance from the input) updates its weights 
and those of some predefined neighbors. This process is repeated until the weight 
vector stabilizes. 

SOM in its classical form suffer from a number of disadvantages. Firstly, being 
heuristic procedure its convergence is not based on optimizing any model of the 
process or its data. Another issue is that usually the final weight vectors depend on the 
input sequence. Finally, several parameters of the SOM algorithms, such as the 
learning rate, the size of the update neighborhood function, and the strategy for 
altering these two parameters during learning must be varied from one data set to 
another in order to achieve the desirable results. 

The Fuzzy Kohonen Clustering Network (FKCN) is an integration of the FCM 
algorithm into the learning rate as well as the updating strategies of the SOM. 
Combining FCM, which is an optimization procedure with SOM, which is not, is a 
way to address several of the aforementioned problems of the classic SOM structure. 
Additionally FKCN enables SOM to generate continues-valued outputs for fuzzy 
clustering instead of hard clustering. Another advantage of FKCN is that it gains in 
computational efficiency over the FCM model by using the linear weight update rule 
in SOM.  

The complete integration of FCM and SOM is done by defining the learning rate aij 
for Kohonen updating as follows:  

 ( ) ( )( ) 0
0

max

1
;   ,   

tm

ij ij t

m
a t u t m m t m m

t

−= = − Δ Δ =  (3) 

where m0 is a positive constant grater than 1, and tmax is the maximum number of 
iterations.  

After the computation of the learning rates, the learning algorithm of the FKCN 
updates the weight vectors following the: 
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For large values of mt all c weight vectors are updated with lower individual 
learning rates, but as mt 1 an always increasing quantity of the unit sum is given to 
the winning node. Consequently, FKCN is a non-sequential unsupervised learning 
algorithm that uses fuzzy membership values from the FCM algorithm as learning 
rates and therefore realizes control of the learning rate distribution as well as 
achieving neighborhood updating. In the section that follows we will present a 
methodology for transforming FKCN to adapt the advantages of a semi-supervised 
algorithm, while at the same time keep all the characteristics reported so far.  



 Semi Supervised Fuzzy Clustering Networks 821 

2.2   Semi Supervised FKCN 

We consider a framework where prior knowledge on a specific domain is given on 
sets of either must-link or cannot-link constraints or both. Let E be the set of must-
link constraints to be given in pairs (xi, xj) ∈ E where the instances xi and xj should be 
assigned to the same cluster, while cannot-link constraints in pairs (xi, xj) ∈  where 

 is the set of cannot-link constraints and xi, xj should be assigned to different 
clusters. 

 In SS-FKCN, we have modified the objective function by including a cost term for 
constraint violation, in order to guide the algorithm towards an appropriate 
partitioning, taking in this way advantage of the given sets of paired constraints. Thus 
following (1) the objective function of SS-FKCN has the form of: 
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where xp is a point with which xj must be linked together, while xq is a point with 
which xj cannot be linked. The membership matrix obeys the constraints described  
in (2).  

The first term of (5) is the sum of squared distances to the prototypes weighted by 
constrained memberships and follows the objective function that is minimized by the 
FCM algorithm. The second term of (5) is composed of two parts. The first deals with 
the cost of violating the given pair-wise must-link constraints, while the second with 
the cost of violating the known pair-wise cannot-link constraints. Factor , with which 
the second term is weighted by, serves the relative importance of the supervision. 

We solve the problem of minimizing J in (5) subject to (2) by applying the method 
of Lagrange multiplier, thus we have:  

 ( ) ( )1 2
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and 
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Fig. 1. Pseudo code listing for the SS-FKCN algorithm 

as well as 
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The first term of (6) is the same as the one used by the FCM algorithm for the 
determination of the membership matrix. As it can be depicted by equation (7) it 
considers distances among weight vectors and input samples. The uij term as we can 
see from equations (9) and (10), increase or decrease the values of the membership 
matrix as created by (7), using the presented supervision data given in the form of 
pair-wise constraints. Specifically i represents the cost for violating a constraint, 
stating that sample j should belong to cluster i, and j represents the weighted average 
violation cost for sample j. The pseudo-code listing of the SS-FKCN algorithm is 
depicted in Fig. 1. 

2.3   Determining the Number of Clusters 

One of the main disadvantages of various clustering algorithms is that most of them 
need an initial guess for the number of clusters. Many times in real problems this is 

Algorithm Ss-Fkcn (Data matrix, Must Link Vector, 
Must Not Link Vector) 

Step 1: Randomly initialize the weights vi 

Step 2: For t=1,2,…,tmax. 

a. Update all learning rates according to Eqs. 

(3) and (6) 

b. Update all c weight vectors following Eq. 

(4) 

c. Compute ( ) ( ) 2

1 1t t t+Ε = + −v v  

d. If 
1t ε+Ε ≤ then stop; else goto Step 2 

e. End for 

End Ss-FKCN 
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not known in advance, and further to that, there are problems like the one under study 
in the current paper, where we need the algorithm to find interesting group of genes 
guiding this way their further biological study. 

The optimal number of partitions is evaluated using the Xie-Beni (XB) validity 
index [10]. The choice of the specific validity index is based on the fact that it has 
shown a more stable behavior with respect to other indexes in finding the near-best 
fuzzy partition. XB is defined as:  
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The procedure followed, for the determination of the cluster number can be 
described like: 

1. Initialize and run SS-FKCN with two weight vectors nw = 2 
2. Evaluate XB index, as XB1 according to (11)  
3. Execute SS-FKCN using nw = nw + 1 
4. Evaluate XB index, as XB2 according to (11) 
5. If XB2>XB1 then the new value of nw corresponds to the number of weight 

vectors for the optimal partition, else goto step 3. 

The better separated the clusters are the larger the denominator of (11) and the smaller 
becomes the value of XB. Thus a valid optimal partition with well distinguishable 
clusters is indicated by the smallest XB value. 

3   Results 

In this part of the paper we describe the data sets we have used and the experiments 
conducted for the validation of the proposed algorithm. The results of SS-FKCN are 
compared with the ones acquired by two other fuzzy approaches FCM, FKCN, as well 
as a well known crisp method, the K-means algorithm.  

3.1   Artificial Data 

In order to test our method under more controlled conditions we resorted to artificial 
data. Following a standard methodology (e.g. [11]) for the creation of artificial time 
series data we have created nine groups each one consisting of five time series with 
the same parameters of linear transformation between time points. Thus 

 ( )1j it jt itx t xα β+ = +  (12) 

where i represents the number of groups 1 9i≤ ≤ , j the number of time series in 

each group 1 5j≤ ≤ , and t the number of time points 1 20t≤ ≤ , the parameters , 

 for each group where chosen randomly from normal distributions.  
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3.2   Yeast Cell Cycle – Y5 

In this data set first published by [13] we have the expression level of more than 6000 
genes measured in 17 time points during two cell cycles of Yeast. We have used a 
subset five phase criterion abbreviated Y5, of 384 genes visually identified as five 
distinct time series, each one representing a distinct phase of the cell cycle (Early G1, 
Late G1, S, G2, and M). All of the Y5 set member genes are annotated. The 
expression levels of each gene were normalized, which can enhance the performance 
of clustering under noisy environments like microarrays experiments. 

3.3   Simulation Results 

In the following we check the validity of the algorithms under test, using the average 
errors of misclassification. Two other criteria that will be used and which have been 
adapted by other approaches [12] for evaluating the clustering of time-series data are 
specificity and sensitivity: 

 
TP

Sensitivity
TP FN

=
∪

 (13) 

 
TP

Specificity
TP FP

=
∪

 (14) 

where TP denotes the number of pair of objects in the same cluster U and same class 
V. FP are the pairs with the same cluster but distinct class, TN distinct both class and 
cluster, and FN pairs distinct cluster but same class. Clustering is repeated 50 times 
for the data sets under consideration, by all the algorithms checked and the mean 
values of the validity indexes are calculated.  

On the first dataset all algorithms had very good outcomes, given the number of 
clusters. As we can observe in Fig. 1, following the methodology we have described 
SS-FKCN was successful in finding the correct number of clusters for the simulation 
data set.  In a second test we performed, the original simulation data was resampled 
by selecting 10 time points randomly out of the 20 original time points. In this case 
the best results were acquired by SS-FKCN as it can be shown in Table 2. In both 
case described above only two pairs were given to the algorithm (i.e. 4.4% of the total 
knowledge base) in order to have the semi-supervised scheme. 

For the second data set (yeast) a total of 25 percent prior knowledge was given on 
the SS-FKCN, in the form of must and cannot-link pairs. Specifically, we have 
randomly selected 96 genes and based on their functional labels we have determined 
the sets of must-link constraints (for genes that are supposed to be part of the same 
cluster) and cannot-link constraints (for genes that should belong to different 
clusters). The algorithm as can be seen in Table 1, had a very good apodosis on all 
validation indexes. Except SS-FKCN, all other methods were unable to separate some 
genes form groups Late G1 and S or M and Early G1. These phases are separated by a 
phase shift and their genes have very similar time courses. We should point out that 
the specific dataset does not represent the ideal data for benchmarking since it almost 
 



 Semi Supervised Fuzzy Clustering Networks 825 

 

Fig. 1. On the left of the image we depict the whole data set of the artificial data, while on the 
right part we can see the nine different classes forming it, as they were depicted by SS-FKCN. 
On all the graphs appearing in this figure, the horizontal axis represents time while the vertical 
represents gene expression. 

Table 1. Misclassification Error, sensitivity and specificity values for the two data sets used, 
compared for several clustering methods 

 Method Errors Sensitivity Specificity 
FCM 6.48 0.93 0.79 

FKCN 5.74 0.94 0.81 
K-means 20.56 0.88 0.68 

Artificial 
Data 

SS-FKCN 1.7 0.97 0.89 
FCM 43.1 0.46 0.53 

FKCN 41.4 0.75 0.36 
K-means 34.8 0.79 0.38 

Yeast 

SS-FKCN 21.7 0.87 0.79 

exclusively contains cell cycle genes. Nevertheless the selection of the specific 
dataset was aiming in pointing out the efficiency of the proposed algorithm, which 
indeed managed to produce adequate results. 

4   Conclusions and Future Work 

The paper presents a novel algorithm for semi supervised clustering of gene 
expression time series data that achieves the incorporation of supervised information 
by means of pairwise constraints, while benefiting from the advantages of fuzzy, non-
crisp, clustering. The experimental results as they were presented for both artificial as 
well as real data proved that SS-FKCN performs considerably better than other well 
established clustering techniques, both crisp like Kmeans as well as fuzzy like FCM, 
given only a small fraction of background knowledge. As a future expansion of the 
algorithm we are planning to integrate a metaheuristic method like variable 
neighborhood search in order to avoid local minima entrapment to which the 
algorithm is sensitive, due to the objective function of the FCM. Another extension 
which we are planning to work on is to incorporate a different metric more suitable 
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for time-series classification problem like the one presented in [11] or [14] instead of 
the Euclidean distance which is used currently by the algorithm. 
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Abstract. Oligo kernels for biological sequence classification have a high
discriminative power. A new parameterization for the K-mer oligo kernel is pre-
sented, where all oligomers of length K are weighted individually. The task spe-
cific choice of these parameters increases the classification performance and
reveals information about discriminative features. For adapting the multiple ker-
nel parameters based on cross-validation the covariance matrix adaptation evolu-
tion strategy is proposed. It is applied to optimize the trimer oligo kernel for the
detection of prokaryotic translation initiation sites. The resulting kernel leads to
higher classification rates, and the adapted parameters reveal the importance for
classification of particular triplets, for example of those occurring in the Shine-
Dalgarno sequence.

1 Introduction

Kernel-based learning algorithms have been successfully applied to a variety of se-
quence classification tasks within the field of bioinformatics [1]. Recently, oligo kernels
were proposed [2] for the analysis of biological sequences. Here the term oligo (-mer)
refers to short, single stranded DNA/RNA fragments. Oligo kernels compare sequences
by looking for matching fragments. They allow for gradually controlling the level of
position-dependency of the representation, that is, how important the exact position of
an oligomer is. In addition, decision functions based on oligo kernels are easy to inter-
pret and to visualize and can therefore be used to infer characteristic sequence features.

In the standard oligo kernel, all oligomers are weighted equally. Thus, all oligomers
are considered to have the same importance for classification. In general this assump-
tion is not reasonable. In this study, we therefore propose the K-weighted oligo kernel
considering all oligomers of length K (K-mers), in which the relative importance of
all K-mers can be controlled individually. A task specific choice of the weighting pa-
rameters can potentially increase the classification performance. Moreover, appropriate
weights for a particular classification task may reveal sequence characteristics with high
discriminative power and biological importance.

The question arises how to adjust the weighting parameters for the K-mers for a given
task. In practice, appropriate hyperparameter combinations are usually determined by

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 827–836, 2006.
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grid search. This means that the hyperparameters are varied with a fixed step size
through a wide range of values and the performance of every combination is assessed
using some performance measure. Because of the computational complexity, grid search
is only suitable for the adjustment of very few parameters. Hence, it is not applicable for
the adjustment of the 4K weights of the K-weighted oligo kernel. Perhaps the most elab-
orated systematic technique for choosing multiple hyperparameters are gradient descent
methods [3, 4, 5]. If applicable, these methods are highly efficient. However, they have
significant drawbacks. In particular, the score function for assessing the performance of
the hyperparameters (or at least an accurate approximation of this function) has to be
differentiable with respect to all hyperparameters. This excludes reasonable measures
such as the (exact) cross-validation error. Further, the considered space of kernels has
to have an appropriate differentiable structure.

We propose a method for hyperparameter selection that does not suffer from the
limitations described above, namely using the covariance matrix adaptation evolution
strategy (CMA-ES, [6]) to search for appropriate hyperparameter vectors [7, 8].

As an application of our approach to kernel optimization we consider the prediction
of bacterial gene starts in genomic sequences. Although exact localization of gene starts
is crucial for correct annotation of bacterial genomes, it is difficult to achieve with con-
ventional gene finders, which are usually restricted to the identification of long coding
regions. The prediction of gene starts therefore provides a biologically relevant signal
detection task, well-suited for the evaluation of our kernel optimization scheme.

We therefore apply the CMA-ES to the tuning of weighted oligo kernels for detecting
prokaryotic translation initiation sites, that is, for classifying putative gene starts in
bacterial RNA. The performance measure for the hyperparameter optimization is based
on the mean classification rate of five-fold cross-validation.

In the following we introduce the oligo kernel and our new parameterization. Section
3 deals with the adaptation of kernel parameters using evolutionary optimization meth-
ods. Section 4 presents the experiments demonstrating the performance of the kernel
and the optimization of the hyperparameters.

2 Oligo Kernels

The basic idea of kernel methods for classification is to map the input data, here biologi-
cal sequences, to a feature space endowed with a dot product. Then the data is processed
using a learning algorithm in which all operations in feature space can be expressed by
dot products. The trick is to compute these inner products efficiently in input space us-
ing a kernel function (e.g., see [9]). Here the feature space can be described in terms of
oligo functions [2]. These functions encode occurrences of oligomers in sequences with
an adjustable degree of positional uncertainty. This is in contrast to existing methods,
which provide either position-dependent [10] or completely position-independent rep-
resentations [11]. For an alphabet A and a sequence s, which contains K-mer ω ∈A K

at positions Ss
ω = {p1, p2, . . .}, the oligo function is given by

μ s
ω(t) = ∑

p∈Ss
ω

exp

(
− 1

2σ2
K

(t− p)2
)
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for t ∈ R. The smoothing parameter σK adjusts the width of the Gaussians centered on
the observed oligomer positions and determines the degree of position-dependency of
the function-based feature space representation. While small values for σK imply peaky
functions, large values imply flatter functions. For a sequence s the occurrences of all
K-mers contained in A K = {ω1,ω2, . . . ,ωm} can be represented by a vector of m oligo
functions. This yields the final feature space representation ΦK(s)= [μ s

ω1
,μ s

ω2
, . . . ,μ s

ωm
]′

of that sequence. The feature space objects are vector-valued functions. This can be
stressed using the notation

φK
s (t) = [μ s

ω1
(t),μ s

ω2
(t), . . . ,μ s

ωm
(t)]′ .

This representation is well-suited for the interpretation of discriminant functions and
visualization [2]. To make it practical for learning, we construct a kernel function to
compute the dot product in the feature space efficiently. The inner product of two se-
quence representations φ K

i and φ K
j , corresponding to the oligo kernel kK(si,s j), can be

defined as〈
φ K

i ,φ
K
j

〉
≡

∫
φK

i (t)·φK
j (t)dt ∝ ∑

ω∈A K
∑

p∈Si
ω

∑
q∈S j

ω

exp

(
− 1

4σ2
K

(p−q)2
)
≡ kK(si,s j)

using φ i ≡ φ si
. The feature space representations of two sequences may have different

norms. In order to improve comparability between sequences of different lengths, we
compute the normalized oligo kernel

k̃K(si,s j) =
kK(si,s j)√

kK(si,si)kK(s j,s j)
. (1)

From the above definition of the oligo kernel, the effect of the smoothing parameter
σK becomes obvious. For the limiting case σK → 0 with no positional uncertainty, only
oligomers which occur at the same positions in both sequences contribute to the sum.
In general it is not appropriate to represent oligomer occurrences without positional un-
certainty. This would imply zero similarity between two sequences if no K-mer appears
at exactly the same position in both sequences. For σK →∞ position-dependency of the
kernel completely vanishes. In this case, all terms of oligomers occurring in both se-
quences contribute equally to the sum, regardless of their distance and the oligo kernel
becomes identical to the spectrum kernel [11].

2.1 Weighted Oligo Kernel

So far, the different K-mers are weighted equally in the K-mer oligo kernel. However,
some K-mers may be more discriminative than others. Therefore, we introduce new
parameters wi, i = 1, . . . ,4K , for their weighting and define the K-weighted oligo kernel
k̃K-weighted in analogy to equation (1) with

kK-weighted(si,s j) = ∑
ω∈AK

|wi| ∑
p∈S

si
ω

∑
q∈S

s j
ω

exp

(
− 1

4σ2
K

(p−q)2
)

.

The parameterization ensures a valid oligo kernel for w1, ...,w4K ,σ ∈ R. This makes
unconstrained optimization methods directly applicable to the 1+4K kernel parameters.
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3 Evolutionary Model Selection

Evolutionary algorithms are iterative, direct, randomized optimization methods inspired
by principles of neo-Darwinian evolution theory. They have proven to be suitable for
hyperparameter and feature selection for kernel-based learning algorithms [7, 8, 12, 13,
14,15,16,17,18,19]. Evolution strategies (ES, [20]) are one of the main branches of evo-
lutionary algorithms. Here the highly efficient covariance matrix ES (CMA-ES, [6,21])
for real-valued optimization is applied, which learns and employs a variable metric by
means of a covariance matrix for the search distribution. The CMA-ES has successfully
been applied to tune Gaussian kernels for SVMs considering a cross-validation error as
optimization criterion [7, 8]. The visualization of the objective function in [7] depicts
an error surface that shows a global trend superimposed by local minima, and ES are
usually a good choice for such kind of problems.

In the CMA-ES, a set of μ individuals forming the parent population is maintained.
Each individual has a genotype that encodes a candidate solution for the optimization
problem at hand, here a real-valued vector containing the hyperparameter combina-
tion of the kernel parameters to be optimized. The fitness of an individual is equal to
the objective function value—here the five-fold cross-validation error—at the point in
the search space it represents. In each iteration of the algorithm, λ > μ new individu-
als, the offspring, are generated by partially stochastic variations of parent individuals.
The fitness of the offspring is computed and the μ best of the offspring form the next
parent population. This loop of variation and selection is repeated until a termination
criterion is met. The object variables are altered by global intermediate recombination

and Gaussian mutation. That is, the genotypes g(t)
k of the offspring k = 1, . . . ,μ cre-

ated in iteration t are given by g(t)
k = 〈g̃〉(t) + ξ (t)

k , where 〈g̃〉(t) is the center of mass

of the parent population in iteration t, and the ξ (t)
k ∼ N(0,C(t)) are independent real-

izations of an m-dimensional normally distributed random vector with zero mean and
covariance matrix C(t). The matrix C(t) is updated online using the covariance matrix
adaptation method (CMA). Roughly speaking, the key idea of the CMA is to alter the
mutation distribution in a deterministic way such that the probability to reproduce steps
in the search space that led to the actual population—i.e., produced offspring that were
selected—is increased. The search path of the population over the past generations is
taken into account, where the influence of previous steps decays exponentially. The
CMA does not only adjust the mutation strengths in m directions, but also detects cor-
relations between object variables. The CMA-ES is invariant against order-preserving
transformations of the fitness function and in particular against rotation and translation
of the search space—apart from the initialization. If either the strategy parameters are
initialized accordingly or the time needed to adapt the strategy parameters is neglected,
any affine transformation of the search space does not affect the performance of the
CMA-ES. For details of the CMA-ES algorithm, we refer to the literature [6, 21].

4 Detection of Prokaryotic Translation Initiation Sites

We apply 1-norm soft margin SVMs with 3-mer weighted oligo kernels to the detection
of prokaryotic translation initiation sites [22]. We first introduce the problem and then
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the locality improved kernel, which we consider for comparison. Then the experimental
setup is described. Finally the results are presented.

4.1 Problem Description

To extract protein-encoding sequences from nucleotide sequences is an important task
in bioinformatics. For this purpose it is necessary to detect locations at which coding
regions start. These locations are called translation initiation sites (TIS). A TIS contains
the start codon ATG or rarely GTG or TTG (there is one known case where also ATT
serves as a start codon). The start codon marks the position at which the translation
starts. The codon ATG codes for the amino acid methionine, and not every ATG triplet
is a start codon. Therefore it must be decided whether a particular ATG corresponds to
a start codon or not. This classification problem can be solved automatically using ma-
chine learning techniques, in which the neighborhood of nucleotides observed around
potential TISs is used as input pattern to a classifier.

In contrast to prediction of eukaryotic TIS (e.g., see [23]) there is no biological jus-
tification for using a general learning machine across different species for prediction of
prokaryotic TIS. For this reason, learning of prokaryotic TISs is always restricted to a
limited amount of species-specific examples and model selection methods have to cope
with small data sets.

As in previous studies, we tested our approach on E. coli genes from the EcoGene
database [24]. Only those entries with biochemically verified N-terminus were consid-
ered and the neighboring nucleotides were looked up in the GenBank file U00096.gbk
[25]. From the 730 positive examples we created associated negative examples. For
the negative examples we extracted sequences centered around a codon from the set
{ATG,GTG,TTG}. Such a sequence is used as a negative example if the codon is in-
frame with one of the correct start sites used as a positive case, its distance from a
real TIS is less than 80 nucleotides, and no in-frame stop codon occurs in between.
This procedure generates a difficult benchmark data set, because the potential TISs in
the neighborhood of the real start codon are the most difficult candidates in TIS dis-
crimination. We created 1243 negative examples. The length of each sequence is 50
nucleotides, with 32 located upstream and 15 downstream with respect to the potential
start codon.

To minimize random effects, we generated 40 different partitionings of the data into
training and test sets. Each training set contained 400 sequences plus the associated
negatives, the corresponding test set 330 sequences plus the associated negatives.

Measuring the performance of a TIS classifier by the standard classification rate on
test sets leads to over-optimistic results. In a process of annotation, one normally ob-
tains a window with several possible TISs. The goal is to detect the position of a real
TIS—if there is one—within this window. If there are several positions marked as TISs,
one has to select one of them. In practice, the position with the highest score (i.e., de-
cision function value) is chosen. Thus, although a real TISs was classified as a TIS, the
classification can be overruled by a wrong classification in the neighborhood. There-
fore, when the SVM categorizes a location with corresponding sequence s as being a
TIS, we consider a frame of 160 nucleotides centered at that position. The score of ev-
ery potential TIS within this frame is computed. Only if s corresponds to a real TIS and
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real TIS

score

Example 1

ATGATGTTG GTG-80 +80
-0.7 0.3 0.4 -0.2

real TIS

score

Example 2

ATGATGTTG GTG-80 +80
-0.7 0.30.4 -0.2

Fig. 1. Performance assessment: Example 1 shows a correct positive classification of a TIS. In
example 2, the classification is not correct: The real TIS is classified as a TIS, but its score is not
the largest in the neighborhood.

the score for s is the largest of all potential TIS locations, the pattern s is considered to
be classified correctly, see Figure 1.

4.2 Locality Improved Kernel

For comparison, we consider the locality improved kernel [1,23]. It counts matching nu-
cleotides and considers local correlations within local windows of length 2l + 1. Given
two sequences si, s j of length L the locality improved kernel is given by

klocality(si,s j) =
L−l

∑
p=l+1

(
+l

∑
t=−l

vt+l ·matchp+t(si,s j)

)d

with matcht(si,s j) equal to one if si and s j have the same nucleotide at position t and
zero otherwise. The weights vt allow to emphasize regions of the window which are of
special importance. They were fixed to vt = 0.5−0.4|l− t|/l [1]. The hyperparameter
d determines the order to which local correlations are considered.

4.3 Experiments

In our experiments, we considered trimer oligo kernels with hyperparameter σ , locality
improved kernels with hyperparameters l and d, and weighted trimer oligo kernels with
adjustable σ and 64 weights. For each of the 40 partitionings into training and test
data and each sequence kernel independent optimizations of the kernel parameters were
conducted. In the end, we evaluate the median of the 40 trials.

For the SVM using the oligo kernel without individually weighting of the K-mers we
adjusted the smoothing parameter σ by one-dimensional grid-search. After narrowing
the possible values down, the grid search varied σ ∈ {0.1 + 0.2 · k | 0 ≤ k < 10}. The
parameters l and d of the locality improved kernel were also optimized using two-
dimensional grid-search. After determining an interval of parameters leading to well
generalizing classifiers, the grid-search varied l,d ∈ {2,3,4} [23]. For both kernels,
independent grid-searches were performed for each of the 40 partitionings.

The 1+43 = 65 parameters of the weighted trimer oligo kernels were optimized us-
ing the CMA-ES with randomly chosen starting points in the interval [0,1]. For each of
the 40 partitionings an independent optimization trial was started. The offspring popu-
lation size was λ = 16 (e.g., a default choice for this dimensionality, see [21]) and each
trial lasted 100 generations.
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The optimization criterion in the grid-searches and the evolutionary optimization
was the five-fold cross-validation error based on the error measure described above.
The training data set is partitioned into five disjoint subsets. For each of the subsets, the
classifier is trained using the union of the four other sets and a test error is computed on
the left-out subset. The final cross-validation error is the average of the five test errors.

4.4 Results

We first interpret the outcome of the optimization of the parameters of the weighted
oligo kernel. Then we compare the classification performance of the weighted oligo
kernel, the trimer oligo kernel with equal weights, and the locality improved kernel.

The results of the optimization of the smoothing parameter σ are shown in Table 1.
The optimized values are rather small, that is, the position of the triplets is very impor-
tant. However, the smoothing parameter for the oligo and the weighted oligo kernel do
not differ much.

To analyze the relevance of particular oligomers, the 64 triplets were sorted accord-
ing to the median of the corresponding evolved weighting parameters. The weight val-
ues indeed vary, and a group of a few oligomers with comparatively high weight values
can be identified. These triplets on the first 10 ranks are given in Table 2. Additionally
to the start codon ATG the triplets GAG, AGG, and GGA were assigned the largest
weight values. These triplets are all contained in the sequence TAAGGAGGT, which
is known to be of importance for translation initiation sites because it is the sequence
that will bind to the 16S rRNA 3’ terminal sequence of the ribosome. This sequence
is called Shine-Dalgarno Sequence [26, 27]. Obviously the kernel uses the presence of
triplets occurring in the Shine-Dalgarno sequence for discrimination.

The medians of the weights for the potential start codons were 5.6 for ATG, 3.58 for
TTG, and 2.45 for GTG. That is, the presence of ATG appears to be a relevant feature,
whereas GTG and TTG are not as important as ATG. In all positive as well as nega-
tive sequence patterns there is a potential start codon at the positions 33–35. Still, the
frequency of ATG at this position is considerably higher in positive than in negative

Table 1. Optimized smoothing parameter for the oligo and the weighted oligo kernel

oligo kernel weighted oligo kernel
(grid search) (CMA-ES)

Mean 1.86 1.71
Median 1.9 1.83
0.25 quantile 1.5 1.34
0.75 quantile 2.3 2.12

Table 2. The 3-mers of major importance for classification

3-mer GAG ATG AGG GGA GGC GCT CAA TTG TCC GGG
weight 6.23 5.6 5.36 5.29 5 4.81 4.05 3.58 3.45 3.41
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Table 3. Classification performance in percent for 40 trials with different partitionings of the data

oligo kernel locality improved kernel weighted oligo kernel
(grid search) (grid search) (CMA-ES)

Mean 84.86 85.60 86.02
Median 85.01 86.01 86.41
0.25 quantile 83.90 84.63 84.79
0.75 quantile 86.42 86.78 87.08

examples. The initiation codon of more than 90 % of prokaryotic genes is ATG [22].
The rule of thumb “a pattern is positive if the start codon is ATG and negative other-
wise”, which would lead to a classification accuracy of about 72% when applied to our
data, can be implemented with the evolved kernel weights. However, more sophisticated
features based on the triplets with large weights in Table 2 can overrule the presence or
absence of ATG.

The classification results are given in Table 3. The median of the classification per-
formance of the 3-mer oligo kernel with equal weighting is 85.01%. Introducing the
weights for the individual 3-mers in the oligo kernel and optimizing them using
CMA-ES leads to an increase of the classification performance to 86.41%. The re-
sults achieved by the weighted oligo kernel are significantly better than those of the
oligo kernel with equal weights and the smoothing parameter as only adjustable vari-
able (Wilcoxon rank-sum test, p < 0.01).

The median of the locality improved kernel parameters adjusted by grid search was
two for both l and d. That is, the nucleotides were only compared within a small win-
dow. This is in accordance with the results for σ in the oligo kernels. The median
of the classification performance reached by the locality improved kernel is 86.01%,
that is, between the 3-mer oligo kernel with equal weights and the evolutionary opti-
mized 3-weighted oligo kernel. However, the differences are not statistically significant
(Wilcoxon rank-sum test, p > 0.05).

5 Conclusion and Outlook

A task specific choice of the kernel can significantly improve kernel-based machine
learning. Often a parameterized family of kernel functions is considered so that the
kernel adaptation reduces to real-valued optimization. Still, the adaptation of complex
kernels requires powerful optimization methods that can adapt multiple parameters ef-
ficiently. When the considered space of kernel functions lacks a differentiable structure
or the model selection criterion is non-differentiable, a direct search method is needed.
The covariance matrix adaptation evolution strategy (CMA-ES) is such a powerful, di-
rect algorithm for real-valued hyperparameter selection.

In biological sequence analysis, the CMA-ES allows for a more task specific adap-
tation of sequence kernels. Because multiple parameters can be adapted, it is possible
to adjust new weighting variables in the oligo kernel to control the influence of every
oligomer individually. Further, the cross-validation error can directly be optimized (i.e.,
without smoothening).
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We demonstrated the discriminative power of the oligo kernel and the benefits of the
evolutionary model selection approach by applying them to prediction of prokaryotic
translation initiation sites (TISs). The adapted weighted oligo kernel leads to improved
results compared to kernel functions with less adaptable parameters, which were opti-
mized by grid-search. Furthermore, it is possible to reveal biologically relevant infor-
mation from analyzing the evolved weighting parameters. For the prediction of TISs, for
example, triplets referring to the Shine-Dalgarno sequence are used for discrimination.
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Abstract. Tree-dependent component analysis (TCA) is a generaliza-
tion of independent component analysis (ICA), the goal of which is to
model the multivariate data by a linear transformation of latent vari-
ables, while latent variables fit by a tree-structured graphical model. In
contrast to ICA, TCA allows dependent structure of latent variables and
also consider non-spanning trees (forests). In this paper, we present a
TCA-based method of clustering gene expression data. Empirical study
with yeast cell cycle-related data, yeast metabolic shift data, and yeast
sporulation data, shows that TCA is more suitable for gene clustering,
compared to principal component analysis (PCA) as well as ICA.

1 Introduction

Clustering genes from expression data into biologically relevant groups, is a valu-
able tool for finding characteristic expression patterns of a cell and for inferring
functions of unknown genes. Clustering is also widely used in modelling tran-
scriptional regulatory networks, since it reduces the data complexity [1]. On one
hand, classical clustering methods such as k-means, hierarchical clustering and
self-organizing map (SOM), have widely been used in bioinformatics. On the
other hand, linear latent variables models were recently used in the task of gene
clustering. This includes principal component analysis (PCA) [2], factor anal-
ysis [3], independent component analysis (ICA) [4,5,6], independent subspace
analysis (ISA) [7,8], and topographic ICA [9].

The underlying assumption in linear latent variable models, is that gene ex-
pression profiles (measured by microarray experiments) are generated by a linear
combination of linear modes (corresponding to prototype biological processes)
with weights (encoding variables or factors) determined by latent variables. In
such a case, latent variables indicates the portion of contributions of each lin-
ear mode to a specific gene profile. Clustering gene profiles can be carried out
by investigating the significance of latent variables and representative biologi-
cal functions directly come from linear modes of latent variable models. It was
shown that clustering by latent variable models outperforms classical clustering
algorithms (e.g., k-means) [5].
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Tree-dependent component analysis (TCA) is a generalization of ICA, the
goal of which is to seek a linear transform with latent variables well-fitting by a
tree-structured graphical model, in contrast to ICA which restricts latent vari-
able to be statistically independent [10]. TCA allows the dependent structure
of latent variables and also incorporates with non-spanning trees (forests). In
this paper, we present a method of gene clustering based on TCA. We compare
the performance of TCA to PCA and ICA, for three yeast data sets, evaluating
the enrichment of clusters through the statistical significance of Gene Ontology
(GO) annotations [11].

2 Linear Latent Variable Models

Gene expression patterns measured in microarray experiments, result from un-
known generative processes contributed by diverse biological processes such as
the binding of transcription factors and environmental change outside a cell [4].
Genome-wide gene expression involves a very complex biological system and the
characteristics of biological processes is hidden to us. A promising way to model
such a generative process, is to consider a linear latent variable model such as
PCA and ICA.

The linear generative model assumes that a gene profile xt ∈ Rm (the elements
of xt represent the expression levels of gene t at m samples or m time points) is
assumed to be generated by

xt = Ast + εt, t = 1, . . . , N, (1)

where A = [a1 · · · an] ∈ Rm×n contains linear modes in its columns and st ∈ Rn

is a latent variable vector with each element sit associated with the contribution
of the linear mode ai to the gene profile xt. The noise vector εt ∈ Rm takes
the uncertainty in the model into account and it is assumed to be statistically
independent of st. For the sake of simplicity, we neglect the noise vector εt. Then
the linear generative model (1) can be written in a compact form:

X = AS, (2)

where X = [Xit] ∈ Rm×N is the data matrix with each element Xit associated
with the expression level of gene t at sample i (or time i). The latent variable
matrix S ∈ Rn×N contains st for t = 1, . . . , N .

Given a data matrix X, latent variables S are determined by S = WX, where
the linear transformation W is estimated by a certain optimization method.
Depending on restrictions or assumptions on A and S, various methods including
PCA, ICA, and TCA have been developed. A brief overview of those methods
is given below.

2.1 PCA

PCA is a widely-used linear dimensionality reduction technique which decom-
poses high-dimensional data into low-dimensional subspace components. PCA
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is illustrated as a linear orthogonal transformation which captures maximal
variations in data. Various algorithms for PCA have been developed [12,13,14].
Singular value decomposition (SVD) is an easy way to determine principal com-
ponents.

The SVD of the data matrix X ∈ Rm×N is given by

X ≈ UDV �, (3)

where U ∈ Rm×n (n ≤ m) contains n principal left singular vectors (eigenvec-
tors) in its columns, D ∈ Rn×n is a diagonal matrix with eigenvalues on diagonal
entries, and V ∈ RN×n contains n right singular vectors in its columns.

In the framework of gene expression data analysis, the n column vectors of
U correspond to eigengenes and the n column vectors of V are associated with
eigenarrays. Exemplary applications of SVD or PCA to gene expression data,
can be found in [15,2].

2.2 ICA

ICA is a statistical method which model the observed data {xt} by a linear
model {Ast} with restricting non-Gaussian latent variables st to have statis-
tically independent components. In contrast to PCA where the multivariate
data is modelled by an orthogonal transformation of independent (or uncor-
related) Gaussian latent variables, ICA seeks a non-orthogonal transformation
that makes non-Gaussian components to be as independent as possible. Refer to
[16,17,18] for details and recent review of ICA.

The non-Gaussianity constraint for independent components, is very useful
in the gene expression data analysis. Hidden biological processes affect only a
few relevant genes and a large portion of genes remains unaffected. Gaussian
distribution does not model this encoding process correctly. In fact, heavy-tailed
distributions are more suitable for encoding variables {st} in gene expression
data [5,4]. The independence assumption on hidden variables {st} was shown to
be an effective hypothesis for separating linearly-mixed biological signals in gene
expression data. Despite of this effectiveness of the independence assumption, it
is not realistic since biological systems are known to be highly inter-connected
networks.

2.3 TCA

For the sake of simplicity, we omit the index t in both xt and st, unless it is
necessary. As in ICA, we also assume that the data is pre-processed by PCA
such that its dimension is reduced down to n. TCA is a generalization of ICA,
where instead of seeking a linear transformation W that makes components
{si} independent (si is the ith-element of s = Wx), it searches for a linear
transform W such that components (latent variables) {si} well-fit by a tree-
structured graphical model [10]. In TCA, si are referred to as tree-dependent
components. In contrast to ICA, TCA allows the components si to be dependent
and its dependency is captured by a tree-structured graphical model. Thus, it is
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expected that TCA will be more suitable for gene clustering than ICA, since it
is more realistic in seeking hidden biological processes. A brief overview of TCA
is given below, and see [10] for more details.

Let us denote by T (V , E) an undirected tree, where V and E represent a set
of nodes and a set of edges, respectively. The objective function considered in
TCA model, involves the T -mutual information IT (s):

J (x,W , T ) = IT (s)

= I(s1, . . . , sn)−
∑

(i,j)∈E
I(si, sj), (4)

where I(·) is the mutual information. Note that in the case of ICA, only the
mutual information I(s1, . . . , sn) serves as the objective function. The objective
function (4) results from the minimal KL-divergence between the empirical dis-
tribution p(x) and the model distribution q(x) where the linear model x = As
is considered and s is assumed to factorize in a tree T .

In terms of entropies (denoted by H(·)), the objective function (4) can be
written as

J (x,W , T ) =
∑

j

H(sj)−
∑

(i,j)∈E
[H(si) + H(sj)−H(si, sj)]

− log | detW |, (5)

where H(x) is omitted since it is constant. The objective function (5) involves
the calculation of entropy, which requires the probability distribution of s that
is not available in advance. Several empirical contrast functions were considered
in [10]. These include: (1) kernel density estimation (KDE); (2) Gram-Charlier
expansion; (3) kernel generalized variance; (4) multivariate Gaussian stationary
process-based entropy rate. In the case of ICA, Gaussian latent variables are not
interesting. In such a case, the transformation W is defined up to an orthogonal
matrix. On the other hand, TCA imposes a tree-structured dependency on latent
variables, hence, this indeterminacy disappears and the transformation W can
be estimated with a fixed tree T .

Incorporating with a non-spanning tree in TCA allows us to model inter-
cluster independence, while providing a rich but tractable model for intra-cluster
dependence. This is desirable for clustering since an exact graphical model for
clusters of variables would have no edges between nodes that belong to different
clusters and would be fully connected within a cluster. In order for non-spanning
trees to be allowed, the following prior term (penalty term), ζ(T ) = log p(T ),
was considered in [10]:

ζ(T ) = log p(T ) =
∑

(i,j)∈E
ζ0
ij + f(#(T )), (6)

where ζ0
ij is a fixed weight of (i, j), f is a concave function, and #(T ) is the

number of edges in T .



Tree-Dependent Components of Gene Expression Data for Clustering 841

Model parameters W and non-spanning trees T in TCA are determined by
alternatively minimizing the objective function J̃ = J (x,W , T )− ζ(T ) 1. Min-
imization of the objective function with respect to the discrete variable T , is
solved by a greedy algorithm involving the maximum weight forest problem.
The second minimization with respect to W , is done by the gradient descent
method. More details on TCA are found in [10].

3 Proposed Method for Clustering

ICA has been successfully applied to clustering genes from expression data in a
non-mutually exclusive manner [5,6]. Each independent component is assumed to
be a numerical realization of a biological process relevant to gene expression. The
genes having extremely large or small values of the independent component can
be regarded as significantly up-regulated or down-regulated genes. However, the
assumption that the hidden variables are mutually independent is too strong to
model the real biological processes of gene expression properly. This limitation of
ICA-based method of clustering can be solved by using TCA. The tree-structured
graphical model of TCA is enough rich to model the real biological processes.
The procedures of TCA-based clustering are summarized below.

Algorithm Outline: TCA-Based Clustering

Step 1 [Preprocessing]. The gene expression data matrix X is preprocessed
such that each element is associated with Xit = log2 Rit − log2 Git where
Rit and Git represent the red and green intensity of cDNA microarray, re-
spectively. Genes whose profiles have missing values more than 10% are
discarded. Missing values in X are filled in by applying the KNNimpute,
a method based on k-nearest neighbors [19]. The data matrix is centered
such that each row vector has zero mean. In the case of high-dimensional
data, PCA could be applied to reduce the dimension, but it is not always
necessary.

Step 2 [Decomposition]. We apply the TCA algorithm to the preprocessed
data matrix to estimate the demixing matrix W and the encoding variable
matrix S.

Step 3 [Gene clustering]. In the case of ICA, the row vectors of S are sta-
tistically independent. Thus clustering is carried out for each row vector
(associated with each linear mode that is the column vector of A). In other
words, for each row vector of S, genes with strong positive and negative
values of associated independent components, are grouped into two clusters,

1 This objective function is the case where whitening constraints are imposed. In such
a case, the minimization is carried out subject to W ΣW � = I where Σ is the
covariance matrix of x.
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each of which is related to induced and repressed genes, respectively. On
the other hand, TCA reveals a dependency structure in the row vectors of
S. Hence, the row vectors of S associated with a spanning tree undergo a
weighted sum. These resulting row vectors (the number of these row vec-
tors is equal to the number of spanning trees in the forest) are used for
grouping genes into up-regulated and down-regulated genes. Denote by Ci

the cluster associated with an isolated spanning tree determined by TCA.
The up-regulated (Cu

i ) and down-regulated (Cd
i ) genes are grouped by the

following rule:

Cu
i =

{
gene j |

∑
k∈Ci

‖ak‖22 sign(ak)Skj ≥ cσ

}
,

Cd
i =

{
gene j |

∑
k∈Ci

‖ak‖22 sign(ak)Skj ≤ −cσ

}
, (7)

where σ denotes the standard deviation of
∑

k∈Ci
‖ak‖22 sign(ak)Sk,:, where

ak is the average of ak and Sk,: is the kth row vector of S. In our experiment,
we chose c = 1.5.

4 Numerical Experiments

4.1 Datasets

We used three publicly available gene expression time series data sets, including
yeast sporulation, metabolic shift, and cell cycle-related data. The details on
these data sets are described in Table 1.

4.2 Performance Evaluation

Evaluating statistical significance of clustering is one of the most important and
difficult steps in clustering gene expression data [1]. For biologists, the contents of
a cluster should be correctly interpreted in order to extract biologically valuable

Table 1. The three data sets are summarized. The number of open reading frames
(ORF) represents the total number of genes which are not discarded in the preprocess-
ing step. The number of time points is equal to the dimension of the observation vector
x. We chose the number of clusters of hidden variables by using the TCA algorithm.

No. Dataset # of ORFs # of time points # of clusters Reference

D1 sporulation 6118 7 2 [20]
D2 metabolic 6314 7 3 [21]
D3 cdc28 5574 17 9 [22]
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information from the results of clustering. The correct interpretation is guided
by the analysis of statistical significance of clustering. In statistics, statistical
significance is usually determined in the framework of hypothesis testing con-
sidering the null and alternative hypotheses. To apply the hypothesis testing
framework to this work, we use the Gene Ontology (GO) database annotating
gene products of many well-known genomes in terms of their associated biologi-
cal processes, cellular components, and molecular functions [11]. From the gene
list of a cluster, we obtain several annotation categories in which some genes of
the cluster are contained. If the genes contained in a certain annotation category
are observed within the cluster by chance, the number of genes follows the hy-
pergeometric distribution. This is the null hypothesis H0 and the opposite one is
called the alternative hypothesis H1. Under the null hypothesis H0, the p-value
of the probability to observe the number of genes as large or larger than k from
an annotation category within a cluster of size n is given by

p = 1−
k−1∑
i=0

(
f
i

)(
g − f
n− i

)
(
g
n

) (8)

where f is the total number of genes within an annotation category of the GO
database and g is the total number of genes within the genome. If the p-value
is smaller than a fixed significance level α, we reject the null hypothesis H0 and
conclude that the genes contained in the annotation category are statistically
significant [1]. To compare the statistical significance of two clustering results,
we collect the minimum p-value smaller than α for each annotation category
observed in both clustering results. A scatter plot of the negative logarithm of the
collected p-values are finally drawn for visual comparison [5]. In the experiments,
we set α = 0.005 for the significance level. We have developed a software called
GOComparator which calculates p values of GO annotations and compares the
two clustering results visually by plotting the minimum p-values shared in both.
It is freely available at http://home.postech.ac.kr/∼blkimjk/software.html.

4.3 Results

We compared the performance of TCA-based clustering with PCA and ICA by
using the three yeast datasets. The method of clustering with the two algorithms
is very similar to TCA except that decomposition is performed by PCA and
ICA, respectively. In addition, the weighted summation of tree-dependent com-
ponents in the gene clustering step is not done as there are no clusters of hidden
variables in the two algorithms. We compared three different ICA algorithms
to choose one showing the best clustering performance in ICA-based cluster-
ing. The used ICA algorithms are Self Adaptive Natural Gradient algorithm
with nonholonomic constraints (SANG), Joint Approximate Diagonalization of
Eigenmatrices (JADE), and Fixed-Point ICA (FPICA) [23]. Among the three
ICA algorithms, SANG shows the best performance in terms of statistical signif-
icance of GO annotations for each dataset. We also compared TCA algorithms
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(a) B:TCA, A:PCA (c) B:TCA, A:PCA (e) B:TCA, A:PCA

(b) B:TCA, A:ICA (d) B:TCA, A:ICA (f) B:TCA, A:ICA

Fig. 1. Comparison of TCA based clustering to PCA and ICA on three yeast datasets.
For each dataset, TCA has more points above the diagonal, which indicates that TCA
has more significant GO annotations. (a), (b): D1, (c), (d): D2, (e), (f): D3.

with different empirical contrast functions: CUM, KGV, KDE, and STAT. The
TCA algorithm based on Gaussian stationary process (STAT) outperforms the
others for each dataset. The performance of TCA with a non-spanning tree was
better than that of a spanning tree. The comparison results of three datasets
are shown in Fig. 1. It confirms that TCA-based clustering outperforms PCA-
and ICA-based clustering. The number of clusters of tree-dependent components
chosen by TCA is given in Table 1. By applying PCA, we reduced the number
of hidden variables in PCA- and ICA-based clustering to the chosen number of
clusters of TCA-based clustering. Because of the computational cost of TCA, we
reduced the dimension of the data vector to 10 by applying PCA for the dataset
D3. For each dataset, the edge prior,ζ0

ij , in (6) was chosen to 8 log(N)
N , where N

is the total number of genes.
The clustering based on the linear latent variable models can reveal hidden

biological processes determining gene expression patterns. In the case of TCA-
based clustering, each non-spanning tree corresponds to an unknown biologi-
cal process. The characteristics of the unknown biological processes can be re-
vealed by referring to the most significant GO annotations. The most significant
GO annotations of the dataset D2 selected by TCA are given in Table 2. The
dataset D2 shows the diauxic shift which is a switch from anaerobic growth to
aerobic respiration upon depletion of glucose [21]. The selected significant GO
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Table 2. The most significant GO annotations of the dataset D2 selected by TCA.
The results of cluster 2 are not shown since it did not contain any significant GO
annotations.

Cluster Induced functions Repressed functions

1 sporulation, spore wall assembly structural molecule activity,
macromolucule biosynthesis

3 aerobic respiration, cellular respiration, ribosome biogenesis and assembly,
carbohydrate metabolism cytoplasm organization and biogenesis

annotations of the cluster 3 represent the unknown biological processing related
with the diauxic shift of yeast.

5 Conclusions

In this paper, we have presented a method of TCA-based clustering for gene
expression data. Empirical comparison to PCA and ICA, with three different
yeast data sets, has shown that the TCA-based clustering is more useful for
grouping genes into biologically relevant clusters and for finding underlying bi-
ological processes. The success of TCA-based clustering has confirmed that a
tree-structured graph (a forest consisting of Chow-Liu trees) for latent variables
is a more realistic and richer model for modelling hidden biological processes.

Acknowledgments. This work was supported by National Core Research Cen-
ter for Systems Bio-Dynamics and POSTECH Basic Research Fund.
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Abstract. The paper proposes the use of the multilayer perceptron
model to the problem of detecting ham and spam e-mail patterns. It
also proposes an intensive use of data pre-processing and feature selec-
tion methods to simplify the task of the multilayer perceptron in classi-
fying ham and spam e-mails. The multilayer perceptron is trained and
assessed on patterns extracted from the SpamAssassin Public Corpus. It
is required to classify novel types of ham and spam patterns. The results
are presented and evaluated in the paper.

1 Introduction

Neural networks (NNs) have been widely employed in pattern recognition prob-
lems [1]. In this class of problems, they present several advantages over other
mathematical models. For instance, they make use of parallel processing and
present graceful degradation. Moreover, by inductive learning, they establish
themselves the function which maps the set of inputs on the set of outputs [2].

The main advantage, however, is the fact that NNs are capable of generaliza-
tion. They can produce correct outputs even on inputs that were never presented
to them during training [2].

The generalization property is particularly interesting in the domain of anti-
spam systems, i.e., systems which filter spam electronic mails (e-mails). Spam
e-mails are unsolicited electronic messages posted blindly to many recipients
usually for commercial advertisement.

Spam is a costly problem, and it is getting worse, for the number of spam
e-mails circulating in computer networks is increasing rapidly [3,4,5]. Anti-spam
systems are becoming increasingly complex [6]. Nonetheless, they commonly fail
on blocking both known forms and novel forms of spam e-mails [5].

There are some works in the literature suggesting the application either of
statistical models [7,8,9] or of neural network models [10,8,11] to anti-spam sys-
tems. Yet, whether they be statistical-based or NN-based, anti-spam systems
share the same failing, which is, the number of false positives and false negatives
generated is too high1 [12].
1 The classification of a normal mail as spam, and of spam as a normal mail is referred

to as false positive, and false negative, respectively.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 847–855, 2006.
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The objective of this paper is twofold. First, it is proposed the use of the
multilayer perceptron (MLP) to approach the problem of detecting ham2 and
spam e-mails. MLP has been extensively applied to pattern recognition, as well as
to several other categories of problems [1]. Second, it is proposed an intensive use
of data pre-processing and feature selection methods. The use of such methods
simplifies the task of the MLP in classifying ham and spam e-mails.

The paper is divided as follows. The second and third sections present the
data pre-processing and feature selection methods, respectively. MLP is detailed
in the fourth section. The fifth section describes the experiments. The sixth
one discusses the results on the recognition of ham and spam e-mails. The last
section presents the main conclusions of the paper, and indicates some directions
for future work.

2 Data Pre-processing

The data consist of ham and spam e-mails extracted from the SpamAssassin
Public Corpus [13]. This public corpus was chosen because its e-mails are com-
plete, and kept in their original form.

The e-mails were pre-processed to make them simpler, more uniform, and to
eliminate unnecessary parts. Many pre-processing operations were realized on
the text, images, and on HTML tags.

2.1 Pre-processing on Text and Images

Some of the pre-processing operations realized on text and images are described
below.

1. Letters are converted into lower case.
2. Images are removed. A tag is included to replace each image.
3. Only subject and body are considered. Attachments are removed. A tag

is included to replace each attachment. All other parts of the e-mail are
discarded.

4. Contents of e-mails may be presented in both HTML and text forms. When-
ever both forms occur, the text form is discarded.

5. Hyphenated words are removed. A tag is included to replace each one of
them.

6. Spaces and other delimiting characters between letters are removed.
7. Accent marks are removed from the accented letters.
8. One- or two-letter words are ignored.
9. Long words are discarded. A tag is included to replace each one of them.

10. Links, e-mail addresses, currency, and percentage are converted into special
tags.

11. Numbers in e-mail subjects are removed. A tag is included to replace each
one of them.

2 Normal mails are referred to as ham mails.
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2.2 Pre-processing on HTML Tags

HTML tags are divided into three categories. They are processed according to
the category which they belong to. Table 1 presents some of the tags processed,
and their respective categories.

Table 1. Some HTML tags, and their respective categories

Tag Category Tag Category

a 3 html 2
abbr 2 i 2

acronym 2 img 3
b 2 input 3

base 3 ins 2
blockquote 3 kbd 2

body 2 label 2
br 2 li 2

button 3 map 3
caption 2 marquee 1

col 2 ol 2
comment 1 option 2

del 2 p 2
em 2 select 2
font 3 style 1
form 3 table 2
frame 2 textarea 2
h1–h6 2 title 1
head 2 tr 2
hr 2 var 2

Tags in the first category are totally discarded, that is, the tags, their at-
tributes, and the contents they enclose are completely removed. For instance,
the block “<style> anything inside </style>” is totally discarded during pre-
processing.

Tags in the second category have their attributes removed during pre-process-
ing. The tag itself is replaced by another special one. For instance, the block “<p
align=left> anything inside </p>” is converted into “! in p anything inside”
during pre-processing.

Tags in the third category are processed in their entirety. Nonetheless, the
contents of the attributes are removed, and the tag itself is replaced by another
special one. For instance, the block “<form action=“results.php”> anything in-
side </form>” is converted into “! in form action anything inside” during pre-
processing.
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3 Feature Selection Methods

Feature selection consists in extracting the most relevant features from a infor-
mation set. Considering the information set as being the whole set of e-mails,
the features consist then of the e-mail words, images, HTML tags and attributes
which were pre-processed.

Feature selection methods are widely employed in text categorization [14]. In
particular, those methods can also be employed in the categorization of e-mails
into two classes — ham and spam.

Two feature selection methods were employed in the experiments — frequency
distribution (FD) and chi-square (χ2) distribution. These methods are described
below.

3.1 Frequency Distribution

Frequency distribution (FD) measures the degree of occurrence of an element w
in a set C. If w is a feature, the frequency distribution of the feature w is given
by

FD(w) =
N [w ∈ {spam,ham}]

T
(1)

where N [w ∈ {spam,ham}] is the number of occurrences of feature w in the
classes {spam,ham}, and T the total number of features in those classes. The
features with the highest values of FD are then selected. Each selected feature
is represented by one input unit of the neural model.

3.2 Chi-square Distribution

Chi-square (χ2) distribution measures the degree of dependence between an
element e and a set S [15]. If w is a feature, and C a set of two classes — spam
and ham —, the chi-square distribution of the feature w is given by

χ2(w) = P (spam) · χ2(w, spam) + P (ham) · χ2(w,ham) (2)

where P (spam) and P (ham) are the probabilities of occurrence of spam and ham
e-mails, respectively. The chi-square distribution for the feature w and class c is
given by

χ2(w, c) =
N(kn−ml)2

(k + m)(l + n)(k + l)(m + n)
(3)

where k is the number of e-mails, within class c, which contain the feature w; l
is the number of e-mails, within class c, which contain the feature w; m is the
number of e-mails, within class c, which do not contain the feature w; n is the
number of e-mails, within class c, which do not contain the feature w; and N is
the total number of e-mails within class c.

The features with the highest values of chi-square distribution are then se-
lected. Each selected feature is represented by one input unit of the neural model.
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4 Multilayer Perceptron

The multilayer perceptron (MLP) holds either six, twelve, or twenty-five input
units. Several architectures including from three up to twenty hidden units are
tested.

Activation ai of each hidden unit i is given by the sigmoid function

ai =
1

1 + e−neti
(4)

neti is given by

neti =
∑

j

wijaj + biasi (5)

where wij is the weight from input unit j to hidden unit i, aj is the activation of
input unit j, and biasi is a special weight which adjusts values of neti to make
an efficient use of threshold of the sigmoid.

The output layer holds linear units to avoid flat spots3 [16]. Activation ai of
each output unit i is thus given by

ai = neti =
∑

j

wijaj + biasi (6)

where wij is the weight from hidden unit j to output unit i, aj is the activation
of hidden unit j, and biasi is again a special weight4.

Weights are updated according to generalized delta rule [17],

Δwij(p) = αδiaj + βΔwij(p− 1) (7)

where α,β ∈ (0, 1) are the learning rate and momentum respectively. Subscript
p indexes pattern number.

Training takes place on an epoch-by-epoch basis. At the end of each epoch,
both learning rate and momentum are modified, and total error is calculated.

Training is performed through cross validation. Therefore, it is halted when-
ever the total error increases on the testing set.

Learning rate is reduced by 50% when total error increases, and increased by
2% when error decreases. Momentum is disabled until the end of training if total
error increases. Total error E is given by

E =
∑

p

∑
i

δ2
i (p) (8)

3 Flat spots are points in which the derivative of the sigmoid function approaches zero.
The recovery of a non-linear output unit becomes extremely slow when it displays
an incorrect output value on a flat spot.

4 The existence of bias is not necessary, for the output units are linear. However, they
were kept.
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where subscript p indexes pattern number, and δi is the error signal for output
unit i.

Error signal δi, for an output unit i, is given by

δi = ti − ai (9)

where ti is the desired activation value and ai is the activation obtained. For a
hidden unit i, δi is given by

δi = ai(1− ai)
∑

k

δkwki (10)

where wki is the weight from hidden unit i to output unit k.
Two output units were used in all experiments. The model was trained to

display activation values (01) in these units when the units in the input layer
are representing a negative pattern, that means, a ham e-mail. It was also trained
to display values (10) when the input units are representing a positive pattern,
i.e., a spam e-mail.

The initial weights are given randomly in the range [-0.5,0.5].

5 Experiments

Six experiments are carried out. They employ either different feature selection
methods or different number of units in the input layer of the MLP.

Three sets — training set, testing set, and validation set — are prepared for
each experiment. Training and testing sets are employed during training. The
validation set contains totally novel patterns, i.e., novel types of ham and spam
e-mails which are neither present in the training set nor in the testing set. The
generalization property of the MLP is thus put to the test.

The first and second experiments make use of a MLP model with six units in
its input layer. In the first experiment, the feature selection method employed
is frequency distribution. In the second, chi-square distribution is the feature
selection method employed.

The third and fourth experiments employ a MLP model with twelve units in
its input layer. Frequency distribution and chi-square distribution are the feature
selection methods employed in the third and fourth experiments, respectively.

The fifth and sixth experiments make use of a MLP model with twenty-five
units in its input layer. In the fifth experiment, the feature selection method
employed is frequency distribution. In the sixth, chi-square distribution.

In all experiments, from the first to the sixth, the training sets contain 2484
ham and 2484 spam patterns. The testing sets contain 832 ham and 832 spam
patterns, and the validation sets 826 ham and 826 spam patterns.

6 Results

Table 2 presents the best results achieved by MLP on the validation sets. It
shows the percentage of correct classifications both of ham and of spam patterns
in the six experiments.
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Table 2. Results of the experiments — FS Method: feature selection method; FD:
frequency distribution; χ2: chi-square distribution

Experiment No. Inputs FS Method
Correct Classifications (%)
Ham Pattern Spam Pattern

1 6 FD 86.44 91.16
2 6 χ2 93.58 96.49
3 12 FD 91.16 96.00
4 12 χ2 97.34 98.18
5 25 FD 97.22 94.55
6 25 χ2 100.00 99.15

The results from MLP are very promising. The percentage of correct classifi-
cations is high, showing that the MLP was capable of generalizing to novel types
of ham and spam e-mail patterns.

In the first experiment, MLP classified incorrectly 112 ham patterns and 73
spam patterns. In the second, it classified incorrectly 53 ham patterns and 29
spam patterns.

In the third experiment, MLP classified incorrectly 73 ham patterns and 33
spam patterns. In the fourth, it classified incorrectly 22 ham patterns and 15
spam patterns.

In the fifth experiment, MLP classified incorrectly 23 ham patterns and 45
spam patterns. In the sixth, it classified correctly all ham patterns, and classified
incorrectly 7 spam patterns.

To provide a better understanding of the quality of these results, a comparison
with the results reported in a very recent paper is presented below.

Chuan, Xianliang, Mengshu, and Xu [11] carried out experiments with three
anti-spam filter models on the SpamAssassin Public Corpus. The first model was
a näıve Bayesian classifier (NBC), the second a multilayer perceptron (MLP),
and the third a learning vector quantization (LVQ).

Their paper reports that NBC model achieved 86.48% of correct classifications
on spam patterns, whilst MLP and LVQ models achieved 91.26% and 93.58%,
respectively. These results are poor when compared with those shown in table 2.

7 Conclusion

The paper proposes the use of the multilayer perceptron (MLP) model to the
problem of detecting ham and spam e-mail patterns. MLP has been extensively
applied to pattern recognition, as well as to several other categories of problems.

The paper proposes an intensive use of data pre-processing and feature selec-
tion methods as well. The use of such methods simplifies the task of the MLP
in classifying ham and spam e-mails.

MLP is trained and assessed on patterns extracted from the SpamAssassin
Public Corpus. The data include both ham and spam e-mail patterns. The
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e-mails are pre-processed to make them simpler, more uniform, and to elimi-
nate unnecessary parts. Feature selection methods are employed to extract the
most relevant features from the e-mails.

The experiments show that the multilayer perceptron performed very well.
The percentage of correct classifications is high, showing that the MLP is capable
of generalizing to novel types of ham and spam patterns.

The results achieved may still be improved. Some directions for further work
include testing novel neural models as well as testing novel data pre-processing
and feature selection methods.
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Abstract. The paper proposes the use of the multilayer perceptron
model to the problem of detecting attack patterns in computer networks.
The multilayer perceptron is trained and assessed on patterns extracted
from the files of the Third International Knowledge Discovery and Data
Mining Tools Competition. It is required to classify novel normal pat-
terns and novel categories of attack patterns. The results are presented
and evaluated in the paper.

1 Introduction

Neural networks (NNs) have been widely employed in pattern recognition prob-
lems [1]. In this class of problems, they present several advantages over other
mathematical models. For instance, they make use of parallel processing and
present graceful degradation. Moreover, by inductive learning, they establish
themselves the function which maps the set of inputs on the set of outputs [2].

The main advantage, however, is the fact that NNs are capable of generaliza-
tion. They can produce correct outputs even on inputs that were never presented
to them during training [2].

The generalization property is particularly interesting in the domain of in-
trusion detection systems (IDSs) in computer networks [3,4,5]. Novel types of
attack emerge frequently across the globe, and spread rapidly on computer sys-
tems. IDSs currently in operation are requested to provide defense against these
novel types of attack, and commonly fail [6,7,8].

There are some works in the literature suggesting the application of neural
networks to IDSs [9,10,11,12]. Their main objective is to show that NNs may
provide a better solution to the problem of detecting both known types and
novel types of attack patterns.

This paper proposes the use of the multilayer perceptron (MLP) to approach
the problem of detecting normal patterns and attack patterns in computer net-
works. MLP has been extensively applied to pattern recognition, as well as to
several other categories of problems [1].

The paper is divided as follows. The second section presents the data rep-
resentation. MLP is detailed in the third section. The fourth section describes
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the experiments. The fifth section discusses the results both on normal and on
attack pattern recognition. The last section presents the main conclusions of the
paper, and indicates some directions for future work.

2 Data Representation

The input data consists of patterns extracted from the files of the Third In-
ternational Knowledge Discovery and Data Mining Tools Competition (KDD
Competition) [13]. The competition was held in conjunction with the Fifth In-
ternational Conference on Knowledge Discovery and Data Mining.

The input data include both normal and attack patterns. Several input files
including such data are set.

Forty-six input neural units are used in the representation, as shown in
Table 1. The units represent data fields which characterize computer network
traffic. Thus, the first unit, for instance, represents the duration of the network
connection, and the sixteenth unit represents the number of failed logins. The
KDD Competition site [14] provides an extensive explanation of these data fields.

Table 1. Data fields employed in the representation

Unit Data Field Unit Data Field

1 duration 27 is guest login
2–8 service 28 count
9 flag 29 srv count
10 src bytes 30 serror rate
11 dst bytes 31 srv serror rate
12 land 32 rerror rate
13 wrong fragment 33 srv rerror rate
14 urgent 34 same srv rate
15 hot 35 diff srv rate
16 num failed logins 36 srv diff host rate
17 logged in 37 dst host count
18 num compromised 38 dst host srv count
19 root shell 39 dst host same srv rate
20 su attempted 40 dst host diff srv rate
21 num root 41 dst host same src port rate
22 num file creations 42 dst host srv diff host rate
23 num shells 43 dst host serror rate
24 num access files 44 dst host srv serror rate
25 num outbound cmds 45 dst host rerror rate
26 is host login 46 dst host srv rerror rate
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The network traffic data is pre-processed using ordinary normalization. Each
unit receives real values with minimum and maximum values in the [0,1] range.

3 Multilayer Perceptron

The multilayer perceptron (MLP) holds forty-six input units. Several architec-
tures including from five up to twenty-five hidden units are tested.

Activation ai of each hidden unit i is given by the sigmoid function

ai =
1

1 + e−neti
(1)

neti is given by
neti =

∑
j

wijaj + biasi (2)

where wij is the weight from input unit j to hidden unit i, aj is the activation of
input unit j, and biasi is a special weight which adjusts values of neti to make
an efficient use of threshold of the sigmoid.

The output layer holds linear units to avoid flat spots1 [15]. Activation ai of
each output unit i is thus given by

ai = neti =
∑

j

wijaj + biasi (3)

where wij is the weight from hidden unit j to output unit i, aj is the activation
of hidden unit j, and biasi is again a special weight2.

Weights are updated according to generalized delta rule [16],

Δwij(p) = αδiaj + βΔwij(p− 1) (4)

where α,β ∈ (0, 1) are the learning rate and momentum respectively. Subscript
p indexes pattern number.

Training takes place on an epoch-by-epoch basis. At the end of each epoch,
both learning rate and momentum are modified, and total error is calculated.

Training is performed through cross validation. Therefore, it is halted when-
ever the total error increases on the testing set.

Learning rate is reduced by 50% when total error increases, and increased by
2% when error decreases. Momentum is disabled until the end of training if total
error increases. Total error E is given by

E =
∑

p

∑
i

δ2
i (p) (5)

1 Flat spots are points in which the derivative of the sigmoid function approaches zero.
The recovery of a non-linear output unit becomes extremely slow when it displays
an incorrect output value on a flat spot.

2 The existence of bias is not necessary, for the output units are linear. However, they
were kept.
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where subscript p indexes pattern number, and δi is the error signal for output
unit i.

Error signal δi, for an output unit i, is given by

δi = ti − ai (6)

where ti is the desired activation value and ai is the activation obtained. For a
hidden unit i, δi is given by

δi = ai(1− ai)
∑

k

δkwki (7)

where wki is the weight from hidden unit i to output unit k.
Two output units were used in all experiments. The model was trained to

display activation values (10) in these units when the units in the input layer
are representing a negative pattern, that means, a normal pattern. It was also
trained to display values (01) when the input units are representing a positive
pattern, i.e., an attack pattern.

The initial weights are given randomly.

4 Experiments

Four experiments are carried out. Each experiment approaches one of the four
categories of computer attacks — user-to-root (u2r), remote-to-local (r2l), probe,
and denial-of-service (DoS). These four categories are under the taxonomy for
computer attacks introduced by the intrusion detection evaluations, which were
conducted by MIT Lincoln Laboratory [17].

Three sets — training set, testing set, and validation set — are prepared for
each experiment. Training and testing sets are employed during training. The
validation set was prepared directly by the KDD Competition. It contains totally
novel patterns, i.e., normal patterns and novel categories of attack patterns which
are neither present in the training set nor in the testing set. The generalization
property of the MLP is thus put to the test.

The first experiment aims at detecting user-to-root type attacks. In it, the
training set contains 37 normal and 37 attack patterns — 17 attacks of buffer -
overflow , 9 of loadmodule, 3 of perl , and 8 of rootkit . The testing set contains
37 normal and 37 attack patterns — 17 of buffer overflow , 9 of loadmodule, 3 of
perl , and 8 of rootkit — as well. The validation set contains 228 normal and 228
attack patterns — 13 attacks of xterm, 2 of sqlattack , 16 of ps , 13 of rootkit , 2
of perl , 2 of loadmodule, 22 of buffer overflow , and 158 of httptunnel .

The second experiment aims at detecting remote-to-local type attacks. In it,
the training set contains 328 normal and 328 attack patterns — 2 attacks of
spy, 8 of ftp write, 44 of guess passwd , 35 of imap, 5 of phf , 6 of multihop, 144
of warezclient , and 84 of warezmaster . The testing set contains 78 normal and
78 attack patterns — 2 of spy, 4 of ftp write, 4 of guess passwd , 2 of phf , 3 of
multihop, 61 of warezclient , and 2 of warezmaster . The validation set contains
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336 normal and 336 attack patterns — 1 attack of worm, 9 of xlock , 4 of xsnoop,
219 of snmpgetattack , 19 of snmpguess , 11 of sendmail , 1 of phf , 3 of ftp write,
59 of guess passwd , and 10 of named .

The third experiment aims at detecting probe type attacks. In it, the training
set contains 688 normal and 688 attack patterns — 137 attacks of portsweep, 134
of ipsweep, 360 of satan, and 57 of nmap. The testing set contains 387 normal
and 387 attack patterns — 137 of portsweep, 158 of ipsweep, and 92 of satan.
The validation set contains 1284 normal and 1284 attack patterns — 51 attacks
of ipsweep, 529 of mscan, 35 of nmap, 41 of portsweep, 206 of saint , and 422 of
satan.

The fourth experiment aims at detecting denial-of-service type attacks. In it,
the training set contains 613 normal and 613 attack patterns — 148 attacks of
back , 56 of land , 253 of neptune, 86 of pod , 34 of smurf , and 36 of teardrop.
The testing set contains 207 normal and 207 attack patterns — 50 of back , 19 of
land , 85 of neptune, 29 of pod , 12 of smurf , and 12 of teardrop. The validation
set contains 570 normal and 570 attack patterns — 60 attacks of back , 9 of land ,
111 of neptune, 23 of pod , 55 of smurf , 12 of teardrop, 2 of udpstorm, 151 of
processtable, 97 of mailbomb, and 50 of apache2 .

5 Results

Table 2 presents the best results achieved by MLP on the validation sets. It shows
the percentage of correct classifications both of normal and of attack patterns
in the four experiments.

Table 2. Results of the four experiments

Experiment Correct Classifications (%)
Normal Pattern Attack Pattern

1 100.00 100.00
2 93.15 96.73
3 95.25 100.00
4 95.44 97.02

The results from MLP are very promising. The percentage of correct clas-
sifications is high, showing that the MLP was capable of generalizing to novel
normal patterns and to novel categories of attack patterns.

In the first experiment, MLP classified correctly all normal and all attack pat-
terns. In the second experiment, MLP classified incorrectly 23 normal patterns
and 11 attack patterns — 4 attacks of xlock , 1 of xsnoop, 1 of sendmail , 1 of
phf , 1 of ftp write, and 3 of named . In the third experiment, MLP classified in-
correctly 61 normal patterns, and classified correctly all attack patterns. In the
fourth experiment, MLP classified incorrectly 26 normal patterns and 17 attack
patterns — 1 attack of pod , 2 of teardrop, 2 of udpstorm, and 12 of processtable.
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6 Conclusion

The paper proposes the use of the multilayer perceptron (MLP) model to the
problem of detecting attack patterns in computer networks. MLP has been ex-
tensively applied to pattern recognition, as well as to several other categories of
problems.

MLP is trained and assessed on patterns extracted from the files of the
KDD Competition. The data include both normal and attack patterns. It is
pre-processed using ordinary normalization.

The experiments show that the multilayer perceptron performed very well.
The percentage of correct classifications is high, showing that the MLP is ca-
pable of generalizing to novel normal patterns and to novel categories of attack
patterns.

The results achieved may still be improved. Some directions for further work
include testing novel neural models as well as testing novel representations for
the data fields of network traffic.
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Abstract. Computer security has become a critical issue with the rapid
development of business and other transaction systems over the Inter-
net. The application of artificial intelligence, machine learning and data
mining techniques to intrusion detection systems has been increasing
recently. But most research is focused on improving the classification
performance of a classifier. Selecting important features from input data
leads to simplification of the problem, and faster and more accurate de-
tection rates. Thus selecting important features is an important issue in
intrusion detection. Another issue in intrusion detection is that most of
the intrusion detection systems are performed by off-line and it is not a
suitable method for a real-time intrusion detection system. In this paper,
we develop the real-time intrusion detection system, which combines an
on-line feature extraction method with the on-line Least Squares Support
Vector Machine classifier. Applying the proposed system to KDD CUP
99 data, experimental results show that it has a remarkable feature fea-
ture extraction, classification performance and reducing detection time
compared to existing off-line intrusion detection system.

1 Introduction

Intrusion detection aims to detect intrusive activities while they are acting on
computer network systems. Most intrusion detection systems(IDSs) are based on
hand-crafted signatures that are developed by manual coding of expert knowl-
edge. The major problem with this approach is that these IDSs fail to generalize
to detect new attacks or attacks without known signatures. Recently, there has
been an increased interest in data mining based approaches to building detec-
tion models for IDSs. These models generalize from both known attacks and
normal behavior in order to detect unknown attacks. Several effective data min-
ing techniques for detecting intrusions have been developed[1][2][3], many of
which perform close to or better than systems engineered by domain experts.

� This study was supported by a grant of the Korea Health 21 R&D Project, Ministry
of Health & Welfare, Republic of Korea (A05-0909-A80405-05N1-00000A).
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However, successful data mining techniques are themselves not enough to create
effective IDSs. Despite the promise of better detection performance and gener-
alization ability of data mining based IDSs, there are some difficulties in the
implementation of the system. We can group these difficulties into three general
categories: accuracy(i.e., detection performance), efficiency, and usability. In this
paper, we discuss the accuracy problem in developing a real-time IDS. Another
issue with an IDS is that it should operate in real-time. In typical applications
of data mining to intrusion detection, detection models are produced off-line
because the learning algorithms must process tremendous amounts of archived
audit data. An Effective IDS should work in real-time, as intrusions take place,
to minimize security compromises. Feature selection therefore is an important
issue in intrusion detection.

Principal Component Analysis(PCA)[4] is a powerful technique for extract-
ing features from data sets. For reviews of the existing literature see [5][6][7].
Traditional PCA, however, has several problems. First PCA requires a batch
computation step and it causes a serious problem when the data set is large.
The second problem is that, in order to update the subspace of eigenvectors
with another data, we have to recompute the whole eigenspace. The finial prob-
lem is that PCA only defines a linear projection of the data. It has been shown
that most of the data in the real world are inherently non-symmetrical and
therefore contain higher-order correlation information that could be useful[8].
For such cases, nonlinear transforms are necessary. Recently the kernel trick has
been applied to PCA and is based on a formulation of PCA in terms of the dot
product matrix instead of the covariance matrix[9]. Kernel PCA(KPCA), how-
ever, requires storing and finding the eigenvectors of an N × N kernel matrix
where N is a number of patterns. It is an infeasible method when N is large. This
fact has motivated the development of on-line way of KPCA method which does
not store the kernel matrix. It is hoped that the distribution of the extracted
features in the feature space has a simple distribution so that a classifier can do
a proper task. But it is pointed out that features extracted by KPCA are global
features for all input data and thus may not be optimal for discriminating one
class from others[9]. In order to solve this problem, we developed the two-tier
based realtime intrusion detection system. Proposed real time IDS is composed
of two parts. The first part is used for on-line feature extraction. The second
part is used for classification. Extracted features are used as input for classifica-
tion. We take on-line Least Squares Support Vector Machines(LS-SVM)[10] as
a classifier. This paper is composed of as follows. In Section 2 we will briefly
explain the on-line feature extraction method. In Section 3 KPCA is introduced
and to make KPCA on-line, empirical kernel map method is is explained. Pro-
posed classifier combining on-line LS-SVM with the proposed feature extraction
method is described in Section 4. Experimental results to evaluate the perfor-
mance of the proposed system is shown in Section 5. Discussion of the proposed
IDS and future work are described in Section 6.
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2 On-Line Feature Extraction

In this section, we will give a brief introduction to the method of on-line PCA
algorithm which overcomes the computational complexity and memory require-
ment of standard PCA. Before continuing, a note on notation is in order. Vectors
are columns, and the size of a vector, or matrix, where it is important, is de-
noted with subscripts. Particular column vectors within a matrix are denoted
with a superscript, while a superscript on a vector denotes a particular observa-
tion from a set of observations, so we treat observations as column vectors of a
matrix. As an example, Ai

mn is the ith column vector in an m × n matrix. We
denote a column extension to a matrix using square brackets. Thus [Amnb] is an
(m× (n + 1)) matrix, with vector b appended to Amn as a last column.

To explain the on-line PCA, we assume that we have already built a set of
eigenvectors U = [uj], j = 1, · · · , k after having trained the input data xi, i =
1, · · · , N . The corresponding eigenvalues are Λ and x̄ is the mean of input vector.
On-line building of eigenspace requires to update these eigenspace to take into
account of a new input data. Here we give a brief summarization of the method
which is described in [12]. First, we update the mean:

x′ =
1

N + 1
(Nx + xN+1) (1)

We then update the set of eigenvectors to reflect the new input vector and
to apply a rotational transformation to U . For doing this, it is necessary to
compute the orthogonal residual vector ĥ = (UaN+1 + x)− xN+1 and normalize
it to obtain hN+1 = hN+1

‖hN+1‖2
for ‖ hN+1 ‖2> 0 and hN+1 = 0 otherwise. We

obtain the new matrix of Eigenvectors U
′
by appending hN+1 to the eigenvectors

U and rotating them :
U ′ = [U,hN+1]R (2)

where R ∈ R(k+1)×(k+1) is a rotation matrix. R is the solution of the eigenprob-
lem of the following form:

DR = RΛ′ (3)

where Λ′ is a diagonal matrix of new Eigenvalues. We compose D ∈ R(k+1)×(k+1)
as:

D =
N

N + 1

[
Λ 0
0T 0

]
+

N

(N + 1)2

[
aaT γa
γaT γ2

]
(4)

where γ = hT
N+1(xN+1 − x̄) and a = UT (xN+1 − x̄). Though there are other

ways to construct the matrix D[13][14], the only method ,however, described in
[12] allows for the updating of the mean.

2.1 Eigenspace Updating Criterion

The on-line PCA represents the input data with principal components ai(N) and
it can be approximated as follows:

x̂i(N) = Uai(N) + x̄ (5)
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To update the principal components ai(N) for a new input xN+1 , computing
an auxiliary vector η is necessary. η is calculated as follows:

η =
[
UĥN+1

]T

(x− x′) (6)

then the computation of all principal components is

ai(N+1) = (R′)T
[
ai(N)

0

]
+ η, i = 1, · · · , N + 1 (7)

The above transformation produces a representation with k + 1 dimensions.
Due to the increase of the dimensionality by one, however, more storage is re-
quired to represent the data. If we try to keep a k-dimensional eigenspace, we
lose a certain amount of information. It is needed for us to set the criterion on
retaining the number of eigenvectors. There is no explicit guideline for retaining
a number of eigenvectors. In this paper we set our criterion on adding an Eigen-
vector as λ

′
k+1 > 0.7λ̄ where λ̄ is a mean of the λ. Based on this rule, we decide

whether adding u
′
k+1 or not.

3 On-Line KPCA

A prerequisite of the on-line eigenspace update method is that it has to be
applied on the data set. Furthermore it is restricted to apply the linear data.
But in the case of KPCA this data set Φ(xN ) is high dimensional and can most
of the time not even be calculated explicitly. For the case of nonlinear data set,
applying feature mapping function method to on-line PCA may be one of the
solutions. This is performed by so-called kernel-trick, which means an implicit
embedding to an infinite dimensional Hilbert space[11](i.e. feature space) F .

K (x, y) = Φ(x) · Φ(y) (8)

Where K is a given kernel function in an input space. When K is semi positive
definite, the existence of Φ is proven[11]. Most of the case ,however, the mapping
Φ is high-dimensional and cannot be obtained explicitly. The vector in the fea-
ture space is not observable and only the inner product between vectors can be
observed via a kernel function. However, for a given data set, it is possible to ap-
proximate Φ by empirical kernel map proposed by Scholkopf[15] and Tsuda[16]
which is defined as ΨN : Rd → RN

ΨN (x) = [Φ(x1) · Φ(x), · · · ,Φ(xN ) · Φ(x)]T

= [K(x1, x), · · · ,K(xN , x)]T
(9)

A performance evaluation of empirical kernel map was shown by Tsuda. He
shows that support vector machine with an empirical kernel map is identical
with the conventional kernel map[17].
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4 Proposed System

In previous Section 3 we proposed an on-line KPCA method for nonlinear feature
extraction. It is hoped that the distribution of the mapped data in the feature
space has a simple distribution so that a classifier can classify them properly.
But it is point out that extracted features by KPCA are global features for all
input data and thus may not be optimal for discriminating one class from others.
For classification purpose, after global features are extracted using they must be
used as input data for classification.

Recently LS-SVM method developed by Suykens is computationally attractive
and easier to extend than SVM. But the existed LS-SVM algorithm is trained
off-line in batch way. Off-line training algorithm is not fit for the realtime IDS.
In this paper we take on-line LS-SVM algorithm because proposed realtime IDS
to be more realistic. Proposed real time IDS is composed of two parts. First
part is used for on-line feature extraction. To extract on-line nonlinear features,
we propose a new feature extraction method which overcomes the problem of
memory requirement of KPCA by on-line eigenspace update method incorporat-
ing with an adaptation of kernel function. Second part is used for classification.
Extracted features are used as input for classification. We take on-line Least
Squares Support Vector Machines(LS-SVM)[19] as a classifier.

5 Experiment

To evaluate the classification performance of proposed realtime IDS system,
we use KDD CUP 99 data[18]. The following sections present the results of
experiments.

5.1 Description of Dataset

The raw training data(kddcup.data.gz) was about four gigabytes of compressed
binary TCP dump data from seven weeks of network traffic. This was processed
into about five million connection records. Similarly, the two weeks of test data
yielded around two million connection records. Each connection is labeled as
either normal, or as an attack, with exactly one specific attack type. Each con-
nection record consists of about 100 bytes. Attacks fall into four main cate-
gories(DOS, R2L, U2R, Probing).

It is important to note that the test data(corrected.gz) is not from the same
probability distribution as the training data, and it includes specific attack types
not in the training data. This makes the task more realistic. The datasets contain a
total of 24 training attack types, with an additional 14 types in the test data only.

5.2 Experimental Condition

To evaluate the classification performance of proposed system, we randomly split
the the training data as 80% and remaining as validation data. To evaluate the
classification accuracy of proposed system we compare the proposed system to
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SVM. Because standard LS-SVM and SVM are only capable of binary classifi-
cation, we take multi-class LS-SVM and SVM. A RBF kernel has been taken
and optimal hyper-parameter of multi-class SVM and LS-SVM[20] was obtained
by 10-fold cross-validation procedure. In [19] it is shown that the use of 10-fold
cross-validation for hyper-parameter selection of SVM and LS-SVMs consistently
leads to very good results.

In experiment we will evaluate the generalization ability of proposed IDS on
test data set since there are 14 additional attack types in the test data which
are not included int the training set. To do this, extracted features by on-line
KPCA will be used as input for multi-class on-line LS-SVM. Our results are
summarized in the following sections.

5.3 Evaluate Feature Extraction and Classification Performance

Table 1 gives the result of extracted features for each class by on-line KPCA
method.

Table 2 shows the results of the classification performance by standard SVM
using all features. Table 3 shows the results of the classification performance
and computing time for training and testing data by proposed system using ex-
tracted features. We can see that using important features for classification gives
similar accuracies compared to using all features and the training, testing time
is proper enough for realtime IDS. Comparing Table 2 with Table 3, we obtain
following results. The performance of using the extracted features do not show
the significant differences to that of using all features. This means that proposed
on-line feature extraction method has good performance in extracting features.
Proposed method has another merit in memory requirement. The advantage
of proposed feature extraction method is more efficient in terms of memory

Table 1. Extracted features on each class by on-line KPCA

Class Extracted features
Normal 1,2,3,5,6,7,8,9,10,11,12,14,16,17,18,20,21,23,25,27,29,31,32,34,38,39,41
Probe 3,5,6,24,32,38
DOS 1,3,8,19,23,28,33,35,36,39,41
U2R 5,6,15,18,25,32,33,39
R2L 3,5,6,32,33,34,35

Table 2. Classification Performance by SVM using all features

Class Accuracy(%)
Normal 98.55
Probe 98.59
DOS 98.10
U2R 98.64
R2L 98.69
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requirement than a batch KPCA because proposed feature extraction method
do not require the whole N × N kernel matrix where N is the number of the
training data. Second one is that proposed on-line feature extraction method
has similar performance is comparable in performance to a batch KPCA.

5.4 Suitable for Realtime IDS

Table 3 shows that proposed system operates in a very quick manner whereas tra-
ditional batch system requires tremendous computational time when new training
data is added. Furthermore classification accuracy of proposed system is similar
to using all features. This makes proposed IDS suitable for realtime IDS.

Table 3. Performance of proposed system using extracted features

Class Accuracy(%) Training Time(Sec) Testing Time(Sec)
Normal 98.54 3.12 0.9
Probe 98.64 20.25 1.14
DOS 98.48 10.79 1.10
U2R 98.91 1.2 0.84
R2L 98.74 5.7 0.6

5.5 Comparison with Batch Way LS-SVM

Recently LS-SVM is a powerful methodology for solving problems in nonlinear
classification problem. To evaluate the classification accuracy of proposed system
it is desirable to compare with batch way LS-SVM.

Table 4. Performance comparison of proposed method and batch way LS-SVM. using
all features.

Normal Probe DOS U2R R2L
batch LS-SVM 98.76 98.81 98.56 98.92 98.86

proposed system 98.67 98.84 98.48 98.86 98.82

Generally the disadvantage of incremental method is their accuracy compared
to batch method even though it has the advantage of memory efficiency and
computation time. According to Table 4 we can see that proposed method has
better classification performance compared to batch way LS-SVM. By this result
we can show that proposed realtime IDS has remarkable classification accuracy
though it is worked by incremental way.

6 Conclusion and Remarks

This paper was devoted to the exposition of a new technique on realtime IDSs .
Proposed on-line KPCA has following advantages. Firstly, The performance of
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using the extracted features do not show the significant differences to that of us-
ing all features. This means that proposed on-line feature extraction method has
good performance in extracting features. Secondly, proposed method has merit
in memory requirement. The advantage of proposed feature extraction method is
more efficient in terms of memory requirement than a batch KPCA because pro-
posed feature extraction method do not require the whole N × N kernel matrix
where N is the number of the training data. Thirdly, proposed on-line feature
extraction method has similar performance is comparable in performance to a
batch KPCA though it works incrementally.

Our ongoing experiment is that applying proposed system to more realistic
world data to evaluate the realtime detection performance.
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Abstract. Telecommunications fraud has drawn the attention in research due to 
the huge economic burden on companies and to the interesting aspect of users’ 
behavior characterization. In the present paper, we deal with the issue of user 
characterization. Several real cases of defrauded user accounts for different user 
profiles were studied. Each profile’s ability to characterize user behavior in 
order to discriminate normal activity from fraudulent one was tested. Feed-
forward neural networks were used as classifiers. It is found that summary 
characteristics of user’s behavior perform better than detailed ones towards this 
task. 

1   Introduction 

Telecommunications fraud can be simply described as any activity by which 
telecommunications service is obtained without intention of paying [1].  Using this 
definition, fraud can only be detected once it has occurred.  So, it is useful to 
distinguish between fraud prevention and fraud detection [2].  Fraud prevention is all 
the measures that can be used to stop fraud from occurring in the first place.  These, in 
the case of telecommunication systems, include Subscriber Identity Module (SIM) 
cards or any other Personal Identification Number (PIN) like the ones used in Private 
PBXs.  No prevention method is perfect and usually it is a compromise between 
effectiveness and usage convenience.  Fraud detection, on the other hand, is the 
identification of fraud as quickly as possible once it has happened.  The problem is 
that fraud techniques are constantly evolving and whenever a detection method 
becomes known, fraudsters will adapt their strategies and try others. 

Reference [1] provides a classification of telecommunication systems fraud and 
divides frauds into one of four groups, namely: contractual fraud, hacking fraud, 
technical fraud and procedural fraud.  In [3], twelve distinct fraud types are identified.  
The authors of the present article have also witnessed fraudulent behavior that is a 
combination of the above mentioned ones [4]. 

Telecommunications fraud has drawn the attention of many researchers in the 
resent years not only due to the huge economic burden on companies’ accountings but 
also due to the interesting aspect of user behavior characterization. Fraud detection 
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techniques involve the monitoring of users’ behavior in order to identify deviations 
from some expected or normal norm. Research in telecommunications fraud detection 
is mainly motivated by fraudulent activities in mobile technologies [1, 3, 5, 6].  The 
techniques used come from the area of statistical modeling like rule discovery [5, 7, 8, 
9], clustering [10], Bayesian rules [6], visualization methods [11], or neural network 
classification [5, 12, 13].  Combinations of more than one method have also been 
proposed [14, 15]. In [16] one can find a bibliography on the use of data mining and 
machine learning methods for automatic fraud detection. Most of the aforementioned 
approaches use a combination of legitimate user behavior examples and some fraud 
examples. The aim is to detect any usage changes in the legitimate user’s history. 

In the present paper we are interested in the evaluation of different user 
representations and their effect towards the proper discrimination between legitimate 
and fraudulent activity. The paper proceeds as follows.  In the next chapter the data 
that were used are described along with the different profile representation of the 
users.  In chapter 3 the experimental procedure is presented. The experimental results 
are given in chapter 4.  In the last chapter conclusions are drawn. 

2   Profile Building 

The main idea behind a user’s profile is that his past behavior can be accumulated. So, 
a profile or a “user dictionary” of what might be the expected values of the user’s 
behavior can be constructed. This profile contains single numerical summaries of 
some aspect of behavior or some kind of multivariate behavioral pattern.  Future 
behavior of the user can then be compared with his profile. The consistency with 
normal behavior or the deviation from his profile may imply fraudulent activity. An 
important issue is that we can never be certain that fraud has been perpetrated. Any 
analysis should only be treated as a method that provides us with an alert or a 
“suspicion score”. The analysis provides a measure that some observation is 
anomalous or more likely to be fraudulent than another. Special investigative 
attention should then be focused on those observations. 

Traditionally, in computer security, user profiles are constructed based on any 
basic usage characteristic such as resources consumed, login location, typing rate and 
counts of particular commands. In telecommunications, user profiles can be 
constructed from appropriate usage characteristics. The aim is to distinguish a normal 
user from a fraudster. The latter is, in most of the cases, a user of the system who 
knows and mimics normal user behavior. All the data that can be used to monitor the 
usage of a telecommunications network are contained in the Call Detail Record 
(CDR) of any Private Branch Exchange (PBX). The CDR contains data such as: the 
caller ID, the chargeable duration of the call, the called party ID, the date and the time 
of the call, etc [17].  In mobile telephone systems, such as GSM, the data records that 
contain details of every mobile phone attempt are the Toll Tickets. 

Our experiments are based on real data extracted from a database that holds the 
CDR for a period of eight years from an organization’s PBX. According to the 
organization’s charging policy, only calls to national, international and mobile 
destinations are charged. Calls to local destinations are not charged so they are not 
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included in the examples. In order to properly charge users, for the calls they place, a 
system of Personal Identification Numbers (PIN) is used.  Each user owns a unique 
PIN which “unlocks” the organization’s telephone sets in order to place costly 
outgoing calls.  If anyone (e.g., a fraudster) finds a PIN he can use it to place his own 
calls from any telephone set within the organization. 

Several user accounts, which have been defrauded, have been identified.  Three of 
them will be presented in this paper. All three contain both examples of legitimate and 
fraudulent activity. The specific accounts were chosen as they contain representative 
types of different fraudster behavior as described below. 

The detailed daily accounts were examined by a field expert and each phone call 
was marked as either normal or defrauded.  If during a day no fraudulent activity was 
present then the whole day was marked as normal. If at least one call from the 
fraudster was present then the whole day was marked as fraud.  Adding to this, each 
day was also marked, according to the first time that fraudulent activity appeared.  
Each user’s account is split into two sets, one pre- and one post-fraud.   

The first example (User1) is a case where the fraudster reveals a greedy behavior.  
After having acquired a user’s PIN, he places a large amount of high cost calls to 
satellite services.  The second example (User2) is a case where the fraudster did not 
place considerably costly calls but used the user’s PIN during non working hours and 
days.  In the third example (User3) the fraudster seems to be more cautious.  He did 
not place costly calls and he mainly uses the account during working hours and days.  
An interesting observation on the third case is that the stolen PIN was used from 
different telephone sets and the call destinations are never associated with the 
legitimate user’s telephone set.   

For each user, three different profile types are constructed. The first profile 
(Profile1) is build up from the accumulated weekly behavior of the user. The profile 
consists of seven fields which are the mean and the standard deviation of the number 
of calls per week (calls), the mean and the standard deviation of the duration (dur) of 
calls per week, the maximum number of calls, the maximum duration of one call and 
the maximum cost of one call (Fig. 1).  All maxima are computed within a week’s 
period. 

 

Fig. 1. Profile1 of telephone calls 

 

Fig. 2. Profile2 of telephone calls 
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Fig. 3. Profile3 of telephone calls 

The second profile (Profile2) is a detailed daily behavior of a user which is 
constructed by separating the number of calls per day and their corresponding 
duration per day according to the called destination, i.e., national (nat), international 
(int), and mobile (mob) calls, and the time of the day, i.e., working hours (w), 
afternoon hours (a), and night (n) (Fig. 2). 

Last, the third profile (Profile3) is an accumulated per day behavior (Fig. 3). It 
consists of the number of calls and their corresponding duration separated only 
according to the called destination, that is, national, international and mobile calls.   

The last two profiles were also accumulated per week to give Profile2w and 
Profile3w. So, we have 3 users, 5 profile representations, and 2 different ways to 
characterize the user accounts as normal of fraudulent. The above give 30 different 
data sets. 

3   Experimental Procedure 

All data were standardized so that for each characteristic the average equals zero and 
the variance equals one.  Principal Component Analysis (PCA) was performed in 
order to transform the input vectors into uncorrelated ones.  PCA transforms the k 
original variables, X1, X2… Xk, into p new variables, Z1, Z2, …,Zp, which are linear 
combinations of the original ones, according to:   

1

Z X
p

i ij j

j

a
=

= ⋅  . (1) 

This transformation has the properties: 

1 2[ ] [ ] [ ]pVar Z Var Z Var Z> > > , which means that Z1 contains the most information 

and Zp the least; and 
[ , ] 0,i jCov Z Z i j= ∀ ≠ ,  

which means that there is no information overlap between the principal components 
[18].  In our experiments we were mainly interested in the transformation of the input 
parameters to uncorrelated ones.  So, we kept the 99% of the information in the data 
sets.  However, the 1% loss of information led to a decrease in the data dimensions 
from 0% to 40%. The highest reduction in the data dimensionality occurred with 
Profile1 and Profile2. This is easily explained by two observations.  According to 
Profile1 there are weeks where only one telephone call is placed.  So, the parameters 
mean(calls) and max(calls) are equal.  The same happens to mean(dur) and max(dur).  
As for Profile2 there are many zeros present in the data sets due to the absence of 
certain types of calls. Data sets from more active users suffer less from this 
dimensionality reduction. 
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In order to test the ability of each profile to discriminate between legitimate usage 
and fraud, feed-forward neural networks (FF-NN) were used as classifiers.  The feed-
forward neural network is defined, [12], by: 

0 0

( Z )
M d

j ji i

j i

y w g w
= =

= ⋅ ⋅  . 
 

(2) 

The g is a non-linear function (e.g. ( ) tanh( )g x x= ), jw  are the weights between the 

output y and the hidden layer, jiw  are the weights from the i-th input, iZ , to the j-th 

neuron of the hidden layer.  Linear outputs were used.  
The problem is a supervised learning one with the task to adapt the weights so that 

the input-output mapping corresponds to the input-output pairs the teacher has 
provided. 

For each of the cases of input data, one feed-forward neural network was build 
which consisted of one hidden layer and one linear output.  The size of a hidden layer 
is a fundamental question often raised in the application of multilayer FFNN to real 
world problems.  It is usually determined experimentally and by empirical guidelines.  
For a network of a reasonable size, the size of hidden nodes needs to be only a 
fraction of the input layer.  A simple rule of thumb is: 

( ) \ 2 {...0...1...2...}h m n= + + , (3) 

where, the symbol “\” denotes integer division, h the number of neurons in the hidden 
layer, m the number of neurons in the input layer and n the number of neurons in the 
output layer. The {...0...1...2...}+  part of the equation means that if a network fails to 
converge to a solution with the result of the integer division, it may be that more 
hidden neurons are needed.  So, their number is incremented until convergence [19].  
In all the experiments, that are presented here, the above scheme converged for all 
cases using the initial values of h.   

The neural network was trained using resilient backpropagation method [20].  Each 
input data set was divided into training, validation and test sets.  One fourth of the data 
was used for the validation set, one fourth for the test set and one half for the training 
set.  The validation error was used as an early stopping criterion.  In absolute values, the 
size of the input data sets varied from 400 to 1200 instances.  30% to 50% of the vectors 
in each data set were fraud cases while the remainder were non-fraud ones. 

The evaluation of each classifier’s performance was made by means of the 
corresponding Receiver Operating Characteristic (ROC) curve [21].  A ROC curve is 
actually a graphical representation of the trade off between the true positive and the 
false positive rates for every possible cut off point that separates two overlapping 
distributions. Equivalently, the ROC curve is the representation of the tradeoffs 
between the sensitivity and the specificity of a classifier.   

The cases were compared only in pairs in the following sense. For each profile type 
and for each user the first case was the one where the user account was split in two 
parts, before and after the first day that a fraudulent activity appeared.  The second case 
was the one where the same user account was split into normal and fraudulent activity 
using a detailed day-by-day characterization. The area under the curve was used as the 
statistic that exhibits the classification performance of each case. 
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4   Experimental Results 

In the following figures (Fig.4 – Fig.8) the ROC curves for User1 are given.  Each 
one corresponds to the five different user profiling approaches.  In each figure two 
lines are plotted.  The solid one (uncharacterized) is the ROC curve that yielded when 
each case in the user’s profile was characterized only relative to its position before or 
after the first case of fraud. The dashed line (characterized) corresponds to the 
profiling approach which used a thorough characterization of each case as fraudulent 
or not.  The plots for the other users are similar. 

In ROC curve analysis the area under the curve is usually used as a statistic that 
indicates how well a classifier performs.  An area of 1 indicates a perfect classifier 
while an area of 0.5 indicates performance equal to random selection of cases.  The 
areas under all the ROC curves for each user – profile combination are given in 
Tables 1 and 2. However, ROC curves should be judged with reservation. An 
example of misleading conclusion may be exhibited comparing  and . According to 
Table 1, Profile2 seems to give better separation, as the area under the plotted  
curve (the “characterized” case) is larger that the corresponding area in Fig.4. 
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Fig. 4. ROC curves, using Profile1, showing the trade off between true-positive and false-
positive rate for User1. His behavior is divided as fraudulent or not using the first day that a 
fraudulent activity appeared (uncharacterized) or using a detailed day-by-day characterization 
(characterized). The diagonal line is the theoretical ROC curve for random separation of the 
cases, while the dotted one is an instance of a real random separation. 
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Fig. 5. ROC curves, using Profile2, showing the trade off between true-positive and false-
positive rate for User1 when his behavior is thoroughly characterized as fraudulent or not 
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Fig. 6. ROC curves, using Profile3, showing the trade off between true-positive and false-
positive rate for User1 when his behavior is thoroughly characterized as fraudulent or not 
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Fig. 7. ROC curves, using Profile2w, showing the trade off between true-positive and false-
positive rate for User1 when his behavior is thoroughly characterized as fraudulent or not 
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Fig. 8. ROC curves, using Profile3w, showing the trade off between true-positive and false-
positive rate for User1 when his behavior is thoroughly characterized as fraudulent or not 
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Close examination of the two figures reveals that by using Profile1 one gets more that 
70% correct classification without any false alarms and more than 80% of true 
positives with only 2% of false alarms. For such small percentage of false alarms, 
Profile2 gives less than 25% of true positive hits. 

The aforementioned comment is of great importance when working with large 
datasets. The telecommunications network from which we drew our examples has 
more than 6000 users. That means that even a false positive rate of only 1% may give 
up to 60 false alarms. Close examination of the above may become particularly costly 
to the organization in terms of lost workforce.  

One should also bear in mind that the ROC curves plotted in the figures, belong to 
families of curves. This is due to the random initialization of the FF-NN classifiers 
each time they are used. So, each one of the lines depicted here is actually one 
characteristic instance of the family.  Some additional considerations when comparing 
ROC curves are given in [22]. 

Profile1 works better than all the others as it exhibits the highest true positive rate 
with the smallest false positive rate. Among all of the examined user accounts, there 
were cases where Profile1 gave 90% positive hits without any false positive ones. Our 
next selection for a fraud detection technique would be Profile2 (or its weekly 
counterpart) which is actually a detailed profile of the user’s actions.  In fact, this 
profile could, also, be used in a rule based approach. Fraudsters tend to be greedy, 
which for a telecommunications environment means that they tend to talk much or to 
costly destinations. They are also aware of velocity traps. That is they will try to avoid 
using a user’s account concurrently with the legitimate user. This fact concentrates 
their activity during the non-working hours. Separating user’s activity, both by 
destination and by time-of-day, acts towards the identification of such actions. 

The prevalent observation in all figures is that the “characterized” case gives better 
separation between the normal and the defrauded part of the user’s account.  
However, a case-by-case characterization of each call is particularly expensive, and 
this was the main reason why only few examples are examined in the present study.  
Another observation is that profiles that represent characteristics which are 
aggregated in time outperform the daily ones. As was expected, individual 
characterization of each case gives better results.     

Table 1. Area under ROC curves for the three basic profiles 

 User1 User2 User3 
 Profile1 Profile2 Profile3 Profile1 Profile2 Profile3 Profile1 Profile2 Profile3 
unchar 0.7555 0.8069 0.8238 0.6765 0.7213 0.6490 0.9047 0.7971 0.7853 
char 0.9090 0.9134 0.8839 0.8345 0.8811 0.7790 0.9297 0.7789 0.7931 

 

Table 2. Area under ROC curves for the weekly aggregated behavior 

 User1 User2 User3 
 Profile2w Profile3w Profile2w Profile3w Profile2w Profile3w 
unchar 0.8181 0.8430 0.7241 0.6615 0.8741 0.8536 
char 0.9120 0.9267 0.8760 0.8252 0.7298 0.8687 
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There are cases, like User3, where a cautious fraudster can hide his activity 
beneath the legitimate user’s one.  Better discrimination of the last case would have 
been accomplished by means of some other method, like rule discovery. 

5   Conclusions and Discussion 

In the present paper, tests were performed to evaluate the fraud detection ability of 
different user profile structures. The profiles are used as a user characterization 
method in order to discriminate legitimate from fraudulent usage in a 
telecommunications environment. Feed-forward neural networks were used as 
classifiers.  The input data consisted of real user accounts which have been defrauded.   

From the analysis it is concluded that accumulated characteristics of a user yield 
better discrimination results. Here, only weekly aggregation of the user’s behavior 
was tested against detailed daily profiles. Aggregating user’s behavior for larger 
periods was avoided in order to preserve some level of on-line detection ability. 

The user profiling approaches that were presented, here, have the benefit of 
respecting users’ privacy. That is, except from some coarse user behavior 
characteristics, all private data (e.g. called number, calling location, etc) are hidden 
from the analyst.  Private data would definitely add to the accuracy of fraud detection.  
In fact, the expert who characterized the data sets, in the first place, used rules based 
on private data and his domain specific knowledge. However, our aim is to test the 
ability to detect fraud given the minimum possible information about the user. 

Feed-forward neural networks with more hidden layers were also used.  However, 
there was no significant rise in the performance of the classifiers. 

Several modeling techniques could have, equally well, been applied, e.g. 
Classification and Regression Trees (CART), Adaptive Neuro-Fuzzy Systems, 
Support Vector Machines, etc. Each one would have revealed different aspects of the 
user characterization problem. Preliminary experiments with cluster analysis showed 
that the outcome depends on the distance measure used. For example, Euclidean 
distance produced a distinct cluster of outliers regardless of their class membership, 
while correlation separated the fraud from the non-fraud cases more clearly. Also, 
preliminary experimentation with classification trees, like the C4.5 algorithm, showed 
that this approach provides some clue about the most important feature for case 
separation.  However, the latter yielded higher misclassification rate, than the FFNN, 
which may be related with the successive nature of node growth.  That means that if 
the first split were suboptimal there is no way of altering its effect. 

The aim of the present work is not the comparison of the performance of different 
modeling techniques but the comparison of different user profile representations.  One 
point for the use of FFNN is their ability to easily find correlations between large 
numbers of variables.  In terms of modeling speed FFNN models work well.  One can 
obtain a comparatively reasonable model more quickly than when one builds a 
competitive statistical model. FFNN can also cope with non-linear problems and have 
been used successfully in time-series forecasting [1].  So it is plausible to use them on 
sequential patterns of a user’s behavior, expecting to adapt to changes in it.   

The experiments presented here use supervised learning and may have consulting 
use for the type of user profiles (or user representations) that can better characterize a 
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user’s behavior.  The task of detecting fraud in an unsupervised manner is a more 
difficult one, given the dynamic appearance of new fraud types.  The application of an 
appropriate clustering method, like classic cluster analysis or the more sophisticated 
self-organizing map (SOM) is considered as the next step to the present work.  
Moreover, any accurate fraud detection technique is bound to be proprietary to the 
environment in which it is working.   
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Abstract. In the development of location-based services, various location-
sensing techniques and experimental/commercial services have been used. We 
propose a novel method of predicting the user's future movements in order to 
develop advanced location-based services. The user’s movement trajectory is 
modeled using a combination of recurrent self-organizing maps (RSOM) and 
the Markov model. Future movement is predicted based on past movement tra-
jectories. To verify the proposed method, a GPS dataset was collected on the 
Yonsei University campus. The results were promising enough to confirm that 
the application works flexibly even in ambiguous situations. 

1   Introduction 

Location-based services (LBS) have been a hot topic in the field of wireless and mo-
bile communication devices. One reason for this is because mobile device users want 
to be able to access information and services specific to their location. As location-
sensing and wireless network technologies have developed, various kinds of LBS 
have emerged. In the field of context-awareness and artificial intelligence, research-
ers have attempted to develop novel smart location-based applications (see the Re-
lated Works section). Prediction of future movement is one key aspect of the next 
generation of LBS. Current LBS applications attempt to meet the user’s present 
needs. But if the application can also predict where the user will be, it will be able to 
provide services the user may need in the future, as well as the services they need at 
present. 

In previous research on movement prediction, the method of modeling the transi-
tions between locations was used (Figure 1 (b)). The Markov model was used to rep-
resent the transitions between locations and future movement was predicted based on 
the highest probability transition from the current location [1]. However, this model is 
inflexible because it takes into account only the current location or place of the user. 
For example, if the transition from place A to place B has the highest probability and 
the transition to place C has the second highest probability, the application will al-
ways say “you will go to place C” to the user, even if this is untrue. That is to say, the 
model cannot cope with ambiguous situations. 
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Fig. 1. Comparison of location systems 

To achieve more intelligent and flexible predictions, we propose a trajectory-based 
approach (Figure 1(c)). The main idea is to model the trajectories of locations for 
movement prediction so that the predictions are based on past trajectories, not the cur-
rent location. A trajectory-based approach enables the system to distinguish whether 
the user will head for place B or for place C. It can then react adaptively to the user’s 
destination and future movement can be predicted more flexibly and accurately than 
when using the transition-based approach. In addition, the system will act differently 
according to the route taken by the user. For example, different services can be of-
fered to users when they travel along the highway and when they travel along residen-
tial roads. 

2   Related Works 

Many commercial location-based services are already widely used. Wireless service 
providers offer customer-based plans which assign different rates to calls made from 
home or from the office [2]. Major credit card companies have created wireless ATM-
locator services. AT&T provides `find people nearby' services which allow users to 
locate friends and family members. 

A location-aware event planner designed by Z. Pousman et al. integrates a friend 
finder application which displays locations on a given campus map [3]. The user can 
organize social events in contextually-enhanced ways. The system also includes pri-
vacy management functionality which enables the user to manage visibility to others. 
Location-based games like `Can You See Me Now' of the University of Nottingham 
and `Human Pacman' of the National University of Singapore provide novel gaming 
environments which are enhanced by physical locations [4][5]. 

Many researchers have attempted to go beyond present-day location systems by 
extracting high-level information from raw location data. D. Ashbrook et al. proposed 
a method for predicting future movements which used a modification of the k-means 
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clustering algorithm and the Markov chain model [6]. D.J. Patterson et al. proposed a 
method to be used in the current transportation mode which used a dynamic Bayesian 
network model [7]. Domain knowledge was incorporated into the Bayesian network 
model and the parameters of their network were learned using an expectation-
maximization (EM) algorithm. In their experimental results, the Bayesian network 
model outperformed both the decision tree and the Bayesian network model without 
any domain knowledge. Sto(ry)chastics by F. Sparacino estimated the type of mu-
seum visitor for user adaptive storytelling in museums [8]. The visitor's location can 
be tracked by infrared beacons and a Bayesian network model that estimates the visi-
tor's type as greedy, selective, or busy from the user’s location and time spent at each 
location. Visitors are able to see different explanations about the same exhibits ac-
cording to their visiting habits. 

3   Learning and Predicting Future Movement 

Figure 2 shows our movement prediction framework. First, we discover patterns of us
er movement by clustering the location dataset (Step 1). This set comprises sequences
 of GPS records. A sequence represents a movement between places. Then, the model
s are built (Step 2). User-preferred services are paired with related movement pattern 
models. These form user profiles. While the user travels, current movement is compar
ed with the movement models (Step 3). Step 3 is repeated whenever the user travels s
ome distance. If a movement model is significantly similar to the current movement, t
he system will predict that the user will travel along the route of that model (Step 4). 
User-preferred services related to the selected movement pattern are offered to the use
r immediately after the movement prediction. 

To develop an easily adaptable system, it is necessary to automatically find what 
kinds of movements exist in a person's life with minimum pre-knowledge. The self-
organized learning approach is suited to this purpose. We employed self-organizing 
maps to discover significant patterns of user movements from the location dataset. 

The benefit of SOM is that it can provide a good approximation of the original in-
put space. A SOM projects the continuous input space to the discrete output space. 
The output space of a SOM can be viewed as a smaller set of prototypes which store a 
large set of input vectors. This property helps simplify the problem. The sequences of 
raw GPS records can be transformed to the sequences of finite units by projecting 
them onto the SOM output space. We can state the transformed movement data as the 
state transition sequence of the user's movement. Thus, the user's movement patterns 
can be modeled more effectively by learning the transition sequences of finite states 
rather than learning the sequences of the vectors of two floating-point numbers. 

A standard SOM is not able to discover significant movement paths because it can-
not process temporal sequence data. In order to distinguish different movement pat-
terns, temporal data processing is needed. To cope with this problem, the recurrent 
SOM (RSOM) is introduced. The RSOM processes the temporal sequence data by 
maintaining contextual information between the input samples. Even if the GPS data 
is captured at the same place, the RSOM projects the data into different output units 



 Predicting User’s Movement with a Combination of SOM and Markov Model 887 

 

Fig. 2. Movement prediction framework 

 

Fig. 3. Differences between the standard SOM and the recurrent SOM 

with respect to past movement trajectories. Figure 3 illustrates the difference between 
the two kinds of SOM. When we project a two-dimensional vector sequence (of 
which the first and the last vectors are the same) into the two kinds of SOM, they 
yield different outputs. The standard SOM plots the first and last vectors into an iden-
tical output unit without regard to past input. However, in the RSOM, the last vector 
is mapped into another output unit. Hence, different movement paths and movement 
trajectories can be distinguished with the last output unit.  

3.1   Discovering Patterns of User Movement  

The SOM is a representative unsupervised neural network used to solve clustering an
d vector quantization problems. The principal goal is to transform an incoming input 
pattern (of arbitrary dimensions) into a one or two-dimensional discrete map [9]. The 
output map L consists of a rectangular or hexagonal lattice of )(in  units. The algorith

m for training the SOM involves four essential processes: initialization, competition, 
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cooperation, and adaptation. These are summarized as follows. Here, )(xb is the best 

matching unit to the input vector, h means the neighborhood function and η  is the lea

rning rate. 

1. Initialize the codebook vectors )0(iw .

2. Compute difference and select the best matching unit 

)()(minarg)( nwnxnb j−= (1)

3. Update the codebook vectors 

))()()(()()()1( ),( nwnxnhnnwnw iinbii −+=+ η (2)

4. Repeat from 2 to 3 until the stop condition satisfies 

Although the RSOM is specialized for temporal sequence processing, it inherits the 
original properties of the SOM [10]. The differences between the RSOM and the stan-
dard SOM are as follows. The RSOM allows the storing of temporal context from 
consecutive input vectors by putting the leaky integrator into the difference formula 
of the competition step. 

))()(()1()1()( nwnxnyny iii −+−−= αα (3)

where α is the leaking coefficient, )(nyi  is the leaked difference vector at step n an

d )(nx is the input vector at step n. The best matching neuron criterion and codebook 

vector update rules are the same as the standard SOM. The best matching unit (BMU)
 at time step n, )(nb  is the unit with the minimum difference. 

)(minarg)( nynb ii= (4)

The ith codebook vector at step n , )(nwi is updated as follows: 

)()()()()1( ),( nynhnnwnw iinbii η+=+ (5)

The difference vectors are reset to zero after learning each input sequence and the alg
orithm is repeated with the next input. 

In this problem, the input vector )(nx is a GPS record captured at time n, which is 

a two-dimensional vector composed of the user's specific longitude and latitude. A 
new GPS record is captured once or twice a second even if the user does not move. 
The meaningless data in the raw GPS records has to be filtered. Only after the user 
travels some distance, a new GPS record can be captured and used for training and 
predicting. Raw GPS data is never 100% accurate. There are many methods to allow 
for this margin of error. In this research, however, no error correction method was 
employed and the raw GPS records were directly used to focus on movement  
prediction. 

The procedure of pattern discovery is as follows. First, we train the RSOM with the 
trajectory dataset obtained from the user. A trajectory dataset 
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)}(,),1(),0({ NxxxX k =  is a sequence of GPS records captured during a move-

ment k. Then, the trajectory dataset is transformed into the sequence of BMU 
)}(,),1(),0({ NbbbBk =  by projecting it to the trained RSOM to group the similar 

trajectories. The transformed trajectory dataset is clustered according to the last BMU. 
A set of the transferred trajectory data that corresponds to the ith output unit of the 
RSOM, },,,{ 21 Li BBBC =  represents a discovered pattern of user movement. 

iBiX

 

Fig. 4. Combination of RSOM and Markov model 

3.2   Building Trajectory Models 

A Markov model is a stochastic process based on the Markov assumption, under 
which the probability of a certain observation only depends on the observation that di-
rectly precedes it [11].The trajectory models are built using the first-order Markov 
models. A Markov model learns the sequences of the best matching units rather than 
those of the raw GPS data. Changes to the best matching units during the processing 
sequence can be considered as changes of state because the SOM approximates the 
input space.  A trajectory model iM  is learned with a transformed trajectory dataset 

iC . Figure 4 illustrates the combination of the RSOM and Markov model. 

3.3   Predicting Future Movements 

Figure 5 presents an algorithm which outlines the movement prediction phase. When 
a new GPS record is captured by the GPS receiver, the traveling distance after the last 
GPS record is calculated. If this is less than the minimum distance, the record is ig-
nored. If not, it is inputted into the RSOM to get the BMU of the current GPS record. 
The new sequence of BMU is made by concatenating the newly obtained BMU )(Nb  

and the previously obtained BMUs )1(,),1(),0( −Nbbb . Then, the BMU sequence 

is evaluated with the trajectory models. The state i in the Markov model corresponds 
to the ith output unit in the SOM because the sequences of the BMUs are used as  
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inputs. Hence, the probability that a sequence of the BMUs 

)}(,),1(),0({ NbbbBk =  will occur from a given trajectory model can be com-

puted using the following equation: 

∏
=

−=
T

j
tbtbbi PqMNbbbP

2
)()1()0()|)(,),1(),0(( (6)

The higher the probability of the trajectory model, the more likely the user moves 
similarly to the corresponding trajectory. The simplest way of selecting the most 
likely movement pattern is applying a threshold to the probability of the local model 
and selecting the local model whose probability exceeds the predefined threshold. 
However, this method suffers from a lack of flexibility because the level of probabil-
ity varies according to the length of the movement. As the user moves, the overall 
level of probability decreases because the longer the user moves, the more the state 
transition probability of the Markov model is multiplied. The decision boundary has 
to vary according to the movement pattern.

input: the trained RSOM and the trajectory models 
output: future movement pattern 
begin
while (end-of-travel is true) do 
  record = get-a-new-GPS-record(); 
  distance = get-traveling-distance(record);
  if (distance is less than minimum-distance)
   continue;
  end if 
  bmu = get-the-best-matching-unit (RSOM, record);
  push-back (sequence, bmu);
  for (each trajectory model) do 
    model.probability = evaluate-BMU-sequence(sequence, model);
  end for 
  for (each trajectory model) do 
    model.significance = compute-significance(); 
  end for 
  max-significance = get-maximum-significance() 
  if (max-significance exceeds  threshold)
    return model.pattern-number;
  end if 
end while 

Fig. 5. Outline of the movement prediction algorithm

Therefore, the method based on the relative significance of the trajectory model is 
employed instead of using the probability of the trajectory model directly. We select 
the outstandingly probable local model. The significance of the trajectory model is 
computed using the following equation: 

== −
−=

I

Iksti

jk
jkj I

MBP
MBpMcesignifican

.1 1

)|(
)|()( (7)
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The significance of the trajectory model is defined as the difference between the 
probability that the current BMU sequence is generated from one model and the mean 
of the probabilities from the others. If there is the trajectory model with the signifi-
cance exceeding the predefined threshold, we predict that the user will travel along 
the corresponding trajectory. In defining the threshold, the trade off between speed 
and accuracy has to be considered. The lower the threshold, the earlier we can predict 
the user's movement. If the threshold is set too high, the prediction will be made later 
with a relatively low risk of false prediction. 

Table 1. User's movements in GPS data 

Number Starting Location Ending Location Count 

1 Main Gate Engineering Hall I 13 

2 Engineering Hall I College of Liberal Arts II 12 

3 College of Liberal Arts II Auditorium 13 

4 Auditorium College of Social Science 13 

5 College of Social Science Engineering Hall III 13 

6 Engineering Hall III Student Union 12 

7 Student Union Engineering Hall III 13 

8 Engineering Hall III Central Library 13 

9 Central Library College of Liberal Arts I 12 

10 College of Liberal Arts I Main Gate 12 

4   Experiments 

To test the proposed method, we collected a GPS dataset based on the actual campus 
life of Yonsei University students. The average student usually moves along 9 build-
ings for attending a lecture, having lunch, studying and participating in club activities 
along 10 kinds of paths. Four students walked along these predefined paths, each 
holding a GPS-enabled handheld computer. Each movement was discriminated by us-
ing the loss of the GPS signal and each trajectory was labeled according to its starting 
location and ending location. 130 trajectory datasets were collected in total, 13 sets 
for each class. Each trajectory dataset consisted of sequences of two dimensional vec-
tors (longitude and latitude). However, four trajectory datasets were excluded from 
the experiments due to recording problems in the GPS receivers. Table 1 presents the 
description of each movement pattern. Due to GPS signal errors, the collected data 
could differ slightly from the real moving paths. In our experiments, an 8x8 map was 
used. The initial learning rate was 0.03 and the initial neighborhood radius was 4. The 
training algorithm was repeated 5000 times. 

Prediction performance was evaluated using cross-validation because the size of 
the dataset was not large. First, the dataset was divided into 13 subsets. 9 subsets con-
tained all kinds of classes and one class was omitted from the 4 subsets.  We then 
chose one subset as the test dataset and the remaining 12 subsets were used for  
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training. Training and testing were repeated 13 times while changing the test subset. 
We repeated this cross-validation procedure ten times in order to evaluate the per-
formance accurately. The results of the prediction experiments are given in Table 2 as 
a confusion matrix. 

Table 2. Confusion matrix 

Predicted 
1 2 3 4 5 6 7 8 9 10 Miss Accuracy 

1 41 0 0 0 0 0 0 0 0 0 89 0.32 
2 10 110 0 0 0 0 0 0 0 0 0 0.92 
3 0 0 116 0 0 0 0 0 0 0 14 0.89 
4 0 0 0 130 0 0 0 0 0 0 0 1.00 
5 0 0 0 0 129 0 1 0 0 0 0 0.99 
6 0 0 0 0 0 88 0 32 0 0 0 0.73 
7 0 9 0 0 0 0 121 0 0 0 0 0.93 
8 0 0 0 0 0 20 0 110 0 0 0 0.85 
9 0 0 0 0 4 0 0 0 116 0 0 0.97 

Actual 

10 0 11 0 0 0 0 0 0 0 99 0 0.82 

The 'Miss' column shows data which was not predicted because the significance 
did not exceed the threshold until the end of the movement. The prediction accuracy 
of movement path 1 is the lowest because it shows the most misses. One possible rea-
son for this is because there was not enough time to exceed the threshold because the 
main gate and engineering hall I are so close to each other. However, besides the 
misses, no errors in prediction occurred. The lower accuracy of the path 1 reduces the 
average accuracy (0.84%). However, when the results from path 1 are removed, per-
formance is acceptable. The average accuracy when excluding movement 1 is 0.9. In 
ambiguous situations (movements 6 and 8), the accuracies are 0.73 and 0.85, respec-
tively. All errors in predicting paths 6 and 8 are due to the confounding of the two 
paths. The average travel time was 4 minutes 37 seconds and the average time elapsed 
until prediction was 1 minute 21 seconds. This result indicates that we can predict the 
user's future movement path before the user arrives at the destination. 

5   Conclusion 

In this paper, a novel method for learning user's movement patterns and predicting fut
ure movements is presented. Our trajectory-based movement prediction method can le
ad to more intelligent and proactive location-based services. In the future, we plan to i
ncorporate more contexts into the trajectory models. If additional context information 
such as time of day, transportation mode and current activities are used, needs could b
e estimated more accurately. Especially, information about the time of day may be a k
ey factor when improving accuracy because many people travel along their regular ro
utes during specific time periods. 
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Abstract. Chemical data related to illicit cocaine seizures is analyzed
using linear and nonlinear dimensionality reduction methods. The goal
is to find relevant features that could guide the data analysis process in
chemical drug profiling, a recent field in the crime mapping community.
The data has been collected using gas chromatography analysis. Several
methods are tested: PCA, kernel PCA, isomap, spatio-temporal isomap
and locally linear embedding. ST-isomap is used to detect a potential
time-dependent nonlinear manifold, the data being sequential. Results
show that the presence of a simple nonlinear manifold in the data is very
likely and that this manifold cannot be detected by a linear PCA. The
presence of temporal regularities is also observed with ST-isomap. Ker-
nel PCA and isomap perform better than the other methods, and kernel
PCA is more robust than isomap when introducing random perturba-
tions in the dataset.

1 Introduction

Chemical profiling of illicit drugs has become an important field in crime map-
ping in recent years. While traditional crime mapping research has focused on
criminal events, i.e., the analysis of spatial and temporal events with traditional
statistical methods, the analysis of the chemical composition of drug samples
can reveal important information related to the evolution and the dynamics of
illicit drugs market.

As described in [2], many types of substances can be found in a cocaine sample
seized from a street dealer. Among those, there are of course the main consti-
tuants of the drug itself, but also chemical residues of the fabrication process
and cutting agents used to dilute the final product. Each of these can possibly
provide information about a certain stage of drug processing, from the growth
conditions of the original plant to the street distribution. This study will focus
on cocaine main constituants, which are enumerated in section 3.
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2 Related Work

A preliminary study was made by the same authors in [1], where heroin data was
used. PCA, clustering and classification algorithms (MLP, PNN, RBF networks
and k -nearest neighbors) were successfully applied. However, heroin data has
less variables (6 main constituants), which makes it more likely to be reduced
to few features.

A thorough review of the field of chemical drug profiling can be found in
Guéniat and Esseiva [2]. In this book, authors have tested several statistical
methods for heroin and cocaine profiling. Among other methods, they have
mainly used similarity measures between samples to determine the main data
classes. A methodology based on the square cosine function as an intercorrelation
measurement is explained in further details in Esseiva et al. [3].

Also, principal component analysis (PCA) and soft independent modelling
of class analogies (SIMCA) have been applied for dimensionality reduction and
supervised classification. A radial basis function network has been trained on the
processed data and showed encouraging results. The classes used for classification
were based solely on indices of chemical similarities found between data points.
This methodology was further developed by the same authors in [4].

Another type of data was studied by Madden and Ryder [5]: Raman spec-
troscopy obtained from solid mixtures containing cocaine. The goal was to
predict, based on the Raman spectrum, the cocaine concentration in a solid
using k -nearest neighbors, neural networks and partial least squares. They have
also used a genetic algorithm to perform feature selection. However, their study
has been constrained by a very limited number of experimental samples, even
though results were good. Also, the experimental method of sample analysis is
fundamentally different from the one used in this study (gas chromatography).
Similarly, Raman spectroscopy data was studied in [6] using support vector ma-
chines with RBF and polynomial kernels, KNN, the C4.5 decision tree and a
naive Bayes classifier. The goal of the classification algorithm was to discrim-
inate samples containing acetaminophen (used as a cutting agent) from those
that do not. The RBF-kernel SVM outperformed all the other algorithms on a
dataset of 217 samples using 22-fold cross-validation.

3 The Data

The data has 13 initial features, i.e., the 13 main chemical components of cocaine,
measured by peaks area on the spectrum obtained for each sample:

1. Cocaine
2. Tropacocaine
3. Benzoic acid
4. Norcocaine
5. Ecgonine
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6. Ecgonine methyl ester
7. N-formylcocaine
8. Trans-cinnamic acid
9. Anhydroecgonine

10. Anhydroecgonine methyl ester
11. Benzoylecgonine
12. Cis-cinnamoylecgonine methyl ester
13. Trans-cinnamoylecgonine methyl ester.

Time is also implicitely considered in ST-isomap.
Five dimensionality reduction algorithms are used: a standard principal com-

ponent analysis, kernel PCA [7], locally linear embedding (LLE) [8], isomap [9]
and spatio-temporal isomap [10]. The latter has been used in order to detect
any relationship in the temporal evolution of the drug’s chemical composition,
given that the analyses have been sequentially ordered with respect to the date
of seizure for that experiment.

Every sample has been normalized by dividing each variable by the total area
of the peaks of the chromatogram for that sample, every peak being associated
with one chemical substance. This normalization is common practice in the field
of chemometrics and aims at accounting for the variation in the purity of samples,
i.e., the concentration of pure cocaine in the sample.

9500 samples were considered. It is worth noting that a dataset of this size is
rather unusual due to the restricted availability of this type of data.

4 Methodology and Results

Due to the size of the dataset (9500 samples, 13 variables), the methods involving
the computation of a Gram matrix or distance matrix were repeated several times
with random subsets of the data of 50% of its initial size.

All the experiments were done in Matlab. The kernel PCA implementation was
taken from the pattern classification toolbox by Stork and Yom-Tov [11], which
implements algorithms described in Duda et al. [12]. LLE, isomap and ST-isomap
implementations were provided by the respective authors of the algorithms.

4.1 Principal Component Analysis

Following normalization and centering of the data, a simple PCA was performed.
The eigenvalues seem to increase linearly in absolute value, and a subset of at
least six variables is necessary in order to explain 80% of the data variability.
Fig. 1 shows the residual variance vs the number of components in the subset.

Given that the data can be reduced at most to 6 or 7 components, the re-
sults obtained with PCA are not convincing and suggest the use of methods for
detecting nonlinear structures, i.e., no simple linear strucure seem to lie in the
high-dimensional space. As an indication, the two first principal components are
illustrated in Fig. 2.
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Fig. 1. Residual variance vs number of components

Fig. 2. The two main principal components

4.2 Kernel PCA

Kernel PCA was introduced by Schölkopf et al. [7] and aims at performing a
PCA in feature space, where the nonlinear manifold is linear, using the kernel
trick. KPCA is thus a simple yet very powerful technique to learn nonlinear
structures. Using the Gram matrix K, defined by a positive semidefinite kernel
(usually linear, polynomial or Gaussian), rather than the empirical covariance
matrix and knowing that, as for PCA, the new variables can be expressed as
the product of eigenvectors of the covariance matrix and the data, the nonlinear
projection can be expressed as:
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(
Vk ·Φ (x)

)
=

N∑
i=1

αk
i K (xi,x) (1)

where N is the number of data points, αk
i is the eigenvector of the Gram matrix

corresponding to the eigenvector Vk of the covariance matrix in feature space,
which does not need to be computed. The radial basis function kernel provided
the best results (among linear, polynomial and Gaussian), using a Gaussian
width of 0.1. Fig. 3 shows the two-dimensional manifold obtained with KPCA.

Unlike PCA, a coherent structure is recognizable here, and it seems that two
nonlinear features reasonably account for the variation in the whole dataset.

Fig. 3. Two-dimensional embedding with kernel PCA

4.3 Locally Linear Embedding

LLE [8] aims at constructing a low-dimensional manifold by building local linear
models in the data. Each point is embedded in the lower-dimensional coordinate
system by a linear combination of its neighbors:

X̂i =
∑

i∈Nk(Xi)

WiXi (2)

where Nk (Xi) is the neighborhood of the point Xi, of size k. The quality of
the resulting projection is measured by the squared difference between the orig-
inal point and its projection. The main parameter to tune is the number k of
neighbors used for the projection. Values from 3 to 50 have been tested, and the
setting k = 40 has provided the best resulting manifold, even though this neigh-
borhood value is unusually large. Fig. 4 show the three-dimensional embedding
obtained. As for KPCA, a structure can be recognized. However, it is not as
distinct, and suggests that LLE cannot easily represent the underlying manifold
compared to KPCA.
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Fig. 4. Three-dimensional embedding with LLE

4.4 Isomap

Isomap [9] is a global method for reduction of dimensionality. It uses the clas-
sical linear method of multi-dimensional scaling (MDS) [13], but with geodesic
distances rather than Euclidean distances. The geodesic distance between two
points is the shortest path along the manifold. Indeed, the Euclidean distance
does not appropriately estimate the distance between two points lying on a non-
linear manifold. However, it is usually locally accurate, i.e., between neighboring
points. Isomap can therefore be summarized as:

1. Determination of every point’s nearest neighbors (using Euclidean distances);
2. Construction of a graph connecting every point to its nearest neighbours;

Fig. 5. Residual variance vs Isomap dimensionality
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3. Calculation of the shortest path on the graph between every pair of points;
4. Application of multi-dimensional scaling on the resulting distances (geodesic

distances).

The application of this algorithm on the chemical variables has also provided
good results compared to PCA. As for LLE, the number of neighbors k has been
studied and set to 5. As an indication, Fig. 5 shows the residual variance with
subsets of 1 to 10 components. As it can be seen, the residual variance with only
one component is much lower than for PCA. In Fig. 6, the two-dimensional em-
bedding is illustrated. From this figure, it appears that the underlying structure
is better caught than with LLE, which may suggest that isomap is more efficient
on this dataset.

Fig. 6. Two-dimensional embedding with ISOMAP

4.5 Spatio-temporal Isomap

It is well-known in the crime research community that time series analysis often
leads to patterns that reflect police activity rather than underlying criminal
behavior. This is especially true in drug profiling research, where the police
seizures can vary in time independently of criminal activity. On the other hand,
for data such as burglaries, time series analysis could prove more efficient, since
the vast majority of events are actually reported. Methods assuming sequential
data rather than time-referenced data are perhaps more promising in the field of
drug profiling in order to capture true underlying patterns rather than sampling
patterns .

Spatio-temporal isomap [10] is an extension of isomap for the analysis of
sequential data and has been presented by Jenkins and Matarić. Here, the data is
of course feature-temporal rather than spatio-temporal. The number of neighbors
and the obtained embedding are the same as with isomap. However, the feature-
temporal distance matrix is shown in Fig. 7. From this figure, it can be seen that
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regularities are present in the dataset. Given that the samples cover a period of
several years, this data could be used in a predictive point of view and could help
understand the organization of distribution networks. This remains the purpose
of future study.

Fig. 7. Feature-temporal distance matrix

4.6 Robustness Assessment

Following these results, the robustness of the two most well-suited methods
(KPCA and isomap) was tested using a method similar to that used in [14].
Indeed, few quantitative criteria exist to assess the quality of dimensionality
reduction methods, since the reconstruction of patterns in input space is not
straightforward and thus limits our ability to measure the accuracy of a given
algorithm. The algorithm that has been used follows this outline:

1. Randomly divide the dataset D in three partitions: F , P1 and P2.
2. Construct embeddings using F ∪ P1 and F ∪ P2.
3. Compute the mean squared difference (MSD) between both embeddings ob-

tained for F .
4. Repeat the previous steps for a fixed number of iterations.

The embeddings were constructed 15 times for kernel PCA and isomap, and
the results are summarized in Table 1.

Table 1. Normalized mean squared difference for KPCA and isomap

Algorithm MSD std (MSD)
Kernel PCA 0.077 0.001

Isomap 0.174 0.004
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It can be observed that here, kernel PCA is considerably more stable than
isomap. Isomap, being based on a graph of nearest neighbors, may be more
sensitive to random variations in the dataset and could therefore lead to different
results with different sets of observations of a given phenomenon.

5 Conclusion

Five methods of dimensionality reduction were applied to the problem of chem-
ical profiling of cocaine. The application of PCA showed that linear methods
for feature extraction had serious limits in this field of application. Kernel PCA,
isomap, locally linear embedding and ST-isomap have demonstrated the presence
of simple nonlinear structures that were not detected by conventional PCA.

Kernel PCA and isomap have given the best results in terms of an inter-
pretable set of features. However, kernel PCA has shown more robust than
isomap. Of course, research by experts in drug profiling will yet have to con-
firm the relevancy of the obtained results and provide a practical interpretation.

Further research will aim at selecting appropriate methods for determination
of classes on those low-dimensional structures. This clustering task will enable
researchers in the field of crime sciences to determine if distinct production or dis-
tribution networks can be put into light by analyzing the data clusters obtained
from the chemical composition of the drug seizures. Also, regarding sequential
data, other methods could be tested, particularly hidden Markov models.
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Abstract. The purpose of our research is to identify the critical variables, to 
implement a new methodology for Asian online game market segmentation, and 
to compare target customers in Asian online game markets; Korea, Japan and 
China. Conclusively, the critical segmentation variables and the characteristics 
of target customers were different among countries. Therefore, online game 
companies should develop diverse marketing strategies based on characteristics 
of their target customers. 

1   Introduction 

Recently, Asian online game industry has been grown rapidly. 2005 e-Business White 
Paper of Korea Institute for Electronic Commerce (KIEC) [17] indicated that the 
online game market was increased 155.36% from $ 5.6 billion in 2002 to $ 14.3 
billion in 2007, compared with 61.2% for global game market. Additionally, Asian 
online game market held 22.68% ($ 2.2 billion) of market ratio in 2005, compared 
with 14.3 % ($ 0.8 billion) in 2002. Especially, Korea, Japan and China held over 
90% in Asian online game market [17].  

With the rapid growth and the higher competitive power, the importance of this 
industry has been realized not only in the world cultural business but as a profitable 
business model. Therefore, many online game companies hoped that the first mover 
would be successful and recklessly entered into online game markets without 
understanding the core needs of those audiences. However, the lack of 
consideration has forced many online game companies to fail to survive in game 
market [16]. To survive in today’s competitive markets, online game companies 
need to understand their loyal customers and concentrate their limited resources into 
them [21]. 

However, previous research had problems of international application, 
methodologies and variables. Firstly, the problem of international application was 
how well the results performed within a country apply to the other nations. The results 
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of previous research were difficult to be generalized into other countries in that the 
market situation and customers’ characteristics in each country are different 
respectively [9]. Therefore, a comparison analysis of target customer was important to 
understand their domestic and foreign customers.  

Secondly, the traditional methodology for market segmentation was based mainly 
on statistical clustering techniques; hierarchical and partitive approaches. However, 
hierarchical method can not provide a unique clustering because a partitioning to cut 
the dendrogram at certain level is not precise. This method ignores the fact that the 
within-cluster distance may be different for different clusters [6], [23]. Partitive 
method predefines the number of clusters, before performing it. It can be part of the 
error function and can not identity the precise number of clusters [7], [19], [23]. 
Additionally, these algorithms are known to be sensitive to noise and outliers [4], [5], 
[23].  

To settle these problems, we segment Korean online game market using a two-
level Self-Organizing Map (SOM): SOM training and clustering [23]. Instead of 
clustering the data directly, a large set of prototypes is formed using the SOM. The 
prototypes can be interpreted as proto-cluster, which are combined in the next phase 
from the actual clusters. The benefit of using this method is to effectively reduce the 
complexity of the reconstruction task and to reduce the noise. Our research 
implements this method into marketing research field.  

The purpose of our research is to identify the critical variables, to implement a new 
methodology for Asian online game market segmentation, and to compare target 
customers in Asian online game markets. To implement our methodology, Korean, 
Japanese and Chinese online game data were analyzed because they were located in 
the center of those trends. Therefore, our research will be helpful for other countries 
to understand the change of Asian and global game markets.  

2   Theoretical Background 

2.1   Determinant Variables for Market Segmentation 

The convenience of the operator was defined as the manipulatability of operators to 
play games [22]. Operator is an important determinant of influencing interaction 
between users and games [2], [12], [24]. Feedback is the reaction from online games 
[3], [10]. For example, when players kill a monster within NCsoft's Lineage, they 
receive feedback upgrading their level. The reality of design is defined as the design 
of interface making gamers feel online games as part of the real world [1], [20], [25]. 
Information is the contents from online game to achieve the stated goals. Gamers who 
received more precise information about how to play the games tended to achieve 
online game goals and experience flow easier [10], [18]. Virtual community is 
defined as computer-mediated spaces with potential for integration of member-
generated content and communication [14]. Online game users should solve problems 
together interacting with other users in virtual communities [10].  
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2.2   A Two-Level SOM 

Vesanto and Alhoniemi [23] proposed a two-level SOM: SOM training and 
clustering. A two-level SOM was combined SOM, K-means and DB Index. In the 
first level (SOM training), the data were clustered directly in original SOM to form a 
large set of prototypes. In the second level (SOM clustering), the prototypes of SOM 
are clustered using k-means and the validity of clusters is evaluated using DB index. 

To select the best one among different partitioning, a two-level SOM used DB 
index. Generally, there are several validity indices of clustering methodology; DB 
(Davies-Bouldin) index [11], Dunn’s index [13], CH (Calinski-Harabasz) index [8], 
index I [19] and so forth. DB index was suitable for evaluation of k-means 
partitioning because it gives low values, indicating good clustering results for k-
means cluster [21].  

DB index is a function of the ratio of the sum of within-cluster scatter to between-
cluster separation. The DB index is defined as equation (1). 
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Conclusively, the proper clustering is achieved by minimizing the DB index. 
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3   Research Methods 

3.1   Research Framework 

To segment the online game market and develop marketing strategies, our research 
approach is categorized into two phases. Firstly, we perform the confirmatory factor 
analysis (CFA) and structural equation model (SEM) for Korean, Japanese, and 
Chinese samples to identify the critical segmentation variables for clustering. 
Secondly, a two-level SOM is used to segment online game market. After 
segmentation of the markets, we use ANOVA and cross tabulation analysis to 
recognize the characteristics of sub-divided clusters. Finally, we target a segment 
market with the highest customer loyalty and compare the target customers of Korea, 
Japan, and China.  
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3.2   Data and Measurement 

To test the model, a convenience sample of 1704 (KR), 602 (JP), and 592 (CN) online 
game users were available for analysis, after elimination of missing data. Our research 
developed multi-item measures for each construct. Twenty-one items for five 
determinants are selected. We asked respondents to indicate on a five (KR/JP) and 
seven (CH) point Likert scale to what extent the determinants influence on flow in 
online game. We used CFA to evaluate convergent validity for five constructs. The 
results indicated that 15 items for five determinants remained within Korean and 
Japanese model. However, 11 items for four determinants remained for Chinese 
model, eliminating the suitability of feedback because it was not significant. All the 
fit statistics of the measurement model were acceptable.  

4   Results 

4.1   Identification of Critical Factors 

To find the critical factors for segmentation, we used AMOS 4.0 in structural equation 
modeling (SEM). The structural model of Korea, Japan and China was well 
converged. The results indicated that the chi-square of the model was 201.01(KR)/ 
215.55(JP)/ 146.11(CN) with d.f. of 104(KR)/ 104(JP)/ 55(CN), the ratio of chi-
square to d.f. was 2.702(KR)/ 2.073(JP)/ 2.656(CN), GFI was 0.981(KR)/ 0.959(JP)/ 
0.965 (CN), AGFI was 0.972(KR)/ 0.940(JP)/ 0.942(CN) and RMSR was 0.019(KR)/ 
0.040(JP)/ 0.074(CN); all the fit statistics were acceptable.  

Table 1. The results of Stuctural Equeation Model 

Path Korea Japan China 
O --> 0.030 0.273** 0.072* 
FB --> 0.116** 0.058 - 
IF --> 0.079* 0.136* -0.312** 
D --> 0.283** 0.160** 0.236** 
C --> 

F 

0.417** 0.385** 0.001 
* p<0.05, ** p<0.01 
O: The convenience of operator,                       FB: The suitability of feedback 
IF: The precision of information,                      D: Reality of Design 
C: The involvement of virtual community,       F: Flow,  

The results of SEM indicated that the significant variables for market segmentation 
were different among each nation. For Korean market, four of the five paths were 
statistically significant and the path from the convenience of operator to flow was 
insignificant, as shown in Table 1. For Japanese market, four of the five paths were 
statistically significant and the path from the suitability of feedback to flow was 
insignificant. For Chinese market, three of the four paths were statistically significant 
and the path from the involvement of virtual community to flow was insignificant. 
Especially, the precision of information influenced negatively.  
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4.2   Market Segmentation 

To segment the Korean online game market, our research was conducted using a two-
level SOM. In the experiments, the first level was SOM training. 1704 (KR)/ 602(JP)/ 
592(CN) data samples and 4(KR)/ 4(JP)/ 3(CN) significant variables were used. A 
SOM was trained using the sequential training algorithm for data samples. A 
neighborhood width decreased linearly 5 to 1 using the Gaussian function. A map was 
used by 19*11 (KR)/ 15*9 (JP)/ 13*9 (CN)/ matrix and 209(KR)/ 120(JP)/ 117(CN) 
prototypes were developed.  

The second level was SOM clustering. The partitive clustering of 209(KR)/ 
120(JP)/ 117(CN) SOM’s prototypes was carried out using batch K-means algorithm. 
The K-means ran multiple times for each k. The DB index was used to select the best 
clustering. The analysis of the DB index resulted in the development of ten (KR)/ nine 
(JP)/ six (CN) market segments in Fig. 1. The results were visualized in Fig. 2. 

 

Fig. 1. DB Index  

4.3   Determination of Target Market 

After segmenting the markets, we used ANOVA to recognize the variable 
characteristics of each cluster. According to results of ANOVA, all variables 
(components) were significant; F=91.259(KR)/ 9.115(JP)/ 55.163(CN) to 
461.598(KR)/ 55.574(JP)/ 553.220(CN) and p=0.00. To precisely recognize the 
variable characteristics of clusters, we categorized the effectiveness of the variables 
into 3 levels; high, middle and low. The middle level ranged between 3 2.5 because 
our research measurement was used on a five point Likert scale. The high score 
suggested that the cluster was influenced by the variables positively, the middle score 
was normal, the low score was negative. 
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Korea Japan China
 

Fig. 2. Visualization of clusters 

Table 2. Profiles of clusters 

Target Market  
Korea Japan China 

Cluster C6  (n=224) C7  (n=103) C6  (n=168) 
O - 3.76 (High) 3.85 (High) 
FB 2.72 (Low) - - 
IF 3.63 (High) 3.19 (Middle) 2.12 (Low) 
D 3.80 (High 3.75 (High) 3.69 (High) 
C 4.00 (High) 3.57 (High) - 
Gender female male male 
Age 26-30 36- -18 
Job Student Employee Student 
School University Graduate High School Graduate High School 

Income ($) 501-1,000 -1,000 - 50 
i_year 2-4 1-3 2-3 
i_day 5, 10 2 0-1 
G_day 2 4- 0-1 
Revisit 4.02 4.15 3.85 
WOM 4.02 3.65 3.77 
Loyalty** 4.02 3.90 3.82 
* L=Low, M=Middle, H=High 
** Loyalty is estimated by average of revisit and WOM 
O: The convenience of operator,                       FB: The suitability of feedback 
IF: The precision of information,                      D: Reality of Design 
C: The involvement of virtual community,        

Additionally, to identify the structure of the clusters, we conducted on the analysis 
of the demographic and behavioral variables using cross tabulation analysis: gender, 
age, job, school, income level, i_year (how long did gamers use the Internet), i_day 
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(how many hours did gamer use the Internet per day), and g_day (how many hours 
did gamer play online games per day). The characteristics and structure of clusters are 
summarized in Table 2.  

The analysis of customer loyalty indicated that the target market was cluster 6 
(KR)/ cluster 7 (JP)/ cluster 6(CN) among their clusters in Table 2. The other analysis 
of the intention of revisit and WOM (Word of Mouth) indicated the same results.  

5   Conclusion and Limitation 

Our research was performed to identify the critical variables, to segment Asian online 
game market using a two-level SOM, and to compare their target customers. The 
results indicated that the critical segmentation variables and the characteristics of 
loyal customers were different among each nation.  

Firstly, the results of SEM indicated that the convenience of operator was not 
significant in Korean model, the suitability of feedback was not significant in 
Japanese model and the precision of information had negative influence in Chinese 
model. In comparison with Korea and Japan, the convenience of operator was not 
significant but the suitability of feedback was significant in Korean model, on the 
contrary to Japanese model. It was interpreted that Korean online gamers preferred to 
be reacted appropriately and faster when they completed their missions, because they 
wanted to achieve a high status in virtual community. Conversely, the Japanese 
gamers preferred to grow their characters at their convenience. This hypothesis was 
proven in the case of “Vandai’s damakuchi”, which is the game growing animal 
characters for a long time [16].  

Additionally, more than 70% of Chinese online games were foreign. However, 
most information provided by these online games was mistranslated and incorrect so 
that gamer had to obtain precise information from other channels, such as online 
game magazine and community sites [15]. Therefore, Chinese gamers did not like 
incorrect information provided when they played online game and showed negative 
attitude to the provision of information. 

Secondly, the results of characteristics indicated that companies should develop 
strategies depending on the effectiveness of the variables and the demographic and 
behavioral characteristics of target market. The main variable was the involvement of 
virtual community (KR)/ the convenience of operator (JP/CN). Therefore, online 
game companies should develop strategies depending on the effectiveness of the 
variables within each cluster. The strategies for virtual community proposed that 
companies need to provide the different villages and guilds which were harmonized 
with customer needs. For example, ‘Lineage’ provided 15 villages to satisfy the 
different gamers’ needs. The strategies for the convenience of operator proposed that 
companies should provide the diverse characters (Avatar) and items, which are 
harmonized with customers needs and were manipulated conveniently. For example, 
‘Lineage’ provided knight, wizard, elf, dark elf for male and female and 
prince/princess, total 10 Avatars and 1,150 items to play games.  

As to the demographic information, gender of the Korean primary target market 
was female while that of the Japanese and Chinese markets was male. An age of the 
Korean markets was 26-30 years while the Japanese market was over 36 years and 
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Chinese market was under 18. A job of the Korean and Chinese markets were student 
while the Japanese market was employee. A school career of the Korean markets was 
university graduate while the Japanese market was high school graduate and Chinese 
market was high school student. An income level of the Korean markets was $ 501-
1000 while the Japanese market was under $ 1,000 and Chinese market was under $ 
50. An income level of the Korean markets was $ 501-1000 while the Japanese 
market was under $ 1,000 and Chinese market was under $ 50. The target customers 
of the Korean and Chinese markets used the Internet more than Japanese customers. 
Time of Internet usage was 5 or 10 hours per day in Korea, compared with 2 hours in 
Japan and 0-1 hour in China. Time of playing game was 2 hours per day in Korea, 
compared with over 4 hours in Japan and 0-1 hour in China.  

However, results of our research might not be generalized and directly applicable 
to other countries because our research was conducted only on Korean, Japanese and 
Chinese online game market. Countries with different cultural and industrial 
background might have to be very careful about developing their own marketing 
strategies using our methods due to the difference in gaming population and 
perception of people toward games. 
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Abstract. In this paper two artificial neural networks are trained to determine 
Ozone and PM10 concentrations trying to model the environmental system. 
Then a method to partition the connection weights is used to calculate a relative 
importance index which returns the relative contribution of each chemical and 
meteorological input to the concentrations of Ozone and PM10. Moreover, an 
investigation of the variances of the input in the observation time contribute to 
understand which input mainly influence the output. Therefore a neural network 
trained only by the variables with higher values of relative importance index 
and low variability is used to improve the accuracy of the proposed model. The 
experimental results show that this approach could help to understand the envi-
ronmental system. 

1   Introduction 

The analysis of environmental data has become an emergent question with the increase 
in human activity. One of the most important task is to investigate the conditions which 
cause concentrations of dangerous pollutants for environment and human health. 

The photochemical smog is a mixture of pollutants that chemically reacts triggered 
by the solar radiation. Its generation is quite complex because a lot of variables are 
involved as concentration of precursors and meteorological conditions (wind, rain, 
pressure etc.). The high grade of complexity of the involved phenomena allows only a 
classification of pollutants in primary and secondary pollutants. The firsts are directly 
introduced in the air, the others come from a chemical reaction in the atmosphere. On 
the other hand, many important pollutants are the secondary pollutants contained in 
the photochemical smog. As a consequence it is hard to define the levels of danger for 
each pollutant, because they also depend on the meteorological conditions, their per-
manence in the atmosphere and the chain of involved reactions. For this reason, the 
monitoring activity has to be coupled with a forecasting activity. There are many 
studies which deal with environmental data and forecasting of air pollutants [1-6], 
even if there are not so many works about the possible relations between these pollut-
ants and the meteorological factors or other chemical pollutants [7-9]. Instead this 
could be a very useful support to human activity of analysis devoted to determine the 
critical values of pollutants that produce dangerous conditions for environment and 
human health. 
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It has been reported that Ozone is the most important index substance of photo-
chemical smog and it has been recognized as one of the key pollutants degrading the 
air quality. It is a highly reactive chemical, capable of attacking surfaces and materi-
als. Moreover, it is also toxic to certain crops and can cause health hazards. Therefore, 
it is very important to determine the concentration of Ozone in the lower atmosphere 
[10] and in the last ten years many studies attempted a forecasting of Ozone concen-
tration in metropolitan areas. On the other hand, atmospheric dusts with a diameter 
lower than 10 m (PM10) are suspected to be the main cause of some health diseases. 
Therefore, the relevance of monitoring and predicting the concentrations of atmos-
pheric dusts is becoming a basic task. For these reasons there is a considerable interest 
in determining the most influent causes on the concentrations of Ozone and PM10 in 
the lower atmosphere. 

Mathematical models are often exploited to search for relations among different 
variables; but the creation of photochemical smog is intrinsically non-linear process 
and it could be very hard to arrange a mathematical model and to express the relations 
between the environmental conditions and a specific pollutant. On the contrary, neural 
networks appear to be an useful approach to deal with non linear systems like envi-
ronmental pollution. In this paper a neural network approach to study Ozone and 
PM10 concentration in air pollution data is presented.  

The present work starts from the method and results described by Garson [11] 
and Elkamel [7] and tries to improve the accuracy of the results. The aim is to un-
derstand the arising connections among single pollutants and both other chemical 
atmospheric components and meteorological conditions. The proposed approach is 
based on a partitioning method of connection weights of a trained Multi-Layer Per-
ceptron neural network (MLP). The partitioning method allows to achieve a Rela-
tive Importance index (RI) which determines how much an element of input vector 
affects the output. In this way it seems possible to evaluate how a chemical atmos-
pheric component and/or a meteorological event contribute to generate and keep a 
pollutant in lower atmosphere. The numerical results confirm the technique adopted 
by Elkamel et al. .  Moreover our approach is validated by studying the variances of 
variables in the same data set. This analysis returns the variability of element values 
of vectors in the data set under test and shows that the vector elements with higher 
variability have less influence on the output, according with the results of RI index. 
Therefore a new MLP neural network is trained only with the less floating variables 
and the higher value of RI, obtaining a better accuracy. In other words, the inputs 
with large values of RI influence the output mostly while the ones with lower value 
could be considered as noise. Therefore they could be unnecessary to determine the 
output value. 

This paper is organized as follows. In Section 2 the trained artificial neural net-
works to predict O3 and PM10 concentrations are introduced and the adopted index to 
evaluate the relative contribution of each input variable is defined. Section 3 describes 
the data collection and the experimental results. Finally the conclusions are reported 
in Section 4. 
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2   Neural Network Model and Relative Importance Index 

One of the advantages of neural network modeling is its ability to estimate the impor-
tance of each of the input variables using the network weights. For this reason, the 
connection weights were used to determine the RI index of chemical atmospheric 
components and meteorological events (neural network inputs).  

MLPs are artificial neural networks consisting of a set of sensory units that consti-
tute the input layer, one or more hidden layers and an output layer of computation 
nodes and the input signal propagates through the network in a forward direction. 
Neurons, arranged in these parallel layers, form weighted connections with the fol-
lowing layer. It is just this structure that can give advantages if a problem is modeled 
by an MLP. In fact, the connection weights can be used to interpret the influence of 
the input variables and understand the role played by each neuron in the hidden layer. 

To assess the relative importance of the different input variables quantitatively, the 
connection weights of the trained neural network are used according to the procedure 
developed in [7]. The procedure essentially involves partitioning of the connection 
weights of each hidden neuron into the components associated with each input 
neuron. The equation proposed by Garson to evaluate the relative importance of the i-
th component of the input vector for multilayer feed forward networks with n input 
neurons, one hidden layer with h neurons and k output neurons is as follows: 
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where wji is the connection weight between the i-th input neuron and the j-th hidden 
neuron and wkj is the weight between the j-th hidden neuron and the k-th output 
neuron. 

The relative importance RIik  assumes  higher values in correspondence with high 
values of the weights which link the i-th input neuron with the k-th output neuron, 
through the j-th neuron of the hidden layer. The denominator in the equation (1) is a 
factor of normalization. 

Nevertheless the values of RI obtained by means of the above procedure lack of 
accuracy when the input data are unsufficient to train adequately the neural network. 
This method is so completed with an estimation of the input data variances: it has 
been experimentally found that the variances provide a significant aid to choose, 
among the inputs with high and near RI values, the ones more influencing the output. 
Therefore, the proposed approach consists of four steps: the training of an MLP 
neural network to evaluate the concentration of the pollutant under test; the 
identification of the inputs with the higher RI; the evaluation of the variances of the 
inputs to the neural network; the training of a second neural network by the pollutant 
with high RI and low variance. 
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3   Experimental Results 

As it has been mentioned before, the first target of this work is to develop an MLP 
neural network for predicting Ozone and PM10 levels in photochemical smog. 
Therefore, the first step is to assemble data that can be used for training the net-
work. In this case the focus of the data collection step is to generate data for the 
pollutants under investigation as a function of primary pollutants and meteorologi-
cal conditions. 

To perform this task the data of a monitoring station situated in a urban critical 
area of a city of Southern Italy have been considered [12]. The location of monitoring 
stations were selected to coincide with nodal confluence of principal road. A collec-
tion of measures of 8 chemical factors and 7 meteorological factors was taken into 
account, they are shown in table 1. A period of nine months from 5th of May 2000 to 
2nd of February 2001 has been considered as study period. The measurements of 
chemical concentrations and meteorological conditions were recorded and collected 
on various days of different meteorological conditions and each hour for 24 hours a 
day. Each station is provided of a self validation system which is able to automatically 
validate each measured data. If some problems occur, for example about the sensors, 
the acquired datum is invalidated automatically and the datum is not stored. An off 
line human validation is then performed to avoid erroneous invalidations. During the 
data collection, and due to equipment maintenance or to the automatic invalidation of 
data, one or more of the variables may not have been measured or validated at a given 
time. In such cases all measures at that time instant were not considered in the data 
analysis. The number of complete data points with values for all 15 variables recorded 
was therefore reduced to 910 values for PM10 and to 2926 values for Ozone; each 
measure was collected at each time instant and for each monitoring station, in a vector 

15( )x t ⊂ ℜ . 

Table 1. Chemical and meteorological input variables 

 Chemical variables   Unit   Meteorological variables   Unit 

  SO2   [μg/m3]   Wind Direction   [Sector] 

  NOX   [ppb]   Wind Velocity   [m/s] 

  NO   [μg/m3]   p   [ ° ] 

  NO2   [μg/m3]   DVG   [Sector] 

  CO   [mg/m3]   Radiations   [W/m2] 

  Benzene   [μg/m3]   Pressure   [mbar] 

  Toluene   [μg/m3]   Rain   [mm] 

  O-xilene   [μg/m3]   
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Finally, a normalization of input and output data is required so that they are in the 
same range of the used transfer function. Data were normalized using: 

minmax

min

xx

xx
x

−
−

=  (2) 

where x is the normalized value and, xmin and xmax are the minimum and maximum 
values of each vector of  data respectively. 

3.1   Neural Network Predictions 

In the case of the Ozone prediction the 90% of the valid collected data were used as 
training set and the remaining 10% was used as testing set. After the data normaliza-
tion, a network of 15 neurons as input layer, 5 neurons as hidden layer, and one neu-
ron as output (concentration).  

To verify a correct training of the neural network a linear regression coefficient be-
tween measured data and output of network was evaluated obtaining the value 
R=0,935. Obviously, it represents how near to measured data the predicted data are. 
In fig. 1 the dotted line represents the best fit between measured and simulated data, 
the solid line is the regression line. It is possible to see that the two lines are very 
close. As in the case of Ozone in PM10 prediction the 90% of the data were used to 
train the network. The remaining patterns were used as testing set. A normalization 
was then performed and a network with 15 neurons as input layer, 15 neurons as hid-
den layer, and one neuron as output layer was found to give the best result. Fig. 2 
shows the same quantities of fig. 1 related with PM10. It is worth noting that the re-
gression coefficient (R=0,796) is lower than in the previous case. It is possible to 
argue that this value is due to the lack of data which does not allow a network training 
as efficient as in the first case. 

3.2   Data Variances and RI index 

The values of relative importance indexes evaluated on the neural network used in 
the prediction the Ozone concentration are given in fig. 3a. It can be seen that the 
main contribution to the output comes from CO, Toluene, Wind Velocity and Rain for 
the Ozone. Even if CO is not enough reactive and participates very little in the 
chemistry of Ozone formation, its importance stems from the fact that CO gives an 
indirect quantification of wind drift. It is also important to note that rain and wind 
velocity have an high value of relative importance. It is an expected result because the 
Ozone is a secondary pollutant and its concentration is known to depend on both the 
meteorological factors and the concentration of other chemicals (complex chemical 
interaction of oxides of nitrogen (NOx)). 

Fig. 3b displays relative importance about the prediction of the PM10 

concentration. The most influent chemical variables in keeping PM10 concentration 
are CO and Benzene. It can be explained because the suspended dusts often contain 
benzene and carbon. In fact, this is one of the reason of its dangerousness. Moreover, 
the wind velocity exhibits a certain importance as it could be expected; as matter of 
fact, dust concentration can be influenced by this meteorological factor. 
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Fig. 1. Regression line and best fit line for Ozone concentration 

 

Fig. 2. Regression line and best fit line for PM10 concentration 

To confirm and, if it is possible, to improve the results obtained the proposed 
method is completed with an estimation of the input data variances. 

The charts for the variances of the input variables have been generated and they 
have been called Variability Chart (VC). They display the variances of the values of 
vector elements as bars drawn in descending order, while the line shows the cumula-
tive percentage. Fig. 4a shows the variability of chemical variables for Ozone while 
fig. 4b refers to the meteorological ones. In the same way fig. 4c and 4d are the charts 
for PM10. Each bar is labeled with the name of the corresponding element of the input 
vector. 

It is worth noting that the Variability Charts give a complementary information to 
that coming from RI indexes. 

For sake of simplicity, it is possible to look at fig. 4c and 4d. The chemical pollut-
ants and the meteorological variables, which have high variability, present a very low 
relative importance index (fig. 3). 

Indeed four chemical and three meteorological variables (NOx, NO, NO2, SO2, 
DVG, RADS, WD) have more than 90% of the whole variability of measured data. 
This analysis confirms that the variables with more influence in generating and keep-
ing of PM10 are those with low variations with respect to their mean values. 
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                                        (a)                                                                   (b) 

Fig. 3. Coefficient of relative importance of input variables on Ozone  and PM10 concentration 

The phenomenon could be explained with the fact that an environmental condition 
at a given moment is determined by pollutants and meteorological factors evaluated in 
that time. On the contrary, the keeping in atmosphere of a specific pollutant is due to 
the persistence of chemical substances and meteorological conditions. The VCs on the 
input data sets of Ozone give rise to analogous valuations. 

The above considerations suggest a methodology to improve the accuracy of the 
neural approach to understand better the influence of the pollutant when the number 
of input data is not very high. Therefore in this paper the focus is on the PM10 concen-
tration. 

To upgrade the prediction of PM10 concentration a new MLP has been trained, us-
ing as elements of input vectors the variables with high value of RI and low variances. 
As matter of fact, the value of the variances has been used as a second criterion to 
split the variables with very close RI. For example Toulene and NO2 can be consid-
ered, they have a RI value very close (fig. 3), but NO2 has a greater value of variabil-
ity. For this reason it is chosen as input Toulene but not NO2. According this criterion 
4 chemical and 5 meteorological variables are selected; they are reported in table 2. 

Now the choice of the RI value that can be considered “high” becomes a problem 
of optimal threshold. In the tests of the present work the value of RI such that the 
input vector contains at least the 60% of all the initial variables has been found to give 
the best results. 

By using the new training set a MLP network with 8 neurons as input layer, two 
hidden layers with 15 and 10 neurons respectively, and one neuron as output layer has 
been used to predict the PM10 concentration. 

The regression coefficient obtained in this case was R = 0.91 (see fig. 5); it is 
worth noting that the last results are better than those obtained by means of the net-
work trained by all measured variables. Therefore the RI index is very important to 
understand the influence of a specific factor, but the variability chart can be a useful 
support to underline the difference between two or more pollutants with similar RI 
values. Moreover the inputs with high variability do not allow a good training of neu-
ral network and could be considered as noise. 
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Fig. 4. Variability of chemical variables for Ozone (a); meteorological variables for Ozone (b); 
chemical variables for PM10 (c); meteorological variables for PM10 (d) 

Table 2. Chemical and meteorological input variables with high RI for PM10 

 Chemical variables   Unit   Meteorological variables   Unit 

  CO   [mg/m3]   Wind Velocity   [m/s] 

  Benzene   [μg/m3]   p   [ ° ] 

  Toluene   [μg/m3]   Rain   [mm] 

  O-xilene   [μg/m3]   Pressure   [mbar] 

 

Fig. 5. Regression line and best fit line for PM10 concentration using only chemical and  
meteorological input variables with high RI and low variance 
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4   Conclusions 

In this paper a neural network approach to study air pollution data is presented. The 
proposed approach is very simple and allows a more detailed analysis of the primary 
pollutants and meteorological events on the pollutants under study. It is based on a 
partitioning method of neural weights of a trained MLP. The partitioning method 
determines a Relative Importance index which provides the chemical components and 
the meteorological events with great contribution to generation and keeping in atmos-
phere of specific pollutant. The method is completed with an analysis of data by 
means of variability charts. It returns the variability of pollutants and meteorological 
factors measured, and shows that the factors with high variability have a little influ-
ence on a specific pollutant. For this reason, it is a useful support to highlight the 
difference between two or more pollutants with close values of RI. Therefore the 
proposed method could allow to understand the relation between a single pollutants 
and other chemical components in atmosphere and/or meteorological conditions. 

The analysis has been focused on the concentrations of two pollutants, Ozone and 
PM10. The results show how meteorological conditions and chemical pollutants are 
related to them. Rain, wind velocity, Carbon monoxide and Toluene were found to 
have a major effect on the Ozone concentration, whereas the Carbon monoxide, Ben-
zene and wind velocity have an high influence in keeping PM10 concentration. 
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Abstract. In many applications of neural networks, the performance of the net-
work is given by the classification accuracy. While obtaining the classification 
accuracies, the total true classification is computed, but the number of classifi-
cation rates of the classes and fault classification rates are not given. This would 
not be enough for a problem having fatal importance. As an implementation ex-
ample, a dataset having fatal importance is classified by MLP, RBF, GRNN, 
PNN and LVQ networks and the real performances of these networks are found 
by applying ROC analysis. 

1   Introduction 

Although neural networks are subject to criticism due to their “black-box” structures, 
the fact that neural networks can efficiently be trained for totally different applica-
tions has resulted as their use in diverse fields such as pattern recognition, speech 
processing, control, medical applications, and so forth. In these application examples, 
the performance of the networks is mostly considered as the number of true re-
sult/number of total data rate of the test set. This performance evaluation method 
would not be sufficient in conditions where a wrong decision may result in danger for 
human such as diagnosis of a cancer patient as healthy although he is ill or determina-
tion of an ally as an enemy in military applications. In these situations, the accuracy 
results of the network structures must be given with the rates of ill to ill and healty to 
ill diagnosis or enemy to enemy and enemy to ally decision rates. The sensitivity 
(SE); the proportion of patients with disease whose tests are positive, and specificity 
(SP); the proportion of patients without disease whose tests are negative and Receiver 
Operating Characteristics (ROC) curves, a trade off between specificity and sensitiv-
ity, should be given in order to predict the real performances of the networks. 

In this work, an implementation of the ROC Analysis is realized to find the real 
performances of the networks used to classify the echocardiogram dataset, which is 
available in the machine learning database repository [1]. The neural networks inves-
tigated for this purpose are Multi Layer Perceptrons (MLP), Radial Basis Function 
Networks (RBF), Probabilistic Neural Networks (PNN), Generalized Regression 
Neural Networks (GRNN) and Learning Vector Quantization Networks (LVQ). To 
estimate the accuracy of the neural network models, cross-validation, which “provides 
a nearly unbiased estimate” of the accuracy, is used. In the following section, ROC 
analysis is defined in the form it is used in the analysis of the echocardiogram dataset. 
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The implementation example is given in the third section with a brief description of 
echocardiogram dataset, cross-validation method, applied neural network structures 
with their accuracies and ROC analysis of applied networks. The discussion on the 
ROC curves and sensitivity-specificity tables of the networks is given in the conclu-
sion part. 

2   Roc Analysis 

Receiver Operating Characteristics (ROC) analysis is originated from signal detection 
theory, as a model of how well a receiver is able to detect a signal in the presence of 
noise. ROC analysis has also widely been used in medical data analysis to study the 
effect of varying threshold on the numerical outcome of a diagnostic test. Recently, it 
has been introduced to machine learning relatively in response to classification tasks 
with varying class distributions or misclassification costs [2]. In the following, ROC 
analysis definitions applied to medical diagnosis problems are given due to the se-
lected dataset.  

Commonly used diagnostic variables for the performance of a test are the sensitiv-
ity (SE) and specificity (SP). ROC of a classifier shows its performance as a trade off 
between specificity and sensitivity. Sensitivity is the proportion of patients with dis-
ease whose tests are positive and specificity is the proportion of patients without dis-
ease whose tests are negative.  The equations of these measures can be given by (1) 
and (2) [3]: 

negativesfalseofnumberpositivestrueofnumber

positivestrueofnumber
ysensitivit

+
=  . (1) 

positivesfalseofnumbernegativestrueofnumber

negativestrueofnumber
yspecificit

+
=

. 
(2) 

where true positive (TP), true negative (TN), false positive (FP) and false negative 
(FN) means to diagnose ill as ill, healthy as healthy, ill as healthy and healthy as ill in 
medical diagnosis, respectively [4]. The ideal condition of SE and SP is to be one. 
Increasing either SE or SP will usually result in a decrease in the other measure. 

Typically a curve of false positive rate versus true positive rate is plotted while a 
sensitivity or threshold parameter is varied. ROC curves are widely used in the medi-
cal literature to assess the performance of a diagnostic test. ROC curves contain a 
wealth of information for understanding and improving performance of classifiers but 
require visual inspection. When the curves are mixed it is hard to recognize the best 
classifier. The area under the ROC curve (AURC) helps to decide the appropriate one 
for the problem. AURC is a summary statistic of diagnostic performance and it as-
sesses the ranking in terms of separation of the classes. The ROC curves are most 
helpful when comparing two or more risk stratification systems [5-7]. In the imple-
mentation part of this work, the real performances of MLP, RBF, PNN, GRNN and 
LVQ neural networks for the classification of echocardiogram dataset are compared 
by performing ROC analysis. For this purpose, ROC curves and SE-SP values are 
used.  
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3   An Implementation Example 

The coronary attack is one of the most important and common reason for death all 
over the world. Since most of the deaths are from coronary heart disease, it is impor-
tant to diagnose heart disease from simple clinical tests or determine whether a patient 
has risk factor after the coronary attack. This emphasizes the importance of an alter-
native method which may be helpful for early and accurate decision giving. Thus, so 
far many works have been realized on the prognosis of heart diseases using test re-
sults of the patients by researchers [8-11].  

3.1   Echocardiogram Dataset  

Echocardiogram dataset which takes place in the UCI repository of machine learning 
databases consists of some information about 132 patients who have suffered heart 
attacks at some point in the past. Some of the patients are alive after one year and 
some are not.  The survival and still-alive variables, when taken together, indicate 
whether a patient survived for at least one year following the heart attack. The most 
difficult part of this problem is correctly predicting that the patient will not survive. 
This problem can be reduced by adding new samples to the dataset. The dataset has 
13 raw attributes, however only 9 of them are used. All attributes are numeric-valued. 
The definitions of the 13 attributes are as follows: 

1.  Survival: the number of months patient survived (has survived, if patient is still 
alive); 
It is possible that some patients have survived less than one year but they are still 
alive because all the patients had their heart attacks at different times. Thus, the sec-
ond variable should be investigated to confirm this.   
2.  Still-alive: a binary variable (0: dead at end of survival period, 1: still alive); 
3.  Age at heart-attack: age when heart attack occurred; 
4.  Pericardial-effusion: Pericardial effusion is the fluid around the heart (0:no    fluid,  
     1: fluid); 
5.  Fractional-shortening: a measure of contractility around the heart;  
6.  epss: E-point septal separation, another measure of contractility; 
7.  lvdd: left ventricular end-diastolic dimension. This is a measure of the size of the  
      heart at end-diastole; 
8.  Wall-motion-score: It is a measure of how the segments of the left ventricle are 
moving; 
9.  Wall-motion-index: It is equal to the wall-motion-score divided by number of  
       segments seen. Usually 12-13 segments are seen in an echocardiogram. This  
       variable can be used instead of the wall-motion-score; 
10.  Mult: a derivate variable which can be ignored; 
11.  Name: the name of the patient; 
12.  Group: meaningless; 
13.  Alive after 1 year: Derived from the first two attributes (0: patient was either dead  
       after 1 year or had been followed for less than 1 year, 1: patient was alive at 1 year). 

Real-world data commonly contains instances with missing attribute values. The 
completion of the missing attribute values is one of the problems that most learning 
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models have to handle. The echocardiogram dataset used in this work has also miss-
ing attribute values in both input and output attributes. In this work, the missing input 
attribute values are completed by a pre-processing method [12-13] which is done by 
replacing the missing attribute values with the average value of the attribute and the 
instances with missing output attribute values are discarded. Since these methods 
transform the echocardiogram data before it is given to the neural network model, the 
pre-processing method used are applied both in training and testing. After the pre-
processing, 117 instances; 24 instances from the class who were alive at one year and 
93 instances from the class who were either dead after one year or had been followed 
for less than one year have remained in echocardiogram dataset. 

3.2   Cross-Validation Method 

In this work, different neural networks were used to decide whether a patient will live 
one year after a heart attack using echocardiogram dataset. To estimate the accuracy 
of the neural network models included in this work, cross-validation, which “provides 
a nearly unbiased estimate” of the accuracy, is used. Cross-validation in its simplest 
form is the division of a dataset into two subsets and training the network with one of 
the subsets while testing it with the other subset [14]. As noted in [14], cross-
validation estimates of accuracy can have a high variability especially with small 
sample sizes, such as in echocardiogram dataset. Thus, in this work, two-fold cross 
validation method is used in order to remove the potential imbalance in the class dis-
tributions. The echocardiogram data set (117 instances) is divided into two subsets 
which are denoted as A and B. Classification accuracies of 1st case, which means the 
subset A is used for training and subset B is used for testing and of 2nd case, which 
means the subset B is used for training and subset A is used for testing, are obtained. 
Also the averages of these two cases are found. 

3.3   Applied Neural Network Structures 

MLP network, which has configuration of 8 input neurons, 5 neurons in hidden layer, 
and 1 output neuron with learning rate, 0.1, was trained for 400 epochs. Tangent sig-
moid and logarithmic sigmoid transfer functions were used in MLP training. The 
input values have been normalized between 0 and 1. MLP network models were 
trained with almost all network learning algorithms. Among all these algorithms, the 
one giving the best results for MLP network, which is BFGS quasi-Newton (trainbfg) 
learning algorithm, takes place in Table 1. In RBF network, spread value is chosen as 
0.1 which gives the best accuracy. The spread values are chosen as 0.1 for GRNN 
networks, 1.9 for PNN networks and 0.1 for LVQ networks. MATLAB 7.0 Neural 
Network Toolbox is used in the simulation of the networks. 

3.4   Accuracy Results of the Networks 

The classification accuracies obtained in two cases and the average of these cases for 
MLP, RBF, PNN, GRNN and LVQ networks are given in Table 1. 
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Table 1. Classification accuracies of MLP, RBF, GRNN, PNN and LVQ networks 

 

It can be seen from Table 1 that MLP network has highest classification accuracy 
in first case, whereas GRNN and LVQ have relatively high classification accuracies 
in second case. In the average, GRNN and LVQ networks again have high classifica-
tion accuracies as in second case. 

Prognostic performance is mostly defined by the accuracy of test which is the per-
centage of the prognostic decisions that turned out to be correct. By looking at the 
accuracy results in Table1, one would say that GRNN or LVQ is the best classifier. 
However, it would be wrong to say this before looking at the ROC analysis results. In 
the following section, the real performances of the networks are found by performing 
ROC analysis and which of these networks has the best performance for echocardio-
gram dataset is decided. 

3.5   ROC Analysis of Applied Neural Networks 

As the first step of ROC analysis, the sensitivity and specificity values of MLP, RBF, 
GRNN, PNN and LVQ networks are found as given in Table 2. 

As can be seen from Table 2, the specificity values for both cases are all equal 
to nearly one in training. However, PNN has relatively low specificity value in 
testing. Also, sensitivity of PNN networks has the lowest value both in training 
and testing.  

In Table 1, test accuracy of RBF network in the average case is %93.16. With this 
result, one may say that RBF networks are appropriate for the classification of echo-
cardiogram data. However, in Table 2, the SP and SE of RBF in the average case are 
0.989 and 0.708, respectively. This situation means that RBF networks are able to 
diagnose healty as healty with a good accuracy, but the percentage of diognosing ill to 
ill is only %70.8 which means %29.2 of the ill patients are classified as healty. Thus, 
RBF networks are not useful in the classification of the echocardiogram data. The SE-
SP values of the five networks used are given in Fig. 1 for training and test sets of the 
average case. 
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Table 2. SE – SP values of MLP, RBF, GRNN, PNN and LVQ networks 

 

 
(a)                                                                 (b) 

Fig. 1. SE-SP graphics of the five networks for the average case in (a) training set, (b) test set 

The distances between SE-SP values and (1,1) point would be helpful to put the 
networks used in order according to their performances when the points are near to 
each other. The ideal condition of SE and SP is to be one. In Table 3, the distances 
SE-SP values to (1,1) point for MLP, RBF, PNN, GRNN and LVQ networks are  
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given. LVQ network can be chosen as the best network with distance of 0.043 in 
testing for the average case. GRNN and MLP networks come after LVQ networks 
with distances of 0.047 and 0.052, respectively. 

Table 3. The distances SE-SP values to (1,1) point for MLP, RBF, PNN, GRNN and LVQ 
networks 

 

As the second step of the ROC analysis, ROC curves of the networks which con-
tain information for understanding the performances of the networks are obtained. In 
Fig.2, ROC curves of the MLP, RBF, GRNN, PNN and LVQ networks for training 
and test sets are given for the average cases.  

 
(a)                                                                 (b) 

Fig. 2. ROC curves of the MLP, RBF, GRNN, PNN and LVQ networks in (a) training set; (b) 
test set for the average of two cases 

These figures require visual inspection. When the curves of the networks are hard 
to investigate by visual inspection, the area under the ROC curve (AURC) would be 
helpful to compare the performances of the networks. In Table 4, the AURC values 
for MLP, RBF, GRNN, PNN and LVQ networks are given. As it was chosen from 
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SE-SP distance values in Table 2, again LVQ network with area of 0.9737 in test set 
for the average can be chosen as the best classifier for echocardiogram dataset. 
GRNN with area of 0.9731 and MLP network with area of 0.9628 come after LVQ. 
Although RBF network with area of 0.9530 seems to have good performance for this 
problem, it is not appropriate due to its comparatively low SE-SP values. 

Table 4. The area under the ROC curves of MLP, RBF, PNN, GRNN and LVQ networks 

 

4   Conclusion 

In this work, an implementation of the ROC Analysis is realized to find the real per-
formances of the networks which give reasonably good solutions to prognosis prob-
lems are used to classify the echocardiogram dataset available in the machine learning 
database repository. The neural networks investigated for this purpose are Multi 
Layer Perceptrons (MLP), Radial Basis Function Networks (RBF), Probabilistic Neu-
ral Networks (PNN), Generalized Regression Neural Networks (GRNN) and Learning 
Vector Quantization Networks (LVQ). To estimate the accuracy of the neural network 
models two-fold cross-validation method is used.  

In many applications of neural networks, the performance of the network is given 
by the classification accuracy. While obtaining the classification accuracies, the total 
true diagnosis (healthy to healthy and ill to ill) is computed, but the number of classi-
fication rates of the classes and fault classification (healthy to ill and ill to healthy) 
rates are not given. This would not be enough for a problem having fatal importance 
as in our implementation. Thus, ROC analysis of the networks is performed in order 
to decide which of these networks give the best performance. From the sensitivity-
specificity values and ROC curves, LVQ network is determined as the network hav-
ing the best performance for evaluating the echocardiogram dataset. GRNN and MLP 
networks come after LVQ network. Although RBF network seems to have good per-
formance for this problem from ROC curves, it is not appropriate due to its low SE-
SP values. Thus, when performing ROC analysis, not only one of the ROC curve or 
SE-SP value, both of them should be taken into account. 
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Abstract. TFIDF was widely used in IR system based on the vector
space model (VSM). Pagerank was used in systems based on hyper-
link structure such as Google. It was necessary to develop a technique
combining the advantages of two systems. In this paper, we drew up a
framework by using the content of web pages and the out-link informa-
tion synchronously. We set up a matrix M, which composed of out-link
information and the relevant value of web pages with the given query.
The relevant value was denoted by TFIDF. We got the NewPR (New
Pagerank) by solving the equation with the coefficient M. Experimen-
tal results showed that more pages, which were more important both in
content and hyper-link sides, were selected.

1 Introduction

With information proliferate on the web as well as popularity of Internet, how
to locate related information as well as providing accordingly information inter-
pretation has created big challenges for research in the fields of data engineering,
IR as well as data mining due to features of Web (huge volume, heterogeneous,
dynamic and semi-structured etc.). [1,2]

As a user, in order to find, collect and maintenance the information, which
maybe useful for the specific aims, s/he has to pay more time, money and at-
tention on the retrieval course.

While web search engine can retrieve information on the Web for a specific
topic, users have to step a long ordered list in order to locate the valuable infor-
mation, which is often tedious and less efficient due to various reasons like huge
volume of information. For most of the users, they may not express their needs
clearly with a few keywords. Users may be just interested in “most qualified”
information or one peculiar part of returned information.

The search engines are based on one of the two methods, the content of the
pages and the link structure.
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The first kind of search engineers works well for traditional documents, but the
performance drops significant when applied to the web pages. The main reason
is that there are too much irrelevant information contained in a web page.

The second one takes the hyperlink structures of web pages into account in
order to improve the performance. The examples are Pagerank and HITS. They
are applied to Google and the CLEVER project respectively.

However, these algorithms have shortcomings in that (1) the weight for a web
page is merely defined; and (2) the relativity of contents among hyper linking
web pages is not considered. [2]

In this paper, we combine the relevance and the Pagerank of the web page
in order to refine the retrieval results. We compute the TFIDF value firstly. And
then, we compute the new Pagerank by the TFIDF and the out-link information
of every page. The new Pagerank is called NewPR.

This paper is organized as follows: Section 2 introduces the concept of Pager-
ank and TFIDF. Section 3 describes the algorithm of NewPR. Section 4 presents the
experimental results for evaluating our proposed methods. Finally, we conclude
the paper with a summary and directions for future work in Section 5.

2 Basic Concept

2.1 Pagerank

The Google search engine is based on the popular Pagerank algorithm first in-
troduced by Brin and Page in Ref. [3].

Considering the pages and the links as a graph G = P (Page, Link), we can
describe the graph by using the adjacency matrix. The entries of the matrix, for
example pij , can be defined as:

pij =
{

1 ∃Link(i → j)
0 Otherwise.

Here i, j ∈ (1, n) and n is the number of web pages. Because the total probability
from one page to others can be considered 1, the rows, which correspond to pages
with a non-zero number of out-links deg(i) > 0, can be made row-stochastic (row
entries non-negative and sum to 1) by setting pij = pij/deg(i). That means if
the page u has m out-links, the probability of following each of out-links is 1/m.
We assume all the m out-links from page u have the similar probability.

For a real adjacency matrix P , in fact, there are many special pages without
any out-link, which are called dangling page. Any other pages can reach the
dangling page in n(n ≥ 1) steps, but it is impossible to get out. In the adjacency
matrix, the row, corresponding to the dangling page is all zeros. Thus, the matrix
P is not a row-stochastic. It should be deal with in order to meet the requirement
of the row-stochastic.

One of the ways to overcome this difficulty is to change the transition matrix
P slightly. We can replace the rows, all of the zeros, with v = (1/n)eT , where
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eT is the row vector of all 1s and n is the number of pages of P contains. The
P will be changed to P ′ = P + d · vT . Where

d =
{

1 if deg(i) = 0
0 Otherwise.

is the dangling page indictor [4]. If there were a page without any out-link from it,
we could assume it can link to every other pages in P with the same probability.
After that there is not row with all 0s in matrix P ′.

P ′ is row-stochastic and it corresponds to the stochastic transition matrix over
the graph G. Pagerank can be viewed as the stationary probability distribution
over pages induced by a random walk on the web. It can be defined as a limiting
solution of the iterative process.

Because of the existing of zero entries in the matrix P ′, it cannot guarantee
the existence of the stationary vector. The problem comes from that the P ′ may
be reducible. In order to solve the problem, P ′ can be modified by adding the
connection between every pair of pages [4].

Q = P ′′ = cP ′ + (1− c)evT , e = (1, 1, · · · , 1)T .

Where c is called dangling factor, and c ∈ (0, 1) . In most of the references, the
c is set [0.85,1). [3]

After that, the Q is irreducible because all of the pages are connected (strong
connection). For Q

(k)
ii > 0, (i, k ∈ (1, n)) , the Q is aperiodic too. The Perron-

Frobenius theorem guarantees the equation x(k+1) = QT x(k) (for the eigensys-
tem QT x = x ) converges to the principal eigenvector with eigenvalue 1, and
there is a real, positive, and the biggest eigenvector. [5, 6]

2.2 TFIDF

TFIDF is the most common weighting method used to describe documents in the
Vector Space Model (VSM), particularly in IR problems. Regarding text catego-
rization, this weighting function has been particularly related to two important
machine learning methods: kNN (k-nearest neighbor) and SVM(Support Vec-
tor Machine). The TFIDF function weights each vector component (each of them
relating to a word of the vocabulary) of each document on the following basis. [7]

Assuming vector d̃ = (d(1), d(2), ..., d|F |) represents the document d in a vector
space. Each dimension of the vector space represents a word selected by the
feature selection. The value of the vector element d(i)(i ∈ [1, |F |]) is calculated
as a combination of the statistics TF (w, d) and DF (w).

TF (w, d) is the number of the word w occurred in document d. DF (w) is
the number of documents in which the word w occurred at least once time. The
IDF (w) can be calculated as

IDF (w) = log
Nall

DF (w)
.
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Where Nall is the total number of documents. The value d(i) of feature wi for
the document d is then calculated as d(i) = TF (wi, d)× IDF (wi). Where d(i) is
called the weight of word wi in document d. [7]

The TFIDF algorithm learns a class model by combining document vectors into
a prototype vector C̃ for every class C ∈ Ç. Prototype vectors are generated by
adding the document vectors of all documents in the class.

C̃ =
∑
d∈C

d̃.

This model can be used to classify a new document d′. Assuming vector d̃′
represents d′, the cosine distance between d̃′ and C̃ is calculated. The d′ is
belonged to the class with which the cosine distance has the highest value.

3 Algorithm of the NewPR

3.1 Precision and Recall

For a retrieval system, there are 2 sides should be considered, the precision and
the recall. Just as the illustrator in Fig.1, we can get,

Precision =
B

Ret
; Recall =

B

Ref
; γ =

Ref

A + B + C + D
=

Ref

N
.

For a given retrieval system, the average value of precision and γ can be
estimated. As the N is very large, γ is expected to be very small.

3.2 Page Link

We donate the query from the user with Q, all of the pages selected by retrieval
system relevant to Q with Y = {yi, i ∈ (1, n)}. The probability from Q to Y is
P = {pi, i ∈ (1, n)} , and from yi returns to Q is 1− π. In our experiment, P is
the TFIDF values of Q to Y .

Fig.1 Concept of Information Retrieval Fig.2 Information of Links
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(A) From Y to Y0 (B) From Y to others (C) From Y0 to others

Fig. 3. Link Information of each page

We assume all the pages, which are not included in set Y , are included in a
set Y0. The probability of Y0 transfers to itself is D0, to Y is D = {di, i ∈ (1, n)}
and to Q is 1− ρ. p0 is probability from Q to Y0. It is the sum of TFIDF values
of Q to Y0. The link information is showed in Fig.2.

Because the return link from Y to Q means the page belonged to part A in

Fig.1, the probability 1−π =
A

Ret
=

A + B −B

Ret
=

Ret−B

Ret
= 1−Precision.⇒

π = Precision.
For the Q, assuming si is the TFIDF value, we get,

p0 +
n∑

i=1

pi = 1, p0 = β
∑

i/∈(1,n)

si, pi = βsi ⇒ β
∑

i/∈(1,n)

si + β
∑

i∈(1,n)

si = 1

⇒ β =
1∑

i∈ALL

si
, p0 = 1−

∑
i∈(1,n)

si∑
i∈ALL

si
, pi =

si∑
i∈ALL

si
. (1)

In Fig.3(A), we assume the probability of page yi ∈ Y points to Y0 is ei =∑
j /∈Ret

nij , where nij is the initial probability that page i points to page j.

In Fig.3(B), the page yi ∈ Y has three kinds of links: links to Q, links to Y ,
and links to Y0. Thus, we get (1− π) + ei +

∑
j∈Ret

nij = 1.

We define the link matrix U = {uij |i, j ∈ (1, n)} as,

uij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uii = 1

∑
j

uij = 0 Dangling page

1
∑
j

uij > 0 and∃ link (i → j)

0
∑
j

uij > 0 and � link (i → j).

For the Y , we get

(1 − π) +
∑

j∈Ret

βuij +
∑

j /∈Ret

βuij = (1 − π) + β
∑

j∈ALL

uij = 1
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⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β =

π∑
j∈ALL

uij
=

π

OutlinkNum(i)
, nij = π

uij

OutlinkNum(i)

ei = π(1−

∑
j∈Ret

uij

OutlinkNum(i)
) = π(

∑
j /∈Ret

uij

OutlinkNum(i)
).

(2)

For the Y0, which is showed in Fig.3(C), we get

ρ =
C

C + D
=

Ref −B

N −Ret
=

γN − πRet

N −Ret
≈ γN − πRet

N
≈ γ.

(1− ρ) + D0 +
∑

i∈Ret

di = (1− ρ) + β
∑

j /∈Ret

∑
i/∈Ret

uji + β
∑

j /∈Ret

∑
i∈Ret

uji = 1

⇒ D0 = ρ

∑
j /∈Ret

∑
i/∈Ret

uji∑
j /∈Ret

OutlinkNum(j)
, di = ρ

∑
j /∈Ret,i∈Ret

uji∑
j /∈Ret

OutlinkNum(j)
. (3)

3.3 The Link Matrix

We assume the links among the pages in set Y composed the link matrix U .

U =

⎛⎜⎜⎜⎝
u11 u12 . . . u1n

u21 u22 . . . u2n

...
...

. . .
...

un1 un2 . . . unn

⎞⎟⎟⎟⎠ Ũ =

⎛⎜⎜⎜⎜⎜⎝
u11 u12 . . . u1n AA1
u21 u22 . . . u2n AA2
...

...
. . .

...
...

un1 un2 . . . unn AAn

BB1 BB2 . . . BBn BB0

⎞⎟⎟⎟⎟⎟⎠
Adding the set Y0 , U changes to Ũ . Where

AAi =
∑

j /∈Ret

uij , BBi =
∑

j /∈Ret,i∈Ret

uji, BB0 =
∑

i,j /∈Ret

uij .

We normalize the Ũ by

m̃ij =
ũij∑

j

ũij
i ∈ (1, n] ; ãi =

ũij∑
j

ũij
i ∈ (n,ALL) ;

bi =

∑
j /∈Ret,i∈Ret

uji∑
j /∈Ret

OutlinkNum(j)
; B0 =

∑
j /∈Ret

∑
i/∈Ret

uji∑
j /∈Ret

OutlinkNum(j)
.

Adding the query , we get the transfer matrix T ,

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 p1 p2 . . . pn p0
1− π n11 n12 . . . n1n e1
1− π n21 n22 . . . n2n e2

...
...

...
. . .

...
...

1− π nn1 nn2 . . . nnn en

1− ρ d1 d2 . . . dn D0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ 0 P p0
1− π πM πA
1− ρ ρB ρB0

⎞⎠ .
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Where A = (a1, a2, · · · , an)′,B = (b1, b2, · · · , bn). P is the normalized value of
TFIDF of Q to page yi(yi ∈ Y ). p0 is the sum of normalized value of TFIDF of Q
to pages in Y0.

For a giving retrieval system, we could compute the B0 and Bi(i ∈ (1, n)).
We can get

T′ =

⎛⎝ 0 1− π 1− ρ
P ′ πM ′ ρB
p0 πA′ ρB0

⎞⎠ .

3.4 Computing Equation

From the equation T ′X = X , we can get,⎛⎝ 0 1− π 1− ρ
P ′ πM ′ ρB
p0 πA′ ρB0

⎞⎠ ⎛⎝x0
Y
y0

⎞⎠ =

⎛⎝x0
Y
y0

⎞⎠
x0 = (1− π)‖Y ‖1 + (1− ρ)y0 (4)
Y = x0P

′ + πM ′Y + ρy0B
′ (5)

y0 = x0p0 + πA′Y + ρB0y0 (6)
x0 + ‖Y ‖1 + y0 = 1 (7)

As the T is stochastic matrix, we get (7).
Changing (6), we get,

y0 =
x0

1− ρB0
p0 +

π

1− ρB0
A′Y . (8)

Changing (5), we get,

(I − πM ′ − ρπ

1− ρB0
B′A′)Y = x0(P ′ +

ρp0

1− ρB0
B′) . (9)

Assuming C = ρ
1−ρB0

B′, we get,

y = x0[I − π(M ′ + CA′)]−1(P ′ + p0C) . (10)

Assuming V = [I − π(M ′ + CA′)]−1(P ′ + p0C), we get,

Y = x0V ⇒ ‖Y ‖1 = x0‖V ‖1 . (11)

Changing (4), we get,

[1− (1− π)‖V ‖1]x0 = (1− ρ)y0

y0 =
1− (1− π)‖V ‖1

1− ρ
x0 . (12)

Combining the formula (7)(11)(12), we get

x0 =
1

1 +
1 + (π − ρ)‖V ‖1

1− ρ

; y0 =
1− (1− π)‖V ‖1

1− ρ
x0 ; Y = x0X . (13)
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4 Experimental

4.1 Experimental Setup

We construct experiment in order to verify the retrieval methods of our approach
described in Section 3.

The experiment is constructed by using the TREC WT10g test collection, which
contains about 1.69 million Web pages. Stop words have been eliminated from
all Web pages in the collection based on the stop-word list and stemming has
been performed using Porter Stemmer. [7]

(1) Selecting test pages. We construct the set R with all pages which are
relevant to the query qi, i ∈ (1, 100). The data-set D can be set up just as

di =

⎧⎪⎨⎪⎩
di, (di ∈ R);
dj , ∃ (link(i → j) ∧ link(j → k)), (j /∈ R; i, k ∈ R)
dj , dl ∃ (link(i → j) ∧ link(j → l) ∧ link(l → k)), (j, l /∈ R; i, k ∈ R) .

We name all pages in D from 1 to 12486 and pick up all out-links from those
pages.

(2) Computing the old Pagerank. In order to compare the result of new
method with the traditional one, we compute the pagerank of the every page in
traditional way firstly. In this method, we ignore the last column of link matrix
P , and it guarantee the link matrix is square one.

It must be noticed that the pagerank value of pages in our experiment are
not very precise. The reason is that we consider the link information of pages
belonged to the data set D only. There may be many important links out of
the D have not be considered. Table. 1 shows the top 10 results of pagerank
according to the traditional method.

(3) Computing the NewPR. We compute the NewPR by using Matlab
with the parameter of link matrix P . The formula (1)(2)(3)(13)have been men-
tioned above. In the program, we assume the two parameters π = 0.6 and ρ = 0.1.
Table. 3 shows the NewPR of the query 511. The detail of this query can be
checked in WT10g. Due to the capability of the computer, we compute the first
5000 pages.

4.2 Experiment Results

In order to compare the two methods, the OldPR and the NewPR, we need to
consider two questions, (1) Are the NewPR and the OldPR similar? (2) Is the
NewPR better than OldPR?

We can compute the Spearman Rank Correlation Coefficient in order to de-
termine the difference between the OldPR and the NewPR. The Spearman Rank
Correlation Coefficient is defined by

r′ = 1− 6
∑ d2

N(N2 − 1)
.
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Table 1. OldPagerank Table 2. TFIDF Table 3. NewPR

Table 4. Rank Table 5. Precision

Table 6. Feedback Rele/AllRele

Where N is the number of total pages, and d is the difference in statistical
rank of corresponding variables, and r′ ∈ [−1,+1]. r′ = 0 means that there
is no correlation between the two quantities. They are completely independent
of one another. Table.4 shows the Old Rank, New Rank and the d2. We can
compute r′ = 0.0046 of all 5000 pages. That means the two algorithms, OldPR
and NewPR are almost independent. This result answers the first question.

For the second question, we check the first top 100, 200, · · · , 5000 pages of
two methods, calculate the number of pages related to the query 511. In order to
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compare the speeds of two methods’ of reaching the maximal number of relevance
pages, we compute the precision, ratio of relevance pages in the feedback pages
list over all relevance pages. The result is showed in Table.5. From Table.6, we
can find that the speed of new method is faster than that of old one. In the new
method, it reach the top value in about 800 pages, meanwhile it needs almost
all 5000 pages in the old method.

5 Conclusion

This paper introduces the methods of information retrieval on the web, and the
concept of TFIDF and Pagerank. Due to the different methods of these two kinds
of technologies use, the TFIDF cannot reflect the link information among pages.
Meanwhile the Pagerank does not consider the content of pages.

We draw up a new framework by combining the TFIDF and Pagerank in order
to support the precise results to users. We test the framework by using TREC
WT10g test collection. The experimental result shows that the new method gives
a better effect. But we find that the effect is not so distinct, we want to consider
the in-link of every page in the future. In other side, we should change the value
of α, which affects the final result of page order.

However, in order to satisfy the users’ actual information need, it is more
important to find relevant Web page from the enormous web space. There-
fore, we plan to address the technique to provide users with personalized infor-
mation.
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Abstract. What appears to be given in all languages is that words can not be 
randomly ordered in sentences, but that they must be arranged in certain ways, 
both globally and locally. The “scrambled” words into a sentence cause a mean-
ingless sentence. Although the use of manually collected grammatical rules can 
boost the performance of grammar checker in word order diagnosis, the repair-
ing task is still very difficult. This work proposes a method for repairing word 
order errors in English sentences by reordering words in a sentence and choos-
ing the version that maximizes the number of trigram hits according to a lan-
guage model. The novelty of this method concerns the use of a permutations’ 
filtering approach in order to reduce the search space among the possible sen-
tences with reordered words. The filtering method is based on bigrams’ prob-
abilities.  In this work the search space is further reduced using a threshold over 
bigrams’ probabilities. The experimental results show that more than 95% of 
the test sentences can be repaired using this technique. The comparative advan-
tage of this method is that it is not restricted into a specific set of words, and 
avoids the laborious and costly process of collecting word order errors for creat-
ing error patterns. Unlike most of the approaches, the proposed method is appli-
cable to any language (language models can be simply computed in any lan-
guage) and does not work only with a specific set of words. The use of parser 
and/or tagger is not necessary.  

1   Introduction 

Automatic grammar checking is traditionally done by manually written rules, con-
structed by computer linguists. Methods for detecting grammatical errors without 
manually constructed rules have been presented before. Atwell (1987) uses the prob-
abilities in a statistical part-of the speech tagger, detecting errors as low probability 
part of speech sequences. Golding (1995) showed how methods used for decision lists 
and Bayesian classifiers could be adapted to detect errors resulting from common 
spelling confusions among sets such as “there”, “their” and “they’re”. He extracted 
contexts from correct usage of each confusable word in a training corpus and then 
identified a new occurrence as an error when it matched the wrong context. 
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Chodorow and Leacock (2000) suggested an unsupervised method for detecting 
grammatical errors by inferring negative evidence from edited textual corpora. Heift ( 
1998, 2001) released the German Tutor, an intelligent language tutoring system where 
word order errors are diagnosed by string comparison of base lexical forms. Bigert 
and Knutsson (2002) presented how a new text is compared to known correct text and 
deviations from the norm are flagged as suspected errors. Sjobergh (2005) introduced 
a method of grammar errors recognition by adding errors to a lot of (mostly error free) 
unannotated text and by using a machine learning algorithm.  

Unlike most of the approaches, the proposed method is applicable to any language 
(language models can be computed in any language) and does not work only with a 
specific set of words. The use of parser and/or tagger is not necessary. Also, it does 
not need a manual collection of written rules since they are outlined by the statistical 
language model.  

The paper is organized as follows: the architecture of the entire system and a de-
scription of each component follow in section 2. The language model is described in 
section 3. The 4th section shows how permutations are filtered by the proposed 
method. The 5th section specifies the method that is used for searching valid trigrams in 
a sentence. The results of using WSJ experimental scheme are discussed in section 6. 
Finally, the concluding remarks are made in section 7. 

2   System’s Architecture 

This work presents a new method for detecting and repairing sentences with word 
order errors that is based on the statistical language model (N-grams). It is straight 
forward that the best way for reconstructing a sentence with word order errors is to 
reorder the words. However, the question is how it can be achieved without knowing 
the attribute of each word. Many techniques have been developed in the past to cope 
with this problem using a grammar parser and rules. However, the success rates re-
ported in the literature are in fact low. A way for reordering the words is to use all the 
possible permutations. The crucial drawback of this approach is that given a sentence 
with length N words the number of all permutations is N!. This number is very large 
and seems to be restrictive for further processing. The novelty of the proposed method 
concerns the use of a technique for filtering the initial number of permutations. The 
process of repairing sentences with word–order errors incorporates the followings 
tools: 

• a simple, and efficient confusion matrix technique  
• and language model’s trigrams and bigrams. 

Consequently, the correctness of each sentence depends on the number of valid tri-
grams. Therefore, this method evaluates the correctness of each sentence after filter-
ing, and provides as a result, a sentence with the same words but in correct order 
(Figure 1).  

 
 



 A Fast Algorithm for Words Reordering Based on Language Model 945 

 

Fig. 1. System’s architecture 

3   Language Model 

The language model (LM) that is used subsequently is the standard statistical N-
grams (Young, 1996). The N-grams provide an estimate of )(WP , the probability of 

observed word sequenceW . Assuming that the probability of a given word in an 
utterance depends on the finite number of preceding words, the probability of N-word 
string can be written as: 

1 2 ( 1)
1

( ) ( | , ,..., )
N

i i i i N
i

P W P w w w w− − − −
=

= ∏                         (1) 

One major problem with standard N-gram models is that they must be trained from 
some corpus, and because any particular training corpus is finite, some perfectly ac-
ceptable N-grams are bound to be missing from it. That is, the N-gram matrix for any 
given training corpus is sparse; it is bound to have a very large number of cases of 
putative “zero probability N-grams” that should have some non zero probability. 
Some part of this problem is endemic to N-grams; since they can not use long dis-
tance context, they always tend to underestimate the probability of strings that happen 
no tot have occurred nearby in their training corpus. There are some techniques that 
can be used in order to assign a non zero probability to these zero probability N-
grams. In this work, the language model has been trained using BNC and consists of 
trigrams with Good-Turing discounting (Good, 1953) and Katz back off (Katz, 1987) 
for smoothing. BNC contains about 6.25M sentences and 100 million words. The 
figure below depicts the number of bigrams of the  LM (Language Model) with re-
spect to their logarithmic probabilities. The 80% of the LM’s bigrams are between -
5,2 and -1,6. 
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Fig. 2. The bigrams’ distribution with regard to their log probabilities 

4   Filtering Permutations 

Considering that an ungrammatical sentence includes the correct words but in wrong 
order, it is plausible that generating all the permuted sentences (words reordering) one 
of them will be the correct sentence (words in correct order). The question here is 
how feasible is to deal with all the permutations for sentences with large number of 
words. Therefore, a filtering process of all possible permutations is necessary. The 
filtering involves the construction of a confusion matrix NxN in order to extract pos-
sible permuted sentences. 

Given a sentence  [ ]][],1[],...1[],0[ nwnwwwa −=  with N words, a confusion ma-

trix NXNRA∈  can be constructed. 
The size of the matrix depends on the length of the sentence. The objective of this 

confusion matrix is to extract the valid bigrams according to the language model. The 

element ],[ jiP indicates the validness of each pair of words ( )][][ jwiw  according 

to the list of language model’s bigrams. If a pair of two words ( )][][ jwiw  cannot be 

found in the list of language model bigrams then the corresponding ],[ jiP  is taken 

equal to 0 otherwise it is equal to one. Hereafter, the pair of words with ],[ jiP  equals 

to 1 is called as valid bigram. Note that, the number of valid bigrams is M lower  
 



 A Fast Algorithm for Words Reordering Based on Language Model 947 

Table 1. The construction of a NxN confusion matrix, for the sentence 
[ ]][],1[],...1[],0[ nwnwwwa −=  

WORD w[0] w[1] ……. w[n] 

w[0] P[0,0] P[1,0] ……. P[n,0] 

w[1] P[0,1] P[1,1] ……. P[n,1] 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 . 
. 
. 

w[n] P[0,n] P[1,n] ……. P[n,n] 

than the size of the confusion matrix which is 2N , since all possible pairs of words 
are not valid according to the language model. In order to generate permuted sen-
tences using the valid bigrams all the possible words’ sequence must be found. This is 
the search problem and its solution is the domain of this filtering process.  

 

Fig. 3. Illustration of the lattice with N-layers and N states 

As with all the search problems there are many approaches. In this paper a left to 
right approach is used. To understand how it works the permutation filtering process, 
imagine a network of N layers with N states. The factor N  concerns the number of 
sentence’s words. Each layer corresponds to a position in the sentence. Each state is a 
possible word.  All the states on layer 1 are then connected to all possible states on the 
second layer and so on according to the language model. The connection between two 

states ),( ji  of neighboring layers ),1( NN −   exists when the bigram ( )][][ jwiw  
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is valid. This network effectively visualizes the algorithm to obtain the permutations. 
Starting from any state in layer 1 and moving forward through all the available con-
nections to the N-th layer of the network, all the possible permutations can be ob-
tained. No state should be “visited” twice in this movement. 

5   Searching Valid Trigrams 

The prime function of this approach is to decompose any input sentence into a set of 
trigrams. To do so, a block of words is selected. In order to extract the trigrams of the 
input sentence, the size of each block is typically set to 3 words, and blocks are nor-
mally overlapped by two words. Therefore, an input sentence of length N, includes N-
2 trigrams. 

The second step of this method involves the search for valid trigrams for each sen-
tence. A probability is assigned to a valid trigram, which is derived by the frequency 
of its occurrences in the corpus. 

In the third step of this method the number of valid trigrams per each permuted 
sentence is calculated. Considering that the sentence with no word-order errors has 
the maximum number of valid trigrams, it is expected that any other permuted sen-
tence will have less valid trigrams. Although some of the sentence’s trigrams may be 
typically correct, it is possible not to be included into the list of LM’s trigrams. The 
plethora of LM’s trigrams relies on the quality of corpus. The lack of these valid tri-
grams does not affect the performance of the method since the corresponding trigrams 
of the permuted sentence will not be included into LM as well. The criterion for rank-
ing all the permuted sentences is the number of valid trigrams. The system provides as 
an output, a sentence with the maximum number of valid trigrams. In case where two 
or more sentences have the same number of valid trigrams a new distance metric 
should be defined. This distance metric is based on the total log probability of the 
sentence’s trigrams. The total log probability is computed by adding the log probabil-
ity of each valid trigram, whereas the probability of non valid trigrams is assigned to -
100000. Therefore the sentence with the maximum total log probability is the sys-
tem’s response. 

6   Experimentation 

6.1   Experimental Scheme  

The experimentation involves a test set of 500 sentences, with 4518 words. Test sen-
tences have been selected randomly from WSJ (Wall Street Journal) corpus. They 
have variable length with minimum 7 words and maximum 12 words. The 90% of the 
test words belong to the BNC vocabulary (training data). For experimental purposes 
our test set consists of sentences with no word order errors and the system’s response 
incorporates 10-best sentences. The goal of this experimentation is to show that the 
input sentence is included into the 10-best sentences. Note that the test sentences are 
not included into the training set of the statistical language model that is used as tool 
for the proposed method.  
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6.2   Experimental Results 

6.2.1   WSJ Test Cases 
Figure 4 shows the repairing results using the test sentences.  This figure depicts the 
capability of the system to give as output the correct sentences in the 10-best list. The 
x-axis corresponds to the place of the correct sentence into this list. The last position 
(11) indicates that the correct sentence is out of this list.  

The findings from the experimentation show that 455 sentences (91% in total) have 
been repaired using the proposed method (True Corrections). On the other hand, the 
result for 45 sentences (9% in total) was false (False Corrections). In case of “False 
Corrections” the system’s response does not include the correct sentence into the N-
best. The incorrect output of the system can be explained considering that some words 
are not included into the BNC vocabulary, hence some of the sentences’ trigrams are 
considered as invalid. 

It is obvious that the system’s performance for detecting and repairing method of 
ill-formed sentences with word order errors depends mainly on the quality of the 
corpus. The high success rate of the system is achieved using the grammatically and 
syntactically correct sentences of BNC.  
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Fig. 4. The percentage of test sentences in different places into the N-best list (N=10) 

6.2.2   Reducing Search Space 
The figure below depicts the differences in the number of permutations for sentences 
with length from 7 to 12 words. The point is that the number of permutations that are 
extracted with the filtering process is significantly lower than the corresponding value 
without filtering. For sentences with length up to 6 words, the number of permutations 
is slightly lower when the filtering process is used, while for sentences with length 
greater than 7 words the filtering process provides a drastical reduction of permuta-
tions. It is obvious that the performance of filtering process depends mainly on the 
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Fig. 5. The logarithmic number of permutations with and without filtering for TOEFL’s sen-
tences with 7 up to 12 words 

number of valid bigrams. This implies that the language model’s reliability affects the 
outcome of the system and especially of the filtering process. 

7   Conclusions 

The findings show that most of the sentences can be repaired by this method independ-
ently from the sentence’s length and the type of word order errors. The major advan-
tage of this technique concerns the application of novel fast algorithm in reducing 
permutations. The results show that the gain factor for permutations in case of sen-
tences with 12 words is 35dB. With no filtering the number of permutations is 
479001600 while with the confusion matrix this quantity decreases drastically to 
8790541. The proposed method is effective in repairing erroneous sentences. Therefore 
the method can be adopted by a grammar checker as a word order repairing tool. The 
necessity of the grammar checkers in educational purposes and e-learning is more than 
evident.  

By the permutation’s filtering process, the system takes advantage of better per-
formance, rapid response and smaller computational space. A comparative advantage 
of this method is that avoids the laborious and costly process of collecting word order 
errors for creating error patterns. One of the key questions for further research is 
whether the use of language model can correct other grammatical errors such as sub-
ject- verb disagreement, and if it is possible a further reduction in permutations using 
probabilities thresholds. 
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Abstract. This paper presents a new application of the snap-drift algorithm [1]: 
feature discovery and clustering of speech waveforms from non-stammering 
and stammering speakers. The learning algorithm is an unsupervised version of 
snap-drift which employs the complementary concepts of fast, minimalist learn-
ing (snap) & slow drift (towards the input pattern) learning. The Snap-Drift 
Neural Network (SDNN) is toggled between snap and drift modes on succes-
sive epochs. The speech waveforms are drawn from a phonetically annotated 
corpus, which facilitates phonetic interpretation of the classes of patterns dis-
covered by the SDNN. 

1   Introduction  

Stuttering (stammering) is a highly variable condition which occurs across ages and 
cultures. There is a lack of consensus in establishing the criteria for a definition. Find-
ing a way of identifying exactly what phonetic characteristics are associated with 
stammering, as opposed to non-stammering speech, has proved elusive. Perceptual 
analysis is known to be compromised by its subjectivity [2], [3]. In contrast, a correla-
tive data analysis to characterise the acoustic properties of stammering is realisable. 
There are four classes of sound pressure wave that form the acoustic structure of ut-
terances [4]: Periodic ‘voice’: regular repeating fluctuations produced by vocal fold 
vibration; Aperiodic ‘noise’: ongoing irregular fluctuations in voiceless fricatives; 
Transient ‘burst’: brief irregular fluctuations as in voiceless plosives; or Silent: no 
acoustic energy is emitted. The speech sounds used in human languages are made up 
of combinations of the four categories.  

The snap-drift learning algorithm first emerged as an attempt to overcome the limi-
tations of ART learning in non-stationary environments where self-organisation needs 
to take account of periodic or occasional performance feedback. Since then, the snap-
drift algorithm has proved invaluable for continuous learning in several applications. 

The reinforcement versions [5], [6] of snap-drift are used in the classification of 
user requests in an active computer network simulation environment whereby the sys-
tem is able to discover alternative solutions in response to varying performance re-
quirements. Furthermore, the unsupervised snap-drift algorithm, without any form of 
reinforcement, has been used in the analysis and interpretation of data representing  
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interactions between trainee network managers and a simulated network management 
system [7]. New patterns of the user behaviour were discovered.  

The further exploration of snap-drift, in the form of a classifier [8] has been used in 
attempting to discover and recognize phrases extracted from Lancaster Parsed Corpus 
(LPC) [9]. Comparisons carried out between snap-drift and MLP with back-
propagation, show that the former is faster and just as effective. 

This paper describes the further exploration of snap-drift, in unsupervised form, in 
attempting to discover the defining and unique millisecond features in the speech pat-
terns, which will be used to help understand the language learning of non-stammering 
and stammering speakers.  

2   The Snap-Drift Neural Network (SDNN) Architecture  

The modular neural network modified from the Performance-guided Adaptive Reso-
nance Theory (P-ART) network, first introduced by Lee & Palmer-Brown [1] is 
shown in Fig. 1. 

 

 

 
 
 

 

                                      

Fig. 1. SDNN Architecture 

On presentation of an input pattern at the input layer F01, dSDNN will learn to 
group the input patterns according to their general features. In this case, 10 F21 nodes, 
whose weight prototypes best match the current input pattern, are used as the input 
data to the sSDNN module for feature classification. In both of the modules, the stan-
dard matching and reset mechanism of ART [5], [6] is discarded. Instead, in the 
dSDNN module, the output nodes with the highest net input are always accepted as 
winners. In the sSDNN module, a quality assurance threshold is introduced. If the net 
input of a sSDNN node is above the threshold, the output node is accepted as the win-
ner, otherwise a new uncommitted output node will be selected as the new winner and 
initialised with the current input pattern. 

In this version of SDNN we introduce weight re-initialisation.  The main purpose 
of weight re-initialisation is to enable unused output nodes to be reinstated into the 
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competition for winning nodes. Weight re-initialization is invoked after many epochs 
since the SDNN must first allow input patterns to settle into their categories. After a 
duration defined by a certain number of input patterns, called a learning era (an era is 
a number of epochs), the weights of nodes unused during the preceding era will be re-
initialised to enable them to participate again in the competition for the best winning 
nodes. In effect, reinitialisation is a neuron pruning algorithm. It removes weight vec-
tors that are redundant. 

The following is a summary of the steps that occur in SDNN: 

Step 1: Initialise parameters: (α = 1, σ = 0), era = 
2000 
Step 2: For each epoch (t) 
  Test: Weights re-initialization condition  
  For each input pattern 
  Step 2.1: Find the D (D = 10) winning nodes at F21 

with the largest net input  
  Step 2.2: Inhibit the F21 node for weights re-

initialization 
  Step 2.3: Weights of dSDNN adapted according to the    

alternative learning procedure: (α,σ)  
becomes Inverse(α,σ) after every successive 
epoch  

Step 3: Process the output pattern of F21 as input  
pattern of F12 

  Step 3.1: Find the node at F12 with the largest net 
input   

  Step 3.2: Test the threshold condition: 

    IF (the net input of the node is greater than the 
threshold)    

    THEN  

Weights of the sSDNN output node adapted according 
to the alternative learning procedure: (α,σ)  
becomes inverse (α,σ) after every successive epoch  
ELSE 

An uncommitted sSDNN output node is selected and 
its weights are adapted according to the  
alternative learning procedure: (α,σ) becomes 
Inverse(α,σ) after every successive epoch 

 
Weights re-initialization condition: 
After ‘era’ input patterns  
IF (F21 node not used for the past era input  
presentations) THEN 
Re-initialize the F21 node with randomly selected input 
pattern 
Inhibit the F21 node for weights re-initialization for 
the next era input pattern presentation  
ELSE 
No action taken. 
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3   The Snap-Drift Algorithm 

The learning algorithm combines a modified form of Adaptive Resonance Theory 
(snap) [10] and Learning Vector Quantisation (drift) [11]. In general terms, the snap-
drift algorithm can be stated as: 

Snap-drift = α(Fast_Learning_ART) + σ(LVQ) (1) 

The top-down learning of both of the modules in the neural system is as follows: 

wJi
(new) = α(I ∩ wJi

(old)) + σ(wJi
(old) + β (I - wJi

(old))) (2) 

where wJi = top-down weights vectors; I = binary input vectors,  and β  = the drift 
speed constant = 0.5. 

In successive learning epochs, the learning is toggled between the two modes of 
learning. When α = 1, fast, minimalist (snap) learning is invoked, causing the top-
down weights to reach their new asymptote on each input presentation. (2) is simpli-
fied as: 

wJi
(new) = I ∩ wJi

(old) (3) 

This learns sub-features of patterns. In contrast, when σ = 1, (2) simplifies to: 

wJi
(new) = wJi

(old) + β (I - wJi
(old)) (4) 

which causes a simple form of clustering at a speed determined by β. 
The bottom-up learning of the neural system is a normalised version of the top-

down learning. 

wiJ
(new) = wJi

(new) / | wJi
(new)| (5) 

where wiJ
(new)= top-down weights of the network after learning. 

In SDNN, as described in section 2, snap-drift is toggled between snap and drift on 
each successive epoch. The effect of this is to capture the strongest clusters (holistic 
features), sub-features, and combinations of the two.  

4   Simulations  

The snap-drift algorithm is used for learning and discovering the features embedded 
in the utterances of two speaker groups, non-stammering and stammering. Before any 
simulations, pre-processing of the utterances is completed. In this research, each point 
of a speech utterance waveform collected represents 1 ms of speech data. In this re-
search, in order to analyze and recognise the acoustic properties of the speaker with 
sufficient precision, each utterance is sampled every 10 points for a total of 1000 
points, which represents about 1 second of speech information. This is considered suf-
ficient by a phonetics expert. Figure 2 shows the example of sampled utterance used 
in the simulations. Each of the sampled waveforms is used to generate a number of 
input patterns for SDNN. The input patterns are generated using a sliding window of 
size 100 samples points. The sliding window is shifted to the right by 25 sample 
points to create a new input. This provides some overlapping of features among the 
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input patterns. Then, each input pattern is converted into a 1400 bit coarse coded bi-
nary pattern. 5 utterances are used from 2 speakers, 3 utterances from the non-
stammering speaker and 2 from the stammering speaker. Table 1 shows the range and 
properties of the input set, making the total number of input patterns, 1873 input vec-
tors. These test input patterns are presented in sequence to SDNN. The number of in-
put patterns for each speaker varies because: 

1. Each speaker is asked to speak using different types of statements. 
2. Non-stammering speaker will produce more fluent speech utterances with shorter 

or no delay between phrases.  
3. Stammering speakers always produce longer utterances due to the delay in the 

voiceless fricative. 

The input patterns, which are also quite noisy, provide a real world test for unsu-
pervised SDNN as a feature discovery and classification system.  

For SDNN to act as a viable classifier, and to demonstrate the utility of the features 
it acquires, it should be able to estimate or predict whether a speaker in a real-time 
scenario is non-stammering or stammering when a speech utterance is fed into the 
system. An estimation will be made of how long it takes to be certain that a speaker is 
non-stammering or stammering. 

Table 1. Range and properties of the input set  

Speaker group Total number of Inputs  
Non-stammering 256 

Stammering 644 
Non-stammering 162 

Stammering 467 
Non-stammering 229 

 

Fig. 2. Example utterance waveform used in simulation  

4.1   Results  

The results are presented in Table 2 to Table 4; each of the tables shows the example 
category types formed by the SDNN network with their acoustic properties. The acous-
tic properties record is obtained from a phonetics expert’s annotation of the speech 
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Table 2. Accoustic properties of example category type 1 (Stammering) 

Input Speaker group Silent Periodic Aperiodic Transient 
195 Non-stammering  
211 Non-stammering   

377, 456 Stammering    
432, 68 Stammering   

473, 485, 575, 
585 

Stammering 
   

570 Stammering   
595 Stammering   
609 Stammering   

Table 3. Accoustic properties of example category type 2 (Non-Stammering) 

Input Speaker group Silent Periodic Aperiodic Transient 
21, 34, 3699, 

142, 175 
Non-stammering 

  

27, 32, 231, 
253 

Non-stammering 
   

38, 187 Non-stammering    
48 Non-stammering    
56 Non-stammering   

200 Non-stammering    
304 Stammering  
310 Stammering   

Table 4. Accoustic properties of example category type 3 (Mixture of both type of speakers) 

Input Speaker group Silent Periodic Aperiodic Transient 
45, 108 Non-stammering   

165 Non-stammering    
131, 135 Non-stammering   
204, 123 Non-stammering    
283, 504 Stammering   
304, 442 Stammering  

615, 565, 370, 
457 

Stammering 
   

546, 547 Stammering    
 

waveform corpus. Each of the sampled sequence of the speech utterance is identified 
with one or more acoustic properties: Silent, Periodic, Aperiodic and Transient.   

By looking at the tables, it is clear that the SDNN has categorised the input patterns 
into 3 distinctive types, stammering speech, non-stammering speech, and a category 
type with a mixture of the two speaker types. The three category types were identified 
since they corresponded to different non-overlapping sets of sSDNN output nodes.  
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Fig. 3. Example input waveform for category type 1 (Input 377) 

 

Fig. 4. Example input waveform for category type 1 (Input 595) 

Fig. 3 - 5 show the example input waveforms being grouped into the same cate-
gory, in this case example category type 1 (Stammering).  By comparing these wave-
forms, the similarities can be easily identified. In order to understand the learned fea-
tures of the speech utterances, a comparison of the input patterns of the system and 
the learned weight templates is performed.  

The input patterns received by the SDNN are binary coarse coded representations 
of the fragments of speech input utterances, such as those shown in Fig. 3 – 5. Each 
point in the speech input is represented by a 14 bit binary representation. So, the 
weights learned are the results of processing these binary input patterns. As a means 
of visualization, the weights learned are thresholded as a first order approximation to 
produce a binary representation of the weights learned. Then, the 14 bit coarse binary 
representation of the weights learned are decoded to show the actual waveform fea-
tures that have been acquired from the original waveforms.  
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Fig. 5. Example input waveform for category type 1 (Input 456) 

 

Fig. 6. Example weights learned for category type 1 (Winning node 42) 

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

 

Fig. 7. Example weights learned for category type 1 (Winning node 13) 
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Fig. 6 and Fig. 7 show the weights learned. Although these weights graphs are 
drawn using approximation for visualization, the figures clearly show that system has 
learned the features in the input patterns of the categories. In fig. 6 and 7, the graphs 
show a noisy sinusoid of about 3 Hz. By comparing with the original waveforms, it 
has clearly shown that what these waveforms have in common is a sinusoid of ap-
proximately 3Hz. The phonetics expert has identified that these parts of the utterances 
are often associated with silence or pauses or gaps between words where there is 
some sound perhaps but no clear articulation. This is indeed known to be the case for 
stammerers. 

5   Unique Sequences and Classifications 

As mentioned, during each learning epoch, the speech utterances are fed into the sys-
tem in sequence, one speaker utterance at a time. In order to do the analysis and thus 
determine the time it takes to identify the speaker type, one epoch after convergence 
is randomly selected. By randomly selecting one sequence of sSDNN winning nodes 
to start with, the whole epoch is examined to find any repeated occurrences of the se-
quence. These repeated occurrences of winning nodes sequences are called unique se-
quences if they are unique to only stammering or non-stammering speakers. Then, the 
speaker input utterances which caused the unique sequence, is examined. With this 
method of analysis, the length of unique sequence of winning nodes which only oc-
curred in a particular group of speakers, either stammering or non-stammering, will 
determine the time the system takes to be certain of the speaker group for a particular 
speech utterance.  

Table 4 shows the sequence occurrence of winning nodes for non-stammering or 
stammering group input patterns. The sequences for analysis are randomly selected. 
In the table, most of the sequences with the length less than 3 tend to have a mixture 
of occurrence of both types of speaker groups. By increasing the length of the se-
quence, some form of bias arises. With the sequence length of more than 5 winning 
nodes, these sequences only occur in one of the speaker types, either non-stammering 
or stammering. For example, the sequence {45, 52, 43, 19, 65} only exists in the 
speech input of the stammering speaker. Obviously, this sequence is unique to the 
stammering speaker. By plotting the average ratio of the speaker type over the se-
quence length, the length of the sequence which can be labelled as unique can be 
identified. This is illustrated in Fig. 8. In fig. 8, the average ratio of the speaker group 
for sequence length of 5 and 6 is the lowest. With this number of randomly selected 
sequences for consideration, it confidently shows that input patterns for particular 
speaker groups can be identified when a unique sequence, with the length of 5 win-
ning nodes is used for analysis.  

By identifying this unique sequence; we mean SDNN is capable of identifying the 
speaker group of input patterns after system convergence is achieved. As mentioned 
in section IV, each input pattern roughly represents about 1 second of speech informa-
tion, thus, SDNN is capable of distinguishing the type of speaker by analysis of about 
5 seconds of speech, which is analogous to the a person identifying a speaker as  
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stammering or non-stammering after hearing several words. Since not all words are 
stammered by stammerers, this figure is also of the order of 5 seconds of speech for 
humans. 

Thus, SDNN has shown the capability of a classifier, in this case, categorizing the 
input patterns according to their features and classifying and estimating the time it 
takes to be certain that a speaker is non-stammering or stammering by using unique 
sequences of sSDNN winning nodes. 

Table 5. Randomly selected sequence occurrence of winning nodes for non-stammering / 
stammering group input patterns 

Sequence 
No. of  

Occurrences 
Non-

stammering 
Stammering 

63, 65 21 13 9 
1, 36, 31 25 9 6 

7,5,3 19 11 8 
45,52,43 15 6 9 

12,23,34,34 11 6 7 
7,5,3,54,39 4 4 0 

42,34,46,10,59 3 3 0 
45,52,43,19,65 7 0 7 

7,7,2,6,49 3 3 0 
39,36,56,16,32 4 0 4 
6,32,40,4,23,58 6 1 5 
69,68,56,68,69 3 0 3 

54,69,55,11,46,50 3 0 3 
11,63,45,37,56,68 4 4 0 
6,32,46,23,4,33 2 0 2 

 

 

 

 

 
 
 
 

Fig. 8. The average ratio of the speaker type over the length of the winning node sequence 
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6   Conclusion 

This paper presents the new application of feature discovery in phonetics speech us-
ing the snap-drift algorithm. It also gives the opportunity to test the performance of 
SDNN without a performance feedback in a purely unsupervised mode. SDNN cate-
gorizes the input patterns according to their general and distinct features. By examin-
ing the phonetic and waveform properties of the input patterns in each of the catego-
ries formed, it has been shown that without any performance feedback, the SDNN 
modules group the input patterns sensibly and extract properties which are general be-
tween non-stammering and stammering speech, as well as distinct features within 
each of the utterance groups, thus supporting classification. 
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A New Neuro-Dominance Rule for Single Machine 
Tardiness Problem with Unequal Release Dates 
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Department of Industrial Engineering 

54187 Adapazarı – Turkey 

Abstract. We present a neuro-dominance rule for single machine total 
weighted tardiness problem with unequal release dates. To obtain the neuro-
dominance rule (NDR), backpropagation artificial neural network (BPANN) 
has been trained using 10000 data and also tested using 10000 another data. The 
proposed neuro-dominance rule provides a sufficient condition for local 
optimality. It has been proved that if any sequence violates the neuro-
dominance rule then violating jobs are switched according to the total weighted 
tardiness criterion. The proposed neuro-dominance rule is compared to a 
number of competing heuristics and meta heuristics for a set of randomly 
generated problems. Our computational results indicate that the neuro-
dominance rule dominates the heuristics and meta heuristics in all runs. 
Therefore, the neuro-dominance rule can improve the upper and lower 
bounding schemes.  

Keywords: Neuro-dominance rule, weighted tardiness problem, single machine 
scheduling. 

1   Introduction 

A new neuro-dominance rule which provides a sufficient condition for local 
optimality for a signle machine total weighted tardiness problem with unequal release 
dates, 1 | ri | wiTi  is presented. Despite the fact that costumer orders can not reach 
simultaneously in daily life problems, according to the literature and the best of our 
knowledge we know that there is  only one exact approach on the 1 | ri | wiTi 
problem.   Recently,  Akturk and Ozdemir [1]  proposed  a  new   dominance rule   for 
1 | ri | wiTi problem that can be used in reducing the number of alternatives in any 
exact approach. Akturk and Ozdemir used a interchange function, Δij(t),  is used to 
specify the new dominance properties, which gives the cost of interchanging adjacent 
jobs i and j whose processing starts at time t. Akturk and Ozdemir found seven 
breakpoints using the cost functions and obtained a number of rules by using the 
breakpoints. The problem may be described in the following form: There are n jobs 
independent. Each of them has an integer processing time pj, a release date rj, a due 
date dj, and a positive weight wj. Chu and Portmann [2] has stated in their paper that 
this problem could be simplified using corrected due dates, i.e. if rj +pj > dj then dj 
takes the value rj+pj. Jobs will be processed without interrupting on a single machine 
which can process only one job at a time. If job j is completed after due date dj, a 
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tardiness penalty is exceeds for each time unit, thus Tj=max{0,(Cj-dj)}, where Cj and 
Tj are the completetion time and the tardiness of the job j, respectively. The aim is to 
find a schedule minimizing the total weighted tardiness of all jobs given that any jobs 
cannot start processing before its release date. It is stated that the total tardiness 
problem with unequal release dates, 1 | ri | wiTi is NP-hard by Rinnooy Kan [3]. In a 
paper of Lawler, the total weighted tardiness problem, 1|| wiTi, has been shown 
strongly NP-hard, therefore the researchers know that unequal release date problems 
are already strongly NP-hard. Solution methods based on enumeration have been 
proposed for both weighted and unweighted situations when all jobs are initially 
present. Several dominance rules for 1|| wiTi, problem that limit the search for an 
optimal solution has been derived by Emmons. These results have been improved for 
1|| wiTi, by Rachamadugu [4] and Rinnooy Kan et al [5]. Szwarc and Liu [6] have 
demonstrated a two-stage decomposition mechanism to 1|| wiTi problem when there 
is a proportion between tardiness penalties and the processing times. Akturk and 
Yildirim [7] proposed more practical application about weighted tardiness problem 
and computing lower bound. Cakar [8] also proposd a neuro-dominance rule for 
single machine tardiness problem without release dates. All the optimization 
approaches mentioned above suppose that the jobs have equal release dates, even 
though the unequal release dates case has been evaluated for other optimality criteria. 
Branch and bound (B&B) algorithms has been presented by Chu [9] and Dessouky 
and Deogun [10] to minimize total flow time, 1 | ri | Fi, whereas Bianco and 
Ricciardelli [11]  and Hariri and Potts [12] take into consideration the total weighted 
completion time problem, 1 | ri | wiCi. Potts and Van Wassenhove [13] has proposed 
a B&B algorithm for the minimization of the weighted number of late jobs. Erschler 
and his co-workers has proved a dominance relationship in the set of possible 
sequences for 1 | rj problem independent of the optimality criterion to find a restricted 
set of schedules. Chu [9] has presented a paper based on the proof of some dominance 
properties and a lower bound for 1 | ri | Ti problem. Then, a B&B algorithm is 
formed by using the previous results of Chu and Portmann [2] and problems with up 
to 30 jobs can be solved for certain problem samples, even though this approach is 
limited for larger problems due to the computational requirements. Vepsalainen and 
Morton [14] has developed and tested efficient dispatching rules. An adequate 
condition for local optimality is provided by their proposed superior rule, and it 
generated schedules, which cannot be developed by adjacent job interchanges. In this 
paper, a trained BPANN to show how the proposed superior rule can be used to 
develop a sequence given by a dispatching rule. We also gave the proof of that if any 
sequence disturbs the proposed superior rule, and then switching the disturbing jobs 
either lowers the total weighted tardiness or leaves it unchanged.  Because of the 
comprehensive computational requirements, according to the literature the weighted 
tardiness problem is NP-hard and the lower bounds do not have practical applications.   
Potts and Van Wassenhove [15] based on the linear lower bound is rather a weak 
lower bound, however the most promising one was presented by Abdul-Razaq et 
al.[16]. His study is in contradiction with the conjecture about this subject that one 
should limit the search tree as much as possible with using the sharpest possible 
bounds. The linear lower bound computations are based on an initial sequence. In this 
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paper, a solution that has a better upper bound value, which is near to optimal 
solution, is presented. Out solution also improves the lower bound value obtained 
from the linear lower bound method. Sabuncuoglu and Gurgun [17] proposed a new 
neural network approach to solve the single machine mean tardiness scheduling 
problem and the minimum makespan job shop scheduling  problem. The proposed 
network by Sabuncuoglu and Gurgun combines the characteristics of neural networks 
and algorithmic approaches.  
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Fig. 1. Steps of the study from obtaining randomly data to comparison of the results 

In this study, instead of extracting rules, finding break point using cost functions, 
an artificial neural network was trained using sufficient number of data which were 
different from Aktürk and Ozdemir’s. When the necessary inputs were given to NDR, 
according to the total weighted tardiness problem criterion, The NDR decided  which 
job will come first among the adjacent jobs. This paper is organized as follows; In the 
section 2, used parameters, modeling of the problem and how the proposed NDR 
works are discussed. In the section 3, used lower and upper bound schemes are 
explained. In the section 4, all of computational results and analysis are reported.  

2   Problem Definition 

The single machine problem may be explained as follows. Each job, which is 
numbered from 1 to n, should be processed with no interruption on a single machine, 
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which can use only one job at a time. All of the jobs will be available to be processed 
at time “0”. If a job is presented with i, it has parameters as pi, di, wi, ri which refer to 
an integer processing time, a due date,  a positive weights and release date, 
respectively. The problem can be defined as finding a schedule S, which minimizes 

i

N

i
iTwSf

=

=
1

)(  function. The dominance rule may be introduced by considering 

schedules, where Q1 and Q2 are two disjoint subsequences the rest n-2 jobs,  S1=Q1ijQ2 

and S2=Q1jiQ2. 
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Fig. 2. Structure of the used BPANN. There are 9 input and 1 output 

Table 1. Training and test parameters of the BPANN 

Sample size and learned sample in training set 10000 
Number of test data to test  trained network 10000 
Achievement rate of the test data  (%) %100 
Activation function Sigmoidal 
Iteration number 4.700.000 
Learning rate 0.35 
Momentum rate 0.75 
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Fig. 3. An example: How the proposed neuro-dominance rule works 

total weighted tardiness criterion using a trained BPANN. The first job is taken as i 
and the second one is taken as j jobs without considering due date or processing time. 
The used neural network has 9 inputs and 1 output, and there are 30 neurons in the 
hidden layer. The starting time of job i (T), the processing time of job i (pi), due date 
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of job i (di), the weight of job i (wi), the processing time of job j(pj), the due date of 
job j (dj), the weight of job j (wj), release date of job i (ri), release date of job j (rj) are 
given as inputs to the BPANN. “0”and “1” values are used to determine the 
precedence of the jobs.  If output value of the BPANN is “0”, then i should precede j  
(i•j).  If output value of the BPANN is “1” then j should precede i  (j•i). Structure of j).  If output value of the BPANN is “1” then j should precede i  (j•i). Structure of 
the used BPANN can be seen in Figure 2.  The parameters related to the training and 
test of neural network are given in Table 1. It can be seen that how the NDR works in 
Figure 3. 

In Figure 3, inputs belonging to jobs 1 and 2 are given to NDR and output is 
obtained   as “1”. This means that the sequence of jobs 1 and 2 should be changed. 
The decrease in total weighted cost from 126 to 98 is an indication that NDR made 
the correct decision. In the following stage the inputs belonging to jobs 2 and 3  are 
given to NDR and output is obtained as “0”. This means that the sequence of jobs 2 
and 3 should not be changed. It can be verified that NDR made the correct decision by 
calculating the total weighted cost before and after switching jobs 2 and 3. If the 
sequence of job 2 and 3 was changed, the total  weighted cost would have increased 
from 98 to 100.  

3   Linear Lower Bound 

Potts and Wan Wassenhove [13] have originally obtained the linear lower bound 
based on using the Lagrangian Relaxation approach with subproblems, which are total 
weighted completion time problems. Abdul-Razaq and his co-workers have presented 
additional derivation of it based on reducing the total weighted tardiness criterion to a 
linear function, i.e. total weighted completion time problem. For the job i, i = 1 to n, 
wi ≥ vi ≥ 0 and Ci is the completion time of job i, we have  

wiTi = wi max{Ci-di,0} ≥ vi max{Ci-di,0} ≥ vi (Ci-di) (1) 

Suppose that v=(v1, …..,vn) is a vector of linear weights, i.e. weights for the linear 
function Ci-di, chosen so that 0 vi wi. If so a lower bound can be expressed by given 
linear function below: 

                       LBlin(v) =  }−{≤−
==

0,max)(
11

i

n

i
ii

n

i
iii dCwdCv  (2) 

This situation shows that the total weighted completion time problem solution gets 
a lower bound on the total weighted tardiness problem. For any given v value, the 
optimal solution of the total weighted completion problem may be realized by the 
WSPT rule in which the jobs are sequenced in non-increasing order of vi/vp. An initial 
sequence is needed in the determination of the job completion time Ci to obtain the 
linear lower bound. Afterwards, v, refers to the vector of linear weights, is chosen to 
maximize LBLin(v) with the condition of that vi wi for each job i. In Abdul-Razzaq’s 
study, several lower bounding approaches have been compared and according to the 
their computational results the linear lower bound is found superior to others, which 
were given in the literature, because of the its quick computability and low memory 
requirement. In this paper, the impact of an initial sequence on the linear lower bound 
value will be tested and tried to present having a better, i.e. near optimal, upper bound 
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value will improve the lower bound value. This linear bound scheme also was used by 
Akturk and Yildirim. 

4   Computational Results 

In this study, each lower bounding scheme was tested on a set of randomly generated 
problems. We have tested the lower bounding scheme on problems with 50, 70 and 
100 jobs, which were generated as: for each job i, pi, and wi were generated from two 
uniform distributions, [1, 10] and [1, 100] to create low or high variation, 
respectively. Here as stated early, pi and wi refers to an integer processing time and an 
integer weight, respectively. The proportional range of due dates (RDD) and average 
tardiness factor (TFF) were selected from the set {0.1, 0.3, 0.5, 0.7, 0.9}. di, an integer 
due date from the distribution [P(1-TF-RDD/2), P(1-TF+RDD/2)] was produced for 

each job i, here, P refers to total processing time, 
=

n

i
ip

1

. Release dates are generated 

from a uniform distribution between 0 and μ pj. As summarized in Table 2, we 
considered and evaluated 1200 example sets and took 100 replications for each 
combination resulting among 120.000 randomly generated runs.  

Table 2. Experimental design 

Factors Distribution range 
Number of jobs 50,70,100 
Processing time range [1-10], [1-100] 
Weight range [1-10], [1-100] 
RDD 0.1, 0.3, 0.5, 0.7, 0.9 
TF 0.1, 0.3, 0.5, 0.7, 0.9 
μ 0.0,  0.5,  1.0,  1.5 

To find an initial sequence for the linear lower bound, a number of heuristics were 
selected and their priority indexes were given as a summary in Table 3. The WSPT, 
EDD, LPT and SPT can be given as examples of static dispatching rules, where as 
ATC and COVERT are dynamics ones. Vepsalainen and Morton [14] have mentioned 
in their paper as: the ATC rule is superior to other sequencing heuristics and they 

defined it close to the optimal for the iiTw  problem. 

In addition to heuristics, two different meta heuristic, simulated annealing (SA) 
and genetic algorithms (GA), were used in this study. The parameters and operators 
used in SA to generate new solution were given. In this study, two different operator 
have been used to generate new neighborhood solution. Operators are swap and 
inverse operator. Total weighted tardiness was taken as a fitness function. In SA, the 
best value, obtained from heuristics, was taken as a starting solution.  

Swap operator Inverse operator 
Old solution 
198456372 

New solution 
197456382 

Old solution 
198456372 

New solution 
193654872 
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Table 3. Priority Rules 

RULE RANK AND PRIORITY INDEX 
COVERT −−

−
i

ii

i

i

kp

ptd

p

w ,0max(
1,0maxmax  

ATC −−
−

pk

ptd

p

w ii

i

i ,0max(
expmax  

WSPT 

i

i

p

w
max  

EDD min(di) 
SPT min(pi) 
LPT max(pi) 

SA has some weak points such as long running time and difficulty in selecting 
cooling parameter when the problem size becomes larger. A geometric ratio was used 
in SA as Tk+1 = Tk, where Tk and  Tk+1 are the temperature values for k and k+1 steps, 
respectively. Geometric ratio is used more commonly in practice. In this study, the 
initial temperature was taken 10000 and 0.95 was used for cooling ratio ( ). 

In this study, when preparing initial populations in genetic algorithm, for any given 
problem, the solutions obtained from COVERT, ATC, EDD, WSPT, LPT; and SA 
methods, were also used. Others were randomly generated. Total weighted tardiness 
was taken as a fitness function. The parameters used in genetic algorithm were as 
given below.  

Population size  :100  Crossover rate : 100% 
Max generation : 200             Mutation rate   : 0.05 

    Linear Order Crossover (LOX) method has been applied to each chromosome     
 independently. LOX works as follows: 
1. Select the sublist from
chromosomes randomly ; 
chromosome #1 : 123456789 
chromosome #2 : 645713298 

2.Remove the sublist 2 from chromosome 
#1; 
chromosome #1 : h2h456h89  
chromosome #1 : 245hhh689 
 

3. Remove the sublist 1 from 
chromosome #2; 
chromosome #2 : hhh713298 
chromosome #2 : 713hhh298 

4. Insert sublist into holes to form 
offspring; 
offspring #1 : 245713689 
offspring #2 : 713456298 

Mutation operator works as follows : 
Select the randomly a chromosome and select the randomly two gene and swap the 

genes: 
Selected genes   : 376541298 Mutation            : 326541798 



 A New NDR for Single Machine Tardiness Problem with Unequal Release Dates 971 

Table 4. Computational results for n=70 

UPPER BOUND LINEAR LOWER BOUND
Heuristics
and  Meta 
Heuristics

Before After
(+NDR) impr (%) Before After

(+NDR) impr (%)

COVERT 21775908 20847680 4.63 21701505 20771103 4.49
ATC 21724406 20798295 4.83 21651947 20723363 3.65
EDD 18665220 17794675 7.12 18596259 17724392 10.95
WSPT 15632472 14887982 4.93 15480099 14730264 4.25
SPT 18456979 17603705 5.51 18314416 17457135 6.65
LPT 18977064 18115437 4.92 18916071 18051216 18.33
SA 15606987 15559236 3.45 15460244 15456987 3.56
GA 15598745 15589956 3.42 15445681 15432654 3.38

 

Table 5. Comparison of the linear lower bound (for n=50 and n=70) 

 n=50 n=70 
 > = < t-test > = < t-test 

COVERT 38455 1120 425 47.67 36147 1692 2161 48.12 
ATC 38940 750 310 47.72 36603 1133 2264 48.55 
EDD 37105 2740 65 48.21 34878 4140 982 49.74 
WSPT 37565 375 2060 48.78 35311 566 4123 49.57 
SPT 39065 430 505 48.08 36721 649 2630 49.18 
LPT 39570 525 155 48.29 37195 793 2012 49.46 
SA+NDR 39577 362 61 48.86 39040 312 648 49.95 
GA+NDR 39580 360 60 48.92 39083 298 619 49.97 

Table 6. Comparison of the linear lower bound  (for n=100) 

 > = < t-test 

COVERT 36926 2549 525 48.92 
ATC 37655 1707 638 48.69 
EDD 33438 6238 324 49.33 
WSPT 37012 852 2136 49.76 
SPT 38264 978 758 49.16 
LPT 37984 1195 821 49.53 
SA+NDR 39001 712 287 49.82 
GA+NDR 39040 689 271 50.03 

If any sequence violates the dominance rule, then the proposed algorithm either 
lowers the weighted tardiness or leaves it unchanged. Firstly, to find an initial 
sequence we used one of the dispatching rules, afterwards the algorithm was applied 
to get the sequence indicated as Heuristic+NDR. The average lower bound value was 
calculated for each heuristic before and after implementing the algorithm along with 

the average improvement ( impr ) and this situation is summarized in Table 4. ATC, 

COVERT, and WSPT seem to execute better than other heuristics in the literature 
when the dominance rule is applied to get the local optimal sequence. But, SA and 
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GA meta heuristics perform better than the other heuristics. Each heuristic and meta 
heuristic over 40,000 runs for 50, 70 and 100 job states were tested by us and given in 
Table 5 and Table 6. As stated above, (>) denotes number of runs in which sequence 
gotten from Heuristic+NDR gives a higher linear lower bound value than the 
sequence gotten from the heuristic, where as (=) denotes number of runs in which 
Heuristic+NDR executes as well as heuristic, and (<) denotes number of runs in 
which Heuristic+NDR executes worse. For instance, the combination of EDD+NDR 
executed 37105 times better (>) than EDD rule. According to the large t-test values on 
the average improvement, the proposed dominance rule provides an important 
improvement on all rules and the amount of improvement is noteworthy at 99.5% 
confidence level for all heuristics.  

5   Conclusion 

In this study, we have developed a neuro-dominance rule for 1 | ri | iiTw  problem. 

A BPANN has been used to obtain the proposed neuro-dominance rule. Inputs of the 
trained BPANN are starting date of the first job (T), processing times (pi and pj), due 
dates (di and dj), weights of the jobs (wi and wj) and release dates of the jobs (ri and rj). 
Output of the BPANN is a decision indicating which job should precede. The 
proposed neuro-dominance rule provides a sufficient condition for local optimality.  
Therefore,  a  sequence obtained by the proposed neuro-dominance rule cannot be 
improved by adjacent job interchanges. Computational results over 120,000 randomly 
generated problems indicate that the amount of improvement is significant. For the 
future research, single machine total weighted tardiness problem with double due 
dates can be modeled by using artificial neural networks.    
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Abstract. Support Vector Machines (SVM) are a system for efficiently training 
linear learning machines in the kernel induced feature spaces, while respecting 
the insights provided by the generalization theory and exploiting the optimiza-
tion theory. In this work, Support Vector Machines are employed for the 
nonlinear regression. The nonlinear regression ability of the Support Vector 
Machines has been demonstrated by forming the SVM model of a microwave 
transistor and it has been compared with its neural model. 

1   Introduction 

In empirical data modeling, a process of induction is used to build up a model of the 
system, from which it is hoped to deduce responses of the system that have yet to be 
observed. Ultimately, the quantity and quality of the observations govern the per-
formance of this empirical model. By its observational nature, data obtained is finite 
and sampled; typically, this sampling is non-uniform and due to the high dimensional 
nature of the problem, the data will form only a sparse distribution in the input space 
[1]. Artificial Neural Networks [ANN] have emerged as a powerful technique for 
modeling general input/output relationships. The fact that neural networks can be 
trained with a simple and fast model for totally different applications has resulted in 
their use in diverse fields such as pattern recognition, speech processing, control, 
medical applications, and so forth [2]. The recent introduction of neural networks into 
the RF and microwave fields marks the birth of an unconventional alternative to mod-
eling and design problems in RF and microwave CAD [3-4]. Neural networks can 
learn and generalize from data, thus allowing model development even when compo-
nent formulas are unavailable. Neural network models are universal approximators 
that can be employed for modeling in both linear and nonlinear problems at both 
device and circuit levels.  

Support Vector Machines (SVM) are a system for efficiently training linear learn-
ing machines in the kernel-induced feature spaces, while respecting the insights  
provided by the generalization theory and exploiting the optimization theory. An 
important feature of these systems is that, while enforcing the learning biases sug-
gested by the generalization theory, they also produce “sparse” dual representations of 
the hypothesis, resulting in extremely efficient algorithms. This is due to Karush-
Kuhn-Tucker conditions [5], which hold for the solution and play a crucial role in the 
practical implementation and analysis of these machines. Another important feature of 
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Support Vector approach is that due to Mercer’s conditions [6] on the kernels the 
optimization problems are convex and hence have no local minima. This fact, and the 
reduced number of non-zero parameters, marks a clear distinction between these sys-
tem and neural networks [7]. The foundations of Support Vector Machines (SVM) 
have been developed by Vapnik [8] and are gaining popularity due to its attractive 
features, and promising empirical performance. The formulation embodies the Struc-
tural Risk Minimization (SRM) principle, which has been shown to be superior [9-10] 
to traditional Empirical Risk Minimization (ERM) principle, employed by conven-
tional neural networks. SRM minimizes an upper bound on the expected risk, as op-
posed to ERM that minimizes the error on the training data. It is this difference, which 
equips SVM with a greater ability to generalize, which is the goal in statistical learn-
ing. SVM has been developed to solve the classification problem, but recently they 
have been  proven  to apply to the  regression problems [11].  

This work can mathematically be summarized as an application of the SVM to the 
nonlinear regression, thus twelve nonlinear real functions are generalized using  
limited number of data. This process is employed as active device modeling in mi-
crowave electronics. Using the manufacturer’s data sheet, twelve characterization 
functions of a microwave transistor are approximated in the operation domain of the 
device, which are bias conditions of VDC, IDS and frequency f. Thus, the SVM model 
of the transistor is resulted and it is compared with the neural model given in [3]. 

In the following section, the SVM is briefly introduced and the foundations of the 
Support Vector Regression Machines (SVRM) are given.  

2   Support Vector Regression Machines 

The Support Vector method can be applied to the case of regression, maintaining all 
the main features that characterize the maximal margin algorithm: A non-linear func-
tion is learned by a linear learning machine in a kernel induced feature space while 
the capacity of the system is controlled by a parameter that does not depend on the 
dimensionality of the space. As in the classification case, the learning algorithm 
minimizes a convex functional and its solution is sparse. The approach can be sum-
marized as “seeking to optimize the generalization bounds”. This is relied on defining 
a loss function that ignored errors that were within a certain distance of the true value. 
This type of function is referred to as ε -insensitive loss function. The use of ε -
insensitive loss function has the advantage of ensuring the existence of a global 
minimum and the optimization of a reliable generalization bound.  

ε -insensitive Loss Function 

The linear ε -insensitive loss function, ),,( fyxL =ε is defined by 

))(,0max()(),,( εε
ε −−=−== xfyxfyfyxL , (1) 

where f is a real valued function on a domain X, Xx ∈ and Yy ∈ . In order to mini-

mize the sum of the linear ε -insensitive losses the function can be given as 
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to control the size of w  for a fixed training set. C is a parameter to measure the 

trade-off between the complexity and losses. The primal problem can therefore be 
defined as follows: 
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where  iξ  and iξ̂  are two slack variables, one for exceeding the target value by more 

than ε , and the other for being more than ε  below the target. The corresponding dual 
problem can be derived using the standard techniques: 
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The corresponding Karush-Kuhn-Tucker complementarity conditions are: 
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(5) 

By replacing the inner product with an appropriately chosen “kernel” function, one 
can perform a non-linear mapping to a high dimensional feature space without in-
creasing the number of tunable parameters, provided the kernel computes the inner 
product of the feature vectors corresponding to the two inputs [7]. 

In the following section, the signal-noise model of an active device is constructed 
by both SVM and ANN as an application example and the function approximation 
performances of each are investigated.  
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3   Application Example: The Signal-Noise Model of an Active 
Device 

3.1   Determination of Small-Signal and Noise Behaviors of Active Microwave   
Devices 

The signal and noise performance of an active microwave device around a bias point 
are usually given by the scattering S and noise N parameter vectors at the ω -domain 
and the measured performance data over the operational band can be arranged in a 
table form function as follows: 

)()(

)2()2(
2

)1()1(
1

...

...

NN
N NSf

NSf

NSf

       (6) 

where S(l), N(l); ... ; S(N), N(N) are, respectively, the scattering and noise vectors at the 

Nff ,....,1  sample operation frequencies, and  S(N) and N(N) can be given as follows: 

      [ ] ][ )(
22

)(
22

)(
21

)(
21

)(
12

)(
12

)(
11

)(
11

)( NNNNNNNNtN SSSSS ϕϕϕϕ=  (7) 

[ ] ][ )()()()()( N
N

N
opt

N

opt
N

opt
tN RjFN ϕΓ=  (8) 

The functions defined by equations 6-8 are utilized for training the SVM and neu-
ral model of the device. Then, the performance vectors S(k) and N(k)  at a desired fre-
quency, fk , can be obtained from the network output by inputting the frequency, fk . If 
S(k) and N(k) are unmeasured,  they are determined by the generalization process, 
which can be considered as the ability of  the model to give good  outputs to inputs  it  
has not been trained on. 

N23200A FET is chosen as the active microwave device to be modeled and manu-
facturer‘s values for signal and noise parameters of N23200A FET arranged as de-
fined in (6) are used as the training and test data for the SVM and neural model.  

3.2   ANN Model for the Signal-Noise Parameters of an Active Device  

The multilayer perceptron (MLP), with a single hidden layer having the same number 
of units as the output layer (Fig. 1), has been found to be sufficient to simulate an 
active microwave device; Levenberg-Marquardt backpropagation algorithm (BP) 
algorithm is utilized to train this network [3]. 

An additive bias is utilised as the second network input to ensure faster conver-
gence which is taken as  
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where Ns is the sample number. 

 

Fig. 1. MLP for an active microwave device 

3.3   SVM Model for the Signal-Noise Parameters of an Active Device 

In forming SVM model of the microwave transistor, a computer programme using the 
foundations defined in Section 2 is employed [12]. In the SVM model of the transis-
tor, radial basis function kernel given in (10) with spread value of 0.1 is used. 
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If we want to use neural network terminology, SVM model can be considered as 
the combination of twelve process machines, each of which is for a single characteri-
zation function and all the outputs are put together for the simultaneous device char-
acterization.  

4   Performance Measure and Results 

Same training data are used in the training of SVM and the ANN models. Also, a 
dataset different from training data is used in testing of the models. Thus, Fig. 2-4 
show the performances of the SVM and ANN models trained and tested with the 
same datasets. 

To evaluate the quality of the fit to measured data the following error terms are 
found to be convenient: 
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where Sij and Ni are, respectively the signal and noise parameters and n is the number 
of discrete frequencies used. Total average error can be defined as the average of the 
signal and noise errors: 
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In Table 1, the error analysis of the transistor N23200A FET is given for SVM and 
ANN models. 

Table 1. The error analysis of the N23200A FET 

N23200A FET ANN SVRM 
ES11 0.0213 0.0932 
ES21 0.0466 0.0616 
ES12 0.0978 0.0925 
ES22 0.0336 0.0127 
EST 0.0498 0.0650 
EN1 0.0932 0.0177 
EN2 0.0444 0.0964 
EN3 0.0278 0.0237 
ENT 0.0551 0.0459 
ET 0.1097 0.1109 

   

Fig. 2. (a) Fmin; (b) Amplitude of optΓ  against frequency 
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In Fig.2, the variations of Fmin and optΓ  with respect to frequency obtained by us-

ing the ANN and SVRM model of the N23200A FET comparable with target values 
are given. 

The amplitude and angle of S11 and S22 against frequency obtained by using the 
ANN and SVRM model of the N23200A FET comparable with target values are 
given in Fig. 3 and 4, respectively. Table 1 and Fig. 2-4 show that SVRM model of 
the microwave transistor can be considered as a competitive approach to neural de-
vice modeling. 

   
(a) (b) 

Fig. 3. (a) Amplitude; (b) Angle of S11 against frequency 

   

Fig. 4. (a) Amplitude; (b) Angle of S22 against frequency 

5   Conclusion 

In this work, we have experienced that the Support Vector Machines are the competi-
tive machines against neural machines for the nonlinear functions. Each machine is 
considered as a mathematical module of nonlinear regression for each target function. 
The nonlinear regression ability of the Support Vector Machines has been demon-
strated by forming the SVM model of a microwave transistor and it has been com-
pared with its neural model. 
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Abstract. A hybrid system which combines Self Organizing Maps and
Case Based Reasoning is presented and apply to Structural Assessment.
Self Organizing Maps are trained as a classification tool in order to or-
ganize the old cases in memory with the purpose of speeding up the
Case Based Reasoning process. Three real structures have been used:
An aluminium beam, a pipe section and a long pipe.

1 Introduction

Many industrial end-users have determined their technical problems and the cor-
responding high cost related to inspections of several infrastructure installations.
The inspections usually consist in detecting corrosion and unwanted sediment
accumulation in the bottom of pipes (i.e. oil, gas and water pipelines, pipes in
power plants, etc.) and tanks (i.e. oil tanks, ships, etc). Existing inspection tech-
niques commonly use sophisticated equipment, applied in the proximity of the
defect or costly robot techniques.

The need for additional global damage detection methods that can be applied
to complex structures has led to the development and continued research of
methods that examine changes in the vibration characteristics of the structure.
Damages which alter the stiffness, mass or energy dissipation properties of a
structure should be analyzed using an system that is composed by actuators
and sensors and the structure is exposed to known external energy inputs from
the actuator (see figure 1). An excitation signal is applied and the dynamic
response is examined. The damage will alter the measured dynamic response of
the system.

Most of the Non-Destructive Testing (NDT) techniques include Artificial In-
telligence and it usually applies: wavelet transformations [HNR00], artificial
neural networks [YYJ03], genetic algorithms [CG01], and statistical analysis
[SWF02]. However, the use of knowledge-based approaches (as CBR), regardless
of being suggested by Natke and Yao in 1993 [NY93], it has not been exploited
specifically for damage detection. However, in the field of structural design, some
researchers [LM96] have applied CBR to bridge design.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 982–991, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Active system for vibration-based damage identification

2 CBR Methodology for Structural Assessment

This section describes a methodology for structural assessment (identification of
the damage, its location, size and severity) using Case-Based Reasoning (CBR)
[MVRK05]. First, in a “learning mode”, structural damaged responses are used
to generate a set of cases. These responses can be obtained from either simula-
tions using a model of the structure, or experiments that have been previously
performed. Using Self Organizing Maps (SOM) as a classification tool [Koh90],
an initial casebase is built (see Fig. 2a). To reduce the number of input signals
to the SOM, the Wavelet Transform is used to extract features from the mea-
sured signal while retaining most of the intrinsic information. When the system
is in the “operation mode”, similar old cases are retrieved. The localization and
severity of the damage are obtained directly from heuristic considerations. Each
new experience is retained once the damage has been detected.

This methodology is described using a numerical example of a cantilever
truss structure with eight sections (see Fig. 2b). The material and geometric

Fig. 2. (a) Proposed CBR cycle. (b) Cantilever truss structure.
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specifications have been previously assigned. Two antiphase sine excitation forces
are applied to elements 36 and 38. The element 1 was chosen as the sensor re-
ceiving the propagated wave.

2.1 Casebase Building

The casebase is an array in memory organizing all the cases to facilitate the
search for the case most similar to the current problem. In the proposed method-
ology, the casebase is a SOM. Each case is defined by the defect of the structure
and the minimal representation of its damaged dynamic response. In this situa-
tion, the minimal representation is the set of principal features that are extracted
from the coefficients of the Wavelet Transform applied to the dynamic response.
The wavelet coefficients are computed for each selected case. The coefficients at
the same position in different cases are considered as samples of independent
random variables. Therefore, bearing in mind the Central Limit Theorem, each
variable is approximately normally distributed. The maximal normal numbers
and the maximal wavelet coefficients occur at the same positions, which deter-
mine the midpoints of the clusters. This pattern of clusters contains relevant
signal information. Later, each feature is determined as the square root of the
energy of the wavelet coefficients in the corresponding cluster [PK99]. The pro-
cess of feature extraction and building the casebase can be seen from Fig. 3. After
the set of cases is generated (defect and the principal features of the dynamic
response) they are organized in memory for recovery at the required time, and
an SOM is created and trained. This SOM has l neurons (one for each feature)
in the input layer and m ∗n (according to the number of cases to store) clusters
or neurons in the output layer. In the example, the SOM has 65 input neurons
and 50 ∗ 50 output neurons. In each cluster, this network organizes the cases
with similar characteristics.

Fig. 3. Casebase building
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2.2 Retrieving

Checking the methodology or putting the system in operation mode can be per-
formed by simulation, laboratory testing, and even in normal working conditions
for real structures. When a new experiment is carried out, the dynamic response
captured by the sensors is obtained. From this signal, the principal features are
extracted using the clustering pattern previously defined. From these features
the SOM retrieves a set of stored cases with similar characteristics. Table 1 gives
some cases (Damaged element and its severity) which are retrieved with their
distances. This distance indicates the separation or space between the input vec-
tor and the cluster, in other words, it represents the similarity between the new
case and the stored cases. The smaller the distance, the more similar the cases.

Table 1. Retrieved cases

Damaged element Severity Distance
-15- -30%- 0.00362

-14-15 -10%-10%- 0.00747
-11-14-15- -10%-10%-10%- 0.01123
-11-15- -10%-10%- 0.01483

2.3 Adapting

From the retrieved cases (Table 1), it is noted that the element 15 appears in
the first four cases and the element 11 appears three times but not with the least
distances. We want to reward (1) elements that are repeated several times—the
more frequent the repetition, the higher the probability of being the “winner”;
and (2) similar cases—the smaller the distance, the higher the probability of
being the “winner”. To do this, a factor is calculated for the element, which is
the sum of the inverses of the distances in which this element is present. For
example, the factor for the elements 11,14 and 15 are:

F11 =
1

0.01123
+

1
0.01483

+
1

0.01517
= 222.40 (1)

F14 =
1

0.00747
+

1
0.01123

+
1

0.01517
= 288.84 (2)

F15 =
1

0.00362
+

1
0.00747

+
1

0.01123
+

1
0.01483

= 566.59 (3)

By normalizing these factors, the probabilities of damage in each element are
obtained (Element 15 -higher factor- has probability 1, Element 14 probability
0.51, and Element 11 probability 0.39, in the presented example). To calculate
the dimension and the severity of the defects, a weighted average is computed,
using as a weighting coefficients the inverse of the distances (see Eqs. 4,5), where
n is the total number of retrieved cases, dim, dam and d are the dimension, the
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damage and the distance of each retrieved case, respectively. Note that d(1) is
the minimum distance. In this case the dimension is 1.7, which is rounded to two
elements (Elements 15 and 14) and the severity is 26.8% (stiffness reduction).

Dimension =
n∑

j=1

dim(j) ∗ d(1)/d(j)∑n
i=1 d(1)/d(i)

(4)

Severity =
n∑

j=1

dam(j) ∗ d(1)/d(j)∑n
i=1 d(1)/d(i)

(5)

3 Beam Case Study

The first structure to study is an aluminium cantilever beam. A numerical model
using Finite Element Method is considered, as illustrated in Fig. 4a, with a total
of 102 elements. It is equipped with a piezoelectric actuator (as can be seen from
Fig. 4b) mounted close to the clamped end that induces a sine wave excitation
signal of the 142.9 Hz frequency and only one period duration. The piezo-patch
sensor (shown in Fig. 4c) close to the free end measures the bending strains
(curvature) at the specified location.

Fig. 4. Beam. (a) Model (b) Actuator (c) Sensor (d) Damage.

Damage identification experiments in this structures using CBR combining
with SOM methodology has been reported in [MVRK05]. The results can be
summarized as following: A total of 5464 cases of the damaged structure have
been simulated (up to 10 consecutive elements with 12 different reductions of
mass) using a finite elements model. A total of 57 principal features have been
extracted from each response signal. An SOM of 57 input neurons and 50*50
output neurons has been trained in 35 minutes. Three examples are presented,
two using numerical simulations and the third one using experimental data from
the real structure.
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Simulation of one fault in five consecutive elements: Damage was simu-
lated in elements 43-44-45-46-47 with a stiffness reduction of 5%-15%-15%-
15%-5%, respectively. The damage has been detected approximately in the
assumed elements and a stiffness reduction of 6.7% in each element (Fig.
5a).

Simulation of two faults in three consecutive elements: Two faults have
been simulated in elements 28-29-30 and 59-60-61 with stiffness reductions
of 20%-30%-20% and 20%-30%-20% respectively. The damages detected at
approximately elements 29 and 60, and a stiffness reductions of 25% in each
element (Fig. 5b).

Experimental damage in unknown elements: Damage was caused to the
real structure in elements 44-45-46 (see Fig. 4d). It can be observed that the
damage has been detected in the neighbourhood of the element 46 and a
stiffness reduction of 45% (Fig. 5c).

Fig. 5. Elements identified with damage. (a) Simulating one fault of 5 elements (b)
Simulating two faults of 3 elements (c) Experimental damage in unknown elements.

4 Pipe Section Case Study

This section presents the result obtained on numerical and experimental tests on
a section pipe. Due a calibration problems, two casebases have had to be built
and verify by separate. One of them is loaded using only simulations, the other
one, using only experiments.

4.1 Experimental Test

A French company provided a pipe section and configured the experimental
setup shown in Fig. 6. It has an internal radius of 40mm, thickness of 2mm
and its useful length is 5550mm. It is excited using a 7-cycle Hanning windowed
sine pulse with 750 Hz frequency, near to its first radial-axis mode, using gen-
erator supported as can be seen from Fig. 6. Four sensors measure the dynamic
response of this structure. Reversible defects have been performed. Five masses
(M1=50g, M2=100g, M3=300g, M4=200g, M5=250g) have been added in dif-
ferent positions (marked in the Fig. 6 as Position 1 to Position 9). The casebase
contains a total of 46 cases (1 undamaged case and 45 damaged cases). Firstly,
the methodology has been tested using some defects previously known, these
experiments are part of the casebase. Finally, it is tested using 9 unknown tests.
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Fig. 6. Experimental setup configuration

Table 2. Defect localization and identification of nine unknown defects

Defect # Position Added mass
1 2 204.4
2 5 211.6
3 8 173.5
4 7 223.9
5 3 226.7
6 4 243.8
7 1 241.6
8 9 141.2
9 6 220.2

Mass of 200g added in position 1: The information of the four sensors leads
methodology to detect the defect in position 1 with an intensity of 206.44g.

Mass of 250g added in position 5: As the previous test the methodology
detects the defect in position 5 and the calculated intensity is 166.43g.

Mass of 50g added in position 9: The methodology detects the defect in
position 9 and the calculated intensity is 69.1g.

Unknown defects: A final test with an unknown added masses at unknown
positions has been performed. From Table. 2 it can be seen a summary of
the results showing the identified position and intensity (added mass). After
discussing these results with the company, they confirm that the localization
of every experiment is very good, however, the identification of the mass must
be improved, because all experiments was performed using a mass of 150g.

4.2 Numerical Test

The numerical model of this pipe section, was not able to be calibrated. The
excitation signal is a sine wave with only one period and frequency of 773.75
Hz. Four sensors are used as well. The pipe has been divided in 16 sections (as
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can be seen from Fig. 7) and defects in each section by reducing thickness in
20% and 50% around the pipe (axi-symetrical reduction) have been simulated
for building the casebase. To test the methodology, several defects have been
simulated: Before the actuator (elem. 2 with defect of 20%), between actuator
and sensor 1 (elem. 3 with defect of 20%), between sensor 1 and 2 (elem. 6 with
defect of 20%), between sensor 2 and 3(elem. 10 with defect of 20%), between
sensor 3 and 4 (elem. 14 with defect of 20%), half element (upper half of elem.
9 with defect of 50%) and two elements (elem. 7 and 8 with defect of 50%). The
system perfectly locates all these damages and estimates thickness reductions of
30.7%, 29.2%, 28.9%, 30.2%, 29.7%, 33.8%, 38.3% respectively as can be seen
from Table. 3.

Fig. 7. Pipe section model

Table 3. Defect localization and identification of seven simulated defects

Defect Simulated damage Identified damage
# Position Reduced mass Position Reduced mass
1 2 20 2 30.7
2 3 20 3 29.2
3 6 20 6 28.6
4 10 20 10 30.2
5 14 20 14 29.7
6 Upper half of 9 50 9 33.8
7 7 & 8 50 6-7-8 38.3

5 Long Pipe Case Study

A long pipe of 80 meters length was provided by a French company of district
heating network. The experimental setup is shown in Fig. 8. The material of
this pipe is steel AE220, its internal radius is 15cm, thickness of 0.45cm and
its length is 7887cm. It is excited using a 5-cycle Hanning windowed sine pulse
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with 474Hz frequency, near to its first radial-axis mode. Just one sensor are
measuring dynamic response, it is locate 58 meters far from the actuator. Due
to the impossibility of having a efficient model for the pipe, this study has been
carried out using only experiments over the real structure. Reversible defects
have been performed. Three masses (M1=400g, M2=1000g, M3=5000g) have
been added on 58 different positions, almost in every one meter from the actuator
to the sensor (58m). In total there are 151 cases to store into the casebase (1
undamaged case and 150 damaged cases). The system has been verified using
some experiments which are previously stored into the casebase, the localization
and estimation of the magnitude have been successful. However, due to problems
of repetitiveness in this structure setup, two identical experiments do not have
identical responses.

Fig. 8. Experimental setup

6 Conclusions

The feasibility of assessing structures using a knowledge-based reasoning ap-
proach has been demonstrated numerically and experimentally. This methodol-
ogy performs satisfactorily in locating damage and assessing its size and severity
for industrial needs. Two of its advantages are: (1) it exploits the model of the
structure to preload the casebase in the initial learning mode, and (2) in the op-
erational mode, it incorporates new real damage cases in the casebase, improving
the robustness of the methodology against errors in the model.
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Abstract. In this work, a Neural Unit Element (NUE) is defined to be used in 
the analysis and synthesis of the microwave circuits. For this purpose, analysis 
of impedance transformation property of a transmission line segment with the 
parameters ( l, ZO) is defined as the problem in the forward direction and syn-
thesis of the transmission line to obtain the target impedance is also defined the 
problem in the reverse direction. This problem is solved using Multilayer Per-
ceptron (MLP) with efficient training algorithm. Finally, NUE driven by 50  
and complex source which is very common in microwave applications and the 
short-circuited NUE (Stub) are given as the worked examples. 

1   Introduction 

Neural networks are universal function approximators allowing reuse of the same 
modeling technology for both linear and nonlinear problems at both device and circuit 
levels. Yet neural network models are simple and model evaluation is very fast. Re-
cent works have let to their use for modeling of both active and passive components 
such as transistors [1], [2], planar transmission line microstrip, coplanar wave (CPW) 
guides [3], vias, CPW discontinuities, spiral inductors [4]. Furthermore ANNs have 
found modeling in Smith Chart representation and automatic impedance matching [4].  

Neural modeling of the microwave components and circuits has also found applica-
tions in solving very important problems of the microwave circuit theory. Design Tar-
get Space can be considered as such an important problem of optimization of micro-
wave amplifier and black-box neural modeling of microwave transistors [1], [2] has yet 
found a good application in solving this problem [5], [6]. Another significant problem 
of the microwave amplifier is design of the matching circuits to be used as the front-
and back-ends of the transistor, to provide the necessary source ZS and load ZL imped-
ances. Matching circuits are configured of the distributed-lumped mixed elements and 
do the impedance transformations between the ports. These transformations are basi-
cally very highly nonlinear functions of the distributed-lumped element parameters. In 
[7], the highly nonlinear impedance transformation equation set of a transmission line 
segment ( l, ZO) are solved by the neural networks for the purely resistive driving. 
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Here, this work is extended to the complex driving. Briefly, the impedance transforma-
tion properties of a transmission line segment with the parameters ( l, ZO) throughout 
an operation bandwidth B will be modeled for analysis and synthesis purposes by 
ANN techniques.  In the next section, the problem will basically be defined in both 
forward and reverse directions. Later the solution is presented and worked examples 
are given. 

2   Definition of Problem 

The forward and reverse problems for the impedance transformation properties of the 
microwave circuits can be defined by means of the two black-boxes: (i) the forward 
problem: Black-box in analysis (Fig. 1a); (ii) the reverse problem: Black-box in syn-
thesis (Fig. 1b). Calculation mechanism in each black-box is a neural network which is 
either Multilayer Perceptron (MLP) or Radial Basis Function (RBF) network [7]. 

Fig. 1a. Black-Box in Analysis 

Fig. 1b. Black-Box in Synthesis 

2.1   The Forward Problem: Impedance Transformation from the Input Port to 
the Output Port of the Two-Port 

The input quantities to the Analysis Black-Box are the input termination 
ZS( )=RS( )+jXS( ), circuit parameters C and the operation bandwidth B which 
includes the bandwidths B1  and B2 between the frequencies fmin and fmax  for the in-
ductive and capacitive behaviors separately. The corresponding output quantities are 

Ro{ ,Zo,Zs}
ANN

{Zs}

C={ Zo}

B Xo{ ,Zo,Zs}
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the real RO( ) and the imaginary XO( ) parts of the output impedance throughout the  
defined operation bandwidth B.    

2.2   The Reverse Problem: Synthesis of the Impedance ZO( )=RO(  )+jXO( ) 
Using the Circuit Parameters 

In the synthesis side of the problem, similar terminology to the analysis mechanism is 
used. So input quantities are the required RO( ) and XO( ) functions and the opera-
tion bandwidth B between the frequencies fmin and fmax.  However, the circuit parame-
ter vector C transforming the input termination ZS( ) into the ZO( ) take place as the 
output parameters of the synthesis block.  

Since functions used in the analysis and synthesis are generally inverse of each 
other, so for the purpose of determining network parameters of ANNs used in analysis 
and synthesis, a single program can be prepared using only the analysis formulae of 
the circuit. Then the output data obtained from this program is arranged with respect 
to the input-output definition of each ANN so that the data sets can be resulted to train 
and test ANNs for both the purposes of analysis and synthesis. So we can have in-
verse of a function in this way provided that always one-to-one mapping relations 
between the inputs and outputs.  

Impedance transformation properties of the unit element (UE) ( l, ZO) driven by a 
complex ZS impedance (Fig. 2) will be considered in the next section. ANN modeling 
of the unit and stub elements and worked examples will take place in the later  
sections.  

 

Fig. 2. Unit Element (UE) 

3   Impedance Transformation 

Output impedance ZO=RO+jXO of the UE with { l, ZO} terminated by a complex 
impedance ZS is the function of circuit parameters l, ZO and ZS which can be ex-
pressed in the closed form as follows: 

RO=RO { l, ZO, RS, XS} (1a) 

XO=XO { l, ZO, RS, XS} (1b) 
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where  
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In the next section fl product will be determined with respect to the reactive behav-
ior of the circuit in the frequency domain. 

3.1   fl Product for the Reactive Behavior of the UE 

 fl product for the reactive behavior of the UE is determined using the transformation 
relations given by (1a), (1b), (2a) and (2b) and  the well-known mapping relations 
between the Z-rectangular and -polar planes  Smith chart which are: 

Lj
L

OL

OL
L e

ZZ

ZZ ϕΓ=
+
−=Γ .  

(3a) 

OL

OLj
L ZZ

ZZ
e

+
−=Γ=Γ β−

)(

)(
.)( 2  

(3b) 

where 
LΓ is the load reflection coefficient.  

The problem necessitates considering the two cases: 

i) Load is within the inductive region  0< L<  

For this case, the fl products have the following intervals for the inductive and capaci-
tive behaviors: 

0< l< L/2  0<fl < Lv/4   inductive behavior (4a) 

L/2< l<( L+ )/2  Lv/4 <fl < Lv/4 +v/4  capacitive behavior    (4b) 

where v is the phase velocity within the transmission medium.  

ii) Load is within the capacitive region  L 2  

In this case, the fl products have the following intervals for the inductive and capaci-
tive behaviors: 

0< l< L/2- /2  0<fl < Lv/4 -v/4  capacitive behavior    (5a) 

L/2- /2< l< L/2  Lv/4 -v/4<fl < Lv/4   inductive behavior (5b) 
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So, maximum and minimum line lengths for the inductive and capacitive behaviors 
can be determined using the chosen corresponding limit frequencies fmin and fmax and 
the inequalities of (4a), (4b), (5a) and (5b). These will be demonstrated in the worked 
examples for the purely resistive termination. 

4   Properties of Neural Networks 

The universal approximation theorem for MLP has been proved by Hornik and Cy-
benko in 1989. According to their theorem, a 3-layer MLP can approximate a nonlin-
ear, continuous, multi-dimensional function with any desired accuracy [8], [9]. How-
ever, here this universal function approximator property of the MLPs is employed in 
solving the nonlinear equations given by (1a), (1b), (2a),(2b) in both directions. Basi-
cally, the training and test data for both the forward and reverse ANNs is obtained 
from the Smith chart representation of the impedances transformed by a transmission 
line segment. However, this data is arranged considering one-to-one mapping rela-
tions between the input and the output of each type of ANN, given in (4a), (4b), (5a) 
and (5b).  

The Levenberg-Marquardt (LM) back-propagation algorithm for the smallest test-
ing error and three layered network with the minimum number of neuron for faster 
training are performed with the MLP type of network. These result in the fastest con-
vergence by changing epoch, is seen in the Fig. 3. In fact, performance function of  
the MLP is shown with the Mean Squared Error (MSE) -Epoch variation in the Fig. 3, 
where how rapidly results converges can be seen for the reverse problem and similar  
performance has been obtained for the forward problem  too. In the forward ANN, 
tangent-sigmoid function is used as the activation function of the both input and hid-
den neurons; however output layer neurons are activated by the linear function. The 
forward ANN has four input, two output and twenty hidden neurons.  However, the 
reverse ANN has six input, two output and thirty-two hidden neurons. In the reverse 
ANN, also, both the input and hidden neurons are activated by the tangent-sigmoid 
function, and the output neurons are activated by linear function.  

Table 1. Performance of MLP with different training algorithms 

Training Algorithm Minimum 
Training Error 

Average Test 
Error 

Epoch 

Levenberg-Marquart BP 7.30E–04 8.65E–07 1706 
Quasi-Newton BP 2.11E–02 8.45E–04 3000 

Conjugate Gradient BP 
with Fletcher-Reeves 

2.55E–01 1.96E–03 3000 

Gradient Descent with 
Momentum and adaptive 

learning rate BP 
8.93E–01 1.49E–02 3000 

Resilient Backpropaga-
tion (BP) 

1.81E–01 5.21E–03 3000 

Scaled Conjugate Gradi-
ent  BP 

7.94E–02 4.20E–03 3000 
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Fig. 3. Training Performance of MLP 

5   Worked Examples 

In worked examples, two types of driving of UE are considered:  

(i) ZS=50   NUE in Fig. 4-5  
    (ii) ZS=0  NSE in Fig. 6-7. 

(iii) Zs=211.78+j95.44  in Fig. 8 

Inductive NUE; l=0.121cm, Zo=61.112Ohm
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Fig. 4. Analysis of the capacitive NUE driven by ZS=50  
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Inductive NUE; l=0.121cm, Zo=61.112Ohm
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Fig. 4. (continued) 
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Fig. 5. Synthesis of the capacitive NUE 
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Inductive NSE; l=0.625cm, Zo=81.17Ohm
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Fig. 6. Analysis of the inductive NSE 
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Fig. 7. Synthesis of the inductive NSE 



1000 M.F. Ça lar and F. Güne  

Fig. 8.  Analysis of the NUE driven by ZS=211.78+j95.44  

6   Conclusions 

In this work, Neural Unit Element (NUE) is defined in use analysis and synthesis of 
microwave circuits. For this aim, highly nonlinear transformation equations of the 
transmission line are solved by the neural networks. Further step can be analysis and 
synthesis of the more complicated microwave circuits such as matching circuits to 
provide necessary terminations of a microwave transistor. 
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Abstract. The main objective of this study is to find the optimum values of 
design and operational parameters related to worker flexibility in a Dual 
Resource Constrained (DRC) assembly line considering the performance 
measures of Hourly Production Rate (HPR), Throughput Time (TT) and 
Number of Worker Transfers (NWT). We used Artificial Neural Networks 
(ANN) as a simulation metamodel to estimate DRC assembly line performances 
for all possible alternatives. All alternatives were evaluated with respect to a 
utility function which consists of weighted sum of normalized performance 
measures.   

1   Introduction 

Fast and dramatic changes in customer expectations, competition, and technology 
cause uncertain environments in the global markets of the twenty first century. The 
success of a manufacturing firm in an uncertain environment depends on how 
effectively the firm responds to these changes in the markets. In general, the 
researchers and the manufacturing managers contend that the most important concept 
to cope with this uncertainty is the manufacturing flexibility. The manufacturing 
flexibility is the ability of the firm to manage production resources and uncertainty to 
meet customer requests [16]. Especially, in DRC Systems, the key element is the 
worker flexibility which is one of the dimensions of manufacturing flexibility. A DRC 
production system is one in which all equipment in the shop is not fully staffed and, 
furthermore, the workers can be transferred from one piece of equipment to another as 
needed [12].  

Two important decisions should be made when the system is DRC; (1) when to 
move workers, (2) Where to move workers. This is called when/where rule pairs in 
DRC systems. Typical “when” rules in DRC literature are Decentralized and 
Centralized. The centralized rule provides the maximum worker flexibility because 
this rule implies that the worker is available for transfer whenever a job is completed. 
However, if worker transfer delays are significant, effective worker capacity might 
decrease dramatically due to the increased number of transfers. The decentralized rule 
implies that the workers are eligible for transfer when there is no job waiting to be 
processed at their current workstations. This rule is used especially when the transfer 
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times are significant. Due to the ease in their implementation, these rules have 
received a lot of attention from researchers [12,14]. Fryer extended these rules to a 
parametric version [4]. In his parametric version of “when” rule, the workers are 
eligible for transfer to another workstation only when there is maximum of “q” jobs in 
their queues. Other types of “when” rules can be found in [5,9,13]. Typical “where” 
rules in DRC literature are First in System First Serve (FISFS), Largest Number in 
Queue (LNQ) and Earliest Due Date (EDD), etc. However, their effects on the shop 
performance have not been reported as extensively as “when” rules [14]. 

In the most of these studies, simulation has been used to analyze the effects of 
when/where rule pairs on the performance measures since it is a very flexible tool in 
modeling and analysis of such complex systems. In simulation modeling, a set of 
inputs are used to estimate a set of output performance measures. This process is 
repeated until a satisfactory level of performance measures is obtained. Hence, the 
simulation modeling becomes a trial and error process [2]. The iterative nature of this 
process may result in high computational costs and difficulties in prediction of the 
performance measures. Simulation metamodels are generally used in order to 
overcome these problems. The main objective of a simulation metamodel is to 
accurately represent the input and output relationships. In metamodeling, simulation 
is used to generate data set for construction of metamodels. In general, regression 
analysis has been combined with simulation for building simulation metamodels. The 
use of artificial neural networks is another approach for metamodeling. A neural 
network is a proven tool in providing excellent response predictions in a wide range 
of application areas and it outperforms regression analysis [6]. 

A neural network based simulation metamodel is a neural network whose training 
set (i.e., input-output pairs) is provided by a simulation model. Pierreval [10] used 
neural networks to model simulation of manufacturing shops. Kilmer et al. [8] 
described the use of supervised neural networks as a metamodeling technique for 
discrete, stochastic simulation. Hurrion [7] developed a neural network metamodel to 
search for the optimal kanban combination for a two-station pull system. Savsar and 
Choueiki [11] extended the study of Hurrion and proposed a Generalized Systematic 
Procedure that integrates experimental design concepts with simulation and neural 
networks for solving kanban allocation problem. Araz et al. [1] proposed a multi-
criteria decision making methodology based on neural networks for kanban allocation 
problem. Fonseca et al. [3] discussed the importance of simulation metamodeling 
through artificial neural networks and provided general guidelines for the 
development of ANN based simulation metamodels. The results of these studies 
indicated that simulation metamodels with neural networks can be effectively used for 
estimation of the system performance. However, constructing a neural network is also 
time consuming since the process requires generating a training set.   

The objective of this study is threefold: (1) To apply Fryer’s parametric “when” 
rule to a special assembly line which produces electrical motors. Since the 
manufacturing system under consideration is DRC, how to move the workers is 
important. Hence, the Fryer’s parametric “when” rule was modified and applied to the 
special assembly line. (2) To find the optimum values of design and operational 
parameters related to worker flexibility. Since the worker transfer decisions directly 
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affects the system performance, it is critical to find the optimum values of design and 
operational parameters related to worker flexibility. In this study, a neural network 
based simulation metamodeling approach was used in order to obtain optimum 
parameter configurations with respect to a utility function which consists of weighted 
sum of normalized performance measures. (3) To propose and to implement an 
integrated framework to prepare training set for ANN based simulation 
metamodeling. As stated above, in ANN based simulation metamodeling, the 
construction of the training set is a time consuming activity since the training set is 
provided by simulation models. Furthermore, making required modifications on 
simulation models becomes impractical when the size of the training set gets larger. 
To deal with this problem, we developed an integrated framework which consists of a 
parametric simulation model and a Training Set Generator. This integrated framework 
automates the process of generating the training set and building simulation models. It 
also gives flexibility to increase the size of the training set. 

The paper is structured as follows; in Section 2, the overview of the assembly line 
is explained. In Section 3, the solution methodology is given and in the final section, 
the conclusions are presented. 

2   System Overview 

As it is depicted in Figure 1, the assembly line which produces electrical motors 
consists of five workstations (i.e., S1, S2, S3, S4 and S5). The parts visit the 
workstations sequentially and are transferred from one workstation to another on 
pallets by the loop-conveyor, cL. The total number of pallets in this system is denoted 
by K. It must be noted that the level of K limits the level of Work-in-Process (WIP). 
The transfers between cL and the workstations are provided by the sub-conveyors 
c1,c2,…,c8. Each workstation has its own input/output buffers except for S5. The 
workstation S5 has only its input buffer which is same as the output buffer of S4. The 
capacities of input/output buffers are denoted as i1, o1, i2, o2, i3, o3, i4, and o4=i5. The 
worker capacities of workstations are presented by w1, w2, w3, w4, and w5. For 
example, if the worker capacity of S1 is equal to 2 (i.e., w1=2), it means that two 
workers can work together at workstation S1. 

In this assembly line, each pallet may be in one of four possible states (i.e., empty 
pallet (STATE1), the pallets carrying the parts processed at S1 (STATE2), S2 
(STATE3), and S3 (STATE4)). The parts processed at S4 are removed from their 
pallets, and then send to the input buffer of S5. In addition to this, the empty pallets 
which are removed from the parts try to access c8 to turn back to cL. The states of 
pallets are changed when the worker at a particular workstation finishes the related 
operation on a part. So, as it is illustrated in Figure 1, the pallets in STATE1, STATE2, 
STATE3, and STATE4 try to enter the related workstations from the points A, C, E, 
and G, respectively. Then, following the state changes, they try to access to cL from 
the related points (i.e., B, D, F, and H) to be transferred to workstations for 
consecutive operations. If there is not available space at the input buffer of the 
workstation, the pallet keeps moving through the loop-conveyor until there is 
available space at related workstation.  
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Fig. 1.  The overview of the assembly line 

The explanations given so far are related to the movements of parts in the system. 
Due to the reason that the system is DRC, how to move the workers (i.e., typical 
when/where rule pairs) on this kind of system is also important. So, as mentioned 
before, the following “when” rule is applied in this system; “the workers are eligible 
for transfer to another workstation only when there is maximum of q jobs in their 
queues” as Fryer stated [4]. The q is a threshold value that triggers the worker to 
move to another workstation if it is needed. This rule represents the general case of 
decentralized and centralized rules. It is general because when q is set to zero, the 
resulted rule will be decentralized, when q is set to K (i.e., the number of pallets), the 
resulted rule will be centralized. Increasing the value of q from 0 to K, increases the 
degree of worker flexibility (i.e., the number of worker transfers). To be able to apply 
Fryer’s rule in this system, the threshold value q was applied to the number of pallets 
in STATE1, STATE2, STATE3, and STATE4. Since the number of pallets in different 
states represents the total workload of the related workstations, the answer of the 
“where” question becomes “to the workstation with the greatest workload”. For 
example, if the number of pallets in STATE1 (i.e., empty pallets) is the greatest, it 
means that the workload of S1 is greatest, so the worker who is eligible for transfer at 
that time should move to the workstation S1 if it is not fully staffed. 

When the worker is eligible for transfer, he can move from his current workstation 
to another workstation under the following conditions; (1) if the workload of the 
current workstation is lower than the workload of the target workstation. (2) If the 
target workstation is not fully staffed. 

The processing times at workstations S1, S2, S3, S4 and S5 are uniformly distributed 
with the minimum and maximum of 29.4-37.8, 81.6-93.6, 62.4-108.3, 62.4-80.4 and 
36.6-64.25 seconds, respectively. The velocities of conveyors are 48 pallets/minute. 
The worker capacity of S5 (i.e., w5) is assumed constant, and it is equal to one worker. 
This worker remains at S5 while the system is operating. The total number of workers 
in this system is five. 
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3   Solution Methodology 

We used a solution methodology which consists of five steps to find the optimum 
values of design and operational parameters related to worker flexibility in a DRC 
assembly line. In the first step, the parametric simulation model of the system was 
developed. In the second step, the decision variables and important performance 
measures were identified. In the third step, training set was selected and their related 
simulation models were constructed. Then, in the fourth step, the design parameters of 
ANN model for each performance measure was identified and the ANN models were 
built, trained, validated and tested. In the last step, using the trained ANN models, the 
performance measures of all possible alternatives were predicted and evaluated. 

3.1   Building the Parametric Simulation Model 

The DRC assembly line given in Figure 1 was modeled by using simulation software, 
ARENA 10.0, which is highly flexible tool in modeling this type of systems 
consisting complex interactions. Since the generation of simulation models related to 
selected alternatives is time consuming when the size of the training set is higher, the 
simulation model was built parametrically in order to accomplish the related 
modifications easily. 

3.2   Identification of Decision Variables and Performance Measures 

There are six decision variables to be considered in this study. These are K, w, P1, P2, 
P3, P4. As mentioned before, the K and w represent the total number of pallets on the 
conveyor system and the worker capacities of workstations, respectively. In our 
system, it is assumed that the values of w1,w2,w3, and w4 are equal and presented by w. 
The decision variable Pi is a threshold value related to “when” rule for workstation Si.  

In this study, each alternative consists of different levels of decision variables K, w, 
P1, P2, P3, and P4. For example, the alternative (28, 3, 8, 10, 6, 4) represents the 
following configuration; there are 28 pallets in the system, maximum 3 workers can  
work at a workstation simultaneously, and at the workstations S1,…,S4, workers will 
be eligible for transfer when their workloads are less than or equal to 8, 10, 6 and 4, 
respectively. Based on the results of pilot studies and our previous study [15], the 
lower and the upper levels of decision variables were defined as shown in Table 1.  

Table 1.  The levels of decision variables 

Decision Variable Low Level High Level Step Size 
K 10 32 2 
w 2 4 1 
Pi 0 K/2 2 

 
The performance measures considered in this study are hourly production rate of 

the line (HPR), throughput time (TT), and the number of worker transfers (NWT). The 
HPR is defined as the average number of electrical motors produced in an hour. The 
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TT represents the average total time (minutes) that a part spends between the 
workstations S1 and S5. The NWT shows the total number of worker transfers realized 
in a given period. Although, it is assumed that the worker transfer times are negligible 
in this system, the NWT can be used to evaluate the alternatives according to the 
possible losses in effective worker capacity. 

According to the results of our previous study [15], the parameter K which also 
represents the WIP level has the greatest effect on both HPR and TT. So, increasing 
the number of pallets in this kind of DRC system increases the HPR but causes higher 
throughput times and WIP levels. Increasing the level of w causes an increase in 
NWT. It is clear that it would be costly if the worker transfer times are significant. 
Hence, it is desired to achieve a compromise solution by maximizing HPR while 
minimizing TT and NWT.           

Considering Table 1, the search space includes 91410 alternatives. Running all 
91410 simulations would approximately require 3050 hours (each simulation run 
requires approximately 2 minutes of input/output and computation time). Instead of 
simulating all configurations, we used an ANN based simulation metamodeling 
approach for estimating the performance measures of all alternatives. 

3.3   Construction of Training Set 

Typical ANN based simulation metamodeling study requires three main steps for data 
preparation process; the first step is to select the alternatives (i.e., inputs) to be used 
for the training set. The second step is to build the simulation models of these selected 
alternatives. The last step is to run these simulation models to obtain the performance 
measures (i.e., outputs). We automated these steps by developing an integrated 
environment which we named as Training Set Generator (TSG).  TSG consists of 
three main modules named Configuration Generator, Simulation Model Generator, 
and Output Data Processor. All modules of TSG were coded in C. The framework for 
TSG can be seen in Figure 2.  

In the first step of data preparation process, our Configuration Generator Module 
divides the search space into 36 regions according to the levels of K and w (i.e., 

K∈{10,12,…,32 }, w∈{2,3,4}, the total number of region is 12*3= 36). The number 
of alternatives to be taken from a region is calculated by multiplying the total size of 
the training set by the percentage of alternatives in that region to total number of 
alternatives. For example, if the levels of K and w are fixed at 10 and 2, the total 

alternatives in this region will be 44=256 (i.e., Pi∈{0, 2, 4, 6}, i:1,...,4). Since we 
have 91410 total alternatives, setting the size of the training set to 5000, the number 
of total samples to be taken from this region is 5000*256/91410 14.  

In the second step of data preparation process, the list of selected alternatives to be 
used for training the ANN is sent to Simulation Model Generator Module. This 
module automatically makes the required changes on Default Simulation Model of the 
system. The output of this generator is the simulation models of the selected 
alternatives. Handling this process manually is very time consuming and impractical 
when the size of the training set gets larger. The Simulation Model Generator Module 
allows us to increase the size of the training set. 
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Fig. 2. Framework for Training Set Generator (TSG) 

In the third step of data preparation process, the simulation models generated by 
the Simulation Model Generator Module are executed by ARENA 10.0 Simulation 
Software and the replication results for the performance measures are recorded in a 
text file for each alternative. The Output Data Processor Module processes these text 
files and constitutes a single text file including inputs and related average 
performance measures. This text file is the input of ANN software. 

For simulation models, the total replication length is equal to 30 hours including 3 
hours of warm up period. The number of independent replications is 5 for each 
alternative. The number of alternatives to be generated among all 91410 alternatives 
by the TSG is set as 5000. This number includes data for training, validating, and 
testing. Running 5000 simulations would approximately require 170 hours (each 
simulation run requires approximately 2 minutes of input/output and computation 
time) without using TSG. We obtained input-output pairs for 5000 alternatives in 
approximately 16 hours with TSG. 

3.4   Building, Training and Testing of Neural Network Models 

A feed-forward architecture including one layer of hidden units has been employed 
for each performance measure (HPR, TT and NWT).The assembly line parameters K, 
w, P1, P2, P3 and P4 were introduced as input nodes for each network. In each ANN, 
output layer consists of one node that estimates an output measure. 

The performance of an ANN depends on several design parameters such as number 
of hidden layers (HL), the number of processing elements (PE) in hidden layers, the 
type of transfer function, learning rate and momentum rate etc. Selection of these 
parameters is generally based on trial-and-error. Using trial-and-error, the design 
parameters of ANNs were selected as in Table 2. The ANN models were developed 
using NeuroSolutions 5.0 software. 

Training is an important feature of ANNs. After the network reaches a satisfactory 
level of performance, it learns the relationship between input factors and simulation 
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Table 2. Design parameters of ANN models 

ANN 
Mode

l 

# of 
Input 
Node 

Output 
Nodes 

# of 
HL 

# of 
PE 

in HL 

Type of 
Transfer 
Function 

Learning 
Rate 

Momentum 
Rate 

1 6 1(HPR) 1 52 Tanh 0.1 0.80 
2 6 1(TT) 1 56 Tanh 0.1 0.90 

3 6 1(NWT) 1 54 Tanh 0.1 0.85 

 
responses. Then the trained network can be used to estimate the simulation outputs. 
Back-propagation (BP) learning algorithm is used in this study. BP is the most widely 
used network learning algorithm. The BP learning involves three stages: the feed-
forward of the input training pattern, the calculation of the associated error, and the 
adjustment of the weights. For our ANN models, 4250 input-output pairs are used for 
training. 250 different pairs are used for cross validation and 500 are used for testing. 
The networks were trained to an error tolerance 0.001 or to a maximum of 3000 
epochs. 

An essential aspect of metamodeling is to evaluate the quality of the performance 
measures produced by ANNs as compared with the performance measures produced 
by simulation model (i.e., true value). The mean square error and the percentage error 
were used as the measure of accuracy of the neural networks. As seen in Table 3, 
ANNs  provide estimates for HPR, TT and NWT accurately.  

Table 3. Measures of accuracy for HPR, TT, and NWT 

Measure of Accuracy HPR TT NWT 
MSE 0.016 0.046 0.080 

% Error 4.14 4.63 9.69 

3.5   The Full Enumeration and Evaluation of the Alternatives 

The HPR, TT and NWT for all alternatives are obtained by using three neural network 
models given in previous section. As mentioned before, our objective is to achieve a 
compromise solution by maximizing HPR while minimizing TT and NWT. Since we 
have more than one objective, the Simple Additive Weighted (SAW) method, which is 
one of the simplest and the most popular Multi-Objective Decision Making method, 
was used for selecting the best alternative that satisfies the decision maker’s 
requirements. The SAW method uses the following equation to evaluate the utility 
value of the xth alternative (Ux); 

=

=
m

i
ixix YwU

1

 
(1) 

where, 
Ux: The utility value of xth alternative, x:1,…,v 
v: The total number of alternatives 
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m: The number of objectives 
wi: The weight for ith objective 
Yix: The normalized value of ith objective for xth alternative 

 

The performance measures were normalized between -1 and 1. Using Equation 1 
with a weight set of wHPR=0.5, wTT=0.30, wNWT=0.20, the utility value of each 
alternative was obtained. Then, the alternatives were ranked according to their utility 
values. The five alternatives with the best utility values were presented in Table 4.  

Table 4. The best alternatives for the weight set wHPR=0.5, wTT=0.30, wNWT=0.20 
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As seen in Table 4, for the best alternative, the values of parameters K, w, P1, P2, 
P3, and P4 are 18, 2, 8, 10, 8, and 10, respectively. According to this alternative; (1) 
the number of pallets in this DRC assembly line should be 18. (2) The worker 
capacity of each workstation should be 2, which means that maximum two workers 
can work simultaneously at a workstation. (3) The threshold values of Fryer’s 
parameters for workstations S1, S2, S3, S4 are 8, 10, 8, 10, respectively. This implies 
that a worker becomes eligible for transfer to another workstation when the workload 
of that worker is equal or less than the corresponding threshold values. It must be 
noted that the threshold value of the second workstation is at its maximum level since 
it is the bottleneck workstation of this DRC assembly line. We simulated this 
assembly line for the static case where the worker movement is not allowed (i.e., 
w=1) for 10 replications. The HPR and the TT levels were obtained as 41.107 
units/hour and 25.593 minutes, respectively. Hence, averagely 22.43% and 20% 
improvement in HPR and TT may be obtained when the best alternative is applied. It 
is obvious that a decision maker can find different solutions by using different weight 
structures that reflect her/his preferences. 

4   Conclusions 

In DRC Systems, the key element is the worker flexibility which is one of the 
dimensions of manufacturing flexibility. In this type of manufacturing systems, two 
important decisions should be made; “when” and “where” to move workers. In this 
study, we modified the Fryer’s parametric “when” rule and applied it to a special 
DRC assembly line. To optimize the design and operational parameters related to 
worker flexibility, we used ANN based simulation metamodeling which allows us to 
estimate the performance measures of all alternatives in a reasonable time. All 
alternatives were evaluated with respect to a utility function which consists of 
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weighted sum of normalized performance measures. We also proposed and 
implemented an integrated framework which automates the process of generating the 
training set and building simulation models.  
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Abstract. We propose a new packet routing method for a computer
network using chaotic neurodynamics. We first compose a basic neural
network which routes packets using information of shortest path lengths
from a node to the other nodes. When the computer network topology
is regular, the routing method works well, however, when the computer
network topology becomes irregular, the basic routing method doesn’t
work well. The reason is that most of packets cannot be transmitted to
their destinations because of packet congestion in the computer network.
To avoid such an undesirable problem, we extended the basic method to
employ chaotic neurodynamics. We confirm that our proposed method
exhibits good performance for computer networks with various topolo-
gies. Furthermore, we analyze why the proposed routing method is effec-
tive: we introduce the method of surrogate data which is often used in
the field of nonlinear time-series analysis. In consequence of introducing
such a statistical control, we confirm that using chaotic neurodynamics
is the most effective policy to decentralize the congestion of the packets
in the computer network.

1 Introduction

Recently, information-technologies have been developed exponentially. One of
typical examples is the Internet. We can get a wide variety of information in-
stantaneously using the Internet. In a computer network such as the Internet,
large amounts of packets of various sizes are flowing. However, they are often
delayed or lost. To avoid such undesirable situation, it is very important to route
the packets in the computer network.

The packet routing strategies can be generally classified into two categories.
The first one is a centralized control. The centralized control is a strategy that
a centralized unit controls all packet routing in the network. When the network
size not so large, the centralized unit can accumulate a state of the whole com-
puter network and decide which node is most appropriate to transmit packets
among all adjacent nodes. However, in a large-scale network, the centralized
control often fails to work well because the central unit has huge computational
load. Therefore, it is impossible to route most of the packets to transmit their
destinations realistically using the centralized control.

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 1012–1021, 2006.
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The second strategy is a decentralized control. The decentralized control is
a more realistic strategy than the centralized control for large-scale networks
because each unit transmits packet autonomously and adaptively.

A computer network comprises nodes and links. A packet is transmitted from
one node to another through the links. A packet can be transmitted from the
nodes and multiple packets can be received simultaneously. Every node stores
some amounts of packets in a buffer and all packets are transmitted according
to First-In-First-Out basis. Then, when a buffer of the node is full, the packet
transmitted to the node will be removed. In addition, the packet flow is regulated
by an upper limit. Thus, every packet is also removed if it exceeds this limit.
When a packet is removed, the packet is resent from its source until it will be
transmitted to the destination of the packet.

In an ideal computer network, every node has an infinite buffer size and
throughput. In such a network, the Dijkstra algorithm[1], one of the basic strate-
gies to find a shortest path of the network, may work well[1]. However, under
a real situation, the buffer sizes are finite and the throughputs at each node
are different, which eventually leads to congest the route to transmit packets.
Then it is inevitable to consider how to avoid such congested routes. It means
that an ideal packet routing problem is easy to be solved, but real packet routing
problems probably become very difficult and possibly may belong to a hard class.

As for solving NP hard class combinatorial optimization problems, for exam-
ple, the traveling salesman problems (TSP) or the quadratic assignment prob-
lems (QAP), it is widely acknowledged that a method using chaotic neurody-
namics is very effective[2, 3, 4, 5]. The method[2, 3, 4, 5] extends a tabu search
strategy[6, 7], which avoids a solution that has already been searched for a while.
If the strategy is modified to involve chaotic neurodynamics[2, 3, 4, 5], the al-
gorithm exhibits better performance not only for bench mark problems of TSP
or QAP, but also for real life problems such as bipartitioning problems[8], motif
extraction problems from DNA sequences[9] and time tabling problems[10].

In the present paper, we propose a new routing-packets method to introduce
such techniques[2, 3, 4, 5, 8, 9, 10]. We confirm that our proposed method is
very effective not only for regular networks but also for randomized networks[11]
and scale-free networks[12] in comparison with the Dijkstra algorithm. Further-
more, we analyze the effectiveness of the proposed routing method, applying
the method of surrogate data: a statistical hypothesis testing frequently used in
nonlinear time-series analysis. In our analysis, we use the method of surrogate
data as a statistical control to produce a surrogate time-series which has the
same statistics as internal states which correspond to the origin of chaotic neu-
rodynamics. We confirm that using chaotic neurodynamics is the most effective
policy to decentralize packet congestion in the computer networks.

2 Routing Method Using Chaotic Neurodynamics

In order to realize chaotic neurodynamics, we introduced a chaotic neural
network[13]. First, we consider a computer network model which has N nodes.
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In the computer network, the i-th node has Ni adjacent nodes (i = 1, . . . , N). In
this framework, each node has its own neural network, and Ni adjacent neurons
are assigned to each node. The ij-th neuron corresponds to the connection be-
tween the i-th node and its j-th adjacent node. We first compose a basic neural
network which operates to minimize a distance of transmitting packets from the
i-th node to the destinations. To realize this method, we consider the following
internal state of the ij-th neuron:

ξij(t + 1) = β

(
1− dij + djo

dc

)
, (1)

where dij is the distance from the i-th node to the j-th adjacent node; djo is
the distance from the j-th adjacent node to the destination of the i-th node; dc

is a control parameter which expresses the size of the computer network; β is a
normalization parameter. If ξij(t + 1) is the largest value in the neurons of the
i-th node, the ij-th neuron fires, which means that the j-th adjacent node is
selected to transmit a packet from the i-th node. The decent down-hill dynamics
of Eq.(1) corresponds to the basic Dijkstra algorithm[1] and works well for the
ideal case.

However, under real circumstances we have to consider both network topolo-
gies and packet congestion at nodes. If the network topology is not regular, the
number of links of each node is biased. In addition, the number of routes through
which the packets are transmitted to the destinations also increases. When we
conduct a packet routing for an irregular network, if we only consider to min-
imize the shortest distance, many packets might be transmitted to the nodes
which are connecting many adjacent nodes. This behavior leads to delay or lost
packets. To avoid such an undesirable situation, we introduce a refractory effect
of a chaotic neuron model[13] described as follows:

ζij(t + 1) = −α
t∑

d=0

kd
rxij(t− d) + θ, (2)

where α is a control parameter of the refractoriness; kr is a decay parameter
of the refractoriness; xij(t) is the output of the ij-th neuron at time t; θ is a
threshold.

The refractory effect plays an important role for how to decentralize the pack-
ets in the adjacent nodes. Because the refractory effect is related to the informa-
tion of a past routing history, we expect that the packets are transmitted to their
destination by avoiding the nodes which packets have just been transmitted to
and which possibly have already stored many packets.

In addition, we use a mutual connection to control firing rates of neurons,
because too frequent firing often leads to a fatal situation of the packet routing.
The mutual connection is defined as follows:
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ηij(t + 1) = W −W

Ni∑
j=1

xij(t), (3)

where W is a positive parameter.
Then, the output of the ij-th neuron is defined as follows;

xij(t + 1) = f{ξij(t + 1) + ζij(t + 1) + ηij(t + 1)}, (4)

where f(y) = 1/(1+e−y/ε). In this algorithm, if xij(t+1) > 1/2, the ij-th neuron
fires; the packet at the i-th node is transmitted to the j-th node. If the outputs
of multiple neurons exceed 1/2, we defined that the neuron whose output is the
largest only fires.

3 Evaluation of the Proposed Method in Some Networks
with Various Topology

We compared the proposed method with the Dijkstra algorithm and a packet
routing method using a neural network (the NN method) for the randomized
networks[11] and the scale-free networks[12]. The NN method is a routing
method that each neuron has only the gain effect which is defined by Eq.(1).

We conducted computer simulations of the packet routing by the following
procedures. First, we assigned random values from one to five, which correspond
to throughputs at all nodes. In addition, each node calculates the shortest dis-
tance from the node to the other nodes. In other words, each node has a routing
table which contains information of shortest distances. Next, we generated pack-
ets randomly at all nodes in the computer network using uniformly distributed
random numbers; each packet has a destination and the destinations are assigned
randomly using uniformly distributed random numbers. Then, the link selection
is simultaneously conducted at every node. We set the buffer size of the i-th
node to 1, 000 times of the number of adjacent nodes of the i-th node. We also
set the upper limit of the packet movement to 20. A packet is removed when
the buffer is full and the packet exceeds the limit. The packet is resent from a
source to its destination until it will be delivered to the destination.

We repeated the link selection and packet transmitting for 2, 048 iterations.
We fixed the total number of packets in the network. When the packet arrived
at its destination, we added a new packet. Then, a source and its destination of
the new packet are randomly decided again using uniformly distributed random
numbers. We set the parameters of Eqs.(1)–(3) as follows: β = 1.5, α = 0.045,
kr = 0.98, ε = 0.05 W = 0.05 and θ = 0.5. We also set dc as the longest path
length in the network.

To evaluate performance of the proposed method, we introduced the following
quantities:

Np : an average number of packets at each node,
Na : the number of packets arriving at their destinations,
T : an average arrival times of packets arriving at their destinations.
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Fig. 1. The regular network (left) and a fully randomized network(right), and a par-
tially randomized network. We rewired each link in the regular network based on the
rewiring probability(p). We can produce some different types of the networks; the reg-
ular network corresponds to p = 0, a fully randomized network corresponds to p = 1.0.
In the above example of the partially randomized network, p = 0.2.

Np =
Ntp

N
, T =

Ttp

Na
,

where Ntp is the total number of packets in the network; Ng is the number of all
packets generated in the network; Ttp is the accumulated arrival times of packets
at their destinations.

The randomized networks are generated in a similar way as Watts and Stro-
gatz[11]. Starting from the regular network as shown in Fig.1(left), we rewired
each link at random with a probability p (0 ≤ p ≤ 1). We also introduced a con-
straint that each link cannot be connected to a further node beyond three links.
This construction allows us to tune the network between the regular network
(p = 0), partially randomized networks (0 < p < 1), and a fully randomized
network (p = 1). In this simulation, we fixed an average number of packets at
each node (Np) to 50.

Results for the randomized networks are shown in Fig.2. In Fig.2(a), the
proposed method transmits many packets to their destinations compared with
the NN method and the Dijkstra algorithm for every p values. In addition, in
Fig.2(b), the proposed method keeps the average arrival times of packets arriving
at their destinations (T ) shorter than the NN method and the Dijkstra algorithm.

Next, we conducted computer simulations on the scale-free networks. The
scale-free networks are generated in the same way as Barabasi and Albert[12].
This network is constructed by the following procedure: First, we made a com-
plete graph which has four nodes, then we put a new node with three links
at every time step. Next, we connected three links of the newly added node
to the nodes already existing in the computer network with the probability

Π(ki) =
ki∑n

j=1 kj
, where ki is the degree of the i-th node (i = 1, . . . , n); n is the

number of nodes at a current iteration. In this simulation, the scale-free networks
comprise 100 nodes.
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Fig. 2. Relationship between rewiring probability (p) and (a) the number of packets
arriving at their destinations (Na), and (b) an average arrival times of packets arriving
at their destinations (T ) for the randomized networks (Fig.1). In these figures, NN is
the routing method that each neuron has only the gain effect(Eq.(1)).
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Fig. 3. Relationship between average number of packets at each node (Np) and (a)
an average number of packets arriving at their destinations (A), and (b) an average
arrival times of packets arriving at their destinations (T ) for the scale-free networks.
NN is the routing method that each neuron has only the gain effect(Eq.(1)).

Results for the scale-free networks are shown in Fig.3. In Fig.3(a), the pro-
posed method transmits many packets to their destinations in comparison with
the NN method and the Dijkstra algorithm. In addition, in Fig.3(b), the proposed
method reduces an average arrival times of packets arriving at their destinations
(T ) in comparison with the NN method and the Dijkstra algorithm for every Np.

From Figs.2 and 3, we confirmed that the proposed method can select better
adjacent nodes to transmit packets to their destinations faster without discarding
them not only for the regular networks but also for the randomized networks
and the scale-free networks.
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4 Surrogate Analysis of the Effective of the Proposed
Method

In previous section, we confirmed that our routing method using the chaotic
neurodynamics exhibits good performance for the randomized networks and
the scale-free networks. Based on the packet history of transmitting packets,
the chaotic neurodynamics defined by Eq.(2) decentralizes the packets in the
computer network. However, it is very important issue to consider whether the
chaotic neurodynamics is really effective for the various topological networks.
It might be sufficient to use only a stochastic fluctuation, which has produced
the same first-order or the same second-order statistics of chaotic dynamics for
avoiding the congested routes. From this point of view, we compared the perfor-
mance of the proposed method with the following five routing methods:

1. Random neuron (RN),
2. Random shuffle (RS),
3. Fourier transform (FT),
4. Amplitude adjusted Fourier transform (AAFT), and
5. Fourier shuffle (FS).

These five methods produce a surrogate fluctuation of chaotic dynamics which
preserves the same statistics.

In the RN method, Eq.(2) in the proposed method is replaced by ζij(t +1) =
−U(t), where U(t) is a uniformly distributed random number[3, 14]. This method
can also decentralize the packets in a stochastic way.

The RS method simply replaces the time-series of Eq.(2) by a time-series
which has the same first order statistics as the time-series of Eq.(2)[15]; aver-
age, variance and standard deviation. The FT method uses a time-series which
has the same correlation function as the time-series of Eq.(2), but destroys the
first-order statistics. The AAFT method makes a time-series which preserves
both first order and second order statistics of the time series of Eq.(2). The FS
method also produces a time-series that preserves both first- and second-order
statistics of the time-series of Eq.(2). However, the preservation of the correla-
tion structure (the second-order statistics) using the FS method is superior to
the AAFT method[15].

We analyze the proposed method and the other routing methods using the
method of surrogate data for the randomized networks as shown in Fig.1 and
the scale-free networks. In these simulations, we used the same experimental
assumption as those in Section 3.

Results for the randomized networks are shown in Fig.4. In Fig.4(a), the pro-
posed method transmits many packets to their destinations for every rewiring
probability (p) in comparison with the other routing methods. In addition, in
Fig.4(b), the proposed method reduces an average arrival times of packets ar-
riving at their destinations (T ) in comparison with the other routing methods
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at their destinations (T ) for the randomized networks (Fig.1)
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Fig. 5. Relationship between average number of packets at each node (Np) and (a)
the number of packets arriving at their destinations (Na), and (b) an average arrival
times of packets arriving at their destinations (T ) for the scale-free networks

for every p values. Average arrival times of packets arriving at their destinations
(T ) for randomized networks in the AAFT method is the shortest. However, we
cannot say that the AAFT method has good performance. This is because the
number of packets arriving at their destinations (Na) in the AAFT method is
the smallest in comparison with the other routing methods.

Results for the scale-free networks are shown in Fig.5. In Fig.5(a), the pro-
posed method transmits more packets to their destinations than the other rout-
ing methods. Furthermore, in Fig.5(b), the proposed method reduces an average
arrival times of packets arriving at their destinations (T ) in comparison with the
other routing methods for almost Np values. In Fig.5(b), average arrival times
of packets arriving at their destinations (T ) in the RN method is the short-
est when the average number of packets at each node (Np) is smaller than 45.
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However, we cannot say that the RN method has good performance for the scale-
free networks because the number of packets arriving at their destinations (Na)
in the RN method is smaller than the proposed method.

In Figs.4 and 5, the proposed method transmits large number of packets (Na)
to their destinations compared with the other routing methods for the random-
ized and the scale-free networks. These results indicate that the proposed method
selects better adjacent nodes to transmit the packets to their destinations. Fur-
thermore, selection of better adjacent nodes using a past-routing history shorten
average arrival times of arriving packets (T ) for the randomized networks and
the scale-free networks.

5 Conclusion

In the present paper, we proposed a new algorithm for packet routing using
chaotic dynamics. By introducing refractory effect, which is an essential charac-
teristic of real nerve cells, the proposed method shows the highest performance
for the randomized networks and the scale-free networks in comparison with
the Dijkstra algorithm. Furthermore, we analyzed the proposed method using
chaotic neurodynamics with the method of surrogate data, which is an impor-
tant analysis technique in the field of nonlinear time-series analysis[15]. From the
results, we also confirmed that it is an effective method to use chaotic neurody-
namics in order to decentralize packets in the computer networks in comparison
with the routing methods using the surrogate data making algorithms.

It has been shown that a meta-heuristic algorithm by the chaotic neural
network[13] is effective for solving traveling salesman problems (TSP) and
quadratic assignment problems (QAP)[4, 5]. Although we used almost the same
strategy to employ chaotic neurodynamics as in Refs.[2, 3, 4, 5], the packet rout-
ing problem has a different property from TSP and QAP. TSP and QAP are
usually static because the state of the problem is fixed, while the computer net-
work always changes its state because of the flowing of the packets. Namely, the
packet routing problem is dynamical combinatorial optimization. Therefore, the
results shown in this paper is a good evidence that the chaotic neurodynam-
ics could also be effective for solving the dynamical combinatorial optimization
problems whose constraints are always changed, or have nonstationarity.

Many schemes of packet routing methods which are aimed at decentralizing
packets in the computer network have also been proposed. In this paper, we
do not compare the performance of the proposed method with such routing
methods. Thus, it is an important task to compare performance of the proposed
routing method with such routing methods.

We are grateful to H. Nakajima, Y. Horio, M. Adachi, M. Hasegawa, and
H. Sekiya for their valuable comments and discussions. The research of TI
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Bärecke, Thomas I-396
Baruth, Oliver I-340
Bassis, S. II-270
Bengio, Samy II-24
Benmokhtar, Rachid II-65
Benuskova, Lubica I-61
Bertolini, Lorenzo II-654
Bezerianos, Anastasios II-818
Bieszczad, Andrzej I-474
Bieszczad, Kasia I-474
Billard, Aude G. I-770
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Estévez, Pablo A. I-464

Fang, Rui I-801
Fei, Minrui I-140
Feng, Bo-qin II-932
Fernández-Redondo, Mercedes I-293
Ferreira, Aida A. II-757
Figueroa, Miguel I-963
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Mureşan, Raul C. I-718

Na, Jin Hee II-606
Nagata, Kenji II-371
Nakagawa, Masanori I-495
Nakajima, Shinichi II-240
Nakamura, Yutaka I-820
Nakano, Hidehiro I-811
Nam, Taekyong II-616
Namoun, Faycal I-93
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Pomares, Héctor I-41
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Šnorek, Miroslav I-406
Sofokleous, Anastasis II-55
Sperduti, Alessandro I-349
Srinivasan, Cidambi II-350
Stafylopatis, Andreas II-45, II-84,

II-391
Stamou, Giorgos II-45
Starita, Antonina I-130
Stavrakakis, George II-746
Steil, Jochen II-508
Stentiford, F.W.M. II-481
Storkey, Amos J. II-634
Stroobandt, Dirk I-760
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Toussaint, Marc I-898, II-634
Trahanias, Panos I-573
Trentin, Edmondo II-410
Tsapatsoulis, Nicolas II-141, II-538
Tsotsos, John K. II-471, II-498, II-518,

II-548
Tsoukalas, Lefteri H. II-701, II-736
Tuffy, Fergal I-944
Türker, Nurhan II-923, II-974
Tzelepis, D. II-672

Udluft, Steffen I-71
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