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Abstract. The embryonic nervous system is refined over the course of
development as a result of two main processes: apoptosis (programmed
cell death) and selective axon pruning. We simulated a large scale spik-
ing neural network characterized by an initial apoptotic phase, driven by
an excessive firing rate, followed by the onset of spike-timing-dependent
plastiticity (STDP), driven by spatiotemporal patterns of stimulation.
In the apoptotic phase the cell death affected the inhibitory more than
the excitatory units. The network activity stabilized such that recurrent
preferred firing sequences appeared along the STDP phase, thus sug-
gesting the emergence of cell assemblies from large randomly connected
networks.

1 Introduction

Genetic programs are assumed to drive the primordial pattern of neuronal con-
nectivity through the actions of a limited set of trophic factors and guidance
cues, initially forming excessive branches and synapses, distributed somewhat
diffusely [9]. Then, refinement processes act to correct initial inaccuracies by
pruning inappropriate connections while preserving appropriate ones. The em-
bryonic nervous system is refined over the course of development as a result of the
twin processes of cell death and selective axon pruning. Apoptosis – genetically
programmed cell death – and necrosis – pathologic or accidental cell death due
to irreversible damage – are two rough mechanisms for refining embryonic con-
nections. However, the creation of complex connectivity patterns often requires
the pruning of only a selected subset of the connections initially established by
a neuron. Massive synaptic pruning following over-growth is a general feature
of mammalian brain maturation [13]. Pruning starts near time of birth and is
completed by time of sexual maturation. Quantitative analyses of synaptogene-
sis in the rat [1], the Rhesus monkey [3], and human [6] cortex have suggested a
transient phase of high density of synapses during infancy.
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Trigger signals able to induce synaptic pruning could be related to dynamic
functions that depend on the timing of action potentials. Spike-timing-dependent
synaptic plasticity (STDP) is a change in the synaptic strength based on the or-
dering of pre- and post-synaptic spikes. This mechanism has been proposed to
explain the origin of long-term potentiation (LTP), i.e. a mechanism for rein-
forcement of synapses repeatedly activated shortly before the occurrence of a
post-synaptic spike [2]. STDP has also been proposed to explain long-term de-
pression (LTD), which corresponds to the weakening of synapses strength when-
ever the pre-synaptic cell is repeatedly activated shortly after the occurrence
of a post-synaptic spike [11]. The relation between synaptic efficacy and synap-
tic pruning [4] suggests that the weak synapses may be modified and removed
through competitive “learning” rules. Competitive synaptic modification rules
maintain the average neuronal input to a post-synaptic neuron, but provoke se-
lective synaptic pruning in the sense that converging synapses are competing for
control of the timing of post-synaptic action potentials [14].

In this study the synaptic modification rule was applied to the excitatory-
excitatory (exc, exc) and excitatory-inhibitory (exc, inh) connections. This plas-
ticity rule might produce the strengthening of the connections among neurons
that belong to cell assemblies characterized by recurrent patterns of firing. Con-
versely, those connections that are not recurrently activated might decrease in
efficiency and eventually be eliminated. The main goal of our study is to de-
termine whether or not, and under which conditions, such cell assemblies may
emerge from a large neural network receiving background noise and content-
related input organized in both temporal and spatial dimensions.

2 Model

The originality of our study stands on the application of an original bio-inspired
STDP modification rule compatible with hardware implementation [5]. The com-
plete neural network model is described in details elsewhere [7]. A sketch descrip-
tion of the model with specific model parameters related to the current study
follows below.

10,000 integrate-and-fire units (80% excitatory and 20% inhibitory) were laid
down on a 100×100 2D lattice according to a space-filling quasi-random Sobol
distribution. Sparse connections between the two populations of units were ran-
domly generated according to a two-dimensional Gaussian density function such
that excitatory projections were dense in a local neighborhood, but probabil-
ity long-range excitatory projections were allowed. Edge effects induced by the
borders were limited by folding the network as a torus.

The state of the unit (spiking/not spiking) was a function of the membrane
potential and a threshold. The states of all units were updated synchronously
and the simulation was performed at discrete time steps corresponding to 1 ms.
After spiking, the membrane potential was reset, and the unit entered an ab-
solute refractory period lasting 3 and 2 time steps for excitatory and inhibitory
units, respectively. For the simulation runs presented here each unit received a
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background activity following an independent Poisson process and the “sponta-
neous” mean firing rate of the units was 5 spikes/s.

It is assumed a priori that modifiable synapses are characterized by discrete
activation levels that could be interpreted as a combination of two factors: the
number of synaptic boutons between the pre- and post-synaptic units and the
changes in synaptic conductance. In the current study we attributed a fixed
activation level (meaning no synaptic modification) Aji(t) = 1, to (inh, exc) and
(inh, inh) synapses while activation levels were allowed to take one of Aji(t) =
{0, 1, 2, 4} for (exc, exc) and (exc, inh), Aji(t) = 0 meaning that the projection
was permanently pruned out. For Aji(t) = 1, the post-synaptic potentials were
0.84 mV and -0.8 mV for excitatory and inhibitory units, respectively.

The death of units by means of apoptosis is introduced in here, which is a
major difference with preivous models [7]. A dead unit is characterized by the
absence of any spiking activity. We define two mechanisms inducing cell death:
the first is provoked by an excessive firing rate (apoptosis) and the second by
the loss of excitatory inputs. For each unit at each time step, the mean firing
rate computed over a window of 50 ms preceding the evaluation was compared
to a threshold value of 245 and 250 spikes/s for excitatory and inhibitory units,
respectively. If the rate exceeded the threshold, then the unit had a probability
of entering apoptosis determined by the function

Papoptosis(t) =
0.5 · t2 − 4.5 · 10−6 · t3

44 · (2.5 · 106 + 6 · 10−3 · t2) . (1)

with Papoptosis(t = 100) = 4.5 · 10−5, Papoptosis(t = 700) = 2.2 · 10−3, and
Papoptosis(t = 800) = 2.9 · 10−3. The apoptosis could be induced according to
this mechanism during an initial phase lasting 700 or 800 simulation time steps.
After this intial phase, the timing of the pre- and post-synaptic activity started
driving the synaptic plasticity through the STDP rule. Due to this plasticity, the
projections from and to “dead” units underwent a slow activation level decay
finally leading to their pruning when Aji(t) = 0. “Dead” projections were thus
pruned along with others by the action of STDP and some units were found
without any excitatory input left. The loss of excitatory inputs provoked the cell
death and these units stopped firing (even in presence of background activity)
immediately after the pruning of the last excitatory input synapse.

3 Simulations

Each simulation run lasted 105 discrete time steps (1 ms per time step), corre-
sponding to a duration of about 2 minutes. After a stabilization period of 1000 ms
without any external input, a 100 ms long stimulus was presented every 2000 ms.
Overall this corresponds to 50 presentations of the stimulus along one simula-
tion run. Before the simulation started, two sets of 400 excitatory units were
randomly selected from the 8,000 excitatory units of the network, labeled sets A
and B. Each set was divided into 10 groups of 40 units, A = {A1, A2, . . . , A10}
and B = {B1, B2, . . . , B10}. At each time step during a stimulus presentation,
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Fig. 1. Example of one AB stimulus presentation

the 40 units of one group received a large excitatory input on their membrane,
leading to their synchronous firing. The 10 groups of a set were stimulated follow-
ing an ordered sequence, thus defining a reproducible spatiotemporal stimulus
composed by the repetition of sequences lasting 10 ms each (see Fig. 1). A ran-
dom, equiprobable mix of the two stimuli composed by either 5× sequence A
followed by 5× sequence B (AB) or 5× sequence B followed by 5× sequence A
(BA) was presented.

At time t=100 s, the units, characterized by more than four active excitatory
input projections that did not belong to the sets of stimulated units A or B, were
selected. For each of these selected units, the spikes produced by the independent
Poisson background process were discarded from their spike trains to extract the
so-called “effective spike trains”. Thus, the effective spike trains correspond to
the true network activity. The first 1000 ms of activity were discarded because
this interval corresponds to the apoptosis phase. These effective spike trains were
searched for the occurrence of spatiotemporal firing patterns [16], as described
in the following section.

3.1 Time Series Analysis

Spatio-temporal firing patterns (often referred to as “preferred firing sequences”)
are defined as sequences of intervals with high temporal precision (of the order
of few ms) between at least 3 spikes (of the same or different units) that recur
at levels above those expected by chance [17]. The pattern detection algorithm
begins with finding all single or multineuron sequences of intervals that repeat
two or more times within a record. Secondly, the algorithm computes how many
of such sequences of intervals can be expected by chance and provides confidence
limits for this estimation. The “pattern grouping algorithm”1 [16] performs clus-
terization into one group of sequences of intervals with slight difference in spike
timing. Figure 2 illustrates the outline of this method. For the present study,
the pattern grouping algorithm was used to find patterns of at least three spikes
(triplets), with a minimal significance level of 10%, repeating at least 7 times in
the interval [1-100] s, provided the entire pattern lasted not more than 800 ms
and was repeated with an accuracy of less than ±5 ms.
1 http://OpenAdap.net/

http://OpenAdap.net/
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Fig. 2. Outline of the general procedure followed by pattern detection algorithms.
(a): Analysis of a set of simultaneously recorded spike trains. Three cells, labeled A,
B, and C, participate to a patterned activity. Three occurrences of a precise pattern
are detected. Each occurrence of the pattern has been labeled by a specific marker in
order to help the reader to identify the corresponding spikes. (b): Estimation of the
statistical significance of the detected pattern. (c): Display of pattern occurrences as
a raster plot aligned on the pattern start.

4 Results

4.1 Firing Rate-Induced Apoptosis

Figure 3 shows the evolution of the number of excitatory and inhibitory units
during the first simulated second. For the first 800 time steps, units with mean
firing rates exceeding the threshold entered apoptosis with the probability ex-
pressed by Papoptosis(t). It is possible to linearly fit the cell death dynamics with
the probability function suggesting that the inhibitory units enter the apoptosis
process about 70 ms before the excitatory units. After the end of this initial
phase, STDP-driven synaptic pruning could modify the synaptic weights, thus
inducing cell death due to the loss of excitatory inputs at a longer time-scale
that is not depicted in Figure 3.

The initial apoptosis phase prevented the network from entering overactivity
due to saturation by inducing the death of those units that tended to have an
exceeding activity since the early steps of the simulation. These units are known
to destabilize the network and ignite the saturation. The addition of this feature
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Fig. 3. Ratio of surviving units as a function of time with respect to initial condi-
tions: 8000 excitatory units (plain line) and 2000 inhibitory units (dotted line). In this
simulation, firing rate-induced apoptosis was stopped after 800 time steps. Thin lines
correspond to the probability function Papoptosis(t) with lags.

to the model greatly improved the stability of the network while maintaning its
ability to produce spatiotemporal firing patterns.

4.2 Spatiotemporal Firing Patterns

In two different simulations, firing rate-induced apoptosis was stopped after 700
or 800 time steps. The first condition lead to a larger number of surviving units
at t=100 s with lower mean firing rates than in the second condition. Spatiotem-
poral firing patterns were searched for in both conditions. Two patterns involving
a single excitatory unit are described in more details in Figure 4 and Figure 5.

The pattern <79,79,79; 453±3.5, 542±2.5> was composed by spikes produced
by a single unit labeled here #79 (Fig. 4a). This notation means that the pattern
starts with a spike of unit #79, followed 453±3.5 ms by a second spike of the
same unit, and followed by a third spike 542±2.5 ms after the first. Between t=1
and t=100 seconds, 51 repetitions of the pattern were observed. The statistical
significance of this pattern was 7.5 ·10−4. No correlation could be found between
the timing of the spatiotemporal pattern and the stimulation onset (Fig. 4b).
Figure 4c shows that the occurrences of the pattern onset along the simulation.
The pattern occurred 23 times between 1 < t < 25 seconds, 13 times between
25 < t < 50 seconds, and 15 times between 50 < t < 100 seconds. This might
suggest that the network dynamics giving rise to the pattern was slowly disrupted
by the continuous STDP-driven pruning.

The pattern <13,13,13; 234±3.5, 466±4.5> was composed by spikes produced
by a single unit labeled here #13 (Fig. 5a). This notation means that the pattern
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Fig. 4. Spatiotemporal pattern <79,79,79; 453±3.5, 542±2.5>. (a): Raster plot show-
ing the 51 repetitions of the pattern aligned on the pattern start; (b): Raster plot
showing the activity of unit #79 aligned on the stimulus onset: each start event of
a pattern occurrence is marked by a circle; (c): Pattern occurrence timing plot: each
vertical tick represents the start event of a pattern occurrence.

starts with a spike of unit #13, followed 234±3.5 ms by a second spike of the
same unit, and followed by a third spike 466±4.5 ms after the first. Between t=1
and t=100 seconds, 52 repetitions of the pattern were observed. The statistical
significance of this pattern was 3.4 ·10−3. No correlation could be found between
the timing of the spatiotemporal pattern and the stimulation onset (Fig. 5b).
Figure 5c shows that the pattern occurred 7 times between 1 < t < 25 seconds,
27 times between 25 < t < 50 seconds, 8 times between 50 < t < 75 seconds, and
10 times between 75 < t < 100 seconds. This might suggest that the changes
in the network dynamics induced by the continuous STDP-driven pruning lead
to a transient state between 25 < t < 50 seconds when the appearance of this
pattern is favored.

5 Discussion

We simulated a large scale spiking neural network, with the time resolution of
1 ms, characterized by a brief initial apoptotic phase that extended our previous
model [7]. During this phase the units that exceeded a certain threshold of firing
had an increasing probability to die with the passing of time until 700 (or 800,
depending on the simulation runs) time units. The inhibitory units entered the
apoptosis process about 70 ms before the excitatory units. The death dynam-
ics of both populations followed the probabilty function to die with only minor
deviations. After the stop of the apoptosis, spike-timing-dependent plastiticity
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Fig. 5. Spatiotemporal pattern <13,13,13; 234±3.5, 466±4.5>. (a): Raster plot show-
ing the 52 repetitions of the pattern aligned on the pattern start; (b): Raster plot
showing the activity of unit #13 aligned on the stimulus onset: each start event of
a pattern occurrence is marked by a circle; (c): Pattern occurrence timing plot: each
vertical tick represents the start event of a pattern occurrence.

(STDP) and synaptic pruning were made active. Selected sets of units were ac-
tivated by regular repetitions of a spatiotemporal pattern of stimulation. During
the STDP phase, the cell death could occur only if a unit became deafferented,
i.e. it looses all its excitatory afferences because of synaptic pruning.

We recorded the spike trains of all excitatory units that were not directly
stimulated and that were surviving at the arbitrary end of the simulation set at
t = 100 seconds. In these spike trains we searched for preferred firing sequences
that occurred beyond random expectation [16] and we found evidence of their ap-
pearance. We suggest that the detection of such preferred firing sequences might
be associated with the emergence of cell assemblies from the initially locally con-
nected random network [8]. The addition of cell death to the model improved
the stability of the network over our previous studies while maintaining its abil-
ity to let emerge cell assemblies associated to preferred firing sequences. The
self-organization of spiking neurons into cell assemblies was recently reported in
other studies of large simulated networks connected by STDP-driven projections
[10]. These authors emphasized the emergence of spontaneously self-organized
neuronal groups, even in absence of correlated input, associated with the spa-
tiotemporal structure of firing patterns, if axonal conduction delays and STDP
were incorporated in the model.

Our simulation results offer also the ground of testing several hypothesis with
respect to neuroanatomical experimental results. Indeed, there is an increasing
interest in investigating the cortical circuits and their synaptic connectivity with
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a statistical approach related to the graph theory. Results obtained from layer
5 neurons in the visual cortex of developping rats [15] indicate that many as-
pects of the connectivity patterns differ from random networks. In particular,
the distribution of synaptic connection strength in those cortical circuits show an
overrepresentation of strong synaptic connections correlated with the overrepre-
sentation of some connectivity patterns. The authors [15] suggest that the local
cortical network structure could be viewed as a skeleton of stronger connections
in a sea of weaker ones.

The spike-timing-dependent plasticity rule implemented in our simulation has
already been successfully implemented and tested in the poetic tissue [5]. This
electronic circuit is a flexible hardware substrate showing the basic features that
permit living beings to show evolutionary, developmental or learning capabilities
[12]. In future work, we intend to use the poetic tissue in the investigation
of the role of apoptosis and synaptic pruning in the unsupervised shaping of
large simulated neural networks. The genomic features of the poetic tissue offer
the possibility to implement the programmed cell death in simulations of large
spiking neural networks. It is expected that the computational power of the
dedicated plateform will ease the simulation of larger networks to explore the
impact of their size on the dynamics.
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