
S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 936 – 943, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Physical Mapping of Spiking Neural Networks Models
on a Bio-inspired Scalable Architecture

J. Manuel Moreno1, Javier Iglesias2, Jan L. Eriksson2, and Alessandro E.P. Villa3

1 Technical University of Catalunya, Dept. of Electronic Engineering
Campus Nord, Building C4, c/Jordi Girona 1-3, 08034-Barcelona, Spain

moreno@eel.upc.edu
2 Laboratory of Neuroheuristics, Information Systems Department INFORGE

University of Lausanne, Lausanne, Switzerland
Javier.Iglesias@unil.ch, jan@lhn.unil.ch

3 INSERM U318, University Joseph-Fourier Grenoble 1, Pavillon B
CHUG Michallon, BP217, F-38043 Grenoble Cedex 9, France

Alessandro.Villa@ujf-grenoble.fr

Abstract. The paper deals with the physical implementation of biologically
plausible spiking neural network models onto a hardware architecture with bio-
inspired capabilities. After presenting the model, the work will illustrate the ma-
jor steps taken in order to provide a compact and efficient digital hardware
implementation of the model. Special emphasis will be given to the scalability
features of the architecture, that will permit the implementation of large-scale
networks. The paper will conclude with details about the physical mapping of
the model, as well as with experimental results obtained when applying dy-
namic input stimuli to the implemented network.

1 Introduction

Spiking neural networks models have attracted a considerable research interest during
the last years [1], [2] because of their biological plausibility and their suitability for a
physical hardware implementation. From the different learning mechanisms available
for this neural models Spike Timing Dependent Plasticity (STDP) has received an
increasing interest [3] because of experimental evidence [4] and observations suggest-
ing that synaptic plasticity is based on discrete dynamics [5].

In this paper we shall consider a spiking neural network model whose learning
mechanism is based on discrete variables [6]. After presenting the model the sequence
of steps driving to its physical realization will be explained. Then the implementation
on the model on a scalable hardware architecture with bio-inspired features will be
described. The implementation results show that it is possible to attain real-time proc-
essing capabilities for dynamic visual stimuli.

2 Spiking Neural Network Model

The model consists of Leaky Integrate-and-Fire neuromimes connected by synapses
with variable weight depending on the time correlation between pre- and post-synaptic

 Physical Mapping of Spiking Neural Networks Models 937

spikes. The synaptic potentials are added until their result Vi(t) overcomes a certain
threshold. Then a spike is produced, and the membrane value is reset. The simplified
equation of the membrane value is:

⎪⎩

⎪
⎨
⎧

=+⋅

=
=+

∑ 0)()()(

1)(0
)1(

tSwhentJtVk

tSwhen
tV

iijimem

i

i
 (1)

where kmem=exp(-Δt/τmem), Vi(t) is the value of the membrane and Si(t) is the state
variable which signals the occurrence of a spike. The value of Jij is the output of each
synapse (ij) where j is the projecting neuron and i is the actual neuron.

When a spike occurs in the pre-synaptic neuron, the actual value of the synaptic
output Jij is added to the weight of the synapse multiplied by an activation variable A.
Conversely, if there is no pre-synaptic spike then the output Jij is decremented by a
factor ksyn. Then, the value of Jij corresponds to the following equation:

⎪⎩

⎪
⎨
⎧

=⋅

=⋅+
=+

0)()(

1)())(()(
)1(

tSwhentJk

tSwhentAwtJ
tJ

jijsyn

jRiRjRiRjij

ij
 (2)

where j is the projecting neuron and i is the actual neuron. R is the type of the neuron :
excitatory or inhibitory, A is the activation variable which controls the strength of the
synapse, and ksyn is the kinetic reduction factor of the synapse. If the actual neuron is
inhibitory, this synaptic kinetic factor will reset the output of the synapse after a time
step, but if the actual neuron is excitatory, it will depend on the projecting neuron. If
the projecting neuron is excitatory the synaptic time constant will be higher than if it
is inhibitory. The weight of each synapse also depends on the type of neuron it con-
nects. If the synapse connects two inhibitory neurons, the weight will always be null,
so an inhibitory cell cannot influence another inhibitory cell. If a synapse is connect-
ing two excitatory neurons, it is assigned a small weight value. This value is higher
for synapses connecting an excitatory neuron to an inhibitory one, and it takes its
maximum value when an inhibitory synapse is connected to an excitatory cell.

The changes in strength of an excitatory-excitatory synapse depend on the variable
A which is a function of on an internal variable Lij given by the following equation:

Lij(t+1)=kact·Lij(t) + (YDj(t)·Si(t)) – (YDi(t)·Sj(t)) (3)

where kact is a kinetic activity factor, which is the same for all the synapses and YD is
a “learning” decaying variable that depends on the interval between a pre-synaptic
spike and a post-synaptic spike. When there is a spike, YD reaches its maximum value
at the next time step. In the absence of a spike the value of YD will be decremented by
the kinetic factor klearn, which is the same for all synapses. When a pre-synaptic spike
occurs just before a post-synaptic spike, then the variable Lij is increased and the syn-
aptic strength becomes larger, thus corresponding to a potentiation of the synapse.
When a pre-synaptic spike occurs just after a post-synaptic spike, the variable Lij is
decreased, the synaptic weight is weakened , thus corresponding to a depression of
the synapse. For all kind of synapses, except the excitatory-excitatory, the activation
variable is always is set to 1.

938 J.M. Moreno et al.

3 Hardware Implementation

In this section we shall consider the detailed implementation of the model, as well as
its optimization for an efficient hardware realization.

The overall organization of the neuron model is depicted in Figure 1.

Fig. 1. Overall organization of the neuron model

The description of the neuron block can be divided in three main parts. In the first
part the spikes(s) received from outside (probably from other neurons) are processed
through a block that encompasses two additional sub-blocks, synapse and learning,
which will be explained later. These sub-blocks are used to give appropriate inputs to
the next building blocks of the neuron model.

In a second stage, the inputs are added or subtracted, depending on the nature (r) of
the previous neuron (i.e. excitatory or inhibitory), to the decayed value of the mem-
brane . The result of this final addition is what we call “membrane value” and it is
stored in a flip-flop (FF in Figure 1). This membrane value is always processed
through a decay function which gives the adding value in the next time step. The
registered output of the membrane is compared in the third sub-block with a prede-
fined threshold value. When the membrane value reaches this threshold, a spike is
produced. This spike will be delayed in the final part with a flip-flop which models
the refractory time. When finally the spike goes out from the neuron, it produces a
reset (rst signal in Figure 1) in the flip-flop which stores the value of the membrane.

A major building block in the neuron model is the decay block, since it will be
used both in the synapse and in the learning blocks. This block is aimed to implement
a logarithmic decay of the input; it is obtained with a subtraction and controlling the
time when it is done depending on the input value. The organization of this block is
presented in Figure 2. In this figure the decaying variable is labeled x. A new value of
x will be the input of a shift register which is controlled by the most significant bit
(MSB) of x and by an external parameter mpar. The output of this shift register will be
subtracted from the original value of x. This operation will be done when the time
control indicates it. The time control is implemented by the value of a counter that is

 Physical Mapping of Spiking Neural Networks Models 939

compared with the result of choosing between the external value step and the product
(MSB–mpar)·step. The decay variable τ depends on the input parameters mpar and
step.that is controlled by the time when it is done depending on the input value.

SHIFT
REG

- FF

6

1

load

init_x

MSB

- *

>

mpar step

dec_x

>

counter

rst

Fig. 2. Organization of the decay block

The learning block “measures” the interval between a spike in the projecting neu-
ron j and the actual neuron i. Depending on these timings and the types of the two
neurons, the synaptic strength will be modified. When a spike is produced by the
projecting neuron, the variable YD is set to its maximum value and starts to decay. If a
spike is produced by the actual neuron immediately after the presynaptic neuron the
value of YDj is added to the decaying value of L. Conversely, if a spike is produced at
first in the actual neuron and later in the projecting neuron, then the value of YDi is
subtracted to the decaying value of L. If the L variable overcomes a certain threshold
Lth, positive or negative, then the activation variable A is increased or decreased, re-
spectively, unless the variable had reached its maximum or minimum, respectively.
If the variable A is increased, then L is reset to the value L-2·Lth; if A is decreased,
then L is reset to L+2·Lth. Figure 3 illustrates the organization of the learning block.

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Fig. 3. Organization of the learning block

The synapse block is aimed to set the value of J (analogous to the the sum of all
post-synaptic membrane potentials) and depends on four factors: the activation level
A of the synapse, the spiking state of the projecting neuron Sj and the types of the pre-
and post-synaptic neurons (Ri and Rj).

A given weight is set for each synapse. This weight is multiplied by the activation
variable A by means of a shift register, such that if A=0, the weight is multiplied by 0,
if A=1 it is multiplied by 1, if A=2 it is multiplied by 2, and if A=3 it is multiplied by
4. This weighted output is added to the decaying value of the variable J.

940 J.M. Moreno et al.

This operation depends on the neuronal types (Ri and Rj). In the current case study
there are only two types of neurons, excitatory and inhibitory. If both neurons are
inhibitory the weight of the synapse is set to 0 and the value of J is always 0 and no
decay is implemented. For the other three types of synapses the time constants are
multiplexed, and the multiplexer is controlled by the types of neurons (Ri,Rj). The
value of J is obtained at the output of the decay block controlled by the multiplexer.
Figure 4 shows the organization of the synapse block.

Shift
reg

w

A

+

sj
Jτ

Ri,Rj

20 reg
3
0

Shift
reg

w

A

+

sj
Jτ20 reg

3
0

Fig. 4. Organization of the synapse block

The resolution required to represent the values of the variables and the number of
operations to be performed may pose a serious limitation for the final implementation.
Therefore, an important step consisted in evaluating the model and tuning its parame-
ters in order to get a satisfactory performance. The implementation used in this study
has been based on a neural network of size 15x15 with a connectivity pattern of 24
neurons corresponding to a neighborhood of 5x5. The distribution of the 20% inhibi-
tory cells was random. The weights, w, and the initial activation variables, A, were
also chosen randomly. Dynamic gradient stimuli have been applied to the neural
network. A sequence of vertical bars of gradient intensity move over “strips” of neu-
rons placed in the 2D array of the neural network.

The vertical bars may move at different speeds (i.e. spatial frequency). A neuron
“hit” by the stimulus receives an input that is proportional to the gradient intensity.
The activity of the network has been studied in a “training” condition and in a “test”
condition. During training the spatial frequency of the stimulus has been incremented
by discrete harmonics (2x, 4x, etc.) in one direction (the “forward” direction). During
test, the stimuli were presented in both forward and reverse sense. A Gaussian noise
(Mean 0, SD= 48) is applied to all neurons during all the time. The characteristics of
the input applied to each neuron are the following:

• TCLK: 20 ns. Maximum amplitude: 127.
• Training period: 20 μs. Forward sense
• Test period: 10 μs. Forward and Reverse sense

The results from this experiment demonstrate that the selected structure of our neu-
ral network is able to perform an implicit recognition of dynamic features based on
simple unsupervised STDP rules.

In a first attempt to reduce the complexity of the final hardware implementation the
resolution of the parameters has been reduced by 2 bits. By repeating the simulation
experiments explained previously we could determine that this is the minimum accu-
racy required by the system in order to exhibit discrimination features for dynamic
input stimuli. Table 1 shows the new values of the internal parameters after this opti-
mization process.

 Physical Mapping of Spiking Neural Networks Models 941

Table 1. Resolution of the parameters for an optimized implementation

Parameter New value

Membrane resolution 10 bits

Threshold +160

Input (J) resolution 6 bits

Weights (Ri,Rj) (00, 01, 10, 11) [0:8], [64:128], [128:256], [0:0]

YD resolution 4 bits

L resolution 6 bits

Membrane decay time constant 20

YD decay time constant 20

L decay time constant 4000

JRi,Rj decay time constants
 (Ri,Rj) (00, 01, 10, 11)

 (20, 0, 3, 0)

Once this simplification has been performed a further simplification has been car-

ried out [7] in the design of the constituent building blocks. In this optimization a
serial approach has been used in order to keep the functional units as compact as
possible.

4 Implementation on a Bio-inspired Architecture

The POEtic tissue [8] constitutes a flexible hardware substrate that has been specifi-
cally conceived in order to permit the efficient implementation of bio-inspired mod-
els. The tissue may be constructed as a regular array composed of POEtic chips, each
of them integrating a custom 32-bit RISC microprocessor and a custom FPGA with
dynamic routing capabilities.

The custom FPGA included in the POEtic chip is composed of a bi-dimensional ar-
ray of elementary programmable elements, called molecules. Each molecule contains
a flip-flop, a 16-bit lookup table (LUT) and a switchbox that permits to establish pro-
grammable connections between molecules.

After the optimization carried out on the neural model in order to facilitate its
hardware realization it has been mapped on to the molecules that constitute the PO-
Etic device. The molecule organization shown in Fig. 5 corresponds to the actual
structure of the FPGA present in the POEtic device, which is arranged as an 8x18
array of molecules.

The VHDL models developed for the POEtic tissue have been configured and
simulated to validate the functionality of the neuron model designed above. After this

942 J.M. Moreno et al.

Fig. 5. Molecule-level implementation of the SNN model

validation stage the strategy for the simulation of large-scale SNN models has been
considered. Since in its actual implementation the POEtic chip only allows for the
implementation of a single neuron it will be necessary to use an array of POEtic chips
whose functionality should be time–multiplexed in order to emulate the entire net-
work. This means that every POEtic chip should be able to manage a local memory in
charge of storing the weights and learning variables corresponding to the different
neurons it is emulating in time.

A 16-neurons network organized as a 4x4 array has been constructed using this
principle. This would permit the emulation of a 10,000-neurons network in 625 mul-
tiplexing cycles. Bearing in mind that each neuron is able to complete a time step in
150 clock cycles, this means that the minimum clock frequency required to handle
input stimuli in real time (i.e., to process visual input stimuli at 50 frames/second) is
around 5 MHz far within the possibilities of the actual clock frequency achieved by
the POEtic tissue (between 50 MHz and 100 MHz).

The visual stimuli will come from an OmniVision OV5017 monochrome 384x288
CMOS digital camera. Specific VHDL and C code have been developed in order to
manage the digital images coming from the camera. To test the application, artificial
image sequences have been generated on a display and then captured by the camera
for its processing by the network.

5 Conclusions

In this paper we have presented the detailed translation process of a biologically plau-
sible spiking neural network model onto a physical hardware implementation based
on a scalable architecture with bio-inspired features. During the translation process
special attention has been paid to the accuracy constraints of the implementation, so
as to obtain a compact physical realization. The results of the current implementation
demonstrate that the proposed approach is capable of supporting the real-time needs
of large-scale spiking neural networks models. Our current work is concentrated on
the physical test and qualification of the POEtic chips received from the foundry us-
ing the development boards that have been constructed for the POEtic tissue. After

 Physical Mapping of Spiking Neural Networks Models 943

that the configuration corresponding to the proposed model will be downloaded and
physically tested on the actual chips.

Acknowledgements

The work presented in this paper has been funded by the grant IST-2000-28027 (PO-
Etic) of the European Community and by grant OFES 00.0529-2 of the Swiss gov-
ernment. The information provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

References

1. Maas, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models.
Neural Networks 10 (1997) 1659–1671.

2. Hill, S.L., Villa, A.E.P.: Dynamic transitions in global network activity influenced by the
balance of excitation and inhibition. Network: Computation in Neural Systems 8 (1997)
165-184.

3. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neuroscience 3
(2000) 1178–1183.

4. Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like
structure depends on temporal order. Nature 387 (1997) 278–281.

5. Montgomery, J.M., Madison, D.V.: Discrete synaptic states define a major mechanism of
synapse plasticity. Trends in Neurosciences 27 (2004) 744-750.

6. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Halliday, D., Rosenberg, J.,
Moreno, J.M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue.
Evolvable Systems: From Biology to hardware. Lecture Notes in Computer Science 2606
(2003) 165-173.

7. Torres, O., Eriksson, J., Moreno, J.M., Villa, A.E.P.: Hardware optimization and serial im-
plementation of a novel spiking neuron model for the POEtic tissue. BioSystems 76 (2003)
201–208.

8. Moreno, J.M., Thoma, Y., Sanchez, E., Torres, O., Tempesti, G.: Hardware Realization of a
Bio-inspired POEtic Tissue. Proceedings of the NASA/DoD Conference on Evolvable
Hardware. IEEE Computer Society (2004) 237-244.

	Introduction
	Spiking Neural Network Model
	Hardware Implementation
	Implementation on a Bio-inspired Architecture
	Conclusions
	References

