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Abstract. This paper presents two nonlinear adaptive predictive algo-
rithms based on Artificial Neural Network (ANN) and a Wiener structure
for controlling asymptotically stable nonlinear plants. The first algorithm
is based on the minimization of a cost function taking into account the
future tracking error and the Certainty Equivalence (CE) principle, un-
der which the estimated parameters are used as if they were the true
parameters. In order to improve the performance of the adaptive algo-
rithm, we propose to use a cost function, considering not only the future
tracking error, but also the effect of the control signal over the estimated
parameters. A simulated chemical reactor example illustrates the perfor-
mance and feasibility of both approaches.

1 Introduction

Adaptive control of discrete nonlinear systems, using flexible nonlinear parame-
terization like Artificial Neural Networks, have received a great deal of attention
[1]. Most of these works have relied on the use of inverse model approach assum-
ing that the system has a stable inverse and is affine in the control signal. These
assumptions have limited their range of applications. The adaptive algorithms
can be classified, in general, as indirect or direct ones. The former adapts the
parameter of the controller with respect to some performance index, while the
latter calculates the parameter of the controller based on an identified model of
the plant. Adaptive controllers that are based on the CE principle completely
ignore the uncertainty associated to the parameters. This may lead to inade-
quate transient and poor parameter convergence. Some authors have addressed
these problems, in the context of inverse control, by modelling the parameters as
random variables and taking into account their uncertainty in the control law [2]
[3]. An algorithm that takes into account not only the control objective, but also
the effect of the control signal on the convergence of the estimation algorithm is
called adaptive dual control system [4].

In order to overcome the limitation of inverse control approaches, nonlinear
predictive strategies have been proposed. As any control design tool, it requires
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dynamical models of the nonlinear systems to be controlled; if these models are
not available, then some empirical ones, such as: Neural Networks, NARMAX,
Volterra [5], and Wiener [6], can be considered. The latter are particularly useful
in representing open loop stable nonlinear processes; without introducing the
stability problems associated to general recursive nonlinear models.

Adaptive Predictive controllers based on Wiener type of models and the Cer-
tainty Equivalence principle, have been proposed by several authors [6][7]. In
addition, Wiener structure can be combined with ANN to provide a powerful
modelling framework [8].

In general, if the parameters are modelled as random variables, then the prob-
lem posed by the predictive controllers cannot even be solved numerically, be-
cause it requires the prediction of the posterior densities. These densities can
not be evaluated, since the estimated mean depends on the future output. It
has been suggested, in [9], to approximate these densities by only propagating
the covariance matrix. This approximation has given good results in the linear
context. Hence, in this work, we explore the use of a Wiener structure combined
with an ANN model, to design a dual adaptive non-linear predictive controller
for stable unknown linear system, with a stochastic additive disturbance act-
ing at the output. The dual characteristic means that the controller is able to
cautiously track the desired reference signal; and at the same time, it excites
the system to improve its identification, so that the performance of the overall
controller can be improved in future time intervals.

The paper is organized as follows: section 2 describes the characteristic of
the nonlinear model to be considered in the design of the predictive controller.
Section 3 introduces the adaptive model based on ANNs, and section 4 the design
of the adaptive controllers based on the CE principle and the prediction of the
posterior densities. Section 5 illustrates the performance of both algorithms.
Finally, in section 6 some conclusions are drawn.

2 The Nonlinear Model

The general model considered in this work can be represented by the following
state space representation

x(k + 1) = Ax(k) + bu(k) (1)
y(k) = h(x(k)) (2)

where y(k) is the measured variable, u(k) is the input variable, x(k) is a vector
of dimension N and h(x(k)) a continuous function. The matrix A and vector
b define the dynamic of the models. It has been demonstrated that this type
of structure can approximate any stable nonlinear system with any degree of
accuracy [10][6]. There are two popular choices for the matrix A and vector b:
orthonormal filters, which are suitable for process modelling [10], and gamma
filters more suitable for signal processing [11]. This approach leads naturally
to a Wiener model, as it was originally proposed by Wiener [12]. The general
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structure of the Wiener model, using Laguerre filters, can be described in state
space equations, as eq. (1) with :

Ac = −μ

⎡
⎢⎢⎢⎣

1 0 . . . 0
2 1 . . . 0
...

...
...

...
2 . . . 2 1

⎤
⎥⎥⎥⎦ ,bc =

√
(2μ)

⎡
⎢⎢⎢⎣

1
1
...
1]

⎤
⎥⎥⎥⎦ (3)

where μ is the scale factor. The discrete parameters are:

A = eAcTm ,b = (A − I)A−1
c bc, (4)

where Tm is the sampling time.

3 An ANN Model

Let’s consider that the unknown nonlinear function h(x(k)) can be represented
as a parameterized nonlinear function:

h(x(k)) = n(x(k), θ) (5)

where θ represents a vector of unknown parameters. The nonlinear function is
approximated by a two layer neural network as follows :

y(k) = W1σ(V1x(k) + v0) + w0. (6)

where σ is a sigmoidal function. The parameters are collected in a vector of
parameters θ.

Thus, the system (1) can be described by:

x(k + 1) = Ax(k) + bu(k) (7)
y(k) = n(x(k), θ) + η(k) (8)

where θ is the unknown vector of parameter, and η(k) is an independent, identi-
cally distributed Gaussian random variable, with a distribution given by N(0, σ2).
We will assume that the parameters are modelled as a random variable with a
normal prior distribution given by N(θ(0),P(0)) , where θ(0) and P(0) define the
initial mean and covariance matrix respectively. The on-line computation of the
conditional mean and covariance of θ can be carried out by the followingExtended-
Kalman filter:

θ(k + 1) = θ(k) +
m(k)′P(k)e(k)

1 + m(k)′P(k)m(k)
(9)

P(k + 1) = P(k) − Pm(k)m(k)′P(k)
1 + m(k)′P(k)m(k)

(10)

where m(k) = ∇θn(x(k), θ). Note that the covariance matrix depends only on
the input signal, u(k), through the variables m(k).
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4 The Predictive Control Strategies

Predictive control can be seen as a dynamic programming problem [13]. Thus,
the general predictive control in the stochastic dynamic programming setting,
finds a set of future control signals u(k) = [u(k) . . . u(k+T )]′, so that, Bellman’s
equations are satisfied:

Jk,k+T (�k) = minu(k)E
�
q0(w(k + 1) − n(x(k), θ))2 + r0u(k)2 + Jk,k+T (�k+1)|�k

�
(11)

where �k = {y(0), . . . , y(k), n(x(0)), . . . , n(x(k))} defines the information vector
at time k, Jk+T

k (�k) is the optimal cost to go at step k, with Jk+T+1
k+T (�T ) = 0.

Once the solution is obtained, only the first value is applied to the process, and
the minimization is carried out each sampling time. The problem posed by (11)
can not be solved, because it requires the knowledge about the future values of
the posterior densities, which depend on the future control signals and future
output of the process. The solution of (11) gives as a result a control signal that
not only takes into account the control objective, but also the effect of the input
over the parameter estimation algorithm. Several approximations to (11) can be
formulated in order to obtain some practical solutions.

4.1 Certainty Equivalence Controller

The predictive controller based on the CE assumption calculates a set of future
control signals without considering the uncertainty in the parameters; so that:

minu(k)J
k,k+T
CE (�k) = E

�
T�

i=0

qi(w(k + i + 1) − n(x(k + i + 1), θ))2 + riu(k + i)2
�

,

(12)
where qi and ri are weighting factors, and w(k) is the reference signal. Under
the receding horizon principle, only the first control is applied to the system. As
all signals are deterministic, the expectation is just:

minu(k)J
k,k+T
CE (�k) =

T∑
i=0

qi(w(k+ i+1)−n(x(k+ i+1), θ))2 +riu(k+ i)2 (13)

subject to the system equations. To reduce the dimension of the optimization
problem several approaches can be applied. For instance, if the future control
signal is assumed constant [14]; i.e. u(k) = u(k + 1) . . . = u(k + T ) , then the
problem is reduced to one dimensional optimization problem by considering the
predictions as follows:

n(k + j) = n(Ajx(k) +
j−1∑
i=0

Aj−ibu(k), θ(k)) (14)

.
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In addition, if we consider ri = qi = 0, i = 0, .., T − 1 and qT = 1, rT = 1, the
final index will be:

minu(k)J
k,k+T
CE (�k) = (w(k + 1 + T )− n(Ajx(k)+

j−1∑
i=0

Aj−ibu(k), θ(k)))2 (15)

In general, a simple line search algorithm can be used to obtain the solution
to this optimization problem.

4.2 An Approximate Dual Controller

The dual strategy has associated the cost function (11), which in order to be
optimized in terms of u(k) requires the knowledge of the posterior densities
N(θ(k + i),P(k + i)) . Unfortunately, these densities can not be evaluated since
the estimated mean depends on the future output. In [9] has been suggested to
approximate these densities by N(θ(k),P(k + i)). Thus, taking the expectation,
the following approximation can be found:

minu(k)J
k,k+T
CE (�k) =

∑T
i=0 qi(w(k + i + 1) − n(x(k + i + 1), θ))2 + ...

riu(k + i)2 + qim(k + 1 + i)′P(k + 1 + i)m(k + 1 + i)(16)

The above cost function subject to the system model equations (8) and the co-
variance equation (10) can be minimized with respect to the future control signal
u(k). An active strategy is obtained, since the future values of the covariance
matrix, are included in the index. In this way, the control signal will also try to
bring the uncertainty of the parameters to some low level.

5 Simulation Results

In this section, the algorithms are applied to control two reactions in series
(A → B → C) in a Continuous Stirred Tank Reactor [10]. The desired product
is the intermediate product B. The differential equations describing the system
are given by :

ẋ1 = 1 − x1 − E3e
−E1/x3x1 + E4e

−E2/x3x2 (17)
ẋ2 = −x2 + E3e

−E1/x3x1 − E4e
−E2/x3x2 (18)

ẋ3 = u − x3 + .005(E3e
−E1/x3x1 − E4e

−E2/x3x2) (19)

with E1 = 50, E2 = 70, E3 = 300000, and E4 = 60 · 106; where x1 and x2 are
dimensionless concentrations of A and B, x3 is the dimensionless temperature of
the jacket surrounding the reactor. In order to model the relationship between
the concentration of the desired product; i.e. x2, and the control signal, we have
considered a scale factor μ = .6, sampling time Tm = 1, and six Laguerre filters.
A neural network with 6 inputs and 4 hidden units, was trained on line. The
measured concentration,y(kT ), considered a zero mean noise signal, η(kT ),

y(kT ) = x2(kT ) + η(kT ). (20)
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Fig. 1. Distribution of the cost function: CE controller and Dual controller

As a measure of the control performance the following index is estimated for
different realizations of the noise signal:

I =

√√√√ 1
N

N∑
k=0

(yd(kTm) − y(kTm))2, (21)
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Fig. 2. A CE predictive controller
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Fig. 3. A Dual predictive controller

where N is the number of samples considered in the cost function, yd(kT ) and
y(kT ) are the desired set-point and measured concentration respectively. The
controller prediction horizon was set to T = 5 and the same initial conditions
were used for all the simulations. Performing Monte Carlo simulations, the index
I was evaluated for 100 realizations of the measurement noise. Figure 1 shows the
distribution of the cost function for both controllers, clearly the dual controller
shifts the distribution toward smaller values of the cost function. Figure 2 shows
the behavior of the controller based on the CE principle, and figure 3 the one
of the dual controller, both figures were obtained for the same noise realization.
By comparing both figures, we can see that the latter provides larger excitation
signals, but without compromising tracking performance. This extra excitation,
at initial stages of the adaptive process, means smaller identification errors and
better tracking performance in future time instants.

6 Final Remarks

We have presented a methodology to design an adaptive predictive controller
based on an Artificial Neural Network model, considering the minimization of
a cost function taking into account the future tracking errors and the effect of
the control signal on the parameter estimation algorithm. The parameters of
the ANN are considered as random variables and the network training algo-
rithm is based on an Extended Kalman-filter. The obtained result shows that
this controller provides more excitation to the system at initial stages than a
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controller based on the CE principle. This key feature gives as a result a better
control performance in future time intervals. Future works consider the real-time
implementation of this type of controllers.
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