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Abstract. While in general trading off exploration and exploitation in
reinforcement learning is hard, under some formulations relatively simple
solutions exist. Optimal decision thresholds for the multi-armed bandit
problem, one for the infinite horizon discounted reward case and one for
the finite horizon undiscounted reward case are derived, which make the
link between the reward horizon, uncertainty and the need for exploration
explicit. From this result follow two practical approximate algorithms,
which are illustrated experimentally.

1 Introduction

In reinforcement learning, the dilemma between selecting actions to maximise
the expected return according to the current world model and to improve the
world model such as to potentially be able to achieve a higher expected return is
referred to as the exploration-exploitation trade-off. This has been the subject of
much interest before, one of the earliest developments being the theory of sequen-
tial sampling in statistics, as developed by [1]. This dealt mostly with making
sequential decisions for accepting one among a set of particular hypotheses, with
a view towards applying it to jointly decide the termination of an experiment and
the acceptance of a hypothesis. A more general overview of sequential decision
problems from a Bayesian viewpoint is offered in [2].

The optimal, but intractable, Bayesian solution for bandit problems was given
in [3], while recently tight bounds on the sample complexity of exploration have
been found [4]. An approximation to the full Bayesian case for the general rein-
forcement learning problem is given in [5], while an alternative technique based
on eliminating actions which are confidently estimated as low-value is given in
[6].

The following section formulates the intuitive concept of trading exploration
and exploitation as a natural consequence of the definition of the problem of
reinforcement learning. After the problem definitions which correspond to either
extreme are identified, Sec. 3 derives a threshold for switching from exploratory
to greedy behaviour in bandit problems. This threshold is found to depend on the
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effective reward horizon of the optimal policy and on our current belief distribu-
tion of the expected rewards of each action. A sketch of the extension to MDPs
is presented in Sec. 4. Section 5 uses an upper bound on the value of exploration
to derive practical algorithms, which are then illustrated experimentally in Sec.
6. We conclude with a discussion on the relations with other methods.

2 Exploration Versus Exploitation

Let us assume a standard multi-armed bandit setting, where a reward distribu-
tion p(rt+1|at) is conditioned on actions in at ∈ A, with rt ∈ R. The aim is to
discover a policy π = {P (at = i)|i ∈ A}, where P (at = i) is the probability that
action i is chosen at time t, which maximises E[rt+1|π], the expected value of the
reward at the following time-step under the distribution defined by the policy
π. It follows that the optimal gambler, or oracle, for this problem would be a
policy which always chooses i ∈ A such that E[rt+1|at = i] ≥ E[rt+1|at = j] for
all j ∈ A. Given the conditional expectations, implementing the oracle is trivial.
However this tells us little about the optimal way to select actions when the
expectations are unknown. As it turns out, the optimal action selection mech-
anism will depend upon the problem formulation. We initially consider the two
simplest cases in order to illustrate that the exploration/exploitation tradeoff is
and should be viewed in terms of problem and model definition.

In the first problem formulation the objective is to discover a parameterized
probabilistic policy π =

{
P (at|θt)

∣
∣ at ∈ A

}
, with parameters θt, for selecting

actions such that E[rt+1|π] is maximised. If we consider a model whose para-
meters are the set of estimates θt =

{
qi = Êt[rt+1|at = i]

∣∣ i ∈ A
}
, then the

optimal choice is to select at for which the estimated expected value of the re-
ward is highest, because according to our current belief any other choice will
necessarily lead to a lower expectation. Thus, stating the bandit problem in this
way does not allow the exploration of seemingly lower, but potentially higher
value actions and it results in a greedy policy.

In the second formulation, we wish to minimise the discrepancy between our
estimate qi and the true expectation. This could be written as the following
minimisation problem:

∑

i∈A
E

[
‖rt+1 − qi‖2

∣∣ at = i
]
.

For point estimates of the expected reward, this requires sampling uniformly
from all actions and thus represents a purely exploratory policy. If the problem
is stated as simply minimising the discrepancy asymptotically, then uniformity
is not required and it is only necessary to sample from all actions infinitely often.
This condition holds when P (at = i) > 0 ∀i ∈ A, t > 0 and can be satisfied
by mixing the optimal policies for the two formulations, with a probability ε of
using the uniform action selection and a probability 1 − ε of using the greedy
action selection. This results in the well-known ε-greedy policy (see for example
[7]), with the parameter ε ∈ [0, 1] used to control exploration.
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This formulation of the exploration-exploitation problem, though leading to
an intuitive result, does not lead to an obvious way to optimally select actions. In
the following section we shall consider bandit problems for which the functional
to be maximised is

E

[ N∑

k=0

g(k)rt+k+1

∣∣
∣
∣π

]
, g(k) ∈ [0, 1], N ≥ 0,

with
∑∞

k=0 g(k) < ∞. In this formulation of the problem we are not only in-
terested in maximising the expected reward at the next time step, but in the
subsequent N steps, with the g(·) function providing another convenient way
to weigh our preference among short and long-term rewards. Intuitively it is
expected that the optimal policy for this problem will be different depending
on how long-term are the rewards that we are interested in. As will be shown
later, by lengthening the effective reward horizon through manipulation of g
and N , i.e. by changing the definition of the problem that we wish to solve, the
exploration bias is increased automatically.

3 Optimal Exploration Threshold for Bandit Problems

We want to know when it is a better decision to take action i rather than some
other action j, with i, j ∈ A, given that we have estimates qi, qj for E[rt+1|at = i]
and E[rt+1|at = j] respectively1. We shall attempt to see under which conditions
it is better to take an action different than the one whose expected reward is
greatest. For this we shall need the following assumption:

Assumption 1 (Expected rewards are bounded from below). There ex-
ists b ∈ R such that

E[rt+1|at = i] ≥ b ∀ i ∈ A, (1)

The above assumption is necessary for imposing a lower bound on the expected
return of exploratory actions: no matter what action is taken, we are guaranteed
that E[rt] > b. Without this condition, exploratory actions would be too risky
to be taken at all.

Given two possible actions to take, where one action is currently estimated
to have a lower expected reward than the other, then it might be worthwhile to
pursue the lower-valued action if the following conditions are true: (a) there is a
degree of uncertainty such that the lower-valued action can potentially be better
than the higher-valued one, (b) we are interested in maximising more than just
the expectation of the next reward, but the expectation of a weighted sum of
future rewards, (c) we will be able to accurately determine whether one action
is better than the other quickly enough, so that not a lot of resources will be
wasted in exploration.

1 For bandit problems with states in a state space S , similar arguments can be made
by considering i, j ∈ S × A.
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We now start viewing qi as random variables for which we hold belief distri-
butions p(qi), with q̄i = E[qi] = Ê[rt+1|at = i]. The problem can be defined as
deciding when action i, is better than taking action j, under the condition that
doing so allows us to determine whether qi > qj + δ with high probability after
T ≥ 1 exploratory actions. For this reason we will need the following bound on
the expected return of exploration.

Lemma 1 (Exploration bound). For any return of the form Rt =
∑N

k=0
g(k)rt+k+1, with g(k) ≥ 0, assuming (1) holds, the expected return of taking
action i for T time-steps and following a greedy policy thereafter, when q̄i > q̄j,
is bounded below by

U(i, j, T, δ, b) =
N∑

k=T

g(k)
(
(q̄j + δ)P (qi > qj + δ) + q̄jP (qi ≤ qj + δ)

)

+
T−1∑

k=0

g(k)
(
(q̄j + δ)P (qi > qj + δ) + bP (qi ≤ qj + δ)

)
(2)

for some δ > 0.

This follows immediately from Assumption 1. The greedy behaviour supposes
we are following a policy where we continue to perform i if we know that P (qi >
qj + δ) ≈ 1 after T steps and switch back to j otherwise.

Without loss of generality, in the sequel we will assume that b = 0 (If expected
rewards are bounded by some b 	= 0, we can always subtract b from all rewards
and obtain the same). For further convenience, we set pi = P (qi ≥ qj + δ). Then
we may write that we must take action i if the expected return of simply taking
action j is smaller than the expected return of taking action i for T steps and
then behaving greedily, i.e. if the following holds:

N∑

k=0

g(k)q̄j <
N∑

k=T

g(k)
(
(q̄j + δ)pi+q̄j(1 − pi)

)
+

T−1∑

k=0

g(k)(q̄j + δ)pi

(3)
T−1∑

k=0

g(k)
(
q̄j − (q̄j + δ)pi

)
<

N∑

k=T

g(k)
(
δpi

)
(4)

Let g(k) = γk, with γ ∈ [0, 1]. In this case, any choice of T can be made
equivalent to T = 1 by dividing everything with

∑T−1
k=0 γk. We explore two

cases: γ < 1, N → ∞ and γ = 1, N < ∞. In the first case, which corresponds
to infinite horizon exponentially discounted reward maximisation problems, we
obtain the following:

q̄j − (q̄j + δ)pi <

∞∑

k=1

γkδpi (5)

q̄j − (q̄j + δ)pi

(1 − pi)q̄j
< γ. (6)
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It is possible to simplify this expression considerably. When P (qi ≥ q̄j+δ) = 1/2,
it follows from (6) that

γ >
q̄j − (q̄j + δ)/2

q̄j/2
=

q̄j − δ

q̄j
. (7)

Thus, for infinite horizon discounted reward maximisation problems, when it is
known that the all expected rewards are non-negative, all we need to do is find
δ such that P (qi ≥ qj + δ) = 1/2. Then (7) can be used to make a decision on
whether it is worthwhile to perform exploration. Although it might seem strange
that qi is omitted from this expression, its distribution is implicitly expressed
through the value of δ.

In the second case, finite horizon cumulative reward maximisation problems,
exploration should be performed when the following condition is satisfied:

Nδpi > q̄j − (q̄j + δ)pi (8)

Here the decision making function is of a different nature, since it depends on
both estimates. However, in both cases, the longer the effective horizon be-
comes and the larger the uncertainty is, the more the bias towards exploration
is increased. We furthermore note that in the finite horizon case, the backward
induction procedure can be used to make optimal decisions (see [2] Sec. 12.4).

3.1 Solutions for Specific Distributions

If we have a specific form for the distribution P (qi > qj + δ) it may be possible
to obtain analytical solutions. To see how this can be achieved, consider that
from (6), we have:

γq̄j > q̄j − δ
pi

1 − pi

0 < δ
P (qi > qj + δ)

1 − P (qj > qj + δ)
− (1 − γ)q̄j , (9)

recalling that all mean rewards are non-negative.
If this condition is satisfied for some δ then exploration must be performed. We

observe that if the first term is maximised for some δ∗ for which the inequality
is not satisfied, then there is no δ 	= δ∗ that can satisfy it. Thus, we can attempt
to examine some distributions for which this δ∗ can be determined. We shall
restrict ourselves to distributions that are bounded below, due to Assumption 1.

3.2 Solutions for the Exponential Distribution

One such distribution is the exponential distribution, defined as

P (X > δ) =
∫ ∞

δ

βe−β(x−μ)dx = e−β(δ−μ)

if δ > μ, 1 otherwise. We may plug this into (9) as follows
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f(δ) = δ
P (qi > qj + δ)

1 − P (qi > qj + δ)
= δ

e−βi(μj+δ−μi)

1 − e−βi(μj+δ−μi)
=

δ

eβi(μj+δ−μi) − 1

Now we should attempt to find δ∗ = argmaxδ f(δ). We begin by taking the
derivative with respect to δ. Set g(δ) = eh(δ) − 1, h(δ) = βi(q̄j + δ − μi)

∇f(δ) =
g(δ) − δ∇g(δ)

g(δ)2
=

g(δ) − δβi∇hg(δ)
g(δ)2

=
eh(δ)(1 − δβi) − 1

(eh(δ) − 1)2

Necessary and sufficient conditions for some point δ∗ to be a local maximum for
a continuous differentiable function f(δ) are that ∇δf(δ∗) = 0 and ∇2

δf(δ∗) < 0.
The necessary condition for δ results in

eβi(qk+δ−μi)(1 − δβi) = 1. (10)

Unfortunately (10) has no closed form solution, but it is related to the Lambert
W function for which iterative solutions do exist [8]. The found solution can then
be plugged into (9) to see whether the conditions for exploration are satisfied.

4 Extension to the General Case

In the general reinforcement learning setting, the reward distribution does not
only depend on the action taken but additionally on a state variable. The state
transition distribution is conditioned on actions and has the Markov property.
Each particular task within this framework can be summarised as a Markov
decision process:

Definition 1 (Markov decision process). A Markov decision process is de-
fined by a set of states S, a set of actions A, a transition distribution T(s′, s, a) =
P (s′t+1|st = s, at = a) and a reward distribution R(s′, s, a) = p(rt+1|st+1 =
s′, st = s, at = a).

The simplest way to extend the bandit case to the more general one of MDPs
is to find conditions under which the latter reduces to the former. This can be
done for example by considering choices not between simple actions but between
temporally extended actions, which we will refer to as options following [9]. We
shall only need a simplified version of this framework, where each possible option
x corresponds to some policy πx : S × A → [0, 1]. This is sufficient for sketching
the conditions under which the equivalence arises.

In particular, we examine the case where we have two options. The first option
is to always select actions according to some exploratory principle, such picking
them from a uniform distribution. The second is to always select actions greedily,
i.e. by picking the action with the highest expected return.

We assume that each option will last for time T . One further necessary com-
ponent for this framework is the notion of mixing time

Definition 2 (Exploration mixing time). We define the exploration mixing
time for a particular MDP M and a policy π Tε(M, π) as the expected number
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of time steps after which the state distribution is close to the stationary state
distribution of π after we have taken an exploratory action i at time step t, i.e.
the expected number of steps T such that the following condition holds:

1
‖S‖

∑

s

‖P (st+T = s|st, π) − P (st+T = s|at = i, st, π)‖ < ε

It is of course necessary for the MDP to be ergodic for this to be finite. If we only
consider switching between options at time periods greater than Tε(M, π), then
the option framework’s roughly corresponds to the bandit framework, and Tε in
the former to T in the latter. This means that whenever we take an exploratory
action i (one that does not correspond to the action that would have been
selected by the greedy policy π), the distribution of states would remain to be
significantly different from that under π for Tε(M, π) time steps. Thus we could
consider the exploration to be taking place during all of Tε, after which we would
be free to continue exploration or not. Although there is no direct correspondence
between the two cases, this limited equivalence could be sufficient for motivating
the use of similar techniques for determining the optimal exploration exploitation
threshold in full MDPs.

5 Optimistic Evaluation

In order to utilise Lemma 1 in a practical setting we must define T in some sense.
The simplest solution is to set T = 1, which results in an optimistic estimate for
exploratory actions as will be shown below. By rearranging (2) we have

U(i, j, T, δ, b) =
N∑

k=0

g(k)q̄j +
N∑

k=0

g(k)δpi + (1 − pi)

(
T−1∑

k=0

g(k)(b − q̄j))

)

(11)

from which it is evident, since qj ≥ b and g(k) ≥ 0, that U(i, j, T1, δ, b) ≥
U(i, j, T2, δ, b) when T1 < T2, thus U(i, j, 1, δ, b) ≥ U(i, j, T, δ, b) for any T ≥ 1.
This can now be used to obtain Alg. 1 for optimistic exploration.

Nevertheless, testing for the existence of a suitable δ can be costly since,
barring an analytic procedure it requires an exhaustive search. On the other
hand, it may be possible to achieve a similar result through sampling for different
values of δ. Herein, the following sampling method is considered: Firstly, we
determine the action j with the greatest q̄j . Then, for each action i we take a
sample x from the distribution p(qi) and set δ = x− q̄j . This is quite an arbitrary
sampling method, but we may expect to obtain a δ > 0 with high probability
if i has a high probability to be significantly better than j. This method is
summarised in Alg. 2.

An alternative exploration method is given by Alg. 3, which samples each
action with probability equal to the probability that its expected reward is the
highest. It can perhaps be viewed as a crude approximation to Alg. 2 when γ → 1
and has the advantage that it is extremely simple.
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Algorithm 1. Optimistic exploration
if ∃ δ : U(i, j, 1, δ, b) >

�N
k=0 g(k)q̄j then

a ⇐ i
else

a ⇐ j
end if

Algorithm 2. Optimistic stochastic exploration
j ⇐ arg maxi q̄i.
uj =

�N
k=0 g(k)q̄j .

for all i �= j do
δ ⇐ x − q̄j , x ∼ p(qi)
ui ⇐ U(i, j, 1, δ, b)

end for
a ⇐ arg maxi ui

6 Experiments

A small experiment was performed on a n-armed bandit problem with rewards
rt ∈ {0, 1} drawn from a Bernoulli distribution. Alg. 2 was used with g(k) = γk

and b = 0, which is in agreement with the distribution. This was compared with
Alg. 3, which can be perhaps viewed as a crude approximation to Alg. 2 when
γ → 1. The performance of ε-greedy action selection with ε = 0.01 was evaluated
for reference.

The ε-greedy algorithm used point estimates for q̄i, which were updated with
gradient descent with a step size of α = 0.01, such that for each action-reward
observation tuple (at = i, rt+1), q̄i ⇐ α(rt+1 − q̄i), with initial estimates being
uniformly distributed in [0, 1]. In the other two cases, the complete distribution
of qi was maintained via a population {pk

i }K
k=0 of point estimates, with K = 16.

Each point estimate in the population was maintained in the same manner as the
single point estimates in the ε-greedy approach. Sampling actions was performed
by sampling uniformly from the members of the population for each action.

The results for two different bandit tasks, one with 16 and the other with
128 arms, averaged over 1,000 runs, are summarised in Fig. 1. For each run, the
expected reward of each bandit was sampled uniformly from [0, 1].

As can be seen from the figure, the ε-greedy approach performs relatively
well when used with reasonable first initial estimates. The sampling greedy ap-
proach, while having the same complexity, appears to perform better asymp-
totically. More importantly, Alg. 2 exhibits better long-term versus short-term
performance when the effective reward horizon is increased as γ → 1.

Algorithm 3. Sampling-greedy
a ⇐ i with probability P (a = i) = P (qi > qj) ∀j �= i
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Fig. 1. Average reward in an multi-armed bandit task averaged over 1,000 experiments,
smoothed with a moving average over 10 time-steps. Results are shown for ε-greedy
(e-greedy), sampling-greedy (sampling) and Alg. 2 (opt) with γ ∈ {0.5, 0.9, 0.99}.

7 Discussion and Conclusion

This paper has presented a formulation of an optimal exploration-exploitation
threshold for in a n-armed bandit task, which links the need for exploration to
the effective reward horizon and model uncertainty. Additionally, a practical al-
gorithm, based on an optimistic bound on the value of exploration, is introduced.
Experimental results show that this algorithm exhibits the expected long-term
versus short-term performance trade-off when the effective reward horizon is
increased.

While the above formulation fits well within a reinforcement learning frame-
work, other useful formulations may exist. In budgeted learning, any exploratory
action results in a fixed cost. Such a formulation is used in [10] for the bandit
problem (see also [11] for the active learning case). Then the problem essentially
becomes that of how to best sample from actions in the next T moves such that
the expected return of the optimal policy after T moves is maximised and corre-
sponds to g(k) = 0 ∀k < T in the framework presented in this paper. A further
alternative, described in [6], is to stop exploring those parts of the state-action
space which lead to sub-optimal returns with high probability.

When a distribution or a confidence interval is available for expected returns,
it is common to use the optimistic side of the confidence interval for action
selection [12]. This practice can be partially justified through the framework
presented herein, or alternatively, through considering maximising the expected
information to be gained by exploration, as proposed by [13]. In a similar man-
ner, other methods which represent uncertainty as a simple additive factor to
the normal expected reward estimates, acquire further meaning when viewed
through a statistical decision making framework. For example the Dyna-Q+ al-
gorithm (see [7] chap. 9) includes a slowly increasing exploration bonus for state-
action pairs which have not been recently explored. From a statistical viewpoint,
the exploration bonus corresponds to a model of a non-stationary world, where
uncertainty about past experiences increases with elapsed time.
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In general, the conditions defined in Sec. 3 require maintaining some type
of belief distribution over the expected return of actions. A natural choice for
this would be to use a fully analytical Bayesian framework. Unfortunately this
makes it more difficult to calculate P (qi > d), so it might be better to consider
simple numerical approaches from the outset. We have previously considered
some simple such estimates in [14], where we relied on estimating the gradient of
the expected return with respect to the parameters. The estimated gradient was
then used as a measure of uncertainty. Further research on the use of population-
based methods for explicitly representing a distribution of estimates is currently
under way.
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