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Abstract. An important issue in Reinforcement Learning (RL) is to
accelerate or improve the learning process. In this paper, we study the
influence of some RL parameters over the learning speed. Indeed, al-
though RL convergence properties have been widely studied, no precise
rules exist to correctly choose the reward function and initial Q-values.
Our method helps the choice of these RL parameters within the context
of reaching a goal in a minimal time. We develop a theoretical study and
also provide experimental justifications for choosing on the one hand the
reward function, and on the other hand particular initial Q-values based
on a goal bias function.

1 Introduction

The reinforcement learning (RL) paradigm [1] provides techniques in which an
agent can optimize environmental payoff for the autonomous resolution of tasks.
A RL agent tries to learn a policy, i.e. it learns by trial-and-error to select
actions that maximize its expected discounted future rewards for state-action
pairs, represented by the action values. Q-learning [2] is a commonly form of RL
where the optimal policy is learned implicitly in the form of a Q-function.

One of the main limitations of RL is the slowness in convergence. Thus, several
methods have been proposed to speed up RL. They involve the incorporation
of prior knowledge or bias into RL. [3] proposed a methodology for designing
reward functions that take advantage of implicit domain knowledge. It involves
the use of continuous reward functions and progress estimators. Likewise, with
reward shaping, the rewards from the environment are augmented with addi-
tional rewards [4]. However, reward shaping can lead the agent into learning
suboptimal policies and so, traps the system. [5] completed the reward shaping
study and moreover, proved certain similarities between potential-based shaping
and initial Q-values. Indeed, the most elementary method for biasing learning is
to choose the initial Q-values [6]. So [7] studied various representations of reward
functions and the complexity of Q-learning methods depending on the choice of
RL representation. Finally, concerning imitative reinforcement, [8] proposed to
give the learning agent access to the Q-values of the experienced agent.
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Thus, reward function and initial Q-values play an important part in RL. Nev-
ertheless, although RL has been studied extensively and its convergence prop-
erties are well known, in practice, people often choose reward function on one’s
intuition and initial Q-values arbitrarily [1]. In this paper, we discuss the effects
of RL parameters on the policy in order to suggest a generic analysis. We vali-
date our analysis with Q-learning algorithm. The main issue is to shed light on
how to correctly initialize RL parameters in order to obtain the desired optimal
behavior in a minimal time within the context of a goal directed task.

2 Reinforcement Learning

The framework of most of RL algorithms is a Markov Decision Process (MDP),
defined as a finite set of states, S, a finite set of actions, A, and a transition
function T : S × A × S → [0; 1] giving for each state and action a probability
distribution over states. R : S × A × S → R is a reward function giving the
expected immediate reward or reinforcement received under each transition.
The goal is to learn a mapping from states to actions, called a policy, π.

In this work, we have validated our analysis with Q-learning [2] algorithm.
In Q-learning, an action-value function Qπ(s, a) is estimated over the learning
process and stored in a tabular representation. An action-value represents the
expected sum of rewards 1 the agent expects to receive by executing the action
a from state s and following the policy π . The optimal action-value function Q∗

is known to be the unique solution to the Bellman equation,

Q∗(s, a) =
∑

∀s′∈S

T (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

]
. (1)

Q-learning is an off-policy method and its updating rule is :

Q(s, a) ← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′) − Q(s, a)

]
(2)

where r is the reward received for the transition from the state s to the new state
s′ by executing the action a. α ∈]0; 1] is the learning-rate parameter and γ ∈ [0; 1[
the discount factor. Under some cases [9], Q-learning algorithm is guaranteed to
converge to the optimal value function. The Q-Learning algorithm chooses the
action according to an exploration/exploitation criteria. We used the ε-greedy
method, in which the probability of taking a random action is ε and, otherwise,
the selected action is the one with the largest Q-value in the current state 2.

3 Choice of Uniform Initial Q-Values with Binary
Rewards

We make the assumption that two general trends stand out : the global policy
and a specific behavior at the beginning of the learning process. In this section,
1 The rewards are discounted by a discount factor γ that controls the balance between

the significance of immediate rewards and future rewards.
2 If several values are identical, the choice will be random among greedy actions.
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we are going to set out that these both tendencies depend on the shape of the
reward function and on the initialization of the action-value function. We first
considered a binary reward function which has the advantage to include a lot of
cases and it is possible to extrapolate.

3.1 Optimal Policy

The binary reward function is such as the reward received is always r∞ except
if the new state is the goal state and then, the reward is rg. It’s given by :

∀s ∈ S ∀a ∈ A, R(s, a, s′) =
{

rg if s′ = sg

r∞ else (3)

where s′ is the state obtained by executing the action a from s, and sg the goal
state. In case of all rewards are identical (rg = r∞), the solution of the Bellman
equation (1) is a constant noted Q∞,

∀s ∀a Q∗(s, a) = Q∞ =
r∞

1 − γ
. (4)

That is to say that during the learning process, Q-values for all state-action val-
ues converge to Q∞. Nevertheless, if rg �= r∞, Q∞ is the limit of the action-value
function Q∗(s, a) when the distance between s and sg tends toward infinity. So,
toward the goal, states are more and more or less and less attractive depend-
ing on rg and Q∞. On the one hand, if rg > Q∞, the Q-value of state-action
pairs moving to the goal state will be more and more attractive than Q∞. So
the global optimal policy is the shortest way toward sg. On the other hand, if
rg < Q∞, the optimal policy is random everywhere except a local repulsion of
sg.

As a matter of course, the shortest way toward the goal is the sought optimal
policy concerning goal-directed tasks. So rg must always be superior to Q∞.

3.2 Behavior at the Beginning of the Learning Process

As well as the reward function, the initial value Qi of the action-value function
has an effect on the policy, but only at the beginning of the learning process.
We believe that a global trend can be underscored during the first trials of the
learning process.

Let’s examine what the Q-values are expected to be at the beginning. If we
calculate the first updating of a state-action pair (s, a) thanks to (2), such as
the next state s′ is not the goal state and has not been updated, we have :

Q(s, a) ← Qi + α [r∞ + (γ − 1)Qi]
← Qi + α(1 − γ)(Q∞ − Qi) . (5)

So the discriminating value of Qi is also Q∞. According to the value of Qi

compared to Q∞, states already visited will be more or less attractive as long as
the agent has not reached plenty of times the goal state.
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– If Qi > Q∞ : states which have already been visited will have a value lower
than the value of states which haven’t yet been visited (Q(s, a) < Qi). In
other words, states which haven’t yet been visited will be more attractive.
It induces the agent to explore more systematically at the beginning of the
learning than a random exploration. We called it systematic exploration be-
havior.

– If Qi < Q∞ : states which have already been visited will have a value
superior to the value of states which haven’t yet been visited (Q(s, a) > Qi).
That’s to say states which have already been visited will be more attractive.
It leads the agent into less exploration at the beginning, which considerably
slows down the learning. We named this behavior “moving round in circles”.
Of course, it’s better to avoid it.

– If Qi = Q∞ : states which have already been visited will have the same value
than states which haven’t yet been visited (Q(s, a) = Qi). So we obtain at
the beginning a pure random behavior.

3.3 Gridworld Experiments

We have discussed how traditional reward functions and arbitrary initial Q-
values may slow down the learning of an interesting policy. At this point, we are
going to validate this previous analysis and we have chosen for simplicity and
clarity to use at first a non-deterministic gridworld domain to demonstrate how
the behavior is influenced by using binary rewards and different initial Q-values.

Benchmark. The system is represented by a mouse going around a maze
(Fig. 1a). Each mouse’s position is a discrete state. When the mouse reaches
the goal state, the trial ends. The mouse chooses from four actions, representing
an intention to move in one of the four cardinal directions (N,E,S,W). An action
that would move the mouse in a wall instead leaves the mouse in its current
position. Any movement moves the mouse in the intended direction with proba-
bility 0.6, and otherwise in a random state of the four neighboring states of the
expected state. All trials use Q-learning with a learning-rate α of 0.1, a discount
factor γ of 0.9, a tabular Q-table initialized uniformly Qi and follow a policy
where the greedy action is taken with a probability 0.9 (ε = 0.1).

Binary Reward Function. Our reward function replicates the function given
in (3), with rg = 1 and r∞ = 0. With such a reward function, the optimal
policy is the shortest way toward the goal and the discriminating value of Qi

is 0 (Q∞=0). Fig. 1b illustrates our previous analysis. As can be readily seen,
using the systematic exploration behavior helped speed up learning during the
first trials. The agent visited every nook and cranny of the complex maze and
the goal state sg was discovered faster than in case of a random exploration.
But given that the agent was always spurred on to explore, it always took more
steps to reach the goal after some trials. Besides, we used different values of Qi

for the systematic exploration and we notice the more Qi was superior to Q∞,
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(a) Gridworld
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Fig. 1. On the left, non-deterministic 20× 20 gridworld with a single start state (state
[2, 2]) and a goal state (cheese) (state [14, 14]). On the right, gridworld experiments
with different Qi averaged over 50 independent runs. Steps to goal vs. trial number.

the more the agent explored. So, the more the difference between Qi and Q∞ is
important, the more the general behavior is underlined.

Concerning the moving round in circles behavior (Qi < 0), we do not sub-
mit any experiments because the agent took too much time to reach the goal.
Anyway, this behavior has to be avoided.

3.4 Conclusion

This shed light on the importance of initial Q-values. The choice of Qi is not
trivial and must be done according to the desired behavior. When the system
naturally goes away from the goal, a systematic exploration should be preferred
in order to speed up learning at the beginning. Indeed, systematic exploration
forces the controller to explore unvisited states, and so to approach the goal.

4 Choice of Continuous Reward Function and
Heterogeneous Initial Q-Values

In order to broaden the scope of our study, we propose henceforth to use first
two different continuous reward functions with uniform initial Q-values, and
secondly to initialize the action value function with a goal bias function.

4.1 Reward Function Using Progress Estimators

First, we propose to study the use of a continuous reward function instead of bi-
nary rewards. Thus, some authors introduce reward functions by using progress
estimators [3] or potential-based shaping [5]. Progress estimators provide a mea-
sure of improvement relative to an objective. They do not supply a complete
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information but only partial, goal-specific “advice”. For instance, concerning
the gridworld, the progress estimator can be an assessment of the expected
number of steps needed to get to the goal from the new state s′, defined as
ϕ(s′, a) = d(s′, sg). d is the manhattan distance between s′ and sg. The aim of
the agent in the gridworld is to minimize this function and the parameters could
be then : {

r(s, a, s′) = −ϕ2 = −d2(s′, sg)
Qi = 0 (6)

This way, the agent is less and less punished by approaching the goal. The global
policy is the shortest way toward the goal. Given our maze, this reinforcement
is spurious as there are plenty of walls between the initial state and the goal. In
particular, it entails an unlearning phenomenon after few trials. Indeed, if the
agent was taken off toward a dead end (that moves the agent closer to the goal),
it would get out of the trap only thanks to exploration because states are more
and more attractive toward the goal. At the beginning, Q-values are near 0 so
systematic exploration is strong : going out of the trap is possible. But after few
trials, turning back is tantamount to choosing a less attractive Q-value and will
happen only if several exploration actions follow one another, i.e. seldom.

So progress estimators and potential-based shaping are risky. It’s better to use
cautiously these approaches insofar as they may lead to a pernicious behavior.

4.2 Continuous Reward Function Inspired by Gaussian Function

Consequently, we propose a continuous reward function such that on the one
hand, r is uniform for some states far from the goal in order to avoid the un-
learning phenomenon, and on the other hand, there is a reward gradient in a
zone around the goal. We suggest the reward function inspired by the gaussian
function :

r(s, a, s′) = βe−
d(s′,sg)2

2σ2 . (7)

Qi values are uniform, β adjusts the amplitude of the function and σ, the
standard deviation, specifies the reward gradient influence area. As a matter
of course, “moving round in circles” behavior must be avoided, i.e. Qi ≥ β

1−γ .
For the gridworld task, we have chosen Qi = 100 and β = 10. Fig. 2a shows

the unlearning phenomenon as from 80 trials with σ = 3.5 3. Indeed, the reward
gradient influence area is too large and includes few dead ends. On the contrary,
if the reward gradient influence area is only 6 steps around the goal (σ = 2), there
won’t be any unlearning phenomenons and the learning process is accelerated.

Such a continuous reward function is adjustable so as to avoid a harmful be-
havior. Anyway, the best approach would be to influence fleetingly the learning.

4.3 Goal Bias

In view of the importance of the action-value function initialization, we pro-
pose to be inspired by progress estimators in order to initialize the action-value
3 i.e. states 10 steps away from the goal have uniform r.
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(a) Continuous reward
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Fig. 2. Gridworld experiments averaged over 20 independent runs. Steps to goal
vs. trial number. On the left, reward function inspired by gaussian function .

Qi = 100 ; r(s, a, s′) = 10e
− d(s′,sg)2

2σ2 . On the right, goal bias function with binary re-

wards. Random test is Qi = 0. Goal bias function is Qi(s, a) = 0.001e
− d(s,sg)2

2×132 .

function with more precise information. In this section, the reward function is
the binary one given by (3) with r∞ = 0 and rg = 1.

We are going to settle a correct goal bias function thanks to our previous
analysis. An interesting bias shall achieve an adjustable state gradient and in
addition, must avoid the “moving round in circles” behavior. We suggest for
instance a gaussian goal bias function :

Qi(s, a) = βe−
d(s,sg)2

2σ2 + δ + Q∞ . (8)

δ fixes the level of systematic exploration far away from the goal, β the amplitude
of the bias and σ the bias influence area.

Concerning the gridworld, the bias is such that states near the goal are more
and more interesting a priori than states far away from the goal. So δ and β must
be chosen very small compared to one (in order to avoid too much systematic
exploration). Fig. 2b presents goal bias results on the previous gridworld which
are unambiguous. The goal bias leads to a much faster learning process. It is
worth noticing that there is no problem concerning dead ends even if the bias is
wrong. Contrary to Sect. 4.2, the effect of the goal bias function is transient. It
advises the agent only at the beginning of the learning process.

4.4 Conclusion

Both progress estimators and potential-based shaping methods must be used
cautiously to design a continuous reward function. Consequently, we have pro-
posed a continuous reward function inspired by a gaussian function and whose
reward gradient influence area is adjustable in order to deal with risks. Anyway,
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the best solution is to choose a suitable goal bias function that does not lead to
any problems. Our analysis helps the choice of a correct goal bias function.

5 Experiments with the Pendulum Swing-Up Problem

Last of all, we validate our results on the continuous space control task of a
pendulum swinging upwards with limited torque [10] (Fig. 3a). The control of
this one degree of freedom system is non-trivial if the maximal output torque
umax is smaller than the maximal load torque mgl. The controller has to swing
the pendulum several times to build up enough momentum to bring it upright
and has to decelerate the pendulum early enough to prevent it from falling over.

We have chosen a two-dimensional state space x = (θ, ω). 30×30×9 bases were
used for the state-action space (θ, ω, u). Each trial was started from an initial
state x(0) = (π, 0.1) and lasted 20 seconds. The sample time is 0.03 seconds. As
a measure of the swing-up performance, we have chosen tup as the time in which
the pendulum stayed up (|θ| < π/4). A trial was regarded as “successful” when
tup is superior to the tup average of the 1000 last trials.

We tested the performance of the Q-Learning algorithm depending on the
shape of the reward function and initial Q-values (Fig. 3b). In all cases, the tup

average after 10000 trials is around 14 seconds.
We tested first the binary reward function

R(x, u,x′) =
{

1 if |θ′| < π/4
0 otherwise (9)

with different uniform initial Q-values. With Qi = 0, the task was really difficult
to learn (bar1) because the behavior far from the goal is random. A better perfor-
mance concerning the binary reward and uniform Qi was observed with Qi > 0
(bar2), i.e. the followed behavior when |θ| > π/4 is systematic exploration. The
policy drives the agent to unexplored areas which are assigned higher Q-values,
i.e. the controller is spurred on to swing the pendulum upwards. Systematic
exploration is the best strategy in this specific case.

Then, we tested goal bias with binary rewards : Qi(x) = βe−
θ2

2σ2 +δ. Given our
previous results, it is obvious that the goal bias function shall favor systematic
exploration when |θ| > π/4, so we chose δ = 0.1, β = 1 and σ = 0.25 (bar3).
Goal bias does not improve obviously the learning.

The system is a continuous space control task so the classical reward [10] is
given by the height of the tip of the pendulum, i.e. R(x, u,x′) = cos(θ′) and
the arbitrary Qi value is 0 (bar4). Thus, the pendulum moves round in circles
when |θ| < π/2 and explores systematically when |θ| > π/2 at the beginning.
The result is disappointing.

We applied our gaussian reward function (7) with Qi = 10 and β = 1. The
distance is defined as d(x’,xup) = θ′ with x’ the new state and xup the goal
state. So the continuous reward function is

R(x, u,x′) = e−
θ′2
2σ2 . (10)
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(a) A pendulum
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(b) Experiments

Fig. 3. On the right, comparison of number of trials before one successful trial. The
simulation lasted 10000 trials averaged over 10 independent runs.
bar1: {binary reward ; Qi(x) = 0} bar2: {binary reward ; Qi(x) = 0.1}
bar3: {binary reward and goal bias } bar4: {R(x, u, x′) = cos(θ′) ; Qi(x) = 0}
bar5: {continuous reward and Qi(x)=10 } bar6: {continuous reward and goal bias}

σ = 0.25 so that the reward gradient influence area is only around |θ| < π/4.
Results (bar5) are near the case of a binary reward and systematic exploration.

Lastly, we tried goal bias with continuous reward function. The reward func-
tion (10) is the continuous equivalent to the binary one so we have kept this one.
The reward function is continuous, it is the same for Qi which must be higher

than R(x)
1−γ . So goal bias is Qi(x) = β(1 + 1

1−γ )e−
d2

2σ2 + δ. We have kept previous
choices: δ = 0.1, β = 1 and σ = 0.25. This last simulation (bar6) is the better
performance concerning the pendulum.

6 Conclusion

In this paper, we have called into question the arbitrary choice of the reward func-
tion and initial Q-values within the context of goal directed tasks. Our analysis
has resulted in rules to correctly evaluate rewards and initial Q-values accord-
ing to the desired behavior. Notably, some values of Qi lead to a detrimental
behavior that must be avoided. Thanks to our experiments, we have confirmed
the presence of bounds which mark out diverse behaviors. It is worth noticing
that the farther Qi is from the bounds, the more the characteristic behaviors
are distinguished.

Moreover, we advise to be wary of progressive estimators or potential-based
shaping that may entail pernicious behavior. A safer adjustable continuous re-
ward function is also suggested. At last, thanks to our conditions on the initial
Q-values, we developed a generic goal bias function, whose main feature is to be
transient. This method turns out to be an effective way to improve the learning
performance of goal-directed tasks. Table 1 recapitulates the better choices.



Reward Function and Initial Values 849

Table 1. Better choices of reward function and initial Q-values for goal-directed RL

Binary reward function for
discrete state space

Continuous reward function for
continuous state space

r(s, a, s′) =
{

rg if s′ = sg

r∞ else
Choice of rg and r∞ : rg ≥ r∞

1−γ
r(s, a, s′) = βe

− d(s′,sg)2

2σ2

Choice of uniform initial Q-values :
Qi = r∞

1−γ
+ δ

Choice of uniform initial Q-values :
Qi = β

1−γ

Choice of goal biased initial Q-values :

Qi(s) = βe
− d(s,sg)2

2σ2 + δ + r∞
1−γ

Choice of goal biased initial Q-values :

Qi(s) = β(1 + 1
1−γ

)e− d(s,sg)2

2σ2 + δ

δ ≥ 0 fixes the level of systematic exploration far away from the goal, β > 0 adjusts

the amplitude of the gradient, σ specifies the gradient influence area and γ is the discount factor

s is the previous state, s′ the new state, sg the goal state
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