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Abstract. This paper presents a framework allowing to tune contin-
ual exploration in an optimal way. It first quantifies the rate of ex-
ploration by defining the degree of exploration of a state as the
probability-distribution entropy for choosing an admissible action. Then,
the exploration/exploitation tradeoff is stated as a global optimiza-
tion problem: find the exploration strategy that minimizes the expected
cumulated cost, while maintaining fixed degrees of exploration at same
nodes. In other words, “exploitation” is maximized for constant “ex-
ploration”. This formulation leads to a set of nonlinear updating rules
reminiscent of the value-iteration algorithm. Convergence of these rules
to a local minimum can be proved for a stationary environment. Inter-
estingly, in the deterministic case, when there is no exploration, these
equations reduce to the Bellman equations for finding the shortest path
while, when it is maximum, a full “blind” exploration is performed.

1 Introduction

One of the specific challenges of reinforcement learning is the tradeoff between ex-
ploration and exploitation. Exploration aims to continually try new ways of solv-
ing the problem, while exploitation aims to capitalize on already well-established
solutions. Exploration is especially relevant when the environment is changing,
i.e. nonstationary. In this case, good solutions can deteriorate over time and
better solutions can appear. Without exploration, the system sends agents only
along the up-to-now best path without exploring alternative paths. The system
is therefore unaware of the changes and its performance inevitably deteriorates
with time. One of the key features of reinforcement learning is that it explicitly
addresses the exploration/exploitation issue as well as the online estimation of
the probability distributions in an integrated way [18].

This work makes a clear distinction between “preliminary” or “initial explo-
ration”, and “continual online exploration”. The objective of preliminary ex-
ploration is to discover relevant goals, or destination states, and to estimate a
first optimal policy for exploiting them. On the other hand, continual online
exploration aims to continually explore the environment, after the preliminary
exploration stage, in order to adjust the policy to changes in the environment.
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In the case of preliminary exploration, two further distinctions are often made
[19,20,21,22]. A first group of strategies uses randomness for exploration and
is often referred to as undirected exploration. Control actions are selected with
a probability distribution, taking the expected cost into account. The second
group, referred to as directed exploration, uses domain-specific knowledge for
guiding exploration [19,20,21,22]. Usually, directed exploration provides better
results in terms of learning time and cost.

On the other hand, “continual online exploration” can be performed by, for
instance, re-exploring the environment either periodically or continually [6,15]
by using a ε-greedy or a Boltzmann exploration strategy. For instance, joint
estimation of the exploration strategy and the state-transition probabilities for
continual online exploration can be performed within the SARSA framework
[14,16,18].

This work presents a unified framework integrating exploitation and explo-
ration for undirected, continual, exploration. Exploration is formally defined as
the association of a probability distribution to the set of admissible control ac-
tions in each state (choice randomization). The rate of exploration is quantified
with the concept of degree of exploration, defined as the (Shannon) entropy
[10] of the probability distribution for the set of admissible actions in a given
state. If no exploration is performed, the agents are routed on the best path with
probability one – they just exploit the solution. With exploration, the agents con-
tinually explore a possibly changing environment to keep current with it. When
the entropy is zero in a state, no exploration is performed from this state, while,
when the entropy is maximal, a full, blind exploration with equal probability of
choosing any action is performed.

The online exploration/exploitation issue is then stated as a global opti-
mization problem: learn the exploration strategy that minimizes the expected
cumulated cost from the initial state to the goal while maintaining a fixed de-
gree of exploration. In other words, “exploitation” is maximized for constant
“exploration”. This problem leads to a set of nonlinear equations defining the
optimal solution. These equations can be solved by iterating them until conver-
gence, which is proved for a stationary environment and a particular initialization
strategy. They provide the action policy (the probability distribution of choosing
an action in a given state) that minimizes the average cost from the initial state
to the destination states, given the degree of exploration in each state. Interest-
ingly, when the degree of exploration is zero in all states, which corresponds to
the deterministic case, the nonlinear equations reduce to the Bellman equations
for finding the shortest path from the initial state to the destination states. The
main drawback of this method is that it is computationally demanding since it
relies on iterative algorithms like the value-iteration algorithm.

For the sake of simplicity, we first concentrate here on “deterministic shortest-
path problem”, as defined for instance in [5], where any chosen control action
deterministically drives the agent to a unique successor state. On the other
hand, if the actions have uncertain effects, the resulting state is given by a
probability distribution and one speaks of “stochastic shortest-path problems”.
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In this case, a probability distribution on the successor states is introduced and it
must be estimated by the agents; stochastic shortest-path problems are studied
in Section 4.

Section 2 introduces the notations, the standard deterministic shortest-path
problem, and the management of continual exploration. Section 3 describes our
procedure for solving the deterministic shortest-path problem with continual
exploration, while the stochastic shortest-path problem is discussed in Section
4. Section 5 is the conclusion.

2 Statement of the Problem and Notations

2.1 Statement of the Problem

During every state transition, a finite cost c(k, u) is incurred when leaving state
k ∈ {1, 2, . . . , n} while executing a control action u selected from a set U(k)
of admissible actions, or choices, available in state k. The cost can be positive
(penalty), negative (reward), or zero provided that no cycle exists whose total
cost is negative. This is a standard requirement in shortest-path problems [8];
indeed, if such a cycle exists, then traversing it an arbitrary large number of
times would result in a path with an arbitrary small cost so that a best path
could not be defined. In particular, this implies that, if the graph of the states
is nondirected, all costs are nonnegative.

The control action u is chosen according to a policy Π that maps every state
k to the set U(k) of admissible actions with a certain probability distribution,
πk(u), with u ∈ U(k). Thus the policy associates to each state k a probability dis-
tribution on the set of admissible actions U(k): Π ≡ {πk(u), k = 1, 2, . . . , n}. For
instance, if the admissible actions in state k are U(k) = {u1, u2, u3}, the distrib-
ution πk(u) specifies three probabilities πk(u1), πk(u2), and πk(u3). The degree
of exploration is quantified as the entropy of this probability distribution (see
next section). Randomized choices are common in a variety of fields, for instance
decision sciences [13] or game theory, where they are called mixed strategies (see,
e.g., [12]). Thus, the problem tackled in this section corresponds to a randomized
shortest-path problem.

Moreover, we assume that once the action has been chosen, the next state
k′ is known deterministically, k′ = fk(u) where f is a one-to-one mapping be-
tween (states, actions) and resulting state. We assume that different actions lead
to different states. This framework corresponds to a deterministic shortest-path
problem. A simple modeling of this problem would do without actions and di-
rectly defined state-transition probabilities. The more general formalism fits full
stochastic problems for which both the choice of actions and the state transitions
are governed by probability distributions (see Section 4).

We assume, as in [5], that there is a special cost-free destination or goal
state; once the system has reached that state, it remains there at no further
cost. The goal is to minimize the total expected cost VΠ(k0) (Equation (2.1))
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accumulated over a path k0, k1, ... in the graph starting from an initial (or source)
state k0:

VΠ(k0) = EΠ

[ ∞∑
i=0

c(ki, ui)

]
(2.1)

The expectation EΠ is taken on the policy Π that is, on all the random choices
of action ui in state ki.

Moreover, we consider a problem structure such that termination is guaran-
teed, at least under an optimal policy. Thus, the horizon is finite, but its length
is random and it depends on the policy. The conditions for which termination
holds are equivalent to establishing that the destination state can be reached in
a finite number of steps from any potential initial state; for a rigorous treatment,
see [3,5].

2.2 Controling Exploration by Defining Entropy at Each State

The degree of exploration Ek at each state k is defined by

Ek = −
∑

i∈U(k)

πk(i) log πk(i) (2.2)

which is simply the entropy of the probability distribution of the control actions
in state k [9,10]. Ek characterizes the uncertainty about the choice at state k. It
is equal to zero when there is no uncertainty at all (πk(i) reduces to a Kronecker
delta); it is equal to log(nk), where nk is the number of admissible choices at node
k, in the case of maximum uncertainty, πk(i) = 1/nk (a uniform distribution).

The exploration rate Er
k = Ek/ log(nk) is the ratio between the actual value

of Ek and its maximum value. It takes its values in the interval [0, 1]. Fixing the
entropy at a state sets the exploration level out of this state; increasing the
entropy increases exploration up to the maximal value, in which case there is no
more exploitation since the next action is chosen completely at random, with a
uniform distribution, without taking the costs into account. This way, the agents
can easily control their exploration by adjusting the exploration rates.

3 Optimal Policy Under Exploration Constraints for
Deterministic Shortest-Path Problems

3.1 Optimal Policy and Expected Cost

We turn to the determination of the optimal policy under exploration con-
straints. More precisely, we will seek the policy Π ≡ {πk(u), k = 1, 2, . . . , n},
for which the expected cost VΠ(k0) from initial state k0 is minimal while main-
taining a given degree of exploration at each state k. The destination state is
an absorbing state, i.e., with no outgoing link. Computing the expected cost
(2.1) from any state k is similar to computing the average first-passage time
in the associated Markov chain [11]. The problem is thus to find the transition
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probabilities leading to the minimal expected cost, V ∗(k0) = min
Π

(VΠ(k0)). It

can be formulated as a constrained optimization problem involving a Lagrange
function.

In [1], we derive the optimal probability distribution of control actions in state
k, which is a logit distribution:

π∗
k(i) =

exp [−θk (c(k, i) + V ∗(k′
i))]∑

j∈U(k)
exp

[
−θk

(
c(k, j) + V ∗(k′

j)
)] , (3.1)

where k′
i = fk(i) is a following state and V ∗ is the optimal (minimum) expected

cost given by{
V ∗(k) =

∑
i∈U(k)

π∗
k(i) [c(k, i) + V ∗(k′

i)], with k′
i = fk(i) and k �= d

V ∗(d) = 0, for the destination state d
(3.2)

The control actions probability distribution (3.1) is often called “Boltzmann
distributed exploration”. In Equation (3.1), θk must be chosen in order to satisfy∑

i∈U(k)

πk(i) log πk(i) = −Ek (3.3)

for each state k and given Ek. It takes its values in [0, ∞]. Of course if, for
some state, the number of possible control actions reduces to one (no choice), no
entropy constraint is introduced. Since Equation (3.3) has no analytical solution,
θk must be computed numerically in terms of Ek. This is in fact quite easy since
it can be shown that the function θk(Ek) is strictly monotonic decreasing, so
that a line search algorithm (such as the bisection method, see [2]) or a simple
binary search can efficiently find the θk value corresponding to a given Ek value.

Equation (3.1) has a simple appealing interpretation: choose preferably (with
highest probability) action i leading to state k′

i of lowest expected cost, including
the cost of performing the action, c(k, i) + V ∗(k′

i). Thus, the agent is routed
preferably to the state which is nearest (on average) to the destination state.

The same necessary optimality conditions can also be expressed in terms of
the Q-values coming from the popular Q-learning framework [18,23,24]. Indeed,
in the deterministic case, the Q-value represents the expected cost from state k
when choosing action i, Q(k, i) = c(k, i) + V (k′

i). The relationship between Q
and V is thus simply V (k) =

∑
i∈U(k) πk(i)Q(k, i); we thus easily obtain

{
Q∗(k, i) = c(k, i) +

∑
i∈U(k′

i)
π∗

k′
i
(i)Q∗(k′

i, i), with k′
i = fk(i) and k �= d

Q∗(d, i) = 0, for the destination state d
(3.4)

and the π∗
k(i) are given by

π∗
k(i) =

exp [−θkQ∗(k, i)]∑
j∈U(k)

exp [−θkQ∗(k, j)]
(3.5)
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which corresponds to a Boltzmann exploration involving the Q-value. Thus, a
Boltzmann exploration involving the Q-value may be considered as “optimal”
since it provides the best expected performances for fixed degrees of exploration.

3.2 Computation of the Optimal Policy

Equations (3.1) and (3.2) suggest an iterative procedure very similar to the well-
known value-iteration algorithm for the computation of both the expected cost
and the policy.

More concretely, we consider that agents are sent from the initial state and
that they choose an action i in each state k with probability distribution πk(u =
i). The agent then performs the chosen action, say action i, and incurs the
associated cost, c(k, i) (which, in a non-stationary environment, may vary over
time), together with the new state, k′. This allows the agent to update the
estimates of the cost, of the policy, and of the average cost until destination;
these estimates will be denoted by ĉ(k, i), π̂k(i) and V̂ (k) and are known (shared)
by all the agents.

1. Initialization phase

– Choose an initial policy, π̂k(i), ∀i, k, satisfying the exploration rate con-
straints (3.3) and

– Compute the corresponding expected cost until destination V̂ (k) by us-
ing any procedure for solving the set of linear equations (3.2) where we
substitue V ∗(k), π∗

k(i) by V̂ (k), π̂k(i). The π̂k(i) are kept fixed in the
initialization phase. Any standard iterative procedure (for instance, a
Gauss-Seidel like algorithm) for computing the expected cost until ab-
sorption in a Markov chain could be used (see [11]).

2. Computation of the policy and the expected cost under exploration
constraints
For each visited state k, do until convergence:

– Choose an action i with current probability estimate π̂k(i), observe the
current cost c(k, i) for performing this action, update its estimate ĉ(k, i),
and jump to the next state, k′

i

ĉ(k, i) ← c(k, i) (3.6)

– Update the probability distribution for state k as:

π̂k(i) ←
exp

[
−θ̂k

(
ĉ(k, i) + V̂ (k′

i)
)]

∑
j∈U(k)

exp
[
−θ̂k

(
ĉ(k, j) + V̂ (k′

j)
)] , (3.7)

where k′
i = fk(i) and θ̂k is set in order to respect the given degree of

entropy (see Equation (3.3)).
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– Update the expected cost of state k:⎧⎨
⎩

V̂ (k) ←
∑

i∈U(k)
π̂k(i) [ĉ(k, i) + V̂ (k′

i)], with k′
i = fk(i) and k �= d

V̂ (d) ← 0, where d is the destination state
(3.8)

The convergence of these updating equations is proved for a stationary envi-
ronment in [1]. However, the described procedure is computationally demanding
since it relies on iterative procedures like the value-iteration algorithm in Markov
decision processes.

Thus, the above procedure allows to optimize the expected cost V (k0) and
to obtain a local minimum of this criterion. It does not guarantee to converge
to a global minimum, however. Whether V (k0) has only one global minimum or
many local minima remains an open question.

Notice also that, while the initialization phase is necessary in our convergence
proof, other simpler initialization schemes could also be applied. For instance,
set initially ĉ(k, i) = 0, π̂k(i) = 1/nk, V̂ (k) = 0, where nk is the number of
admissible actions in state k; then proceed by directly applying updating rules
(3.7) and (3.8). While convergence is not proved in this case, we observed that
this updating rule works well in practice; in particular, we did not observe any
convergence problem. This rule is used in the experiments presented in [1].

3.3 Some Limit Cases

We will now show that when the degree of exploration is zero for all states, the
nonlinear equations reduce to Bellman’s equations for finding the shortest path
from the initial state to the destination state.

Indeed, from Equations (3.7)-(3.8), if the parameter θ̂k is very large, which
corresponds to a near-zero entropy, the probability of choosing the action with
the lowest value of (ĉ(k, i) + V̂ (k′

i)) dominates all the others. In other words,
π̂k(j) � 1 for the action j corresponding to the lowest average cost (including
the action cost), while π̂k(i) � 0 for the other alternatives i �= j. Equations (3.8)
can therefore be rewritten as{

V̂ (k) ← min
i∈U(k)

[ĉ(k, i) + V̂ (k′
i)], with k′

i = fk(i) and k �= d

V̂ (d) ← 0, where d is the destination state
(3.9)

which are Bellman’s updating equations for finding the shortest path to the
destination state [4,5]. In terms of Q-values, the optimality conditions reduce to{

Q∗(k, i) = c(k, i) + min
i∈U(k)

Q∗(k′
i, i), with k′

i = fk(i) and k �= d

Q∗(d, i) = 0, for the destination state d
(3.10)

On the other hand, when θ̂k = 0, the choice probability distribution reduces
to π̂k(i) = 1/nk, and the degree of exploration is maximum for all states. In this
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case, the nonlinear equations reduce to the linear equations allowing to compute
the average cost for reaching the destination state from the initial state in a
Markov chain with transition probabilities equal to 1/nk. In other words, we then
perform a “blind” random exploration, for the choice probability distribution.

Any intermediary setting 0 < Ek < log(nk) leads to an optimal exploration
vs. exploitation strategy minimizing the expected cost, and favoring short paths
to the solution. In [1], we further show that, if the graph of states is directed
and acyclic, the nonlinear equations can easily be solved by performing a single
backward pass from the destination state.

Experimental simulations illustrating the behaviour of the algorithm, as well
as comparisons with a naive Boltzmann and a ε-greedy exploration strategy, are
provided in [1].

4 Optimal Policy Under Exploration Constraints for
Stochastic Shortest Path Problems

We now consider stochastic shortest path problems for which, once an
action has been performed, the transition to the next state is no longer deter-
ministic but stochastic [5]. More precisely, when an agent chooses action i in
state k, it jumps to state k′ with a probability P(s = k′|u = i, s = k) = pkk′ (i)
(transition probabilities). Notice that there are now two different probability
distributions associated to the system: the probability of choosing an action i
within the state k, πk(i), and the probability of jumping to a state s = k′ after
having chosen the action i within the state k, pkk′(i).

By first-step analysis (see [1]), the recurence relations allowing to compute
the expected cost VΠ(k), given policy Π are easily found:

⎧⎨
⎩VΠ(k) =

∑
i∈U(k)

πk(i) [c(k, i) +
n∑

k′=1
pkk′ (i)VΠ(k′)],

VΠ(d) = 0, where d is the destination state
(4.1)

Furthermore, by defining the average cost when having chosen control action
i in state k by V

Π
(k, i) =

∑
k′ pkk′ (i)VΠ(k′), Equation (4.1) can be rewritten as

{
VΠ(k) =

∑
i∈U(k)

πk(i) [c(k, i) + V
Π

(k, i)],

VΠ(d) = 0, where d is the destination state
(4.2)

Thus, the optimal policy is obtained by substituting VΠ(k′
i) by V

∗
(k, i) in

both (3.1) and (3.2):

π∗
k(i) =

exp
[
−θk

(
c(k, i) + V

∗
(k, i)

)]
∑

j∈U(k)
exp

[
−θk

(
c(k, j) + V

∗
(k, j)

)] (4.3)



798 Y. Achbany et al.

The details are provided in [1]. The additional difficulty here, in comparison
with a deterministic problem, is that the probability distributions pkk′(i), if un-
known, have to be estimated on-line, together with the costs and the distribution
of the randomized control actions [18].

4.1 On-Line Estimation of the Transition Probabilities

The transition probabilities pkk′ (i) might be unknown and, consequently, should
be estimated on-line, together with the costs and the distribution of the ran-
domized control actions [18]. An alternative solution is to directly estimate
the average cost V Π(k, i) =

∑
k′ pkk′(i)VΠ(k′) based on the observation of

the value of VΠ in the next state k′. There is a large range of potential tech-
niques for solving this issue, depending on the problem at hand (see for exam-

ple [7]). One could simply use an exponential smoothing, leading to V̂ (k, i) ←
αV̂ (k′)+(1−α)V̂ (k, i), or a stochastic approximation scheme, V̂ (k, i) ← V̂ (k, i)+

α
[
V̂ (k′) − V̂ (k, i)

]
, which converges for a suitable decreasing policy of α [17].

This leads to the following updating rules:
For each visited state k, do until convergence:

– Choose an action i with current probability estimate π̂k(i), observe the cur-
rent cost c(k, i) for performing this action, update its estimate ĉ(k, i) by

ĉ(k, i) ← c(k, i) (4.4)

– Perform the action i and observe the current value V̂ (k′) of the next state
k′. Update V̂ (k, i) accordingly (here, we choose the exponential smoothing
scheme),

V̂ (k, i) ← αV (k′) + (1 − α)V̂ (k, i) (4.5)

– Update the probability distribution for state k as:

π̂k(i) ←
exp

[
−θ̂k

(
ĉ(k, i) + V̂ (k, i)

)]
∑

j∈U(k)
exp

[
−θ̂k

(
ĉ(k, j) + V̂ (k, j)

)] , (4.6)

where θ̂k is set in order to respect the prescribed degree of entropy (see
Equation (3.3)).

– Update the expected cost of state k asynchronously:⎧⎨
⎩

V̂ (k) =
∑

i∈U(k)
πk(i) [ĉ(k, i) + V̂ (k, i)],

V̂ (d) = 0, where d is the destination state
(4.7)

This iterative scheme is closely linked to the SARSA on-policy control algo-
rithm [14,16,18]; a discussion of these relationships is provided in [1].
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5 Conclusions

We have presented a model integrating continual exploration and exploitation
in a common framework. The exploration rate is controlled by the entropy of
the choice probability distribution defined on the states of the system. When no
exploration is performed (zero entropy on each node), the model reduces to the
common value-iteration algorithm computing the minimum cost policy. On the
other hand, when full exploration is performed (maximum entropy on each node),
the model reduces to a “blind” exploration, without considering the costs. The
main drawback of the present approach is that it is computationally demanding
since it relies on iterative procedures such as the value-iteration algorithm.

Further work will investigate the relationships with SARSA, as well as alter-
native cost formulations, such as the “average cost per step”. We also plan to
exploit the proposed exploration framework in Markov games.
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