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Abstract. Recurrent neural networks (RNNs) unfolded in time are in theory able
to map any open dynamical system. Still they are often blamed to be unable to
identify long-term dependencies in the data. Especially when they are trained
with backpropagation through time (BPTT) it is claimed that RNNs unfolded in
time fail to learn inter-temporal influences more than ten time steps apart.

This paper provides a disproof of this often cited statement. We show that
RNNs and especially normalised recurrent neural networks (NRNNs) unfolded
in time are indeed very capable of learning time lags of at least a hundred time
steps. We further demonstrate that the problem of a vanishing gradient does not
apply to these networks.

1 Introduction

Recurrent neural networks (RNNs) allow the identification of dynamical systems in
form of high dimensional, nonlinear state space models [1,2]. They offer an explicit
modeling of time and memory and allow in principle to model any type of open dy-
namical system [3]. The basic concept is more than 20 years old, so e.g., unfolding in
time of neural networks and related modifications of the backpropagation algorithm can
already be found in [4].

Nevertheless, there is often a negative attitude towards RNNs because it has been
claimed by several authors that RNNs unfolded in time are unable to identify and
learn long-term dependencies of more than ten time steps [5,6,7]. To overcome the
stated dilemma new forms of recurrent neural networks, e.g., long short-term memory
(LSTM) networks [8], were developed, but these networks do not offer the desirable
correspondence between equations and architectures as RNNs unfolded in time do.

Still, the analyses in the mentioned papers [5,6,7] were all based on a very basic
architecture of RNNs and, even more important, made from a static perspective. In
this paper we therefore disprove the statement that RNNs unfolded in time and trained
with backpropagation through time (BPTT) are in general unable to learn long-term de-
pendencies. We outline that RNNs and especially normalised recurrent neural networks
(NRNNs) unfolded in time have no difficulty with an identification and learning of past-
time information within the data which is more than ten time steps apart. Furthermore
we show that by using shared weights training of these networks is not a major problem.
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It even helps to overcome the problem of a vanishing gradient as the networks possess
a self-regularisation characteristic which adapts the error information flow.

We start with a recapitulation of the basic RNN unfolded in time (sec. 2). Here we
especially emphasise the advantage of overshooting and point out that this simple ex-
tension regularises the learning with BPTT. We further enhance the basic RNN archi-
tecture so that it only possesses one single (high-dimensional) transition matrix. This
so called normalised recurrent neural network (NRNN) increases the stability of the
learning process (sec. 3). In section 4 we then demonstrate that both NRNN and RNN
successfully learn long-term dependencies. In doing an analysis of the backpropagated
error flow we finally show that the problem of a vanishing gradient is not a relevant
question for both networks. In section 5 we give a conclusion and an outlook on further
research.

2 Recurrent Neural Networks Unfolded in Time

The basic time-delay recurrent neural network (RNN) consists of a state transition and
an output equation [1,9]:

st+1 = tanh(Ast + c + But) state transition

yt = Cst output equation
(1)

Here, the state transition equation st+1 (t = 1, . . . , T where T is the number of
available patterns) is a nonlinear combination of the previous state st and external in-
fluences ut using weight matrices A and B of appropriate dimension and a bias c, which
handles offsets in the input variables ut. The network output yt is computed from the
present state st employing matrix C. It is therefore a nonlinear composition applying
the transformations A, B, and C.

Training the RNN of equation 1 is equivalent to solving a parameter optimisation
problem, i.e., minimising the error between the network output yt and the real data yd

t

with respect to an arbitrary error measure, e.g.:

T∑

t=1

(
yt − yd

t

)2 → min
A,B,C,c

(2)

It can be solved by finite unfolding in time using shared weight matrices A, B,
and C [1,4]. Shared weights share the same memory for storing their weights, i.e., the
weight values are the same at each time step of the unfolding and for every pattern t ∈
{1, . . . , T} [1,4]. This guarantees that we have the same dynamics in every time step.
By using unfolding in time the RNN can be trained with error backpropagation through
time (BPTT) [1,4], which is a shared weights extension of the standard backpropagation
algorithm [10]. Figure 1 depicts the resulting spatial neural network architecture [9].

We extend the autonomous part of the RNN into the future by so-called overshooting
[9], i.e., we iterate matrices A and C in future direction (see fig. 1). In doing so we get
a sequence of forecasts as an output. More important, overshooting forces the learning
to focus on modeling the autonomous dynamics of the network, i.e., it supports the ex-
traction of useful information from input vectors which are more distant to the output.
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Fig. 1. RNN unfolded in time using overshooting

Consequently overshooting is a very simple remedy to the problem that the backpropa-
gation algorithm usually tries to model the relationship between an output and its most
recent inputs because the fastest adaptation takes place in the shortest path [5]. There-
fore also the learning of false causalities is decreased. Hence, overshooting regularises
the learning and thus improves the model’s performance [9]. Note, that due to shared
weights no additional parameters are used.

3 Normalised Recurrent Neural Networks

As a preparation for the development of normalised recurrent neural networks (NRNNs)
[11] we first separate the state equation of the basic time-delay RNN (eq. 1) into a past
and a future part. In this framework st is always regarded as the present time state. That
means that for this pattern t all states sτ with τ ≤ t belong to the past part and those
with τ > t to the future part. The parameter τ is thereby always bounded by the length
of the unfolding in time m and the length of the overshooting n [9], such that we have
τ ∈ {t − m, . . . , t + n} for all t ∈ {m, . . . , T − n}. The present time (τ = t) is
included in the past part, as these state transitions share the same characteristics. We
get the following representation of the optimisation problem:

τ ≤ t : sτ+1 = tanh(Asτ + c + Buτ )

τ > t : sτ+1 = tanh(Asτ + c)

yτ = Csτ

T−n∑

t=m

t+n∑

τ=t−m

(yτ − yd
τ )2 → min

A,B,C,c

(3)

In this model, past and future iterations are consistent under the assumption of a
constant future environment. Still, the difficulty with this kind of RNN is the training
with BPTT, because a sequence of different connectors has to be balanced. The gra-
dient computation is not regular, i.e., we do not have the same learning behavior for
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the weight matrices in the different time steps. In our experiments we found, that this
problem becomes more important for the training of large RNN. Even the training it-
self is unstable due to the concatenated matrices A, B, and C. As the training changes
weights in all of these matrices, different effects or tendencies, even opposing ones, can
influence them and may superpose. This implies, that there results no clear learning
direction or change of weights from a certain backpropagated error [11].

NRNNs (eq. 4) avoid the stability and learning problems resulting from the concate-
nation of the three matrices A, B, and C because they incorporate besides the bias c
only one connector type, a single transition matrix A:

τ ≤ t : sτ = tanh(Asτ−1 + c +

⎡

⎣
0
0
Id

⎤

⎦uτ )

τ > t : sτ = tanh(Asτ−1 + c)

yτ = [Id 0 0]sτ

T−n∑

t=m

t+n∑

τ=t−m

(yτ − yd
τ )2 → min

A,c

(4)

The corresponding architecture is depicted in figure 2.
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Fig. 2. Normalised recurrent neural network

Using NRNN modeling is solely focused on the transition matrix A. The matrices
between input and hidden as well as hidden and output layer are fixed and therefore not
changed during the training process. Consequently matrix A does not only code the au-
tonomous and the externally driven parts of the dynamics, but also the (pre-)processing
of the external inputs uτ and the computation of the network outputs yτ . This implies
that all free parameters, as they are combined in one matrix, are now treated the same
way by BPTT.
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At first view it seems, that in the network architecture (fig. 2) the external input
uτ is directly connected to the corresponding output yτ . This is not the case, because
we enlarge the dimension of the internal state sτ , such that the input uτ has no direct
influence on the output yτ . Assuming that we have a number of p outputs, q computa-
tional hidden neurons and r external inputs, the dimension of the internal state would
be dim(s) = p + q + r. With the matrix [Id 0 0] we connect only the first p neurons
of the internal state sτ to the output layer yτ . As this connector is not trained, it can be
seen as a fixed identity matrix of appropriate size. Consequently, the NRNN is forced
to generate its p outputs at the first p components of the state vector sτ . The last state
neurons are used for the processing of the external inputs uτ . The connector [0 0 Id]T

between the externals uτ and the internal state sτ is an appropriately sized fixed identity
matrix. More precisely, the connector is designed such that the input uτ is connected to
the last r state neurons. To additionally support the internal processing and to increase
the network’s computational power, we add a number of q hidden neurons between the
first p and the last r state neurons. This composition ensures, that the input and output
processing of the network is separated but implies that NRNNs can only be designed as
large neural networks [11].

Our experiments indicate that NRNNs show, in comparison to RNNs, a more stable
training process, even if the dimension of the internal state is very large.

4 Learning Long-Term Dependencies

We use a very simple but well-known problem to demonstrate the ability of learning
long-term dependencies of RNNs and NRNNs. Similar problems have already been
studied in [5] and [8]. In both papers the performance of RNNs trained with BPTT has
been tested to be unsatisfactory and the authors concluded that RNNs are not suited for
the learning of long-term dependencies.

We created time series of 10000 values which are uniformly distributed on an interval
[−r, r] with r ∈ R and 0 < r < 1. Every d-th value, with d ∈ N is 1. These are the
only predictable values for the network. Consequently, for a successful solution to the
problem the network has to remember the occurrence of the last 1, d-time steps afore in
the time series data. In other words, it has to be able to learn long-term dependencies.
The higher d the longer memory is necessary. We used the first 5000 data points for
training and left the other half for generalisation.

4.1 Model Description

We applied an RNN (sec. 2) and an NRNN (sec. 3) with one input neuron per time
step in the past and one output neuron per time step in the future. In contrast to the
descriptions in sections 2 and 3 we did not implement any outputs in the past part of the
networks, as those would not help to solve the problem. This implies that the gradient
information of the error function has to be propagated back from the future outputs to
all past time steps. It also avoids a superposition of the long-term gradient information
with a local error flow in the past. Therefore the omission of outputs in the past also
eases the analysis of the error backflow.
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The networks were both unfolded a hundred time steps into the past. Whereas the
NRNN was unfolded twenty time steps into future direction, we did not implement
any overshooting for the RNN. In doing so we kept the RNN as simple as possible to
show that even such a basic RNN is able to learn long-term dependencies. The total
unfolding therefore amounts to 101 time steps for the RNN and to 120 steps for the
NRNN. The dimension of the internal state matrix A is always set to 100, which is
equivalent to the amount of past unfolding. We initialised the weights randomly with a
uniform distribution on [−0.2, 0.2]. In all hidden units we implemented the hyperbolic
tangent as activation function. We further used the quadratic error function

E :=
T−n∑

t=m

t+n∑

τ=t−m

(yτ − yd
τ )2 (5)

to minimise the difference between network output and target (eqs. 4 and 3). The net-
works were trained with BPTT in combination with pattern-by-pattern learning [12].
The learning rate η was set to 10−4.

4.2 Results

Table 1 summarises our results for different time gaps d and several noise ranges r.
The error limit shows the optimal achievable error for the given problem plus a 10%
tolerance. It is calculated by the variance of the uniform distribution given a certain
noise range r and assuming no error for the time indicators in every d-th time step. We
give the average number of epochs RNN and NRNN needed to pass this error limit, i.e.,
the number of learning epochs necessary to solve the problem with a maximum of a
10% error tolerance.

Table 1. Results for different time gaps d and noise ranges r

time gap d range r Error limit # Epochs RNN # Epochs NRNN

40 0.1 0.003575 19 13
40 0.2 0.0143 19 9
40 0.4 0.0572 50 28
60 0.1 0.00361 39 33
60 0.2 0.01442 437 23
60 0.4 0.05769 389 248

100 0.1 0.00363 65 106
100 0.2 0.01452 353 59
100 0.4 0.05808 96 84

The results demonstrate the ability of NRNNs as well as of basic RNNs to learn
long-term dependencies of d = 40, 60 and even 100 which is obviously more than the
often cited limit of ten time steps [7]. After only a small number of learning epochs both
networks were able to solve the problem. Still, in comparison to the RNN, the NRNN
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in general showed a more stable learning behaviour and needed in most cases slightly
shorter to identify the data structure.

As expected, a longer gap d resulted in more learning epochs, the networks needed
to succeed. Also a higher noise range r, i.e., a larger uniform distribution of the data,
made it more challenging for the networks to identify the time indicators. Still, even
in more difficult settings, RNN and NRNN captured the structure of the problem very
quickly.

Using smaller dimensions for the single transition matrix A increased the number
of epochs necessary to learn the problem (fig. 3). This is probably due to the fact that
the network needs a certain dimension to store long-term information. So e.g., with a
hundred dimensional matrix the network can easily store a time gap of d = 100 in form
of a simple shift register. Downsizing the dimension forces the network to build up more
complicated internal matrix structures which take more learning epochs to develop.
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Fig. 3. Number of epochs needed by an NRNN to solve the problem with d = 40 and r = 0.1
using different numbers of hidden, i.e. internal state, neurons. We stopped training after 5000
epochs which implies that the network was not able to solve the problem for dim(s) ≤ 20.

4.3 Analysis of the Backpropagated Error

To put the claim of a vanishing gradient in RNNs unfolded in time and trained with
BPTT [7] into perspective we analysed the backpropagated error within our networks.
We noticed that under certain conditions vanishing gradients do indeed occur, but are
only a problem if we put a static view on the networks like it has been done in [5,7].
Studying the development of the error flow during the learning process we observed
that the networks themselves have a regularising effect, i.e., they are able to prolong
their information flow and consequently solve the problem of a vanishing gradient. We
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see two main reasons for this self-regularisation behaviour: shared-weights and over-
shooting (sec. 2). Whereas shared weights constrain the networks to change weights
(concurrently) in every unfolded time step, overshooting forces the networks to focus
on the autonomous sub-dynamics. Especially the former allows the networks to adapt
the gradient information flow.

Similar to the analysis in [5] and [7] we further confirmed that the occurrence of a
vanishing gradient is dependent on the values of the weight matrix A. By initialising
matrix A with different weight values it turned out, that an initialisation with a uni-
form distribution in [−0.2, 0.2] is a good choice for our networks (sec. 4.1). We never
experienced any vanishing gradient in these cases. In contrary, when initialising the
networks only within [−0.1, 0.1], the gradient vanished in the beginning of the learning
procedure. Nevertheless, during the learning process the networks themselves solved
this problem by changing the weight values. Figure 4 shows an exemplary change of
the gradient information flow during the learning process.
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Fig. 4. Exemplary adaptation of the gradient error flow during the learning process of an NRNN
which has been initialised with small weights: The graph shows that for a number of learning
epochs smaller than approximately 100, the gradient vanishes very quickly. After that the error
information distributes more and more over the different unfolding steps, i.e., the networks pro-
longs its memory span. Finally after about a 150 epochs the error information is almost uniformly
backpropagated to the last unfolded time step 100.
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5 Conclusion and Outlook

In this paper we demonstrated that NRNNs as well as basic RNNs unfolded in time
and trained with BPTT are, in opposition to an often stated opinion, well able to learn
long-term dependencies. Using shared weights and overshooting in combination with a
reasonable learning algorithm like pattern-by-pattern learning the problem of a vanish-
ing gradient becomes irrelevant. Our results even show that due to shared weights the
networks possess an internal regularisation mechanism which keeps the error flow up
and allows for an information transport over at least a hundred time steps. Consequently
RNNs and especially NRNNs are valuable in time series analysis and forecasting.

Looking at the results and our general experience with recurrent neural networks we
further assume that there is a conjunction between the internal state dimension and the
weight values in form of an optimal expected row sum of the transition matrix A. The
confirmation of this assumption will be part of our future research. Besides that we
want to investigate in how far a theoretical analysis of the examined self-regularisation
ability of recurrent neural networks is possible.
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