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Abstract. The simulation of large spiking neural networks (SNN) is still a very
time consuming task. Therefore most simulations are limited to rather unrealistic
small or medium sized networks (typically hundreds of neurons). In this paper,
some methods for the fast simulation of large SNN are discussed. Our results
equally amongst others show that event based simulation is an efficient way of
simulating SNN, although not all neuron models are suited for an event based ap-
proach. We compare some models and discuss several techniques for accelerating
the simulation of more complex models. Finally we present an algorithm that is
able to handle multi-synapse models efficiently.

1 Introduction

Despite the ever increasing computational power in computer systems, there is still a
huge demand for more computational power, especially in the field of spiking neural
networks (SNN). Spiking neurons are biologically inspired neurons that communicate
by using spikes. Because here the timing of the spikes is considered, SNN are able to
handle temporal problems more efficiently (for example speech recognition [18]) and
have more computational power than artificial neural networks [9] which use the aver-
age firing rate of neurons as inputs. Furthermore, they communicate through discrete
spikes instead of analog values which significantly reduces the communication costs
between neurons. This makes them particularly better suited for hardware implementa-
tions [13][14].

The behaviour of a spiking neuron can be represented by an internal membrane po-
tential which is influenced by incoming spikes. When the potential of the membrane
reaches a certain threshold value, the membrane potential will be reset to a lower value
and a spike is emitted. It is important to note that each neuron operates independently,
except when a spike is communicated between neurons.

An obvious way of implementing SNN in hardware is a one to one placement of
the neurons into physical components. This approach benefits from the inherent paral-
lel nature of spiking neural networks and allows extremely fast simulations (orders of
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magnitude faster than realtime). Unfortunately it has to deal with some important draw-
backs. First, the size of the networks is limited by the amount of hardware available on
the chip. In current FPGA’s1, one can implement a couple of thousand simplified spik-
ing neurons in a direct manner [15]. By combining several chips, one should be able
to create larger networks, however this is a very cost inefficient method. Another im-
portant drawback of this approach lies in the low activity, which is for a typical spiking
neural network less than 1% ([5]). This means that generally most of the synapses and
neurons are inactive (i.e. potential on its restpotential) and thus occupy costly space in
hardware. Direct hardware implementations are thus very space inefficient.

Therefore, in practice, large SNN are simulated using more conventional architec-
tures. There are essentially two ways of simulating SNN: time-step driven and event
based simulation. The first one divides the simulation into fixed time-steps. At each
time-step, the complete network is evaluated and the new state of each neuron is calcu-
lated. The precision of the simulation depends on the size of each time-step, which also
affects the simulation time. Although this is a very simple approach, the asynchronous
nature of the spikes requires small time-steps (≤ 1 ms) in order to achieve accurate
simulation results [16].

Usually we are only interested in the external behaviour of a neuron (i.e. emitted
spikes) due to incoming spikes instead of the internal membrane changes. Event based
simulation takes advantage of this. Instead of evaluating the whole network on regular
time intervals, the membrane potential of each neuron is evaluated only when necessary,
i.e. when a neuron receives a spike, or when it will fire.

In the next section, we compare time-step driven simulation with event based sim-
ulation using two accurate simulation environments. In Section 3 we briefly discuss
different models of spiking neurons and show why some of them can be simulated effi-
ciently in an event driven manner while very biological realistic models are much more
difficult to simulate. We show the results of some accelaration techniques for more com-
plex models. Finally, because existing simulators do not support multi-synapse models
efficiently, we present an algorithm that handle these models efficiently.

2 Event Based Simulation Versus Time-Step Driven Simulation

In order to compare event based simulation with time-step driven simulation, we cre-
ated a random network consisting of 500 neurons with an interconnection fraction of
0.1 (i.e. each neuron has on average 50 input connections). Input spikes are generated
through one input neuron. The neuron model used is developed by Olaf Booij (personal
communication). It is a special case of a leaky integrate and fire neuron with exponential
synapses where τm = 2τs (this will be explained in Section 3.1).

For the time-step driven simulator, we used CSIM2 which is a well known open
source C++ simulator, optimized for speed by calculating only the active synapses. The
resolution (time-step) was set to 0.1 ms.

The event-based simulator used is ESSpiNN, a simulator developed at our research
group. The core of this simulator is based on MVASpike, a general event based C++

1 Field Programmable Gate Array.
2 http://www.lsm.tugraz.at/csim
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simulator for SNN from Olivier Rochel [12]. We have adapted this simulator to our
goals, and extended it in order to allow more general neuron models (e.g. SRM0) to be
simulated. Besides a broad range of neuron models, it can simulate different types of
(delayed) connections such as STDP, dynamic synapses, etc. The time resolution for
the neuron model used in this example is only limited by the resolution of the double
precision floating point numbers, which results in very accurate simulations compared
to time-step driven methods.

In Table 1 we measured the execution time of both simulators for different numbers
of input spikes (on the same platform, i.e. AMD Athlon 64 3400+). We can see that the
average speedup of the event driven simulator is 60 times for a relatively high neuron
activity (on average 100 spikes per neuron per second). For 100 and 1000 input spikes,
we used a simulation time of 1s, which means that the incoming spike activity is a
factor 10 higher for the second case. When we look at CSIM, we can see that despite
the 10 times lower activity, its execution speed is only a factor 3.75 faster. This is due to
its time-step driven nature: time-step based simulation scales in the first place with the
simulated time, while event-based simulation scales mainly with the number of spikes.

Table 1. Comparison between CSIM and ESSpiNN for a network of 500 neurons, interconnection
fraction of 0.1 and 1 input neuron. The neuron model is Booij’s integrate and fire neuron where
τm = 2τs.

Number of spikes Simulated time Execution time CSIM Execution time ESSpiNN
100 1 sec 14.6 sec 0.10 sec

1 000 1 sec 55.0 sec 0.80 sec
10 000 10 sec 451 sec 7.13 sec

100 000 100 sec / 72.8 sec

3 Event Simulation of Different Spiking Neuron Models

In event based simulation, a new calculation will be performed only when an event
occurs. An event-simulator has to keep track of all events in the system. This can be
done with a queue that keeps all generated events in chronological order (the event-
queue). The simulator takes the event with the smallest time stamp from this event
queue, processes it and adds new events to the queue if necessary. Then it takes the next
event with the smallest time stamp, etc.

An obvious requirement for event simulation of SNN is that incoming and outgoing
pulses can be considered as discrete events. However, not all neural models fulfill this
condition. Some models are very easy to simulate in an event driven fashion, while oth-
ers are much harder. Below, we discuss some important models and their applicability
to event simulation. Then we give some results measured on our event simulator for
different neuron models.

3.1 Some Common Neuron Models

Hodgkin Huxley model. The model of Hodgkin and Huxley [7] is a very good im-
itation of a certain type of biological neuron (Fig. 1a). It consists of a collection of
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Fig. 1. Some popular spiking neural models a) example of a Hodgkin-Huxley-model, b) the Leaky
IF-neuron and c) an approximation with SRM (0th order) model

differential equations that model the internal processing. It is an important model for
the detailed study of the biological behaviour of neurons that deals with ion channels,
different types of synapses and geometry of individual neurons. This model is in essence
a continuous model, which makes it very difficult to simulate in an event driven fashion
without making certain concessions [8]. However it is an important reference model for
more simple models.

(Leaky) Integrate and Fire model (IF model). IF models are one of the best known ex-
amples of the so-called threshold model neurons, which means that a pulse is generated
as soon as the membrane potential reaches a certain threshold. Pulses are stereotypi-
cal events which are completely characterized by their firing time stamp. After firing,
the neuron optionally has a refractory period during which it stays inactive for a cer-
tain amount of time. In Fig. 1b, an example of a Leaky IF model is shown (without a
synapse model). Because firing happens only when an incoming spike arrives, the event
based simulation of this model is simple. However, this property also drastically limits
the expression power of this model [10].

Spike Response Model (SRM). The SRM [4] can be seen as a generalization of the
Leaky IF model. One of the differences however is that the membrane potential is ex-
pressed as a function of the time passed since the last fire event, instead of a function of
itself. A special case of the SRM is the 0th order SRM or SRM0. All incoming pulses
now have the same shape, independent of the time since the last incoming event and
the state of the membrane. A simple example is shown in Fig. 1c. The model shown is
an exponential Leaky IF model with exponential synapses. For most applications, the
SRM0 is still sufficient and has been used for example for the analysis of the computa-
tional power of neurons [10], studies of collective phenomena in local coupled networks
[4] and in the Liquid State Machine (LSM) [6].

There exist a number of event based simulators specially built for a specific type of IF
neurons (most without synapse model) and networks. These simulators allow fast simu-
lations but –given the simplicity of the neuron model– they have limited applicabilities
and are often built with a specific application in mind. A totally different approach is to
try to create a biological very realistic simulator [8]. However the aim of our work is not
to create a biological very realistic simulator, but to allow efficient emulations of huge
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networks of powerful spiking neurons. The LIF with a synapse model is a good starting
point for such a simulator, but it involves some difficulties when we try to simulate it in
an event-based manner. In the next subsection, we briefly explain these difficulties and
show some techniques and optimisations to solve them efficiently.

3.2 A Simple SRM0 Neuron

To show the problems of simulating a more general IF model, we consider the expo-
nential Leaky IF model with exponential synapses (Fig. 1c). The postsynaptic potential
ui (t) of neuron i with n inputs at time t can be written as [4]
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∑
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with θ the threshold, urest the restpotential and τm and τs,j the decay constants of the
membrane and the synapse. maxi,j is a rescaling constant to assure that a weight of
1 generates a pulse of the same height. To schedule the next update-time of a neuron,
the event-simulator must be able to predict the next fire-time stamp of a neuron, i.e. the
time stamp when ε0 reaches the threshold θ.

Therefore equation (1) with ui (t) = θ must be solved for t. However for non-natural
values of τm and τs,j this can not be solved analytically. There exists different solutions
for this problem which we divide roughly into tree classes: using a restricted model
which can be solved very efficiently, using look-up tables, or using iterative techniques
to approximate the fire-time stamp.

A good example of the first solution is the neuron model developed by Olaf Booij
(personal communication). He assumes that each input synapse has the same τs, and
that τm = 2τs. Now, the solution for t is reduced to a quadratic equation which can be
solved analytically very quickly.

The use of lookup tables is a well known method to estimate the fire-time stamp
which offers high speed with (depending on the size of the table) sufficient accuracy [1].
Some researchers even replaced all calculations with precalculated lookup tables [2]. An
important drawback of lookup tables however is the memory size that grows more than
exponentially with the desired accuracy. Also, separate lookup tables are required for
each τs. Therefore, most researchers limit their models to a single synapse model.

An example of the last type of solution is developed by Makino [11]. His simulator
is able to estimate the fire time stamp of an arbitrary continuous membrane function by
dividing the function into linear envelopes where each envelope containes at most one
threshold crossing. Inside each envelope, a Newton-Rhapson based method is used to
estimate the fire-time stamp.
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It is clear that most techniques are developed to be used with one or a very restricted
number of synapse constants. When extending these techniques to neurons with sev-
eral synaptic time constants (multi-synapse neurons, in the most common case, each
input has its own synaptic time constant), they have to deal with the calculation of
each synapse for each update of their state, which quickly decreases their efficienty.
Therefore, we developed an efficient technique that can handle several synaptic time
constants, which we will describe briefly below.

3.3 Efficient Processing of Multi-synapse Neurons

An obvious optimisation for the simulation of multi-synapse models that has also been
used in e.g. CSIM is to separate inactive synapses from active synapses and to consider
only the active synapses of a neuron in the computations. Due to the typical low activity
of spiking neural networks, this results already in a significant speedup (a factor 2).

Another optimisation follows from the observation that a neuron generally has to
receive several spikes before it will emit a spike itself. However, estimating if a the
membrane potential will reach the threshold, is a time consuming process itself when
using several synaptic constants.

Therefore, we developed a simple but fast membrane-value estimation function.
Whenever the neuron receives a spike, we consider the (updated) maximum influence
of the current synapse on the membrane potential by adding it to the total approximated
membrane maximum (Fig. 2). When a spike enters, we only update the synapse poten-
tial of the input that receives the spike. When there is a possibility for the membrane
potential to reach its threshold (i.e. the approximated membrane maximum reaches the
threshold), we start updating the total membrane potential by calculating the exact po-
tential of each synapse at the current time stamp.

Fig. 2. Maximum approximation of the membrane potential. On time 3, the approximated maxi-
mum reaches the threshold. After updating synapse 2, we see already that the threshold will not
be reached.

In many cases, after updating just a couple of synapses, the approximated membrane
potential will drop below the threshold, so we can stop updating and wait for the next
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spike to enter. By updating the synapses with the oldest update-time first, we have the
highest likelihood that only a couple of updates are sufficient to see that the threshold
will not be reached because the maximum drops below the threshold. Therefore, we
keep the synapses ordered by their update-time. We implemented this in an efficient
way by placing them in a circular doubly linked list. Due to the algorithm, when the
oldest synapse needs to be updated (to the current time stamp), only the start-pointer of
the list needs to be updated, which involves no sorting actions (Fig. 3). As soon as the
influence of a synapse on the membrane potential becomes negligable, we remove the
synapse from the active synapse list.

Fig. 3. A circular doubly linked list is used to keep synapses ordered by their update time, thus
eliminating a sorting action. Also an index structure allows fast random access of synapses.

When the threshold is still reached after updating all synapses, we apply a Newton-
Rhapson (NR) method to estimate the exact fire-time stamp. Measurements show that
we have a high accuracy after only a few NR iteration steps. A drawback of our ap-
proach however is that for very high activity (spike-frequency ∼kHz, which is very
unrealistic), the maximum membrane approximation becomes almost useless and in-
troduces an overhead to the simulation.

3.4 Results

In order to be able to compare the simulation speed of our model with other models,
we used Booij’s restrictions to the multi-synapse neurons (i.e. each synapse τs,i was
set to τm,i/2) and compared the execution-times for several implementations. We used
multi-synapse neurons with a separate synapse constant for each input and neglected of
course the fact that the synapses can be actually combined to one synapse (because they
all have the same time constant, and can thus be calculated more efficiently).

In Figure 4 (top), we compare the execution time of several implementations of the
general LIF model for different network activities. The first optimization (calculating
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Fig. 4. Simulations performed on a AMD athlon 64 3400+ based system. We used a network of
1000 neurons and one input neuron. Neurons are randomly interconnected to each other with
a spectral radius of 0.9 (this is the absolute value of the highest eigen-value of the connection
matrix). The input neuron is randomly connected to the network with an interconnection fraction
of 10% and fixed weights of 0.9. Each internal connection has a random delay between 0 and
10 ms and a random weight which is rescaled afterwards according to the spectral radius of
the network [17]. Inputs are generated by a Poisson process within the simulated interval [0,10]
seconds. The horizontal axis shows the total number of spikes (external and internal) processed
by the simulator in the simulated interval (∼ the network activity).

Figure top: comparison between Booij’s model and several optimizations of our common LIF
model with exponential synapses. All simulations use exact the same network with on average
100 synapse inputs per neuron.

Figure left: scaling of the not optimized common LIF model according to the average number
of synapses per neuron. Figure right: the same but for the optimized model.
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only active synapses) improves the performance of the simulator with approximately
a factor 2, dependent on the activity of the network. The membrane-value estimation
function further improves the performance with another factor 2. To show the efficienty
of Booij’s simulation model, we also plotted the execution time of a simple no-synapse
LIF model. We see that the performance of both models is almost the same, although
the computation power of Booij’s model is much higher [10]!

A second advantage of our algorithm is that the simulation of multi-synapse neurons
becomes less dependent of the interconnection density of the network, i.e. the average
number of input connections of each neuron. This is shown in Figures 4 (left) and
(right). We can see that for the unoptimized version of the algorithm, the execution
time is highly dependent of the number of inputs, because for each incoming spike,
all synapses have to be updated. In the optimized version however, it appears that the
influence of the average number of synapses per neuron has decreased significantly.
We did not plot the results for Booij’s model, but we found that the time to calculate
a number of events does not depend on the number of inputs of each neuron, as was
expected (because each input shares the same synapse).

4 Future Work

The event based principle discussed in this paper is a sequential process: events must
be handled one by one in the correct time-order. Although this allows yet for much
faster simulations compared to time-step based simulation, it is still much to slow to be
interesting for many applications (e.g. realtime simulations on modern architectures are
still limited to networks of order of magnitude 10.000 neurons [3]).

An obvious way to accelerate this sequential process is the use of more processing
units in parallel or through pipelining. Unfortunately the intense memory interaction of
event simulation creates an important memory bottleneck. Also the inherent parallelism
of SNN remains unused.

Our ultimate goal is to implement an event based simulator in parallel hardware.
Therefore, we are building a SystemC framework for parallel discrete event simulation
of SNN. It will allow us to investigate and optimize different synchronization mecha-
nisms for parallel event based simulation (discribed in [3]) in order to build an efficient
parallel SNN emulator. An important aspect is a hardware-friendly design: in a later sta-
dium, the simulator will be implemented in digital hardware (FPGA) in order to benefit
optimally from the inherent parallelism of SNN.

5 Conclusions

In this paper, we have shown that event based simulation is a good candidate for efficient
simulation of SNN, characterized by discrete pulses and very low activity. However, not
all neuron models are suited for such an event driven approach. A good compromise be-
tween complexity and possibilities is offered by the SRM0 model. We discussed several
techniques to efficiently implement a simple SRM0 with exponential membrane func-
tion and synapse model. Because these techniques do not support multi-synapse models
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efficiently, we presented an algorithm that handles multi-synapse models much more ef-
ficient. It provides a significant speedup of the simulations and moreover it improves
the scalability of the simulator with regard to the number of synapses.
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