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Abstract. We show that standard, Hebbian spike-timing dependent
plasticity (STDP) induces the precession of the firing phase of neurons
in oscillatory networks, while anti-Hebbian STDP induces phase reces-
sion. In networks that are subject to oscillatory inhibition, the intensity
of excitatory input relative to the inhibitory one determines whether
the phase can precess due to STDP or whether the phase is fixed. This
phenomenon can give a very simple explanation to the experimentally-
observed hippocampal phase precession. Modulation of STDP can lead,
through precession and recession, to the synchronization of the firing of
a trained neuron to a target phase.

1 Introduction

Spike-timing dependent plasticity (STDP) is the dependence of synaptic changes
on the relative timing of pre- and postsynaptic action potentials, a phenomenon
that has been experimentally observed in biological neural systems [1,2,3]. The
type of STDP that has been mostly studied is characterized by the potentiation
of a synapse when the postsynaptic spike follows the presynaptic spike within a
time window of a few tens of milliseconds, and the depression of the synapse when
the order of the spikes is reversed. This type of STDP is sometimes called Heb-
bian, because it is consistent with the original postulate of Hebb that predicted
the strengthening of a synapse when the presynaptic neuron causes the postsy-
naptic neuron to fire. Experiments have also found synapses with anti-Hebbian
STDP (also called anti-STDP), where the sign of the changes is reversed, in
comparison to Hebbian STDP [4,5,6,7].

Many studies have investigated the computational properties of Hebbian
STDP, and have shown its function in neural homeostasis, unsupervised and
supervised learning [8,9,10,11,12,13,14,15,16,17,18]. Anti-Hebbian STDP is, at a
first glance, not as interesting as the Hebbian mechanism, as it leads, by itself, to
an overall depression of the synapses towards zero efficacy [19]. We have recently
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shown that modulating STDP with a reward signal (i.e., having both Hebbian
and anti-Hebbian STDP) leads to reinforcement learning [20,21]. None of these
studies have specifically investigated the consequences of STDP in oscillatory
networks.

Here we study through computer simulations the effects of Hebbian and anti-
Hebbian STDP in networks of neurons that fire periodically with a common
period. This has biological relevance because there is such rhythmical activity in
the brain, for example the hippocampal theta rhythm [22,23]. We first describe
our model (Section 2) and then demonstrate some general effects induced by
STDP in oscillatory networks (Section 3). Afterwards we study the interplay
between these effects and oscillatory inhibition (Section 4) and how the effects
can be used to teach a neuron to fire at a given phase (Section 5).

2 Methods

We study an integrate-and-fire neuron driven by Ne excitatory and Ni inhibitory
input neurons. The excitatory synapses are plastic, while the inhibitory ones are
static. This setup is similar to the one in [10]. We model the network’s rhythmic
activity by considering that input neurons fire periodically with a common pe-
riod T = 125 ms (corresponding to the 8 Hz theta hippocampal rhythm). In the
brain, neurons sometimes skip cycles, while still firing at a constant phase, but
we ignore this possibility here, for the sake of simplicity, and consider that each
of the input neurons fires once per period, at a predetermined phase φk. These
phases are generated randomly at the beginning of the experiments. The phases
of excitatory neurons are generated uniformly between 0 and 2π. In experiments
where we use inhibitory neurons, the total inhibition is considered to be mod-
ulated by the global oscillation, as in other models of the hippocampal theta
rhythm [26,27], and thus their phases are generated with a probability density
p(φk) = [cos(φk) + 1]/(2π) (see also Fig. 2e-g).

The dynamics of the postsynaptic integrate-and-fire neuron is given by the
following equation:

τm
dV (t)

dt
= −(V − V0) +

Ne+Ni∑

k=1

gk(t) [Ek − V (t)] , (1)

where V is the membrane potential, V0 =-70 mV is the resting potential, τm =20
ms is the decay time constant, gk are synaptic conductances and Ek are reversal
potentials. When the membrane potential reaches a threshold of -54 mV, the
neuron fires and V is reset to -60 mV. We consider Ek=0 mV for excitatory
synapses and Ek=-70 mV for inhibitory ones (parameters from [10,24]).

Each presynaptic spike determines an instantaneous rise in the synaptic con-
ductance, which decays then exponentially. Thus, the dynamics of the synaptic
conductances is given by

dgk(t)
dt

= −gk(t)
τg

+ gs
k(t) Φk(t), (2)
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where τg = 5 ms, gs
k are the peak synaptic conductances, and Φk(t) represents

the firing train of input neuron k as a sum of Dirac functions:

Φk(t) =
∞∑

n=0

δ (t − (n T + φk)) . (3)

For inhibitory synapses, gs
k is constant and is generated randomly at the

beginning of the experiment, with an uniform distribution, between 0 and gs
max.

For excitatory synapses, gs
k is also initialized randomly between 0 and gs

max, but
varies in time due to STDP. As in previous studies [10,25], we use an exponential
dependence of plasticity on the relative spike timings, we consider that the effect
of different spike pairs is additive, and we limit the range of possible synaptic
strengths with hard bounds, between 0 and gs

max. To model Hebbian as well as
anti-Hebbian STDP, we consider that plasticity is modulated by a variable r(t)
that can be positive as well as negative. Hence, the dynamics of the excitatory
synaptic conductances is given by

dg0
k(t)
dt

=

r(t)

⎡

⎣Φ0(t) A+

∑

Ft
k

exp

(
− t − tfk

τ+

)
+ Φk(t) A−

∑

Ft
0

exp

(
− t − tf0

τ−

)⎤

⎦ , (4)

with the additional hard bounds. We noted with F t
k the set of firing times tfk

previous to t of input neuron k, and F t
0 is the analogue for the postsynaptic

neuron. Φ0(t) is the spike train of the postsynaptic neuron; A± are constant
parameters that determine the magnitude of synaptic changes, A+ = 0.005 gs

max,
A− = −A+; τ± are the decay time constants of the exponential STDP windows,
τ+ = τ− = 20 ms.

Following [10], we use a set of variables P+
k that track the influence of presy-

naptic spikes and P−
0 that tracks the influence of postsynaptic spikes on the

synapses. These variables simplify the simulation and may also have biochemi-
cal counterparts in biological neurons. We then have:

dP+
k

dt
= −P+

k

τ+
+ A+ Φk(t) (5)

dP−
0

dt
= −P−

0

τ−
+ A− Φ0(t) (6)

dg0
k(t)
dt

= r(t)
[
Φ0(t) P+

k + Φk(t) P−
0

]
(7)

In some of the experiments, we use a homeostatic mechanism [28] that scales
up or down the synapses in order to keep the postsynaptic firing rate constant,
at one spike per oscillation period T . We estimate the postsynaptic firing rate ν
by using a leaky accumulator (equivalent to an integration with an exponential
kernel),
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Fig. 1. The evolution in time of the phase of postsynaptic spikes relative to the input
oscillation. The graphs illustrate the first 1000 periods of the experiments. All exper-
iments start with identical conditions. a), c): Hebbian STDP. b), d): Anti-Hebbian
STDP. a), b): Without homeostasis. c), d): With homeostasis.

dν(t)
dt

= −ν(t)
τν

+
1
τν

Φ0(t), (8)

with τν = 500 ms. We then scale all excitatory synapses according to

dg0
k

dt
= α g0

k

[
1
T

− ν(t)
]

, (9)

with α = 0.04. This mechanism is applied additionally to the plasticity mecha-
nisms already mentioned.

The network is simulated with a timestep of 0.5 ms.

3 Precession and Recession

We first consider a setup with Ne = 1000 excitatory input neurons and no in-
hibitory input. We use gs

max = 0.014 and no homeostasis. If we set r(t) = 1, i.e.
Hebbian STDP, and let the network run, we observe that the phase of the post-
synaptic spikes relative to the input oscillation precesses, i.e. has a tendency to
occur earlier in the cycle (Fig. 1a). This is consistent with previous observations
that STDP tends to reduce the latency of postsynaptic firing in response to the
same stimulus (input) [10,29] and that STDP allows the postsynaptic neuron
to predict its input [12]. These properties of STDP also make inputs that fire
before the postsynaptic neuron to become more and more effective in causing
the postsynaptic neuron to fire, and eventually increase the total excitation that
this neuron receives. This means that the neuron may start to fire more spikes
per period, a phenomenon that can be seen in Fig. 1a.
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If we set r(t) = −1, i.e. we have anti-Hebbian STDP, we observe the oppo-
site, namely that the phase of the postsynaptic spikes recesses (has a tendency
to occur later in the cycle), and that the excitation that the neuron receives
diminishes, eventually leading the neuron to stop firing (Fig. 1b). This is con-
sistent with the previous observation that anti-Hebbian STDP leads to a global
weakening of the synapses [19].

However, if we also introduce the previously mentioned homeostatic mecha-
nism that keeps the postsynaptic neuron firing once per period, we observe that
the precession/recession corresponding to Hebbian/anti-Hebbian STDP becomes
a stable behavior of the neuron (Fig. 1c,d).

4 Precession Control Through Oscillatory Inhibition

We now add to the previously described setup Ni = 1000 inhibitory input neu-
rons, that provide an oscillatory inhibitory input current to the postsynaptic
neuron (each inhibitory neuron fires once per cycle, and the number of neurons
that fire at a particular phase oscillates as a function of phase). We use r(t) = 1,
gs

max = 0.015 and homeostasis. The phase precession is not disturbed by the os-
cillatory inhibition (Fig. 2a). Precession is stopped, however, by a much stronger
inhibition, for example if we reduce the number of excitatory inputs from 1000 to
500 (Fig. 2b), as the neuron can fire only at phases where excitation overcomes
inhibition.

This means that by modulating the ratio of excitation versus oscillatory in-
hibition, in conjunction with STDP, we may switch from precession to a state
of constant phase firing. This is illustrated in Fig. 2c-d, where, after the firing
phase stabilizes because oscillating inhibition dominates excitation, we increase
the excitation received by the output neuron, by adding extra excitatory inputs.
Until t1 = 1200 T , the postsynaptic neuron is driven by 500 excitatory neurons.
From t1 to t2 = 1500 T , we constantly add new excitatory inputs to the postsy-
naptic neuron until their number reaches 1000 at t2. With greater excitation, the
phase starts to precess. From t2 to t3 = 1800 T , we gradually remove the newly
added excitatory inputs; excitation decreases and then phase stabilizes again to
a value close to the one previous to the increase in excitation.

This very simple model is thus capable to explain the basic features of hip-
pocampal phase precession. It has been observed that when a rat moves through
the receptive field of a place cell, the firing rate of the neuron correlates with
the position in the place field, and the firing phase of the neuron precesses as
the animal traverses the place field. The initial phase at which the neuron starts
firing when the animal enters the place field is constant for every traversal of the
field [30]. The simple model presented here is consistent with these observations:
as the excitation of the place cell increases because the animal enters into its
receptive field, its firing phase precesses simply because of STDP and because
excitation overcomes the phase locking by the oscillatory inhibition.

Among the many computational models that tried to explain phase precession,
only two others used STDP. The first one used STDP to explain the skewness
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Fig. 2. a)-c) Effect of oscillatory inhibition on the dynamics of the phase of postsynaptic
spikes relative to the input rhythm. All experiments start with identical conditions. a)
1000 excitatory inputs, 1000 inhibitory inputs. b) 500 excitatory inputs, 1000 inhibitory
inputs. c) 500–1000 excitatory inputs, 1000 inhibitory inputs. d) The evolution in time
of the number of the excitatory inputs for the experiment presented in c). e)-f) Intensity
of the total excitatory and, respectively, inhibitory inputs (number of spikes per time
unit) as a function of phase. The smooth line represents the average number of input
spikes per timestep corresponding to the probability with which they were generated,
the rugged line represents the actual histogram of the input spikes as a function of
phase, corresponding to the experiments illustrated here. e) Excitatory input intensity
for the experiment presented in a). f) Excitatory input intensity for the experiment
presented in b). g) Inhibitory input intensity for all experiments. In the experiment
presented in c), the input intensity varies between the one presented in f) and the one
presented in e).

of the place fields, which, at its turn, explained phase precession, through in-
teraction with the inhibitory oscillation [31]. The second one takes from STDP
only the idea of temporally asymmetric interactions between neurons, as it uses
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Fig. 3. The phase φ0 precesses if r(t) > 0 and recesses if r(t) < 0, as indicated by the
arrows. If r(t) = cos(ϕ(t) + θ), the phase converges to φ0 = 3π/2 − θ because this is a
stable point for the dynamics of φ0; φ0 = π/2 − θ is an unstable equilibrium point

neurons with continuous activations instead of spiking neurons [32]. The model
presented here is much simpler than these previous models, yet it captures the
essential features of hippocampal phase precession.

5 Controlling the Firing Phase by Modulating STDP

Since the firing phase can be manipulated by STDP and anti-STDP, it is straight-
forward to devise a mechanism for moving it to a target phase, by modulating
STDP. Modulation of STDP by a global reward signal proved to be a robust
reinforcement learning mechanism for generic spiking neural networks and could
be implemented in the brain by a neuromodulator [20,21]. Here we may use a
similar modulation, but with a form that depends on the target phase at which
we want the postsynaptic neuron to fire, instead of an external reward.

For example, if the variable r(t) that modulates STDP oscillates as a function
of the input oscillation phase, with the same period, and the STDP temporal
constants τ± are smaller than the oscillation period, the output neuron will al-
ways decrease its phase if the phase is in certain intervals, and increase it in
others. If an oscillatory r(t) is a continuous function of input oscillation phase
ϕ = 2π t/T , and has both positive and negative values, the phase of the post-
synaptic neuron will have at least two points of equilibrium (r = 0), among
which one will be stable and one unstable. For example, if r(t) = cos(ϕ(t) + θ),
the equilibrium point will be φ0 = 3π/2 − θ (see Fig. 3). The firing phase of a
postsynaptic neuron with synapses featuring STDP modulated by an r(t) of this
form will thus move to the phase of stable equilibrium. This means that we can
train a neuron or a population of (independent) neurons to fire at a particular
phase by using STDP in conjunction to an appropriate form of r(t). The efficacy
of this approach is illustrated in Fig. 4. The neuron learns the target firing phase
within 200 periods (25 s). The same signal r(t) may train an arbitrary number
of neurons to fire at the same phase, thus synchronizing them.
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