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Abstract. The aim of this paper is to give theoretical and experimental
tools for measuring the driving force in evolving complex networks. First
a discrete-time stochastic model framework is introduced to state the
question of how the dynamics of these networks depend on the properties
of the parts of the system. Then a method is presented to determine this
dependence in the possession of the required data about the system.
This measurement method is applied to the citation network of high
energy physics papers to extract the in-degree and age dependence of
the dynamics. It is shown that the method yields close to “optimal”
results.

1 Introduction

The network concept is an abstract representation. A simple network (or graph,
the two are the same for our purposes) is simply a homogeneous relation over
a set. The relation can be symmetric (undirected networks) or asymmetric (di-
rected networks). While this is an adequate definition of a network, usually we
imagine a network as an interconnected set of vertices (also called nodes), while
the connections are called edges or arcs. In a neural network the vertices repre-
sent neurons and the edges the synapses between them; this network is clearly
asymmetric, the synapse ‘leads’ from the presynaptic cell to the postsynaptic
one. In a citation network, the vertices represent (‘are’) scientific papers pub-
lished in journals and the edges are citations from one paper to another, forming
again a directed network. In a collaboration network two vertices representing
researchers are connected by an edge if they have published at least (say) one
joint paper in a journal, this network is an undirected one.

There has been an upsurge in the field of complex networks recently;
networked representations of various complex systems have shed light to a num-
ber of structural and dynamical phenomena. The main advantage of the net-
work schema is that its simplicity makes it universal: every large enough system
consists of many – structurally, dynamically and/or functionally interconnected
parts. For recent reviews written by researchers in different fields see [1,2,3,4].

In this work we address evolving networks, and study the dynamical process of
adding and removing vertices and edges to/from the the network. Particularly we
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are interested in the question of how the structural and non-structural properties
on the vertices determine the place of the next edge addition.

There have been a number of network evolution models in the literature re-
cently, the most successful being the preferential attachment model proposed by
Barabási and Albert [5]. They suggest a simple mechanism in which the rate for
attaching new edges to a node is proportional to its number of adjacent edges
at each time step. This model is thought to be valid for very different kinds of
networks (showing the ease of the universal network representation) based on
indirect evidence: the scale-free degree distribution. It is observed that in many
networks the distribution of the vertex degree (which is simply the number of
adjacent edges for a vertex) is a power-law distribution; and the BA-model is
known to generate power-law degree distributions [6], so it is likely (or at least
possible) that this simple mechanism is at work in many networks. It is shown
however that the scale-free degree distribution can be obtained without prefer-
ential attachment, by assuming vertex intrinsic fitness, see [7]. It is also true
that there may be several underlying causes producing preferential attachment
[8,9]. Only a few studies addressed the direct observation, ie. somehow measur-
ing the actual attachment probabilities in the evolving network as a function of
the vertex degree or vertex fitness, see [10,11,12] for examples.

This neglect is partially caused by the lack of data. For calculating the actual
degree distribution of a network we only need to know the current structure
of it, ie. the binary relation defining which vertices a given vertex connects to.
For studying the process of vertex and edge addition and deletion however we
need to know the structure of the network at any time in the past. (At least this
would be the ideal case.) It comes not as a surprise that we usually don’t have
this data, except in a few cases. This indicates that the rare dynamical data is
very important and can be used to validate various network evolution models.
Our work discussed here serves as an example for such a study.

This paper is organized as follows. In Sect. 2 we introduce a model frame-
work and a measuring method for extracting the dependence of the network
dynamics on the hypothetical dynamical parameters. In Sect. 3 we show two
applications for the model and method: measuring the dynamics of scientific
citation networks, and predicting the number of future citations for scientific
citation networks. Finally in Sect. 4 we discuss our results and other possible
applications.

2 Methods

The networked representation of a dynamic complex system is an evolving graph:
vertices join to the system, they form new connections, some old connections
break and perhaps some vertices are removed from the network. In each time step
the network has a configuration in which the vertices and edges exhibit various
structural properties. Further on, the vertices and edges may also exhibit some
intrinsic properties we don’t intend to ignore: in a neural network some neurons
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are pyramidal cells, others are interneurons and this distinction is important for
most purposes.

A very natural question is the following: what structural and/or intrinsic
properties determine the evolution of a given network? Another question coming
hand in hand with this: how is it possible to describe the form of the dependence?
(If it is possible at all.) In the rest of this section we will give a model framework
and method for answering these questions in some special cases.

Let us focus on the simplest kind of evolving networks first: citation networks.
We do this for two reasons. First, citation networks are simple in the sense that
all outgoing edges of a vertex are added to the network right after adding the
vertex itself, in the same time step. Second, there is data available for citation
networks of scientific papers.

A number of important structural properties may play significant roles in the
evolution of a particular citation network: the in-degree of the vertices, their
transitivity (ie. if every vertex citing vertex v also cites vertex w so far, then it is
likely that this will happen in the future as well). Some intrinsic properties of the
vertices are also thought to be important: the topic of a paper, since it is likely
that two topically close papers will cite each other; or the age of the papers since
it is a reasonable assumption that out-of-date (or common knowledge) papers
are not or only rarely cited.

2.1 Preferential Attachment

Let us now define the framework in which our questions can be stated formally.
The first structural property we will address is the in-degree of the vertices.

Let us assume that the probability that at time step t an outgoing edge (e) of a
newly added v vertex will cite a given w vertex depends on the in-degree of w,
and the in-degree of other vertices in the network:

P [e cites w](t) =
A(dw(t))

∑
i∈V (t) A(di(t))

. (1)

Here dw(t) is the in-degree of vertex w in time step t and V (t) is the set of all
vertices in time step t. The A(·) attachment kernel function defines the depen-
dence of the network dynamics on the in-degree of the vertices. In this simple
framework this function stochastically governs the network evolution. The prefer-
ential attachment model suggests that for many networks this function is simply
A(k) = k + 1. There are also other models which fit into this framework, see
[13,14,15].

Similarly, the probability that in time step t an e edge of a newly added v
vertex cites any other vertex with in-degree k is given by:

P [e cites a k in-degree vertex](t) = Pe(k) =
Nk(t)A(k)

∑
i∈V (t) A(di(t))

. (2)

Nk(t) is the number of k-degree nodes in the network at time step t.
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From this formula we can extract A(k):

A(k) =
Pe(k)S(t)

Nk(t)
(3)

by using the notation S(t) =
∑

i∈V (t) A(di(t)). From the data we can estimate
Pe(k), so if we manage to determine S(t) then A(k) can be estimated as well.
For S(t) we can use the following simple iterative approach: first we assume that
S(t) is constant and estimate A(k) for each k. Then by using this estimation we
calculate the next approximation of S(t) which in turn allows us to better esti-
mate A(k). While the convergence of this iteration is hard to prove, in practice
it converges fast.

In Sect.3 we show applications for the in-degree dependence of the network
dynamics in scientific citation networks.

2.2 Preferential Attachment and Aging

Let us now assume that an additional intrinsic vertex property, the age of the
vertex, also contributes to the network evolution. For simplicity from now on
we measure “time” by the addition of the new vertices, ie. in each time step a
single vertex is added to the network; we denote vertices by the time step of
their addition, ie. vertex 1 is added in the first time step, vertex 2 in the second,
etc. This implies that in time step t the age of vertex i is simply t − i.

Similarly to the previous section the probability that edge e of vertex v added
in time step t cites vertex w is given by

P [e cites w] =
A(dw(t), lw(t))

∑
i∈V (t) A(di(t), li(t))

. (4)

The probability that edge e of vertex v added in time step t cites some vertex
with in-degree k and age l is

P [e cites a k in-degree, l age vertex] =
A(k, l)Nk,l(t)

S(t)
. (5)

Using the data for estimating Pe(k, l) and the iteration technique introduced in
the previous section we can extract A(k, l), the function governing the evolution
of the network.

2.3 Validating the Method

For validating this measurement method and software, we’ve applied it to various
toy networks generated by different attachment rules, ie. different built-in A(k)
and A(k, l) functions.

To validate the in-degree based method we’ve generated networks by the
Barabási-Albert model and compared the measured A(k) function to the ex-
pected linear dependence. These test networks had 300,000 nodes each having
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Fig. 1. The naive (upper) and non-naive (lower) methods for measuring the age depen-
dence of the A(k, l) function. The network was generated according to the Barabási-
model, has 300,000 nodes and the out-degree of each node is 2. The age axes are binned
into 70 units. The lower plot shows the measured A(k, l) functions for various k values.
The horizontal lines were added by least square fitting the data points, they can be
considered as the “correct” values of the A(k, l) function.

out-degree two. The measurement yielded the expected 1.0 exponent with min-
imal error (±0.05).

Next we’ve checked the in-degree and age based method and software by sim-
ilar toy networks. The measurement method very well reproduced the expected
attachment rules. These experiments however have also shown that the method
cannot predict the “rare” events in the evolution. As there are almost never any
young nodes with high in-degree in the network, the A(k, l) function for large k
and small l values cannot be estimated well.

Although one might argue that for the age dependence of the A(k, l) function
a simpler approach could be used, we show here that this is not the case. A naive
approach would simply consider the distribution of the age differences (citation
lags) between the citing and the cited node as the age dependent component of
A(k, l), however this is clearly biased: small citation lags are overrepresented in
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the network because of two reasons. The first is that young nodes are more likely
to be cited when the network is still small because there is less competition in
the network. If older nodes are also present then the competition in higher as
the network is also bigger. Second, young nodes have simply more chance to get
cited, as they are present in small and big networks as well.

Figure 1 shows the two types of measurement of the age dependence of A(k, l)
for a simple Barabási network. While it is clear that there is no age dependence
in this model, the histogram of the citation lags does not show a horizontal line.
Our proposed measurement method correctly finds that A(k, l) is independent
of the age of the nodes.

3 Applications

3.1 The Pace of Science

In this section we apply the method described in the previous one to a scientific
citation network, consisting of 28632 high energy physics papers with 367790 di-
rected edges among them. This data is available online from the homepage of the
2003 KDD Cup (http://www.cs.cornell.edu/projects/kddcup/datasets.
html).

First we’ve cleared up the dataset by removing forward citations. A forward
citation means that a paper cites a more recent one. This is possible either
because of errors in the database or because some papers were updated (with new
citations) after their first submission without changing their original submission
date.

Then the dynamics of the network (ie. the A(·) function) was measured in
terms of the in-degree and the age of the nodes. The age of the papers was
simply defined by assigning numbers to them in the order their first submission
date and binning these numbers into 70 units.

After the extraction of the A(k, l) function the measured data has shown that
the effects of k and l can be separated, and A(k, l) can be written in the form

A(k, l) = Ak(k) · Al(l) . (6)

This separation supports the assumptions made by various network models with
aging, see works by [16] and [17]. The measured Ak(k) and Al(l) functions can be
seen in Figs. 2 and 3. They can be well fitted by Al(l) = l−β and Ak(k) = kα +1,
with α = 1.11 and β = 1.13. This α value is close to the celebrated linear
preferential attachment phenomenon, thought to be universal, although rarely
measured directly.

The fact that the β exponent is close to one shows that ceteris paribus the
“importance” of a paper is inversely proportional to its age. This defines the
“pace” of science.

3.2 Citation Prediction

The ACM Special Interest Group on Knowledge Discovery and Data Mining
organizes a conference each year and together with the conference they also

http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://www.cs.cornell.edu/projects/kddcup/datasets.html
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Fig. 2. The age dependence of the attachment kernel function of the high energy physics
network for various in-degrees. The upper plot has linear, the lower one logarithmic
axes. The lower plot clearly shows that the aging is well described by a power-law
decrease independently of the degree.

host a data mining competition called KDD Cup. In 2003 the first task of the
KDD Cup was to predict the citations to the papers in the high energy physics
database. This database contains high energy papers submitted to the arXiv
e-print archive between 1992 and July 31, 2003. The deadline for the KDD Cup
submission was before April 30, 2003 and the citations made by papers in the
next three months had to be predicted.

The evaluation of the prediction algorithms was done by considering only
papers receiving at least six citations during the period February 1, 2003 – April
30, 2003. For these papers first the target vector, the difference between the
citations received between May and August and between February and May
were calculated. The specific task was the prediction of this vector. The error
of the prediction was simply defined by the sum of the absolute value of the
difference of the prediction and the target vector.
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Fig. 3. The degree dependence of the attachment kernel function for various node ages.
The lines are simple least square fits for the data points. The axes are logarithmic. The
plot shows that the in-degree dependent part of the A(k, l) function can be reasonable
well estimated by an increasing power-law function, independently of the age of the
nodes.

While the method in the previous section is not developed for citation predic-
tion, is can be used for that in the following way. We can measure the dynamics
(ie. the A(·) function) of the network up to now and assuming that this func-
tion will be the same in the future we can simulate the growth of the network
according to the measured dynamics and see a possible realization of how the
network will look like (say) three months later. By generating many realizations
and taking the average number of citations a node received in these realizations
we can predict the “average” expected evolution of the network.

Another important reason to do the prediction task with our proposed method
is that we can compare the error of the measured A(·) function to other A(·)
functions to evaluate it. If a given A1(·) function proves to be a better predictor
than another A2(·) attachment kernel that would mean that the former one is
based on more relevant properties than the latter.

At the 2003 KDD Cup, the error of the winner algorithm was 1329. The
totally random network evolution, when each new node connects to a number of
randomly selected nodes yields on the average an error of 3463. This value was
obtained by averaging hundred totally random realizations. These error values
can be used as baselines to place the error of the predictions of our method.

First we measured the A(·) function based on the in-degree of the nodes solely
and found that the

A(k) = kα + 1 (7)

form gives a reasonable good fit with the measured data. We fitted this form
by a simple weighted least square method and got α ≈ 0.85. The prediction
with this A(k) function yielded an error about 2473.51(±4.39). These values
were obtained by generating 100 realizations five times, the error is simply the
standard deviation of the five predictions.
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Fig. 4. Prediction error for different α values in (7). The plot was obtained by running
five times 100 realizations for each α value, the error bars show the standard deviation
of the five predictions. The measured 0.85 exponent is close to the optimal 0.89 value.

To evaluate our dynamics measurement method we’ve calculated predictions
with other α exponents as well, and found that the α = 0.85 value is very close
to the “optimal” exponent, optimal in terms of the error of this prediction.

Instead if using solely the in-degree as the predictor, now we will also add
the age of the nodes, and by applying the measurement method described in the
previous section we measure the A(k, l) function (as before k being the in-degree
and l being the age of a node) governing the dynamics of the network. The
measured A(k, l) function can be reasonably well fitted by the following form:

A(k, l) = (kα + 1) l−β . (8)

This form assumes that the effect of in-degree and age can be separated, our
data supports this assumption. By fitting this form using weighted least square
fits we arrive to the exponents: α ≈ 1.14 and β ≈ 1.14. By using these values in
generating possible realizations of the HEP network for the prediction we get a
prediction error 1732.76±6.19. The fact that this prediction is much better than
the “in-degree-only” one, indicates that the age of the nodes makes an important
contribution to the edge-dynamics of the evolving network.

Note that the exponent of the preferential attachment is lower if we don’t use
the age of the papers as a property, αk ≈ 0.85 versus αk,l ≈ 1.14. This is clearly
because in the former the effect of the aging is “built in” into the preferential
exponent and since aging works against preferential attachment it makes the ex-
ponent smaller. Some works suggest that the preferential attachment mechanism
can be present even in network not showing the scale-free degree distribution be-
cause there is another, opposite effect working in the system, such as limits for
the number of edges a node can acquire or because the nodes lose their “at-
tractiveness” by getting older, ie. aging, see [18]. To our knowledge the work
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Fig. 5. Prediction error for different preferential attachment exponents (α, upper plot)
and aging exponents (β, lower plot). For both exponents the dynamics measurement
method gives solutions close to the optimal ones.

presented in this paper is the first one giving experimental evidence for this
assumption.

4 Discussion

We have presented a model framework and a measurement method for defining
and determining the dynamics of citation networks based on the properties of
their nodes.

We’ve applied this method to a network of high energy physics papers and
extracted the A(k, l) function which stochastically governs the evolution of the
network in terms of the in-degree and age of the nodes. Without assuming any
favored form for this function we found that it can be estimated as the product
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of the in-degree dependent Ak(k) and the age-dependent Al(l) function. The in-
degree dependent part shows slightly superlinear preferential attachment while
the age-dependent part shows power-law decrease.

We’ve evaluated the results given by the measurement method by predict-
ing the citations received by important papers in the last three months of the
high energy physics papers database and found that the measured preferential
attachment and aging exponents are close to the “optimal”.

We believe that the framework and method presented in this paper is a useful
tool for researchers of any field interested in the evolution of complex systems.
Also, it can be generalized for general evolving networks with node and edge
additions and deletions, our experiments show promising results in this direction.

The citation prediction study presented here can be a general way for eval-
uating the description of a system based on various properties, just like we’ve
shown that adding the age of the nodes to the considered properties resulted a
much better citation prediction.
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