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Abstract. This paper presents an on-line training procedure for a hierarchical 
neural network of integrate-and-fire neurons. The training is done through syn-
aptic plasticity and changes in the network structure. Event driven computation 
optimizes processing speed in order to simulate networks with large number of 
neurons. The training procedure is applied to the face recognition task. Prelimi-
nary experiments on a public available face image dataset show the same per-
formance as the optimized off-line method. A comparison with other classical 
methods of face recognition demonstrates the properties of the system. 

1   Introduction 

The human brain has been modelled in numerous ways, but these models are far from 
reaching comparable performance. These models are still not as general and accurate 
as the human brain despite that outstanding performances have been reported [1] [2] 
[3]. Of particular interest to this research are the models for visual pattern recognition. 
Visual pattern recognition models can be divided in two groups according to the con-
nectionist technique applied. Most of the works deal with the visual pattern recogni-
tion using neural networks comprised of linear/non-linear processing elements based 
on the neural rate-based code [4] [5]. Here we refer to these methods as traditional 
methods. In another direction, a visual pattern recognition system can be constructed 
through the use of brain-like neural networks.  

Brain-like neural networks are networks that have a closer association with what is 
known about the way brains process information. The definition of brain-like net-
works is intrinsically associated with the computation of neuronal units that use 
pulses. The use of pulses brings together the definitions of time varying postsynaptic 
potential (PSP), firing threshold (ϑ), and spike latencies (Δ), as depicted in Figure 1 
[6]. Brain-like neural networks, despite being more biologically accurate, have been 
considered too complex and cumbersome for modeling the proposed task. However 
recent discoveries on the information processing capabilities of the brain and techni-
cal advances related to massive parallel processing, are bringing back the idea of us-
ing biologically realistic networks for pattern recognition. A recent pioneering work 
has shown that the primate (including human) visual system can analyze complex 
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natural scenes in only about 100-150 ms [7]. This time period for information proc-
essing is very impressive considering that billions of neurons are involved. This the-
ory suggests that probably neurons, exchanging only one or few spikes, are able to 
form assemblies, and process information. As an output of this work, the authors pro-
posed a multi-layer feed-forward network (SpikeNet) of integrate-and-fire neurons 
that can successfully track and recognize faces in real time [7]. 
 

 

Fig. 1. On the left: Representation of biological neuron. On the right:  Basic artificial unit (spik-
ing neuron). 

This paper intends to review the network model SpikeNet proposed in [8] and ex-
tend its applicability to perform on-line learning. In the next sections the spiking neu-
ral network model will be presented and the new learning procedure will be de-
scribed. The new learning method is applied to the face recognition task. The results 
are compared with previous work and other models. Discussion and additional re-
quired analysis concludes the paper. 

2   Spiking Network Model 

In this section we describe the steps of the biologically realistic model used in this 
work to perform on-line visual pattern recognition. The system has been implemented 
based on the SpikeNet introduced in [7] [8] [9] [10]. The neural network is composed 
of 3 layers of integrate-and-fire neurons. The neurons have a latency of firing that de-
pends upon the order of spikes received. Each neuron acts as a coincidence detection 
unit, where the postsynaptic potential for neuron i at a time t is calculated as: 

 (1) 

where mod ∈ (0,1) is the modulation factor, j is the index for the incoming connection 
and wj,i is the corresponding synaptic weight. See [7] [9] for more details. 

Each layer is composed of neurons that are grouped in two-dimensional grids form-
ing neuronal maps. Connections between layers are purely feed-forward and each neu-
ron can spike at most once on spikes arrival in the input synapses. The first layer cells 
represent the ON and OFF cells of retina, basically enhancing the high contrast parts of 
a given image (high pass filter). The output values of the first layer are encoded to 
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pulses in the time domain. High output values of the first layer are encoded as pulses 
with short time delays while long delays are given to low output values. This technique 
is called Rank Order Coding [10] and basically prioritizes the pixels with high contrast 
that consequently are processed first and have a higher impact on neurons’ PSP. 

Second layer is composed of eight orientation maps, each one selective to a differ-
ent direction (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). It is important to notice 
that in the first two layers there is no learning, in such a way that the structure can be 
considered simply passive filters and time domain encoders (layers 1 and 2). The the-
ory of contrast cells and direction selective cells was first reported by Hubel and Wie-
sel [11]. In their experiments they were able to distinguish some types of cells that 
have different neurobiological responses according to the pattern of light stimulus.  

The third layer is where the learning takes place and where the main contribution 
of this work is presented. Maps in the third layer are to be trained to represent classes 
of inputs. See Figure 2 for the complete network architecture. In [7], the network has 
a fixed structure and the learning is done off-line using the rule: 
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where wj,i is the weight between neuron j of the 2nd layer and neuron i of the 3rd layer,  
mod ∈ (0,1) is the modulation factor, order(aj)

 is the order of arrival of spike from 
neuron j to neuron i, and N is the number of samples used for training a given class.  

In this rule, there are two points to be highlighted: a) the number of samples to be 
trained needs to be known a priori; and b) after training, a map of a class will be se-
lective to the average pattern. 

 

Fig. 2. Adaptive spiking neural network (aSNN) architecture for visual pattern recognition 

There are also inhibitory connections among neuronal maps in the third layer, so 
that when a neuron fires in a certain map, other maps receive inhibitory pulses in an 
area centred in the same spatial position. An input pattern belongs to a certain class if 
a neuron in the corresponding neuronal map spikes first. 
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One of the properties of this system is the low activity of the neurons. It means that 
the system has a large number of neurons, but only few take active part during the re-
trieval process. In this sense, through the event driven approach the computational 
performance can be optimized [8] [12]. Additionally, in most cases the processing can 
be interrupted before the entire simulation is completed. Once a single neuron of the 
output layer reaches the threshold to emit a spike the simulation can be finished. The 
event driven approach and the early simulation interruption make this method suitable 
for implementations in real time. 

3  On-Line Learning and Structural Adaptation 

3.1   General Description 

Our new approach for learning with structural adaptation aims to give more flexibility 
to the system in a scenario where the number of classes and/or class instances is not 
known at the time the training starts. Thus, the output neuronal maps need to be cre-
ated, updated or even deleted on-line, as the learning occurs. In [13] a framework to 
deal with adaptive problems is proposed and several methods and procedures describ-
ing adaptive systems are presented. 

To implement such a system the learning rule needs to be independent of the total 
number of samples since the number of samples is not known when the learning 
starts. Thus, in the next section we propose to use a modified equation to update the 
weights based on the average of the incoming patterns. It is important to notice that, 
similarly to the batch learning implementation of Equation 2, the outcome is the aver-
age pattern. However, the new equation calculates the average dynamically as the in-
put patterns arrive. 
    There is a classical drawback to learning methods when, after training, the system 
responds optimally to the average pattern of the training samples. The average does 
not provide a good representation of a class in cases where patterns have high vari-
ance (see Figure 3). A traditional way to attenuate the problem is the divide-and-
conquer procedure. We implement this procedure through the structural modification  
 

 

Local averages
Global class average

 

Fig. 3. Divide and conquer procedure to deal with high intra class variability of patterns in the 
hypothetical space of class K. The use of multiple maps that respond optimally to the average 
of a subset of patterns provides a better representation of the classes. 
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of the network during the training stage. More specifically, we integrate into the train-
ing algorithm a simple clustering procedure: patterns within a class that comply with a  
similarity criterion are merged into the same neuronal map. If the similarity criterion 
is not fulfilled, a new map is generated. The entire training procedure follows 4 steps 
described in the next section and is summarized in the flowchart of Figure 4. 

3.2   Learning Procedure 

The new learning procedure can be described in 4 sequential steps: 
 

1. Propagate a sample k of class K for training into the layer 1 (retina) and layer 2 (di-
rection selective cells – DSC); 

2. Create a new map MapC(k) in layer 3 for sample k and train the weights using the 
equation:  

)(
, mod jaorder
ijw =Δ  (3) 

where wj,i is the weight between neuron j of the layer 2 and neuron i of the layer 3, 
mod ∈ (0,1) is the modulation factor, order(aj) is the order of arrival of spike from 
neuron j to neuron i. 
    The postsynaptic threshold (PSPthreshold) of the neurons in the map is calculated 
as a proportion c ∈ [0,1] of the maximum postsynaptic potential (PSP) created in a 
neuron of map MapC(k) with the propagation of the training sample into the updated 
weights, such that: 

)max(PSPcPSPthreshold =  (4) 

The constant of proportionality c express how similar a pattern needs to be to trig-
ger an output spike. Thus, c is a parameter to be optimized in order to satisfy the 
requirements in terms of false acceptance rate (FAR) and false rejection rate (FRR). 

3. Calculate the similarity between the newly created map MapC(k) and other maps be-
longing to the same class MapC(K). The similarity is computed as the inverse of the 
Euclidean distance between weight matrices. 

4. If one of the existing maps for class K has similarity greater than a chosen thresh-
old ThsimC(K)>0 , merge the maps MapC(k) and MapC(Ksimilar) using arithmetic average 
as expressed in equation: 

samples

MapsamplesMap

N

WNW
W KsimilarCkC

+

+
=

1
)()(  (5) 

where matrix W represents the weights of the merged map and Nsamples denotes the 
number of samples that have already being used to train the respective map. In 
similar fashion the PSPthreshold is updated: 
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Propagation to retina and DSC

New training sample

Create a new map MapC(k)

For MapC(k), train the weights WC(k) and
calculate PSPthreshold C(k)

Calculate similarity S between WC(k) and
WC(K) (other maps i of the same class)

If S(i) >Thsim

Merge map MapC(k) and MapC(i)

yes

no

 

Fig. 4. On-line learning procedure flowchart 

4   Experiments and Results 

We have implemented the learning procedure proposed in the previous section in a 
network of spiking neurons as described in section 2. To evaluate the performance and 
compare with previous work, we used the same dataset as in [7], which is available 
from [14]. The dataset is composed of 400 faces taken from 40 different people. The 
frontal views of faces are taken in rotation angles varying in the range of [-30°, 30°]. 

4.1   Image Preparation 

We manually annotated the position of eyes and mouth and used it to centralize the 
face images. The faces were rotated to align the right and left eyes horizontally. The 
boundaries of our region of interest (ROI) were then defined as a function of the inter-
ocular distance and the distance between the eyes and mouth. The ROI is then nor-
malized to the size 20 x 30 pixels in greyscale. The 2 dimensional array obtained has 
been used as input to the SNN. No contrast or illumination manipulation has been per-
formed as previous work demonstrated the good response of the network under the 
presence of noise and illumination changes [7]. 

4.2   Spiking Network Parameters 

The neuronal maps of retina, DSC and output maps have size of 20 x 30. The number 
of time steps used to encode the output of retina cells to the time domain is set to 100. 
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The threshold for the direction selective cells is set to 600, chosen in such a way that 
on average only 20% of neurons emits output spikes. The modulation factor mod ∈ 
(0, 1) is set to 0.98. In this way the efficiency of the input of a given neuron is re-
duced to 50% when 50% of the inputs get a spike. The retina filters are implemented 
using a 5 x 5 Gaussian grid and direction selective filters are implemented using Ga-
bor functions in a 7x7 grid. All these parameters were not optimized. Rather, we tried 
to reproduce as close as possible the scenario described in [7] for comparison  
purposes. 

4.3   Results 

Previous work demonstrated the high accuracy of the network to cope with noise, 
contrast and luminance changes, reaching 100% in the training set (10 samples for 
each class) and 97.5% when testing the generalization properties [7]. For the generali-
zation experiment, the dataset was divided in 8 samples for training and the remaining 
2 for test. With the adaptive learning method proposed here, we have obtained similar 
results for the training set. 

In another experiment, to test the system ability to add on-line output maps for bet-
ter generalization, we used only 3 sample images from each person for training. The 
remaining 7 views of each person were used for test. Among the dataset faces, we 
chose manually those samples taken from different angles that appeared to be most 
dissimilar. Thus, the training set was composed mostly of one face view taken from 
the left side (30°), one frontal view and one face view taken from the right side (-30°), 
as depicted in Figure 5. The results are shown in Table 1. In column 2 of Table 1, 
Thsim is set in such a way that only one output map for each class is created. In such 
condition, the on-line learning procedure becomes equivalent to the original off-line 
learning procedure described by Equation 2. Tuning of Thsim for performance, it can 
be clearly seen the advantage of using more maps to represent classes that contain 
highly variant samples, as the accuracy of face recognition increases by 6% with a re-
duction on the FAR. 

In Table 2 and Table 3 is presented the network performance for different values of 
PSP threshold that are calculated as a function of the proportionality constant c. In all 
the experiments the constant c is the same for all maps and chosen prior to the train-
ing start. In a batch mode operation the value of c can be optimized independently for 
each map after the training is completed using, e.g., Genetic Algorithms (GA). 

       

Fig. 5. Example of image samples used for training (30°, frontal and -30°) 
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Table 1. Results for the test set according to different similarity thresholds Thsim.Three pictures 
of each class are used for training and the remaining seven for test. 

Similarity threshold Thsim (x10-3) 0.5 0.833 1.0 1.25 2 
Number of output maps 40 47 80 109 120 
Accuracy (%) 74.28 77.49 78.57 80.00 80.00 
False Acceptance Rate (FAR) (%) 2.32 2.20 2.18 2.26 1.77 
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 0.00 0.00 

Table 2. Accuracy for different values of c keeping Thsim = 0.5x10-3. Output maps = 40 

PSP threshold c = 0.30 c = 0.35 c = 0.40 c = 0.45 
Accuracy (%) 72.14 74.28 73.21 71.43 
False Acceptance Rate (FAR) (%) 3.10 2.32 1.58 1.25 
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 2.50 

Table 3. Accuracy for different values of c keeping Thsim = 2.0x10-3. Output maps = 120 

PSP threshold c = 0.30 c = 0.35 c = 0.40 c = 0.45 
Accuracy (%) 75.00 78.57 80.00 80.00 
False Acceptance Rate (FAR) (%) 2.95 2.49 1.77 1.06 
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 3.57 

 
In another comparison, to check how difficult the dataset is and to have a better 

idea of the performance of our learning algorithm, we compare the face recognition 
system using adaptive SNN (aSNN) with other three traditional methods of face rec-
ognition (Table 4). In these methods, PCA (principal component analysis) is used to 
extract facial features. The classification is done using SVM (support vector ma-
chine), MLP (multi layer perceptron) neural network and ECF (evolving classifier 
function). MLP and SVM are batch mode methods while ECF present similar adap-
tive learning characteristics as proposed in this work. ECF can be trained in both one-
pass and recursive mode (several epochs)[13]. As expected, the batch mode algo-
rithms over performed the one-pass on-line methods. The reason is that in the batch 
mode, the training samples are recursively presented to the classification method to 
minimize the output errors. In the one-pass on-line learning the adjustment of weights 
occurs only once at the time the training samples are presented to the network. There-
fore, the performance of the batch methods can be considered roughly the target or the 
maximum accuracy that be reached. When comparing both one-pass online methods, 
the adaptive SNN presented better performance than ECF. Notice that, in this com-
parison we can not detect if the better performance is due to the learning method or to 
the different representation of the features. 

Table 4. Comparison among different methods of face recognition (experiments using Neu-
Com [15]) 

Method Accuracy (%) Properties 
PCA + SVM 90.7 Batch mode 
PCA + MLP 89.6 Batch mode 
PCA + ECF 74.0 (120 nodes) One-epoch on-line method 
Adaptive SNN 80.0 (109 maps) One-pass on-line method 
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5   Discussion and Conclusion 

A simple procedure to perform on-line learning in a network of spiking neurons has 
been presented. During learning, new output maps are created and merged based on 
the clustering of intra-class samples. Preliminary experiments have shown that the 
learning procedure reaches similar levels of performance of the previously presented 
work, and better performance can be reached in classes where samples have high 
variability. As a price, one more parameter needs to be tuned, e.g. Thsim. In addition, 
more output maps require more storage memory. 

In terms of normalization, the rank order codes are intrinsically invariant to 
changes in contrast and input intensities, basically because the neuronal units compute 
the order of the incoming spikes and not the latencies itself [7]. This can be a reason 
why adaptive SNN present better result than PCA+ECF as the feature extraction using 
PCA can degrade performance with illumination changes.  

The adaptive SNN doesn’t cope well with patterns rotation. In all the experiments 
presented in this work we aligned the samples in the image preparation stage. Alterna-
tively, a certain degree of rotation invariance can be reached with the use of additional 
neuronal maps, in which each map need to be trained to cover different angles. In this 
case, the learning procedure described here, can automatically generate the new maps 
when it’s required.  

With respect to the overall system, the computation with pulses, contrast filters and 
orientation selective cells finds a close correspondence with traditional ways of image 
processing such as wavelets and Gabor filters [16] that already have proven to be very 
robust for feature extraction in visual pattern recognition problems. From the biologi-
cal perspective, despite still being a very simplified representation of what effectively 
happens in the brain, the use of pulses is a starting point.  

In our future work, aiming to improve the use of biologically realistic neural net-
works for pattern recognition, we intend to add adaptation to layer 1 and layer 2. It 
has been experimentally proven [17] that neural filters adaptively change to increase 
the information carried by the neural response. As a result, the contrast and direction 
selective cells are optimized filters to describe natural scenes. We intend to explore 
how to adaptively obtain optimal filters in different types of data. 

Acknowledgments 

The work has been supported by the NERF grant X0201 funded by FRST (L.B., 
N.K.) and by the Tertiary Education Commission of New Zealand (S.G.W.). 

References 

1. Fukushima, K.: Active Vision: Neural Network Models. In Amari, S., Kasabov, N. (eds.): 
Brain-like Computing and Intelligent Information Systems. Springer-Verlag (1997) 

2. Mel, B. W.: SEEMORE: Combining colour, shape, and texture histrogramming in a neu-
rally-inspired approach to visual object recognition. Neural Computation 9 (1998) 777-804 



70 S.G. Wysoski, L. Benuskova, and N. Kasabov 

3. Wiskott, L., Fellous, J. M., Krueuger, N., von der Malsburg, C.: Face Recognition by Elas-
tic Bunch Graph Matching: In Jain, L.C. et al. (eds.): Intelligent Biometric Techniques in 
Fingerprint and Face Recognition. CRC Press (1999) 355-396 

4. Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice Hall (1999) 
5. Bishop, C.: Neural Networks for Pattern Recognition. University Press, Oxford New York 

(2000) 
6. Gerstner, W., Kistler, W. M.: Spiking Neuron Models. Cambridge Univ. Press, Cambridge 

MA (2002) 
7. Delorme, A., Thorpe, S.: Face identification using one spike per neuron: resistance to im-

age degradation. Neural Networks, Vol. 14. (2001) 795-803 
8. Delorme, A., Gautrais, J., van Rullen, R., Thorpe, S.: SpikeNet: a simulator for modeling 

large networks of integrate and fire neurons. Neurocomputing, Vol. 26-27. (1999) 989-996 
9. Delorme, A., Perrinet, L., Thorpe, S.: Networks of integrate-and-fire neurons using Rank 

Order Coding. Neurocomputing. (2001) 38-48 
10. Thorpe, S., Gaustrais, J.: Rank Order Coding. In: Bower, J. (ed.): Computational Neuro-

science: Trends in Research. Plenum Press, New York (1998) 
11. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architec-

ture in the cat's visual cortex. J. Physiol, 160 (1962) 106-154 
12. Mattia, M., del Giudice, P.: Efficient Event-Driven Simulation of Large Networks of Spik-

ing Neurons and Dynamical Synapses. Neural Computation, Vol. 12 (10). (2000) 2305-
2329 

13. Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioinformat-
ics, Brain Study and Intelligent Machines. Springer-Verlag (2002) 

14. http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html 
15. http://www.aut.ac.nz/research/research_institutes/kedri/research_centres/centre_for_novel

_methods_of_computational_intelligence/neucom.htm 
16. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd 

edn. (1998) 
17. Sharpee, T. et al.: Adaptive filtering enhances information transmission in visual cortex. 

Nature, Vol. 439 (2006) 936-942 


	Introduction
	Spiking Network Model
	On-Line Learning and Structural Adaptation
	General Description
	Learning Procedure

	Experiments and Results
	Image Preparation
	Spiking Network Parameters
	Results

	Discussion and Conclusion
	References

