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Abstract. We are interested in the optimization of the recurrent con-
nection structure of Echo State Networks (ESNs), because their topology
can strongly influence performance. We study ESN predictive capacity
by numerical simulations on Mackey-Glass time series, and find that a
particular small subset of ESNs is much better than ordinary ESNs pro-
vided that the topology of the recurrent feedback connections satisfies
certain conditions. We argue that the small subset separates two large
sets of ESNs and this separation can be characterized in terms of phase
transitions. With regard to the criticality of this phase transition, we in-
troduce the notion of Critical Echo State Networks (CESN). We discuss
why CESNs perform better than other ESNs.

Keywords: time series, prediction, echo state network, phase transition,
critical point.

1 Introduction

Motivation: We are interested in learning the dynamics of deterministic non-
linear systems with artificial neural networks. It is relevant for us that (i) the
network captures and represents the dynamical properties, (ii) learning should
be fast, and (iii) learning has a neural form.

The Echo State Network (ESN) is an important candidate for such efforts.
Despite of its simplicity, it shows immense representation capacity for nonlinear-
dynamical systems. Further, the speed of learning is unique amongst Recurrent
Neural Networks (RNNs) due to its fast Linear Mean Squared Error (LMSE)
tuning algorithm. Finally, the on-line form of any LMSE algorithm corresponds
to the well known local Delta-rule that can be implemented in neural networks.

We shall show by numerical experiments that under certain conditions, ESN
can gain more than an order of magnitude for Mackey-Glass (MG) time series
in terms of prediction length. We provide a set of conditions that achieve this
gain. The basic finding is that such ESNs correspond to a critical condition. We
describe a framework to measure if an ESN exhibits phase transition and critical
behavior. The framework also helps us provide an interpretation.

The paper is built as follows. First, we briefly review background information
about ESNs (Section 2.1) and about critical phenomena (Sect. 2.2). We describe
our methods in Sect. 3. We study ‘macroscopic behavior’, optimize the topology,
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and test prediction capacities. Section 4 is about our results on the critical point
of ESN phase transition and about the predictive potential of some critical ESNs
(CESNs). Discussion can be found in Sect. 5. We close with a short summary.

2 Preliminaries

2.1 Echo State Networks

Echo State Network was first introduced by Jaeger [1,2]. We study simple ESNs
that contain all necessary components. The ESN has a hidden layer that holds
the hidden representation a ∈ R

l. It receives input x ∈ R
k and provides output

y ∈ R
m (Fig. 1). Network dynamics is governed by the following equations:

at = (1 − μ)at−1 + σ(Fat−1 + Wxt−1) (1)
yt = Hat (2)

where W and H are the input and output mappings, respectively, F represents
the recurrent feedback connections of the hidden layer, σ(·) is a component-wise
non-linearity that we set to tanh(·), and μ is the parameter of leaky integration.
In the ESN approach, a large number of neurons is used with random recurrent
connections at the hidden layer (l � k). They seem to play the role of a ‘dynamic
reservoir’. We shall consider the configuration when the output of network is an
estimation of the next input, that is, xt+1 = yt (and k = m) at every time step
t > t0. In this mode, and upon tuning, the network is capable of approximating
the continuation of the experienced time series in the absence of further inputs.

Fig. 1. Structure of the Echo State Network. x: input, a: hidden representation, y:
output, W, F, H linear transformations, σ: nonlinearity.

ESNs are special RNNs: only the hidden-to-output connections (matrix H)
are trained. Training is a simple linear regression task that minimizes the time
averaged mean squared error between the output and training signal, which is
the input itself in our case :

J =
1
2

∑

t

ε(t) =
1
2

∑

t

|yt − xt|2. (3)
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Usually, random initialization is used for matrices W and F. It has been
found that the so called echo states may not appear, unless the ESN satisfies
the following constraints [3]: Matrix F should be sparse; only a few percent of
its elements is non-zero and thus connectivity p is low. Also, matrix F should be
contractive: the magnitude of singular values should not exceed 1. More details
on the operation and tuning of ESNs can be found in the literature, see, e.g.
[1,3,4,5]. There are studies about performance and alteration of ESNs [6,7,8]. It
has been noted that the nature of the dynamical reservoir is not understood yet
[9]. Our work aims to shed light on this issue.

2.2 Critical Phenomena

Critical phenomena are notable concepts in physics. The notion refers to many-
body interactions, where ‘body’ is meant in a very general sense. Critical phe-
nomena appear in second order phase transitions and percolation processes,
among others. In general, critical phenomena may occur in the transition re-
gion that separates ‘phases’, which may differ in their symmetry properties, in
the macroscopic parameters, in their structure, i.e., in their long range order. It
is typical to define the order parameter of the transition that appears or disap-
pears in one of the phases. The transition between the phases can be a function
of the size of the system. The change of the order parameter becomes infinitely
sharp in the limit of infinite size. This singular value of the parameter is called
the transition point of the phase transition. Chaotic behavior is typical for tem-
poral changes at the transition point. These concepts are sufficient for us to
proceed. For further details about critical phenomena and for a review of the
vast literature of the subject, see, e.g., [10] and references therein.

Below, we define an order parameter for ESNs and present computer simula-
tions. They show that the transition of the network becomes sharp by increasing
the size of the network. We also find that at around the transition point predic-
tive capabilities of ESNs can be much better than those of ordinary ESNs.

3 Methods

In this section we describe how the long term behavior of the hidden layer
was studied. We establish conditions for finding ESNs with better hidden layer
recurrent connections. Our efforts lead to an order parameter and a test that
captures the essence of chaotic time series.

3.1 Time Evolving Properties

We are to describe and quantify the special condition mentioned in Sect. 2.
Consider the long term behavior of the components of the hidden layer, ai,t,
i = 1, . . . , l. We would like to eliminate the effects of the input x and we set
W ≡ 0. Under this condition, qualitative description of the time evolution of
the components aj,t can be provided, because activity propagation that starts at
time 0 and ends at time t is determined solely by Ft apart from non-linearities.
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The proportion of non-zero elements in Ft will be called time evolving con-
nectivity and we denote it by pt. Similarly, let qt denote the number of non-zero
matrix elements of Ft. Thus qt = l2pt, where l is the number of neurons at the
hidden layer. Quantities pt and qt are macroscopic measures of the connectivity
structure that – in a broad sense – characterize information transfer from a0
to at through the non-zero elements of matrix Ft. In the limit t → ∞, pt may
converge. In this case, pt may increase, decrease, or even vanish. Alternatively, it
is easy to find cases, when pt may keep changing for all times around its average
value. In this case, we take this average as p∞. In line with this note, we shall
see that o = p∞

p0
is an appropriate order parameter for us.

The activities of the hidden layer are also subject to temporal changes. For μ =
1, Eq. (1) can be rewritten as at ≈ σ((F + WH)at−1). Upon optimizing matrix
H for objective (3), the largest eigenvalue of F̂ = F + WH will approximate 1
for non-vanishing deterministic processes.

3.2 Prediction Test

We tested ESNs on Mackey-Glass (MG) [11] time series, derived by means of
the delayed parameter differential equation:

ẋ(t) = −γx(t) +
αx(t − τ)

1 + x(t − τ)β
, (4)

where parameter β influences bifurcation, whereas delay parameter τ influences
the complexity of the time series. We used α = 0.2 and γ = 0.1, which are
widespread in the literature.

Mean squared error is the typical measure of accuracy in the ESN literature.
However, if networks are tested on MG time series that may exhibit chaotic
patterns depending on the delay parameter, a peculiar effect occurs: prediction
estimates usually follow the original trajectory accurately for some time, but –
apparently – the network looses the dynamics suddenly. This phenomenon is a
general property of chaotic systems, because the divergence of individual trajec-
tories can be exponential. Predictive capacity for chaotic systems is thus better
described by the exponent of the divergence of trajectories or by thresholds.

For the comparison of different networks, we introduce a measure of predictive
capacity: successful prediction length, ζ. Prediction is called ‘θ-successful’ for time
τ with parameters tp and T , or ‘successful’, for short, if starting to predict at
time tp and predicting for time durations t ≤ τ , the average of the squared
prediction error ε(t) over time interval T does not exceed θ, but it does if t > τ :

ζ(tp) = argmax
τ

(
〈ε(tp + τ + i)〉i=1,...,T < θ

)
, (5)

where τ is the growing length of attempted predictions, 〈·〉 denotes averaging,
and i is the running index of averaging.

Should 〈ε〉 exceed θ, we consider that the system can not keep the predicted
output close to the true input trajectory x(t) any further. Measure ζ captures
the essence of chaotic dynamics [12].
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In numerical experiments, different transformations F and W, starting point
tp, and training lengths were used to learn the distributions of ζ(tp) for one-
dimensional MG time series. Parameters of this study are provided in Table 1.
It may be worth noting that training length and network sizes are much smaller
than those of [1]. Now, we describe our experimental findings.

Table 1. Experimental parameters

size of hidden layer l in the range 20 − 400
value of elements of W randomly chosen; ≈ ±0.07
value of non-zero elements of F equal and positive
max. eigenvalue of F (scale factor) 0.9
value of leaky integrator, μ 0.7
Mackey-Glass parameters as in [1] α = 0.2, γ = 0.1, β = 10
Mackey-Glass delay parameters τ = 17 & 30
training length 1500 (with sub sampling 10)
threshold and averaging window in Eq. (5) θ = 0.2, T = 10

4 Results

First, we shall show that a sharp transition appears in time evolving connectivity
and describe how the final phase depends on the initialization. After measuring
the value of the critical point we shall conclude that permutation matrices, or or-
thogonal matrices in general, satisfy the critical condition. We shall demonstrate
the superior performance of permutation matrices.

4.1 ESN Phase Transition and the Critical Point

We have created a large number of networks of various sizes. The connectivity
structure of the hidden layer was set randomly. We have determined p∞ for all of
them. We have plotted p∞ against p0 (Fig. 2a) for different inner layer sizes. Two
phases emerged with a transition interval between them. By increasing the size
of the network, the position of the interval underwent a monotone shift towards
lower values and the width of the interval became narrower (Fig. 2b).

According to our original critical point conjecture sharp phase transition
emerges with a critical point that separates the two phases at around pt ≈ p0.
We define the critical point of ESNs as pc = p0 = p∞ (but see also Sect. 5).
Figure 2b shows that a pc ≈ 1/l relation is apparent for larger network sizes
with a few percent relative standard error. Thus, according to Section 3.1, we
have qc ≈ l, because qt = l2pt and pc ≈ 1/l. For a critical network subject to our
choices detailed in Table 1, the number of equal and non-zero elements in F is
equal to the dimension of the hidden layer.

In the next section we introduce exact critical structures for the hidden matrix.
We shall see that critical structure often exhibits superior performance.
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Fig. 2. Phase transition and improved performance around the critical point.
(a): Phase transition in time evolving connectivity. Zero phase: connections of the
hidden layer disappear for sufficiently large, but finite times. Saturated phase: (almost)
all connections contribute after sufficiently large times. Transition between the phases
becomes sharp for larger hidden layers. (b): Position of pc shifts to lower values as hid-
den layer size l increases. Dashed line: fit by assuming pc = 1/l. (c) and (e): estimated
successful prediction length ζ, (d) and (f): MSE of ζ, (c) and (d): size of hidden
network is 100, (e) and (f): size of hidden network is 400. Solid lines: approximate
(indicative) ‘boundaries’ that show improvements around the critical point p∞/p0 = 1.

4.2 Critical Echo State Networks

Condition qc = l for matrix Ft is satisfied e.g., if every row and every column of
Ft contains one non-zero element in the limit. Such structure will be called exact
critical structure. For example, ESNs with permutation matrices in the hidden
layer (PESNs) have exact critical structure.

Before proceeding, we conclude for the general case: according to our numeri-
cal studies, there is a critical region for networks. In this region, the time evolving
hidden layer connectivity may not loose all connections (may not enter the zero
phase) or may not get close to full connectivity (the saturation phase). See also
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Fig. 2a and the caption of Fig. 2. Such networks will be called Critical Echo
State Networks (CESNs).

There are special cases that belong to CESNs. For example, if the eigenvalues
of matrix F are bounded by the unit sphere, two of them are on this sphere,
and these two do not form a diagonal sub-matrix, that is they mix elements of
the internal representation, then Ft will not belong to the zero phase nor to
the saturation phase. Also, ESNs with hidden orthogonal matrices are CESNs,
because their connectivity structure neither vanishes nor saturates in the limit.

In our investigations we shall turn to hidden permutation matrices, because
otherwise the relative number of critical structures generated randomly may
be very low, especially for large hidden layers. A particular l × l permutation
matrix contains 1 ≤ lν ≤ l number of cycles. A cycle of length lν exchanges the
corresponding elements of a vector in lν steps. Similarly, orthogonal matrices
mix subspaces.

Now, we present results for hidden permutation matrices, i.e., for PESNs and
we set

F = P , (6)

where P is a permutation matrix.

4.3 Prediction Gain over Ordinary ESNs

In this section we compare the performance of ESNs with PESNs on Mackey-
Glass time series with delay parameters 17 (MG17) and 30 (MG30).

Figures 3a and 3b show distributions of successful prediction length ζ for 4,000
ordinary ESNs. The distributions are compact. The same figures depict the dis-
tributions for 4,000 PESNs with randomly generated input matrix, hidden per-
mutation matrix, and optimized output matrix. PESNs show more asymmetric
distributions for ζs. The average and the median are about the same for the two
distributions, but the ESN distributions are much narrower. A large proportion
of PESNs are very successful, whereas we have barely encountered significantly
better than average randomly initialized ESNs, in agreement with the results
reported in the literature. In Figs. 3a and 3b, the decrease of the PESN distrib-
ution is slower than that of the ESN distribution; the PESN distribution seems
to have a long tail. For the more difficult MG30 time series prediction length is
shorter for both networks.

Figures 3c and 3d compare the number of occasions that a particular successful
prediction length was achieved by ESNs and PESNs for MG17 (Fig. 3c) and for
MG30 (Fig. 3d). Performances were evaluated over 2500 different starting points
and two comparisons were made. The best PESN out of 4000 randomly chosen
PESN networks was compared to (a) the average ESN out of 4000 randomly
chosen ESN networks and (b) the best ESN out of the same 4000 randomly
chosen ESN networks. For high ratios, i.e., when the performance of the PESN is
much better than that of the ESN, the curves become similar for both MG17 and
MG30. Results indicate that for large successful prediction lengths, performances
of the average and the best ESNs out of 4000 randomly generated networks are
poor and are very similar. Thus, high performance ESNs are rare compared to
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(b) Performance distributions over
2500 starting points for randomly
generated ESN and PESN networks
for MG30.
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points for MG17.
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Fig. 3. Comparisons of ESNs and PESNs for MG17 and MG30 time series. (a) and
(b): Dashed lines: ESN, solid lines: PESN, network size: l = 60, (c) and (d): Dashed
lines: average ESN (out of 4000) and best PESN (out of 4000), solid lines: best ESN
(out of 4000) and best PESN (out of 4000), network size: l = 60, vertical line at value
1 (at 100): ‘curve’ for identical distributions.

high performance PESNs: PESNs form a highly efficient subgroup within ESN
networks – at least for MG chaotic time series.

We found that matrix W had an effect on the performance of PESNs. For
example, W with similar elements had a negative effect. Uneven averages and
variances for elements of W belonging to different cycles improved performance.

5 Discussion

We studied critical ESNs with single inputs. PESN performances have broader
distributions than ESN ones. For PESNs, the probability that extremely good
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ESN is found is dramatically increased. One can quickly find extremely good
PESNs, whereas good ESNs are rare amongst ordinarily initialized ESNs.

Why do we find high performance PESNs significantly more often? Consider
the permutation matrix in the hidden layer of the PESN. In general, it connects
disjoint sets of elements, that is, we have disjoint cycles. We found that neither
the single cycle case, nor the case of a large number but small cycles exhibited
good performances. This was expected because of the following reason. For a
single cycle of size n, identical representation arises after n steps. However, if
there are more cycles, the identical representation appears after mLCM steps,
where mLCM is the least common multiple of the sizes of the cycles. LCM is
small if all cycles are equal, if cycles are small, or if there are single cycles. Such
PESNs, show poor performances, but form only a small subset of randomly
generated PESNs.

Now, consider general orthogonal matrices in the hidden layer. They belong to
the class of CESNs, because their time evolving connectivity can neither saturate
nor disappear for large times. It is possible that connectivity structure does not
converge: periodic or never repeating structures may occur. We have studied
CESNs starting from good PESNs. For example, we changed the sign of one or
more non-zero elements of a permutation matrix. In all cases, the good predictive
performance dropped to average. We also tried to modify different non-diagonal
2 × 2 sub-matrices defined by two non-zero elements of the permutation matrix
to a rotation matrix. Performance decreased in most cases unless the angle of
rotation was small. Note that permutation corresponds to rotation by 900 and
a reflection, whereas 1800 rotation corresponds to the change of the sign of one
of the components. Combinations of these changes also spoiled performance in
an overwhelming majority of the experiments.

The hidden permutation matrix is able to approximate non-periodic dynam-
ical systems, because the hidden layer is embedded by the input matrix W and
the output matrix H, and they can modify finite cycles; matrix F̂ = F + WH
counts in this respect. Note however, that matrix WH, which can modify the
permutation matrix, has limited capabilities, because the rank of this matrix is 1.
Chances are high that changes of permutation matrices of good PESNs destroy
performance, thus such changes seem to be out of reach for the optimization
procedure of matrix H of the PESN.

Identification capabilities of general CESNs for dynamical systems beyond
MG time series deserve further studies. A rich repertoire of phenomena may
appear for input dimensions larger than 1.

6 Summary

We have shown that ESNs undergo sharp phase transition depending on the
connectivity properties at the hidden layer. We have introduced and studied
critical echo state networks. We found – by means of a large number of numerical
simulations – that a large proportion of exact critical structures exhibit highly
superior performance as opposed to ordinary ESNs, at least for MG time series.



Critical Echo State Networks 667

We have argued that CESNs with permutation matrices in the hidden layer can
identify both periodic and aperiodic time series, because the permutation matrix
is complemented by other structures of the ESN.
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