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Abstract. Neural networks represent a class of functions for the efficient identi-
fication and forecasting of dynamical systems. It has been shown that feedforward
networks are able to approximate any (Borel-)measurable function on a compact
domain [1,2,3]. Recurrent neural networks (RNNs) have been developed for a
better understanding and analysis of open dynamical systems. Compared to feed-
forward networks they have several advantages which have been discussed ex-
tensively in several papers and books, e.g. [4]. Still the question often arises if
RNNs are able to map every open dynamical system, which would be desirable
for a broad spectrum of applications. In this paper we give a proof for the uni-
versal approximation ability of RNNs in state space model form. The proof is
based on the work of Hornik, Stinchcombe, and White about feedforward neural
networks [1].

1 Introduction

Recurrent neural networks (RNNs) allow the identification of dynamical systems in
form of high dimensional, nonlinear state space models. They offer an explicit modeling
of time and memory [5].

In previous papers, e.g. [6], we discussed the modeling of open dynamical systems
based on time-delay recurrent neural networks which can be represented in a state space
model form. We solved the system identification task by finite unfolding in time, i.e., we
transferred the temporal problem into a spatial architecture [6], which can be handled
by error backpropagation through time [7]. Further we enforced the learning of the
autonomous dynamics in an open system by overshooting [6]. Consequently our RNNs
not only learn from data but also integrate prior knowledge and first principles into the
modeling in form of architectural concepts. However, the question arises if the outlined
RNNs are able to identify and approximate any open dynamical system, i.e., if they
hold an universal approximation ability.

In 1989 Hornik, Stinchcombe, and White [1] could show that any Borel-measurable
function on a compact domain can be approximated by a three-layered feedforward net-
work, i.e., a feedforward network with one hidden layer, with an arbitrary accuracy. In
the same year Cybenko [2] and Funahashi [3] found similar results, each with different
methods. Whereas the proof of Hornik, Stinchcombe, and White [1] is based on the
Stone-Weierstrass theorem, Cybenko [2] makes in principle use of the Hahn-Banach
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und Riesz theorem. Funahashi [3] mainly applies the Irie-Miyake and the Kolmogorov-
Arnold-Sprecher theorem.

Some work has already been done on the capability of RNN to approximate measur-
able functions, e.g. [8]. In this paper we focus on open dynamical systems and prove
that those can be approximated by RNNs in state space model form with an arbitrary
accuracy. We start with a short introduction on open dynamical systems and RNNs in
state space model form (sec. 2). We further recall the basic results of the universal ap-
proximation theorem of Hornik, Stinchcombe, and White [1] (sec. 3). Subsequent we
show that these results can be extended to RNNs in state space model form and we con-
sequently give a proof for their universal approximation ability (sec. 4). We conclude
with a short summary and an outlook on further research (sec. 5).

2 Open Dynamical Systems and Recurrent Neural Networks

Figure 1 illustrates an open dynamical system in discrete time which can be described
as a set of equations, consisting of a state transition and an output equation [5,6]:

st+1 = g(st, ut) state transition
yt = h(st) output equation

(1)

The state transition is a mapping from the present internal hidden state of the system
st and the influence of external inputs ut to the new state st+1. The output equation
computes the observable output yt.
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System
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Fig. 1. Open dynamical system with input u, hidden state s and output y

The system can be viewed as a partially observable autoregressiv dynamic state tran-
sition st → st+1 that is also driven by external forces ut. Without the external inputs
the system is called an autonomous system [5]. However, most real world systems are
driven by a superposition of an autonomous development and external influences.

If we assume that the state transition does not depend on st, i.e., yt = h(st) =
h(g(ut−1)), we are back in the framework of feedforward neural networks [6]. How-
ever, the inclusion of the internal hidden dynamics makes the modeling task much
harder, because it allows varying inter-temporal dependencies. Theoretically, in the
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recurrent framework an event st+1 is explained by a superposition of external inputs
ut, ut−1, . . . from all the previous time steps [5].

In previous papers, e.g. [6], we proposed to map open dynamical systems (eq. 1) by
a recurrent neural network (RNN) in state space model form

st+1 = f(Ast + But + θ) state transition
yt = Cst output equation

(2)

where A, B, and C are weight matrices of appropriate dimensions and θ is a bias, which
handles offsets in the input variables ut [5,6]. f is the so called activation function of
the network which is typically sigmoidal (def. 3) like e.g., the hyperbolic tangent.

A major advantage of RNNs written in form of a state space model (eq. 2) is the
explicit correspondence between equations and architecture. It is easy to see, that the
set of equations (2) can be directly transferred into a spatial neural network architecture
using so called finite unfolding in time and shared weight matrices A, B, and C [5,7].
Figure 2 depicts the resulting model [6].
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Fig. 2. Recurrent neural network unfolded in time

A more detailed description about RNNs in state space model form can be found in
[4] or [6].

3 Universal Approximation Theorem for Feedforward Neural
Networks

Our proof for RNNs in state space model form (sec. 4) is based on the work of Hornik,
Stinchcombe und White [1]. In the following we therefore recall their definitions and
main results:

Definition 1. Let AI with I ∈ N be the set of all affine mappings A(x) = w · x − θ
from R

I to R with w, x ∈ R
I and θ ∈ R. ‘·’ denotes the scalar product.

Transferred to neural networks x corresponds to the input, w to the network weights
and θ to the bias.
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Definition 2. For any (Borel-)measurable function f(·) : R → R and I ∈ N be
∑I(f)

the class of functions

{NN : R
I → R : NN(x) =

J∑

j=1

vjf(Aj(x)), x ∈ R
I , vj ∈ R, Aj ∈ AI , J ∈ N}.

(3)

Here NN stands for a three-layered feedforward neural network, i.e., a feedforward
network with one hidden layer, with I input-neurons, J hidden-neurons and one output-
neuron. vj denotes the weights between hidden- and output-neurons. f is an arbitrary
activation function (sec. 2).

Remark 1. The function class
∑I(f) can also be written in matrix form

NN(x) = vf(Wx − θ) (4)

where x ∈ R
I , v, θ ∈ R

J and W ∈ R
J×I .

In this context the computation of the function f(·) : R
J → R

J be defined component-
wise, i.e.,

f(Wx − θ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f(W1 · x − θ1)
...

f(Wj · x − θj)
...

f(WJ · x − θJ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

where Wj (j = 1, . . . , J) denotes the j − th row of the matrix W .

Definition 3. A function f is called a sigmoid function, if f is monotonically increasing
and bounded, i.e.,

f(a) ∈ [α, β], whereas lim
a→−∞ f(a) = α and lim

a→∞ f(a) = β (6)

with α, β ∈ R and α < β. In the following we define α = 0 and β = 1 which bounds
the sigmoid function on the interval [0, 1].

Definition 4. Let CI and MI be the sets of all continuous and respectively all Borel-
measurable functions from R

I to R. Further denote B
I the Borel-σ-algebra of R

I and
(RI , BI) the I-dimensional Borel-measurable space.

MI contains all functions relevant for applications. CI is a subset of it. Consequently,
for every Borel-measurable function f the class

∑I(f) belongs to the set MI and for
every continuous f to its subset CI .

Definition 5. A subset S of a metric space (X, ρ) is ρ-dense in a subset T , if there
exists, for any ε > 0 and any t ∈ T , s ∈ S, such that ρ(s, t) < ε.

This means that every element of S can approximate any element of T with an arbitrary
accuracy. In the following we replace T and X by CI and MI respectively and S by∑I(f) with an arbitrary but fixed f . The metric ρ is chosen accordingly.
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Definition 6. A subset S of CI is uniformly dense on a compact domain in CI , if, for
any compact subset K ⊂ R

I , S is ρK-dense in CI , where for f, g ∈ CI ρK(f, g) ≡
supx∈K |f(x) − g(x)|.

Definition 7. Given a probability measure μ on (RI , BI ), the metric ρμ : MI ×MI →
R

+ be defined as follows

ρμ(f, g) = inf{ε > 0 : μ{x : |f(x) − g(x)| > ε} < ε}. (7)

Theorem 1. (Universal Approximation Theorem for Feedforward Networks)
For any sigmoid activation function f , any dimension I and any probability measure
μ on (RI , BI ),

∑I(f) is uniformly dense on a compact domain in CI and ρμ-dense in
MI .

This theorem states that a three-layered feedforward neural network, i.e., a feedforward
neural network with one hidden layer, is able to approximate any continuous function
uniformly on a compact domain and any measurable function in the ρμ-metric with
an arbitrary accuracy. The proposition is independent of the applied sigmoid activation
function f (def. 3), the dimension of the input space I , and the underlying probabil-
ity measure μ. Consequently three-layered feedforward neural networks are universal
approximators.

Theorem 1 is only valid for feedforward neural networks with I input-, J hidden- and
a single output-neuron. Accordingly, only functions from R

I to R can be approximated.
However with a simple extension it can be shown that the theorem holds for networks
with a multiple output (cor. 1).

For this, the set of all continuous functions from R
I to R

n, I, n ∈ N, be denoted by
CI,n and the one of (Borel-)measurable functions from R

I to R
n by MI,n respectively.

The function class
∑I gets extended to

∑I,n by (re-)defining the weights vj (j =
1, . . . , J) in definition 2 as n × 1 vectors. In matrix-form the class

∑I,n is then given
by

NN(x) = V f(Wx − θ) (8)

with x ∈ R
I , θ ∈ R

J , W ∈ R
J×I and V ∈ R

n×J . The computation of the function
f(·) : R

J → R
J be once more defined component-wise (rem. 1).

In the following, function g : R
I → R

n has got the elements gk, k = 1, . . . , n.

Corollary 1. Theorem 1 holds for the approximation of functions in CI,n and MI,n

by the extended function class
∑I,n. Thereby the metric ρμ is replaced by ρn

μ :=∑n
k=1 ρμ(fk, gk).

Consequently three-layered multi-output feedforward networks are universal approxi-
mators for vector-valued functions.

4 Universal Approximation Theorem for RNNs

The universal approximation theorem for feedforward neural networks (theo. 1) proves,
that any (Borel-)measurable function can be approximated by a three-layered feedfor-
ward neural network. We now show, that RNNs in state space model form (eq. 2) are
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also universal approximators and able to approximate every open dynamical system
(eq. 1) with an arbitrary accuracy.

Definition 8. For any (Borel-)measurable function f(·) : R
J → R

J and I, n ∈ N be
RNN I,n(f) the class of functions

st+1 = f(Ast + But − θ)
yt = Cst .

(9)

Thereby be ut ∈ R
I , st ∈ R

J and yt ∈ R
n, with t = 1, . . . , T . Further be the matrices

A ∈ R
J×J , B ∈ R

J×I , and C ∈ R
n×J and the bias θ ∈ R

J . In the following,
analogue to remark 1, the calculation of the function f be defined component-wise, i.e.,

st+1j = f(Ajst + Bjut − θj), (10)

where Aj and Bj (j = 1, . . . , J) denote the j − th row of the matrices A and B
respectively.

It is obvious, that the class RNN I,n(f) is equivalent to the RNN in state space model
form (eq. 2). Analogue to its description in section 2 as well as definition 2, I stands for
the number of input-neurons, J for the number of hidden-neurons and n for the number
of output-neurons. ut denotes the external inputs, st the inner states and yt the outputs
of the neural network. The matrices A, B, and C correspond to the weight-matrices
between hidden- and hidden-, input- and hidden- and hidden- and output-neurons re-
spectively. f is an arbitrary activation function.

Theorem 2. (Universal Approximation Theorem for Recurrent Neural Networks)
Let g : R

J × R
I → R

J be measurable and h : R
J → R

n be continuous, the external
inputs ut ∈ R

I , the inner states st ∈ R
J , and the outputs yt ∈ R

n (t = 1, . . . , T ).
Then, any open dynamical system of the form

st+1 = g(st, ut)
yt = h(st)

(11)

can be approximated by an element of the function class RNN I,n(f) (def. 8) with an
arbitrary accuracy, where f is a continuous sigmoide activation function (def. 3).

Proof. The proof is given in two steps. Thereby the equations of the dynamical system
are traced back to the representation by a three-layered feedforward network.

In the first step, we conclude that the state space equation of the open dynamical
system, st+1 = g(st, ut), can be approximated by a neural network of the form s̄t+1 =
f(As̄t + But − θ) for all t = 1, . . . , T .

Let now be ε > 0 and f : R
J̄ → R

J̄ be a continuous sigmoid activation func-
tion. Further let K ∈ R

J × R
I be a compact set, which contains st, s̄t and ut for

all t = 1, . . . , T . From the universal approximation theorem for feedforward networks
(theo. 1) and the subsequent corollary (cor. 1) we know, that for any measurable func-
tion g(st, ut) : R

J × R
I → R

J and for an arbitrary δ > 0, a function

NN(st, ut) = V f(Wst + But − θ̄), (12)



638 A.M. Schäfer and H.G. Zimmermann

with weight matrices V ∈ R
J×J̄ , W ∈ RJ̄×J and B ∈ RJ̄×I and a bias θ̄ ∈ RJ̄ exists,

such that
sup

st,ut∈K
|g(st, ut) − NN(st, ut)| < δ ∀ t = 1, . . . , T. (13)

As f is continuous and T finite, there exists a δ > 0, such that according to the ε-δ-
criterion we get out of equation (13), that for the dynamics

s̄t+1 = V f(Ws̄t + But − θ̄) (14)

the following condition holds

|st − s̄t| < ε ∀ t = 1, . . . , T. (15)

Further let
s′t+1 := f(Ws̄t + But − θ̄) (16)

which gives us, that
s̄t = V s′t. (17)

With the help of a variable transformation from s̄ to s′t and the replacement A :=
WV (∈ R

J̄×J̄), we get the desired function on state s′:

s′t+1 = f(As′t + But − θ̄) (18)

Remark 2. The transformation from s to s′ might involve an enlargement of the inter-
nal state space dimension.

In the second step we show, that the output equation yt = h(st) can be approximated
by a neural network of the form ȳt = Cs̄t. Thereby we have to cope with the additional
challenge, to approach the nonlinear function h(st) of the open dynamical system by a
linear equation Cs̄t.

Let ε̃ > 0. As h is continuous per definition, there exist an ε > 0, such that (accord-
ing to the ε-δ-criterion) out of |st − s̄t| < ε (eq. 15) follows, that |h(st) − h(s̄t)| < ε̃.
Consequently it is sufficient to show, that ŷt = h(s̄t) can be approximated by a function
of the form ȳt = Cs̄t with an arbitrary accuracy. The proposition then follows out of
the triangle inequality.

Once more we use the universal approximation theorem for feedforward networks
(theo. 1) and the subsequent corollary (cor. 1), which gives us that equation

ŷt = h(s̄t) (19)

can be approximated by a feedforward neural network of the form

ȳt = Nf(Ms̄t − θ̂) (20)

where N ∈ R
n×Ĵ and M ∈ R

Ĵ×J be suitable weight matrices, f : R
Ĵ → R

Ĵ a sigmoid
activation function, and θ̂ ∈ RĴ a bias. According to equation (17) and equation (18)
we know that s̄t = V s′t and s′t+1 = f(As′t + But − θ̄). By insertion we get

ȳt = Nf(Ms̄t − θ̂)

= Nf(MV s′t − θ̂)

= Nf(MV f(As′t−1 + But−1 − θ̄) − θ̂) . (21)
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Using again theorem 1 equation (21) can be approximated by

ỹt = Df(Es′t−1 + Fut−1 − θ̃) , (22)

with suitable weight matrices D ∈ R
n× ¯̄J , E ∈ R

¯̄J×J̄ , and F ∈ R
¯̄J×I , a bias θ̃ ∈ R

¯̄J ,
and a (continuous) sigmoid activation function f : R

¯̄J → R
¯̄J .

If we further set
rt+1 := f(Es′t + Fut − θ̃) (∈ R

¯̄J) (23)

and enlarge the system equations (18) and (22) about this additional component, we
achieve the following form

(
s′t+1
rt+1

)

= f

((
A 0
E 0

) (
s′t
rt

)

+
(

B
F

)

ut −
(

θ̄

θ̃

))

ỹt = (0 D)
(

s′t
rt

)

. (24)

Their equivalence to the original equations (18) and (22) is easy to see by a component-
wise computation.

Finally out of

J̃ := J̄ + ¯̄J, s̃t :=
(

s′t
rt

)

∈ R
J̃ ,

Ã :=
(

A 0
E 0

)

∈ R
J̃×J̃ , B̃ :=

(
B
F

)

∈ R
J̃×I ,

C̃ := (0 D) ∈ R
n×J̃ and θ :=

(
θ̄

θ̃

)

∈ R
J̃ ,

follows
s̃t+1 = f(Ãs̃t + B̃ut − θ)
ỹt = C̃s̃t .

(25)

Equation (25) is apparently an element of the function class RNN I,n(f). Thus the
theorem is proven.

q. e. d.

5 Conclusion

In this paper we gave a proof for the universal approximation ability of RNNs in state
space model form. After a short introduction into open dynamical systems and RNNs
in state space model form we recalled the universal approximation theorem for feedfor-
ward neural networks. Based on this result we proofed that RNNs in state space model
form are able to approximate any open dynamical system with an arbitrary accuracy.

The proof can be seen as a basis for future work on RNNs in state space model form
as well as a justification for their use in many real-world applications. It also underlines
the good results we achieved by applying RNNs to various time-series problems.
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Nevertheless further research is done on a constant enhancement of RNNs for a
more efficient use in different practical questions and problems. In this context it is
important to note that for the application of RNNs to real-world problems an adaption
of the model to the respective task is advantageous as it improves its quality. Besides
that we will continue our work on high-dimensional and dynamical consistent neural
networks [4].
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