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Abstract. A hybrid filter/wrapper feature subset selection algorithm for regres-
sion is proposed. First, features are filtered by means of a relevance and redun-
dancy filter using mutual information between regression and target variables. 
We introduce permutation tests to find statistically significant relevant and re-
dundant features. Second, a wrapper searches for good candidate feature subsets 
by taking the regression model into account. The advantage of a hybrid ap-
proach is threefold. First, the filter provides interesting features independently 
from the regression model and, hence, allows for an easier interpretation. Sec-
ondly, because the filter part is computationally less expensive, the global algo-
rithm will faster provide good candidate subsets compared to a stand-alone 
wrapper approach. Finally, the wrapper takes the bias of the regression model 
into account, because the regression model guides the search for optimal fea-
tures. Results are shown for the ‘Boston housing’ and ‘orange juice’ bench-
marks based on the multilayer perceptron regression model. 

1   Introduction 

Feature selection and feature construction have been addressed by many researchers 
in statistics and machine learning, see [1] for a recent overview. Feature construction 
constructs new features from the original inputs in a linear or non-linear way. Most 
feature construction techniques are developed for classification problems. However, 
they are easily adapted for regression problems by first discretizing the continuous 
target values using class-blind discretization algorithms [2], hence, artificially creat-
ing class labels. Feature selection on the other hand considers a selection from the 
original inputs, without constructing new ones. Both feature construction and feature 
selection help tackling the curse of dimensionality. In reducing the number of inputs 
one searches for the optimal bias-variance trade-off: a large number of inputs imply 
that more parameters need to be estimated and this causes a larger variance, however 
a too small number of inputs increases the bias. Feature construction has the disad-
vantage that it does not preserve the semantics of the inputs: combining inputs in a 
linear or non-linear way, makes the new features hard to interpret and hence makes an 
understanding of the nature of the problem difficult. Another huge disadvantage is 
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that feature construction does not decrease the measuring cost: all inputs still need  
to be measured, by possibly very expensive sensors, even when they are non-
informative.  

Therefore we adopt a feature subset selection approach in this article. Feature se-
lection can be separated in two approaches: the filter approach and the wrapper ap-
proach [3]. In the filter approach the feature subset selection is performed independ-
ently of the training of the regression model. In this case feature subset selection is 
considered as a preprocessing step to induction. This is computationally more effi-
cient, but ignores the fact that an optimal selection of features is dependent on the 
regression model. As stated before the performance of the regression model is 
strongly dependent on the size of the feature subset. On the other hand the wrapper 
approach is computationally more involved, but takes the interactions of the feature 
subset and the regression model into account. The term ‘wrapper’ stems from the fact 
that the feature selection is wrapped around the regression model which is considered 
as a black-box. In this article we propose a hybrid solution: first irrelevant and largely 
redundant features are removed, subsequently a search with a wrapper is performed 
among the features that passed the filter. 

2   Filter Preprocessing 

In this section we investigate an information-theoretic measure in order to determine 
irrelevant and redundant features. We use the ‘Boston housing’ and the ‘orange juice’ 
datasets for illustrative purposes. The proposed methods are inherited from [4] where 
a hybrid approach is proposed for pattern recognition (classification), instead of re-
gression. 

2.1   Irrelevance Determination by Permutation 

As explained before, a wrapper approach takes the limitations of the particular regres-
sion model into account. In the search for optimal feature subsets we need to estimate 
the performance of the feature sets found so far. This requires the training of the re-
gression model based on the selected features for a chosen training set. The accuracy 
of the model is then estimated by simulating the trained regression model on a test set. 
It is common that a lot of features are included in the feature subset search that do not 
contain any information about the target variable. This information can be described 
by the concept of mutual information between the regression variable Fi and the target 
variable T:              
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The use of the mutual information in regression is largely motivated by the data ine-
quality theorem, which states that [5]: 

( , ) ( ( ), )i iI F T I g F T≥ . (2) 
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Hence, a function of the variable Fi cannot increase the information about the target T. 
If we can show that the original variable T is not dependent on Fi (Fi is not informa-
tive about the target T), which implies the mutual information in (1) is equal to 0, we 
can discard Fi, because any further processing can not increase the information about 
the target. 

In practice we face the problem that we do not know the joint distribution between 
target variable and input variables, hence, the mutual information needs to be esti-
mated from the data. This finite sample estimate is likely to be different from 0 and in 
general will depend on the sample size, parameter settings of the estimator and the 
distributions in (1). Thus, looking whether the estimated mutual information is exactly 
equal to 0 is not satisfactory. However, we can easily circumvent this problem in the 
following way. We define a hypothesis test where the null hypothesis H0 tests the 
assumption that the feature variable and the target variable are independent. We can 
easily obtain the distribution of the mutual information conditioned under the particu-
lar sample distributions. Therefore, we randomly permute the ordering of the samples 
of the target variable, hence, removing the dependencies between the target variable 
and the input variable, relative to the feature samples. Performing this permutation N 
times provides us with N samples of a sample distribution of the mutual information 
under the H0 hypothesis. Note that this strategy contains some resemblance with the 
creation of surrogate time series in time series analysis [6]: a ‘ground-truth’ or refer-
ence is created by e.g. randomly permuting the phase of the signals under the given 
sample distribution of the frequency spectrum.  

Further on, we will estimate the mutual information with the I(1) estimator of Kras-
kov et al. [7], which estimates mutual information directly from a K-Nearest 
Neighbour method. Figure 1 shows the sample distribution of the mutual information 
between input variable F5 (nitric oxides concentration, NOX) and the target variable 
(median value of owner-occupied homes, MEDV) of the ‘Boston housing’ data set for 
1000 permutations. We note that under the H0 hypothesis the mean (0.1106) of the 
mutual information is considerably different from 0. This divergence from 0 can be 
partly explained by the fact that the I(1) is designed for continuous distributed features 
and target variables. However, the NOX variable appears to have a discrete nature 
(although in the accompanying housing.names file it is considered as a continuous 
feature). Based on the sample distribution we can define a threshold for which a fea-
ture (when larger than the threshold) can be considered statistically relevant. For the 
example in figure 1 we have P0.01 = 0.1369, the actual MI (without performing the 
permutation) is equal to 0.1920. When we perform this analysis for all 13 features in 
the ‘Boston housing’ dataset we find that all features are statistically relevant, except 
for input variable F4 (Charles River dummy variable CHAS, P0.01 = 0.02 and actual 
MI equal to 0.0163). We remark that the CHAS variable is discrete and therefore we 
did not use the I(1)  estimator, but estimated the mutual information by means of the 
marginal entropy estimator (marginal and conditional entropies estimated from for-
mula (20) in [7]): 
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In formula (3) the discrete feature F (CHAS for the ‘Boston housing’ data set) takes 
different category values: 0,…, C (0 and 1 in this case). 
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Fig. 1. Sample distribution of the mutual information between input variable NOX and target 
variable MEDV. The distribution was obtained under null hypothesis (independent input and 
target variable) by randomly permuting (1000 permutations) the samples. Note that the mean 
differs considerably from 0. The actual MI is equal to 0.1920, this is larger than P0.01 (P0.01 = 
0.1389) and hence NOX can be considered as a relevant feature for target variable MEDV. 

   In figure 2 we show the mutual information of all features of the ‘orange juice’ 
database and the P0.01 thresholds from 100 permutations. Where the MI exceeds the 
threshold the features are statistically relevant.  
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Fig. 2. Feature relevance as determined by the P0.01 value of the permutation test (using 100 
permutations). The lower noisy curve shows the P0.01 value determined from the permutations. 
The upper curve shows the actual MI (without permutations). Note that starting from approxi-
mately feature 165 all features are considered as statistically significant. 

    Finally, we remark that permutation testing for feature relevance analysis has been 
described independently in [8]. 

2.2   Redundancy Detection 

Features that are individually relevant might, however contain overlapping informa-
tion considering the target variable. Therefore in literature [9] the distinction is made 
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between strongly relevant and weakly relevant features. A strongly relevant feature Fi 
is defined as: 

                                             ( | , ) ( | )i i iP T F G P T G≠  

                                        
{ } ,

with  the complete feature set.
i iG F F

F
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    (4) 

A weakly relevant feature Fi is a feature for which (4) holds for at least one strict 
subset Gi

’ of Gi. So weakly relevant features need to be interpreted as relevant fea-
tures, but for which redundant, i.e. strongly correlated, features or feature sets exist. 

A redundancy filter tries to detect and remove the redundant features of the weakly 
relevant features. Thus, the redundancy filter needs to filter out redundant feature 
subsets, but needs to retain a representative feature for the redundant subset. From 
formula (4) it is clear that we need to rely on heuristics for the identification of 
weakly relevant features: 

 

• We do not dispose of the real underlying distributions in (4), 
• It requires that we find at least one subset of Gi for which the inequality in 

(4) holds, in a worst case scenario this requires considering all possible 
subsets of Gi. This is of almost the same complexity as solving the FSS 
problem itself, because this would require finding the smallest possible 
subset of the complete feature set for which the equality in (4) holds. 

 
The heuristic approach is taken where redundant features are assembled in a cluster 

and a representative feature is taken out of the cluster. The feature closest to the clus-
ter centroid can act as a representative feature for all features in the cluster. We have 
following requirements for the clustering procedure: 

 

• A first requirement for the clustering procedure is: strongly relevant fea-
tures must form a cluster on themselves. Therefore in the clustering pro-
cedure it is sound to consider every feature initially as a separate cluster. 

• A second requirement is that the maximum distance between any features 
in a cluster should be limited in order for the feature closest to the cen-
troid to be representative. 

 

In order to achieve these goals clusters are iteratively merged starting from the initial 
features as seeds. In order to obtain compact clusters, when merging, the distance 
between 2 clusters Di and Dj is defined as the maximum distance between any  
features: 
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As a distance measure between features we propose 1 minus the normalized MI be-
tween features, this leads to 0 distance for the distance between the same features and 
a distance of 1between independent features. 
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    Cluster merging is stopped when distance between any clusters exceeds a prede-
fined threshold τ (maximal number of clusters to be formed or a maximal distance 
that may not be exceeded when merging clusters). The described clustering procedure 
is known as hierarchical agglomerative clustering with a ‘complete’ merging strategy 
of the clusters [10]. The threshold τ heuristically defines the non-redundant features 
which are represented by the cluster centroids.  
     A wrapper search is then performed on the features that pass both the relevance 
and redundancy filter. If we apply this redundancy filtering strategy to the ‘orange 
juice data’ and set τ equal to 5 clusters we get following result in figure 3. 
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Fig. 3. Redundancy analysis on spectral ‘orange juice’ data. The figure shows which features 
are assigned to which cluster if we set τ equal to 5 clusters in the redundancy analysis. It is 
interesting to observe that contiguous features tend to end up in the same cluster. This could be 
expected, while small differences in spectral components tend to give rise to redundant fea-
tures. As a distance measure 1-nMI (normalized mutual information) was used. 

 
    From figure 3 we observe the interesting (but expected) result that contiguous fea-
tures tend to be assigned to the same cluster, hence, features that are obtained from 
small differences in spectra tend to be redundant. We obtained a similar result for 
features computed from the continuous wavelet transform in [4]: features obtained for 
small changes in scale coefficients tend to be strongly dependent and therefore can be 
approximated by the cluster centroid [4]. Note that this redundancy analysis can be 
considered as a strategy of sampling from the initial feature space. The sampling 
strategy has the advantage that where features are strongly redundant we need only a 
few representative features, while where features are not redundant we need more 
feature samples. 

2.3   Wrapper Search 

A supervised search is performed on the features that pass both the relevance and 
redundancy filter. Given the strong dependency of the regression model on the curse 
of dimensionality and the assumptions made in the regression model to map input 
variables to a target variable, these interactions need to be taken into account to 
achieve optimal performance. By applying filter techniques the wrapper is focused on 
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strongly relevant features. By applying the filtering techniques the wrapper can be 
applied with decreased computational cost.  In the wrapper approach 2 choices need 
to be made: the regression model and the search among the possible subsets. We 
opted for the following choices: 

 

• Regression model: we used a widely accepted model for regression: a Multi-
layer Perceptron (MLP) neural network [11]. Such MLP models are capable 
of approximating any function on a finite interval, provided the number of 
hidden neurons and the training data set are large. The input layer is defined 
by the number of inputs (D), for the hidden layer we choose 5 sigmoid neu-
rons, the output layer is determined by the number of targets and consists of 
1 linear neuron. The Levenberg-Marquardt algorithm was used in batch-
mode to train the parameters of the network. To compute the performance of 
the feature subset, the data set was divided in 3 parts: a training set, a valida-
tion set and a test set. The validation set was used to avoid overtraining of 
the network, hence, when the error on the validation set increased the train-
ing was stopped.  The intermediate performance of the feature set was then 
estimated on the test-set. This was repeated 10 times by using a 10-fold 
cross-validation procedure, the final performance of the test set was obtained 
from the averages of the intermediate performances. 

 

• Search procedure: several search procedures have been proposed to the fea-
ture subset selection problem, although most often research has been focus-
ing on pattern classification. Among the best well-known search procedures 
in feature selection for pattern classification are: exhaustive search, branch 
and bound [12], sequential search algorithms (SSA’s) [13] and more recently 
Genetic Algorithms (GA’s) [4], [14], [15]. We focus on GA’s, because in a 
comparative study [15] it was shown that GA’s can compete with the best 
search algorithms (SSA’s) for feature subset selection and even outperform 
SSA’s for larger feature sets (typically when the number of features is larger 
than 50). The ‘roulette wheel’ selection strategy was chosen, where the fit-
ness function was determined by: 

              { } { } { }
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From (6) we observe that any feature subset (Fi) with a mean square error 
performance (MSE) smaller than the variance of the target variable, gets re-
warded. Parameter n controls ‘selective pressure’ [14]: a higher n will reward 
good solutions disproportionally. We set n equal to 2. Finally, we used fol-
lowing settings in the GA: the probability of cross-over between individuals 
(an individual is a particular feature subset) pc is equal to 0.3, the probability 
of mutation pm of a feature within every individual equal to 0.01, the number 
of individuals per population equal to 30 and the number of populations 
equal to 100.  
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Finally, in figure 4 a schematic overview of the overall feature subset selection  
strategy is presented. 

Wrapper
Genetic algorithm: 
feature subset search 

MLP neural network 
regression model: 
Training + perform-
ance estimation 

Mutual infor-
mation relevance 

filter

Mutual infor-
mation redun-

dancy filter 

Feature
output 

Feature
input

Filter

 

Fig. 4. Schematic overview of the overall feature subset selection strategy for regression. First, 
irrelevant and redundant features are removed in the filter. Second, the wrapper approach fo-
cuses on the smaller set of interesting features. 

3   Results 

3.1   Boston Housing 

We summarize the application of the FSS strategy of figure 4 in table 1 for the ‘Bos-
ton housing’ data for feature subset sizes 1 to 5.  
     We remark that the relevance analysis showed that only feature 1 is irrelevant 
(CHAS feature) and that the smallest distance between any features is equal to 0.461 
(features RAD: index of accessibility to radial highways and TAX: full-value prop-
erty-tax rate). We performed further simulations with feature subsets up to all features 
(13). The best feature subset obtained contained 12 features (feature 4 not included) 
and has an MSE of 14.83, however, none of the results obtained with more than 3 
features could be proven to be statistically significant compared to the result with 3 
features. Feature 4 was never included in the smaller subset sizes and thus could have 
been successfully removed by the relevance filter. 

Table 1. Performance of the MLP feature subset strategy on the ‘Boston housing’ data 

Feature 
subset size 

Feature list (1-13) 
Best solution 

Performance (MSE) 

1 [                                       13] 28.08 ± 0.75 
2 [                 6                    13] 21.66 ± 1.25 
3 [      3         6                    13] 18.81 ± 1.80 
4 [  2        5   6                    13] 18.96 ± 1.63 
5 [                 6    8  9    11  13] 16.03 ± 1.13 
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3.2   Orange Juice 

Table 2 presents the results of the MLP FSS strategy on the ‘orange juice’ data set. 
This data set has been made available by the BNUT unit of the UCL (Université Ca-
tholique de Louvain). In performance1 the results of the algorithm of figure 4 without 
the filter and in performance2 the results with filter (with τ equal to 25 clusters) are 
tabulated. 

 
Table 2. Performance of the MLP feature subset strategy on the ‘orange juice’ data 

Performance1 performance2 Feature 
subset 

size MSE time MSE Time 

5 49.64 301 55.64 254 
6 50.91 299 58.36 280 
7 69.63 352 53.78 279 
8 57.25 360 59.45 325 
9 54.76 410 60.57 386 

10 57.94 485 46.48 461 
11 51.73 641 56.98 520 
12 54.71 534 47.28 545 
13 38.04 680 49.81 416 
14 49.14 750 46.98 463 
15 52.34 647 48.66 489 

 
    MSE is the performance in ‘mean square error’ of the best feature subset found, 
time is the total number of times a 10-fold cross-validation procedure (this means: 
training, validation and testing) was needed over 100 populations to estimate the per-
formance of a feature subset (one has a maximum of 30*100 evaluations). Once this 
performance for a subset is computed, it can be stored and thus it does not need to be 
recomputed if the feature subset reappears in future populations. Reappearance of 
performing subsets is very likely (and expected), due to the fitness selection strategy. 
The increased performance in speed (lower time) in table 2 can be explained by the 
reduction of the 700 features to 25 features used in the wrapper: crossover and muta-
tion are more likely to generate previous occurring individuals. Hence, while an in-
crease in speed  for a hybrid approach would be evident for search strategies such as: 
exhaustive search, SSA’s, greedy search and so on, it is less evident for GA’s, when 
keeping the number of individuals per population and the number of populations 
fixed. Furthermore, a paired t-test on the MSE’s (mean square errors) shows that the 
performance of the 2 approaches is equivalent; on the other hand a paired t test shows 
that the difference in number of evaluations needed is statistically significant. The 
cost of the filter preprocessing can be ignored if a limited number of permutations are 
performed. 
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4   Conclusions 

We have shown that relevance and redundancy analysis helps interpreting the data 
under study. Permutation tests are used to find statistically motivated thresholds that 
determine statistically relevant features. Finally, it was shown that the filter preproc-
essing increases the speed of the wrapper approach in the feature subset search. 
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