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Abstract. As a result of the structure and content transformation of an evolving 
society, many large scale autonomous systems emerged in diverse areas such as 
biology, ecology or finance. Inspired by the desire to better understand and 
make the best out of these systems, we propose an approach which builds sto-
chastic mathematical models, in particular G-networks models, that allow the 
efficient representation of systems of agents and offer the possibility to analyze 
their behavior using mathematics. This approach is capable of modelling the 
system at different abstraction levels, both in terms of the number of agents and 
the size of the geographical location. We demonstrate our approach with some 
urban military planning scenarios and the results suggest that this approach has 
tackled the problem in modelling autonomous systems at low computational 
cost. Apart from offering the numerical estimates of the outcome, the approach 
helps us identify the characteristics that impact the system most and allows us 
to compare alternative strategies.  

Keywords: mathematical modelling, G-Networks, military strategy and plan-
ning, multi-agent systems. 

1   Introduction 

As a society evolves, its structure and content transform accordingly to reflect and 
address its needs.  As a result, more and more large scale autonomous systems occur 
in various forms in the surrounding world, from diverse areas of study such as biol-
ogy, ecology, finance or transportation. Large scale systems have been traditionally 
characterized by a large number of variables, nonlinearities and uncertainties. As an 
example taken from biology, a human body, where organs, containing billions of 
cells, perform different functions that contribute towards the operating of the body 
can be seen as a large scale system. Inspired by the desire to better understand and 
utilize the environment, we study such systems and hope to gain insights, predict the 
future and control them partially if not fully. 
    There have been many attempts to model large scale systems, such as building dif-
ferential equations or with simulations [1-5]. However the sheer complexity and diver-
sity of large scale systems make them difficult to be described and modelled, and it is 
even more difficult to provide numerical predictions of the underlying processes of 
such systems. To tackle these problems, we propose to use a stochastic approach, in 
particular G-networks [6-10], to model the individuals of the same nature collectively.  
In doing so, the computational complexity is greatly reduced. Another innovative as-
pect of our approach is that it is able to model systems with multiple geographical 
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locations at different levels of abstraction. With the approach, we aim to provide in-
sights into systems in terms of their performance and behaviours, to identify the pa-
rameters which strongly influence them, and to evaluate how well an individual’s task 
can be achieved and, therefore compare the effects of alternative strategies. 
    As presented in [13-17], our approach has many application areas, such as military 
planning, systems biology and computer networking. In this paper, we use strategic 
military planning in urban scenarios as an example to demonstrate our approach. We 
describe the systems of interest, the mathematical model, and the chosen scenarios.  
We illustrate two methods that we use in dealing with the situations where complete 
or incomplete world knowledge is available. To validate our model, we compare its 
results with those obtained from a simulator [11, 12] that was built in our group. We 
will briefly discuss the differences between these two approaches, and analyze the 
discrepancy between the results. The paper concludes with a discussion of potential 
extensions to the model.  

2   System Descriptions 

As an example of a potential application, we consider a closed system containing N 
distinct geographic locations and a set of C agent classes. Locations may have obsta-
cles that an agent cannot physically enter, such as stretches of water, trees, buildings 
and so on. Obstacles depend of course on the physical objects that the agents repre-
sent (e.g. land and air vehicles will have different kinds of obstacles). At the moment, 
we do not take the local minimum problem into consideration and we assume all 
obstacles in the terrain are convex in shape. 
    In these systems, agents take actions to achieve their goals, which are reflected by 
their motions and behaviors. A goal, be it stationary or motion-oriented, attracts 
agents to move towards it. A stationary goal is a specific location, whereas a motion-
oriented goal refers to the situation where an agent itself is the goal (target) of others.  
Agents either protect or destroy their motion-oriented goals. To achieve this, agents 
might need to cooperate or compete with others in the system.  The difference  
in nature of the goals results in agents belonging to different adversary teams. Teams 
in the same group collaborate with each other to achieve their goals, while those  
in adversarial groups would exhibits competing behaviors to prevent others accom-
plishing their goals. 
    Motion in the system is a result of forces exercised by the goal and agents. There 
are three types of forces in our system: attractive, repulsive and long-range attractive 
and short-range repulsive. A straightforward example of an attractive force would be 
the force that a stationary goal (i.e. the destination) applies on an agent. A repulsive 
force can be interpreted as the tension of moving away.  For example, if agent D’s 
aim is to destroy agent B, then agent B applies an attractive force on D. On the other 
hand, agent D exercises a repulsive force on B. A long-range attractive and short-
range repulsive force makes a group of agents stay together and keeps their distance 
at the same time.  Thus if the agents are too close, repulsive forces are applied, oth-
erwise, attractive forces are applied. 
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3   The Mathematical Model 

Let i = g(t, c, k) denote the location at time t of agent k  belonging to team c. The 
location i may be a single variable or a vector, depending on the geographic represen-
tation that is being used, e.g. the (x, y, z) coordinates of a location on a map, where z 
may represent elevation when this is relevant. Thus in a two-dimensional coordinate 
space, a location will be denoted by i=(x(i),y(i)) and a neighboring location will be 
denoted by some j=i+d where )}1,1(),1,0(),0,1(),0,0{( ±±±±∈d . It is assumed that each 

agent has an initial location denoted by S(c, k), and it may have (though this is not 
necessary) a final destination D(c, k). We also assume that agents may die as a result 
of adversarial effects, or for other reasons, in which case they are relocated to 
“heaven” denoted by H. For the purpose of this model, we assume that there is just 
one heaven for everyone.  
    The mathematical model we develop aims at being able to compute, over a large 
number of experiments, quantities such as the probability q(i, c, k) that agent k of 
team c is in location i. Such probabilities will also be used to compute indirectly the 
average time it may take certain agents to reach specific locations. The approach we 
take is based on constructing an ergodic model, i.e. one which has a stationary prob-
ability distribution, so that:  

]),,([lim),,( ikctgprobkciq
t

==
∞→

 (1) 

3.1   Agent Parameters 

In the model, the motion of an agent is a result of two parameters:  

• Its speed or rate of movement, r(i, c, k) which will depend on its location (reflect-
ing the geographic characteristics of its location) 

• The direction of this movement which will be denoted by the probability p(i, j, c, 
k) that agent (c, k) moves from i to j.  

In this study, we assume that locations i and j are adjacent, in which case dij +=  

where d is one of the nine cardinal directions from i, including d=(0, 0) which means 
that the agent has not moved at all. 
    The direction of motion for any one of the agents is determined by: 

• the objectives or final destinations of the agents, when applicable, as expressed 
by a force of attraction 

• the interaction between agents, as expressed by forces of attraction and repulsion 
• the physical obstacles in the terrain, or the specific terrain related difficulties 

which may discourage or motion in a particular direction 

In addition to motion, interaction between the agents is exhibited by their ability to 
destroy the others. Each agent (c, k) has a set of enemies, E(c, k), that it tries to de-
stroy, a shooting range R(c, k) within which it is able to destroy an adversary, and a 
firing rate f(c, k). Of course, these parameters may be identical in certain cases for all 
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agents belonging to the same class or adversary team. In our model, the concept of 
enemy need not be reciprocal, i.e. )','(),( kcEkc ∈ does not necessarily im-

ply ),()','( kcEkc ∈ . 

3.2   Forces 

We use the cumulative-force exercised on an agent to determine its motion probabili-
ties p(i, j, c, k), which define the direction of motion. Let Forces(c', k', c, k) be the 
force exercised on agent (c, k) by agent (c', k'). A positive coefficient implies that 
agent (c, k) is attracted to agent (c', k'), whereas a negative coefficient implies that 
agent (c, k) is repulsed by agent (c', k').  The strength of an inter-agent force varies 
with the distance of the two agents. The destination of an agent, D(c, k), if one exists, 
also exercises an attractive force G(i, d, c, k), which may also vary across the terrain. 
    The net force v(i, d, c, k) exerted on agent (c, k) at location i in direction d is com-
puted as follows, where the function 0),( >jidist  represents the way that the force 

component changes with the distance between agents. The set L(i, d) represents all 
locations at direction d from i in the terrain and d is defined as )}({ ijdirectiond −= .  
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    Let O(i) be the set of neighbors of i which do not contain obstacles. In the process 
of obtaining motion probabilities, we introduce an adjusting factor to assist re-
normalizing v(i, d, c, k) to positive values.  The adjusting factor is set in a way that it 
has a trivial impact on the accuracy of the motion probabilities. Let V(i, c, k) be the 
sum (numerical) of forces exerted on an agent from all the directions. It can be repre-
sented as: 

∑
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    The motion probability, p(i, j, c, k), is defined in equation (4), which also allows us 
to take d= (0,0), i.e. the probability of staying in the current location. This of course 
raises the issue of certain agents getting “stuck” in a place from which they will not 
move away until conditions related to other agents have changed. 
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3.3   Conditions Under Which the Simulation Game Ends 

We consider that the simulation game ends when some subset of agents, for instance 
any one of the agents of some class c, reaches some pre-selected set of positions, 
which may include their destinations. Alternatively, the game may also end when 
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some agents reach heaven (i.e. when they are killed). To formalize the terminating 
conditions, we define a final state set F(c, k) for the agent (c, k) as a subset:  

}{}{),( HjlocationskcF ∪⊆  (5) 

It is also possible that φ=),( kcF , in which case this means that this particular agent 

does not influence the time at which the simulation ends. The terminating condition F 
is then simply:  

),(),( kcFF kcall∪=  (6) 

and the interpretation we give to it is that: 

φ≠∈∃⇔ ),(),,(),,(),,( kcforFkcFktcgkciftAtEndsSimulation  (7) 

    When a game attains its terminating condition, after some random time of average 
value 1 (this value is chosen for the purpose of normalization), each agent (c, k) (in-
cluding the agents that made it to heaven), will move instantaneously to its initial 
location S(c, k), and the game will start again at rate Rstart. For the purpose of this 
mathematical model, this cycle repeats itself indefinitely. This allows us to compute 
ensemble averages that are of interest. We assume that in the class of games, either 
some agent of some designated class(es) reach their destination, or all agents of des-
ignated class(es) reach heaven. Thus, we exclude situations where all agents become 
blocked and cannot move any further, or enter cycles of behavior which exclude the 
agents’ demise, or that impair their ability to attain their destinations. 
    The terminating probability T is defined as the stationary probability that the model 
is in the terminating state: 

)],(),,([lim ),( kcFkctgprobT kcall
t

∈∨=
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 (8) 

Similarly we define: 

)]','()',',([lim),( ),(),( kcFkctgprobkcT kckcall
t

∈∨= ≠→∞
 (9) 

Thus T(c, k) is the stationary probability that the game is in the terminating state, 
given that agent (c, k) is already in a final state. Suppose now that we wish to compute 
the expected time τ it will take some specific agent (c, k) to reach some specific loca-
tion γ. In that case we would set }{),( γ=kcF , and the terminating probability, T, 

becomes ),,( kcq γ . We then have: 

),,(
1

kcq γ
τ =  (10) 

3.4   Model Equations 

The equations that describe the overall long-term behavior of the system are obtained 
heuristically based on the equations satisfied by the stationary probability distribu-
tions of G-networks [7]. We heuristically, but plausibly, choose to relate the q(i, c, k) 
to each other and to the agents' parameters via the following equations: 
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(11) 

    In addition, we use the normalizing condition that the states that the sum of the 
probabilities that any given agent is at any one of the locations (including “heaven”) 
is one. Thus for any (c, k) we have: 

∑ =
i

kciq 1),,(  
(12) 

You might have noticed that the Rstart rate is not defined in the above equation. Our 
approach is versatile in the sense that it provides insights into various aspects that are 
of interest based on one set of system equations. Therefore, the condition under which 
the process repeats itself is defined accordingly.  For example, with the same model, 
we can examine the impact that the initial locations have on the average time that 
agents take to complete their tasks, the average time of a specific agent achieving its 
goal or the average percentage of a team achieving its goal.  

3.5   Scenarios and Obtained Results 

We have experimented with scenarios where agents of the same class travel towards 
their goals in the system. Results show that the model converges quickly and the in-
ter-agent forces have impacts on the agents’ performance depending on their strength. 
The detail of those scenarios and corresponding results can be found in [18]. 
    After our initial success with a single agent class, we incorporate collaborating and 
competing behaviors into the model by introducing multiple agent classes, in other 
words, adversary teams. We demonstrate such models with a system containing three 
agents of different adversary teams: civilian (agent 1), terrorist (agent 2) and police 
(agent 3). The civilian’s aim is to reach its destination alive with the help of the po-
lice. The police fights against the terrorist so that it will not kill the civilian. The ter-
rorist attacks anybody who prevents it from killing the civilian.  Both the police and 
the terrorist are only capable of attacking their enemies within a certain range. The 
collaborating and competing behaviors are not necessarily symmetrical, as illustrated 
in this scenario.  The scenario repeats itself either when agent 1 is dead or arrives at 
its goal. Therefore the Rstart Rate has the numerical value of Max[q(H, c, k), q(D 
(c, k), c, k)]. 
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    The detail of the scenario is as follows: in a 15×15 terrain, the agents’ initial loca-
tions are (7,14) for the civilian, (5,2) for the terrorist and (13,2) for the police. The 
civilian has a stationary destination, location (14,14), whereas the police and the ter-
rorist have motion-oriented goals. The nature of the terrorist attracts it towards the 
civilian and keeps it away from the police. The civilian travels towards its goal and 
avoids being killed by the terrorist. The police is attracted by the terrorist more than 
the civilian, simply because its task is to prevent the civilian from being killed. 

 

Fig. 1. Estimated time of events occurrence 

    Technically, the police and the terrorist are identically equipped except the police 
fires twice as frequently as the terrorist.  Due to this nature, we expect the terrorist 
stands a higher chance of being killed by the police than killing the police. The result 
(See Fig 1) shows that, as a result of receiving help from the police, the civilian stands 
a higher chance of reaching the goal (55.5%) than being killed (44.5%).  The reason 
that the police does not have a very big impact on the situation is that it takes times 
for the police to approach the terrorist. The result indicates that, on average, it takes 
32 steps for the terrorist to kill the police and 15 steps for the police to kill the terror-
ist. This is inline with our predictions. As one might have noticed, for this scenario, 
the algorithm converges at around 50 iterations, which is shorter comparing with 
obtaining the average statistics from the simulator. 
    As mentioned before, the police and the terrorist have the same technical character-
istics except their shooting rates. So if they have identical settings, it should take the 
same amount of effort to kill each other. We therefore assign them with the same 
shooting rate and see how that affects the outcome. Results confirm that, the esti-
mated time of the police and the terrorist killing each other is the same.  
    In military planning, one often has to consider the trade-off between protection and 
agility.  Weakening the protecting capacity of the police gives the terrorist more 
chances to launch attacks; however, it offers advantages such as agility and low con-
sumption.  Depending on the nature of the task, the police forces may have different 
focuses. With our approach, we can easily compare alternative strategies and select 
one that addresses our needs best.  
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    Now we illustrate how mutation is modelling with an example of a system consist-
ing of two agents.  We restrain the two agents from interaction, so that mutation is the 
dominating factor of the outcome. The agents locate at (2,2) and (8,8) respectively. 
Agent 1 plans to go to (4,4) and agent 2 travels towards (14, 14).  The two agents are 
identical apart from the fact that agent 1 has the mutating ability.  With mutation rate 
a, agent 1 mutates and exhibits the same behaviour as agent 2.  Thus after mutating, 
agent 1 will start pursuing agent 2’s goal. 
    The following table (See Fig 2) shows how the estimated time of un-mutated agent 
1, mutated agent 1 and agent 2 reaching their destinations.  For example, with muta-
tion rate 0.6, on average, 73% of the time agent 1 carries out an alternative task, 
which requires 6.35 unit time to complete, whereas 27% of the time, agent 1 preserves 
its nature and arrives its goal at 10.66 unit time.  This feature is significant in task 
planning, where by altering parameters, one could “foresee” how fast multiple goals 
can be achieved with a reasonable overhead, if such need rises during the mission.  In 
this case, if the team has to be split to achieve different tasks without too much over-
head, mutation rate 0.4 can be a good choice. 

 

Fig. 2. Estimated time of an agent reaching its goal (with different mutating rate) 

    During the experiments, we have also discovered that our approach can be used to 
model systems at different levels of abstraction.  For example, 1 agent in the mathe-
matical model does not necessarily represent a single agent; instead, it can represent a 
certain number of agents, say 150. From another perspective, we can also estimate the 
outcome of a larger terrain by modelling a smaller terrain with similar na-
tures/characteristics, as presented in [14]. The approach is also validated again a 
simulator that was developed in our group. Results [14] show that, despite the magni-
tude discrepancy, the mathematical model is inline with the statistics collected in the 
simulator. 
    So far, the features that our approach offers are desirable. However, it is assumed 
so far is that we can calculate the probability q(i, c, k) (and therefore the estimated 
time for events). This is not always the case for large scale autonomous systems 
which are known for their uncertainties and complexities. We have also proposed a 
method [17,19] to overcome situations where a complete knowledge of the system is 
not available. This method estimates the agents’ motion probability using historical 
observation records. 
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4   Conclusions 

In this paper, we have presented a stochastic approach based on G-Networks, which 
models large scale agent systems. The approach models systems containing collabora-
tion, competition and mutation under the condition that complete information of the 
system is available. We first described the systems of interest, the mathematical 
model and demonstrated the approach with some scenarios of military planning in 
urban environments. Results show that our approach identifies the parameters that 
strongly influence the agents’ performance and allows us to compare alternative 
strategies at low computational cost.  We then proposed an extension to the model 
which deals with systems where complete information is not readily available. 
    We plan to incorporate behaviors such as reproduction into the model so that it can 
be applied in fields such as system biology. After the initial success of obtaining the 
motion probability via observation, we are investigating how to deduce agents’ inten-
tion via similar means.  This undoubtedly will reduce the dependence of model to the 
system’s knowledge.  
    In reality, obstacles in urban environment have an impact on an agent’s behavior. 
For example, a building might be an obstacle for a car but not a pedestrian. Therefore 
we plan to change the obstacles so that they have different impact on agents' behav-
iors and incorporate the wall following method mentioned in [18] to deal with the 
local-minima problem. In doing so, we are able to model more realistic urban scenar-
ios. Theoretical wise, we aim to study the computational constraints related to re-
sources or time-frame, as well as conduct an extensive exploration on modelling large 
scale agent systems at different abstraction levels. 
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