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Abstract. The paper deals with the extraction of features for statistical
pattern recognition. Bayes probability of correct classification is adopted
as the extraction criterion. The problem with complete probabilistic in-
formation is discussed and Bayes-optimal feature extraction procedure
is presented in detail. The case of recognition with learning is also con-
sidered. As method of solution of optimal feature extraction a genetic
algorithm is proposed. A numerical example demonstrating capability of
proposed approach to solve feature extraction problem is presented.

1 Introduction

Feature dimension reduction has been an important and long-stading research
problem in statistical pattern recognition. In general, dimension reduction can
be defined as a transformation from original high-dimensional space to low-
dimensional space where an accurate classifier can be constructed.

There are two main methods of dimensionality reduction ([2], [6]): feature
selection in which we select the best possible subset of input features and fea-
ture extraction consisting in finding a transformation (usually linear) to a lower
dimensional space. Although feature selection preserves the original physical
meaning of selected features, it costs a great degree of time complexity for an
exhaustive comparison if a large number of features is to be selected. In con-
trast, feature extraction is considered to create a new and smaller feature set by
combining the original features. We shall concentrate here on feature extraction
for the sake of flexibility and effectiveness [7].

There are many effective methods of feature extraction. One can consider here
linear and nonlinear feature extraction procedures, particularly ones which ([4],
[5]):

1. assume underying Gaussian distribution in the data ([6], [7], [8]),
2. utilize nonparametric sample-based methods when data cannot be described

with the Gaussian model ([9]),
3. minimize the empirical probability of Bayes error ([6], [10]),
4. maximize the criteria for the information values of the individual features

(or sets of features) describing the objects ([4], [5], [11]).
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For the purpose of classifiation, it is sensible to use linear feature extrac-
tion techniques which is considered as a linear mapping of data from a high
to a low-dimensional space, where class separability is approximately preserved.
Construction of linear transformation is based on minimization (maximization)
of proper criterion in the transformed space. In other words, in order to define
a linear transformation one should determine the values of the transformation
matrix components as a solution of an appropriate optimization problem.

As it seems, the Bayes probability of error (or equivalently, the Bayes proba-
bility of correct classification) i.e. the lowest attainable classification error is the
most appropriate criterion for feature extraction procedure. Unfortunately, this
criterion is very complex for mathematical treatment, therefore researches have
restored to other criteria like various functions of scatter matrices (e.g. Fisher
criterion) or measures related to the Bayes error (e.g. Bhattacharyya distance).

In this paper we formulate the optimal feature extraction problem adopting
the Bayes probability of correct classification as an optimality criterion. Since
this problem cannot be directly solved using analytical ways (except simple
cases including for example multivariate normal distribution), we propose to
apply genetic algorithm (GA), which is very-well known heuristic optimization
procedure and has been successfully applied to a broad spectrum of optimization
problems, including many pattern recognition and classification tasks [12], [13].

The contents of the paper are as follows. In section 2 we introduce neces-
sary background and formulate the Bayes-optimal feature extraction problem.
In section 3 and 4 optimization procedures for the cases of complete probabilistic
information and recognition with learning are presented and discussed in detail.
Section 5 describes numerical example for which both analytical way and ge-
netic algorithm were applied to find optimal solution. Finally, conclusions are
presented in section 6.

2 Preliminaries and the Problem Statement

Let us consider the pattern recognition problem with probabilistic model. This
means that n-dimensional vector of features describing recognized pattern x =
(x1, x2, ..., xn)T ∈ X ⊆ Rn and its class number j ∈ M = {1, 2, ..., M} are
observed values of a pair of random variables (X,J), respectively. Its probability
distribution is given by a priori probabilities of classes

pj = P (J = j), j ∈ M (1)

and class-conditional probability density function (CPDFs) of X

fj(x) = f(x/j), x ∈ X , j ∈ M. (2)

In order to reduce dimensionality of feature space let consider linear transfor-
mation

y = Ax, (3)
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which maps n-dimensional input feature space X into m-dimensional derivative
feature space Y ⊆ Rm, or - under assumption that m < n - reduces dimension-
ality of space of object descriptors. It is obvious, that y is a vector of observed
values of m dimensional random variable Y, which probability distribution given
by CPDFs depends on mapping matrix A, viz.

g(y/j; A) = gj(y; A), y ∈ Y, j ∈ M. (4)

Let introduce now a criterion function Q(A) which evaluates discriminative
ability of features y, i.e. Q states a measure of feature extraction mapping (3).
As a criterion Q any measure can be involved which evaluates both the relevance
of features based on a feature capacity to discriminate between classes or quality
of a recognition algorithm used later to built the final classifier. In the further
numerical example the Bayes probability of correct classification will be used,
namely

Q(A) = Pc(A) =
∫
Y

max
j∈M

{pj gj(y; A)} dy. (5)

Without any loss of generality, let us consider a higher value of Q to indicate a
better feature vector y. Then the feature extraction problem can be formulated
as follows: for given priors (1), CPDFs (2) and reduced dimension m find the
matrix A∗ for which

Q(A∗) = max
A

Q(A). (6)

3 Optimization Procedure

In order to solve (6) first we must explicitly determine CPDFs (4). Let introduce
the vector ȳ = (y, x1, x2, ..., xn−m)T and linear transformation

ȳ = Ā x, (7)

where

Ā =

⎡
⎣ A

− − −
I | 0

⎤
⎦ (8)

is a square matrix n × n. For given y equation (7) has an unique solution given
by Cramer formulas

xk(y) =| Āk(y) | · | Ā |−1, (9)

where Āk(y) denotes matrix with k-th column replaced with vector ȳ. Hence
putting (9) into (2) and (4) we get CPDFs of ȳ ([3]):

ḡj(ȳ; A) = J−1 · fj(x1(ȳ), x2(ȳ), · · · , xn(ȳ)), (10)
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where J is a Jacobian of mapping (7). Integrating (10) over variables x1, ..., xn−m

we simply get

gj(y; A) =
∫
X1

∫
X2

...

∫
Xn−m

ḡj(ȳ; A) dx1 dx2 ... dxn−m. (11)

Formula (11) allows one to determine class-conditional density functions for
the vector of features y, describing the object in a new m-dimensional space.
Substituting (11) into (5) one gets a criterion defining the probability of correct
classification for the objects in space Y:

Q(A) = Pc(A) =
∫
Y

max
j∈M

{
pj ·

∫
X1

∫
X2

...

∫
Xn−m

J−1×

×fj(x1(ȳ), x2(ȳ), · · · , xn(ȳ)) dx1 dx2 ... dxn−m

}
dy =

=
∫
Y

max
j∈M

{
pj ·

∫
X1

∫
X2

...

∫
Xn−m

J−1×

×fj(| Ā1(y) | · | Ā |−1, · · · , | Ān(y) | · | Ā |−1) dx1 dx2 ... dxn−m

}
dy. (12)

Thus, the solution of the feature extraction problem (6) requires that such
matrix A∗ should be determined for which the Bayes probability of correct clas-
sification (12) is the maximum one.

Consequently, complex multiple integration and inversion operations must be
performed on the multidimensional matrices in order to obtain optimal values
of A. Although an analytical solution is possible (for low n and m values), it
is complicated and time-consuming. Therefore it is proposed to use numerical
procedures. For linear problem optimization (which is the case here) classic nu-
merical algorithms are very ineffective. In a search for a global extremum they
have to be started (from different starting points) many times whereby the time
needed to obtain an optimal solution is very long. Thus it is only natural to use
the parallel processing methodology offered by genetic algorithms ([14]).

Fig. 1 shows the structure of a GA-based feature extractor using Bayes prob-
ability of correct classification as an evaluation criterion. The GA maintains a

Fig. 1. GA-based Bayes-optimal feature extractor
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population of transformation matrices A. To evaluate each matrix in this popula-
tion, first the CPDFs (11) of features y in transformed space must be determined
and next probability of Bayes correct classification (12) is calculated. This ac-
curacy, i.e. fitness of individual is a base of selection procedure in GA. In other
words, the GA presented here utilizes feedback from the Bayes classifier to the
feature extraction procedure.

4 The Case of Recognition with Learning

It follows from the above considerations that an analytical and numerical solution
of the optimization problem is possible. But for this one must know the class-
conditional density functions and the a priori probabilities of the classes. In
practice, such information is rarely available. All we know about the classification
problem is usually contained in the so-called learning sequence:

SL(x) = {(x(1), j(1)), (x(2), j(2)), ..., (x(L), j(L))}. (13)

Formula (13) describes objects in space X . For the transformation to space Y
one should use the relation:

y(k) = A · x(k); k = 1, 2, ..., L (14)

and then the learning sequence assumes the form:

SL(y) = {(y(1), j(1)), (y(2), j(2)), ..., (y(L), j(L))}. (15)

The elements of sequence SL(y) allow one to determine (in a standard way)
the estimators of the a priori probabilities of classes pjL and class-conditional
density functions fjL(x). Then the optimization criterion assumes this form:

QL(A) = PcL(A) =
∫
Y

max
j∈M

{
pjL ·

∫
X1

∫
X2

...

∫
Xn−m

J−1×

×fjL(x1(ȳ), x2(ȳ), · · · , xn(ȳ)) dx1 dx2 ... dxn−m

}
dy. (16)

Alternatively, in case of recognition with learning, the criterion (16) can be
estimated nonparametrically by first estimating CPDFs of features y on the
base of samples (15) (e.g. using either k-NN or Parzen procedures [1], [2]) and
then classifying the available samples according to the empirical Bayes rule.
The number of samples misclassified by the algorithm is counted and the error
estimate is obtained by dividing this number by the total number of training
samples.

The next section presents a numerical example illustrating proposed approach
to Bayes-optimal feature extraction problem.
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5 Numerical Example

Let consider two-class pattern recognition task with equal priors and reduction
problem of feature space dimension from n = 2 to m = 1. Input feature vector
is uniformly distributed and its CPDFs are as follows:

f1(x) =
{

0.5 for 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ x1,
0 otherwise, (17)

f2(x) =
{

0.5 for 0 ≤ x1 ≤ 2 and x1 ≤ x2 ≤ 2,
0 otherwise. (18)

Feature extraction mapping (3) has now the form

y = [a, 1] · [x1, x2]T = a · x1 + x2 (19)

and problem is to find such a value a∗ which maximize criterion (12).
To illustrate the behavior of the GA as solution method of optimal feature

extraction problem, we solve this example in threefold manner: (1) directly,
according to the analytical procedure presented in section 3, (2) using GA and
assuming that complete probabilistic information is given and (3) using GA
procedure for the case of classification with learning.

1. Complete probabilistic information - analytical solution
Since Jacobian of (7) is equal to 1 hence from (9) and (10) for j = 1, 2 we get

ḡj(ȳ, a) = fj(x1, y − a · x1). (20)

a) b) c)

-1/a

2a+22a 0

1

2a+22a 0

1/a+1

2a+22a0

Fig. 2. Illustration of example

The results of integrating (20) over x1, i.e. CPDFs (11) for a ≥ 1, −1 ≤ a ≤ 1
and a ≤ −1 are presented in Fig.2. a), b) and c), respectively.

Finally, from (5) we easy get:

Pc(a) =

⎧⎨
⎩

a+1
4a for a ≥| 1 |,

a+1
4 for a ≤| 1 | .

(21)
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The chart demonstrating the Bayes probability of misclassification Pe(a) =
1 − Pc(a) depending on parameter a of feature extraction mapping is depicted
in Fig.3. The best result Pe(a∗) = 0 (or equivalently Pc(a∗) = 1) is obtained for
a∗ = −1.
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Fig. 3. Probability of misclassification

2. Complete probabilistic information - solution via GA
In order to find parametr a∗, the GA was applied, which was proceeded as

follows:

– Coding method - Binary representation has been widely used for GA analysis.
In our task, the value of parametr a was directly coded to the chromosome.
It means, that a is represented by a binary string length:

Length = log2[(amax − amin)/�a], (22)

where amax, amin and �a denote the maximum value, the minimum value
and the resolution of a, respectively. To avoid irregularities we decided to
put amax = 32.536, amin = −33.0 and �a = 0.001 which gave the length of
chromosome Length = 16 bits (genes).

– The fitness function - The Bayes probability of correct classification (12).
– Initialization - GA needs an initial individual population to carry out par-

allel multidirectional search of optimal solution. The initial population of
chromosomes with which the search begins was generated randomly. The
size of population after trials was set to 40.

– Selection - The probability of selecting a specific individual can be calculated
by using the individuals fitness and the sum of population fitness. In this
research a roulette wheel approach was applied. Additionally, an elitizm
policy, wherein the best individuals from the current generation is copied
directly to the next generation, was also used for fast convergence.

– Crossover - The crossover process defines how genes from the parents
have been passed to the offspring. In each generation a standard two-point
crossover was used and probability of crossover was equal to 1.
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– Mutation - The mutation process simulates the natural disturbance during
crossover. It was a bit-by-bit operation made with probability 0.01.

– Stop procedure - evolution process was terminated after 300 generations. In
fact, the fitness value usually converged within this value. Fig. 4. shows the
fitness change against generation number in one run of GA.

0.5

300250200150100500

1.0

0.75

0.25

0.0

Fig. 4. The example of the course of the fitness value vs. number of generation

Table 1. Results of genetic algorithm applied to the example

Trial Complete Information Recognition with Learning

L=100 L=200 L=300

1 -0.987 -0.946 -1.075 -0.983
2 -0.983 -0.951 -1.048 -0.971
3 -0.974 -1.102 -0.957 -1.036
4 -1.078 -0.938 -0.939 -0.947
5 -1.023 -1.093 -0.962 -1.056
6 -0.991 -1.084 -1.053 -1.043
7 -0.975 -0.956 -0.961 -1.032
8 -1.052 -1.066 -0.972 -0.953
9 -0.979 -0.941 -1.042 -1.023
10 -1.044 -1.076 -0.951 -1.041

Best -0.991 -0.956 -0.962 -1.023
Mean -1.008 -1.015 -0.996 -1.009
SD 0.036 0.07 0.049 0.039

To compare the optimal solution and the performance of GA, ten independent
runs of GA were carried out for different random initial populations. The results
are shown in Table 1. The values depicted in the Table are those of the best
solution obtained at the end of a GA trial.
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3. Recognition with learning - solution via GA
For evaluation of GA performance in the case of recognition with learning,

three experiments were made on computer generated data with different number
of learning patterns (L = 100, 200, 300, respectively). Patterns were generated
according to the CPDFs (17) and (18) using Maple 10 environment. In each
experiment priors were calculated in standard way and CPDFs were estimated
using Parzen estimator with uniform kernel function [1]. Next, GA was applied
as a method of solution of optimization problem presented in section 4. GA was
used with the same control parameters as in the prevoius case and the number
of trials was qual to 10. The results are depicted in Table 1.

Table 1 contains also the best result, the mean value and standard deviation
for each case where GA was applied. Results demonstrate that the proposed GA
method can reach value of parametr of extraction mapping (19) very close to
optimal solution a∗.

6 Conclusions

Feture extraction is an important task in any practical example that involves
pattern classification. In this paper we formulate the optimal feature extraction
problem with the Bayes probability of correct classification as an optimality cri-
terion. Since this problem, in general case, cannot be directly solved using ana-
lytical methods, we propose to apply genetic algorithm, which is effective heuris-
tic optimization procedure and has been successfully applied to a wide range of
practical problems. This proposition leads to the distribution-free Bayes-optimal
feature extraction method, which can be applied both in the case of complete
probabilistic information and in the case of recognition with learning. A numer-
ical example demonstrates that the GA is capable to solve this optimization
problem for both cases.

Many questions of GA application in proposed procedure of feature extraction
are still open, e.g. the proper choice of the appropriate GA model, especially the
choice of GA control parameters and investigation of their influence on result
of optimization process. Our related works are underway and the results will be
reported in the near future.
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