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Abstract. Cell assemblies in neural network are often assumed as overlapping, 
i.e. a neuron may belong to several of them simultaneously. We argue that 
network structures with overlapping cell assemblies can exhibit faster learning 
comparing to non-overlapping ones. In such structures newly trained assemblies 
take advantage of their overlaps with the already trained neighbors. The 
assemblies learned in such manner nevertheless preserve the ability for 
subsequent separate firing. We discuss the implications it may have for 
intensification of neural network training methods and we also propose to view 
this learning speed-up in a broader context of inter-assembly cooperation useful 
for modeling concept formation in human thinking. 

1   Introduction 

Neural assembly is among the main concepts of connection science. It describes a set 
of cells which are distinguished from the rest of neuron mass due to their higher 
connectivity. The chief part in assembly formation is devoted to Hebbian learning 
process which strengthens the links among neurons that fire simultaneously. 

It goes hand in hand with the very definition of neural assembly [1], [2] that the 
assemblies should be overlapping, i.e. one neuron may belong to several of them. It is 
evident that overlapping structure of assemblies increases storage capacity of a 
network but on the other hand it rises a problem of organizing connection  matrix in a 
way to avoid palimpsest effects and to ensure separate firing of assemblies in spite of 
the overlaps. So far the studies of overlapping neural assemblies have concerned 
primarily this problem [3], [4], [5]. We want to draw the reader's attention to the fact 
that overlapping assembly structures may have other interesting properties. In 
particular, we argue here that overlapping assemblies may exhibit faster learning 
comparing to non-overlapping ones. We describe simulations that support our 
assumption and, in concluding section, we discuss what consequences such assembly 
cooperation may have either for neural network training methods or for modeling 
cognitive functions like concept formation. 
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2   Overview 

To verify our assumption we chose to study a simple Hopfield-type neural network 
[6], [7], [8]. From time to time it is exposed to certain input and when input is 
released, the network converges to some attractor state. The configuration of the state 
is determined by the input pattern and the assembly structure of the network. In fact, 
the network tends to select a neural assembly, which is the closest to the input pattern. 
Assemblies are distinguished by denser connectivity of their neurons while the 
network as a whole is sparsely connected. Each assembly may be either trained or not. 
In the trained state, the most of the links among the assembly neurons are potentiated. 
An untrained assembly has only initially weak inter-neuron connections.  

We studied the process of potentiation of intra-assembly links and found that under 
certain conditions, the assemblies, overlapping with already trained ones, learn their 
input patterns faster than assemblies without such overlaps. This can be explained by 
the fact that portion of their internal linkage is already potentiated. We consider this 
fact as the simplest form of inter-assembly interactions we hope to simulate later.  

3   Network Model 

3.1   Neurons 

Our network consists of N excitatory neurons and an inhibitory subsystem. Each 
excitatory neuron i (i=1,…,N) is a simple 2-state neuron whose activation at time t is 
denoted as Ai(t),  Ai(t) œ {0, 1}. The activation is calculated as a function of the 
neuron input: 
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where function Q returns 1 for positive values of the argument and 0 otherwise. 
Neuron input is a sum of the signals incoming from other excitatory neurons, 

inhibitory signal Ti, and external input Hi if any: 
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where Jij is efficacy of a link from neuron j to neuron i, k is the number of input links 
per neuron and tn is an integration time constant for excitatory neurons. 

3.2   Inhibition 

The inhibitory subsystem can be viewed as a single giant neuron that takes the sum of 
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as input and calculates inhibitory signal 

according to the transduction function 
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where and jmin > 0, h¥1 are constant values. The inhibitory signal Ti=j(I) is equal for 
every excitatory neuron. The goal of the inhibitory subsystem is to keep the number 
of active excitatory neurons in certain limits. Inhibitory signal is calculated each th 
time units. 

3.3   Input 

The network input is described by a set E which comprises all neurons of the network 
activated at this time. The same value Hext of external input current ensuring high 
activation probability is injected to all neurons in E while for all other neurons Hi=0 
in (2). The input set E can be described as follows: 

E = (Aq \ C) » B, (3) 

where Aq is a set of neurons belonging assemble q while C and B are the sets 
providing input noise. C Õ Aq contains the neurons from Aq absent in current pattern 
and B forms "added noise" (B … Aq=«). 

3.4   Link Modification Rule 

As was stated above, our network is sparsely connected. Each neuron receives input 
links from k= rN neurons, where rá1. In the described simulations r was about 10%. 
A link is characterized by its conductivity J, which can be either modifiable or 
constant depending on the type of simulation. We make all intra-assembly links 
constant and potentiated when we test discriminating ability of overlapping 
assemblies. In learning experiments all links are modifiable. 

The links are modified according to Hebbian principle, i.e. a link connecting 
simultaneously firing neuron is strengthened, and a link connecting a firing and a 
silent neuron is depressed. We use stochastic link modification rule proposed in [7], 
[8]. It is notable because it supports either long term potentiation (LTP) or long term 
depression (LTD) and has analog short term dynamics producing short term memory 
in attractors. The rule provides robust learning in our experiments though we believe 
that the main experiment results, i.e. inter-assembly interactions, may be reproduced 
with other learning rules as well. 

A link, according to this model, has two stable conductivity values J0 and J1 for 
LTD and LTP states correspondingly. Suppose, a link is in LTD state and both 
neurons are active, then current conductivity gradually increases up to threshold wi j, 

which fluctuates in some boundaries 0J ′  and 1J ′ , 1100 JJJJ <′<′< . If the 

threshold is reached, the conductivity jumps to another stable value J1. If the threshold 
is not reached, the conductivity quickly returns to the previous stable value in the 
absence of activation in the connected neurons. Depression of an LTP link occurs 
reversely. The rule can be formalized as follows: 

 



 Faster Learning with Overlapping Neural Assemblies 229 
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It is an integrator with time constant tc. The term cij(t) represents Hebbian learning 
source; it is specified in terms of mean activation of the two neurons: 
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where iA  is the mean activation of neuron i. l+ and l- are constant coefficients  

selected so that transition between the stable states occur only when both values A  
are high or one is high and one is low. wij is the fluctuating threshold, Q is the same as 
in (1) and the whole last term of (4) is the refresh source that indefinitely keeps Ji at 
one of the stable values in absence of activation. tc is taken to be sufficiently long to 
ensure slow stable learning. Mean activation of neurons is calculated as 
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When a neuron is active for several time steps, iA  reaches 1. In inactive state iA  

quickly approaches zero. 

3.5   Connection Matrix 

One can study overlapping neural assemblies in several ways. For example, it is 
possible to choose a fully connected network and study how assemblies are formed 
according to correlations in input data [4], [5]. Or one may arrange a set of "innate" 
overlapping assemblies and train their connections from the input layer of the network 
[3]. We chose a structure that would probably help us to test our assumption. It is 
namely a sparsely connected network where cell assemblies are distinguished by 
denser connectivity of their neurons. To ensure existence of cell assemblies in such 
network the connection matrix should be organized according to proximity principle, 
i.e. when the probability of two neurons to be connected depends on the distance 
between them. It is about 1 for nearby neurons and gradually comes to zero as the 
distance increases.  We used a square metrics where neurons are located at cross-
sections of a square grid. Both dimensions of the network are assumed cycled to avoid 
undesirable edge effects. The assembly structure in such network is determined 
according to structured principle formulated in [3]: “The minint (minimum internal 
connectivity) of a set of neurons is the minimum number of innate links that any 
neuron in the set receives from other neurons in the set. The maxext (maximum 
external connectivity) of a set of neurons is the maximum number of innate links that 
any neuron outside the set receives from neurons in the set. A web [neural assembly] 
is a set of neurons whose minint is greater than its maxext.” It was reported that there 
do exist overlapping assemblies in such networks and their number is usually about 
the number of neurons in the network [3]. Actually the number is lower if we take 
into account activation dynamics [2] so that each portion of an assembly can ignite  
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the whole or be necessary for firing of the whole. Otherwise, the set of assemblies, 
distinguished purely structurally, contains also weakly coupled unions of smaller 
assemblies. 

Actually, reaching maximum number of assemblies was not our purpose here, and 
we adopted an approximation of proximity principle to simplify control over the 
network during experiments. We designed our assemblies to occupy certain simple-
form geometric areas on network “surface”. Each neuron gets input links from all 
neurons of the areas to which it belongs, excluding itself. The remainder of its 
connections is randomly distributed over the rest of the network. 

Each arrangement of assemblies achieved in such way was tested first for 
discrimination properties, i.e. the ability of each assembly to fire independently in the 
fully trained state. We arranged the connection matrix with fully potentiated intra-
assembly links and tested if assemblies can fire independently in response to 
corresponding data. The matrix versions with insufficient discrimination charac-
teristics did not participate in training tests. 

4   Simulations and Results 

The simulations were performed with a network of N = 1024 neurons. Mean assembly 
size M =16. The number of input links per neuron k = 96. Inhibition parameters were 
Ic = 14 — 16, jmin = 2 and h = 3. Hext = 16. Learning parameters had the following 
values: J0 = 0, J1 = 1, J'0 = 0.4, J'1 = 0.6, l+ = 1.23 and l– = 0.41. th was taken as a 
minimum time unit and tn = 32th, which means for discretely calculated network that 
between two successive updates of inhibitory signal T, activation states of N/32 
randomly chosen neurons are recalculated.  

During simulation, input pattern created as specified above were presented to the 
network for time period tp = 30tn , then input current was removed and the network 
was allowed to move to an attractor state during delay period td = 60tn whose length 
was chosen to be sufficient to reach an attractor in any experimental situation. In a 
fully trained network the attractors usually coincide with corresponding assemblies. 
During learning tests, the situation is not always the same. The coincidence between 
the reached attractor and the intended assembly is calculated as a portion of the 
assembly neurons present in the attractor. This number L was used as a measure of 
learning. As more intra-assembly links become potentiated, this number approaches 
100% and remains close to this in the trained network. 

The training sets contained 4-8 assemblies each. Actually, the training set sizes are 
not of much importance here since assemblies in a set are uncorrelated and learn 
independently. Sets of any size would be learned in about the same number of cycles. 

Training experiments were performed according to the following scheme. The 
preparation stage started from unlearned connection matrix (Aij = J0 for every i, j). A 
set X of assemblies in the network were trained using corresponding sequence of input 
patterns. Each member of the sequence was built on the basis of certain assembly 
from the set X according to (3). Assemblies in X did not overlap and input patterns 
were uncorrelated. The sequence was repeated a number of times (S), every time with 
different random noise portions till L reached 100% for every assembly in the set.  
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Fig. 1. Assembly-attractor matching measure L (%) versus number of input cycles S . (A) 
illustrates learning different pattern sets. Thin solid line corresponds to the test for X and Y 
discriminability after learning both sets. | C | = 0.0625M, | B | = M, overlap size O = 50%. (B) 
shows influence of noise: thick lines correspond to | B | = M, |C | = 0.125M, thin – to 
| B | = 0.5M, | C | = 0.0625M; O = 50%. (C) illustrates influence of overlap size; | C | = 0.25M, 
| B | =M. The data were averaged over 4–8 assemblies and 50 trials for each test. 

Then sets Y and Z of assemblies were trained in the same manner in separate copies 
of the network obtained on the preparation stage. Members of these sets don't overlap 
with each other but every assembly in Y overlaps with one or more assemblies in X 



232 A. Kursin, D. Húsek, and R. Neruda 

while assemblies of Z don't. It was found that set Y is learned faster than Z, especially 
on early stages. The data describing learning progress are presented in Fig. 1.  

After the training stage, the networks were tested for sufficient discriminability 
between sets X and Y and showed good responses for either set of patterns (the thin 
solid line in the Fig. 1A). 

A copy of each network obtained after the preparation stage was also exposed to an 
input sequence comprising patterns corresponding to members of both X and Y. This 
was done to test a network’s ability to learn set Y while pertaining memory of set X. 
The learning rates here were slower but usually still higher than the rates for Z (the 
thin dashed line in Fig. 1A). However this test depends much on the ratio between 
quantities of X and Y members in the training set. If assemblies from X prevail, the Y 
learning curve after L = 40—50% comes close to or even below the curve for set Z. 

Two factors were found to influence learning advantages of Y assemblies. First, 
they more significantly win in "difficult conditions", i.e. when there is sufficient noise 
(especially "added noise", | B | > 0.75 M). For illustration see Fig. 1B. We consider it 
positive since sufficient noise should be expected in real tasks. Tests were performed 
for | C | between 0 and 0.25M, and | B | between 0 and M. 

Second, the overlap of assemblies should not be so great that it tends to frequently 
ignite a previously learned X assembly, otherwise learning abilities of assemblies in Y 
would be very low. Below this ignition level, increasing size of overlaps facilitates 
learning of set Y.  Fig. 1C presents test results for overlap sizes (measured as a portion 
of M ) O=25% and O=50%. 

5   Discussion 

Faster learning rates for the sets of overlapping assemblies observed in the 
experiments clearly follow from the ability of such assemblies to benefit from the 
potentiated links that they already have in their structure due to the overlaps with 
trained assemblies. At the same time such overlaps don't slow down learning much 
when the network is exposed to the sequences containing either old or new input 
patterns. This may be only one from the range of interesting properties that 
overlapping assembly structures may exhibit. But we want to draw your attention to 
certain consequences the results may have. 

In other publications [9, 10] we argue that neural networks of certain architecture 
are capable of advanced type of learning resembling metaphorizing abilities of human 
thinking [11], i.e. when a novel concept is formed by analogy and on the basis of 
some already known concept. Such phenomenon is ubiquitous in human mental 
practice. Its cognitive gain is evident: it provides faster and better learning than purely 
inductive method since learning occurs not through exploration of novel concept from 
scratch but rather through looking for properties of an old concept in the new one. 

In terms of neural networks, such learning is characteristic for the process in which 
an old trained assembly "helps" a new one to learn a novel piece of input data. This 
help can be provided only in two ways:  through overlapping of neuron sets belonging 
to the assemblies, or via associative links between the assemblies. It seems that the 
former factor is more powerful since associative links of previously dormant neurons 
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belonging to the freshly recruited assembly are probably too weak to ensure such 
"help". In this paper we showed that the "help" through assembly overlaps exists. 

On the other hand this research has interesting implications for the field of artificial 
neural network training. Usage of previously obtained knowledge (when learning a 
new thing benefits from already knowing something similar) is clearly an effective 
way for intensification of training methods. This evident feature of natural neural 
networks is still not sufficiently accounted for in training their artificial analogs. We 
showed here that neural networks with overlapping assemblies have necessary 
properties to introduce this feature into learning. Further research may consist in 
application of the proposed principle to some practical task, e.g. categorization or 
information retrieval, like in [12]. 
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