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Abstract. In this paper we propose alternative methods to parameter
selection techniques in order to build a kernel matrix for classification
purposes using Support Vector Machines (SVMs). We describe several
methods to build a unique kernel matrix from a collection of kernels built
using a wide range of values for the unkown parameters. The proposed
techniques have been successfully evaluated on a variety of artificial and
real data sets. The new methods outperform the best individual ker-
nel under consideration and they can be used as an alternative to the
parameter selection problem in kernel methods.

1 Introduction

It is well known that the choice of kernel parameters is often critical for the good
performance of Support Vector Machines (SVMs). Nevertheless, to find optimal
values in terms of generalization performance for the kernel parameters is an open
and hard to solve question. For instance, the effect of RBF kernels parameter
within a SVM framework has been studied from a theoretical point of view [5].
Several practical proposals to choose the RBF kernel parameter have been made
[14,7,2,13]. However, there is not a simple and unique technique to select the
best set of parameters to build a kernel matrix. Our proposal is based on the
combination of the different kernel matrices that arise with the use of a range of
values for the unkown parameters. Combining kernels provides a solution that
minimizes the effect of a bad parameter choice. An intuitive and usual approach
to build this combination is to consider linear combinations of the matrices.
This is the proposal in [6], which is based on the solution of a semi-definite
programming problem to calculate the coefficients of the linear combination. The
solution of this kind of optimization problem is computationally very expensive
[17]. Recently, a simpler algorithm based on the same ideas for learning a linear
combination of kernels has been developed [1]. The main difference is the way
in which the weights within the semi-definite programming problem are found.

In this paper we propose several methods to build a kernel matrix from a
collection of kernels generated from different values of the unkown parameters
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in the kernel function. The functions involved in the proposed methods take
advantage of class conditional probabilities and nearest neighbour techniques.

The paper is organized as follows. The general framework for the methods is
presented in Section 2. The proposed methods are described in Section 3. The
experimental setup and results on artificial and real data sets are described in
Section 4. Section 5 concludes.

2 General Framework

As already mentioned, our proposal is based on the generation of a collection of
kernel matrices using a wide range of values for the unkown kernel parameters.
Once the collection has been built, we will combine the kernels in order to build
a unique kernel. We will not focus on the generation step but on the combination
step. Different ways to generate parameters, not only for kernels but for many
other methods, can be consulted in [15] or in many simulation handbooks.

In order to combine the kernel matrices we make use of the concept of functional
combination of kernel matrices. This concept was introduced originally in [10].

Let K1, K2, ...KM be a set of M input kernels defined on a data set X , and de-
note by K∗ the desired output combination. Let y denote the label vector, where for
simplicity yi ∈ {−1, +1} (the extension to the multiclass case is straighforward).

Consider the following (functional) weighted sum:

K∗ =
M∑

m=1

Wm ⊗ Km , (1)

where Wm = [wm(xi, xj)] is a matrix whose elements are nonlinear functions
wm(xi, xj), with xi and xj data points in the sample, and ‘⊗’ denotes the element
by element product between matrices (Hadamard product). We assume that
Km(xi, xj) ∈ [0, 1] ∀ i, j, m (otherwise the kernels can be scaled). Notice that
if wm(xi, xj) = μm, where μm , m = 1, . . .M are constants, then the method
reduces to calculate a simple linear combination of matrices:

K∗ =
M∑

m=1

μmKm . (2)

Several methods have been suggested to learn the coefficients μm of the linear
combination [1,6]. Thus, the formulation used in these papers is a particular case
of the formula we use. For instance, if we take μm = 1

M , the average of the kernel
matrices is obtained.

Regarding our proposals, consider the (i, j) element of the matrix K∗ in (1):

K∗(xi, xj) =
M∑

m=1

wm(xi, xj)Km(xi, xj) . (3)

This is the general formula of our approximation. In this way, we will generate
a particular weight for each pair of elements under consideration.
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An aspect that has to be treated before describing the methods is the fact
that the kernel matrix arising from the combination has to be a positive semi-
definite matrix. Since this can not be guaranteed in advance, we make use of some
of the several solutions that have been proposed to solve this difficulty [12]. For
instance, consider the spectral decomposition K∗ = QΛQT , where Λ is a diagonal
matrix containing (in decreasing order) the eigenvalues of K∗, and Q is the
matrix of the corresponding eigenvectors. Assume that Λ has at least p positive
eigenvalues. We can consider a p-dimensional representation by taking the first
p columns of Q: QpΛpQ

T
p . We will refer to this technique as ’Positive Eigenvalue

Transformation’. A computationally cheaper solution is to consider the definition
of a new kernel matrix as K∗2. Notice that, in this case, the new kernel matrix is:
QΛ2QT . We call this method ‘Square Eigenvalue Transformation’. In practice,
there seems not to be a universally best method to solve this problem [11].

3 Some Specific Proposals

The next section is devoted to described a common aspect to the methods we will
propose: The use of conditional class probabilities in order to build the weights
wm(xi, xj) introduced in the previous section.

3.1 Conditional Class Probabilities

Consider the pair (xi, yi) and an unlabeled observation xj . Given the observed
value xj , define P (yi|xj) as the probability of xj being in class yi. If xi and
xj belong to the same class this probability should be high. Unfortunately, this
probability is unknown and has to be estimated. In our proposals, we will esti-
mate it by:

P (yi|xj) =
nij

n
, (4)

where nij is the number of the n-nearest neighbours of xj belonging to class yi.
Notice that each kernel induces a different type of neighborhood. In fact,

there is an explicit relation between a kernel matrix and a distance matrix. For
instance, consider a matrix K of inner products in an Euclidean space F (a
kernel). Then D2 = veT + evT − 2K is a matrix of square Euclidean distances
in F [4], where v is a vector made up of the diagonal elements of K. Hence, it
is advisable to estimate this probability for each kernel representation, that is,
for the kernel Km we will estimate the conditional probabilities Pm(yi|xj) using
the induced distances matrix D2

m. We will need the average of this conditional
probabilities over the kernel matrices:

P̄ (yi|xj) =
1
M

M∑

m=1

Pm(yi|xj) , (5)

and

ρ̄(xi, xj) =
P̄ (yi|xj) + P̄ (yj |xi)

2
. (6)
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To estimate the conditional class probabilities, the appropriate size of the
neighbourhood has to be determined. We propose a dynamic and automatic
method: given two points xi and xj , we look for the first common neighbour.
For each data point (xi and xj), the size k of the neighbourhood will be de-
termined by the number of neighbours nearer than the common neighbour.
To be more specific, let R(xi, n) = {n-nearest neighbours of xi}, then k =
argminn{R(xi, n) ∩ R(xj , n) �= ∅}. Obviously, the size k of the neighbourhood
depends on the particular pair of points under consideration.

At this point, we have the means to implement some particular proposals of
combination methods.

3.2 The ‘MaxMin’ Method

The ‘MaxMin’ method (first used in [10]) produces a functional combination of
two kernels, namely, the maximum and the minimum of the ordered sequence of
kernels, being zero the weight assigned to the rest of the kernels. Consider the
ordered sequence:

min
1≤m≤M

Km(xi, xj) = K[1](xi, xj) ≤ . . . ≤ K[M ](xi, xj) = max
1≤m≤M

Km(xi, xj) ,

where the subscript [·] denotes the position induced by the order. This method
builds each element of K∗ using the formula:

K∗(xi, xj) = ρ̄(xi, xj)K[M ](xi, xj) + (1 − ρ̄(xi, xj))K[1](xi, xj) . (7)

If xi and xj belong to the same class then the conditional class probabilities
ρ̄(xi, xj) will be high and the method guarantees that K∗(xi, xj) will be large.
On the other hand, if xi and xj belong to different classes the conditional class
probabilities ρ̄(xi, xj) will be low and the method will produce a value close to
the minimum of the kernels. In the following, this method will be refered as
MaxMin.

For the particular case of K1, . . . , KM being a collection of RBF kernels:

Km(xi, xj) = e−‖xi−xj‖2/(2∗σ2
m) , m = 1, . . . , M , (8)

with different σm values, then, the minimum and the maximum for each pair of
points (xi, xj) correspond respectively to the highest and the lowest value of the
collection of σm parameters.

3.3 The Percentile-in Method

Next, we propose a method whose assignment of positive weights wm(xi, xj) is
based on the order induced by the kernels. The method builds each element of
K∗ using the following formulae:

K∗(xi, xj) = K�ρ̄(xi,xj)M� , (9)

where the subscript 	·
 denotes the upper rounding of the argument.
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We denote this method by ‘Percentile-in’ method [10] . If the class proba-
bility ρ̄(xi, xj) is high, we can expect a high similarity between xi and xj and
the method will guarantee a high K∗(xi, xj). If the class probability ρ̄(xi, xj) is
low, K∗(xi, xj) will be also low.

3.4 The Percentile-out Method

As in the previous method, the last proposed technique is based on the order
induced by the kernels. However, in this case two kernel values are considered.
Each element of the K∗ matrix is built as follows:

K∗(xi, xj) =
1
2

(
K�P̄ (yi|xj)M� + K�P̄ (yj |xi)M�

)
, (10)

where the subscript 	·
 denotes the upper rounding of the argument. We denote
this method by ‘Percentile-out’ method [10] .

If the conditional class probabilities P̄ (yi|xj) and P̄ (yj |xi) are high, we can
expect a high similarity between xi and xj and both methods will guarantee a
high K∗(xi, xj). If the conditional class probabilities P̄ (yi|xj) and P̄ (yj |xi) are
both low, K∗(xi, xj) will be also low.

This method can be viewed as a smoothed MaxMin method. As in the MaxMin
method, two kernels are considered for each pair of points in the sample. The
conditional probabilities are used in order to obtain values not so extreme as
the maximum and the minimum. Only if P̄ (yi|xj) = P̄ (yj |xi) the Percentile-out
method reduces to the Percentile-in method. Otherwise, this method takes into
account the difference between the proportion of neighbours of xj belonging to
class yi and the proportion of neighbours of xi belonging to class yj.

4 Experiments

To test the performance of the proposed methods, an SVM (with the upper
bound on the dual variables fixed to 1) has been trained on several real data
sets using the kernel matrix K∗ constructed.

In order to classify a non-labelled data point x, K∗(x, i) has to be evaluated.
We calculate two different values for K∗(x, i), the first one assumming x belongs
to class +1 and the second assumming x belongs to class −1. For each assump-
tion, we compute the distance between x and the SVM hyperplane and assign x
to the class corresponding to the largest distance from the hyperplane.

Since our technique is based on the calculation of the nearest neighbours,
we have compared the proposed methods with the k-Nearest Neighbour clas-
sification (k-NN, using the optimal value k = l

4
d+4 [16]). We have compared

our methods with the linear combination of kernels method (LC) [1]. In order
to evaluate the improvement provided by our proposals, we have carried out
a Wilcoxon signed-rank test (see for instance [8]). This nonparametric test is
used to compare the median of the results for different runs of each method. So,
the null hypothesis of the test is that our methods do not improve the existing
combination techniques.
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4.1 Artificial Data Sets

4.2 Two Areas with Different Scattering Matrices

This data set, shown in Figure 1, is made up of 400 points in IR2. Visually there
are two areas of points (80% of the sample is in area A1 and 20% is in area
A2). Each area Ai corresponds to a circle with radio σi. Here σ1 = 10−2σ2, with
σ2 = 1. The first group center is (0, 1) and the second group center is (1, 1).
Nevertheless, the areas do not coincide with the classes {−1, +1} that are to be
learned. Half of the points in each class belongs to aread A1, and the other half
to area A2. Within each area, the classes are linearly separable. Therefore the
only way to built a classifier for this data set is to take into account the area
each point belongs to. We use 50% of the data for training and 50% for testing.
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Fig. 1. Two areas with different scattering matrices. The first area center is (0, 1) and
the second area center is (1, 1). The areas do not coincide with the classes {−1, +1}.

Let {K1, . . . , K5} be a set of five RBF kernels with parameters σ =0.5, 2.5, 5,
7.5 and 10 respectively. In order to get a positive semi-definite kernel matrix K∗,
we use the Square Eigenvalue Transformation technique described in Section 2.

Table 1 shows the performance of our proposals for this data set. The results
have been averaged over 10 runs. Given the geometry of the data, it is clear that
is not possible to choose a unique best σ for the whole data set. As σ grows, the
test error increases for the data contained in area A1, and decreases within area
A2. The LC method seems to work fairly. Nevertheless, the MaxMin method
achieves the best results on classification. Regarding the Wilcoxon signed-rank
test for the comparison of our methods with the LC technique, the p-value is
smaller than 0.001 for the MaxMin method.

4.3 The Three Spheres Example

The data set contains 300 data points in IR4. We generate three different groups
of observations (100 observations per group) corresponding to three spheres in
IR3. The center is the same for the three spheres (0, 0, 0) and the radii are
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Table 1. Percentage of missclassified data and percentage of support vectors for the
two different scattering data set: A1 stands for the less scaterring group, A2 stands for
the most dispersive one

Train Test Support
Error Error Vectors

Method Total A1 A2 Total A1 A2 Total A1 A2

RBFσ=0.5 2.1 2.6 0.0 13.5 4.1 51.0 39.6 25.1 97.5
RBFσ=2.5 4.8 6.0 0.0 13.5 6.5 41.5 62.2 53.4 97.5
RBFσ=5 6.6 8.2 0.0 14.0 10.1 29.5 82.8 79.2 97.0
RBFσ=7.5 16.0 19.9 0.5 22.2 22.6 20.5 94.6 94.2 96.0
RBFσ=10 30.7 38.2 0.5 37.3 44.1 10.0 94.2 95.4 89.5

MaxMin 0.3 0.4 0.0 4.9 0.9 21.0 27.7 9.6 100.0
Percentile-in 4.2 5.1 0.5 9.0 3.1 32.5 35.9 20.1 99.0
Percentile-out 0.7 0.9 0.0 7.7 1.1 34.0 29.0 11.4 99.5
k-NN 14.5 3.5 58.5 15.5 3.5 63.5 — — —
LC 1.6 2.0 0.0 8.1 2.5 29.5 46.6 33.2 100.0

different (0.1,0.3, and 1 respectively). The 100 points on the sphere with radio
equals to 0.3 belong to class +1, and the other 200 points belong to class −1.
Finally a fourth random additional dimension is added to the data set, following
a Normal distribution (centered in 0 and with 10−2 as standard deviation). We
use 50% of the data for training and 50% for testing.

Let {K1, . . . , K5} be a set of polynomial kernels, K(x, z) = (1 + xT z)d, with
parameters d = 1, 2, 3, 4, 5 respectively. In order to scale the matrices, we use
the following normalization [3]: K(x, z) = K(x, z)/(

√
K(x, x)

√
K(y, y)). We use

the Square Eigenvalue Transformation method to solve the problem of building
a positive semi-definite matrix. Table 2 shows the performance of the proposed
methods when combining these kernel matrices. The results have been averaged
over 10 runs.

The MaxMin and Percentile methods show the best overall performance. All
our combination methods provide better results than the best polynomial kernel,
using usually significantly less support vectors. Regarding the Wilcoxon signed-
rank test for the comparison of our methods with the LC technique, the p-values
are smaller than 0.001 for all our methods. So the improvement obtained by the
use of our proposals is statistically significant. Notice that the results using any
of the single kernels are very poor, while the results obtained using any of our
combination methods are significatively better. This example also shows that
using a linear combination of the kernels may not be a good choice.

4.4 A Real Data Set

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Breast Cancer data set [9]. The data set consists of 683 obser-
vations with 9 features each. Let {K1, . . . , K12} be a set of RBF kernels with
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Table 2. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the three spheres data set. Standard deviations in
brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Polynomiald=1 31.8 (2.5) 0.000 1.000 34.9 (2.5) 0.000 1.000 69.5 (5.0)
Polynomiald=2 31.8 (2.5) 0.000 1.000 34.9 (2.5) 0.000 1.000 75.7 (7.9)
Polynomiald=3 30.6 (1.8) 0.200 0.909 36.1 (1.8) 0.200 0.891 71.7 (5.6)
Polynomiald=4 23.7 (7.3) 0.377 0.893 31.7 (7.0) 0.293 0.816 69.5 (4.6)
Polynomiald=5 14.7 (2.5) 0.541 0.958 24.1 (7.0) 0.436 0.798 69.5 (4.6)

MaxMin 4.0 (0.8) 0.964 0.958 5.5 (2.5) 0.921 0.958 8.4 (1.2)
Percentile-in 5.5 (1.4) 0.907 0.963 6.9 (3.2) 0.864 0.967 7.6 (1.4)
Percentile-out 4.5 (1.1) 0.941 0.959 6.9 (2.9) 0.886 0.957 8.5 (1.5)
k-NN 10.9 (2.4) 0.795 0.934 15.7 (4.2) 0.725 0.904 — (—)
LC 31.8 (2.5) 0.000 1.000 34.9 (2.5) 0.000 1.000 71.5 (3.9)

parameters σ =0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 respectively. We
use the Positive Eigenvalue Transformation to solve the problem of building a
positive semi-definite matrix.

Table 3 shows the performance of the proposed methods when combining all
these kernel matrices. Again, the results have been averaged over 10 runs. The
MaxMin method, the Percentile-in method, and the Percentile-out method im-
prove the best RBF kernel under consideration (test errors of 2.8% for the three
methods vs. 3.1%). The results provided by all the combination methods are
not degraded by the inclusion of kernels with a bad generalization performance.
Our methods clearly outperform the SVM classifier using an RBF kernel with
σ =

√
d/2, where d is the data dimension (see [14] for details). Regarding the

Table 3. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the cancer data using a battery of RBF kernels.
Standard deviations in brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Best RBF 2.3 (0.3) 0.979 0.976 3.1 (1.6) 0.976 0.966 13.6 (1.3)
Worst RBF 0.0 (0.0) 1.000 1.000 24.7 (2.3) 1.000 0.627 74.0 (2.4)

MaxMin 0.1 (0.1) 0.999 0.998 2.8 (1.6) 0.963 0.975 14.2 (1.5)
Percentile-in 2.0 (0.4) 0.982 0.979 2.8 (2.8) 0.975 0.969 7.8 (0.7)
Percentile-out 0.2 (0.1) 0.999 0.997 2.8 (1.7) 0.964 0.975 19.2 (4.5)
k-NN 2.7 (0.5) 0.961 0.980 3.4 (1.5) 0.949 0.974 — (—)
LC 0.0 (0.0) 1.000 1.000 3.2 (1.6) 0.976 0.964 41.5 (4.4)
SVM 0.1 (0.1) 1.000 0.999 4.2 (1.4) 0.989 0.942 49.2 (1.0)
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Wilcoxon signed-rank test for the comparison of our methods with the SVM tech-
nique, the p-values are smaller than 0.05 for the MaxMin and the Percentile-out
methods, and smaller than 0.1 for the Percentile-in method. Again, the improve-
ment obtained by the use of our proposals is statistically significant.

5 Conclusions

In this paper, we have proposed alternative methods to parameter selection
techniques within a Kernel Methods framework. The proposed techniques are
especially usefull when does not exist an overall and unique best parameter.
The suggested kernel combination methods compare favorably to the use of one
of the kernels involved in the combination. We have also shown that a linear
combination of the kernels may not be a good choice. Further research will
focus on the theoretical properties of the methods and extensions. In particular,
the methods shown in this paper do not take full advantage of the concept of
the functional weighted sum described in (1): we think that there is room for
improvement and more sophisticated ways for the calculus of the weights may
be designed. The method could be generalized by using more than two kernels,
but then, a parameter to control the relative importance of the kernels will be
needed [10].
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