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Abstract. We investigate, by a systematic numerical study, the para-
meter dependence of the stability of the Kohonen Self-Organizing Map
and the Zheng and Greenleaf concave and convex learning with respect
to different input distributions, input and output dimensions.

Topical groups: Advances in Neural Network Learning Methods, Neural
and hybrid architectures and learning algorithms, Self-organization.

Neural vector quantizers have become a widespreadly used tool to explore high-
dimensional data sets by self-organized learning schemes. Compared to the vast
literature on variants and applications that appeared the last two decades,
the theoretical description proceeded more slowly. Even for the coining Self-
Organizing Map (SOM) [1], still open questions remain, as a proper description
of the dynamics for the case of dimension reduction and varying data dimen-
sionality, or the question for what parameters stability of the algorithm can be
guaranteed. This paper is devoted to the latter question. The stability criteria
are especially interesting for modifications and variants, as the concave and con-
vex learning [2], whose magnification behaviour has been discussed recently [3].
Especially for the variants, analytical progress becomes quite difficult, and in
any case one will expect that the stability will depend on the input distribution
to some —apart from special cases— unknown extent. As the invariant density
in general is analytically unaccessible for input dimensions larger than one (see
[4] for recent tractable cases), we expect a general theory not to be available
immediately, and instead proceed with a systematic numerical exploration.

The Kohonen SOM, and the nonlinear variant of Zheng and Greenleaf. – The
class of algorithms investigated here is defined by the learning rule, that for each
stimulus v ∈ V each weight vector wr is updated according to

wnew
r = wold

r + ε · grs · (v − wold
r )K (1)
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(grs being a gaussian function (width σ) of euclidian distance |r−s| in the neural
layer, thus describing the neural topology). Herein

|ws − v| = minr∈R |wr − v| (2)

determines for each stimulus v the best-matching unit or winner neuron.
The case K = 1 is the original SOM [1], corresponding to a linear or Hebbian

learning rule. The generalization to K or 1/K taking integer values has been pro-
posed by Zheng and Greenleaf [2], but arbitrary nonzero real values of K can be
used [3], and the choice of K → 0 has been shown (for the onedimensional case)
to have an invariant density with the information-theoretically optimal value of
the magnification exponent one [3], i.e., the neural density is proportional to the
input density and hence can be used as a density estimator.

Convergence and stability. – It is well known that for the learning rate ε, one
has to fulfill the Robbins-Munro conditions (see, e.g. [4]) to ensure convergence,
with all other parameters fixed. However, practically it is necessary to use a large
neighborhood width at the beginning, to have the network of weight vectors or-
dered in input space, and decrease this width in the course of time downto a
small value that ensures topology preservation during further on-line learning.
Thus the situation becomes more involved when additionally also σ is made
time-dependent. Here we consider the strategy where the stability border in the
(ε, σ) plane always is approached from small ε with σ fixed during this final
phase. An ordered state has to be generated by preceding learning phases.

Measures for Topographical Stability. – To quantify the ordered state and the
topology preservation, a variety of measures is used, e.g. the topographic prod-
uct [5], the Zrehen measure [6], and the average quadratic reconstruction error.
To detect instable behaviour, all measures should be suitable and give similar
results. For an unstable and disordered map, also the total sum over all (squared)
distances between adjacent weight vectors will increase significantly; so a thresh-
holded increase will indicate instability as well. This indicator is used below;
however, for the case of a large neighborhood (of network size), the weight vec-
tors shrink to a small volume, thus influencing the results; however, this applies
to a neighborhood widths larger than that commonly used for the pre-ordering.

In addition we use here an even more simple approach than the Zrehen mea-
sure (which counts the number of neurons that lie within a circle between each
pair of neurons that are adjacent in the neural layer). For a mapping from d to d
dimensions, we consider the determinant of the i vectors spanned by wr+ei −wr,
with ei being the ith unit vector. The sign of this determinant, where 1 ≤ i ≤ d,
thus gives the orientation of the set of d vectors. Note that the 1-dimensional
case just reads sgn(wr+1 − wr), which has been widely considered to detect the
ordered state in the 1 to 1 dimensional case. Hence, we can define

χ({wr}) := (3)

1 − 1
N
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Fig. 1. Situation where one defect is detected by the crossproduct measure (3)

This evaluates the number of neurons N+ (resp. N−), where this sign is pos-
itive (resp. negative), hence the relative fraction of minority signs is given by
(1 − |N+ − N−|/N). A typical single defect is shown in Fig. 1. Due to its sim-
plicity, this measure χ will be used in the remainder.

Modification of learning rules and data representation. – A classical result [7,8,9]
states that the neural density for 1-D SOM (in the continuum limes) approaches
not the input density itself, but a power of it, with exponent 2/3, the so-called
magnification exponent. As pointed out by Linsker [10], the case of an exponent
1 would correspond to the case of maximal mutual information between input
and output space. Different modifications of the winner mechanism or the learn-
ing rule, by additive or multiplicative terms, have been suggested and influence
the magnification exponent [11,12,13,14]. Here we investigate the case of concave
and convex learning [2,3], which defines a nonlinear generalization of the SOM.

Topographical Stability for the Self-Organizing Map. – Before investigating the
case of concave and convex learning, the stability measures should be tested for
the well-established SOM algorithm. Using the parameter path of Fig. 2, we first
analyze the 2D → 2D case, for three input distributions: the homogeneous in-
put density (equidistribution), an inhomogeneous input distribution ∼ sin(πxi)
[14], and a varying-dimension dataset (Figs. 3, 4). The results are shown in Fig. 5.

Different input dimensions and varying intrinsic dimension. – As the input di-
mensionality is of pronounced influence on the maximal stable learning rate (Fig.
6), we also investigate an artificial dataset combining different dimensions: the
box-plane-stick-loop dataset [15] (Fig. 3), or its 2D counterpart, the plane-stick-
loop (Fig. 4). Here the crossproduct detection will become problematic where
the input space is intrinsically 1D (stick and loop), thus the average distance
criterion is used, and we restrict to the case σ ≤ 1.
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Fig. 2. Schematic diagram of the parameter path
in (ε, σ) space. Starting with high values, σ is
slowly decreased to the desired value, while the
learning rate still is kept safely low. From there,
at constant σ the learning rate is increased until
instability is observed; giving an upper border to
the stability area. – The same scheme is applied for
the concave and convex learning, where the nonlin-
earity exponent is considered as a fixed parameter.

Fig. 3. Schematic view of the classical box-plane-stick-loop dataset. Its motivation is
to combine locally different input data dimensions within one data set.
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Fig. 4. Part of the input data for the 2D plane-stick-loop data set (Fig. 3)
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Fig. 5. Critical εmax(σ) where (coming from small ε values, see Fig. 2) the SOM learn-
ing loses stability. Here a 2D array of 10×10 neurons was used with decay exp(−t/k)
exponentially in time t, with k between 30000 and 60000 depending on ε0 (for σ be-
tween 0.1 and 0.001, k = 300000). Top: Unstable ε detected from growth of the averaged
distance of neurons; here a threshold of 15% was chosen. For large σ, this measure be-
comes less reliable due to shrinking of the network, i.e. ∀rwr → 〈v〉. Bottom: Unstable
ε detected from the crossproduct measure, eq. (3), with threshold of 1 defect per 100
iterations. The ε value depends on the data distribution, but the qualitative behaviour
remains similar. In all cases, below a certain σcrit of about 0.3, ε has to be decreased
significantly. This independently reproduces [16], here we investigate also different ε
values.
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Fig. 6. Stability border dependence on input dimension (1D, 2D, 3D). The known 1D
case is included for comparison. Top: Using the average length criterion (for σ > 1,
the result can be misleading due to total shrinking of the network, see text). Bottom:
Using the crossproduct detection for defects, similar results are obtained; for large σ
instabilities are detected earlier.

Concave and convex learning: Stability of nonlinear learning. – The simulation
results are given in Fig. 7: Clearly, a strong influence of the nonlinearity parame-
ter K is observed. Especially one has to take care when decreasing σ, because for
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Fig. 7. Critical εmax(σ) for different values of the nonlinearity parameter from K = 2.0
(top) to K = 0 (bottom). K = 1 corresponds to the SOM case.

too large ε the network becomes instable. For K < 1, much smaller values of ε are
possible, thus considerably longer learning phases have to be taken into account
compared to original SOM. For K > 1 the stability range becomes larger.

Discussion. – We have defined a standardized testbed for the stability analy-
sis of SOM vector quantizers with serial pattern presentation, and compared
the SOM with the recently introduced variants of concave and convex learning.
The stability regions for different input distribution and dimension are of the
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same shape, thus qualitatively similar, but not coinciding exactly. The neigh-
borhood width, but unfortunately also the input distribution affect the maximal
stable learning rate. For the concave and convex learning, the exponent steering
the nonlinear learning also crucially influences the learning rate. In all cases, a
plateau for σ � 1 is found where the learning rate must be quite low compared
to the intermediate range 0.3 ≤ σ ≤ 1. As a too safe choice of the learning
rate simply increases computational cost, an accurate knowledge of the stability
range of neural vector quantizers is of direct relevance in many applications.
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