
Natural Conjugate Gradient Training of Multilayer
Perceptrons

Ana González and José R. Dorronsoro�
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Abstract. For maximum log–likelihood estimation, the Fisher matrix defines a
Riemannian metric in weight space and, as shown by Amari and his coworkers,
the resulting natural gradient greatly accelerates on–line multilayer perceptron
(MLP) training. While its batch gradient descent counterpart also improves on
standard gradient descent (as it gives a Gauss–Newton approximation to mean
square error minimization), it may no longer be competitive with more advanced
gradient–based function minimization procedures. In this work we shall show
how to introduce natural gradients in a conjugate gradient (CG) setting, showing
numerically that when applied to batch MLP learning, they lead to faster con-
vergence to better minima than that achieved by standard euclidean CG descent.
Since a drawback of full natural gradient is its larger computational cost, we
also consider some cost simplifying variants and show that one of them, diago-
nal natural CG, also gives better minima than standard CG, with a comparable
complexity.

1 Introduction

The standard approach in Multilayer Perceptron (MLP) training is to minimize the
square error function

e(W ) =
1
2

∫
||F (X, W ) − Y ||2dP (X, Y ),

where Y denotes the target associated to a pattern X , F (X, W ) is the MLP transfer
function and P (X, Y ) is the joint (X, Y ) probability distribution. In practice, rather
than minimizing the global error e(W ), one tries to do so for its sample version

ê(W ) =
1

2N

∑
i

||F (Xi, W ) − Yi||2.

In this light MLP training can be seen as a nonlinear regression problem, but if we
assume an error model Y = F (X, W ) + Z , with Z a multivariate gaussian g(Z) with
density

g(Z) =
1√
2πσ

exp
−||Z||2

2σ2 =
1√
2πσ

exp
−||f(X,W )−Y ||2

2σ2 .
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we can alternatively formulate MLP training as a semiparametric maximum log likeli-
hood estimation problem. In fact, the likelihood associated to the sample (Xi, Yi) is

∏
i

g(Zi) =
∏

i

1√
2πσ

exp
−||f(Xi,W )−Yi||2

2σ2 ,

and therefore

− log

(∏
i

g(Zi)

)
=

1
2

∑
i

||F (Xi, W ) − Yi||2 + C,

with C a suitable constant.
In this general context of likelihood estimates for parametric probability models, it

has been shown by S.I. Amari [2,8] that a a Riemannian structure can be defined in
weight space, for which the metric tensor is given by the matrix

G(W ) = EX, y[||f − Y ||2(∇W f)(∇W f)t]
= σ2EX [(∇W f)(∇W f)t]. (1)

and the inner product to be used in the tangent space at a point W is 〈u, v〉W =
utG(W )v. It turns out [1] that the maximum descent direction of the global error e(W )
with respect to the G(W ) metric is then given by the “natural” gradient

∇G e(W ) = G(W )−1∇e(W ).

As shown by Amari and his coworkers [1,13], this can be put to advantage when on–
line MLP training is considered. In fact, denoting the local error ||f(X, W ) − Y ||2 as
e(X, Y ; W ) and defining natural gradient descent as

Wt+1 = Wt − ηtG(Wt)−1∇e(Xt, yt; Wt), (2)

one obtains what probably is the fastest converging MLP on–line training method.
The main drawback of on–line natural gradient training is its complexity. For a single

hidden layer MLP with input dimension D, H hidden units and C dimensional outputs,
and an N pattern sample, the weight–bias dimension is then D = H(D+1)+C(H+1),
which would imply a cost O(D3) for G’s inversion and an overall cost of O(D3N) for
each on–line full sample pass. There are ways in the on–line setting to alleviate this
[3,14] and its impact is much smaller if batch natural gradient is considered. In fact,
the inversion of G is done only once per batch epoch and if N � D, as it happens
in most settings, the main cost is then the computation of the matrix G, which is then
O(ND2).

However, G coincides with the Gauss–Newton approximation to the Hessian of a
square error function, and batch natural gradient descent can be seen [5,6] to be closely
related to the Levenberg–Marquardt approach to mean square minimization. In turn,
this can be used to give another explanation of the speed–up in batch MLP training
with respect to standard gradient descent. But for batch MLP training there are other
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simpler methods such as the conjugate gradient or the variable metric methods, which
also have a fast convergence without needing costly Hessian computations.

In any case, the introduction of a Riemannian structure in weight space through the
Fisher metric can be done independently [12,8] of the minimization setting described
above, and the resulting fast on–line convergence could also be considered as a conse-
quence of the “naturalness” of the Fisher metric. This should also be reflected, for in-
stance, in ways to improve on established batch minimization methods. Some of these
methods rely on Hessian computations or approximations, something that may not be
easy to do in a Riemannian setting. The situation should be simpler for gradient based
methods. Among these, the best known is the conjugate gradient method, a good choice
for instance for batch MLP training [7]. In the next section we shall briefly review con-
jugate gradient and show how to define a natural conjugate gradient and in section 3 we
shall numerically illustrate its advantages over its standard counterpart. The paper will
finish with a brief review of the paper’s results and some concluding remarks.

2 Natural Conjugate Gradient

The standard conjugate gradient (CG) [10] method seeks a fast way to attain the mini-
mum of a general function f(W ) by succesively performing for i = 0, . . ., the following
steps from an initial W0 and g0 = h0 = −∇ f(W0):

1. Define gi+1 = −∇f(Wi+1), where Wi+1 is the minimum of f over the line {Wi +
thi : t > 0};

2. Set hi+1 = gi+1 + γi+1hi, with

γi+1 =
gi+1 · gi+1

gi · gi
.

The rationale for this approach comes from the fact that, for a quadratic e(W ) = c− b ·
W + 1

2W tHW , the above defined gi, hi verify for j < i

gi · gj = gi · hj = ht
iHhj = 0.

It thus follows that for such a quadratic e, a minimum W ∗ is achieved in at most D
iterations, with D the dimension of W .

The above formulation can be easily extended when the standard gradient of the mse
function e(W ) is replaced by its natural counterpart. More precisely, if we denote the
natural gradient at Wi+1 as g̃i+1 = −G−1

i+1∇e(Wi+1), with Gi+1 the natural metric at
Wi+1, and define

γ̃i+1 =
〈g̃i+1, g̃i+1〉Gi+1

〈g̃i, g̃i〉Gi

,

the new conjugate direction is then h̃i+1 = g̃i+1 + γ̃i+1h̃i. Under some extra assump-
tions, it can be shown that for the above g̃i, h̃i, and a quadratic e(W ),

〈g̃i+1, g̃i〉Gi+1 = 〈g̃i+1, h̃i〉Gi+1 = h̃t
i+1Hh̃i = 0. (3)
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Table 1. Training architectures used in the numerical experiments

Problem set input dim. hid. units targ. dim
br. cancer 9 5 2
glass 9 6 6
heart dis. 13 7 5
ionosphere 33 3 2
iris 4 3 3
pima 7 4 2
thyroid 8 5 2
XOR4 3 10 4
abalone 7 4 1
housing 13 5 1

It easily follows from the above discussion that if we do not take into account the
line minimization required to obtain the Wi, the cost of standard and natural CG is es-
sentially that of computing the corresponding gradients. We recall that for an N pattern
sample and a single hidden layer MLP with input dimension D, H hidden units and C
dimensional outputs, the cost of the mse standard gradient is O(NDHC) per batch it-
eration. When natural gradient is considered and we denote the number of MLP weights
as D = H(D + 1) + C(H + 1) as done before, this cost is dominated by the rather
larger cost O(ND2) = O(N(DH + HC)2) of computing the Fisher matrix. Recall
that the D2 term is due to the neeed to compute about D2/2 expectations

E

[
∂e

∂wlk

∂e

∂wnm

]
. (4)

There are several ways to lower this. We may begin by using a block–diagonal version
of G, where if denote by wO

oh the hidden–to–output weights and by wH
hi the input–to–

hidden weights, we simply assume that

E

[
∂e

∂wO
oh

∂e

∂wH
hi

]
≈ 0. (5)

The resulting cost would then be O(N(H2D2 + C2H2)). We can further reduce the
complexity assuming [5] independence between the output ok of unit k at a given layer
and the generalized error δl of unit l of the next layer. Since we have ∂e(X, Y ; W )/
∂wlk = δlok for the local gradient [4], we can therefore write

E

[
∂e

∂wlk

∂e

∂wnm

]
= E [δlokδnom] ≈ E [δlδn] E [okom] .

Precomputing the matrices E [δlδn] and E [okom] for the input–to–hidden and hidden–
to–output weights has a cost of O(N(C2 + H2)) for the δ matrices and O(N(H2 +
D2)) for the o matrices. The overall cost of this “independent” natural gradient is then
O(N(D2+H2+C2)), which now is dominated by the O(NDHC) cost of the standard
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Table 2. Final mean mse values and their standard deviation for standard CG (second column),
natural CG (third column), diagonal natural CG (fourth column) and line minimization natural
gradient. Best final values overall when equality of means is rejected at the 5 % level are given in
bold face, second place values in italics and third place values in typewriter type.

Problem set standard CG natural CG diagonal NCG line min. NCG
breastc 0.0382 ± 0.0005 0.0306 ± 0.0010 0.0315 ± 0.0011 0.0405 ± 0.0009
glass 0.3499 ± 0.0107 0.3357 ± 0.0090 0.3383 ± 0.0103 0.3997 ± 0.0112
heartdis 0.3444 ± 0.0070 0.3373 ± 0.0066 0.3350 ± 0.0089 0.4126 ± 0.0060
ionosphere 0.0358 ± 0.0025 0.0298 ± 0.0037 0.0307 ± 0.0035 0.1026 ± 0.0092
iris 0.0453 ± 0.0012 0.0384 ± 0.0002 0.0384 ± 0.0002 0.0504 ± 0.0028
pima 0.2263 ± 0.0050 0.2189 ± 0.0058 0.2205 ± 0.0066 0.2409 ± 0.0064
thyroid 0.0488 ± 0.0007 0.0400 ± 0.0020 0.0416 ± 0.0019 0.0492 ± 0.0020
xor405 0.1615 ± 0.0022 0.1470 ± 0.0020 0.1477 ± 0.0018 0.1721 ± 0.0057
abalone 0.4172 ± 0.0004 0.4112 ± 0.0019 0.4140 ± 0.0017 0.4122 ± 0.0022
housing 0.0789 ± 0.0029 0.0706 ± 0.0030 0.0771 ± 0.0031 0.0735 ± 0.0025

gradient. Finally, the simplest approach would be to consider what we may call diagonal
natural gradient, where we replace the full Fisher matrix G(W ) by its diagonal, which
results in a cost of O(N(DH + HC)), dominated again by the cost of standard CG.

In the following section we shall compare the perfomance against standard CG of
natural CG and its pure diagonal variant. Similar results are obtained in the other cases
and will be published elsewhere.

3 Numerical Examples

We shall compare natural conjugate gradient MLP training against standard conjugate
gradient on 10 datasets. Two of these datasets correspond to regression problems and 8
to classification problems. Nine of the datasets are taken from the UCI database [9]: we
shall work with the abalone age and Boston housing regression problems, and the classi-
fication problems given by the Wisconsin breast cancer, glass, heart disease, ionosphere,
iris, diabetes in Pima indians and thyroid disease datasets. In some instances the UCI
repository gives separate training and test sets. Since we are interested only on square
error minimization, in these cases we join both sets in a single training set.

The tenth dataset, which we denote XOR4, is a 4 class synthetic problem, an ex-
tension of bidimensional XOR to 3 dimensions, where eight 0.5 standard deviation
gaussian distributions centered at the opposite corners of the unit cube are consid-
ered and four classes are defined pairing diagonally opposite distributions. That is, the
gaussian centers of the first class are at (−1, −1, −1) and (1, 1, 1), those of the second
are at (−1, −1, 1) and (1, 1, −1) and so on.

In all cases we have normalized input components to zero mean and one variance,
and we also have done so for target values in the regression problems. Table 1 shows
the training parameters used; the number of hidden units has been set heuristically, but
it essentially agrees with values used in other studies.
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 0.1
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   xor4 cg
   xor4 cng

   xor4 diag cng

Fig. 1. Mse evolution for the XOR4 problem of standard (solid line), natural (large dash line)
conjugate and diagonal natural (small dash line) conjugate gradients

We have used the Numerical Recipes implementation of standard conjugate gradi-
ent ([11], section 10.6) and adapted it for natural conjugate gradient. Instead of the
Fletcher–Reeves formula for γ̃i+1 given in section 2, we have used the Polak–Ribiere
variant, as it seems better suited for general function minimization [10,11], namely

γ̃i+1 =
〈g̃i+1, g̃i+1 − g̃i〉Gi+1

〈g̃i, g̃i〉Gi

,

Also, to avoid singularity problems, we invert the matrix G + μI instead of G, with I
the identity matrix and the scalar μ having an initial value of 0.05 that is decreased by
a factor of 0.9 per iteration. In all cases we have run 30 independent trainings starting
at different initial weights, with a maximum of 2000 gradient iterations (in many cases
the Numerical Recipes implementation makes natural and standard CG descent to stop
well before that limit is reached). To avoid instabilities due to training divergence, of all
these, only the 20 runs with the best final mean square errors (mse) values are selected
and their mean and standard deviations computed. Notice that there are more significant
ways to measure MLP performance, such as computing for instance test set accuracies.
However we are essentially comparing function minimization procedures, which in the
MLP case means to compare final mse values.

Table 2 gives for each data set these final values for standard (second column), and
full natural (third) and diagonal (fourth) CG. It also shows results for line mimization
based on natural gradient (fifth column). To better compare them we have performed
pairwise mean equality tests between all procedures. The table shows in bold face the
smaller overall value when equality of means is rejected at the 5% confidence level. It is
given in 4 cases by the natural conjugate gradient alone, and in the other 6 cases the per-
formance of natural CG and its diagonal counterpart is similar in the sense that equality
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 0.1

 1  10  100  1000

housing cg
housing cng

housing diag cng

Fig. 2. Mse evolution for the housing problems of standard (solid line), natural (large dash line)
conjugate and diagonal natural (small dash line) conjugate gradients

 0.1

 1  10  100  1000

thyroid cg
thyroid cng

thyroid diag cng

Fig. 3. Mse evolution for the thyroid problem of standard (solid line), natural (large dash line)
conjugate and diagonal natural (small dash line) conjugate gradients

of means cannot be rejected. Second overall values are shown in italics and third values
in typewriter type. As it can be seen from the table standard and diagonal natural CG
beat standard CG in all cases. On the other hand, standard CG beats line minization
based natural gradient in all problems but for the abalone and housing datasets. It can
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 0.1

 1  10  100  1000

breastC cg
breastC cng

breastC diag cng

Fig. 4. Mse evolution for the breast cancer problem of standard (solid line), natural (large dash
line) conjugate and diagonal natural (small dash line) conjugate gradients

be safely concluded that natural CG, either full or diagonal, yields better minima than
ordinary CG for MLP training.

Besides providing better minima, natural conjugate gradient convergence can also
be faster than that of ordinary conjugate gradients. This is illustrated in figures 1 and
2 for the XOR4 and housing problems, where natural CG overtakes the standard one
at about the tenth iteration and does so for its diagonal variant shortly thereafter (all
figures in logarithmic scale on both axes). In other cases this overtaking may happen
later, but in all the datasets considered, it takes place before the 100–th iteration. This is
shown, for instance, in figures 3 and 4 for the thyroid and breast cancer problems. When
comparing convergence speed, one should also take into account the distinct complexity
of, say, full natural CG against that of standard CG, something which we are currently
studying. In any case, in all datasets diagonal natural CG does overtake standard CG at
about the 10–th iteration, while both methods have essentially the same complexity.

4 Conclusions

It was shown by Rao [12] that, in a maximum log–likelihood setting, the Fisher matrix
defines a Riemannian metric in weight space alternative to the standard euclidean one.
Besides its theoretical advantages, Amari and his coworkers have demonstrated that for
on–line MLP training, the resulting natural gradient provides minimization directions
that result in a faster convergence.

If batch MLP training is considered, natural gradient descent can be seen as a variant
of the Gauss–Newton method, closely related to Levenberg–Marquardt’s minimization.
A such it may not be competitive with other advanced batch methods, such as for in-
stance, conjugate gradient (CG). In this paper we have shown how natural gradient can
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be introduced in the conjugate gradient setting and have numerically demonstrated that
the performance of the resulting natural CG is consistently better than that of stan-
dard CG.

As it is the case for on–line MLP training, a drawback of natural CG is the larger
complexity resulting from the required Fisher matrix computations. This can be allevi-
ated by approximating the Fisher matrix under some simplifying assumptions, of which
we have considered here the diagonal natural CG. It has essentially the same complexity
of standard CG but gives better minima (although not always as good as those achieved
by the full natural CG procedure) and a faster convergence.

We finally point out that there might be some interest in further research on the
application of natural gradients in general function minimization. A more complete
study should be made of full natural CG taking its complexity into account in a precise
way. On the other hand, the definition (1) of the natural metric makes sense not only
for square error problems but also for other global error functions defined as local error
expectation. We are currently considering these and other similar issues.
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