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Abstract. A stepwise two-stage algorithm is proposed for real-time construc-
tion of generalized single-layer networks (GSLNs). The first stage of this algo-
rithm generates a network using a forward selection procedure, which is then 
reviewed at the second stage to replace insignificant neural nodes. The main 
contribution of this paper is that these two stages are performed within one  
regression context using Cholesky decomposition, leading to significantly  
neural network performance and concise real-time network construction  
procedures. 

1   Introduction 

The generalized single-layer networks (GSLN) represent a large class of flexible and 
efficient structures due to their excellent approximating capabilities [1][4]. A GSLN 
is a linear combination of some basis functions that are arbitrary (usually nonlinear) 
functions of the inputs. Examples are RBF networks and Volterra networks.  

A critical issue in the application for GSLNs is that a large number of candidate 
basis functions may have to be considered initially, from which only small subset is 
selected to represent the data by minimizing a cost function. This however becomes 
extremely difficult if one has to enumerate all combinations to find the best subset, 
part of which is often referred to as the curse of dimensionality problem in the litera-
ture. To overcome this difficulty, forward subset selection methods seem to be one of 
very few feasible approaches [2][3][5][6]. Forward subset selection algorithms select 
the best basis function each time by minimizing the cost function, and this procedure 
is repeated until the desired number of, say n, basis functions have been selected. If n 
is unknown a 'prior', some selection criteria could be applied to stop the network con-
struction, such as the Akaike’s information criteion (AIC) [7].  

However, the major problem with forward approaches is that the resultant network 
is not necessarily efficient [6][8]. In this paper, a stepwise algorithm is proposed for 
real time construction of GLSNs based on the Cholesky decomposition. In the pro-
posed method, the network is generated using a forward subset selection procedure, 
which is then reviewed, and insignificant neurons (basis functions) are replaced,  
resulting in a network of significantly improved performance.  
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2   Problem Formulation  

Suppose M candidate basis functions },,2,1),({ Miti =φ , and N samples are used 

for network construction and training, producing to the following matrices 

M,,2,1i,)]N(,),2(),1([  ],,,,[ TiiiiM21 =φφφ== φφφφΦ   (1) 

If one needs to select n significant basis functions, denoted as nppp ,,, 21 , which 

form a selected regression matrix  

],,,[ 21 npppP =     (2) 

and produce the network output of  

ePy += θ      (3) 

which best fits the data in the sense that 

min( →−== θ)ΛΛ PyeJ    (4) 

where T)](,),2(),1([ Nyyy=y  is the vector of the target outputs; •  denotes the 2-

norm of a vector; θ  is the output weights; Λ is the diagonal weighting matrix, 
))(,),1(( Ndiag λλ=Λ ; J is the cost function which is the sum of the squared 

weighted errors (SSWE). If P is fully column ranked, optimum estimation of the out-
put weights is given by 

)()(()[( yPPP ΛΛ)]ΛΛθ 1 TT −=    (5) 

There are ))!/(!/(! nMnM −  possible combinations. Practically forward subset se-

lection is the most popular approach. 

3   Forward Selection 

The forward approach selects a basis function each time, and this procedure repeats 
for n times to produce the network of n basis functions. Obviously a series of inter-
mediate neural networks are generated along the process. 

Denote the regression matrices of the intermediate network of k basis functions as 

nkkk ,,2,1],,,,[ 21 == pppP    (6) 

The corresponding cost function becomes 

yPPPPyyyP 2222 ()( Λ)ΛΛΛ 1 T
kk

T
kkTTkJ −−=  (7) 

where ΛΛΛ T=2 . If kPΛ  is of full column rank, then kkjik
T
k w ×== ][ ,2PPW Λ  is 

symmetric and positive definite, and can be decomposed as 
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ADAPPW
~~2 Tk

T
k == Λ     (8) 

where ),,( 1 kdddiag=D  is a diagonal matrix and kkjia ×= ]~[
~

,A  is a unity upper 

triangular matrix. Define 
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where 1~
, =iia  and iii ad ,=  for ki ,,1= . 

From (8), it gives  

kijkiaaawa i
s ssjsisjiji ,,,,,1,/1

1 ,,,,, ==∑−= −
=   (10) 

Define  
T

,,1 ],,[
~

ykyy aa===Δ θθ ADAa    (11) 

T
,,1

2T ],,[ ykyky ww==Δ yPw Λ     (12) 

Then left-multiply kk PPW 2T Λ=  on both sides of (5) for kPP = , substituting (8) 

gives  

yy waA =T~
     (13) 

As A
~

 is a unity upper triangular matrix, using (9), ya  could be computed as 

kiaaawa k
i ssysisyiyi ,,1,/1

1 ,,,,, =∑−= −
=    (14) 

Substituting (8) into (7) and noting (13) gives  

∑−=−= =
− k

i iiyiyyk aaJ 1 ,
2
,

2T1T2T /)( yyaDayyP ΛΛ   (15) 

Suppose that one more basis function, denoted as 1+kp , is selected, then  

∑−= +
=+

1
1 ,

2
,

2T
1 /)( k

i iiyik aaJ yyP Λ     (16) 

The reduction in the cost function due to the new basis function 1+kp  is  

1,1
2

,1111 /)()()( ++++++ =−=Δ kkykkkkk aaJJJ PPp   (17) 

where ],[ 11 ++ = kkk pPP .  

According to (15), the elements jia ,  will not change as the new basis function 1+kp  

is introduced. To minimize the cost function given previously selected basis functions 
kpp ,,1  are fixed, one needs to select a basis function from the rest candidates 

which maximizes 1+Δ kJ   

},,{..)},(max{)()},([min{ 11 Mkkkk ts   JJJ φφφφΔφ] ++ ∈−= PP         (18) 



 Real-Time Construction of Neural Networks 143 

where },,{ 1 Mk φφ + denotes the candidate basis function pool from the full regres-

sion matrix Φ , i.e. ],,,,,,[ 121 Mkk φφ += pppΦ .  

To minimize (18), A
~

, A, and ya defined above are augmented as follows to store 

corresponding information of the selected basis functions and all the candidates. 

For a model of k basis functions, augment A
~

 and A from k-by-k to k-by-M, and 
ya  from k-by-1 to M-by-1, respectively. For A  defined in (9), it becomes 
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Matrix A
~

defined in (9) becomes 

iijijiMkji aaaa ,,,, /~,]~[
~ == ×A .    (21) 

which is unity upper triangular, but not a square matrix. Vector ya  in (14) becomes  

∑−== −
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1 ,,,,,1, /,][ i
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In addition, another M-by-1 vector b can be defined as 

∑−== −
=×
1
1 ,,,,1 /,][ i

s ssisisiiiMi aaawbbb    (23) 

where 
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Λ pp . Obviously for iiw ,  ki ,,1= , it holds that 

kiab iii ,,1,, ==      (24) 

Based on (17), the contribution of each of the candidate basis functions is given by 

MkibaJ iyiik ,,1,/)( 2
,1 +==Δ + φ    (25) 

The one from },,{ 1 Mk φφ +  which gives the maximum contribution is then se-

lected as the (k+1)’th basis function. 
Assume },,1),(max{arg)( 11 MkiJJ ikjk +=Δ=Δ ++ φφ , i.e. candidate jφ  is se-

lected and denote jk φ=+1p . Other candidates are reordered and { Mk φφ ,,2+ } be-

comes the new candidate pool. According to (17), the (k+1)’th basis function leads to 
a further reduction of the cost function by )( 11 ++Δ kkJ p . 
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Since jk φ=+1p , both 1+kφ  and jφ  in the original full regression matrix Φ  have 

to be interchanged, leading to the change of various intermediate matrices and vec-

tors. For A  and A
~

, columns k+1 and j should also be interchanged as 

kiaaaaaaaa kijijikikijijiki ,,1 ,~~ ,~~ ,, 1,,,1,1,,,1, ===== ++++  (26) 

where 1, +kia  denotes the updated 1, +kia . To denote an updated element, a cap is ap-

plied to the element here after. 
Similarly, elements k+1 and j for ya  and b  are interchanged as follows 

11,1,,,1 ,,, ++++ ==== kjjkykyjyjyk bbbbaaaa .  (27) 

In addition, as the (k+1)’th basis function is selected, a new row should be ap-

pended to A  and A
~
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Furthermore, for ya  and b, elements from the (k+2)’th to the last one should be 

updated as follows according to the definitions (22) and (23)  

ikikiiykikyiyi aabbaaaa ,1,1,1,1,,
~,~

++++ −=−= , Mki ,,1+=  (29) 

Given above details, a forward selection procedure similar to [5] can be proposed.  

4   A Two-Stage Algorithm 

To overcome the drawbacks of the forward selection algorithm, one solution is to 
review all the selected basis functions once the forward selection procedure termi-
nates. For each selected basis function (of a of size n), say ip , ni ≤≤1 , its contribu-

tion to the cost function reduction )( inJ pΔ  is compared with that of the candidate 

which has the maximum contribution among all the candidates. Denote the maximum 
candidate contribution as )( jnJ φΔ , and if )()( jnin JJ φΔ<Δ p then ip  is said to be 

insignificant, and will be replaced by jφ , in the meantime ip  is put back into the 

candidate pool. Thus, the cost function can be further reduced by 
)()( injn JJ pΔφΔ − . The remaining problem is, to compute the contribution of a 

previously selected basis function, say ip  to the cost function and compare its contri-

bution with that of the candidates Mn φφ ,,1+ , an appropriate regression context 

should be re-constructed. That is, A , A
~

, ya  and b  have to updated.  

In order to assess the significance of the basis function ip , the first step is to move 

ip  to the n’th position of the full regression matrix Φ  as if it were the last selected 

basis function in the forward selection procedure. This is done by a series of  
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interchanges between two adjacent basis functions xp  and 1+xp  for 1,, −= nix  and 

the regression context is updated correspondingly.  
Suppose npp ,,1  are the selected basis functions in the order of selection. If two 

adjacent basis functions xp  and 1+xp  is to be changed, A , A
~

, ya  and b  have to be 

updated. Denote the n basis functions in the new selected order as 
nxxxx pppppp ,,,,,, 2111 ++− , where 1+= xx pp  and xx pp =+1 . Then based on (10), 

for columns 1 to x-1 in A , since  
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therefore 
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Noting xxxxxxxx ww ,1
2T

11
2T

1, ++++ === pppp ΛΛ , for the x’th row of A, gives 

1,1, ++ = xxxx aa       (32) 

Noting 1,11
2T

1
2T

, ++++ === xxxxxxxx ww pppp ΛΛ , it holds that 

xxxxxxxxxx aaaaa ,1,1,1,1, /++++ +=    (31) 

while for the rest elements in the x’th row, it gives 

nxjaaaaa xxjxxxjxjx ,,2,/ ,,1,,, +=+= +   (32) 

Noting xxxxxxxx ww ,
2T

1
2T

11,1 === ++++ pppp ΛΛ , for the (x+1)’th row of A, yields 
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Furthermore, it could be derived that 
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which means that the (x+2)’th row of A has no change, and row (x+2) to row n of A 
have no change as well, i.e. 

jiji aa ,, = , nxi ,,2+= , nxj ,,2+=    (39) 

Similarly,  
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For vector b, both the x’th and the (x+1) ’th element are changed also as follows 

1,11, , +++ == xxxxxx abab      (41) 

Now eventually ip is moved to the n position in the selected basis functions, its 

contribution can then be computed as follows based on (17) 

nnynnnin aaJJ ,
2
, /)()( == pp ΔΔ     (42) 

where ni pp =  indicates that np  has been moved to the n’th position. To compute the 

contribution of the candidate basis functions, define: 
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which are the corresponding elements in vector ya  and b  if the basis function ip  is 

pruned from the network. The contribution of all the candidates is given by 

MnsbaJ i
s

i
yssn ,,1,/)()( )(2)(

, +==Δ −−φ    (44) 

Now the significance of ip can then be checked given the above derivations. First, 

identify the candidate basis function that gives the maximum contribution 

},,1),(max{)( MnsJJ snjn +=Δ=Δ φφ .   (45) 

If )()( injn JJ pΔ>Δ φ , ip  becomes insignificant and should be replaced by jφ  as 

the new basis function in the network, while ip  should be put back into the candidate 

pool, taking the position of jφ . In this case, the regression context needs to be up-

dated again due to the interchange of ip and jφ . For matrix A, interchange columns n 

and j from row 1 to n-1 due to the interchange of ip  and jφ , and re-calculate the n’th 

row of A as  
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In addition, elements n to M of vector ya and b is updated respectively as 
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Similarly the corresponding element of A
~

 can be recalculated based on (21).  
The computational complexity analysis for the above proposed algorithm can be 

performed by referring to [6]. 

5   Real Time Implementation 

To facilitate real time neural network construction using the above algorithm, a 
weighting scheme for the data samples is applied to reduce the data storage. In this 

paper, the weights for samples at current time instance t are always set at 1 and 2/τλ  
for the τ−t , where 10 << λ  and normally close to 1. In this way, the weights for the 
past data samples decrease exponentially as time goes on, leading to the gradual re-
moval of past data samples in the real-time neural network construction. 

In detail, the weight matrix W in (8) and yw  in (12) is applied to all basis func-

tions, i.e. 

jijiMMji ww φΛφ 2T
,, ,][ == ×W     (49) 

iyiMyiy ww φΛ 2T
,1, ,][ yw == ×     (50) 

Note that W is symmetric and only the upper triangle, including the diagonal ele-
ments, needs to be stored. Applying the exponential weighting scheme, gives 
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In real time implementation, W and yw are dynamically updated as  

0)0( ),()()1()( ,,, =φφ+−λ= jijijiji wtttwtw    (52) 

0)0(  ),()()1()( ,,, =φ+−λ= yijyiyi wttytwtw    (53) 

In this weighting scheme, for jiw , , if Ctt ji →)()( φφ  as ∞→t , then 

)1/()(, λ−→ Ctw ji . The algorithm proposed in this paper is a two-stage method, 

therefore the real time implementation is also divided into two stage.  
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To initialize the algorithm, let 0=k  and ijww jiyi >== ,0,0 ,,  for Mi ,,1= , as 

each sample of data is recorded, following procedure is implemented. 

A) With the recorded new sample of data, update W and yw  respectively.  

B) Update A, A
~

, ya and b in (19), (21), (22) and (23), respectively  

C) If nk < , implement step b), c) and d) of the forward selection procedure to se-
lect the k’th basis function. Otherwise implement the reviewing procedure to 
check all the n selected basis functions. 

D) Identify the output weights based on (5). The neural network (of k basis func-
tions) can then be used for real time application. 

Note that the neural network size n is given previously. This procedure is imple-
mented recursively.  

6   Simulations  

Consider the following non-linear dynamic system 

)()1()2(8.0)2(05.0)1(5.05.0)( 22 ttututytyty ξ+−+−+−−−+=  (54) 

where t, y and u represent the time series, the system output and input, respectively; 
)(tξ  is the system noise given as )05.0,0(~ Nξ . By simulating (54) with u(t) uni-

formly distributed within the range [-1.0, 1.0], two data sets of 500 samples for each 
were generated, the first one for neural network construction and training and the 
other for validation. Full polynomial of orders 0 to 3 of y(t-l) and u(t-l) for  l = 1, 2, 
and 3 are used. The network size is set to be 5. Both the proposed two-staged algo-
rithm and the forward-only algorithm were then used to select 5 basis functions. The 
indices of the selected terms and the corresponding SSWE are listed in Table 1 for 
both the algorithms. Table 2 compares the normalized one-step-ahead and long-term 
predictions errors over both the training and validation data sets, respectively, of the 
two produced neural networks. From the simulation example, it is obvious that the 
two stage algorithm achieves a neural network of far better performance than forward 
subset selection methods.  
 

Table 1. Selected nodes and performance 

Algorithm Index of the selected terms SSWE 
Forward 1, 2, 6, 23, 44 5.4425 
Two-staged 1, 2, 6, 14, 23 1.3728 

 
Table 2. Normalized prediction error (%) 

Algorithm Training data Validation data 
 One step Long term One step Long term 
Forward 6.78 7.51 6.53 7.28 
Two-stage 3.41 3.40 3.23 3.21 
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7   Conclusion 

In this paper, a stepwise two-stage algorithm has been proposed for real-time con-
struction of generalized single-layer networks (GSLNs), which enables both network 
growing and network modification. The main contribution of this paper is that these 
two directions of network construction are performed within one regression context 
using Cholesky decomposition, leading to both significantly neural network perform-
ance and concise network construction procedures. Simulation results have demon-
strated the effectiveness of this method.  
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