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Largo B. Pontecorvo 3, 56127 Pisa, Italy

starita@di.unipi.it,
http://ciml.di.unipi.it/

Abstract. The paper introduces Competitive Repetition-suppression
(CoRe) learning, a novel paradigm inspired by a cortical mechanism
of perceptual learning called repetition suppression. CoRe learning is
an unsupervised, soft-competitive [1] model with conscience [2] that can
be used for self-generating compact neural representations of the input
stimuli. The key idea underlying the development of CoRe learning is to
exploit the temporal distribution of neurons activations as a source of
training information and to drive memory formation. As a case study,
the paper reports the CoRe learning rules that have been derived for the
unsupervised training of a Radial Basis Function network.

1 Introduction

The present work introduces a novel learning algorithm inspired by a cortical
mechanism of perceptual learning called repetition suppression. The fundamental
aspects of this cortical mechanism have been modeled in a competitive learn-
ing schema, the Competitive Repetition-suppression (CoRe) Learning, for the
unsupervised generation of compact neural representations of the input stimuli.

We propose the idea that mere stimuli repetition acts as a fundamental re-
source for efficient memory formation. In particular we explore the neurophys-
iological hypothesis [3] that the repetition suppression mechanism serves as an
unsupervised mean for reducing the size of stimuli representation, that is the
number of neurons coding a given stimulus, while strengthening the responses
of the most selective neurons, i.e. those showing sharp responses to particular
classes of input stimuli.

For the sake of the present paper, we focus on the application of the pro-
posed model to the automated construction of a Radial Basis Function Network
(RBFN) [4]. In particular, we show how CoRe learning can be used to opti-
mize the number, position and shape of RBFN gaussian kernels by means of a
completely unsupervised training procedure.
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In the following sections we introduce the neurophysiological findings that
have inspired this work together with the computational model of CoRe learning.
The paper ends with the results of the tests conducted on the Iris classification
dataset.

2 Neurophysiological Foundations of Repetition
Suppression

The ability of humans and animals to learn from experience is recognized to be
supported by multiple memory systems with different functional characteristics
and neural basis. Our work has been inspired by the characteristics of a par-
ticularly interesting learning scheme, called perceptual learning [5]. Perceptual
learning supports the formation of non-declarative memory at the level of the vi-
sual cortex, providing a mean for improving the performance on several sensory
tasks following practice.

In particular, we focused on a phenomenon known as repetition suppression
(RS), which appears to be fundamental for mediating perceptual learning [3].
Repetition suppression induces long-lasting changes to the visual cortex, de-
creasing the neural activity as a consequence of the repeated presentation of
similar stimuli. This cortical mechanism is strictly item-specific and appears
at an abstract representational level. For instance, neurophysiological evidences
have shown that its effects can be observed also when the repeated stimulus is
presented at different retinal locations and in case of variations to the visual
stimulus geometry. Repetition suppression does not depend on the behavioral
significance of the stimuli, i.e. it is not specifically linked to the active mainte-
nance of a sample in memory, nor it requires any form of response/reward signal.
Furthermore, RS is an unconscious process, since its effects can be recorded also
in anesthetized subjects [3].

In brief, repetition suppression involves sharpening the neural representation
of items by means of an overall reduction of the number of active neurons which
is counterbalanced by the steepening of the response of the most item-selective
neurons. This process seems to be aimed at the selection of neurons that act
as detectors of the most informative features. Moreover it appears that such a
process may facilitate novelty detection, since more familiar stimuli experience
more suppression than unfrequent items.

We suggest that repetition suppression, and in general perceptual learning,
may provide interesting hints for the development of innovative learning schemes
and mechanisms. The literature in this field offers very few works that try to
exploit the neurophysiological issues described so far. Mozer [6] proposes a com-
putational model reproducing the repetition suppression phenomenon by means
of a network of binary-hypothesis neurons which uses blind equalization to sup-
press the irrelevant inputs and to enhance the most active neurons, by steepening
the curve of the sigmoid driving their responses. Another interesting model is
that proposed by French and called activation sharpening [7]. This algorithm
extends the standard backpropagation with an extra step in which activations
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patterns at the hidden layer are sharpened, i.e., the activation level of the most
active hidden nodes is increased slightly for each pattern, while the other nodes
activations are decreased. The activation sharpening process, although not me-
diated by repetition, offered an interesting starting point for the development of
our repetition suppression-based model. However, the learning scheme we pro-
pose is intended to have a broader scope than those described so far and to be
applicable to a wide range of neural networks and learning systems on real world
tasks (e.g. machine vision).

3 Competitive Repetition-suppression (CoRe) Learning

3.1 A Soft-Competitive Approach to Learning

The general idea underlying the proposed model is to make the neural population
evolve in the direction of maximum selectivity by means of a procedure that
penalizes or enhances the responses of the neurons on the basis of the stimuli
frequency. This approach falls into the family of the competitive learning [8]
schemes, in which units compete to be active during training. Hard-competitive
approaches such as Winner Takes All (WTA), allow only the winning unit, i.e.
the one with the highest activation, to learn on each case. The soft-competitive
approach [1], on the other hand, allows each unit, or the units from a selected
subset, to adapt its weights in proportion to its activation strength.

CoRe learning falls into the family of soft-competitive approaches. At each
step, it selects the most active neurons to form the winners pool, while the
remainder of the units forms the losers pool. We define the winners pool for the
input xk as the set of units ui that fires more than θ, that is

wink = {i | yi(xk) ≥ θ, ui ∈ U} (1)

where yi(xk) is the activation of the i-th unit on the k-th input pattern. The de-
finition of the losers pool can be obtained by mirroring the inequality in (1). The
competition is engaged between the units of two pools: the winners gets rewarded
and their activity is strengthened, while the losers are penalized depending on
the amount of the repetition suppression generated. In this aspect, CoRe extends
the rival penalized competitive learning (RPCL) algorithm [9]. The key idea of
RPCL is that for each stimulus not only the winner is learned to approach the
input pattern, but also the second winner (the rival) is de-learned away from it
for a bit. We extended this approach by defining a soft-rival algorithm, in which
winner and rival refer to pools of units.

3.2 CoRe Learning

The primary issue for implementing a repetition suppression learning scheme
is modeling the stimuli repetition. We build our scheme on a parameter, the
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Fig. 1. General form of a CoRe learning layer of neurons: units ui are the feature detec-
tors; νi accumulates the conscience [2] related to unit ui, while the RS unit generates
the repetition suppression effect which inhibits (empty-dot connections) or enhance
(filled-dot connections) the feature detectors.

stimulus predominance, that gives a soft measure of the stimuli frequency. The
stimulus predominance at the time t is defined as

νt
i =

1
|χt|

∑

xk∈χt

yi(xk)
zk

U

, (2)

where χt is the set of the input stimuli presented to the network up to time t,
while yi(xk) is the output of the i-th unit on the k-th input pattern and zk

U is (an
approximation of) the output of the maximally active unit, from the set U , on
the pattern xk. For instance, it can be approximated, by means of the softmax,
as

zk
U =

∑

uj∈U

yj(xk)
eqyj(xk)

∑
l e

qyl(xk) , (3)

where q is a parameter which regulates the sharpness of the approximation.
The idea underlying the definition in (2) is to associate each unit ui ∈ U

with a prototype pi that identifies the reference stimuli for the neuron. Then,
each unit uses eq. 2 to measure the frequency with which stimuli similar to
the prototype pi have been shown to the network. Here we assume that the
unit output yi is an increasing function of the similarity between the input
vector xk and the unit’s prototype pi. This approach resembles competitive
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learning with conscience [2]. The conscience mechanism was proposed for making
frequently winning representatives less likely to win in the future because of their
heavier conscience [10]. In our model we use a different conscience mechanism for
suppressing the responses of the less selective neurons. Bienenstock, Cooper and
Munro tackled with the selectivity issue in their notable BCM model [11]. Their
Hebb-like learning rule is aimed at training neurons with a maximal response on
one particular pattern, while retaining a very low response on the other patterns.

CoRe learning pursues neuron selectivity by defining a penalty factor, the
repetition suppression, which is mediated by the stimulus predominance of the
winning neurons. The amount of repetition suppression generated at time t in
response to the pattern xk is calculated as

RSt
k =

1
|wink|

∑

i∈wink

νt
iyi(xk), (4)

where the winners pool wink is calculated as in (1).
Figure 1 gives a visual interpretation of the model. The νi units accumulate the

history of the feature detector (ui) activations in order to generate the stimulus
predominance for the prototype pi. The activation of the winning neurons, scaled
by their stimulus predominance (the empty-square connections in figure 1), is
then used to generate the repetition suppression factor in the RS unit.

The neurons in the losers pool have a different learning rule with respect to
those in the winners pool, although in both cases we define a pseudo-target to
be used as a reference signal for the training procedure. The target activation for
neurons in the losers pool (ui ∈ losek) is defined as ŷt

i(xk) = yi(xk)(1 − RSt
k),

where xk is the current input pattern. This expression forces the loser neurons
to shrink their activation proportionally to the amount of repetition suppression
they receive. The representation error of the i-th loser can be written as

Et
i,k =

1
2
(ŷt

i(xk) − yi(xk))2 =
1
2
(−yi(xk)RSt

k)2. (5)

Conversely, the target activation for the neurons ui ∈ wink is set to 1 in order
to strengthen their activation (assuming 1 to be the the maximal output of a
neuron). The representation error, in this case, is simply

E
t

i,k =
1
2
(1 − yi(xk))2. (6)

The network parameters can be adapted by means of a supervised learning
algorithm that minimize the error functions defined in (5) and (6). In section 3.3
we show an example of a Radial Basis Function Network whose gaussian units
have been trained by CoRe learning and gradient descent. Notice that although
CoRe learning resort to supervised learning for training the network parameters,
it is a completely unsupervised algorithm since all the reference signals it uses
are self-generated on the basis of the input stimuli distribution over space and
time.
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The repetition suppression phenomenon produces a compact neural represen-
tation by evolving a set of highly selective neurons from a large pool of units.
Hence, it is important to define a metric for identifying the most significant neu-
rons which have been produced by the learning process. We define the relevance
factor for the unit ui as

ν̂t
i =

1
|wint

ui
|

∑

xk∈wint
ui

yi(xk)
zk

wink

, (7)

where zk
wink

follows the definition in (3) and wint
ui

is the set of patterns xk ∈ χt

for which unit ui was in the winners pool, i.e.

wint
ui

= {xk | yi(xk) ≥ θ, xk ∈ χt}. (8)

In other words, the relevance factor defines a soft-measure of the frequency with
which ui was the most active unit in the winners pool. This measure can be used
to prune those neurons which are less significant for the stimuli representation
(e.g. see RBF pruning in section 3.3).

3.3 RBFN Structure Optimization

A radial basis function network can be interpreted as a composition of localized
receptive fields that measure the similarity of incoming patterns xk to the pro-
totype pi they represent. In case of gaussian basis functions, the activation of
the i-th RBF unit is defined as

yi(xk) =
1
2
e

‖x−ci‖2

σ2
i (9)

where the gaussian center ci corresponds to the prototype vector pi, while the
gaussian variance σi modulates the steepness of the units’ response.

We applied CoRe learning to solve the structure optimization problem of a
gaussian RBFN, i.e, defining number, position and shape of the radial basis func-
tions. In order to do this, we used gradient descent to derive the CoRe learning
rules for the parameters of the gaussian kernels. The parameter increments for
the units ui ∈ losek can be derived by differentiating the error function in (5)
with respect to the parameters ci and σi, that is

�ct
i,k =

∂Et
i,k

∂ci
= −yiRSt

k

∂(−yiRSt
k)

∂ci
=

(
yiRSt

k

σi

)2

(xk − ci) (10)

�σt
i,k =

∂Et
i,k

∂σi
= −yiRSt

k

∂(−yiRSt
k)

∂σi
= (yiRSt

k)2
‖xk − ci‖2

σ3
i

. (11)

Similarly, the parameter increments for the units ui ∈ wink can be calculated as

�ct
i,k =

∂E
t

i,k

∂ci
= −(1 − yi)yi

(x − ci)
σ2

i

(12)
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�σt
i,k =

∂E
t

i,k

∂σi
= −(1 − yi)yi

‖xk − ci‖2

σ3
i

(13)

where E
t

i,k follows the definition in (6).
The update rules for the RBF parameters are

ct
i = ct−1

i − αc�ct
i,k (14)

σt
i = σt−1

i − ασ�σt
i,k (15)

where �ct
i,k = �ct

i,k if ui ∈ wink and �ct
i,k = �ct

i,k if ui ∈ losek (similarly for
�σt

i,k).
The sign of the increments �ct

i,k and �σt
i,k is coherent with the expected

repetition suppression effect. Units in the losers pool, for instance, experience
the displacement of their centers away from the current input as well as the
enlargement of their widths. Conversely, winner neurons have their centers moved
closer to the current stimuli and their responses steepened by the reduction of
their receptive field’s width.

CoRe learning starts with a large RBF network and incrementally trains the
RBF units at each pattern presentation. If an input parameter xk does not
produce a sufficient activation in any of the units in the network, then CoRe
learning triggers a search procedure to find the neuron with the lowest relevance
factor ν̂t

i and trains this unit to memorize the stimulus xk. Moreover, at the
end of each learning epoch, the least significant neurons, i.e those with a rele-
vance factor under a certain threshold θpr, are pruned from the network. This
allows to generate networks with a compact structure, while retaining an high
representational power.

The outputs of the N RBF units are linearly combined in the output units oj

by the weighted summation

oj(xk) =
N∑

i=1

wijyi(xk). (16)

The linear parameters wij are trained by a supervised algorithm independently
and in parallel to CoRe learning [12].

4 Results

We evaluated the performance of CoRe learning on a classification task based on
the IRIS dataset [13]. This dataset contains 150 samples of dimension 4 equally
partitioned into three different IRIS classes: setosa, versicolor, and virginica.
Among these, one is linearly separable from the others, while two of them are
not. The dataset was split into a training and a test sets, with 75 samples each; 25
samples from each class were randomly selected to be presented to the network
and thirty different partitions of the dataset were generated randomly.
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Table 1. Performance of various RBF models applied to the IRIS problem: mean
classification score on the test set, variance, number of initial RBF (when applicable)
and average number of RBF generated during training

Model Mean Score Variance Initial RBF Number Final RBF Number
CGA-RBF [14] 97.04% ±1.97% N.A. 6.4

CoRe-RBF 95.91% ±1.19% 50 6.6
RBF-DDA [15] 94.50% ±1.50% N.A. 11.8

To evaluate the capabilities of the CoRe approach we implemented a radial
basis function network with CoRe learning rules for training the gaussian kernels
and a standard gradient descent for adapting the output weights wij . The net-
work was trained and tested separately on each of the thirty random partitions
of the dataset.

Table 1 shows a comparison of the results of the test phase for the CoRe-RBF
network and for two constructive RBF models. The CoRe-RBF network had
an initial population of 50 neurons and, as a result of CoRe learning, reduced
its size to an average number of 6 RBF. As it can be seen from Table 1, our
model achieved an higher score than the RBF-DDA model [15] and generated
a more compact network structure. The evolutive CGA-RBF [14], on the other
hand, achieved better results than CoRe-RBF with respect to the test-set error.
However, the CGA-RBF learning scheme needs a-priori knowledge about the
number of classes, while our model is completely unsupervised and does not
require any a-priori information about the distribution of the input patterns. In
addition, the CoRe model achieved a very stable learning, demonstrated by the
low error variance (see Table 1) over the 30 task repetitions.

Figure 2 shows the performance of CoRe learning on a clustering task: the
dataset consists of 125 datapoints generated by four gaussians with different
mean, variance and density. The small dots represent the 2-dimensional in-
put stimuli, while the pluses (+) identify the neurons prototypes. The network
evolves from the initial random prototype allocation (Fig. 2.a) to a sparser in-
put coverage (Fig. 2.b) as a result of the repetition suppression mechanism. The
least active units are pushed away from the stimuli, becoming less significant as
learning proceeds. When their relevance factor falls behind a predefined thresh-
old, they are pruned from the network. Conversely, the most significant units
are retained and positioned as to cover the four clusters (Fig. 2.c).

The CoRe algorithm was run starting from a pool of 50 neurons and converged
to a stable state after only 30 training epochs, reducing the number of prototypes
to 5. It is worth noting how 4 units positioned approximately on the four clusters
mean, while 1 neuron was allocated to cover the outliers of the 2 bottommost
clusters. The same dataset has been used to run the RPCL algorithm (Fig. 2.d):
starting from an initial population of 50 neurons, RPCL evolved to a stable
state with 36 active neurons, i.e. neurons winning at least one competition. The
results of the test show the robustness of CoRe with respect to the choice of the
initial units allocation: CoRe is capable of converging to a compact prototype
allocation even though it is run starting from an oversized neural population.
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Fig. 2. Clustering test on four gaussian clusters: (a) CoRe starts with a random po-
sitioning of the gaussian centers; (b) the least active units are pushed away from the
stimuli and network pruning eliminates non-relevant units; (c) the CoRe algorithm
converges generating 5 units positioned on the four clusters and on their outliers; (d)
prototype positioning by the RPCL algorithm after 200 learning epochs

5 Conclusion

This paper introduces CoRe learning, a soft-competitive learning scheme inspired
by a cortical mechanism of implicit visual memory, i.e. repetition suppression.
CoRe learning allows unsupervised training of feature detector units (e.g. RBF)
without resorting to any explicit information concerning the input pattern dis-
tribution (e.g. number of classes), but only on the basis of the stimuli repetition.

We derived the CoRe learning rules for training the gaussian units of a radial
basis function network and we tested the effectiveness of the proposed approach
on classification and clustering tasks.

The CoRe learning model is part of a work aiming at the development of
an articulated model of perceptual learning for machine vision applications. In
particular, we believe that the repetition suppression mechanism, and therefore
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the CoRe learning scheme, may constitute an important tool for generating
compact and sparse neural representations of the visual stimuli.
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