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Abstract. A lot of learning machines which have hidden variables or
hierarchical structures are singular statistical models. They have singu-
lar Fisher information matrices and different learning performance from
regular statistical models. In this paper, we prove mathematically that
the learning coefficient is determined by the analytic equivalence class
of Kullback information, and show experimentally that the stochastic
complexity by the MCMC method is also given by the equivalence class.

1 Introduction

Learning machines such as layered neural networks, normal mixtures, hidden
Markov models, Boltzmann machines, Bayes networks and stochastic context-
free grammars are not regular statistical models, because their Fisher infor-
mation matrices are not positive definite. These learning machines are called
singular statistical models because they are not subject to the conventional sta-
tistical theory of regular statistical models. In fact, neither the distribution of
the maximum likelihood estimator nor the Bayes a posteriori distribution con-
verges to the normal distribution, even when the number of training samples
goes to infinity.

Recently, it was proved that the generalization performance of a singular
learning machine in Bayes estimation is determined by the algebraic geometrical
structure of the learning machine [5]. The generalization error G, which is defined
as the expectation value of the Kullback information from the true distribution
to the Bayes predictive distribution, is equal to

G =
λ

n
+ o(

1
n

),

where n is the number of training samples and λ is the learning coefficient. The
constant (−λ) is equal to the largest pole of the zeta function of a learning
machine,

ζ(z) =
∫

H(w)zϕ(w)dw (z ∈ C),

where H(w) is the Kullback information from the true distribution to the learn-
ing machine with the parameter w and ϕ(w) is the Bayes a priori distribution.
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The learning coefficients of some learning machines, for example, a three-layer
perceptron and a reduced rank regression, have been obtained by using resolu-
tion of singularities [2,3], which clarified that the generalization errors of singular
learning machines are smaller than those of regular statistical models, if Bayes
estimation is employed in learning.

In this paper, we introduce the concept of analytic equivalence between the
Kullback informations, and show the following three facts.

(1) We prove that, if two learning machines are analytically equivalent, then
they have the same learning coefficient.
(2) For the case when the Kullback information is defined on the two-dimensional
Euclidean space, we derive the concrete learning coefficient of a given equivalence
class.
(3) We show experimentally that the the stochastic complexity obtained by the
Markov chain Monte Carlo method is also determined by the analytic equivalence
class.

In regular statistical models, the asymptotic behavior of a learning machine
is completely determined by the Fisher information matrix, whereas in singu-
lar learning machines, it is determined by the analytic equivalence class of the
Kullback information.

2 Statistical Framework of Machine Learning

In this section, we summarize the well known statistical framework of Bayes
estimation.

2.1 Bayes Learning

Let q(x) be a probability density function called as the true distribution which
is defined on the N -dimensional Euclidean space, RN . A set of random variables

Xn = (X1, X2, ..., Xn)

consists of training samples which are independently taken from the probabil-
ity distribution q(x)dx. The integer n is referred to as the number of training
samples. A learning machine is represented by a conditional probability density
function p(x|w) where w is a d-dimensional parameter. When an a priori prob-
ability density function ϕ(w) is given on Rd, the Bayes a posteriori distribution
is defined by

p(w|Xn) =
1

Z(Xn)
ϕ(w)

n∏
i=1

p(Xi|w),

where and Z(Xn) is the normalizing constant. The Bayes predictive distribution
is also defined by

p(x|Xn) =
∫

p(x|w) p(w|Xn) dw,
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which is the estimated probability density function on RN by Bayes learning.
The Generalization error G(n) is measured by the average Kullback information
from the true distribution q(x)dx to the predictive distribution p(x|Xn)dx,

G(n) = E
[∫

q(x) log
q(x)

p(x|Xn)
dx

]
,

where E[·] denotes the expectation value overall sets of Xn. Also we define the
stochastic complexity by

F (n) = E
[
− logZ(Xn)

]
+ n

∫
q(x) log q(x)dx.

It is easy to show that
G(n) = F (n + 1) − F (n)

holds for an arbitrary natural number n. The stochastic complexity indicates
how appropriate the set p(x|w) and ϕ(w) is for a given training sample set Xn.

2.2 Asymptotic Theory

In learning theory, it is important to clarify the asymptotic behaviors of G(n)
and F (n). The relation between algebraic geometry of the Kullback information
and singular learning machines was clarified, and the following theorem was
proved.

Theorem 1. When n tends to infinity, the generalization error and the stochas-
tic complexity are respectively given by

G(n) =
λ

n
+ o(

1
n

),

F (n) = λ log n − (m − 1) log log n + O(1),

where (−λ) and m are respectively equal to the largest pole and its order of the
zeta function,

ζ(z) =
∫

H(w)z ϕ(w) dw.

Here H(w) is the Kullback information

H(w) =
∫

q(x) log
q(x)

p(x|w)
dx.

Proof. The proof is given in [5].

This theorem shows that the learning coefficient is determined by the Kullback
information H(w) and the a priori distribution ϕ(w).
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3 Analytic Equivalence of Kullback Information

In this section we introduce the concept of analytic equivalence and prove that,
if the Kullback informations are analytically equivalent, then they have the same
learning coefficient.

Definition 1. Let U and V be open sets in Rd whose closures are compact. Two
real analytic functions K(w) on U and H(w) on V are said to be analytically
equivalent if there exists a bijective analytic map g : V → U

H(w) = K(g(w)) (w ∈ V )

and the Jacobian |g′(w)| satisfies the condition that ε < |g′(w)| < C in V for
some ε, C > 0.

Then by the definition of the analytic equivalence, the following theorem holds.

Theorem 2. Assume that two real analytic functions K(w) on U and H(w) on
V are analytically equivalent. Then two zeta functions

ζ1(z) =
∫

U

K(w)zdw

ζ2(z) =
∫

V

H(w)zdw

have the same largest pole.

Proof. It is well known that ζ1(z) and ζ2(z) are meromorphic functions and all
poles of them are negative and real numbers [4]. From the definition, it follows
that

ζ2(z) =
∫

U

H(g(w))z |g′(w)|dw

=
∫

U

K(w)z |g′(w)|dw

Let (−λ) be the largest pole of ζ1(z). When z is real and z > −λ

ε|ζ1(z)| < |ζ2(z)| < C|ζ1(z)|

This inequality shows that the largest poles should coincide.

Note that two zeta functions do not have the same second largest pole in general.

Definition 2. Let v = (v1, . . . , vn) be a set of nonnegative integers. For a mono-
mial xu = xu1

1 · · · xun
n , we define the weighted degree ordw(xu) with the weight v

by
ordw(xu) =< v, u >= v1u1 + . . . + vnun.

A polynomial is said to be guasi-homogeneous if it is a linear combination of the
monomials which have the same weighted degree with some weight.
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Definition 3. An analytic function f is said to have an algebraic isolated sin-
gularity at O, if the dimension of a real vector space

M(f) = R[[x1, · · · , xn]]/ <
∂f

∂x1
, · · · , ∂f

∂xn
>

is finite.

The following theorem shows a sufficient condition of the analytic equivalence.

Theorem 3. Let f be an analytic function

f = fd + fd+1 + fd+2 + · · · , fd �= 0

where fd is a quasi-homegeneous polynomial of degree q with weight v. If the
weighted degree of xui exceeds d, c1, . . . , cs are constants, then f and fd+c1xu1 +
· · · + csxus are analytically equivalent.

Proof. For the proof of this theorem, see [1].

4 Two Dimensional Parameter Space

In the previous section, we have shown that the learning coefficient is determined
by the analytic equivalence class. In this section we give the concrete learning
coefficients for a given analytic function on two-dimensional space.

Theorem 4. Let f be an analytic function given by

f(x, y) = Σk+l=4aklx
kyl + Σ2≤i+j≤3bijx

iyj,

where akl and bij are the real number coefficients of xkyl, xiyj, respectively. We
consider the zeta function such that

ζ(z) =
∫

fszdxdy.

Then largest pole of the zeta function is as follows.

λ =

⎧⎨
⎩

2
as (k′ > i′, l′ = j′)or(Σbijx

iyj is a symmetric expression.)
2n+1

(4n+l′)s (4 − a < j′, k′ > i′, l′ < j′)
2

(4−a)s (4 − a ≥ j′, k′ > i′, l′ > j′)

where k′ is the value of the minimum k which satisfies akl �= 0, l′ is the value of
the minimum l which satisfies akl �= 0, i′ is the value of the minimum i which
satisfies bij �= 0, j′ is the value of the minimum j which satisfies bij �= 0.

Proof. Let X be the curve f(x, y) = 0. We put x = x, y = xy on X11. Then we
have fsz

11 =

xasz+1ysl′z(Σk+l=4aklx
4−ayl−l′ + Σ2≤i+j≤3bijx

i+j−ayj−l′ )sz .
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Similarly, we put x = xy, y = y on X12. Then we obtain fsz
12 =

xai′zyasz+1(Σk+l=4aklx
k−i′

yk+l−a + 1 + Σ2≤i+j≤3,i�=i′ bijx
i−i′

yi+j−a)sz .

where k′ > i′, l′ < j′.
Hence,

ζ(z) =
∫

X11

fsz
11dxdy +

∫
X12

fsz
12 dxdy.

Here, Σk+l=4aklx
4−ayl−l′ +Σ2≤i+j≤3bijx

i+j−ayj−l′ and x4−a + yj′−l′ are an-
alytic equvalence. Therefore, we have to consider only about

∫
X11

xasz+1ysl′z(x4−a + yj′−l′)szdxdy.

When continuing resolution of singularity, the zeta function ζ(z) is as follows.

ζ(z) =
∫

Xn+1,1

xn(4sz+2)+sl′zy4sz+2+sl′z(1 + · · ·)szdxdy

+
∫

Xn+1,2

xasz+1yn(4sz+2)+sl′z(xk+l−a + yj′−l′−n(k+l−a))szdxdy,

where (j′ − l′) = n(k + l − a). Hence, we obtain

λ =
2n + 1

(4n + l′)s
.

In the other case, too, it is possible to prove in the same way. Also, if replacing
x and y, we can get the value of λ in all cases.

5 Stochastic Complexity by MCMC Method

In the previous section, we have shown that the learning coefficients are de-
termined by the analytic equivalence classes. In this section, by comparing the
theoretical results with the numerical results by the Markov chain Monte Carlo
method, we show that the stochastic complexities in real applications are also
determined by the equivalence classes. Let us study the function,

F (n) = − log
∫

exp(−nf(x, y))ϕ(x, y)dxdy.

From the theoretical point of view, it has the asymptotic expansion,

F (n) = λ log n − (m − 1) log log n.

In the real applications of Bayes estimation, F (n) is numerically calculated by

F (n) =
∫ 1

0
Et[nf(x, y))]dt
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where Et[·] shows the expectation value over the probability distribution,

Et[nf(x, y)] =
∫

nf(x, y)pt(x, y)dxdy,

where
pt(x, y) ∝ exp(−ntf(x, y))ϕ(x, y).

The random samples subject to pt(x, y) can be generated by the MCMC method.
The following tables show the experimental results of F (n) for n = 10000.

analytic function F (n)
y2 + x3 1.900087
y2 + x3 + y3 1.902980
y2 + x3 + xy3 1.965838
y2 + x3 + x4 2.012928
y2 + x3 + y3 + xy3 + x4 1.862806
y2 + x3 + y5 1.930222
y2 + x3 + x10 1.910901
y2 + x3 + y5x10 1.909953
y2 + x3 + x10 + y5 1.914395
y2 + x3 + x10 + y5 + y5x10 1.909564
y2 + x3 + x100y100 1.890016
y2 + x3 + x100y100 + x100 + y100 1.895358

analytic function F (n)
y3 + x5 1.115474
y3 + x5 + x2y2 1.162772
y3 + x5 + x10y10 1.115357
y3 + x5 + x15y10 1.115979
y3 + x5 + x10y15 1.114232
y3 + x5 + x20y20 1.115570
y3 + x5 + x100y100 1.103289
y3 + x5 + x100y100 + x100 + y100 1.101518

analytic function F (n)
y5 + x7 0.563414
y5 + x7 + x10y2 0.555947
y5 + x7 + x2y10 0.561365
y5 + x7 + x10y10 0.562976
y5 + x7 + x10y15 0.559782
y5 + x7 + x15y10 0.552454
y5 + x7 + x100y100 0.566214
y5 + x7 + x100y100 + x100 + y100 0.564594

These results show that the numerically calculated stochastic complexities are
determined by the analytic equivalence classes.
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6 Discussion

In this paper, we have studied the relation between the learning coefficients and
analytic equivalence classes. Let us discuss the results from three viewpoints.

Firstly, from the mathematical point of view, the result of this paper is de-
voted to the case of isolated singularities. In almost all learning machines, their
singularities are not isolated, however, there is no simple criterion that can judge
the analytic equivalence for non-isolated singularities. To construct the mathe-
matical criterion of the analytic equivalence class in singular learning machines
is the problem for the future study.

Secondly, from the statistical point of view, our result is a generalization of
Fisher’s asymptotic statistics. If two analytic functions have nondenerate Hesse
matrices, then they are analytically equivalent. This is the reason why the learn-
ing coefficients of regular statistical models are determined by the dimensions
of the parameter spaces. In singular learning machines, even if the learning ma-
chines have the same-dimensional parameter spaces, they have different learning
coefficients in general. Consequently, the concept of the analytic equivalence class
is a generalization of the Fisher information matrix.

And lastly, from the learning theoretical point of view, our result shows how the
stochastic complexities are determined in the real world applications. The stochas-
tic complexity is important in Bayes learning, which is applied to model selection
and hyperpramater optimization. However, it is well known that it requires huge
computational costs to calculate the stochastic compelxity. We expect that a new
efficient algorithm based on the concept of analytic equivalence class.

7 Conclusion

We proved mathematically that the learning coefficients are determined by the
analytic equivalence class of the Kullback information, and showed experimen-
tally that the practical stochastic complexities are also determined by the ana-
lytic equivalence class. To construct the mathematical method which enables us
to calculate the learning coefficients for the higher dimensional Kullback infor-
mation is the problem for the future study.
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