

Lecture Notes in Computer Science 4131
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefanos Kollias Andreas Stafylopatis
Włodzisław Duch Erkki Oja (Eds.)

Artificial
Neural Networks –
ICANN 2006

16th International Conference
Athens, Greece, September 10 – 14, 2006
Proceedings, Part I

13

Volume Editors

Stefanos Kollias
Andreas Stafylopatis
National Technical University of Athens
School of Electrical and Computer Engineering
157 80 Zographou, Athens, Greece
E-mail: {stefanos,andreas}@cs.ntua.gr

Włodzisław Duch
Nicolaus Copernicus University
Department of Informatics
ul. Grudziadzka 5, 87-100 Torun, Poland
E-mail: wduch@phys.uni.torun.pl

Erkki Oja
Helsinki University of Technology
Laboratory of Computer and Information Science
P.O. Box 5400, 02015 Hut, Finland
E-mail: erkki.oja@hut.fi

Library of Congress Control Number: 2006931797

CR Subject Classification (1998): F.1, I.2, I.5, I.4, G.3, J.3, C.2.1, C.1.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-38625-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38625-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11840817 06/3142 5 4 3 2 1 0

Preface

This book includes the proceedings of the International Conference on Artificial
Neural Networks (ICANN 2006) held on September 10-14, 2006 in Athens, Greece,
with tutorials being presented on September 10, the main conference taking place
during September 11-13 and accompanying workshops on perception, cognition and
interaction held on September 14, 2006.

The ICANN conference is organized annually by the European Neural Network
Society in cooperation with the International Neural Network Society, the Japanese
Neural Network Society and the IEEE Computational Intelligence Society. It is the
premier European event covering all topics concerned with neural networks and
related areas. The ICANN series of conferences was initiated in 1991 and soon
became the major European gathering for experts in these fields.

In 2006 the ICANN Conference was organized by the Intelligent Systems
Laboratory and the Image, Video and Multimedia Systems Laboratory of the National
Technical University of Athens in Athens, Greece.

From 475 papers submitted to the conference, the International Program
Committee selected, following a thorough peer-review process, 208 papers for
publication and presentation to 21 regular and 10 special sessions. The quality of the
papers received was in general very high; as a consequence, it was not possible to
accept and include in the conference program many papers of good quality.

A variety of topics constituted the focus of paper submissions. In regular sessions,
papers addressed topics such as learning algorithms, hybrid architectures, neural
dynamics and complex systems, self-organization, computational neuroscience,
connectionist cognitive science, neural control, robotics and planning, data analysis,
signal and time series processing, image and vision analysis, pattern recognition and
applications to bioinformatics, market analysis and other real-world problems.

Special sessions, organized by distinguished researchers, focused on significant
aspects of current neural network research, including cognitive machines, Semantic
Web technologies and multimedia analysis, bridging the semantic gap in multimedia
machine learning approaches, feature selection and dimension reduction for
regression, learning random neural networks and stochastic agents, visual attention
algorithms and architectures for perceptional understanding and video coding, neural
computing in energy engineering, bio-inspired neural network on-chip
implementation and applications, computational finance and economics.

Prominent lecturers provided key-note speeches for the conference. Moreover,
tutorials were given by well-known researchers. John Taylor was the honorary Chair
of the conference.

Three post-conference workshops, on intelligent multimedia, semantics,
interoperability and e-culture, on affective computing and interaction and on cognitive
machines, concluded the focus of ICANN 2006 on the state-of-the-art research on
neural networks and intelligent technologies in relation to the domains of cognition,
perception and interaction. In-depth discussion was made on the prospects and future

VI Preface

developments of the theoretical developments and applications of neural network
models, algorithms and systems in the fields of cognition, neurobiology, semantics,
perception and human computer interaction.

We would like to thank all members of the organizing laboratories for their
contribution to the organization of the conference. In particular we wish to thank Lori
Malatesta and Eleni Iskou, who greatly helped in handling a variety of technical and
administrative problems related to the conference organization. Finally, we wish to
thank Alfred Hofmann and Christine Guenther from Springer for their help and
collaboration in the publication of the ICANN proceedings.

July 2006 Stefanos Kollias, Andreas Stafylopatis

Organization

General Chair

Stefanos Kollias,
National Technical University of Athens

Co-Chair

Andreas Stafylopatis, NTUA, Greece

Program Chair

Wlodzislaw Duch, Torun, Poland and Singapore
ENNS President
Erkki Oja, Helsinki, Finland

Honorary Chair

John G. Taylor, Kings College, London, UK; ENNS Past President

International Program Committee

• Hojat Adeli, Ohio State University, USA
• Peter Andras, University of Newcastle, UK
• Marios Angelides, Brunel University, UK
• Panos Antsaklis, University of N. Dame, USA
• Bruno Apolloni, University of Milan, Italy
• Nikolaos Bourbakis, Wright State University, USA
• Peter Erdi, University of Budapest, Hungary and Kalamazoo
• Georg Dorffner, University of Vienna, Austria
• Patrick Gallinari, Université Paris 6, France
• Christophe Garcia, France Telecom
• Erol Gelenbe, Imperial College, UK
• Stan Gielen, University of Nijmegen, The Netherlands
• Pascal Hitzler, University of Karlsruhe, Germany
• Nikola Kasabov, Kedri, Australia, New Zealand
• Janusz Kacprzyk, Warsaw, Poland
• Okyay Kaynak, Bogazici University, Turkey
• Chris Koutsougeras, Tulane University, USA
• Thomas Martinetz, University of Luebeck, Germany
• Evangelia Micheli-Tzanakou, Rutgers University, USA

VIII Organization

• Lars Niklasson, Skøvde University, Sweden
• Andreas Nuernberger, University of Magdeburg, Germany
• Marios Polycarpou, University of Cyprus
• Demetris Psaltis, Caltech, USA
• Branimir Reljin, University of Belgrade, Serbia
• Olli Simula, Technical University of Helsinki, Finland
• Alessandro Sperduti, University of Padova, Italy
• Lefteris Tsoukalas, Purdue University, USA
• Michel Verleysen, Louv.-la-Neuve, Belgium
• Alessandro Villa, University of Grenoble, France

Local Organizing Committee

• Yannis Avrithis, ICCS-NTUA
• Christos Douligeris, Piraeus University
• George Dounias, Aegean University
• Kostas Karpouzis, ICCS-NTUA
• Aris Likas, University of Ioannina
• Konstantinos Margaritis, University of Macedonia
• Vassilis Mertzios, DUTH
• Stavros Perantonis, NCSR Demokritos
• Yannis Pitas, AUTH, Salonica
• Costas Pattichis, University of Cyprus
• Apostolos Paul Refenes, AUEB
• Christos Schizas, University of Cyprus
• Giorgos Stamou, ICCS-NTUA
• Sergios Theodoridis, UoA
• Spyros Tzafestas, NTUA
• Nicolas Tsapatsoulis, University of Cyprus
• Mihalis Zervakis, TUC, Crete

Reviewers

Abe Shigeo Kobe University
Adamczak Rafal Nicholas Copernicus University
Aiolli Fabio University of Pisa
Akrivas George National Technical University of Athens
Albrecht Andreas University of Hertfordshire
Alhoniemi Esa University of Turku
Andonie Razvan Central Washington University
Anguita Davide University of Genoa
Angulo-Bahon Cecilio Univ. Politecnica de Catalunya, Spain
Archambeau Cedric Université Catholique de Louvain
Atencia Miguel Universidad de Malaga

 Organization IX

Aupetit Michael Commissariat à l`Energie Atomique
Avrithis Yannis National Technical University of Athens
Bedoya Guillermo Technical University of Catalonia, Spain
Bianchini Monica Università di Siena
Boni Andrea University of Trento
Caputo Barbara Royal Institute of Technology
Caridakis George National Technical University of Athens
Cawley Gavin University of East Anglia
Chetouani Mohamed Université Paris
Chortaras Alexandros National Technical University of Athens
Cichocki Andrzej RIKEN
Clady Xavier Université Pierre et Marie Curie
Corchado Emilio Applied Computational Intelligence Unit
Cottrell Marie Université Paris I
Crook Nigel Oxford Brookes University
Dablemont Simon Université Catholique de Louvain
Delannay Nicolas Université Catholique de Louvain
Derpanis Kostas York University
Dimitrakakis Christos IDIAP
Dominguez Merino Enrique E.T.S.I. Informatica, Spain
Dorronsoro Jose Universidad Autónoma de Madrid
Douligeris Christos Piraeus University
Dounias George Aegean University
Drosopoulos Nasos National Technical University of Athens
Duch Wlodzislaw Nicolaus Copernicus University
Elizondo David De Montfort University
Ferles Christos National Technical University of Athens
Flanagan Adrian Nokia Research Center
Francois Damien Université Catholique de Louvain
Fyfe Colin University of Paisley
Garcia-Pedrajas Nicolas University of Cordoba
Gas Bruno LISIF-UPMC

Gonzales Abril
Luis Faculdad Ciencias Economicas y

 Empresari
Goser Karl Universitaet Dortmund
Gosselin Bernard Faculté Polytechnique de Mons
Grana Manuel Univ. Pais Vasco
Grothmann Ralph University of Bremen
Hammer Barbara University of Osnabrueck
Haschke Robert Bielefeld University
Hatziargyriou Nikos National Technical Univesity of Athens
Heidemann Gunther Bielefeld University
Hollmen Jaakko Technical University of Helsinki

X Organization

Honkela Antti Helsinki University of Technology
Hryniewicz Olgierd Systems Research Institute PAS
Huang Di City University of Hong Kong
Huang Te-Ming The University of Auckland
Huelse Martin Fraunhofer Institut
Igel Christian Ruhr-Universitaet Bochum
Indiveri Giacomo UNI-ETH Zurich
Isasi Pedro Universidad Carlos III de Madrid
Ishii Shin Nara Institute of Science and Technology
Ito Yoshifusa Aichi-Gakuin University
Jirina Marcel Acad. of Sciences of the Czech Republic
Kaban Ata University of Birmingham
Kalveram Karl Theodor Institute of Experimental Psychology
Karpouzis Kostas ICCS-NTUA
Kasderidis Stathis Institute of Computer Science - FORTH

Kim
DaeEun Max Planck Institute for Psychological

 Research
Kollias Stefanos National Technical University of Athens
Korbicz Jozef UZG
Koronacki Jacek IPI PAN
Koskela Markus Technical University of Helsinki
Kosmopoulos Dimitris National Centre for Scientific Research
Kounoudes Anastasios SignalGenerix Ltd
Kouropteva Olga University of Oulu
Kurfess Franz California Polytechnic State University
Kurzynski Marek Wroclaw University of Technology
Laaksonen Jorma Technical University of Helsinki
Lang Elmar University of Regensburg
Leclercq Edouard Université du Havre
Lee John Université Catholique de Louvain
Lehtimaki Pasi Helsinki University of Technology
Leiviska Kauko University of Oulu
Lendasse Amaury Helsinki University of Technology
Likas Aris University of Ioannina
Loizou Christos Intercollege, Limassol Campus
Madrenas Jordi Technical University of Catalunya
Malatesta Lori National Technical Univesity of Athens
Mandziuk Jacek Warsaw University of Technology
Marchiori Elena Vrije Universiteit Amsterdam
Marcu Teodor University of Duisburg-Essen

Markellos
Raphael Athens University of Economics and

 Business
Markowska-Kaczmar Urszula Wroclaw University of Technology

 Organization XI

Martin-Merino Manuel University Pontificia of Salamanca
Masulli Francesco Polo Universitario di La Spezia G.Marco
Micheli Alessio University of Pisa
Morra Lia Politecnico di Torino
Moutarde Fabien Ecole des Mines de Paris
Mueller Klaus-Robert University of Potsdam
Muresan Raul SC. NIVIS SRL
Nakayama Minoru CRADLE
Nikolopoulos Konstantinos Lancaster University Management School
Ntalianis Klimis National Technical University of Athens
Oja Erkki Helsinki University of Technology
Olteanu Madalina Université Paris 1
Ortiz Boyer Domingo University of Cordoba
Osowski Stanislaw Warsaw University of Technology
Parra Xavier Technical University of Catalonia
Pateritsas Christos National Technical University of Athens
Pattichis Marios University of New Mexico
Pattichis Costas University of Cyprus
Paugam-Moisy Helene Institut des Sciences Cognitives
Pedreira Carlos Catholic University of Rio de Janeiro
Pelckmans Kristiaan K.U.Leuven
Perantonis Stavros NCSR Demokritos
Pertselakis Minas National Technical University of Athens
Peters Gabriele Universitaet Dortmund
Piegat Andrzej Uniwersytet Szczecinski
Pitas Yannis Aristotle University of Thessaloniki
Polani Daniel University of Hertfordshire
Porrmann Mario Heinz Nixdorf Institute
Prevost Lionel Lab. Instr. et Systèmes d'Ile de France
Prevotet Jean-Christophe Université Pierre et Marie Curie, Paris
Raivio Kimmo Helsinki University of Technology
Raouzeou Amaryllis National Technical University of Athens
Rapantzikos Konstantinos National Technical University of Athens

Refenes
Apostolos Paul Athens University Economics &

 Business
Risto Risto Tampere University of Technology
Rocha Miguel Universidade do Minho
Romariz Alexandre Universidade de Brasilia
Rossi Fabrice INRIA Rocquencourt
Rovetta Stefano University of Genova
Rutkowska Danuta Technical University of Czestochowa
Rynkiewicz Joseph Université Paris 1
Salojarvi Jarkko Technical University of Helsinki

XII Organization

Schrauwen Benjamin Universiteit Gent
Schwenker Friedhelm University of Ulm
Seiffert Udo Leibniz Institute of Plant Genetics
Sfakiotakis Michael Institute of Computer Science FORTH

Sierra Alejandro Universidad Autónoma de Madrid
Siivola Vesa Technical University of Helsinki
Skodras Thanos University of Patras
Stafylopatis Andreas National Technical University of Athens
Stamou Giorgos ICCS-NTUA
Steil Jochen J. University of Bielefeld
Steuer Michal University of the West of England
Stoilos Giorgos National Technical Univesity of Athens
Strickert Marc University of Osnabrueck

Suárez Alberto Universidad Autónoma de Madrid
Sugiyama Masashi Fraunhofer FIRST
Suykens Johan Katholieke Universiteit Leuven
Szczepaniak Piotr TUL
Tadeusiewicz Ryszard AGH
Tagliaferri Roberto Univ. Salerno
Taylor John King’s College London
Terra Marco University of Sao Paulo
Theodoridis Sergios UoA
Tomas Ana Maria Universidade Aveiro
Trentin Edmondo Università di Siena
Tsakiris Dimitris University of Crete
Tsapatsoulis Nicolas University of Cyprus
Tsotsos John York University
Tzouvaras Vassilis National Technical Univesity of Athens
Usui Shiro RIKEN
Van Looy Stijn Universiteit Gent
Vannucci Marco Scuola Superiore Sant`Anna
Venetis Anastassios National Technical Univesity of Athens
Venna Jarkko Helsinki University of Technology
Verbeek Jakob University of Amsterdam
Viet Nguyen Hoang Polish Acacdemy of Sciences
Villmann Thomas Clinic for Psychotherapy
Vitay Julien INRIA
Wallace Manolis National Technical Univesity of Athens
Watanabe Norifumi Keio University
Wennekers Thomas University of Plymouth
Wiegerinck Wim Radboud University Nijmegen
Wira Patrice Universitede Haute-Alsace

 Organization XIII

Wyns Bart Ghent University
Yang Zhijun University of Edinburgh
Yearwood John University of Ballarat
Zervakis Mihalis TUC
Zimmermann Hans-Georg Siemens AG

Table of Contents – Part I

Feature Selection and Dimension Reduction
for Regression (Special Session)

Dimensionality Reduction Based on ICA for Regression Problems 1
Nojun Kwak, Chunghoon Kim

A Functional Approach to Variable Selection in Spectrometric
Problems . 11

Fabrice Rossi, Damien François, Vincent Wertz, Michel Verleysen

The Bayes-Optimal Feature Extraction Procedure for Pattern
Recognition Using Genetic Algorithm . 21

Marek Kurzynski, Edward Puchala, Aleksander Rewak

Speeding Up the Wrapper Feature Subset Selection in Regression
by Mutual Information Relevance and Redundancy Analysis 31

Gert Van Dijck, Marc M. Van Hulle

Effective Input Variable Selection for Function Approximation 41
Luis Javier Herrera, Héctor Pomares, Ignacio Rojas,
Michel Verleysen, Alberto Guillén

Comparative Investigation on Dimension Reduction and Regression
in Three Layer Feed-Forward Neural Network . 51

Lei Shi, Lei Xu

Learning Algorithms (I)

On-Line Learning with Structural Adaptation in a Network of Spiking
Neurons for Visual Pattern Recognition . 61

Simei Gomes Wysoski, Lubica Benuskova, Nikola Kasabov

Learning Long Term Dependencies with Recurrent Neural Networks 71
Anton Maximilian Schäfer, Steffen Udluft,
Hans Georg Zimmermann

Adaptive On-Line Neural Network Retraining for Real Life Multimodal
Emotion Recognition . 81

Spiros Ioannou, Loic Kessous, George Caridakis, Kostas Karpouzis,
Vered Aharonson, Stefanos Kollias

XVI Table of Contents – Part I

Time Window Width Influence on Dynamic BPTT(h) Learning
Algorithm Performances: Experimental Study . 93

Vincent Scesa, Patrick Henaff, Fathi Ben Ouezdou,
Faycal Namoun

Framework for the Interactive Learning of Artificial Neural
Networks . 103

Matúš Užák, Rudolf Jakša

Analytic Equivalence of Bayes a Posteriori Distributions 113
Takeshi Matsuda, Sumio Watanabe

Learning Algorithms (II)

Neural Network Architecture Selection: Size Depends on Function
Complexity . 122

Iván Gómez, Leonardo Franco, José L. Subirats, José M. Jerez

Competitive Repetition-suppression (CoRe) Learning 130
Davide Bacciu, Antonina Starita

Real-Time Construction of Neural Networks . 140
Kang Li, Jian Xun Peng, Minrui Fei

MaxMinOver Regression: A Simple Incremental Approach for Support
Vector Function Approximation . 150

Daniel Schneegaß, Kai Labusch, Thomas Martinetz

A Variational Formulation for the Multilayer Perceptron 159
Roberto Lopez, Eugenio Oñate

Advances in Neural Network Learning Methods
(Special Session)

Natural Conjugate Gradient Training of Multilayer Perceptrons 169
Ana Gonźalez, José R. Dorronsoro

Building Ensembles of Neural Networks with Class-Switching 178
Gonzalo Mart́ınez-Muñoz, Aitor Sánchez-Mart́ınez,
Daniel Hernández-Lobato, Alberto Suárez

K-Separability . 188
W�lodzis�law Duch

Table of Contents – Part I XVII

Lazy Training of Radial Basis Neural Networks . 198
José M. Valls, Inés M. Galván, and Pedro Isasi

Investigation of Topographical Stability of the Concave and Convex
Self-Organizing Map Variant . 208

Fabien Molle, Jens Christian Claussen

Alternatives to Parameter Selection for Kernel Methods 216
Alberto Muñoz, Isaac Mart́ın de Diego, Javier M. Moguerza

Faster Learning with Overlapping Neural Assemblies 226
Andrei Kursin, Dušan Húsek, Roman Neruda

Improved Storage Capacity of Hebbian Learning Attractor Neural
Network with Bump Formations . 234

Kostadin Koroutchev, Elka Korutcheva

Error Entropy Minimization for LSTM Training . 244
Lúıs A. Alexandre, J.P. Marques de Sá

Ensemble Learning

Can AdaBoost.M1 Learn Incrementally? A Comparison Learn++

Under Different Combination Rules . 254
Hussein Syed Mohammed, James Leander, Matthew Marbach,
Robi Polikar

Ensemble Learning with Local Diversity . 264
Ricardo Ñanculef, Carlos Valle, Héctor Allende,
Claudio Moraga

A Machine Learning Approach to Define Weights for Linear
Combination of Forecasts . 274

Ricardo Prudêncio, Teresa Ludermir

A Game-Theoretic Approach to Weighted Majority Voting for
Combining SVM Classifiers . 284

Harris Georgiou, Michael Mavroforakis, Sergios Theodoridis

Improving the Expert Networks of a Modular Multi-Net System for
Pattern Recognition . 293

Mercedes Fernández-Redondo, Joaqúın Torres-Sospedra,
Carlos Hernández-Espinosa

XVIII Table of Contents – Part I

Learning Random Neural Networks and Stochastic
Agents (Special Session)

Evaluating Users’ Satisfaction in Packet Networks Using Random
Neural Networks . 303

Gerardo Rubino, Pierre Tirilly, Martın Varela

Random Neural Networks for the Adaptive Control of Packet
Networks . 313

Michael Gellman, Peixiang Liu

Hardware Implementation of Random Neural Networks with
Reinforcement Learning . 321

Taskin Kocak

G-Networks and the Modeling of Adversarial Agents 330
Yu Wang

Hybrid Architectures

Development of a Neural Net-Based, Personalized Secure
Communication Link . 340

Dirk Neumann, Rolf Eckmiller, Oliver Baruth

Exact Solutions for Recursive Principal Components Analysis
of Sequences and Trees . 349

Alessandro Sperduti

Active Learning with the Probabilistic RBF Classifier 357
Constantinos Constantinopoulos, Aristidis Likas

Merging Echo State and Feedforward Neural Networks for Time Series
Forecasting . 367

Štefan Babinec, Jǐŕı Posṕıchal

Language and Cognition Integration Through Modeling Field Theory:
Category Formation for Symbol Grounding . 376

Vadim Tikhanoff, José Fernando Fontanari, Angelo Cangelosi,
Leonid I. Perlovsky

A Methodology for Estimating the Product Life Cycle Cost Using a
Hybrid GA and ANN Model . 386

Kwang-Kyu Seo

Table of Contents – Part I XIX

Self Organization

Using Self-Organizing Maps to Support Video Navigation 396
Thomas Bärecke, Ewa Kijak, Andreas Nürnberger,
Marcin Detyniecki

Self-Organizing Neural Networks for Signal Recognition 406
Jan Koutńık, Miroslav Šnorek

An Unsupervised Learning Rule for Class Discrimination
in a Recurrent Neural Network . 415

Juan Pablo de la Cruz Gutiérrez

On the Variants of the Self-Organizing Map That Are Based on
Order Statistics . 425

Vassiliki Moschou, Dimitrios Ververidis,
Constantine Kotropoulos

On the Basis Updating Rule of Adaptive-Subspace Self-Organizing
Map (ASSOM) . 435

Huicheng Zheng, Christophe Laurent, Grégoire Lefebvre

Composite Algorithm for Adaptive Mesh Construction Based
on Self-Organizing Maps . 445

Olga Nechaeva

A Parameter in the Learning Rule of SOM That Incorporates
Activation Frequency . 455

Antonio Neme, Pedro Miramontes

Nonlinear Projection Using Geodesic Distances and the Neural Gas
Network . 464

Pablo A. Estévez, Andrés M. Chong, Claudio M. Held,
Claudio A. Perez

Connectionist Cognitive Science

Contextual Learning in the Neurosolver . 474
Andrzej Bieszczad and Kasia Bieszczad

A Computational Model for the Effect of Dopamine on Action Selection
During Stroop Test . 485

Ozkan Karabacak, N. Serap Sengor

XX Table of Contents – Part I

A Neural Network Model of Metaphor Understanding with Dynamic
Interaction Based on a Statistical Language Analysis 495

Asuka Terai, Masanori Nakagawa

Strong Systematicity in Sentence Processing by an Echo State
Network . 505

Stefan L. Frank

Modeling Working Memory and Decision Making Using Generic Neural
Microcircuits . 515

Prashant Joshi

A Virtual Machine for Neural Computers . 525
João Pedro Neto

Cognitive Machines (Special Session)

Machine Cognition and the EC Cognitive Systems Projects:
Now and in the Future . 535

John G. Taylor

A Complex Neural Network Model for Memory Functioning
in Psychopathology . 543

Roseli S. Wedemann, Lúıs Alfredo V. de Carvalho,
Raul Donangelo

Modelling Working Memory Through Attentional Mechanisms 553
John Taylor, Nickolaos Fragopanagos, Nienke Korsten

A Cognitive Model of Multi-objective Multi-concept Formation 563
Toshihiko Matsuka, Yasuaki Sakamoto, Jeffrey V. Nickerson,
Arieta Chouchourelou

A Basis for Cognitive Machines . 573
John G. Taylor, Stathis Kasderidis, Panos Trahanias,
Matthew Hartley

Neural Model of Dopaminergic Control of Arm Movements
in Parkinson’s Disease Bradykinesia . 583

Vassilis Cutsuridis

Occlusion, Attention and Object Representations . 592
Neill R. Taylor, Christo Panchev, Matthew Hartley,
Stathis Kasderidis, John G. Taylor

Table of Contents – Part I XXI

A Forward / Inverse Motor Controller for Cognitive Robotics 602
Vishwanathan Mohan, Pietro Morasso

A Computational Model for Multiple Goals . 612
Stathis Kasderidis

Neural Dynamics and Complex Systems

Detection of a Dynamical System Attractor from Spike Train
Analysis . 623

Yoshiyuki Asai, Takashi Yokoi, Alessandro E.P. Villa

Recurrent Neural Networks Are Universal Approximators 632
Anton Maximilian Schäfer, Hans Georg Zimmermann

A Discrete Adaptive Stochastic Neural Model for Constrained
Optimization . 641

Giuliano Grossi

Quantum Perceptron Network . 651
Rigui Zhou, Ling Qin, Nan Jiang

Critical Echo State Networks . 658
Márton Albert Hajnal, András Lőrincz

Rapid Correspondence Finding in Networks of Cortical Columns 668
Jörg Lücke, Christoph von der Malsburg

Adaptive Thresholds for Layered Neural Networks with Synaptic
Noise . 678

Désiré Bollé, Rob Heylen

Backbone Structure of Hairy Memory . 688
Cheng-Yuan Liou

Dynamics of Citation Networks . 698
Gábor Csárdi

Computational Neuroscience

Processing of Information in Synchroneously Firing Chains in
Networks of Neurons . 710

Jens Christian Claussen

XXII Table of Contents – Part I

Phase Precession and Recession with STDP and Anti-STDP 718
Răzvan V. Florian, Raul C. Mureşan

Visual Pathways for Detection of Landmark Points 728
Konstantinos Raftopoulos, Nikolaos Papadakis,
Klimis Ntalianis

A Model of Grid Cells Based on a Path Integration
Mechanism . 740

Alexis Guanella, Paul F.M.J. Verschure

Temporal Processing in a Spiking Model of the Visual System 750
Christo Panchev

Accelerating Event Based Simulation for Multi-synapse Spiking Neural
Networks . 760

Michiel D’Haene, Benjamin Schrauwen, Dirk Stroobandt

A Neurocomputational Model of an Imitation Deficit Following Brain
Lesion . 770

Biljana Petreska, Aude G. Billard

Temporal Data Encoding and SequenceLearning with Spiking Neural
Networks . 780

Robert H. Fujii, Kenjyu Oozeki

Neural Control, Reinforcement Learning
and Robotics Applications

Optimal Tuning of Continual Online Exploration in Reinforcement
Learning . 790

Youssef Achbany, Francois Fouss, Luh Yen, Alain Pirotte,
Marco Saerens

Vague Neural Network Controller and Its Applications 801
Yibiao Zhao, Rui Fang, Shun Zhang, Siwei Luo

Parallel Distributed Profit Sharing for PC Cluster . 811
Takuya Fujishiro, Hidehiro Nakano, Arata Miyauchi

Feature Extraction for Decision-Theoretic Planning in Partially
Observable Environments . 820

Hajime Fujita, Yutaka Nakamura, Shin Ishii

Table of Contents – Part I XXIII

Reinforcement Learning with Echo State Networks 830
István Szita, Viktor Gyenes, András Lőrincz

Reward Function and Initial Values: Better Choices for Accelerated
Goal-Directed Reinforcement Learning . 840

Laëtitia Matignon, Guillaume J. Laurent,
Nadine Le Fort-Piat

Nearly Optimal Exploration-Exploitation Decision Thresholds 850
Christos Dimitrakakis

Dual Adaptive ANN Controllers Based on Wiener Models
for Controlling Stable Nonlinear Systems . 860

Daniel Sbarbaro

Online Stabilization of Chaotic Maps Via Support Vector Machines
Based Generalized Predictive Control . 868

Serdar Iplikci

Robotics, Control, Planning

Morphological Neural Networks and Vision Based Mobile Robot
Navigation . 878

Ivan Villaverde, Manuel Graña, Alicia d’Anjou

Position Control Based on Static Neural Networks of Anthropomorphic
Robotic Fingers . 888

Juan Ignacio Mulero-Mart́ınez, Francisco Garćıa-Córdova,
Juan López-Coronado

Learning Multiple Models of Non-linear Dynamics for Control Under
Varying Contexts . 898

Georgios Petkos, Marc Toussaint, Sethu Vijayakumar

A Study on Optimal Configuration for the Mobile Manipulator: Using
Weight Value and Mobility . 908

Jin-Gu Kang, Kwan-Houng Lee

VSC Perspective for Neurocontroller Tuning . 918
Mehmet Önder Efe

A Neural Network Module with Pretuning for Search and Reproduction
of Input-Output Mapping . 928

Igor Shepelev

XXIV Table of Contents – Part I

Bio-inspired Neural Network On-Chip
Implementation and Applications (Special session)

Physical Mapping of Spiking Neural Networks Models on a Bio-inspired
Scalable Architecture . 936

J. Manuel Moreno, Javier Iglesias, Jan L. Eriksson,
Alessandro E.P. Villa

A Time Multiplexing Architecture for Inter-neuron
Communications . 944

Fergal Tuffy, Liam McDaid, Martin McGinnity, Jose Santos,
Peter Kelly, Vunfu Wong Kwan, John Alderman

Neuronal Cell Death and Synaptic Pruning Driven by Spike-Timing
Dependent Plasticity . 953

Javier Iglesias, Alessandro E.P. Villa

Effects of Analog-VLSI Hardware on the Performance of the LMS
Algorithm . 963

Gonzalo Carvajal, Miguel Figueroa, Seth Bridges

A Portable Electronic Nose (E-Nose) System Based on PDA 974
Yoon Seok Yang, Yong Shin Kim, Seung-chul Ha

Optimal Synthesis of Boolean Functions by Threshold Functions 983
José Luis Subirats, Iván Gómez, José M. Jerez, Leonardo Franco

Pareto-optimal Noise and Approximation Properties of RBF
Networks . 993

Ralf Eickhoff, Ulrich Rückert

Author Index . 1003

Table of Contents – Part II

Neural Networks, Semantic Web Technologies
and Multimedia Analysis (Special Session)

The Core Method: Connectionist Model Generation 1
Sebastian Bader, Steffen Hölldobler

A Neural Scheme for Robust Detection of Transparent Logos in TV
Programs . 14

Stefan Duffner, Christophe Garcia

A Neural Network to Retrieve Images from Text Queries 24
David Grangier, Samy Bengio

Techniques for Still Image Scene Classification and Object Detection . . . 35
Ville Viitaniemi, Jorma Laaksonen

Adaptation of Weighted Fuzzy Programs . 45
Alexandros Chortaras, Giorgos Stamou, Andreas Stafylopatis

Classified Ranking of Semantic Content Filtered Output Using
Self-organizing Neural Networks . 55

Marios Angelides, Anastasis Sofokleous, Minaz Parmar

Classifier Fusion: Combination Methods For Semantic Indexing
in Video Content . 65

Rachid Benmokhtar, Benoit Huet

Bridging the Semantic Gap in Multimedia Machine
Learning Approaches (Special Session)

Retrieval of Multimedia Objects by Combining Semantic Information
from Visual and Textual Descriptors . 75

Mats Sjöberg, Jorma Laaksonen, Matti Pöllä, Timo Honkela

A Relevance Feedback Approach for Content Based Image Retrieval
Using Gaussian Mixture Models . 84

Apostolos Marakakis, Nikolaos Galatsanos, Aristidis Likas,
Andreas Stafylopatis

XXVI Table of Contents – Part II

Video Representation and Retrieval Using Spatio-temporal Descriptors
and Region Relations . 94

Sotirios Chatzis, Anastasios Doulamis, Dimitrios Kosmopoulos,
Theodora Varvarigou

Bridging the Syntactic and the Semantic Web Search 104
Georgios Kouzas, Ioannis Anagnostopoulos, Ilias Maglogiannis,
Christos Anagnostopoulos

Content-Based Coin Retrieval Using Invariant Features and
Self-organizing Maps . 113

Nikolaos Vassilas, Christos Skourlas

Signal and Time Series Processing (I)

Learning Time-Series Similarity with a Neural Network by Combining
Similarity Measures . 123

Maria Sagrebin, Nils Goerke

Prediction Improvement Via Smooth Component Analysis and Neural
Network Mixing . 133

Ryszard Szupiluk, Piotr Wojewnik, Tomasz Ząbkowski

Missing Value Estimation for DNA Microarrays with Mutliresolution
Schemes . 141

Dimitrios Vogiatzis, Nicolas Tsapatsoulis

Applying REC Analysis to Ensembles of Sigma-Point Kalman Filters . . . 151
Aloísio Carlos de Pina, Gerson Zaverucha

Analysis of Fast Input Selection: Application in Time Series
Prediction . 161

Jarkko Tikka, Amaury Lendasse, Jaakko Hollmén

A Linguistic Approach to a Human-Consistent Summarization of Time
Series Using a SOM Learned with a LVQ-Type Algorithm 171

Janusz Kacprzyk, Anna Wilbik, Sławomir Zadrożny

Signal and Time Series Processing (II)

Long-Term Prediction of Time Series Using State-Space Models 181
Elia Liitiäinen, Amaury Lendasse

Time Series Prediction Using Fuzzy Wavelet Neural Network Model 191
Rahib H. Abiyev

Table of Contents – Part II XXVII

OFDM Channel Equalization Based on Radial Basis Function
Networks . 201

Giuseppina Moffa

A Quasi-stochastic Gradient Algorithm for Variance-Dependent
Component Analysis . 211

Aapo Hyvärinen, Shohei Shimizu

Two ICA Algorithms Applied to BSS in Non-destructive Vibratory
Tests . 221

Juan-José González de-la-Rosa, Carlos G. Puntonet,
Rosa Piotrkowski, I. Lloret, Juan-Manuel Górriz

Reference-Based Extraction of Phase Synchronous Components 230
Jan-Hendrik Schleimer, Ricardo Vigário

Data Analysis (I)

Analytic Solution of Hierarchical Variational Bayes in Linear Inverse
Problem . 240

Shinichi Nakajima, Sumio Watanabe

Nonnegative Matrix Factorization for Motor Imagery EEG
Classification . 250

Hyekyoung Lee, Andrzej Cichocki, Seungjin Choi

Local Factor Analysis with Automatic Model Selection: A Comparative
Study and Digits Recognition Application . 260

Lei Shi, Lei Xu

Interpolating Support Information Granules . 270
Bruno Apolloni, Simone Bassis, Dario Malchiodi, Witold Pedrycz

Feature Selection Based on Kernel Discriminant Analysis 282
Masamichi Ashihara, Shigeo Abe

Local Selection of Model Parameters in Probability Density Function
Estimation . 292

Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato,
Domingo López-Rodríguez, Enrique Mérida-Casermeiro,
María del Carmen Vargas-González

The Sphere-Concatenate Method for Gaussian Process Canonical
Correlation Analysis . 302

Pei Ling Lai, Gayle Leen, Colin Fyfe

XXVIII Table of Contents – Part II

Theory of a Probabilistic-Dependence Measure of Dissimilarity Among
Multiple Clusters . 311

Kazunori Iwata, Akira Hayashi

Kernel PCA as a Visualization Tools for Clusters Identifications 321
Alissar Nasser, Denis Hamad, Chaiban Nasr

Data Analysis (II)

A Fast Fixed-Point Algorithm for Two-Class Discriminative Feature
Extraction . 330

Zhirong Yang, Jorma Laaksonen

Feature Extraction with Weighted Samples Based on Independent
Component Analysis . 340

Nojun Kwak

Discriminant Analysis by a Neural Network with Mahalanobis
Distance . 350

Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi

Assessment of an Unsupervised Feature Selection Method for
Generative Topographic Mapping . 361

Alfredo Vellido

A Model Selection Method Based on Bound of Learning Coefficient 371
Keisuke Yamazaki, Kenji Nagata, Sumio Watanabe,
Klaus-Robert Müller

Pattern Recognition

Sequential Learning with LS-SVM for Large-Scale Data Sets 381
Tobias Jung, Daniel Polani

A Nearest Features Classifier Using a Self-organizing Map for Memory
Base Evaluation . 391

Christos Pateritsas, Andreas Stafylopatis

A Multisensor Fusion System for the Detection of Plant Viruses
by Combining Artificial Neural Networks . 401

Dimitrios Frossyniotis, Yannis Anthopoulos, Spiros Kintzios,
Antonis Perdikaris, Constantine P. Yialouris

A Novel Connectionist-Oriented Feature Normalization Technique 410
Edmondo Trentin

Table of Contents – Part II XXIX

An Evolutionary Approach to Automatic Kernel Construction 417
Tom Howley, Michael G. Madden

A Leave-K-Out Cross-Validation Scheme for Unsupervised Kernel
Regression . 427

Stefan Klanke, Helge Ritter

Neural Network Clustering Based on Distances Between Objects 437
Leonid B. Litinskii, Dmitry E. Romanov

Rotation-Invariant Pattern Recognition: A Procedure Slightly Inspired
on Olfactory System and Based on Kohonen Network 444

Marcelo B. Palermo, Luiz H.A. Monteiro

Pattern Classification Using Composite Features . 451
Chunghoon Kim, Chong-Ho Choi

Visual Attention Algorithms and Architectures for
Perceptional Understanding and Video Coding
(Special Session)

Towards a Control Theory of Attention . 461
John G. Taylor

Localization of Attended Multi-feature Stimuli: Tracing Back
Feed-Forward Activation Using Localized Saliency Computations 471

John K. Tsotsos

An Attention Based Similarity Measure for Colour Images 481
Li Chen, Fred W.M. Stentiford

Learning by Integrating Information Within and Across Fixations 488
Predrag Neskovic, Liang Wu, Leon N Cooper

Feature Conjunctions in Visual Search . 498
Antonio J. Rodríguez-Sánchez, Evgueni Simine, John K. Tsotsos

A Biologically Motivated System for Unconstrained Online Learning
of Visual Objects . 508

Heiko Wersing, Stephan Kirstein, Michael Götting, Holger Brandl,
Mark Dunn, Inna Mikhailova, Christian Goerick, Jochen Steil,
Helge Ritter, Edgar Körner

Second-Order (Non-Fourier) Attention-Based Face Detection 518
Albert L. Rothenstein, Andrei Zaharescu, John K. Tsotsos

XXX Table of Contents – Part II

Requirements for the Transmission of Streaming Video in Mobile
Wireless Networks . 528

Vasos Vassiliou, Pavlos Antoniou, Iraklis Giannakou,
Andreas Pitsillides

Wavelet Based Estimation of Saliency Maps in Visual Attention
Algorithms . 538

Nicolas Tsapatsoulis, Konstantinos Rapantzikos

Vision and Image Processing (I)

Selective Tuning: Feature Binding Through Selective Attention 548
Albert L. Rothenstein, John K. Tsotsos

Rotation Invariant Recognition of Road Signs with Ensemble of 1-NN
Neural Classifiers . 558

Bogusław Cyganek

Computer Aided Classification of Mammographic Tissue Using
Independent Component Analysis and Support Vector Machines 568

Athanasios Koutras, Ioanna Christoyianni, George Georgoulas,
Evangelos Dermatas

Growing Neural Gas for Vision Tasks with Time Restrictions 578
José García, Francisco Flórez-Revuelta, Juan Manuel García

A Fixed-Point Algorithm of Topographic ICA . 587
Yoshitatsu Matsuda, Kazunori Yamaguchi

Image Compression by Vector Quantization with Recurrent Discrete
Networks . 595

Domingo López-Rodríguez, Enrique Mérida-Casermeiro,
Juan M. Ortiz-de-Lazcano-Lobato, Ezequiel López-rubio

Vision and Image Processing (II)

Feature Extraction Using Class-Augmented Principal Component
Analysis (CA-PCA) . 606

Myoung Soo Park, Jin Hee Na, Jin Young Choi

A Comparative Study of the Objectionable Video Classification
Approaches Using Single and Group Frame Features 616

Seungmin Lee, Hogyun Lee, Taekyong Nam

Table of Contents – Part II XXXI

Human Facial Expression Recognition Using Hybrid Network of PCA
and RBFN . 624

Daw-Tung Lin

Extracting Motion Primitives from Natural Handwriting Data 634
Ben H. Williams, Marc Toussaint, Amos J. Storkey

Including Metric Space Topology in Neural Networks Training
by Ordering Patterns . 644

Cezary Dendek, Jacek Mańdziuk

Computational Finance and Economics
(Special Session)

A Technical Trading Indicator Based on Dynamical Consistent Neural
Networks . 654

Hans Georg Zimmermann, Lorenzo Bertolini, Ralph Grothmann,
Anton Maximilian Schäfer, Christoph Tietz

Testing the Random Walk Hypothesis with Neural Networks 664
Achilleas Zapranis

Financial Application of Neural Networks: Two Case Studies in
Greece . 672

Sotiris Kotsiantis, Euaggelos Koumanakos, Dimitris Tzelepis,
Vasileios Tampakas

Credit Risk Analysis Using a Reliability-Based Neural Network
Ensemble Model . 682

Kin Keung Lai, Lean Yu, Shouyang Wang, Ligang Zhou

Competitive and Collaborative Mixtures of Experts for Financial Risk
Analysis . 691

José Miguel Hernández-Lobato, Alberto Suárez

Neural Computing in Energy Engineering
(Special Session)

Kernel Regression Based Short-Term Load Forecasting 701
Vivek Agarwal, Anton Bougaev, Lefteri Tsoukalas

Electricity Load Forecasting Using Self Organizing Maps 709
Manuel Martín-Merino, Jesus Román

XXXII Table of Contents – Part II

A Hybrid Neural Model in Long-Term Electrical Load Forecasting 717
Otávio A.S. Carpinteiro, Isaías Lima, Rafael C. Leme,
Antonio C. Zambroni de Souza, Edmilson M. Moreira,
Carlos A.M. Pinheiro

Application of Radial Basis Function Networks for Wind Power
Forecasting . 726

George Sideratos, N.D. Hatziargyriou

The Application of Neural Networks to Electric Power Grid
Simulation . 736

Emily T. Swain, Yunlin Xu, Rong Gao, Thomas J. Downar,
Lefteri H. Tsoukalas

Early Detection of Winding Faults in Windmill Generators Using
Wavelet Transform and ANN Classification . 746

Zacharias Gketsis, Michalis Zervakis, George Stavrakakis

Combining Artificial Neural Networks and Heuristic Rules in a Hybrid
Intelligent Load Forecast System . 757

Ronaldo R.B. de Aquino, Aida A. Ferreira, Manoel A. Carvalho Jr.,
Milde M.S. Lira, Geane B. Silva, Otoni Nóbrega Neto

New Phenemenon on Power Transformers and Fault Identification
Using Artificial Neural Networks . 767

Mehlika Şengül, Semra Öztürk, Hasan Basri Çetinkaya,
Tarık Erfidan

Applications to Biomedicine and Bioinformatics

Neural Network Based Algorithm for Radiation Dose Evaluation
in Heterogeneous Environments . 777

Jacques M. Bahi, Sylvain Contassot-Vivier, Libor Makovicka,
Éric Martin, Marc Sauget

Exploring the Intrinsic Structure of Magnetic Resonance Spectra Tumor
Data Based on Independent Component Analysis and Correlation
Analysis . 788

Jian Ma, Zengqi Sun

Fusing Biomedical Multi-modal Data for Exploratory Data Analysis 798
Christian Martin, Harmen grosse Deters, Tim W. Nattkemper

Semi-supervised Significance Score of Differential Gene Expressions 808
Shigeyuki Oba, Shin Ishii

Table of Contents – Part II XXXIII

Semi Supervised Fuzzy Clustering Networks for Constrained Analysis
of Time-Series Gene Expression Data . 818

Ioannis A. Maraziotis, Andrei Dragomir, Anastasios Bezerianos

Evolutionary Optimization of Sequence Kernels for Detection of
Bacterial Gene Starts . 827

Britta Mersch, Tobias Glasmachers, Peter Meinicke,
Christian Igel

Tree-Dependent Components of Gene Expression Data for
Clustering . 837

Jong Kyoung Kim, Seungjin Choi

Applications to Security and Market Analysis

A Neural Model in Anti-spam Systems . 847
Otávio A.S. Carpinteiro, Isaías Lima, João M.C. Assis,
Antonio C. Zambroni de Souza, Edmilson M. Moreira,
Carlos A.M. Pinheiro

A Neural Model in Intrusion Detection Systems . 856
Otávio A.S. Carpinteiro, Roberto S. Netto, Isaías Lima,
Antonio C. Zambroni de Souza, Edmilson M. Moreira,
Carlos A.M. Pinheiro

Improved Kernel Based Intrusion Detection System 863
Byung-Joo Kim, Il Kon Kim

Testing the Fraud Detection Ability of Different User Profiles by Means
of FF-NN Classifiers . 872

Constantinos S. Hilas, John N. Sahalos

Predicting User’s Movement with a Combination of Self-Organizing
Map and Markov Model . 884

Sang-Jun Han, Sung-Bae Cho

Learning Manifolds in Forensic Data . 894
Frédéric Ratle, Anne-Laure Terrettaz-Zufferey, Mikhail Kanevski,
Pierre Esseiva, Olivier Ribaux

A Comparison of Target Customers in Asian Online Game Markets:
Marketing Applications of a Two-Level SOM . 904

Sang-Chul Lee, Jae-Young Moon, Yung-Ho Suh

XXXIV Table of Contents – Part II

Real World Applications (I)

A Neural Network Approach to Study O3 and PM10 Concentration in
Environmental Pollution . 913

Giuseppe Acciani, Ernesto Chiarantoni, Girolamo Fornarelli

ROC Analysis as a Useful Tool for Performance Evaluation of Artificial
Neural Networks . 923

Fikret Tokan, Nurhan Türker, Tülay Yıldırım

NewPR-Combining TFIDF with Pagerank . 932
Hao-ming Wang, Martin Rajman, Ye Guo, Bo-qin Feng

A Fast Algorithm for Words Reordering Based on Language Model 943
Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou

Phonetic Feature Discovery in Speech Using Snap-Drift Learning 952
Sin Wee Lee, Dominic Palmer-Brown

A New Neuro-Dominance Rule for Single Machine Tardiness Problem
with Unequal Release Dates . 963

Tarık Çakar

Real World Applications (II)

A Competitive Approach to Neural Device Modeling: Support Vector
Machines . 974

Nurhan Türker, Filiz Güneş

Non-destructive Testing for Assessing Structures by Using
Soft-Computing . 982

Luis Eduardo Mujica, Josep Vehí, José Rodellar

Neural Unit Element Application for in Use Microwave Circuitry 992
M. Fatih Çağlar, Filiz Güneş

An Artificial Neural Network Based Simulation Metamodeling
Approach for Dual Resource Constrained Assembly Line 1002

Gokalp Yildiz, Ozgur Eski

A Packet Routing Method Using Chaotic Neurodynamics for Complex
Networks . 1012

Takayuki Kimura, Tohru Ikeguchi

Author Index . 1023

Dimensionality Reduction Based on ICA for
Regression Problems

Nojun Kwak1 and Chunghoon Kim2

1 Samsung Electronics, Suwon P.O. Box 105, Gyeonggi-Do, 442-742 Korea,
nojunk@ieee.org,

http://csl.snu.ac.kr/∼nojunk
2 School of Electrical Engineering and Computer Science, Seoul National University,

#047, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-744, Korea
spinoz@csl.snu.ac.kr

Abstract. In manipulating data such as in supervised learning, we often
extract new features from the original features for the purpose of reducing
the dimensions of feature space and achieving better performance. In
this paper, we show how standard algorithms for independent component
analysis (ICA) can be applied to extract features for regression problems.
The advantage is that general ICA algorithms become available to a
task of feature extraction for regression problems by maximizing the
joint mutual information between target variable and new features. Using
the new features, we can greatly reduce the dimension of feature space
without degrading the regression performance.

1 Introduction

In regression problems, one is given an array of attributes to predict the target
value. These attributes are called features, and there may exist irrelevant or re-
dundant features to complicate the learning process, thus leading to incorrect
prediction. Even when the features presented contain enough information about
the target variable, they may not predict the target correctly because the dimen-
sion of feature space may be so large that it may require numerous instances
to determine the relationship between input features and target. This problem
can be avoided by selecting only the relevant features or extracting new features
containing the maximal information about the target variable from the origi-
nal ones. The former methodology is called feature selection or subset selection,
while the latter is named feature extraction which includes all the methods that
compute any functions, logical or numerical, from the original.

This paper considers the feature extraction problem since it often results in
improved performance by extracting new features from the original, especially
when small number of dimensions is required. Among the various approach,
we focus on finding an appropriate subspace spanned by a set of new features
that are arbitrary linear combinations of original. PCA (principle component
analysis) [1], ICA (independent component analysis) [2] [3], and LDA (linear
discriminant analysis) [4] are the most popular subspace methods. However,

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 N. Kwak and C. Kim

most of these methods cannot be used for regression problems since some of
them such as PCA and ICA focus on finding features by unsupervised manner
and others such as LDA have been mainly developed for classification problems.

In our previous work, we have developed ICA-FX (feature extraction based
on independent component analysis) [5], a supervised feature extraction method
for classification problems, by modifying the learning rule of original ICA. Like
ICA, it utilizes higher order statistics, while unlike ICA, it was developed as
a supervised method in that it includes the output class information to find
an appropriate feature subspace. This method is well-suited for classification
problems in the aspect of constructing new features that are strongly related to
output class.

In this paper, the ICA-FX for classification problems is extended to regression
problems. Because the output class label was coded as a numerical value in the
ICA-FX algorithm, the method can be easily applied to regression problems
without changing much from original ICA-FX for classification problems.

This paper is organized as follows. In Section 2, we briefly review the ICA
algorithm. In Section 3, we develop ICA-FX for regression problems. This follows
almost the same steps as we did for classification problems. Experimental results
showing the advantages of the proposed algorithm are presented in Section 4 and
conclusions are provided in Section 5.

2 Review of ICA

The problem setting of ICA is as follows. Assume that there is an L-dimensional
zero-mean non-Gaussian source vector sss(n) = [s1(n), · · · , sL(n)]T , such that
the components si(n)’s are mutually independent, and an observed data vector
xxx(n) = [x1(n), · · · , xN (n)]T is composed of linear combinations of sources si(n)
at each time point n, such that

xxx(n) = Asss(n) (1)

where A is a full rank N × L matrix with L ≤ N . The goal of ICA is to find
a linear mapping W such that each component of an estimate uuu of the source
vector

uuu(n) = Wxxx(n) = WAsss(n) (2)

is as independent as possible. The original sources sss(n) are exactly recovered
when W is the pseudo-inverse of A up to some scale changes and permutations.
For a derivation of an ICA algorithm, one usually assumes that L = N , because
we have no idea about the number of sources. In addition, sources are assumed to
be independent of time n and are drawn from independent identical distribution
pi(si).

To find W in (2), Bell and Sejnowski [2] have developed the Infomax algorithm,
one of the popular algorithms for ICA, in which they used a feed-forward neural
processor. This neural processor takes xxx as an input vector. The weight W is
multiplied to the input xxx to give uuu and each component ui goes through a

Dimensionality Reduction Based on ICA for Regression Problems 3

bounded invertible monotonic nonlinear function gi(·) to match the cumulative
distribution of the sources.

From the view of information theory, maximizing the statistical independence
among variables ui’s is equivalent to minimizing mutual information among ui’s.
This can be achieved by minimizing mutual information between yi = gi(ui), i =
1 · · ·L, since the nonlinear transfer function gi(·) does not introduce any depen-
dencies.

In [2], it has been shown that by maximizing the joint entropy H(yyy) of the
output yyy = [y1, · · · , yN]T of a processor, we can approximately minimize the
mutual information among the output components yi’s

I(yyy) =
∫

p(yyy) log
p(yyy)∏N

i=1 pi(yi)
dyyy. (3)

Here, p(yyy) is the joint probability density function (pdf) of a vector yyy, and pi(yi)
is the marginal pdf of the variable yi.

The joint entropy of the outputs of this processor is

H(yyy) = −
∫

p(yyy) log p(yyy)dyyy = −
∫

p(xxx)
p(xxx)

log | detJ(xxx)|dxxx (4)

where J(xxx) is the Jacobian matrix whose (i, j)th element is partial derivative
∂yj/∂xi. Note that J(xxx) = W . Differentiating H(yyy) with respect to W and
applying natural gradient by multiplying WTW on the right, we get the learning
rule for ICA:

∆W ∝ [I −ϕϕϕ(uuu)uT]W (5)

where

ϕϕϕ(uuu) =

[
−

∂p1(u1)
∂u1

p1(u1)
, · · · ,−

∂pN (uN)
∂uN

pN(uN)

]T

. (6)

In this paper, we adopt the extended Infomax algorithm [3] because it is easy
to implement with less strict assumptions on source distribution.

3 ICA-FX for Regression

ICA outputs a set of maximally independent vectors that are linear combinations
of the observed data. Although these vectors might have some applications in
such areas as blind source separation and data visualization, it is not suitable
for feature extraction for supervised learning, because it does not make use of
the output target information. The effort to incorporate the standard ICA with
supervised learning has been made in our previous work [5], where a new feature
extraction algorithm, ICA-FX for classification problems was proposed. In this
paper, the original ICA-FX algorithm for classification problems is extended for
regression problems.

4 N. Kwak and C. Kim

Before we present our algorithm, we formalize the purpose of feature extrac-
tion for regression problems.

The success of a feature extraction algorithm depends critically on how much
information about the output class is contained in the newly generated features.
This can be formalized as follows.

(Problem statement) Assume that there are a normalized input feature
vector, xxx = [x1, · · · , xN]T , and target variables, ttt = [t1, · · · , tNt]T . The purpose
of feature extraction for regression problems is to extract M(≤ N) new features
fafafa = [f1, · · · , fM]T from xxx, containing the maximum information on the output
target variables ttt. Here Nt is the number of target variables.

In information theory, the information between random variables is measured
by mutual information and this problem statement can be formalized using this
information theoretical term as follows:

(Problem statement - information theoretic view) The purpose of a
feature extraction for regression problem is to extract M(≤ N) features fffa from
xxx, such that I(fffa; ttt), the mutual information between newly extracted features
fffa and target output variables ttt becomes maximum.

The main idea of the proposed method is simple. It tries to apply the standard
ICA algorithms to feature extraction for regression problems by making use of
the target variables to produce two sets of new features; features that carry
as much information on the target variables (these features will be useful for
regression) as possible and the others that do not (these will be discarded). The
advantage is that the general ICA algorithms can be used for feature extraction
by maximizing the joint mutual information between the target variables and
new features.

Now consider the structure shown in Fig. 1. Here, the original feature vector
xxx is fully connected to uuu = [u1, · · · , uN], the target vector ttt is connected only
to uuua = [u1, · · · , uM], and uN+l = tl, l = 1, · · · , Nt. In the figure, the weight
matrix WWW ∈ �(N+Nt)×(N+Nt) becomes

WWW =
(

W V
000Nt,N INt

)
=

w1,N+1 · · · w1,N+Nt

...
...

W wM,N+1 · · · wM,N+Nt

000N−M,Nt

000Nt,N INt

. (7)

where W ∈ �N×N and V = [V T
a ,000T

N−M,Nt
]T ∈ �N×Nt . Here the first nonzero

M rows of V is denoted as Va ∈ �M×Nt .
As stated before, in information theoretic view, the aim of feature extraction

is to extract M new features fffa from the original N features, xxx, such that

Dimensionality Reduction Based on ICA for Regression Problems 5

�
��

��

���

��

��

��

��

��

����

�

�����

��

�

���� ����

����

�

�� ����
�

Fig. 1. Feature extraction algorithm based on ICA (ICA-FX)

I(fffa; t), the mutual information between newly extracted features fffa and the
target variables ttt is maximized.

Because of the data processing inequality it is maximized when I(fffa; ttt) be-
comes equal to I(xxx; ttt), the mutual information between the original features xxx
and the target variables ttt.

This can be satisfied if we can separate the input feature space xxx into two
linear subspaces: one that is spanned by fffa = [f1, · · · , fM]T , which contains
the maximum information on the target variables ttt, and the other spanned by
fffb = [fM+1, · · · , fN]T , which is independent of ttt as much as possible.

The condition for this separation can be derived as follows. If it is assumed
that WWW is nonsingular, then xxx and fff = [f1, · · · , fN]T span the same linear space,
which can be represented with the direct sum of fffa and fffb, and then by the
data processing inequality,

I(xxx; ttt) = I(Wxxx; ttt) = I(fff ; ttt) = I(fffa, fffb; ttt) ≥ I(fffa; ttt). (8)

The first equality holds because W is nonsingular. The second and the third
equalities are from the definitions of fff , fffa and fff b. In the inequality on the last
line, the equality holds if I(fff b; ttt) = I(uM+1, · · · , uN ; t) = 0.

If this is possible, the dimension of the input feature space can be reduced
from N to M(< N) by using only fffa instead of xxx, without losing any information
on the target variables.

To solve this problem, the feature extraction problem is interpreted in the
structure of the blind source separation (BSS) problem as shown in Fig. 2. The
detailed description of each step is as follows:

(Mixing) Assume that there are N independent sources sss = [s1, · · · , sN]T

which are also independent of the target variables t. Assume also that the ob-

6 N. Kwak and C. Kim

Independent
sources

A

B

W

V

s

t

+ +

W

ux f

Mixing Unmixing

Fig. 2. Interpretation of Feature Extraction in the BSS structure

served feature vector xxx is a linear combination of the sources sss and ttt with the
mixing matrix A ∈ �N×N and B ∈ �N×Nt; i.e.,

xxx = Asss + Bttt. (9)

(Unmixing) The unmixing stage is slightly different from the BSS problem
as shown in Fig. 1. In the figure, the unmixing equation becomes

uuu = Wxxx + V ttt. (10)

Suppose uuu is somehow made equal to eee, the scaled and permuted version of the
source sss; i.e.,

eee � ΛΠsss (11)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is
a permutation matrix. The ui’s (i = 1, · · · , N) are then independent of the
target variables ttt by the assumption. Among the elements of fff = Wxxx(= uuu −
V ttt), fff b = [fM+1, · · · , fN]T will be independent of t because the ith row of V ,
Vi = [wi,N+1, · · · , wi,N+Nt] = 000 and fi = ui for i = M + 1, · · · , N . Therefore,
the M(< N) dimensional new feature vector fffa can be extracted by a linear
transformation of xxx containing the most information on the class if the relation
uuu = eee holds.

The learning rule for the ICA-FX for regression is obtained by the same way as
that of ICA-FX for classification problem using the MLE (maximum likelihood
estimation) approach as follows.

If it is assumed that uuu = [u1, · · · , uN]T is a linear combination of the source
sss; i.e., it is made equal to eee, a scaled and permutated version of the source, sss,
as in (11), and that each element of uuu is independent of the other elements of uuu,
which is also independent of the target vector ttt, the log likelihood of the data
for a given WWW becomes the following:

L(uuu, ttt|WWW) = log | detWWW | +
N∑

i=1

log pi(ui) + log p(ttt) (12)

because

p(xxx, ttt|WWW) = | detWWW | p(uuu, ttt) = | detWWW |
N∏

i=1

pi(ui) p(ttt). (13)

Dimensionality Reduction Based on ICA for Regression Problems 7

Now, L can be maximized, and this can be achieved by the steepest ascent
method. Because the last term in (12) is a constant, differentiating (12) with
respect to WWW leads to

∂L

∂wi,j
=

adj(wj,i)
| detWWW | − ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+j
= −ϕi(ui)tj 1 ≤ i ≤ M, 1 ≤ j ≤ Nt

(14)

where adj(·) is adjoint and ϕi(ui) = − dpi(ui)
dui

/pi(ui) .

It can be seen that | detWWW | = | detW | and adj(wj,i)
| detWWW | = W−T

i,j . Thus the learning
rule becomes

∆W ∝ W−T −ϕϕϕ(uuu)xxxT

∆Va ∝ −ϕϕϕ(uuua)tttT .
(15)

Here ϕϕϕ(uuu) � [ϕ1(u1), · · · , ϕN (uN)]T and ϕϕϕ(uuua) � [ϕ1(u1), · · · , ϕM (uM)]T .
Applying a natural gradient on updating W , by multiplying WTW on the

right side of the first equation of (15), the following is obtained.

W (n+1) =W (n) + µ1[IN −ϕϕϕ(uuu)fffT]W (n)

V (n+1)
a =V (n)

a − µ2ϕϕϕ(uuua)tttT .
(16)

Here µ1 and µ2 are the learning rates that can be set differently. By this weight
update rule, the resulting ui’s will have a good chance of fulfilling the assumption
that ui’s are not only independent of one another but also independent of the
target variables ttt.

Note that the learning rule for W is the same as the original ICA learning rule
[2], and also note that fffa corresponds to the first M elements of Wxxx. Therefore,
the optimal features fffa can be extracted by the proposed algorithm when it
finds the optimal solution for W by (16).

4 Experiment Results

In this section, we have applied ICA-FX to several regression problems and show
the performance of the method. For all the problems below, we have compared
the performance of ICA-FX with those of PCA and original features.

As a regression tool, standard multi-layer perceptron (MLP) with one hidden
layer was used. The numbers of nodes in input, hidden, and output layers were
set to the number of extracted features, six, and one respectively. As a transfer
functions of hidden and output layers, tansig (tangent sigmoid) and purelin (pure
linear) were used respectively. As a training rule of the MLP, trainlm (Levenberg-
Marquardt) was used. The weight update rule of the method is

Wmlp(k + 1) = Wmlp(k) − (JT J + µI)−1JTeeemlp.

8 N. Kwak and C. Kim

Here, J is the Jacobian matrix that contains first derivatives of the network
errors with respect to the weights, and eeemlp is a vector of network errors. For
adaptive value µ, default settings of the Matlab were used.

4.1 Artificial Problems

Linear Case. Consider the simple problem of the following:
Suppose we have five independent input features x1 ∼ x5 which have normal

distribution with zero mean and variance of 1. Also suppose that the target output
variable t has the following relationship with the input xxx: t = 2x1 + 3x3.

For this problem, 1000 samples were generated which were divided into 500
training data and 500 test data. On the training data, ICA-FX was applied where
the number of extracted feature M was set to 1. The first row of weight matrix
WWW in (7) after ICA-FX was [7.0904, 0.0004, 10.9933, 0.0002, 0.0003, -13.1630].
Thus the newly extracted feature is f = 7.0904x1 + 0.0004x2 + 10.9933x3 +
0.0002x4 + 0.0003x5. Note that the coefficients for x2, x4 and x5 are very small
compared to those of x1 and x3. In addition, note that the ratio of coefficient
of x1 and that of x3 is approximately 2:3. The extracted weights show that the
ICA-FX performs quite well for linear regression problems.

For this problem, we have also performed PCA and compared the performance
of the ICA-FX, PCA, and the original 5 features in Table 1. In this experiment,
the number of extracted features for ICA-FX was varied from 1 to 5. The per-
formance is the root mean square (rms) error of the test data. Averages of 10
experiments with standard deviations are reported here.

Table 1. Performance for the simple linear dataset (rms error). Averages of 10 exper-
iments. Numbers in the parentheses are the standard deviations.

no. of features rms error
Original 5 0.00 (0.00)

1 2.85 (0.64)
PCA 3 2.17 (0.68)

5 0.00 (0.00)
1 0.01 (0.02)

ICA-FX 3 0.00 (0.00)
5 0.00 (0.00)

The table also shows that the ICA-FX performs well with a small number of
features.

Nonlinear Case. Consider the following problems:
As the problem above, suppose we have five independent input features x1

∼ x5 which have normal distribution with zero mean and variance of 1. Now,

Dimensionality Reduction Based on ICA for Regression Problems 9

suppose that the target output variable t has the following nonlinear relationship
with the input xxx: t = sin(x2 + 2x4).

For this problem, 1000 samples were generated which were divided into 500
training data and 500 test data. On the training data, ICA-FX was applied where
the number of extracted feature M was set to 1. The first row of weight matrix
WWW in (7) after ICA-FX was [-0.0176, -0.5146, -0.0982, -0.9607, 0.0046, 0.4886].
Thus the newly extracted feature is f = −0.0176x1 − 0.5146x2 − 0.0982x3 −
0.9607x4 + 0.0046x5. Note that the coefficients for x1, x3 and x5 are very small
compared to those of x2 and x4. This indicates that the resultant weights after
ICA-FX can be used to select appropriate features. In addition, note that the
ratio of coefficient of x2 and that of x4 is approximately 1:2 which is the ratio of
the corresponding coefficients inside sin term. The extracted weights show that
the ICA-FX performs well for this nonlinear regression problem too.

As in the linear case, we have performed PCA for this dataset and compared
the rms error of the ICA-FX with those of PCA and the original 5 features in
Table 2 The number of extracted features for ICA-FX was varied from 1 to 5.

Table 2. Performance for the simple nonlinear dataset (rms error). Averages of 10
experiments. Numbers in the parentheses are the standard deviations.

no. of features rms error
Original 5 0.14 (0.17)

1 0.73 (0.02)
PCA 3 0.57 (0.20)

5 0.08 (0.05)
1 0.15 (0.03)

ICA-FX 3 0.19 (0.27)
5 0.08 (0.06)

The table shows that the ICA-FX performs better than PCA and the original
data for this dataset.

4.2 UCI Dataset - Housing (Boston)

In this section, we have applied ICA-FX to Housing (Boston) dataset in UCI
Machine Learning Repository [6].

The dataset contains 13 input features, 12 continuous and 1 binary, and one
continuous target variable. There are total 506 instances. We have randomly
divided this dataset into 90% training and 10% test sets 10 times and reported
the average rms error on the test data in Table 3. In applying ICA-FX, we have
normalised each input feature to have zero mean and unit variance and varied
the number of extracted features M from 1 to 13.

Note that ICA-FX performs better than PCA generally and the performance
was robust irrespective of the number of extracted features. Note also that the
ICA-FX performs better than using 13 original features.

10 N. Kwak and C. Kim

Table 3. Performance for the Housing dataset (rms error). Numbers in the parentheses
are the standard deviations.

no. of features original PCA ICA-FX
1 – 7.36 (0.68) 3.59 (0.60)
3 – 4.70 (1.17) 3.60 (0.54)
5 – 4.16 (1.72) 3.60 (0.65)
7 – 3.49 (0.51) 3.50 (0.45)
9 – 4.00 (0.91) 3.80 (1.01)
11 – 3.67 (0.71) 3.42 (0.63)
13 4.20 (0.99) 4.41 (1.73) 3.37 (0.63)

5 Conclusions

In this paper, we have extended the feature extraction algorithm ICA-FX to
regression problems. The proposed algorithm is based on the standard ICA and
can generate very useful features for regression problems.

Although ICA can be directly used for feature extraction, it does not generate
useful information because of its unsupervised learning nature. In the proposed
algorithm, we added output target information in training ICA. With the ad-
ditional target information we can extract new features containing maximal in-
formation about the target. The number of extracted features can be arbitrarily
chosen.

Since it uses the standard feed-forward structure and learning algorithm of
ICA, it is easy to implement and train. Experimental results for several data sets
show that the proposed algorithm generates good features that outperform the
original features and other features extracted from other methods. Because the
original ICA is ideally suited for processing large datasets such as biomedical
ones, the proposed algorithm is also expected to perform well for large-scale
regression problems.

References

1. I.T. Joliffe, Principal Component Analysis, Springer-Verlag, 1986.
2. A.J. Bell and T.J. Sejnowski, “An information-maximization approach to blind

separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, June 1995.
3. T-W. Lee, M. Girolami, and T.J. Sejnowski, “Independent component analysis using

an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources,”
Neural Computation, vol. 11, no. 2, Feb. 1999.

4. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press,
second edition, 1990.

5. N. Kwak and C.-H. Choi, “Feature extraction based on ICA for binary classification
problems,” IEEE Trans. on Knowledge and Data Engineering, vol. 15, no. 6, pp.
1374–1388, Nov. 2003.

6. http://www.ics.uci.edu/∼mlearn/MLSummary.html

A Functional Approach to Variable Selection in
Spectrometric Problems�

Fabrice Rossi1, Damien François2, Vincent Wertz2, and Michel Verleysen3

1 Projet AxIS, INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le
Chesnay Cedex, France

2 Université catholique de Louvain - Machine Learning Group, CESAME, 4 av. G.
Lemâıtre, 1348 Louvain-la-Neuve, Belgium

3 Université catholique de Louvain - Machine Learning Group, DICE, 3 place du
Levant, 1348 Louvain-la-Neuve, Belgium

Abstract. In spectrometric problems, objects are characterized by high-
resolution spectra that correspond to hundreds to thousands of variables.
In this context, even fast variable selection methods lead to high compu-
tational load. However, spectra are generally smooth and can therefore
be accurately approximated by splines. In this paper, we propose to use
a B-spline expansion as a pre-processing step before variable selection,
in which original variables are replaced by coefficients of the B-spline
expansions. Using a simple leave-one-out procedure, the optimal number
of B-spline coefficients can be found efficiently. As there is generally an
order of magnitude less coefficients than original spectral variables, se-
lecting optimal coefficients is faster than selecting variables. Moreover, a
B-spline coefficient depends only on a limited range of original variables:
this preserves interpretability of the selected variables. We demonstrate
the interest of the proposed method on real-world data.

1 Introduction

In many real-world problems, objects are described by sampled functions rather
than by vectors. In the simplest case, an object is given by a function f , from
IR to IR, specified by a list of m input/output pairs, ((xj , f(xj)))1≤j≤m (m and
(xj)1≤j≤m depend on the object). Examples of such situation include applica-
tions in which temporal evolution of objects is monitored (and therefore where
each object is described by one or several time series) and others in which objects
are characterized by spectra (near infrared transmittance for instance).

� M. Verleysen is Research Director of the Belgian F.N.R.S. (National Fund for Scien-
tific Research). D. François is funded by a grant from the Belgian F.R.I.A. Parts of
this research result from the Belgian Program on Interuniversity Attraction Poles,
initiated by the Belgian Federal Science Policy Office. The scientific responsibility
rests with its authors.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

12 F. Rossi et al.

One of the main problems in spectrometry is regression: one wants to predict
physical or chemical properties of a sample via its spectrum. Because chemical and
physical analyses are long, difficult and expensive, we have generally a low num-
ber of examples, typically a few hundreds. On the contrary, spectra are generally
sampled at a high resolution, up to thousands of wavelengths per spectrum. It is
therefore quite common to have more sampling points (spectral variables) than
spectra.

As the sampling is generally fixed (i.e. m and (xj)1≤j≤m are fixed for the
whole data set), each spectrum can be considered as a high-dimensional vec-
tor. However, because of the low number of spectra, even simple linear methods
are difficult to apply directly to many spectrometric problems. In practice, the
standard solution is to rely on dimension reduction methods coupled with linear
regression, mainly Principal Component Regression (PCR) and Partial Least
Squares Regression (PLSR). PCR for instance consists in a simple linear model
constructed on a few Principal Components of the original data. PLSR consists
in finding linear projections that have maximum correlation with the target vari-
able; a linear regression is then built on the projected coordinates. While those
methods give generally satisfactory results, they are unfortunately difficult to
interpret: the linear model is constructed on projected features whose depen-
dency to the original spectral variables, albeit linear, can be quite complex. In
general, one cannot determine from the model which spectral range is useful for
the regression problem under focus. Moreover, PCR and PLSR are intrinsically
limited by their linear nature.

Another solution consists in using variable selection methods to keep only a
small number of the original spectral variables and then to build a nonlinear
model on those data [1,2,3]. When a small number of spectral variables are
selected, this approach both avoids overfitting and eases interpretation. Even
if the processing of the selected variables is nonlinear, the model emphasizes
generally the dependency of the target variable to a small number of original
spectral variables. However, those methods suffer from two problems. They are
generally quite slow, even when filter selection methods are used (i.e., when
the relevance of a group of variables is estimated via a simpler model than the
nonlinear model). Moreover, while filter methods tend to be less sensitive to
overfitting than the nonlinear models used for the second part of the analysis,
they nevertheless face the difficulty of dealing with high-dimensional data and
can select redundant or useless variables.

This paper proposes to use a functional representation approach as a pre-
processing step before variable selection for regression problems. The main idea
is to leverage the functional nature of spectra to replace high-resolution represen-
tations by a low number of variables that keep almost all the original information
and still allow one to assess the importance of some wavelength ranges in the re-
gression task. This prior reduction of the data dimensionality eases the variable
selection both in terms of computational requirement and in terms of statistical
significance.

A Functional Approach to Variable Selection in Spectrometric Problems 13

2 Functional Data Analysis

The idea is this paper is based on the concepts of Functional Data Analysis
(FDA [4]). The main idea of FDA is to adapt standard data analysis methods
such that they make explicit use of the functional aspect of their inputs. There
are two standard approaches in FDA: regularization and filtering.

The regularization approach addresses the overfitting problem via complexity
control. Let us consider for example the problem of linear regression on functional
data. In a theoretical and perfect setting, we have a random variable X with
values in L2 (the Hilbert space of square integrable functions from IR to IR) and
a target random variable Y with values in IR. The functional linear model is
given by Y = 〈h,X〉, where 〈·, ·〉 denotes the inner product in L2, i.e.

Y =
∫

hXdλ.

Finding h via observations, i.e. via realizations of the pair (X,Y), is difficult:
because of the infinite dimension of L2, the problem is ill-posed. It has generally
an infinite number of solutions and they are difficult to estimate. The prob-
lem is solved by looking for smooth candidates for the function h, for instance
twice differentiable functions with minimal curvature, see e.g. [5,6]. This can
be considered as a functional version of the standard ridge regression [7]. The
regularization approach has been applied to other data analysis problems, such
as Principal Component Analysis [8]. As shown in [9] in the case of discrimi-
nant analysis, when the data are sampled functions, ridge regularization leads
to worse solutions than a functional regularization.

In the filtering approach, each list of input/output pairs is considered as a
function approximation problem for which a simple truncated basis solution is
chosen: the list ((xj , f(xj)))1≤j≤m is replaced by the vector (u1, . . . , up) obtained
as the minimizer of

m∑
j=1

(
f(xj) −

p∑
k=1

ukφk(xj)

)2

,

i.e., the square reconstruction error of f by the basis functions (φk)1≤k≤p. Filter-
ing can therefore be considered as a preprocessing step in which functional data
are consistently transformed into vector data. It has been used as a simple way
to adapt many data analysis methods to functional data, see for instance [10] for
linear regression, [11,12] for Multi-Layer Perceptrons and Radial Basis Function
Networks, [13] for k-nearest neighbors and [14] for Support Vector Machines.

3 B-spline Representation

3.1 B-splines

Obviously, the filtering approach of FDA can be used to reduce the dimension-
ality of spectra: one can freely choose p (the number of basis functions) and

14 F. Rossi et al.

therefore greatly reduce the number of spectral variables. In fact, this idea of
using function representation for spectra has been used in the field of chemomet-
rics since [15]. The idea of this early work was to compress the spectra in order
to speed up linear methods (PCR and PLSR for instance). We use the same
idea to speed up variable selection. As in [16,17] we use B-splines, however, our
additional motivation is the locality of B-splines, that allows us to maintain
interpretability.

Let us consider an interval [a, b] and p sub-intervals, defined by the p+1 values,
t0, . . . , tp, called knots, such that tj < tj+1, t0 = a and tp = b. We recall that
splines of order d are Cd−2 piecewise polynomial functions given by a polynomial
of degree d−1 on each interval [tj , tj+1[(the last interval is [tp−1, tp]). The vector
space of such functions has a basis of p − 1 + d B-splines, Bd

1 , . . . , B
d
p−1+d (see

[18] for details).
We consider n spectra, (si)1≤i≤n which are functions from IR to IR, observed

at m wavelengths, (wj)1≤j≤m. We denote a the smallest wavelength and b the
largest. Given p+1 knots as above, we associate to a spectrum si the coordinates
c(si) of its best approximation by a spline of order d on the associated B-spline
basis. The proposed method consists in replacing the m original variables by the
p− d + 1 B-spline coordinates.

Those coordinates are the solution of the standard least square optimization
problem:

c(si) = arg min
c∈IRp−1+d

m∑
j=1

(
si(wj) −

p−1+d∑
k=1

ckB
d
k(wj)

)2

. (1)

This quadratic problem leads to a linear solution, i.e. there is a (p− 1 + d)×m
matrix R, that depends only on d, p and (wj)1≤j≤m, such that

c(si) = Rsi, (2)

where si denotes the vector representation of si, i.e. si = (si(w1), . . . , si(wm)).

3.2 Interpretability

Of course, this type of linear relationship applies to any filtering approach that
consists in projecting the considered functions on the sub-vector space spanned
by some well-chosen basis functions. An interesting and quite specific aspect of
B-splines however it that R is approximately localized. Let us consider more
precisely the case of a single spectrum s. The coordinates of its projection are
given by:

c(si)l =
m∑

j=1

Rljsi(wj).

A remarkable property of B-splines is that most coefficients in R have a very
small magnitude. In practice, this means that the value of a new variable depends
only on some of the original variables. Moreover, dependencies are localized: the

A Functional Approach to Variable Selection in Spectrometric Problems 15

0 200 400 600 800 1000

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

linear combinationcoefficients for A65

k

R
65

,k

Fig. 1. Graphical representation of R65,k for splines of order 5 with 155 B-splines
calculated for 1050 original spectral variables

coordinate of si on the B-spline Bd
k depends only on a sub-interval of the original

wavelength interval [a, b], as shown on an example in Figure 1.
In theory, values in R are nonzero because when we construct an orthogonal

basis of the space of splines of order d, the functions of this basis do not have
a smaller support than interval [a, b]. Compactly supported wavelet bases [19]
provide alternative solutions in which some lines of R have actual zero entries.
However, in this case, the low-resolution wavelet spans the full original interval
and therefore some lines of R do not have any negligible coefficient. Up to a
small approximation, B-splines offer on the contrary a localized basis.

In practice, a wavelength range can be associated to each new variable c(s)l.
If we assume the list of wavelengths (wj)1≤j≤m to be in increasing order, and
given a precision ratio ε > 0, the indexes of the bounds of the interval are

li = max

{
1 ≤ j ≤ m

∣∣∣∣∣ max
1≤k<j

|Rik| < ε max
1≤k≤m

|Rik|
}

, (3)

ui = min

{
1 ≤ j ≤ m

∣∣∣∣∣ max
j<k≤m

|Rik| < ε max
1≤k≤m

|Rik|
}

, (4)

with the convention that max1≤k<1 |Rik| = maxm<k≤m |Rik| = 0. The lower
bound wli corresponds to the largest index j such that all coefficients Rik for
k < j are smaller than ε times the maximal coefficient. The upper bound wui

16 F. Rossi et al.

is defined in a symmetric way. Figure 1 displays two wavelength intervals: the
vertical solid lines give the bounds of the interval calculated for ε = 0.05 and the
dashed lines correspond to ε = 0.01.

3.3 Optimal B-splines Basis

Obviously, the quality of the new variables depends both on d and on p. For
instance d = 1 corresponds to a piecewise constant approximation that has
generally a low quality. In order to compare possible choices for d and p, we use
the leave-one-out error estimate described in [11]. This estimate is based only on
the spectra themselves and does not take into account the regression task. It can
be implemented very efficiently : for a single spectrum, the cost is O(p2 + pm).
Moreover, because most of the calculation does not depend on the spectrum,
the cost for n spectra is O(p2 + pmn). It should be noted that in spectrometric
applications, spectra do not exhibit very strong differences and it is therefore
possible to select the optimal basis by using only a small subset of the original
data set.

4 Experimental Results

4.1 Methodology

In this section we apply the general idea of using a B-spline representation to a
spectrometric regression problem. The actual method consists in the following
steps:

1. Extraction of the B-spline coefficients for each spectrum. The number and
the order of the B-splines is chosen by the leave-one-out error estimate.

2. Selection of the B-spline coefficients through mutual information (MI) max-
imization with a forward-backward search (as in [3]). Any other variable
selection method could be used.

3. Calculation of the wavelength ranges associated to the selected variables, as
explained in Section 3.2, with ε = 0.01.

4. Construction of a nonlinear model (Radial Basis Function Network, RBFN)
on the coefficient selected by the previous step. The meta-parameters of the
RBFN are chosen by a 3-fold cross validation technique.

In order to assess the performances of the proposed method, its results are
compared to the performances of linear models namely a principal component
regression (PCR) and a partial least square regression (PLSR). The numbers of
components in the PLSR and in the PCR model are chosen with the same 3-fold
cross-validation method used to choose the meta-parameters of the nonlinear
model. To motivate the use of a nonlinear model, we also include the results of
a standard linear regression (LR) built on the selected variables.

A Functional Approach to Variable Selection in Spectrometric Problems 17

The comparison of the models is done according to the Normalized Mean
Square Error (NMSE) they reach on an independent test set.

Finally, we use for comparison a simple method to extract the wavelengths
that play a significant role in the prediction of the target variable by the best
linear model obtained with PCR or PLSR. The output of such a model can be
written

y = α0 +
m∑

j=1

αiX(wj), (5)

where X(wj) is a scaled version of the original input variable s(wj) (i.e., X(wj)
has zero mean and unit variance). As in section 3.2, we consider that wavelength
wj is important if |αj | > εmax1≤l≤m |αl|.

4.2 Results

We use the data set from the software contest organized at the International
Display Research Conference held in 1998. It consists of scans and chemistry
gathered from fescue grass (Festuca elatior). The grass was bred on soil medium
with several nitrogen fertilization levels. The aim of the experiments was to try
to find the optimum fertilization level to maximize production and to minimize
the consequences on the environment. In this context, the problem to address
is the following: can NIR spectrometry measure the nitrogen content of the
plants?

Although the scans were performed on both wet and dry grass samples, we
only consider wet samples here (i.e., the scans were performed directly after
harvesting). The dataset contains 141 spectra discretized to 1050 different wave-
lengths, from 400nm to 2498nm. The nitrogen level goes from 0.8 to 1.7 approx-
imately. The data can be obtained from the Analytical Spectroscopy Research
Group of the University of Kentucky1.

We have split randomly the dataset into a test set containing 36 spectra and a
training set with the remaining 105 spectra. The random split has been done in
a way that preserve roughly the distribution of the target variable (the nitrogen
level).

The leave-one-out error calculation leads to the selection of an optimal basis of
155 B-splines of order 5 (the optimal number of B-splines is chosen in [50, 500])
and achieves therefore a good compression ratio. The forward-backward mutual
information procedure selects ten coordinates. Both phases take a few minutes
on a personal computer, whereas the same variable selection procedure would
have taken several hours on the original variables.

The results on the test set (NMSE) for the studied methods are given in Table
1. The 10 variables selected by maximizing the mutual information cannot be
used to construct a linear model with performances comparable to the ones of
the optimal linear models. The nonlinear model constructed on those variables
has clearly the best performances.

1 http://kerouac.pharm.uky.edu/asrg/cnirs/shoot_out_1998/

18 F. Rossi et al.

Table 1. Normalized mean square error on the test set for the nitrogen content pre-
diction problem

Method Variables NMSE (test)

PCR 10 1.57 10−1

PLSR 9 1.51 10−1

MI + RBFN 10 1.21 10−1

MI + LR 10 2.59 10−1

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute values of the normalized coefficients for B−splines coordinates production (Nitrogen)

wavelength

400 816 1118 2002 2478

Fig. 2. Normalized absolute value of the coefficients used to compute the selected
variables from the original spectral variables

While the mutual information maximization leads to the selection of 10 vari-
ables, they are calculated using only three intervals of the original wavelength
range: [400, 816], [874, 1118] and [2002, 2478]. Figure 2 represents the normalized
coefficients used to compute the new variables. It appears clearly that only some
original wavelengths are used.

It is not possible to select a few wavelength ranges from the linear model
induced by the PLSR: only 17 weights out of 1050 are smaller than ε = 0.01
times the higher one in this linear model. As illustrated by Figure 3, the PLSR
uses almost the full wavelength range.

A Functional Approach to Variable Selection in Spectrometric Problems 19

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute values of the normalized weights of the PLSR for nitrogen prediction

wavelength

Fig. 3. Normalized absolute values of the coefficients of the linear model induced by
PLSR

5 Conclusion

This paper proposes a simple and generic approach for variable selection in spec-
trometric regression problems. The method is based on the standard filtering ap-
proach of Functional Data Analysis: the original spectral variables are replaced
by coordinates of the corresponding functions on a B-spline basis. The new vari-
ables are still interpretable as each of them depends only on a limited sub-range
of the original wavelength interval. The optimal basis is selected by a fast leave-
one-out procedure. The prior reduction of the number of variables allows one
to use time consuming variable selection methods such as the forward-backward
mutual information maximization used in the present paper. The performances
obtained on a real-world benchmark are very good. Constructing the full regres-
sion model takes a few minutes, compared to several hours that would be needed
to run the chosen variable selection procedure on the original spectral variables.
On the chosen benchmark, the obtained model outperforms linear models. While
these linear techniques are faster, they induce complex dependencies between the
target variable and almost all considered wavelengths, and provide therefore no
insight on the data. On the contrary, the selected variables are based on only 3
interpretable sub-intervals of the initial wavelength range.

20 F. Rossi et al.

References

1. Benoudjit, N., Cools, E., Meurens, M., Verleysen, M.: Chemometric calibration of
infrared spectrometers: Selection and validation of variables by non-linear models.
Chemometrics and Intelligent Laboratory Systems 70(1) (2004) 47–53

2. Benoudjit, N., François, D., Meurens, M., Verleysen, M.: Spectrophotometric vari-
able selection by mutual information. Chemometrics and Intelligent Laboratory
Systems 74(2) (2004) 243–251

3. Rossi, F., Lendasse, A., François, D., Wertz, V., Verleysen, M.: Mutual informa-
tion for the selection of relevant variables in spectrometric nonlinear modelling.
Chemometrics and Intelligent Laboratory Systems 80(2) (2006) 215–226

4. Ramsay, J., Silverman, B.: Functional Data Analysis. Springer Series in Statistics.
Springer Verlag (1997)

5. Hastie, T., Mallows, C.: A discussion of “A statistical view of some chemometrics
regression tools” by I.E. Frank and J.H. Friedman. Technometrics 35 (1993) 140–
143

6. Marx, B.D., Eilers, P.H.: Generalized linear regression on sampled signals with
penalized likelihood. In A. Forcina, G. M. Marchetti, R.H., Galmacci, G., eds.:
Statistical Modelling. Proceedings of the 11th International workshop on Statistical
Modelling, Orvietto (1996)

7. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for non-
orthogonal problems. Technometrics 12(1) (1970) 55–67

8. Pezzulli, S., Silverman, B.: On smoothed principal components analysis. Compu-
tational Statistics 8 (1993) 1–16

9. Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Annals of
Statistics 23 (1995) 73–102

10. Cardot, H., Ferraty, F., Sarda, P.: Functional linear model. Statist. & Prob. Letters
45 (1999) 11–22

11. Rossi, F., Delannay, N., Conan-Guez, B., Verleysen, M.: Representation of func-
tional data in neural networks. Neurocomputing 64 (2005) 183–210

12. Rossi, F., Conan-Guez, B.: Theoretical properties of projection based multilayer
perceptrons with functional inputs. Neural Processing Letters 23(1) (2006) 55–70

13. Biau, G., Bunea, F., Wegkamp, M.: Functional classification in Hilbert spaces.
IEEE Transactions on Information Theory 51 (2005) 2163–2172

14. Rossi, F., Villa, N.: Support vector machine for functional data classification.
Neurocomputing 69(7–9) (2006) 730–742

15. Alsberg, B.K.: Representation of spectra by continuous functions. Journal of
Chemometrics 7 (1993) 177–193

16. Alsberg, B.K., Kvalheim, O.M.: Compression of nth-order data arrays by b-splines.
part 1: Theory. Journal of Chemometrics 7(1) (1993) 61–73

17. Olsson, R.J.O., Karlsson, M., Moberg, L.: Compression of first-order spectral data
using the b-spline zero compression method. Journal of Chemometrics 10(5–6)
(1996) 399–410

18. de Boor, C.: A Practical Guide to Splines. Volume 27 of Applied Mathematical
Sciences. Springer (1978)

19. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communica-
tions in Pure & Applied Mathematics 41 (1988) 909–996

The Bayes-Optimal Feature Extraction
Procedure for Pattern Recognition Using

Genetic Algorithm

Marek Kurzynski, Edward Puchala, and Aleksander Rewak

Wroclaw University of Technology, Faculty of Electronics, Chair of Systems and
Computer Networks, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

{marek.kurzynski, edward.puchala, aleksander.rewak}@pwr.wroc.pl

Abstract. The paper deals with the extraction of features for statistical
pattern recognition. Bayes probability of correct classification is adopted
as the extraction criterion. The problem with complete probabilistic in-
formation is discussed and Bayes-optimal feature extraction procedure
is presented in detail. The case of recognition with learning is also con-
sidered. As method of solution of optimal feature extraction a genetic
algorithm is proposed. A numerical example demonstrating capability of
proposed approach to solve feature extraction problem is presented.

1 Introduction

Feature dimension reduction has been an important and long-stading research
problem in statistical pattern recognition. In general, dimension reduction can
be defined as a transformation from original high-dimensional space to low-
dimensional space where an accurate classifier can be constructed.

There are two main methods of dimensionality reduction ([2], [6]): feature
selection in which we select the best possible subset of input features and fea-
ture extraction consisting in finding a transformation (usually linear) to a lower
dimensional space. Although feature selection preserves the original physical
meaning of selected features, it costs a great degree of time complexity for an
exhaustive comparison if a large number of features is to be selected. In con-
trast, feature extraction is considered to create a new and smaller feature set by
combining the original features. We shall concentrate here on feature extraction
for the sake of flexibility and effectiveness [7].

There are many effective methods of feature extraction. One can consider here
linear and nonlinear feature extraction procedures, particularly ones which ([4],
[5]):

1. assume underying Gaussian distribution in the data ([6], [7], [8]),
2. utilize nonparametric sample-based methods when data cannot be described

with the Gaussian model ([9]),
3. minimize the empirical probability of Bayes error ([6], [10]),
4. maximize the criteria for the information values of the individual features

(or sets of features) describing the objects ([4], [5], [11]).

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 21–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 M. Kurzynski, E. Puchala, and A. Rewak

For the purpose of classifiation, it is sensible to use linear feature extrac-
tion techniques which is considered as a linear mapping of data from a high
to a low-dimensional space, where class separability is approximately preserved.
Construction of linear transformation is based on minimization (maximization)
of proper criterion in the transformed space. In other words, in order to define
a linear transformation one should determine the values of the transformation
matrix components as a solution of an appropriate optimization problem.

As it seems, the Bayes probability of error (or equivalently, the Bayes proba-
bility of correct classification) i.e. the lowest attainable classification error is the
most appropriate criterion for feature extraction procedure. Unfortunately, this
criterion is very complex for mathematical treatment, therefore researches have
restored to other criteria like various functions of scatter matrices (e.g. Fisher
criterion) or measures related to the Bayes error (e.g. Bhattacharyya distance).

In this paper we formulate the optimal feature extraction problem adopting
the Bayes probability of correct classification as an optimality criterion. Since
this problem cannot be directly solved using analytical ways (except simple
cases including for example multivariate normal distribution), we propose to
apply genetic algorithm (GA), which is very-well known heuristic optimization
procedure and has been successfully applied to a broad spectrum of optimization
problems, including many pattern recognition and classification tasks [12], [13].

The contents of the paper are as follows. In section 2 we introduce neces-
sary background and formulate the Bayes-optimal feature extraction problem.
In section 3 and 4 optimization procedures for the cases of complete probabilistic
information and recognition with learning are presented and discussed in detail.
Section 5 describes numerical example for which both analytical way and ge-
netic algorithm were applied to find optimal solution. Finally, conclusions are
presented in section 6.

2 Preliminaries and the Problem Statement

Let us consider the pattern recognition problem with probabilistic model. This
means that n-dimensional vector of features describing recognized pattern x =
(x1, x2, ..., xn)T ∈ X ⊆ Rn and its class number j ∈ M = {1, 2, ...,M} are
observed values of a pair of random variables (X,J), respectively. Its probability
distribution is given by a priori probabilities of classes

pj = P (J = j), j ∈ M (1)

and class-conditional probability density function (CPDFs) of X

fj(x) = f(x/j), x ∈ X , j ∈ M. (2)

In order to reduce dimensionality of feature space let consider linear transfor-
mation

y = Ax, (3)

The Bayes-Optimal Feature Extraction Procedure 23

which maps n-dimensional input feature space X into m-dimensional derivative
feature space Y ⊆ Rm, or - under assumption that m < n - reduces dimension-
ality of space of object descriptors. It is obvious, that y is a vector of observed
values of m dimensional random variable Y, which probability distribution given
by CPDFs depends on mapping matrix A, viz.

g(y/j;A) = gj(y;A), y ∈ Y, j ∈ M. (4)

Let introduce now a criterion function Q(A) which evaluates discriminative
ability of features y, i.e. Q states a measure of feature extraction mapping (3).
As a criterion Q any measure can be involved which evaluates both the relevance
of features based on a feature capacity to discriminate between classes or quality
of a recognition algorithm used later to built the final classifier. In the further
numerical example the Bayes probability of correct classification will be used,
namely

Q(A) = Pc(A) =
∫
Y

max
j∈M

{pj gj(y;A)} dy. (5)

Without any loss of generality, let us consider a higher value of Q to indicate a
better feature vector y. Then the feature extraction problem can be formulated
as follows: for given priors (1), CPDFs (2) and reduced dimension m find the
matrix A∗ for which

Q(A∗) = max
A

Q(A). (6)

3 Optimization Procedure

In order to solve (6) first we must explicitly determine CPDFs (4). Let introduce
the vector ȳ = (y, x1, x2, ..., xn−m)T and linear transformation

ȳ = Ā x, (7)

where

Ā =

 A
− − −
I | 0

 (8)

is a square matrix n× n. For given y equation (7) has an unique solution given
by Cramer formulas

xk(y) =| Āk(y) | · | Ā |−1, (9)

where Āk(y) denotes matrix with k-th column replaced with vector ȳ. Hence
putting (9) into (2) and (4) we get CPDFs of ȳ ([3]):

ḡj(ȳ;A) = J−1 · fj(x1(ȳ), x2(ȳ), · · · , xn(ȳ)), (10)

24 M. Kurzynski, E. Puchala, and A. Rewak

where J is a Jacobian of mapping (7). Integrating (10) over variables x1, ..., xn−m

we simply get

gj(y;A) =
∫
X1

∫
X2

...

∫
Xn−m

ḡj(ȳ;A) dx1 dx2 ... dxn−m. (11)

Formula (11) allows one to determine class-conditional density functions for
the vector of features y, describing the object in a new m-dimensional space.
Substituting (11) into (5) one gets a criterion defining the probability of correct
classification for the objects in space Y:

Q(A) = Pc(A) =
∫
Y

max
j∈M

{
pj ·

∫
X1

∫
X2

...

∫
Xn−m

J−1×

×fj(x1(ȳ), x2(ȳ), · · · , xn(ȳ)) dx1 dx2 ... dxn−m

}
dy =

=
∫
Y

max
j∈M

{
pj ·

∫
X1

∫
X2

...

∫
Xn−m

J−1×

×fj(| Ā1(y) | · | Ā |−1, · · · , | Ān(y) | · | Ā |−1) dx1 dx2 ... dxn−m

}
dy. (12)

Thus, the solution of the feature extraction problem (6) requires that such
matrix A∗ should be determined for which the Bayes probability of correct clas-
sification (12) is the maximum one.

Consequently, complex multiple integration and inversion operations must be
performed on the multidimensional matrices in order to obtain optimal values
of A. Although an analytical solution is possible (for low n and m values), it
is complicated and time-consuming. Therefore it is proposed to use numerical
procedures. For linear problem optimization (which is the case here) classic nu-
merical algorithms are very ineffective. In a search for a global extremum they
have to be started (from different starting points) many times whereby the time
needed to obtain an optimal solution is very long. Thus it is only natural to use
the parallel processing methodology offered by genetic algorithms ([14]).

Fig. 1 shows the structure of a GA-based feature extractor using Bayes prob-
ability of correct classification as an evaluation criterion. The GA maintains a

Fig. 1. GA-based Bayes-optimal feature extractor

The Bayes-Optimal Feature Extraction Procedure 25

population of transformation matrices A. To evaluate each matrix in this popula-
tion, first the CPDFs (11) of features y in transformed space must be determined
and next probability of Bayes correct classification (12) is calculated. This ac-
curacy, i.e. fitness of individual is a base of selection procedure in GA. In other
words, the GA presented here utilizes feedback from the Bayes classifier to the
feature extraction procedure.

4 The Case of Recognition with Learning

It follows from the above considerations that an analytical and numerical solution
of the optimization problem is possible. But for this one must know the class-
conditional density functions and the a priori probabilities of the classes. In
practice, such information is rarely available. All we know about the classification
problem is usually contained in the so-called learning sequence:

SL(x) = {(x(1), j(1)), (x(2), j(2)), ..., (x(L), j(L))}. (13)

Formula (13) describes objects in space X . For the transformation to space Y
one should use the relation:

y(k) = A · x(k); k = 1, 2, ..., L (14)

and then the learning sequence assumes the form:

SL(y) = {(y(1), j(1)), (y(2), j(2)), ..., (y(L), j(L))}. (15)

The elements of sequence SL(y) allow one to determine (in a standard way)
the estimators of the a priori probabilities of classes pjL and class-conditional
density functions fjL(x). Then the optimization criterion assumes this form:

QL(A) = PcL(A) =
∫
Y

max
j∈M

{
pjL ·

∫
X1

∫
X2

...

∫
Xn−m

J−1×

×fjL(x1(ȳ), x2(ȳ), · · · , xn(ȳ)) dx1 dx2 ... dxn−m

}
dy. (16)

Alternatively, in case of recognition with learning, the criterion (16) can be
estimated nonparametrically by first estimating CPDFs of features y on the
base of samples (15) (e.g. using either k-NN or Parzen procedures [1], [2]) and
then classifying the available samples according to the empirical Bayes rule.
The number of samples misclassified by the algorithm is counted and the error
estimate is obtained by dividing this number by the total number of training
samples.

The next section presents a numerical example illustrating proposed approach
to Bayes-optimal feature extraction problem.

26 M. Kurzynski, E. Puchala, and A. Rewak

5 Numerical Example

Let consider two-class pattern recognition task with equal priors and reduction
problem of feature space dimension from n = 2 to m = 1. Input feature vector
is uniformly distributed and its CPDFs are as follows:

f1(x) =
{

0.5 for 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ x1,
0 otherwise, (17)

f2(x) =
{

0.5 for 0 ≤ x1 ≤ 2 and x1 ≤ x2 ≤ 2,
0 otherwise. (18)

Feature extraction mapping (3) has now the form

y = [a, 1] · [x1, x2]T = a · x1 + x2 (19)

and problem is to find such a value a∗ which maximize criterion (12).
To illustrate the behavior of the GA as solution method of optimal feature

extraction problem, we solve this example in threefold manner: (1) directly,
according to the analytical procedure presented in section 3, (2) using GA and
assuming that complete probabilistic information is given and (3) using GA
procedure for the case of classification with learning.

1. Complete probabilistic information - analytical solution
Since Jacobian of (7) is equal to 1 hence from (9) and (10) for j = 1, 2 we get

ḡj(ȳ, a) = fj(x1, y − a · x1). (20)

a) b) c)
-1/a

2a+22a 0

1

2a+22a 0

1/a+1

2a+22a0

Fig. 2. Illustration of example

The results of integrating (20) over x1, i.e. CPDFs (11) for a ≥ 1,−1 ≤ a ≤ 1
and a ≤ −1 are presented in Fig.2. a), b) and c), respectively.

Finally, from (5) we easy get:

Pc(a) =

a+1
4a for a ≥| 1 |,

a+1
4 for a ≤| 1 | .

(21)

The Bayes-Optimal Feature Extraction Procedure 27

The chart demonstrating the Bayes probability of misclassification Pe(a) =
1 − Pc(a) depending on parameter a of feature extraction mapping is depicted
in Fig.3. The best result Pe(a∗) = 0 (or equivalently Pc(a∗) = 1) is obtained for
a∗ = −1.

0.1

0.2

0.3

0.4

0.5

–3 –2 –1 1 2 3

a

Fig. 3. Probability of misclassification

2. Complete probabilistic information - solution via GA
In order to find parametr a∗, the GA was applied, which was proceeded as

follows:

– Coding method - Binary representation has been widely used for GA analysis.
In our task, the value of parametr a was directly coded to the chromosome.
It means, that a is represented by a binary string length:

Length = log2[(amax − amin)/
a], (22)

where amax, amin and
a denote the maximum value, the minimum value
and the resolution of a, respectively. To avoid irregularities we decided to
put amax = 32.536, amin = −33.0 and
a = 0.001 which gave the length of
chromosome Length = 16 bits (genes).

– The fitness function - The Bayes probability of correct classification (12).
– Initialization - GA needs an initial individual population to carry out par-

allel multidirectional search of optimal solution. The initial population of
chromosomes with which the search begins was generated randomly. The
size of population after trials was set to 40.

– Selection - The probability of selecting a specific individual can be calculated
by using the individuals fitness and the sum of population fitness. In this
research a roulette wheel approach was applied. Additionally, an elitizm
policy, wherein the best individuals from the current generation is copied
directly to the next generation, was also used for fast convergence.

– Crossover - The crossover process defines how genes from the parents
have been passed to the offspring. In each generation a standard two-point
crossover was used and probability of crossover was equal to 1.

28 M. Kurzynski, E. Puchala, and A. Rewak

– Mutation - The mutation process simulates the natural disturbance during
crossover. It was a bit-by-bit operation made with probability 0.01.

– Stop procedure - evolution process was terminated after 300 generations. In
fact, the fitness value usually converged within this value. Fig. 4. shows the
fitness change against generation number in one run of GA.

0.5

300250200150100500

1.0

0.75

0.25

0.0

Fig. 4. The example of the course of the fitness value vs. number of generation

Table 1. Results of genetic algorithm applied to the example

Trial Complete Information Recognition with Learning

L=100 L=200 L=300

1 -0.987 -0.946 -1.075 -0.983
2 -0.983 -0.951 -1.048 -0.971
3 -0.974 -1.102 -0.957 -1.036
4 -1.078 -0.938 -0.939 -0.947
5 -1.023 -1.093 -0.962 -1.056
6 -0.991 -1.084 -1.053 -1.043
7 -0.975 -0.956 -0.961 -1.032
8 -1.052 -1.066 -0.972 -0.953
9 -0.979 -0.941 -1.042 -1.023
10 -1.044 -1.076 -0.951 -1.041

Best -0.991 -0.956 -0.962 -1.023
Mean -1.008 -1.015 -0.996 -1.009
SD 0.036 0.07 0.049 0.039

To compare the optimal solution and the performance of GA, ten independent
runs of GA were carried out for different random initial populations. The results
are shown in Table 1. The values depicted in the Table are those of the best
solution obtained at the end of a GA trial.

The Bayes-Optimal Feature Extraction Procedure 29

3. Recognition with learning - solution via GA
For evaluation of GA performance in the case of recognition with learning,

three experiments were made on computer generated data with different number
of learning patterns (L = 100, 200, 300, respectively). Patterns were generated
according to the CPDFs (17) and (18) using Maple 10 environment. In each
experiment priors were calculated in standard way and CPDFs were estimated
using Parzen estimator with uniform kernel function [1]. Next, GA was applied
as a method of solution of optimization problem presented in section 4. GA was
used with the same control parameters as in the prevoius case and the number
of trials was qual to 10. The results are depicted in Table 1.

Table 1 contains also the best result, the mean value and standard deviation
for each case where GA was applied. Results demonstrate that the proposed GA
method can reach value of parametr of extraction mapping (19) very close to
optimal solution a∗.

6 Conclusions

Feture extraction is an important task in any practical example that involves
pattern classification. In this paper we formulate the optimal feature extraction
problem with the Bayes probability of correct classification as an optimality cri-
terion. Since this problem, in general case, cannot be directly solved using ana-
lytical methods, we propose to apply genetic algorithm, which is effective heuris-
tic optimization procedure and has been successfully applied to a wide range of
practical problems. This proposition leads to the distribution-free Bayes-optimal
feature extraction method, which can be applied both in the case of complete
probabilistic information and in the case of recognition with learning. A numer-
ical example demonstrates that the GA is capable to solve this optimization
problem for both cases.

Many questions of GA application in proposed procedure of feature extraction
are still open, e.g. the proper choice of the appropriate GA model, especially the
choice of GA control parameters and investigation of their influence on result
of optimization process. Our related works are underway and the results will be
reported in the near future.

References

1. Devroye L., Gyorfi P., Lugossi G.: A Probabilistic Theory of Pattern Recognition,
Springer Verlag, New York, 1996

2. Duda R., Hart P., Stork D.: Pattern Classification, Wiley-Interscience, New York,
2001

3. Golub G., Van Loan C.: Matrix Computations, Johns Hopkins University Press,
1996

4. Guyon I., Gunn S., Nikravesh M, Zadeh L.: Feature Extraction, Foundations and
Applications, Springer Verlag, 2004

5. Park H., Park C., Pardalos P.: Comparitive Study of Linear and Nonlinear Feature
Extraction Methods - Technical Report, Minneapolis, 2004

30 M. Kurzynski, E. Puchala, and A. Rewak

6. Fukunaga K.: Introduciton to Statistical Pattern Recognition, Academic Press,
1990.

7. Hsieh P., Wang D., Hsu C.: A Linear Feature Extraction for Multiclass Classifi-
cation Problems Based on Class Mean and Covariance Discriminant Information,
IEEE Trans. on PAMI, Vol. 28 (2006) 223-235

8. Loog M., Duin R., Haeb-Umbach R.: Multiclass Linear Dimension Reduction by
Meighted Pairwise Fisher Criteria, IEEE Trans. on PAMI, Vol. 23 (2001) 762-766

9. Kuo B., Landgrebe D.: A Robust Classification Procedure Based on Mixture Clas-
sifiers and Nonparametric Weighted Feature Extraction, IEEE Trans. on GRS, Vol.
40 (2002) 2486-2494

10. Buturovic L.: Toward Bayes-Optimal Linear Dimension Reduction, IEEE Trans.
on PAMI, Vol. 16 (1994) 420-424

11. Choi E., Lee C.: Feature Extraction Based on the Bhattacharyya Distance, Pattern
Recognition, Vol. 36 (2002) 1703-1709

12. Raymer M., Punch W. at al.: Dimensionality Reduction Using Genetic Algorithms,
IEEE Trans. on EC, Vol. 4 (2002) 164-168

13. Rovithakis G., Maniadakis M., Zervakis M.: A Hybrid Neural Network and Genetic
Algorithm Approach to Optimizing Feature Extraction for Signal Classification,
IEEE Trans. on SMC, Vol. 34 (2004) 695-702

14. Goldberg D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Adison-Wesley, New York, 1989

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 31 – 40, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Speeding Up the Wrapper Feature Subset Selection in
Regression by Mutual Information Relevance and

Redundancy Analysis

Gert Van Dijck and Marc M. Van Hulle

Computational Neuroscience Research Group, Laboratorium voor Neuro-en Psychofysiologie,
K.U. Leuven, B-3000 Leuven, Belgium

{gert, marc}@neuro.kuleuven.ac.be

Abstract. A hybrid filter/wrapper feature subset selection algorithm for regres-
sion is proposed. First, features are filtered by means of a relevance and redun-
dancy filter using mutual information between regression and target variables.
We introduce permutation tests to find statistically significant relevant and re-
dundant features. Second, a wrapper searches for good candidate feature subsets
by taking the regression model into account. The advantage of a hybrid ap-
proach is threefold. First, the filter provides interesting features independently
from the regression model and, hence, allows for an easier interpretation. Sec-
ondly, because the filter part is computationally less expensive, the global algo-
rithm will faster provide good candidate subsets compared to a stand-alone
wrapper approach. Finally, the wrapper takes the bias of the regression model
into account, because the regression model guides the search for optimal fea-
tures. Results are shown for the ‘Boston housing’ and ‘orange juice’ bench-
marks based on the multilayer perceptron regression model.

1 Introduction

Feature selection and feature construction have been addressed by many researchers
in statistics and machine learning, see [1] for a recent overview. Feature construction
constructs new features from the original inputs in a linear or non-linear way. Most
feature construction techniques are developed for classification problems. However,
they are easily adapted for regression problems by first discretizing the continuous
target values using class-blind discretization algorithms [2], hence, artificially creat-
ing class labels. Feature selection on the other hand considers a selection from the
original inputs, without constructing new ones. Both feature construction and feature
selection help tackling the curse of dimensionality. In reducing the number of inputs
one searches for the optimal bias-variance trade-off: a large number of inputs imply
that more parameters need to be estimated and this causes a larger variance, however
a too small number of inputs increases the bias. Feature construction has the disad-
vantage that it does not preserve the semantics of the inputs: combining inputs in a
linear or non-linear way, makes the new features hard to interpret and hence makes an
understanding of the nature of the problem difficult. Another huge disadvantage is

32 G. Van Dijck and M.M. Van Hulle

that feature construction does not decrease the measuring cost: all inputs still need
to be measured, by possibly very expensive sensors, even when they are non-
informative.

Therefore we adopt a feature subset selection approach in this article. Feature se-
lection can be separated in two approaches: the filter approach and the wrapper ap-
proach [3]. In the filter approach the feature subset selection is performed independ-
ently of the training of the regression model. In this case feature subset selection is
considered as a preprocessing step to induction. This is computationally more effi-
cient, but ignores the fact that an optimal selection of features is dependent on the
regression model. As stated before the performance of the regression model is
strongly dependent on the size of the feature subset. On the other hand the wrapper
approach is computationally more involved, but takes the interactions of the feature
subset and the regression model into account. The term ‘wrapper’ stems from the fact
that the feature selection is wrapped around the regression model which is considered
as a black-box. In this article we propose a hybrid solution: first irrelevant and largely
redundant features are removed, subsequently a search with a wrapper is performed
among the features that passed the filter.

2 Filter Preprocessing

In this section we investigate an information-theoretic measure in order to determine
irrelevant and redundant features. We use the ‘Boston housing’ and the ‘orange juice’
datasets for illustrative purposes. The proposed methods are inherited from [4] where
a hybrid approach is proposed for pattern recognition (classification), instead of re-
gression.

2.1 Irrelevance Determination by Permutation

As explained before, a wrapper approach takes the limitations of the particular regres-
sion model into account. In the search for optimal feature subsets we need to estimate
the performance of the feature sets found so far. This requires the training of the re-
gression model based on the selected features for a chosen training set. The accuracy
of the model is then estimated by simulating the trained regression model on a test set.
It is common that a lot of features are included in the feature subset search that do not
contain any information about the target variable. This information can be described
by the concept of mutual information between the regression variable Fi and the target
variable T:

2

(,)
(,) (,) log ()

() ()
i

i
i i i

if t

P f t
I F T P f t df dt

P f P t
= . (1)

The use of the mutual information in regression is largely motivated by the data ine-
quality theorem, which states that [5]:

(,) ((),)i iI F T I g F T≥ . (2)

 Speeding Up the Wrapper Feature Subset Selection in Regression 33

Hence, a function of the variable Fi cannot increase the information about the target T.
If we can show that the original variable T is not dependent on Fi (Fi is not informa-
tive about the target T), which implies the mutual information in (1) is equal to 0, we
can discard Fi, because any further processing can not increase the information about
the target.

In practice we face the problem that we do not know the joint distribution between
target variable and input variables, hence, the mutual information needs to be esti-
mated from the data. This finite sample estimate is likely to be different from 0 and in
general will depend on the sample size, parameter settings of the estimator and the
distributions in (1). Thus, looking whether the estimated mutual information is exactly
equal to 0 is not satisfactory. However, we can easily circumvent this problem in the
following way. We define a hypothesis test where the null hypothesis H0 tests the
assumption that the feature variable and the target variable are independent. We can
easily obtain the distribution of the mutual information conditioned under the particu-
lar sample distributions. Therefore, we randomly permute the ordering of the samples
of the target variable, hence, removing the dependencies between the target variable
and the input variable, relative to the feature samples. Performing this permutation N
times provides us with N samples of a sample distribution of the mutual information
under the H0 hypothesis. Note that this strategy contains some resemblance with the
creation of surrogate time series in time series analysis [6]: a ‘ground-truth’ or refer-
ence is created by e.g. randomly permuting the phase of the signals under the given
sample distribution of the frequency spectrum.

Further on, we will estimate the mutual information with the I(1) estimator of Kras-
kov et al. [7], which estimates mutual information directly from a K-Nearest
Neighbour method. Figure 1 shows the sample distribution of the mutual information
between input variable F5 (nitric oxides concentration, NOX) and the target variable
(median value of owner-occupied homes, MEDV) of the ‘Boston housing’ data set for
1000 permutations. We note that under the H0 hypothesis the mean (0.1106) of the
mutual information is considerably different from 0. This divergence from 0 can be
partly explained by the fact that the I(1) is designed for continuous distributed features
and target variables. However, the NOX variable appears to have a discrete nature
(although in the accompanying housing.names file it is considered as a continuous
feature). Based on the sample distribution we can define a threshold for which a fea-
ture (when larger than the threshold) can be considered statistically relevant. For the
example in figure 1 we have P0.01 = 0.1369, the actual MI (without performing the
permutation) is equal to 0.1920. When we perform this analysis for all 13 features in
the ‘Boston housing’ dataset we find that all features are statistically relevant, except
for input variable F4 (Charles River dummy variable CHAS, P0.01 = 0.02 and actual
MI equal to 0.0163). We remark that the CHAS variable is discrete and therefore we
did not use the I(1) estimator, but estimated the mutual information by means of the
marginal entropy estimator (marginal and conditional entropies estimated from for-
mula (20) in [7]):

0,..,

ˆ ˆ ˆ ˆ(,) () (|). ()
i C

I F T H T H T F i p F i
=

= − = = . (3)

In formula (3) the discrete feature F (CHAS for the ‘Boston housing’ data set) takes
different category values: 0,…, C (0 and 1 in this case).

34 G. Van Dijck and M.M. Van Hulle

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
0

50

100

mutual information (NOX, MEDV)

fre
qu

en
cy

P0.01

Fig. 1. Sample distribution of the mutual information between input variable NOX and target
variable MEDV. The distribution was obtained under null hypothesis (independent input and
target variable) by randomly permuting (1000 permutations) the samples. Note that the mean
differs considerably from 0. The actual MI is equal to 0.1920, this is larger than P0.01 (P0.01 =
0.1389) and hence NOX can be considered as a relevant feature for target variable MEDV.

 In figure 2 we show the mutual information of all features of the ‘orange juice’
database and the P0.01 thresholds from 100 permutations. Where the MI exceeds the
threshold the features are statistically relevant.

0 100 200 300 400 500 600 700
0.15

0.2

0.25

0.3

feature index

m
ut

ua
l i

nf
or

m
at

io
n actual MI P0.01

relevant
features

Fig. 2. Feature relevance as determined by the P0.01 value of the permutation test (using 100
permutations). The lower noisy curve shows the P0.01 value determined from the permutations.
The upper curve shows the actual MI (without permutations). Note that starting from approxi-
mately feature 165 all features are considered as statistically significant.

 Finally, we remark that permutation testing for feature relevance analysis has been
described independently in [8].

2.2 Redundancy Detection

Features that are individually relevant might, however contain overlapping informa-
tion considering the target variable. Therefore in literature [9] the distinction is made

 Speeding Up the Wrapper Feature Subset Selection in Regression 35

between strongly relevant and weakly relevant features. A strongly relevant feature Fi
is defined as:

 (| ,) (|)i i iP T F G P T G≠

{ } ,

with the complete feature set.
i iG F F

F

= −

 (4)

A weakly relevant feature Fi is a feature for which (4) holds for at least one strict
subset Gi

’ of Gi. So weakly relevant features need to be interpreted as relevant fea-
tures, but for which redundant, i.e. strongly correlated, features or feature sets exist.

A redundancy filter tries to detect and remove the redundant features of the weakly
relevant features. Thus, the redundancy filter needs to filter out redundant feature
subsets, but needs to retain a representative feature for the redundant subset. From
formula (4) it is clear that we need to rely on heuristics for the identification of
weakly relevant features:

• We do not dispose of the real underlying distributions in (4),
• It requires that we find at least one subset of Gi for which the inequality in

(4) holds, in a worst case scenario this requires considering all possible
subsets of Gi. This is of almost the same complexity as solving the FSS
problem itself, because this would require finding the smallest possible
subset of the complete feature set for which the equality in (4) holds.

The heuristic approach is taken where redundant features are assembled in a cluster

and a representative feature is taken out of the cluster. The feature closest to the clus-
ter centroid can act as a representative feature for all features in the cluster. We have
following requirements for the clustering procedure:

• A first requirement for the clustering procedure is: strongly relevant fea-
tures must form a cluster on themselves. Therefore in the clustering pro-
cedure it is sound to consider every feature initially as a separate cluster.

• A second requirement is that the maximum distance between any features
in a cluster should be limited in order for the feature closest to the cen-
troid to be representative.

In order to achieve these goals clusters are iteratively merged starting from the initial
features as seeds. In order to obtain compact clusters, when merging, the distance
between 2 clusters Di and Dj is defined as the maximum distance between any
features:

max (,) max .
i i

j j

i j i j
D
D

d D D
∈
∈

= −
F
F

F F

(5)

As a distance measure between features we propose 1 minus the normalized MI be-
tween features, this leads to 0 distance for the distance between the same features and
a distance of 1between independent features.

36 G. Van Dijck and M.M. Van Hulle

 Cluster merging is stopped when distance between any clusters exceeds a prede-
fined threshold (maximal number of clusters to be formed or a maximal distance
that may not be exceeded when merging clusters). The described clustering procedure
is known as hierarchical agglomerative clustering with a ‘complete’ merging strategy
of the clusters [10]. The threshold heuristically defines the non-redundant features
which are represented by the cluster centroids.
 A wrapper search is then performed on the features that pass both the relevance
and redundancy filter. If we apply this redundancy filtering strategy to the ‘orange
juice data’ and set equal to 5 clusters we get following result in figure 3.

165 265 365 465 565 665 700
1

2

3

4

5

feature index

cl
us

te
r

la
be

l

4
5

3 3

2 2

1 1 1

Fig. 3. Redundancy analysis on spectral ‘orange juice’ data. The figure shows which features
are assigned to which cluster if we set equal to 5 clusters in the redundancy analysis. It is
interesting to observe that contiguous features tend to end up in the same cluster. This could be
expected, while small differences in spectral components tend to give rise to redundant fea-
tures. As a distance measure 1-nMI (normalized mutual information) was used.

 From figure 3 we observe the interesting (but expected) result that contiguous fea-
tures tend to be assigned to the same cluster, hence, features that are obtained from
small differences in spectra tend to be redundant. We obtained a similar result for
features computed from the continuous wavelet transform in [4]: features obtained for
small changes in scale coefficients tend to be strongly dependent and therefore can be
approximated by the cluster centroid [4]. Note that this redundancy analysis can be
considered as a strategy of sampling from the initial feature space. The sampling
strategy has the advantage that where features are strongly redundant we need only a
few representative features, while where features are not redundant we need more
feature samples.

2.3 Wrapper Search

A supervised search is performed on the features that pass both the relevance and
redundancy filter. Given the strong dependency of the regression model on the curse
of dimensionality and the assumptions made in the regression model to map input
variables to a target variable, these interactions need to be taken into account to
achieve optimal performance. By applying filter techniques the wrapper is focused on

 Speeding Up the Wrapper Feature Subset Selection in Regression 37

strongly relevant features. By applying the filtering techniques the wrapper can be
applied with decreased computational cost. In the wrapper approach 2 choices need
to be made: the regression model and the search among the possible subsets. We
opted for the following choices:

• Regression model: we used a widely accepted model for regression: a Multi-
layer Perceptron (MLP) neural network [11]. Such MLP models are capable
of approximating any function on a finite interval, provided the number of
hidden neurons and the training data set are large. The input layer is defined
by the number of inputs (D), for the hidden layer we choose 5 sigmoid neu-
rons, the output layer is determined by the number of targets and consists of
1 linear neuron. The Levenberg-Marquardt algorithm was used in batch-
mode to train the parameters of the network. To compute the performance of
the feature subset, the data set was divided in 3 parts: a training set, a valida-
tion set and a test set. The validation set was used to avoid overtraining of
the network, hence, when the error on the validation set increased the train-
ing was stopped. The intermediate performance of the feature set was then
estimated on the test-set. This was repeated 10 times by using a 10-fold
cross-validation procedure, the final performance of the test set was obtained
from the averages of the intermediate performances.

• Search procedure: several search procedures have been proposed to the fea-
ture subset selection problem, although most often research has been focus-
ing on pattern classification. Among the best well-known search procedures
in feature selection for pattern classification are: exhaustive search, branch
and bound [12], sequential search algorithms (SSA’s) [13] and more recently
Genetic Algorithms (GA’s) [4], [14], [15]. We focus on GA’s, because in a
comparative study [15] it was shown that GA’s can compete with the best
search algorithms (SSA’s) for feature subset selection and even outperform
SSA’s for larger feature sets (typically when the number of features is larger
than 50). The ‘roulette wheel’ selection strategy was chosen, where the fit-
ness function was determined by:

 { } { } { }
{ }

n
i i

i
i

(Var(T)-MSE(F)) , if MSE(F) < Var(T)
fitness(F)=

0 , if MSE(F) Var(T).≥

(6)

From (6) we observe that any feature subset (Fi) with a mean square error
performance (MSE) smaller than the variance of the target variable, gets re-
warded. Parameter n controls ‘selective pressure’ [14]: a higher n will reward
good solutions disproportionally. We set n equal to 2. Finally, we used fol-
lowing settings in the GA: the probability of cross-over between individuals
(an individual is a particular feature subset) pc is equal to 0.3, the probability
of mutation pm of a feature within every individual equal to 0.01, the number
of individuals per population equal to 30 and the number of populations
equal to 100.

38 G. Van Dijck and M.M. Van Hulle

Finally, in figure 4 a schematic overview of the overall feature subset selection
strategy is presented.

Wrapper
Genetic algorithm:
feature subset search

MLP neural network
regression model:
Training + perform-
ance estimation

Mutual infor-
mation relevance

filter

Mutual infor-
mation redun-

dancy filter

Feature
output

Feature
input

Filter

Fig. 4. Schematic overview of the overall feature subset selection strategy for regression. First,
irrelevant and redundant features are removed in the filter. Second, the wrapper approach fo-
cuses on the smaller set of interesting features.

3 Results

3.1 Boston Housing

We summarize the application of the FSS strategy of figure 4 in table 1 for the ‘Bos-
ton housing’ data for feature subset sizes 1 to 5.
 We remark that the relevance analysis showed that only feature 1 is irrelevant
(CHAS feature) and that the smallest distance between any features is equal to 0.461
(features RAD: index of accessibility to radial highways and TAX: full-value prop-
erty-tax rate). We performed further simulations with feature subsets up to all features
(13). The best feature subset obtained contained 12 features (feature 4 not included)
and has an MSE of 14.83, however, none of the results obtained with more than 3
features could be proven to be statistically significant compared to the result with 3
features. Feature 4 was never included in the smaller subset sizes and thus could have
been successfully removed by the relevance filter.

Table 1. Performance of the MLP feature subset strategy on the ‘Boston housing’ data

Feature
subset size

Feature list (1-13)
Best solution

Performance (MSE)

1 [13] 28.08 ± 0.75
2 [6 13] 21.66 ± 1.25
3 [3 6 13] 18.81 ± 1.80
4 [2 5 6 13] 18.96 ± 1.63
5 [6 8 9 11 13] 16.03 ± 1.13

 Speeding Up the Wrapper Feature Subset Selection in Regression 39

3.2 Orange Juice

Table 2 presents the results of the MLP FSS strategy on the ‘orange juice’ data set.
This data set has been made available by the BNUT unit of the UCL (Université Ca-
tholique de Louvain). In performance1 the results of the algorithm of figure 4 without
the filter and in performance2 the results with filter (with equal to 25 clusters) are
tabulated.

Table 2. Performance of the MLP feature subset strategy on the ‘orange juice’ data

Performance1 performance2 Feature
subset

size MSE time MSE Time

5 49.64 301 55.64 254
6 50.91 299 58.36 280
7 69.63 352 53.78 279
8 57.25 360 59.45 325
9 54.76 410 60.57 386

10 57.94 485 46.48 461
11 51.73 641 56.98 520
12 54.71 534 47.28 545
13 38.04 680 49.81 416
14 49.14 750 46.98 463
15 52.34 647 48.66 489

 MSE is the performance in ‘mean square error’ of the best feature subset found,
time is the total number of times a 10-fold cross-validation procedure (this means:
training, validation and testing) was needed over 100 populations to estimate the per-
formance of a feature subset (one has a maximum of 30*100 evaluations). Once this
performance for a subset is computed, it can be stored and thus it does not need to be
recomputed if the feature subset reappears in future populations. Reappearance of
performing subsets is very likely (and expected), due to the fitness selection strategy.
The increased performance in speed (lower time) in table 2 can be explained by the
reduction of the 700 features to 25 features used in the wrapper: crossover and muta-
tion are more likely to generate previous occurring individuals. Hence, while an in-
crease in speed for a hybrid approach would be evident for search strategies such as:
exhaustive search, SSA’s, greedy search and so on, it is less evident for GA’s, when
keeping the number of individuals per population and the number of populations
fixed. Furthermore, a paired t-test on the MSE’s (mean square errors) shows that the
performance of the 2 approaches is equivalent; on the other hand a paired t test shows
that the difference in number of evaluations needed is statistically significant. The
cost of the filter preprocessing can be ignored if a limited number of permutations are
performed.

40 G. Van Dijck and M.M. Van Hulle

4 Conclusions

We have shown that relevance and redundancy analysis helps interpreting the data
under study. Permutation tests are used to find statistically motivated thresholds that
determine statistically relevant features. Finally, it was shown that the filter preproc-
essing increases the speed of the wrapper approach in the feature subset search.

Acknowledgements

This first author was supported by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT Vlaanderen). The second author is
funded by the Belgian Fund for Research -- Flanders (G.0248.03, G.0234.04).

References

1. Guyon, I. Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Ma-
chine Learning Research 3 (2003) 1157-1182.

2. Kurgan, L.A., Cios, K.J.: CAIM Discretization Algorithm. IEEE Transactions on Knowl-
edge and Data Engineering 16 (2004) 145-153.

3. Kohavi, R., John G. H.: Wrappers for Feature Subset Selection. Artificial Intelligence 97
(1997) 273-324.

4. Van Dijck G., Van Hulle M. M., Wevers, M.: Hierarchical Feature Subset Selection for
Features Computed from the Continuous Wavelet Transform. 2005 IEEE Workshop on
Machine Learning for Signal Processing (2005) 81-86.

5. Cover, T. M., Thomas, J. A.: Elements of information theory. John Wiley & Sons, New
York (1991).

6. Schreiber, T., Schmitz, A.: Surrogate Time Series, Physica D 142 (2000) 346 – 382.
7. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating Mutual Information. Phys. Rev. E.

69 (2004) 066138.
8. Francois, D., Wertz, V., Verleysen, M.: The Permutation Test for Feature Selection by

Mutual Information. European Symposium on Artificial Neural Networks (2006) 239-244.
9. John, G., Kohavi, R. Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In

Proc. of the Eleventh Int. Conf. on Machine Learning, (1994) 121-129.
10. Duda, R.O., Hart, P.E., Stork, D. G. Pattern Classification, John Wiley & Sons Inc., New

York (2001).
11. Bishop, C.M. Neural Networks for Pattern Recognition. Oxford University Press Inc.,

New York (1997).
12. Narendra, P. M., Fukunaga, K.: A Branch and Bound Algorithm for Feature Subset Selec-

tion. IEEE Trans. Computers 26 (1977) 917-922.
13. Pudil, P., Novovicova, J., Kittler, J., Floating Search Methods in Feature Selection. Pattern

Recognition Letters 15 (1994) 1119-1125.
14. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.

Springer-Verlag, Berlin Heidelberg New York (1996).
15. Kudo, M., Sklansky, J., Comparison of Algorithms that Select Features for Pattern Recog-

nition. Pattern Recognition 33 (2000) 25-41.

Effective Input Variable Selection for Function
Approximation

L.J. Herrera1, H. Pomares1, I. Rojas1, M. Verleysen2, and A. Guilén1

1 Computer Architecture and Computer Technology Department
University of Granada, 18071, Granada, Spain

2 Machine Learning Group
3 Place du Levant, 1348 Louvain la Neuve, Belgium

Abstract. Input variable selection is a key preprocess step in any I/O
modelling problem. Normally, better generalization performance is ob-
tained when unneeded parameters coming from irrelevant or redundant
variables are eliminated. Information theory provides a robust theoretical
framework for performing input variable selection thanks to the concept
of mutual information. Nevertheless, for continuous variables, it is usu-
ally a more difficult task to determine the mutual information between
the input variables and the output variable than for classification prob-
lems. This paper presents a modified approach for variable selection for
continuous variables adapted from a previous approach for classification
problems, making use of a mutual information estimator based on the
k-nearest neighbors.

1 Introduction

Input variable selection is a very important preprocessing step in any supervised
or unsupervised learning problem. Having a number of irrelevant or redundant
input variables can lead to overfitting and to a poor generalization of the model
[3]. Furthermore in models that suffer from the curse of dimensionality in the
number of input variables like grid-based fuzzy models [5], input variable selec-
tion becomes essential.

Two main trends can be followed to perform this process. Filter methods try
to select the variables in a preprocess step with the only information that the
I/O values bring. Wrapper methods employ the learning methodology that is
going to be used, in order to select the subset of variables that brings the best
performance. In both cases, there are two options to perform the “selection” of
the variables subset. On the one hand it is possible to select a subset of the
original variables (feature selection or input variable selection). On the other
hand the initial set of input variables can be replaced by a new subset of variables
that are usually obtained by linear or nonlinear transformations of the original
ones (feature extraction or input variable extraction).

This paper deals with filter methods for feature selection. Filter methods have
the great advantage that the model has no influence on the selected variables.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 41–50, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 L.J. Herrera et al.

Thus they can be used as a completely separated preliminary step to the In-
put/Output (I/O) modelling problem. Several methodologies for input variable
selection exist in the literature for both feature selection and feature extraction
approaches. Principal component analysis (PCA) and kernel-PCA algorithms
are examples of feature extraction methods [2,3,4]. Feature selection methods
have the advantage that the meaning or understandability of the input variables
of the problem is kept in the model.

For input variable selection, information theory offers a good theoretical envi-
ronment for variable filtering thanks to the concepts of entropy and mutual in-
formation (MI) between variables [11]. Nevertheless, for regression problems it is
a harder task to use these concepts. In regression the input and output variables
take continuous values, and additional techniques have to be used to estimate
the probability distribution [1]. This problem becomes even more pronounced
specially when the number of data points is low comparing to the number of
input variables (DNA Micro-arrays, etc.). Among the techniques to estimate
the probability density functions (PDF) we can find histogram and kernel-based
PDF estimators. But those estimators suffer from the curse of dimensionality
and can be used for problems with a low number of variables.

A number of estimators for the entropy based on the k-nearest neighbor statis-
tics also exist. Only recently they have been extended to the mutual information
estimation by Kraskov et al [9,10]. A nice property of this estimator is that it
can be used easily for sets of variables.

Using the concept of mutual information between two or more variables, a
number of algorithms could be designed [1,7,8]. This paper presents a modifica-
tion of the work presented in [6], adapted for continuous variables thanks to the
use of the MI estimator based on the k-nearest neighbors [9]. The simulations
section presents the application of the new methodology to Least Squares Sup-
port Vector Machines (LS-SVMs). It is also compared with other recent input
variable selection methods presented in the literature.

The rest of the paper is organized as follows. Section 2 briefly explains the mu-
tual information concept for continuous variables (subsection 2.1); it overviews
the k-nearest neighbors estimator that is used (subsection 2.2); and finally
presents the proposed algorithm for variable selection based on MI (subsection
2.3). Section 3 shortly reviews the basics of the LS-SVMs. Section 4 presents ex-
amples of application of the variable selection methodology. Section V presents
the main conclusions drawn from the study.

2 Effective Feature Selection Based on the Mutual
Information

In this section the basics of the proposed variable selection algorithm are pre-
sented. First the mutual information concept for continuous variables is briefly
explained, followed by a k-nearest neighbors procedure to estimate it. Finally
the algorithm, which is an adaptation of a previous work for discrete cases in
[6], is presented.

Effective Input Variable Selection for Function Approximation 43

2.1 Mutual Information

Given a single-output multiple input (MISO) function approximation or classi-
fication problem, with input variables X = [x1, x2, . . . , xn] and output variable
Y = y, the main goal of a modelling problem is to reduce the uncertainty on
the dependent variable Y . According to the formulation of Shannon, and in the
continuous case, the uncertainty on Y is given by its entropy defined as

H(Y) = −
∫

µY (y) logµY (y)dy, (1)

considering that the marginal density function µY (y) can be defined using the
joint PDF µX,Y of X and Y as

µY (y) =
∫

µX,Y (x, y)dx. (2)

Given that we know X , the resulting uncertainty of Y conditioned to known
X is given by the conditional entropy, defined by

H(Y |X) = −
∫

µX(x)
∫

µY (y|X = x) log µY (y|X = x)dydx. (3)

The joint uncertainty on the [X,Y] pair is given by the joint entropy, defined
by

H(X,Y) = −
∫

µX,Y (x, y) logµX,Y (x, y)dxdy. (4)

The mutual information (also called cross-entropy) between X and Y can
be defined as the amount of information that the group of variables X provide
about Y , and can be expressed as

I(X,Y) = H(Y) −H(Y |X). (5)

In other words, the mutual information I(X,Y) is the decrease of the un-
certainty on Y once we know X . Due to the mutual information and entropy
properties, the mutual information can also be defined as

I(X,Y) = H(X) + H(Y) −H(X |Y), (6)

leading to

I(X,Y) =
∫

µX,Y (x, y) log
µX,Y (x, y)
µX(x)µY (y)

dxdy. (7)

Thus, only the estimate of the joint PDF between X and Y is needed to
estimate the mutual information between two groups of variables.

Estimating the joint probability distribution can be performed using a number
of techniques. As mentioned already, histograms and kernel density estimators
have been used for this purpose [1]. The next subsection will shortly review how
to use a k-nearest neighbors methodology to estimate the MI.

44 L.J. Herrera et al.

2.2 Estimating the Mutual Information Using the k-Nearest
Neighbors

There is extensive literature about estimators based on the k-nearest neighbors
for the entropy, but it has been only recently extended to the MI [9].

Thanks to that estimator, it is possible to use sets of variables in the estimation
of the MI, and thus it will allow to adapt the method presented in [6].

We define the space Z = X,Y and we will use the maximum norm for any
pair of points z = (x, y) and z′ = (x′, y′),

‖z − z′‖ = max{‖x− x′‖, ‖y − y′‖}, (8)

although any other norm could be used. Denote by ε(i) the distance from a
point zi to it is k-th nearest neighbor and by εx(i) and εy(i) the distances
between the same points projected into the X and Y subspaces. Obviously ε(i) =
max{εx(i), εy(i)} .

We will count the number nx(i) of points xj whose distance from xi is strictly
less than ε(i), and similarly for y instead of x. The estimate for MI is then (see
[9] for a proof of the convergence of this estimator)

Î1(X,Y) = ψ(k) − 1
N

N∑
i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)] + ψ(N), (9)

where ψ is the digamma function given by

ψ(t) =
Γ ′(t)
Γ (t)

=
d

dt
lnΓ (t). (10)

Function ψ satisfies the recursion ψ(x+ 1) = ψ(t) + 1/x and ψ(1) = C where
C = −0.5772156 . . . is the Euler-Mascheroni constant.

Another alternative is to replace nx(i) and ny(i) by the number of points with
‖xi − xj‖ ≤ εx(i)/2 and ‖yi − yj‖ ≤ εy(i)/2. The estimate for MI is then

Î2(X,Y) = ψ(k) − 1
k
− 1

N

N∑
i=1

[ψ(nx(i)) + ψ(ny(i))] + ψ(N). (11)

In this paper this second estimator is used, which is the one implemented in
[10]. Please check [9] for an extended explanation.

As can be noted, this MI estimator has a dependency on the value chosen for
k (k-th nearest neighbor). As it is recommended in [12] for a tradeoff between
variance and bias, in the examples, a mid-range value for k (k = 6) will be used.

2.3 Effective Variable Selection for Function Approximation
Problems Using MI

The MI estimator detailed above will allow us to carry out the proposed variable
selection method. It also gives the possibility of estimating the MI for groups of

Effective Input Variable Selection for Function Approximation 45

variables even when the number of data points we have at disposal is relatively
small.

In the following it is reviewed how the MI can be used for variable selec-
tion, and it is presented the proposed method for variable selection in function
approximation problems.

According to the definition of MI, I(X,Y) gives the information that the
group of variables X bring about Y . Any modelling problem would try to use
this information and try to predict new values of Y given new values of X . As
mentioned before, having unneeded variables can unnecessarily complicate the
model. Furthermore the generalization capability can be decreased. Thus it is
essential to select a right subset XG ⊂ X that comprises the same information
that X has of Y . That is, we want to find a subset XG ⊂ X such that

I(X,Y) ∼= I(XG, Y). (12)

We could directly try to evaluate I(XG, Y) for all the possible subsets XG of
X , and then select the smallest subset X ′

G, whose I(XG, Y) is the highest. In
this way irrelevant and redundant variables would not be selected in the optimal
X ′

G. This approach suggested in [13] and [1], and partially in [8] has two main
drawbacks. First the number of possibilities for XG is exponential in the number
of input variables n (2n possible subsets). Second, as the number of available
data is limited, the robustness of the k-nearest neighbor MI estimator is also
limited when taking into account too many input variables in XG.

Other approaches could consider the MI of single input variables over the
output variable I(xi, Y) to perform a ranking and use it as a filter to eliminate
variables [7]. This approach is very good for avoiding irrelevant variables but
does not consider redundant ones. For example two variables xi and xj can have
a very high MI with respect the output variable Y , but using both of them can
bring no more MI w.r.t the output variable. In this case I({xi, xj}, Y) is similar
to I(xi, Y) and I(xj , Y), and thus one could be discarded.

A more robust approach would be to try selecting input variables as the MI
with respect to the output variable of the selected subset increases. An iterative
process would add a new variable to the current subset such that

I({XG ∪ xi}, Y) − I(XG, Y), (13)

is maximum over j. Nevertheless, as mentioned before, if the number of variables
to be selected is high, the precision of the MI estimator can be lost. The results
offered by the MI estimator, as exposed in [9] are optimal when the number of
data points is very high, but in practice this is rarely the case.

Here it is proposed to adapt the method for discrete variables presented in [6]
to function approximation problems (i.e. to continuous variables). An iterative
backwards variable selection will be performed, starting from the complete set
of variables X . The idea is to eliminate a variable xi in the current selected
subset XG ∪ {xi} ⊂ X if we estimate that I({XG ∪ {xi}}, Y) = I(XG, Y). To
help in this iterative procedure, the concept of Markov blanket, adapted for this
problem, will be used. We will suppose that this concept can be applied for the

46 L.J. Herrera et al.

specific variable selection problem we deal with. The use of Markov blankets [15]
implies strong conditioning between the variables. Nevertheless it will be relaxed
to help us performing the variable selection.

Definition: Let M be a set of variables that do not contain xi. We say that M
is a Markov blanket for xi if I({M ∪ xi}, X − {M ∪ xi}) ∼= I(M,X −{M ∪ xi})

Corollary: Let XG be a subset of variables and xi a variable in XG. Assume
that a subset M of XG is a Markov blanket of xi. Then I(XG, Y) ∼= I(XG −
{xi}, Y).

As we can see, the Markov blanket condition is stronger than the one we
desire. It can be even a harder problem to find a Markov blanket of a variable
in a set of variables that the variable selection problem itself. However it brings
the idea on how to perform a more robust variable selection procedure. The
difficult evaluation of I({XG ∪ {xi}}, Y) = I(XG, Y) to eliminate variables, will
be transformed into estimating if xi has a Markov blanket in XG. Those xi will
be removed from the current XG.

As already mentioned, calculating the Markov blanket of a variable in a set,
or even trying to know if it exists is a very difficult task. Therefore it will be as-
sumed that the Markov blanket exists, and we will derive a heuristic to guess the
variables M that compose the Markov blanket of any variable xi. The proposed
algorithm is the following:

1. Calculate the MI between every two input variables I(xi, xj)
2. Starting from the complete set of input variables XG = X , iterate:

(a) For each variable xi, let the candidate Markov blanket Mi be the set of
p variables in XG for which I(xi, xj) is highest.

(b) Compute for each xi

Lossi = I({Mi ∪ xi}, Y) − I(M,Y). (14)

(c) Choose the xi for which Loss′i is lowest and eliminate x′
i from XG.

The procedure may be stopped after a fixed number of input variables are
eliminated; alternatively it may be stopped when Loss′i reaches a certain thresh-
old. This methodology is suboptimal in some aspects, but still offers a robust
variable selection methodology. The Markov blanket selected for every variable
is just an approximation and the number p of variables is fixed a priori. With
respect to parameter p, high values can bring better chances that the pseudo-
Markov blankets taken subsume real Markov blankets of the variables. However,
the reliability of the MI estimator can be decreased. Considering this trade off,
in general, a medium value of p should be considered. For problems with low
number of data points, a lower value for p should be taken.

As we will see in the simulation section, the method proposed can outperform
the other methods commented in this paper: it can therefore be a good solution
for the key problem of variable selection in regression or function approximation
problems.

Effective Input Variable Selection for Function Approximation 47

3 Least-Squares Support Vector Machines

This section presents a brief introduction to the learning methodology used in
the simulations. LS-SVMs are reformulations to standard SVMs, closely related
to regularization networks and Gaussian processes but additionally emphasize
and exploit primal-dual interpretations from optimization theory. LS-SVMs are
a paradigm specially well suited for function approximation problems [4].

The LS-SVM model [14] is defined in its primal weight space by

ŷ = WTφ(X) + b, (15)

where WT and b are the parameters of the model, φ(X) is a function that
maps the input space into a higher-dimensional feature space and X is the n-
dimensional vector of inputs xi. In Least Squares Support Vector Machines for
function approximation, the following optimization problem is formulated,

min
W,b,e

J(W, e) =
1
2
WTW + γ

1
2

N∑
i=1

e2
i , (16)

subject to the equality constraints (inequality constraints in the case of SVMs)

ei = yi − ŷi(Xi), i = 1 . . .N. (17)

Solving this optimization problem in dual space leads to finding the λi and b
coefficients in the following solution

ŷi =
N∑

i=1

λiK(X,Xi) + b, (18)

where the function K(X,Xi) is the kernel function defined as the dot product
between the φ(X) and φ(Xi) mappings. If we consider Gaussian kernels, the
width of the kernel σi together with the regularization parameter γ, are the
hyper-parameters of the problem. Note that in the case of Gaussian kernels, the
obtained model resembles Radial Basis Function Networks (RBFN), with the
particularities that there is an RBF node per data point, and that overfitting is
controlled by a regularization parameter instead of by reducing the number of
kernels [7]. In LS-SVM, the hyper-parameters of the model are usually optimized
by cross-validation.

4 Simulations

This section presents the application of the variable selection method proposed
in this paper to a significant example. The MI estimator in [10] will be used in
all the simulations. A LS-SVM Matlab toolbox can be found in [14]. The error
measure used here is the Normalized Mean Square Error, NMSE [7].

The example considered has been taken from [7] and is a spectrometric data
set coming from the food industry. This type of data form vectors with a large

48 L.J. Herrera et al.

number of exploitable variables. Usually however, only a small subset of them
is required to build a good model. The “tecator meat” data set consist of 100
spectral input variables and one output variable (the original data set has three,
but we consider only the fat content). It relates to the determination of the fat
content of meat samples analyzed by near infrared transmittance spectroscopy.
This data set contains 172 training spectra and 43 test spectra. As in [7], the
spectra are reduced to zero mean and unit variance. Also to avoid loosing in-
formation, the original mean and standard deviation are kept as two additional
variables. A selection of training spectra is shown in Figure 1.

Fig. 1. A selection of the spectra from the “tecator meat” data set

In [7], first an initial subset of 16 variables is selected. Using them, a LS-SVM is
optimized using cross-validation. The test NMSE obtained for this case is 0.0040.
Next, all 216 possible subsets of variables are tested, checking which subset of
those 16 variables brings the highest MI with respect to the output variable. The
optimal subset found had 8 variables. The test NMSE on the LS-SVM model is
0.0049. Note that in the comparisons presented in this section, there are some
differences with the results shown in [7], since the second estimator Î2(X,Y) was
used here.

Next we proceed by selecting 16 most significant variables using the approach
proposed in this paper (for example using p = 6). The test NMSE obtained after
the optimization of the LS-SVM is 0.0022. As can be seen, the initial subset
selected by our method has a higher performance than the one selected by the
approach in [7]. Forcing the number of variables to 8 (with parameter p = 6) to
compare with the sub-set selected in [7], the test NMSE was 0.0024.

With respect to the value of the parameter p, similar results of NMSE with
16 variables were given by other values of p both in training and in test, showing
the efficiency of the method eliminating irrelevant and redundant variables. For
very low values of p, the training and test errors were even lower (test NMSE
for p = 1 is 0.0016). It is noticeable that the variables selected for different
values of p are remarkably different. This is due to the high level of redundan-
cies that exist among the input variables and also to the low number of data
points that we handle in this problem. In problems like this one, there are usually
several possibilities of suboptimal subsets of variables, instead of a single
optimal set.

Effective Input Variable Selection for Function Approximation 49

For this problem the results obtained show that lower values of p provide bet-
ter results both for training and test data sets. But during the filtering process,
there are also some details that suggest discarding higher values for p. The loss
function (see Eq. 14) for high values of p does not follow an increasing trend. We
have a low number of data points and very high redundancies among the input
variables. Thus the MI estimator can provide confusing results.

Taking p = 1, we will now look for a final pseudo-optimal subset of variables.
As mentioned before, we could have in principle two possible stopping criteria in
our algorithm. One is to specify a number of input variables to be selected. This
number could be chosen according to the results of the model on the subsets of
variables. In this case, the method would become a mixture of filter and wrapper.
A good stopping criterion would be to select the subset that brought the best
training error after the cross-validation optimization of the LS-SVM model.

Nevertheless, in order not to loose the filtering advantage of the method, a
possible heuristics is to select a limit in the loss function in Eq. 14. In Figure 2
the evolution of the loss function in Eq. 14 in the iterative process is shown, for
p = 1. From this graph we can get an idea on how much information is lost as
variables are discarded in the iterative process. We saw that selecting a subset
of 16 variables leads to good performance. For this value, the Loss′ is around
0.23. Consequently we establish a limit of 0.26, that corresponds to the next
peak in the graph. From this threshold no more variables will be eliminated.
Finally, the optimal subset contains 11 variables and the performances are test
NMSE = 0.0016 and training NMSE = 0.0010. Other tests showed that further
elimination of variables leads to a small worsening of the performances (both in
training and test), increasing as more variables are discarded.

Fig. 2. Evolution of the Loss′ function in the run of the algorithm with p = 1

5 Conclusions and Further Work

In this paper it was presented an effective backward variable selection method for
function approximation problems, based on the concept of MI, adapted from a
previous method for classification problems. It is a robust approach compared to
other ones from the literature, thanks to the use of the Markov blanket concept.
As further work, we intend to design a general methodology to select the number
of input variables to be discarded. Furthermore the application of the method

50 L.J. Herrera et al.

in other domains, in particular in time series prediction, will be investigated to
help solving the difficult problem of deciding which variables should intervene
in the prediction model.

Acknowledgements

This work is partially supported by the Spanish CICYT Project TIN 2004-01419.
This work was partially done during the stay of L. J. Herrera in the UCL, under
the supervision of M. Verleysen, Research Director of the Belgian FNRS.

References

1. B.V. Bonnlander, A.S. Weigend, “Selecting input variables using mutual informa-
tion and nonparametric density estimation, in Proc. of the ISANN 2004, Taiwan,
1994, pp. 42-50

2. B. Schoelkopf, A. Smola: Learning with Kernels. Cambridge, MA: MIT Press, 2002
3. S. Haykin, Neural Networks, Prentice Hall, New Jersey, 1998
4. J.A.K . Suykens, T. Van Gestel, J. De Brabanter, J. De Moor, B., Vandewalle:

Least Squares Support Vector Machines, World Scientific, Singapore, 2002
5. L.J. Herrera, H. Pomares, I. Rojas, O. Valenzuela, A. Prieto: “TaSe, a Taylor Series

Based Fuzzy System Model that Combines Interpretability and Accuracy”. Fuzzy
Sets and Systems, vol. 153, No.3, 2005, 403-427

6. D. Koller, M. Sahami, “Toward Optimal Feature Selection”, in Proc. Int. Conf. on
Machine Learning, 1996, pp. 284-292

7. F.Rossi, A. Lendasse, D. Franois, V. Wertz, M. Verleysen: “Mutual Information
for the selection of relevant variables in spectrometric nonlinear modeling”, Chem.
and Int. Lab. Syst., 2005, In Press

8. N. Benoudjit, D. Franois, M. Meurens, M. Verleysen: “Spectrophotometric variable
selection by mutual information”, Chem. and Int. Lab. Syst., vol. 74, 2004, pp. 243-
251

9. A. Kraskov, H. Stgbauer, P. Grassberger, “Estimating mutual information”,
Phys.Rev.,E 69, 2004, 066138

10. http://www.klab.caltech.edu/∼kraskov/MILCA/
11. T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York, 1991
12. S. Harald, K. Alexander, A.A. Sergey, G. Peter, “Least dependent component

analysis based on mutual information”, Phys. Rev., E 70, 2004, 066123
13. A. Sorjamaa, J. Hao, A. Lendasse, “Mutual Information and k-Nearest Neighbors

Approxi-mator for Time Series Prediction”, ICANN 2005, LNCS 3697, pp. 553 -
558

14. http://www.esat.kuleuven.ac.be/sista/lssvmlab/
15. J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, CA,

1988

Comparative Investigation on Dimension
Reduction and Regression in Three Layer

Feed-Forward Neural Network

Lei Shi and Lei Xu

Chinese University of Hong Kong, Shatin, NT, Hong Kong
{shil, lxu@}cse.cuhk.edu.hk

Abstract. Three layer feed-forward neural network (3-LFFNN) has
been widely used for nonlinear regression. It is well known that its hidden
layer can be regarded as taking the role of feature extraction and dimen-
sion reduction, and that the regression performance relies on how the fea-
ture dimension or equivalently the number of hidden units is determined
appropriately. There are many publications on determining the hidden
unit number for a desired generalization error. However, few comparative
studies have been made on different approaches proposed, especially on
those typical model selection criteria for this purpose. This paper targets
such an aim. Using both simulated data and several real world data sets,
a comparative study has been made on the regression performances with
the number of hidden units determined by several typical model selec-
tion criteria, including Akaike’s Information Criterion (AIC), the consis-
tent Akaike’s information criterion (CAIC), Schwarz’s Bayesian Inference
Criterion (BIC) which coincides with Rissanen’s Minimum Description
Length (MDL) criterion, and the well-known technique cross-validation
(CV), as well as the Bayesian Ying-Yang harmony criterion on a small
sample size (BYY-S). As shown in experiments on a small size of sam-
ples, BIC and CV are better than AIC and CAIC obviously. Moreover,
BIC may be better than CV on certain data sets, while CV may be better
than BIC on other data sets. Interestingly, BYY-S generally outperforms
both BIC and CV.

1 Introduction

As a popular supervised learning model, three layer feed-forward neural network
(3-LFFNN) has been widely investigated and applied in many areas [13,15], in
which the three layers are input layer, hidden layer and output layer, respec-
tively. The activation function in each hidden unit is usually a sigmoid function
with respect to a linear combination of input signals, while the output layer per-
forms a linear combination. In the literature, many methods have been proposed
to train a size-predetermined 3-LFFNN and estimate the connection weights so
as to decrease the mean squared error (MSE) at the output layer, such as the
well-known back-propagation technique [3,4,13]. However, this kind of training
approaches can only provide a minimum training MSE but not guarantee a net-
work with desired generalization errors, leaving the problem of determining the

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 51–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 L. Shi and L. Xu

network structure unsolved. Particularly, when widely used in nonlinear regres-
sion, 3-LFFNN can approximate an unknown input-output relation underlying
a target system based only on a set of training data [1,15], in which the hidden
layer can be regarded as playing the role of feature extraction and dimension
reduction. Both the quality of regression and the generalization ability depend
on the network’s architecture. Since both the input and output layers are natu-
rally determined by the input and output patterns, respectively, the abilities of
a 3-LFFNN thus depend on the number of the hidden units.

To select the hidden unit number in 3-LFFNN, we are faced with both the
under-fitting problem caused by insufficient hidden units, and a high risk of being
over-fitting caused by using too many hidden units. In literature, many efforts
have been proposed to determine 3-LFFNN’s structure [1,12,13], which can be
roughly divided into two types. The first type uses some heuristic methods to
change and choose the network’s structure, such as adding hidden units from
a simple network or doing pruning from a complex network until reaching a
stable state [13]. The other kind of methods describes this problem from a model
selection viewpoint, i.e., the optimal model is determined by a given model
selection criterion in a so-called two-phase procedure, during which a set of
candidate models are firstly obtained by the minimum MSE training, and then
the “optimal” model is selected according to the given criterion. In this paper,
we focus on comparing different popular criteria used in this second type.

A variety of criteria for model selection have been proposed in literature, such
as Akaike’s Information Criterion (AIC) [5], the consistent Akaike’s information
criterion (CAIC) [6], Schwarz’s Bayesian Inference Criterion (BIC) [7] which
coincides with Rissanen’s Minimum Description Length (MDL) criterion [8], and
another well-known technique cross-validation (CV) [10]. Bayesian Ying-Yang
(BYY) learning was proposed as a unified statistical learning framework firstly
in 1994 and systematically developed in the past decade. Providing a general
learning framework, BYY harmony learning consists of a general BYY system
and a fundamental harmony learning principle as a unified guide for developing
new regularization techniques, a new class of criteria for model selection, and a
new family of algorithms that perform parameter learning with automatic model
selection. When applied to a 3-LFFNN structure selection, BYY criteria have
been proposed and developed [14,15,16]. Especially, when the small sample size
cases are considered and a two-phase procedure is implemented too, a better
BYY criterion (BYY-S) has been proposed in [15].

There have been some studies to investigate separately AIC, BIC/MDL or
CV’s performance on 3-LFFNN model selection [1,2,12], however, few systematic
ones have been proposed on those different typical criteria for this purpose.
This paper intends to provide a comparative investigation on AIC, CAIC, BIC,
CV and BYY-S in selecting the optimal hidden unit number for 3-LFFNN on
different data sets. In our experiments, two different kinds of results are reported
due to the data situations. For data sets with known numbers of hidden units,
the number selection results by each criterion are reported for comparison, while

Comparative Investigation on Dimension Reduction and Regression 53

for those cases with hidden unit numbers unknown, we compare training and
generalization root mean squared errors (RMSE).

The rest of this paper is organized as follows. In Section 2, we review the
regression problem and the 3-LFFNN model. Section 3 introduces typical model
selection criteria for determining 3-LFFNN hidden unit number, including AIC,
CAIC, BIC, CV and BYY-S. In Section 4, a series of comparative experiments
on both simulated and real data sets are reported. Finally, we present some
concluding remarks in Section 5 and further discussion is given in Section 6.

2 Regression and 3-LFFNN

3-LFFNN has been widely investigated and applied in literature [1,2,11,14,15],
with the three layers being input layer, hidden layer and output layer, respec-
tively. One of the most important application of 3-LFFNN is to form a non-linear
model that can approximate or regress any reasonable continuous input-output
relation. Here, we use 3-LFFNN with binary hidden units to regress an under-
lying function f with the dimensionality reduced at the hidden layer [1,2,15].
Given a set of N pairs input-output samples {xi}N

i=1, with each xi = [ξi, ηi],
where ηi ∈ R are targets and ξi ∈ Rd are inputs [1,14], we consider a 3-LFFNN
with 1 output unit, k hidden units, and d input units, as shown in Fig.(1),
where yi,j is the output of the jth hidden unit for ith input vector ξi. That is,
we describe a nonlinear regression by

ηi =
k∑

j=1

wo
jyi,j + bo + εi, i = 1, . . . , N, (1)

where wo
j ∈ R is the weight connecting the jth hidden unit and the output

unit, bo ∈ R is the output unit’s bias, εi is the independent random noise with
a normal distribution N(0, σ2), and yi,j takes binary values according to the
Bernoulli probability distribution,

ŷi,j = s(Wjξi + bj), p(yi,j) = ŷi,jδ(yi,j) + (1 − ŷi,j)δ(1 − yi,j), (2)

where Wj ∈ Rd and bj ∈ R are the weight vector connected to and the bias on
the jth hidden unit, respectively. Moreover, s(•) is the sigmoid function, usually
in the form of s(r) = 1/(1 + e−r).

Given a 3-LFFNN with fixed architecture, training the network for estimating
parameters can be usually solved by the well-known back-propagation algorithm
[3,4,15] for a minimum training mean squared error (MSE) destination.

3 Estimating Hidden Unit Number

To determine the optimal hidden unit number of a 3-LFFNN, we face a dilemma:
although the regression errors for the training examples will reduce to zero with

54 L. Shi and L. Xu

Fig. 1. Structure of a typical three layer feed-forward neural network

an increasing number of the parameters, the errors on testing examples also in-
crease. That is, minimizing training MSE and minimizing testing MSE competes
with each other. To determine a desired structure, under the name of model se-
lection, one typical approach is the so-called two-phase procedure by using a
model selection criterion J(θ̂k, k) [1,2,11,15] as follows:

1: Enumerate k within a range from kinf to ksup, which is assumed to contain
the optimal k∗. For each k, the network is trained by the well-developed
back-propagation technique to estimate θ̂k [3,4,15].

2: Select k∗ = arg mink∈[kinf ,ksup] J(θ̂k, k).

3.1 Typical Model Selection Criteria

The typical model selection criteria under our consideration include Akaike’s
Information Criterion (AIC) [5], the consistent Akaike’s information criterion
(CAIC) [6], Schwarz’s Bayesian Inference Criterion (BIC) [7] which coincides
with Rissanen’s Minimum Description Length (MDL) criterion [8]. These three
criteria can be summarized into the following general form:

J(θ̂k, k) = N ln(MSE t) + d(k)c(N), (3)

MSE t =
∑N

i=1(ηi − η̂i)2

N
, (4)

where θ̂k is an estimation of parameters, k is the hidden unit number, N is the
number of observations, MSE t is the training mean squared error. d(k) is the
number of free parameters in a specified structure. For a 3-LFFNN with d input
units, k hidden units, and p output units, the number of the connection weights
from the input layer to the hidden layer is k(d + 1), while the number of the
weights from hidden layer to the output layer is p(k+1). Thus the total number
of free parameters should be d(k) = k(1 + d) + p(k + 1). Moreover, c(N) is a
constant that depends on the number of observations:

* c(N) = 2 for AIC,
* c(N) = ln(N) + 1 for CAIC,
* c(N) = ln(N) for BIC and MDL.

Another well-known model selection technique is cross-validation (CV) [10].
After firstly dividing the original data set into m subsets, for the ith partition, a

Comparative Investigation on Dimension Reduction and Regression 55

single subset Di is retained as the testing data, while the remaining m−1 subsets
D−i are used for training. This process is repeated m times (folds), with each of
the m subsets used exactly once as the validation data. Finally, the model with
the smallest mean generalization mean squared error MSEg is selected according
to the criterion as follows, J(θ̂k, k) =

∑m
i=1(MSE gi|θ̂−i), where MSEgi is the

MSEg on the testing data subset Di, and θ̂−i are parameters estimated on the
training data D−i. Featured by m, this procedure is referred as an m-fold CV.
In our following experiments, we use 10-fold CV.

3.2 Improved BYY Criterion on Small Size Samples

Given an enough number of training samples, the hidden unit number k∗ can
be chosen by using any one of the previously discussed criteria in help of the
two-phase procedure. However, as discussed in [16], when N is relatively too
small, the performance of model selection criteria might deteriorate. That is,
when the training sample size N is small or not large enough, each of those
criteria actually provides a rough estimate that can not guarantee to give an
appropriate k∗, perhaps even resulting in a wrong number.

Bayesian Ying-Yang (BYY) learning provides a promising tool for learning
and model selection [14,15]. Mathematically, the parameter learning can be im-
plemented by maximizing the so-named harmony function. Particularly, for a
3-LFFNN with binary hidden units, BYY learning can select the hidden unit
number automatically during parameter learning [14,15]. Furthermore, a better
BYY criterion is given in [15,16] for a two-phase implementation on a small sam-
ple size. Applied to the 3-LFFNN model in this paper, the BYY model selection
criterion J(k) is given as follows (shortly BYY-S):

J(k) = 0.5 ln(MSE t) −Hq + ρ
d(k)
N

, where ρ = 0.5 or 1.0, (5)

Hq =
k∑

j=1

[qj ln qj + (1 − qj) ln(1 − qj)], qj =
1
N

N∑
i=1

yi,j , (6)

where d(k) is still the effective number of free unknown parameters as discussed
previously in Sec 3.1, N is the number of observations, and MSE t is the training
mean squared error. Moreover, ρ takes either 0.5 or 1.0, corresponding to two
different approximation ways as discussed in Section 3.5 of [16], which shortly
we denote BYY-S0.5 and BYY-S1.0, respectively.

Although the network training can be implemented by an adaptive Ying-Yang
machine algorithm referred in [14], in this paper we keep using back-propagation
to train all the 3-LFFNN, in order to compare with the performances of these
typical criteria discussed in Sec 3.1 under a same background.

4 Empirical Comparative Experiments

In this part, we conduct the comparative experiments on both simulated data
sets and real world data sets by using the criteria based on back-propagation

56 L. Shi and L. Xu

training, including AIC, CAIC, BIC, CV, BYY-S0.5 and BYY-S1.0. On each
training data set, for each k in a range [kinf , ksup] that contains the true number
k∗, the network is trained 10 times started with different random parameter
initialization, in order to avoid potential local optima. Then, every criterion is
calculated so that the estimated k̂∗ is selected.

4.1 Simulated Data

In the first experiment, we select the underlying function similar to [2] as η =
f(ξ) = 3

1+exp(−ξ−3) −
3

1+exp(−ξ+3) , where each sample consists of two variables
xi = [ξi, ηi]. The samples are generated by adding normal distributed noises from
N(0, σ2) to the function. We set the candidate range by kinf = 1 and ksup = 5,
where the underlying hidden unit number is 2. For one experimental situation
with predetermined sample size and noise, 100 different sample sets with a size
N are generated randomly by adding normal distributed noises to f(ξi) to get
ηi. To examine each of the generated sets, the 3-LFFNN is trained and criteria
are calculated at each k ∈ [1, 5] based on the trained θ̂k, then each criterion
obtains totally 100 selection results for hidden unit number k∗. We report the
selection times with respect to k by different criteria after the 100 simulations.

Focusing on the effects of sample size and noise, we design three series of
experimental situations. Firstly, in order to show the effect of sample size, four
situations are designed with different sample sizes N to be 32, 64, 128 and 256,
respectively, while noise variance is fixed at σ = 1.0. The results are reported in
Table. (1.a). From the experimental results, we can find that, AIC and CV have
a risk of overestimating the hidden unit number, especially when the sample size
is small, while CAIC has a risk of underestimation. BIC shows better perform,
but suffering inaccurate selection when N is small. Interestingly, BYY-S0.5 and
BYY-S1.0 obtain better or comparative results than others, with the advantage
being more and more obvious as the sample size goes down.

Further, to investigate the effect of noise, we fix the sample size at N = 128
and change the noise to be σ = 0.6, 0.8, 1.0, 1.2, as reported in Table. (1.b).
As indicated, when the noise is small, all criteria prefers to choose the right
selection. However, when the noise becomes larger, AIC tends to over select the
result, while CAIC has a risk of underestimation. BIC performs better, while CV
shows advantage over AIC, CAIC, and BIC when the noise is large. BYY-S1.0
and BYY-S0.5 still hold their preference to others generally.

Then, to see a rough combined effect on both sample size and noise variance,
we artificially choose four combined cases, with information and results shown
in Table. (1.c). Roughly, we can receive a impression that BYY-S1.0 and BYY-
S0.5 generally outperforms other criteria as the “estimation situation” becomes
difficult, i.e. the noise grows and sample size decreases.

4.2 Robot Arm Data

One standard data set mostly commonly used in neural network regression and
model selection is the Robot Arm data from MacKay [11,4]. In this data set, we

Comparative Investigation on Dimension Reduction and Regression 57

Table 1. Experimental results on the simulated data after 100 repetitions. For each
generated data set, the selection rates of corresponding hidden unit number k∗ are
reported. (a) shows the effect of sample size, with noise variance fixed at σ2 = 0.09.
(b) indicates the effect of noise variance, with N fixed at 128. (c) shows results about
some specified cases with the combined changing on both sample size and noise.

(a) The effect of sample size: N = 32, 64, 128, 256, with noise fixed at σ = 1.0
criteria AIC CAIC BIC/MDL 10-fold CV BYY-S0.5 BYY-S1.0

����k∗
N 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

1 0 0 0 0 7 0 0 0 2 0 0 0 4 0 0 0 3 0 0 0 3 0 0 0
2* 16 21 42 61 51 62 77 81 51 62 73 75 41 46 69 78 69 68 79 80 71 72 82 78
3 10 16 11 9 31 29 17 16 35 26 20 21 33 31 22 16 18 26 18 17 21 23 14 18
4 29 23 18 11 8 7 4 3 7 9 3 4 19 16 9 6 6 5 3 3 4 5 1 4
5 45 40 29 19 3 2 2 0 5 3 4 0 4 7 0 0 4 1 0 0 1 0 3 0

(b) The effect of noise: σ = 0.6, 0.8, 1.0, 1.2, with sample size fixed at N = 128
criteria AIC CAIC BIC/MDL 10-fold CV BYY-S0.5 BYY-S1.0

����k∗
σ 0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

1 0 0 0 4 0 0 0 5 0 0 0 3 0 0 0 6 0 0 0 3 0 0 0 4
2* 77 47 42 34 92 81 77 56 90 79 73 55 88 82 69 61 90 85 79 64 92 86 82 68
3 6 14 11 7 5 13 17 26 8 13 20 33 7 11 22 21 6 4 18 18 8 5 14 21
4 13 22 18 28 2 6 4 5 2 8 3 2 1 7 9 11 4 9 3 9 0 9 1 4
5 4 17 29 27 0 0 2 8 0 0 4 7 4 0 0 1 0 2 0 6 0 0 3 3

(c) The combined effect of both sample size and noise. Four different cases are chosen
and reported, with Case I: N = 256, σ = 0.6; Case II: N = 128, σ = 0.8; Case III:
N = 64, σ = 1.0; Case IV: N = 32, σ = 1.2

criteria AIC CAIC BIC/MDL 10-fold CV BYY-S0.5 BYY-S1.0
����k∗

cases I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV

1 0 0 0 11 0 0 0 26 0 0 0 22 0 0 0 18 0 0 0 20 0 0 0 25
2* 82 47 21 46 95 81 62 37 92 79 62 41 89 82 46 57 96 85 68 48 93 86 72 53
3 6 14 16 28 2 13 29 18 5 13 26 23 6 11 31 14 4 4 26 16 5 5 23 14
4 11 22 23 12 3 6 7 6 2 8 9 4 2 7 16 2 0 9 5 12 2 9 5 6
5 1 17 40 3 0 0 2 13 2 0 3 10 3 0 7 9 0 2 1 4 0 0 0 2

predict the robot arm position from two joint angles (θ1, θ2) as shown in Fig. (2.a)
by (ya, yb) = (r1 cos θ1 + r2 cos(θ1 + θ2) + ε1, r1 sin θ1 + r2 sin(θ1 + θ2) + ε2),
where εi ∼ N(0, 0.052), i.i.d. The values for θ1 are generated uniformly from
the intervals [-1.932, -0.453] and [0.453, 1.932], while those for θ2 are generated
independently and uniformly from [0.534, 3.142]. As in [11], we take r1 = 2 and
r2 = 1.3, with data generated and divided into two groups: one training set of
200 observations and a testing set of 200 observations.

The candidate size range is selected as [2,15]. After training the network for
each hidden unit number k, the criteria values are calculated. Since there are two
output units regressed by the hidden units and the parameter number d(k) here
becomes k(1+d+2)+2. For observation convenience, the criteria values have been
normalized and shown together in Fig. (2.b). As shown, AIC feels confused to
decide the optimal number within this specified range and tends to overestimate,
while CAIC and BIC/MDL prefer to choose k∗ = 7, which confirms with [12].
CV, BYY-S0.5 and BYY-S1.0 choose the result as 8.

58 L. Shi and L. Xu

(a) Robot Arm (b) Criteria values

Fig. 2. Robot Arm and the experimental results. (a) indicates the Robot Arm function.
(b) shows the regularized criteria values indexed by the hidden unit number.

4.3 Real World Data Sets

We further focus on four commonly used real world data sets collected from UCI
Machine Learning Repository1, including CPU-performance, Housing, Auto-mpg,
and Servo. CPU-performance has 209 instances, 6 continuous attributes to regress
1 attribute; Housing has 506 instances, 12 continuous attributes and 1 binary
attribute to regress 1 attribute; Auto-mpg has 398 cases with 5 continuous at-
tributes and 3 multi-valued discrete attributes to regress 1 attribute; Servo has
167 samples with 2 continuous and 2 discrete variables to regress 1 attribute.

Each database is firstly divided evenly into ten blocks. Then p blocks are
chosen to form a training data set, while the remaining 10− p blocks form test-
ing data. After training on the p blocks and testing, each criterion is calculated
to make selection. In order to investigate the effect of training sample size, es-
pecially of small-sample-size cases, a series of experiments are implemented on
different training/testing data blocks selection, with p = 9, 7, 5, 3, respectively.
For example, when p = 9, we use 9 blocks for training and 10 − p = 1 block for
testing. The experimental results are reported in Table. 2 in two magnitudes:
the training root mean squared error (RMSEt) on the training data and the
generalization root mean squared error (RMSEg) on the testing data.

As shown in Table. 2, when using relatively large training database to model a
regression in 3-LFFNN, all the criteria perform well without obvious differences.
However, as the sample size decreases, AIC, CAIC and BIC turn to deteriorate
quickly and greatly, while CV, BYY-S0.5 and BYY-S1.0 do not deteriorate that
much. This may be not difficult to imagine, because the smaller the sample size
is, the less guarantee there would be to make sure the rough estimation can
give k∗. Compared to AIC, CAIC and BIC, CV deals well with the case when
the sample size is small. Interestingly, BYY-S0.5 and BYY-S1.0 generally select
structures with better generalization performance.

1 http://www.ics.uci.edu/ mlearn/MLSummary.html.

Comparative Investigation on Dimension Reduction and Regression 59

Table 2. The training root mean squared errors (RMSEt) on the training data and the
generalization root mean squared errors (RMSEg) on testing data for real world data
sets. The values are expressed in the form of RMSEg(RMSEt). Each ratio in the second
column is for the corresponding training data size to testing data size, i.e. p : (10 − p).

RMSEg(RMSEt) for each criterion
data set ratio AIC CAIC BIC/MDL 10-fold CV BYY-S0.5 BYY-S1.0

9:1 52.8(41.2) 52.9(38.3) 52.4(23.4) 52.3(25.5) 52.4(25.1) 52.4(25.1)
CPU 7:3 53.1(42.4) 52.2(41.2) 52.9(26.5) 52.7(26.9) 51.8(26.0) 52.3(26.8)

5:5 55.5(43.7) 57.0(40.3) 55.2(27.3) 54.7(26.2) 53.4(25.5) 53.1(25.9)
3:7 57.9(48.1) 57.7(42.1) 56.3(28.2) 55.9(26.4) 54.2(27.3) 54.2(27.6)

9:1 1.15(1.07) 1.08(1.08) 1.08(1.08) 1.09(1.11) 1.10(1.12) 1.10(1.12)
Housing 7:3 1.18(1.16) 1.14(1.15) 1.13(1.12) 1.08(1.13) 1.11(1.09) 1.11(1.09)

5:5 1.27(1.26) 1.34(1.44) 1.30(1.32) 1.25(1.21) 1.28(1.23) 1.26(1.24)
3:7 1.41(1.43) 1.38(1.29) 1.39(1.28) 1.27(1.35) 1.25(1.30) 1.26(1.27)

9:1 2.95(2.46) 2.92(2.61) 2.88(2.64) 2.79(2.82) 2.94(2.53) 2.94(2.53)
Auto 7:3 2.97(2.68) 2.89(2.82) 2.93(2.76) 2.79(2.88) 2.95(2.62) 2.99(2.64)

5:5 3.04(2.53) 3.21(2.99) 3.15(2.82) 3.07(2.79) 2.96(2.78) 2.96(2.79)
3:7 3.46(2.35) 3.30(2.73) 3.26(2.78) 3.18(2.84) 3.05(2.82) 3.04(2.85)

9:1 0.26(0.15) 0.24(0.15) 0.23(0.16) 0.21(0.20) 0.21(0.17) 0.21(0.17)
Servo 7:3 0.28(0.31) 0.29(0.19) 0.23(0.21) 0.25(0.23) 0.22(0.24) 0.23(0.18)

5:5 0.49(0.37) 0.44(0.32) 0.37(0.30) 0.34(0.26) 0.27(0.28) 0.25(0.29)
3:7 0.47(0.33) 0.52(0.29) 0.45(0.28) 0.33(0.31) 0.31(0.24) 0.30(0.31)

5 Conclusion

This paper has described a connection between regression and 3-LFFNN, based
on which we have discussed several model selection criteria to determine the 3-
LFFNN’s structure, i.e. the hidden unit number. After introducing the conven-
tional model selection methods including AIC, CAIC, BIC, and CV, we briefly
illustrated the BYY improved model selection criteria (BYY-S). Comparative
experiments were conducted on several data sets, during which we paid more
attention to the selection performances on data sets with different sample sizes
and different noises. The experimental results show that BIC and CV mostly
outperform AIC and CAIC. BYY-S can generally perform as well as, if not
better than BIC and CV. Moreover, as the sample size decreases or the noise
increases, BYY-S outperforms CV, AIC, CAIC, and BIC interestingly, providing
both a desired selection of hidden unit number and a relatively more accurate
regression performance.

6 Further Discussion

When sample size is large enough, all these typical criteria including AIC, CAI,
BIC, CV and BYY-S do not differentiate from each other much, while leav-
ing high computational performance in choosing among a large set of candidate
models. For these cases, we suggest to use another so-called BYY harmony au-
tomatic learning approach [15], which can determine the hidden unit number
automatically in parallel with the parameter learning. Compared to the two-
phase implementation, it owns the time-saving advantage, especially for large-
sample-size cases. To save space, this part is not discussed in detail here. Another

60 L. Shi and L. Xu

expected further research is to compare BYY-S0.5 with BYY-S1.0 and to find a
more accurately approximated BYY criterion.

Acknowledgement

The work described in this paper was fully supported by a grant from the Re-
search Grant Council of the Hong Kong SAR (Project No: CUHK4173/06E).

References

1. Arai, M.: Mapping abilities of three-layer neural networks. Proc. IJCNN’89, vol.1,
pp.419-423, 1989.

2. Hayasaka, T., Hagiwara, K., Toda, N. and Usui, S.: Determination of the number
of hidden units from a statisticalviewpoint. Proc. ICONIP’99, vol.1, pp.240-245,
1999.

3. Rumelhart, D.E. et al.: Learning internal representations by error propagation.
Parallel Distributed Processing, vol.1, MIT Press, Cambridge, MA, 1986.

4. Neal, R.M.: Bayesian learning for neural networks. Springer-Verlag, New York,
1996.

5. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Auto-
matic Control, 19, 714-723, 1974.

6. Bozdogan, H.: Model selection and Akaike’s information criterion (AIC): the gen-
eral theory and its analytical extensions. Psychometrika, vol.52(3), pp.345-370,
1987.

7. Schwarz, G.: Estimating the dimension of a model. Annl. of Stat., 6, 461-464, 1978.
8. Rissanen, J.: Modeling by shortest data description. Automation, 14, 456-471, 1978.
9. Moody, J.E.: The effective number of parameters: an analysis of generalization and

regularization in nonlinear learning systems. Advances in NIPS, Moody, J.E. et.al
eds., vol.4, pp.847-854, MIT Press, Cambridge, MA, 1992.

10. Stone, M.: Cross validation choice and assessment of statistical predictions. Journal
of the Royal Statistical Society, B36, 111-147, 1974.

11. MacKay, D.J.C.: A practical bayesian framework for backpropagation networks.
Neural Computation, vol.4(3), pp.448-472, 1992.

12. Brake, G.te., Kok, J.N., and Vit’anyi, P.M.B.: Model selection for neural networks:
Comparing MDL and NIC. Proc. European Symposium on Artificial Neural Net-
works, Brussels, Belgium, 31-36, 1994.

13. Xu, L., Klasa, S., and Yuille, A.L.: Recent Advances on Techniques Static Feedfor-
ward Networks with Supervised Learning. International Journal of Neural Systems,
vol.3, No.3, pp.253-290, 1992.

14. Xu, L.: BYY learning, regularized implementation, and model selection on modular
networks with one hidden layer of binary units. Neurocomputing, vol.51, pp.277-
301, 2003.

15. Xu, L.: Advances on BYY harmony learning: information theoretic perspective,
generalized projection geometry, and independent factor auto-determination. IEEE
Trans. Neural Networks, vol.15(5), pp.885-902, 2004.

16. Xu, L.: Trends on Regularization and Model Selection in Statistical Learning: A
Perspective from Bayesian Ying Yang Learning. Challenges to Computational In-
telligence (in press), Duch, W., Mandziuk, J. and Zurada, J.M. eds, the Springers
series - Studies in Computational Intelligence, Springer-Verlag, 2006.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 61 – 70, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On-Line Learning with Structural Adaptation in a
Network of Spiking Neurons for Visual Pattern

Recognition

Simei Gomes Wysoski, Lubica Benuskova, and Nikola Kasabov

Knowledge Engineering and Discovery Research Institute,
Auckland University of Technology, 581-585 Great South Rd,

Auckland, New Zealand
{swysoski, lbenusko, nkasabov}@aut.ac.nz

http:www.kedri.info

Abstract. This paper presents an on-line training procedure for a hierarchical
neural network of integrate-and-fire neurons. The training is done through syn-
aptic plasticity and changes in the network structure. Event driven computation
optimizes processing speed in order to simulate networks with large number of
neurons. The training procedure is applied to the face recognition task. Prelimi-
nary experiments on a public available face image dataset show the same per-
formance as the optimized off-line method. A comparison with other classical
methods of face recognition demonstrates the properties of the system.

1 Introduction

The human brain has been modelled in numerous ways, but these models are far from
reaching comparable performance. These models are still not as general and accurate
as the human brain despite that outstanding performances have been reported [1] [2]
[3]. Of particular interest to this research are the models for visual pattern recognition.
Visual pattern recognition models can be divided in two groups according to the con-
nectionist technique applied. Most of the works deal with the visual pattern recogni-
tion using neural networks comprised of linear/non-linear processing elements based
on the neural rate-based code [4] [5]. Here we refer to these methods as traditional
methods. In another direction, a visual pattern recognition system can be constructed
through the use of brain-like neural networks.

Brain-like neural networks are networks that have a closer association with what is
known about the way brains process information. The definition of brain-like net-
works is intrinsically associated with the computation of neuronal units that use
pulses. The use of pulses brings together the definitions of time varying postsynaptic
potential (PSP), firing threshold (ϑ), and spike latencies (∆), as depicted in Figure 1
[6]. Brain-like neural networks, despite being more biologically accurate, have been
considered too complex and cumbersome for modeling the proposed task. However
recent discoveries on the information processing capabilities of the brain and techni-
cal advances related to massive parallel processing, are bringing back the idea of us-
ing biologically realistic networks for pattern recognition. A recent pioneering work
has shown that the primate (including human) visual system can analyze complex

62 S.G. Wysoski, L. Benuskova, and N. Kasabov

natural scenes in only about 100-150 ms [7]. This time period for information proc-
essing is very impressive considering that billions of neurons are involved. This the-
ory suggests that probably neurons, exchanging only one or few spikes, are able to
form assemblies, and process information. As an output of this work, the authors pro-
posed a multi-layer feed-forward network (SpikeNet) of integrate-and-fire neurons
that can successfully track and recognize faces in real time [7].

Fig. 1. On the left: Representation of biological neuron. On the right: Basic artificial unit (spik-
ing neuron).

This paper intends to review the network model SpikeNet proposed in [8] and ex-
tend its applicability to perform on-line learning. In the next sections the spiking neu-
ral network model will be presented and the new learning procedure will be de-
scribed. The new learning method is applied to the face recognition task. The results
are compared with previous work and other models. Discussion and additional re-
quired analysis concludes the paper.

2 Spiking Network Model

In this section we describe the steps of the biologically realistic model used in this
work to perform on-line visual pattern recognition. The system has been implemented
based on the SpikeNet introduced in [7] [8] [9] [10]. The neural network is composed
of 3 layers of integrate-and-fire neurons. The neurons have a latency of firing that de-
pends upon the order of spikes received. Each neuron acts as a coincidence detection
unit, where the postsynaptic potential for neuron i at a time t is calculated as:

 (1)

where mod ∈ (0,1) is the modulation factor, j is the index for the incoming connection
and wj,i is the corresponding synaptic weight. See [7] [9] for more details.

Each layer is composed of neurons that are grouped in two-dimensional grids form-
ing neuronal maps. Connections between layers are purely feed-forward and each neu-
ron can spike at most once on spikes arrival in the input synapses. The first layer cells
represent the ON and OFF cells of retina, basically enhancing the high contrast parts of
a given image (high pass filter). The output values of the first layer are encoded to

Σ ϑ

Input Output

PSP

Output

∆1

∆2

∆3

Model Neuron

time

ϑ
Trigger

Conduction

Output

Biological Neuron

Input

=
ij

wtiPSP jorder

,

)(mod),(

 On-Line Learning with Structural Adaptation in a Network of Spiking Neurons 63

pulses in the time domain. High output values of the first layer are encoded as pulses
with short time delays while long delays are given to low output values. This technique
is called Rank Order Coding [10] and basically prioritizes the pixels with high contrast
that consequently are processed first and have a higher impact on neurons’ PSP.

Second layer is composed of eight orientation maps, each one selective to a differ-
ent direction (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). It is important to notice
that in the first two layers there is no learning, in such a way that the structure can be
considered simply passive filters and time domain encoders (layers 1 and 2). The the-
ory of contrast cells and direction selective cells was first reported by Hubel and Wie-
sel [11]. In their experiments they were able to distinguish some types of cells that
have different neurobiological responses according to the pattern of light stimulus.

The third layer is where the learning takes place and where the main contribution
of this work is presented. Maps in the third layer are to be trained to represent classes
of inputs. See Figure 2 for the complete network architecture. In [7], the network has
a fixed structure and the learning is done off-line using the rule:

N
w

jaorder

ij

)(

,

mod=∆ (2)

where wj,i is the weight between neuron j of the 2nd layer and neuron i of the 3rd layer,
mod ∈ (0,1) is the modulation factor, order(aj)

 is the order of arrival of spike from
neuron j to neuron i, and N is the number of samples used for training a given class.

In this rule, there are two points to be highlighted: a) the number of samples to be
trained needs to be known a priori; and b) after training, a map of a class will be se-
lective to the average pattern.

Fig. 2. Adaptive spiking neural network (aSNN) architecture for visual pattern recognition

There are also inhibitory connections among neuronal maps in the third layer, so
that when a neuron fires in a certain map, other maps receive inhibitory pulses in an
area centred in the same spatial position. An input pattern belongs to a certain class if
a neuron in the corresponding neuronal map spikes first.

64 S.G. Wysoski, L. Benuskova, and N. Kasabov

One of the properties of this system is the low activity of the neurons. It means that
the system has a large number of neurons, but only few take active part during the re-
trieval process. In this sense, through the event driven approach the computational
performance can be optimized [8] [12]. Additionally, in most cases the processing can
be interrupted before the entire simulation is completed. Once a single neuron of the
output layer reaches the threshold to emit a spike the simulation can be finished. The
event driven approach and the early simulation interruption make this method suitable
for implementations in real time.

3 On-Line Learning and Structural Adaptation

3.1 General Description

Our new approach for learning with structural adaptation aims to give more flexibility
to the system in a scenario where the number of classes and/or class instances is not
known at the time the training starts. Thus, the output neuronal maps need to be cre-
ated, updated or even deleted on-line, as the learning occurs. In [13] a framework to
deal with adaptive problems is proposed and several methods and procedures describ-
ing adaptive systems are presented.

To implement such a system the learning rule needs to be independent of the total
number of samples since the number of samples is not known when the learning
starts. Thus, in the next section we propose to use a modified equation to update the
weights based on the average of the incoming patterns. It is important to notice that,
similarly to the batch learning implementation of Equation 2, the outcome is the aver-
age pattern. However, the new equation calculates the average dynamically as the in-
put patterns arrive.
 There is a classical drawback to learning methods when, after training, the system
responds optimally to the average pattern of the training samples. The average does
not provide a good representation of a class in cases where patterns have high vari-
ance (see Figure 3). A traditional way to attenuate the problem is the divide-and-
conquer procedure. We implement this procedure through the structural modification

Local averages
Global class average

Fig. 3. Divide and conquer procedure to deal with high intra class variability of patterns in the
hypothetical space of class K. The use of multiple maps that respond optimally to the average
of a subset of patterns provides a better representation of the classes.

 On-Line Learning with Structural Adaptation in a Network of Spiking Neurons 65

of the network during the training stage. More specifically, we integrate into the train-
ing algorithm a simple clustering procedure: patterns within a class that comply with a
similarity criterion are merged into the same neuronal map. If the similarity criterion
is not fulfilled, a new map is generated. The entire training procedure follows 4 steps
described in the next section and is summarized in the flowchart of Figure 4.

3.2 Learning Procedure

The new learning procedure can be described in 4 sequential steps:

1. Propagate a sample k of class K for training into the layer 1 (retina) and layer 2 (di-
rection selective cells – DSC);

2. Create a new map MapC(k) in layer 3 for sample k and train the weights using the
equation:

)(
, mod jaorder
ijw =∆ (3)

where wj,i is the weight between neuron j of the layer 2 and neuron i of the layer 3,
mod ∈ (0,1) is the modulation factor, order(aj) is the order of arrival of spike from
neuron j to neuron i.
 The postsynaptic threshold (PSPthreshold) of the neurons in the map is calculated
as a proportion c ∈ [0,1] of the maximum postsynaptic potential (PSP) created in a
neuron of map MapC(k) with the propagation of the training sample into the updated
weights, such that:

)max(PSPcPSPthreshold = (4)

The constant of proportionality c express how similar a pattern needs to be to trig-
ger an output spike. Thus, c is a parameter to be optimized in order to satisfy the
requirements in terms of false acceptance rate (FAR) and false rejection rate (FRR).

3. Calculate the similarity between the newly created map MapC(k) and other maps be-
longing to the same class MapC(K). The similarity is computed as the inverse of the
Euclidean distance between weight matrices.

4. If one of the existing maps for class K has similarity greater than a chosen thresh-
old ThsimC(K)>0 , merge the maps MapC(k) and MapC(Ksimilar) using arithmetic average
as expressed in equation:

samples

MapsamplesMap

N

WNW
W KsimilarCkC

+

+
=

1
)()((5)

where matrix W represents the weights of the merged map and Nsamples denotes the
number of samples that have already being used to train the respective map. In
similar fashion the PSPthreshold is updated:

samples

MapsamplesMap

threshold N

PSPNPSP
PSP KsimilarCkC

+

+
=

1
)()((6)

66 S.G. Wysoski, L. Benuskova, and N. Kasabov

Propagation to retina and DSC

New training sample

Create a new map MapC(k)

For MapC(k), train the weights WC(k) and
calculate PSPthreshold C(k)

Calculate similarity S between WC(k) and
WC(K) (other maps i of the same class)

If S(i) >Thsim

Merge map MapC(k) and MapC(i)

yes

no

Fig. 4. On-line learning procedure flowchart

4 Experiments and Results

We have implemented the learning procedure proposed in the previous section in a
network of spiking neurons as described in section 2. To evaluate the performance and
compare with previous work, we used the same dataset as in [7], which is available
from [14]. The dataset is composed of 400 faces taken from 40 different people. The
frontal views of faces are taken in rotation angles varying in the range of [-30°, 30°].

4.1 Image Preparation

We manually annotated the position of eyes and mouth and used it to centralize the
face images. The faces were rotated to align the right and left eyes horizontally. The
boundaries of our region of interest (ROI) were then defined as a function of the inter-
ocular distance and the distance between the eyes and mouth. The ROI is then nor-
malized to the size 20 x 30 pixels in greyscale. The 2 dimensional array obtained has
been used as input to the SNN. No contrast or illumination manipulation has been per-
formed as previous work demonstrated the good response of the network under the
presence of noise and illumination changes [7].

4.2 Spiking Network Parameters

The neuronal maps of retina, DSC and output maps have size of 20 x 30. The number
of time steps used to encode the output of retina cells to the time domain is set to 100.

 On-Line Learning with Structural Adaptation in a Network of Spiking Neurons 67

The threshold for the direction selective cells is set to 600, chosen in such a way that
on average only 20% of neurons emits output spikes. The modulation factor mod ∈
(0, 1) is set to 0.98. In this way the efficiency of the input of a given neuron is re-
duced to 50% when 50% of the inputs get a spike. The retina filters are implemented
using a 5 x 5 Gaussian grid and direction selective filters are implemented using Ga-
bor functions in a 7x7 grid. All these parameters were not optimized. Rather, we tried
to reproduce as close as possible the scenario described in [7] for comparison
purposes.

4.3 Results

Previous work demonstrated the high accuracy of the network to cope with noise,
contrast and luminance changes, reaching 100% in the training set (10 samples for
each class) and 97.5% when testing the generalization properties [7]. For the generali-
zation experiment, the dataset was divided in 8 samples for training and the remaining
2 for test. With the adaptive learning method proposed here, we have obtained similar
results for the training set.

In another experiment, to test the system ability to add on-line output maps for bet-
ter generalization, we used only 3 sample images from each person for training. The
remaining 7 views of each person were used for test. Among the dataset faces, we
chose manually those samples taken from different angles that appeared to be most
dissimilar. Thus, the training set was composed mostly of one face view taken from
the left side (30°), one frontal view and one face view taken from the right side (-30°),
as depicted in Figure 5. The results are shown in Table 1. In column 2 of Table 1,
Thsim is set in such a way that only one output map for each class is created. In such
condition, the on-line learning procedure becomes equivalent to the original off-line
learning procedure described by Equation 2. Tuning of Thsim for performance, it can
be clearly seen the advantage of using more maps to represent classes that contain
highly variant samples, as the accuracy of face recognition increases by 6% with a re-
duction on the FAR.

In Table 2 and Table 3 is presented the network performance for different values of
PSP threshold that are calculated as a function of the proportionality constant c. In all
the experiments the constant c is the same for all maps and chosen prior to the train-
ing start. In a batch mode operation the value of c can be optimized independently for
each map after the training is completed using, e.g., Genetic Algorithms (GA).

Fig. 5. Example of image samples used for training (30°, frontal and -30°)

68 S.G. Wysoski, L. Benuskova, and N. Kasabov

Table 1. Results for the test set according to different similarity thresholds Thsim.Three pictures
of each class are used for training and the remaining seven for test.

Similarity threshold Thsim (x10-3) 0.5 0.833 1.0 1.25 2
Number of output maps 40 47 80 109 120
Accuracy (%) 74.28 77.49 78.57 80.00 80.00
False Acceptance Rate (FAR) (%) 2.32 2.20 2.18 2.26 1.77
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 0.00 0.00

Table 2. Accuracy for different values of c keeping Thsim = 0.5x10-3. Output maps = 40

PSP threshold c = 0.30 c = 0.35 c = 0.40 c = 0.45
Accuracy (%) 72.14 74.28 73.21 71.43
False Acceptance Rate (FAR) (%) 3.10 2.32 1.58 1.25
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 2.50

Table 3. Accuracy for different values of c keeping Thsim = 2.0x10-3. Output maps = 120

PSP threshold c = 0.30 c = 0.35 c = 0.40 c = 0.45
Accuracy (%) 75.00 78.57 80.00 80.00
False Acceptance Rate (FAR) (%) 2.95 2.49 1.77 1.06
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 3.57

In another comparison, to check how difficult the dataset is and to have a better

idea of the performance of our learning algorithm, we compare the face recognition
system using adaptive SNN (aSNN) with other three traditional methods of face rec-
ognition (Table 4). In these methods, PCA (principal component analysis) is used to
extract facial features. The classification is done using SVM (support vector ma-
chine), MLP (multi layer perceptron) neural network and ECF (evolving classifier
function). MLP and SVM are batch mode methods while ECF present similar adap-
tive learning characteristics as proposed in this work. ECF can be trained in both one-
pass and recursive mode (several epochs)[13]. As expected, the batch mode algo-
rithms over performed the one-pass on-line methods. The reason is that in the batch
mode, the training samples are recursively presented to the classification method to
minimize the output errors. In the one-pass on-line learning the adjustment of weights
occurs only once at the time the training samples are presented to the network. There-
fore, the performance of the batch methods can be considered roughly the target or the
maximum accuracy that be reached. When comparing both one-pass online methods,
the adaptive SNN presented better performance than ECF. Notice that, in this com-
parison we can not detect if the better performance is due to the learning method or to
the different representation of the features.

Table 4. Comparison among different methods of face recognition (experiments using Neu-
Com [15])

Method Accuracy (%) Properties
PCA + SVM 90.7 Batch mode
PCA + MLP 89.6 Batch mode
PCA + ECF 74.0 (120 nodes) One-epoch on-line method
Adaptive SNN 80.0 (109 maps) One-pass on-line method

 On-Line Learning with Structural Adaptation in a Network of Spiking Neurons 69

5 Discussion and Conclusion

A simple procedure to perform on-line learning in a network of spiking neurons has
been presented. During learning, new output maps are created and merged based on
the clustering of intra-class samples. Preliminary experiments have shown that the
learning procedure reaches similar levels of performance of the previously presented
work, and better performance can be reached in classes where samples have high
variability. As a price, one more parameter needs to be tuned, e.g. Thsim. In addition,
more output maps require more storage memory.

In terms of normalization, the rank order codes are intrinsically invariant to
changes in contrast and input intensities, basically because the neuronal units compute
the order of the incoming spikes and not the latencies itself [7]. This can be a reason
why adaptive SNN present better result than PCA+ECF as the feature extraction using
PCA can degrade performance with illumination changes.

The adaptive SNN doesn’t cope well with patterns rotation. In all the experiments
presented in this work we aligned the samples in the image preparation stage. Alterna-
tively, a certain degree of rotation invariance can be reached with the use of additional
neuronal maps, in which each map need to be trained to cover different angles. In this
case, the learning procedure described here, can automatically generate the new maps
when it’s required.

With respect to the overall system, the computation with pulses, contrast filters and
orientation selective cells finds a close correspondence with traditional ways of image
processing such as wavelets and Gabor filters [16] that already have proven to be very
robust for feature extraction in visual pattern recognition problems. From the biologi-
cal perspective, despite still being a very simplified representation of what effectively
happens in the brain, the use of pulses is a starting point.

In our future work, aiming to improve the use of biologically realistic neural net-
works for pattern recognition, we intend to add adaptation to layer 1 and layer 2. It
has been experimentally proven [17] that neural filters adaptively change to increase
the information carried by the neural response. As a result, the contrast and direction
selective cells are optimized filters to describe natural scenes. We intend to explore
how to adaptively obtain optimal filters in different types of data.

Acknowledgments

The work has been supported by the NERF grant X0201 funded by FRST (L.B.,
N.K.) and by the Tertiary Education Commission of New Zealand (S.G.W.).

References

1. Fukushima, K.: Active Vision: Neural Network Models. In Amari, S., Kasabov, N. (eds.):
Brain-like Computing and Intelligent Information Systems. Springer-Verlag (1997)

2. Mel, B. W.: SEEMORE: Combining colour, shape, and texture histrogramming in a neu-
rally-inspired approach to visual object recognition. Neural Computation 9 (1998) 777-804

70 S.G. Wysoski, L. Benuskova, and N. Kasabov

3. Wiskott, L., Fellous, J. M., Krueuger, N., von der Malsburg, C.: Face Recognition by Elas-
tic Bunch Graph Matching: In Jain, L.C. et al. (eds.): Intelligent Biometric Techniques in
Fingerprint and Face Recognition. CRC Press (1999) 355-396

4. Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice Hall (1999)
5. Bishop, C.: Neural Networks for Pattern Recognition. University Press, Oxford New York

(2000)
6. Gerstner, W., Kistler, W. M.: Spiking Neuron Models. Cambridge Univ. Press, Cambridge

MA (2002)
7. Delorme, A., Thorpe, S.: Face identification using one spike per neuron: resistance to im-

age degradation. Neural Networks, Vol. 14. (2001) 795-803
8. Delorme, A., Gautrais, J., van Rullen, R., Thorpe, S.: SpikeNet: a simulator for modeling

large networks of integrate and fire neurons. Neurocomputing, Vol. 26-27. (1999) 989-996
9. Delorme, A., Perrinet, L., Thorpe, S.: Networks of integrate-and-fire neurons using Rank

Order Coding. Neurocomputing. (2001) 38-48
10. Thorpe, S., Gaustrais, J.: Rank Order Coding. In: Bower, J. (ed.): Computational Neuro-

science: Trends in Research. Plenum Press, New York (1998)
11. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architec-

ture in the cat's visual cortex. J. Physiol, 160 (1962) 106-154
12. Mattia, M., del Giudice, P.: Efficient Event-Driven Simulation of Large Networks of Spik-

ing Neurons and Dynamical Synapses. Neural Computation, Vol. 12 (10). (2000) 2305-
2329

13. Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioinformat-
ics, Brain Study and Intelligent Machines. Springer-Verlag (2002)

14. http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html
15. http://www.aut.ac.nz/research/research_institutes/kedri/research_centres/centre_for_novel

_methods_of_computational_intelligence/neucom.htm
16. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd

edn. (1998)
17. Sharpee, T. et al.: Adaptive filtering enhances information transmission in visual cortex.

Nature, Vol. 439 (2006) 936-942

Learning Long Term Dependencies with Recurrent
Neural Networks

Anton Maximilian Schäfer1,2, Steffen Udluft1, and Hans Georg Zimmermann1

1 Information & Communications, Learning Systems
Siemens AG, Corporate Technology, 81739 Munich, Germany

{Schaefer.Anton.ext, Steffen.Udluft,
Hans Georg.Zimmermann}@siemens.com

2 Department Optimisation and Operations Research, University of Ulm, 89069 Ulm, Germany

Abstract. Recurrent neural networks (RNNs) unfolded in time are in theory able
to map any open dynamical system. Still they are often blamed to be unable to
identify long-term dependencies in the data. Especially when they are trained
with backpropagation through time (BPTT) it is claimed that RNNs unfolded in
time fail to learn inter-temporal influences more than ten time steps apart.

This paper provides a disproof of this often cited statement. We show that
RNNs and especially normalised recurrent neural networks (NRNNs) unfolded
in time are indeed very capable of learning time lags of at least a hundred time
steps. We further demonstrate that the problem of a vanishing gradient does not
apply to these networks.

1 Introduction

Recurrent neural networks (RNNs) allow the identification of dynamical systems in
form of high dimensional, nonlinear state space models [1,2]. They offer an explicit
modeling of time and memory and allow in principle to model any type of open dy-
namical system [3]. The basic concept is more than 20 years old, so e.g., unfolding in
time of neural networks and related modifications of the backpropagation algorithm can
already be found in [4].

Nevertheless, there is often a negative attitude towards RNNs because it has been
claimed by several authors that RNNs unfolded in time are unable to identify and
learn long-term dependencies of more than ten time steps [5,6,7]. To overcome the
stated dilemma new forms of recurrent neural networks, e.g., long short-term memory
(LSTM) networks [8], were developed, but these networks do not offer the desirable
correspondence between equations and architectures as RNNs unfolded in time do.

Still, the analyses in the mentioned papers [5,6,7] were all based on a very basic
architecture of RNNs and, even more important, made from a static perspective. In
this paper we therefore disprove the statement that RNNs unfolded in time and trained
with backpropagation through time (BPTT) are in general unable to learn long-term de-
pendencies. We outline that RNNs and especially normalised recurrent neural networks
(NRNNs) unfolded in time have no difficulty with an identification and learning of past-
time information within the data which is more than ten time steps apart. Furthermore
we show that by using shared weights training of these networks is not a major problem.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 71–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 A.M. Schäfer, S. Udluft, and H.G. Zimmermann

It even helps to overcome the problem of a vanishing gradient as the networks possess
a self-regularisation characteristic which adapts the error information flow.

We start with a recapitulation of the basic RNN unfolded in time (sec. 2). Here we
especially emphasise the advantage of overshooting and point out that this simple ex-
tension regularises the learning with BPTT. We further enhance the basic RNN archi-
tecture so that it only possesses one single (high-dimensional) transition matrix. This
so called normalised recurrent neural network (NRNN) increases the stability of the
learning process (sec. 3). In section 4 we then demonstrate that both NRNN and RNN
successfully learn long-term dependencies. In doing an analysis of the backpropagated
error flow we finally show that the problem of a vanishing gradient is not a relevant
question for both networks. In section 5 we give a conclusion and an outlook on further
research.

2 Recurrent Neural Networks Unfolded in Time

The basic time-delay recurrent neural network (RNN) consists of a state transition and
an output equation [1,9]:

st+1 = tanh(Ast + c + But) state transition

yt = Cst output equation
(1)

Here, the state transition equation st+1 (t = 1, . . . , T where T is the number of
available patterns) is a nonlinear combination of the previous state st and external in-
fluences ut using weight matrices A and B of appropriate dimension and a bias c, which
handles offsets in the input variables ut. The network output yt is computed from the
present state st employing matrix C. It is therefore a nonlinear composition applying
the transformations A, B, and C.

Training the RNN of equation 1 is equivalent to solving a parameter optimisation
problem, i.e., minimising the error between the network output yt and the real data yd

t

with respect to an arbitrary error measure, e.g.:

T∑
t=1

(
yt − yd

t

)2 → min
A,B,C,c

(2)

It can be solved by finite unfolding in time using shared weight matrices A, B,
and C [1,4]. Shared weights share the same memory for storing their weights, i.e., the
weight values are the same at each time step of the unfolding and for every pattern t ∈
{1, . . . , T} [1,4]. This guarantees that we have the same dynamics in every time step.
By using unfolding in time the RNN can be trained with error backpropagation through
time (BPTT) [1,4], which is a shared weights extension of the standard backpropagation
algorithm [10]. Figure 1 depicts the resulting spatial neural network architecture [9].

We extend the autonomous part of the RNN into the future by so-called overshooting
[9], i.e., we iterate matrices A and C in future direction (see fig. 1). In doing so we get
a sequence of forecasts as an output. More important, overshooting forces the learning
to focus on modeling the autonomous dynamics of the network, i.e., it supports the ex-
traction of useful information from input vectors which are more distant to the output.

Learning Long Term Dependencies with Recurrent Neural Networks 73

ut−1ut−2ut−3

s t−2 s t−1

ut

s t+1s t

y
t

yt+1

c c c c ccc

B B B

C

B

A A
C C

AA

yt+3 yt+4

s t+4s t+3
A s t+2

C

y

C

y

C

t−1t−2

C

t+2y

A

Fig. 1. RNN unfolded in time using overshooting

Consequently overshooting is a very simple remedy to the problem that the backpropa-
gation algorithm usually tries to model the relationship between an output and its most
recent inputs because the fastest adaptation takes place in the shortest path [5]. There-
fore also the learning of false causalities is decreased. Hence, overshooting regularises
the learning and thus improves the model’s performance [9]. Note, that due to shared
weights no additional parameters are used.

3 Normalised Recurrent Neural Networks

As a preparation for the development of normalised recurrent neural networks (NRNNs)
[11] we first separate the state equation of the basic time-delay RNN (eq. 1) into a past
and a future part. In this framework st is always regarded as the present time state. That
means that for this pattern t all states sτ with τ ≤ t belong to the past part and those
with τ > t to the future part. The parameter τ is thereby always bounded by the length
of the unfolding in time m and the length of the overshooting n [9], such that we have
τ ∈ {t − m, . . . , t + n} for all t ∈ {m, . . . , T − n}. The present time (τ = t) is
included in the past part, as these state transitions share the same characteristics. We
get the following representation of the optimisation problem:

τ ≤ t : sτ+1 = tanh(Asτ + c + Buτ)

τ > t : sτ+1 = tanh(Asτ + c)

yτ = Csτ

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ)2 → min

A,B,C,c

(3)

In this model, past and future iterations are consistent under the assumption of a
constant future environment. Still, the difficulty with this kind of RNN is the training
with BPTT, because a sequence of different connectors has to be balanced. The gra-
dient computation is not regular, i.e., we do not have the same learning behavior for

74 A.M. Schäfer, S. Udluft, and H.G. Zimmermann

the weight matrices in the different time steps. In our experiments we found, that this
problem becomes more important for the training of large RNN. Even the training it-
self is unstable due to the concatenated matrices A, B, and C. As the training changes
weights in all of these matrices, different effects or tendencies, even opposing ones, can
influence them and may superpose. This implies, that there results no clear learning
direction or change of weights from a certain backpropagated error [11].

NRNNs (eq. 4) avoid the stability and learning problems resulting from the concate-
nation of the three matrices A, B, and C because they incorporate besides the bias c
only one connector type, a single transition matrix A:

τ ≤ t : sτ = tanh(Asτ−1 + c +

 0
0
Id

uτ)

τ > t : sτ = tanh(Asτ−1 + c)

yτ = [Id 0 0]sτ

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ)2 → min

A,c

(4)

The corresponding architecture is depicted in figure 2.

Id

00

Id

tut−1ut−2u

yt+2

t+2st−2s

t−2y t−1y

A

t+1y

t+1s

t
y

tst−1s
c ccc

AAA

0 0

Id

0 0

Id

0 0

Id

0 0

0
0

Id

0
0

Id

0
0

Id

c

Fig. 2. Normalised recurrent neural network

Using NRNN modeling is solely focused on the transition matrix A. The matrices
between input and hidden as well as hidden and output layer are fixed and therefore not
changed during the training process. Consequently matrix A does not only code the au-
tonomous and the externally driven parts of the dynamics, but also the (pre-)processing
of the external inputs uτ and the computation of the network outputs yτ . This implies
that all free parameters, as they are combined in one matrix, are now treated the same
way by BPTT.

Learning Long Term Dependencies with Recurrent Neural Networks 75

At first view it seems, that in the network architecture (fig. 2) the external input
uτ is directly connected to the corresponding output yτ . This is not the case, because
we enlarge the dimension of the internal state sτ , such that the input uτ has no direct
influence on the output yτ . Assuming that we have a number of p outputs, q computa-
tional hidden neurons and r external inputs, the dimension of the internal state would
be dim(s) = p + q + r. With the matrix [Id 0 0] we connect only the first p neurons
of the internal state sτ to the output layer yτ . As this connector is not trained, it can be
seen as a fixed identity matrix of appropriate size. Consequently, the NRNN is forced
to generate its p outputs at the first p components of the state vector sτ . The last state
neurons are used for the processing of the external inputs uτ . The connector [0 0 Id]T

between the externals uτ and the internal state sτ is an appropriately sized fixed identity
matrix. More precisely, the connector is designed such that the input uτ is connected to
the last r state neurons. To additionally support the internal processing and to increase
the network’s computational power, we add a number of q hidden neurons between the
first p and the last r state neurons. This composition ensures, that the input and output
processing of the network is separated but implies that NRNNs can only be designed as
large neural networks [11].

Our experiments indicate that NRNNs show, in comparison to RNNs, a more stable
training process, even if the dimension of the internal state is very large.

4 Learning Long-Term Dependencies

We use a very simple but well-known problem to demonstrate the ability of learning
long-term dependencies of RNNs and NRNNs. Similar problems have already been
studied in [5] and [8]. In both papers the performance of RNNs trained with BPTT has
been tested to be unsatisfactory and the authors concluded that RNNs are not suited for
the learning of long-term dependencies.

We created time series of 10000 values which are uniformly distributed on an interval
[−r, r] with r ∈ R and 0 < r < 1. Every d-th value, with d ∈ N is 1. These are the
only predictable values for the network. Consequently, for a successful solution to the
problem the network has to remember the occurrence of the last 1, d-time steps afore in
the time series data. In other words, it has to be able to learn long-term dependencies.
The higher d the longer memory is necessary. We used the first 5000 data points for
training and left the other half for generalisation.

4.1 Model Description

We applied an RNN (sec. 2) and an NRNN (sec. 3) with one input neuron per time
step in the past and one output neuron per time step in the future. In contrast to the
descriptions in sections 2 and 3 we did not implement any outputs in the past part of the
networks, as those would not help to solve the problem. This implies that the gradient
information of the error function has to be propagated back from the future outputs to
all past time steps. It also avoids a superposition of the long-term gradient information
with a local error flow in the past. Therefore the omission of outputs in the past also
eases the analysis of the error backflow.

76 A.M. Schäfer, S. Udluft, and H.G. Zimmermann

The networks were both unfolded a hundred time steps into the past. Whereas the
NRNN was unfolded twenty time steps into future direction, we did not implement
any overshooting for the RNN. In doing so we kept the RNN as simple as possible to
show that even such a basic RNN is able to learn long-term dependencies. The total
unfolding therefore amounts to 101 time steps for the RNN and to 120 steps for the
NRNN. The dimension of the internal state matrix A is always set to 100, which is
equivalent to the amount of past unfolding. We initialised the weights randomly with a
uniform distribution on [−0.2, 0.2]. In all hidden units we implemented the hyperbolic
tangent as activation function. We further used the quadratic error function

E :=
T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ)2 (5)

to minimise the difference between network output and target (eqs. 4 and 3). The net-
works were trained with BPTT in combination with pattern-by-pattern learning [12].
The learning rate η was set to 10−4.

4.2 Results

Table 1 summarises our results for different time gaps d and several noise ranges r.
The error limit shows the optimal achievable error for the given problem plus a 10%
tolerance. It is calculated by the variance of the uniform distribution given a certain
noise range r and assuming no error for the time indicators in every d-th time step. We
give the average number of epochs RNN and NRNN needed to pass this error limit, i.e.,
the number of learning epochs necessary to solve the problem with a maximum of a
10% error tolerance.

Table 1. Results for different time gaps d and noise ranges r

time gap d range r Error limit # Epochs RNN # Epochs NRNN

40 0.1 0.003575 19 13
40 0.2 0.0143 19 9
40 0.4 0.0572 50 28
60 0.1 0.00361 39 33
60 0.2 0.01442 437 23
60 0.4 0.05769 389 248

100 0.1 0.00363 65 106
100 0.2 0.01452 353 59
100 0.4 0.05808 96 84

The results demonstrate the ability of NRNNs as well as of basic RNNs to learn
long-term dependencies of d = 40, 60 and even 100 which is obviously more than the
often cited limit of ten time steps [7]. After only a small number of learning epochs both
networks were able to solve the problem. Still, in comparison to the RNN, the NRNN

Learning Long Term Dependencies with Recurrent Neural Networks 77

in general showed a more stable learning behaviour and needed in most cases slightly
shorter to identify the data structure.

As expected, a longer gap d resulted in more learning epochs, the networks needed
to succeed. Also a higher noise range r, i.e., a larger uniform distribution of the data,
made it more challenging for the networks to identify the time indicators. Still, even
in more difficult settings, RNN and NRNN captured the structure of the problem very
quickly.

Using smaller dimensions for the single transition matrix A increased the number
of epochs necessary to learn the problem (fig. 3). This is probably due to the fact that
the network needs a certain dimension to store long-term information. So e.g., with a
hundred dimensional matrix the network can easily store a time gap of d = 100 in form
of a simple shift register. Downsizing the dimension forces the network to build up more
complicated internal matrix structures which take more learning epochs to develop.

number of hidden neurons

nu
m

be
r

of
 e

po
ch

s

10 2

10 3

0 20 40 60 80 100

Fig. 3. Number of epochs needed by an NRNN to solve the problem with d = 40 and r = 0.1
using different numbers of hidden, i.e. internal state, neurons. We stopped training after 5000
epochs which implies that the network was not able to solve the problem for dim(s) ≤ 20.

4.3 Analysis of the Backpropagated Error

To put the claim of a vanishing gradient in RNNs unfolded in time and trained with
BPTT [7] into perspective we analysed the backpropagated error within our networks.
We noticed that under certain conditions vanishing gradients do indeed occur, but are
only a problem if we put a static view on the networks like it has been done in [5,7].
Studying the development of the error flow during the learning process we observed
that the networks themselves have a regularising effect, i.e., they are able to prolong
their information flow and consequently solve the problem of a vanishing gradient. We

78 A.M. Schäfer, S. Udluft, and H.G. Zimmermann

see two main reasons for this self-regularisation behaviour: shared-weights and over-
shooting (sec. 2). Whereas shared weights constrain the networks to change weights
(concurrently) in every unfolded time step, overshooting forces the networks to focus
on the autonomous sub-dynamics. Especially the former allows the networks to adapt
the gradient information flow.

Similar to the analysis in [5] and [7] we further confirmed that the occurrence of a
vanishing gradient is dependent on the values of the weight matrix A. By initialising
matrix A with different weight values it turned out, that an initialisation with a uni-
form distribution in [−0.2, 0.2] is a good choice for our networks (sec. 4.1). We never
experienced any vanishing gradient in these cases. In contrary, when initialising the
networks only within [−0.1, 0.1], the gradient vanished in the beginning of the learning
procedure. Nevertheless, during the learning process the networks themselves solved
this problem by changing the weight values. Figure 4 shows an exemplary change of
the gradient information flow during the learning process.

unfolding steps into the past

ep
och

er
ro

r

-20 0 20 40 60 80 1001200
50

100
150

200-0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 4. Exemplary adaptation of the gradient error flow during the learning process of an NRNN
which has been initialised with small weights: The graph shows that for a number of learning
epochs smaller than approximately 100, the gradient vanishes very quickly. After that the error
information distributes more and more over the different unfolding steps, i.e., the networks pro-
longs its memory span. Finally after about a 150 epochs the error information is almost uniformly
backpropagated to the last unfolded time step 100.

Learning Long Term Dependencies with Recurrent Neural Networks 79

5 Conclusion and Outlook

In this paper we demonstrated that NRNNs as well as basic RNNs unfolded in time
and trained with BPTT are, in opposition to an often stated opinion, well able to learn
long-term dependencies. Using shared weights and overshooting in combination with a
reasonable learning algorithm like pattern-by-pattern learning the problem of a vanish-
ing gradient becomes irrelevant. Our results even show that due to shared weights the
networks possess an internal regularisation mechanism which keeps the error flow up
and allows for an information transport over at least a hundred time steps. Consequently
RNNs and especially NRNNs are valuable in time series analysis and forecasting.

Looking at the results and our general experience with recurrent neural networks we
further assume that there is a conjunction between the internal state dimension and the
weight values in form of an optimal expected row sum of the transition matrix A. The
confirmation of this assumption will be part of our future research. Besides that we
want to investigate in how far a theoretical analysis of the examined self-regularisation
ability of recurrent neural networks is possible.

Acknowledgment

Our computations were performed on our Neural Network modeling software SENN
(Simulation Environment for Neural Networks), which is a product of Siemens AG.

References

1. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)
2. Kolen, J.F., Kremer, S.: A Field Guide to Dynamical Recurrent Networks. IEEE Press (2001)
3. Schaefer, A.M., Zimmermann, H.G.: Recurrent neural networks are universal approximators.

In: Proceedings of the International Conference on Artificial Neural Networks (ICANN-06),
Athens (2006)

4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In Rumelhart, D.E., et al., J.L.M., eds.: Parallel Distributed Processing: Ex-
plorations in The Microstructure of Cognition. Volume 1. MIT Press, Cambridge (1986)
318–362

5. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 6(2) (1998) 107–116

6. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks 5(2) (1994) 157–166

7. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets:
The difficulty of learning long-term dependencies. In Kolen, J.F., Kremer, S., eds.: A Field
Guide to Dynamical Recurrent Networks. IEEE Press (2001) 237–243

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8) (1997)
1735–1780

9. Zimmermann, H.G., Neuneier, R.: Neural network architectures for the modeling of dy-
namical systems. In Kolen, J.F., Kremer, S., eds.: A Field Guide to Dynamical Recurrent
Networks. IEEE Press (2001) 311–350

80 A.M. Schäfer, S. Udluft, and H.G. Zimmermann

10. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University (1974)

11. Zimmermann, H.G., Grothmann, R., Schaefer, A.M., Tietz, C.: Dynamical consistent recur-
rent neural networks. In Prokhorov, D., ed.: Proceedings of the International Joint Conference
on Neural Networks (IJCNN), Montreal, MIT Press (2005)

12. Neuneier, R., Zimmermann, H.G.: How to train neural networks. In Orr, G.B., Mueller, K.R.,
eds.: Neural Networks: Tricks of the Trade. Springer Verlag, Berlin (1998) 373–423

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 81 – 92, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adaptive On-Line Neural Network Retraining
for Real Life Multimodal Emotion Recognition

Spiros Ioannou1, Loic Kessous2, George Caridakis1, Kostas Karpouzis1,
Vered Aharonson2, and Stefanos Kollias1

1 School of Electrical and Computer Engineering, National Technical University of Athens,
Politechnioupoli, Zographou, Greece

{sivann, gcari, kkarpou,stefanos}@image.ece.ntua.gr
2 Tel Aviv Academic College of Engineering

218 Bnei Efraim St. 69107, Tel Aviv, Israel
kessous@post.tau.ac.il, vered@nexsig.com

Abstract. Emotions play a major role in human-to-human communication ena-
bling people to express themselves beyond the verbal domain. In recent years,
important advances have been made in unimodal speech and video emotion
analysis where facial expression information and prosodic audio features are
treated independently. The need however to combine the two modalities in a
naturalistic context, where adaptation to specific human characteristics and ex-
pressivity is required, and where single modalities alone cannot provide satis-
factory evidence, is clear. Appropriate neural network classifiers are proposed
for multimodal emotion analysis in this paper, in an adaptive framework, which
is able to activate retraining of each modality, whenever deterioration of the re-
spective performance is detected. Results are presented based on the IST
HUMAINE NoE naturalistic database; both facial expression information and
prosodic audio features are extracted from the same data and feature-based
emotion analysis is performed through the proposed adaptive neural network
methodology.

1 Introduction

Humans interact with each other in a multimodal manner to convey general messages;
emphasis on certain parts of a message is given via speech and display of emotions by
visual, vocal, and other physiological means, even instinctively. In the last decade
much effort has been directed towards multimodal user interfaces that emulate human
to human communication with the goal of enabling computer interfaces with means of
natural, expressive and thus more intuitive ways of interaction.

Typical examples of human communication vehicles include auditory channels that
carry speech or paralinguistic intonation and visual channels that convey facial ex-
pressions or body movements. The related senses of sight and hearing are examples of
modalities. Everyday face-to-face communication utilizes many and diverse channels
and modalities, increasing the flexibility of a communication scheme. In these situa-
tions, failure of one channel is usually recovered by another channel; this kind of
behaviour should actually be considered as a model requirement for robust, natural
and efficient multimodal HCI [12]. Therefore, the introduction of an emotion analysis

82 S. Ioannou et al.

system that can analyse intonation and visual cues, to help infer the likely emotional
state of a specific user in real life environments, can enhance the affective nature [13]
of MMI applications. Adaptive artificial neural network classifiers are proposed in
this paper, which can treat both sound and vision cues for emotion analysis, can
evaluate their single or multi-modal performance and can adapt their knowledge,
through on-line retraining, to real life changing environments.

Probably the most important issue when designing and training artificial neural
networks in real life applications is network generalization. Many significant results
have been derived during the last few years regarding generalization of neural net-
works when tested outside their training environment. Examples include algorithms
for adaptive creation of the network architecture during training, such as pruning or
constructive techniques, modular and hierarchical networks, or theoretical aspects of
network generalization, such as the VC dimension. Specific results and mathematical
formulations regarding error bounds and overtraining issues have been obtained when
considering cases with known probability distributions of the data. Despite, however,
the achievements obtained, most real life applications do not obey some specific prob-
ability distribution and may significantly differ from one case to another mainly due
to changes of their environment. That is why straightforward application of trained
networks, to data outside the training set, is not always adequate for solving image
recognition, classification or detection problems, as is the case with (multimodal)
emotion analysis. Instead, it would be desirable to have a mechanism, which would
provide the network with the capability to automatically test its performance and be
automatically retrained when its performance is not acceptable. The retraining algo-
rithm should update the network weights taking into account both the former network
knowledge and the knowledge extracted from the current input data.

This paper presents an approach for improving the performance of neural net-
works when handling real life multimodal emotion analysis, based on an automatic
decision mechanism, which determines when network retraining should take place,
and a retraining - nonlinear programming - algorithm.
 Section 2 formulates the retraining problem under investigation. Section 3 presents
the retraining technique, while section 4 presents the decision mechanism for activat-
ing retraining. Section 5 presents the multimodal emotion recognition problem and
the application of the afore-mentioned technologies to the problem, while section 6
summarizes and provides conclusions on the capabilities of the proposed approach.

2 Formulation of the Problem

Let us assume that we seek to classify, to one of, say, p available emotion classes ,
each input vector xi containing the features extracted by one or more input modali-

ties. A neural network produces a p-dimensional output vector)(ixy

[]Tiii

i p
pppxy ωωω ...)(

21
= (1)

where i
j

pω denotes the probability that the ith input belongs to the jth class.

 Adaptive On-Line Neural Network Retraining 83

Let us first consider that a neural network has been initially trained to perform the
previously described classification task using a specific training set, say,

() (){ }
bb mmb dxdxS ′′′′= ,,,, 11 , where vectors ix′ and id ′ with bmi ,,2,1=

denote the ith input training vector and the corresponding desired output vector con-
sisting of p elements. Let)(ixy denote the network output when applied to the ith

input outside the training set, corresponding to a new user, or to a change of the envi-
ronmental conditions; new network weights should be estimated in such cases.

Let bw include all weights of the network before retraining, and aw the new

weight vector which is obtained after retraining. A training set Sc is assumed to be

extracted from the current operational situation composed of, (one or more), say, mc

inputs; () (){ }
cc mmc dxdxS ,,,, 11= where ix and id with cmi ,,2,1= simi-

larly correspond to the ith input and desired output retraining data. The retraining
algorithm that is activated, whenever such a need is detected, computes the new net-
work weights aw , minimizing the following error criterion with respect to weights,

afaca EEE ,, η+=

 =
=

cm

i
iiaac dxzE

1 2,)(
2
1

,
=

=
bm

i
iiaaf dxzE

1
2,)(

2
1

 (2)

where acE , is the error performed over training set cS (“current” knowledge),

afE , the corresponding error over training set bS (“former” knowledge);)(ia xz and

)(ia xz are the outputs of the retrained network, corresponding to input vectors ix
and ix respectively, of the network consisting of weights aw . Similarly)(ib xz
would represent the output of the network, consisting of weights bw , when accepting

vector ix at its input; when retraining the network for the first time)(ib xz is identi-

cal to)(ixy . Parameter is a weighting factor accounting for the significance of

the current training set compared to the former one and 2 denotes the L2 -norm.

3 The Retraining Approach

The goal of the training procedure is to minimize (2) and estimate the new network

weights wa , i.e., 0
aW and wa

1 respectively. The adopted algorithm has been pro-

posed by the authors in [2]. Let us first assume that a small perturbation of the net-
work weights (before retraining) wb is enough to achieve good classification per-

formance. Then,

000 WWW ∆+= ba ,

111 www ba ∆+= (3)

84 S. Ioannou et al.

where 0W∆ and 1w∆ are small increments. This assumption leads to an analytical

and tractable solution for estimating aw , since it permits linearization of the non-

linear activation function of the neuron, using a first order Taylor series expansion.
Equation (2) indicates that the new network weights are estimated taking into ac-

count both the current and the previous network knowledge. To stress, however, the
importance of current training data in (2), one can replace the first term by the con-
straint that the actual network outputs are equal to the desired ones, that is

)(iia dxz = cc Smi indataallfor,,...,1= (4)

Equation (4) indicates that the first term of (2), corresponding to error acE , , takes

values close to zero, after estimating the new network weights.
Through linearization, solution of (4) with respect to the weight increments is

equivalent to a set of linear equations

 wc ∆⋅= A (5)

where []T
TT www)()(10 ∆∆=∆ , { }00 vec W∆=∆w , with { }0vec W∆ denoting a

vector formed by stacking up all columns of 0W∆ ; vector c and matrix A are ap-

propriately expressed in terms of the previous network weights. In particular,

[] []Tmbb
T

maa cc
xzxzxzxzc)()()()(11 LL= ,

expressing the difference between network outputs after and before retraining for all
input vectors in cS . c can be written as

[] []Tmbb

T
m cc

xzxzddc)()(11 LL= (6)

Equation (6) is valid only when weight increments w∆ are small quantities. It can be

shown [2] that, given a tolerated error value, proper bounds ϑ and φ can be com-

puted for the weight increments and input vector ix in cS

Let us assume that the network weights before retraining, i.e., bw , have been esti-

mated as an optimal solution over data of set bS . Furthermore, the weights after re-

training are considered to provide a minimal error over all data of the current set cS .

Thus, minimization of the second term of (2), which expresses the effect of the new
network weights over data set bS , can be considered as minimization of the absolute

difference of the error over data in bS with respect to the previous and the current

network weights. This means that the weight increments are minimally modified,
resulting in the following error criterion

 2,, bfafS EEE −= (7)

with bfE , defined similarly to afE , , with az replaced by bz in (2).

 Adaptive On-Line Neural Network Retraining 85

 It can be shown [2] that (7) takes the form of

wwE TT

S ∆⋅⋅⋅∆= KK)(
2

1
 (8)

where the elements of matrix K are expressed in terms of the previous network
weights bw and the training data in bS . The error function defined by (8) is convex

since it is of squared form. The constraints include linear equalities and inequalities.
Thus, the solution should satisfy the constraints and minimize the error function in
(8). The gradient projection method is adopted to estimate the weight increments.

Each time the decision mechanism ascertains that retraining is required, a new
training set cS is created, which represents the current condition. Then, new network

weights are estimated taking into account both the current information (data in cS)

and the former knowledge (data in bS). Since the set cS has been optimized over the

current condition, it cannot be considered suitable for following or future states of the
environment. This is due to the fact that data obtained from future states of the envi-
ronment may be in conflict with data obtained from the current one. On the contrary,
it is assumed that the training set bS , which is in general provided by a vendor, is
able to roughly approximate the desired network performance at any state of the envi-
ronment. Consequently, in every network retraining phase, a new training set cS is

created and the previous one is discarded, while new weights are estimated based on
the current set cS and the old one bS , which remains constant throughout network

operation.

4 Decision Mechanism for Network Retraining

The purpose of this mechanism is to detect when the output of the neural network
classifier is not appropriate and consequently to activate the retraining algorithm at
those time instances when a change of the environment occurs.

Let us index images or video frames (similar definitions are used for speech sig-
nals) in time, denoting by),(Nkx the feature vector of the kth image or image

frame, following the image at which the Nth network retraining occurred. Index k is
therefore reset each time retraining takes place, with),0(Nx corresponding to the

feature vector of the image where the Nth retraining of the network was accom-
plished. Retraining of the network classifier is accomplished at time instances where
its performance deteriorates, i.e., the current network output deviates from the desired
one. Let us recall that vector c expresses the difference between the desired and the

actual network outputs based on weights bw and applied to the current data set cS .

As a result, if the norm of vector c increases, network performance deviates from the

desired one and retraining should be applied. On the contrary, if vector c takes small

86 S. Ioannou et al.

values, then no retraining is required. In the following we denote this vector as
),(Nkc depending upon feature vector),(Nkx .

Let us assume that the Nth retraining phase of the network classifier has been com-
pleted. If the classifier is then applied to all instances),0(Nx , including the ones

used for retraining, it is expected to provide classification results of good quality. The
difference between the output of the retrained network and of that produced by the
initially trained classifier at feature vector),0(Nx constitutes an estimate of the level

of improvement that can be achieved by the retraining procedure. Let us denote by
e N(,)0 this difference and let),(Nke denote the difference between the corre-

sponding classification outputs, when the two networks are applied to the feature set
of the kth image or image frame (or speech segment) following the Nth network re-
training phase. It is anticipated that the level of improvement expressed by

),(Nke will be close to that of),0(Ne as long as the classification results are good.

This will occur when input images are similar to the ones used during the retraining
phase. An error),(Nke , which is quite different from),0(Ne , is generally due to a

change of the environment. Thus, the quantity),0(),(),(NeNkeNka −= can be

used for detecting the change of the environment or equivalently the time instances
where retraining should occur. Thus, no retraining is needed if:

(,)a k N T< (9)

where T is a threshold which expresses the max tolerance, beyond which retraining is
required for improving the network performance. In case of retraining, index k is reset
to zero while index N is incremented by one.

Such an approach detects with high accuracy the retraining time instances both in
cases of abrupt and gradual changes of the operational environment since the com-
parison is performed between the current error difference),(Nke and the one ob-

tained right after retraining, i.e.,),0(Ne . In an abrupt operational change, error

),(Nke will not be close to),0(Ne ; consequently,),(Nka exceeds threshold T

and retraining is activated. In case of a gradual change, error),(Nke will gradually

deviate from),0(Ne so that the quantity),(Nka gradually increases and retraining

is activated at the frame where TNka >),(.

Network retraining can be instantaneously executed each time the system is put in
operation by the user. Thus, the quantity)0,0(a initially exceeds threshold T and

retraining is forced to take place.

5 Application to Multimodal Emotion Analysis

5.1 How to Combine Modalities

While evaluating the user’s emotional state, information on one modality can be used
to disambiguate information on the other ones. Two obvious approaches exist of fus-

 Adaptive On-Line Neural Network Retraining 87

ing information from different cues: the first is to integrate information at the signal
or feature level, whereas the second is to process information and make a decision
independently on each modality and finally fuse those decisions at semantic level.

For the first strategy, namely fusion at the signal level, to be meaningful, two con-
ditions must be satisfied: first, modalities must have features that can be handled in a
similar way and second the modalities must be synchronized. Such is the case in the
combined speech and lip movement analysis. The obvious disadvantages of treating
inputs on the signal level include the requirement of large amounts of training data,
and the inability to combine the fusion process with possible knowledge about the
internal mechanisms present in physical multimodal understanding.

On the other hand, fusion on the decision level, can be applied to modalities which
have different time scale characteristics; in this case timing in each modality can be
different not only on the frequency of feature extraction but also on the time interval
where each decision is valid. For example, an audio prosodic feature concerning some
milliseconds of speech could reveal a specific emotional speaker disposition, while
the presence of a facial expression could have to be detected for several seconds be-
fore it reveals a specific underlying emotion. Decision-level fusion offers several
advantages over feature-level fusion. Firstly, each modality is treated independently
therefore, they can be both separately trained and their integration does not require
excessive computation. A disadvantage of this method is the fact that it does not sup-
port mutual disambiguation: using information from one modality to enhance or reject
information coming from the other.

In the current approach, a novel technique is proposed, based on the above
described adaptive neural network retraining detection. In particular, the proposed
approach is applied separately, but synchronised, to the two modalities. The perform-
ance of each unimodal classifier is monitored through the decision mechanism of
section 4. Whenever a deterioration of performance in one modality is detected, the
other one, if still successful, is used to provide the desired outputs for retraining the
modality where the problem occurred. The experimental study is presented next.

5.2 The Experimental Study

In this work, we analyzed naturalistic data from the EU IST HUMAINE Network of
Excellence [5] naturalistic database. The database includes persons driven to real
emotional discourse, being annotated in valence and activity terms by several experts.
Both facial expression information in the form of MPEG-4 features [9], and prosodic
audio features were extracted from the same data and feature-level classification was
employed. Our main synchronization unit has been chosen to be audio tunes, i.e. for
the video analysis MPEG-4 FAPs have been extracted on each video frames both at
the location of tunes and at the location of silence between tunes (a tune being the
portion of the pitch contour that lies between two audio pause boundaries) [11,14].
We observed that in the majority of the cases from a subjective point of view, a tune
defined with audio pauses of at least 150 ms seems to be a good segmentation at the
sentence level.

Regarding training, testing and performance evaluation of automatic recognizers of
multimodal data, a frequent problem is the absence of labelling on separate modali-
ties. The work here is really at its infancy: there are only one or two annotated

88 S. Ioannou et al.

naturalistic databases, and those have not been annotated separately on each modality,
i.e. having human experts produce an emotional annotation by watching only one
modality at a time. Moreover, there is the question of the labelling synchronization:
when dealing with tune segments, is it proper to reduce continuous labeling to tune
labeling instead of first defining tunes and then labeling them?

5.3 Extraction of Visual Features

At first face detection is performed using nonparametric discriminant analysis with a
Support Vector Machine (SVM) [6], which classifies face and non-face areas by re-
ducing the training problem dimension to a fraction of the original with negligible
loss of classification performance. The face detection step provides us with a rectan-
gle head boundary which includes the whole face area. The latter is segmented
roughly using static anthropometric rules [1] into three overlapping rectangle regions
of interest which include both facial features and facial background; these three fea-
ture-candidate areas include the left eye/eyebrow, the right eye/eyebrow and the
mouth. Continuing, we utilize these areas to initialize the feature extraction process.
Facial feature extraction performance depends on head pose, thus head pose needs to
be detected and the head restored in the upright position; in this work we are mainly
concerned with roll rotation, since it is the most frequent rotation encountered in real
life video sequences.

Head pose is estimated through the detection of the left and right eyes in the corre-
sponding eye candidate areas. After locating the eyes, we can estimate head roll rota-
tion by calculating the angle between the horizontal plane and the line defined by the
eye centers. For eye localization we propose an efficient technique using a feed-
forward back propagation neural network with a sigmoidal activation function. The
multi-layer perceptron (MLP) we adopted employs Marquardt-Levenberg learning [8]
while the optimal architecture obtained through pruning has two 20 node hidden lay-
ers and 13 inputs.

We apply the network separately on the left and right eye-candidate face regions.
For each pixel in these regions the 13 inputs to the neural network are the luminance
Y, the Cr & Cb chrominance values and the 10 most important DCT coefficients
(with zigzag selection) of the neighboring 8x8 pixel area. The MLP has two outputs,
one for each class, namely eye and non-eye, and it has been trained with more than
100 hand-made eye masks that depict eye and non-eye area in random frames from
the ERMIS and HUMAINE [5] databases, in images of diverse quality, resolution and
lighting conditions.

Eyes are located with the aid of the aforementioned network while this information
is also combined with other feature detectors in a fusion process, to create facial fea-
ture masks, i.e. binary maps indicating the position and extent of each facial feature.
The left, right, top and bottom–most coordinates of the eye and mouth masks, the left,
right and top coordinates of the eyebrow masks as well as the nose coordinates, are
used to define the considered feature points (FPs).

For the nose and each of the eyebrows, a single mask is created. On the other hand,
since the detection of eyes and mouth can be problematic in low-quality images, a
variety of methods is used each resulting in a different mask. In total, we have four
masks for each eye and three for the mouth. These masks have to be calculated in

 Adaptive On-Line Neural Network Retraining 89

near-real time, thus avoiding utilizing complex or time-consuming feature extractors.
The use of the afore-mentioned neural network greatly serves this scope. The feature
extractors developed for this work are described in [4].

 (a) (b) (c)

Fig. 1. (a) original frame, (b) final mask for the eyes, (c) detected feature points from the mask

Eyebrows are detected with a procedure involving morphological edge detection
and feature selection using data from [1]. Nose detection is based on nostril localiza-
tion. Nostrils are easy to detect due to their low intensity. Connected objects (i.e.
nostril candidates) are labeled based on their vertical proximity to the left or right eye,
and the best pair is selected according to its position, luminance and geometrical con-
straints from [1].

Since, as was already mentioned, the detection of a mask using the applied meth-
ods can be problematic, all detected masks have to be validated against a set of crite-
ria. Each one of the criteria examines the masks in order to decide whether they have
acceptable size and position for the feature they represent. This set of criteria consists
of relative anthropometric measurements, such as the relation of the eye and eyebrow
vertical positions, which when applied to the corresponding masks produce a value in
the range [0,1] with zero denoting a totally invalid mask. More information about the
used expression profiles can be found in [9].

5.4 Extraction of Audio Features

The features used in this work are exclusively based on prosodic features. We con-
sider here features related to pitch and rhythm. All information related to emotion that
one can extract from pitch is probably not only in these features, but the motivation of
this approach is in the desire to develop and use a higher level of speech prosody
analysis than the usual pitch features used in previous studies.

We analyzed each tune with a method employing prosodic representation based on
perception called 'Prosogram'. Prosogram is based on a stylization of the fundamental
frequency data (contour) for vocalic (or syllabic) nuclei. It gives globally for each
voiced nucleus a pitch and a length. According to a 'glissando threshold' in some
cases we don’t get a fixed pitch but one or more lines to define the evolution of pitch
for this nucleus. This representation is in a way similar to the 'piano roll' representa-
tion used in music sequencers. This method, based on the Praat environment, offers
the possibility of automatic segmentation based both on voiced part and energy
maxima. From this model/representation stylization we extracted several types of
features: pitch interval based features, nucleus length features and distances between
nuclei.

90 S. Ioannou et al.

In musical theory, ordered pitch interval is the distance in semitones between two
pitches upwards or downwards. For instance, the interval from C to G upward is 7,
but the interval from G to C downwards is −7. Using integer notation (and eventually
modulo 12) ordered pitch interval, ip, may be defined, for any two pitches x and y, as:

,

,

ip y x x y

ip x y y x

= −

= −
 (1)

In this study we considered pitch intervals between successive voiced nuclei. For

any two pitches x and y, where x precedes y, we calculate the interval ,ip x y y x= − ,

then deduce the following features.
For each tune, feature (f1) is the minimum of all the successive intervals in the

tune. In a similar way, we extract the maximum (f2), the range (absolute difference
between minimum and maximum) (f3), of all the successive intervals in each tune.
Using the same measure, we also deduce the number of positive intervals (f4) and the
number of negative intervals (f5). Using the absolute value, a measure equivalent to
the unordered pitch interval in music theory, we deduce a series of similar features:
minimum (f6), maximum (f7), mean (f8) and range (f9) of the pitch interval. Another
series of features is also deduced from the ratio between successive intervals, here
again maximum (f10), minimum (f11), mean (f12) and range (f13) of these ratios give
the related features. In addition to the aforementioned features, the usual pitch fea-
tures have also been used such as fundamental frequency minimum (f14), maximum
(f15), mean (f16) and range (f17). The global slope of the pitch curve (f18), using
linear regression, has also been added.

As was previously said, each segment (voiced “nucleus” if it is voiced) of this rep-
resentation has a length, and this has also been used in each tune to extract features
related to rhythm. These features are, as previously, maximum (f19), minimum (f20),
mean (f21) and range (f22). Distances between segments have also been used as fea-
tures and the four last features we used are maximum (f23), minimum (f24), mean
(f25) and range (f26) of these distances.

5.5 Adaptive Multimodal Emotion Analysis

In our study, we tested the proposed neural-network-based adaptive classification,
evaluation and retraining procedure on the multimodal data sets that were described
above. More than 100 tunes of speech and 1000 video frames showing four personali-
ties reacting to an emotion provoking environment named SAL (Sensitive Artificial
Listener) developed in the framework of the IST NoE Humaine. The goal was to
classify each instant of visual and speech input to one of the quadrants of the emo-
tional wheel, which measures emotion based on a 2-D representation, where dimen-
sions correspond to activation and evaluation of interaction.

While the basic classification rates for each input modality (speech, face) were
close to 67%, by implementing the retraining procedure, whenever a change of per-
sonality or a lower performance measure was detected, and relying on the cues

 Adaptive On-Line Neural Network Retraining 91

provided by both modalities, the classification rate was raised to 79%, which illus-
trates the ability of the proposed method to take advantage of multimodal analysis for
improving the obtained results in emotion analysis and classification problems.

6 Conclusions

A novel neural network on line retraining procedure has been proposed in this paper,
which is appropriate for real life analysis of multimedia applications. Illustration of
the method’s ability to achieve multimodal emotion recognition is given in this paper
using naturalistic audio and visual data, created in the HUMAINE IST Network of
Excellence (2004-2008). The proposed approach is based on neural network architec-
tures which examine each input modality, monitoring the performance of the classifi-
cation operation and provide a measure of confidence on the achieved accuracy.
Whenever this measure gets unacceptable, an efficient on-line retraining of the net-
work knowledge takes place, using the gradient projection method and combining
input from all modalities under investigation. Extensive studies are currently under
implementation, for further evaluation of the method capabilities.

References

1. J.W. Young, Head and face anthropometry of adult U.S. civilians, FAA Civil Aeromedical
Institute, 1993.

2. A. Doulamis, N.Doulamis and S. Kollias, On-line Retrainable Neural Networks: Improv-
ing the Performance of Neural Networks in Image Analysis Problems, IEEE Transactions
on Neural Networks, vol. 11, no 1, pp. 137-157, 2000.

3. A. Krog, J. Vedelsby, Neural network ensembles, cross validation and active learning, in
Tesauro G., Touretzky D., Leen T. (Eds) Advances in neural information processing sys-
tems 7, pp. 231-238, Cambridge, MA. MIT Press, 1995.

4. S. Ioannou, A. Raouzaiou, V. Tzouvaras, T. Mailis, K. Karpouzis and S. Kollias, Emotion
recognition through facial expression analysis based on a neurofuzzy network, Special Is-
sue on Emotion: Understanding & Recognition, Neural Networks, Elsevier, Volume 18,
Issue 4, Pages 423-435, 2005.

5. HUMAINE, Human-Machine Interaction Network on Emotion IST-2002-2.3.1.6
(http://emotion-research.net/)

6. R. Fransens, Jan De Prins, SVM-based Nonparametric Discriminant Analysis, An Appli-
cation to Face Detection, Ninth IEEE International Conference on Computer Vision Vol-
ume 2, October 13 - 16, 2003

7. S. Kollias and D. Anastassiou. “An adaptive least squares algorithm for the efficient train-
ing of artificial neural networks”. IEEE Transactions on Circuits and Systems, Volume:
36 , Issue: 8 , Aug. 1989 pp:1092 – 1101

8. M.T. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algo-
rithm". IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.

9. A. Raouzaiou, N. Tsapatsoulis, K. Karpouzis and S. Kollias, “Parameterized facial expres-
sion synthesis based on MPEG-4”, EURASIP Journal on Applied Signal Processing, Vol.
2002, No. 10, pp. 1021-1038, Hindawi Publishing Corporation, October 2002.

10. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library
Metadata Architecture. Int. J. Digit. Libr. 1 (1997) 108–121

92 S. Ioannou et al.

11. Mertens, Piet: The Prosogram: Semi-Automatic Transcription of Prosody based on a Tonal
Perception Model. in B. Bel & I. Marlien (eds.) Proceedings of Speech Prosody 2004,
Nara (Japan), 23-26 March. (ISBN 2-9518233-1-2)

12. Cowie R., Douglas-Cowie E., Tsapatsoulis N., Votsis G., Kollias S., Fellenz W., Taylor J.,
Emotion Recognition in Human-Computer Interaction, IEEE Signal Processing Magazine,
2001.

13. R. W. Picard, Affective Computing, MIT Press, Cam-bridge, MA, 2000.
14. R. Cowie, E. Douglas-Cowie, Automatic statistical analysis of the signal and prosodic

signs of emotion in speech. Proceedings of the 4th International Conference of Spoken
Language Processing (pp. 1989–1992). 1996, Philadelphia, USA.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 93 – 102, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Time Window Width Influence on Dynamic BPTT(h)
Learning Algorithm Performances: Experimental Study

V. Scesa1, P. Henaff1, F.B. Ouezdou1, and F. Namoun2

1 LISV, Université de Versailles St Quentin,
10, 12 avenue de l’Europe, 78140 Vélizy, France.

2 BIA company,
8 rue de l’Hautil, 78730 Conflans Ste Honorine, France.

Abstract. The purpose of the research addressed in this paper is to study the in-
fluence of the time window width in dynamic truncated BackPropagation
Through Time BPTT(h) learning algorithms. Statistical experiments based on
the identification of a real biped robot balancing mechanism are carried out to
raise the link between the window width and the stability, the speed and the ac-
curacy of the learning. The time window width choice is shown to be crucial for
the convergence speed of the learning process and the generalization ability of
the network. Although, a particular attention is brought to a divergence problem
(gradient blow up) observed with the assumption where the net parameters are
constant along the window. The limit of this assumption is demonstrated and
parameters evolution storage, used as a solution for this problem, is detailed.

1 Introduction

Born from the collaboration between a robotic research laboratory (LISV) and an
industrial company (BIA), the supporting project of this study aims to shape a smart
architecture able to learn to control non linear multi actuators system under real time
constraints. Through the design and the implementation of this controller, we want to
evaluate the ability of neural architectures to achieve the non linear control needs in
real time. The project experiments are carried out on two structures: the ROBIAN
biped robot from the LISV [1], and the BIA road simulator (www.bia.fr). The archi-
tecture of the developed algorithm is based on continuous time recurrent neural net-
works (CTRNN). To shape this architecture, a truncated BPTT algorithm was chosen
for its ability of integrating the learning error and for its simplicity to be implemented
for real time online applications. This well known gradient algorithm is widely used
for system modeling and control [2], optimization applications, speech recognition
[3], or meta learning [4]. A detailed description of this algorithm is given in [5], [6]
and [7]. Nevertheless, as far as we know, no study aimed to extract the important role
of the truncation width on the success of the learning. Obviously, the truncation width
influences deeply the learning speed and quality. Our real time experimentations on
ROBIAN biped also show us that, when the net parameters are considered as constant
along a large window, the learning stability could be hardly spoiled.

94 V. Scesa et al.

 Thus, through a statistical analysis of learning results, the links between the width
of the time window, the stability of the learning, the “constant parameters” assump-
tion, the convergence speed and the generalization abilities of the learned networks,
have to be raised. To focus on this influence, a first experiment dealing with direct
model identification rather than a controller shaping will be considered.
 The next section details the neural model and the BPTT(h) learning algorithm used.
The experimental plant is described in section 3. In section 4, the influence of the
window width will be studied. The “constant parameters” assumption with its influ-
ence on the learning stability will be discussed. A stabilizing modification of the
learning equation, to take into account the parameters evolution history, will be pro-
posed. It will allow raising the dependencies between the window width and the
learning results. Finally, discussions about the parameters evolution storage and the
window choice to find a compromise between learning speed and nets accuracy will
be given.

2 Dynamic Truncated Backpropagation Through Time Algorithm

2.1 Neural Model

Following the classical CTRNN equation (1), the input data are propagated in the
network to generate the neurons outputs. The net activities belong to the intrinsic
neurons and network parameters : weights (wij), biases (bj) and time parameters (Tj).

[]+⋅+−=
∂
∂⋅

i

jiijj
j

j bywfy
t

y
T

Where yj corresponds to the j neuron activity, f is the activation function (tanh). Using
a time scale parameter Sj (classically Sj= t/Tj , t is the time step), the discrete corre-
sponding equation can be written as follows:

 () [] () ()ttySbttywfSty jjj

i

iijjj −⋅−++−⋅⋅= 1 (2)

As the network is fully recurrent, each neuron receives the outputs of all the other
ones. The weights, biases and time constants shape the temporal response of the net.

2.2 Learning Algorithm

The objective of the parameters modification consists in minimizing a desired crite-
rion. For an identification process, the criterion would be the gap between the neural
model and the taught system. To carry out the adaptation of network parameters,
BackPropagation Through Time algorithm, detailed in [5], [6] and [7], can be used.
 This algorithm is computing an error function that corresponds to the criterion to be
minimized. The error function (E) is defined as the integral of each net output errors.
The parameters modification (param) is leaded by the error gradient inverse value.
The following equations give the error function and the parameters modification law:

(1)

Time Window Width Influence on Dynamic BPTT(h) Learning Algorithm Performances 95

 ()[]⋅=
t

t

j deE
0

ττ (3)
param

E
param

∂
∂⋅−= η (4)

Where ej() is the output error of the neuron j stored at the current time step in the
time window (). During the learning, to minimize E, the algorithm modifies the net
parameters following the gradient descent (4), where param is wij, bj or Sj and η is the
corresponding learning rate. To compute these “delta” values for continuous time
neurons, a dynamic BPTT learning algorithm [5] is needed. The gradient values giv-
ing the influence of each parameter are computed with equations (5), (6) and (7):

() ()() ()[]⋅−⋅−′⋅⋅=
∂

∂
t

t

jkkk
jk

dtytxfzS
w
E

0

ττττ

() ()()[]⋅−′⋅⋅=
∂

∂
t

t

kjj
j

dtxfzS
b
E

0

τττ

() ()() ()()[]⋅−−−⋅=
∂

∂
t

t

jjj
j

dtytxfz
S
E

0

ττττ

The backpropagated errors (zj()) for a jth neuron can be written as following:

()

()
() ()()[] () () () teStzwxfStz

y
Ez jjj

k
jkkkk

j
j ⋅+−⋅++⋅′⋅⋅+=

∂

∂
= ττττ

τ
τ 1

Where f’ is the derivative of the activation function (tanh). For each neuron, the zj is
computed by considering the network states at each time step as successive layers.
Thus, the output errors are backpropagated in the network and in time. In BPTT learn-
ing, zj is computed for each neuron and each time step since the starting. To prevent a
memory explosion induced by the storage of every network states, a truncated BPTT
algorithm (BPTT(h)) is proposed in [8]. This algorithm is keeping in memory only the
past states included in a window following the current instant (t0 = t – h with h the
window width). The zj values are computed along this sliding window (∈[t-h;t]).
Hence, only a gradient approximation is computed. The previous (5) to (8) equations
are constructed on the assumption that the parameters are constant along the time
window. This assumption presented in [9] and [10] minimizes the process memory
needs as the parameters history is not stored. In our study, these algorithms are ex-
perimented on the ROBIAN biped robot described in the next section.

3 ROBIAN Identification Description

3.1 Plant Description and Perturbation Signals

To focus on the time window width influence, a model identification rather than a
controller shaping will be carried out. Fig.1 shows how the identification of
ROBIAN’s torso influence on the ZMP (Zero Moment Point) will be performed. For
more details concerning the ROBIAN biped and its torso mechanism see [1].

(6)

(7)

(8)

(5)

96 V. Scesa et al.

 The ZMP is a key notion in the balance control of walking robot. It corresponds to
the position of the center of pressure on the ground. The ZMP algorithm, introduced
thirty five years ago [11], consists of controlling the equilibrium of the biped robot by
keeping the ZMP inside the polygon defined by the contact points with the ground.

Fig. 1. Learning architecture for the identification (left) of ROBIAN robot (right)

 The motion of the X and Y masses of the torso (Mx and My) are perturbing the
robot balancing, leading to variations of the X and Y ZMP positions. During the
learning process, the neural network (NN) computes the gap between the measured
positions and its own outputs and modifies its parameters to vanish this error, by
minimizing a cost function. This function is defined as the normalized squared errors
sum on the two axes and the output errors (ej(t)) can be expressed as following:

Where yx, yy are the output activities and maxZMPaxis is the maximum amplitude on
each axis (for normalization).

 Representative situations should be given during the learning. They must fully
characterize the behavior of the studied system. This implies to give the network
patterns that express the dynamic of the ZMP for the X and Y axis. Fig 2 represents
the learning pattern adopted.

Fig. 2. Masses positions and ZMP positions on the two axis for the learning pattern (sampling
rate = 45Hz). In periods 1 and 4, the X and then the Y mass, are submitted to successive steps
with various amplitudes. In the 2 and 3 periods, steps with varying frequency are applied.

ZMP x
ZMP y

Masses positions
(Mx, My)

NN model

ROBIAN biped
18 dofs

1.
10

 m

0.
3

m

Mx = 2 Kg
My = 1 Kg
Mz = 1 Kg

Mx

My

ZMPx

ZMPy

1 2 3 4

0.2 m

0.2 m

0.01 m

0.01 m

60 s 120 s 180 s
time

Yx
Yy

-

+

(9) () ()
axis

axisaxis

axis
axis

maxZMP

tyZMP

ty

Cost
te

)(2

)(

−⋅−=
∂
∂= (10)

22 −+−=
y

yy

x

xx

maxZMP

yZMP

maxZMP

yZMP
Cost

Time Window Width Influence on Dynamic BPTT(h) Learning Algorithm Performances 97

 The learning pattern contains a succession of four different excitations applied to
the robot: squared commands with varying amplitudes (0.01m to 0.20m) and with
varying frequencies (1Hz-3Hz, containing the resonance of the robot), for both X and
Y axes. In the test pattern, a sine command with a varying frequency is applied on
both axes.

3.2 Example of Learning

The cost function evolution is depicted on Fig. 3. In this experiment, the network
(composed of 2 inputs, 15 hidden neurons and 2 outputs) was taught with one hundred
loops on the learning pattern (learning rates: η1 = 0.025 for weights and biases,
η2 = 1.25 for time constants) and a time window width h=20.

20 40

1 2 3

4

1 loop

first drop second drop
0.2

0
Loops

0. 1

60 80 1000
Fig. 3. Cost evolution, and a zoom on the first loop (top right corner), 1 loop =10200 iterations

 At the beginning of the learning, the network parameters are randomly chosen to
generate stable outputs. The time scale parameters (Sj) are taken in the interval
[0.5;1], to obtain neurons with speeds close to the dynamic of the system.
 Fig.3 gives the evolution of the cost during the learning. In the zoom area, the four
peaks are due to the different kinds of command (amplitude changes: peaks 1 and 4,
or frequency variation: peaks 2 and 3) of the learning pattern.
 During the experiment, two main drops happened. They are respectively linked to a
quick decrease of peak 3 (learning of the X direction behavior) and peak 2 (learning
on Y direction). The instant when the second drop happened (SDI : Second Drop
Instant) is a good factor to quantify the convergence speed. It happens when the net-
work identifies correctly the behavior of ROBIAN torso in the both two directions.
Here it takes about 64 loops to arise. The SDI value can be interpreted as a physical
expression of the convergence for our experiments. It can be related to the choice of a
threshold below which the cost is considered as satisfactory.
 After the learning, a relevant value for estimating the generalization ability of the
learned network is the costs sum along the whole test pattern (TES : Test Errors
Sum). It expresses the difference between an ideal model of the robot and the learned
one. With a perfect model, the TES value is equal to zero. For the considered exam-
ple, before the learning, TES = 363, and at the end of the learning process (after the
100th loop), the remaining error decreases to TES = 40.

98 V. Scesa et al.

4 Time Window Width Influence

4.1 Stability Limit with the “Constant Parameters” Assumption

In the usual gradient calculus, the parameters are considered as constant along the
time window [9], [10]. This approximation can be seen in the gradient equations (5)
to (8) where the parameters (wij, bj or Sj) are not indexed by time. The time window
width reduces the use of this assumption by destabilizing the learning.
 The identification of the ROBIAN’s torso influence on the ZMP positions is carried
out for different time window width values (TW) from 5 to 60 states stored. For each
TW, ten learning courses are carried out for a statistical analysis of the results. Each
network is evaluated on the test pattern after learning. The learning and test results are
depicted on the following figure:

Fig. 4. Learning and test results following TW with η1=0.025 for weights and biases, η2=1.25
for time constants. The average value of SDI and TES are plotted. The error bars correspond to
the standard deviation measured. They express the iteration range of convergence. If not all the
10 trials lead to a convergence, a mark is added on the graph giving the percentage of success.
Here, it happens for TW=35 where there was only 10% of success.

 This graph can be decomposed in three parts. When TW is less than 15, the learn-
ing is so slow that it doesn’t manage to converge (no results on the graph). For
TW∈[15;35], the SDI, and TES seem to decrease proportionally to TW, thus the
convergence speed and the generalization ability are better for larger TW. Finally, if
TW is greater than 35 states stored, the algorithm is diverging with a gradient blow
up. For a stronger learning rate (η=0.1) the gradient blow up occurs since TW=15.

4.2 Gradient Blow Up Divergence and Parameters Evolution Storage

We called this divergence problem gradient blow up since it’s caused by a sudden
explosion of the neurons gradient values. In Fig. 5, the evolution in time of the gradi-
ent values for each neuron are depicted. In this experiment, the time window width is
TW=100 states stored (with a sampling rate=45Hz, it corresponds to an interval of
2.22s). The three graphs represent the initiation of the gradient blow up. Just after the
last graph, all the gradient values are exploded.

Time Window Width Influence on Dynamic BPTT(h) Learning Algorithm Performances 99

Fig. 5. Gradient blow up initiation. The little waves correspond to the “normal” backpropaga-
tion of the error in the time window on the neurons. The strong drops and jumps in the third
graph correspond to the “abnormal” divergence called gradient blow up.

The blow up begins with a divergence of the oldest past values. Through the re-
current links raised in the network, the explosion is spread in the entire network. Fi-
nally, the divergence is so important that the parameters take infinite values and the
algorithm is stopped. Our guess is that the divergence of the farer gradients is due to
the “constant parameter” assumption. This assumption means that the parameters are
the same along the entire time window. However, if the window width is large com-
pared to the parameters variation, it’s obviously false. Actually, if the width is impor-
tant, the parameter values that contribute to create the farer past states stored could be
strongly different from the current ones. This happens when either the first or the
second drop is initiated, i.e. when the parameters are strongly modified. That’s why
the divergence is initiated in the oldest part of the time window. Hence, the assump-
tion could only be used with short window or small learning rates.
 A way to avoid this blow up problem is to store the parameters history along the
time window. So, the gradient equations will take into account their evolutions as in
(5’), (6’) and (7’). The weights, biases and time scale parameters become a function
of time τ. The storage of the parameter history along the sliding time window implies
an increase of memory needs. The number of stored values is multiplied by TW.

Equation (7) is not changed since no parameter is involved. This modification of the
classical BPTT learning equations will be used for the analysis of TW influence on
the speed and accuracy of the learning in next section.

4.3 Influence on the Convergence Speed and on the Accuracy of the Learned Nets

The same identification process is carried out with the modified learning algorithm,
for time window width values from 5 to 60 states stored, and with 10 initial random
nets for each TW value. The learning and test results are depicted on the fig 6:

() () ()()[]⋅−′⋅⋅−=
∂
∂ t

t

kjj
j

dtxfzS
b

E

0

1 ττττ (6’)

(8’) () () ()()[] () () () teStzwxfStzz jjj

k

jkkkkj ⋅+−⋅++⋅′⋅⋅+= ττττττττ 1

Gradient at time T Gradient at time T+0.02s Gradient at time T+0.04s

() () ()() ()[]⋅−⋅−′⋅⋅−=
∂
∂ t

t

jkkk
jk

dtytxfzS
w

E

0

1 τττττ (5’)

100 V. Scesa et al.

Fig. 6. Learning and test results following the TW values with η1=0.025 and η2=1.25. All the
learning succeed for TW≤45, for TW= 50 and 55, only 40% of the nets reach a convergence.

 The previous graph can be decomposed in three parts depending on the TW value.
If TW<15 states stored, the algorithm is not able to converge to a correct solution.
Next, for TW varying between from 15 to 35, the convergence speed average is in-
creased while the average TES is decreased. Then, with TW>35, the convergence
process is more oscillating. The standard deviations are thus larger, and not all the 10
initial random networks lead to a correct solution. But, for these TW values, in case of
convergence, the algorithm finds better solutions (i.e. the TES values are smaller).
This is due to the amount of data taken into account. The modified algorithm allows
also increasing the learning rates. Figure 7 represents the results obtained with η1=0.1:

Fig. 7. Learning and test results with η1=0.1 for weights and biases and η2=1.25 for time con-
stants. All the learning succeed for TW≤35, for TW= 40, 45, 50 and 55, the percentages of
success are respectively 70%, 40%, 40%, 30% and 0% for 55.

 Compared to the experiments done with η1=0.025, the convergence speed gets
faster since a TW = 15 states stored. Nevertheless, the learning is more unstable with
this higher learning rate, and the algorithm meets convergence difficulties earlier. For
larger TW values, the number of success is less important as the learning is oscillat-
ing, due to a too important learning rate. But, when they converge, the networks

Time Window Width Influence on Dynamic BPTT(h) Learning Algorithm Performances 101

learned are more accurate. Here again, the TES obtained are the best for the biggest
TW. As far as our experiment is concerned, the best configuration ensuring maximum
speed, best quality and high percentage of success, is TW=30 and η1=0.1.

5 Discussion and Conclusion

5.1 Storing the Parameters Evolution?

The comparison between the results of the “constant parameters” assumption and
those presented for the modified algorithm, shows that the second one is better for our
identification experiment. First, the classical one is only valid for small TW values
whereas the second one allows larger ones. Next, for the same TW range, the classical
method finds networks with worst generalization abilities. The only advantage of the
classical one seems to be a faster convergence speed. Nevertheless, as a stronger
learning rate is not prohibited with the modified method, this speed advantage can be
overcome. In that case, the modified algorithm results are comparable to the ones
achieved with a smaller learning rate and a larger TW value. With the modified algo-
rithm, for the largest TW values, the convergence is not always met. The algorithm
fails to find a correct solution. But no gradient blow up occurs.
 The TW limit that leads to a gradient blow up for the classical method is probably
linked to the dynamic of the studied system and the convergence speed defined by the
learning rates values. If the learning rates are strong, the parameters modification will
be fast and they couldn’t be approximated as constant along the time window. In the
same way, if the system is fast, the learning will tend to bring the time constants and
the network to a faster dynamic. Thus, the errors will be quickly backpropagated in
the time window, and the algorithm will behave as if the time window was bigger and
will diverge for smaller TW. So, the choice between using or not the “constant pa-
rameters” assumption will depend on the dynamic of the system.

5.2 Convergence Speed vs Generalization Ability

The comparison of the convergence speeds and the quality of the learned networks
demonstrates that the TW value choice must be a trade-off between these two results.
Choosing the largest one, i.e. the best quality, the speed could be strongly decreased
or the convergence not guaranteed. Choosing the fastest convergence, with a shorter
TW, could lead to non suitable networks. There is no general rule for optimizing the
learning. The choice must be done following the needs and criteria fixed for the learn-
ing process. Here again, the dynamic of the studied system will act upon the TW that
leads to the fastest convergence. For the same criteria, the chosen TW could be differ-
ent for a slow or fast system. But, allowing the use of larger TW is obviously useful.

6 Conclusions

In this paper, we studied the influence of the time window width parameter upon the
stability, the learning speed and the quality of the networks obtained. Based on statis-
tical experiments, aiming to identify the links between the balancing of a biped robot

102 V. Scesa et al.

and its torso motion, we discussed the net parameters evolution storage and the choice
of an optimal TW value. We found that it could be useful to enlarge the window to
reach faster and more accurate learning. As the “constant parameter” assumption
classically adopted for BPPTT(h) is not adapted for larger window, a modified algo-
rithm taking into account the parameters history can be advantageous.
 In the future, we will first carry out similar experiments on faster or slower systems
to find out the influence of the system dynamic on the learning. Next, we will perform
a mathematical analysis of the modified algorithm. The learning algorithm will be
also applied to carry out inverse model identification and control.

References

1. Mohamed, B., Gravez, F., Ouezdou, F.B.: Emulation of the dynamic effects of human
torso during walking gait. In Journal of Mechanical Design, vol. 126, p830-841, Sept
2004.

2. Tsung, F-S.: Modeling Dynamical Systems with Recurrent Neural Networks. PhD thesis,
Depart-ment of Computer Science. University of California, San Diego, 1994.

3. Nguyen, M.H., Cottrell, G.W.: Tau Net: A neural network for modeling temporal variabil-
ity. In Neurocomputing 15 pp. 249-271, 1997.

4. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient descent. In
lecture notes on Comp. Sci. 2130, proc. Intl. Conf. on Artificial Neural Networks
(ICANN-2001), pages 87-94. Springer: Berlin, Heidelberg, 2001.

5. Pearlmutter, B.A.:Gradient calculation for dynamic recurrent neural networks: a survey. In
Transactions on Neural Networks, 6(5):1212-1228, 1995.

6. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, vol. 78, no. 10, pp. 1550 1560, 1990.

7. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation Parallel distributed processing: explorations in the microstructure of cogni-
tion. eds D E Rumelhart, J L Mc- Clelland and the PDP Research Group (MIT Press, Cam-
bridge MA) pp 318–362, 1986.

8. Williams, R. J., Zipser, D.: Gradient-based learning algorithms for recurrent connectionist
networks. In Y. Chauvin and D. E. Rumelhart, editors. Backpropagation: Theory, Archi-
tectures, and Applications, Erlbaum, Hillsdale, NJ, 1990.

9. Williams, R. J., Peng, J.: An efficient gradient--based algorithm for on--line training of re-
current network trajectories. In Neural Computation, vol 2 p 490-501 (MIT Press). 1990

10. Campolucci, P., Uncini, A., Piazza, F., Rao, B. D.: On-Line Learning Algorithms for Lo-
cally Recurrent Neural Networks. In IEEE-NN vol 10 p253. March 1999.

11. Vukobratovic, M. and Borovac, B.:Zero-moment point – thirty five years of its life. In In-
ternational Journal of Humanoid Robotics. 1(1) p 157-173. 2004.

Framework for the Interactive Learning of
Artificial Neural Networks

Matúš Užák and Rudolf Jakša

Department of Cybernetics and Artificial Intelligence
Technical University of Košice, Slovakia

uzak@neuron.tuke.sk, jaksa@neuron.tuke.sk

Abstract. We propose framework for interactive learning of artificial
neural networks. In this paper we study interaction during training of
visualizable supervised tasks. If activity of hidden node in network is
visualized similar way as are network outputs, human observer might
deduce the effect of this particular node on the resulting output. We
allow human to interfere with the learning process of network, thus he
or she can improve the learning performance by incorporating his or her
lifelong experience. This interaction is similar to the process of teaching
children, where teacher observes their responses to questions and guides
the process of learning. Several methods of interaction with neural net-
work training are described and demonstrated in the paper.

1 Introduction

The process of learning of artificial neural network can be visualized, observed,
and interactively guided by a human observer. Traditionally, learning of arti-
ficial neural networks is treated as adaptation of a black box, although works
focused on visualization what happens inside the box can be found dating back
to beginnings of the field. On the other side, establishment of the Interactive
Evolutionary Computation (IEC) domain brings into forefront the idea of inter-
active intervention into algorithm by a human observer. This idea of interactive
guidance of algorithm has to be explored in the neural networks domain too.

Combination of the learning algorithm, which searches a weight space of the
network, and a human observer, which gains an overview over the behavior of
algorithm and is able to guide this algorithm, may bring some new possibilities
into the field of neural networks. Experience of a human might be usable for the
algorithm to escape from the local minima trap. Ability to guide the learning
might bring new tasks for neural networks, not strictly defined by a training
data set. Basic method for incorporation of a human observer into learning
process is the visualization. This is used in IEC domain and also studied in
the past in neural networks area. Easiest tasks to visualize are these which are
defined in two-dimensional space and naturally have a visual character, although
three-dimensional, motion video or these with audio character may by visualized
or another way presented to a human observer too. Survey of tasks and also
methods studied in IEC area is provided in [1].

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 103–112, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

104 M. Užák and R. Jakša

The aim of most neural network visualization techniques is to help to un-
derstand what neural networks really do. The essence of each technique lies in
visualization of some object common to all neural networks: topology, response
to processed data, internal mappings. Although in general, the target of all tech-
niques is to visualize internal mappings, different paradigms are used. This is
mostly due to fact, that in different applications, different aspect of network
performance are studied.

First visualization techniques used were Hinton and Bond diagrams described
in [2]. These techniques help to analyze the input units importance through the
magnitude of weights connecting them with hidden units. However, the analysis
of internal mapping is reduced to analysis of weights. These methods display
the topology of network. Craven in [3] also accompanied them with trajectory
diagrams. Craven’s visualization tool called Lascaux, did visualize many objects
relevant only for single training vectors: the activation signal, and error signal
propagated through the network, but its essence was in modification of Bond
diagrams implementation. This modification is later referred to as the network in-
terpretation diagram (NID) used by Olden [4], similar modification implemented
in three-dimensional space was done by Edlund [5]. Olden used Garson’s dia-
grams to visualize the input nodes importance to the outputs and the sensitivity
analysis as a method to comprehend the inner mappings.

Important is also the work of Streeter [6] where is described a visualization
tool that provides opportunities for interaction in the learning process. Learning
is realized through the error backpropagation algorithm or using Evolutionary
Strategy (ES). Human observer is able to manually adjust weights and their
learning rate in the backpropagation case, or mutation rate in the ES case. They
used a modification of NID, and a modification of Hinton diagrams to visualize
as many networks in the evolution process as possible.

Recently were introduced methods which analyze the performance of network
by observing its reaction to processed data. Interesting projection techniques
have been described by Duch, [7][8], that should help to analyze the network
performance through visual interpretation of decision borders. Tzeng [9] intro-
duced a modification of NID with built in representation of modified Carson’s
method that analyzed hidden units importance. They analyze the network in
data-driven approach.

Our own work is focused to studying reactions of single units to the testing set
which represents the task. As weights are a part of the unit they are connected to,
the visualized information is reduced compare to methods that visualize weights.
This method is described in [3] as a Response Function Visualization. Similar to
hyperplane plots [3], this method is constrained to two-dimensional tasks, but it
is obvious that combined with methods proposed by Hinton, Tzeng and Duch,
this limitation can by surpassed.

Generally, the challenge is to combine the best from mentioned methods to
provide the human observer with only the most valuable information about
the learning process, and allow him or her to maintain full concentration to
interactive interventions.

Framework for the Interactive Learning of Artificial Neural Networks 105

x1

x2

1

0

1 100

pixel

pixel

100

in1

h1h2h3h4

in2

ou1

Fig. 1. (Left) The image with dimensions 100x100 pixels mapped to space of classi-
fication task. (Right) Example of the response of network units to the function signal
propagating through the network. Images were created by presenting full set of testing
vectors from the space of classification task. We classify the vectors inside and outside
of given square.

2 Visualization of Learning of Neural Network

We will describe the design of visualization method of learning process using the
multilayer perceptron concept. The multilayer perceptron consists of a layer of
input units, of one or more hidden layers and an output layer. Computational
units of the network are in output layer and in hidden layers. Proper visualization
of behavior of these units during the learning should allow to reason about the
learning process itself.

We will visualize the learning of a classification task. The space, where the
classification takes place is projected into two-dimensional (2D) space for visual-
ization. Training data are randomly chosen from samples generated from classi-
fication task space. If the classification task itself is defined in the 2D space, the
2D image representing classification results can be easily generated as a direct
mapping of this space into image space. Figure 1 clarifies the procedure.

The goal of the visualization is to capture responses of individual neurons to
the function signal during the whole testing phase. The function signal is an
input signal – stimulus, that comes in the input end of the network, propagates
forward (neuron by neuron) through the network, and emerges at the output end
of the network as an output signal [10]. The signal itself is a set of vectors from
defined space. Testing phase is a presentation of defined set of input vectors
to the network and propagation of function signals through the network. In
addition to visualization of responses of active neurons – computational units of
network, also input units – entrances of input signal can be visualized to extend
the observer’s view. Thus the function signal can be completely observed from its
entering point to the output point in the network. This method is also referred as
the response function visualization [3]. With visualization the observer can track
the reactions of individual neurons to the propagating signals. Visualization of
input units provides the information about the intensity of the signals which
enter the network.

106 M. Užák and R. Jakša

The visualized area of classification space might be extended to cover also
places which are far from the training data. By observing behavior of network in
these distant areas an observer may reason about extrapolation/generalization
qualities of network. Such acquired knowledge should help to uncover possible
problems with using the network in situations where it can be confronted with
the samples from outside the area of maximum classification confidence [11]. See
Fig.2 for an example of extrapolation test.

Fig. 2. (Left) The network was trained to classify vectors inside the framed square
in the middle of image. The another big square is an extrapolation artifact and is
related to poor classification performance on the upper left corner of original square.
The training data are only from the framed area. (Right) Extrapolation artifacts on
spiral classification.

3 Interactive Intervention into Learning

Human observer of the learning process of neural network may be allowed to
interfere with this learning. Such intervention should allow for incorporation of
his or her lifelong experience into the learning process. We will study several
alternatives of interactive intervention into learning:

– amplification of outputs of neurons,
– amplification of inputs of network,
– manual adjustment of bias of neuron,
– adjustment of individual learning parameters of neurons,
– reinitialization of individual neurons.

Some of these interventions require small modifications of learning algorithm
or modification of structure of neural network. We will use error backpropagation
algorithm for the learning of network. Consider multilayer perceptron neural
network with neuron activations xi, link weights wij which links the j-th neuron
into i-th neuron, biases (thresholds) θi, and neuron activation functions fi(ini),
described by (1). The ini is input into i-th neuron and M is the number of
links connecting into i-th neuron. Gradient based error minimizing adaptation
of weights follows (2), with the γ learning rate constant, and δi error signal. The
f ′(ini) is the derivative of activation function f(ini). Error signal δi for output

Framework for the Interactive Learning of Artificial Neural Networks 107

neurons can be computed using (3a), but for neurons in hidden layer the (3b)
should be used instead. The Nh is number of links coming from i-th neuron and
h is index of these links and corresponding neurons.

xi = fi(ini), ini =
M∑

j=1

wijxj + θi (1)

∆wij = γδixj (2)

δi = (evi − xi)f ′(ini), δi = f ′(ini)
Nh∑
h=1

δhwhi (3)

Rule (3b) is the error backpropagation rule, it defines the backward propaga-
tion of error through network. Rule (2) defines weight changes for minimization
of this error, and (3a) defines initial error signal on the network output. The
error backpropagation algorithm is defined by rules (1), (2), and (3).

3.1 Amplification of Outputs of Neurons and Inputs of Network

The influence of individual neuron on the function of whole network is weighted
by weights on links connected to this neuron. We add another weight onto output
of every neuron to further control influence of individual neurons. This weight is
manually adjusted by a human observer during the learning. Let’s call this weight
a master weight (mw). Equation (1) of network description has to be changed
to (4), so the activations of neurons are multiplied with this mw. Further, back-
propagation algorithm rules (3) have to be modified into Neural network usually
converges during the learning to a certain stable point, where the weights change
only slightly. During this convergence, sudden amplification of outputs of neu-
rons by a human observer may have an interesting effect, mainly in stability
disruption. (5).

xi = fi(ini)mwi (4)

δi = (evi − xi)f ′(ini)mwi, δi = f ′(ini)mwi

Nh∑
h=1

δhwhi (5)

ini = inorig
i ssi (6)

Similarly to amplification of outputs of neurons, inputs of the network might
be amplified too. Human observer then gains ability to control the amplitude
of signals which enter the network. Optimal amplification for the learning of
given task then can be searched for. Let’s call this amplification parameter a
sensoric strength (ss). We must introduce a new equation (6) to describe this
modified amplified input signal, where inorig

i is original input signal without any
amplification. The input signal after its amplification or attenuation is further
propagated through the network. Learning algorithm will not be affected by the
amplification but it is important to consider the amplified signal when computing
the weight changes for the neurons of the first hidden layer.

108 M. Užák and R. Jakša

3.2 Manual Adjustment of Bias of Neuron

Manual adjustment of bias value of neuron allows for balancing the output of
given neuron – shifting the output of neuron to bigger or lower values. Bias or
threshold is one special weight of every neuron in network. It is used to balance
the activation of a neuron, responding to its inputs. Let’s call additional bias
weighting parameter a master threshold (mt). Equation (1) will be changed into
(7), and the (2) when used for a bias adaptation must be modified too, into (8).

ini =
M∑

j=1

wijxj + θimti (7)

∆θi = γδimti (8)

3.3 Adjustment of Individual Learning Parameters of Neurons

Manual adjustment of individual learning rate parameters of backpropagation
algorithm for individual neurons allows for control of adaptation rate of neurons.
This allows a human observer to freeze well responding neurons, and set up more
aggressive learning rate for these with not so good response. In algorithm we must
introduce individual learning rate parameters γi instead of fixed learning rate
γ in standard error backpropagation algorithm. Equation (2) is then changed
into (9).

∆wij = γiδixj (9)

3.4 Reinitialization of Individual Neurons

More radical form of dealing with not well responding neurons is their reinitial-
ization. Reinitialization of particular neuron is done by setting of weights on its
links into random values from interval used for initialization of neural network.
Reinitialization of important neuron can damage also the behavior of neurons
connected to it, however reinitialization of not well responding neuron should
be not so damaging as there is a chance, that other neurons are not tightly
connected to this particular poorly behaving neuron. Useful practice is to lower
learning rate to all well behaving neurons prior such reinitializations, to miti-
gate possible damage. Reinitialization of not well responding neurons is quick
and easy to do for a human observer. It can be used to deal with neurons in
the saturation stage, or to explore the parameter space of neural network during
learning by observing convergence of reinitialized neurons.

The spectrum of intervention methods should allow a human observer of learn-
ing of neural network to exploit a maximum possibilities of such interaction.
However the bigger this spectrum is, the more time for learning how to use them
is necessary.

Framework for the Interactive Learning of Artificial Neural Networks 109

4 Experiments

We will study easily visualizable classification tasks. We will run them through
visualized interactive learning with multilayer perceptron networks and error
backpropagation algorithm and describe our experience with this interactive
learning. Visualization method described in Sect.2 will be used for visualization
and methods described in Sect.3 will be used for interaction.

Tasks of classification of two-dimensional geometrical forms of circle, spiral,
square, and square frame will be studied. See Fig.3 for exact view of these forms.
The classification task itself is to classify whether a given point falls inside the
form or outside it. The point is defined by its coordinates.

Fig. 3. Graphical interpretation of studied classification tasks

The aim of experiments is to try to extract the know-how to enable effective
solution of classification tasks and also effective usage of interactive interven-
tions. The effectiveness is evaluated in terms of quality of acquired knowledge.
The network is evaluated by observing how was the resulting knowledge built,
i.e. which building blocks were formed during the learning, connected together
and modified for error minimization. These building blocks are represented by
visualized responses of hidden layers neurons to function signal.

4.1 Network Inputs Amplification and Reinitialization of Neurons

Low levels of the input signals which enters the network may cause learning
problems. The confirmed premise for experiments was, that after increasing of
levels of input signals, backpropagation learning should be able to keep the
correct direction for approaching the closest minimum in error space from the
start of learning, thus avoiding possible saturations. See Fig.5 for an example.

Reinitialization of neurons is the fastest correctional intervention into the
learning process out of the interactive interventions described previously in the
paper. The experiments showed that it is also probably the most useful inter-
active intervention. However, when most of the neurons were saturated, reini-
tializations did not have a required effect. After reinitialization, the weights did
return to their original values, and the rest of saturated network did not move
its weights in any direction. Actual weight vector can not escape from a local
extreme when certain amount of neurons are saturated.

110 M. Užák and R. Jakša

Fig. 4. A larger number of hidden layer neurons does not guarantee for qualitatively
better resulting knowledge. More important is, which parts does the resulting knowl-
edge comprise of. Two networks learning the spiral classification were trained in the
same number of iterations. Only the second hidden layer is displayed on the figure.

Fig. 5. (Left) Average best result acquired by the backpropagation learning for the
square classification with a minimal topology without the input signals amplification.
(Right) Results obtained with optimized input signal amplifications.

4.2 Adjustment of Individual Learning Parameters of Neurons

Adjustment of individual learning rate parameters of neurons has proved itself
as a suitable complement for reinitialization of neurons that responded unfavor-
ably to a function signal. It is useful to set the learning rate parameter for well
responding neurons to the value close to zero. This fixes the favorable building
blocks and only unfavorable blocks are further changing. It enables human ob-
server to reduce the search-space of learning algorithm according to his visual
impression. Setting the learning rate parameter to zero causes that the search
will not move along the given axis anymore. Left part of Fig.6 represents an
example of described procedure.

4.3 Manual Adjustment of Bias of Neuron

Our experiments were focused on question how bias adjustments affects the
resulting knowledge. The interactive adjustments were incorporated during the
learning, and after the learning too. The goal is to improve acquired knowledge.

Problem with this approach are quick reactions of learning algorithm to user
interventions. Learning algorithm quickly balances weights of neurons to com-
pensate interventions, and this limits usability of bias adjustments. Also reac-
tions of other neurons are sometimes dramatic and hard to predict with this
approach. However, bias adjustments did not disrupt the stability of learning
behavior of the network as much as the signal amplifications. Bias adjustments

Framework for the Interactive Learning of Artificial Neural Networks 111

a b c

Fig. 6. (Left) First two hidden layer neurons respond well to the second input – sensor.
To enforce influence of their behavior, their learning rate parameters have to be set
to small values, while rest two neurons have to be reinitialized. (Right) Example of a
result achievable with a proper bias adjustment and signal amplifications, (a) is the
optimal result we want to obtain, (b) is result of learning prior interactive intervention,
and (c) is almost flawless classification after interactive refinement.

proved useful after the learning was finished, to refine final behavior of network,
see right part of Fig.6.

4.4 Amplification of Outputs of Neurons and Virtual Input Units

With various task types and topologies we found interactive amplifications of
neurons outputs prone to damaging the knowledge of the network acquired before
their application. These amplifications can easily destabilize learning and they
can lead into oscillations in learning behavior. Simple amplification of outputs of
neurons as described by (5) seems not well suited for interactive interventions.
However, as with bias adjustments, amplification of outputs of neurons is useful
after the learning is finished, it is demonstrated on the left part of Fig.7.

When solving more complicated tasks, it is reasonable to create functional
links [12] feeding the network with virtual signals formed by certain functions
applied on real input signals of network. Addition of these virtual inputs makes
an aid for neurons on the first hidden layer. These neurons can use this added
degree of freedom in the weight space for adjustment of their behavior. See right
part of Fig.7 for an example.

Fig. 7. (Left) Decision borders represented by the first two hidden neurons are blurred,
which slightly deforms resulting knowledge. After the learning, signal intensities from
these neurons were amplified, which qualitatively improved resulting classification.
(Right) Several neurons from hidden layer respond to added virtual input unit, a result
is a smoother decision border for circle classification.

112 M. Užák and R. Jakša

5 Conclusion

Interactive interventions into learning of neural networks shift the focus of learn-
ing from simple error correction to a process guided by a human observer –
teacher. The goal can be just acceleration of learning pace, but it can move into
ability to embed human knowledge into learning process. As it is an interactive
process it also allows a human observer to better understand learned behavior
of a neural network by observing consequences of his or her interventions.

The framework for interactive learning presented in this paper differs from
this used in more established field of interactive evolutionary computation. The
main difference is requirement of expert knowledge from neural network area,
which makes it a research tool. We hope in future interactive learning of neural
networks can be refined enough to be used in real world applications.

Our presented experiments demonstrate usefulness of approach and show the
characteristics of particular methods of intervention. Our future research is fo-
cused on neural networks with a big number of neurons, where we apply clus-
tering methods to limit the amount of information for a visualization.

References

1. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of
EC optimization and human evaluation. Proceedings of the IEEE 89(9) (2001)
1275–1296

2. Weichert, J., Tesauro, G.: Visualizing processes in neural networks. IBM J. Res.
Develop. 35 (1991) 244+

3. Craven, M.W., Shavlik, J.W.: Visualizing learning and computation in artificial
neural networks. International Journal on Artificial Intelligence Tools (1) (1991)
399–425

4. Olden, J., Jackson, D.: Illuminating the “black box”: Understanding variable con-
tributions in artificial neural networks. Ecological Modelling 154 (2002) 135–150

5. Edlund, M., Caudel, T.: Realtime visualization of the learning processes in the la-
part neural architecture as it controls a simulated autonomous vehicle. Proceedings
of the International Joint Conference on Neural Networks 3 (2000) 41+

6. Streeter, M., Ward, M., Alvarez, S.A.: Nvis: An interactive visualization tool for
neural networks. Proceedings of SPIE Symposium on Visual Data Exploration and
Analysis 4302(8) (2001) 234–241

7. Duch, W.: Coloring black boxes: visualization of neural network decision. Proc. of
International Joint Conference on Neural Networks (IJCNN) 1 (2003) 1735–1740

8. Duch, W.: Visualization of hidden node activity in neural networks: I. visualization
methods. Lecture Notes in Computer Science 3070 (2004) 38–43

9. Tzeng, F.Y., Ma, K.L.: Opening the black box - data driven visualization of neural
networks. Proceedings of IEEE Visualization ’05 Conference (2005) 383–390

10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing Company, Inc., New York, USA (1994)

11. Užák, M.: Visualization and interaction in the process of neural network learning.
Master’s thesis, Technical university of Košice (2005) in Slovak.

12. Pao, Y.H.: Adaptive pattern recognition and neural networks. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1989)

Analytic Equivalence of Bayes a Posteriori
Distributions

Takeshi Matsuda and Sumio Watanabe

Department of Computational Intelligence and Systems Science
Tokyo Institute of Technology
matsuken@cs.pi.titech.ac.jp

Abstract. A lot of learning machines which have hidden variables or
hierarchical structures are singular statistical models. They have singu-
lar Fisher information matrices and different learning performance from
regular statistical models. In this paper, we prove mathematically that
the learning coefficient is determined by the analytic equivalence class
of Kullback information, and show experimentally that the stochastic
complexity by the MCMC method is also given by the equivalence class.

1 Introduction

Learning machines such as layered neural networks, normal mixtures, hidden
Markov models, Boltzmann machines, Bayes networks and stochastic context-
free grammars are not regular statistical models, because their Fisher infor-
mation matrices are not positive definite. These learning machines are called
singular statistical models because they are not subject to the conventional sta-
tistical theory of regular statistical models. In fact, neither the distribution of
the maximum likelihood estimator nor the Bayes a posteriori distribution con-
verges to the normal distribution, even when the number of training samples
goes to infinity.

Recently, it was proved that the generalization performance of a singular
learning machine in Bayes estimation is determined by the algebraic geometrical
structure of the learning machine [5]. The generalization error G, which is defined
as the expectation value of the Kullback information from the true distribution
to the Bayes predictive distribution, is equal to

G =
λ

n
+ o(

1
n

),

where n is the number of training samples and λ is the learning coefficient. The
constant (−λ) is equal to the largest pole of the zeta function of a learning
machine,

ζ(z) =
∫

H(w)zϕ(w)dw (z ∈ C),

where H(w) is the Kullback information from the true distribution to the learn-
ing machine with the parameter w and ϕ(w) is the Bayes a priori distribution.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 113–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

114 T. Matsuda and S. Watanabe

The learning coefficients of some learning machines, for example, a three-layer
perceptron and a reduced rank regression, have been obtained by using resolu-
tion of singularities [2,3], which clarified that the generalization errors of singular
learning machines are smaller than those of regular statistical models, if Bayes
estimation is employed in learning.

In this paper, we introduce the concept of analytic equivalence between the
Kullback informations, and show the following three facts.

(1) We prove that, if two learning machines are analytically equivalent, then
they have the same learning coefficient.
(2) For the case when the Kullback information is defined on the two-dimensional
Euclidean space, we derive the concrete learning coefficient of a given equivalence
class.
(3) We show experimentally that the the stochastic complexity obtained by the
Markov chain Monte Carlo method is also determined by the analytic equivalence
class.

In regular statistical models, the asymptotic behavior of a learning machine
is completely determined by the Fisher information matrix, whereas in singu-
lar learning machines, it is determined by the analytic equivalence class of the
Kullback information.

2 Statistical Framework of Machine Learning

In this section, we summarize the well known statistical framework of Bayes
estimation.

2.1 Bayes Learning

Let q(x) be a probability density function called as the true distribution which
is defined on the N -dimensional Euclidean space, RN . A set of random variables

Xn = (X1, X2, ..., Xn)

consists of training samples which are independently taken from the probabil-
ity distribution q(x)dx. The integer n is referred to as the number of training
samples. A learning machine is represented by a conditional probability density
function p(x|w) where w is a d-dimensional parameter. When an a priori prob-
ability density function ϕ(w) is given on Rd, the Bayes a posteriori distribution
is defined by

p(w|Xn) =
1

Z(Xn)
ϕ(w)

n∏
i=1

p(Xi|w),

where and Z(Xn) is the normalizing constant. The Bayes predictive distribution
is also defined by

p(x|Xn) =
∫

p(x|w) p(w|Xn) dw,

Analytic Equivalence of Bayes a Posteriori Distributions 115

which is the estimated probability density function on RN by Bayes learning.
The Generalization error G(n) is measured by the average Kullback information
from the true distribution q(x)dx to the predictive distribution p(x|Xn)dx,

G(n) = E
[∫

q(x) log
q(x)

p(x|Xn)
dx

]
,

where E[·] denotes the expectation value overall sets of Xn. Also we define the
stochastic complexity by

F (n) = E
[
− logZ(Xn)

]
+ n

∫
q(x) log q(x)dx.

It is easy to show that
G(n) = F (n + 1) − F (n)

holds for an arbitrary natural number n. The stochastic complexity indicates
how appropriate the set p(x|w) and ϕ(w) is for a given training sample set Xn.

2.2 Asymptotic Theory

In learning theory, it is important to clarify the asymptotic behaviors of G(n)
and F (n). The relation between algebraic geometry of the Kullback information
and singular learning machines was clarified, and the following theorem was
proved.

Theorem 1. When n tends to infinity, the generalization error and the stochas-
tic complexity are respectively given by

G(n) =
λ

n
+ o(

1
n

),

F (n) = λ logn− (m − 1) log logn + O(1),

where (−λ) and m are respectively equal to the largest pole and its order of the
zeta function,

ζ(z) =
∫

H(w)z ϕ(w) dw.

Here H(w) is the Kullback information

H(w) =
∫

q(x) log
q(x)

p(x|w)
dx.

Proof. The proof is given in [5].

This theorem shows that the learning coefficient is determined by the Kullback
information H(w) and the a priori distribution ϕ(w).

116 T. Matsuda and S. Watanabe

3 Analytic Equivalence of Kullback Information

In this section we introduce the concept of analytic equivalence and prove that,
if the Kullback informations are analytically equivalent, then they have the same
learning coefficient.

Definition 1. Let U and V be open sets in Rd whose closures are compact. Two
real analytic functions K(w) on U and H(w) on V are said to be analytically
equivalent if there exists a bijective analytic map g : V → U

H(w) = K(g(w)) (w ∈ V)

and the Jacobian |g′(w)| satisfies the condition that ε < |g′(w)| < C in V for
some ε, C > 0.

Then by the definition of the analytic equivalence, the following theorem holds.

Theorem 2. Assume that two real analytic functions K(w) on U and H(w) on
V are analytically equivalent. Then two zeta functions

ζ1(z) =
∫

U

K(w)zdw

ζ2(z) =
∫

V

H(w)zdw

have the same largest pole.

Proof. It is well known that ζ1(z) and ζ2(z) are meromorphic functions and all
poles of them are negative and real numbers [4]. From the definition, it follows
that

ζ2(z) =
∫

U

H(g(w))z |g′(w)|dw

=
∫

U

K(w)z |g′(w)|dw

Let (−λ) be the largest pole of ζ1(z). When z is real and z > −λ

ε|ζ1(z)| < |ζ2(z)| < C|ζ1(z)|

This inequality shows that the largest poles should coincide.

Note that two zeta functions do not have the same second largest pole in general.

Definition 2. Let v = (v1, . . . , vn) be a set of nonnegative integers. For a mono-
mial xu = xu1

1 · · ·xun
n , we define the weighted degree ordw(xu) with the weight v

by
ordw(xu) =< v, u >= v1u1 + . . . + vnun.

A polynomial is said to be guasi-homogeneous if it is a linear combination of the
monomials which have the same weighted degree with some weight.

Analytic Equivalence of Bayes a Posteriori Distributions 117

Definition 3. An analytic function f is said to have an algebraic isolated sin-
gularity at O, if the dimension of a real vector space

M(f) = R[[x1, · · · , xn]]/ <
∂f

∂x1
, · · · , ∂f

∂xn
>

is finite.

The following theorem shows a sufficient condition of the analytic equivalence.

Theorem 3. Let f be an analytic function

f = fd + fd+1 + fd+2 + · · · , fd �= 0

where fd is a quasi-homegeneous polynomial of degree q with weight v. If the
weighted degree of xui exceeds d, c1, . . . , cs are constants, then f and fd+c1xu1 +
· · · + csxus are analytically equivalent.

Proof. For the proof of this theorem, see [1].

4 Two Dimensional Parameter Space

In the previous section, we have shown that the learning coefficient is determined
by the analytic equivalence class. In this section we give the concrete learning
coefficients for a given analytic function on two-dimensional space.

Theorem 4. Let f be an analytic function given by

f(x, y) = Σk+l=4aklx
kyl + Σ2≤i+j≤3bijx

iyj,

where akl and bij are the real number coefficients of xkyl, xiyj, respectively. We
consider the zeta function such that

ζ(z) =
∫

fszdxdy.

Then largest pole of the zeta function is as follows.

λ =

2
as (k′ > i′, l′ = j′)or(Σbijx

iyj is a symmetric expression.)
2n+1

(4n+l′)s (4 − a < j′, k′ > i′, l′ < j′)
2

(4−a)s (4 − a ≥ j′, k′ > i′, l′ > j′)

where k′ is the value of the minimum k which satisfies akl �= 0, l′ is the value of
the minimum l which satisfies akl �= 0, i′ is the value of the minimum i which
satisfies bij �= 0, j′ is the value of the minimum j which satisfies bij �= 0.

Proof. Let X be the curve f(x, y) = 0. We put x = x, y = xy on X11. Then we
have fsz

11 =

xasz+1ysl′z(Σk+l=4aklx
4−ayl−l′ + Σ2≤i+j≤3bijx

i+j−ayj−l′)sz .

118 T. Matsuda and S. Watanabe

Similarly, we put x = xy, y = y on X12. Then we obtain fsz
12 =

xai′zyasz+1(Σk+l=4aklx
k−i′

yk+l−a + 1 + Σ2≤i+j≤3,i�=i′ bijx
i−i′

yi+j−a)sz .

where k′ > i′, l′ < j′.
Hence,

ζ(z) =
∫

X11

fsz
11dxdy +

∫
X12

fsz
12 dxdy.

Here, Σk+l=4aklx
4−ayl−l′ +Σ2≤i+j≤3bijx

i+j−ayj−l′ and x4−a + yj′−l′ are an-
alytic equvalence. Therefore, we have to consider only about∫

X11

xasz+1ysl′z(x4−a + yj′−l′)szdxdy.

When continuing resolution of singularity, the zeta function ζ(z) is as follows.

ζ(z) =
∫

Xn+1,1

xn(4sz+2)+sl′zy4sz+2+sl′z(1 + · · ·)szdxdy

+
∫

Xn+1,2

xasz+1yn(4sz+2)+sl′z(xk+l−a + yj′−l′−n(k+l−a))szdxdy,

where (j′ − l′) = n(k + l − a). Hence, we obtain

λ =
2n + 1

(4n + l′)s
.

In the other case, too, it is possible to prove in the same way. Also, if replacing
x and y, we can get the value of λ in all cases.

5 Stochastic Complexity by MCMC Method

In the previous section, we have shown that the learning coefficients are de-
termined by the analytic equivalence classes. In this section, by comparing the
theoretical results with the numerical results by the Markov chain Monte Carlo
method, we show that the stochastic complexities in real applications are also
determined by the equivalence classes. Let us study the function,

F (n) = − log
∫

exp(−nf(x, y))ϕ(x, y)dxdy.

From the theoretical point of view, it has the asymptotic expansion,

F (n) = λ logn− (m − 1) log logn.

In the real applications of Bayes estimation, F (n) is numerically calculated by

F (n) =
∫ 1

0
Et[nf(x, y))]dt

Analytic Equivalence of Bayes a Posteriori Distributions 119

where Et[·] shows the expectation value over the probability distribution,

Et[nf(x, y)] =
∫

nf(x, y)pt(x, y)dxdy,

where
pt(x, y) ∝ exp(−ntf(x, y))ϕ(x, y).

The random samples subject to pt(x, y) can be generated by the MCMC method.
The following tables show the experimental results of F (n) for n = 10000.

analytic function F (n)
y2 + x3 1.900087
y2 + x3 + y3 1.902980
y2 + x3 + xy3 1.965838
y2 + x3 + x4 2.012928
y2 + x3 + y3 + xy3 + x4 1.862806
y2 + x3 + y5 1.930222
y2 + x3 + x10 1.910901
y2 + x3 + y5x10 1.909953
y2 + x3 + x10 + y5 1.914395
y2 + x3 + x10 + y5 + y5x10 1.909564
y2 + x3 + x100y100 1.890016
y2 + x3 + x100y100 + x100 + y100 1.895358

analytic function F (n)
y3 + x5 1.115474
y3 + x5 + x2y2 1.162772
y3 + x5 + x10y10 1.115357
y3 + x5 + x15y10 1.115979
y3 + x5 + x10y15 1.114232
y3 + x5 + x20y20 1.115570
y3 + x5 + x100y100 1.103289
y3 + x5 + x100y100 + x100 + y100 1.101518

analytic function F (n)
y5 + x7 0.563414
y5 + x7 + x10y2 0.555947
y5 + x7 + x2y10 0.561365
y5 + x7 + x10y10 0.562976
y5 + x7 + x10y15 0.559782
y5 + x7 + x15y10 0.552454
y5 + x7 + x100y100 0.566214
y5 + x7 + x100y100 + x100 + y100 0.564594

These results show that the numerically calculated stochastic complexities are
determined by the analytic equivalence classes.

120 T. Matsuda and S. Watanabe

6 Discussion

In this paper, we have studied the relation between the learning coefficients and
analytic equivalence classes. Let us discuss the results from three viewpoints.

Firstly, from the mathematical point of view, the result of this paper is de-
voted to the case of isolated singularities. In almost all learning machines, their
singularities are not isolated, however, there is no simple criterion that can judge
the analytic equivalence for non-isolated singularities. To construct the mathe-
matical criterion of the analytic equivalence class in singular learning machines
is the problem for the future study.

Secondly, from the statistical point of view, our result is a generalization of
Fisher’s asymptotic statistics. If two analytic functions have nondenerate Hesse
matrices, then they are analytically equivalent. This is the reason why the learn-
ing coefficients of regular statistical models are determined by the dimensions
of the parameter spaces. In singular learning machines, even if the learning ma-
chines have the same-dimensional parameter spaces, they have different learning
coefficients in general. Consequently, the concept of the analytic equivalence class
is a generalization of the Fisher information matrix.

And lastly, from the learning theoretical point of view, our result shows how the
stochastic complexities are determined in the real world applications. The stochas-
tic complexity is important in Bayes learning, which is applied to model selection
and hyperpramater optimization. However, it is well known that it requires huge
computational costs to calculate the stochastic compelxity. We expect that a new
efficient algorithm based on the concept of analytic equivalence class.

7 Conclusion

We proved mathematically that the learning coefficients are determined by the
analytic equivalence class of the Kullback information, and showed experimen-
tally that the practical stochastic complexities are also determined by the ana-
lytic equivalence class. To construct the mathematical method which enables us
to calculate the learning coefficients for the higher dimensional Kullback infor-
mation is the problem for the future study.

Acknowledgment. This work was supported by the Ministry of Education,
Science, Sports, and Culture in Japan, Grant-in-aid for scientific research
15500310.

References

1. V.I.Arnol’d, “Normal forms of functions in neighbourhoods of degenerate critical
points,” Russian Mathematical Surveys, Vol.29,No.2,pp.10-50,1974

2. M.Aoyagi, S.Watanabe, “Stochastic complexities of reduced rank regression in
Bayesian estimation,” Neural Networks, Vol.18,No.7,pp.924-933,2005.

Analytic Equivalence of Bayes a Posteriori Distributions 121

3. M.Aoyagi,S.Watanabe, “Resolution of singularities and generalization error with
Bayesian estimation for layered neural network,” Vol.J88-D-II,No.10,pp.2112-
2124,2005.

4. M.F. Atiyah, “Resolution of singularities and division of distributions,” Communi-
cations of Pure and Applied Mathematics, 13, 145-150, 1970.

5. S.Watanabe,”Algebraic Analysis for Non-identifiable Learning Machines,” Neural
Computation, Vol.13, No.4, pp.899-933, 2001

Neural Network Architecture Selection: Size
Depends on Function Complexity

Iván Gómez, Leonardo Franco, José L. Subirats, and José M. Jerez

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga, 29071 Málaga, Spain

{ivan, lfranco, jlsubirats, jja}@lcc.uma.es

Abstract. The relationship between generalization ability, neural net-
work size and function complexity have been analyzed in this work. The
dependence of the generalization process on the complexity of the func-
tion implemented by neural architecture is studied using a recently intro-
duced measure for the complexity of the Boolean functions. Furthermore
an association rule discovery (ARD) technique was used to find associ-
ations among subsets of items in the whole set of simulations results.
The main result of the paper is that for a set of quasi-random generated
Boolean functions it is found that large neural networks generalize bet-
ter on high complexity functions in comparison to smaller ones, which
performs better in low and medium complexity functions.

1 Introduction

The learning and generalization properties of artificial neural networks confer to
these models a wide applicability in pattern recognition and classification tasks.
The cornerstone of the neural network modeling is the selection of the network
architecture for a determined application, since there is not a theoretical formula
giving clear insight to this problem. Nevertheless, some general theoretical results
have been published about the size of the network needed to implement a desired
function [1, 2, 3], but at the time of the implementation the theory is not always
accurate.

In particular, some authors [3, 4] have demonstrated that very large networks
perform sometimes better than smaller ones, whereas others [8] state that the
generalization process depends mainly on the weight values distribution and not
on the network size. Moreover, most of the practical results based on simulations
[6, 7] concentrate on the use of very few functions (up to 30 different functions),
and also in general the complexity of the analyzed functions is ignored [3, 9].

In fact, the complexity of Boolean functions has been studied for a long time,
the aim of that being to have a criterion for deciding if a problem is easier to
solve or implement than another [12, 3].

This work studies the relationship among learning, generalization, network
architectures, and complexity over a set of one thousand different boolean func-
tions. With this aim, we use a recently introduced measure for the complexity
of Boolean functions [10, 11] to analyze how the network architecture affects the

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 122–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Neural Network Architecture Selection 123

generalization ability in different classes of functions grouped by their levels of
complexity. Also, the huge amount of simulation data led the authors to use a
data mining technique (association rules) to find an statistical correlation among
generalization, network architecture and functions complexity. Association rule
discovery (ARD) is a particular technique widely used in data mining problems
[19, 20, 17, 18] to find interesting associations and/or correlation relationships
among large sets of data items. This algorithm extracts relevant information
from the data and provides rules in the form of ”if-then” statements, and, unlike
the if-then rules of Logic, association rules are probabilistic in nature.

2 Methods

2.1 Measure for the Complexity of Boolean Functions

The measure proposed in [9] is based on the results obtained in [15, 16], where
a close relationship between the number of examples needed to obtain valid
generalization and the number of neighboring examples with different outputs
was found. The complexity measure C[f] is obtained from the number of pairs
of neighboring examples having different outputs. The complexity measure used
in this paper is defined as:

C[f] = C1[f] + C2[f], (1)

where Ci[f], i = 1, 2 are the terms taking into account pairs of examples at a
Hamming distance one and two. The first term can be written as:

C1[f] =
1

Nex * Nneigh

Nex∑
j=1

 ∑
{l|Hamming(ej ,el)=1}

(|f(ej) − f(el)|)

 , (2)

where the first factor, 1
Nex * Nneigh

, is a normalization one, counting for the total

number of pairs considered, Nex is the total number of examples equals to 2N ,
and Nneigh stands for the number of neighbor examples at a Hamming distance
of 1. The second term C2[f] is constructed in an analogous way. The complexity
of the Boolean functions using the measure of Eq. 1 ranges from 0 to 1.5 [9].

2.2 Association Rules Discovery

Data mining, also known as Knowledge Discovery in Databases(KDD), has been
defined as the extraction of implicit previously unknown useful information from
data. Motivated by the huge amount of information provided by the simulation
results, data mining techniques were applied to the process of finding interesting
relationships among generalization, complexity and network architecture.

ARD technique is a data mining method used in many applications to dis-
cover associations patterns between subsets of items in transactions databases.
It detects set of elements that co-occur frequently, creating relations of the form

124 I. Gómez et al.

X− > Y , which means that when the antecedent of the rule, X , occurs, it is
probably for the consequent, Y , also to be occur. This technique has been ex-
tensively used in market analysis [19, 20] and analysis of gene expression data
[17, 18].

In addition to the antecedent (if condition) and the consequent (then condi-
tion), an association rule provides two numbers that express the degree of un-
certainty about the rule. In association analysis, the antecedent and consequent
are disjointed items sets. The first number, named support for the rule, is simply
the number of rows that include all items in both antecedent and consequent
parts of the rule. The second number represents the lift, another parameter of
interest in the association analysis, that gives the ratio of confidence to expected
confidence. Expected confidence is the number of transactions, that include the
consequent divided by the total number of transactions.

In the context of this work, we define transactions that contains function
complexity, network architecture (number of hidden neurons) and generalization
capability. Each item included in the transaction was discretized into four cate-
gories as follows: [0, 0.25), [0.25, 0.50), [0.50, 0.75) and [0.75, 1] for functions com-
plexity; [0.5, 0.70), [0.70, 0.85), [0.85, 1.0) for generalization ability; and [0, 10),
[10, 20), [20, 30), [30, 100] for the number of hidden neurons.

One of the limitations of ARD is the large amount of rules that can be
generated, which becomes a major problem in many applications. Some post-
processing pruning methods have been proposed to reduce the number of rules
[18]. One of the limitations of ARD is the large amount of rules that can be
generated. Some pruning methods have been proposed to reduce the number of
rules. In this work, we have used a filter designed to eliminate those rules that
present low confidence or does not have the generalization item in, what reduces
drastically the number of association rules.

2.3 Set of Quasi-random Functions

In a previous work [21], the authors analyzed the generalization ability of dif-
ferent network architectures studying how the generalization ability is affected
by the complexity of the functions being implemented and by the size of the
architecture. More exactly, generalization ability was tested in six different ar-
chitectures in size, and a set of 512 symmetric boolean functions was considered.
The results showed that was necessary the introduction of a second layer of
neurons to improve the generalization ability of very complex functions.

In this paper we extend the study to a set of quasi-random functions. There
exists 22N

boolean functions of N inputs, making their general study very com-
plicated except for very simple and small cases. Totally random functions are
very complex with an average complexity around 1.0 [10]. To analyze a large set
of different functions we generate functions with different complexity by modify-
ing with a certain probability K outputs of the constant function. The value of
K is related to the complexity of the generated function, and the most complex
generated function is the parity one. This procedure let us to obtain functions
that are asymmetric in the number of outputs and with a complexity in the range

Neural Network Architecture Selection 125

1.0 to 0. One hundred functions were analyzed for each of 10 levels of complexi-
ties in which the functions where grouped, with average complexity from 0.1 to
1.0 in steps of 0.1.

2.4 Neural Network Architectures and Simulations

To analyze the generalization ability of different architectures and to study how
this property change with network size and functions complexities, we carried
intensive numerical simulations for quasi-random Boolean functions generated
according to the procedure described before. All the networks were trained
with back-propagation with momentum. An early stopping procedure was im-
plemented with the aim of avoid overtraining and improve generalization. The
validation error was monitored during training and at the end of the maximum
number of epochs permitted, the generalization error was taken at the point
where the validation error was minimum.

The number of examples available for training was 256 as in all cases we con-
sider input functions of size N=8. We divided the examples in a training set con-
taining 128 examples, and into validation and generalization test sets containing
64 examples each one. The learning rate constant was fixed during training and
equal to 0.01 and the momentum term was set to 0.05. The maximum number
of epochs allowed for training was set to 10000.

3 Results

We performed numerical simulations on one hidden layer neural networks using
the whole set of quasi-random functions (up to 1000 different functions) with
N = 8 input variables. The number of neurons for the analyzed cases ranged from
5 to 100 in steps of 5 hidden units. The best results for each complexity level,
in terms of the generalization ability obtained, were computed simulating for
every network architecture and averaging over the 100 quasi-random functions.
In the case of a coincidence in the generalization ability from two architectures
with a different number of hidden neurons, a simple and general idea about what
network size come from Occam’s razor: the simpler the solution the better. In
Fig. 1 mean values for architecture sizes are represented vs function complexity,
and standard deviations were also computed for every complexity group.

It is possible to observe from Fig. 1 that the most appropriate network size for
obtaining the best generalization ability remains small for low level complexity
groups (from 0.0 to 0.55), noting also that the standard deviation is also rela-
tively low. As the complexity of the functions increase, the number of hidden
neurons grows up fast for groups with a complexity between 0.64 and 0.97. In
table 1, the average generalization ability obtained for the different architectures
used in every complexity group is shown together with the training error at the
point in which the minimum validation error was found.

In Fig. 2 the number of iterations as a function of the number of hidden
neurons, for each complexities group, is shown. In this figure the lowest level

126 I. Gómez et al.

Table 1. Average generalization ability and final training error (with standard de-
viations between parenthesis) obtained for the network architectures constructed to
compute all Boolean quasi-random functions with N=8 inputs

Complexity group Generalization Training
(mean value) ability error

0.07 0.976 (0.009) 0.015 (0.015)
0.14 0.968 (0.010) 0.031 (0.017)
0.27 0.929 (0.019) 0.078 (0.033)
0.34 0.898 (0.023) 0.078 (0.029)
0.45 0.875 (0.022) 0.125 (0.038)
0.55 0.835 (0.026) 0.171 (0.039)
0.64 0.804 (0.029) 0.203 (0.050)
0.75 0.757 (0.032) 0.250 (0.052)
0.86 0.695 (0.041) 0.296 (0.056)
0.97 0.585 (0.067) 0.421 (0.072)

complexities groups are located at the top of the figure, being the highest level
complexity group labeled as 10. Figure 2 demonstrates that the time of training
(number of epochs) in very complex functions (labeled as 8−10) is proportional
to the network size. Moreover, in the case of low complexity functions, the time

0.070.14 0.27 0.34 0.45 0.55 0.64 0.75 0.86 0.97
0

5

10

15

20

25

30

Complexity (C1+C2)

N
um

be
r

of
 h

id
de

n
ne

ur
on

s

Fig. 1. Number of hidden neurons vs function complexity for quasi-random functions
with N=8 inputs. The x-axis labels identify the mean values for each level of complexity.

Neural Network Architecture Selection 127

0 10 20 30 40 50 60 70 80 90 100
2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of hidden neurons

N
um

be
r

of
 it

er
at

io
ns

10

9

8

7

Fig. 2. Training time, in epochs, as a function of the network size, in number of hidden
neurons, for every complexity group of Boolean functions

necessary to train the network is approximately constant and independent of the
network size selected to implement that function.

The ARD technique was applied to the whole set of 20.000 simulations re-
sults. Association rules were extracted with absolute minimum support value
of 10, minimum confidence of 40% and minimum improvement of one, obtain-
ing a total of 35 association rules. After filtering and analyzing the set of rules
extracted, it is possible to observe that a correlation exists among the architec-
ture size, the complexity level and the generalization ability. That is confirmed
through association rules with the form: { low complexity } and { low network
size } → { high generalization ability }, with confidence 0.98 and lift 1.66; and
others as { high complexity } and { medium network size } → { low gener-
alization ability }, with confidence 0.93 and lift 1.60. In this case, the ARD
technique confers statistical precision to graphical results, since the confidence
value can be interpreted as the a posteriori probability for the consequent given
the antecedent. Moreover, a lift value greater than 1.0 is interpreted as a positive
correlation between the antecedent and the consequent.

4 Discussion

We have analyzed through numerical simulations the relationship between neu-
ral network size and function complexity. It was found that for groups of low
complexity functions, smaller architectures have a better generalization ability
than larger ones. Also, it was found that the optimal value for the number of

128 I. Gómez et al.

hidden neurons (between the analyzed values) grows with function complexity.
This result is what is expected from theoretical reasons but the interestingly, up
to our knowledge, is one of the first times that this problem is systematically
studied and reported. We have also made use of a extraction rule technique
(ARD) to analyze the result of the simulations and this technique confirmed our
analysis giving also statistical confidence. Regarding the architecture selection
process, much work remains to be done and we are in the process of studying it
in multi-layers networks and modular architectures.

Acknowledgement. This work was supported by the ”Comisión Interministerial
de Ciencia y Tecnoloǵıa” (Spain) through grant TIN2005-02984, and by FEDER
funds. Leonardo Franco acknowledges support from the Spanish Ministry of
Education and Science through a ”Ramón y Cajal” fellowship.

References

1. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmil-
lan/IEEE Press.

2. Baum, E.B. & Haussler, D. (1989) What size net gives valid generalization ? Neural
Computation, 1, pp. 151-160..

3. Lawrence, S., Giles, C. L., & Tsoi, A. C. (1996). What Size Neural Network Gives
Optimal Generalization ? Convergence Properties of Backpropagation. In Technical
Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer
Studies, Univ. of Maryland.

4. Caruana, R., Lawrence, S., & Giles, C.L. (2001). Overfitting in Neural Networks:
Backpropagation, Conjugate Gradient, and Early Stopping. In Leen, T. K., Di-
etterich, T. G. & Tresp, V. editors, Advances in Neural Information Processing
Systems, MIT Press, 13, pp. 402-408.

5. Krogh, A. & Hertz,J.A. (1992) A simple weight decay can improve generalization.
In J.E. Moody, S. J. Hanson, & R. P. Lippmann editors, Advances in Neural
Information Processing Systems Morgan Kaufmann, San Mateo, CA, 4, pp. 950
957.

6. Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation: Quantifying
the Criteria. Neural Networks, 11, pp.761-767.

7. Setiono,R. (2001) Feedforward neural network construction using cross-validation,
Neural Computation, 13, pp. 2865-2877.

8. Bartlett,P.L. (1997). For valid generalization the size of the weights is more im-
portant than the size of the network. In M.C. Mozer, M. I. Jordan, & T. Petsche,
editors, Advances in Neural Information Processing Systems, MIT Press, 9, pp.
134-140 .

9. Franco, L. & Anthony, M. (2004). On a generalization complexity measure for
Boolean functions. In Proceedings of the 2004 IEEE International Joint Conference
on Neural Networks, IEEE Press, pp. 973-978.

10. Franco, L. Generalization ability of Boolean functions implemented in feedforward
neural networks. Neurocomputing. (2006). In Press.

11. Franco, L. and Anthony, M. The influence of oppositely classified examples on
the generalization complexity of Boolean functions. IEEE Transactions on Neural
Networks. (2006). In Press.

Neural Network Architecture Selection 129

12. Wegener, I. (1987) The complexity of Boolean functions. Wiley and Sons Inc.
13. Siu, K.Y., Roychowdhury, V.P., & Kailath, T. (1991) Depth-Size Tradeoffs for

Neural Computation IEEE Transactions on Computers, 40, pp. 1402-1412.
14. Franco, L. & Cannas, S.A. (2004). Non glassy ground-state in a long-range anti-

ferromagnetic frustrated model in the hypercubic cell Physica A, 332, pp. 337-348.
15. Franco, L. & Cannas, S.A. (2000). Generalization and Selection of Examples in

Feedforward Neural Networks. Neural Computation, 12, 10, pp. 2405-2426.
16. Franco, L. & Cannas, S.A. (2001). Generalization Properties of Modular Networks:

Implementing the Parity Function. IEEE Transactions on Neural Networks, 12, pp.
1306-1313.

17. Becquet, C. & Blachon, S. & Jeudy, B. & Boulicaut, J.F. & Gandrillon, O. (2002).
Strong association rules mining for large-scale gene-expression data analysis: A
case study on human SAGE data. Genome Biology, 3, pp. 1-16.

18. Creighton, C. & Hanash, S. (2003). Mining gene expressions databases for associ-
ation rules. Bioinformatics, 19, pp. 79-86.

19. Agrawal, R. & Imielinski, T. & Swami, A. (1993). Mining associations rules between
sets of items in large databases. In Proceedings of the ACM SIGMOD international
conference on Management of data, Washignton D.C., pp. 207-216.

20. Brian, S. & Motwani, R. & Silverstein, C. (1997). Beyond Market baskets: Gen-
eralizing associations rules to correlations. In Proceedings of the ACM SIGMOD
conference, Tucson, pp. 265-276.

21. Franco, L. & Jerez, J.M. & Bravo, J.M (2005). Role of function complexity and
network size in the generalization ability of feedforward networks. LNCS, 3512, pp.
1-8.

Competitive Repetition-suppression (CoRe)
Learning

Davide Bacciu1,2 and Antonina Starita2

1 IMT Lucca School for Advanced Studies,
Via San Micheletto 3, 55100 Lucca, Italy

davide.bacciu@imtlucca.it,
http://www.imtlucca.it

2 Dipartimento d’Informatica, Università degli Studi di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy

starita@di.unipi.it,
http://ciml.di.unipi.it/

Abstract. The paper introduces Competitive Repetition-suppression
(CoRe) learning, a novel paradigm inspired by a cortical mechanism
of perceptual learning called repetition suppression. CoRe learning is
an unsupervised, soft-competitive [1] model with conscience [2] that can
be used for self-generating compact neural representations of the input
stimuli. The key idea underlying the development of CoRe learning is to
exploit the temporal distribution of neurons activations as a source of
training information and to drive memory formation. As a case study,
the paper reports the CoRe learning rules that have been derived for the
unsupervised training of a Radial Basis Function network.

1 Introduction

The present work introduces a novel learning algorithm inspired by a cortical
mechanism of perceptual learning called repetition suppression. The fundamental
aspects of this cortical mechanism have been modeled in a competitive learn-
ing schema, the Competitive Repetition-suppression (CoRe) Learning, for the
unsupervised generation of compact neural representations of the input stimuli.

We propose the idea that mere stimuli repetition acts as a fundamental re-
source for efficient memory formation. In particular we explore the neurophys-
iological hypothesis [3] that the repetition suppression mechanism serves as an
unsupervised mean for reducing the size of stimuli representation, that is the
number of neurons coding a given stimulus, while strengthening the responses
of the most selective neurons, i.e. those showing sharp responses to particular
classes of input stimuli.

For the sake of the present paper, we focus on the application of the pro-
posed model to the automated construction of a Radial Basis Function Network
(RBFN) [4]. In particular, we show how CoRe learning can be used to opti-
mize the number, position and shape of RBFN gaussian kernels by means of a
completely unsupervised training procedure.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 130–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Competitive Repetition-suppression (CoRe) Learning 131

In the following sections we introduce the neurophysiological findings that
have inspired this work together with the computational model of CoRe learning.
The paper ends with the results of the tests conducted on the Iris classification
dataset.

2 Neurophysiological Foundations of Repetition
Suppression

The ability of humans and animals to learn from experience is recognized to be
supported by multiple memory systems with different functional characteristics
and neural basis. Our work has been inspired by the characteristics of a par-
ticularly interesting learning scheme, called perceptual learning [5]. Perceptual
learning supports the formation of non-declarative memory at the level of the vi-
sual cortex, providing a mean for improving the performance on several sensory
tasks following practice.

In particular, we focused on a phenomenon known as repetition suppression
(RS), which appears to be fundamental for mediating perceptual learning [3].
Repetition suppression induces long-lasting changes to the visual cortex, de-
creasing the neural activity as a consequence of the repeated presentation of
similar stimuli. This cortical mechanism is strictly item-specific and appears
at an abstract representational level. For instance, neurophysiological evidences
have shown that its effects can be observed also when the repeated stimulus is
presented at different retinal locations and in case of variations to the visual
stimulus geometry. Repetition suppression does not depend on the behavioral
significance of the stimuli, i.e. it is not specifically linked to the active mainte-
nance of a sample in memory, nor it requires any form of response/reward signal.
Furthermore, RS is an unconscious process, since its effects can be recorded also
in anesthetized subjects [3].

In brief, repetition suppression involves sharpening the neural representation
of items by means of an overall reduction of the number of active neurons which
is counterbalanced by the steepening of the response of the most item-selective
neurons. This process seems to be aimed at the selection of neurons that act
as detectors of the most informative features. Moreover it appears that such a
process may facilitate novelty detection, since more familiar stimuli experience
more suppression than unfrequent items.

We suggest that repetition suppression, and in general perceptual learning,
may provide interesting hints for the development of innovative learning schemes
and mechanisms. The literature in this field offers very few works that try to
exploit the neurophysiological issues described so far. Mozer [6] proposes a com-
putational model reproducing the repetition suppression phenomenon by means
of a network of binary-hypothesis neurons which uses blind equalization to sup-
press the irrelevant inputs and to enhance the most active neurons, by steepening
the curve of the sigmoid driving their responses. Another interesting model is
that proposed by French and called activation sharpening [7]. This algorithm
extends the standard backpropagation with an extra step in which activations

132 D. Bacciu and A. Starita

patterns at the hidden layer are sharpened, i.e., the activation level of the most
active hidden nodes is increased slightly for each pattern, while the other nodes
activations are decreased. The activation sharpening process, although not me-
diated by repetition, offered an interesting starting point for the development of
our repetition suppression-based model. However, the learning scheme we pro-
pose is intended to have a broader scope than those described so far and to be
applicable to a wide range of neural networks and learning systems on real world
tasks (e.g. machine vision).

3 Competitive Repetition-suppression (CoRe) Learning

3.1 A Soft-Competitive Approach to Learning

The general idea underlying the proposed model is to make the neural population
evolve in the direction of maximum selectivity by means of a procedure that
penalizes or enhances the responses of the neurons on the basis of the stimuli
frequency. This approach falls into the family of the competitive learning [8]
schemes, in which units compete to be active during training. Hard-competitive
approaches such as Winner Takes All (WTA), allow only the winning unit, i.e.
the one with the highest activation, to learn on each case. The soft-competitive
approach [1], on the other hand, allows each unit, or the units from a selected
subset, to adapt its weights in proportion to its activation strength.

CoRe learning falls into the family of soft-competitive approaches. At each
step, it selects the most active neurons to form the winners pool, while the
remainder of the units forms the losers pool. We define the winners pool for the
input xk as the set of units ui that fires more than θ, that is

wink = {i | yi(xk) ≥ θ, ui ∈ U} (1)

where yi(xk) is the activation of the i-th unit on the k-th input pattern. The de-
finition of the losers pool can be obtained by mirroring the inequality in (1). The
competition is engaged between the units of two pools: the winners gets rewarded
and their activity is strengthened, while the losers are penalized depending on
the amount of the repetition suppression generated. In this aspect, CoRe extends
the rival penalized competitive learning (RPCL) algorithm [9]. The key idea of
RPCL is that for each stimulus not only the winner is learned to approach the
input pattern, but also the second winner (the rival) is de-learned away from it
for a bit. We extended this approach by defining a soft-rival algorithm, in which
winner and rival refer to pools of units.

3.2 CoRe Learning

The primary issue for implementing a repetition suppression learning scheme
is modeling the stimuli repetition. We build our scheme on a parameter, the

Competitive Repetition-suppression (CoRe) Learning 133

Fig. 1. General form of a CoRe learning layer of neurons: units ui are the feature detec-
tors; νi accumulates the conscience [2] related to unit ui, while the RS unit generates
the repetition suppression effect which inhibits (empty-dot connections) or enhance
(filled-dot connections) the feature detectors.

stimulus predominance, that gives a soft measure of the stimuli frequency. The
stimulus predominance at the time t is defined as

νt
i =

1
|χt|

∑
xk∈χt

yi(xk)
zk

U

, (2)

where χt is the set of the input stimuli presented to the network up to time t,
while yi(xk) is the output of the i-th unit on the k-th input pattern and zk

U is (an
approximation of) the output of the maximally active unit, from the set U , on
the pattern xk. For instance, it can be approximated, by means of the softmax,
as

zk
U =

∑
uj∈U

yj(xk)
eqyj(xk)∑
l e

qyl(xk) , (3)

where q is a parameter which regulates the sharpness of the approximation.
The idea underlying the definition in (2) is to associate each unit ui ∈ U

with a prototype pi that identifies the reference stimuli for the neuron. Then,
each unit uses eq. 2 to measure the frequency with which stimuli similar to
the prototype pi have been shown to the network. Here we assume that the
unit output yi is an increasing function of the similarity between the input
vector xk and the unit’s prototype pi. This approach resembles competitive

134 D. Bacciu and A. Starita

learning with conscience [2]. The conscience mechanism was proposed for making
frequently winning representatives less likely to win in the future because of their
heavier conscience [10]. In our model we use a different conscience mechanism for
suppressing the responses of the less selective neurons. Bienenstock, Cooper and
Munro tackled with the selectivity issue in their notable BCM model [11]. Their
Hebb-like learning rule is aimed at training neurons with a maximal response on
one particular pattern, while retaining a very low response on the other patterns.

CoRe learning pursues neuron selectivity by defining a penalty factor, the
repetition suppression, which is mediated by the stimulus predominance of the
winning neurons. The amount of repetition suppression generated at time t in
response to the pattern xk is calculated as

RSt
k =

1
|wink|

∑
i∈wink

νt
iyi(xk), (4)

where the winners pool wink is calculated as in (1).
Figure 1 gives a visual interpretation of the model. The νi units accumulate the

history of the feature detector (ui) activations in order to generate the stimulus
predominance for the prototype pi. The activation of the winning neurons, scaled
by their stimulus predominance (the empty-square connections in figure 1), is
then used to generate the repetition suppression factor in the RS unit.

The neurons in the losers pool have a different learning rule with respect to
those in the winners pool, although in both cases we define a pseudo-target to
be used as a reference signal for the training procedure. The target activation for
neurons in the losers pool (ui ∈ losek) is defined as ŷt

i(xk) = yi(xk)(1 − RSt
k),

where xk is the current input pattern. This expression forces the loser neurons
to shrink their activation proportionally to the amount of repetition suppression
they receive. The representation error of the i-th loser can be written as

Et
i,k =

1
2
(ŷt

i(xk) − yi(xk))2 =
1
2
(−yi(xk)RSt

k)2. (5)

Conversely, the target activation for the neurons ui ∈ wink is set to 1 in order
to strengthen their activation (assuming 1 to be the the maximal output of a
neuron). The representation error, in this case, is simply

E
t

i,k =
1
2
(1 − yi(xk))2. (6)

The network parameters can be adapted by means of a supervised learning
algorithm that minimize the error functions defined in (5) and (6). In section 3.3
we show an example of a Radial Basis Function Network whose gaussian units
have been trained by CoRe learning and gradient descent. Notice that although
CoRe learning resort to supervised learning for training the network parameters,
it is a completely unsupervised algorithm since all the reference signals it uses
are self-generated on the basis of the input stimuli distribution over space and
time.

Competitive Repetition-suppression (CoRe) Learning 135

The repetition suppression phenomenon produces a compact neural represen-
tation by evolving a set of highly selective neurons from a large pool of units.
Hence, it is important to define a metric for identifying the most significant neu-
rons which have been produced by the learning process. We define the relevance
factor for the unit ui as

ν̂t
i =

1
|wint

ui
|

∑
xk∈wint

ui

yi(xk)
zk

wink

, (7)

where zk
wink

follows the definition in (3) and wint
ui

is the set of patterns xk ∈ χt

for which unit ui was in the winners pool, i.e.

wint
ui

= {xk | yi(xk) ≥ θ, xk ∈ χt}. (8)

In other words, the relevance factor defines a soft-measure of the frequency with
which ui was the most active unit in the winners pool. This measure can be used
to prune those neurons which are less significant for the stimuli representation
(e.g. see RBF pruning in section 3.3).

3.3 RBFN Structure Optimization

A radial basis function network can be interpreted as a composition of localized
receptive fields that measure the similarity of incoming patterns xk to the pro-
totype pi they represent. In case of gaussian basis functions, the activation of
the i-th RBF unit is defined as

yi(xk) =
1
2
e

‖x−ci‖2

σ2
i (9)

where the gaussian center ci corresponds to the prototype vector pi, while the
gaussian variance σi modulates the steepness of the units’ response.

We applied CoRe learning to solve the structure optimization problem of a
gaussian RBFN, i.e, defining number, position and shape of the radial basis func-
tions. In order to do this, we used gradient descent to derive the CoRe learning
rules for the parameters of the gaussian kernels. The parameter increments for
the units ui ∈ losek can be derived by differentiating the error function in (5)
with respect to the parameters ci and σi, that is

ct
i,k =

∂Et
i,k

∂ci
= −yiRSt

k

∂(−yiRSt
k)

∂ci
=

(
yiRSt

k

σi

)2

(xk − ci) (10)

σt
i,k =

∂Et
i,k

∂σi
= −yiRSt

k

∂(−yiRSt
k)

∂σi
= (yiRSt

k)2
‖xk − ci‖2

σ3
i

. (11)

Similarly, the parameter increments for the units ui ∈ wink can be calculated as

ct
i,k =

∂E
t

i,k

∂ci
= −(1 − yi)yi

(x− ci)
σ2

i

(12)

136 D. Bacciu and A. Starita

σt
i,k =

∂E
t

i,k

∂σi
= −(1 − yi)yi

‖xk − ci‖2

σ3
i

(13)

where E
t

i,k follows the definition in (6).
The update rules for the RBF parameters are

ct
i = ct−1

i − αc
ct
i,k (14)

σt
i = σt−1

i − ασ
σt
i,k (15)

where
ct
i,k =
ct

i,k if ui ∈ wink and
ct
i,k =
ct

i,k if ui ∈ losek (similarly for

σt

i,k).
The sign of the increments
ct

i,k and
σt
i,k is coherent with the expected

repetition suppression effect. Units in the losers pool, for instance, experience
the displacement of their centers away from the current input as well as the
enlargement of their widths. Conversely, winner neurons have their centers moved
closer to the current stimuli and their responses steepened by the reduction of
their receptive field’s width.

CoRe learning starts with a large RBF network and incrementally trains the
RBF units at each pattern presentation. If an input parameter xk does not
produce a sufficient activation in any of the units in the network, then CoRe
learning triggers a search procedure to find the neuron with the lowest relevance
factor ν̂t

i and trains this unit to memorize the stimulus xk. Moreover, at the
end of each learning epoch, the least significant neurons, i.e those with a rele-
vance factor under a certain threshold θpr, are pruned from the network. This
allows to generate networks with a compact structure, while retaining an high
representational power.

The outputs of the N RBF units are linearly combined in the output units oj

by the weighted summation

oj(xk) =
N∑

i=1

wijyi(xk). (16)

The linear parameters wij are trained by a supervised algorithm independently
and in parallel to CoRe learning [12].

4 Results

We evaluated the performance of CoRe learning on a classification task based on
the IRIS dataset [13]. This dataset contains 150 samples of dimension 4 equally
partitioned into three different IRIS classes: setosa, versicolor, and virginica.
Among these, one is linearly separable from the others, while two of them are
not. The dataset was split into a training and a test sets, with 75 samples each; 25
samples from each class were randomly selected to be presented to the network
and thirty different partitions of the dataset were generated randomly.

Competitive Repetition-suppression (CoRe) Learning 137

Table 1. Performance of various RBF models applied to the IRIS problem: mean
classification score on the test set, variance, number of initial RBF (when applicable)
and average number of RBF generated during training

Model Mean Score Variance Initial RBF Number Final RBF Number
CGA-RBF [14] 97.04% ±1.97% N.A. 6.4

CoRe-RBF 95.91% ±1.19% 50 6.6
RBF-DDA [15] 94.50% ±1.50% N.A. 11.8

To evaluate the capabilities of the CoRe approach we implemented a radial
basis function network with CoRe learning rules for training the gaussian kernels
and a standard gradient descent for adapting the output weights wij . The net-
work was trained and tested separately on each of the thirty random partitions
of the dataset.

Table 1 shows a comparison of the results of the test phase for the CoRe-RBF
network and for two constructive RBF models. The CoRe-RBF network had
an initial population of 50 neurons and, as a result of CoRe learning, reduced
its size to an average number of 6 RBF. As it can be seen from Table 1, our
model achieved an higher score than the RBF-DDA model [15] and generated
a more compact network structure. The evolutive CGA-RBF [14], on the other
hand, achieved better results than CoRe-RBF with respect to the test-set error.
However, the CGA-RBF learning scheme needs a-priori knowledge about the
number of classes, while our model is completely unsupervised and does not
require any a-priori information about the distribution of the input patterns. In
addition, the CoRe model achieved a very stable learning, demonstrated by the
low error variance (see Table 1) over the 30 task repetitions.

Figure 2 shows the performance of CoRe learning on a clustering task: the
dataset consists of 125 datapoints generated by four gaussians with different
mean, variance and density. The small dots represent the 2-dimensional in-
put stimuli, while the pluses (+) identify the neurons prototypes. The network
evolves from the initial random prototype allocation (Fig. 2.a) to a sparser in-
put coverage (Fig. 2.b) as a result of the repetition suppression mechanism. The
least active units are pushed away from the stimuli, becoming less significant as
learning proceeds. When their relevance factor falls behind a predefined thresh-
old, they are pruned from the network. Conversely, the most significant units
are retained and positioned as to cover the four clusters (Fig. 2.c).

The CoRe algorithm was run starting from a pool of 50 neurons and converged
to a stable state after only 30 training epochs, reducing the number of prototypes
to 5. It is worth noting how 4 units positioned approximately on the four clusters
mean, while 1 neuron was allocated to cover the outliers of the 2 bottommost
clusters. The same dataset has been used to run the RPCL algorithm (Fig. 2.d):
starting from an initial population of 50 neurons, RPCL evolved to a stable
state with 36 active neurons, i.e. neurons winning at least one competition. The
results of the test show the robustness of CoRe with respect to the choice of the
initial units allocation: CoRe is capable of converging to a compact prototype
allocation even though it is run starting from an oversized neural population.

138 D. Bacciu and A. Starita

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

(a) Initial State

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

(b) Repetition Suppression and Pruning

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

(c) Final State

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1
Prototype vectors in input space

(d) RPCL Learning

Fig. 2. Clustering test on four gaussian clusters: (a) CoRe starts with a random po-
sitioning of the gaussian centers; (b) the least active units are pushed away from the
stimuli and network pruning eliminates non-relevant units; (c) the CoRe algorithm
converges generating 5 units positioned on the four clusters and on their outliers; (d)
prototype positioning by the RPCL algorithm after 200 learning epochs

5 Conclusion

This paper introduces CoRe learning, a soft-competitive learning scheme inspired
by a cortical mechanism of implicit visual memory, i.e. repetition suppression.
CoRe learning allows unsupervised training of feature detector units (e.g. RBF)
without resorting to any explicit information concerning the input pattern dis-
tribution (e.g. number of classes), but only on the basis of the stimuli repetition.

We derived the CoRe learning rules for training the gaussian units of a radial
basis function network and we tested the effectiveness of the proposed approach
on classification and clustering tasks.

The CoRe learning model is part of a work aiming at the development of
an articulated model of perceptual learning for machine vision applications. In
particular, we believe that the repetition suppression mechanism, and therefore

Competitive Repetition-suppression (CoRe) Learning 139

the CoRe learning scheme, may constitute an important tool for generating
compact and sparse neural representations of the visual stimuli.

References

1. Nowlan, S.: Soft Competitive Adaptation: Neural Network Learning Algorithms
based on Fitting Statistical Mixtures. Phd thesis, Carnegie-Mellon University,
Pittsburg (1991)

2. DeSieno, D.: Adding conscience to competitive learning. In: IEEE Annu. Int. Conf.
Neural Networks, IEEE Computer Society (1988) 1117–1124

3. Desimone, R.: Neural mechanisms for visual memory and their role in attention.
In: Proceedings of Natl. Acad. Sci. USA. Volume 93. (1996) 13494–13499

4. Poggio, T., Girosi, F.: Networks for approximation and learning. In: Proceedings
of the IEEE. Volume 78. (1990) 1481–1497

5. Tdodyks, M., Gilbert, C.: Neural networks and perceptual priming. Nature
7010(431) (2004) 775–781

6. Mozer, M.C., Mytkowicz, T., Zemel, R.S.: Achieving robust neural representa-
tions:an account of repetition suppression. Technical report, Computer Science
Deparment, University of Colorado, Boulder (2004)

7. French, R.M.: Semi-distributed representations and catastrophic forgetting in con-
nectionist networks. Connection Science 4 (1992) 365 – 377

8. Rumelhart, D., Zipser, D.: Competitive learning. Cognitive Science 9 (1985) 75 –
112

9. Xu, L., Krzyzak, A., Oja, E.: Rival penalized competitive learning for clustering
analysis, rbf net, and curve detection. IEEE Transactions on Neural Networks 4(4)
(1993) 636 – 649

10. Banerjee, A., Ghosh, J.: Frequency-sensitive competitive learning for scalable bal-
anced clustering on high-dimensional hyperspheres. IEEE Transactions on Neural
Networks 15 (2004) 702 – 719

11. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in visual cortex.
Neurocomputing: foundations of research (1988) 437–455

12. Karayiannis, N.: Growing radial basis neural networks: merging supervised and
unsupervised learning with network growth techniques. IEEE Transactions on
Neural Networks 8(6) (1997) 1492–1506

13. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugenics 7(2) (1936) 179 – 188

14. de Castro, L.N., Hruschka, E.R., Campello, R.J.G.B.: An evolutionary clustering
technique with local search to design RBF neural network classifiers. In: Pro-
ceedings of the 2004 IEEE International Joint Conference on Neural Networks.
Volume 3. (2004) 2083–2088

15. Paetz, J.: Feature selection for RBF networks. In: Proceedings of the 9th Inter-
national Conference on Neural Information Processing (ICONIP’O2). Volume 2.
(2002) 986–990

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 140 – 149, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Real-Time Construction of Neural Networks

Kang Li1, Jian Xun Peng1, and Minrui Fei2

1 School of Electronics, Electronic Engineering & Computer Science
Queen’s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK

{K.Li, J.Peng}@qub.ac.uk
2 Shanghai Key Laboratory of Power Station Automation Technology,

School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China

Abstract. A stepwise two-stage algorithm is proposed for real-time construc-
tion of generalized single-layer networks (GSLNs). The first stage of this algo-
rithm generates a network using a forward selection procedure, which is then
reviewed at the second stage to replace insignificant neural nodes. The main
contribution of this paper is that these two stages are performed within one
regression context using Cholesky decomposition, leading to significantly
neural network performance and concise real-time network construction
procedures.

1 Introduction

The generalized single-layer networks (GSLN) represent a large class of flexible and
efficient structures due to their excellent approximating capabilities [1][4]. A GSLN
is a linear combination of some basis functions that are arbitrary (usually nonlinear)
functions of the inputs. Examples are RBF networks and Volterra networks.

A critical issue in the application for GSLNs is that a large number of candidate
basis functions may have to be considered initially, from which only small subset is
selected to represent the data by minimizing a cost function. This however becomes
extremely difficult if one has to enumerate all combinations to find the best subset,
part of which is often referred to as the curse of dimensionality problem in the litera-
ture. To overcome this difficulty, forward subset selection methods seem to be one of
very few feasible approaches [2][3][5][6]. Forward subset selection algorithms select
the best basis function each time by minimizing the cost function, and this procedure
is repeated until the desired number of, say n, basis functions have been selected. If n
is unknown a 'prior', some selection criteria could be applied to stop the network con-
struction, such as the Akaike’s information criteion (AIC) [7].

However, the major problem with forward approaches is that the resultant network
is not necessarily efficient [6][8]. In this paper, a stepwise algorithm is proposed for
real time construction of GLSNs based on the Cholesky decomposition. In the pro-
posed method, the network is generated using a forward subset selection procedure,
which is then reviewed, and insignificant neurons (basis functions) are replaced,
resulting in a network of significantly improved performance.

 Real-Time Construction of Neural Networks 141

2 Problem Formulation

Suppose M candidate basis functions },,2,1),({ Miti =φ , and N samples are used

for network construction and training, producing to the following matrices

M,,2,1i,)]N(,),2(),1([],,,,[TiiiiM21 =φφφ== φφφφφ (1)

If one needs to select n significant basis functions, denoted as nppp ,,, 21 , which

form a selected regression matrix

],,,[21 npppP = (2)

and produce the network output of

ePy += θθ (3)

which best fits the data in the sense that

min(→−== θθ)ΛΛ PyeJ (4)

where T)](,),2(),1([Nyyy=y is the vector of the target outputs; • denotes the 2-

norm of a vector; θ is the output weights; Λ is the diagonal weighting matrix,
))(,),1((Ndiag λλ=Λ ; J is the cost function which is the sum of the squared

weighted errors (SSWE). If P is fully column ranked, optimum estimation of the out-
put weights is given by

)()(()[(yPPP ΛΛ)]ΛΛθ 1 TT −= (5)

There are))!/(!/(! nMnM − possible combinations. Practically forward subset se-

lection is the most popular approach.

3 Forward Selection

The forward approach selects a basis function each time, and this procedure repeats
for n times to produce the network of n basis functions. Obviously a series of inter-
mediate neural networks are generated along the process.

Denote the regression matrices of the intermediate network of k basis functions as

nkkk ,,2,1],,,,[21 == pppP (6)

The corresponding cost function becomes

yPPPPyyyP 2222 ()(Λ)ΛΛΛ 1 T
kk

T
kkTTkJ −−= (7)

where ΛΛΛ T=2 . If kPΛ is of full column rank, then kkjik
T
k w ×==][,2PPW Λ is

symmetric and positive definite, and can be decomposed as

142 K. Li, J.X. Peng, and M. Fei

ADAPPW
~~2 Tk

T
k == ΛΛ (8)

where),,(1 kdddiag=D is a diagonal matrix and kkjia ×=]~[
~

,A is a unity upper

triangular matrix. Define

≥
<=== ×

∆

ijad
ij

aa
jii

jikkji
,

,, ~
,0

,][
~
ADA (9)

where 1~
, =iia and iii ad ,= for ki ,,1= .

From (8), it gives

kijkiaaawa i
s ssjsisjiji ,,,,,1,/1

1 ,,,,, ==−= −
= (10)

Define
T

,,1],,[
~

ykyy aa===∆ θθ ADAa (11)

T
,,1

2T],,[ykyky ww==∆ yPw Λ (12)

Then left-multiply kk PPW 2T Λ= on both sides of (5) for kPP = , substituting (8)

gives

yy waA =T~
 (13)

As A
~

 is a unity upper triangular matrix, using (9), ya could be computed as

kiaaawa k
i ssysisyiyi ,,1,/1

1 ,,,,, =−= −
= (14)

Substituting (8) into (7) and noting (13) gives

−=−= =
− k

i iiyiyyk aaJ 1 ,
2
,

2T1T2T /)(yyaDayyP ΛΛ (15)

Suppose that one more basis function, denoted as 1+kp , is selected, then

−= +
=+

1
1 ,

2
,

2T
1 /)(k

i iiyik aaJ yyP Λ (16)

The reduction in the cost function due to the new basis function 1+kp is

1,1
2

,1111 /)()()(++++++ =−=∆ kkykkkkk aaJJJ PPp (17)

where],[11 ++ = kkk pPP .

According to (15), the elements jia , will not change as the new basis function 1+kp

is introduced. To minimize the cost function given previously selected basis functions
kpp ,,1 are fixed, one needs to select a basis function from the rest candidates

which maximizes 1+∆ kJ

},,{..)},(max{)()},([min{ 11 Mkkkk ts JJJ φφφφ∆φ] ++ ∈−= PP (18)

 Real-Time Construction of Neural Networks 143

where },,{ 1 Mk φφ + denotes the candidate basis function pool from the full regres-

sion matrix , i.e.],,,,,,[121 Mkk φφ += ppp .

To minimize (18), A
~

, A, and ya defined above are augmented as follows to store

corresponding information of the selected basis functions and all the candidates.

For a model of k basis functions, augment A
~

 and A from k-by-k to k-by-M, and
ya from k-by-1 to M-by-1, respectively. For A defined in (9), it becomes

≤≤−
<

== −
=

× Mjiaaaw

ij
aa i

s ssjsisji
jiMkji ,/

,0
,][1

1 ,,,,
,,A (19)

>
≤

=
kj

kj
w

j
T
i

j
T
i

ji
,

,
2

2
,

φΛ
Λ

p

pp
, (20)

Matrix A
~

defined in (9) becomes

iijijiMkji aaaa ,,,, /~,]~[
~ == ×A . (21)

which is unity upper triangular, but not a square matrix. Vector ya in (14) becomes

−== −
=×
1
1 ,,,,,1, /,][i

s ssysisyiyiMyiy aaawaaa (22)

where
>
≤=

ki

ki
w

i

i
yi

,

,
2T

2T

, φΛ
Λ

y

py
.

In addition, another M-by-1 vector b can be defined as

−== −
=×
1
1 ,,,,1 /,][i

s ssisisiiiMi aaawbbb (23)

where
>
≤=

ki
ki

w
ii

ii
ii

,
,

2T

2T

,
φΛφ

Λ pp . Obviously for iiw , ki ,,1= , it holds that

kiab iii ,,1,, == (24)

Based on (17), the contribution of each of the candidate basis functions is given by

MkibaJ iyiik ,,1,/)(2
,1 +==∆ + φ (25)

The one from },,{ 1 Mk φφ + which gives the maximum contribution is then se-

lected as the (k+1)’th basis function.
Assume },,1),(max{arg)(11 MkiJJ ikjk +=∆=∆ ++ φφ , i.e. candidate jφ is se-

lected and denote jk φ=+1p . Other candidates are reordered and { Mk φφ ,,2+ } be-

comes the new candidate pool. According to (17), the (k+1)’th basis function leads to
a further reduction of the cost function by)(11 ++∆ kkJ p .

144 K. Li, J.X. Peng, and M. Fei

Since jk φ=+1p , both 1+kφ and jφ in the original full regression matrix have

to be interchanged, leading to the change of various intermediate matrices and vec-

tors. For A and A
~

, columns k+1 and j should also be interchanged as

kiaaaaaaaa kijijikikijijiki ,,1 ,~~ ,~~ ,, 1,,,1,1,,,1, ===== ++++ (26)

where 1, +kia denotes the updated 1, +kia . To denote an updated element, a cap is ap-

plied to the element here after.
Similarly, elements k+1 and j for ya and b are interchanged as follows

11,1,,,1 ,,, ++++ ==== kjjkykyjyjyk bbbbaaaa . (27)

In addition, as the (k+1)’th basis function is selected, a new row should be ap-

pended to A and A
~

Mki
aaaw

aawa

kkikiki
T
kik

k
s isksikik

,,1,
/~,

~

1,1,1,12
1,1

1 ,1,,1,1
+=

==

−=

++++++

= +++

φΛp
 (28)

Furthermore, for ya and b, elements from the (k+2)’th to the last one should be

updated as follows according to the definitions (22) and (23)

ikikiiykikyiyi aabbaaaa ,1,1,1,1,,
~,~

++++ −=−= , Mki ,,1+= (29)

Given above details, a forward selection procedure similar to [5] can be proposed.

4 A Two-Stage Algorithm

To overcome the drawbacks of the forward selection algorithm, one solution is to
review all the selected basis functions once the forward selection procedure termi-
nates. For each selected basis function (of a of size n), say ip , ni ≤≤1 , its contribu-

tion to the cost function reduction)(inJ p∆ is compared with that of the candidate

which has the maximum contribution among all the candidates. Denote the maximum
candidate contribution as)(jnJ φ∆ , and if)()(jnin JJ φ∆<∆ p then ip is said to be

insignificant, and will be replaced by jφ , in the meantime ip is put back into the

candidate pool. Thus, the cost function can be further reduced by
)()(injn JJ p∆φ∆ − . The remaining problem is, to compute the contribution of a

previously selected basis function, say ip to the cost function and compare its contri-

bution with that of the candidates Mn φφ ,,1+ , an appropriate regression context

should be re-constructed. That is, A , A
~

, ya and b have to updated.

In order to assess the significance of the basis function ip , the first step is to move

ip to the n’th position of the full regression matrix as if it were the last selected

basis function in the forward selection procedure. This is done by a series of

 Real-Time Construction of Neural Networks 145

interchanges between two adjacent basis functions xp and 1+xp for 1,, −= nix and

the regression context is updated correspondingly.
Suppose npp ,,1 are the selected basis functions in the order of selection. If two

adjacent basis functions xp and 1+xp is to be changed, A , A
~

, ya and b have to be

updated. Denote the n basis functions in the new selected order as
nxxxx pppppp ,,,,,, 2111 ++− , where 1+= xx pp and xx pp =+1 . Then based on (10),

for columns 1 to x-1 in A , since

1,,1,

,,2,1,,,,,

,
2T

1
2T

1,

1,1
2T2T

,

−=
+−==

===

===

++

++

xi

Mxxikww

ww

ww

kiki

xixixixi

sixixixi

pppp

pppp

ΛΛ

ΛΛ

 (30)

therefore

1,,1,
,,2,1,,,

,

,,

,1,1,, −=
+−==

== ++
xi

Mxxikaa

aaaa

kiki

xixixixi
 (30)

Noting xxxxxxxx ww ,1
2T

11
2T

1, ++++ === pppp ΛΛ , for the x’th row of A, gives

1,1, ++ = xxxx aa (32)

Noting 1,11
2T

1
2T

, ++++ === xxxxxxxx ww pppp ΛΛ , it holds that

xxxxxxxxxx aaaaa ,1,1,1,1, /++++ += (31)

while for the rest elements in the x’th row, it gives

nxjaaaaa xxjxxxjxjx ,,2,/ ,,1,,, +=+= + (32)

Noting xxxxxxxx ww ,
2T

1
2T

11,1 === ++++ pppp ΛΛ , for the (x+1)’th row of A, yields

xxxxxxxx aaaa ,
2

1,,1,1 /)(+++ −= (35)

Mxjaaaaa xxjxxxjxjx ,,2,/ ,,1,,,1 +=−= ++ (36)

Noting jijijiji ww ,
2T2T

, === pppp ΛΛ , 1, +> xji , for elements of A in row x+2,

1,1

,12,1

,

,2,1
1

,

,2,

,2
1
1 ,,2,,2,2 /

++

++++−
=

+

+
+
= +++

−−−

−=−=

xx

jxxx

xx

jxxxx
s

ss

jsxs

jx
x
s ssjsxsjxjx

a

aa

a

aa

a

aa

waaawa
 (37)

Furthermore, it could be derived that

1,1

,12,1

,

,2,

1,1

,12,1

,

,2,

++

++++

++

++++ −=−
xx

jxxx

xx

jxxx

xx

jxxx

xx

jxxx

a

aa

a

aa

a

aa

a

aa
 (38)

146 K. Li, J.X. Peng, and M. Fei

which means that the (x+2)’th row of A has no change, and row (x+2) to row n of A
have no change as well, i.e.

jiji aa ,, = , nxi ,,2+= , nxj ,,2+= (39)

Similarly,

−=
+=

++

++

xxjxxxyxyx

xxyxxxyxyx

aaaaa

aaaaa

,,1,,,1

,,1,,1,

/

/
 (40)

For vector b, both the x’th and the (x+1) ’th element are changed also as follows

1,11, , +++ == xxxxxx abab (41)

Now eventually ip is moved to the n position in the selected basis functions, its

contribution can then be computed as follows based on (17)

nnynnnin aaJJ ,
2
, /)()(== pp ∆∆ (42)

where ni pp = indicates that np has been moved to the n’th position. To compute the

contribution of the candidate basis functions, define:

Mns
aabb

aaaaa

nnnns
i

s

nnynsnys
i
ys

,,1,
/)(

/

,
2

1,
)(

,,,,
)(

, +=
+=

+=

+
−

−

 (43)

which are the corresponding elements in vector ya and b if the basis function ip is

pruned from the network. The contribution of all the candidates is given by

MnsbaJ i
s

i
yssn ,,1,/)()()(2)(

, +==∆ −−φ (44)

Now the significance of ip can then be checked given the above derivations. First,

identify the candidate basis function that gives the maximum contribution

},,1),(max{)(MnsJJ snjn +=∆=∆ φφφ . (45)

If)()(injn JJ p∆>∆ φφ , ip becomes insignificant and should be replaced by jφ as

the new basis function in the network, while ip should be put back into the candidate

pool, taking the position of jφ . In this case, the regression context needs to be up-

dated again due to the interchange of ip and jφ . For matrix A, interchange columns n

and j from row 1 to n-1 due to the interchange of ip and jφ , and re-calculate the n’th

row of A as

≠+=−=

===

−
=

−

jkMnk
a

aa
wa

waaba

n
s

ss

ksns
knkn

knknjnjn
i

jnn

,,,1,

,,

1
1

,

,,
,,

2T
,,,

)(
, φΛp

 (46)

 Real-Time Construction of Neural Networks 147

In addition, elements n to M of vector ya and b is updated respectively as

≠+=−=

−==

−

−

jsMns
a

aa
aa

aaaaaaa

nn

ynsni
ysys

nnynjnynyj
i
ynyn

,,,1,

,/,

,

,,)(
,,

,,,,,
)(

,,

 (47)

≠+=−=

−==

+
−

+
−

jsMnsaabb

aaabbb

nnnn
i

ss

nnnnnnj
i

jn

,,,1,/)(

/)(,

,
2

1,
)(

,
2

1,,
)(

 (48)

Similarly the corresponding element of A
~

 can be recalculated based on (21).
The computational complexity analysis for the above proposed algorithm can be

performed by referring to [6].

5 Real Time Implementation

To facilitate real time neural network construction using the above algorithm, a
weighting scheme for the data samples is applied to reduce the data storage. In this

paper, the weights for samples at current time instance t are always set at 1 and 2/τλ
for the τ−t , where 10 << λ and normally close to 1. In this way, the weights for the
past data samples decrease exponentially as time goes on, leading to the gradual re-
moval of past data samples in the real-time neural network construction.

In detail, the weight matrix W in (8) and yw in (12) is applied to all basis func-

tions, i.e.

jijiMMji ww φΛφ 2T
,, ,][== ×W (49)

iyiMyiy ww φΛ 2T
,1, ,][yw == × (50)

Note that W is symmetric and only the upper triangle, including the diagonal ele-
ments, needs to be stored. Applying the exponential weighting scheme, gives

=

=

=
−

=
−

t
j

t
yi

t
ji

t
ji

ttytw

tttw

1,

1,

)()()(

)()()(

τ
τ

τ
τ

φλ
φφλ

 (51)

In real time implementation, W and yw are dynamically updated as

0)0(),()()1()(,,, =φφ+−λ= jijijiji wtttwtw (52)

0)0(),()()1()(,,, =φ+−λ= yijyiyi wttytwtw (53)

In this weighting scheme, for jiw , , if Ctt ji →)()(φφ as ∞→t , then

)1/()(, λ−→ Ctw ji . The algorithm proposed in this paper is a two-stage method,

therefore the real time implementation is also divided into two stage.

148 K. Li, J.X. Peng, and M. Fei

To initialize the algorithm, let 0=k and ijww jiyi >== ,0,0 ,, for Mi ,,1= , as

each sample of data is recorded, following procedure is implemented.

A) With the recorded new sample of data, update W and yw respectively.

B) Update A, A
~

, ya and b in (19), (21), (22) and (23), respectively

C) If nk < , implement step b), c) and d) of the forward selection procedure to se-
lect the k’th basis function. Otherwise implement the reviewing procedure to
check all the n selected basis functions.

D) Identify the output weights based on (5). The neural network (of k basis func-
tions) can then be used for real time application.

Note that the neural network size n is given previously. This procedure is imple-
mented recursively.

6 Simulations

Consider the following non-linear dynamic system

)()1()2(8.0)2(05.0)1(5.05.0)(22 ttututytyty ξ+−+−+−−−+= (54)

where t, y and u represent the time series, the system output and input, respectively;
)(tξ is the system noise given as)05.0,0(~ Nξ . By simulating (54) with u(t) uni-

formly distributed within the range [-1.0, 1.0], two data sets of 500 samples for each
were generated, the first one for neural network construction and training and the
other for validation. Full polynomial of orders 0 to 3 of y(t-l) and u(t-l) for l = 1, 2,
and 3 are used. The network size is set to be 5. Both the proposed two-staged algo-
rithm and the forward-only algorithm were then used to select 5 basis functions. The
indices of the selected terms and the corresponding SSWE are listed in Table 1 for
both the algorithms. Table 2 compares the normalized one-step-ahead and long-term
predictions errors over both the training and validation data sets, respectively, of the
two produced neural networks. From the simulation example, it is obvious that the
two stage algorithm achieves a neural network of far better performance than forward
subset selection methods.

Table 1. Selected nodes and performance

Algorithm Index of the selected terms SSWE
Forward 1, 2, 6, 23, 44 5.4425
Two-staged 1, 2, 6, 14, 23 1.3728

Table 2. Normalized prediction error (%)

Algorithm Training data Validation data
 One step Long term One step Long term
Forward 6.78 7.51 6.53 7.28
Two-stage 3.41 3.40 3.23 3.21

 Real-Time Construction of Neural Networks 149

7 Conclusion

In this paper, a stepwise two-stage algorithm has been proposed for real-time con-
struction of generalized single-layer networks (GSLNs), which enables both network
growing and network modification. The main contribution of this paper is that these
two directions of network construction are performed within one regression context
using Cholesky decomposition, leading to both significantly neural network perform-
ance and concise network construction procedures. Simulation results have demon-
strated the effectiveness of this method.

Acknowledgement

Dr K. Li wishes to acknowledge the financial support of the UK Engineering and
Physical Sciences Research Council (EPSRC Grant GR/S85191/01). Dr M. Fei
wishes to acknowledge the financial support of Shanghai Leading Academic Disci-
plines (T0103).

References

1. K. M. Adeney, M. J. Korenberg: Iterative fast orthogonal search algorithm for MDL-based
training of generalized single-layer networks. Neural Networks, Vol 13 (2000) 787-799.

2. S. Chen, S. A. Billings, W. Luo: Orthogonal Least Squares Methods and Their Application
to Non-linear System Identification. International Journal of Control, Vol. 50, No.5 (1989)
1873-1896.

3. S. Chen, J. Wigger: Fast Orthogonal Least Squares Algorithm for Efficient Subset Model
Selection. IEEE Transactions on Signal Processing, Vol. 43, No.7, (1995) 1713-1715.

4. B. Igelnik and Y. H. Pao, “Additional Perspectives of feedforward neural-nets and the func-
tional-link”, IJCNN '93, Nagoya, Japan, 1993.

5. K. Li, J. Peng, G. Irwin: A fast nonlinear model identification method. IEEE Transactions
on Automatic Control. Vol. 50, No. 8 (2005) 1211-1216.

6. K. Li, J. Peng, Er-Wei Bai: A two-stage algorithm for identification of nonlinear dynamic
systems. Automatica, Vol. 42, No 7 (2006) (in press).

7. H. Akaike: A New Look at the Statistical Model Identification. J. R. Statist. Soc. Ser. B.,
Vol.36 (1974) 117-147.

8. Sherstinsky, R. W. Picard: On the Efficiency of the Orthogonal Least Squares Training
Method for Radial Basis Function Networks. IEEE Transactions on Neural Networks, Vol.
7, No. 1 (1996) 195-200.

MaxMinOver Regression:
A Simple Incremental Approach for Support Vector

Function Approximation

Daniel Schneegaß1,2, Kai Labusch1, and Thomas Martinetz1

1 Institute for Neuro- and Bioinformatics
University at Lübeck, D-23538 Lübeck, Germany
martinetz@informatik.uni-luebeck.de
2 Information & Communications, Learning Systems

Siemens AG, Corporate Technology, D-81739 Munich, Germany
daniel.schneegass.ext@siemens.com

Abstract. The well-known MinOver algorithm is a simple modification of the
perceptron algorithm and provides the maximum margin classifier without a bias
in linearly separable two class classification problems. In [1] and [2] we presented
DoubleMinOver and MaxMinOver as extensions of MinOver which provide the
maximal margin solution in the primal and the Support Vector solution in the dual
formulation by dememorising non Support Vectors. These two approaches were
augmented to soft margins based on the ν-SVM and the C2-SVM. We extended
the last approach to SoftDoubleMaxMinOver [3] and finally this method leads to
a Support Vector regression algorithm which is as efficient and its implementation
as simple as the C2-SoftDoubleMaxMinOver classification algorithm.

1 Introduction

The Support-Vector-Machine (SVM) [4], [5] is a very efficient, universal and powerful
tool for classification and regression tasks (e.g. [6], [7], [8]). A major drawback, partic-
ularly for industrial applications where easy and robust implementation is an issue, is
its complicated training procedure. A large Quadratic-Programming problem has to be
solved, which requires sophisticated numerical optimisation routines which many users
do not want or cannot implement by themselves. They have to rely on existing soft-
ware packages, which are hardly comprehensive and, in some cases at least, error-free.
This is in contrast to most Neural Network approaches where learning has to be simple
and incremental almost by definition. The iterative and incremental nature of learning
in Neural Networks usually leads to simple training procedures which can easily be
implemented. It is desirable to have similar training procedures also for the SVM.

Several approaches for obtaining more or less simple incremental training proce-
dures for Support Vector classification and regression have been introduced so far [9],
[10], [11], [12]. We want to mention in particular the Kernel-Adatron by Friess, Cris-
tianini, and Campbell [9] and the Sequential-Minimal-Optimisation algorithm (SMO)
by Platt [10]. This is the most widespread iterative training procedure for SVMs. It is
fast and robust, but it is still not yet of a pattern-by-pattern nature and well suited as a

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 150–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MaxMinOver Regression 151

starting point for an online learning scheme. It is not yet as easy to implement as one is
used from Neural Network approaches.

According to this goal in [2] and [1] we had revisited and extended the MinOver al-
gorithm. The so-called DoubleMaxMinOver [3] method which we briefly revisit in this
paper as the combination of DoubleMinOver and MaxMinOver converges provable to
the Support Vector solution in the dual representation for classification tasks. Moreover,
the angle γt between the correct solution w∗ and the interim solution wt after t steps is
bounded by O(t−1).

Furthermore we introduced a soft margin approach based on the C2-SVM error
model. In a straightforward way this model can be adapted for regression [13]. We
consequently show that we similarly obtain our regression algorithm as an extension
of DoubleMaxMinOver for classification as well. We give a proof for its convergence
properties and consider benchmark results.

2 The Support Vector Machine

The SVM represents a linear classifier or function approximator, respectively. For given
sets of input vectors X = {x1, . . . ,xl} and output vectors Y = {y1, . . . , yl} the SV
solution for the inference of f(x) = y is always the best one in the sense that in clas-
sification the margin between the separating hyperplane and the two classes is largest
and in regression the obtained curve is the flattest one. In both cases one only needs a
few input vectors, the so-called Support Vectors, to describe the solution. This property
is very important. The lower the number of Support Vectors, the better the expected
generalisation capability [14].

The goal is to solve the optimisation problem

1
2
wT w = min

∀i ∈ {1, . . . , l} : yi(wT xi − b) ≥ 1

in classification, which is apparently equivalent to the maximisation of the margin hold-
ing ‖w‖, and

1
2
wT w = min

∀i ∈ {1, . . . , l} : |wT xi − b− yi| ≤ ε.

in regression tasks. Note that classification and regression are geometrically analogous
in the following sense. While in classification the Support Vectors are the ones lying on
the margin, that is having smallest distance to the separating hyperplane, in regression
the Support Vectors lie on the edges of the ε-tube around the function values. In classifi-
cation all other vectors are located more or less far away from the margin. In regression
they lie within the ε-tube. Hence SV classification can be seen as the perspective from
inside to outside the hyperplane area while SV regression is the other way around.

152 D. Schneegaß, K. Labusch, and T. Martinetz

An important advantage of SVMs is furthermore that the classifier or function ap-
proximator f(x) = wT x − b can be formulated in terms of the observations, i.e. as

f(x) =
(∑l

i=1 αixT
i

)
x− b. Therefore, it is possible to replace the inner product xT z

by a positive definite Kernel K(x, z) = 〈Φ(x), Φ(z)〉 which leads to the implicit use
of arbitrary feature spaces, whose definition has not necessarily to be known, making
profoundly non-linear problems linear.

3 The C2-SoftDoubleMaxMinOver Algorithm for Classification

The DoubleMinOver algorithm [1] as the first extension of MinOver is a simple maxi-
mal margin learning machine. Starting from any interim solution wt the method selects
two vectors each of both classes having the smallest margin to the hyperplane defined
by V = {v|wT v − b = 0}, that is ia,min = argmini,yi=a af(xi), respectively. Af-
terwards the Lagrange-coefficients αi will be increased by 1 to change the direction of
the weight vector given by ∀x : f(x) = wT x =

∑l
i=1 yiαiK(xi,x) towards these

two input vectors and increase their margins. By induction it can be seen that wt in-
deed tends to w∗ while t → ∞. It has been shown [15] that the angle γt between the
correct solution w∗ and the interim solution wt after t steps is bounded by O(t−1).
Furthermore the time complexity per iteration is O(l), where l is the number of input
vectors.

In order to achieve the dual SV solution, not to decrease the convergence speed and
to hold the optimisation constraints, in DoubleMaxMinOver the vectors with the largest
margin will be decreased, if it is known that they cannot be Support Vectors while the
ones with smallest margin will be increased twice. In addition we introduced a soft
margin approach working with an extended kernel K ′(xi,xj) = K(xi,xj)+

δi,j

C . It can
be seen that indeed the data remains linearly separable by construction [13] within this
extended feature space. Later we will see that all these statements can straightforwardly
be adopted for our regression approach.

The combination of this soft margin, the DoubleMinOver, and the MaxMinOver
approaches finally leads to the C2-SoftDoubleMaxMinOver [1,2,3] method, which is as
fast as the LibSVM toolbox on standard benchmarks and performs comparable results.

4 The MaxMinOver Regression Approach

More general than the classification task is the one of regression. Now the goal is to
approximate a function g(x) by using

f(x) =
l∑

i=1

αiK(xi,x) − b.

This can be interpreted as linear regression within an appropriate feature space, again
defined by the Kernel K . To get a scope for the minimisation of ‖w‖ the user defines

MaxMinOver Regression 153

an ε-tube around the real function values yi = g(xi). As in our soft margin classification
approach we consequently use the C2-SVM model for regression. If C → ∞ the Sup-
port Vector solution is in a way the simplest or the flattest one while making no more
error than ε. The Support Vectors are the vectors with Lagrange-coefficients αi �= 0
lying on the edges of the ε-tube. The introduction of a finite C is not only necessary as
regularisation parameter, but also if it cannot be guaranteed that a regression with an
error of at most ε is achievable at all. Fortunately the geometrical interpretation is sim-
ilar to the one in the C2-SVM classification, so it is not difficult to see that also in the
regression case an unequivocal Support Vector solution exists, which can be interpreted

Algorithm 1. The MaxMinOver Regression Algorithm
Require: given set of normed input vectors X = {(xi, yi), i ∈ {1, . . . , l}} with normed func-

tion values and parameters C and ε
Ensure: calculates the minimal hyperplane regressing the input data given in dual representation

set ∀i : αi ← 0, t ← 0, f ← xi → l
j=1 αjK(xj ,xi) + αi

C

R ← maxi,j,yi=1,yj=−1 (K(xi,xi) − 2K(xi, xj) + K(xj ,xj))
while the desired precision is not reached do

set t ← t + 1
find imin = arg mini (f(xi) − yi)
find imax = arg maxi (f(xi) − yi)
find iminNSV = arg maxi,αi>0 (f(xi) − yi)
find imaxNSV = arg mini,αi<0 (f(xi) − yi)
if (f(ximax) − yimax) − (f(ximin) − yimin) > 2ε then

if (f(ximinNSV) − yiminNSV) − (f(ximin) − yimin) > 4R2+16(2+3ε2+4ε)
t

then
set αimin ← αimin + 1

t
+ min 1

t
, αiminNSV

set αiminNSV ← αiminNSV − min 1
t
, αiminNSV

else
set αimin ← αimin + 1

t

end if
if (f(ximax) − yimax) − (f(ximaxNSV) − yimaxNSV) > 4R2+16(2+3ε2+4ε)

t
then

set αimax ← αimax − 1
t

− min 1
t
, −αimaxNSV

set αimaxNSV ← αimaxNSV + min 1
t
, −αimaxNSV

else
set αimax ← αimax − 1

t

end if
else

if (f(ximin) − yimin) − (f(ximinNSV) − yiminNSV) > 4R2+16(2+3ε2+4ε)
t

then
set αiminNSV ← αiminNSV − min 1

t
, αiminNSV

end if
if (f(ximax) − yimax) − (f(ximaxNSV) − yimaxNSV) > 4R2+16(2+3ε2+4ε)

t
then

set αimaxNSV ← αimaxNSV + min 1
t
, −αimaxNSV

end if
end if

end while
set b ← 1

2 ((f(ximin) − yimin) + (f(ximax) − yimax))

154 D. Schneegaß, K. Labusch, and T. Martinetz

as the solution with at most ε error within the extended feature space defined by
K ′(x, z) = K(x, z) + δ(x,z)

C . This is as reasonable as the statement that the precon-
ditioned linear equation system

(
K + 1

C El

)
α = y, which is used in kernalized Ridge

Regression [13], has a solution for all but finitely many C < ∞, even if the bias b = 0
and ε = 0.

As a first approach consider the direct adaptation of the DoubleMinOver algorithm.
As in the classification problem, where we choose one input vector each of both classes
with the smallest margin, we now choose the two input vectors making the largest
positive and negative regression error, respectively. Apparently, using an appropriate
step width, the algorithm converges to any feasible solution, that is all input vectors lie
within the ε-tube and the above constraint holds true by construction in each iteration.

Still if the Lagrange-coefficient of any of the input vectors will be included faulty
as potential Support Vectors, we need an instrumentation to turn back this decision, if
they are indeed non Support Vectors. Once again as in the classification task, where we
choose the input vectors each of both classes with the largest margin, we now choose
the two vectors lying furthest away from its edge of the ε-tube and dememorise them
by controlling the Lagrange-coefficients back without loosing convergence speed (see
algorithm 1). Consequently this is the MaxMinOver Regression algorithm. The difficult
looking dememorisation criterion will be explained in the next section.

4.1 On the Convergence of MaxMinOver Regression

Fig. 1. Construction of the classification problem. The black dots are the true samples which we
want to approximate. By shifting them orthogonal to the SVM fit curve in both senses of direction
and assigning different classes (bright (x1

i) and dark gray (x−1
i) dots) we construct a classification

problem whose maximal margin separating hyperplane is exactly the regression fit.

In the following without loss of generality we assume C → ∞ and suppose that a so-
lution with no more error than ε exists. Otherwise we choose an appropriate C > 0 and
reset K ′(x, z) = K(x, z)+ δ(x,z)

C . First of all, the Support Vector solution and only the

MaxMinOver Regression 155

SV solution is a fixed point of the algorithm. This can be seen as follows. Once we have
reached the SV solution, the outer condition (f(ximax) − yimax)−(f(ximin) − yimin) >
ε + ε of the algorithm is evaluated to false, all points have to be within the ε-tube. The
left hand side of the inner conditions is always 0, because only Support Vectors have
non-zero Lagrange coefficients and all Support Vectors lie exactly on the edge of the
ε-tube, while the right hand side is always positive. Hence nothing would change and
the algorithm has finished.

On the other hand, it can further be seen that no other configuration of α can be
a fixed point. If any pair of vectors lie outside of the ε-tube, then the outer condition
would be fulfilled. Otherwise there has to be at least one vector within the ε-tube and
not on its edge having non-zero Lagrange coefficient and therefore leading to a positive
fulfillment of the inner condition after a finite number of iterations.

Now we show that the MaxMinOver Regression algorithm indeed approaches the
Support Vector solution, by ascribing the regression problem to a classification problem.
We construct the classification problem within the extended (dim(Z)+1)-dimensional
space, where Z is the feature space and the additional dimension represents the function
values y, and demonstrate that the classification and the regression algorithms both
work uniformly in the limit. Let X = {x1, . . . ,xl} be the set of input vectors with its
function values Y = {y1, . . . , yn} and w∗ the Support Vector solution of the regression
problem. Of course, if one uses a non-linear feature space, then xi has to be replaced by
Φ(xi) or Φ′(xi), respectively. We construct the set X̂ = {x1

1,x
−1
1 , . . . ,x1

l ,x
−1
l } from

X by substituting

x1
i =

(
xi

yi

)
+

1 + ε

‖w∗‖2 + 1

(
w∗

−1

)
x−1

i =
(

xi

yi

)
− 1 + ε

‖w∗‖2 + 1

(
w∗

−1

)
and assigning the classes ya

i = a. The Support Vector solution of this classification

problem is ŵ∗ =
(

w∗

−1

)
apart from its norm with functional margin 1, because

min
i,y

max
b

y((ŵ∗)T xy
i − b) = min

i,y
max

b
y((w∗)T xi − yi − b) (1)

+1 + ε (2)

= −ε + 1 + ε

= 1

and for each vector v̂ �= ŵ∗ (with ‖v̂‖ = ‖ŵ∗‖) it holds both v̂T ŵ∗ 1+ε
‖w∗‖2+1 <

(ŵ∗)T ŵ∗ 1+ε
‖w∗‖2+1 = 1 + ε (compare eqn. part 2) and at least for the Support Vectors

either vT xi − yi − b ≥ ε or yi − vT xi + b ≥ ε using any bias b (compare eqn. part 1),
because w∗ is the Support Vector solution of the actual regression problem.

156 D. Schneegaß, K. Labusch, and T. Martinetz

Now suppose an interim solution w. Then MaxMinOver for classification and for
regression choose the same vectors in the next iteration. It holds for the first two find-
statements of algorithm 1

arg min
i

(wT xi − yi) = arg min
i

(
wT xi − yi + S

)
(3)

= arg min
i

ŵT x1
i

arg max
i

(wT xi − yi) = arg max
i

(
wT xi − yi − S

)
(4)

= arg max
i

ŵT x−1
i

= arg min
i

(
−ŵT x−1

i

)
with S =

(1 + ε)(wT w∗ + 1)
‖w∗‖2 + 1

and further for the the second two statements concerning the dememorisation of non
Support Vectors

arg max
i,αi>0

(wT xi − yi) = arg max
i,αi>0

(
wT xi − yi + S

)
(5)

= arg max
i,αi>0

ŵT x1
i

arg min
i,αi<0

(wT xi − yi) = arg min
i,αi<0

(
wT xi − yi − S

)
(6)

= arg min
i,αi<0

ŵT x−1
i

= arg max
i,αi<0

(
−ŵT x−1

i

)
.

Note that the constraints αi ≥ 0, respectively αi ≤ 0 implicitly hold for eq. 3, re-
spectively eq. 4 while for eqn. 5 and 6 it is necessary to choose only potential Support
Vectors of the correct classes for dememorisation.

The presented interrelationship implies that, if the classification algorithm will in-
crement or decrement some yiαi, then the regression algorithm does so as well. But
while ‖ŵclassification‖ increases linearly in time and converges to ŵ∗ (apart from its
norm), ‖ŵregression‖ must not increase arbitrarily. There exists a time tstart < t, from
which on ∃C1, C2 ∈ R : C1t < −ŵclassification

l+1 < C2t with C1 < C2. But for

ŵregression is ŵregression
l+1 = −1 implicitly given. Hence ‖ŵregression‖ has to be con-

strained and therefore we choose an appropriate step width of order O
(1

t

)
(instead of

normalising after each iteration). Although the harmonic series diverges and hence any
possible solution vector within the feature space is reachable, we want to emphasize
that the convergence speed can be tuned significantly by normalising Y or choosing an
appropriate constant factor for the step width.

MaxMinOver Regression 157

We derive the criterion for dememorisation of non Support Vectors from the clas-
sification method, where R2

classification ≤ maxi,j,yi=1,yj=−1 (xi − xj)2 has already
been proven [1,2]. As far this criterion must only be an upper bound, we estimate

R2
regression = max

i,j

(((
xi

yi

)
+

1 + ε

‖w∗‖2 + 1

(
w∗

−1

))
−

((
xj

yj

)
− 1 + ε

‖w∗‖2 + 1

(
w∗

−1

)))2

≤ R2
classification + 4

(
1 +

3ε2 + 4ε + 1
‖w∗‖2 + 1

)
≤ R2

classification + 4
(
2 + 3ε2 + 4ε

)
.

Note that we do not need to know the solution w∗. Hence it is possible to apply this
estimation in practice.

5 Experimental Results on Artificial Data

To evaluate the MaxMinOver Regression algorithm we constructed randomly generated
artificial datasets and modified the variance, the regression error, the parameters C and
ε, the number of iteration steps, the distribution of the data points, the number of training
examples, and the dimension of the feature space. The table shows the averaged results
of these evaluations. It can be seen that the regression error is comparable to the one
achieved by the LibSVM Toolbox. The higher the number of iterations the better is the
performance of our method and the closer to the results of the LibSVM, whose step
width was not changed. Only the number of Support Vectors is sometimes different.
More iteration steps in both methods should lead to a convergence of the number of
Support Vectors to each other.

Table 1. Averaged regression results obtained with MaxMinOver Regression (B) on artificial
data. For comparison averaged results obtained with the ε-SVR of the LibSVM Toolbox (A) are
listed. The simple MaxMinOver Regression algorithm achieves comparable results with a few
training steps. (Caption: w norm of weight vector, L2 squared error, L2,ε squared error tolerating
error ε, |SV | number of Support Vectors)

Parameters Results
steps distr number ‖wA‖ ‖wB‖ L2,A L2,B L2,ε,A L2,ε,B |SVA| |SVB | ‖wA−wB‖

‖wA‖
1200 2.0218 2.0431 0.0052 0.0043 0.0007 0.0008 106 111 0.0368
2400 2.0231 2.0358 0.0052 0.0041 0.0007 0.0008 107 107 0.0289
6000 2.0372 2.0426 0.0051 0.0045 0.0007 0.0007 107 89 0.0134

uniform 2.3792 2.3922 0.0054 0.0044 0.0003 0.0004 71 102 0.0137
normal 0.9718 0.9853 0.0045 0.0041 0.0020 0.0020 215 105 0.0639

50 1.9600 1.9827 0.0080 0.0063 0.0006 0.0006 42 43 0.0342
500 2.0947 2.0983 0.0024 0.0023 0.0009 0.0010 171 162 0.0183

158 D. Schneegaß, K. Labusch, and T. Martinetz

6 Conclusions

Regression is an important mathematical problem which occurs in a wide variety of
practical applications. Support Vector regression achieves results with a high gener-
alisation capability. Different complicated Support Vector regression approaches have
been introduced in the past.

The main goal of this paper is hence to show that even Support Vector regression can
be dealt with in a simple way with the MaxMinOver Regression approach. In bench-
marks the method achieves performances as good as the LibSVM Toolbox. Both, its
simplicity and its good performance makes this approach interesting for implementa-
tions in industrial environments.

References

1. Martinetz, T., Labusch, K., Schneegass, D.: Softdoubleminover: A simple procedure for
maximum margin classification. Proc. of the International Conference on Artificial Neural
Networks (2005) 301–306

2. Martinetz, T.: Maxminover: A simple incremental learning procedure for support vector
classification. Proc. of the International Joint Conference on Neural Networks (IEEE Press)
(2004) 2065–2070

3. Schneegass, D., Martinetz, T., Clausohm, M.: Onlinedoublemaxminover: A simple approxi-
mate time and information efficient online support vector classification method. Proc. of the
European Symposium on Artificial Neural Networks (2006 (in preparation))

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (1995) 273–297
5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)
6. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon,

I., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for
handwritten digit recognition. Int.Conf.on Artificial Neural Networks (1995) 53–60

7. Osuna, E., Freund, R., Girosi, F.: Training support vector machines:an application to face
detection. CVPR’97 (1997) 130–136

8. Schölkopf, B.: Support vector learning (1997)
9. Friess, T., Cristianini, N., Campbell, C.: The kernel adatron algorithm: a fast and simple

learning procedure for support vector machine. Proc. 15th International Conference on Ma-
chine Learning (1998)

10. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization.
In: Advances in Kernel Methods - Support Vector Learning. MIT Press (1999) 185–208

11. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest
point algorithm for support vector machine classifier design. IEEE-NN 11(1) (2000) 124–
136

12. Li, Y., Long, P.: The relaxed online maximum margin algorithm. Machine Learning 46(1-3)
(2002) 361–387

13. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines And Other Kernel-based Learn-
ing Methods. Cambridge University Press, Cambridge (2000)

14. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Inc., New York (1998)
15. Martinetz, T.: Minover revisited for incremental support-vector-classification. Lecture Notes

in Computer Science 3175 (2004) 187–194

A Variational Formulation for the
Multilayer Perceptron

Roberto Lopez and Eugenio Oñate

International Center for Numerical Methods in Engineering (CIMNE),
Technical University of Catalonia (UPC),

Barcelona, Spain
rlopez@cimne.upc.edu, onate@cimne.upc.edu

www.cimne.com

Abstract. In this work we present a theory of the multilayer percep-
tron from the perspective of functional analysis and variational calculus.
Within this formulation, the learning problem for the multilayer percep-
tron lies in terms of finding a function which is an extremal for some
functional. As we will see, a variational formulation for the multilayer
perceptron provides a direct method for the solution of general varia-
tional problems, in any dimension and up to any degree of accuracy. In
order to validate this technique we use a multilayer perceptron to solve
some classical problems in the calculus of variations.

1 Introduction

Queen Dido of Carthage was apparently the first person to attack a problem
that can readily be solved by using the calculus of variations. Dido, having been
promised all of the land she could enclose with a bull’s hide, cleverly cut the hide
into many lengths and tied the ends together. Having done this, her problem was
to find the closed curve with a fixed perimeter that encloses the maximum area
[1]. The problem is based on a passage from Virgil’s Aeneid:

The Kingdom you see is Carthage, the Tyrians, the town of Agenor;
But the country around is Libya, no folk to meet in war.
Dido, who left the city of Tyre to escape her brother,
Rules here-a long a labyrinthine tale of wrong
Is hers, but I will touch on its salient points in order...
Dido, in great disquiet, organised her friends for escape.
They met together, all those who harshly hated the tyrant
Or keenly feared him: they seized some ships which chanced to be ready...
They came to this spot, where to-day you can behold the mighty
Battlements and the rising citadel of New Carthage,
And purchased a site, which was named ‘Bull’s Hide’ after the bargain
By which they should get as much land as they could enclose with a bull’s hide.

Despite the circle appears to be an obvious solution to Dido’s problem, proving
this fact is rather difficult. Zenodorus proved that the area of the circle is larger

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 159–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 R. Lopez and E. Oñate

than that of any polygon having the same perimeter, but the problem was not
rigorously solved until 1838 by Jakob Steiner [1].

Although the history of variational calculus dates back to the ancient Greeks,
it was not until the seventeenth century in western Europe that substantial
progress was made. A problem of historical interest is the brachistochrone prob-
lem, posed by Johann Bernoulli in 1696 [1]. The term brachistochrone derives
from the Greek ‘brachistos’ (the shortest) and ‘chronos’ (time):

Given two points A and B in a vertical plane, what is the curve traced out
by a particle acted on only by gravity, which starts at A and reaches B in the
shortest time?

Sir Isaac Newton was challenged to solve the problem, and did so the very
next day. In fact, the solution to the brachistochrone problem, which is a segment
of a cycloid, is credited to Johann and Jacob Bernoulli, Sir Isaac Newton and
Guillaume de L’Hospital [1]. In that context, Dido’s problem was called the
isoperimetric problem, and it was stated as:

Of all simple closed curves in the plane of a given length l, which encloses the
maximum area?

The aim of both the brachistochrone and the isoperimetric problems is to find
a function which is the minimal or the maximal value of a specified functional.
By a functional, we mean a correspondence which assigns a number to each
function belonging to some class [2]. The calculus of variations gives methods
for finding extremals of functionals, and problems that consist in finding minimal
and maximal values of functionals are called variational problems [2].

While some simple variational problems can be solved analytically, the only
practical technique for general problems is to approximate the solution using di-
rect methods [2]. The fundamental idea underlying the so called direct methods
is to consider the variational problem as a limit problem for some function op-
timization problem in many dimensions [2]. Unfortunately, variational problems
are difficult to solve, and new numerical methods need to be developed in order
to overcome that difficulties.

Neural networks is one of the main fields of artificial intelligence. The multi-
layer perceptron is an important model of neural network, and much of the lit-
erature in the area is referred to that model. Traditionally, the learning problem
for the multilayer perceptron has been formulated in terms of the minimization
of an error function of the free parameters in the network, in order to fit the
neural network to an input-target data set [3]. In that way, the only learning
tasks allowed for the multilayer perceptron are data modelling type problems,
such as function regression or pattern recognition.

In this work we present a variational formulation for the multilayer perceptron.
Within this formulation, the learning problem for the multilayer perceptron lies
in terms of solving a variational problem by minimizing a performance functional

A Variational Formulation for the Multilayer Perceptron 161

of the function space spanned by the network. The choice of a suitable perfor-
mance functional depends on the particular application. On the other hand, the
performance functional might need the integration of functions, ordinary differ-
ential equations or partial differential equations in order to be evaluated.

As we will see, neural networks are not only able to solve data modelling prob-
lems, but also a wide range of mathematical and physical problems. More specif-
ically, a variational formulation for neural networks provides a direct method for
solving general variational problems.

In order to validate this numerical method for the solution of variational
problems, we use a multilayer perceptron to solve the brachistochrone problem
and the isoperimetric problem, and compare the results provided by the neural
network to the analytical results.

2 The Multilayer Perceptron Function Space

A neuron model is the basic information processing unit in a neural network, and
the perceptron is the characteristic neuron model in the multilayer perceptron
[4]. On the other hand, artificial neurons can be combined in a network archi-
tecture to form a neural network. The characteristic network architecture in the
multilayer perceptron is the so called feed-forward architecture [4]. In this way,
a multilayer perceptron can be defined as a feed-forward network architecture
composed of perceptron neuron models.

Mathematically, a multilayer perceptron spans a parameterized function space
V from an input X ⊆ Rn to an output Y ⊆ Rm [5]. Elements of V are parame-
terized by the free parameters in the network, which can be grouped together
in a s-dimensional free parameter vector α = (α1, ..., αs). The dimension of the
function space V is therefore s. The elements of the function space spanned by
a multilayer perceptron are of the form

y : Rn → Rm

x �→ y(x;α).

A multilayer perceptron with as few as one hidden layer of sigmoid neurons and
an output layer of linear neurons provides a general framework for approximating
any function from one finite dimensional space to another up to any desired degree
of accuracy, provided sufficiently many hidden neurons are available. In this sense,
multilayer perceptron networks are a class of universal approximators [6].

3 The Variational Problem

Traditionally, the learning problem for the multilayer perceptron has been for-
mulated in terms of the minimization of an error function of the free parameters
in the network, in order to fit the neural network to an input-target data set [3].
In that way, the only learning tasks allowed for the multilayer perceptron are
data modelling type problems.

162 R. Lopez and E. Oñate

In a variational formulation for the multilayer perceptron, the concept of error
function, e(α), is changed by the concept or performance functional, F [y(x;α)]
[5]. A performance functional for the multilayer perceptron is of the form

F : V → R

y(x;α) �→ F [y(x;α)].

The performance functional defines the task that the network is required to
accomplish and provides a measure of the quality of the representation that the
network is required to learn. In this way, the choice of a suitable performance
functional depends on the particular application. As we will see, changing the
concept of error function by the concept of performance functional allows us
to extend the number of learning tasks for the multilayer perceptron to any
variational problem. Some examples are optimal control problems [5], inverse
problems [7] or optimal shape design problems.

The learning problem for the multilayer perceptron can then be formulated
in terms of the minimization of a performance functional of the function space
spanned by the neural network [5]:

Problem 1 (Variational problem for the multilayer perceptron). Let V be the
space of all functions y(x;α) spanned by a multilayer perceptron, and let s be
the dimension of V . Find a function y∗(x;α∗) ∈ V for which the functional
F [y(x;α)], defined on V , takes on a minimum or a maximum value.

A variational problem for the multilayer perceptron can be specified by a set of
constraints, which are equalities or inequalities that the solution must satisfy.
Such constraints are expressed as functionals. An easy approach is to reduce the
constrained problem into an unconstrained problem by adding a penalty term
to the original performance functional for each constraint in the problem [5].

4 The Reduced Function Optimization Problem

The performance functional, F [y(x;α)], has a performance function associated,
f(α), which is defined as a function of the free parameters in the network [5],

f : Rs → R
α �→ f(α).

The minimum or maximum value of the performance functional is achieved
for a vector of free parameters at which the performance function takes on a
minimum or maximum value, respectively. Therefore, the learning problem for
the multilayer perceptron, formulated as a variational problem, can be reduced
to a function optimization problem [5]:

Problem 2 (Reduced function optimization problem for the multilayer percep-
tron). Let Rs be the space of all vectors α spanned by the free parameters
of a multilayer perceptron. Find a vector α∗ ∈ Rs for which the function f(α),
defined on Rs, takes on a minimum or a maximum value.

A Variational Formulation for the Multilayer Perceptron 163

In this sense, a variational formulation for the multilayer perceptron provides a
direct method to approximate the solution of general variational problems, in
any dimension and up to any desired degree of accuracy [5].

The training algorithm is entrusted to solve the reduced function optimiza-
tion problem. There are many different training algorithms for the multilayer
perceptron, which have different requirements and characteristics. One of the
most used is the conjugate gradient [3].

5 The Brachistochrone Problem

In this section we solve the brachistochrone problem by means of a multilayer
perceptron, and compare the neural network results to the analytical results.
For this example we take the points A = (a, fa) and B = (b, fb) to be A = (0, 1)
and B = (1, 0). The problem is solved with the Flood library [8].

The first step is to choose a network architecture to represent the curve. Here
a multilayer perceptron with a sigmoid hidden layer and a linear output layer is
used. This neural network is a class of universal approximator [6]. The curve is
to be represented in cartesian coordinates y = y(x), so the network must have
one input and one output neuron. As an initial guess, we use six neurons in the
hidden layer. Such a multilayer perceptron defines a family V of parameterized
functions y(x;α) of dimension s = 19, which is the number of free parameters in
the network. Figure 1 is a graphical representation of this network architecture.

x y

Fig. 1. Network architecture for the brachistochrone problem

The second step is to derive a performance functional for the brachistochrone
problem. The time for a particle to travel from point A to point B along a curve
y(x;α) is given by the integral [1]

T [y(x;α)] =
1√
2g

∫ b

a

√
1 + [y′(x;α)]2

ya − y(x;α)
dx, (1)

where g = 9.81 is the gravitational acceleration. The constraints of this problem
can be expressed as error functionals,

164 R. Lopez and E. Oñate

EA[y(x;α)] = y(a) − ya

= 0, (2)
EB[y(x;α)] = y(b) − yb

= 0. (3)

Making use of Equation (1) and considering the constraints (2) and (3), we
get

F [y(x;α)] = ρT
1√
2g

∫ b

a

√
1 + [y′(x;α)]2

ya − y(x;α)
dx

+ ρA (y(a;α) − ya)2 + ρB (y(b;α) − yb)
2
, (4)

where ρT , ρA and ρB are penalty term ratios, which are set to 10−3, 1 and 1,
respectively. Please note that evaluation of the performance functional in Equa-
tion (4) requires a numerical method for the integration of functions. Here we
choose the Simpson’s composite method [9] with 100 integration intervals. The
brachistochrone problem for the multilayer perceptron can then be stated as:

Problem 3 (Brachistochrone problem for the multilayer perceptron). Let V be
the space of all functions y(x;α) spanned by a multilayer perceptron with 1
input, 6 sigmoid neurons in the hidden layer and 1 linear output neuron. The
dimension of V is 19. Find a vector of free parameters α∗ ∈ R19 that addresses
a function y∗(x;α∗) ∈ V for which the functional (4), defined on V , takes on a
minimum value.

The third step is to choose a suitable training algorithm for solving the reduced
function optimization problem. Here we use a conjugate gradient with Polak-
Ribiere search direction and Brent optimal step size methods for training [3].
The tolerance in the Brent’s method is set to 10−6. On the other hand, training
of the neural network with the conjugate gradient requires the evaluation of the
performance function gradient vector ∇f(α) [3]. This is carried out by means
of numerical differentiation. In particular, we use the symmetrical central differ-
ences method [3] with an ε value of 10−6. In this example, we set the training
algorithm to stop after 1000 epochs of the training process. Table 1 shows the
training results for this problem.

Table 1. Training results for the brachistochrone problem

F [y∗(x;α∗)] T [y∗(x; α∗)] EA[y∗(x; α∗)] EB[y∗(x; α∗)]

3.404 · 10−4 0.576 2.889 · 10−3 −5.716 · 10−5

The errors made in the constraints by the multilayer perceptron are of order
10−3 and 10−5 for points A and B, respectively. The descent time provided by
that neural network is 0.576, while that provided by the analytical result is 0.577.

A Variational Formulation for the Multilayer Perceptron 165

This yields a percentage error of around −0.173%. Results here are good, since
the constraint errors made by the network are very small and the descent time
provided by the network is very similar to the descent time for the brachistochrone.
Figure 2 illustrates the neural network solution to the brachistochrone problem.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Neural network solution to the brachistochrone problem

6 The Isoperimetric Problem

In this section we solve the isoperimetric problem by means of a multilayer
perceptron, and compare the neural network results to the analytical results.
The perimeter goal is set to be l = 1. This problem is solved with the Flood
library [8].

Here a multilayer perceptron with a sigmoid hidden layer and a linear output
layer is used. This neural network is a class of universal approximator [6]. The
closed curve is to be represented in polar coordinates r = r(θ), for θ ∈ [0, 2π],
so the network must have one input and one output neuron. We use 6 neurons
in the hidden layer. This multilayer perceptron spans a family V of functions
r(θ;α) with dimension s = 19. Figure 3 is a graphical representation of this
network architecture.

In order to derive a performance functional for the isoperimetric problem we
first consider the expression for the area enclosed by a polar curve [1],

A[r(θ;α)] =
1
2

∫ 2π

0
[r(θ;α)]2dθ. (5)

The perimeter constraint is expressed as an error functional, by considering
the arc length of a curve in polar coordinates [1]

EP [r(θ;α)] =
∫ 2π

0

√
[r(θ;α)]2 + [r′(θ;α)]2dθ − l

= 0. (6)

166 R. Lopez and E. Oñate

theta r

Fig. 3. Network architecture for the isoperimetric problem

Similarly, the join constraint can be expressed as an error functional,

EJ [r(θ;α)] = r(2π;α) − r(0;α)
= 0. (7)

Making use of Equations (5), (6) and (7), we obtain the performance functional
to be minimized,

F [r(θ;α)] = − ρA
1
2

∫ 2π

0
[r(θ;α)]2dθ

+ ρP

(∫ 2π

0

√
[r(θ;α)]2 + [r′(θ;α)]2dθ − l

)2

+ ρJ (r(2π;α) − r(0;α))2 , (8)

where ρA = 10−3, ρP = 1 and ρJ = 1 are penalty term ratios. Evaluation of (8)
requires a numerical method for the integration of functions. Here we choose the
Simpson’s composite method [9] with 100 integration intervals. The isoperimetric
problem for the multilayer perceptron is then stated as:

Problem 4 (Isoperimetric problem for the multilayer perceptron). Let V be the
space of all functions r(θ;α) spanned by a multilayer perceptron with 1 input, 6
sigmoid neurons in the hidden layer and 1 linear output neuron. The dimension
of V is 19. Find a vector of free parameters α∗ ∈ R19 that addresses a function
r∗(θ;α∗) ∈ V for which the functional (8), defined on V , takes on a minimum
value.

Here we use a conjugate gradient with Polak-Ribiere search direction and Brent
optimal step size methods for training [3]. The tolerance in the Brent’s method
is set to 10−6. Evaluation of the performance function gradient vector ∇f(α) [3]
is carried out by means of the symmetrical central differences method [3], with
ε = 10−6. The training algorithm is set to stop after 100 epochs.

A Variational Formulation for the Multilayer Perceptron 167

Table 2. Training results for the isoperimetric problem

F [r∗(θ; α∗)] A[r∗(θ; α∗)] EP [r∗(θ; α∗)] EJ [r∗(θ; α∗)]

−6.332 · 10−6 0.079579 −1.266 · 10−5 −4.228 · 10−9

The perimeter error is of order 10−5, while the join error is of order 10−9. The
area of the closed curve provided by the neural network is 0.079579, while that
of the circle is 0.079577. This yields a percentage error of around 2.513 · 10−3%.
Results here are also good, since the error made in all the constraints by the
network is very small and the area provided by the network is very similar to
that of the circle. Figure 4 illustrates the network solution to the isoperimetric
problem.

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 4. Neural network solution to the isoperimetric problem

7 Conclusions

A variational formulation for neural networks provides a direct method for the
solution of general variational problems, in any dimension and up to any degree
of accuracy. This numerical method has been validated for two classical problems
in the calculus of variations with analytical solution. Ongoing work focuses on
the solution of variational problems in engineering. Some examples are optimal
control, inverse or optimal shape design problems.

References

1. Weisstein, E. W.: MathWorld - A Wolfram Web Resource. http://mathworld. wol-
fram.com (2006).

2. Elsgolc, L. E.: Calculus of Variations. Pergamon Press (1961).

168 R. Lopez and E. Oñate

3. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press
(1995).

4. Š́ıma, J. and Orponen, P.: General-Purpose Computation with Neural Networks: A
Survey of Complexity Theoretic Results. Neural Computation 15 (2003) 2727-2778.

5. Lopez, R., Balsa-Canto, E. and Oñate, E.: Artificial Neural Networks for the So-
lution of Optimal Control Problems. Proceedings of the Sixth Conference on Evo-
lutionary and Deterministic Methods for Design, Optimisation and Control with
Applications to Industrial and Societal Problems (2005).

6. Hornik, K., Stinchcombe, M. and White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2-5 (1989) 359-366.

7. Dadvand, P., Lopez, R. and Oñate, E.: Artificial Neural Networks for the Solution
of Optimal Control Problems. Proceedings of the International Conference ERCOF-
TAC 2006 (2006).

8. Lopez, R.: Flood: An Open Source Neural Networks C++ Library. www.cimne.com/
flood (2005).

9. Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag
(1980).

Natural Conjugate Gradient Training of Multilayer
Perceptrons

Ana González and José R. Dorronsoro

Dpto. de Ingenierı́a Informática and Instituto de Ingenierı́a del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. For maximum log–likelihood estimation, the Fisher matrix defines a
Riemannian metric in weight space and, as shown by Amari and his coworkers,
the resulting natural gradient greatly accelerates on–line multilayer perceptron
(MLP) training. While its batch gradient descent counterpart also improves on
standard gradient descent (as it gives a Gauss–Newton approximation to mean
square error minimization), it may no longer be competitive with more advanced
gradient–based function minimization procedures. In this work we shall show
how to introduce natural gradients in a conjugate gradient (CG) setting, showing
numerically that when applied to batch MLP learning, they lead to faster con-
vergence to better minima than that achieved by standard euclidean CG descent.
Since a drawback of full natural gradient is its larger computational cost, we
also consider some cost simplifying variants and show that one of them, diago-
nal natural CG, also gives better minima than standard CG, with a comparable
complexity.

1 Introduction

The standard approach in Multilayer Perceptron (MLP) training is to minimize the
square error function

e(W) =
1
2

∫
||F (X,W) − Y ||2dP (X,Y),

where Y denotes the target associated to a pattern X , F (X,W) is the MLP transfer
function and P (X,Y) is the joint (X,Y) probability distribution. In practice, rather
than minimizing the global error e(W), one tries to do so for its sample version

ê(W) =
1

2N

∑
i

||F (Xi,W) − Yi||2.

In this light MLP training can be seen as a nonlinear regression problem, but if we
assume an error model Y = F (X,W) + Z , with Z a multivariate gaussian g(Z) with
density

g(Z) =
1√
2πσ

exp
−||Z||2

2σ2 =
1√
2πσ

exp
−||f(X,W)−Y ||2

2σ2 .

� With partial support of Spain’s TIN 2004–07676.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 169–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 A. González and J.R. Dorronsoro

we can alternatively formulate MLP training as a semiparametric maximum log likeli-
hood estimation problem. In fact, the likelihood associated to the sample (Xi, Yi) is∏

i

g(Zi) =
∏

i

1√
2πσ

exp
−||f(Xi,W)−Yi||2

2σ2 ,

and therefore

− log

(∏
i

g(Zi)

)
=

1
2

∑
i

||F (Xi,W) − Yi||2 + C,

with C a suitable constant.
In this general context of likelihood estimates for parametric probability models, it

has been shown by S.I. Amari [2,8] that a a Riemannian structure can be defined in
weight space, for which the metric tensor is given by the matrix

G(W) = EX, y[||f − Y ||2(∇W f)(∇W f)t]
= σ2EX [(∇W f)(∇W f)t]. (1)

and the inner product to be used in the tangent space at a point W is 〈u, v〉W =
utG(W)v. It turns out [1] that the maximum descent direction of the global error e(W)
with respect to the G(W) metric is then given by the “natural” gradient

∇G e(W) = G(W)−1∇e(W).

As shown by Amari and his coworkers [1,13], this can be put to advantage when on–
line MLP training is considered. In fact, denoting the local error ||f(X,W) − Y ||2 as
e(X,Y ;W) and defining natural gradient descent as

Wt+1 = Wt − ηtG(Wt)−1∇e(Xt, yt;Wt), (2)

one obtains what probably is the fastest converging MLP on–line training method.
The main drawback of on–line natural gradient training is its complexity. For a single

hidden layer MLP with input dimension D, H hidden units and C dimensional outputs,
and an N pattern sample, the weight–bias dimension is then D = H(D+1)+C(H+1),
which would imply a cost O(D3) for G’s inversion and an overall cost of O(D3N) for
each on–line full sample pass. There are ways in the on–line setting to alleviate this
[3,14] and its impact is much smaller if batch natural gradient is considered. In fact,
the inversion of G is done only once per batch epoch and if N � D, as it happens
in most settings, the main cost is then the computation of the matrix G, which is then
O(ND2).

However, G coincides with the Gauss–Newton approximation to the Hessian of a
square error function, and batch natural gradient descent can be seen [5,6] to be closely
related to the Levenberg–Marquardt approach to mean square minimization. In turn,
this can be used to give another explanation of the speed–up in batch MLP training
with respect to standard gradient descent. But for batch MLP training there are other

Natural Conjugate Gradient Training of Multilayer Perceptrons 171

simpler methods such as the conjugate gradient or the variable metric methods, which
also have a fast convergence without needing costly Hessian computations.

In any case, the introduction of a Riemannian structure in weight space through the
Fisher metric can be done independently [12,8] of the minimization setting described
above, and the resulting fast on–line convergence could also be considered as a conse-
quence of the “naturalness” of the Fisher metric. This should also be reflected, for in-
stance, in ways to improve on established batch minimization methods. Some of these
methods rely on Hessian computations or approximations, something that may not be
easy to do in a Riemannian setting. The situation should be simpler for gradient based
methods. Among these, the best known is the conjugate gradient method, a good choice
for instance for batch MLP training [7]. In the next section we shall briefly review con-
jugate gradient and show how to define a natural conjugate gradient and in section 3 we
shall numerically illustrate its advantages over its standard counterpart. The paper will
finish with a brief review of the paper’s results and some concluding remarks.

2 Natural Conjugate Gradient

The standard conjugate gradient (CG) [10] method seeks a fast way to attain the mini-
mum of a general function f(W) by succesively performing for i = 0, . . ., the following
steps from an initial W0 and g0 = h0 = −∇ f(W0):

1. Define gi+1 = −∇f(Wi+1), where Wi+1 is the minimum of f over the line {Wi +
thi : t > 0};

2. Set hi+1 = gi+1 + γi+1hi, with

γi+1 =
gi+1 · gi+1

gi · gi
.

The rationale for this approach comes from the fact that, for a quadratic e(W) = c− b ·
W + 1

2W
tHW , the above defined gi, hi verify for j < i

gi · gj = gi · hj = ht
iHhj = 0.

It thus follows that for such a quadratic e, a minimum W ∗ is achieved in at most D
iterations, with D the dimension of W .

The above formulation can be easily extended when the standard gradient of the mse
function e(W) is replaced by its natural counterpart. More precisely, if we denote the
natural gradient at Wi+1 as g̃i+1 = −G−1

i+1∇e(Wi+1), with Gi+1 the natural metric at
Wi+1, and define

γ̃i+1 =
〈g̃i+1, g̃i+1〉Gi+1

〈g̃i, g̃i〉Gi

,

the new conjugate direction is then h̃i+1 = g̃i+1 + γ̃i+1h̃i. Under some extra assump-
tions, it can be shown that for the above g̃i, h̃i, and a quadratic e(W),

〈g̃i+1, g̃i〉Gi+1 = 〈g̃i+1, h̃i〉Gi+1 = h̃t
i+1Hh̃i = 0. (3)

172 A. González and J.R. Dorronsoro

Table 1. Training architectures used in the numerical experiments

Problem set input dim. hid. units targ. dim
br. cancer 9 5 2
glass 9 6 6
heart dis. 13 7 5
ionosphere 33 3 2
iris 4 3 3
pima 7 4 2
thyroid 8 5 2
XOR4 3 10 4
abalone 7 4 1
housing 13 5 1

It easily follows from the above discussion that if we do not take into account the
line minimization required to obtain the Wi, the cost of standard and natural CG is es-
sentially that of computing the corresponding gradients. We recall that for an N pattern
sample and a single hidden layer MLP with input dimension D, H hidden units and C
dimensional outputs, the cost of the mse standard gradient is O(NDHC) per batch it-
eration. When natural gradient is considered and we denote the number of MLP weights
as D = H(D + 1) + C(H + 1) as done before, this cost is dominated by the rather
larger cost O(ND2) = O(N(DH + HC)2) of computing the Fisher matrix. Recall
that the D2 term is due to the neeed to compute about D2/2 expectations

E

[
∂e

∂wlk

∂e

∂wnm

]
. (4)

There are several ways to lower this. We may begin by using a block–diagonal version
of G, where if denote by wO

oh the hidden–to–output weights and by wH
hi the input–to–

hidden weights, we simply assume that

E

[
∂e

∂wO
oh

∂e

∂wH
hi

]
≈ 0. (5)

The resulting cost would then be O(N(H2D2 + C2H2)). We can further reduce the
complexity assuming [5] independence between the output ok of unit k at a given layer
and the generalized error δl of unit l of the next layer. Since we have ∂e(X,Y ;W)/
∂wlk = δlok for the local gradient [4], we can therefore write

E

[
∂e

∂wlk

∂e

∂wnm

]
= E [δlokδnom] ≈ E [δlδn]E [okom] .

Precomputing the matrices E [δlδn] and E [okom] for the input–to–hidden and hidden–
to–output weights has a cost of O(N(C2 + H2)) for the δ matrices and O(N(H2 +
D2)) for the o matrices. The overall cost of this “independent” natural gradient is then
O(N(D2+H2+C2)), which now is dominated by the O(NDHC) cost of the standard

Natural Conjugate Gradient Training of Multilayer Perceptrons 173

Table 2. Final mean mse values and their standard deviation for standard CG (second column),
natural CG (third column), diagonal natural CG (fourth column) and line minimization natural
gradient. Best final values overall when equality of means is rejected at the 5 % level are given in
bold face, second place values in italics and third place values in typewriter type.

Problem set standard CG natural CG diagonal NCG line min. NCG
breastc 0.0382 ± 0.0005 0.0306 ± 0.0010 0.0315 ± 0.0011 0.0405 ± 0.0009
glass 0.3499 ± 0.0107 0.3357 ± 0.0090 0.3383 ± 0.0103 0.3997 ± 0.0112
heartdis 0.3444 ± 0.0070 0.3373 ± 0.0066 0.3350 ± 0.0089 0.4126 ± 0.0060
ionosphere 0.0358 ± 0.0025 0.0298 ± 0.0037 0.0307 ± 0.0035 0.1026 ± 0.0092
iris 0.0453 ± 0.0012 0.0384 ± 0.0002 0.0384 ± 0.0002 0.0504 ± 0.0028
pima 0.2263 ± 0.0050 0.2189 ± 0.0058 0.2205 ± 0.0066 0.2409 ± 0.0064
thyroid 0.0488 ± 0.0007 0.0400 ± 0.0020 0.0416 ± 0.0019 0.0492 ± 0.0020
xor405 0.1615 ± 0.0022 0.1470 ± 0.0020 0.1477 ± 0.0018 0.1721 ± 0.0057
abalone 0.4172 ± 0.0004 0.4112 ± 0.0019 0.4140 ± 0.0017 0.4122 ± 0.0022
housing 0.0789 ± 0.0029 0.0706 ± 0.0030 0.0771 ± 0.0031 0.0735 ± 0.0025

gradient. Finally, the simplest approach would be to consider what we may call diagonal
natural gradient, where we replace the full Fisher matrix G(W) by its diagonal, which
results in a cost of O(N(DH + HC)), dominated again by the cost of standard CG.

In the following section we shall compare the perfomance against standard CG of
natural CG and its pure diagonal variant. Similar results are obtained in the other cases
and will be published elsewhere.

3 Numerical Examples

We shall compare natural conjugate gradient MLP training against standard conjugate
gradient on 10 datasets. Two of these datasets correspond to regression problems and 8
to classification problems. Nine of the datasets are taken from the UCI database [9]: we
shall work with the abalone age and Boston housing regression problems, and the classi-
fication problems given by the Wisconsin breast cancer, glass, heart disease, ionosphere,
iris, diabetes in Pima indians and thyroid disease datasets. In some instances the UCI
repository gives separate training and test sets. Since we are interested only on square
error minimization, in these cases we join both sets in a single training set.

The tenth dataset, which we denote XOR4, is a 4 class synthetic problem, an ex-
tension of bidimensional XOR to 3 dimensions, where eight 0.5 standard deviation
gaussian distributions centered at the opposite corners of the unit cube are consid-
ered and four classes are defined pairing diagonally opposite distributions. That is, the
gaussian centers of the first class are at (−1,−1,−1) and (1, 1, 1), those of the second
are at (−1,−1, 1) and (1, 1,−1) and so on.

In all cases we have normalized input components to zero mean and one variance,
and we also have done so for target values in the regression problems. Table 1 shows
the training parameters used; the number of hidden units has been set heuristically, but
it essentially agrees with values used in other studies.

174 A. González and J.R. Dorronsoro

 0.1

 1

 1 10 100 1000

 xor4 cg
 xor4 cng

 xor4 diag cng

Fig. 1. Mse evolution for the XOR4 problem of standard (solid line), natural (large dash line)
conjugate and diagonal natural (small dash line) conjugate gradients

We have used the Numerical Recipes implementation of standard conjugate gradi-
ent ([11], section 10.6) and adapted it for natural conjugate gradient. Instead of the
Fletcher–Reeves formula for γ̃i+1 given in section 2, we have used the Polak–Ribiere
variant, as it seems better suited for general function minimization [10,11], namely

γ̃i+1 =
〈g̃i+1, g̃i+1 − g̃i〉Gi+1

〈g̃i, g̃i〉Gi

,

Also, to avoid singularity problems, we invert the matrix G + µI instead of G, with I
the identity matrix and the scalar µ having an initial value of 0.05 that is decreased by
a factor of 0.9 per iteration. In all cases we have run 30 independent trainings starting
at different initial weights, with a maximum of 2000 gradient iterations (in many cases
the Numerical Recipes implementation makes natural and standard CG descent to stop
well before that limit is reached). To avoid instabilities due to training divergence, of all
these, only the 20 runs with the best final mean square errors (mse) values are selected
and their mean and standard deviations computed. Notice that there are more significant
ways to measure MLP performance, such as computing for instance test set accuracies.
However we are essentially comparing function minimization procedures, which in the
MLP case means to compare final mse values.

Table 2 gives for each data set these final values for standard (second column), and
full natural (third) and diagonal (fourth) CG. It also shows results for line mimization
based on natural gradient (fifth column). To better compare them we have performed
pairwise mean equality tests between all procedures. The table shows in bold face the
smaller overall value when equality of means is rejected at the 5% confidence level. It is
given in 4 cases by the natural conjugate gradient alone, and in the other 6 cases the per-
formance of natural CG and its diagonal counterpart is similar in the sense that equality

Natural Conjugate Gradient Training of Multilayer Perceptrons 175

 0.1

 1 10 100 1000

housing cg
housing cng

housing diag cng

Fig. 2. Mse evolution for the housing problems of standard (solid line), natural (large dash line)
conjugate and diagonal natural (small dash line) conjugate gradients

 0.1

 1 10 100 1000

thyroid cg
thyroid cng

thyroid diag cng

Fig. 3. Mse evolution for the thyroid problem of standard (solid line), natural (large dash line)
conjugate and diagonal natural (small dash line) conjugate gradients

of means cannot be rejected. Second overall values are shown in italics and third values
in typewriter type. As it can be seen from the table standard and diagonal natural CG
beat standard CG in all cases. On the other hand, standard CG beats line minization
based natural gradient in all problems but for the abalone and housing datasets. It can

176 A. González and J.R. Dorronsoro

 0.1

 1 10 100 1000

breastC cg
breastC cng

breastC diag cng

Fig. 4. Mse evolution for the breast cancer problem of standard (solid line), natural (large dash
line) conjugate and diagonal natural (small dash line) conjugate gradients

be safely concluded that natural CG, either full or diagonal, yields better minima than
ordinary CG for MLP training.

Besides providing better minima, natural conjugate gradient convergence can also
be faster than that of ordinary conjugate gradients. This is illustrated in figures 1 and
2 for the XOR4 and housing problems, where natural CG overtakes the standard one
at about the tenth iteration and does so for its diagonal variant shortly thereafter (all
figures in logarithmic scale on both axes). In other cases this overtaking may happen
later, but in all the datasets considered, it takes place before the 100–th iteration. This is
shown, for instance, in figures 3 and 4 for the thyroid and breast cancer problems. When
comparing convergence speed, one should also take into account the distinct complexity
of, say, full natural CG against that of standard CG, something which we are currently
studying. In any case, in all datasets diagonal natural CG does overtake standard CG at
about the 10–th iteration, while both methods have essentially the same complexity.

4 Conclusions

It was shown by Rao [12] that, in a maximum log–likelihood setting, the Fisher matrix
defines a Riemannian metric in weight space alternative to the standard euclidean one.
Besides its theoretical advantages, Amari and his coworkers have demonstrated that for
on–line MLP training, the resulting natural gradient provides minimization directions
that result in a faster convergence.

If batch MLP training is considered, natural gradient descent can be seen as a variant
of the Gauss–Newton method, closely related to Levenberg–Marquardt’s minimization.
A such it may not be competitive with other advanced batch methods, such as for in-
stance, conjugate gradient (CG). In this paper we have shown how natural gradient can

Natural Conjugate Gradient Training of Multilayer Perceptrons 177

be introduced in the conjugate gradient setting and have numerically demonstrated that
the performance of the resulting natural CG is consistently better than that of stan-
dard CG.

As it is the case for on–line MLP training, a drawback of natural CG is the larger
complexity resulting from the required Fisher matrix computations. This can be allevi-
ated by approximating the Fisher matrix under some simplifying assumptions, of which
we have considered here the diagonal natural CG. It has essentially the same complexity
of standard CG but gives better minima (although not always as good as those achieved
by the full natural CG procedure) and a faster convergence.

We finally point out that there might be some interest in further research on the
application of natural gradients in general function minimization. A more complete
study should be made of full natural CG taking its complexity into account in a precise
way. On the other hand, the definition (1) of the natural metric makes sense not only
for square error problems but also for other global error functions defined as local error
expectation. We are currently considering these and other similar issues.

References

1. Amari, S. (1998). Natural Gradient Works Efficiently in Learning. Neural Computation, 10,
251–276.

2. Amari, S., Nagaoka, H. Methods of information geometry. American Mathematical Soci-
ety, 2000.

3. Amari, S., Park, H., Fukumizu, K. (2000). Adaptive Method of Realizing Natural Gradient
Learning for Multilayer Perceptrons. Neural Computation, 12, 1399–1409.

4. Duda, R., Hart, P., Stork, D. Pattern classification. Wiley, 2000.
5. Heskes, T. (2000). On natural Learning and pruning in multilayered perceptrons. Neural

Computation, 12, 1037–1057.
6. Igel, Ch., Toussaint, M., Weishui, W. (2005). Rprop Using the Natural Gradient, in Trends

and Applications in Constructive Approximation, International Series of Numerical Mathe-
matics, Vol. 151, Birkhäuser.

7. LeCun, J., Bottou, L., Orr, G., Müller, K.R. Efficient BackProp, in Neural Networks: tricks
of the trade, 9–50. Springer, 1998.

8. Murray, M., Rice, J.W. Differential Geometry and Statistics. Chapman & Hall, 1993.
9. Murphy, P., Aha, D. UCI Repository of Machine Learning Databases, Tech. Report, Univer-

sity of Califonia, Irvine, 1994.
10. Polak, F. Computational Methods in Optimization. Academic Press, 1971.
11. Press, W., Teukolsky, S., Vetterling, W., Flannery, B. Numerical Recipes in C. Cambridge

U. Press, 1988.
12. Rao, C.R. (1945). Information and accuracy attainable in estimation of statistical parameters.

Bull. Cal. Math. Soc., 37, 81–91.
13. Rattray, M., Saad, D., Amari, S. (1998). Natural gradient descent for on–line learning. Phys-

ical Review Letters, 81, 5461–5464.
14. Yang, H., Amari, S. (1998). Complexity Issues in Natural Gradient Descent Method for

Training Multi-Layer Perceptrons. Neural Computation, 10, 2137–2157.

Building Ensembles of Neural Networks with
Class-Switching

Gonzalo Mart́ınez-Muñoz, Aitor Sánchez-Mart́ınez, Daniel Hernández-Lobato,
and Alberto Suárez

Universidad Autónoma de Madrid,
Avenida Francisco Tomás y Valiente, 11,

Madrid 28049, Spain
gonzalo.martinez@uam.es, aitor.sanchezm@estudiante.uam.es,

daniel.hernandez@uam.es, alberto.suarez@uam.es

Abstract. This article investigates the properties of ensembles of neural
networks, in which each network in the ensemble is constructed using
a perturbed version of the training data. The perturbation consists in
switching the class labels of a subset of training examples selected at
random. Experiments on several UCI and synthetic datasets show that
these class-switching ensembles can obtain improvements in classification
performance over both individual networks and bagging ensembles.

1 Introduction

Ensemble methods for automatic inductive learning aim at generating a collec-
tion of diverse classifiers whose decisions are combined to predict the class of new
unlabeled examples. The goal is to generate from the same training data a collec-
tion of diverse predictors whose errors are uncorrelated. Ensembles built in this
manner often exhibit significant performance improvements over a single predic-
tor in many regression and classification problems. Ensemble can be built using
different base classifiers: decision stumps [1] decision trees [2,3,4,5,1,6,7,8,9,10],
neural networks [11,12,13,14,9,15], support vector machines [16], etc.

Generally, ensemble methods introduce a random element somewhere in the
process of generating of an individual predictor. This randomization can be
introduced either in the algorithm that builds the base models or in the training
datasets that these algorithms receive as input.

The rationale behind injecting randomness into the base learning algorithm
is that different executions of the randomized training algorithm on the same
data should generate diverse classifiers. For example, in randomization [17] the
base learners are decision trees generated with a modified tree construction al-
gorithm. This algorithm computes the best 20 splits for every internal node and
then chooses one at random. Another simple algorithm of this type consists in
generating diverse neural networks using different random initializations of the
synaptic weights. This simple technique is sufficient to generate fairly accurate
ensembles [6].

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 178–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Building Ensembles of Neural Networks with Class-Switching 179

The randomization of the training dataset can be introduced in different ways:
using bootstrap samples from the training data, modifying the empirical distrib-
ution of the data (either by resampling or reweighting examples), manipulating
the input features or manipulating the output targets. Bagging [4], one of the
most widespread methods for ensemble learning, belongs to this group of tech-
niques. In bagging, each individual classifier is generated using a training set of
the same size of the original training set, obtained by random resampling with
replacement from it. In Boosting [2], the individual classifiers are sequentially
built assigning at each iteration different weights to the training instances. Ini-
tially the weights of the training examples are all equal. At each iteration of the
boosting process these weights are updated according to the classification given
by the last generated classifier. The weights of correctly classified examples are
decreased and the weights of incorrectly classified ones are increased. In this
way the subsequent base learner focuses on examples that are harder to classify.
Another strategy consists in manipulating the input features. For instance, one
can randomly eliminate features of the input data before constructing each indi-
vidual classifier. In random subspaces [18] each base learner is generated using a
different random subset of the input features. Another data randomization strat-
egy consists in modifying the class labels. In particular, in classification problems
with multiple classes, one can build each classifier in the ensemble using a dif-
ferent coding of the class labels [19,20]. Other algorithms that manipulate the
output targets and that are not limited to multiclass problems are based on
randomly switching the class label of a fraction of the training set to generate
each classifier (e.g. flipping [21] and class-switching [22]).

Class-switching ensembles composed of a sufficiently large number of un-
pruned decision trees exhibit a good generalization performance in many clas-
sification problems of interest [22]. In this article, the performance of the class-
switching algorithm using neural networks as the base learners is analyzed. Be-
cause of the different properties of neural networks and decision trees, several
modifications of the procedure described in [22] need to be made to generate
effective class-switching ensembles composed of neural networks.

Section 2 introduces the class-switching algorithm based on modifying the
class labels of the training examples and adapt it to build neural network en-
sembles. Section 3 presents experiments that compare the classification per-
formance of a single neural network, class-switching and bagging ensembles
in twelve datasets. Finally, the conclusions of this research are summarized in
Section 4.

2 Class-Switching Ensembles

Switching the class labels to generate ensemble of classifiers was first proposed
by Breiman [21]. In this work the class switching procedure described in [22] is
adapted to generate ensembles that use neural networks as base learners. Class-
switching ensembles are built by generating each classifier in the ensemble using
different perturbed versions of the original training set. To generate a perturbed

180 G. Mart́ınez-Muñoz et al.

version of the training set, a fixed fraction p of the examples of the original
training set are randomly selected and the class label of each of these selected
examples is randomly switched to a different one. The class label randomization
can be characterized by a transition probability matrix

Pj←i = p/(K − 1) for i �= j
Pi←i = 1 − p ,

(1)

where Pj←i is the probability that an example whose label is i becomes labeled
as belonging to class j. K is the number of classes in the problem.

The class-flipping procedure proposed by Breiman [21] is designed to ensure
that, on average, the class proportions of the original training set are main-
tained in the modified training sets. However, for class unbalanced datasets this
procedure has proved not to perform efficiently [22]. On the contrary, class-
switching ensembles [22] applied to decision trees has proved to be competitive
with bagging and boosting ensembles for a large range of balanced and unbal-
anced classification tasks.

In order for this method to work, the fraction of switched examples p, should
be small enough to ensure that there are, for any given class, a majority of
correctly labeled examples (i.e. not switched). This condition is fulfilled on the
training set (on average) if Pj←i < Pi←i. Using (1)

p < (K − 1)/K . (2)

From this equation, the ratio of the class-switching probability to its maximum
value is defined as

p̂ = p/pmax = pK/(K − 1) . (3)

Using values of p over this limit would generate, for some regions in feature
space, a majority of examples incorrectly labeled and consequently those regions
would be incorrectly classified by the ensemble.

In Ref. [22] class-switching ensembles composed of unpruned decision trees
were experimentally tested. Using unpruned decision trees instead of pruned
trees was motivated by their better performance when combined in the ensem-
ble. Note that, provided that there are no training examples with identical at-
tributes values belonging to different classes, an unpruned decision tree achieves
perfect classification (0 error rate) on the perturbed training set. Under these
conditions and in order for class-switching to obtain good generalization errors it
is necessary to combine a large number of trees in the ensemble (≈ 1000) and to
use relatively high values of p̂. Empirically a value of p̂ ≈ 3/5 produced excellent
results in all the classification tasks investigated [22].

Preliminary experiments were performed to check whether the prescription
used for decision trees (i.e. 0 training error of the trees on the perturbed sets,
large number of units in the ensemble and high values of p̂) can be directly
applied to neural networks. Note that the architecture and training parameters
of the neural network have to be tuned for each problem in order to obtain neural
models with ≈ 0 error rates in the modified training sets. This is a drawback

Building Ensembles of Neural Networks with Class-Switching 181

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

er
ro

r

number of classifiers

 waveform

nn
tree

Fig. 1. Average test errors for class-switching ensembles composed of neural networks
(solid lines in the plot) and decision trees (trait lines in the plot) using p̂ = 2/5 (bottom
curves) and p̂ = 4/5 (top curves) for the Waveform dataset

with respect to decision trees, where achieving 0-error models is straightforward
and problem independent.

Figure 1 displays the evolution with the number of base classifiers of the
average generalization error (over 10 executions) for class-switching ensembles
composed of neural networks (shown with solid lines in the plot) and decision
trees (with trait lines) for the Waveform dataset. In these experiments, the
architecture of the network and the training parameters are chosen to achieve
0-error in the perturbed versions training data. In particular, networks with 28
hidden units, trained over 1000 epochs are used. The bottom curves correspond
to a p̂ value of 2/5 and the top curves correspond to p̂ = 4/5.

The leaning curves displayed in this figure show that the generalization errors
of the class-switching neural ensembles generated in this way are similar to those
produced by decision trees class-switching ensembles. However, since the baseline
performance given by a single decision tree is different from the performance of a
neural net, the conclusions are different for ensembles composed of decision trees
and for ensembles of neural networks. The improvement obtained by decision
tree class-switching ensembles over a single tree is substantial (the generalization
error of a single decision trees is ≈ 30%). Hence, for decision trees, the strategy of
generating 0-error base learners seems to perform well. The piecewise-constant
boundaries produced by single trees evolve to more complex and convoluted
decisions boundaries when the decisions of the individual trees are combined in
the ensemble. In contrast, the results obtained by the neural ensembles show
that this strategy does not lead to ensembles that significantly improve the
classification accuracy of a single network. In particular, a single neural network

182 G. Mart́ınez-Muñoz et al.

with 7 hidden units and trained with 500 epochs achieves an error rate of 19.3%, a
result that is equivalent to the final error of the neural class-switching ensemble of
networks with zero error on the perturbed training set with p̂ = 4/5 (19.0%). In
contrast, class-switching or bagging ensembles composed of 100 neural nets with
only about 6 hidden units trained in the same conditions obtain a generalization
error of ≈ 16.4%, which is a significant improvement over the configuration that
uses more complex nets and larger ensembles. Note that a neural net with this
smaller number hidden units does not necessarily obtain a 0-error model on the
modified training data. Nonetheless, this ensemble of simple networks is trained
much faster and exhibits better generalization performance than an ensemble of
complex networks trained to exhibit zero error on the perturbed versions of the
training set.

3 Experiments

To assess the performance of the proposed method experiments are carried out
in ten datasets from the UCI repository [23] and in two synthetic datasets (pro-
posed by Breiman et al. [24,5]). The datasets are selected to sample a variety of
problems from different fields of application. The characteristics of the selected
datasets, of the testing method and the networks generated are shown in Table 1.

Table 1. Characteristics of the datasets, testing method, number of input units, av-
erage number (± standard deviation) of hidden units and average number of training
epochs for the neural networks used in the experiments

Dataset Instances Test Attrib. Classes Input Hidden Training
units units epochs

Breast W. 699 10-fold-cv 9 2 9 4.12±1.49 328
Diabetes 768 10-fold-cv 8 2 8 5.36±1.62 364
German 1000 10-fold-cv 20 2 61 4.98±1.65 173
Heart 270 10-fold-cv 13 2 23 4.84±1.70 201
Labor 57 10-fold-cv 16 2 37 4.42±1.54 405
New-thyroid 215 10-fold-cv 5 3 5 16.2±3.55 618
Sonar 208 10-fold-cv 60 2 60 5.14±1.46 331
Tic-tac-toe 958 10-fold-cv 9 2 27 4.38±1.50 200
Twonorm 300 5000 cases 20 2 20 4.36±1.61 330
Vehicle 846 10-fold-cv 18 4 18 11.7±3.19 810
Waveform 300 5000 cases 21 3 21 5.56±1.45 511
Wine 178 10-fold-cv 13 3 13 5.88±1.43 435

The base classifiers are feedforward neural networks with one hidden layer.
Sigmoidal transfer functions for both the hidden and output layers are used.
The number of units in the output layer is equal to the number of classes of
the classification task and the networks are trained to approximate the posterior

Building Ensembles of Neural Networks with Class-Switching 183

probability of each class. The neurons are trained using an improved RPROP
batch algorithm [25]. The optimal architecture and number of training epochs
for the neural networks is estimated for every partition of the training data using
cross validation. The same architecture and number of epochs is used in bagging
and class-switching ensembles. For the neural networks, the FANN library [26]
implementation is used.

The results given are averages of a 100 experiments for each dataset. In the
real-world datasets these experiments consist in the execution of 10 × 10-fold-cv.
For the synthetic datasets (Twonorm and Waveform) each experiment involves
a random sampling to generate the training and testing sets (see Table 1 for the
sizes of the sets). In general, each experiment involves the following steps:

1. Obtain the random training/testing datasets from the corresponding fold in
the real-world datasets and by random sampling in the synthetic ones.

2. Build a single neural network using the whole training dataset. The config-
uration of the network is estimated using cross-validation of 10-fold in the
training data. Different architectures (3, 5, and 7 hidden units) and different
values for the number of epochs (100, 300, 500 and 1000) are explored. The
configuration that obtains on average the best accuracy on the separate folds
of the training data, is used. For some datasets the range of possible hidden
units was incremented. For the Vehicle data set it was necessary to test 5,
7, 11, and 15 hidden units and for New-thyroid the tested architectures are
7, 11, 15 and 20.

3. Build the neural networks ensembles using class-switching (with p̂ values
of: 0/5, 1/5, 2/5, 3/5 and 4/5) and bagging and using the configuration
obtained for the single net. Note that class-switching with p̂ = 0/5 can not
be considered a class-switching algorithm: the variability in the ensemble is
achieved solely by the training process converging to different weight values
because of the different random initial values used.

4. Estimate the generalization error of the classifiers (single NN, bagging and
class-switching) on the test set.

Figure 2 displays the average generalization error curves for bagging and class-
switching ensembles for four datasets (German, Heart, Labor and New-thyroid).
These plots show that the convergence of the error class-switching ensembles is
related to the fraction of switched examples (i.e. p̂): Higher p̂ values result in a
slower convergence rate. For most of the ensemble configurations combining 200
networks seems to be sufficient for the error curves to level off. However, in some
datasets (see German and Labor datasets in Fig. 2) with a high class-switching
probability (class-switching with p̂ = 4/5), 200 is not sufficient to reach the
asymptotic ensemble error rate. In contrast, random initialized neural networks
ensembles (p̂ = 0/5) reach their asymptotic error level after combining a fairly
small number of neural networks (≈ 20 NN).

Table 2 presents the average test errors over the 100 executions for single
networks, bagging and class-switching ensembles for the different values of p̂.
The lowest generalization error for every dataset is highlighted in bold-face.
The standard deviations are given after the ± sign. These results show that

184 G. Mart́ınez-Muñoz et al.

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

 german

bagging
p=0.0
p=0.1
p=0.2
p=0.3
p=0.4

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

 heart

bagging
p=0.0
p=0.1
p=0.2
p=0.3
p=0.4

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

 labor

bagging
p=0.0
p=0.1
p=0.2
p=0.3
p=0.4

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

 new-thyroid

bagging
p=0.0
p=0.1
p=0.2
p=0.3
p=0.4

Fig. 2. Average test errors for the German Credit (top left plot), Heart (top right plot),
Labor Negotiations (bottom left plot) and New-thyroid (bottom right plot) datasets

class-switching ensembles exhibit the best results in nine of the twelve problems
analyzed (2 × p̂ = 1/5, 2 × p̂ = 2/5, 5 × p̂ = 3/5 and 3 × p̂ = 4/5). Bagging
has the best performance in two datasets and ensembles with p̂ = 0/5 also in
two dataset. The performance of a single network is suboptimal in all cases
investigated and is poorer than most of the different ensembles.

Table 2 shows that most configurations of class-switching ensembles reach
similar generalization errors for most datasets. In particular, the same error rate
is achieved in Waveform by class-switching with p̂ = 1/5, 2/5 and 3/5 and nearly
the same results (within 0.2 points) are obtained in Diabetes, German, Tic-tac-
toe, Twonorm and Wine. The p̂ = 4/5 configuration exhibits significantly worse
results in German, Labor, Sonar and Tic-tac-toe. In some cases this is due to
the fact that larger ensembles ought to have been used.

Table 3 shows the p-values of the paired t-test for the differences between
bagging and class-switching ensembles using the different values of p̂. Significant
differences against class-switching have been underlined and statistically signif-
icant differences in favor of class-switching are high-lighted in bold-face. The
last row of Table 3 displays the win/draw/loss records, where the first (second /
third) numbers displayed in each cell correspond to the number of sets in which
the algorithm displayed in the topmost row of the table wins (draws / losses)
with respect to bagging. These records show that class-switching ensembles with
p̂ = 1/5 and p̂ = 2/5 never perform worse than bagging and that they outper-
form bagging in some of the studied datasets. Class-switching with p̂ = 3/5 and

Building Ensembles of Neural Networks with Class-Switching 185

Table 2. Average generalization errors

Dataset NN Bagging Class-switching (p̂ =)
0/5 1/5 2/5 3/5 4/5

Breast 3.9±2.5 3.9±2.4 3.8±2.4 3.8±2.4 3.7±2.2 3.3±2.3 3.3±2.3
Diabetes 25.9±4.7 24.9±4.6 24.8±4.7 24.9±4.5 24.8±4.2 24.8±4.4 24.6±4.7
German 26.2±5.4 24.7±5.9 25.0±6.2 24.8±5.9 24.9±5.9 24.7±6.0 25.7±6.4
Heart 17.0±7.9 21.1±13 16.4±7.8 16.0±7.6 16.2±7.4 16.3±7.3 16.6±7.4
Labor 8.6±12 8.4±12 7.2±11 6.6±11 7.5±12 10.8±15 14.5±16
New-thyroid 5.3±4.7 5.8±5.1 5.0±4.6 4.6±4.2 4.2±4.0 4.2±3.9 4.4±3.8
Sonar 23.5±8.8 20.2±8.7 21.3±8.4 21.0±8.5 21.1±9.2 21.6±9.3 23.2±9.6
Tic-tac-toe 2.2±1.8 1.8±1.3 1.9±1.4 1.8±1.3 1.8±1.2 1.7±1.2 7.7±5.5
Twonorm 3.8±0.7 3.1±0.4 3.5±0.6 3.1±0.4 2.9±0.4 2.9±0.5 3.3±1.1
Vehicle 19.4±4.0 17.0±4.1 15.9±3.6 16.1±3.5 16.4±3.7 17.1±3.7 17.8±3.3
Waveform 20.6±8.0 16.4±1.0 16.4±1.0 16.5±1.0 16.5±0.9 16.5±1.0 16.6±0.9
Wine 5.1±5.0 2.2±3.7 2.0±3.4 1.6±2.8 1.4±2.7 1.5±3.0 1.2±2.6

Table 3. Results of a paired t-test for the differences between the test errors of bagging
ensembles and class-switching ensembles

Dataset class-switching (p̂ =)
0/5 1/5 2/5 3/5 4/5

Breast 8.6·10−1 6.1·10−1 7.7·10−2 8.3·10−6 8·10−7

Diabetes 7.0·10−1 8.2·10−1 5.5·10−1 7.3·10−1 3.7·10−1

German 1.0·10−1 2.7·10−1 2.5·10−1 1.0·100 3.2·10−4

Heart 8.6·10−5 3.0·10−5 6.9·10−5 1.0·10−4 2.6·10−4

Labor 2.6·10−1 1.1·10−1 4.4·10−1 9.2·10−2 9.5·10−5

New-thyroid 2.5·10−2 4.5·10−3 4.5·10−4 2.1·10−4 1.9·10−3

Sonar 3.6·10−2 1.2·10−1 1.3·10−1 4.6·10−2 2.2·10−4

Tic-tac-toe 6.0·10−3 1.8·10−1 1.0·10−1 9.6·10−2 5.1·10−19

Twonorm 5.1·10−21 2.3·10−1 7.6·10−11 4.5·10−7 2.5·10−1

Vehicle 1.5·10−5 2.4·10−4 3.5·10−3 7.1·10−1 4.5·10−3

Waveform 4.6·10−1 8.6·10−2 1.8·10−1 2.3·10−1 2.0·10−2

Wine 4.8·10−1 1.7·10−2 3.9·10−3 4.7·10−2 3.0·10−3

3/6/3 4/8/0 5/7/0 5/6/1 4/2/6

p̂ = 4/5 and random initialized neural networks ensembles (p̂ = 0/5) improve
the results of bagging in several datasets but also perform significantly worse
than bagging in other datasets.

4 Conclusions

In the present article the performance of class-switching ensembles [22] using
neural networks as base classifiers is analyzed. The class-switching ensembles
generate a diversity of classifiers using different perturbed versions of the training
set. To generate each perturbed set, a fraction of examples is selected at random
and their class labels are switched also at random to a different label.

186 G. Mart́ınez-Muñoz et al.

The prescription used for decision trees (generate individual classifiers that
achieve 0-error in the perturbed training datasets) is found not to be the ap-
propriate configuration for neural networks ensembles constructed with class-
switching. Combining neural networks whose architecture is designed by stan-
dard architecture selection techniques (and that therefore do not necessarily
achieve 0 error in the perturbed training datasets) produces significantly better
results than ensembles composed of more complex nets that do achieve 0 error
in the perturbed datasets. Since the networks in the ensemble are not forced to
have zero error on the perturbed training sets, they seem to avoid overfitting to
the noise injected, at least to a certain extent, and perform reasonably well in
the original unperturbed problem. As a consequence, the number of base learn-
ers needed for the convergence of the ensembles to the asymptotic error level is
smaller than in class-switching ensembles composed of decision trees.

Class-switching ensembles of neural networks built according to this prescrip-
tion exhibit a classification accuracy that is better or equivalent to bagging on
the tested datasets. Ensembles generated with a class-switching rate of p̂ = 1/5
and 2/5 obtain the best overall results for the datasets investigated. These config-
urations (i.e. p = 1/5, 2/5) never obtain results statistically worse than bagging.
This is not the case for other values of p̂ (that is, p̂ = 0/5, 3/5 and 4/5), where
results both better and worse than bagging have been obtained. Further analysis
is needed to determine the optimal choice of the class-switching probability, p̂.

Acknowledgments

The authors acknowledge financial support from the Spanish Dirección Gen-
eral de Investigación, project TIN2004-07676-C02-02. Daniel Hernández-Lobato
acknowledges support from the Consejeŕıa de Educación de la Comunidad Autó-
noma de Madrid and from the European Social Fund under an F.P.I. grant.

References

1. Schapire, R.E., Freund, Y., Bartlett, P.L., Lee, W.S.: Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics 12(5)
(1998) 1651–1686

2. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: Proc. 2nd European Conference on Computa-
tional Learning Theory. (1995) 23–37

3. Quinlan, J.R.: Bagging, boosting, and C4.5. In: Proc. 13th National Conference
on Artificial Intelligence, Cambridge, MA (1996) 725–730

4. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
5. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3) (1998) 801–849
6. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of

Artificial Intelligence Research 11 (1999) 169–198
7. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine Learning 36(1-2) (1999) 105–139

Building Ensembles of Neural Networks with Class-Switching 187

8. Dietterich, T.G.: An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning 40(2) (2000) 139–157

9. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Machine Learning
42(3) (2001) 287–320

10. Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32
11. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.

Mach. Intell. 12(10) (1990) 993–1001
12. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2) (1992) 241–259
13. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for

hybrid neural networks. In Mammone, R.J., ed.: Neural Networks for Speech and
Image Processing. Chapman-Hall (1993) 126–142

14. Sharkey, A.J.C.: Combining Artificial Neural Nets: Ensemble and Modular Multi-
Net Systems. Springer-Verlag, London (1999)

15. Cantador, I., Dorronsoro, J.R.: Balanced boosting with parallel perceptrons. In:
IWANN. (2005) 208–216

16. Valentini, G., Dietterich, T.G.: Bias-variance analysis of support vector machines
for the development of svm-based ensemble methods. Journal of Machine Learning
Research 5 (2004) 725–775

17. Kong, E.B., Dietterich, T.G.: Error-correcting output coding corrects bias and
variance. In: Proceedings of the Twelfth International Conference on Machine
Learning. (1995) 313–321

18. Ho, T.K.: C4.5 decision forests. In: Proceedings of Fourteenth International Con-
ference on Pattern Recognition. Volume 1. (1998) 545–549

19. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2 (1995) 263–
286

20. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research
2 (2002) 721–747

21. Breiman, L.: Randomizing outputs to increase prediction accuracy. Machine Learn-
ing 40(3) (2000) 229–242

22. Mart́ınez-Muñoz, G., Suárez, A.: Switching class labels to generate classification
ensembles. Pattern Recognition 38(10) (2005) 1483–1494

23. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
24. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Chapman & Hall, New York (1984)
25. Igel, C., Hüsken, M.: Improving the rprop learning algorithm. In: Proceedings

of the Second International Symposium on Neural Computation, ICSC Academic
Press (2000) 115–121

26. Nissen, S.: Implementation of a fast artificial neural network library (fann). Tech-
nical report, Department of Computer Science, University of Copenhagen (2003)

K-Separability

Włodzisław Duch

Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń, Poland,
and School of Computer Engineering, Nanyang Technological University, Singapore

Google: Duch

Abstract. Neural networks use their hidden layers to transform input data into
linearly separable data clusters, with a linear or a perceptron type output layer
making the final projection on the line perpendicular to the discriminating hy-
perplane. For complex data with multimodal distributions this transformation is
difficult to learn. Projection on k ≥ 2 line segments is the simplest extension
of linear separability, defining much easier goal for the learning process. The
difficulty of learning non-linear data distributions is shifted to separation of line
intervals, making the main part of the transformation much simpler. For classifi-
cation of difficult Boolean problems, such as the parity problem, linear projection
combined with k-separability is sufficient.

1 Introduction

Many popular classifiers, including MLPs, RBFs, SVMs, decision trees [1], nearest
neighbor and other similarity based methods [2,3], require special approaches (architec-
tures, kernels) or cannot handle at all complex problems, such as those exemplified by
the parity problem: given a training set of binary strings {b1, b2...bn} determine if the
number of bits equal to 1 is odd or even. In principle universal approximators, such as
neural networks, are capable of handling such problems, and there is a whole literature
on architectures and neural activation functions that enable the solution of parity prob-
lem. However, solutions proposed so far are manually designed to solve this particular
problem, and thus will not work well for slightly different problems of similar kind.

Dealing with difficult learning problems like parity off-the-shelf algorithms (for ex-
ample those collected in Weka [4] or Ghostminer [5] packages) in the leave-one-out
or crossvalidation tests for more than 3-bit problems give results at the baserate (50%)
level. Knowing beforehand that the data represents parity problem allows for setting
an appropriate MLP architecture to solve it [6,7,8,9,10,11,12,13,14], but for large n
in real situation it will be very difficult to guess how to choose an appropriate model.
Learning Boolean functions similar to parity may indeed be a great test for methods that
try to evolve neural architecture to solve a given problem, but so far no such systems
are in sight. The reason for this failure is rather simple: neural and other classifiers try
to achieve linear separability, and non-linear separable data may require a non-trivial
transformation that is very difficult to learn. Looking at the image of the training data in
the space defined by the activity of the hidden layer neurons [15,16] one may notice that
a perfect solution is frequently found in the hidden space – all data falls into separate
clusters – but the clusters are non-separable, therefore the perceptron output layer is

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 188–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

K-Separability 189

unable to provide useful results. Changing the goal of learning from linear separability
to other forms of separability should make the learning process much easier.

It would be very useful to break the notion of non-linearly separable problems into
well defined classes of problems with increasing difficulty. This is done in the next
section, where the notion of k-separability is introduced. In the third section this notion
is combined with linear projections and applied to the analysis of Boolean functions.
Algorithms based on k-separability for general classification problems are outlined in
section four, with the last section containing a final discussion.

2 k-Separability

Adaptive systems, such as feedforward neural networks, SVMs, similarity-based meth-
ods and other classifiers, use composition of vector mappings

Y (X) = M (m)(M (m−1)...(M (2)(M (1)(X))...)) (1)

to assign a label Y to the vector X. To be completely general direct dependence of
mappings on inputs and previous transformations should be considered, for example
M (2)(M (1)(X),X), but for simplicity this will be omitted, considering only strictly
layered mappings. These mappings may include standardization, principal component
analysis, kernel projections, general basis function expansions or perceptron transfor-
mations. X(i) = M (i)(X(i−1)) is the result of mapping after i transformations steps.
For dichotomic problems considered below Y = X(m) = ±1.

If the last transformation Y = M (m)(X(m−1)) is based on a squashed linear trans-

formation, for example a perceptron mapping Y = tanh(
∑

i WiX
(m−1)
i), then the

values of Y are projections of X on the [−1,+1] interval, and a perfect separation of
classes means that for some threshold Y0 all vectors from the Y+ class are mapped to
one side and from the Y− class to the other side of the interval. This means that the
hyperplane W defined in the X(m−1) space divides samples from the two classes, and
W · X(m−1) is simply a projection on the line W perpendicular to this hyperplane,
squashed to the [−1,+1] interval by the hyperbolic tangent or similar function.

General parity problems can be solved in many ways. The simplest solution [13]
is to look at the sign of the

∏n
i=1(xi − ti), with ti ∈ (0, 1), that is to use a product

neuron without any hidden neurons. This solution is very specific to the parity problem
and it cannot be generalized to other Boolean functions. Many such solutions that work
only for parity problem have been devised [6]–[14], but the challenge is to provide
more general solutions that work also for problems of similar or higher difficulty. Many
MLP training algorithms have already some difficulties to solve the XOR problem.
RBF network with Gaussian hidden units cannot solve it unless special tricks are used.
Solutions based on local functions require here a large number of nodes and examples
to learn, while non-local solutions may be expressed in a compact way and need only
a few examples (this has been already noted in [17]). Consider the noisy version of the
XOR problem (Fig. 1). RBF network with two Gaussian nodes with the same standard
deviation σ and linear output provides the following two transformations:

X → X(1) = (exp(−|X − µ1|/2σ, exp(−|X− µ2|/2σ) (2)

X(1) → Y = X(2) = W · X(1) (3)

190 W. Duch

The solution obtained using maximum likelihood approach [1] placed one basis func-
tion in the middle of left-corner cluster, and the other close to the center, as shown in
Fig. 1. Although the network fails to achieve linear separability of the data, it is clear
from Fig. 1 that all new data will be properly assigned to one of the 3 clusters formed
in the hidden space; in crossvalidation test 100% correct answers are obtained on this
basis (searching for the nearest neighbor in the hidden space), while the linear output
from the network achieves only 50% accuracy (base rate). If the target Y = X(2) = ±1
is desired the linear output provides a hyperplane (in this case a line) that tries to stay
at a distance one from all data points. If a separate linear output for each class is used
lines representing both outputs are parallel, with identical weights but shifted on two
units, as shown in the right Fig. 1. Projecting X(1) data on these lines gives one interval
with the data from first class surrounded by two intervals with the data from the second
class, separating the data into 3 intervals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. Noisy XOR problem solved with two Gaussian functions. Left: data distribution and posi-
tion of two Gaussian functions after training using maximum likelihood principle; right: mapping
of the input data to the hidden space shows perfect clusterization, showing lines representing lin-
ear weights of the two output units.

In n dimensions a single linear unit W · X with all weights Wi = 1 easily achieves
separation into n + 1 groups, with 0, 1, 2 .. n bits equal to 1. This weight vector is the
diagonal connecting vertices [0, 0, . . .0] and [1, 1, . . .1], and W · X is the projection
on this line. Obviously using a single node with Y = cos(ωW · X) gives for ω = π
correct answer to all parity problems, +1 for even and −1 for odd number of bits. This
is the simplest general solution of the parity problem, using a single node network (this
solution has not bee found previously [6]–[14]). The importance of selection of appro-
priate transfer functions in neural networks is quite evident here (for a taxonomy of
transfer functions that may be used in neural networks see [18] and [17]). In the context
of Boolean functions periodic projection is useful only for parity and its negation ob-
tained by symmetric transformations of the hypercube with vertices labeled according
to their parity. Projections of other Boolean functions may not be periodic but certainly
will show several groups of vectors from alternating classes.

K-Separability 191

There is no particular reason why the target of learning should be linear separability.
The last transformation Y = M (m)(X(m−1)) may be designed in any way that will
make learning easier. If a projection separating two clusters on a line Y = W ·X exist
the data is linearly separable. If it does not exist a projection forming 3 or more intervals
containing clusters from a single class should be sought.

Definition: dataset {Xi} of vectors that belong to two classes is called k-separable if
a direction W exist such that all points Yi = W · Xi are clustered in k intervals, each
containing vectors from a single class.

Linearly separable data is called 2-separable, while XOR belongs to the 3-separable
category of data distributions, with projection on the W = (1, 1) line from even, odd,
and again even class. This is the simplest extension of separability, replacing the final
mapping M (m)(·) by logical rule IF (Y ∈ [Y0, Y1] THEN even ELSE odd, and thus
making the non-linearity rather harmless. More sophisticated mappings from one, two
or higher number of dimensions may be devised as long as transformation M (m)(·)
is easy to set up, providing easier goals for the learning process. The Error Correcting
Output Codes (ECOC) [19] tries also to define easier learning targets, but it is still based
on linear separability, setting a number of binary targets that define a prototype “class
signature” vectors, and comparing the distance from the actual output to these class
prototypes. The change of the learning target advocated here is much more powerful.

A dataset that is k-separability may also be (k + m)-separable. Strictly speaking
the separability index for the data should be taken as the lowest k, but some learning
methods may generate solutions with larger number of clusters. For example, if the
data is k-separable into clusters with very small number of elements, or if the margin
separating the intervals between two such clusters is very small, (k + 1)-separability
that leads to larger minimum size of small clusters and their margins may be preferred.

Solving a k-separability problem requires finding the direction W and then setting
appropriate k − 1 thresholds defining intervals on the projection line.

Conjecture: the complexity of k-separable learning should be much easier then 2-
separable learning.

This is rather obvious; transforming the data into k-separability form should be much
easier because additional transformations are needed to achieve linear separability, and
the number of adaptive parameters may grow significantly. For example, the number of
hyperplanes that an MLP network needs for the n-parity problem is of the order of n
(see comparison of solutions in [13]), giving altogether O(n2) parameters, while treat-
ing it as a k-separable problem requires only n + k parameters. In general, cases when
transformation of decision borders in the original input space X based on continuous
deformations may flatten them linear separability will be sufficient, but if discontin-
uous transformations are needed, as in the case of learning most Boolean functions,
transformations that map data into k-separable form should be easier.

An interesting question is how many Boolean functions belong to the k-separable
category. For n-variables there are 22n

possible functions; only the bounds for the num-
ber of separable Boolean functions are known: the number is between 2n2−O(n) and
2n2

[20], a vanishing fraction of all functions. Unfortunately such estimations are not
yet known for the k-separable case.

192 W. Duch

For linearly separable data projections on W and −W generate symmetrical so-
lutions (Y+, Y−) and (Y−, Y+); in case of k-separability additional symmetries and
permutations are possible.

3 Boolean Functions

It is instructive to analyze in detail the case of learning Boolean functions with n = 2
to n = 4 bits with the simplest model based on linear projections. Several interesting
questions should be investigated: how many k-separability cases for a given direction
W are obtained; which direction gives the largest separation between projected clus-
ters; how many k-separability cases for each direction W exist; how many different
directions are needed to find all these cases.

The Boolean functions f(x1, x2, . . . xn) ∈ {−1,+1} are defined on the 2n vertices
of n-dimensional hypercube. Numbering these vertices from 0 to 2n − 1, they are eas-
ily identified converting decimal numbers to bits, for example vertex 3 corresponds
to b-bit string 00..011. There are 22n

possible Boolean functions, each corresponding
to a different distribution of ±1 values on hypercube vertices. There are always two
trivial cases corresponding to functions that are always true and always false, that is
1-separable functions. Each Boolean function may be identified by a number from 0 to
2n − 1, or a bit string from 00...0 to 11...1, where the value 0 stands for false or −1,
and 1 for true or +1. For example, function number 9 has 2n bits 00...1001, and is true
only on vertex number 0 and 3.

Values of Boolean functions may be represented as black (−1) or white (+1) vertices
of the hypercube. Learning a Boolean function is equivalent to separation of projections
of the black and white vertices of the hypercube. Separation into small number of well
separated clusters should lead to a good generalization when some function values are
not known. For two binary variables almost all non-canonical directions (not connecting
vertices of the square) avoid mapping vertices of different color to exactly the same
point (degeneracy) and give 6, 6 and 2 projections 2, 3 and 4-separated, respectively.
It is easy to find two directions that together learn all 12 linearly separable functions
(for example W(1/3,−1/2) and orthogonal direction W(1/3,2/9)). These directions and
W(1,1) that learns two 3-separable functions (XOR and its negation) are sufficient to
learn all Boolean functions.

3.1 3-D Case

For 3 bits there are 8 vertices in the cube and 28 = 256 possible Boolean functions.
Functions f(x1, x2, x3), and their negations ¬f(x1, x2, x3), are related by the sign re-
versal symmetry or changing color of all vertices, therefore it is sufficient to consider
only 128 functions corresponding to all black vertices (1 case), one black vertex (8
cases), two blacks (

(8
2

)
= 28 cases), three blacks (

(8
3

)
= 56 cases), or four blacks

(
(8
4

)
= 70 cases, but only half are unique due to the sign reversal symmetry), so to-

gether there are 1+8+28+56+35=128 such unique functions.
Projections on coordinate directions W(001),W(010),W(100) separates only three

functions f(x1, x2, x3)= xk, k = 1, 2, 3 that belong to the 35 cases with 4 black and
4 white vertices. There are 6 projection directions along the diagonals of the cube’s

K-Separability 193

faces: W(110),W(1−10),W(101),W(10−1),W(011),W(01−1), and 4 projection direc-
tions along the longest diagonals of the cube: W(111),W(11−1),W(1−11),W(−111).
Together 13 canonical directions should be considered, and a “zero direction” to check
if there is only one class.

Consider now direction W(110). Two points, (0, 0, 0), (0, 0, 1) are projected to Y =
0, 4 points (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1) are at Y =

√
2/2 and two points (1, 1, 0),

(1, 1, 1) are at Y =
√

2. Any Boolean function that has the same value for the first 6
points and an opposite value for the last 2 point, or vice versa, will be linearly sepa-
rable. There are 4 such functions. Any function that has the same value at the middle
4 vertices, and an opposite on the remaining 4 will be 3-separable. There are 2 such
functions. However, separation and size of the clusters should also be noted. For ex-
ample, function 27 (00011011) is separated by W = [0.75, 1,−0.25] into 000 11 0
11 segments with minimum gap of 1/4 and by W = [1, 0.25,−0.75] into 0 1 000 111
segments with the same minimum gap. The first projection contains only one group
with single 0, while the second contains two such groups, one with 0 and one with 1.
For Boolean functions with small number of bits generalization is meaningless (there
is no evidence to choose a particular function), but for larger number of bits avoiding
small clusters should give a better chance to find most probable functions even if some
values are missing. For example, for the n-bit parity if some of the values on vertices
with m ∈ [3, n − 2] bits 1 are missing projection on W = [11 . . .11] will still provide
the best explanation of the data separating it into n + 1 intervals.

If degeneracy is removed by slightly shifting 0,±1 weight values of canonical direc-
tions (adding 0.01 to the first, 0.02 to the second and 0.03 to the weights W is sufficient)
for an arbitrary projection direction always the same number of 1 to 8-separable func-
tions is found: 2, 14, 42, 70, 70, 42, 14, 2. Thus for a projection on an arbitrary direction
most functions are 4 or 5-separable. Searching for the best projection for each function
using slightly perturbed canonical directions there are 2 cases of 1-separable functions,
and 102, 126 and 26 of 2, 3 and 4-separable functions. For more than half of the 3-bit
Boolean functions there is no linear projection that will separate the data. Almost half
(126) of all functions may be learned using 3-separability. Because there are 102 lin-
early separable functions and each projection can recognize only 14 of them at least 8
directions are needed to check whether the function is separable.

3.2 4-D Case

For the 4-bit problem there are 16 hypercube vertices, with Boolean functions corre-
sponding to 16-bit numbers, from 0 to 65535, or 64K functions. Projection on each
fixed direction gives symmetric distribution of the number of k-separability functions,
with the same number of functions for k and 17 − k separability. Two functions are
1-separable and two are 16-separable, changing periodically all 16 values from 0 to 1.
Linear separation (and 15-separability) is found only for 30 functions, 3-separability for
210, 4 to 8 separability for 910, 2730, 6006, 10010 and 12870 functions respectively.
Thus a random initialization of a single perceptron has the highest chance of creating 8
or 9 clusters in the 4-bit data.

Checking how many functions are k-separable requires learning the best direction
for a given data. For the 4-bit case searching for the best projection along canonical

194 W. Duch

directions (Wi = 0,±1) that give lowest k-separability index gives 1228, 6836, 19110,
25198, 12014, 1132 and 16 projections with 2-8 clusters. These are not yet the lowest
separability indices for this data, as more detailed search allowing fractional values
(multiples of 1/3, 1/4, 1/5 and 1/6 in the [−1,+1] range) of the W direction coefficients
shows that the highest k is 5, confirming the suspicion that k = n + 1 is the highest
separability index. The number of linearly separable functions is 1880, or less than
3% of all functions, with about 22%, 45% and 29% being 3 to 5-separable. About
188 functions were found that seem to be either 4 or 5-separable, but in fact contain
projection of at least two hypercube vertices with different labels on the same point.
Although the percentage of linearly separated functions rapidly decreases relatively low
k-separability indices resolve most of the Boolean functions.

An algorithm that searches for lowest k but also maximizes minimum distance be-
tween projections of points with different labels finds projection directions (with min-
imum separation of 1/6 or more) that require k = 6 for these functions and gives sig-
nificantly larger separations between intervals containing vectors from a single class.
With only 30 linarly separable functions per one direction and 1880 separable functions
at least 63 different directions should be considered to find out if the function is really
linearly separable. Learning all these functions is already a difficult problem.

For 5-bits the number of all Boolean functions grows to 232, or over 4 billions (4G).
Direct search in 5-dimensional space for each of these functions is already prohibitively
expensive. It seems quite likely that forn-bit Boolean functions each projection direction
will separate the maximum number of functions for k ≈ 2n/2, and that learning the best
projection for a given function will give the largest number of functions separated into
n clusters, with percentage of linearly separable functions going quickly to zero. The
number of elements in most cluster quickly grows, therefore with such as simple model
it should be possible to learn them correctly even if only a subset of all values is given.

4 Algorithms Based on k-Separability

Linear projection combined with k-separability already gives quite powerful learning
system, but almost all computational intelligence algorithms may implement in some
form k-separability as a target for learning. It is recommended to search first for lin-
early separable solutions, and then to increase k searching for the simplest solution,
selecting the best model using crossvalidation or measures taking into account the size
and separation between projected clusters. Distribution of y(bX ;W) values allows for
calculation of P (y|Y±) class distributions and posterior probabilities using Bayesian
rules. Estimation of probability distributions in one dimension is easy and may be done
using Parzen-windows kernel methods.

The main difficulty in formulating a learning procedure is the fact that targets are not
fully specified; instead of a single target for Y+ class two or more labels Y+1, Y+2 may
be needed. This may actually be of some advantage, allowing for a better interpretation
of the results. It is clearly visible in the case of parity problems: each group differs not
only by the parity but also by different number of 1’s, providing an additional label.
Learning should therefore combine unsupervised and supervised components. In the
first step random initialization is performed several times, selecting the lowest k cluster

K-Separability 195

projection. Centers of these clusters ti, i = 1 . . . k are the target variables for learning,
and each center has a class label Y (ti). Slightly modified quadratic error function may
be used for learning:

E(W, t) =
1
2

∑
X

(y(X;W) − tj(X))2 ; (4)

j = argmin
i
{||ti − y(X;W)||, Y (ti) = Y (X)}

For each input X that belongs to the class Y (X) the nearest (on the projected line)
cluster center from the same class is taken as the learning target. A more complex cost
function may be devised that penalize for the number of clusters, for overlapping of
clusters, and for impurity of clusters, but this is beyond the scope of this article.

In the two-class case there are always two possibilities: either the first class vectors
are projected to the lowest Y values, leading to clusters Y+, Y−, Y+, . . . , or vice versa,
Y−, Y+, Y−, The 3-separable case is particularly simple and often encountered
in practice. If vectors from one of the classes represent unusual objects or states (for
example hypo and hiper-activity in some medical problems) projections with clusters
Y−, Y+, Y− are fairly common. This may be checked quite easily visualizing distribu-
tion of activations for a single perceptron (linear neuron is sufficient). Additional trans-
formations (network layers) are needed to reach linear separability, but 3-separability
may often be reached using just one node.

For k = 3 these projections are in 3 intervals: [−∞, a], [a, b], [b,+∞]. Taking t =
(a + b)/2, and denoting YX = Y (X) a linear error function suitable for learning is:

E(a, b,W) =
∑
X

[T(y ≤ t)δ(YX , Y+)max(0, y − a) + δ(YX , Y−)max(0, a− y)

+T(y > t)δ(YX , Y+)max(0, b− y) + δ(YX , Y−)max(0, y − b)] (5)

where T(y > t) is 0 if false and 1 if true. This function admits a trivial W = 0 solution,
therefore either a condition ||W|| should be introduced, or a distance scale should be
fixed by requiring one of the components to be constant. It assumes that Y+ vectors
contribute to errors only outside of the [a, b] interval, with the error growing in a linear
way, and that Y− vectors contribute to error in the linear way only inside this interval.
It requires good initialization to map all Y+ vectors to correct side of t. Using this
function for 3-separable Boolean functions with multiple starts to find approximate 3-
separability projection quickly learns such functions using a simple gradient method.
To avoid threshold functions T(y > t) may be replaced by a logistic function σ(y − t).

3-separable backpropagation learning in purely neural architecture requires a single
perceptron for projection plus a combination of two neurons creating a “soft trapezoidal
window” type of function F (Y ; a, b) = σ(Y + a)− σ(Y + b) that implements interval
[a, b] [21]. These additional neurons (Fig. 2) have fixed weights (+1 and −1) and biases
a, b, adding only 2 adaptive parameters. An additional parameter determining the slope
of the window shoulders may be introduced to scale the Y values. The input layer may
of course be replaced by a hidden layer that implements additional mapping.

This network architecture has n + 2 parameters and is able to separate a single class
bordered by vectors from other classes. For n-dimensional problem with 3-separable

196 W. Duch

X1

X2

X3

X4

Y=W.X +1

−1

+1

+1

σ(W.X+a)

σ(W.X+b)
If Y∈[a,b] then 1

Fig. 2. MLP solution to the 3-separable case of 4-bit Boolean functions

structure standard architecture requires at least two hidden neurons connected to an
output neuron with 2(n + 1) + 3 parameters. For k-separability case this architecture
will simply add one additional neuron for each new interval, with one bias parameter.
n-bit parity problems require only n neurons (one linear perceptron and n− 1 neurons
with adaptive biases for intervals), while in the standard approach O(n2) parameters
are needed [13].

5 Discussion and Open Problems

A radically new approach to learning has been proposed, simplifying the process by
changing the goal of learning to easier target and handling the remaining nonlinearities
with well defined structure. k-separability is a powerful concept that will be very useful
for computational learning theory, breaking the space of non-separable functions into
subclasses that may be separated into more than two parts. Even the simplest linear
realization of k-separability with interval nonlinearities is quite powerful, allowing for
efficient learning of difficult Boolean functions. Multiple-threshold perceptrons [22]
may implement such intervals, although k-separability learning algorithms require more
than multiple-threshold step functions. So far there are no systems that can routinely
handle difficult Boolean functions, despite a lot of effort devoted to special Boolean
problems, such as the parity problem. Using neural algorithms or special error functions
described in the previous chapter almost all n = 4 Boolean functions have been learned
in less than 40 trials (Duch and Adamczak, in preparation).

Redefining the goal of learning may have some biological justification. Neurons in
association cortex form strongly connected microcuircuits found in minicolumns, res-
onating with different frequencies when an incoming signal X(t) appears. A perceptron
neuron observing the activity of a minicolumn containing many microcircuits learns to
react to signals in an interval around particular frequency. Combination of outputs from
selected perceptron neurons is used to discover a category. These outputs may come
from resonators of different frequencies, implementing an analogue to the combination
of disjoint projections on the W ·X line.

An interesting concept creates many open problems. How many boolean function
each direction k-separates in general case? What minimal k is sufficient for n-bit prob-
lems? How will different cost functions perform in practice? What other simple ways

K-Separability 197

to “disarm” linearites, besides projection on a k-segment line, may be used? These and
many other questions will be addressed soon.

Acknowledgement. Support by the Polish Committee for Scientific Research, research
grant 2005-2007, is gratefully acknowledged.

References

1. Duda, R.O., Hart, P.E., Stork, D.: Patter Classification. J. Wiley & Sons, New York (2001)
2. Duch, W.: Similarity based methods: a general framework for classification, approximation

and association. Control and Cybernetics 29 (2000) 937–968
3. Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion

using neural similarity based methods. Applied Math. & Comp. Science 10 (2000) 101–120
4. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan

Kaufmann, San Francisco (2nd Ed, 2005)
5. Jankowski, N., Gra̧bczewski, K., Duch, W., Naud, Adamczak, R.: Ghostminer data mining

software. Technical report (2000-2005) http://www.fqspl.com.pl/ghostminer/.
6. Stork, D., Allen, J.: How to solve the n-bit parity problem with two hidden units. Neural

Networks 5 (1992) 923–926
7. Minor, J.: Parity with two layer feedforward nets. Neural Networks 6 (1993) 705–707
8. Setiono, R.: On the solution of the parity problem by a single hidden layer feedforward

neural network. Neurocomputing 16 (1997) 225–235
9. Lavretsky, E.: On the exact solution of the parity-n problem using ordered neural networks.

Neural Networks 13 (2000) 643–649
10. Arslanov, M., Ashigaliev, D., Ismail, E.: N -bit parity ordered neural networks. Neurocom-

puting 48 (2002) 1053–1056
11. Liu, D., Hohil, M., Smith, S.: N -bit parity neural networks: new solutions based on linear

programming. Neurocomputing 48 (2002) 477–488
12. Torres-Moreno, J., Aguilar, J., Gordon, M.: The minimum number of errors in the n-parity

and its solution with an incremental neural network. Neural Proc. Letters 16 (2002) 201–210
13. Iyoda, E., Nobuhara, H., Hirota, K.: A solution for the n-bit parity problem using a single

translated multiplicative neuron. Neural Processing Letters 18 (2003) 233–238
14. Wilamowski, B., Hunter, D.: Solving parity-n problems with feedforward neural network.

Int. Joint Conf. on Neural Networks (IJCNN’03), Portland, Oregon 2003, Vol I, 2546–2551
15. Duch, W.: Visualization of hidden node activity in neural networks: I. Visualization methods.

II. Application to RBF networks. Springer Lecture Notes in AI 3070 (2004) 38–49
16. Duch, W.: Coloring black boxes: visualization of neural network decisions. In: Int. Joint

Conf. on Neural Networks, Portland, Oregon. IEEE Press Vol I (2003) 1735–1740
17. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Surveys 2

(1999) 163-213
18. Duch, W., Jankowski, N.: Taxonomy of neural transfer functions. In: International Joint

Conference on Neural Networks. Como, Italy, IEEE Press Vol III (2000) 477–484
19. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output

codes. Journal Of Artificial Intelligence Research 2 (1995) 263–286
20. Zuyev, Y.: Asymptotics of the logarithm of the number of threshold functions of the algebra

of logic. Soviet Mathematics Doklady 39 (1989)
21. Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extraction, optimization

and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12
(2001) 277–306

22. Ngom, A., Stojmenovic I., Zunic, J.: On the Number of Multilinear Partitions and the Com-
puting Capacity of Multiple-Valued Multiple-Threshold Perceptrons, IEEE Transactions on
Neural Networks 14 (2003) 469–477

Lazy Training of Radial Basis Neural Networks

José M. Valls, Inés M. Galván, and Pedro Isasi

Universidad Carlos III de Madrid - Departamento de Informática,
Avenida de la Universidad, 30 - 28911 Leganés (Madrid), Spain

jvalls@inf.uc3m.es

Abstract. Usually, training data are not evenly distributed in the input
space. This makes non-local methods, like Neural Networks, not very ac-
curate in those cases. On the other hand, local methods have the problem
of how to know which are the best examples for each test pattern. In this
work, we present a way of performing a trade off between local and non-
local methods. On one hand a Radial Basis Neural Network is used like
learning algorithm, on the other hand a selection of the training patterns
is used for each query. Moreover, the RBNN initialization algorithm has
been modified in a deterministic way to eliminate any initial condition
influence. Finally, the new method has been validated in two time series
domains, an artificial and a real world one.

Keywords: Lazy Learning, Local Learning, Radial Basis Neural Net-
works, Pattern Selection.

1 Introduction

When the training data are not evenly distributed in the input space, the
non-local learning methods could be affected by decreasing their generaliza-
tion capabilities. One way of resolving such problem is by using local learning
methods[3,9]. Local methods use only partially the set of examples during the
learning process. They select, from the whole examples set, those that consider
more appropriate for the learning task. The selection is made for each new test
pattern presented to the system, by means of some kind of similarity measure-
ment to that pattern. k-NN [4] is a typical example of these systems, in which the
selected learning patterns are the k closest to the test pattern by some distance
metric, usually the Euclidean distance.

Those methods, usually known as lazy learning or instance-based learning
algorithms [1], have the inconvenience of being computationally slow, and highly
dependent on the number of examples selected and on the metric used, being
frequent the situations where an Euclidean metric might not be appropriate.

Bottou and Vapnik [2] introduce a dual, local/non-local, approach to give good
generalization results in non-homogeneous domains. This approach is based on
the selection, for each test pattern, of the k closest examples from the training
set. With these examples, a neural network is trained in order to predict the
test pattern. This is a good combination between local and non-local learning.
However, the neural network used is a linear classifier and the method assumes

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 198–207, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Lazy Training of Radial Basis Neural Networks 199

that Euclidean distance is an appropriate metric. Besides, it considers that all
test patterns have the same structure but some domains would require different
behaviors when being in different regions.

In this work we introduce some modifications in the general procedure of [2],
by considering the use of Radial Basis Neural Networks (RBNN)[6,5]. RBNN
have some advantages when using dual techniques: they are non-linear, universal
approximators [7] and therefore the metric becomes a non-critical factor; besides,
their training is very fast, without increasing significatively the computational
cost of standard lazy approaches.

We propose to use RBNN with a lazy learning approach, making the selection
of training patterns based on a kernel function. This selection is not homoge-
neous, as happened in [2]; by opposite it is detected, for each testing pattern,
how many training patterns would be needed, and what is the importance in the
learning process of each one of them. This importance is taken into consideration,
in the form of a weight, in the learning process of the network.

When a lazy approach is combined with RBNN, two important aspects must
be taken into account. In one hand, the initialization of the RBNN training al-
gorithm is a critical factor that influences their performance. This algorithm has
been modified in a deterministic way to eliminate any initial condition influence.
In other hand, it may occur that no training pattern is selected for certain test
patterns, due to the distribution of data in the input space. In those case the
system must provide some answer. We propose two different approaches to treat
this problem.

The final method results to be a dual local non-local method, where the ini-
tialization of the network is deterministic and the method is able to determine
the degree of locality of each region of the space, by means of a kernel function
that could be considered as a parameter, and modified appropriately. In some
cases a test pattern could be considered as non-local in the sense that it corre-
sponds to more frequent situations. In this case almost the totality of the training
patterns will be selected, and the method behaves like an non-local approach.
This transaction between local and non-local behavior is made automatically.

2 Description of the Method

The learning method proposed in this work has been called LRBNN (Lazy RBNN
method) and is based on the selection, from the whole training data, of an appro-
priate subset of training patterns in order to improve the answer of the network
for a novel pattern. For each new pattern received or query, a new subset of
training examples is selected. The main idea consists of selecting those pat-
terns close to the new query instance, in terms of the Euclidean distance. In
order to give more importance to the closest examples, a weighting measure
that assigns a weight to each training example is applied. This is done by using
a kernel function which depends on the Euclidean distance from the training
pattern to the query. In this work, the inverse function (K(d) = 1/d, where d

200 J.M. Valls, I.M. Galván, and P. Isasi

is the distance from the training pattern to the new query) is used. A more
detailed information about the use of this function can be found in [8].

To carry out this idea, a n-dimensional sphere centered at the test pattern is
established, in order to select only those patterns placed into it. Its normalized
radius (respect to the maximum distance from any example to the query), called
rr, will be used to select the training patterns situated into the sphere, being
rr a parameter that must be established before the application of the learning
algorithm. Next, the sequential structure of LRBNN method is summarized.

Let q = (q1, ..., qn) be the query instance. Let X be the whole available training data
set:X = {(xk,yk) k = 1 . . . N ;xk = (xk1, . . . , xkn);yk = (yki, . . . , ykm)}. For each q,

1. The standard Euclidean distances dk from the query to each training example are
calculated. Then, the relative distance drk is calculated for each training pattern:
drk = dk/dmax, where dmax is the distance from the novel pattern to the furthest
training pattern.

2. A kernel function K() is used to calculate a weight for each training pattern from
its distance to the query. This function is the inverse of the relative distance drk:
K(xk) = 1/drk; k = 1 . . . N

3. These values K(xk) are normalized in such a way that the sum of them equals the
number of training patterns in X. These normalized values are called normalized
frequencies, fnk.

4. Both drk and fnk are used to decide whether the training pattern is selected and
-in that case- how many times is included in the training subset. They are used to
generate a natural number, nk, following the next rule:

if drk < rr then nk = int(fnk) + 1 else nk = 0 (1)

At this point, each training pattern in X has an associated natural number, nk,
which indicates how many times the pattern (xk, yk) will be used to train the
RBNN in order to predict the query q.

5. A new training subset associated to q, Xq , is built up. Given a pattern (xk, yk)
from the original training set X, it will be included in Xq if nk > 0. Besides,
(xk, yk) will be randomly placed nk times in Xq .

6. The RBNN is trained using Xq : the neurons centers are calculated in an unsuper-
vised way using K-means algorithm in order to cluster the input training patterns
included in the subset Xq . The neurons widths are evaluated as the geometric
mean of the distances from each neuron center to its two nearest centers, and the
RBNN weights are estimated in a supervised way in order to minimize the mean
square error measured in the training subset Xq.

In order to apply the learning method to train RBNN, two features must
be taken into account: On one hand, the results would depend on the random
initialization of the K-means algorithm which is used to determine the locations
of the RBNN centers and must be applied for each query. On the other hand,
when the test pattern is located in a region of the input space where the examples
are scarce, it could happen that no training examples are selected. We present
solutions to both problems, which are described next.

Lazy Training of Radial Basis Neural Networks 201

K-means initialization. Having the objective of achieving the best perfor-
mance, a deterministic initialization, instead of the usual random ones, is pro-
posed. The idea is to obtain a prediction of the network with a deterministic
initialization of the centers whose accuracy is similar to the one obtained when
several random initializations are done. The initial location of the centers will de-
pend on the location of the closest training examples selected. The deterministic
initialization is obtained as follows:

– Let (x1,x2, . . . ,xl) be the l selected training patterns, inversely ordered by
their distance to the query instance. Let m be the number of hidden neurones
of the RBNN to be trained.

– If m ≤ l then the center of the ith neuron is initialized to the xi position,
for i = 1, 2, . . . ,m. Otherwise (m > l), l neurones will be initialized to the
xi position, for i = 1, 2, . . . , l, and the remaining m − l neurones (lets call
this number p) will be randomly initialized in the following way:
• Mq, the centroid of the set Xq, is evaluated.
• p centers (c1q, c2q,cpq) are randomly generated, such as
‖cjq −Mq‖ < ε, j = 1, 2, . . . , p , where ε is a very small real number.

Empty training set. It has been observed that when the input space data is
highly dimensional, in certain regions of it the data density can be so small that
the sphere centered at the query instance does not include any train pattern
into it if the relative radius is small. When this situation occurs, an alternative
way to select the training patterns must be taken. In our work, we propose two
different approaches which are experimentally evaluated.

1. If the subset Xq associated to a query q is empty, then we apply the method
of selection to the closest training pattern, as if it was the test pattern. Thus,
the selected set will have, at least, one element.

2. If Xq is empty, then the network is trained with X , the set formed by all
the training patterns. In other words, the network is trained as usual, with
all the available patterns.

3 Experimental Validation

We have applied LRBNN to two domains, the Mackey-Glass and the Venice
Lagoon time series. As it was remarked in section 2, the relative radius rr must
be given as an external parameter of the method in order to study its influence
on the performance of the model. Besides, RBNN with different architectures -
i.e. different number of hidden neurons- must be trained so that the influence of
the network architecture can also be studied.

The method incorporates solutions regarding to the initialization of centers
and the possibility of having empty training sets. These solutions are validated
in the experiments where we have applied the lazy approach with both ways
of initializing the centers: the random and the deterministic one. Moreover, in
the cases where some test patterns can not be predicted because the associ-
ated training subset is empty, the approaches mentioned in section 2 have been
applied.

202 J.M. Valls, I.M. Galván, and P. Isasi

3.1 An Artificial Time Series Prediction Problem: The
Mackey-Glass Time Series

The Mackey-Glass time series is a well known artificial time series widely used in
the literature about RBNN, [10],[6]. The data used in this work has been gener-
ated following the studies mentioned above. The task for the RBNN is to predict
the value of the time series at point x[t + 50] from the earlier points (x[t], x[t −
6], x[t − 12], x[t − 18]). 1000 data points form the training set, corresponding to
the sample time between 3500 and 4499. The test set is composed by the points
corresponding to the time interval [4500, 5000]. Both sets have been normalized
in the interval [0, 1]. The proposed LRBNN method has been applied to this arti-
ficial time series, where RBNN of different architectures have been trained during
500 learning cycles varying the relative radius from 0.04 to 0.24.

Table 1. Mean errors with random initialization of centers. Mackey-Glass time series

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.02527 0.02641 0.02683 0.02743 0.02691 0.02722 45 91
0.08 0.02005 0.01891 0.01705 0.01571 0.01716 0.01585 0 100
0.12 0.02379 0.01954 0.01792 0.01935 0.01896 0.01940 0 100
0.16 0.02752 0.02223 0.01901 0.02106 0.02228 0.02263 0 100
0.2 0.03031 0.02427 0.02432 0.02287 0.02281 0.02244 0 100

Table 2. Mean errors with deterministic initialization. Mackey-Glass time series

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.02904 0.03086 0.03096 0.03109 0.03231 0.03295 45 91
0.08 0.01944 0.01860 0.01666 0.01565 0.01551 0.01585 0 100
0.12 0.02131 0.01742 0.01644 0.01607 0.01628 0.01602 0 100
0.16 0.02424 0.02029 0.01812 0.01729 0.01783 0.01809 0 100
0.2 0.02837 0.02083 0.01927 0.01874 0.02006 0.02111 0 100

In order to show that the deterministic initialization lead to an appropri-
ate performance of RBNN when they are trained following the lazy learning
approach, experiments with the lazy approach where the neurons centers are
randomly initialized are also made. Table 1 shows the mean performance of the
method for five random initializations, when RBNN with different number of
hidden neurons are trained. Each value of the error for a specific number of
neurons and radius corresponds to the mean value of five different mean errors.
On the other hand, when the proposed deterministic initialization is applied, the
obtained results are shown in table 2. We can observe that the error values are
slightly better than the ones obtained when the neurons centers were randomly
located. We must emphasize the advantage of this method where a single run is

Lazy Training of Radial Basis Neural Networks 203

needed whereas if the usual K-means algorithm is applied, several initializations
must be made in order to ensure an adequate performance of the method.

The columns named ”NP” displays the number of ”null patterns”, that is,
test patterns for which the number of selected training patterns is zero. This
situation might arise because of the dimensionality of the problem and the non-
uniform distribution of data. The ”PP” column displays the percentage of test
patterns that are correctly answered (”Predicted Patterns”). As it is shown,
when rr = 0.04, there are 45 test patterns for which the networks can not make
a prediction because the associated training sets are empty. Thus, these test
patterns are discarded, corresponding the error values to the rest of patterns,
that is, to the 91% of the whole test set.

We have applied the two alternative ways of treating these anomalous patterns
are presented. Method (a), that keeps the local approach,and Method (b) that
renounce to the local approach and follows a global one. With the aim of studying
the performance of both approaches, RBNN of different architectures are trained
when a relative radius of 0.04 is taken. Both Method (a) and Method (b) have
been applied and the obtained error values are shown in table 3, where we can
see that method (b) behaves slightly worse than method (a) in all the cases.
Thus, when a local approach is taken, the method gets better results than when
all the available patterns are used to train the networks.

Table 3. Null patterns processing (rr = 0.04). Mackey-Glass time series.

Hidden Neurones
7 11 15 19 23 27 NP %PP

Method (a) 0.02974 0.03043 0.03132 0.03114 0.03309 0.03373 45 100
Method (b) 0.03385 0.03641 0.03545 0.03464 0.03568 0.03408 45 100

As for the influence of the relative radius and the number of hidden neurons, it
is possible to observe that the performance of the networks is scarcely influenced
by the value of the relative radius when it is bigger than a certain value and the
number of neurons is big enough. The mean error decreases with the radius
until rr = 0.08, and then it maintains its value nearly constant as the radius
increases if the number of neurons is bigger than 7. Thus, the relative radius
is not a critical parameter if the number of neurons is bigger than 7 and the
relative radius is bigger than 0.08. When the number of neurons is small, the
performance of the networks gets worse as the radius increases. This is explained
because the number of training patterns selected is very big and the number of
neurons of the RBNN are insufficient to fit such training set.

3.2 A Real Time Series Prediction Problem: The Venice Lagoon
Time Series

The Venice lagoon time series represents the behavior of the water level at Venice
lagoon. Unusually high tides result from a combination of chaotic climatic ele-
ments in conjunction with the more normal, periodic, tidal systems associated

204 J.M. Valls, I.M. Galván, and P. Isasi

with a particular area. The most famous example of flooding in the Venice lagoon
occurred in November 1966 when, driven by strong winds, the Venice Lagoon
rose by nearly 2 m. above the normal water level. That phenomenon is known as
“high water” and many efforts have been made in Italy to develop systems for
predicting sea levels in Venice and mainly for the prediction of the high water
phenomenon [11].

There is a great amount of data representing the behavior of the Venice La-
goon time series. However, the part of data associated to the stable behavior
of the water is very abundant as opposed to the part associated to high wa-
ter phenomena. This situation leads to the following: the RBNN trained with a
complete data set is not very accurate in predictions of high water phenomena.
Hence, the aim in this context is to observe whether a selection of training pat-
terns may help to obtain better predictions. A training data set of 3000 points
corresponding to the water level measured each hour has been extracted from
available data in such a way that both stable situations and high water situa-
tions appear represented in the set. High-water situations are considered when
the level of water is not lower than 110 cm. 20 test patterns have also been
extracted from the available data and they represent a situation when the water
level is higher than 110 cm.

In order to apply LRBNN, different RBNN architectures have been trained
during 500 learning cycles, and the relative radius has been fixed to different
values from 0.04 to 0.2. As in the previous domain, two sets of experiments have
been done: the first one corresponds to the usual, random K-means initialization;
in order to obtain representative results, five runs of the method have been
carried out and the mean of the results is showed in table 4.

The second set of experiments, carried out only once, corresponds to the de-
terministic initialization of the neurons centers. The results are displayed on
table 5. As it happened on the previous domains, when the deterministic initial-
ization of the centers is done, the results are similar or slightly better than when
the centers are randomly located.

Table 4. Mean errors with random initialization of centers. Venice Lagoon time series

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.03596 0.03866 0.04035 0.04031 0.04015 0.04169 14 30
0.08 0.03286 0.03330 0.03150 0.03547 0.03799 0.03476 2 90
0.12 0.03219 0.02693 0.02490 0.02365 0.02677 0.02738 0 100
0.16 0.02487 0.02506 0.02554 0.02783 0.02600 0.02603 0 100
0.2 0.03350 0.03035 0.03094 0.03139 0.03155 0.03179 0 100

It is important to observe that there are null patterns even when the relative
radius grows to 0.08. When rr = 0.04, 14 test patterns, out of 20, can not be
predicted. Thus, only a 30% of the test set can be properly predicted. And still
for rr = 0.08 2 patterns are not predicted. The anomalous situations are now
more frequent and this is explained as follows: the dimensionality of this problem

Lazy Training of Radial Basis Neural Networks 205

Table 5. Mean errors with deterministic initialization. Venice Lagoon time series.

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.03413 0.03378 0.03328 0.03465 0.03404 0.03389 14 30
0.08 0.03181 0.03028 0.03062 0.03041 0.03148 0.03017 2 90
0.12 0.02967 0.02682 0.02269 0.02234 0.02235 0.02643 0 100
0.16 0.02869 0.02398 0.02913 0.02059 0.02514 0.02552 0 100
0.2 0.03769 0.02420 0.02411 0.02728 0.02288 0.03336 0 100

is higher than the former one because this series problem has been modeled as a
six-dimension function; besides, there are regions of the input space whose data
density is very low. The test set has been generated so that its data represent
the high water situations, and the training examples which corresponds to these
unfrequent situations are very scarce. Thus, the null patterns processing methods
presented in this work are essential in the LRBNN model. Table 6 shows the
errors obtained when both methods (a) and (b) are applied if null patterns are
found. It is important to realize that, although it seems that the results are worse
than those seen on table 5, a 100% of the test patterns are properly predicted.

Table 6. Null patterns processing. Venice Lagoon time series.

Hidden Neurones
rr Meth 7 11 15 19 23 27 NP %PP

0.04 (a) 0.06042 0.06276 0.06292 0.06186 0.06330 0.06352 14 100
0.04 (b) 0.09542 0.08128 0.06672 0.06239 0.06333 0.06500 14 100
0.08 (a) 0.03685 0.03447 0.03011 0.03197 0.02792 0.03231 2 100
0.08 (b) 0.04497 0.04382 0.03572 0.03407 0.03266 0.03441 2 100

In this domain, the differences between both methods are significant, specially
when the relative radius is 0.04. In this case, 14 null patterns are found, that is,
70% of the whole test set. We can appreciate that method (a) achieves lower er-
rors that method (b). Thus, when a lazy learning approach is applied the result is
better than when the RBNN are trained with all the available training patterns.

It is possible to observe that, as in previous cases, when the relative radius
is small, mean errors are high, due to the shortage of selected training patterns,
and as the relative radius increases, the mean error decreases and then it does
not change significatively. Thus, as it happened with the previous domains, the
relative radius is not a critical parameter if the number of neurons and the
relative radius are bigger enough.

3.3 Lazy Learning Versus Global Learning

In order to compare the lazy learning strategy (LRBNN) with the traditional one,
RBNN with different number of hidden neurons (from 5 to 150) have been trained,

206 J.M. Valls, I.M. Galván, and P. Isasi

Table 7. Lazy learning versus traditional learning

Mackey-Glass time series Venice Lagoon time series
LRBNN 0.01551 (rr = 0.08, 23 neurons) 0.02059 (rr = 0.16, 19 neurons)

Traditional Method 0.10273 (110 neurons) 0.09605 (50 neurons)

in a global way, using the whole training data set in order to build a global ap-
proximation. In this work, the traditional learning has been carried out using a
training and a validation data set, stopping the iterative process when both errors
become stabilized. The standard K-means algorithm has been used and several
experiments with different initial centers locations are made. In both approaches,
the same data sets have been used. In table 7, the best results obtained in both
domains for both methods, lazy and traditional ones, are shown. As it is possible
to observe, in both domains the performance of the local method is significatively
better than the performance of the traditional learning approach.

4 Conclusions

In this work, we try to complement the good characteristics of local and global
approaches by using a lazy learning method for selecting the training set, using
RBNN for making predictions. RBNN have some advantages: they are universal
approximators and therefore the assumption of local linear behavior is no longer
needed; besides, their training is very fast, without increasing significatively the
computational cost of standard local learning approaches. We present a method
(LRBNN) that can get the locality of the input space, and then uses a non-linear
method to approximate each region of the input space. In addition, the selection
of patterns is made using a kernel function, taking into account the distribution
of data.

When a lazy learning strategy is used, two important aspects related to RBNN
training and patterns selection have been taken into account. In the first place,
the initialization of the neurons centers is a critical factor that influences RBNN
performance. Usually, the initial location of centers are randomly established, but
in a lazy strategy, in which a network must be trained for each new query, random
initialization must be avoided. For this reason, in this work, the algorithm has
been modified in a deterministic way to eliminate any initial condition influence
with the objective of achieving the best performance. Regarding to the selection
procedure, in which the Inverse kernel function is used, it may occur that no
training pattern is selected for certain test patterns, due to the distribution of
data in the input space. We have proposed and validated two different approaches
to treat this problem.

LRBNN has been applied to two different domains: an artificial time series
(the well known Mackey-Glass time series) and a real one (representing the
Venice Lagoon water level). For both domains, we present the results obtained
by LRBNN when a deterministic centers initialization is made. Besides, with
the aim of showing the advantages of this deterministic initialization, the same
method is applied but the RBNN are trained with a random initialization of their

Lazy Training of Radial Basis Neural Networks 207

centers. We show the mean results of several random initializations. As we said
before, LRBNN provides two alternative ways of guarantying the selection of
training examples for all the query instances. When the use of these alternative
methods is necessary, the obtained results are also showed. Finally, LRBNN
performance is compared with the performance of RBNN trained using a global
approach, that is, using the whole training set.

The results obtained by LRBNN improves significatively the ones obtained by
RBNN trained in a global way. Besides, the proposed deterministic initialization
of the neurons centers produces similar or slightly better results than the usual
random initialization, being thus preferable because only one run is necessary.
Moreover, the method is able to predict 100% of the test patterns, even in
those extreme cases when no train examples would be selected using the normal
selection method. The experiments show that the relative radius, parameter of
the method, is not a critical factor because if it reaches a minimum value and
the network has a sufficient number of neurons, the error on the test set keeps
its low value relatively constant.

Thus, we can conclude that the combination of lazy learning and RBNN, can
produce significant improvements in some domains.

Acknowledgments. This article has been financed by the Spanish founded
research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-02

References

1. D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Ma-
chine Learning, 6:37–66, 1991.

2. L. Bottou and V. Vapnik. Local learning algorithms. Neural Computation,
4(6):888–900, 1992.

3. C.G. Atkenson, A.W. Moore, and S. Schaal. Locally weighted learning. Artificial
Intelligence Review, 11:11–73, 1997.

4. B.V. Dasarathy (Editor). Nearest neighbour(NN) norms: NN pattern classification
techniques. IEEE Computer Society Press, 1991.

5. J. Ghosh and A. Nag. An Overview of Radial Basis Function Networks. R.J.
Howlett and L.C. Jain (Eds). Physica Verlag, 2000.

6. J.E. Moody and C. Darken. Fast learning in networks of locally tuned processing
units. Neural Computation, 1:281–294, 1989.

7. J. Park and I.W. Sandberg. Universal approximation and radial-basis-function
networks. Neural Computation, 5:305–316, 1993.

8. J.M. Valls, I.M. Galván, and P. Isasi. Lazy learning in radial basis neural networks: a
way of achieving more accurate models. Neural Processing Letters, 20:105–124, 2004.

9. D. Wettschereck and T. Dietterich. Improving the perfomance of radial basis
function networks by learning center locations. Advances in Neural Information
Processing Systems, 4:1133–1140, 1992.

10. L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computation, 9:461–478, 1997.

11. J.M. Zald́ıvar, E. Gutiérrez, I.M. Galván, F. Strozzi, and A. Tomasin. Forecasting
high waters at Venice Lagoon using chaotic time series analysis and nonlinear
neural networks. Journal of Hydroinformatics, 2:61–84, 2000.

Investigation of Topographical Stability of the
Concave and Convex Self-Organizing Map

Variant

Fabien Molle1,2 and Jens Christian Claussen2,

1 Theoretical Physics, Chalmers Tekniska Högskola, Göteborg
2 Institut für Theoretische Physik und Astrophysik

Leibnizstr. 15, 24098 Christian-Albrechts-Universität zu Kiel, Germany
claussen@theo-physik.uni-kiel.de

http://www.theo-physik.uni-kiel.de/~claussen/

Abstract. We investigate, by a systematic numerical study, the para-
meter dependence of the stability of the Kohonen Self-Organizing Map
and the Zheng and Greenleaf concave and convex learning with respect
to different input distributions, input and output dimensions.

Topical groups: Advances in Neural Network Learning Methods, Neural
and hybrid architectures and learning algorithms, Self-organization.

Neural vector quantizers have become a widespreadly used tool to explore high-
dimensional data sets by self-organized learning schemes. Compared to the vast
literature on variants and applications that appeared the last two decades,
the theoretical description proceeded more slowly. Even for the coining Self-
Organizing Map (SOM) [1], still open questions remain, as a proper description
of the dynamics for the case of dimension reduction and varying data dimen-
sionality, or the question for what parameters stability of the algorithm can be
guaranteed. This paper is devoted to the latter question. The stability criteria
are especially interesting for modifications and variants, as the concave and con-
vex learning [2], whose magnification behaviour has been discussed recently [3].
Especially for the variants, analytical progress becomes quite difficult, and in
any case one will expect that the stability will depend on the input distribution
to some —apart from special cases— unknown extent. As the invariant density
in general is analytically unaccessible for input dimensions larger than one (see
[4] for recent tractable cases), we expect a general theory not to be available
immediately, and instead proceed with a systematic numerical exploration.

The Kohonen SOM, and the nonlinear variant of Zheng and Greenleaf. – The
class of algorithms investigated here is defined by the learning rule, that for each
stimulus v ∈ V each weight vector wr is updated according to

wnew
r = wold

r + ε · grs · (v − wold
r)K (1)

� Corresponding author.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 208–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Investigation of Topographical Stability 209

(grs being a gaussian function (width σ) of euclidian distance |r−s| in the neural
layer, thus describing the neural topology). Herein

|ws − v| = minr∈R |wr − v| (2)

determines for each stimulus v the best-matching unit or winner neuron.
The case K = 1 is the original SOM [1], corresponding to a linear or Hebbian

learning rule. The generalization to K or 1/K taking integer values has been pro-
posed by Zheng and Greenleaf [2], but arbitrary nonzero real values of K can be
used [3], and the choice of K → 0 has been shown (for the onedimensional case)
to have an invariant density with the information-theoretically optimal value of
the magnification exponent one [3], i.e., the neural density is proportional to the
input density and hence can be used as a density estimator.

Convergence and stability. – It is well known that for the learning rate ε, one
has to fulfill the Robbins-Munro conditions (see, e.g. [4]) to ensure convergence,
with all other parameters fixed. However, practically it is necessary to use a large
neighborhood width at the beginning, to have the network of weight vectors or-
dered in input space, and decrease this width in the course of time downto a
small value that ensures topology preservation during further on-line learning.
Thus the situation becomes more involved when additionally also σ is made
time-dependent. Here we consider the strategy where the stability border in the
(ε, σ) plane always is approached from small ε with σ fixed during this final
phase. An ordered state has to be generated by preceding learning phases.

Measures for Topographical Stability. – To quantify the ordered state and the
topology preservation, a variety of measures is used, e.g. the topographic prod-
uct [5], the Zrehen measure [6], and the average quadratic reconstruction error.
To detect instable behaviour, all measures should be suitable and give similar
results. For an unstable and disordered map, also the total sum over all (squared)
distances between adjacent weight vectors will increase significantly; so a thresh-
holded increase will indicate instability as well. This indicator is used below;
however, for the case of a large neighborhood (of network size), the weight vec-
tors shrink to a small volume, thus influencing the results; however, this applies
to a neighborhood widths larger than that commonly used for the pre-ordering.

In addition we use here an even more simple approach than the Zrehen mea-
sure (which counts the number of neurons that lie within a circle between each
pair of neurons that are adjacent in the neural layer). For a mapping from d to d
dimensions, we consider the determinant of the i vectors spanned by wr+ei−wr,
with ei being the ith unit vector. The sign of this determinant, where 1 ≤ i ≤ d,
thus gives the orientation of the set of d vectors. Note that the 1-dimensional
case just reads sgn(wr+1 − wr), which has been widely considered to detect the
ordered state in the 1 to 1 dimensional case. Hence, we can define

χ({wr}) := (3)

1 − 1
N

∣∣∣∣∣∑
r

sgn(det((wr+e1 − wr), . . . (wr+ei − wr), . . . (wr+ed
− wr)))

∣∣∣∣∣ .

210 F. Molle and J.C. Claussen

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Situation where one defect is detected by the crossproduct measure (3)

This evaluates the number of neurons N+ (resp. N−), where this sign is pos-
itive (resp. negative), hence the relative fraction of minority signs is given by
(1 − |N+ − N−|/N). A typical single defect is shown in Fig. 1. Due to its sim-
plicity, this measure χ will be used in the remainder.

Modification of learning rules and data representation. – A classical result [7,8,9]
states that the neural density for 1-D SOM (in the continuum limes) approaches
not the input density itself, but a power of it, with exponent 2/3, the so-called
magnification exponent. As pointed out by Linsker [10], the case of an exponent
1 would correspond to the case of maximal mutual information between input
and output space. Different modifications of the winner mechanism or the learn-
ing rule, by additive or multiplicative terms, have been suggested and influence
the magnification exponent [11,12,13,14]. Here we investigate the case of concave
and convex learning [2,3], which defines a nonlinear generalization of the SOM.

Topographical Stability for the Self-Organizing Map. – Before investigating the
case of concave and convex learning, the stability measures should be tested for
the well-established SOM algorithm. Using the parameter path of Fig. 2, we first
analyze the 2D → 2D case, for three input distributions: the homogeneous in-
put density (equidistribution), an inhomogeneous input distribution ∼ sin(πxi)
[14], and a varying-dimension dataset (Figs. 3, 4). The results are shown in Fig. 5.

Different input dimensions and varying intrinsic dimension. – As the input di-
mensionality is of pronounced influence on the maximal stable learning rate (Fig.
6), we also investigate an artificial dataset combining different dimensions: the
box-plane-stick-loop dataset [15] (Fig. 3), or its 2D counterpart, the plane-stick-
loop (Fig. 4). Here the crossproduct detection will become problematic where
the input space is intrinsically 1D (stick and loop), thus the average distance
criterion is used, and we restrict to the case σ ≤ 1.

Investigation of Topographical Stability 211

σ

ε

Fig. 2. Schematic diagram of the parameter path
in (ε, σ) space. Starting with high values, σ is
slowly decreased to the desired value, while the
learning rate still is kept safely low. From there,
at constant σ the learning rate is increased until
instability is observed; giving an upper border to
the stability area. – The same scheme is applied for
the concave and convex learning, where the nonlin-
earity exponent is considered as a fixed parameter.

Fig. 3. Schematic view of the classical box-plane-stick-loop dataset. Its motivation is
to combine locally different input data dimensions within one data set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25
PlaneStick−loop data input

Fig. 4. Part of the input data for the 2D plane-stick-loop data set (Fig. 3)

212 F. Molle and J.C. Claussen

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

sigma

ep
si

lo
nm

ax

Average distance based stability measures

Sin input space
Equiprobable input space
PlaneStick−loop input space

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

sigma

ep
si

lo
nm

ax

Crossproduct based stability measures

Sin input space
Equiprobable input space

Fig. 5. Critical εmax(σ) where (coming from small ε values, see Fig. 2) the SOM learn-
ing loses stability. Here a 2D array of 10×10 neurons was used with decay exp(−t/k)
exponentially in time t, with k between 30000 and 60000 depending on ε0 (for σ be-
tween 0.1 and 0.001, k = 300000). Top: Unstable ε detected from growth of the averaged
distance of neurons; here a threshold of 15% was chosen. For large σ, this measure be-
comes less reliable due to shrinking of the network, i.e. ∀rwr → 〈v〉. Bottom: Unstable
ε detected from the crossproduct measure, eq. (3), with threshold of 1 defect per 100
iterations. The ε value depends on the data distribution, but the qualitative behaviour
remains similar. In all cases, below a certain σcrit of about 0.3, ε has to be decreased
significantly. This independently reproduces [16], here we investigate also different ε
values.

Investigation of Topographical Stability 213

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

sigma

ep
si

lo
nm

ax

Average distance based stability measures

1D−1D
2D−2D
3D−3D

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

sigma

ep
si

lo
nm

ax

Crossproduct based stability measures

1D−1D
2D−2D
3D−3D

Fig. 6. Stability border dependence on input dimension (1D, 2D, 3D). The known 1D
case is included for comparison. Top: Using the average length criterion (for σ > 1,
the result can be misleading due to total shrinking of the network, see text). Bottom:
Using the crossproduct detection for defects, similar results are obtained; for large σ
instabilities are detected earlier.

Concave and convex learning: Stability of nonlinear learning. – The simulation
results are given in Fig. 7: Clearly, a strong influence of the nonlinearity parame-
ter K is observed. Especially one has to take care when decreasing σ, because for

214 F. Molle and J.C. Claussen

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

sigma

ep
si

lo
nm

ax

Crossproduct based stability measures

K=2.0
K=1.5
K=1.0
K=0.5
K=0.2
K=0.1
K=0

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

sigma

ep
si

lo
nm

ax

Average distance based stability measures

K=2.0
K=1.5
K=1.0
K=0.5
K=0.2
K=0.1
K=0

Fig. 7. Critical εmax(σ) for different values of the nonlinearity parameter from K = 2.0
(top) to K = 0 (bottom). K = 1 corresponds to the SOM case.

too large ε the network becomes instable. For K < 1, much smaller values of ε are
possible, thus considerably longer learning phases have to be taken into account
compared to original SOM. For K > 1 the stability range becomes larger.

Discussion. – We have defined a standardized testbed for the stability analy-
sis of SOM vector quantizers with serial pattern presentation, and compared
the SOM with the recently introduced variants of concave and convex learning.
The stability regions for different input distribution and dimension are of the

Investigation of Topographical Stability 215

same shape, thus qualitatively similar, but not coinciding exactly. The neigh-
borhood width, but unfortunately also the input distribution affect the maximal
stable learning rate. For the concave and convex learning, the exponent steering
the nonlinear learning also crucially influences the learning rate. In all cases, a
plateau for σ � 1 is found where the learning rate must be quite low compared
to the intermediate range 0.3 ≤ σ ≤ 1. As a too safe choice of the learning
rate simply increases computational cost, an accurate knowledge of the stability
range of neural vector quantizers is of direct relevance in many applications.

References

1. T. Kohonen. Self-Organized Formation of Toplogically Correct Feature Maps. Bi-
ological Cybernetics 43 (1982) 59-69

2. Y. Zheng and J. F. Greenleaf. The effect of concave and convex weight adjustments
on self-organizing maps. IEEE Transactions on Neural Networks, 7 (1996) 87-96

3. T. Villmann and J. C. Claussen, Investigation of Magnification Control in Self-
Organizing Maps and Neural Gas. Neural Computation 18 (2006) 449-469

4. T. Kohonen. Comparison of SOM point densities based on different criteria. Neural
Computation 11 (1999) 2081-2095

5. T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology Preservation in
Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transac-
tions on Neural Networks, 8 (1997) 256-266

6. S. Zrehen. Analyzing Kohonen maps with geometry. In Gielen, S. and Kappen, B.,
editors, Proc. ICANN’93, p. 609-612, Springer, London (1993)

7. H. Ritter and K. Schulten. On the Stationary State of Kohonen’s Self-Organizing
Sensory Mapping. Biological Cybernetics 54 (1986) 99-106

8. H. Ritter and K. Schulten. Convergence Properties of Kohonen’s Topology Con-
serving Maps: Fluctuations, Stability and Dimension Selection. Biological Cyber-
netics 60 (1988) 59-71

9. H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-Organizing
Maps: An Introduction. Addison-Wesley (1992)

10. R. Linsker. How to generate maps by maximizing the mutual information between
input and output signals. Neural Computation 1 (1989) 402-411

11. T. Heskes. Energy functions for self-organizing maps. In E. Oja and S. Kaski,
editors, Kohonen Maps, p. 303-316. Elsevier, Amsterdam (1999)

12. E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: Ordering, con-
vergence properties and energy functions. Biol. Cyb. 67 (1992) 47–55

13. J. C. Claussen, Generalized Winner Relaxing Kohonen Feature Maps, Neural Com-
putation 17 (2005) 996-1009

14. J. C. Claussen and T. Villmann, Magnification Control in Winner Relaxing Neural
Gas, Neurocomputing 63 (2005) 125-137 2005.

15. T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. ’Neural-gas’ network for
vector quantization and its application to time-series prediction. IEEE Trans. on
Neural Networks, 4 (1993) 558–569

16. T. Villmann. PhD thesis, Leipzig, Verlag Harri Deutsch, Frankfurt (1998)

Alternatives to Parameter Selection
for Kernel Methods

Alberto Muñoz1, Isaac Mart́ın de Diego2, and Javier M. Moguerza2

1 University Carlos III de Madrid, c/ Madrid 126, 28903 Getafe, Spain
alberto.munoz@uc3m.es

2 University Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Spain
{isaac.martin, javier.moguerza}@urjc.es

Abstract. In this paper we propose alternative methods to parameter
selection techniques in order to build a kernel matrix for classification
purposes using Support Vector Machines (SVMs). We describe several
methods to build a unique kernel matrix from a collection of kernels built
using a wide range of values for the unkown parameters. The proposed
techniques have been successfully evaluated on a variety of artificial and
real data sets. The new methods outperform the best individual ker-
nel under consideration and they can be used as an alternative to the
parameter selection problem in kernel methods.

1 Introduction

It is well known that the choice of kernel parameters is often critical for the good
performance of Support Vector Machines (SVMs). Nevertheless, to find optimal
values in terms of generalization performance for the kernel parameters is an open
and hard to solve question. For instance, the effect of RBF kernels parameter
within a SVM framework has been studied from a theoretical point of view [5].
Several practical proposals to choose the RBF kernel parameter have been made
[14,7,2,13]. However, there is not a simple and unique technique to select the
best set of parameters to build a kernel matrix. Our proposal is based on the
combination of the different kernel matrices that arise with the use of a range of
values for the unkown parameters. Combining kernels provides a solution that
minimizes the effect of a bad parameter choice. An intuitive and usual approach
to build this combination is to consider linear combinations of the matrices.
This is the proposal in [6], which is based on the solution of a semi-definite
programming problem to calculate the coefficients of the linear combination. The
solution of this kind of optimization problem is computationally very expensive
[17]. Recently, a simpler algorithm based on the same ideas for learning a linear
combination of kernels has been developed [1]. The main difference is the way
in which the weights within the semi-definite programming problem are found.

In this paper we propose several methods to build a kernel matrix from a
collection of kernels generated from different values of the unkown parameters

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 216–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Alternatives to Parameter Selection for Kernel Methods 217

in the kernel function. The functions involved in the proposed methods take
advantage of class conditional probabilities and nearest neighbour techniques.

The paper is organized as follows. The general framework for the methods is
presented in Section 2. The proposed methods are described in Section 3. The
experimental setup and results on artificial and real data sets are described in
Section 4. Section 5 concludes.

2 General Framework

As already mentioned, our proposal is based on the generation of a collection of
kernel matrices using a wide range of values for the unkown kernel parameters.
Once the collection has been built, we will combine the kernels in order to build
a unique kernel. We will not focus on the generation step but on the combination
step. Different ways to generate parameters, not only for kernels but for many
other methods, can be consulted in [15] or in many simulation handbooks.

In order to combine the kernel matrices we make use of the concept of functional
combination of kernel matrices. This concept was introduced originally in [10].

Let K1,K2, ...KM be a set of M input kernels defined on a data set X , and de-
note byK∗ the desired output combination. Let y denote the label vector, where for
simplicity yi ∈ {−1,+1} (the extension to the multiclass case is straighforward).

Consider the following (functional) weighted sum:

K∗ =
M∑

m=1

Wm ⊗Km , (1)

where Wm = [wm(xi, xj)] is a matrix whose elements are nonlinear functions
wm(xi, xj), with xi and xj data points in the sample, and ‘⊗’ denotes the element
by element product between matrices (Hadamard product). We assume that
Km(xi, xj) ∈ [0, 1] ∀ i, j,m (otherwise the kernels can be scaled). Notice that
if wm(xi, xj) = µm, where µm ,m = 1, . . .M are constants, then the method
reduces to calculate a simple linear combination of matrices:

K∗ =
M∑

m=1

µmKm . (2)

Several methods have been suggested to learn the coefficients µm of the linear
combination [1,6]. Thus, the formulation used in these papers is a particular case
of the formula we use. For instance, if we take µm = 1

M , the average of the kernel
matrices is obtained.

Regarding our proposals, consider the (i, j) element of the matrix K∗ in (1):

K∗(xi, xj) =
M∑

m=1

wm(xi, xj)Km(xi, xj) . (3)

This is the general formula of our approximation. In this way, we will generate
a particular weight for each pair of elements under consideration.

218 A. Muñoz, I.M. de Diego, and J.M. Moguerza

An aspect that has to be treated before describing the methods is the fact
that the kernel matrix arising from the combination has to be a positive semi-
definite matrix. Since this can not be guaranteed in advance, we make use of some
of the several solutions that have been proposed to solve this difficulty [12]. For
instance, consider the spectral decomposition K∗ = QΛQT , where Λ is a diagonal
matrix containing (in decreasing order) the eigenvalues of K∗, and Q is the
matrix of the corresponding eigenvectors. Assume that Λ has at least p positive
eigenvalues. We can consider a p-dimensional representation by taking the first
p columns of Q: QpΛpQ

T
p . We will refer to this technique as ’Positive Eigenvalue

Transformation’. A computationally cheaper solution is to consider the definition
of a new kernel matrix as K∗2. Notice that, in this case, the new kernel matrix is:
QΛ2QT . We call this method ‘Square Eigenvalue Transformation’. In practice,
there seems not to be a universally best method to solve this problem [11].

3 Some Specific Proposals

The next section is devoted to described a common aspect to the methods we will
propose: The use of conditional class probabilities in order to build the weights
wm(xi, xj) introduced in the previous section.

3.1 Conditional Class Probabilities

Consider the pair (xi, yi) and an unlabeled observation xj . Given the observed
value xj , define P (yi|xj) as the probability of xj being in class yi. If xi and
xj belong to the same class this probability should be high. Unfortunately, this
probability is unknown and has to be estimated. In our proposals, we will esti-
mate it by:

P (yi|xj) =
nij

n
, (4)

where nij is the number of the n-nearest neighbours of xj belonging to class yi.
Notice that each kernel induces a different type of neighborhood. In fact,

there is an explicit relation between a kernel matrix and a distance matrix. For
instance, consider a matrix K of inner products in an Euclidean space F (a
kernel). Then D2 = veT + evT − 2K is a matrix of square Euclidean distances
in F [4], where v is a vector made up of the diagonal elements of K. Hence, it
is advisable to estimate this probability for each kernel representation, that is,
for the kernel Km we will estimate the conditional probabilities Pm(yi|xj) using
the induced distances matrix D2

m. We will need the average of this conditional
probabilities over the kernel matrices:

P̄ (yi|xj) =
1
M

M∑
m=1

Pm(yi|xj) , (5)

and

ρ̄(xi, xj) =
P̄ (yi|xj) + P̄ (yj |xi)

2
. (6)

Alternatives to Parameter Selection for Kernel Methods 219

To estimate the conditional class probabilities, the appropriate size of the
neighbourhood has to be determined. We propose a dynamic and automatic
method: given two points xi and xj , we look for the first common neighbour.
For each data point (xi and xj), the size k of the neighbourhood will be de-
termined by the number of neighbours nearer than the common neighbour.
To be more specific, let R(xi, n) = {n-nearest neighbours of xi}, then k =
argminn{R(xi, n) ∩ R(xj , n) �= ∅}. Obviously, the size k of the neighbourhood
depends on the particular pair of points under consideration.

At this point, we have the means to implement some particular proposals of
combination methods.

3.2 The ‘MaxMin’ Method

The ‘MaxMin’ method (first used in [10]) produces a functional combination of
two kernels, namely, the maximum and the minimum of the ordered sequence of
kernels, being zero the weight assigned to the rest of the kernels. Consider the
ordered sequence:

min
1≤m≤M

Km(xi, xj) = K[1](xi, xj) ≤ . . . ≤ K[M](xi, xj) = max
1≤m≤M

Km(xi, xj) ,

where the subscript [·] denotes the position induced by the order. This method
builds each element of K∗ using the formula:

K∗(xi, xj) = ρ̄(xi, xj)K[M](xi, xj) + (1 − ρ̄(xi, xj))K[1](xi, xj) . (7)

If xi and xj belong to the same class then the conditional class probabilities
ρ̄(xi, xj) will be high and the method guarantees that K∗(xi, xj) will be large.
On the other hand, if xi and xj belong to different classes the conditional class
probabilities ρ̄(xi, xj) will be low and the method will produce a value close to
the minimum of the kernels. In the following, this method will be refered as
MaxMin.

For the particular case of K1, . . . ,KM being a collection of RBF kernels:

Km(xi, xj) = e−‖xi−xj‖2/(2∗σ2
m) , m = 1, . . . ,M , (8)

with different σm values, then, the minimum and the maximum for each pair of
points (xi, xj) correspond respectively to the highest and the lowest value of the
collection of σm parameters.

3.3 The Percentile-in Method

Next, we propose a method whose assignment of positive weights wm(xi, xj) is
based on the order induced by the kernels. The method builds each element of
K∗ using the following formulae:

K∗(xi, xj) = K	ρ̄(xi,xj)M
 , (9)

where the subscript �·� denotes the upper rounding of the argument.

220 A. Muñoz, I.M. de Diego, and J.M. Moguerza

We denote this method by ‘Percentile-in’ method [10] . If the class proba-
bility ρ̄(xi, xj) is high, we can expect a high similarity between xi and xj and
the method will guarantee a high K∗(xi, xj). If the class probability ρ̄(xi, xj) is
low, K∗(xi, xj) will be also low.

3.4 The Percentile-out Method

As in the previous method, the last proposed technique is based on the order
induced by the kernels. However, in this case two kernel values are considered.
Each element of the K∗ matrix is built as follows:

K∗(xi, xj) =
1
2

(
K	P̄ (yi|xj)M
 + K	P̄ (yj |xi)M

)
, (10)

where the subscript �·� denotes the upper rounding of the argument. We denote
this method by ‘Percentile-out’ method [10] .

If the conditional class probabilities P̄ (yi|xj) and P̄ (yj |xi) are high, we can
expect a high similarity between xi and xj and both methods will guarantee a
high K∗(xi, xj). If the conditional class probabilities P̄ (yi|xj) and P̄ (yj |xi) are
both low, K∗(xi, xj) will be also low.

This method can be viewed as a smoothed MaxMin method. As in the MaxMin
method, two kernels are considered for each pair of points in the sample. The
conditional probabilities are used in order to obtain values not so extreme as
the maximum and the minimum. Only if P̄ (yi|xj) = P̄ (yj |xi) the Percentile-out
method reduces to the Percentile-in method. Otherwise, this method takes into
account the difference between the proportion of neighbours of xj belonging to
class yi and the proportion of neighbours of xi belonging to class yj.

4 Experiments

To test the performance of the proposed methods, an SVM (with the upper
bound on the dual variables fixed to 1) has been trained on several real data
sets using the kernel matrix K∗ constructed.

In order to classify a non-labelled data point x, K∗(x, i) has to be evaluated.
We calculate two different values for K∗(x, i), the first one assumming x belongs
to class +1 and the second assumming x belongs to class −1. For each assump-
tion, we compute the distance between x and the SVM hyperplane and assign x
to the class corresponding to the largest distance from the hyperplane.

Since our technique is based on the calculation of the nearest neighbours,
we have compared the proposed methods with the k-Nearest Neighbour clas-
sification (k-NN, using the optimal value k = l

4
d+4 [16]). We have compared

our methods with the linear combination of kernels method (LC) [1]. In order
to evaluate the improvement provided by our proposals, we have carried out
a Wilcoxon signed-rank test (see for instance [8]). This nonparametric test is
used to compare the median of the results for different runs of each method. So,
the null hypothesis of the test is that our methods do not improve the existing
combination techniques.

Alternatives to Parameter Selection for Kernel Methods 221

4.1 Artificial Data Sets

4.2 Two Areas with Different Scattering Matrices

This data set, shown in Figure 1, is made up of 400 points in IR2. Visually there
are two areas of points (80% of the sample is in area A1 and 20% is in area
A2). Each area Ai corresponds to a circle with radio σi. Here σ1 = 10−2σ2, with
σ2 = 1. The first group center is (0, 1) and the second group center is (1, 1).
Nevertheless, the areas do not coincide with the classes {−1,+1} that are to be
learned. Half of the points in each class belongs to aread A1, and the other half
to area A2. Within each area, the classes are linearly separable. Therefore the
only way to built a classifier for this data set is to take into account the area
each point belongs to. We use 50% of the data for training and 50% for testing.

0.0 0.5 1.0 1.5

0.
5

1.
0

1.
5

−

−

−

−

−

−

−

−

−

−

−

−

−−

−−

−

−− +

+

+

+

+

+

+

+

+

+

+ +

+
++

+

+

+

+

+

+

−−− +++

Fig. 1. Two areas with different scattering matrices. The first area center is (0, 1) and
the second area center is (1, 1). The areas do not coincide with the classes {−1, +1}.

Let {K1, . . . ,K5} be a set of five RBF kernels with parameters σ =0.5, 2.5, 5,
7.5 and 10 respectively. In order to get a positive semi-definite kernel matrix K∗,
we use the Square Eigenvalue Transformation technique described in Section 2.

Table 1 shows the performance of our proposals for this data set. The results
have been averaged over 10 runs. Given the geometry of the data, it is clear that
is not possible to choose a unique best σ for the whole data set. As σ grows, the
test error increases for the data contained in area A1, and decreases within area
A2. The LC method seems to work fairly. Nevertheless, the MaxMin method
achieves the best results on classification. Regarding the Wilcoxon signed-rank
test for the comparison of our methods with the LC technique, the p-value is
smaller than 0.001 for the MaxMin method.

4.3 The Three Spheres Example

The data set contains 300 data points in IR4. We generate three different groups
of observations (100 observations per group) corresponding to three spheres in
IR3. The center is the same for the three spheres (0, 0, 0) and the radii are

222 A. Muñoz, I.M. de Diego, and J.M. Moguerza

Table 1. Percentage of missclassified data and percentage of support vectors for the
two different scattering data set: A1 stands for the less scaterring group, A2 stands for
the most dispersive one

Train Test Support
Error Error Vectors

Method Total A1 A2 Total A1 A2 Total A1 A2

RBFσ=0.5 2.1 2.6 0.0 13.5 4.1 51.0 39.6 25.1 97.5
RBFσ=2.5 4.8 6.0 0.0 13.5 6.5 41.5 62.2 53.4 97.5
RBFσ=5 6.6 8.2 0.0 14.0 10.1 29.5 82.8 79.2 97.0
RBFσ=7.5 16.0 19.9 0.5 22.2 22.6 20.5 94.6 94.2 96.0
RBFσ=10 30.7 38.2 0.5 37.3 44.1 10.0 94.2 95.4 89.5

MaxMin 0.3 0.4 0.0 4.9 0.9 21.0 27.7 9.6 100.0
Percentile-in 4.2 5.1 0.5 9.0 3.1 32.5 35.9 20.1 99.0
Percentile-out 0.7 0.9 0.0 7.7 1.1 34.0 29.0 11.4 99.5
k-NN 14.5 3.5 58.5 15.5 3.5 63.5 — — —
LC 1.6 2.0 0.0 8.1 2.5 29.5 46.6 33.2 100.0

different (0.1,0.3, and 1 respectively). The 100 points on the sphere with radio
equals to 0.3 belong to class +1, and the other 200 points belong to class −1.
Finally a fourth random additional dimension is added to the data set, following
a Normal distribution (centered in 0 and with 10−2 as standard deviation). We
use 50% of the data for training and 50% for testing.

Let {K1, . . . ,K5} be a set of polynomial kernels, K(x, z) = (1 + xT z)d, with
parameters d = 1, 2, 3, 4, 5 respectively. In order to scale the matrices, we use
the following normalization [3]: K(x, z) = K(x, z)/(

√
K(x, x)

√
K(y, y)). We use

the Square Eigenvalue Transformation method to solve the problem of building
a positive semi-definite matrix. Table 2 shows the performance of the proposed
methods when combining these kernel matrices. The results have been averaged
over 10 runs.

The MaxMin and Percentile methods show the best overall performance. All
our combination methods provide better results than the best polynomial kernel,
using usually significantly less support vectors. Regarding the Wilcoxon signed-
rank test for the comparison of our methods with the LC technique, the p-values
are smaller than 0.001 for all our methods. So the improvement obtained by the
use of our proposals is statistically significant. Notice that the results using any
of the single kernels are very poor, while the results obtained using any of our
combination methods are significatively better. This example also shows that
using a linear combination of the kernels may not be a good choice.

4.4 A Real Data Set

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Breast Cancer data set [9]. The data set consists of 683 obser-
vations with 9 features each. Let {K1, . . . ,K12} be a set of RBF kernels with

Alternatives to Parameter Selection for Kernel Methods 223

Table 2. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the three spheres data set. Standard deviations in
brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Polynomiald=1 31.8 (2.5) 0.000 1.000 34.9 (2.5) 0.000 1.000 69.5 (5.0)
Polynomiald=2 31.8 (2.5) 0.000 1.000 34.9 (2.5) 0.000 1.000 75.7 (7.9)
Polynomiald=3 30.6 (1.8) 0.200 0.909 36.1 (1.8) 0.200 0.891 71.7 (5.6)
Polynomiald=4 23.7 (7.3) 0.377 0.893 31.7 (7.0) 0.293 0.816 69.5 (4.6)
Polynomiald=5 14.7 (2.5) 0.541 0.958 24.1 (7.0) 0.436 0.798 69.5 (4.6)

MaxMin 4.0 (0.8) 0.964 0.958 5.5 (2.5) 0.921 0.958 8.4 (1.2)
Percentile-in 5.5 (1.4) 0.907 0.963 6.9 (3.2) 0.864 0.967 7.6 (1.4)
Percentile-out 4.5 (1.1) 0.941 0.959 6.9 (2.9) 0.886 0.957 8.5 (1.5)
k-NN 10.9 (2.4) 0.795 0.934 15.7 (4.2) 0.725 0.904 — (—)
LC 31.8 (2.5) 0.000 1.000 34.9 (2.5) 0.000 1.000 71.5 (3.9)

parameters σ =0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 respectively. We
use the Positive Eigenvalue Transformation to solve the problem of building a
positive semi-definite matrix.

Table 3 shows the performance of the proposed methods when combining all
these kernel matrices. Again, the results have been averaged over 10 runs. The
MaxMin method, the Percentile-in method, and the Percentile-out method im-
prove the best RBF kernel under consideration (test errors of 2.8% for the three
methods vs. 3.1%). The results provided by all the combination methods are
not degraded by the inclusion of kernels with a bad generalization performance.
Our methods clearly outperform the SVM classifier using an RBF kernel with
σ =

√
d/2, where d is the data dimension (see [14] for details). Regarding the

Table 3. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the cancer data using a battery of RBF kernels.
Standard deviations in brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Best RBF 2.3 (0.3) 0.979 0.976 3.1 (1.6) 0.976 0.966 13.6 (1.3)
Worst RBF 0.0 (0.0) 1.000 1.000 24.7 (2.3) 1.000 0.627 74.0 (2.4)

MaxMin 0.1 (0.1) 0.999 0.998 2.8 (1.6) 0.963 0.975 14.2 (1.5)
Percentile-in 2.0 (0.4) 0.982 0.979 2.8 (2.8) 0.975 0.969 7.8 (0.7)
Percentile-out 0.2 (0.1) 0.999 0.997 2.8 (1.7) 0.964 0.975 19.2 (4.5)
k-NN 2.7 (0.5) 0.961 0.980 3.4 (1.5) 0.949 0.974 — (—)
LC 0.0 (0.0) 1.000 1.000 3.2 (1.6) 0.976 0.964 41.5 (4.4)
SVM 0.1 (0.1) 1.000 0.999 4.2 (1.4) 0.989 0.942 49.2 (1.0)

224 A. Muñoz, I.M. de Diego, and J.M. Moguerza

Wilcoxon signed-rank test for the comparison of our methods with the SVM tech-
nique, the p-values are smaller than 0.05 for the MaxMin and the Percentile-out
methods, and smaller than 0.1 for the Percentile-in method. Again, the improve-
ment obtained by the use of our proposals is statistically significant.

5 Conclusions

In this paper, we have proposed alternative methods to parameter selection
techniques within a Kernel Methods framework. The proposed techniques are
especially usefull when does not exist an overall and unique best parameter.
The suggested kernel combination methods compare favorably to the use of one
of the kernels involved in the combination. We have also shown that a linear
combination of the kernels may not be a good choice. Further research will
focus on the theoretical properties of the methods and extensions. In particular,
the methods shown in this paper do not take full advantage of the concept of
the functional weighted sum described in (1): we think that there is room for
improvement and more sophisticated ways for the calculus of the weights may
be designed. The method could be generalized by using more than two kernels,
but then, a parameter to control the relative importance of the kernels will be
needed [10].

Acknowledgments. This work was partially supported by Spanish grants TIC-
2003-05982-C05-05 (MCyT) and PPR-2004-05 (URJC).

References

1. O. Bousquet and D.J.L. Herrmann. On the complexity of learning the kernel
matrix. In S. Becker, S. Thurn, and K. Obermayer, editors, Advances in Neural
Information Processing Systems, 15, pages 415–422. Cambridge, MA: The MIT
Press, 2003.

2. O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple para-
meters for support vector machines. Machine Learning, 46(1/3):131–159, 2002.

3. N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On Kernel-Target
Alignment, pages 367–373. Cambridge, MA: MIT Press, 2002.

4. J. C. Gower and P. Legendre. Metric and euclidean properties of dissimilarity
coefficients. Journal of Classification, 3:5–48, 1986.

5. S.S. Keerthi and C. Lin. Asymptotic behaviors of support vector machines with
gaussian kernel. Neural Computation, 15:1667–1689, 2003.

6. G. R. G. Lanckriet, N. Cristianini, P. Barlett, L. El Ghaoui, and M. I. Jordan.
Learning the kernel matrix with semi-definite programming. Journal of Machine
Learning Research, 5(Jan):27–72, 2004.

7. J.-H. Lee and C.-J. Lin. Automatic model selection for support vector machines.
Technical report, National Taiwan University, 2000.

8. E. L. Lehmann. NonParametrics: Statistical Methods Based on Ranks. McGraw-
Hill, 1975.

9. O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming.
SIAM News, 23(5):1–18, 1990.

Alternatives to Parameter Selection for Kernel Methods 225

10. J. M. Moguerza, I. Mart́ın de Diego, and A. Muñoz. Improving support vector
classificacion via the combination of multiple sources of information. In Proc. of
the IAPR International Workshops SSPR 2004 and SPR 2004, Vol. 3138 of LNCS,
pages 592–600. Berlin: Springer, 2004.

11. E. Pȩkalska, R. P. W. Duin, S. Günter, and H. Bunke. On not making dissimilarities
euclidean. In Proc. of the IAPR International Workshops SSPR 2004 and SPR
2004, Vol. 3138 of LNCS, pages 1145–1154. Berlin: Springer, 2004.

12. E. Pȩkalska, P. Pacĺık, and R. P. W. Duin. A generalized kernel approach to
dissimilarity-based classification. Journal of Machine Learning Research, Special
Issue on Kernel Methods, 2(12):175–211, 2001.

13. K. Schittkowski. Optimal parameter selection in support vector machines. Journal
of Industrial and Management Optimization, 1(4):465–476, 2005.

14. B. Schölkopf, S. Mika, C. J.C. Burges, K.-R. Müller P. Knirsch, G. Rätsch, and A. J.
Smola. Input space vs. feature space in kernel-based methods. IEEE Transactions
on Neural Networks, 1999.

15. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

16. B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, London, 1986.

17. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–
95, 1996.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 226 – 233, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Faster Learning with Overlapping Neural Assemblies

Andrei Kursin1, Dušan Húsek2, and Roman Neruda3

1 Kharkiv Polytechnic Institute, Information Systems Department,
21 Frunze st., 61002, Kharkiv, Ukraine

ak@kpi.kharkov.ua
2 Institute of Computer Science, Neural Networks and Nonlinear Systems Department

2 Pod Vodarenskou veži st., 18207, Prague, Czech Republic
dusan@cs.cas.cz

3 Institute of Computer Science, Neural Theoretical Computer Science Department
2 Pod Vodarenskou veži st., 18207, Prague, Czech Republic

roman@cs.cas.cz

Abstract. Cell assemblies in neural network are often assumed as overlapping,
i.e. a neuron may belong to several of them simultaneously. We argue that
network structures with overlapping cell assemblies can exhibit faster learning
comparing to non-overlapping ones. In such structures newly trained assemblies
take advantage of their overlaps with the already trained neighbors. The
assemblies learned in such manner nevertheless preserve the ability for
subsequent separate firing. We discuss the implications it may have for
intensification of neural network training methods and we also propose to view
this learning speed-up in a broader context of inter-assembly cooperation useful
for modeling concept formation in human thinking.

1 Introduction

Neural assembly is among the main concepts of connection science. It describes a set
of cells which are distinguished from the rest of neuron mass due to their higher
connectivity. The chief part in assembly formation is devoted to Hebbian learning
process which strengthens the links among neurons that fire simultaneously.

It goes hand in hand with the very definition of neural assembly [1], [2] that the
assemblies should be overlapping, i.e. one neuron may belong to several of them. It is
evident that overlapping structure of assemblies increases storage capacity of a
network but on the other hand it rises a problem of organizing connection matrix in a
way to avoid palimpsest effects and to ensure separate firing of assemblies in spite of
the overlaps. So far the studies of overlapping neural assemblies have concerned
primarily this problem [3], [4], [5]. We want to draw the reader's attention to the fact
that overlapping assembly structures may have other interesting properties. In
particular, we argue here that overlapping assemblies may exhibit faster learning
comparing to non-overlapping ones. We describe simulations that support our
assumption and, in concluding section, we discuss what consequences such assembly
cooperation may have either for neural network training methods or for modeling
cognitive functions like concept formation.

 Faster Learning with Overlapping Neural Assemblies 227

2 Overview

To verify our assumption we chose to study a simple Hopfield-type neural network
[6], [7], [8]. From time to time it is exposed to certain input and when input is
released, the network converges to some attractor state. The configuration of the state
is determined by the input pattern and the assembly structure of the network. In fact,
the network tends to select a neural assembly, which is the closest to the input pattern.
Assemblies are distinguished by denser connectivity of their neurons while the
network as a whole is sparsely connected. Each assembly may be either trained or not.
In the trained state, the most of the links among the assembly neurons are potentiated.
An untrained assembly has only initially weak inter-neuron connections.

We studied the process of potentiation of intra-assembly links and found that under
certain conditions, the assemblies, overlapping with already trained ones, learn their
input patterns faster than assemblies without such overlaps. This can be explained by
the fact that portion of their internal linkage is already potentiated. We consider this
fact as the simplest form of inter-assembly interactions we hope to simulate later.

3 Network Model

3.1 Neurons

Our network consists of N excitatory neurons and an inhibitory subsystem. Each
excitatory neuron i (i=1,…,N) is a simple 2-state neuron whose activation at time t is
denoted as Ai(t), Ai(t) {0, 1}. The activation is calculated as a function of the
neuron input:

))(()(tItA ii Θ= , (1)

where function returns 1 for positive values of the argument and 0 otherwise.
Neuron input is a sum of the signals incoming from other excitatory neurons,

inhibitory signal Ti, and external input Hi if any:

ii

k

j
jijiin HTAJItI +−+−=

=1

)(τ ,
(2)

where Jij is efficacy of a link from neuron j to neuron i, k is the number of input links
per neuron and n is an integration time constant for excitatory neurons.

3.2 Inhibition

The inhibitory subsystem can be viewed as a single giant neuron that takes the sum of

all excitatory neuron activations
=

=
N

i
iAI

1

as input and calculates inhibitory signal

according to the transduction function

228 A. Kursin, D. Húsek, and R. Neruda

≥
<

=
c

c

III

II
I

η
ϕ

ϕ min)(,

where and min > 0, 1 are constant values. The inhibitory signal Ti= (I) is equal for
every excitatory neuron. The goal of the inhibitory subsystem is to keep the number
of active excitatory neurons in certain limits. Inhibitory signal is calculated each h
time units.

3.3 Input

The network input is described by a set E which comprises all neurons of the network
activated at this time. The same value Hext of external input current ensuring high
activation probability is injected to all neurons in E while for all other neurons Hi=0
in (2). The input set E can be described as follows:

E = (Aq \ C) B, (3)

where Aq is a set of neurons belonging assemble q while C and B are the sets
providing input noise. C Aq contains the neurons from Aq absent in current pattern
and B forms "added noise" (B Aq=).

3.4 Link Modification Rule

As was stated above, our network is sparsely connected. Each neuron receives input
links from k= rN neurons, where r 1. In the described simulations r was about 10%.
A link is characterized by its conductivity J, which can be either modifiable or
constant depending on the type of simulation. We make all intra-assembly links
constant and potentiated when we test discriminating ability of overlapping
assemblies. In learning experiments all links are modifiable.

The links are modified according to Hebbian principle, i.e. a link connecting
simultaneously firing neuron is strengthened, and a link connecting a firing and a
silent neuron is depressed. We use stochastic link modification rule proposed in [7],
[8]. It is notable because it supports either long term potentiation (LTP) or long term
depression (LTD) and has analog short term dynamics producing short term memory
in attractors. The rule provides robust learning in our experiments though we believe
that the main experiment results, i.e. inter-assembly interactions, may be reproduced
with other learning rules as well.

A link, according to this model, has two stable conductivity values J0 and J1 for
LTD and LTP states correspondingly. Suppose, a link is in LTD state and both
neurons are active, then current conductivity gradually increases up to threshold wi j,

which fluctuates in some boundaries 0J ′ and 1J ′ , 1100 JJJJ <′<′< . If the

threshold is reached, the conductivity jumps to another stable value J1. If the threshold
is not reached, the conductivity quickly returns to the previous stable value in the
absence of activation in the connected neurons. Depression of an LTP link occurs
reversely. The rule can be formalized as follows:

 Faster Learning with Overlapping Neural Assemblies 229

))()(()()()()(010 twtJJJtcJtJtJ ijijijijijc −Θ−+++−=τ . (4)

It is an integrator with time constant c. The term cij(t) represents Hebbian learning
source; it is specified in terms of mean activation of the two neurons:

)]()([)()()(tAtAtAtAtc jijiij +−= −+ λλ ,

where iA is the mean activation of neuron i. + and - are constant coefficients

selected so that transition between the stable states occur only when both values A
are high or one is high and one is low. wij is the fluctuating threshold, is the same as
in (1) and the whole last term of (4) is the refresh source that indefinitely keeps Ji at
one of the stable values in absence of activation. c is taken to be sufficiently long to
ensure slow stable learning. Mean activation of neurons is calculated as

2

)()(
)(

tAtA
tA ini

i

+−
=

τ
.

When a neuron is active for several time steps, iA reaches 1. In inactive state iA

quickly approaches zero.

3.5 Connection Matrix

One can study overlapping neural assemblies in several ways. For example, it is
possible to choose a fully connected network and study how assemblies are formed
according to correlations in input data [4], [5]. Or one may arrange a set of "innate"
overlapping assemblies and train their connections from the input layer of the network
[3]. We chose a structure that would probably help us to test our assumption. It is
namely a sparsely connected network where cell assemblies are distinguished by
denser connectivity of their neurons. To ensure existence of cell assemblies in such
network the connection matrix should be organized according to proximity principle,
i.e. when the probability of two neurons to be connected depends on the distance
between them. It is about 1 for nearby neurons and gradually comes to zero as the
distance increases. We used a square metrics where neurons are located at cross-
sections of a square grid. Both dimensions of the network are assumed cycled to avoid
undesirable edge effects. The assembly structure in such network is determined
according to structured principle formulated in [3]: “The minint (minimum internal
connectivity) of a set of neurons is the minimum number of innate links that any
neuron in the set receives from other neurons in the set. The maxext (maximum
external connectivity) of a set of neurons is the maximum number of innate links that
any neuron outside the set receives from neurons in the set. A web [neural assembly]
is a set of neurons whose minint is greater than its maxext.” It was reported that there
do exist overlapping assemblies in such networks and their number is usually about
the number of neurons in the network [3]. Actually the number is lower if we take
into account activation dynamics [2] so that each portion of an assembly can ignite

230 A. Kursin, D. Húsek, and R. Neruda

the whole or be necessary for firing of the whole. Otherwise, the set of assemblies,
distinguished purely structurally, contains also weakly coupled unions of smaller
assemblies.

Actually, reaching maximum number of assemblies was not our purpose here, and
we adopted an approximation of proximity principle to simplify control over the
network during experiments. We designed our assemblies to occupy certain simple-
form geometric areas on network “surface”. Each neuron gets input links from all
neurons of the areas to which it belongs, excluding itself. The remainder of its
connections is randomly distributed over the rest of the network.

Each arrangement of assemblies achieved in such way was tested first for
discrimination properties, i.e. the ability of each assembly to fire independently in the
fully trained state. We arranged the connection matrix with fully potentiated intra-
assembly links and tested if assemblies can fire independently in response to
corresponding data. The matrix versions with insufficient discrimination charac-
teristics did not participate in training tests.

4 Simulations and Results

The simulations were performed with a network of N = 1024 neurons. Mean assembly
size M =16. The number of input links per neuron k = 96. Inhibition parameters were
Ic = 14 — 16, min = 2 and = 3. Hext = 16. Learning parameters had the following
values: J0 = 0, J1 = 1, J'0 = 0.4, J'1 = 0.6, + = 1.23 and – = 0.41. h was taken as a
minimum time unit and n = 32 h, which means for discretely calculated network that
between two successive updates of inhibitory signal T, activation states of N/32
randomly chosen neurons are recalculated.

During simulation, input pattern created as specified above were presented to the
network for time period tp = 30 n , then input current was removed and the network
was allowed to move to an attractor state during delay period td = 60 n whose length
was chosen to be sufficient to reach an attractor in any experimental situation. In a
fully trained network the attractors usually coincide with corresponding assemblies.
During learning tests, the situation is not always the same. The coincidence between
the reached attractor and the intended assembly is calculated as a portion of the
assembly neurons present in the attractor. This number L was used as a measure of
learning. As more intra-assembly links become potentiated, this number approaches
100% and remains close to this in the trained network.

The training sets contained 4-8 assemblies each. Actually, the training set sizes are
not of much importance here since assemblies in a set are uncorrelated and learn
independently. Sets of any size would be learned in about the same number of cycles.

Training experiments were performed according to the following scheme. The
preparation stage started from unlearned connection matrix (Aij = J0 for every i, j). A
set X of assemblies in the network were trained using corresponding sequence of input
patterns. Each member of the sequence was built on the basis of certain assembly
from the set X according to (3). Assemblies in X did not overlap and input patterns
were uncorrelated. The sequence was repeated a number of times (S), every time with
different random noise portions till L reached 100% for every assembly in the set.

 Faster Learning with Overlapping Neural Assemblies 231

Fig. 1. Assembly-attractor matching measure L (%) versus number of input cycles S . (A)
illustrates learning different pattern sets. Thin solid line corresponds to the test for X and Y
discriminability after learning both sets. | C | = 0.0625M, | B | = M, overlap size O = 50%. (B)
shows influence of noise: thick lines correspond to | B | = M, |C | = 0.125M, thin – to
| B | = 0.5M, | C | = 0.0625M; O = 50%. (C) illustrates influence of overlap size; | C | = 0.25M,
| B | =M. The data were averaged over 4–8 assemblies and 50 trials for each test.

Then sets Y and Z of assemblies were trained in the same manner in separate copies
of the network obtained on the preparation stage. Members of these sets don't overlap
with each other but every assembly in Y overlaps with one or more assemblies in X

232 A. Kursin, D. Húsek, and R. Neruda

while assemblies of Z don't. It was found that set Y is learned faster than Z, especially
on early stages. The data describing learning progress are presented in Fig. 1.

After the training stage, the networks were tested for sufficient discriminability
between sets X and Y and showed good responses for either set of patterns (the thin
solid line in the Fig. 1A).

A copy of each network obtained after the preparation stage was also exposed to an
input sequence comprising patterns corresponding to members of both X and Y. This
was done to test a network’s ability to learn set Y while pertaining memory of set X.
The learning rates here were slower but usually still higher than the rates for Z (the
thin dashed line in Fig. 1A). However this test depends much on the ratio between
quantities of X and Y members in the training set. If assemblies from X prevail, the Y
learning curve after L = 40—50% comes close to or even below the curve for set Z.

Two factors were found to influence learning advantages of Y assemblies. First,
they more significantly win in "difficult conditions", i.e. when there is sufficient noise
(especially "added noise", | B | > 0.75 M). For illustration see Fig. 1B. We consider it
positive since sufficient noise should be expected in real tasks. Tests were performed
for | C | between 0 and 0.25M, and | B | between 0 and M.

Second, the overlap of assemblies should not be so great that it tends to frequently
ignite a previously learned X assembly, otherwise learning abilities of assemblies in Y
would be very low. Below this ignition level, increasing size of overlaps facilitates
learning of set Y. Fig. 1C presents test results for overlap sizes (measured as a portion
of M) O=25% and O=50%.

5 Discussion

Faster learning rates for the sets of overlapping assemblies observed in the
experiments clearly follow from the ability of such assemblies to benefit from the
potentiated links that they already have in their structure due to the overlaps with
trained assemblies. At the same time such overlaps don't slow down learning much
when the network is exposed to the sequences containing either old or new input
patterns. This may be only one from the range of interesting properties that
overlapping assembly structures may exhibit. But we want to draw your attention to
certain consequences the results may have.

In other publications [9, 10] we argue that neural networks of certain architecture
are capable of advanced type of learning resembling metaphorizing abilities of human
thinking [11], i.e. when a novel concept is formed by analogy and on the basis of
some already known concept. Such phenomenon is ubiquitous in human mental
practice. Its cognitive gain is evident: it provides faster and better learning than purely
inductive method since learning occurs not through exploration of novel concept from
scratch but rather through looking for properties of an old concept in the new one.

In terms of neural networks, such learning is characteristic for the process in which
an old trained assembly "helps" a new one to learn a novel piece of input data. This
help can be provided only in two ways: through overlapping of neuron sets belonging
to the assemblies, or via associative links between the assemblies. It seems that the
former factor is more powerful since associative links of previously dormant neurons

 Faster Learning with Overlapping Neural Assemblies 233

belonging to the freshly recruited assembly are probably too weak to ensure such
"help". In this paper we showed that the "help" through assembly overlaps exists.

On the other hand this research has interesting implications for the field of artificial
neural network training. Usage of previously obtained knowledge (when learning a
new thing benefits from already knowing something similar) is clearly an effective
way for intensification of training methods. This evident feature of natural neural
networks is still not sufficiently accounted for in training their artificial analogs. We
showed here that neural networks with overlapping assemblies have necessary
properties to introduce this feature into learning. Further research may consist in
application of the proposed principle to some practical task, e.g. categorization or
information retrieval, like in [12].

Acknowledgements

This work is supported by INTAS grant Nr. 03-55-1661 and partly by the Institutional
Research Plan AVOZ10300504 "Computer Science for the Information Society:
Models, Algorithms, Applications'' and grant IET100300414.

References

1. Hebb, D. O.: The Organization of Behavior. A Neuropsychological Theory. New York:
John Wiley (1949).

2. Palm, G.: Neural Assemblies. Studies of Brain Function. Vol. VII. Springer, Berlin
Heidelberg New York (1982).

3. Wickelgren, W.A.: Webs, Cell Assemblies, and Chunking in Neural Nets. In: Canadian
Journal of Experimental psychology. Vol. 53. 1 (1999) 118-131

4. Strangman, G.: Detecting Synchronous Cell Assemblies with Limited Data and
Overlapping Assemblies. In: Neural Computation. Vol. 9. (1997) 51-76

5. Huyk, C. R.: Overlapping Cell Assemblies from Correlators. In: Neurocomputing. Vol. 56.
(2004) 435-439

6. Hopfield, J. Neural Nets and Physical Systems with Emergent Collective Computational
Abilities. Proc. of the Nat. Academy of Sciences USA 79 (1982) 2554-2558

7. Amit, D. J., Brunel, N.: Learning Internal Representations in an Attractor Neural Network.
In: Network, 6 (1995) 359-388.

8. Brunel, N.: Hebbian Learning of Context in Recurrent Neural Networks. In: Neural
Computation, Vol. 8 (1996) 1677-1710

9. Kursin, A.: Neural Network: Input Anticipation May Lead To Advanced Adaptation
Properties. In: Kaynak, O. et al. (eds.): Artificial Neural Networks and Neural Information
Processing. Springer-Verlag, Berlin-Heidelberg, 779-785 (2003).

10. Kursin, A.: Self-Organization of Anticipatory Neural Network. In Scientific Proceedings
Of Riga Technical University, series Computer Science, Information Technology and
Management Science, Riga (2004) 51-59.

11. Lakoff, G., Johnson, M.: Metaphors We Live By. Univ. of Chicago Press, Chicago (1980).
12. Huyck, C., Orengo V.: Information Retrieval and Categorisation using a Cell Assembly

Network. In: Neural Computing & Applications. Vol. 14. 4 (2005) 282-289.

Improved Storage Capacity of Hebbian Learning
Attractor Neural Network with Bump

Formations

Kostadin Koroutchev
 and Elka Korutcheva

EPS, Universidad Autónoma de Madrid,
Cantoblanco, Madrid, 28049, Spain

k.koroutchev@uam.es
Depto. de F́ısica Fundamental,

Universidad Nacional de Educación a Distancia,
c/ Senda del Rey 9,28080 Madrid, Spain

elka@fisfun.uned.es

Abstract. Recently, bump formations in attractor neural networks with
distance dependent connectivities has become of increasing interest for
investigation in the field of biological and computational neuroscience.
Although the distance dependent connectivity is common in biological
networks, a common fault of these network is the sharp drop of the num-
ber of patterns p that can remembered, when the activity changes from
global to bump-like, than effectively makes these networks low effective.

In this paper we represent a bump-based recursive network specially
designed in order to increase its capacity, which is comparable with that
of randomly connected sparse network. To this aim, we have tested a
selection of 700 natural images on a network with N = 64K neurons
with connectivity per neuron C. We have shown that the capacity of
the network is of order of C, that is in accordance with the capacity
of highly diluted network. Preserving the number of connections per
neuron, a non-trivial behavior with the radius of the connectivity has
been observed. Our results show that the decrement of the capacity of
the bumpy network can be avoided.

1 Introduction

Recently, the bump formations in recurrent neural networks have been analyzed
in several investigations concerning linear-threshold units [1,2], binary units [3]
and Small-World networks of Integrate and Fire neurons [4]. These bump for-
mations represent geometrically localized patterns of activity and have a size
proportional to the number of connections per neuron.

It has been shown that the localized retrieval is due to the short-range connec-
tivity of the networks and it could explain the behavior in structures of biological
relevance as the neocortex [5].
� Also with: ICCS, Bulgarian Academy of Science.

�� Also with: ISSP, Bulgarian Academy of Science.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 234–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Storage Capacity of Hebbian Learning Attractor Neural Network 235

In the case of linear-threshold neural network model, the signal-to-noise analy-
sis has been used [1,2] in the case of spatially organized networks. It has been
shown that the retrieval states of the connected network have non-uniform activ-
ity profiles, when the connections are short-range enough, and that the level of
localization increases by increasing the gain or the neuron’s saturation level [2].

The investigation of the spontaneous activity bumps in Small-World networks
(SW) [6,7] of Integrate-and Fire neurons [4], has recently shown that the network
retrieves when its connectivity is close to the random and displays localized
bumps of activity, when the connectivity is close to the ordered. The two regimes
are mutually exclusive in the range of the parameter governing the proportion of
the long-range connections on the SW topology of Integrate-and-Fire network,
while the two behaviors coexist in the case of linear-threshold and smoothly
saturated units.

The result related to the appearance of bump formations have been recently
reported by us [3] in the case of binary model for associative network. We demon-
strated that the spatially asymmetric retrieval states (SAS) can be observed
when the network is constrained to have a different activity compared to that
induced by the patterns.

The model we studied in Ref.[3] has a symmetric and distance dependent
connectivity for all neurons within an attractor neural network (NN) of Hebbian
type formed by N binary neurons {Si}, Si ∈ {−1, 1}, i = 1, ..., N , storing p
binary patterns ηµ

i , µ ∈ {1...p} with symmetric connectivity between the neurons
cij = cji ∈ {0, 1}, cii = 0.

The corresponding Hopfield model is [8]:

H =
1
N

∑
ij

JijSiSj , (1)

with Hebbian learning rule:

Jij =
1
c

p∑
µ=1

cij(η
µ
i − a)(ηµ

j − a). (2)

The learned patterns are drawn from the following distribution:

P (ηµ
i) =

1 + a

2
δ(ηµ

i − 1) +
1 − a

2
δ(ηµ

i + 1),

where the parameter a is the sparsity of the code [9]. The number of connections
per neuron is C ≡ cN .

In order to introduce an asymmetry between the retrieval and the learning
states, a condition on the mean activity of the network has to be imposed:

Ha = NR(
∑

i

Si/N − a).

Here the parameter R controls the affinity of the system toward the appearance
of bump formations. This term favors states with lower total activity

∑
i Si that

236 K. Koroutchev and E. Korutcheva

is equivalent to a decrease of the number of active neurons. Thus, the above term
creates an asymmetry between the learning and the retrieval states. We showed
in Ref.[3] that this condition is a necessary and a sufficient condition for the
observation of bump formations. Similar observations have been reported in the
case of linear-threshold network [1], where in order to observe bump formations,
one has to constrain the activity of the network. The same is true in the case
of smoothly saturating binary network [2], when the highest activity level, that
can achieved by the neurons, is above the maximum activity of the units in the
stored pattern.

As we have shown in Ref.[3], when the bump appears, the capacity of the
network drops dramatically because the network decreases its effective size to
the size of the bump.

On the other side, the spatially restricted activity means that the effective
coding is restricted to very sparse coding. Usually, the capacity of the network,
keeping patterns with sparsity a, is proportional to 1/a| loga| and increases with
the sparsity. Therefore a question arise: Is it possible to use the sparsity of the
code, imposed by the bump in order to increase the capacity of the network?

In this paper we are trying to use explicitly the sparseness of the code, imposed
by the bump appearance, in order to increase the capacity of a two-dimensional
network that stores natural images. By means of simulations, we show that
the capacity of the network can be increased to the limits typical for sparsely
connected network, e.g. to achieve capacities of order of C.

2 Theoretical Analysis

The theoretical analysis of the present model has been explained in details in
Ref.[3]. Here we briefly present the main points of this analysis and the most
important results.

For the theoretical analysis of the spatially asymmetric states (SAS), we con-
sider the decomposition of the connectivity matrix cij by its eigenvectors a

(k)
i :

cij =
∑

k

b
(k)
i b

(k)
j , (3)

with
bk
i ≡ a

(k)
i

√
λk/c (4)

where λk label the corresponding (positive) eigenvalues.
Following the classical analysis of Amit et al. [10], we study the following

binary Hopfield model [8]:

H = − 1
cN

∑
ijµ

Siξ
µ
i cijξ

µ
j Sj −

s∑
ν=1

hν
∑

i

ξν
i Si + NRSib0i , (5)

where the Hamiltonian (5) has been represented in terms of the variables ξµ
i =

ηµ
i − a. The second term in the Hamiltonian introduces a small external field

Improved Storage Capacity of Hebbian Learning Attractor Neural Network 237

h, which will tend later to zero. This term is necessary to take into account
the finite numbers of overlaps that condense macroscopically. The third term
imposes an asymmetry in the neural network’s states, which is controlled by the
value of the parameter R. This term is responsible for the bump formations. In
Eq. (5) the over line means a spatial averaging (.i) = 1

N

∑
i(.).

Following the classical analysis [10], we use the variables mµ
ρk for each replica ρ

and each eigenvalue, which are the usual overlaps between neurons and patterns.
In addition, we also use two other order parameters (OP)

qρ,σ
k = (bk

i)2Sρ
i S

σ
i ,

which is related to the neuron activity, and the parameter rρ,σ
k , conjugate to

qρ,σ
k , that measures the noise in the system. The indexes ρ, σ = 1, ..., n label

the different replicas, while the role of the connectivity matrix is taken into
account by the parameters bk

i .
Finally, by using the replica symmetry ansatz and the saddle-point method

[10], we obtain the following expression for the free energy per neuron:

f =
1
2c

α(1 − a2) +
1
2

∑
k

(mk)2 − αβ(1 − a2)
2

∑
k

rkqk +
αβ(1 − a2)

2

∑
k

µkrk +

+
α

2β

∑
k

[ln(1 − β(1 − a2)µk + β(1 − a2)qk) − (6)

− β(1 − a2)qk(1 − β(1 − a2)µk + β(1 − a2)qk)−1] −

− 1
β

∫
dze−

z2
2

√
2π

ln 2 coshβ

z

√
α(1 − a2)

∑
l

rlbl
ib

l
i +

∑
l

mlξibl
i + Rb0i

,

where α = p/N is the storage capacity, µk = λk/cN and we have used the fact
that the average over a finite number of patters ξν can be self-averaged [3], [10].

The equations for the OP rk, mk and qk are respectively:

rk =
qk(1 − a2)

(1 − β(1 − a2)(µk − qk))2
, (7)

mk =
∫

dze−
z2
2

√
2π

ξibk
i tanhβ

z

√
α(1 − a2)

∑
l

rlbl
ib

l
i +

∑
l

mlξibl
i + Rb0i

 (8)

and

qk =
∫

dze−
z2
2

√
2π

(bk
i)2 tanh2 β

z

√
α(1 − a2)

∑
l

rlbl
ib

l
i +

∑
l

mlξibl
i + Rb0i

.(9)

238 K. Koroutchev and E. Korutcheva

0 0.2 0.4 0.6 0.8 1
code sparsity a

0

0.2

0.4

0.6

0.8

R

α=0.001

Z
SAS (m1 non zero)

non SAS
m0 non zero
m1 zero

0 0.2 0.4 0.6 0.8
Code sparcity a

0.4

0.5

0.6

0.7

0.8

R

α=0.1
α=0.05
α=0.001

Fig. 1. Left:Phase diagram for α = 0.001 (α/c = 0.02). The SAS region, where local
bumps are observed, is relatively large. The Z region corresponds to trivial solutions
for the overlap. Right: SAS region for different values of α. High values of α limit the
SAS region.

0.3 0.4 0.5 0.6 0.7
R

0

0.02

0.04

0.06

0.08

0.1

C
rit

ic
al

 c
ap

ac
ity

 α
c

Symmetric
state

SAS

Fig. 2. The critical storage capacity αc as a function of R for a = 0.4, showing a drop
on the transition to a bump state

The numerical analysis of the above equations for T = 0 gives a stable region
for the solutions corresponding to bump formations for different values of the load
α, the sparsity a and the retrieval asymmetry parameter R, shown in Fig.1. As
can be seen, the sparsity of the code a enhances the SAS effect, although it is also
observed for a = 0. As we expected, the asymmetry factor R between the stored
and retrieved patters is very important in order to have spatial asymmetry. The
diagram in Fig.1 shows a clear phase transition with R. Only for intermediate
values of R, the bump solution exists.

The dependence of the critical storage capacity αc on the asymmetry pa-
rameter R is shown in Fig.2. The figure presents a drastic drop of αc at the
transition from homogeneous retrieval (symmetric) state to spatially localized

Improved Storage Capacity of Hebbian Learning Attractor Neural Network 239

Fig. 3. Schematics of the two stage pattern storage. The first stage forms a bumps in
RNN 1 that contains few patterns. The second stage records this bump in a cumulative
RNN with high capacity. The fan-out recovers the original image.

(bump state). Effectively only the fraction of the network in the bump can be
excited and the storage capacity drops proportionally to the size of the bump.

3 Computer Experiments

As we mentioned in the Introduction, we have performed computer experiments
to show that the capacity of the network can be increased to the limits typical
for sparsely connected network.

As a test we used the natural image database of van Hateren [11], as well as
the Waterloo set of images. In order to make the simulation easier, we decreased
the resolution of the images down to 256 by 256 points. We have used randomly
selected subsets of up to 300-700 images of van Haterens database and also
consecutive images of that database. No difference in the results, concerning the
capacity of the network has been found. Waterloo dataset is very small and was
used as a reference set together with the van Heteren database. Once again it
was found that the results do not depend of the database source.

For the de-correlation of the image, we used a border detector, converting
the original image into an image that represents its borders. The simulations
show that the exact type of the border detector does not affect the results. Each
pixel of the resulting image is represented by a neuron in the network. We tested
binarised version of the images borders as well as the discrete (gray) values of
the pixels in order to train the network. Both of them give approximately the
same results.

We applied a two stage learning procedure Fig.3. In the first stage we trained
a Hebbian network with spatially dependent connectivity and probability of con-
nections p(r) ∝ const+e−r2/2σ2

, where r is the radius of connectivity. The trained
network contains few patterns, or even only the pattern in question. Then we
raised the threshold in order to observe a bump with determined sparsity. The
bump formation is sufficiently noise resistant and stable in order to reconstruct

240 K. Koroutchev and E. Korutcheva

Fig. 4. The contours of Lena and the bump formation with sparsity a = 0.005 and
r = 15. The bump represents a compact area

Fig. 5. Fanout to recover the image from its bump. Usually the bump is unique, al-
though up to 4 separate bumps are easily observable.

the complete image. An example of such a bump is given in Fig. 4. The location of
the bump depends exclusively on the topology of the network and on the pattern.
For a typical image, usually only one of few (two to three) bumps are formed.

In the second stage, we used the bump in order to train a Hebbian network
with exactly the same topology, that contains only bumps from a variety of the
images. We referred this network as a Cumulative Recurrent Neural Network
(CRNN).

In a parallel work [12] we have shown that the image can be restored effectively
from its bump. This gives us an opportunity to save only the bump in a network
and to associate another feed-forward network in order to restore the image in
question.

Roughly speaking the fan-out part of the network connects a dilation of the
bump/bumps to all the neurons of the fan-out network. The rest of the neurons,

Improved Storage Capacity of Hebbian Learning Attractor Neural Network 241

0 0.5 1 1.5 2
α

0

0.2

0.4

0.6

0.8

1

m

m
∆m (noise level)

Fig. 6. Typical behavior of the order parameter m, normalized to the sparsity of the
pattern as a function of the network load α. The dashed curve is the “recovering” of
an arbitrary not memorized pattern, e.g. the noise level.

i.e. the neurons outside of the bump are not connected to the fan-out layer.
Thus if the areas of two different bumps do not intersect, the recovered patterns
clearly do no interact, Fig.5.

The intersecting bumps, when they are orthogonal enough, do not cause a
problem. In other words, with capacity up to the critical capacity αc, we have
a good recovery of the initial pattern. The details of this results are presented
in Ref.[12]. The noise level is usually less than the dashed line in Fig.6 that is a
small quantity compared to the signal.

In order to keep the network in regime C ∝ N , the connectivity of the system
must be large enough. In these simulations we used C = 300, that is suitable for
computer simulations. It fits well into the computer memory, it is large enough
in order to be in the range ∝ N and shows a rich behavior. For this value of C,
the correlation radius r can vary from 10 to the size of the image.

For large values of r, no bump formations can be observed. Therefore, one
can expect that the capacity of the network will reach its asymptotic limit pro-
portional to 1/a| loga|. However, the pattern is very unstable and susceptible to
noise, which makes the capacity close to zero, Fig.7(right).

When r is very small, the network effectively converts into locally connected
network. In this case the capacity is small, Fig. 7(left), but not too small because
the pattern are spatially correlated (the borders are continuous curves) and
therefore the bump is well formed. Thus, different images are kept in different
parts of the cumulative CRNN and they are essentially orthogonal.

For intermediate levels of the correlation radius r, one can achieve capacity
close to the theoretical capacity α = 1.58 for sparse random network, Fig. 6.

The critical capacity versus the load is shown in Fig.8. One can see that the
critical capacity has a maximum near r = 20 and in general it is very high. It
is of the same order as the critical capacity of a very sparse network, up to the
correlation radius where the bumps disappear and the capacity drops sharply to
zero.

242 K. Koroutchev and E. Korutcheva

0 0.5 1
α

0

0.2

0.4

0.6

0.8

1

m
r=10

0 0.2 0.4 0.6 0.8
α

0

0.2

0.4

0.6

0.8

1

m

r=40

Fig. 7. The bump capacity with too small (left) and too large (right) correlation radius r

0 10 20 30 40
r

0

0.5

1

1.5

2

α

Fig. 8. Non-trivial behavior of the critical storage capacity during the bump formation
phase. For r = 31.3, αc drops to 0.

4 Conclusion

In this paper we have shown that by using a special two-stage learning procedure
and a bumpy network, one can increase the storage capacity of this network even
with Hebbian learning rule. This feature is based on the theoretical background,
showing that the location of the bump is only slightly dependent on the patterns
already stored in the network. Therefore, one can use the bump as an intrinsic
characteristic of the image and the topology of the network . The architecture is
promising when another, fan-out layer is added to it, because this allows a total
recovering of the image with relatively few connections.

Acknowledgments

The authors acknowledge the financial support from the Spanish Grants DGI.M.
CyT. FIS2005-1729, Plan de Promoción de la Investigación UNED and TIN

Improved Storage Capacity of Hebbian Learning Attractor Neural Network 243

2004–07676-G01-01. We also thank David Dominguez for the fruitful discussion
of the manuscript.

References

1. Y.Roudi and A.Treves, JSTAT, P07010, 1 (2004).
2. Y.Roudi and A.Treves, cond-mat/0505349.
3. K.Koroutchev and E.Korutcheva, Preprint ICTP, Trieste, Italy, IC/2004/91, 1

(2004);
K.Koroutchev and E.Korutcheva, Central Europ. J.Phys., 3, 409 (2005);
K.Koroutchev and E.Korutcheva, Phys.Rev.E 73 (2006)No 2.

4. A.Anishchenko, E.Bienenstock and A.Treves, q-bio.NC/0502003.
5. V.Breitenberg and A.Schulz, Anatomy of the Cortex, Springer, Berlin, 1991.
6. D.J.Watts and S.H.Strogatz, Nature, 393, 440 (1998).
7. D.J.Watts, Small Worlds: The Dynamics of Networks Between Order and Ran-

domness(Princeton Review in Complexity)(Princeton University Press, Princeton,
New Jersey, 1999).

8. J.Hopfield, Proc.Natl.Acad.Sci.USA, 79, 2554 (1982).
9. M.Tsodyks and M.Feigel’man, Europhys.Lett., 6, 101 (1988).

Stat.Phys., 14, 565 (1994).
10. D.Amit, H.Gutfreund and H.Sompolinsky, Ann.Phys., vol.173,(1987),pp.30-67.
11. van Hateren J. H. and van der Schaaf A, Independent component filters of natural

images compared with simple cells in primary visual cortex. in Proc.R.Soc.Lond.
B, 265:359-366, 1998.

12. K.Koroutchev and E.Korutcheva, in the Proceedings of the 9th Granada Seminar
on Computational and Statistical Physics, AIP, 2006.

Error Entropy Minimization for LSTM Training�

Lúıs A. Alexandre1 and J.P. Marques de Sá2

1 Department of Informatics and IT-Networks and Multimedia Group, Covilhã,
University of Beira Interior, Portugal,

lfbaa@di.ubi.pt
2 Faculty of Engineering and INEB, University of Porto, Portugal,

jmsa@fe.up.pt

Abstract. In this paper we present a new training algorithm for the
Long Short-Term Memory (LSTM) recurrent neural network. This algo-
rithm uses entropy instead of the usual mean squared error as the cost
function for the weight update. More precisely we use the Error Entropy
Minimization approach, were the entropy of the error is minimized after
each symbol is present to the network. Our experiments show that this
approach enables the convergence of the LSTM more frequently than
with the traditional learning algorithm. This in turn relaxes the burden
of parameter tuning since learning is achieved for a wider range of para-
meter values. The use of EEM also reduces, in some cases, the number
of epochs needed for convergence.

1 Introduction

One of the most promising machines for sequence learning is the Long Short-
Term Memory (LSTM) recurrent neural network [1,2,3,4]. In fact, it has been
shown that LSTM outperforms traditional recurrent neural networks (RNNs)
such as Elman, Back-Propagation Through Time (BPTT) and Real-Time Re-
current Learning (RTRL) in problems where the need to retain information for
long time intervals exists [1].

Traditional RNNs suffer from the problem of loosing error information per-
taining to long time lapses. This occurs because the error signals tend to vanish
over time [5]. LSTM is able to deal with this problem since it protects error
information from decaying using gates.

Usually error backpropagation for neural network learning is made using MSE
as the cost function. The authors of [6] introduced an error-entropy minimization
algorithm that used Renyi’s quadratic entropy. They applied their approach to
problems of time-series prediction (MacKey Glass chaotic time series) and non-
linear system identification. Note that these problems do not need to retain
information for long time lapses. They are usually solved using Time Delay
Neural Networks (TDNNs).

In [7], the authors propose the use of the minimization of the error entropy
instead of MSE as a cost function for classification purposes. In terms of the
� This work was supported by the Portuguese FCT-Fundação para a Ciência e Tec-

nologia (project POSC/EIA/56918/2004).

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 244–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Error Entropy Minimization for LSTM Training 245

entropy measure, two approaches have been tested both with good results when
compared to MSE: in [7,8] Renyi’s quadratic entropy was used. In [9] the EEM
algorithm was used with Shannon’s entropy.

In this paper we adapt the LSTM for learning long time lapse problems us-
ing EEM and present several experiments that show the benefits that can be
obtained from such an approach.

The rest of the paper is organized as follows: the next section presents LSTM,
the following section shows how EEM can be incorporated into the learning
algorithm of the LSTM. Section IV presents the experiments and the last section
contains the conclusions.

2 LSTM

The LSTM was proposed in [1]. It results from the use of gates to keep the
non-linearities (the transfer functions) in the neurons from making the error
information pertaining to long time lapses vanish. Note that the use of gates is
only one possibility to avoid this problem that affects traditional RNNs: other
approaches can be found in [5], pp. 776.

In the following brief discussion we are referring to the original proposition in
[1]: other approaches have been proposed [2,3,4].

The main element of the LSTM is the block: a block is a set of cells and two
gates (see fig. 1). The gates are called input and output gates.

Each cell (see fig. 2) is composed of a central linear element called the CEC
(Constant Error Carousel), two multiplicative units that are controlled by the
block’s input and output gates, and two non-linear functions g() and h().

The CEC is responsible for keeping the error unchanged for an arbitrarily
long time lapse. The multiplicative units controlled by the gates decide when
the error should be updated.

A LSTM network consists of the normal input and output layers. Typically
hidden layers may also be used but the distinguishing characteristic is the use
between the input and output layers of one or more blocks of cells. Each block
may have an arbitrary number of cells.

The input layer is connected to all the gates and to all the cells and to the
output layer. The gates and the cells have input connections from all cells and
all gates.

For a detailed description, of the learning algorithm see [1].

3 EEM for LSTM

3.1 The EEM

The idea behind EEM is to replace the MSE, as the cost function of a learning
system, with the entropy of the error.

In [6] it is shown that the minimization of the error entropy (in particular,
Renyi’s entropy) results in the minimization of the divergence between the joint

246 L.A. Alexandre and J.P. Marques de Sá

Fig. 1. An LSTM block

Fig. 2. An LSTM cell (also visible are the input and output gates)

pdfs of input-target and input-output signals. This suggests that the distribution
of the output of the system is converging to the distribution of the targets.

Also, when the entropy is minimized, for the classification case and under
certain mild conditions, implies that the error must be zero (see proof in [8]).

Let the error e(j) = T (j)− y(j) represent the difference between the target T
of the j output neuron and its output y, at a given time t (not given explicitly
to keep the notation simple).

We will replace the MSE of the variable e(j) for its EEM counterpart.
First it is necessary to estimate the pdf of the error. For this we use the Parzen

window approach

f̂(e(j)) =
1
nh

n∑
i=1

K

(
e(j) − e(i)

h

)
(1)

where h represents the bandwidth of the kernel K and n is the number of
neurons in the output layer.

The kernel used is the Gaussian kernel given by

K(x) =
1√
2π

exp
(
−x2

2

)

Error Entropy Minimization for LSTM Training 247

Renyi’s quadratic entropy is given by

HR2(x) = − log
(∫

C

(f(x))2dx
)

(2)

where C is the support of x and f(·) is its density function.
Note that equation (2) can be seen as the logarithm of the expected value of

the pdf: − logE[f(x)]. This justifies the use of the following estimator for HR2

ĤR2(x) = − log

(
1
n

n∑
i=1

f(xi)

)

Once we put the estimator of the pdf from expression (1) into this last ex-
pression, where x is also replaced by the error e(j), we get the final practical
expression of our cost function

ĤR2(e(j)) = − log

(
1

n2h

n∑
i=1

n∑
u=1

K

(
e(i) − e(u)

h

))
(3)

Note that instead of the time complexity for the MSE which is O(n), the EEM
approach has O(n2) complexity.

3.2 Application of EEM to LSTM Learning

In this paper we modified the gradient-based learning algorithm of LSTM pre-
sented in [1] and replace the use of the MSE as the cost function by the EEM.

The change in the derivation presented in [1] occurs in the following expression
(the backpropagation error seen at the output neuron k):

E(k) = f ′(net(k))(T (k) − y(k)) (4)

where f(·) is the sigmoid transfer function, f ′(·) represents its derivative,
net(k) is the activation of the output neuron k at time t, T (k) is the target for
the output neuron k at time t and y(k)) is the output of neuron k at timet (there
are differences in the variable names to make this expression coherent with the
rest of the paper).

This expression becomes (see the appendix for the derivation)

E(k) = Qf ′
k(net(k))

n∑
i=1

exp
(
−a(i, k)

2h2

)
a(k, i) (5)

where Q stands for a constant term and a(i, k) is

a(i, k) = Ti(t) − yi(t) − Tk(t) + yk(t) = e(i) − e(k)

Of course this change will affect all the backpropagated errors.

248 L.A. Alexandre and J.P. Marques de Sá

© X ��

S

��
©

S

���
��

��
��

X

����
��
��
��
��
��
��
�

B �� ©

T

���������

P ���
��

��
��

© E ��

©

T

�� V
�� ©

V

���������

P

��

Fig. 3. Reber grammar

4 Experiments

In this section we present several experiments that compare the performance of
LSTM learning with MSE versus EEM.

We use three standard data sets for this purpose: the Reber grammar problem,
the embedded Reber grammar and the context-sensitive grammar AnBn.

4.1 Reber Grammar

The finite automata in figure 3 generates strings from the grammar known as
the Reber grammar.

The strings are generated by starting at B, and moving from node to node,
adding the symbols in the arcs to the string. The symbol E marks the end of
a string. When there are two arcs leaving a node, one is chosen randomly with
equal probability. This process generates strings of arbitrary length.

We conducted several experiments were the goal was the prediction of the next
valid symbol of a string, after the presentation of a given symbol. For instance,
if the network receives a starting symbol B it has to predict that the possible
next symbols are P or T. If the network is able to correctly predict all possible
symbols of all strings both from the training and test sets, using less than 250.000
sequences for learning, we say that it converged.

We used a set with 500 strings from the Reber grammar for training and a
different set with 500 strings for testing. For each topology and value of the
parameter h we repeated the process 100 times. The change was the random
initialization of the network weights. Tables 1 and 2 present the results. They
show the percentage of the trained networks that were able to learn perfectly
both the training and test sets, and the average and standard deviation of the
number of sequences that were used for training.

We tested the two topologies: the strings are codified in a 1-out-of-7 coding,
so both input and output layers have 7 neurons. The topologies did not use any
traditional neurons in the hidden layer. In the first case two blocks were used,

Error Entropy Minimization for LSTM Training 249

Table 1. Results for the experiments with the Reber grammar for the topology
(7:0:2(2,1):7). ANS stands for the Average Number of Sequences necessary for con-
vergence.

Learning rate=0.1 Learning rate=0.2 Learning rate=0.3
ANS (std) [103] % conv. ANS (std) [103] % conv. ANS (std) [103] % conv.

MSE 15.1 (24.5) 38 74.9 (116.5) 63 61.0 (111.5) 56
EEM h=1.3 81.8 (115.4) 36 42.6 (51.5) 11 113.6 (135.6) 7
EEM h=1.4 45.6 (68.2) 45 70.6 (93.8) 11 61.8 (63.6) 10
EEM h=1.5 26.0 (43.9) 54 84.1 (120.2) 29 47.2 (39.1) 13
EEM h=1.6 28.4 (43.1) 66 58.0 (84.2) 37 135.1 (160.1) 15
EEM h=1.7 23.0 (25.9) 64 54.9 (87.8) 40 96.9 (135.8) 30
EEM h=1.8 75.8 (51.8) 30 60.1 (96.8) 50 66.0 (111.8) 33
EEM h=1.9 78.0 (110.1) 62 53.6 (94.1) 61 48.7 (66.2) 33
EEM h=2.0 49.3 (77.6) 58 57.6 (109.0) 67 57.4 (83.7) 51

Table 2. Results for the experiments with the Reber grammar for the topology
(7:0:2(2,2):7). ANS stands for the Average Number of Sequences necessary for con-
vergence.

Learning rate=0.1 Learning rate=0.2 Learning rate=0.3
ANS (std) [103] % conv. ANS (std) [103] % conv. ANS (std) [103] % conv.

MSE 19.2 (26.1) 41 46.0 (77.2) 53 30.1 (50.7) 61
EEM h=1.3 57.2 (67.5) 43 44.3 (58.8) 18 28.4 (12.9) 5
EEM h=1.4 20.2 (27.8) 55 70.5 (112.4) 22 108.9 (130.5) 10
EEM h=1.5 33.6 (55.3) 59 68.1 (109.8) 36 31.7 (32.7) 19
EEM h=1.6 26.5 (41.9) 65 38.3 (47.2) 42 58.4 (82.7) 25
EEM h=1.7 32.3 (57.2) 53 48.4 (83.8) 48 55.6 (82.9) 26
EEM h=1.8 24.5 (48.8) 60 54.4 (88.3) 61 43.4 (82.0) 40
EEM h=1.9 51.8 (76.7) 49 70.6 (134.5) 66 62.1 (108.1) 66
EEM h=2.0 44.6 (79.3) 48 48.3 (85.8) 68 44.3 (70.2) 41

one with one cell and the other with two cells (table 1). In the second case, both
blocks had two cells (table 2). Each table shows the results for learning rates of
0.1, 0.2 and 0.3.

The MSE line refers to the use of the original learning algorithm.
The results are discussed in section 4.4.

4.2 Embedded Reber Grammar

The second set of experiments uses the Embedded Reber Grammar (ERG): it is
generated according to figure 4.

This grammar produces two types of strings: BT<reber string>TE and
BP<reber string>PE. In order to recognize these strings, the learning machine
has to be able to distinguish them from strings such as BP<reber string>TE and
BP<reber string>TE. To do this it is essential to remember the second symbol

250 L.A. Alexandre and J.P. Marques de Sá

Reber
grammar

B �� ©

T

�����������

P

		�
��

��
��

��
©
		

T

���������

��

P

��
��

��
��

�

E ��

Reber
grammar

Fig. 4. Embedded Reber grammar

Table 3. Results for the experiments with the embedded Reber grammar

Learning rate=0.1 Learning rate=0.3
ANS (std) [103] % conv. ANS (std) [103] % conv.

MSE 44.4(48.4) 8 66.3 (40.1) 6
EEM h=1.3 79.6 (94.5) 7 - 0
EEM h=1.4 13.1 (6.5) 8 - 0
EEM h=1.5 49.9 (53.8) 12 327 (-) 1
EEM h=1.6 65.7 (46.9) 8 62.0 (74.5) 3
EEM h=1.7 41.2 (26.9) 8 183.7 (137.4) 3
EEM h=1.8 60.6 (35.8) 12 102.4 (101.4) 5
EEM h=1.9 124.3 62.4 13 76.9 (125.0) 7
EEM h=2.0 143.2 (111.9) 14 84.6 (87.6) 7

in the sequence such that it can be compared with the second last symbol. Notice
that the length of the sequence can be arbitrarily large.

This problem is no longer learnable by an Elman net but a RTRL can learn
it with some difficulty, since, as opposed to the RG problem, there is the need
to retain information for long time lapses.

In this case the experiments were similar to the ones reported in the previous
section but the learning rates used were 0.1 and 0.3. The train and test sets had
also 500 strings each. This time only one topology was used: 7 neurons in the
input and output layer (the codification is the same as in the RG example), and
four blocks each with 3 cells. The experiments were also repeated 100 times. The
results are in table 3.

4.3 AnBn Grammar

This data set consists in a series of strings from the context-sensitive grammar
AnBn. Valid strings consist of n A symbols followed exactly by n B symbols.

The network is trained with only the correct strings for n from 1 up to 10.
We consider that the network converged if it is able to correctly classify all the

Error Entropy Minimization for LSTM Training 251

Table 4. Results for the experiments with the grammar AnBn

Test n = 1, . . . , 50 Test n = 1, . . . , 100
Average n. seq. (std) [103] % conv. Average n. seq. (std) [103] % conv.

MSE 4.93 (2.80) 17 4.90 (2.41) 12
EEM h=1.3 10.31 (7.40) 18 8.75 (6.48) 13
EEM h=1.4 11.67 (8.11) 19 11.90 (7.94) 12
EEM h=1.5 15.31 (8.25) 28 16.08 (7.76) 18
EEM h=1.6 17.06 (8.62) 36 17.51 (8.46) 25
EEM h=1.7 18.77 (8.78) 45 18.33 (8.33) 29
EEM h=1.8 20.74 (8.74) 50 19.69 (7.83) 35
EEM h=1.9 20.80 (8.38) 48 21.09 (7.39) 35
EEM h=2.0 22.19 (8.20) 49 22.50 (7.52) 33

strings in both the training and test sets, using less than 50.000 sequences for
learning.

In the first experiment we used for the test set the correct strings for n =
1 . . . 50. In the second experiment we used the strings n = 1 . . . 100. In both ex-
periments the topology of the network was three neurons in the input layer, two
blocks each with one neuron and three neurons in the output layer. Both exper-
iments were repeated 100 times for a learning rate of 1.0. The results obtained
are in table 4.

4.4 Discussion

For the Reber grammar experiments, the EEM improved the percentage of con-
vergence in all six sets of experiments except for the first topology with learning
rate 0.3. In one case (first topology and learning rate=0.2) it not only outper-
formed MSE but there was also a reduction in the number of sequences necessary
for network converged from 74.9 × 103 to 57.6 × 103.

It can also be seen that for MSE then increase in the value of the learning
rate was good in terms of percentage of convergence, specially in the case of the
second topology, whereas for the EEM the best results were obtained for both
topologies with a learning rate of 0.2.

In the case of the experiments with the ERG, and for the learning rate 0.1,
two benefits were found from the application of the EEM: in two cases (h = 1.4
and 1.7) we were able to obtain the same percentage of convergence but with a
smaller number of required training sequences. In four other cases, the percentage
of convergence increased from 8 to 12, 13 and 14%. In these cases the number of
necessary sequences also increased when compared to the use of MSE. When the
learning rate was set at 0.3, there were two situations (h = 1.3 and 1.4) where
the EEM was not able to converge. Although the best result was still obtained
with the EEM for h=1.9 and 2.0. In these experiments it is apparent that the
increase of the learning rate was not beneficial either for MSE nor for the EEM.

Finally, the experiments with the AnBn grammar confirmed that the use of the
EEM is beneficial in terms of increasing the convergence percentage: from the 16

252 L.A. Alexandre and J.P. Marques de Sá

sets of 100 repetitions only one had the same performance of the MSE; all other
sets improved. Again, the number of necessary training sequences increased.

5 Conclusions

In this paper a new learning algorithm for LSTM was introduced. It uses the
EEM as a cost function instead of the MSE. From the experiments made we
conclude that this approach is beneficial since there is a sustainable increase
in the convergence percentage of the networks. This improvement comes with
the cost of a longer training time since the EEM algorithm is slower than the
MSE and also the networks tend to need more training epochs to achieve perfect
learning.

When using pdf estimation with kernels, the problem of the value to choose
for the kernel bandwidth is always present. In this paper we used fixed values
during the training stage. We intend to use adaptive approaches to the setting
of h so that it can adapt dynamically during training.

References

1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8) (1997) 1735–1780

2. Gers, F., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with LSTM. Neural Computation 12(10) (2000) 2451–2471

3. Gers, F., Schmidhuber, J.: Recurrent nets that time and count. In: Proc.
IJCNN’2000, Int. Joint Conf. on Neural Networks, Como, Italy (2000)

4. Pérez-Ortiz, J., Gers, F., Eck, D., Schmidhuber, J.: Kalman filters improve LSTM
network performance in problems unsolvable by traditional recurrent nets. Neural
Networks 16(2) (2003) 241–250

5. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edition. Prentice
Hall (1999)

6. Erdogmus., D., Principe, J.: An error-entropy minimization algorithm for supervised
training of nonlinear adaptive systems. IEEE Trans. Signal Processing 50(7) (2002)
1780–1786

7. Santos, J., Alexandre, L., Sereno, F., Marques de Sá, J.: Optimization of the error
entropy minimization algorithm for neural network classification. In: ANNIE 2004,
Intelligent Engineering Systems Through Artificial Neural Networks. Volume 14.,
St.Louis, USA, ASME Press Series (2004) 81–86

8. Santos, J., Alexandre, L., Marques de Sá, J.: The error entropy minimization algo-
rithm for neural network classification. In Lofti, A., ed.: Proceedings of the 5th In-
ternational Conference on Recent Advances in Soft Computing, Nottingham, United
Kingdom (2004) 92–97

9. Silva, L., Marques de Sá, J., Alexandre, L.: Neural network classification using
Shannon’s entropy. In: 13th European Symposium on Artificial Neural Networks -
ESANN 2005, Bruges, Belgium (2005) 217–222

Error Entropy Minimization for LSTM Training 253

Appendix

Here we derive expression (5). The term (T (k) − y(k)) in equation (4) comes
from the derivative of the MSE

1
n

n∑
i=1

(T (i) − y(i))2

w.r.t. the output yk.
What we are going to do is find this same derivative, but now for expression

(3). We note that since the logarithm in expression (3) is a monotonically in-
creasing function, to minimize it is the same as to minimize its operand. So, we
will find the partial derivative of the operand, which is given by

1
n2h

√
2π

n∑
i=1

n∑
j=1

∂

∂yk
exp

(
− (e(i) − e(j))2

2h2

)

=
1

n2h
√

2π

n∑
i=1

n∑
j=1

∂

∂yk
exp

(
− (T (i) − y(i) − T (j) + y(j))2

2h2

)
(6)

Now, when i = k the derivative of the inner term becomes

exp
(
− (T (k) − y(k) − T (j) + y(j))2

2h2

)(
− 1

2h2

)
2(T (k)−y(k)−T (j)+y(j))(−1)

(7)

Likewise, if j = k, the derivative becomes

exp
(
− (T (i)− y(i) − T (k) + y(k))2

2h2

)(
− 1

2h2

)
2(T (i)−y(i)−T (k)+y(k))

(8)

Expressions (7) and (8) yield the same values since they only differ in sign in
the term that is squared and the dummy variables i and j have both the same
range (from 1 to n). This allows us to write the derivative of the operand of (3)
as

Q

n∑
i=1

exp
(
− (T (i)− y(i) − T (k) + y(k))2

2h2

)
(T (i) − y(i) − T (k) + y(k)) (9)

where
Q =

2
n2h3

√
2π

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 254 – 263, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Can AdaBoost.M1 Learn Incrementally?
A Comparison to Learn++ Under Different

Combination Rules

Hussein Syed Mohammed, James Leander, Matthew Marbach, and Robi Polikar*

Electrical and Computer Engineering, Rowan University, Glassboro,
NJ 08028, USA

polikar@rowan.edu

Abstract. We had previously introduced Learn++, inspired in part by the en-
semble based AdaBoost algorithm, for incrementally learning from new data,
including new concept classes, without forgetting what had been previously
learned. In this effort, we compare the incremental learning performance of
Learn++ and AdaBoost under several combination schemes, including their na-
tive, weighted majority voting. We show on several databases that changing
AdaBoost’s distribution update rule from hypothesis based update to ensemble
based update allows significantly more efficient incremental learning ability,
regardless of the combination rule used to combine the classifiers.

1 Introduction

Learning from new data without forgetting prior knowledge is known as incremental
learning, and it is encountered often real world applications. This is because suffi-
ciently dense and a representative set of training examples is usually required for
satisfactory classifier performance, however, acquisition of such a representative
dataset often become available in small and separate batches at different times. Under
such conditions, it is necessary to incrementally update an existing classifier to ac-
commodate new data while retaining the information from old data.

Traditionally, when new data become available, previous classifiers are discarded
and retrained with the composite data obtained by combining all the data accumulated
thus far. However, this approach results in loss of all previously acquired information,
and it is commonly known as catastrophic forgetting [1]. Furthermore, this approach
may not even be feasible, if the original dataset is no longer available.

Learning new data incrementally without forgetting previously acquired knowl-
edge raises the stability-plasticity dilemma [2]: acquiring new knowledge requires
plasticity, whereas retaining previously acquired knowledge requires stability. The
challenge is to achieve a meaningful balance between the two conflicting properties.

Various forms of incremental learning have been studied under various conditions.
In one extreme end, incremental learning is trivialized by allowing retraining with old
data, while on the other end, an incremental learning algorithm is expected to learn in
an online incremental setting, where learning is carried out in an instance-by-instance

* Corresponding author.

 Can AdaBoost.M1 Learn Incrementally? 255

basis with some instances introducing new classes. Algorithms that are currently
available for incremental learning, such as ARTMAP [3], typically fall somewhere in
the middle of this spectrum.

2 Learn++ for Incremental Learning

Learn++ inspired in part by the ensemble structure of the AdaBoost.M1 algorithm [4],
exploits the synergistic expressive power of an ensemble of classifiers to incremen-
tally learn additional information from new data [5,6]. Specifically, for each database
that becomes available, Learn++ generates a number of diverse classifiers, which are
then combined using a suitable combination rule (originally, the weighted majority
voting). The pseudocode of Learn++ is shown in Figure 1.

Inputs to Learn++ are the training data Sk of mk samples drawn from the current da-
tabase DBk, a supervised learning algorithm BaseClassifier, and an integer Tk, speci-
fying the number of classifiers to be generated for database DBk. Learn++ generates an
ensemble of classifiers using different subsets of each training data, Sk. This is
achieved by iteratively updating a distribution Dt, t =1,…,Tk from which training

Inputs: For each dataset drawn from DBk k=1,2,…,K
• Sequence of mk examples Sk={(xi,yi) | i=1,…,mk}
• Supervised learning algorithm BaseClassifier.
• Integer Tk, specifying the number of iterations.

Do for each k=1,2,…,K:

Initialize kk miimiDiw ,,2,1 , ,1)()(11 =∀== (1)

If k>1, Go to Step 5, evaluate current ensemble on new Sk, update weight distribution; End If
Do for t = 1,2,...,Tk:

1. Set ()
1

km

t ti
w i

=
= wtD so that Dt is a distribution

 (2)
2. Draw a training TRt subset from the distribution Dt, and train BaseClassifier with TRt.
3. Obtain a hypothesis ht and calculate its error on Sk. If εt > ½, discard ht, go to step 2.

≠

=
it yhi

tt iD
)(:

)(
ix

ε (3)

4. Call CombinationRule, and obtain the composite hypothesis Ht
5. Compute the error of the composite hypothesis

 []≠==
=≠

k

iit

m

i
iitt

yHi
tt yHiDiDE

1)(:
|)(|)()(x

x

 (4)

6. Set ()1t t tB E E= − , and update the weights: (5)

 1 [| () |]
1

, ()
() () ()

1 ,
t i t t iH y

t t t t

B if H y
w i w i B w i

otherwise
− ≠

+

=
= × = ×i ix x (6)

 Call CombinationRule and output the final hypothesis.

Fig. 1. Pseudocode of Algorithm Learn++

256 H.S. Mohammed et al.

subsets are chosen. The distribution itself is obtained by normalizing a set of weights
assigned to each instance based on the classification performance of the classifier on
that instance. In general, instances that have not yet been learned or seen are given
higher weights to increase their chance of being selected into the next training data.

At each iteration t, the distribution Dt is obtained by normalizing the weights wt of
the instances updated based on their classification by the previous ensemble (step 1 of
the inner Do loop). A new training subset TRt is drawn according to Dt and the Base-
Classifier is trained with TRt to generate the hypothesis ht (step 2). The error t of this
hypothesis is calculated on the current training data Sk by adding the distribution
weights of the misclassified instances (step 3). If t>1/2, current ht is deemed too
weak, and is replaced with a new ht, generated from a fresh TRt. If t<1/2, the current
hypothesis is retained, and all hypotheses generated during the previous t iterations
are combined, using an appropriate combination schemes described later, to construct
the composite hypothesis Ht (step 4). The composite error Et made by Ht is determined
by adding the distribution weights of all instances misclassified by the ensemble (step
5). The normalized composite error, Bt is computed, and used in updating the weights
wt(i), which are then used in computing the next distribution Dt+1, which in turn is
used in selecting the next training subset TRt+1. Once Tk hypotheses are generated for
each database DBk, the final hypothesis Hfinal is obtained by combining all hypotheses
by using one of the combination rules described below.

While Learn++ uses similar ensemble generation structure as AdaBoost, there are
several key differences: AdaBoost runs on a single database; it has no distribution re-
initialization; and it stops and aborts if t > ½ for any ht. Most importantly, AdaBoost
is designed to improve the performance of a weak classifier, for which it uses the
performance of the current single hypothesis ht to update its weight distribution [4].
Learn++, however, creates a composite hypothesis Ht representing the ensemble deci-
sion, and uses the ensemble performance to update its weight distribution. This allows
a more efficient incremental learning ability, particularly if the new database intro-
duces instances from a previously unseen class. When instances of a new class are
introduced, an existing ensemble Ht – not yet seen instances of the new class, is bound
to misclassify them, forcing the algorithm to focus on these instances that carry novel
information. For a weight update rule based on the performance of ht only, the train-
ing performance of the first ht on instances from the new class is independent of the
previously generated classifiers. Therefore, the new ht is not any more likely to mis-
classify new class instances, which then causes AdaBoost to focus on other difficult to
learn instances, such as outliers, rather than the instances with novel information
content. It is this claim that we investigate in this effort.

Learn++ was previously shown to be capable of incremental learning, however, it’s
incremental learning ability has not been compared to that of AdaBoost. Given that
AdaBoost was not originally designed for incremental learning, one can argue
whether it is fair to compare AdaBoost to an algorithm that is designed for incre-
mental learning. However, Learn++ shares much of its algorithmic detail with
AdaBoost. The main difference is the distribution update rule being based on ensem-
ble decision, rather than the previous hypothesis. Therefore, a questions of particular
interest is as follows: is the incremental learning ability of Learn++ primarily due
to creating and combining an ensemble of classifiers, or is it due to the strategic
selection of the distribution update rule? If incremental learning ability is provided

 Can AdaBoost.M1 Learn Incrementally? 257

primarily by combining an ensemble of classifiers, then AdaBoost should also be able
to learn incrementally.

In order to answer this question, and establish the true impact of the difference in
distribution update rules, the two algorithms must be made equivalent in all other
aspects. Therefore, we slightly modify AdaBoost to allow it to generate additional
ensembles with new data, using the same distribution re-initialization as Learn++ (but
retaining its own single-hypothesis-based distribution update rule). We also allow
AdaBoost to generate a replacement hypothesis for any ht that does not satisfy t < ½
requirement. Therefore, the only difference left between the modified AdaBoost and
Learn++

 is the distribution update rule.

3 Combination Rules

Properties of different combination rules for ensemble systems have been well re-
searched [7,8]. While the best combination rule is often application dependent, certain
rules, such as the sum, weighted majority, and decision templates have repeatedly
shown superior performance over others, and hence are used more often. Both
AdaBoost and Learn++ were originally designed to be used with weighted majority
voting. However, in this study, we also compare each with different combination
rules, to determine whether the combination rule (in addition to distribution update
rule) has any effect on incremental learning performance.

Some combination rules, namely, simple and weighted majority voting (VMW),
only need access to class labels. Others need the degree of support given by the classi-
fier to each class. For the first group, let us define the decision of the tth classifier as
the binary valued dt,j {0,1}, t=1,…,T and j=1,…,C, where T is the number of classi-
fiers and C is the number of classes. If classifier ht correctly identifies class j, dt,j=1,
and zero otherwise. For other rules, we have continuous valued dt,j [0,1], which
represent the degree of support given by classifier ht to class j. For any given classi-
fier, these supports are normalized to add up to 1 over different classes, and are often
interpreted as class conditional posterior probabilities, P(j|x).

We use the decision profile matrix [9], to formalize all combination rules: for an
instance x, the decision profile matrix DP(x), consists of the elements dt,j. The tth row
of DP(x) is the support given by the tth classifier to each class, and the jth column is
the support received by class j from all classifiers. The total support for each class is
obtained as a simple function of the supports received by individual classifiers. We
represent the total support received by class j as

1, ,() [(), , ()]j j T jx d x d x .
 (7)

where ℑ (.) is the combination function. We discuss the sum, product, median, simple
majority, weighted majority, and decision template combination rules.

In an ensemble system, the final decision is the class that receives the largest sup-
port from the ensemble. Let k be the winning class. In simple majority voting, k is
the class that is selected by most number of classifiers. For binary valued dt,j,

, ,
1

1 1

max
T Tc

i k t j
j

t t

d d
== =

= (8)

258 H.S. Mohammed et al.

If some classifiers are known to be more competent than others, giving higher
weights to those classifiers may improve the performance. Denoting the voting weight
for classifier ht with Vt, weighted majority voting (WMV) can be obtained as

, ,
1

1 1

max
T Tc

t t k t t j
j

t t

V d V d
== =

= . (9)

In original Learn++ and AdaBoost, these weights are inversely proportional to the
training errors of ht:

()()log 1t t tV ε ε= − (10)

The sum, product and median rules are similar, defined by the following expres-
sions, respectively

,
1

1
() ()

T

j t j
t

x d x
T

µ
=

= (11)

,
1

1
() ()

T

j t j
t

x d x
T

µ
=

= ∏
(12)

,
1...

() { ()}j t j
t T

x median d xµ
=

=
(13)

In each case, the ensemble decision is the class k
 for which the total support j(x)

is highest.
 Perhaps the most sophisticated combination rule that uses all supports given by all
classifiers to all classes is Kuncheva’s decision templates [9]. For each class j, the
decision template DTj is the average of all decision profiles in training data Xj

1
()

j

j
j

DT DP
M ∈

=
x

x
X

(14)

where Xj is the set of instances coming from class j; and Mj is the cardinality of Xj.
The class k whose decision template is closest to the decision profile of the current
instance, e.g., using squared Euclidean distance, is chosen as the ensemble decision.
The closest match then decides on the label of x.

2

,
1 1

1
() 1 (,) ()

T C

j j t k
t k

x DT t k d x
T C

µ
= =

= − −
×

 (15)

4 Simulation Results

We present and compare simulation results of Learn++ and AdaBoost.M1 on several
real-world and benchmark databases, using six different combination rules on each.
All results are given with 95% confidence interval, obtained through 10 fold cross
validation. Each database was partitioned into n sets: S1~Sn for training, where each
set introduced one or more new classes, and an additional TEST set for validation,
which included instances from all classes. Ensemble generalization performances
after each training session TS1 ~ TSn (trained on S1~Sn separately, and tested on
TEST) are presented below. Multilayer perceptrons were used as base classifiers.

 Can AdaBoost.M1 Learn Incrementally? 259

4.1 Ultrasonic Weld Inspection (UWI) Dataset

The UWI dataset was obtained from ultrasonic inspection of submarine hull welding
regions. The welding regions, also known as heat-affected zones, are highly suscepti-
ble to growing a variety of defects, including potentially dangerous cracks. The dis-
continuities within the material, such as air gaps due to cracks, cause the ultrasonic
wave to be reflected back, and received by the transducer. The reflected ultrasonic
wave, also called an A-scan, serves as the signature pattern of the discontinuity,
which is then analyzed to determine whether it was originated from a crack. However,
this analysis is hampered by the presence of other types of discontinuities, such as
porosity, slag and lack of fusion (LOF), all of which generate very similar A-scans,
resulting in a very challenging database with highly overlapping classes. The data
distribution and percent generalization performances of both algorithms are shown in
Tables 1 and 2 respectively. The number of classifiers used to train datasets S1, S2 and
S3 were set as 3, 5 and 7, respectively, and kept constant for all experiments. The best
performance for each algorithm at the end of TS3 is shown in bold.

Table 1. Data distribution for UWI dataset

Dataset Crack Slag LOF Porosity

S1 300 300 0 0
S2 200 200 200 0
S3 150 150 137 99

TEST 200 200 150 125

Table 2. Percent test performance of AdaBoost.M1 and Learn++ on UWI dataset

AdaBoost.M1 Learn++

TS1 TS2 TS3 TS1 TS2 TS3
SUM 49.6±1.2 59.1±1.2 57.8±1.6 52.0±0.6 65.7±0.8 70.5±0.8
PRODUCT 48.8±1.2 59.0±1.1 57.1±2.6 51.4±0.6 62.4±0.6 65.0±0.7
MEDIAN 49.1±1.3 58.7±1.2 56.6±1.6 51.5±0.7 65.1±0.8 70.8±0.6
M. VOTING 49.0±0.8 58.8±1.1 58.5±1.1 51.4±0.6 65.5±0.7 70.3±0.8
WMV 49.6±1.6 59.2±1.1 59.3±1.0 51.4±0.9 65.1±1.0 70.6±0.5
DT 49.0±0.8 59.6±1.0 58.5±1.1 52.1±0.8 65.2±0.6 68.8±0.6

Table 2 shows that both algorithms were able to learn incrementally from the new

data, as indicated by the improved generalization performances from one training
session to the next. Learn++ outperformed AdaBoost, however, with statistical signifi-
cance, on all combination rules. Furthermore, the performance of AdaBoost mildly
deteriorated in TS3, compared to its performance on the previous session, TS2.
AdaBoost could not learn the new class information, at least using the number of
classifiers specified. As mentioned earlier, this is attributed to the composite hypothe-
sis based weight update rule of Learn++. The performance differences among differ-
ent combination rules were mostly statistically insignificant for both algorithms.

260 H.S. Mohammed et al.

4.2 Volatile Organic Compound (VOC) Dataset

This database was generated from responses of six quartz crystal microbalances
(QCMs) to various concentrations of five volatile organic compounds, including etha-
nol (ET), xylene (XL), octane (OC), toluene (TL), and trichloroethylene (TCE). The
data distribution, indicating a new class introduced with each dataset, is shown in
Table 3, and the mean generalization performances of AdaBoost.M1 and Learn++ for
the VOC database are presented in Table 4. S1 had instances from ET, OC and TL, S2
added instances primarily from the new class TCE (and fewer instances from the
previously three), and S3 added instances from XL (and fewer instances from the
previous four). The number of classifiers used to train datasets S1, S2 and S3 were
chosen as 2, 3 and 5, respectively, and kept constant for all experiments.

Table 3. Data distribution for VOC dataset

Dataset ET OC TL TCE XL

S1 20 20 40 0 0
S2 10 10 10 25 0
S3 10 10 10 15 40

TEST 24 24 52 24 40

Table 4. Percent test performance of AdaBoost.M1 and Learn++ on VOC dataset

AdaBoost.M1 Learn++

TS1 TS2 TS3 TS1 TS2 TS3
SUM 61.1±0.7 63.8±2.0 67. ±7.5 62.0±1.3 71.4±0.5 83.2±3.4
PRODUCT 60.3+1.4 61.2±5.3 70.9±3.7 60.8±0.5 62.4±3.2 71.4±4.0
MEDIAN 60.6±0.8 59.3±6.5 67.2±4.5 61.2±0.4 66.2±1.1 79.8±3.3
M.VOTING 58.9±3.4 63.9±1.8 67.7±4.5 61.4±0.4 69.9±1.3 85.1±1.1
WMV 60.3±1.1 59.2±6.8 69.9±2.5 61.5±0.4 71.6±0.6 85.2±1.5
DT 60.2±1.1 62.6±2.8 63.3±6.1 61.2±0.5 67.2±1.2 76.7± 2.4

While both algorithms achieved incremental learning, Learn++ performed signifi-

cantly better than AdaBoost.M1 on all combination rules, and usually with smaller
confidence intervals. As expected, majority voting, weighted majority voting and the
sum rule in general performed better than others.

4.3 Wine

The wine database from the UCI repository [10] is commonly used as a benchmark
dataset. The dataset describes chemical analysis of 13 constituents found in three
types of Italian wines, derived from three different cultivars of the same region. The
data distribution and the test performances of both algorithms are shown in Tables 5
and 6 respectively. S1 had instances only from classes 1 and 2, whereas S2 introduced
class 3. The number of classifiers used to train datasets S1 and S2 were set as 2 and 4,
respectively, and kept constant for all experiments.

 Can AdaBoost.M1 Learn Incrementally? 261

Table 5. Data distribution for Wine dataset

Dataset Wine1 Wine2 Wine3

S1 30 40 0
S2 10 10 30

TEST 71 28 21

Table 6. Percent test performance of AdaBoost.M1 and Learn++ on Wine dataset

AdaBoost.M1 Learn++
TS1 TS2 TS3 TS1

SUM 60.2±6.1 77.8±9.7 61.2±4.1 82.2±6.1
PRODUCT 59.1±8.7 81.4±10.2 60.5±2.6 82.1±6.2
MEDIAN 59.0±7.2 68.1±16.8 64.5±2.4 84.0±9.1
M.VOTING 58.8±6.6 77.1±14.3 60.0±2.4 82.9±8.5
WMV 54.7±8.3 76.0±12.9 62.8±3.1 82.6±6.6
DT 62.1±3.8 73.4±16.8 60.7 ±3.4 70.7±4.8

As in previous datasets, both algorithms were able to learn incrementally from the

new data, as seen by the improved generalization performances from one training
session to the next. Learn++, however, performed significantly better than
AdaBoost.M1 on all combination rules except the decision templates, and usually
with smaller (though still somewhat large) confidence intervals. We should add how-
ever that due to somewhat large confidence intervals, the performance differences
among different combination rules were not statistically significant.

4.4 Optical Character Recognition Database

Also obtained from the UCI repository [10], OCR database consists of handwritten
numeric characters, 0 through 9, digitized on an 8x8 grid creating 64 attributes for 10
classes. The data distribution and the mean performances of the two algorithms are
shown in Tables 7 and 8, respectively. Note that the data distribution was made delib-
erately challenging, specifically designed to test the algorithms’ ability to learn multi-
ple new classes with each dataset, while retaining the knowledge of previously
learned classes. In particular, S1 consisted of classes 0,1,2,5,6 and 9, S2 added classes
3 and 4, and S3 introduced classes 7 and 8, but removes instances from classes 0 and
1. The number of classifiers used to train datasets S1, S2 and S3 were set as 3, 3 and 3,
respectively, and kept constant for all experiments. Interesting observations can be
made from the generalization performances of AdaBoost and Learn++.

Table 7. Data distribution for OCR dataset

Dataset 0 1 2 3 4 5 6 7 8 9
S1 250 250 250 0 0 250 250 0 0 250

S2 100 100 100 250 250 100 100 0 0 100

S3 0 0 50 150 150 50 50 400 400 0

TEST 100 100 100 100 100 100 100 100 100 100

262 H.S. Mohammed et al.

Table 8. Percent test performance of AdaBoost.M1 and Learn++ on OCR dataset

AdaBoost.M1 Learn++

TS1 TS2 TS3 TS1 TS2 TS3
SUM 57.4±2.0 71.1±2.6 66.2±2.2 59.2±0.2 77.0±1.2 88.5±1.5
PRODUCT 58.0±0.5 70.3±2.6 64.5±2.8 59.8±1.1 78.2±0.5 88.4±1.4
MEDIAN 55.3±4.4 70.5±2.7 67.0±1.9 59.0±0.2 77.9±0.2 90.5±1.8
M.VOTING 58.1±0.5 71.9±2.7 65.0±2.5 58.6±0.3 75.5±1.0 82.0±0.7
WMV 57.4±2.0 68.8±1.8 67.0±3.8 59.2±0.1 77.2±0.4 89.3±1.0
DT 58.3±0.5 72.5±1.4 65.7±3.4 59.3±0.4 79.8±0.5 82.5±1.7

Similar to the previous databases discussed above, Learn++ outperformed

AdaBoost, with statistical significance, on all combination rules. It is interesting to
observe that AdaBoost incrementally learns the second database, however it displays
substantial amount of forgetting from second to third training session. This indicates
that AdaBoost is having difficulty in learning new classes, and at the same time re-
taining the information it had previously learned, particularly if subsequently gener-
ated classifiers are no longer trained with instances of previously seen classes. Con-
versely, Learn++ was able to achieve upper 80% to lower 90% classification perform-
ance, using any of the sum, product, median and weighted majority voting combina-
tion rules. Considering that the database was designed to test the incremental learning
and knowledge retaining ability of the algorithm (by leaving instances of certain
classes out), we can conclude that Learn++ places itself more favorably along the plas-
ticity–stability spectrum.

5 Conclusion and Discussion

Our results indicate that AdaBoost.M1 can indeed learn incrementally from new data;
however, its effectiveness is limited by its single-hypothesis-based distribution update
rule. We should quickly point out that this is not a short coming of AdaBoost, as the
algorithm was not originally intended for incremental learning, but rather to allow
weak classifiers learn in an ensemble structure. As consistently seen in all results, and
in particular in hostile learning environments, where the consecutive databases may
introduce instances of new classes and/or remove instances from previously seen
classes, the ensemble-based distribution update rule of Learn++ provides substantial
performance improvement.. Therefore, we conclude that the ensemble based distribu-
tion update rule is indeed crucial in achieving efficient incremental learning.

We also note that Learn++ achieved narrower confidence intervals in its perform-
ances. This is significant, because a narrower confidence interval indicates better
stability and robustness, qualities of considerable concern in incremental learning.
Improved generalization performance along with a narrower confidence interval
shows that Learn++ can achieve a delicate balance on the stability-plasticity spectrum.

We should note that despite its relative inferior performance in incremental learn-
ing, AdaBoost is still a strong contender: it has certainly shown promise in incre-
mental learning of certain applications, including learning new classes. We believe
that AdaBoost can still be used for incremental learning applications where the

 Can AdaBoost.M1 Learn Incrementally? 263

learning environment is less hostile than the one we created in our simulations. Also,
since we were interested in efficient incremental learning, the ensemble sizes were
kept to minimum. If AdaBoost were allowed to generate additional classifiers, it
could have achieved better performances. The incremental learning ability of
AdaBoost under such cases is currently being investigated.

Unlike the distribution update rule, the choice of specific combination rule does not
appear to be very influential in the incremental learning performance of either algo-
rithm. While there were some differences – sometimes significant – such differences
were not consistent, and we believe that the impact of a particular combination rule is
relatively minor, compared to that of the distribution update rule.

References

1. R. French, “Catastrophic forgetting in connectionist networks,” Trends in Cognitive Sci-
ences, vol. 3, no.4, pp. 128-135, 1999.

2. S.Grossberg, “Nonlinear neural networks: principles, mechanisms and architectures,” Neu-
ral Networks, vol. 1, no. 1, pp. 17-61, 1988.

3. G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen, “Fuzzy
ARTMAP: A neural network architecture for incremental learning of analog multidimen-
sional maps,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp.698-713, 1992.

4. Y. Freund, R. Schapire, Decision-theoretic generalization of on-line learning and an appli-
cation to boosting, J. Comp. Sys. Sci., vol. 55, no. 1, pp. 119-13, 1997.

5. R. Polikar, L. Udpa, S. Udpa, V. Honavar., “Learn++: An incremental learning algorithm
for supervised neural networks,” IEEE Trans. on System, Man and Cybernetics (C), vol.
31, no. 4, pp. 497-508, 2001.

6. R. Polikar, J. Byorick, S. Krause, A. Marino, M. Moreton, “Learn++: A classifier
independent incremental learning algorithm for supervised neural networks,” Proc. of Int.
Joint Conference on Neural Networks (IJCNN 2002), vol. 2, pp. 1742-1747, Honolulu, HI,
12-17 May 2002.

7. J. Kittler, M. Hatef, R. P.W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans.
on Pattern Analy. and Machine Int., vol. 20, no. 3, pp.226-239, 1998.

8. L.I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley &
Sons, N.J., 2004.

9. L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin, "Decision templates for multiple classi-
fier fusion: an experimental comparison," Pattern Rec., vol. 34, no. 2, pp. 299-314, 2001.

10. C.L. Blake and C.J. Merz, Univ. of California, Irvine, Repository of Machine Learning
Databases at Irvine, CA.

Ensemble Learning with Local Diversity�

Ricardo Ñanculef1, Carlos Valle1, Héctor Allende1, and Claudio Moraga2,3

1 Universidad Técnica Federico Santa Maŕıa,
Departamento de Informática, CP 110-V Valparáıso, Chile

{jnancu, cvalle, hallende}@inf.utfsm.cl
2 European Centre for Soft Computing 33600 Mieres, Asturias, Spain

3 Dortmund University, 44221 Dortmund, Germany
claudio.moraga@udo.edu

Abstract. The concept of Diversity is now recognized as a key char-
acteristic of successful ensembles of predictors. In this paper we inves-
tigate an algorithm to generate diversity locally in regression ensembles
of neural networks, which is based on the idea of imposing a neighbor-
hood relation over the set of learners. In this algorithm each predictor
iteratively improves its state considering only information about the per-
formance of the neighbors to generate a sort of local negative correlation.
We will assess our technique on two real data sets and compare this with
Negative Correlation Learning, an effective technique to get diverse en-
sembles. We will demonstrate that the local approach exhibits better or
comparable results than this global one.

1 Introduction

Ensemble methods offer a simple and flexible way to build powerful learn-
ing machines for a great variety of problems including classification, regres-
sion and clustering [7] [3]. An ensemble algorithm to learn a set of examples
D = {(xi, yi); i = 1, . . . ,m} selects a set of predictors S = {h0, h2, . . . , hn−1}
from some base hypothesis space H and builds a decision function f as a composi-
tion f =

⊕
S, where

⊕
is an aggregation operator such as voting for categorical

outputs or a linear combination for continuous outputs.
To be useful, the set S has to have some degree of heterogeneity or diversity

that allows the group compensate individual errors and reach a better expected
performance. The characterization of methods to generate diversity has matured
in the last years [5] [6] and the concept is now recognised as a central element to
get significant performance improvements with the ensemble. Negative Correla-
tion Learning [9] [11] for example has been proved to be an effective method to
get diversity in regression ensembles.

In this paper we propose to introduce a neighborhood relation over the en-
semble to locally generate diversity. Each predictor iteratively improves its state
� This work was supported in part by Research Grant Fondecyt (Chile) 1040365 and

7050205, and in part by Research Grant DGIP-UTFSM (Chile). Partial support was
also received from Research Grant BMBF (Germany) CHL 03-Z13.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 264–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ensemble Learning with Local Diversity 265

considering only information about the performance of the neighbors to generate
a sort of local negative correlation. Different neighborhood sizes control the visi-
bility each learner has about the ensemble, and allow to cover the gap between a
single learning machine and completely independent learners. We will show that
a desired global behavior can be generated considering only local learning rules,
with small neighborhood sizes. It is clear that the more local the learning rules
the more efficient the algorithm.

The remainder of this paper is organized as follows. In the next section we
introduce the concept of diversity in regression ensembles and the Negative Cor-
relation Learning algorithm. Our proposal is introduced in section 3. In section
4 we provide a set of experimental results on two real data sets to assess the
introduced algorithm. We also compare this with Negative Correlation Learning.
Conclusions and future work close the article.

2 Diversity and Negative Correlation Learning

The problem in designing successful ensemble learning algorithms is how to select
an appropriate set of predictors from the base hypothesis space H and how to
aggregate them. Studies tend to show that diversity in errors of the predictors is a
key characteristic to get better generalization performance, although the way to
approach the concept is highly heterogeneous. Please refer to [3] for an exhaustive
taxonomy of diversity creation methods in classification and regression scenarios.

In case of regression estimation it is well-known the so called Ambiguity De-
composition [1] for the quadratic loss of an ensemble F obtained as a convex
combination of a set of n predictors f0, f2, . . . , fn−1,

ē = (F − y)2 =
n−1∑
i=0

wi(y − fi)2 −
n−1∑
i=0

wi(fi − F)2 (1)

where (and for the remainder of this paper)

F (x) =
n−1∑
i=0

wifi(x) (2)

This decomposition states that the error of the ensemble can be decomposed into
two terms where the first is the aggregation of the individual errors (y− fi) and
the second (called ambiguity) measures deviations of these individual predictions
around the ensemble prediction. It is clear that the higher the second term,
the lower the ensemble error and so this seems an appropriate approach to
quantify the concept of diversity. If the ambiguity is positive the ensemble loss
is guaranteed to be less than the averaged individual errors.

Ambiguity decomposition suggests that individual learners should be trained
considering information about their deviations around the ensemble. For exam-
ple, the i-th learner could be trained considering the objective function

ei = (y − fi)
2 − λ (fi − F)2 (3)

266 R. Ñanculef et al.

where the parameter λ weights the importance of the ambiguity component. As
noted in [3] if the ensemble is uniformly weighted, we obtain that

ei = (y − fi)
2 − λ

∑
j �=i

(fi − F) (fj − F) (4)

which is the learning rule considered in the Negative Correlation Learning algo-
rithm described in [11] [9] for neural networks ensembles and strongly related
with the constructive algorithm proposed in [4]. In this approach the set of learn-
ers is trained in parallel and synchronously such that, at time t, the learner i is
trained to minimize (4) with the ensemble F computed considering the states of
the learners at the previous time t− 1.

If λ = 1 it should be noted that the ensemble is trained as a great learning
machine with components fi joined using non trainable connections. It can be
verified taking the derivatives of ei and ē with respect to fi and noting that
they are proportional. On the other hand, if the parameter λ = 0, each learner
is trained independently. Parameter λ ∈ [0, 1] covers the range between the
two extremes. In [3] it is said that increasing parameter λ can force a wider
basin of attraction for the objective function to be minimized, increasing in this
way the possible configurations of the learners necessary to get the minimum.
In practice and depending on the optimization landscape induced by the data,
better solutions can be achieved using λ between 0 and 1.

3 Generating Diversity Locally

In Negative Correlation Learning one trains each member of the ensemble in-
troducing information about the group behavior and controlling the weight each
predictor gives to this information. With λ < 1 each predictor sees ensemble
performance only partially. From this observation it seems natural to think in
restricting the visibility that each predictor has on the group, allowing that they
learn only considering the performance of a subset of the set of learners. To
accomplish this we will introduce a neighborhood relation on the ensemble.

Let S = {f0, f2, . . . , fl−1} be a set of learners. A one-dimensional linear neigh-
borhood relation of order ν on S consists of a function ψ : S × S → {0, 1} such
that

ψ(fi, fj) = 1 ⇔ (i− j)|l ≤ ν or (j − i)|l ≤ ν (5)

where i|l denotes the modulus after division of i by l. The neighborhood Vi of
a learner i is the set of learners hj j �= i for which ψ(hi, hj) = 1. Geometrically
we obtain a ring, where two learners are neighbors if they are contiguous up to
ν steps.

In [8] a bi-dimensional neighborhood relation is considered to get a cellular
automata of learning machines and then to select a subset of machines to build
an ensemble. However learners are trained independently before the construction

Ensemble Learning with Local Diversity 267

of the bi-dimensional arrangement and the neighborhood relation is only used
to determinate which predictors will “survive” from the original pool of trained
learners. We want to use the neighborhood relation to define the learning process
itself for each individual learner in a way such that each predictor adapts its state
based on the behavior of its neighbors. Since diversity is desirable to get success-
ful ensembles we want to define local learning rules encouraging the diversity of
the set of learners.

A way to accomplish this could be to restrict the negative correlation learning
rule for the i-th learner in equation (4), such that this takes into account only
deviations y − fj concerning the neighbors of fi. The learning function for this
learner would be

evic
i = (y − fi)

2 − λ
∑
j∈Vi

(fi − F) (fj − F) (6)

It should be noted that this learning rule is not completely local because it
depends on the overall ensemble function F . However, we can obtain a decom-
position similar to the ambiguity decomposition where the diversity component
does not depend directly on F . In fact, we have that the ambiguity component
of (1) can be written as

n∑
i=1

wi (fi − F)2 =
n−1∑
i=0

wi ((fi − y) − (F − y))2

=
n−1∑
i=0

wi(fi − y)2 − 2
n−1∑
i=0

wi(fi − y)(F − y) + (F − y)2 (7)

Replacing in (1) we obtain

(F − y)2 = 2
n−1∑
i=0

wi(fi − y)(F − y) − (F − y)2

(F − y)2 =
n−1∑
i=0

wi(fi − y)(F − y) (8)

Expanding F as in equation (2) one finally obtains

(F − y)2 =
n−1∑
i=0

w2
i (y − fi)2 +

n−1∑
i=0

∑
j �=i

wiwj(fi − y)(fj − y) (9)

As in the ambiguity decomposition, the first term measures the individual per-
formance of the estimator while the second measures a sort of error correlation
between the different predictors. Clearly negative error correlation is desirable
to get advantages of combining the predictors.

268 R. Ñanculef et al.

From this decomposition and neglecting the effect of the coupling coefficients
wj , it seems natural to train each learner with the training function

ẽi = (y − fi)2 + λ
∑
j �=i

(fi − y)(fj − y) (10)

where λ > 0 controls the importance of the group information versus the infor-
mation about the individual performance. Now, we can restrict the last training
function to get a rule which only depends on the neighborhood of fi,

li = (y − fi)2 + λ
∑
j∈Vi

(fi − y)(fj − y) (11)

As in the negative correlation learning algorithm we will proceed iteratively
correcting the state of fi at time t based on the state of its neighbors at time
t−1. Using f t

i to denote the state of the learner fi at time t, the learning function
at time t can be explicitly expressed as

lti = (y − f t
i)

2 + λ
∑
j∈Vi

(f t
i − y)(f t−1

j − y) (12)

This procedure can be viewed as an synchronous cellular automaton with
cells corresponding to each learner, states corresponding to a function in the
hypothesis space and (stochastic) transition rules ∀i corresponding to

f t
i = y − λ

∑
j∈Vi

(f t−1
j − y) + εt

i (13)

where εt
i is the estimation error in the minimization of (12). After calculating

equation (13) for i = 0, . . . , n− 1 the global ensemble transition rule is obtained

F t = y − κ(F t−1 − y) + ε̄t (14)

where κ = 2λν, ε̄t =
∑

i wiε
t
i is the aggregated estimation error at time t and F t

is the state of the ensemble (2) at this time. If we think equation (14) as applied
to a fixed point (x, y) the gradient of C = (y − F t−1)2 at F t−1 := F t−1(x) is
simply ∇C = (F t−1 − y). Then, equation (14) can be written as

F t = F t−1 + −(1 + κ)∇C + ε̄t (15)

which shows that the global transition rule is in essence a gradient descent rule
with step size 1+κ. Now, let us suppose at time t = 0 each learner approximates
y with an additive error e0

i , such that F 0 = y + ε̄0. Then, the expected values
St = E[F t − y] are governed by the recurrence

St = E[ε̄t] − κSt−1

S0 = E[ε̄0] (16)

Ensemble Learning with Local Diversity 269

whose solution for |κ| < 1 is

St =
t∑

i=0

(−κB)iE[ε̄t] =
1

1 + κB
E[ε̄t] (17)

where B is the backward operator Bsxt = xt−s. If the sequence of expected
estimation errors E[ε̄t] does not depend on t we have

F t − y −→
t→∞

1 + (−κ)∞

1 + κ
E[ε̄0] (18)

This property suggest to choose κ ∈ [0, 1) since κ > 1 yields a divergent sequence
of biases around the target. Moreover, to minimize the convergence point of the
biases St we should choose κ close to 1.

Algorithm 1. The Proposed Algorithm
1: Let n be the number of learners and ν the order of the neighborhood.
2: Let f t

i i = 0, . . . , n − 1 be the function implemented by the learner fi at time
t = 0, . . . , T and Vi = {fi−ν , fi−1, fi+1, . . . , fi+ν} the neighborhood of this learner.

3: for t = 1 to T
4: Train the learner fi a number of epochs p to achieve the state

f t
i = y − λ

j∈Vi

(f t−1
j − y)

which corresponds to use the learning function

et
i = (y − fi)2 + κ

j∈Vi

(fi − y) f t−1
j − y

on the set of examples D = {(xk, yk); k = 1, . . . , m}.
5: end for
6: Set the ensemble at time t to be F (x) = 1/n n−1

i=0 fi(x)

The algorithm implementing the proposed approach is presented as algorithm
(1). It should be noted that there are two types of learning iterations; the loop in
step 4 corresponds to group iterations where the learners in the ensemble share
information about its behavior, while the implicit loop at step 5 corresponds to
individual iterations where each learner modifies its state based on the group
behavior information. In practice it can be observed that only one individual
epoch can be enough to achieve good results.

4 Experimental Results

In this section we present results of empirical studies for analyzing different as-
pects of the proposed approach and for comparing this with Negative Correlation

270 R. Ñanculef et al.

Learning. In the whole set of experiments, two real data sets were used, namely
Boston and NO2. A detailed description of these data sets can be obtained from
[2] and [10] respectively. In addition, neural networks with five sigmoidal hidden
units and trained with standard backpropagation were employed as base learn-
ers. For each experiment figures will show error-bars corresponding to t-student
confidence intervals with a significance of 0.02. Mean values are plotted with a
symbol ’o’.

4.1 Effect of the Neighborhood Order

In this experiment we will analyze the effect of the neighborhood order on the
results obtained with the proposed algorithm. We will keep constant the number
of machines in the ensemble at M = 20 and parameter κ at 0.9, while the neigh-
borhood order will be varied according to ν = 1, 2, . . . , 9. Figure (1) summarizes
the results in the testing set. Results in the training were omitted due to space
limitations, but the behavior is analogous.

1 2 3 4 5 6 7 8 9
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

1 2 3 4 5 6 7 8 9
0.24

0.25

0.26

0.27

0.28

0.29

0.3

Fig. 1. MSE (vertical axis) versus neighborhood order (horizontal axis) in the Boston
data set (at left) and the NO2 data set (at right)

It can be observed that there is not a strong difference between the results
obtained with different neighborhood sizes, both in terms of precision and dis-
persion. This difference is smaller in the testing set. Moreover, the minimum
of errors occurs for both data sets at small neighborhood orders ν = 4 or
ν = 2. This result is very attractive because it proves that a desired global
behavior can be generated considering only local learning rules. In addition it
should be clear that the smaller the neighborhood the more efficient the training
process.

4.2 Effect of the Parameter κ

In this experiment we will analyze the effect of the κ parameter in the proposed
algorithm. We will keep constant the number of machines in the ensemble at
M = 20 and the neighborhood order at ν = 1, while κ will be varied uniformly

Ensemble Learning with Local Diversity 271

in [0, 1.1] with gaps of size 0.1 and additionally in [0.9, 1.02] with gaps of size
0.01. Figures (2) and (3) summarize the results for the Boston and NO2 data
sets respectively.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .91 .92 .93 .94 .95 .96 .97 .98 .99 1 1.011.02 1.1
5

10

15

20

Divergence

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .91 .92 .93 .94 .95 .96 .97 .98 .99 1 1.011.021.1
8

10

12

14

16

18

20

22

24

26
Divergence

Fig. 2. MSE (vertical axis) versus value of parameter κ (horizontal axis) in the training
set (at left) and the testing set (at right), corresponding to the Boston data.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .91 .92 .93 .94 .95 .96 .97 .98 .99 1 1.011.021.1
0.15

0.2

0.25

0.3

0.35

0.4

Divergence

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .91 .92 .93 .94 .95 .96 .97 .98 .99 1 1.011.021.1
0.2

0.25

0.3

0.35

0.4

0.45

Divergence

Fig. 3. MSE (vertical axis) versus value of parameter κ (horizontal axis) in the training
set (at left) and the testing set (at right), corresponding to the NO2 data.

This experiment supports the theoretical analysis of previous section for the
effect of parameter κ. Both precision and variability tend to improve as κ in-
creases from 0.0 to 1.0. Near the critical value of κ = 1 numerical instabilities
appear and above this threshold the learning process becomes divergent.

4.3 Comparing with NC and Different Ensemble Sizes

In this experiment we compare our algorithm with Negative Correlation Learning
(NC). Since the key characteristic in the proposed approach is the introduction
of local learning rules instead of global ones we will fix the neighborhood order

272 R. Ñanculef et al.

at the the smallest value ν = 1. Based the previous experiment we will select the
best parameter κ for our algorithm. Note that this “best” parameter is really
the best for an ensemble of size M = 20, however the number of machines in the
ensemble will be varied according to M = 3, 4, 5, 6, 7, 8, 9, 20.

Previously to this comparison we conducted experiments with NC using an
ensemble of size M = 20 to determine the best parameter λ testing values be-
tween 0 and 1 with gaps of size 0.1. In the Boston data set the best testing result
is achieved at λ = 0.5 as reported in [3]. In the NO2 data set, the minimum test-
ing error corresponds to λ = 0.4. Values of λ greater than 0.5 cause divergence
of the algorithm in both data sets. Figures (4) and (5) summarize the results.
The circle-solid curves corresponds to our algorithm and the dotted-diamond
curves to Negative Correlation. To get a better visualization the last curve was
horizontally (but not vertically!) shifted a bit.

3 4 5 6 7 8 9 10 20
6.5

7

7.5

8

8.5

9

9.5

10

10.5

3 4 5 6 7 8 9 10 20
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

Fig. 4. MSE (vertical axis) versus number of machines (horizontal axis) in the training
set (at left) and the testing set (at right), corresponding to the Boston data.

3 4 5 6 7 8 9 10 20
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

3 4 5 6 7 8 9 10 20
0.25

0.26

0.27

0.28

0.29

0.3

0.31

Fig. 5. MSE (vertical axis) versus number of machines (horizontal axis) in the training
set (at left) and the testing set (at right), corresponding to the NO2 data.

Ensemble Learning with Local Diversity 273

From this experiment we can conclude that a local approach to generate diver-
sity exhibit better or comparable results than a global approach such as Negative
Correlation (NC) both in terms of accuracy and precision. Generalization looks
not so good for our algorithm but its comparable to the typical results with
these data sets. It is important to remark that our algorithm has complexity
proportional to 2νm in the ensemble size because each learner adapts its state
based only in the behavior of 2ν fixed neighbors (we used ν = 1). On the other
hand, NC has complexity proportional to m2 because at each training iteration
each machine needs to know the whole ensemble performance. This advantage
was verified in practice but results were omitted due to space limitations.

5 Future Work

In the future work we plan to work with more complex neighborhoods such as
bi-dimensional or asymmetric arrangements. We also want to experiment with
a distributed version of the algorithm taking advantage of its parallel nature.
Since recent results have shown that ensembles capable to balance the influence
of data points in the training can get better generalization, we are also interested
in designing an algorithm capable to control the influence of an example in a ma-
chine based on information about the influence of this point in the neighborhood.
Finally, experiments with pattern recognition tasks should be incorporated.

References

1. J. Vedelsby A. Krogh, Neural network ensembles, cross-validation and active learn-
ing, Neural Information Processing Systems 7 (1995), 231–238.

2. C.L. Blake and C.J. Merz, UCI repository of machine learning databases, 1998.
3. G. Brown, Diversity in neural network ensembles, Ph.D. thesis, School of Computer

Science, University of Birmingham, 2003.
4. S. Fahlman and C. Lebiere, The cascade-correlation learning architecture, Advances

in Neural Information Processing Systems, vol. 2, Morgan Kaufmann, San Mateo,
1990, pp. 524–532.

5. R. Harris G. Brown, J. Wyatt and X. Yao, Diversity creation methods: A survey and
categorisation, Information Fusion Journal (Special issue on Diversity in Multiple
Classifier Systems) 6 (2004), no. 1, 5–20.

6. C. Whitaker L. Kuncheva, Measures of diversity in classifier ensembles, Machine
Learning 51 (2003), 181–207.

7. J. Kittler F. Roli N.C. Oza, R. Polikar (ed.), Multiple classifier systems, 6th in-
ternational workshop, mcs 2005, seaside, ca, usa, june 13-15, 2005, proceedings,
Lecture Notes in Computer Science, vol. 3541, Springer, 2005.

8. T.W. Druovec P. Povalej, P. Kokol and B. Stiglic, Machine-learning with cellular
automata, Advances in Intelligent Data Analysis VI, vol. 1, Springer-Verlag, 2005,
pp. 305–315.

9. B. Rosen, Ensemble learning using decorrelated neural networks, Connection Sci-
ence 8 (1999), no. 3-4, 373–384.

10. P. Vlachos, StatLib datasets archive, 2005.
11. X. Yao Y. Lui, Ensemble learning via negative correlation, Neural Networks 12

(1999), no. 10, 1399–1404.

A Machine Learning Approach to Define
Weights for Linear Combination of Forecasts

Ricardo Prudêncio1 and Teresa Ludermir2

1 Departament of Information Science, Federal University of Pernambuco, Av. dos
Reitores, s/n - CEP 50670-901 - Recife (PE) - Brazil

2 Center of Informatics, Federal University of Pernambuco, Pobox 7851 - CEP
50732-970 - Recife (PE) - Brazil

Abstract. The linear combination of forecasts is a procedure that has
improved the forecasting accuracy for different time series. In this pro-
cedure, each method being combined is associated to a numerical weight
that indicates the contribution of the method in the combined forecast.
We present the use of machine learning techniques to define the weights
for the linear combination of forecasts. In this paper, a machine learn-
ing technique uses features of the series at hand to define the adequate
weights for a pre-defined number of forecasting methods. In order to
evaluate this solution, we implemented a prototype that uses a MLP net-
work to combine two widespread methods. The experiments performed
revealed significantly accurate forecasts.

1 Introduction

Combining time series forecasts from different methods is a procedure commonly
used to improve forecasting accuracy [1]. In the linear combination of forecasts,
a weight is associated to each available method, and the combined forecast is
the weighted sum of the forecasts individually provided by the methods.

An approach that uses knowledge for defining the weights in the linear com-
bination of forecasts is based on the development of expert systems, such as the
Rule-Based Forecasting system [2]. The expert rules deployed by the system use
descriptive features of the time series (such as length, basic trend,...) in order
to define the adequate combining weight associated to each available forecast-
ing method. Despite its good results, developing rules in this context may be
unfeasible, since good forecasting experts are not always available [3].

In this paper, we proposed the use of machine learning for predicting the linear
weights for combining forecasts. In the proposed solution, each training example
stores the description of a series (i.e. the series features) and the combining
weights that empirically obtained the best forecasting performance for the series.
A machine learning technique uses a set of such examples to relate time series
features and adequate combining weights.

In order to evaluate the proposed solution, we implemented a prototype that
uses MLP neural networks [4] to define the weights for two widespread methods:

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 274–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Machine Learning Approach to Define Weights 275

the Random Walk and the Autoregressive model [5]. The prototype was evaluated
in 645 yearly series and the combined forecasts were compared to the forecasts
provided by benchmarking methods. The experiments revealed that the forecasts
generated by the predicted weights were significantly more accurate than the
benchmarking forecasts.

Section 2 presents methods for linear combination of forecasts, followed by
section 3 that describes the proposed solution. Section 4 brings the implemented
prototype, experiments and results. Section 5 presents some related work. Fi-
nally, section 6 presents the conclusions and future work.

2 Combining Forecasts

The combination of forecasts from different methods is a well-established proce-
dure for improving forecasting accuracy [1]. Empirical evidence has shown that
procedures that combine forecasts often outperform the individual methods that
are used in the combination [1][6].

The linear combination of K methods can be described as follows. Let Zt(t =
1, . . . , T) be the available data of a series Z and let Zt(t = T + 1, . . . , T + H)
be the H future values to be forecasted. Each method k uses the available data
to calibrate its parameters and then generates its individual forecasts Z̃k

t (t =
T + 1, . . . , T + H). The combined forecasts Z̃C

t are defined as:

Z̃C
t =

K∑
k=1

wk ∗ Z̃k
t (t = T + 1, . . . , T + H) (1)

The combining weights wk(k = 1, . . . ,K) are numerical values that indicate the
contribution of each individual method in the combined forecasts. Eventually
constraints are imposed on the weights in such a way that:

K∑
k=1

wk = 1 and wk ≥ 0 (2)

Different approaches for defining adequate combining weights can be identified in
literature [6]. A very simple approach is to define equal weights (i.e. wk = 1/K)
for the combined methods, which is usually referred as the Simple Average (SA)
combination method. Despite its simplicity, the SA method has shown to be
robust in the forecasting of different series [7].

A more sophisticated approach for defining the combining weights is to treat
the problem within the regression framework [8]. In this context, the individual
forecasts are viewed as explanatory variables and the actual values of the series
as the response variable. In order to estimate the best weights, each combined
method generates in-sample forecasts (i.e. forecasts for the available data Zt).
Then, a least squares method computes the weights that minimize the squared
error for the combined in-sample forecasts. Empirical results revealed that the
regression-based methods are almost always less accurate than the SA [9].

276 R. Prudêncio and T. Ludermir

An alternative approach that has shown promising results in the combination
of forecasts is based on the development of expert systems, such as the Rule-
Based Forecasting [2]. In that work, an expert system with 99 rules is used
to weight four forecasting methods. The rule base was developed based on the
guidelines provided by human experts. The authors used time series features
in the rules (such as basic trend, presence of outliers) to modify the weight
associated to each method. Figure 1 shows an example of rule used in the system.
The rule defines how to modify the weights in case of a series that presents an
insignificant trend. In the experiments performed using the expert system, the
improvement in accuracy over the SA method has shown to besignificant.

Rule: Insignificant Basic Trend
- IF NOT a significant basic trend, THEN add 0.05 to the weight on
random walk and subtract it from that on the regression.

Fig. 1. Example of rule implemented in the Rule Based Forecasting system

3 The Proposed Solution

As seen, expert systems have been successfully used to define weights for the
linear combination of forecasts. Unfortunately, the knowledge acquisition in these
systems depends on the availability of good human forecasting experts, who are
often scarce and expensive [3]. In order to minimize this difficulty, the use of
machine learning is proposed to define the weights for combining forecasts.

Figure 2 presents the architecture of the proposed solution. The system has
two phases: training and use. In the training phase, the Intelligent Combiner
(IC) uses a supervised algorithm to acquire knowledge from a set of examples
in the Database (DB). Each training example stores the descriptive features for
a particular series and the best configuration of weights used to combine K
methods for that series. The learner implemented in the IC module generalizes
the experience stored in the examples by associating time series features to the
most adequate combining weights. In the use phase, given a time series to be
forecasted, the Feature Extractor (FE) module extracts the values of the time
series features. According to these values, the IC module predicts an adequate
configuration of weights for combining the K methods.

The solution proposed here contributes to two different fields: (1) in time
series forecasting, since we provided a new method for combining forecasts; (2)
in machine learning, since we used its concepts and techniques in a problem
which was not tackled yet.

In the following subsections, we provide a more formal description of each
module of the proposed solution. Section 4 presents an implemented prototype
and the experiments that evaluated the proposed solution.

A Machine Learning Approach to Define Weights 277

Time Series Data
+ Contextual
Information

� FE �

Time Series
Features (x)

IC

�

DB

Training
Examples (E)

� Combining
Weights:
w1, . . . , wK

Fig. 2. System’s architecture

3.1 The Feature Extractor

As said, the combining weights are predicted for a time series Z based on its
description. Formally, a time series Z is described as a vector x = (x1, . . . , xp)
where each xj (j = 1, . . . , p) corresponds to the value of a descriptive feature
Xj . A time series feature can be either: (1) a contextual information directly
provided by the user, such as the domain of the series, the time interval, the
forecasting horizon, among others; or (2) a descriptive statistics automatically
calculated from the available time series data Zt (t = 1, . . . , T).

In the proposed solution, the FE module extracts those features that are
computed from the available data. These features may be for example the length,
the presence of trend or seazonality, the autocorrelations, the amount of turning
points, among others. Obviously the choice of appropriate features is highly
dependent on the type of series at hand.

3.2 The Database

An important aspect to be considered is the generation of a set of training
examples used by the IC module. Let E = {e1, . . . , en} be a set of n examples,
where each example stores: (1) the values of the p features for a particular
series; and (2) the adequate weights for combining the K forecasting methods
on that series. An example ei ∈ E is then defined as a vector ei = (xi, wi) where
xi = (x1

i , . . . , x
p
i) is the description of the series and wi = (w1

i , . . . , w
K
i) is the

best configuration of weights associated to the K methods.
In order to generate each example ei ∈ E, we simulate the forecasting of a

series Zi by using the K methods and then we compute the configuration of
weights that would obtain the best forecasting result if it was used to combine
the forecasts provided by the K methods. For this, the following tasks have to
be performed.

First, given a sample series Zi (i = 1, . . . , n), its data is divided into two parts:
a fit period Zi,t(t = 1, . . . , Ti) and a forecasting period Zi,t(t = Ti+1, . . . , Ti+H).
The fit period corresponds to the available data at time Ti used to calibrate the
K methods. The forecasting period in turn corresponds to H observations to
be forecasted by the K calibrated methods. Hence, for each series Zi, this task

278 R. Prudêncio and T. Ludermir

results on the forecasts Z̃k
i,t (k = 1, . . . ,K) (t = Ti + 1, . . . , Ti + H) individually

provided by the K calibrated methods for the forecasting period of the series.
In the second task, we defined the combining weights (w1

i , ..., w
K
i) that mini-

mize a chosen forecasting error measure E , computed for the combined forecasts
Z̃C

i,t(t = Ti + 1, ..., Ti + H). The measure E may be for example the Mean Ab-
solute Error, or the Mean Squared Error. The task of defining the best combining
weights can be formulated as an optimization problem as follows:

Minimize:

E(Z̃C
i,t) = E(

K∑
k=1

wk
i ∗ Z̃k

i,t) (3)

Subject to:
K∑

k=1

wk
i = 1 and wk

i ≥ 0 (4)

Different optimization methods may be used to solve this problem, considering
the characteristics of the measure E to be minimized. For each series Zi, this
optimization process results on the weights (w1

i , ..., w
K
i) that would minimize the

forecasting error E if they were used to combine the K methods on that series.
Finally, in the third task, the features (x1

i , . . . , x
p
i) are extracted for describing

the fit period of the series (as defined in the FE module). These features and
the optimized weights (w1

i , ..., w
K
i) are stored in the DB as a new example.

3.3 The Intelligent Combiner

The Intelligent Combiner (IC) module implements a supervised learning algo-
rithm that acquires knowledge from the set of training examples E. Given the
set E, the algorithm is used to build a learner which is a regression model
L : X → [0; 1]K that receives as input a time series description and predicts the
best configuration of combining weights, considering the error criteria E . The
final output of the system for a time series described as x = (x1, . . . , xp) is then:

w̃ = (w̃1, . . . , w̃K) = L(x) (5)

The algorithms that can be used to generate the learner L may be for instance
neural network models, algorithms for induction of regression trees, the k-nearest
neighbour algorithm, among others.

4 The Implemented Prototype

In order to verify the viability of the proposal, a prototype was implemented
for defining the combining weights of K = 2 methods: the Random Walk (RW)
and the Auto-Regressive model (AR) [5]. The prototype was applied to forecast
the yearly series of the M3-Competition [10], which provides a large set of time
series related to economic and demographic domains. In the next subsections,

A Machine Learning Approach to Define Weights 279

we provide the implementation details as well as the experiments that evaluated
the prototype. A short presentation of the implemented prototype can also be
found in [11].

4.1 The Feature Extractor

In this module, the following features were used to describe the yearly series:

1. Length of the time series (L): number of observations of the series;
2. Basic Trend (BT): slope of the linear regression model;
3. Percentage of Turning Points (TP): Zt is a turning point if Zt−1 < Zt > Zt+1

or Zt−1 > Zt < Zt+1. This feature measures the oscillation in a series;
4. First Coefficient of Autocorrelation (AC): large values of this feature suggest

that the value of the series at a point influences the value at the next point;
5. Type of the time series (TYPE): it is represented by 5 categories, micro,

macro, industry, finances and demographic.

The first four features are directly computed using the series data and TYPE
in turn is a contextual information provided by the authors of M3-Competition.

4.2 The Database

In this case study, we used the 645 yearly series of the M3-Competition to
generate the set of examples. Each time series was used to generate a different
example as defined in the section 3.2.

First, given a series Zi, the last H = 6 years of the series were defined as
the forecasting period and the remaining data of the series was defined as the fit
period (as suggested in the M3-Competition). After calibration, the RW and AR
models provided its individual forecasts Z̃k

i,t (k = 1, 2) (t = Ti + 1, . . . , Ti + 6)
Second, we defined the combining weights wk

i (k = 1, 2) that minimized the
Mean Absolute Error (MAE) of the combined forecasts Z̃C

i,t(t = Ti+1, ..., Ti+6).
This task was formulated as the optimization problem:

Minimize:

MAE(Z̃C
i,t) =

1
6

Ti+6∑
t=Ti+1

|Zi,t − Z̃C
i,t| =

1
6

Ti+6∑
t=Ti+1

|Zi,t −
2∑

k=1

(wk
i ∗ Z̃k

i,t)| (6)

Subject to:
2∑

k=1

wk
i = 1 and wk

i ≥ 0 (7)

This optimization problem was treated using a line search algorithm imple-
mented in the Optimization toolbox for Matlab [14].

Finally, the example associated to the series Zi is composed by the values of
the five features (defined in the FE module, section 4.1) computed on the fit
data and the optimum weights wi = (w1

i , w
2
i).

280 R. Prudêncio and T. Ludermir

4.3 The Intelligent Combiner

In the implemented prototype, the IC module uses the Multi-Layer Perceptron
(MLP) network [4] (one hidden layer) as the learner. The MLP input layer has 9
units that represent the 5 time series features described in the FE module. The
first four input units received the values of the numeric features (i.e. L, BT, TP,
AC). The feature TYPE was represented by 5 binary attributes (either 1 or 0
value), each one associated to a different category of series (see fig. 3).

The output layer has two nodes that represented the weights associated to the
RW and AR models. The output nodes used sigmoid functions which ensures
that the predicted weights are non-negative. In order to ensure that the pre-
dicted weights sum to one (see eq. 2), the outputs of the MLP were normalized.
Formally, let O1 and O2 be the values provided as output for a given time series
description x. The predicted weights w̃1 and w̃2 are defined as:

w̃k =
Ok∑2
l=1 Ol

(k = 1, 2) (8)

The MLP training was performed by the BackPropagation (BP) algorithm [4]
and followed the benchmark training rules provided in [12]. The BP algorithm
was implemented by using the Neural Network Toolbox for Matlab [13].

O1 O2

� �

��
��

��
��

��
�� wk = Ok

2
l=1 Ol

(k = 1, 2)�
�

��

�������

��
���

�
�

�
��

�
L

��
���

�
�
�
�

�
BT

��
���

�
�
�
�

�
TP

��
���
�

�
�

��

�
AC

��
��	

	
	

	
		

�
MI

��
��

�
MA

��
���

�
�

�
�

�
�

�
��

�
IN

��
���������������

�
FI

��
������������������

�
DE

TYPE

Fig. 3. MLP used to define the combining weights for the RW and AR models

4.4 Experiments and Results

In the performed experiments, the set of 645 examples in the DB was equally
divided into training, validation and test sets. We trained the MLP using 2, 4, 6,
8 and 10 nodes in the hidden layer (30 runs for each value). The optimum number

A Machine Learning Approach to Define Weights 281

of hidden nodes was chosen as the value that obtained the lowest average SSE
error on the validation set over the 30 runs. Table 1 summarizes the MLP results.
As it can be seen, the optimum number of nodes according to the validation error
was 8 nodes. The gain obtained by this value was also observed in the test set.

Table 1. Training results

Number of SSE Training SSE Validation SSE Test
Hidden Nodes Average Deviation Average Deviation Average Deviation

2 65.15 1.87 69.46 0.80 68.34 1.03
4 64.16 1.97 69.49 0.87 67.78 1.20
6 64.22 1.81 69.34 0.86 67.14 1.28
8 64.13 2.28 69.29 0.67 66.74 1.35
10 64.37 2.62 69.56 1.03 67.54 1.32

We further investigated the quality of the combined forecasts generated by
using the weights predicted by the selected MLP (with 8 nodes). Let TEST
be the set of 215 series that were used to generate the test set of the above
experiments. Let w̃1

i and w̃2
i be the weights predicted for the series Zi ∈ TEST.

The forecasting error produced by the combination of methods at time t is:

eC
i,t = Zi,t − Z̃C

i,t = Zi,t −
2∑

k=1

(w̃k
i ∗ Z̃k

i,t) (9)

In order to evaluate the amount of these errors across all series Zi ∈ TEST for
all forecasting points t ∈ {Ti+1, . . . , Ti+6}, we considered the Percentage Better
(PB) measure [15]. Given a reference method R that serves for comparison, the
PB measure is computed as follows:

PBR = 100 ∗ 1
m

∑
Zi∈TEST

Ti+6∑
t=Ti+1

δi,t (10)

where

δi,t =
{

1, if |eR
i,t| < |eC

i,t|
0, otherwise

(11)

In the above definition, eR
i,t is the forecasting error obtained by the method R

in the i-th series at forecasting time t, and m is the number of times in which
|eR

i,t| �= |eC
i,t|. Hence, PBR indicates in percentage terms, the number of times

that the error obtained by the method R was lower than the error obtained using
the combined forecasts. Hence, values lower than 50 indicate that the combined
forecasts are more accurate than the forecasts obtained by the reference method.

The PB measure was computed for three reference methods. The first one is
merely to use RW for forecasting all series and the second is to use AR for all
series. The third reference method is the Simple Average (SA). Table 2 sum-
marizes the results over the 30 runs of the best MLP. The average PB measure
was lower than 50% for all reference methods which indicates that the combined

282 R. Prudêncio and T. Ludermir

Table 2. Comparative forecasting performance measured by PB

Reference PB Measure
Method Average Deviation Conf. Interv. (95%)

RW 42.20 0.26 [42.11; 42.29]
AR 40.20 0.44 [40.04; 40.36]
SA 43.24 1.45 [42.72; 43.76]

forecasts were more accurate. The confidence intervals suggest that the obtained
gain is statistically significant.

5 Related Work

The proposed solution is closely related to previous work that used machine
learning to select forecasting methods [3][16][17][18][19]. In the selection ap-
proach, time series features are used by a learning technique to predict the
best method for forecasting among a set of candidates. In the solution presented
here, the learner uses the features to define the best combination of methods. Our
approach is more general since the selection problem can be seen as a special
case of combination where wk = 1 if k is the best method and 0 otherwise.

In a previous work [18], we adopted the selection approach and applied a MLP
network to select among the RW and AR models. Experiments were performed in
the same 645 yearly series and the same forecasting period adopted in the present
work. Table 3 shows the PB value computed for the combination approach, by
using the selection approach developed in [18] as reference. As it may be seen,
the combination procedure obtained a performance gain when compared to the
simple selection approach adopted in the previous work.

Table 3. Forecasting performance (PB) of the combined forecasts by using the selection
approach as a basis for comparision

Reference PB Measure
Method Average Deviation Conf. Interv. (95%)

Selection Approach (MLP) 48.28 0.74 [48.01; 48.54]

6 Conclusion

In this work, we proposed the use of machine learning to define linear weights
for combining forecasts. In order to evaluate the proposal, we applied a MLP
network to support the combination of two forecasting methodss. The performed
experiments revealed a significant gain in accuracy compared to benchmarking
procedures for forecasting. Modifications in the current implementation may be
performed, such as augmenting the set of features, optimizing the MLP design
and considering new forecasting error measures to be minimized.

A Machine Learning Approach to Define Weights 283

Although the focus of our work is forecasting, the proposed method can also
be adapted to other situations, for example, to combine classifiers. In this con-
text, instead of time series features, characteristics of classification tasks should
be considered (such as the number of examples). In this context, our solution
becomes related to the Meta-Learning field [20], which studies how the perfor-
mance of learning algorithms can be improved through experience. The use of
the proposed solution to combine classifiers will be investigated in future work.

References

1. Hibon, M., Evgeniou, T.: To combine or not to combine: selecting among forecasts
and their combinations. International Journal of Forecasting, 21(1) (2004) 15–24.

2. Adya, M., Armstrong, J. S., Collopy, F., Kennedy, M.: Automatic identification of
time series features for rule-based forecasting. International Journal of Forecasting,
17(2) (2001) 143–157.

3. Arinze, B.: Selecting appropriate forecasting models using rule induction. Omega-
International Journal of Management Science, 22(6) (1994) 647–658.

4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagation errors. Nature, 323 (1986) 533–536.

5. Harvey, A.: Time Series Models. MIT Press, Cambridge, MA (1993)
6. DeMenezes, L., Bunn, D., Taylor, J.: Review of guidelines for the use of combined

forecasts. European Jour. of Operational Research, 120 (2000) 190–204.
7. Armstrong, J.: Findings from evidence-based forecasting: methods for reducing

forecast error. (2005) Available at: http://www.jscottarmstrong.com/. Accessed
on March 20, 2006.

8. Granger, C.W.J., Ramanathan, R.: Improved methods of combining forecasts.
Journal of Forecasting, 3 (1984) 197-204.

9. Asku, C., Gunter, S.I.: An empirical analysis of the accuracy of SA, OLS, ERLS
and NRLS combination of forecasts. Intern. Journal of Forecasting, 8 (1992) 27-43.

10. Makridakis, S., Hibon, M.: The M3-competition: results, conclusions and implica-
tions. International Journal of Forecasting, 16(4) (2000) 451–476.

11. Prudêncio, R., Ludermir, T.B.: Using Machine Learning Techniques to Combine
Forecasting Methods. Lect. Notes in Artificial Intelligence, 3339 (2004) 1122–1127.

12. Prechelt, L.: Proben 1: a set of neural network benchmark problems and bench-
marking rules, Tech. Rep. 21/94, Fakultat fur Informatik, Karlsruhe (1994).

13. Demuth, H., Beale, M.:. Neural Network Toolbox for Use with Matlab, The Math-
works Inc, (2003).

14. The Mathworks, Optimization Toolbox User’s Guide, The Mathworks Inc. (2003).
15. Flores, B.E.: Use of the sign test to supplement the percentage better statistic.

International Journal of Forecasting, 2 (1986) 477–489.
16. Chu, C-H., Widjaja, D.: Neural network system for forecasting method selection.

Decision Support Systems, 12(1) (1994) 13–24.
17. Venkatachalan, A.R., Sohl, J.E.: An intelligent model selection and forecasting

system. Journal of Forecasting, 18 (1999) 167–180.
18. Prudêncio, R., Ludermir, T.B.: Meta-learning approaches for selecting time series

models. Neurocomputing Journal, 61(C) (2004) 121–137.
19. Prudêncio, R., Ludermir, T.B., DeCarvalho, F.: A modal symbolic classifier for

selecting time series models. Pattern Recogn. Letters, 25(8) (2004) 911–921.
20. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on

meta-Learning. Machine Learning, 54 (2004) 187-193.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 284 – 292, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Game-Theoretic Approach to Weighted Majority
Voting for Combining SVM Classifiers

Harris Georgiou, Michael Mavroforakis, and Sergios Theodoridis

Dept. of Informatics and Telecommunications, Division of Communications and
Signal Processing, University of Athens, Greece

http://www.di.uoa.gr/~dsp
157 84, Panepistimioupolis, Ilissia, Athens, Greece

Harris Georgiou, xgeorgio@di.uoa.gr

Abstract. A new approach from the game-theoretic point of view is proposed
for the problem of optimally combining classifiers in dichotomous choice situa-
tions. The analysis of weighted majority voting under the viewpoint of coalition
gaming, leads to the existence of analytical solutions to optimal weights for the
classifiers based on their prior competencies. The general framework of
weighted majority rules (WMR) is tested against common rank-based and sim-
ple majority models, as well as two soft-output averaging rules. Experimental
results with combined support vector machine (SVM) classifiers on benchmark
classification tasks have proven that WMR, employing the theoretically optimal
solution for combination weights proposed in this work, outperformed all
the other rank-based, simple majority and soft-output averaging methods. It
also provides a very generic and theoretically well-defined framework for
all hard-output (voting) combination schemes between any type of classifier ar-
chitecture.

1 Introduction

1.1 Classifier Combination and Game Theory

In the discipline of collective decision-making, a group of N experts with moderate
performance levels are combined in an optimal way, in order to produce a collective
decision that is better than the best estimate of each individual expert in the group.
According to the famous Condorcet Jury Theorem [1], if the experts’ individual deci-
sions are independent and their corresponding estimations are more likely to be cor-
rect than incorrect (pcorrect>0.5), then an increase in the collective performance, as a
group, is guaranteed when the individual estimations are combined. Moreover, this
increase in performance continues to increase asymptotically as the size N of the
group increases.

In the case where each expert selects only one out of M available options, the col-
lective group decision can be estimated by the majority voting scheme, i.e., the choice
selected is the one gathering the majority of votes. When the simple majority rule is
employed, each of the N experts acts with the same common interest of reaching the

 A Game-Theoretic Approach to Weighted Majority Voting 285

optimal collective decision. However, their individual choices place them in possibly
contradicting estimations, with each expert trying to impose its decision to the others
and to the group. This is a typical competitive situation, which can be modeled by the
well-studied theory of non-zero sum competitive gaming in classic Game Theory [2].
In reality, each subgroup of consentient experts essentially represents an opposing
assembly to all the other similar subgroups with different consensus of choice. It is
clear that this second type of cooperative, instead of purely competitive (per expert),
gaming reflects the problem of collective decision-making in the most generic way.
Special sections of Game Theory, namely the Coalitions and Stable Sets in coopera-
tive gaming [2], have studied the effects of introducing “weights” to the choice of
each expert according to their competencies, in order to optimize the final decision of
the group.

1.2 Weighted Majority Games and Weighted Majority Rules

The case of a dichotomous situation, where there are only two symmetrical choices
for each expert (i.e., M=2) to vote for, then this restricted form is known as the
weighted majority game (WMG) [2]. It has been proven by Nitzan and Paroush
(1982) [3] and Shapley and Grofman (1984) [4], that the optimal decision rules, in
terms of collective performance, are the weighted majority rules (WMR); this is in
fact a different name for the well-known weighted majority voting schemes [5], which
are often used in pattern recognition for combining hard-output classifiers. The same
assertion has also been verified by Ben-Yashar and Nitzan [6] as the optimal aggrega-
tion rule for committees under the scope of informative voting in Decision Theory.
Although there is in fact an exponential number of such WMR for each WMG, only a
few of them can be proven to be well-defined or qualified combination rules and even
fewer can be proven to be unique, i.e., not producing exactly the same decision profile
with others [7]. For example, in the 232 possible1 voting games of five experts, there
are exactly 85 qualified WMR if only positive integer weights are permitted, of which
only seven are unique in terms of their decision profile [7].

In this paper, the notion of modeling dichotomous choice situations for a group of
experts via the theory of WMG and WMR is for the first time applied for combining
hard-output classifiers. Under the conditional independence assumption, a closed form
solution for the voting weights in the WMR formula exists and it is directly linked to
each expert’s competency. This optimal weight profile for the voting experts is the log
of the odds of their individual competencies [3], [4], [7], [8].

In this paper, this particular type of game-theoretic analytical solution for optimal
expert combinations in dichotomous choice situations is tested for the first time
against other popular combination schemes. The possibility of having a weighted
voting scheme that is based only on the prior capabilities of the experts in the group,
as well as on the theoretical assertion that this analytical solution is optimal, in terms
of collective competency (at least for all non-trained, i.e., iteratively optimized,
weights), is extremely attractive as an option of designing very simple yet effective
combination models for an arbitrary pool of classifiers.

1 For five experts with two choices each there are 25=32 decision profiles, each of which can be

generally mapped in any of the two possible outputs of the combination rule. See [7].

286 H. Georgiou, M. Mavroforakis, and S. Theodoridis

2 Datasets and Methods

2.1 SVM Classifier Model

The SVM classifier was used as the base model for creating a pool of classifiers for
each combination scheme. Specifically, a geometric nearest point algorithm (NPA)
[9], based on the notion of reduced convex hulls (RCH) [10], was used for training a
standard SVM architecture with radial-basis function (RBF) as the kernel of the non-
linear mapping. In previous studies [11] have shown experimental evidence that op-
timal combinations of SVM classifiers can be achieved through linear combination
rules, i.e., the same category of combination rules examined in this study. In the two
averaging combination rules that use the soft-output of the individual classifiers, the
distances from the decision boundary were used instead of the (thresholded) hard-
output of the SVM classifier, as they are indicative of the corresponding classification
confidence [12], [13].

2.2 Datasets and Feature Grouping

In order to assess the performance of each classifier combination method, a number of
publicly available test datasets [14], with known single-classifier accuracy rates for
this specific SVM training model, were used. These datasets are: 1) Diabetis, 2) Flare-
Solar, 3) German, 4) Heart and 5) Waveform.

Each base dataset was randomly separated into a base training set and a validation
set of samples. In order to make individually trained classifiers as “independent” as
possible, the method of training them in different subspaces was employed. As it has
been reported previously, e.g., [13], [15], this is an effective approach towards inde-
pendence among classifiers. To this end, the training set was partitioned into K
distinct segments of feature groupings, i.e., containing only some of the features (di-
mensions) of the initial dataset. Each group of features was created in a way that satis-
fied two constraints: (a) each group to be distinct, i.e., no feature is included in two or
more groups, and (b) each group to contain a subset of features that can describe the
classification task equally well as the other feature groups, i.e., employ a “fair” distri-
bution of the available features into K groups. Satisfaction of the second constraint
required a method for ranking all the features in terms of discrimination power against
the two classes, as well as their statistical independency to all the other features in the
initial training set. Thus, the MANOVA method [16] was used to assign a multivari-
ate statistical significance value to each one of the features and then produce a sorted
list based on (the log of) this value.

In order to create a “fair” partitioning of this list into equally efficient segments,
features were selected in pairs from the top and bottom positions, putting the currently
“best” and “worst” features in the same group. Furthermore, the efficiency of each
group was measured in terms of summing the log of the statistical significance value,
assigned by MANOVA, of all the features contained in this group. The log was em-
ployed in order to avoid excessive differences between the values assigned by
MANOVA, thus creating more even subset sums of these values. Essentially, every
such pair of features was assigned in groups sequentially, in a way that all groups
contained features with approximately equal sum of the log of the values assigned by

 A Game-Theoretic Approach to Weighted Majority Voting 287

MANOVA. In other words, the MANOVA-sorted list of features was “folded” once
in the middle and then “cut” into K subsequent parts of equal sums of log-values, i.e.,
with every part exhibiting roughly the same sum of the log of the statistical signifi-
cance values, accompanying each feature included in this part.

Each one of these K distinct feature groups was used for training an individual
SVM classifier. Thus, each of these K classifiers used a different, dimensionally re-
duced, version of the original (full) training set and therefore learns a totally different
classification task.

2.3 Classifier Combination Methods

Nine linear combination rules were examined in this study. Specifically, five hard-
output combination methods were employed, namely three standard rank-based meth-
ods and two voting-based schemes. These rank-based rules are [8], [13]:

• minimum (“min”)
• maximum (“max”)
• median (“median”)

The two majority rules, including the WMR model, are [8], [13]:

• simple majority voting (“majority”)
• weighted majority voting, i.e.:

1

() ()
K

wmr i i
i

O x w D x
=

= . (1)

where Di is the hard-output of each of the K individual classifiers in the pool, wi is its
assigned weight and Owmr the weighted majority sum. The final hard-output decision
Dwmr of the WMR is taken against a fixed threshold (T) that defines the decision
boundary for the combination rule [7], [8]:

()() ()wmr wmrD x sign O x T= − . (2)

Specifically for the weighted majority voting scheme, three different methods for
calculating the weight profile were tested for comparative results:

• “direct” weighting profile for WMR (“wmr/direct”) [5], [8]:

i iw p= , (|)i i correctp P xθ ω= = . (3)

• “odds” weighting profile for WMR (“wmr/odds”) [7], [8]:

1
i

i
i

p
w

p
=

−
 , (|)i i correctp P xθ ω= = . (4)

• “logodds” weighting profile for WMR (“wmr/logodds”) [7], [8]:

log
1

i
i

i

p
w

p
=

−
 , (|)i i correctp P xθ ω= = . (5)

288 H. Georgiou, M. Mavroforakis, and S. Theodoridis

where wi is the combination weight assigned for the i-th classifier, pi is its prior prob-
ability for correct classification, measured in the validation set, and , are the pre-
dicted class labels.

Additionally, two soft-output averaging models were included, a non-weighted and
a weighted [8]:

• simple average (“average”)
• weighted average (“lsewavg”)

The weights in the weighted average rule were calculated as the optimal weighting
profile of the individual classifier outputs against the correct classification tag, in
terms of a least-squares error (LSE) minimization criterion [15]. Thus, this method
can be considered as an example of “trained” weighting rules of soft-output classifi-
ers. In contrast, the WMR approach employs fixed analytical weighting profile and
hard-output classifications (votes) as input, that is, no further training is required.

3 Experiments and Results

The evaluation of the combination models consisted of two phases, namely: (a) the
design and training of SVM classifiers, trained in distinctly different subspaces, and
(b) the application of the various combination schemes to the outputs of the individual
classifiers.

Each of the K classifiers was separately trained and optimized, using a different
group of features from the full dataset, and subsequently evaluated using the corre-
sponding validation set. This training/validation cycle was applied three times, for
each of the five datasets, each time using a new random partitioning of the full dataset
into training and validation sets. The mean values and standard deviations of the suc-
cess rates of all the individual (3K) classifiers for each dataset, as well as the details
about the size and dimensionality of each (full) training and validation sets, are pre-
sented in Table 1.

The K value, i.e., the number of feature groups for each dataset, was determined
experimentally in a way that each of the corresponding K training segments would be
adequate to produce a well-trained SVM classifier. Thus, the German training set was
split in K=5 segments, while the Flare-Solar training set in K=4 segments.

Table 1. Single versus multiple classifier accuracy percentages per dataset and K values
(number of dataset partitions)

Dataset Train
set

Vali-
dat.
set

Data
Dim.

Single classifier
accuracy

K
value

Individual
classifier

mean acc%
diabetis 468 300 8 76.5 ± 1.7 5 68.3 ± 3.9

flare-solar 666 400 9 67.6 ± 1.8 4 55.7 ± 3.6

german 700 300 20 76.4 ± 2.1 5 68.9 ± 1.8

heart 170 100 13 84.0 ± 3.3 5 74.3 ± 2.3

waveform 400 4600 21 90.1 ± 0.4 5 81.1 ± 1.2

 A Game-Theoretic Approach to Weighted Majority Voting 289

The classification outputs of the pool of K classifiers from each training/validation
cycle were fed as input to all nine combination schemes, producing the corresponding
combined classification outputs. Since the output of each of the K classifiers in the
pool was calculated based on the same (dimensionally reduced) validation set, the
corresponding outputs and accuracy of the combination rules also refer to this valida-
tion set.

Table 2 illustrates the mean accuracy of each combination rule (each cell corre-
sponds to three training/validation cycles), as well as the mean value and standard
deviation of the success rates of all nine combination rules, for each dataset and K
value employed.

Table 2. Mean accuracy percentages of all the nine combination rules, with optimized decision
threshold, per dataset and K values (number of feature groups and classifiers)

Diabetis Flare-Solar German Heart Waveform Combination
Rule K=5 K=4 K=5 K=5 K=5

average 71.67 66.08 70.67 85.33 88.12

lsewavg 76.11 65.58 71.56 85.00 86.79

min 68.56 55.92 70.67 69.00 72.98

max 69.11 60.42 67.33 76.67 85.95

median 69.00 58.33 69.78 80.00 81.17

majority 73.00 63.75 70.67 82.33 86.59

wmr/direct 74.00 66.58 70.67 82.33 86.59

wmr/odds 75.33 66.58 71.33 84.00 86.70

wmr/logodds 75.33 66.42 71.33 84.00 86.64

Mean 72.46 63.30 70.44 80.96 84.62

Stdev 2.99 4.06 1.28 5.25 4.77

In the sequel, the overall relative performance of each combination rule was deter-

mined in terms of ranking position for each case, i.e., according to its corresponding
accuracy for each dataset and K value employed. Specifically, a weighted Borda
scheme (wBorda) [17] was employed to attribute 10 points to the top-ranked combi-
nation rule, 9 points to the second, and so on. In case of a “tie” where two combina-
tion rules exhibited exactly the same classification accuracy, both got the same
wBorda points for the specific ranking position. Using the results from Table 3, re-
garding the accuracies, Table 4 illustrates the corresponding wBorda ranking points of
all nine combination rules, for each dataset and K value employed in this study.

Table 4 presents a summary of the results shown in Table 3, as well as the list of
all the combination rules sorted according to their sum of wBorda points, i.e., their
overall efficiency throughout the five original datasets. Tables 2 through 4 present the
performance and wBorda results for all the combination rules with optimized decision
threshold (T). The decision threshold employed by each combination rule was in
every case optimized against final accuracy, using a typical Newton-Raphson optimi-
zation algorithm [18].

290 H. Georgiou, M. Mavroforakis, and S. Theodoridis

Table 3. wBorda value of all combination rules, with optimized decision threshold, per dataset
and K values. Each cell value represents the ranking weight according to classification
accuracies, with 10 points for top position, 9 points for the second and so on. In cases of equal
accuracies, the same ranking weight was assigned to the corresponding combination rules.

Diabetis Flare-Solar German Heart Waveform Combination
Rule K=5 K=4 K=5 K=5 K=5

average 6 8 8 10 10

lsewavg 10 7 10 9 9

min 3 3 8 4 3

max 5 5 6 5 5

median 4 4 7 6 4

majority 7 6 8 7 6

wmr/direct 8 10 8 7 6

wmr/odds 9 10 9 8 8

wmr/logodds 9 9 9 8 7

Table 4. Overall evaluation of all the combination rules, with optimized decision threshold,
using the wBorda results for all datasets and K values available. The list is sorted according to
the wBorda sum and mean ranking position of each combination rule, from the best to the worst
combination rule.

Combination
Rule

wBorda
Sum

wBorda
Mean

wBorda
Stdev

lsewavg 45 9.0 1.22
wmr/odds 44 8.8 0.84

average 42 8.4 1.67
wmr/logodds 42 8.4 0.89
wmr/direct 39 7.8 1.48

majority 34 6.8 0.84
max 26 5.2 0.45

median 25 5.0 1.41
min 21 4.2 2.17

4 Discussion

The results from Tables 3 and 4 clearly demonstrate the superior performance of the
WMR model. Specifically, the all versions of the WMR model exhibited the best
performance amongst all the other hard-output combination rules. As expected, it has
been proven better than the simple majority voting, as well as all the other rank-based
methods (max, min, median). The “odds” weighting profile has also been proven
marginally better than the “direct”- and the “logodds”-based profiles for designing the
optimal WMR formula.

 A Game-Theoretic Approach to Weighted Majority Voting 291

Interestingly, the “odds”-based version of WMR exhibited better performance than
the simple averaging rule, e.g., a soft-output combination model, losing only from the
weighted averaging rule with LSE-trained weights. Thus, the WMR model, especially
with the “odds” and “logodds” weighting profiles, performs equally well or better
than simple soft-output averaging combination rules. All four weighted combination
rules, i.e., the three WMR and the LSE-trained weighted average, have been clearly
proven better than all the non-weighted hard-output combination rules.

Table 4 also demonstrates the robustness and stability of the each combination
rule. For small values of standard deviation (less than unity) in the corresponding
wBorda mean ranks, the relative ranking position of a combination rule against the
others remains more or less the same. Thus, the maximum rule exhibits a consistently
lower ranking position than the simple majority rule, while the “odds”- and
the “logodds”-based versions of the WMR models perform consistently better than
the simple majority and the three rank-based rules. Furthermore, the “odds”- and
the “logodds”-based versions of WMR exhibit the same consistency and robustness as
the simple majority rule but with higher success rates.

With respect to the overall performance of the combination rules, results from Ta-
bles 1 and 2 demonstrate that in all cases the best combination rules increased the
overall success rates of the classifier pool, from +2% (German dataset) to +11%
(Flare-Solar dataset), in many cases very close to or equal to the corresponding refer-
ence performance level of the single SVM classifier results.

The ensemble of these classifiers clearly demonstrates that the combination of mul-
tiple simpler models, each using a 1/K portion of the feature space of the dataset, in-
stead of a single classifier for the complete feature space, can be used to reduce the
overall training effort. Specifically for the SVM model, kernel evaluation employs
inner product between vectors, i.e., its complexity is directly proportional to the di-
mensionality (number of features) in the input vectors. If this feature space reduction,
from F to F/K features, results in a proportional increase in the complexity of the new
(reduced) input space in terms of new class distributions, then it is expected that the
training of each of the K SVM classifiers may be completed up to K times faster on
average. A similar approach has also been examined in other studies [11], using an
ensemble of SVM classifiers trained in small training sets, instead of one large training
set for a single SVM classifier. Furthermore, there is evidence that such ensembles of
kernel machines are more stable than the equivalent kernel machines [11]. This reduc-
tion in training time, of course, has to be compared to the additional overhead of calcu-
lating a combination rule for every output vector from the classifier pool. Conse-
quently, if the optimal design of this combination rule is simple (linear) and efficient,
and its weighting profile can be determined analytically with no need for iterative
weight optimization, the WMR approach could prove very prominent for this role in
classification tasks of high dimensionality and/or dataset sizes.

5 Conclusions

The game-theoretic modeling of combining classifiers in dichotomous choice prob-
lems leads to cooperative gaming approaches, specifically coalition gaming in the
form of WMG. Theoretically optimal solutions for this type of games are the WMR
schemes, often referred to as weighted majority voting. Under the conditional

292 H. Georgiou, M. Mavroforakis, and S. Theodoridis

independence assumption for the experts, there exists a closed solution for the optimal
weighting profiles for the WMR formula.

In this paper, experimental comparative results have shown that such simple com-
bination models for ensembles of classifiers can be more efficient than all typical
rank-based and simple majority schemes, as well as simple soft-output averaging
schemes in some cases. Although the conditional independence assumption was mod-
erately satisfied by using distinct partitions of the feature space, results have shown
that the theoretical solution is still valid to a considerable extent. Therefore, the WMR
can be asserted as a simple yet effective option for combining almost any type of
classifier with others in an optimal and theoretically well-defined framework.

References

1. Condorcet, Marquis de: An Essay on the Application of Probability Theory to Plurality
Decision Making: An Election Between Three Candidates. In: Sommerlad and Mclean
(1989) 66-80

2. Owen, G.: Game Theory. 3rd edn. Academic Press, San Diego USA (1995)
3. Nitzan, S., Paroush, J.: Optimal Decision Rules in Uncertain Dichotomous Choice Situa-

tions. Int. Econ. Rev., 23 (1982) 289–297
4. Shapley, L., Grofman, B.: Optimizing Group Judgemental Accuracy in the Presence of In-

dependence. Public Choice, 43 (1984) 329–343
5. Littlestone, N., Warmuth, M. K.: The Weighted Majority Algorithm. Information and

Computation, 108 (1994) 212–261
6. Ben-Yashar, R., Nitzan, S.: The Optimal Decision Rule for Fixed-Size Committees in Di-

chotomous Choice Situations: The General Result. International Economic Review, 38
(1997) 175–186

7. Karotkin, D.: The Network of Weighted Majority Rules and Weighted Majority Games.
Games and Econ. Beh., 22 (1998) 299–315

8. Kuncheva, L. I.: Combining Pattern Classifiers. John Wiley and Sons, New Jersey USA
(2004)

9. Mavroforakis, M., Theodoridis, S.: Support Vector Machine Classification through Ge-
ometry. Proc. XII Eur. Sig. Proc. Conf. (EUSIPCO2005), Antalya, Turkey, Sep. 2005

10. Mavroforakis, M., Theodoridis, S.: A Geometric Approach to Support Vector Machine
(SVM) Classification. IEEE Trans. NN, 2006 (in press)

11. Evgeniou, T., Pontil, M., Elisseeff, A.: Leave One Out Error, Stability, and Generalization
of Voting Combinations of Classifiers. Machine Learning, 55 (2004) 71–97

12. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press UK (2000)

13. Jain, A., Duin, R., Mao J.: Statistical pattern recognition: a review. IEEE Trans. PAMI, 22
(2000) 4–37

14. Mavroforakis, M., Sdralis, M., Theodoridis, S.: A novel SVM Geometric Algorithm based
on Reduced Convex Hulls. 18th International Conference on Pattern Recognition (ICPR
2006), Hong Kong, Aug. 2006

15. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. 4th edn. Academic Press, San
Diego USA (2006)

16. Cooley, W., Lohnes, P.: Multivariate data analysis. John Willey & Sons, New York USA
(1971)

17. Parker, J. R.: Rank and Response Combination from Confusion Matrix Data. Information
Fusion, 2 (2001) 113–120

18. Forsythe, G., Malcom, M., Moler, C.: Computer Methods for Mathematical Computations.
Prentice-Hall, New Jersey USA (1977)

Improving the Expert Networks of a Modular Multi-Net
System for Pattern Recognition

Mercedes Fernández-Redondo1,
Joaquı́n Torres-Sospedra1, and Carlos Hernández-Espinosa1

Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I,
Avda. Sos Baynat s/n, C.P. 12071, Castellon, Spain

{redondo, jtorres, espinosa}@icc.uji.es

Abstract. A Modular Multi-Net System consists on some networks which solve
partially a problem. The original problem has been decomposed into subprob-
lems and each network focuses on solving a subproblem. The Mixture of Neural
Networks consist on some expert networks which solve the subproblems and a
gating network which weights the outputs of the expert networks. The expert net-
works and the gating network are trained all together in order to reduce the cor-
relation among the networks and minimize the error of the system. In this paper
we present the Mixture of Multilayer Feedforward (MixMF) a method based on
MixNN which uses Multilayer Feedfoward networks for the expert level. Finally,
we have performed a comparison among Simple Ensemble, MixNN and MixMF
and the results show that MixMF is the best performing method.

1 Introduction

The most important property of an artificial neural network is its generalization capa-
bility, which is the ability to correctly respond to inputs which were not used to adapt
its weights. The use of a Multi-Net system increases this ability. We can see in [1,2]
that there are some approaches to build a multi-net system for pattern recognition.

The most studied approach is the Ensemble of Neural Networks or Comittee Machine
(Figure 1). It consists on training different networks and combine their output vectors in
a suitable manner to give the global output or final hypothesis of the classification sys-
tem. In [3,4] we can see that the use of ensembles increases the generalization capability
with respect to a single neural network.

Although most of the methods to create a Multi-Net System are based on the en-
semble approach [5,6], in this paper we focus on the Modular Network. The Modular
Network is based on the idea of “divide and conquer”. The network divides the prob-
lem into subproblems and each subproblem tends to be solved by one network. We will
deal with the Mixture of Neural Networks (MixNN) because is one of the most known
modular methods and we think it could be improved. It consists of some expert net-
works which solve the subproblems and a gating network which is used to combine the
outputs of the expert networks. Its basic diagram is also in Figure 1.

The original Mixture of Neural Networks (MixNN) [7,8] is based on a quite simple
neural network architecture. We think that MixNN could perform better if the method
was based on Multilayer Feedforward networks. In this paper we present a Mixture

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 293–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

294 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Fig. 1. Simple Ensemble and Mixture of Neural Networks diagrams

of Multilayer Feedforward Networks (MixMF) which is a modular approach based on
Multilayer Feedforward networks trained with Backpropagation.

In section 2 we describe the MixNN and the MixMF. In subsection 3.1 we describe
the databases used in our experiments. The results we have obtained are in subsection
3.2. We have also calculated the mean Percentage of Error Reduction to compare the
methods, these results appear in subsetion 3.3.

2 Theory

In this section, we describe the Simple Ensemble, the Mixture of Neural Networks and
the Mixture of Multilayer Feedforward Networks.

2.1 Simple Ensemble

Simple Ensemble is a method to build an ensemble of neural networks which consist on
training some networks with different weights initialization. The mean of the outputs
are applied to get the output of the ensemble.

yclass(x) =
1
k
·

k∑
net=1

ynet
class(x) (1)

The output yielding the maximum of the averaged values is chosen as the correct
class.

hsimpleensemble(x) = arg max
class=1,...,q

yclass(x) (2)

Where q is the number of classes, k is the number of networks in the ensemble.

Improving the Expert Networks of a Modular Multi-Net System 295

2.2 Mixture of Neural Networks

The Mixture of Neural Networks (MixNN) is a method to build a Multi-Net System
based on the Modular approach. It consists on training k expert networks and a gating
network. The input x is applied to the expert networks and the gating network. The
modular network output is:

yclass =
k∑

net=1

gnet · ynet
class (3)

Where the output of the expert networks is described in equation 4 and the output of
the gating networks is described in equation 5

ynet
class = xT · wnet

class (4)

gnet =
exp

(
xT · anet

)∑k
j=1 exp (xT · aj)

(5)

The output yielding the maximum of the averaged values is chosen as the correct
class.

hMixNN (x) = arg max
class=1,...,q

yclass(x) (6)

The neural networks used in MixNN are quite simple, in Figure 2 we show the dia-
gram of an expert network.

To adapt the weights of the expert networks and the gating network, we have used
the objective function described in equation 7.

L = ln

(
k∑

net=1

gnet · exp
(
−1

2
·
∥∥d− ynet

∥∥2
))

(7)

The equations used to adapt the weights of the expert networks w and the gating
network a are:

wnet
class (ite + 1) = wnet

class (ite) + η · hnet ·
(
d− ynet

class

)
· x (8)

anet (ite + 1) = anet (ite) + η · hnet · (hnet − gnet) · x (9)

where:

hnet =
gnet · exp

(
− 1

2 |d− ynet|2
)

∑k
j=1

(
gj · exp

(
− 1

2 |d− yj |2
)) (10)

To train the networks of the classification system we have used the following
algorithm:

296 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Algorithm 1. Mixture of Neural Networks
Random initialization of networks
for ite = 1 to Iterations do

for each pattern from training set do
for net = 1 to k do

Adapt expert weights wnet

end for
Adapt gating weights a

end for
Calculate Lite over Validation set
Save weights

end for
Select iteration with maximum L (best iteration)
Set best iteration weights to network
Save final configuration

2.3 Mixture of Multilayer Feedforward Networks

Mixture of Multilayer Feedforward Networks (MixMF) is the new method we propose to
build a modular network. MixMF is an approach of MixNN where the expert networks
are Multilayer Feedforward networks with one hidden layer and threshold nodes. Multi-
layer Feedforward networks are more accurate than the expert networks used in MixNN
[9], but the training process is slower. In Figure 2 we show the diagram of a MixMF
expert network with a single hidden layer.

Fig. 2. Expert Network Diagram - MixNN and MixMF

Improving the Expert Networks of a Modular Multi-Net System 297

In this case we have used a modified version of Algorithm 1 which take into account
that the expert networks are Multilayer Feedforward Networks with one hidden layer
and threshold nodes and they are trained with Backpropagation. In this subsection we
describe the equations used on the MixMF learning process.

In order to adapt the weights of the expert networks and the gating network we have
used the objective function described in equation 7. The equations used to adapt the
input layer weights of the expert networks wi, the hidden layer weights of the expert
networks wh and the gating network a are the following ones:

whnet
j,k (ite + 1) = whnet

j,k (ite) + η · hnet · δnet
k · honet

j (11)

winet
i,j (ite + 1) = winet

i,j (ite) + η · hnet · δ
′net
j · xi (12)

anet (ite + 1) = anet (ite) + η · hnet · (hnet − gnet) · x (13)

where:

hnet =
gnet · exp

(
− 1

2 |d− ynet|2
)

∑k
j=1

(
gj · exp

(
− 1

2 |d− yj |2
)) (14)

δnet
k = (dk − ynet

k) · (1 − ynet
k) · (ynet

k) (15)

δ
′net
j = honet

j · (1 − honet
j) ·

m∑
h=1

δnet
h · whnet

j,h (16)

3 Experimental Testing

In this section, we describe the experimental setup, the datasets we have used in our
experiments and we show the results we have obtained. Finally, we compare the results
we have obtained with Simple Ensemble, MixNN and MixMF on the different datasets.

For this reason we have trained multiple classification systems of 3, 9, 20 and 40 MF
networks with Simple Ensemble, MixNN and MixMF on the eight problems described
in subsection 3.1. For the expert networks of Simple Ensemble and MixMF we have
used the training parameters described in table 1. In addition, we repeated ten times the
whole learning process, using different partitions of data in training, validation and test
sets. With this procedure we can obtain a mean performance of the ensemble for each
database and an error in the performance calculated by standard error theory.

3.1 Datasets

We have used eigth different classification problems from the UCI repository of ma-
chine learning databases [10] to test the performance of methods. The databases we
have used are: Cylinder Bands Database (band), Australian Credit Approval (cred), So-
lar Flare Database (flare), Glass Identification Database (glas), The monk’s problem 1
(mok1), Congressional Voting Records Database (vote), Wisconsin Breast Cancer Data-
base (wdbc).

298 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Table 1. MF training parameters and Performance of a Single Network

Database Hidden Iterations Step Momentum Performance
band 23 5000 0.1 0.05 72.4 ± 1.0
cred 15 8500 0.1 0.05 85.6 ± 0.5
flare 11 10000 0.6 0.05 82.1 ± 0.3
glas 3 4000 0.1 0.05 78.5 ± 0.9

mok1 6 3000 0.1 0.05 74.3 ± 1.1
survi 9 20000 0.1 0.2 74.2 ± 0.8
vote 1 2500 0.1 0.05 95.0 ± 0.4

wdbc 6 4000 0.1 0.05 97.4 ± 0.3

3.2 Results

In this subsection we present the experimental results we have obtained with the Multi-
Net Systems trained with Simple Ensemble (Table 2), Mixture of Neural Networks (Ta-
ble 3) and Mixture of Multilayer Feedforward Networks (Table 4).

Table 2. Simple Ensemble results

Database 3 Nets 9 Nets 20 Nets 40 Nets
band 73.5 ± 1.2 72.9 ± 1.5 73.8 ± 1.3 73.8 ± 1.3
cred 86.5 ± 0.7 86.4 ± 0.7 86.6 ± 0.7 86.5 ± 0.7
flare 81.8 ± 0.5 81.6 ± 0.4 81.5 ± 0.5 81.6 ± 0.5
glas 94 ± 0.8 94 ± 0.7 94 ± 0.7 94.2 ± 0.6

mok1 98.3 ± 0.9 98.8 ± 0.8 98.3 ± 0.9 98.3 ± 0.9
survi 74.3 ± 1.3 74.2 ± 1.3 74.3 ± 1.3 74.3 ± 1.3
vote 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5

wdbc 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5

Table 3. Mixture of Neural Networks results

Database 3 Nets 9 Nets 20 Nets 40 Nets
band 72.7 ± 2.2 74.4 ± 1.3 74 ± 1.9 75.5 ± 1.3
cred 86.8 ± 0.5 86.9 ± 0.5 86.5 ± 0.6 86 ± 0.5
flare 81.5 ± 0.5 81.7 ± 0.5 81.7 ± 0.6 81.8 ± 0.6
glas 89.4 ± 1 91.2 ± 1.1 90.2 ± 1.3 91 ± 1.1

mok1 87.8 ± 2.2 93.6 ± 2.6 93.6 ± 2.1 93.9 ± 2.5
survi 72.3 ± 1.2 72.6 ± 0.9 73.8 ± 0.9 73.6 ± 1.2
vote 95 ± 1.2 96.1 ± 0.6 96.1 ± 0.6 96.5 ± 0.7

wdbc 94.7 ± 0.5 94.9 ± 0.4 95.1 ± 0.6 94.6 ± 0.5

3.3 Interpretations of Results

Comparing the results showed in tables 2, 3 and 4 we can see that we have got bet-
ter results with MixMF. We can also see that the improvement in performance using

Improving the Expert Networks of a Modular Multi-Net System 299

Table 4. Mixture of Multilayer Feedforward results

Database 3 Nets 9 Nets 20 Nets 40 Nets
band 75.5 ± 1.9 74.2 ± 2 74.7 ± 1.7 73.8 ± 1.6
cred 85.9 ± 0.5 86.7 ± 0.7 86.5 ± 0.7 86.8 ± 0.5
flare 82.1 ± 0.6 81.9 ± 0.6 81.6 ± 0.6 81.7 ± 0.6
glas 94.6 ± 1 94.6 ± 1.2 94.2 ± 1.3 95 ± 1.2

mok1 99.3 ± 0.8 99.3 ± 0.8 98.8 ± 0.9 100 ± 0
survi 74.6 ± 1.3 74.9 ± 1.2 74.6 ± 1.1 75.1 ± 1.2
vote 96.1 ± 0.6 96.1 ± 0.6 96.1 ± 0.6 95.8 ± 0.6

wdbc 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5

MixMF depends on the database and the number of networks used in the multinet sys-
tem. For instante, in database mok1 MixMF has an increase of performance with respect
to MixNN of 11.50% for the 3-network system, but only has an increase of 5.12% for
the 20-network system.

In general, we can also see in these tables that the MixMF increase of performance
with respect to MixNN is higher than with respect to Simple Ensemble, for instance in
databases mok1, glas and survi.

The increase of performance we have shown is an absolute measure so we cannot
see how important is the increase of performance with respect to the error. To have a
relative measure and information about the error reduction, we have also calculated the
percentage of error reduction PER of the multinet systems with respect to a Single
Network. We have used equation (17) to calculate the PER value.

PER = 100 · Errorsinglenetwork − Errormultinet

Errorsinglenetwork
(17)

The PER value ranges from 0%, where there is no improvement by the use of a
particular multinet system method with respect to a single network, to 100%. There can
also be negative values, which means that the performance of the multinet system is
worse than the performance of the single network. This new measurement is relative
and can be used to compare more clearly the different methods.

Table 5 shows PER values for the ensembles trained with Simple Ensemble. Tables
6 and 7 shows PER values for the modular networks trained with MixNN and MixMF.

According to the results showed in tables 5-7, we can see that, in general, Mixture of
Multilayer Feedforward Networks is the best performing method, and Mixture of Neural
Netorks is the worst method for 5 databases.

Furthermore, we have calculated the mean increase of performance with respect to
a Single Network (Table 8) and the mean PER (Table 9) across all databases for each
method to get a global measurement.

According to the mean PER, MixMF is the best performing method. The highest
difference between MixMF and Simple Ensemble is in the 9-network ensemble where
the mean PER increase is 3.3%. The highest difference between original MixMF and
MixNN is in the 3-network ensemble where the mean PER increase is 23.90%. In
Figure we can see more the diference on PER among all the methods.

300 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Table 5. Simple Ensemble PER

Database 3 Nets 9 Nets 20 Nets 40 Nets
band 3.8 1.84 5.14 5.14
cred 6.52 5.41 7.08 6.52
flare −1.68 −2.8 −3.36 −2.8
glas 72.09 72.09 72.09 73.02

mok1 93.19 95.13 93.19 93.19
survi 0.38 0 0.38 0.38
vote 12.59 12.59 12.59 12.59

wdbc −19.24 −19.24 −19.24 −19.24

Table 6. Mixture of Neural Networks PER

Database 3 Nets 9 Nets 20 Nets 40 Nets
band 1.19 7.1 5.79 11.05
cred 8.12 8.68 5.97 2.77
flare −3.19 −2.13 −2.13 −1.63
glas 50.69 59.06 54.41 58.13

mok1 52.33 75.21 75.21 76.18
survi −7.37 −6.13 −1.67 −2.29
vote 0 22.59 22.59 30

wdbc −102.7 −95.77 −88.85 −106.16

Table 7. Mixture of Multilayer Feedforward PER

Database 3 Nets 9 Nets 20 Nets 40 Nets
band 11.05 6.44 8.44 5.14
cred 2.22 7.56 5.97 8.12
flare −0.28 −1.07 −2.91 −2.13
glas 74.88 74.88 73.02 76.74

mok1 97.08 97.08 95.13 100
survi 1.51 2.79 1.51 3.41
vote 22.59 22.59 22.59 15

wdbc −18.85 −18.85 −18.85 −18.85

Table 8. Mean Increase of Performance with respect to Single Network across all databases

Method 3 Nets 9 Nets 20 Nets 40 Nets
S.E 5.17 5.1 5.19 5.21

MixNN 3.67 3.99 3.93 4.17
MixMF 5.62 5.63 5.48 5.69

Improving the Expert Networks of a Modular Multi-Net System 301

Table 9. Mean Percentage of Error Reduction with respect to Single Network across all databases

Method 3 Nets 9 Nets 20 Nets 40 Nets
S.E. 20.96 20.63 20.98 21.1

MixNN −0.12 8.58 8.92 8.51
MixMF 23.77 23.93 23.11 23.43

4 Conclusions

In this paper we have reviewed the Mixture of Neural Networks a modular network
based on a quite simple architecture of neural networks.

Finally, we have proposed Mixture of Multilayer Feedforward Networks, a modular
method based on Mixture of Neural Networks and Multilayed Feedforward.

Moreover, we have trained Multi-Net Systems of 3, 9, 20 and 40 networks with Sim-
ple Ensemble, Mixture of Neural Networks and Mixture of Multilayer Feedforward in
order to test the performance of the new method and cover a wide spectrum of the num-
ber of networks in the classification system. The results showed that the performance
of Mixture of Multilayer Feedforward was better but the improvement by the use of
Mixture of Multilayer Feedforward depends on the database.

Futhermore, we have obtained the mean Percentage of Error Reduction across all
databases and the mean Increase of Performance. According to these global measures,
the method we have proposed Mixture of Multilayer Feedforward performs better than
Simple Ensemble and it permorms by far better than the original Mixture of Neural Net-
work. In general, the Mixture of Multilayer Feedforward is the best performing method.

We can conclude that the Mixture of Neural Networks variation we have proposed in
this paper is better than the original Mixture of Neural Networks because it uses a better
neural networks architecture to build the expert networks. Moreover, the Mixture of
Multilayer Feedforward performs better than Simple Ensemble because training process
and the gating network reduces the correlation among the networks.

Acknowledgments

This research was supported by project P1·1B2004-03 of Universitat Jaume I - Bancaja
in Castellón de la Plana, Spain.

References

1. Sharkey, A.J., ed.: Combining Artificial Neural Nets: Ensemble and Modular Multi-Net
Systems. (1999)

2. Dara, R.A., Kamel, M.S.: Sharing training patterns among multiple classifiers. In Roli, F.,
Kittler, J., Windeatt, T., eds.: Multiple Classifier Systems. Volume 3077 of Lecture Notes in
Computer Science., Springer (2004) 243–252

3. Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Connec-
tion Science 8(3-4) (1996) 385–403

302 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

4. Raviv, Y., Intratorr, N.: Bootstrapping with noise: An effective regularization technique.
Connection Science, Special issue on Combining Estimators 8 (1996) 356–372

5. Hernandez-Espinosa, C., Fernandez-Redondo, M., Torres-Sospedra, J.: Ensembles of mul-
tilayer feedforward for classification problems. In: Neural Information Processing, ICONIP
2004. Volume 3316 of Lecture Notes in Computer Science. (2005) 744–749

6. Hernandez-Espinosa, C., Torres-Sospedra, J., Fernandez-Redondo, M.: New experiments on
ensembles of multilayer feedforward for classification problems. In: Proceedings of Interna-
tional Conference on Neural Networks, IJCNN 2005, Montreal, Canada. (2005) 1120–1124

7. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts.
Neural Computation 3 (1991) 79–87

8. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Technical
Report AIM-1440 (1993)

9. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience
(2004)

10. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning
databases (1998)

Evaluating Users’ Satisfaction in Packet
Networks

Using Random Neural Networks

Gerardo Rubino1, Pierre Tirilly1, and Martın Varela2,

1 Inria/Irisa, Rennes
rubino@irisa.fr, pierre.tirilly@ens.insa-rennes.fr

2 SICS
mvarela@sics.se

Abstract. Quantifying the quality of a video or audio transmission over
the Internet is usually a hard task, as based on the statistical processing
of the evaluations made by a panel of humans (the corresponding and
standardized area is called subjective testing). In this paper we describe
a methodology called Pseudo-Subjective Quality Assessment (PSQA),
based on Random Neural Networks, which is able to perform this task
automatically, accurately and efficiently. RNN had been chosen here be-
cause of their good performances over other possibilities; this is discussed
in the paper. Some new insights on PSQA’s use and performance are also
given. In particular we discuss new results concerning PSQA–based dy-
namic quality control, and conversational quality assessment.

1 Introduction

When we need to quantitatively assess the quality of an audio or video trans-
mission over the Internet, the most accurate way to do it is to have a panel of
humans perform the assessment on actual test sequences representative of the
conditions studied. This is a standard procedure for which norms exist (see Sub-
section 2.1 for examples on voice multimedia communications). There are some
methods to do an automatic quantitative assessment as well, that is, without
using subjective tests, but they suffer either from poor accuracy or efficiency, or
both (see Section 2). As an alternative, the Pseudo-Subjective Quality Assess-
ment (PSQA) technology has been recently developed. It allows to automatically
quantify the quality of a video or audio communication over a packet network,
as perceived by the user. The PSQA technique is accurate, which means that
it correlates well with the values given by panels of human observers, and effi-
cient, because it can work, if necessary, in real time. It has been tested on video
[10] and audio [13] flows. It can be applied in many areas, for instance, for the
analysis of the impact of different factors on quality (see the mentioned papers,
and [12] for an example of the study of Forward Error Correction techniques

� M. Varela´ s work was carried out during the tenure of an ERCIM fellowship.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 303–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

304 G. Rubino, P. Tirilly, and M. Varela

in audio streaming), or for performance evaluation of communication networks
using models [14].

PSQA is based on learning how human observers quantify the quality of a flow
under standardized experimental conditions. The learning process consists of
training a particular type of Neural Network, a Random Neural Network (RNN),
to capture the relation between a set of factors having an a priori strong impact
on the perceived quality and the latter. Let us briefly recall the structure of the
RNN tool, before describing in some detail the technique used for quantitative
quality assessment of video and audio flows. For a global presentation of PSQSA
with a detailed description of the RNN tool see [11].

RNN have been developed by Erol Gelenbe in a series of papers (for starters,
see [1], [3], [2]). In this paper we will use 3-layer feedforward RNN. Such a network
can be seen as a parametric function ν() mapping a vector of size I +J , denoted
here (C,N) = (C1, · · · , CI , N1, · · · , NJ), into a real number. Let us denote by
vector W the function’s parameters. The input variables C1, · · · , CI are related
to the network connection, or to the codec used (example: the bit rate), and the
variables N1, · · · , NJ correspond to the network state (example: the loss rate).
The value of the function is the quality of the audio or video connection. The
function’s parameters are the weights in the neural network.

As a neural network, our RNN has three layers, the input one with I + J
variables, the hidden one with H units, and the output layer with a single node.
The mapping can be explicitely written as

ν(W ; C,N) =
∑H

h=1 �hw
+
ho

ro +
∑H

h=1 �hw
−
ho

,

where

�h =

∑I
i=1 Cir

−1
i w+

ih +
∑J

j=1 Njr
−1
j w+

jh

rh +
∑I

i=1 Cir
−1
i w−

ih +
∑J

j=1 Njr
−1
j w−

jh

is the activity rate of hidden neuron h. The strictly positive numbers ro, rh for
h = 1..H , ri for i = 1..I and rj for j = 1..J , correspond to the firing rates of the
neurons in the network (respectively, for the output one, the hidden nodes, and
the I + J input ones). The weights are the variables tuned during the learning
process. We denote by w+

uv (resp. by w−
uv) the weight corresponding to an exiting

(resp. inhibiting) signal going from neuron u to neuron v (observe that both
numbers w+

uv and w−
uv are ≥ 0). For the interpretation and the dynamics of a

RNN see the references cited above. For our purposes here, we can just see it as
a rational parametric function. Learning will thus consist of finding appropriate
values of the weights capturing the mapping from (c(k),n(k)) to the real number
q(k) where q(k) is the quality given by a panel of human observers to some audio
or video sequence (depending on the application) when the source parameters
had the values present in c(k) and the parameters caracterizing the network had
the values in vector n(k), for k = 1..K.

To be more specific, let us describe how PSQA is used, with a simple example.
Assume we have some audio or video stream whose quality, as perceived by the

Evaluating Users’ Satisfaction in Packet Networks 305

users, is to be evaluated. Assume we limit the application of PSQA to just I = 1
source parameter, the bit rate C1, and to J = 2 network parameters, the end-to-
end loss rate N1 and the mean size of bursts of (consecutive) lost packets, N2. The
goal of the process is to come up with a function ν(W ;C1, N1, N2) mapping the
values of these 3 parameters into quality, for instance in a standard MOS range.
We start by choosing K series of values for the bit rate, the loss rate and the mean
loss burst size, denoted (c(k)

1 , n
(k)
1 , n

(k)
2) for k = 1..K. Then, we select some short

(audio/video) sequence (norms recommend to use sequences with a few seconds
length) and we send it K times through a controllable network (using a testbed,
for instance), where in the kth case the three selected parameters have values
c
(k)
1 , n

(k)
1 and n

(k)
2 . The K resulting sequences are shown to a panel of humans

and a subjective testing experiment is performed, following an appropriate norm
depending on the type of flow (see below), which allows to obtain the (measured)
perceived quality of each received sequence, denoted q(1), · · · , q(K). Then, a RNN
is trained to build such a ν() function, using the K input-output values obtained
from the testing phase. The usual way to do this is to separate this data into a
training part, used to build the approximation ν(), and a validation one, used
to test the predictive capacity of ν().

PSQA has been tested on video and on audio flows. In this paper, we will dis-
cuss only the latter, for sake of space. Next section describes previous and current
work on the quantitative analyses of the perceived quality of voice communica-
tions, with some new results concerning interactive voice sessions. Section 3 will
then discuss about the performance of our learning tool, RNN, as compared
to other available tools such as standard Artificial Neural Networks. Section 4
concludes the paper.

2 Using PSQA to Analyze Perceived Voice Quality

2.1 On Voice Quality Assessment

When assessing voice quality, there are two very different kinds of subjective tests
one can perform. The first kind, which is the one most widely used, is related
to the quality of the voice itself, and so it does not take other factors inherent
to conversation into account. We refer to these assessments as unidirectional,
since the only point of interest is the quality of the received signal. The other
kind of tests concern actual conversational quality, and in a way are a superset
of the first kind. In these, we not only consider the voice quality itself, but
also other factors (mostly delay-related) which affect the perceived quality of an
actual conversation. There exist standard procedures for performing subjective
assessments of both unidirectional (e.g. [6]) and interactive (e.g. [8]) speech.
Interactive tests are more difficult to set up and perform than unidirectional
ones.

In any case, all subjective tests are expensive in terms of time and money, so
a significant research effort has been directed toward developing objective tests.
These provide a cheaper and more practical alternative to subjective tests. Most

306 G. Rubino, P. Tirilly, and M. Varela

subjective tests operate by comparing the received signal to the original one, and
estimating the quality from the difference between the two. The estimation can
be done by mechanisms ranging from a simple SNR measurement to very com-
plex psychoacoustic models. Of the methods available in the literature, only the
ITU E-model [4] and P.563 algorithm [5] can perform their assessment without
requiring the original signal. The accuracy of objective assessment techniques
is quite variable, in particular when considering VoIP. The best performance
among the purely objective metrics is that of PESQ [7], which attains up to
about 0.92 correlation with subjective scores (a typical “best score”).

The need for being able to accurately assess VoIP quality in real–time arises
in several scenarios, such as the development of dynamic quality–control mech-
anisms. Traditional methods of voice quality assessment tend to only cover one
of the two conditions needed. Either they are adequately accurate (i.e. PESQ)
but not able to perform in real–time, or they do work in real–time, but their
accuracy is not as high as needed (i.e. the ITU E–model).

In this respect, PSQA offers the best of both worlds, since it is very accurate,
and it can work in real–time. This is a consequence of not needing the original
signal to perform the assessment, and of the simplicity of the calculations on the
RNN.

2.2 Unidirectional Voice Quality Assessment and Its Applications

We have succesfully used PSQA to analize the ways in which different parameters
affect the voice quality for VoIP streams [13]. To this end, we used six quality–
affecting parameters, and using PSQA, we studied the relations between them
and the quality as perceived by the end user. The parameters considered were
the codec used, whether error correction was being used, the offset of the error
correction, the loss rate and mean loss burst size found in the network, and the
packetization interval (i.e. the length of the speech contained in each packet).

In this study, we obtained a 0.94 correlation coefficient between the RNN pre-
dictions and subjective scores, which is on par (slightly better, actually) with the
best objective assessment techniques currently available. The results obtained al-
low us to understand, for instance, how the loss rate affects the perceived quality,
for different codecs and with or without error correction. Figure 1(a), for exam-
ple, shows how the packetization interval and the mean loss burst size affect the
perceived quality.

An immediate application of these results is modifying application–level para-
meters to acommodate variations in the network conditions, improving, if possi-
ble, the perceived quality. We have developed two simple algorithms which allow
to manipulate the codec, forward error correction, and packetization interval
values to dynamically optimize the quality. The first algorithm takes a naive
approach, trying to keep the quality between two thresholds at all costs. The
second algorithm takes bandwidth consumption into account, and tries to keep
the quality between the same bounds, but resorting to lower bit rate encodings
whenever possible. Both algorithms present a similar improvement on quality

Evaluating Users’ Satisfaction in Packet Networks 307

over scenarios lacking dynamic control, and depending on network load, one may
perform slightly better than the other. Figure 1(b) shows the performance of the
simplest of both algorithms when the network conditions degrade.

(a) 20
30

40
50

60
70

80

1

1.5

2

2.5

3
2.5
2.6
2.7
2.8
2.9
3

3.1

3.2

3.3

3.4

Packetization Interval (ms)

MLBS

M
O

S

(b)
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350 400 450 500
M

O
S

Time (s)

Performance of the naive dynamic quality control algorithm

Naive control
No control, with FEC (offset=1)

No control, without FEC

Fig. 1. (a) Variation of the perceived quality as a function of the Mean Loss Burst
Size (MLBS) and the Packetization interval, without error correction. Loss rate is 2%.
(b) Performance of a PSQA–based control algorithm based on the same RNN. The
network parameters found in these trace are as follows: Loss rate: 12.47%, Mean loss
burst size: 2.13 packets. Under these network conditions, the (naive) control algorithm
offers a noticeably better quality than when no control is used.

2.3 Conversational Quality Assessment

As mentioned above, conversational quality assessment is significantly more dif-
ficult to perform than the unidirectional one. To our knowledge, there is no
purely objective assessment method available in the literature able to predict
conversational quality, nor have there been subjective assessment campaign cov-
ering as many parameters as we used in our studies. We used PSQA to develop
an understanding of the how the conversational quality evolves with the differ-
ent parameters which affect it. In particular, we were interested in the relative
impacts of delay and loss rate on the overall quality.

The set of parameters we considered for this study were the bit rate (using
a single codec), the forward error correction settings, the packet loss rate and
mean loss burst size, and the one–way delay and its variability (jitter). As the
study was focused on VoIP, we used subjects with previous experience with
VoIP applications. The results we obtained with the RNN present a correlation
coefficient of 0.95 with subjective scores, which is very good. Given the large
parameter space considered, it is worth noting that the use of RNN for the
estimations allowed for excellent generalization capabilities.

Among the results we obtained by analizing the RNN behavior, the most in-
teresting one is that VoIP users seem much more tolerant to delay than it is
usually reported for PSTN systems (and by extension adopted for VoIP). More-
over, we found that the impact of the delay on the conversational quality was
relatively small compared to that of the loss rate, and that one–way delays as big

308 G. Rubino, P. Tirilly, and M. Varela

as 600ms made little difference on the perceived quality for loss rates of about
7% and up. This is good news, since it allows implementors to use better loss
concealment or correction techniques, at the expense of delay, resulting in an im-
proved overall quality. Figure 2 shows the impact of delay on the conversational
quality for diferent loss rates.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60

M
O

S

Delay (x10 ms)

MOS as a function of one−way delay (fec level=0, jitter=0.1*delay)

loss rate = 0%
loss rate = 2%
loss rate = 5%
loss rate = 7%

loss rate = 10%

Fig. 2. Perceived quality as a function of delay for some loss rates (without FEC).
Jitter was 10% of the delay. Note how the impact of the delay diminishes as the loss
rate increases.

3 Comparing RNN Against Other Tools

As mentioned above, the choice of RNN over other tools for implementing PSQA
is not arbitrary. In [9], [10], a first performance comparison had been made, estab-
lishing that RNN offer two advantages over traditional ANN for our applications.
The first one is that of better generalization capabilities (i.e. less over-training).
Since our approach only allows for relatively few learning points in a vast input
space, this is a very important characteristic. The second advantage was that
RNN are less sensitive to variations in the number of neurons in the hidden
layer, which allows to obtain good performance without needing to optimize the
neural network architecture.

In this section we discuss more in deep about the performances of RNN com-
pared to Bayesian networks and standard ANN, the two families of alternate
tools we used. We also present results of new comparison tests between ANN
and RNN performance for both unidirectional and interactive VoIP applications.

3.1 Using Naive Bayesian Classifiers

We have tried naive Bayesian classifiers for providing MOS estimations for
PSQA. This was meant primarily to test their accuracy more than for production
use, since two reasons make them less desirable than RNN:

– they require a larger amount of training data, and
– they only provide classification into discrete values, whereas RNNs provide

a continuous, differentiable function.

Evaluating Users’ Satisfaction in Packet Networks 309

However, this kind of classifier is easier to implement than RNNs, and is
computationally trivial, which, despite the RNN’s simplicity, could be useful in
certain contexts where computing power or memory are very limited.

Naive Bayesian classification is based on the observation of a sufficiently large
amount of data, and the assumption that those observations are statistically
independent. We perform the classification by counting, for a large number of
assessments, the number of times each score happens for each value of each
parameter considered. This allows us to estimate, for each value of the selected
parameters, the probability that a given score will happen, looking at the quality
as a random object. In other words, we estimate the conditional probability of
the score (or quality) being equal to q given that C = c and N = n, for
any possible configuration (c,n) of the parameters’ values (we are assuming a
discrete range for quality as well as for the parameters). Then, we can find the
score which is most likely to be associated with each configuration.

As stated above, this approach needs a large body of data for the training
process. As not enough subjective assessments were available to train the clas-
sifier, we needed to generate data suitable for assessing the performance of this
tool. To this end, we generated a large set of assessments (covering the whole pa-
rameter space) with a previously trained RNN, and used them instead of actual
subjective scores.

We performed several tests, using over 20,000 configurations to train the clas-
sifier. Although validation results were reasonably accurate, the performance of
this classifier with configurations for which we had subjective scores was consis-
tently and significantly lower than that of the RNN.

Among the possible explanations for this bad performance, the foremost is
that the quality–affecting parameters, and their relation to MOS scores are not
actually independent. Given the results obtained, it is reasonable to think that
they are too correlated for the assumption of statistical independence to hold.

As mentioned before, even if this approach did perform well, it does not
offer the advantages of using a RNN, and in any case, it needs the RNN (or
another trained estimator) in order to compensate for the usual lack of available
subjective data.

3.2 RNN Compared to Standard ANN Tools

In our experiments, we also tested the performances of classical neural networks
in the previously described learning tasks for automatic perceived quality as-
sessment in VoIP applications. The global conclusion is that RNN outperforms
Artificial Neural Networks in our context. In this subsection we present fur-
ther results concerning the accuracy of PSQA when implemented with RNN
and ANN. To this end, we used 15 different training and validation sets, with
varying sizes and also by using different parts of the data for training and for
predicting, for both the one-way and interactive cases in VoIP communications.
We then trained RNN and an ANN with appropriate architectures and compared
their performances.

310 G. Rubino, P. Tirilly, and M. Varela

In order for the comparison to be fair, we tried to optimize the performance
of the neural nets by using different number of hidden layers and different sizes
for those hidden layers. In the ANN case, we used commercial packages and thus
we looked at the results given by different training algorithms. The best results
in both types of networks were obtained with three-layer architectures. For the
ANN, the optimal hidden layer sizes were between 6 and 8 neurons, depending
on the input data, and for the RNN, a 10-neuron hidden layer provided the best
performance. For the RNN, we also considered the simplest architecture possible,
namely 6 input neurons, and one output neuron, with no hidden units, as [14]
reported acceptable results even with this simple structure. The best training
algorithms from the quality of the predictions were Levenberg-Marquardt for
the ANN. Our implementation of RNN only uses a simple gradient descent
algorithm.

Tables 1 and 2 show the sizes of the training, validation and testing sets used
(all randomly chosen). As classically done in neural network methodology, the
validation set was used to stop the training when the network generalized well,
in order to select good candidates in each family (ANN, RNN), and the test set
was used to mesure the real performance of the network (for the comparisons).

Table 1. Number of samples used to train, validate and test the neural nets (one-way
streams) in order to compare RNN vs ANN performance

Training Validation Test Training Validation Test Training Validation Test
92 10 10 82 20 10 72 20 20
92 10 10 82 10 20 72 30 10
92 10 10 82 10 20 72 10 30
82 20 10 82 10 20 62 10 40
82 20 10 72 20 20 62 20 30

Table 2. Number of samples used to train, validate and test the neural nets (interactive
streams) in order to compare RNN vs ANN performance

Training Validation Test Training Validation Test Training Validation Test
100 10 10 90 20 10 80 20 20
100 10 10 90 10 20 80 30 10
100 10 10 90 10 20 80 10 30
90 20 10 90 10 20 70 10 40
90 20 10 80 20 20 70 20 30

We found that, although the training error reached (calculated as MSE) is
about one order of magnitude lower for ANN than for RNN, the validation results
are consistently and significantly better for the RNN. Figures 3 (a) through (d)
show the results obtained for both one-way and interactive streams, for the 15
validation and test data sets.

Evaluating Users’ Satisfaction in Packet Networks 311

It is interesting that for the interactive scenario, the ANNs performance is
noticeably better than for the one-way case. However, the MSE obtained with
RNN are lower, and for the one-way case, the difference is very noticeable.

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 2 4 6 8 10 12 14 16

M
S

E
 (

te
st

 d
at

a)

Test number

PSQA performance (one way VoIP): ANN vs. RNN

RNN
ANN

(b)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 2 4 6 8 10 12 14 16

M
S

E
 (

te
st

 d
at

a)

Test number

PSQA performance (interactive VoIP): ANN vs. RNN

RNN
ANN

(c)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 2 4 6 8 10 12 14 16

M
S

E
 (

va
lid

at
io

n
da

ta
)

Test number

PSQA performance (one way VoIP): ANN vs. RNN

RNN
ANN

(d)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 2 4 6 8 10 12 14 16

M
S

E
 (

va
lid

at
io

n
da

ta
)

Test number

PSQA performance (interactive VoIP): ANN vs. RNN

RNN
ANN

Fig. 3. MSE comparison of RNN and ANN for (a) test data, one-way streams, (b) test
data, interactive streams (c) validation data, one-way streams and (d) validation data,
interactive streams

4 Conclusions

The PSQA technology allows to provide an accurate and automatic quantitative
evaluation of the perceived quality of an audio or video communication over a
packet network, where the flow is subject to different kinds of distortions (losses
by congestion, delays and jitter, etc.). It has been succesfully tested and used
on video and audio streams. In this paper we report novel results on interac-
tive speech quality, obtained by using a RNN-based PSQA tool, and about two
proof–of–concept PSQA–based dynamic quality control algorithms. The method
comes up with an approximation of the perceived quality as a nice function of
measurable parameters, thanks to the RNN technology. It can be applied to
the monitoring of an existing network or for control purposes, as well as to the
analyzing the impact of specific parameters on the perceived quality.

This paper also shows some results illustrating how RNN outperforms stan-
dard ANN as well as Bayesian networks in performing the assessment task.

312 G. Rubino, P. Tirilly, and M. Varela

In particular, we have performed an in-depth performance comparison between
ANN and RNN–based PSQA implementations, both for unidirectional nad in-
teractive speech streams.

One of the topics of further research work is to extend these experiments to
more cases. Another important research direction for PSQA development is the
analysis of the impact of using more efficient learning techniques in the RNN
tool.

References

1. E. Gelenbe. Random Neural Networks with Negative and Positive Signals and
Product Form Solution. Neural Computation, 1(4):502–511, 1989.

2. E. Gelenbe. Stability of the Random Neural Network Model. In Proc. of Neural
Computation Workshop, pages 56–68, Berlin, West Germany, February 1990.

3. E. Gelenbe. Learning in the Recurrent Random Neural Network. Neural Compu-
tation, 5(1):154–511, 1993.

4. ITU-T Recommendation G.107. The E-model, a Computational Model for Use in
Transmission Planning, March 2005. http://www.itu.int/.

5. ITU-T Recommendation P.563. Single–ended Method for Objective Speech Quality
Assessment in Narrow–band Telephony Applications, May 2004.

6. ITU-T Recommendation P.800. Methods for Subjective Determination of Trans-
mission Quality, August 1996.

7. ITU-T Recommendation P.862. Perceptual Evaluation of Speech Quality (Pesq),
an Objective Method for End-To-End Speech Quality Assessment of Narrowband
Telephone Networks and Speech Codecs, 2001.

8. ITU-T Recommendation P.920. Interactive test methods for audiovisual commu-
nications, 2000.

9. S. Mohamed. Automatic Evaluation of Real-Time Multimedia Quality: a Neural
Network Approach. PhD thesis, INRIA/IRISA, Univ. Rennes I, Rennes, France,
jan 2003.

10. S. Mohamed and G. Rubino. A Study of Real–time Packet Video Quality Using
Random Neural Networks. IEEE Transactions On Circuits and Systems for Video
Technology, 12(12):1071–1083, December 2002.

11. G. Rubino. Quantifying the quality of audio and video transmissions over the
internet: the psqa approach. In J. Barria, editor, Design and Operations of Com-
munication Networks: A Review of Wired and Wireless Modelling and Management
Challenges. Imperial College Press, 2005.

12. G. Rubino and M. Varela. Evaluating the utility of media–dependent FEC in VoIP
flows. In LNCS 3266: Proceedings of the Fifth International Workshop on Quality
of future Internet Services (QofIS’04), Barcelona, Spain, September 2004.

13. G. Rubino, M. Varela, and S. Mohamed. Performance evaluation of real-time
speech through a packet network: a random neural networks-based approach. Per-
formance Evaluation, 57(2):141–162, May 2004.

14. Gerardo Rubino and Martn Varela. A new approach for the prediction of end-to-
end performance of multimedia streams. In In Proceedings of the Measurement of
Speech and Audio Quality in Networks workshop (MESAQIN’04), September 2004.

Random Neural Networks for the Adaptive
Control of Packet Networks

Michael Gellman and Peixiang Liu

Dept. of Electrical & Electronic Eng.,
Imperial College London

{m.gellman, p.liu}@imperial.ac.uk�

Abstract. The Random Neural Network (RNN) has been used in a wide
variety of applications, including image compression, texture generation,
pattern recognition, and so on. Our work focuses on the use of the RNN
as a routing decision maker which uses Reinforcement Learning (RL)
techniques to explore a search space (i.e. the set of all possible routes) to
find the optimal route in terms of the Quality of Service metrics that are
most important to the underlying traffic. We have termed this algorithm
as the Cognitive Packet Network (CPN), and have shown in previous
works its application to a variety of network domains. In this paper, we
present a set of experiments which demonstrate how CPN performs in a
realistic environment compared to a priori-computed optimal routes. We
show that RNN with RL can autonomously learn the best route in the
network simply through exploration in a very short time-frame. We also
demonstrate the quickness with which our algorithm is able to adapt to
a disruption along its current route, switching to the new optimal route
in the network. These results serve as strong evidence for the benefits of
the RNN Reinforcement Learning algorithm which we employ.

1 Introduction

The Cognitive Packet Network (CPN) approach has been used for routing in a
number of different domains: from wire-line, to wireless Ad-hoc, and even overlay
networks [1,2,3]. These have demonstrated that it is able to use the QoS goal
of the user or application to selectively find the best path in the network that
satisfies it.

At the core of the CPN algorithm is the Reinforcement Learning (RL) al-
gorithm which uses a fully recurrent Random Neural Network (RNN) [4] as a
decision-maker to route packets. Each output link from a CPN node (router) is
represented by a neuron in the RNN, the weights of which are updated according
to the quality of the routes explored by the Smart Packets (SPs) or used by the
Dumb Packets (DPs). Therefore, the RL algorithm uses the observed outcome

� This work was supported by the UK Engineering and Physical Sciences Research
Council under Grant GR/S52360/01.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 313–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 M. Gellman and P. Liu

of the current decision to either reward or punish the corresponding routing de-
cision so that its future decisions are more likely meet the user’s desired QoS
goal.

In this paper, We begin by giving a brief overview of the mechanisms behind
CPN, including one optimization which improves the Quality of Service given
to data traffic. Following this, we describe our testbed and procedure that we
have used to conduct our experiments. Finally, we present our results which
demonstrate CPN’s ability to learn the optimal route in a network, and also its
ability to quickly react to a harmful change in that route.

2 CPN Overview

The CPN algorithm has already been described in detail in previous publications
(e.g. [5]); thus, in this section, we provide a brief description of the mechanics
of CPN, and focus more in-depth on an optimization that we have introduced
in our experiments to improve the QoS of user traffic.

CPN is a reactive routing protocol – that is, it waits until a connection requests
the establishment of a route to begin the routing process. For this purpose, there
exists a division of labor between packets whose job it is to carry data (so-called
Dumb packets or DPs), and those which are responsible for exploring the network
and learning the best path (Smart packets or SPs).

Smart packets are sent at regular intervals during the connection, and are
routed using a Reinforcement Learning (RL) algorithm at each hop in the net-
work. At each router they visit, they may have some QoS information added into
the packet, depending on the QoS metrics of the connection. For instance, when
delay is the metric, we encode the current timestamp into the packet, in order
to calculate a round-trip time estimate. When an SP reaches its destination, an
acknowledgement packet (SAck) is generated which will travel along the reverse
route of its SP, performing the RL algorithm at each hop to indicate the success
or failure of the original SP in finding an optimal route.

In contrast to SPs, Dumb packets are source-routed using the routes brought
back by SAcks. When they reach the destination, they also generate an ac-
knowledgement (DAck) which also updates the RNN weights through the RL
algorithm. This ensures that the reward information stored at each node is kept
up-to-date. In the original algorithm, DPs would use the route brought back by
the most recent SAck; however, in our experiments, we found that this was not
always optimal, and thus we propose an optimization which we present in the
following subsection.

2.1 Keeping Track of the Best Route

In the originally proposed algorithm, we proposed to use the route brought
back by a SAck immediately, under the assumption that it contains the most

Random Neural Networks for the Adaptive Control of Packet Networks 315

up-to-date information about the network, and would be the best route decided
upon by the network. However, this does not take into account the fact that, in
order to better explore the network, each router will (with a small probability)
sometimes choose a random next hop for an SP, rather than the one decided
upon by the RNN. This decision may or may not result in better QoS for the
route, and thus we propose to compare the quality of routes brought back by a
SAck against the current route before switching.

When a SAck arrives at its destination, we compare the reward for this route
to the currently active one. Only if the newly arrived SAck’s reward is greater
than our current route do we switch. DAcks update the reward stored with their
route, but do not cause the active route to change. In the remainder of this paper
we refer to this optimization as CPN with Sorting.

While at first this may seem to deprive us of some of the exploratory benefits
of the CPN algorithm, we contend (and demonstrate in Section 3.3) that this is
not the case because of DAcks. Because each DAck also triggers the RNN-RL
algorithm at each router, a sudden decrease in quality along a route will punish
the decision, and cause the next SP to choose an alternate next hop, which will
enhance of discovering a new best route; thus, the network is still able to quickly
respond to changes in network conditions, and it also ensures that data traffic
always uses the best available path.

3 Experiments

We wanted to demonstrate CPN’s ability to learn the optimal route in a network,
as well as explore its performance for different levels of exploration overhead, and
under network dynamics. Thus, we have used our network testbed facilities at
Imperial College London to perform controlled experiments into each of these
areas.

3.1 Testbed

Our network testbed consists of standard PCs which run Linux 2.6.15 and con-
tain one or more quad-10/100 Ethernet cards. An important consideration for
our experiments is the topology that we use; we would like it to be as realistic as
possible so that we can generalize our results to other, larger networks. Towards
that end, we contacted the Swiss Education and Research Network, who pro-
vided us details on their 46-router backbone, complete with bandwidth, OSPF
costs, and link-level delays (Fig. 1). We have implemented this topology in its
entirety in our lab1. We have configured IP routing using quagga 0.99.3 with the
OSPF costs given to us; thus, the routes in our testbed should be exactly the
same as those used in the real Swiss backbone.

1 With the following differences: we have scaled the bandwidth down by a factor of
100, and have used artificial delays to replicate the physical layer delays in the data
set (from 0-40ms).

316 M. Gellman and P. Liu

Fig. 1. The 46-node testbed topology. Links between nodes are colored and emphasized
in terms of the delay of the link; lighter thinner lines are low-delay links, while darker,
thicker ones denote higher delays.

3.2 Scenario and Implementation

As a traffic source, our experiments use the open-source Quake II multi-player
game, which uses UDP as its transport protocol. Due to its open-source nature,
we were able to modify the application to better suit it to network experimen-
tation, including: removing all video, sound, and input code to allow clients to
run without user input; and embedding bot code into the server so that our
generated traffic resembles that of a real game complete with movement, player
kills, and so forth. Because delay is critical to the performance of a first-person
shooter, we configure CPN to optimize this metric, and also use it to compare
our results.

Our experiments use a single server (cpn008 in the figure), and 10 clients. The
delay results that we report are an average of the application-level ping results
reported by the Quake II server, where each experiment lasts 15 minutes. Each
experiment was repeated 20 times, and, unless otherwise noted, had minimal
variance.

Random Neural Networks for the Adaptive Control of Packet Networks 317

CPN is implemented as a Linux kernel module that runs at the networking
layer. It receives Quake II packets through an IP-over-CPN tunnelling mecha-
nism that hides from the application that it is using CPN; thus, no re-writing
of the application is necessary. The only downside of this approach is that there
is a small amount of additional packet overhead (an extra IP header), although,
as we show in Section 3.3, this is minimal.

3.3 Results

In this section, we present the results from three different sets of experiments
that we conducted on our testbed. The first set compares the performance of
CPN with the “sorting” optimization that we described in section 2.1. Following
this experiment, we investigated the impact of varying the amount of exploration
overhead on CPN’s ability to quickly discover the optimal path in the network.
Our final set of experiments demonstrates the quickness with which CPN is able
to react to a performance degradation along its optimal route.

Sorting vs No Sorting. When we first experimented with CPN’s ability to
find the optimal route in the network, we noticed that it would sometimes route
Dumb packet traffic along non-optimal paths for short periods of time before
returning to the best path (Fig. 2). Upon closer investigation, we discovered that
this was due to Smart packets who, with a small probability2 at each hop, would
randomly choose a next as opposed to using the RNN-RL algorithm. While this
is an integral component of the CPN algorithm because it enhances our ability
to discover new paths, it was also harming the performance of data traffic that
would use these new routes without considering how they compared to their
current route. Thus, we implemented the optimization described in section 2.1.

The outcome of the optimization is shown in Fig. 2, where we can see it
leads to a significant improvement. Once CPN has discovered the optimal route
in the early stages of the experiment, it continues to use it whereas without
the optimization, CPN subjects the data traffic to a number of other routes
with worse delay performance. Thus, throughout the remainder of this paper,
all experiments take place with this optimization enabled.

Discovering Optimal Routes. In order to demonstrate CPN’s ability to
quickly find the optimal route in the network, we compared its performance
with that of IP using OSPF to determine its routes. Because the cost of each
link is proportional to its delay, OSPF routing converges to the minimal delay
path, giving us a baseline for comparison.

We conducted experiments (according to the procedure above) for different
percentages of Smart packets3, which controls the overhead of network explo-
ration. The results can be seen in Fig. 3.
2 In our experiments, the probability of randomly choosing a next hop is 0.05.
3 While we refer to it as a percentage, it is more accurately described as the probability

that, when sending a DP, that we also send an SP.

318 M. Gellman and P. Liu

(a)

(b)

Fig. 2. Comparing the effect of sorting. In (a), where we have plotted the measured
delay during the experiment for one selected client, we can see the variance in the non-
sorting case is much higher, as some of the Dumb packets use a route with higher delay
before switching back to the optimal one. The results for every client are summarized in
(b), where we see that the average delay is lower when using the sorting optimization.

Looking at these results, we can see that CPN can always find the optimal
route in the network; it just takes a longer time when the exploration overhead is
low (Fig. 3.b). We can also see that the difference in delay performance between
10% and 20% SPs is minimal for many of the clients, leading us to decide to use
the former for the remainder of the paper.

CPN’s Response to Network Dynamics. In our final experiment, we
wanted to see how quickly CPN could adapt to a sudden change along the
optimal route. We decided to test this by manually increasing the delay along
one of the links in the network (the link between cpn017 and cpn042 in the Fig.
1) midway through the experiment (at time t = 450s). The results of this exper-
iment are shown in Fig. 4, where CPN was able to react to the change within 1
second, and find a route around the hotspot.

Random Neural Networks for the Adaptive Control of Packet Networks 319

(a)

(b)

Fig. 3. IP vs. CPN for different percentages of Smart packets. In (a), we can see
that the average delay for CPN is very close to optimal. Also, as the number of SPs
increases, the delay decreases. The reason the average is a bit higher can be seen in (b)
where at the beginning of the experiment, CPN has not yet found the optimal route,
increasing the overall average. In addition, the impact of the SP percentage on the rate
of discovering the optimal route is highlighted.

4 Conclusion and Future Work

In this paper, we have presented a number of experiments which demonstrate
CPN’s ability to find the optimal route in the network, and the speed with which
it is able to do so. We showed that even with minimal exploration overhead (1%
Smart Packets), CPN is still able to find the optimal route in the network, and
that increasing the overhead simply accelerates the convergence process. We have
also described a small optimization to the original algorithm where we only re-
route data traffic when we find a better route, and have shown that this performs
better than the previous method. These all point to the strength of the RNN as
a decision-maker in a dynamic, on-line scenario.

Looking to the future, we would like to extend this work to a larger, more
heterogeneous environment, and are currently exploring how PlanetLab can be

320 M. Gellman and P. Liu

Fig. 4. How CPN reacts to a disturbance along the optimal route. At time t = 450s,
the delay along one link in the optimal route is increased by 40ms. Within 1 second,
CPN has switched to another route.

used for this purpose. We also plan to diversify the traffic types that we include
in our evaluation, including TCP flows, and real-time multimedia streams.

Acknowledgements

We would like to thank our supervisor Prof. Erol Gelenbe for his support and
guidance in this work. We would also like to thank the Swiss Education and
Research Network for sharing their network topology data.

References

1. Gelenbe, E., Xu, Z., Seref, E.: Cognitive packet networks. In: Proceedings of the
11th International Conference on Tools with Artificial Intelligence. (1999) 47–54

2. Gelenbe, E., Gellman, M., Lent, R., Liu, P., Su, P.: Autonomous smart routing for
network QoS. In: Proceedings of the First International Conference on Autonomic
Computing, New York, NY (2004) 232–239

3. Gelenbe, E., Lent, R.: Power-aware ad hoc cognitive packet networks. Ad Hoc
Networks Journal 2(3) (2004) 205–216

4. Gelenbe, E.: Learning in the recurrent random neural network. Neural Computation
5 (1993) 154–164

5. Gelenbe, E., Lent, R., Xu, Z.: Measurement and performance of a cognitive packet
network. Journal of Computer Networks 37(6) (2001) 691–701

Hardware Implementation of Random Neural
Networks with Reinforcement Learning

Taskin Kocak

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL 32816
tkocak@cpe.ucf.edu

Abstract. In this paper, we present a hardware implementation of a
random neural network (RNN) model. The RNN, introduced by Ge-
lenbe, is a spiked neural network model that possesses several mathe-
matical properties such as the existence and uniqueness of the solution,
and convergence of the learning algorithm. In particular, we discuss the
implementation details for an RNN which uses a reinforcement learning
algorithm. We also illustrate an example where this circuit implemen-
tation is used as a building block in a recently proposed novel network
routing protocol called cognitive packet networks (CPN). CPN does not
employ a routing table instead it relies on the RNN with a reinforcement
algorithm to route probing packets.

1 Introduction

The random neural network (RNN) model was developed by Gelenbe in the late
eighties and early nineties [1]. It has been proven to be successful in a variety of
applications when used either in a feed-forward or a fully recurrent architecture
[5]. In most problems, RNN yields strong generalization capabilities, even when
the training data set is relatively small compared to the actual testing data.
The model also achieves fast learning due to its computational simplicity for the
weight updating process.

In this paper, we present hardware design and digital implementation of the
RNN model. First, we illustrate the design of a single neuron and its usage in an
array of neurons. Second, we describe the state machine used to implement the
reinforcement learning (RL) algorithm. Then, we illustrate an example where
the circuit implementation of the RL-based RNN is used as a building block
in a recently proposed novel network routing protocol called cognitive packet
networks (CPN) [7,9,10]. Low-level design details such as the RTL schematic
and layout information are provided for the main CPN component smart packet
processor which incorporates the RNN part. Further, simulations results are
given to verify the execution of the learning algorithm.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 321–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

322 T. Kocak

2 Random Neural Networks

The RNN [1,2,3,4] is an analytically tractable spiked random neural network
model. Consider a RNN with n neurons in which “positive” and “negative” sig-
nals circulate. Positive signals represent excitation, while negative signals rep-
resent inhibition. Each neuron i of the network is represented at time t by its
input signal potential ki(t) ≥ 0, constituted only by positive signals that have
accumulated. If the potential of the neuron i is positive, it may “fire” in a ran-
dom sequence with rate r(i), sending signals to the other neurons or to the
outside of the network. Exogenous excitatory signals and inhibitory signals from
outside the network to neuron i are in a Poisson stream of rate Λ(i) and rate
λ(i) respectively. When neuron i fires, an excitatory signal may go to neuron
j with probability p+(i, j), or as a negative signal with probability p−(i, j), or
it may depart from the network with probability d(i). The network parameters
are the n by n “weight matrices” W+ = {w+(i, j)} and W− = {w−(i, j)} which
need to be learned from input data, where w+(i, j) is the rate at which neuron
i sends excitation signals to neuron j, and w−(i, j) is the rate at which neuron
i sends inhibition signals to neuron j. The W+ and W− are learned from K
input-output pairs.

Λi

λi

Λi arrival rate of exogenous excitatory signals

λi

(w
+ i1

+
w

− i1
)

arrival rate of exogenous inhibitory signals

arrival rate of excitatory signals from neuron j

arrival rate of inhibitory signals from neuron j

(w+
ij + w−

ij)

(w+
ji + w−

ji)

instantaneous potential of the neuronki(t)

(w
+ n

i
+

w
− n

i
)

(w
+ in

+
w

− in
)

k1(t)

ki(t) kj(t)

kn(t)

w+
ji

w−
ji

(w
+ 1i

+
w

− 1i
)

Fig. 1. Representation of a neuron in the RNN

Hardware Implementation of RNN with Reinforcement Learning 323

The state qi of the ith neuron in the network is the probability that it is
excited and the desired output of neuron i of the kth input is yik. The network
adjusts its parameters to produce the set of desired output vectors in a manner
that minimizes a cost Ck which is a function of network state q = (q1, ... , qn).

Figure 1 shows the representation of a neuron in the RNN using the model
parameters that have been defined above. In this figure, only the transitions to
and from a single neuron i are considered in a recurrent fashion. All the other
neurons can be interpreted as the replicates of neuron i.

2.1 Reinforcement Learning Algorithm for RNN

There are different learning algorithms that may be applied to the RNN model.
The gradient descent algorithm has been used with feed-forward topologies in
many applications [5]. For the gradient descent algorithm to be implemented, the
RNN output vectors need to be known a priori and provided during the training
mode. In this work, we consider the RNN models that use a reinforcement learn-
ing (RL) algorithm. This is beneficial in applications such as computer networks
where the desired input-output pairs are not known ahead. An RL algorithm for
RNN is introduced in [6] and described here again. Let there be n neurons in
the network and R denotes the reward value. If the previous decision of firing a
signal from neuron i to neuron j was successful then this decision is rewarded by
increasing the excitation weight value (w+(i, j)) assigned to the corresponding
interconnection and decreasing the inhibition weight values (w−(i, k), k �= j) for
all other interconnections from neuron i as follows:

w+(i, j) = w+(i, j) + R,
w−(i, k) = w−(i, k) + R/(n− 1), k �= j,

(1)

If the decision was not right, then it is punished by decreasing the excitation
weight value between neurons i and j and increasing the inhibition weight values
for all other interconnections as follows:

w+(i, k) = w+(i, k) + R/(n− 1), k �= j,
w−(i, j) = w−(i, j) + R.

(2)

Then, weights are normalized to avoid indefinite increase in size:

w+(i, j) ← w+(i, j) ∗ ri/r
∗
i ,

w−(i, j) ← w−(i, j) ∗ ri/r
∗
i .

(3)

where r∗i =
∑

[w+(i,m) + w−(i,m)].

3 Hardware Implementation of RNN

3.1 Circuit Implementation of an RNN Neuron

In RNN model, the output of a neuron i is given by

324 T. Kocak

qi =

∑
j qjw

+
ji + Λ(i)

r(i) +
∑

j qjw
−
ji + λ(i)

(4)

This equation can be easily implemented in hardware as shown in Fig. 2. Note
that the external inhibition signal, λ(i), is zero in most applications; therefore
it is not included in the figure.

Fig. 2. Implementation of a single neuron i

Following the analysis given in [8], the number of weight terms in the RL
algorithm can be reduced to 2n from 2n2. The simplified neuron output equation
becomes

qi = [w+
∑

j

qj + Λ(i)]/[r(i) + w−
∑

j

qj + λ(i)] (5)

This allows us to use the single neuron in an array configuration as depicted in
Fig. 3 to form an n neuron RNN network.

3.2 Implementation of the Reinforcement Learning Algorithm

We implemented the RL algorithm using a finite state machine (FSM). The state
diagram is illustrated in Fig. 4. In this FSM, it is assumed that the RNN weights
and the previous decision are stored in a table. The table is searched first to de-
termine if the network has given an output before or not. If so, the weight values
along with the decision are retrieved from the table. Based on the previous de-
cision’s success, either the neuron is rewarded or punished by calculating new

Hardware Implementation of RNN with Reinforcement Learning 325

Fig. 3. Implementation of an n neuron network

weight values. However, if the search yields a miss then the default weight values
are applied to the RNN.

4 Example Implementation in Networking

IP networks must evolve to meet the performance demands of todays and tomor-
rows users. Active networks have received a lot of attention in the last decade.
Recently proposed CPN shows similarity with discrete active networks. CPN
assigns a quality-of-service (QoS) goal to packets. The goal is a metric which
defines the success of the outcome such as G = α ∗ delay+β ∗ loss. The network
uses the goal to provide a best-effort attempt at satisfying the QoS requirements.
CPN employs intelligent based routing to pursue the goal. There are three types
of packets: Smart packet (SP), Dumb packet (DP) and Acknowledgement packet
(ACK). SPs probe the network for optimum routes. The next hop of the SP is
determined using the output of RNN within the current router. DPs carry the
payload and are source routed using best path information obtained from SP-
ACK action. ACKs travel the reverse route of SP and carry the network data
that is used to calculate a Reward value relevant to the goal of the packet. Re-
ward value is used to update the status of the RNN. The function of the RNN
in the CPN is to capture the effect of unpredictable network parameters and
convert it into a routing decision. Each QoS-Source-Destination (QSD) combi-
nation has its own RNN model. RNN has fully recurrent topology and 2 ∗ n2

weights. Each neuron corresponds to a port of the router. Neuron with highest
output value (q) represents the next port.

326 T. Kocak

Fig. 4. State machine for the RL algorithm implementation

Fig. 5. SPP block diagram

4.1 Smart Packet Processor

The smart packet processor(SPP) in CPN has three main functions: 1) Determin-
ing the next hop for incoming SPs based upon related RNN status; 2) Updating
the stored RNN models using data extracted from ACK; 3) Storing the RNN
models indexed by QSD. The SPP block diagram is shown in Fig. 5.

The SP interface receives the smart packets and initiates the retrieval of
weights, involkes the neuron array to calculate the output and directs the SP
through the port whose corresponding neuron has the hisghest q. The weight
storage tabel holds the neural network parameters (weights) and the network
packet flow information (QSD). The SPP is implemented for a 4-port CPN test

Hardware Implementation of RNN with Reinforcement Learning 327

router in VHDL. The behavioral model developed in this hardware description
language is synthesized to obtain hardware circuit implementation. The register-
transfer-logic (RTL) schematic of the weight storage table component is shown
in Fig. 6.

Fig. 6. RTL schematic of the weight storage table component

The synthesized gate-level netlist is imported to Cadence Silicon Ensemble,
for floorplanning, placing and routing of the design. The obtained layout for the
design is shown in Fig. 7. The core occupies 6.46 mm2 in a 3-metal single-poly
0.6-µm digital CMOS process.

Simulations are run on the RTL description in Synopsys Design Analyzer to
test the execution of the learning algorithm. The results shown in Fig. 8 are
given for a reward scenario. The SPP is triggered with the start ack signal. The
QSD along with the port number are fed to the SPP. The RL module reads
the threshold (the previous “smoothed” value of rewards) and the weights. The
reward value is compared against the threshold, if it is greater then the RL
component rewards the previous decision by increasing the excitation weight
of the corresponding neuron and inhibition weigths of the other neurons. The
weights are normalized and the output values are calculated until they converge.
For this implementation, the weight, threshold and q terms each have 15 bits to
the right of the ones position.

328 T. Kocak

Fig. 7. Layout of the SPP design

Fig. 8. Simulation results showing the learning algorithm in a reward scenario

5 Conclusions

We presented a hardware implementation for learning random neural networks
(RNN) which uses reinforcement learning algorithm. Further, we illustrate an ex-
ample where the RNN design used as a building block in a novel network routing
protocol. Future directions for this work can be investigating whether the current

Hardware Implementation of RNN with Reinforcement Learning 329

digital implementation of the neurons can be replaced with an analog/mixed-
signal implementation which would consume significantly less amount of space
and processing time.

References

1. E. Gelenbe, “Random neural networks with negative and positive signals and prod-
uct form solution,” Neural Computation, vol. 1, no. 4, pp. 502-511, 1989.

2. E. Gelenbe, “Stability of the random neural network model,” Neural Computation,
vol. 2, no. 2, pp. 239-247, 1990.

3. E. Gelenbe, “Learning in the recurrent random neural network,” Neural Compu-
tation, vol. 5, no. 1, pp. 154-164, 1993.

4. E. Gelenbe, Z.-H. Mao, Y.-D. Li “Function approximation with spiked random
networks”, IEEE Trans. on Neural Networks, vol. 10, No. 1, pp. 3–9, 1999.

5. H. Bakircioglu and T. Kocak, “Survey of random neural network applications”,
European Journal of Operational Research, vol. 126, pp. 319-330, 2000.

6. U. Halici, “Reinforcement learning algorithm with internal expectations for the ran-
dom neural network”, European Journal of Operations Research, vol. 126, pp.288-
307, October 2000.

7. E. Gelenbe, R. Lent, and Z. Xu, “Design and analysis of cognitive packet networks”,
Performance Evaluation, vol. 46, pp. 155-176, 2001.

8. J. Seeber, “Design and implementatation of smart packet processor for the cogni-
tive packet network router”, M.S. Thesis, University of Central Florida, Orlando,
2002.

9. E. Gelenbe, R. Lent, A. Nunez, “Self-aware networks and QoS”, Proc. of the IEEE,
vol. 9, no. 9, pp. 1478-1489, 2004.

10. E. Gelenbe, “Cognitive Packet Network”, U.S. Patent No. 6,804,201 B1, Oct. 12,
2004.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 330 – 339, 2006.
© Springer-Verlag Berlin Heidelberg 2006

G-Networks and the Modeling of Adversarial Agents

Yu Wang

Dept. of Electrical & Electronic Engineering
Imperial College London, London, SW7 2BT, UK

yu.wang3@imperial.ac.uk

Abstract. As a result of the structure and content transformation of an evolving
society, many large scale autonomous systems emerged in diverse areas such as
biology, ecology or finance. Inspired by the desire to better understand and
make the best out of these systems, we propose an approach which builds sto-
chastic mathematical models, in particular G-networks models, that allow the
efficient representation of systems of agents and offer the possibility to analyze
their behavior using mathematics. This approach is capable of modelling the
system at different abstraction levels, both in terms of the number of agents and
the size of the geographical location. We demonstrate our approach with some
urban military planning scenarios and the results suggest that this approach has
tackled the problem in modelling autonomous systems at low computational
cost. Apart from offering the numerical estimates of the outcome, the approach
helps us identify the characteristics that impact the system most and allows us
to compare alternative strategies.

Keywords: mathematical modelling, G-Networks, military strategy and plan-
ning, multi-agent systems.

1 Introduction

As a society evolves, its structure and content transform accordingly to reflect and
address its needs. As a result, more and more large scale autonomous systems occur
in various forms in the surrounding world, from diverse areas of study such as biol-
ogy, ecology, finance or transportation. Large scale systems have been traditionally
characterized by a large number of variables, nonlinearities and uncertainties. As an
example taken from biology, a human body, where organs, containing billions of
cells, perform different functions that contribute towards the operating of the body
can be seen as a large scale system. Inspired by the desire to better understand and
utilize the environment, we study such systems and hope to gain insights, predict the
future and control them partially if not fully.
 There have been many attempts to model large scale systems, such as building dif-
ferential equations or with simulations [1-5]. However the sheer complexity and diver-
sity of large scale systems make them difficult to be described and modelled, and it is
even more difficult to provide numerical predictions of the underlying processes of
such systems. To tackle these problems, we propose to use a stochastic approach, in
particular G-networks [6-10], to model the individuals of the same nature collectively.
In doing so, the computational complexity is greatly reduced. Another innovative as-
pect of our approach is that it is able to model systems with multiple geographical

 G-Networks and the Modeling of Adversarial Agents 331

locations at different levels of abstraction. With the approach, we aim to provide in-
sights into systems in terms of their performance and behaviours, to identify the pa-
rameters which strongly influence them, and to evaluate how well an individual’s task
can be achieved and, therefore compare the effects of alternative strategies.
 As presented in [13-17], our approach has many application areas, such as military
planning, systems biology and computer networking. In this paper, we use strategic
military planning in urban scenarios as an example to demonstrate our approach. We
describe the systems of interest, the mathematical model, and the chosen scenarios.
We illustrate two methods that we use in dealing with the situations where complete
or incomplete world knowledge is available. To validate our model, we compare its
results with those obtained from a simulator [11, 12] that was built in our group. We
will briefly discuss the differences between these two approaches, and analyze the
discrepancy between the results. The paper concludes with a discussion of potential
extensions to the model.

2 System Descriptions

As an example of a potential application, we consider a closed system containing N
distinct geographic locations and a set of C agent classes. Locations may have obsta-
cles that an agent cannot physically enter, such as stretches of water, trees, buildings
and so on. Obstacles depend of course on the physical objects that the agents repre-
sent (e.g. land and air vehicles will have different kinds of obstacles). At the moment,
we do not take the local minimum problem into consideration and we assume all
obstacles in the terrain are convex in shape.
 In these systems, agents take actions to achieve their goals, which are reflected by
their motions and behaviors. A goal, be it stationary or motion-oriented, attracts
agents to move towards it. A stationary goal is a specific location, whereas a motion-
oriented goal refers to the situation where an agent itself is the goal (target) of others.
Agents either protect or destroy their motion-oriented goals. To achieve this, agents
might need to cooperate or compete with others in the system. The difference
in nature of the goals results in agents belonging to different adversary teams. Teams
in the same group collaborate with each other to achieve their goals, while those
in adversarial groups would exhibits competing behaviors to prevent others accom-
plishing their goals.
 Motion in the system is a result of forces exercised by the goal and agents. There
are three types of forces in our system: attractive, repulsive and long-range attractive
and short-range repulsive. A straightforward example of an attractive force would be
the force that a stationary goal (i.e. the destination) applies on an agent. A repulsive
force can be interpreted as the tension of moving away. For example, if agent D’s
aim is to destroy agent B, then agent B applies an attractive force on D. On the other
hand, agent D exercises a repulsive force on B. A long-range attractive and short-
range repulsive force makes a group of agents stay together and keeps their distance
at the same time. Thus if the agents are too close, repulsive forces are applied, oth-
erwise, attractive forces are applied.

332 Y. Wang

3 The Mathematical Model

Let i = g(t, c, k) denote the location at time t of agent k belonging to team c. The
location i may be a single variable or a vector, depending on the geographic represen-
tation that is being used, e.g. the (x, y, z) coordinates of a location on a map, where z
may represent elevation when this is relevant. Thus in a two-dimensional coordinate
space, a location will be denoted by i=(x(i),y(i)) and a neighboring location will be
denoted by some j=i+d where)}1,1(),1,0(),0,1(),0,0{(±±±±∈d . It is assumed that each

agent has an initial location denoted by S(c, k), and it may have (though this is not
necessary) a final destination D(c, k). We also assume that agents may die as a result
of adversarial effects, or for other reasons, in which case they are relocated to
“heaven” denoted by H. For the purpose of this model, we assume that there is just
one heaven for everyone.
 The mathematical model we develop aims at being able to compute, over a large
number of experiments, quantities such as the probability q(i, c, k) that agent k of
team c is in location i. Such probabilities will also be used to compute indirectly the
average time it may take certain agents to reach specific locations. The approach we
take is based on constructing an ergodic model, i.e. one which has a stationary prob-
ability distribution, so that:

]),,([lim),,(ikctgprobkciq
t

==
∞→

 (1)

3.1 Agent Parameters

In the model, the motion of an agent is a result of two parameters:

• Its speed or rate of movement, r(i, c, k) which will depend on its location (reflect-
ing the geographic characteristics of its location)

• The direction of this movement which will be denoted by the probability p(i, j, c,
k) that agent (c, k) moves from i to j.

In this study, we assume that locations i and j are adjacent, in which case dij +=

where d is one of the nine cardinal directions from i, including d=(0, 0) which means
that the agent has not moved at all.
 The direction of motion for any one of the agents is determined by:

• the objectives or final destinations of the agents, when applicable, as expressed
by a force of attraction

• the interaction between agents, as expressed by forces of attraction and repulsion
• the physical obstacles in the terrain, or the specific terrain related difficulties

which may discourage or motion in a particular direction

In addition to motion, interaction between the agents is exhibited by their ability to
destroy the others. Each agent (c, k) has a set of enemies, E(c, k), that it tries to de-
stroy, a shooting range R(c, k) within which it is able to destroy an adversary, and a
firing rate f(c, k). Of course, these parameters may be identical in certain cases for all

 G-Networks and the Modeling of Adversarial Agents 333

agents belonging to the same class or adversary team. In our model, the concept of
enemy need not be reciprocal, i.e.)','(),(kcEkc ∈ does not necessarily im-

ply),()','(kcEkc ∈ .

3.2 Forces

We use the cumulative-force exercised on an agent to determine its motion probabili-
ties p(i, j, c, k), which define the direction of motion. Let Forces(c', k', c, k) be the
force exercised on agent (c, k) by agent (c', k'). A positive coefficient implies that
agent (c, k) is attracted to agent (c', k'), whereas a negative coefficient implies that
agent (c, k) is repulsed by agent (c', k'). The strength of an inter-agent force varies
with the distance of the two agents. The destination of an agent, D(c, k), if one exists,
also exercises an attractive force G(i, d, c, k), which may also vary across the terrain.
 The net force v(i, d, c, k) exerted on agent (c, k) at location i in direction d is com-
puted as follows, where the function 0),(>jidist represents the way that the force

component changes with the distance between agents. The set L(i, d) represents all
locations at direction d from i in the terrain and d is defined as)}({ ijdirectiond −= .

),,,(
),(

)',',(),,','(
),,,(

)','(),(

kcdiG
jidist

kcjqkckcForces
kcdiv

kcall diLj

+=
∈

(2)

 Let O(i) be the set of neighbors of i which do not contain obstacles. In the process
of obtaining motion probabilities, we introduce an adjusting factor to assist re-
normalizing v(i, d, c, k) to positive values. The adjusting factor is set in a way that it
has a trivial impact on the accuracy of the motion probabilities. Let V(i, c, k) be the
sum (numerical) of forces exerted on an agent from all the directions. It can be repre-
sented as:

∈
=

)(

|),,,(|),,(
iOd

kcdivkciV
(3)

 The motion probability, p(i, j, c, k), is defined in equation (4), which also allows us
to take d= (0,0), i.e. the probability of staying in the current location. This of course
raises the issue of certain agents getting “stuck” in a place from which they will not
move away until conditions related to other agents have changed.

=
≠∈

∉

+

+
=

)0,0(

)0,0(),(

)(

),,(

0
),,(

),,,(

),,,(

dif

diOdif

iOdif

factorkciV

factor

factorkciV

kcdiv

kcjip

(4)

3.3 Conditions Under Which the Simulation Game Ends

We consider that the simulation game ends when some subset of agents, for instance
any one of the agents of some class c, reaches some pre-selected set of positions,
which may include their destinations. Alternatively, the game may also end when

334 Y. Wang

some agents reach heaven (i.e. when they are killed). To formalize the terminating
conditions, we define a final state set F(c, k) for the agent (c, k) as a subset:

}{}{),(HjlocationskcF ⊆ (5)

It is also possible that φ=),(kcF , in which case this means that this particular agent

does not influence the time at which the simulation ends. The terminating condition F
is then simply:

),(),(kcFF kcall∪= (6)

and the interpretation we give to it is that:

φ≠∈∃⇔),(),,(),,(),,(kcforFkcFktcgkciftAtEndsSimulation (7)

 When a game attains its terminating condition, after some random time of average
value 1 (this value is chosen for the purpose of normalization), each agent (c, k) (in-
cluding the agents that made it to heaven), will move instantaneously to its initial
location S(c, k), and the game will start again at rate Rstart. For the purpose of this
mathematical model, this cycle repeats itself indefinitely. This allows us to compute
ensemble averages that are of interest. We assume that in the class of games, either
some agent of some designated class(es) reach their destination, or all agents of des-
ignated class(es) reach heaven. Thus, we exclude situations where all agents become
blocked and cannot move any further, or enter cycles of behavior which exclude the
agents’ demise, or that impair their ability to attain their destinations.
 The terminating probability T is defined as the stationary probability that the model
is in the terminating state:

)],(),,([lim),(kcFkctgprobT kcall
t

∈∨=
∞→

 (8)

Similarly we define:

)]','()',',([lim),(),(),(kcFkctgprobkcT kckcall
t

∈∨= ≠→∞
 (9)

Thus T(c, k) is the stationary probability that the game is in the terminating state,
given that agent (c, k) is already in a final state. Suppose now that we wish to compute
the expected time it will take some specific agent (c, k) to reach some specific loca-
tion . In that case we would set }{),(γ=kcF , and the terminating probability, T,

becomes),,(kcq γ . We then have:

),,(
1

kcq γ
τ = (10)

3.4 Model Equations

The equations that describe the overall long-term behavior of the system are obtained
heuristically based on the equations satisfied by the stationary probability distribu-
tions of G-networks [7]. We heuristically, but plausibly, choose to relate the q(i, c, k)
to each other and to the agents' parameters via the following equations:

 G-Networks and the Modeling of Adversarial Agents 335

++−
+

=

∈
−

+

∈
++−

+

=
∈ ≠

otherwise
kciMutaRatekciKilledkciipkcir

kciMutaInkciNeighbors

Hiif
Rstart

kciKilledkciq

kcDiif
kciipkcir

kciMutaInkciNeighbors

kcSiif
kciMutaRatekciKilledkciipkcir

kciNeighborsRstart

kciq
kcEkc Hji

,
),,(),,(),,,(1)(,,(

),,(),,(

,

),,(),,(

),(,
)),,,(1)(,,(

),,(),,(

),(,
),,(),,()),,,(1)(,,(

),,(

),,(
)','(),(,

≠∉

+++=
)0,0(),9

),,,(),,(),,(),,(
diOd

kcidipkcdirkcdiqkciNeighbors

∈

≤−=
jkcEkc

kcfkcRijkcjqkciKilled
),','(),(

)','()]','(|[|1)',',(),,(

≠∉

++=
)0,0(),(),','(

)',',,()',',()',',(),,(
diOdkc

kcdiipkcdirkciqkciMutaIn

(11)

 In addition, we use the normalizing condition that the states that the sum of the
probabilities that any given agent is at any one of the locations (including “heaven”)
is one. Thus for any (c, k) we have:

=
i

kciq 1),,(
(12)

You might have noticed that the Rstart rate is not defined in the above equation. Our
approach is versatile in the sense that it provides insights into various aspects that are
of interest based on one set of system equations. Therefore, the condition under which
the process repeats itself is defined accordingly. For example, with the same model,
we can examine the impact that the initial locations have on the average time that
agents take to complete their tasks, the average time of a specific agent achieving its
goal or the average percentage of a team achieving its goal.

3.5 Scenarios and Obtained Results

We have experimented with scenarios where agents of the same class travel towards
their goals in the system. Results show that the model converges quickly and the in-
ter-agent forces have impacts on the agents’ performance depending on their strength.
The detail of those scenarios and corresponding results can be found in [18].
 After our initial success with a single agent class, we incorporate collaborating and
competing behaviors into the model by introducing multiple agent classes, in other
words, adversary teams. We demonstrate such models with a system containing three
agents of different adversary teams: civilian (agent 1), terrorist (agent 2) and police
(agent 3). The civilian’s aim is to reach its destination alive with the help of the po-
lice. The police fights against the terrorist so that it will not kill the civilian. The ter-
rorist attacks anybody who prevents it from killing the civilian. Both the police and
the terrorist are only capable of attacking their enemies within a certain range. The
collaborating and competing behaviors are not necessarily symmetrical, as illustrated
in this scenario. The scenario repeats itself either when agent 1 is dead or arrives at
its goal. Therefore the Rstart Rate has the numerical value of Max[q(H, c, k), q(D
(c, k), c, k)].

336 Y. Wang

 The detail of the scenario is as follows: in a 15×15 terrain, the agents’ initial loca-
tions are (7,14) for the civilian, (5,2) for the terrorist and (13,2) for the police. The
civilian has a stationary destination, location (14,14), whereas the police and the ter-
rorist have motion-oriented goals. The nature of the terrorist attracts it towards the
civilian and keeps it away from the police. The civilian travels towards its goal and
avoids being killed by the terrorist. The police is attracted by the terrorist more than
the civilian, simply because its task is to prevent the civilian from being killed.

Fig. 1. Estimated time of events occurrence

 Technically, the police and the terrorist are identically equipped except the police
fires twice as frequently as the terrorist. Due to this nature, we expect the terrorist
stands a higher chance of being killed by the police than killing the police. The result
(See Fig 1) shows that, as a result of receiving help from the police, the civilian stands
a higher chance of reaching the goal (55.5%) than being killed (44.5%). The reason
that the police does not have a very big impact on the situation is that it takes times
for the police to approach the terrorist. The result indicates that, on average, it takes
32 steps for the terrorist to kill the police and 15 steps for the police to kill the terror-
ist. This is inline with our predictions. As one might have noticed, for this scenario,
the algorithm converges at around 50 iterations, which is shorter comparing with
obtaining the average statistics from the simulator.
 As mentioned before, the police and the terrorist have the same technical character-
istics except their shooting rates. So if they have identical settings, it should take the
same amount of effort to kill each other. We therefore assign them with the same
shooting rate and see how that affects the outcome. Results confirm that, the esti-
mated time of the police and the terrorist killing each other is the same.
 In military planning, one often has to consider the trade-off between protection and
agility. Weakening the protecting capacity of the police gives the terrorist more
chances to launch attacks; however, it offers advantages such as agility and low con-
sumption. Depending on the nature of the task, the police forces may have different
focuses. With our approach, we can easily compare alternative strategies and select
one that addresses our needs best.

 G-Networks and the Modeling of Adversarial Agents 337

 Now we illustrate how mutation is modelling with an example of a system consist-
ing of two agents. We restrain the two agents from interaction, so that mutation is the
dominating factor of the outcome. The agents locate at (2,2) and (8,8) respectively.
Agent 1 plans to go to (4,4) and agent 2 travels towards (14, 14). The two agents are
identical apart from the fact that agent 1 has the mutating ability. With mutation rate
a, agent 1 mutates and exhibits the same behaviour as agent 2. Thus after mutating,
agent 1 will start pursuing agent 2’s goal.
 The following table (See Fig 2) shows how the estimated time of un-mutated agent
1, mutated agent 1 and agent 2 reaching their destinations. For example, with muta-
tion rate 0.6, on average, 73% of the time agent 1 carries out an alternative task,
which requires 6.35 unit time to complete, whereas 27% of the time, agent 1 preserves
its nature and arrives its goal at 10.66 unit time. This feature is significant in task
planning, where by altering parameters, one could “foresee” how fast multiple goals
can be achieved with a reasonable overhead, if such need rises during the mission. In
this case, if the team has to be split to achieve different tasks without too much over-
head, mutation rate 0.4 can be a good choice.

Fig. 2. Estimated time of an agent reaching its goal (with different mutating rate)

 During the experiments, we have also discovered that our approach can be used to
model systems at different levels of abstraction. For example, 1 agent in the mathe-
matical model does not necessarily represent a single agent; instead, it can represent a
certain number of agents, say 150. From another perspective, we can also estimate the
outcome of a larger terrain by modelling a smaller terrain with similar na-
tures/characteristics, as presented in [14]. The approach is also validated again a
simulator that was developed in our group. Results [14] show that, despite the magni-
tude discrepancy, the mathematical model is inline with the statistics collected in the
simulator.
 So far, the features that our approach offers are desirable. However, it is assumed
so far is that we can calculate the probability q(i, c, k) (and therefore the estimated
time for events). This is not always the case for large scale autonomous systems
which are known for their uncertainties and complexities. We have also proposed a
method [17,19] to overcome situations where a complete knowledge of the system is
not available. This method estimates the agents’ motion probability using historical
observation records.

338 Y. Wang

4 Conclusions

In this paper, we have presented a stochastic approach based on G-Networks, which
models large scale agent systems. The approach models systems containing collabora-
tion, competition and mutation under the condition that complete information of the
system is available. We first described the systems of interest, the mathematical
model and demonstrated the approach with some scenarios of military planning in
urban environments. Results show that our approach identifies the parameters that
strongly influence the agents’ performance and allows us to compare alternative
strategies at low computational cost. We then proposed an extension to the model
which deals with systems where complete information is not readily available.
 We plan to incorporate behaviors such as reproduction into the model so that it can
be applied in fields such as system biology. After the initial success of obtaining the
motion probability via observation, we are investigating how to deduce agents’ inten-
tion via similar means. This undoubtedly will reduce the dependence of model to the
system’s knowledge.
 In reality, obstacles in urban environment have an impact on an agent’s behavior.
For example, a building might be an obstacle for a car but not a pedestrian. Therefore
we plan to change the obstacles so that they have different impact on agents' behav-
iors and incorporate the wall following method mentioned in [18] to deal with the
local-minima problem. In doing so, we are able to model more realistic urban scenar-
ios. Theoretical wise, we aim to study the computational constraints related to re-
sources or time-frame, as well as conduct an extensive exploration on modelling large
scale agent systems at different abstraction levels.

References

1. Amin, K.A., Mikler, A. R: Dynamic Agent population in Agent-Based Distance Vector
Routing, in Proceedings of the Second international workshop on Intelligent systems de-
sign and application. (2002) 195-200

2. Burmeister, B.: Models and methodology for agent-oriented analysis and design, in K.
Fischer (Eds) Working Notes of the KI'96 Workshop on Agent-Oriented Programming and
Distributed Systems. (1996)

3. Cysneiros, L.M., Yu, E.: Requirements Engineering for Large-Scale Multi Agent Systems,
Software Engineering for Large-Scale Multi-Agent Systems: Research Issues and Practical
Applications, Vol. 2603. (2003) 39-56

4. Huang, G., Abur, A., Tsai, W.K.: A Multi-level Graded-Precision Model of Large Scale
Power Systems for Fast Parallel Computation, Mathematical computing modelling, Vol.
11. (1998) 325-330

5. Kinny, D., Georgeff, M., Rao, A.: A Methodology and modelling technique for systems
for BDI agents, in W. van der Velde and J. Perram (Eds). Agents Breaking Away: Pro-
ceedings of the Seventh European Workshop on Modelling Autonomous Agents in a
Multi-Agent World MAAMAW'96, Vol. 1038. (1996) 56-71

6. Gelenbe, E.: Random neural networks with positive and negative signals and product form
solution, Neural Computation, Vol. 1(4). (1989) 502-510

7. Gelenbe, E.: G-networks with instantaneous customer movement, Journal of Applied
Probability, Vol. 30 (3). (1993) 742-748

 G-Networks and the Modeling of Adversarial Agents 339

8. Gelenbe, E.: G-Networks with signals and batch removal, Probability in the Engineering
and Informational Sciences, Vol. 7. (1993) 335-342

9. Fourneau, J. M., Gelenbe, E., Suros, R.: G-networks with multiple classes of positive and
negative customers, Theoretical Computer Science, Vol. 155. (1996) 141-156

10. Gelenbe, E., Labed, A.: G-networks with multiple classes of signals and positive custom-
ers, European Journal of Operations Research, Vol. 108(2). (1998) 293-305

11. Gelenbe, E., Hussain, K., Kaptan, V.: Simulating the navigation and control of autono-
mous agents, in Proceedings of the 7th International Conference on Information Fusion.
(2004) 183-189

12. Gelenbe, E., Hussain, K., Kaptan, V.: Enabling Simulation with Augmented Reality, in
Proceedings of the International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. (2004) 290-310

13. Gelenbe, E., Kaptan, V., Wang, Y.: Simulation and Modelling of Adversarial Games, in
the Proceedings of the 6th European GAME-ON Conference on Simulation and AI in
Computer Games. (2005) 40-44

14. Gelenbe, E., Wang, Y.: A mathematical approach for mission planning and rehearsal, to
appear in the Proceedings of SPIE Defence & Security, Orlando. (2006)

15. Gelenbe, E., Wang, Y.: A Trade-off between Agility and Resilience, in Proceedings of the
13th Turkish Symposium on Artificial Intelligence and Neural Networks. (2004) 209-217

16. Gelenbe, E., Kaptan, V., Wang, Y.: Biological Metaphors for Agent Behavior, in the Pro-
ceedings of the 19th International Symposium on Computer and Information Sciences,
Lecture Notes in Computer Science, Vol. 3280. (2004) 667-675

17. Gelenbe, E., Wang, Y.: Modelling Large Scale Autonomous Systems, Accepted to Fusion
2006. (2006)

18. Wang, Y.: Numerical Modelling of Autonomous Agent Movement and Conflict, to appear
in Computational Management Science. (2006)

Development of a Neural Net-Based,
Personalized Secure Communication Link

Dirk Neumann1, Rolf Eckmiller1, and Oliver Baruth1

Department of Computer Science, Division of Neural Computation, University of
Bonn, Römerstr. 164, 53117 Bonn, Germany,

{neumann, eckmiller, baruth}@nero.uni-bonn.de,
http://www.nero.uni-bonn.de

Abstract. This paper describes a novel ultra-secure, unidirectional
communication channel for use in public communication networks, which
is based on

a) learning algorithms in combination with neural nets for fabrication
of a unique pair of modules for encryption and decryption, and

b) in combination with decision trees for the decryption process,
c) signal transformation from spatial to temporal patterns by means of

ambiguous spatial-temporal filters (ST filters),
d) absence of public- or private keys, and
e) requirement of biometric data of one of the users for both generation

of the pair of hardware/software modules and for the decryption by
the receiver.

To achieve these features we have implemented an encryption-unit (EU)
using ST filters for encryption and a decryption unit (DU) using learning
algorithms and decision trees for decryption.

1 Introduction

To establish a secure communication via a public network (e.g. www) several
methods like VPN or SSH are known. All of these methods use a private key to
ensure private communication [9], [13]. With the willingness of everyone to use
public networks even for very private activities, e.g. information exchange with
the medic institute or transactions with your credit institute via the www, the
demand on easy to use encryption systems with integrated authentication arises.
To enhance the acceptance of a new secure communication environment, the
user should not keep an additional password in mind, but rather use his always
available biometric identification [5], [15]. The proposed secure communication
environment uses biometric data of an owner to establish an individually secured,
encrypted point-to-point communication [1], [6]. To achieve this ultra secure
communication several different modules have to be developed, some running
in software on a normal PC, others being realized on special hardware (e.g.
PCMCIA FPGA Card) [18], [17].

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 340–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Neural Net-Based, Personalized Secure Communication Link 341

2 Generation of a Unique Pair of Hardware/Software
Encryption- and Decryption Units

The secure communication environment consists of a software component, two
hardware components and one biometric input device, e.g. fingertip sensor (see
Fig. 1) [11]. Initally, the functionality of the system parts is not given.

Fig. 1. System components of the secure communication environment. Two special
hardware modules (preferably as programmable FPGA PCMCIA cards, depicted as 1
and 2) are programmed by a computer. A special software is used to allow biometric
data to be the input to a learning module (LM) whereas the biometric data is acquired
via a fingerprint sensor. The learning module LM1 is used in a interative tuning pro-
cedure to generate two different complementary algorithms which will be embedded in
the hardware modules forming a unique pair of functional complementary modules.

In a first step, the owner of the hardware kit uses a normal PC to manufacture
a unique pair of hardware modules (e.g. PCMCIA FPGA Boards, intelligent
smart cards) [3]. Later, these cards are essential to build the encryption unit
(EU) and the decryption unit (DU). In this step the biometric data of an owner
is acquired via a biometric input device. This data is used as an individual
modulation vector (MV) which defines the parameter of the algorithm, of the
used spatial temporal filters (ST filter) in the EU.

These filter algorithms will be implemented in hardware on a special module.
Additional to the modulation vector a random part (random vector RV) exists
like the salt value for hash calculations [9] so that an owner will never generate
two identical encryption units. RV is not used for the ST filter algorithm, but
rather to deform shape and geometrical arrangement of the original concentric
symmetric detection zone (DZ) of the ST filters.

342 D. Neumann, R. Eckmiller, and O. Baruth

In a second step the learning module one (LM1) is used to train iteratively
a neural network (MLP) in order to define the geometrical arrangement by RV
back to original concentric symmetric DZ [10], [14]. For security reasons the
function of the neural net will be implemented in the second hardware module,
which is used in the decryption unit.

Fig. 2. Left part: A personal computer uses the first hardware module (EM) with
its embedded encryption functions. On this hardware module an additional software
component is placed in a flash-memory subunit which is used by the PC to act as
encryption unit (EU). Right part: A second PC uses the second hardware module
(DM) including another software component to form the decryption unit (DU). These
two units can use a public network for communication purposes.

An other approach to generate two complementary functions for DU and EU
uses only very view (e.g. only one, or defined by RV) ST filters in the encryption
unit (EU) which are moved along a trajectory defined by the random vector RV.
In this the case the complete input area has to be covered at least two times.
In this case the learning module (LM1) is used to find a representation of this
trajectory which can be used by the decryption unit (DU).

The second hardware module also includes a special learned decision tree [10]
which uses the ST filter output functions as input and reconstructs the original
input data. This decision tree has to know about the used ST filter properties in
EU, which are defined by MV. Whereas MV will be acquired via the biometric
input device [12]. The required biometric input data (MV) during the decryption
process prevent DU from unprohibited usage.

After these two steps the two hardware modules can be used in different
locations. The first hardware module connected to a PC forms the encryption
unit and the second hardware module connected to an other PC with a biometric
input device forms the decryption unit.

3 Encryption Specifics

The encryption unit (EU) is based on the usage of different ST filters. These
ST filters have their own assigned detection zone (DZ), which is used to acquire
data as a binary input. This binary data can be taken from a black and white
picture. Each ST filter does its own data processing (the calculation can be

Neural Net-Based, Personalized Secure Communication Link 343

scheduled in parallel) on the acquired data; this computation uses two different
independent calculation routines, one for the center and one for the surrounding
[2], [4]. The center pixels are indicated as C and the surrounding pixels as S (see
Fig. 3).

output

S3

S4

S1 S2

C1S6

S5

a) S1

S5

S4

S6

S2

S3

C1

b)

output

Fig. 3. (a) Example of a simple ST filter with concentric symmetric detection zone
(DZ) to show the functionality. This DZ uses one input value for the center calculation
(indicated as C1) and six input values for the surrounding calculation (indicated as
S1, . . . , S6). (b) ST filter with a more spreading DZ which arises from the concentric
symmetric DZ shown in (a) by a transformation depending on a random vector (RV).

Each routine uses a weighting (indicated as +, −) of the binary data and then
calculates the sum over the corresponding center- and surrounding values. The
temporal properties of each ST filter are implemented by means of FIR filters
[7]. These ST filters are constructed in such a way that several input patterns
will generate the same output value. This gives us a simple ’one way function’
[9] because if we only have the output of one ST filter, we cannot calculate the
original input pattern. This means that an ST filter always creates ambiguity
and we cannot clearly dissolve the ambiguity of an individual ST filter. Now, if
we use a special set of ST filters which have to fulfill defined conditions, we can
clearly reconstruct the original input pattern [8], [16]. This reconstruction can
only be done if all properties of the used ST filters are known. This means that
our modulation vector (MV) is a very essential part for this calculation. These
ST filters are chosen among a defined set of ST filter classes. These filter classes
are defined by MV, and each ST filter is assigned to one class by MV. Each
ST filter class has its own properties concerning the detection zone and the time
response.

Additional to these requirements we have to define conditions for the arrange-
ment of the detection zones used by the ST filters. The ST filters must be
arranged over the whole input pattern, so that each pixel is covered of at least
two detections zones of different ST filters. If we have ST filters with only one
center pixel, then this center pixel needs not to be covered by an additional
ST filter. For example, if we use three different classes of ST filters and each
filter class has one center pixel and six surrounding pixels, we get a placement
shown in Fig. 5a. We see that the surrounding pixels in the middle of the three
ST filters, are each covered by two adjacent ST filters.

If we have more ST filters in a pixel plane and if we have three different
ST filter classes, we could assign them to the used filters in a fashion shown

344 D. Neumann, R. Eckmiller, and O. Baruth

in Fig. 5b (this example tiling we call basic tiling). This assignment is defined
by MV. To make the encryption unit unique and independently from the used
biometric data we use the random vector (RV) to deform the shape and to change
the spread of each used ST filter (see Fig. 3b). Whereas these two vectors are
embedded in the algorithm, which are embedded in the hardware boards and
calculate the ST filter functions.

Fig. 4. The encryption unit (EU) uses the black and white picture showing a picture
of a Inca mask as input. The spatial information of this picture is transformed into
a pure temporal data stream by means of FIR filters, depicted by t1, . . . , tn. This
data stream is received by the corresponding decryption unit (DU) which reconstruct
the original picture/spatial information by using of additional information extracted
from the biometric input device. Upper part: EU uses the embedded algorithms of the
encryption module (EM) to calculate the temporal data stream. The reconstruction of
the original data stream fails because of the missing biometric input, and the decrypted
image only shows a random image. Bottom part: The EU encrypts the data as described
above. The DU is now able to reconstruct the original data, depicted as the Inca mask,
with the additional biometric information acquired via the biometric input device.

4 Decryption Specifics

The decryption unit (DU) uses the second hardware board and a biometric input
device to reconstruct the original data out of the encrypted data stream. Thereby
the hardware board is used to reconstruct the original arrangement of each
ST filter detection zone. The software component including a second learning
module (LM2) uses the biometric input device to acquire the modulation vector
(MV) and uses it as additional input for a special decision tree (DT). The DT
will help to reconstruct the input pattern from the beginning. The biometric
input is an essential part of the decryption unit which gives us the possibility to
use DU only if we are the owner and only if we permitted to do that.

Neural Net-Based, Personalized Secure Communication Link 345

a) b)

C1 C2

C5

C3

C8

C11

C13 C16

C4

C6

C9 C12

C14

C10

C7

C15

C1 C2

C3

Fig. 5. (a) Example of an ST filter placement showing three different ST filter classes.
Each surrounding pixel is covered by at least two different ST filters. The center values
are only covered by one ST filter, thereby Ci indicates the center of ST filter i (b)
Possible assignment of ST filter to three available ST filter classes over the entire
input, fulfilling the properties mentioned for (a). For simplicity reasons only the center
values of each ST filter are indicated.

In some cases the information of the ST filters are not sufficient to recalculate
the input pattern clearly, so there is an additional part in the software solution
which will request an additional set of ST filter outputs. This additional ST filter
output is the result of a second calculation of the ST filter, where the position
of all ST filters is shifted by one pixel (one bit) in a direction which is specified
by DU. In this configuration the decryption unit with its unique second hard-
ware board can only decrypt data which was generated by the corresponding
encryption unit, using the corresponding unique first hardware board derived
from the initial tuning/manufacture process described above. This means that
we have authentication functionality within this unique pair of hardware boards
working in the EU and the DU. Somebody can authenticate himself by using the
EU to send an encrypted message to the DU, because the DU is only capable to
decrypt messages from the corresponding EU.

5 First Simulation Study

To show the feasibility we have implemented a basic version of this proposed
secure communication environment. This basic version (see Fig. 6) can be used
to test various parameters of the used algorithms. Our implemented encryption
unit uses a black and white picture with a resolution of 32x32 pixels as input data
(PIn). For the used ST filters we developed three different classes, each with the
same geometric expansion of the detection zone. The parameter of the weighting
and the parameter for the time response were different. For the distribution of
the ST filters we used the basic tiling (see Fig. 5b).

To cover the complete input pattern with ST filters it is necessary to use
17x17 of them, each chosen from the three ST filter classes. To transmit the

346 D. Neumann, R. Eckmiller, and O. Baruth

DUEUPattern PIn

CC
TP(t)

ST1

Pattern POut

MV

DT

LM2

ST2

STn

Fig. 6. Schema of the secure communication environment showing the input pattern
P1 scanned by the ST filter ensemble implemented in the encryption unit (EU); this
ensemble consists of n ST filters. The calculated temporal data stream output TP(t) of
the DU is transmitted via a communication channel CC to the decryption unit (DU).
DU use TP(t) with external information obtained via the modulation vector (MV) to
use the second learning module (LM2) and a decision tree (DT) to reconstruct the
output pattern P2 equal to P1.

output of these ST filters we can use the standard TCP/IP protocol or we can
save the output in a file. For the decryption unit we have implemented a trans-
ceiver to gather the transmitted encrypted data. This data gets into the initially
trained neural net which arranges the detection zones for the postprocessing.
The following decision uses the modulation vector to get information of the used
ST filters (defined ST filter classes and assignment of each ST filters to one of
them). As a result of this learned decision tree we get a 32x32 pixel black and
white picture POut clearly identical to the input picture (see Fig. 7). The im-
plemented decision tree needs, only one additional output from the ST filters to
reconstruct the picture, where the filters are shifted by one pixel. The runtime of
the decision tree is independent of the used ST filter to ST filter class assignment
and independent of the input pattern.

We have shown that single ST filters which produce ambiguity and thus are
not clearly invertible can be used in ensembles to allow us to reconstruct the
original input. Therefor the used detection zones must fulfill several require-
ments. With the currently implemented three different ST filter classes, a pair of
encryption- (EU) and decryption unit (DU) could be created using the random
vector (RV) to get a unique EU-DU pair. This EU-DU pair has an embedded
authentication feature and can be used for authentication purposes. The modu-
lation vector (MV) can be used to establish a usage of the DU only if the owner
uses its own fingerprint to permit this. For future steps we will implement more
types of ST filter classes with differently shaped detection zones. Furthermore
these detection zones will overall use more pixels for their calculations.

Another meaningful extension could be a bidirectional communication be-
tween two geographically spread locations. For this purpose we have to integrate
an encryption- and a decryption unit in one system or better in one hardware
board, where encryption- and decryption algorithms are placed in one system. In

Neural Net-Based, Personalized Secure Communication Link 347

Fig. 7. Screen shot of the working decryption unit (DU). It uses the information from
the modulation vector (MV) for decryption and finally shows the window of the de-
crypted image, in this case a black and white picture of π.

this case, encryption and decryption should have different modulation vectors.
Thereby we have two different pairs of EU-DU combined in one system.

6 Conclusions

1. The application of ambiguous spatial-temporal transformations in combina-
tion with learning algorithms offers a novel mechanism for encryption and
decryption.

2. The combination of unique hardware pairs for encryption- and decryption
units with embedded biometric data allows an ultra secure unidirectional
communication via public networks.

References

1. O. Baruth, R. Eckmiller and D. Neumann, “Retina encoder tuning and data en-
cryption for learning retina implants,” Proc. of the Int. Joint Conf. on Neural
Networks, (IJCNN) 2003, Vol. 1, pp. 1249-1252, Portland, Oregon, 2003.

2. E.A. Bernardete and E. Kaplan, The dynamics of primate M retinal ganglion cells,
Visual Neuroscience, 16 pp. 355-368, 1999.

3. T.C. Clancy, N. Kiyavash and D.J. Lin, “Secure Smartcard-Based Fingerprint Au-
thentication, ” ACM SIGMM 2003 Workshop on Biometrics Methods and Appli-
cations, pp. 45-52, 2003.

4. D.W. Dong, “Spatiotemporal Inseparability of Natural Images and Visual Sen-
sitivities,” in Computational, neural and ecological constraints of visual motion
processing, (page 371-380), Edited by J.M. Zanker and J. Zeil, Berlin: Springer,
2001.

348 D. Neumann, R. Eckmiller, and O. Baruth

5. J. Daugman, The importance of being random: statistical principles of iris recog-
nition, Pattern Recognition, 36 pp. 279-291, 2003.

6. R. Eckmiller, O. Baruth and D. Neumann, “Method and Device for Decryption-
Secure Transfer of Data”, PCT Patent Application, PCT WO 2004021694.

7. S. Haykin, Editor, Adaptive Filter Theory, New Jersey: Prentice Hall, 4th Edition,
2002.

8. R.J. McEliece, Editor, The Theory of Information and Coding, Cambridge: Cam-
bridge University Press, 2002.

9. A. Menezes, P. van Oorschot, and S. Vanstone, Editors, Handbook of Applied Cryp-
tography, Boca Raton: CRC Press, 1997.

10. T.M. Mitchel, Editor, Machine Learning, New York: McGraw Hill, 1997.
11. S. Parbhakar, P. Sharath, and K. Anil, “Biometric Recognition: Security and pri-

vacy concerns,” IEEE Security and Privacy Magazine, 1, pp. 33-42, 2003.
12. N. Ratha and R. Bolle, Editiors, Automatic Fingerprint Recognition Systems, New

York: Springer, 2004.
13. B. Schneier, Editor, Applied Cryptography: Protocols, Algorithms, and Source Code

in C, New York: John Wiley and Sohns, 2nd Edition, 1996.
14. J. Si, A.G. Barto, W.B. Powell, and I.D. Wunsch, Editors, Handook of Learning

and Approximate Dynamic Programming, Piscataway: IEEE Press and New York:
Wiley-Interscience, 2004.

15. C. Soutar. D. Roberge, A. Stoianov, R. Gilroy, and K.V. Kumar, “Biometric En-
cryption,” in ICSA Guide to Cryptography, (chapter 22), Edited by R.K. Nichols,
McGraw-Hill, 1999.

16. K.R. Rao and P.C. Yip, Editors, The Transform and Data Compression Handbook,
Boca Raton: CRC Press, 2001.

17. T. Wollinger, J. Guadjardo, and C. Paar, “Security on FPGAs: State-of-the-art im-
plementations and attacks”, ACM Transactions in Embedded Computing Systems,
Vol. 3, pp. 534-574, August 2004.

18. T. Wollinger and C. Paar, “Security aspects of FPGAs in cryptographic applica-
tion” in New Algorithms, Architectures, and Applications for Reconfigurable Com-
puting, (chapter 1), Edited by W. Rosenstiel and P. Lysaght, Dordrecht; Boston
;London: Kluwer Academic Publishers, 2004.

Exact Solutions for Recursive Principal Components
Analysis of Sequences and Trees

Alessandro Sperduti

Department of Pure and Applied Mathematics, University of Padova, Italy
sperduti@math.unipd.it

Abstract. We show how a family of exact solutions to the Recursive Princi-
pal Components Analysis learning problem can be computed for sequences and
tree structured inputs. These solutions are derived from eigenanalysis of extended
vectorial representations of the input structures and substructures. Experimental
results performed on sequences and trees generated by a context-free grammar
show the effectiveness of the proposed approach.

1 Introduction

The idea to extend well known and effective mathematical tools, such as Principal Com-
ponent Analysis, to the treatment of structured objects has been pursued directly (e.g.
[6,5]) or indirectly (e.g. [2,3,1]) by many researchers. The aim is to devise tools for em-
bedding discrete structures into vectorial spaces, where all the classical pattern recog-
nition and machine learning methods can be applied.

Up to now, however, at the best of our knowledge no exact solution for Recursive
Principal Components Analysis has been devised. Here we define sufficient conditions
that allow us to construct a family of exact solutions to this problem. Experimental
results on significantly large structures demonstrate the effectiveness of our proposal.

2 Recursive Principal Components Analysis

In [6] a connection between Recursive Principal Components Analysis and the repre-
sentations developed by a simple linear recurrent neural network has been suggested.
Specifically, a model with the following linear dynamics is considered:

yt = Wxxt +
√
αWyyt−1 (1)

where t is a discrete time index, xt is a zero-mean input vector, yt is an output vector,
α ∈ [0, 1] is a gain parameter which modulates the importance of the past history, i.e.
yt−1 , with respect to the current input xt, Wx and Wy are the matrices of synaptic
efficiencies, which correspond to feed-forward and recurrent connections, respectively.
In [6] it is assumed that the time series (xt) is bounded and stationary. The model is
trained using an extension of the Oja’s rule, however there is no proof that the proposed
learning rule converges to the recursive principal components.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 349–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 A. Sperduti

Here, for the sake of clearness, we consider the special case where α = 1. The
construction we are going to derive does not depend on this specific setting. We focus
on the following equations

xt = WT
xyt (2)

yt−1 = Wxxt−1 + Wyyt−2 (3)

= WT
yyt (4)

which have to be satisfied in order for the network to compute recursive principal com-
ponents, i.e. the sequence is first encoded using eq. (1), and then, starting from an en-
coding, it should be possible to reconstruct backwards the original sequence using the
transposes of Wx and Wy. In fact, the aim of recursive principal component is to find
a low-dimensional representation of the input sequence (or tree) such that the expected
residual error is as small as possible.

3 Exact Solutions for Sequences

For t = 1, . . . , T the following equations should be satisfied

xt = WT
x (Wxxt + Wyyt−1)︸ ︷︷ ︸

yt

= WT
xWxxt + WT

xWyyt−1 (5)

yt−1 = WT
y

︷ ︸︸ ︷
(Wxxt + Wyyt−1) = WT

yWxxt + WT
yWyyt−1 (6)

where it is usually assumed that y0 = 0. Sufficient conditions for the above equations
to be satisfied for t = 1, . . . , T are as follows:

WT
xWxxt = xt (7)

WT
yWxxt = 0 (8)

WT
yWyyt−1 = yt−1 (9)

WT
xWyyt−1 = 0 (10)

From eqs. (8) and (10) we deduce that the columns of Wx must be orthogonal to the
columns of Wy. Thus, the set of vectors vt = Wxxt must be orthogonal to the vectors
zt = Wyyt, since the vectors xt and yt are projected onto orthogonal subspaces of
the same space S. From this observation it is not difficult to figure out how to define a
partition of S into two orthogonal subspaces. Let s be the dimensionality of S. Since
vt represents the current input information, while zt represents the “history” of the
input, we can assign the first k dimensions of S to encode vectors vt, and the remaining
(s − k) dimensions to encode vectors zt. This can be done by setting to 0 the last
(s− k) components for vectors vt, while setting to 0 the first k components for vectors
zt. Moreover, if we chose k to be equal to the dimension of xt and s = k(q +1), where
q is the depth of the memory we want to have in our system, we can define vectors
vt ∈ S as

vT
t ≡ [xT

t ,0
T, . . . ,0T︸ ︷︷ ︸

q

] (11)

Exact Solutions for Recursive Principal Components Analysis 351

where 0 is the vector with all zeros of dimension k, and vectors zt ∈ S, with t ≤ q to
explicitly represent the history, according to the following scheme

zT
t ≡ [0T,xT

t , . . . ,x
T
1 ,0

T, . . . ,0T︸ ︷︷ ︸
(q−t)

] (12)

Using this encoding, yt ∈ S is defined as

yT
t = vT

t + zT
t−1 = [xT

t , . . . ,x
T
1 ,0

T, . . . ,0T︸ ︷︷ ︸
(q−t+1)

]. (13)

Recalling that zt = Wyyt, it becomes evident that the function implemented by Wy
is just a shift of k positions of the yt vector, i.e.

Wy ≡
[
0k×kq 0k×k

Ikq×kq 0kq×k

]
, (14)

and recalling that vt = Wxxt, we have

Wx ≡
[
Ik×k

0kq×k

]
. (15)

It can be readily verified that the defined vectors and matrices satisfy eqs. (7)-(10). In
fact, eq. (7) is satisfied since WT

xWx = Ik×k, while eqs. (8) and (10) are satisfied
because by construction the columns of Wx are orthogonal to columns of Wy, and

finally eq. (9) is satisfied since WT
yWy =

[
Ikq×kq 0kq×k

0k×kq 0k×k

]
and all yt, t = 0, . . . , T −

1, have the last k components equal to 0.
The problem with this encoding is that s is too large, and information is not com-

pressed at all. This problem can be easily fixed by computing the principal components
of vectors yt.

Let

ȳ =
1
T

T∑
i=1

yi and Cy =
1
T

T∑
i=1

(yi − ȳ)(yi − ȳ)T = UΛUT (16)

where Λ is a diagonal matrix with elements equal to the eigenvalues of Cy, and U
is the matrix obtained by collecting by column all the corresponding eigenvectors. Let
Ũ ∈ Rs×p be the matrix obtained by U removing all the eigenvectors corresponding to
null eigenvalues. Notice that in some cases we can have p � s. Then, we have

ỹt = ŨT(yt − ȳ) and yt = Ũỹt + ȳ (17)

and using eq. (2)

ỹt = ŨT(Wxxt + Wyyt−1 − ȳ) (18)

= ŨTWxxt + ŨTWyyt−1 − ŨTȳ (19)

= ŨTWxxt + ŨTWy(Ũỹt−1 + ȳ) − ŨTȳ (20)

=
[
ŨTWx ŨT(Wy − Is×s)ȳ

] [xt

1

]
+ ŨTWyŨỹt−1 (21)

= W̃xx̃t + W̃yỹt−1, (22)

352 A. Sperduti

where x̃t ≡
[
xt

1

]
, W̃x ≡

[
ŨTWx ŨT(Wy − Is×s)ȳ

]
∈ Rp×(k+1) and W̃y ≡

ŨTWyŨ ∈ Rp×p.

3.1 Trees

When considering trees, the encoding used for z vectors is a bit more complex. First of
all, let us illustrate what happens for binary complete trees. Then, we will generalize
the construction to (in)complete b-ary trees. For b = 2, we have the following linear
model

yu = Wxxu + Wlychl[u] + Wrychr[u] (23)

where u is a vertex of the tree, chl[u] is the left child of u, chr[u] is the right child of u,
Wl,Wr ∈ Rs×s. In this case, the basic idea is to partition S according to a perfectly
balanced binary tree. More precisely, each vertex u of the binary tree is associated to a
binary string id(u) obtained as follows: the binary string “1” is associated to the root
of the tree. Any other vertex has associated the string obtained by concatenating the
string of its parent with the string “0” if it is a left child, “1” otherwise. Then, all the
dimensions of S are partitioned in s/k groups of k dimensions. The label associated to
vertex v is stored into the j-th group, where j is the integer represented by the binary
string id(u). E.g. the label of the root is stored into group 1, since id(root) =“1”, the
label of the vertex which can be reached by the path ll starting from the root is stored
into group 4, since id(u) =“100”, while the label of the vertex reachable through the
path rlr is stored into group 13, since id(u) =“1101”. Notice that, if the input tree is
not complete, the components corresponding to missing vertexes are set to be equal to
0. Using this convention, vectors vu maintain the definition of eq. (11), and are used
to store the current input label, i.e. the label associated to the root of the (sub)tree
presented up to now as input, while vectors zu are defined according to the scheme
described above, with the difference that the first k components (i.e., the ones storing
the label of the root) are set to 0.

Matrices Wl and Wr are defined as follows. Both matrices are composed of two
types of blocks, i.e. Ik×k and 0k×k. Matrix Wl has to implement a push-left operation,
i.e. the tree T encoded by a vector yroot(T) has to become the left child of a new node
u whose label is the current input xu. Thus root(T) has to become the left child of
u and also all the other vertexes in T have their position redefined accordingly. From
a mathematical point of view, the new position of any vertex a in T is obtained by
redefining id(a) as follows: i) the most significative bit of id(a) is set to “0”, obtaining
the string id0(a); ii) the new string idnew(a) =“1”+id0(a) is defined, where + is the
string concatenation operator. If idnew(a) represents a number greater than s/k then
this means that the vertex has been pushed outside the available memory, i.e. the vertex
a is lost. Consequently, groups which correspond to lost vertexes have to be annilated.
Thus, Wl is composed of (q + 1) × (q + 1) blocks, all of type 0k×k, except for the
blocks in row idnew(a) and column id(a), with idnew(a) ≤ s/k, where a block Ik×k

is placed. Matrix Wr is defined similarly: it has to implement a push-right operation,
i.e.: i) the most significative bit of id(a) is set to “1”, obtaining the string id1(a); ii) the
new string idnew(a) =“1”+id1(a) is defined. Matrix Wx is defined as in eq. (15).

Exact Solutions for Recursive Principal Components Analysis 353

Generalization of the above scheme for complete b-ary trees is not difficult. The
linear model becomes

yu = Wxxu +
b−1∑
c=0

Wcychc[u] (24)

where chc[u] is the c + 1-th child of u, and a matrix Wc is defined for each child. The
string associated to each vertex is defined on the alphabet {“0”,“1”, . . . ,“b-1”}, since
there are b children. The symbol b− 1 is associated with the root and b push operations
have to be defined. The new string associated to any vertex a in T , after a c-push
operation, is obtained by redefining id(a) as follows: i) the most significative symbol of
id(a) is set to c, obtaining the string idc(a); ii) the new string idnew(a) =“b-1”+idc(a)
is defined. E.g., if b = 5 and c =“3”, then i) the most significative symbol of id(a) is
set to “3”, obtaining the string id3(a); ii) the new string idnew(a) =“b-1”+id3(a) is
defined. Matrix Wc is defined by placing blocks Ik×k in positions (idnew(a), id(a))
only if idnew(a) ≤ s/k, where idnew(a) is interpreted as a number represented in base
b. Performing the eigenspace analysis, we obtain

ỹu = W̃xx̃u +
b−1∑
c=0

W̃cỹchc[u], (25)

where x̃u ≡
[
xu

1

]
, W̃x ≡

[
ŨTWx ŨT(

∑b−1
c=0 Wc − Is×s)ȳ

]
∈ Rp×(k+1) and

W̃c ≡ ŨTWcŨ ∈ Rp×p, c = 0, . . . , b− 1.
A problem in dealing with complete trees is that very soon there is a combinatorial

explosion of the number of paths to consider, i.e. in order for the machine to deal with
moderately deep trees, a huge value for s needs to be used. In practical applications,
however, the observed trees tend to follow a specific generative model, and thus there
may be many topologies which are never, or very seldomly, generated. For this reason
we suggest to use the following approach. Given a set of trees T, the optimized graph
GT [4] is obtained by joining all the trees in such a way that any (sub)tree in T is repre-
sented only once. The optimized graph GT, which is a DAG, is then visited bottom-up,
generating for each visited vertex v the set of id strings associated to the tree rooted
in v, thus simulating all the different push operations which should be performed when
presenting the trees in T to the machine. Repeated id strings are removed. The obtained
set P is then used to define the state space of the machine: each string is associated to
one group of k coordinates. In this way, only paths which appear in the set T (including
all subtrees) are represented, thus drastically reducing the size of s, which will be equal
to |P | × k. One drawback of this approach is that if a new tree with “unknown” paths
is presented to the machine, the vertexes which are reached by those paths are lost.

A final practical consideration concerns the observation that by introducing a dummy
vector ydummy = −

∑
i yi, eq. (25) is simplified since ȳ = 0, and the corresponding

derived weight matrices appear to be much more effective. In the experiments reported
in this paper, we have used this trick.

354 A. Sperduti

Fig. 1. Context-Free Grammar used in the experiments

4 Experiments

For testing our approach, we have considered the context-free grammar shown in
Figure 1, and already used by Pollack [2]. Sequences and corresponding parse trees
are randomly generated from the grammar, rejecting sequences longer than 30 items. In
all, 177 distinct sequences (and corresponding parse trees) are generated. Among them,
101 sequences are randomly selected for training, and the remaining 76 sequences are
used for testing the generalization ability of the machine. In Table 1 we have reported
some statistics about the data. The dataset for trees is obtained by considering the parse
trees corresponding to the selected sequences.

Sequences are composed of terminal symbols, which are encoded by 5-dimensional
“one-hot” vectors (i.e. k = 5). Since there are up to 30 items in a sequence, s =
150. Trees also include nonterminal symbols. In this case, symbols are represented
by 6-dimensional vectors (i.e. k = 6), where the first component is 0 for terminal
symbols and 3 for nonterminal symbols, while the remaining 5 components follow a
“one-hot” coding scheme. The state space S is obtained by computing the optimization
graph for the training set and generating all the possible paths following the procedure
described at the end of Section 3.1. In all, 351 distinct paths where generated, leading
to a final dimension for the state space equal to s = 6 × 351 = 2106. The computation
of the optimized graph also allowed the identification of 300 unique (sub)trees, thus
allowing us just to consider the same number of different non-null states. The dummy
state ydummy is used for both datasets to get zero-mean vectors.

The spectral analysis for sequences required 0.1 cpu/sec on an Athlon 1900+ based
computer, while it required 377.77 cpu/sec for trees. Results are shown in Figure 2. In
Figure 3 we have reported for the sequence dataset the error in label decoding (left) and
the mean square error for labels (right) plotted versus the number of used components.

Table 1. Statistical properties of the datasets

Dataset/Split # examples Max. Max. number Tot. number Tot. number
length (depth) item per example items unique (sub)trees

Sequences/Training 101 30 30 1463 -
Sequences/Test 76 30 30 1158 -
Tree/Training 101 14 59 2825 300
Tree/Test 76 15 59 2240 242

Exact Solutions for Recursive Principal Components Analysis 355

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

E
ig

en
va

lu
e

Component

Sequences Dataset

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 40 60 80 100 120

E
ig

en
va

lu
e

Component

Trees Dataset

Fig. 2. Eigenvalues for sequences and trees. The most significant eigenvalue, caused by the intro-
duction of ydummy , is not shown since it is very high (2197.62 for sequences, and 10781.63 for
trees), as well as null eigenvalues beyond the shown maximum x-value (Component).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 20 30 40 50 60 70 80 90 100

E
rr

or
 in

 L
ab

el
 D

ec
od

in
g

Number of Components

Sequences Dataset

Training
Test

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

M
ea

n
S

qu
ar

e
E

rr
or

 (
La

be
l)

Number of Components

Sequences Dataset

Training
Test

Fig. 3. Experimental results for sequences

The error in label decoding is computed as follows. Each sequence is first fed into the
machine, so to get the final state for the sequence. Then the final state is decoded so
to regenerate all the items (labels) of the sequence. A decoded label is considered to
be correct if the position of the highest value in the decoded label matches the position
of the 1 in the correct label, otherwise a loss of 1 is suffered. The final error is com-
puted as the ratio between the total loss suffered and the total number of items (labels)
in the dataset. The mean square error for labels is computed by considering the total
Euclidean distance between correct and decoded labels. The final result is normalized
by the number of total items. For sequences it can be seen that the machine exhibits
an almost perfect generalization capability. The same result in not true for trees (see
Figure 4), where in the test set there was a tree of depth 15, i.e. deeper than the deepest
tree in the training set (depth 14). Thus, for this test tree the state space was not able
to store all the necessary information to reconstruct it. Moreover, new paths appear in
the test set which cannot as well be properly treated by the machine. Notwithstanding
these difficulties, which could have been avoided by using a larger training set, the la-
bel decoding error of the machine is below 7.5% for a number of components higher
than 95.

356 A. Sperduti

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 85 90 95 100 105 110 115 120

E
rr

or
 in

 L
ab

el
 D

ec
od

in
g

Number of Components

Trees Dataset

Training
Test

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 85 90 95 100 105 110 115 120

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
La

be
l)

Number of Components

Trees Dataset

Training
Test

Fig. 4. Experimental results for trees

5 Conclusion

We have shown how to derive a family of exact solutions for Recursive Principal Com-
ponents Analysis of sequences and trees. Basically, we have demonstrated that for these
solutions there is a very close relationship with the principal components computed on
explicit flat representations of the input structures, where substructures are considered
as well. From a “recursive” point of view this is quite disappointing, although we have
experimentally shown that in practical applications the number of parameters which a
recursive solution needs is significantly lower than the number of parameters required
by the (almost) equivalent flat solution.

From a mathematical point of view, the solutions are exact only if all the non-null
components are used. We have still not investigated whether this property is maintained
when using a subset of such components. The empirical results shown in the paper
seems to indicate that using a subset of such components quite good results are obtained,
even if the solution may be suboptimal. It should be pointed out that, while dealing with
sequences is quite easy, the proper treatment of trees is not so trivial, due to the potential
combinatorial explosion of the number of distinct paths. Thus, further study is required
to devise an effective strategy for designing the explicit state space for trees.

References

1. Callan, R. E., Palmer-Brown, D.: (S)RAAM: An analytical technique for fast and re-
liable derivation of connectionist symbol structure representations. Connection Science,
9(1997)139–160.

2. Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46 (1990) 77–105.
3. Sperduti, A.: Labeling RAAM. Connection Science 6 (1994) 429–459.
4. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE

Transactions on Neural Networks 8 (1997) 714–735.
5. T. Voegtlin, T., Dominey, P. F.: Linear Recursive Distributed Representations. Neural Net-

works 18 (2005) 878–895.
6. Voegtlin, T.: Recursive Principal Components Analysis. Neural Networks 18 (2005) 1040–50.

Active Learning with the Probabilistic RBF
Classifier

Constantinos Constantinopoulos
 and Aristidis Likas

Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece
ccostas@cs.uoi.gr, arly@cs.uoi.gr

Abstract. In this work we present an active learning methodology for
training the probabilistic RBF (PRBF) network. It is a special case
of the RBF network, and constitutes a generalization of the Gaussian
mixture model. We propose an incremental method for semi-supervised
learning based on the Expectation-Maximization (EM) algorithm. Then
we present an active learning method that iteratively applies the semi-
supervised method for learning the labeled and unlabeled observations
concurrently, and then employs a suitable criterion to select an unlabeled
observation and query its label. The proposed criterion selects points near
the decision boundary, and facilitates the incremental semi-supervised
learning that also exploits the decision boundary. The performance of
the algorithm in experiments using well-known data sets is promising.

1 Introduction

Active learning a classifier constitutes a special learning problem, where the
training data are actively collected during the training. The training data are
available as a stream of classified observations, but the information they carry
is controlled from the classifier. The classifier determines regions of interest in
the data space, and asks for training data that lie in these regions. The impor-
tance of active learning is well established, see [1] for a study on the increase
of classifier’s accuracy as the number of labeled data increases. Various active
learning methods have been suggested; in [2] a learning method for Gaussian
mixture models [3] is proposed, that selects data that minimize the variance of
the learner. In [4] active learning for a committee of classifiers is proposed, which
selects data for which the committee members disagree. Based on this selection
method, in [5] they propose the use of available unclassified data by employing
EM [6] to form a better selection criterion, that is used to train a naive Bayes
classifier. In [7] they train Gaussian random fields and harmonic functions, and
select data based on the estimated expected classification error.

� This research was co-funded by the European Union in the framework of the pro-
gram “Heraklitos” of the “Operational Program for Education and Initial Vocational
Training” of the 3rd Community Support Framework of the Hellenic Ministry of Ed-
ucation, funded by 25% from national sources and by 75% from the European Social
Fund (ESF).

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 357–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

358 C. Constantinopoulos and A. Likas

Our work concentrates on a variation of the active learning scenario called
the pool-based active learning, also studied in [5,7]. In this case a set of labeled
and unlabeled observations is available right from the start. During training
we are allowed to iteratively query the label of unlabeled points, and use the
acquired labels to improve the classifier. In practice this scenario is important
when querying a field expert is expensive, as in medical diagnosis, or when there
is a huge quantity of unlabeled data that prohibits thorough labeling, as in text
classification. The intuition behind pool-based learning is that the unlabeled data
can be exploited to construct a more detailed generative model for the data set.
Thus this problem is closely related to semi-supervised learning. Algorithms for
semi-supervised learning have been proposed for Gaussian mixtures in [8,9], as
well as for the RBF network [10]. So it has been established that unlabeled data
can reveal useful information for the distribution of the labeled data.

We concentrate here on the pool-based active learning of the probabilistic
RBF (PRBF) classifier [11,12]. It is a special case of RBF network [13] that
computes at each output unit the density function of a class. It adopts a cluster
interpretation of the basis functions, where each cluster can generate observa-
tions of any class. This is a generalization of a Gaussian mixture model [3,13],
where each cluster generates observations of only one class. In [14] an incremental
learning method based on EM for supervised learning is proposed. In this work
we propose an incremental learning method based on EM for semi-supervised
learning. We are facilitated by the fact that each node of the PRBF describes
the local distribution of potentially all the classes. For the unlabeled data we
can marginalize the class labels from the update equations of EM, to use both
labeled and unlabeled data in parameter estimation.

In the following section we describe an incremental algorithm for the semi-
supervised training of the PRBF based on EM. In section 3 we use this algorithm
to tackle the problem of active learning. Next in section 4 we present the results
from our experimental study. Some discussion in section 5 concludes this work.

2 Semi-supervised Learning

Assume a set of labeled observations X = {(xn, yn)| n = 1, . . . , N} and a set
of unlabeled observations X∅ = {xn| n = 1, . . . , N∅}. The labeled observations
have an “input” part x ∈ �d, and an “output” part y ∈ {1, . . . ,K} in the case
of a classification task with K classes. This “output” part (called label) assigns
an observation to one class, and in the case of unlabeled observations is missing.
Let Ω be the joint set of labeled and unlabeled observations, i.e. Ω = X ∪ X∅.
Moreover we can separate X according to the “output” labels in K disjoint sets
Xk = {(xn, yn)|yn = k, n = 1, . . . , Nk} one for each class, then Ω =

⋃
k Xk∪X∅.

Adopting the Bayes decision rule, a classifier assigns a new unlabeled obser-
vation x
 to the class k
 with maximum posterior probability. If we drop the
part of the posterior that depends only on x
, then

k
 = arg max
k

p(x
|k)p(k) (1)

Active Learning with the Probabilistic RBF Classifier 359

where p(x|k) is the class conditional distribution of observations from class k,
and p(k) is the prior probability of this class. For two classes k and k′ there
is a decision boundary p(x|k)p(k) = p(x|k′)p(k′) that divides the space of the
observations.

To describe class conditional distributions we employ the PRBF network. For
input x the class conditional probability p(x|k) is the k-th output of a PRBF
with J basis functions

p(x|k) =
J∑

j=1

p(j|k) p(x|j) (2)

The coefficients p(j|k) are non-negative and
∑

j p(j|k) = 1, while each basis
function is a Gaussian

p(x|j) =
1

(2πσ2
j)d/2 exp{−1

2
(x− µj)T (x− µj)/σ2

j } (3)

with mean µj ∈ �d and variance σ2
j . In order to find estimates for the parameters

of the network

θ = {p(k), p(j|k), µj , σj | j = 1, . . . , J, k = 1, . . . ,K}

we maximize the joint likelihood, as in [10]. Assuming i.i.d. observations, the
joint log-likelihood L of labeled and unlabeled data is

L = log p(Ω) = log
∏
k

∏
x∈Xk

p(x, k)
∏

x∈X∅

p(x)

=
∑

k

∑
x∈Xk

log p(k)
∑

j

p(j|k)p(x|j) +
∑

x∈X∅

log
∑

k

p(k)
∑

j

p(j|k)p(x|j). (4)

For the maximization of L we use the Expectation-Maximization (EM) algorithm
[6]. The EM is an iterative algorithm that is guaranteed to converge at a local
maximum of the likelihood surface. It is employed in problems where hidden
variables exist. These variables determine the solution of the problem, although
are not observable. In our case the hidden variables define the node of the network
that generated an observation, and the label of an unlabeled observation. In the
following we formally derive the update equations of EM.

We introduce a hidden variable z(x) for each x ∈ Ω that assigns this obser-
vation to one class and one node of the network. Each z(x) is a binary J × K

matrix, where z
(x)
jk = 1 if x is assigned to the k-th class and the j-th node. This

assignment is unique, so that
∑

j

∑
k z

(x)
jk = 1. Moreover for a labeled observa-

tion (x, k) the corresponding z(x) is constrained so that z
(x)
j = 0 for all (j,)

with �= k. Thus a hidden variable can assign a labeled observation to any node
but only one class. This does not hold for the case of unlabeled observations that
can be assigned to any class and any node. Given the set of hidden variables
Z = {z(x)| ∀x ∈ Ω}, we define the complete log-likelihood

Q = log p(Ω,Z) = log
∏
x∈Ω

∏
k

∏
j

[p(k)p(j|k)p(x|j)]z
(x)
jk (5)

360 C. Constantinopoulos and A. Likas

Although we can not compute Q directly, as it depends on the unknown values
of Z, we can compute its expectation 〈Q〉 w.r.t. the distribution of Z. Since the
expected value of z

(x)
jk is equal to the joint posterior probability p(j, k|x) that x

is assigned to the j-th node and the k-th class, it follows that

〈Q〉 =
∑
x∈Ω

∑
k

∑
j

p(j, k|x) log {p(k)p(j|k)p(x|j)} . (6)

The EM algorithm iterates two steps until convergence. During the E-step it
computes the expectation of the complete log-likelihood 〈Q〉, given the current
estimate for the parameter vector θ. During the M-step it provides estimates θ
that maximize 〈Q〉. This procedure is guaranteed to converge at a local maximum
of the joint log-likelihood L.

Explicitly described, during the E-step we compute p(j, k|x) for every x ∈ Ω,
j ∈ {1, . . . , J} and k ∈ {1, . . . ,K} according to

p(j, k|x) = p(j|k, x)p(k|x). (7)

If x is unlabeled then we compute p(k|x) and p(j|k, x) for every class k using
Bayes theorem

p(k|x) =
p(x|k)p(k)∑
 p(x|)p()

(8)

p(j|k, x) =
p(j|k)p(x|j)∑
i p(i|k)p(x|i) . (9)

If x is labeled, then we exploit the information of the label and set

p(k|x) =
{

1 if x ∈ Xk

0 if x /∈ Xk
(10)

and we compute p(j|k, x) similarly

p(j|k, x) =

{
p(j|k)p(x|j)
i p(i|k)p(x|i) if x ∈ Xk

0 if x /∈ Xk

(11)

During the M-step we maximize 〈Q〉 w.r.t. θ, given the current estimation of the
joint posteriors. The solution for every j ∈ {1, . . . , J} and k ∈ {1, . . . ,K} is

µj =
∑

x∈Ω

∑
k p(j, k|x) x∑

x∈Ω

∑
k p(j, k|x)

(12)

σ2
j =

1
d

∑
x∈Ω

∑
k p(j, k|x) (x− µj)T (x − µj)∑

x∈Ω

∑
k p(j, k|x)

(13)

p(j|k) =
∑

x∈Ω p(j, k|x)
Nk +

∑
j

∑
x∈X∅ p(j, k|x)

(14)

p(k) =
Nk +

∑
j

∑
x∈X∅ p(j, k|x)

N + N∅
. (15)

Active Learning with the Probabilistic RBF Classifier 361

An important aspect of network training is the estimation of the number of
basis functions to be used. To tackle this we adopt the incremental approach
proposed in [14] for supervised learning, that we modify suitably. It is an in-
cremental method with two stages. We start with a network having only one
node, whose parameters are easily estimated from the statistics of the training
data. During the first stage we iteratively add new nodes to the network, until
we reach the desired complexity. Then the second stage follows, where we split
all the nodes in order to increase classification performance. In the next sections
we give more details for the two stages.

2.1 Addition of Nodes

Given a network with M nodes we can construct a network with M+1 nodes.
If the given class conditional density is p(x|k), then adding a Gaussian node
q(x) = N (x;µq, σ

2
q) results in p̂(x|k) as follows

p̂(x|k) = (1 − αk) p(x|k) + αk q(x) (16)

where αk is the prior probability that node q generates observations from class
k. However we have to estimate αk, the mean µq and variance σ2

q of q. Thus we
search for parameters such that q is near the decision boundary. Good estimation
of class conditional densities near the boundary is crucial for the performance of
the classifier.

According to [14] we resort to a clustering method, namely the kd-tree [15].
The kd-tree is a binary tree that partitions a given data set. It is constructed
recursively by partioning the data of each node in two subsets. Using only the
labeled points, we initially partition the data in M subsets

Xj = {(x, k)| (x, k) ∈ X, p(j|k, x) > p(i|k, x), ∀i �= j}

one for each node. Employing the kd-tree we repartition each of Xj in six subsets.
These subsets result from the construction of a kd-tree with two levels. More
levels would result in a lot of small clusters. We would like to avoid that, as we
want to gradually shrink the size of the clusters. Moreover, in order to add the
next node, we are going to employ the kd-tree again to partition all the data in
smaller clusters. The statistics of the resulting subsets are probable estimates of
µq and σ2

q . The corresponding estimation of prior is αk = p(j|k)/2. Partitioning
each node we create 6M sets of candidates θq = {αk, µq, σ

2
q}, so we have to select

the most appropriate according to a criterion.
As proposed in [14], we compute the change of the log-likelihood ∆L(q)

k for
class k after the addition of q

∆L(q)
k =

1
Nk

(log p̂(x|k) − log p(x|k))

=
1
Nk

∑
x∈Xk

log
{

1 − αk + αk
q(x)

p(x|k)

}
. (17)

362 C. Constantinopoulos and A. Likas

We retain those θq that increase the log-likelihood of at least two classes and
discard the rest. For each retained θq, we add the positive ∆Lq

k terms to com-
pute the total increase of the log-likelihood ∆Lq. The candidate q
 whose value
∆Lq� is maximum consists the parameters of the node that will be added to the
current network, if this maximum value is higher than a prespecified threshold.
Otherwise, we consider that the attempt to add a new node is unsuccessful.
We set this threshold equal to 0.01 after experimentation, in order to avoid
the addition of nodes with negligible effects on the performance of the network.
So we chose a small value, to also prevent the premature termination of the
procedure.

After the successful addition of a new node we apply the semi-supervised EM,
as described in the previous section. This procedure can be applied iteratively,
in order to add the desired number of nodes to the given network. Figure 1
illustrates the addition of the first two nodes. The initial network with only
one node is illustrated in Figure 1(a). The six candidate nodes and the chosen
node are illustrated in Figure 1(b) and Figure 1(c) correspondingly. Figure 1(d)
illustrates the network after the application of semi-supervised EM.

(a) (b)

(d)(c)

Fig. 1. Addition of the first two nodes. The nodes of the network are drawn with solid
lines, and the candidate nodes with dashed lines. The dots represent the unlabeled
observations in a two-class problem.

Active Learning with the Probabilistic RBF Classifier 363

2.2 Splitting of Nodes

After the stage of adding nodes, there may be nodes of the network located to
regions with overlapping among classes. In order to increase the generalization
performance of the network we follow the approach suggested in [16], and split
each node. During this stage we use both supervised and unsupervised observa-
tions. We evaluate the joint posterior probabilities p(j, k|x) for a node, and define
if it is responsible for observations of more than one class. If

∑
x∈Ω p(j, k|x) > 0,

then we remove it from the network, and add a separate node for the k-th class.
So finally each node is responsible for only one class. Splitting a node p(x|j), the
resulting node for class k is a Gaussian p(x|j, k) with mean µkj , variance σ2

kj

and mixing weight p(j|k). These parameters are estimated according to:

µkj =
∑

x∈Ω p(j, k|x)x∑
x∈Ω p(j, k|x)

(18)

σ2
kj =

1
d

∑
x∈Ω p(j, k|x) (x − µkj)T (x− µkj)∑

x∈Ω p(j, k|x)
(19)

p(j|k) =
∑

x∈Ω p(j, k|x)
Nk +

∑
j

∑
x∈X∅ p(j, k|x)

. (20)

Consequently the class conditional density is estimated as

p(x|k) =
∑

j

p(j|k)p(x|j, k). (21)

In the case of a training set where all the points are labeled, the class conditional
likelihood is increased for all classes after splitting as proved in [16]. However in
the semi-supervised case we cannot guarantee that splitting increases the joint
likelihood.

3 Active Learning

In the previous section we described an incremental algorithm for training a
PRBF network using labeled and unlabeled observations. In the following we
incorporate the algorithm in an active learning method, where we iteratively
select an unlabeled point and query its label. After its label is given, we add the
labeled point in the labeled set and train the network again. The crucial point
is to pick a point that greatly benefits the training of our classifier. We propose
the selection of a point that lies near the classification boundary. In this way we
facilitate the iterative addition of basis functions on the classification boundary,
as described in the previous section.

As a criterion of selecting a suitable point we propose the ratio of class pos-
teriors. For each unlabeled observation x ∈ X∅ we compute the class posterior
p(k|x) for every class, and then find the two classes with the largest posterior
values:

κ
(x)
1 = argmax

k
p(k|x), κ

(x)
2 = arg max

k �=κ
(x)
1

p(k|x). (22)

364 C. Constantinopoulos and A. Likas

We choose to ask for the label of x̂ that exhibits the smallest ratio of largest
class posteriors:

x̂ = arg min
x∈X∅

log
p(κ(x)

1 |x)

p(κ(x)
2 |x)

. (23)

In this way we pick the unlabeled observation that lies closer to the decision
boundary of the current classifier. Note that according to (1) we classify obser-
vations to the class with the maximum class posterior. Thus for some x on the de-
cision boundary holds that p(κ(x)

1 |x) = p(κ(x)
2 |x). Consequently if an observation

approaches the decision boundary between two classes, then the corresponding
logarithmic ratio of class posteriors tends to zero.

Summarizing the presented methodology, we propose the following active
learning algorithm:

1. Input: The set X of labeled observations, the set X∅ of unlabeled observa-
tions, and a degenerate network PRBFJ=1 with one basis function.

2. For s = 0, . . . , S − 1
(a) Add one node to the network PRBFJ+s to form PRBFJ+s+1.
(b) Apply EM until convergence for semi-supervised training of PRBFJ+s+1.

3. For s = 0, . . . , S
(a) Split the nodes of PRBFJ+s to form PRBF split

J+s .
4. Select the network PRBF split

J� ∈ {PRBF split
J , . . . , PRBF split

J+S } that maxi-
mizes the joint likelihood.

5. Set the current network: PRBFJ = PRBFJ� .
6. If X∅ is empty go to step 7, else

(a) Pick an unlabeled observation x̂ according to (23), and ask its label ŷ.
(b) Update the sets: X = X ∪ {(x̂, ŷ)} and X∅ = X∅ \ {x̂}.
(c) Go to step 2.

7. Output: Split the nodes of PRBFJ to form the output network PRBF split
J .

In all our experiments we use S = 1, thus we try to add one node at each
iteration of the active learning.

4 Experiments

For the experimental evaluation of our method we used three data sets, available
from the UCI repository. The first is the “segmentation” set, that consists of 2310
points with 19 continuous features in 7 classes. The second is the “waveform” set,
that consists of 5000 points with 21 continuous features in 3 classes. The last is
the “optical digits” set, that consists of 5620 points with 62 continuous features
in 10 classes. All the data sets were standardized, so that all their features
exhibit zero mean and unit standard deviation. In all experiments we applied our
algorithm starting with 50 uniformly selected labeled points. We treated the rest
as a pool of unlabeled points, and we actively selected 400 more. Each experiment
was repeated five times, and we computed the average generalization error on
a separate test set that contained the 10% of the original data set. Figure 2

Active Learning with the Probabilistic RBF Classifier 365

illustrates the average generalization error and the average number of PRBF
nodes after each added label. The results are satisfactory, as the generalization
error almost halved in all cases after the addition of 50 labels. After the addition
of 300 labels the error had converged, and the addition of more labels offered
little improvement. After the addition of 400 labels, the average error for the
“segmentation” data set was 0.156, for the “waveform” data set was 0.091, and
for the “optical digits” data set was 0.089. For comparison, we also applied the
supervised learning method proposed in [14] using the original data sets. The
generalization error of the resulting PRBF for the “segmentation” data set was
0.246, for the “waveform” data set was 0.142, and for the “optical digits” data
set was 0.07. Concluding, we note that the number of nodes converged slower
than the error, but eventually it also reached a plateau. The average number of
nodes after the addition of 400 labels was 285.2 for the “segmentation” data set,
294.6 for the “waveform” data set, and 509 for the “optical digits” data set.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of added labels

ge
ne

ra
liz

at
io

n
er

ro
r

wavef
segm
optic

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

number of added labels

nu
m

be
r

of
 n

od
es

wavef
segm
optic

Fig. 2. The average generalization error (left), and the average number of network
nodes (right) for pool-based active PRBF learning

5 Discussion

We have proposed an algorithm for the active learning of the PRBF classifier.
We derived an EM algorithm for semi-supervised training of PRBF, and an
incremental variation that sequentially adds nodes to the network. We use this
method to estimate class conditional densities for pool-based active learning.

The experimental results are encouraging, and slight modifications of the
method may further improve its performance. For example we could acquire
the labels for a bunch of unlabeled observations, before we try to add a new
node. The most important issue for consideration is the time complexity of the
algorithm, e.g. it takes almost two hours to solve the “waveform” data set with
a MATLAB implementation on a standard personal computer. A method to de-
crease the number of splits in each iteration would improve the execution time
significantly. Another interesting issue concerns the complexity of the resulting
network. We note that the interpretation of the network weights as probabili-
ties alleviates the problem, as it forces many weights to near zero values and

366 C. Constantinopoulos and A. Likas

overfitting is avoided. However we could use a validation set for better model
selection.

Our future plans include a more detailed study of the method, and elaboration
on several of our choices, with the most important being the comparison with
other selection methods for the active acquisition of class information. Also we
plan to consider the problem of new class discovery, as a similar task that we
would like to tackle.

References

1. Castelli, V., Cover, T.: On the exponential value of labeled samples. Pattern
Recognition Letters 16 (1995) 105–111

2. Cohn, D., Ghahramani, Z., Jordan, M.: Active learning with statistical models.
Journal of Artificial Intelligence Research 4 (1996) 129–145

3. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons (2000)
4. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query

by committee algorithm. Machine Learning 28 (1997) 133–168
5. McCallum, A.K., Nigam, K.: Employing EM in pool-based active learning for

text classification. In Shavlik, J.W., ed.: Proc. 15th International Conference on
Machine Learning, Morgan Kaufmann (1998)

6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39(1) (1977) 1–38

7. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-
supervised learning using Gaussian fields and harmonic functions. In: Proc. 20th
International Conference on Machine Learning. (2003)

8. Ghahramani, Z., Jordan, M.: Supervised learning from incomplete data via an EM
approach. In Cowan, J.D., Tesauro, G., Alspector, J., eds.: Advances in Neural
Information Processing Systems 6, Morgan Kaufmann (1994)

9. Tadjudin, S., Landgrebe, A.: Robust parameter estimation for mixture model.
IEEE Trans. Geoscience and Remote Sensing 38 (2000) 439–445

10. Miller, D., Uyar, H.: Combined learning and use for a mixture model equivalent
to the RBF classifier. Neural Computation 10 (1998) 281–293

11. Titsias, M.K., Likas, A.: Shared kernel models for class conditional density esti-
mation. IEEE Trans. Neural Networks 12(5) (2001) 987–997

12. Titsias, M.K., Likas, A.: Class conditional density estimation using mixtures with
constrained component sharing. IEEE Trans. Pattern Anal. and Machine Intell.
25(7) (2003) 924–928

13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
(1995)

14. Constantinopoulos, C., Likas, A.: An incremental training method for the proba-
bilistic RBF network. IEEE Trans. Neural Networks to appear (2006)

15. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9) (1975) 509–517

16. Titsias, M.K., Likas, A.: Mixture of experts classification using a hierarchical
mixture model. Neural Computation 14(9) (2002) 2221–2244

Merging Echo State and Feedforward Neural
Networks for Time Series Forecasting

Štefan Babinec1 and Jǐŕı Posṕıchal2

1 Department of Mathematics, Fac. of Chemical and Food Technologies
Slovak University of Technology, 812 37 Bratislava, Slovakia

Phone/Fax: +421 2 52495177
stefan.babinec@stuba.sk

2 Institute of Applied Informatics, Fac. of Informatics and Information Technologies
Slovak University of Technology, 842 16 Bratislava, Slovakia

Phone: +421 2 60291548; Fax: +421 2 65420587
pospichal@fiit.stuba.sk

Abstract. Echo state neural networks, which are a special case of re-
current neural networks, are studied from the viewpoint of their learning
ability, with a goal to achieve their greater prediction ability. A standard
training of these neural networks uses pseudoinverse matrix for one-step
learning of weights from hidden to output neurons. Such learning was
substituted by backpropagation of error learning algorithm and output
neurons were replaced by feedforward neural network. This approach was
tested in temperature forecasting, and the prediction error was substan-
tially smaller in comparison with the prediction error achieved either by
a standard echo state neural network, or by a standard multi-layered
perceptron with backpropagation.

1 Introduction

From the point of view of information flow, neural networks can be divided into
two types: feedforward neural networks and recurrent neural networks [1]. In
feedforward neural networks the input information proceeds from input neurons
to output neurons. Such networks basically implement input/output mapping
(functions) and they can serve as universal approximators. On the other hand,
recurrent neural networks contain at least one cyclic path, where the same input
information repeatedly influences the activity of neurons on the cyclic path.
Such networks are more closely related to biological neural networks, which
are also mostly recurrent. From the mathematical point of view the recurrent
neural networks are also universal approximators, but they implement dynamic
systems. These networks are less common in technical applications because of
both theoretical and practical problems with learning.

Their applications are hindered by a lack of effective algorithms for super-vised
training. This problem was solved by the so-called Echo state neural networks
[3], where a very fast learning algorithm is used. It is based on a calculation of
a pseudoinverse matrix, which is a standard numerical task.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 367–375, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

368 Š. Babinec and J. Posṕıchal

The trouble with this approach is that it offers nearly perfect learning of the
training set for the given recurrent neural network, but the predictive ability of
such a network is not very good. The advantage of ”one-step” learning changes
into a disadvantage, when we want to improve the predictive abilities of the
given trained network. The approach using the pseudoinverse matrix does not
help us in any direct way in this matter. In our previous work [5,6] we explored
a possibility to improve ”one-step” learning by evolutionary approaches.

In this paper we have substituted the output layer by feedforward neural
network and the original ”one-step” learning algorithm was substituted by back-
propagation of error learning algorithm. Connection between ”liquid state” com-
puting, related to Echo states, and backpropagation was mentioned previously
in [4,7].

With this approach we loose the advantage of fast computation of the ”one-
step” optimization typical for Echo state networks, but we get flexibility and
better quality of prediction.

2 Main Idea of Echo State Neural Networks

The core of echo state neural networks is a special approach to the analysis
and training of recurrent neural networks. This approach leads to a fast, simple
and constructive algorithm for supervised learning of recurrent neural networks.
The basic idea of echo state neural networks is exploitation of a big ”reser-
voir” of neurons recurrently connected with random weights, as a source of
dynamic behavior of the neural network, from which the requested output is
combined.

Under certain circumstances, the state xn = (x1(n), x2(n), . . . , xN (n)) of re-
current neural networks is a function of its previous inputs u(n),u(n − 1),

An output of ith hidden neuron in time n is xi(n) and N is the number of
hidden neurons. An input vector is un = (u1(n), u2(n), . . . , uK(n)), where ui(n)
is an input to the ith input neuron in time n and K is the number of input
neurons. Therefore, there exists such a function E, that

x(n) = E(u(n),u(n − 1), . . .). (1)

Metaphorically speaking, the state x(n) of neural network can be considered as
so called ”echo” recall of its previous inputs.

3 Combination of Echo State and Feedforward Neural
Network

Our paper presents a combination of echo state neural network and feedforward
neural network. In this approach the output layer of echo state network is sub-
stituted with feedforward neural network and ”one-step” training algorithm is

Merging Echo State and Feedforward Neural Networks 369

replaced with backpropagation of error learning algorithm (Fig.1). In original
echo state neural networks we have no possibility to stop the training algorithm
to avoid the overfitting problem. Therefore such neural networks have often trou-
bles with generalization. By using backpropagation of error learning algorithm
we can stop training when error on validation set does not improve.

The most complex and at the same time the most important part of echo
state neural network, so called ”dynamical reservoir”, remained preserved. The
main task of this big recurrent layer is to preprocess the input signal for the
feedforward part of the whole neural network.

3.1 Description of Neural Network

The echo state part of the whole neural network consists of K input, N hidden
and L output neurons. The state of input neurons in time n is characterized by
a vector un = (u1(n), u2(n), . . . , uK(n)) , the state of output neurons in time
n is given by a vector yn = (y1(n), y2(n), . . . , yL(n)), and similarly for hidden
neurons xn = (x1(n), x2(n), . . . , xN (n)). The values of input – hidden synaptic
weights are stored in matrix Win = (win

ij), hidden – hidden weights are stored
in matrix W = (wij) and hidden – to – output weights are stored in matrix
Wout = (wout

ij).
The feedforward part of the whole neural network consists of L input neurons,

M output neurons and of S hidden layers which may have different number of
neurons in each layer. As we can see from the Fig.1, the output layer in echo
state part is the same as the input layer in the feedforward part.

Fig. 1. The architecture used in this approach – combination of echo state neural
network and feedforward neural network

370 Š. Babinec and J. Posṕıchal

3.2 The Learning Algorithm

The only weights which are trained in this combination of neural networks are
the weights in the feedforward part. The whole algorithm for training and testing
consists of two steps.

The First Step: The first step should create an untrained echo state neural
network consisting of weights Win,W,Wout, which however can produce so
called ”echo” states. There exists a number of ways how to obtain such a network
with the given property. We have used the following approach [3]:

– We have randomly generated an internal weight matrix W0.
– Then we have created a normalized matrix W1 with unit spectral radius

from the matrix W0 by putting W1 = 1/|λmax|W0, where |λmax| is the
spectral radius of W0.

– After that we have scaled W1 to W = αW1, where α < 1, whereby W
obtains a spectral radius α.

– Then we have randomly generated input weights Win and output weights
Wout.

Now, the untrained network is an echo state network, regardless of how Win,
Wout are chosen.

The Second Step: Now we can accede to the training and testing of the whole
neural network. As we mentioned before, the only weights which are trained in
this approach are the weights in the feedforward part. The learning algorithm
used in this part is the well known backpropagation of error learning algorithm.
This algorithm is described in details in [1]. For our approach is important, how
to propagate the input signal through the echo state part.

The states of hidden neurons in ”dynamical reservoir” are calculated from the
formula

x(n + 1) = f(Winu(n) + Wx(n)), (2)

where f is the activation function of hidden neurons (we used the sigmoidal
function). The states of output neurons are calculated by the formula

y(n + 1) = fout(Wout(u(n)x(n + 1)), (3)

where fout is the activation function of output neurons (we used the sigmoidal
function).

4 Prediction of Air Temperature Data

Most of the publications about prediction strive to achieve the best prediction,
which is then compared with results of other prediction systems on selected data.
This paper is different in this aim; its goal was to compare results achieved by
original ”echo state” neural network, with our new approach.

Merging Echo State and Feedforward Neural Networks 371

Records of average air temperature in Slovakia in years 1999 – 2002 were
chosen as testing data for quality of prediction. The training set was composed
of a time sequence of 1096 samples of air temperature data in years 1999, 2000,
2001 and the testing set was composed of next 31 samples – that means January
of the year 2002.

This task is basically a function approximation; it is the prediction of data
from previous trends in the same data.

A mean absolute percentage error (MAPE) was used for the measurement of
prediction quality, where P real

i and P calc
i are measured, resp. predicted values,

and N is the number of couples of values (the length of the predicted time series):

MAPE =

∑N
i=1

∣∣∣P real
i −P calc

i

P real
i

∣∣∣
N

× 100 (4)

5 Experiments

Experiments were divided into two parts. The task of the first part was to find
parameters of echo state neural networks, which would be optimal for the quality
of prediction on the testing air temperature set. Very simple feedforward neural
network was used in this first part. The reason for such simple neural network
were computational demands. The network consisted of two layers with 4 neurons
in first layer and 1 neuron in second layer. The results of experiments are in the
following Table 1.

Table 1. Results of experiments in the first part: quality of the prediction for different
parameter values

Index DR Size α Average MAPE The best MAPE
1 200 0.7 42.981 % 33.986 %
2 200 0.8 41.549 % 32.475 %
3 250 0.7 44.857 % 35.451 %
4 250 0.8 44.557 % 35.251 %
5 300 0.7 39.528 % 29.123 %
6 300 0.8 40.254 % 30.256 %

DR Size is dynamical reservoir, α is a parameter influencing the ability of the
neural network to have echo states (the used values were chosen in agreement
with the values used by Jaeger, the author of echo state networks, see [2,3]).
For each value of DR size and parameter α, which are presented in the Ta-
ble 1, values of weights in dynamical reservoir were generated randomly 50 times
and for every of this initialization of weights the prediction error on the testing

372 Š. Babinec and J. Posṕıchal

set was calculated. Then the average error from the whole set of attempts was
calculated (attribute Average MAPE in Table 1). The best achieved error was
recorded as well (attribute The best MAPE in Table 1). As we can see from
Table 1, there is an evident correlation between these attributes. In the cases,
where better Average MAPE error was achieved, better The best MAPE error
was achieved too. The best results were achieved for DR which consists of 300
neurons and for the parameter α equal 0.7.

The second part of the experiments was focused on finding the best parame-
ters of feedforward neural network and it’s backpropagation of error learning
algorithm. Parameters of dynamical reservoir and initial synaptic weights were
chosen in accordance with the results of experiments in the first phase.

Thereafter we started with training the feedforward neural network for all
samples from the training set except the last 7 samples. This last week of year
2001 was chosen as a validation set. This set was used for testing the quality of
prediction on samples, which were not used during the training process.

A considerable number of experiments was carried out, the representative
results of which are given in the following Table 2.

Table 2. Results of representative experiments in second part of neural network
learning

Index Learning cycles Number of neurons Parameter γ MAPE
1 3854 12 – 1 0.8 % 24.547 %
2 3214 12 – 1 0.9 % 22.654 %
3 5635 14 – 8 – 1 0.8 % 15.729 %
4 4250 14 – 8 – 1 0.9 % 16.925 %
5 4411 25 – 11 – 1 0.8 % 18.521 %
6 3953 25 – 11 – 1 0.9 % 17.443 %

Attribute Learning cycles specifies the number of learning cycles after which
the best prediction error on the testing set was achieved. Attribute Number
of neurons specifies the number of neurons in each layer. Attribute Parameter
γ specifies the value of learning parameter in backpropagation of error learn-
ing algorithm. Every training of feedforward part started with the same values
of synaptic weights and other parameters of echo state part. Attribute MAPE
specifies the best reached prediction error on the testing set.

In the following Table 3 we can see the comparison of best achieved errors on
testing air temperature set with three different approaches. We can see graphical
representation of the two most important approaches in Figures 2 and 3. It is
clear from this table and figures, that the combination of echo state neural
network and feedforward neural network can considerably increase the quality
of prediction.

Merging Echo State and Feedforward Neural Networks 373

Table 3. Comparison of three different approaches.

Approach MAPE
TD FFNN with BP 29.833 %

ESN 23.281 %
Comb. of ESN and FFNN with BP 15.729 %

Attribute MAPE in Table 3 specifies the best reached prediction error on the
testing set. Attribute Approach specifies the approach used for prediction. TD
FFNN with BP – time delay feedforward neural network with backpropagation
of error learning algorithm. Its best error (mape 29.833 %) was achieved with
these network’s parameters: number of learning cycles: 6386, learning parameter
γ = 0.7, number of neurons in each layer: 8 - 23 - 9 - 1. ESN – echo state neural
network with ”one-step” learning algorithm, Comb. of ESN and FFNN with BP
– combination of echo state neural network and feedforward neural network with
backpropagation of error learning algorithm.

Fig. 2. Testing data: 31 records of air temperature and 31 values predicted by original
echo state neural network with ”one-step” learning algorithm (DR Size 250, Alpha 0.8,
MAPE 23.28 %)

374 Š. Babinec and J. Posṕıchal

Fig. 3. Testing data: 31 records of air temperature and 31 values predicted by echo
state neural network combined with feedforward neural network (Experiment No. 3
from Table 2, DR Size 300, Alpha 0.7, MAPE 15.73 %)

6 Conclusions

Echo state neural networks belong to a group of relatively new approaches in
the field of neural networks. Their biggest advantage is their closer relation to
biological models due to their recurrent nature and the use of the reservoir of dy-
namic behavior without weight setting. These networks perform extraordinarily
in learning a time sequence, which is essential for example for motoric control, in
human beings or in a robot, or also for language processing tasks. Compared to
other types of recurrent networks, echo state networks have a major advantage
in their ability of ”one step learning”, even though this approach is probably
not very biologically plausible. Their disadvantage is a lower generalization abil-
ity and the absence of an approach, which would be able to improve a trained
network.

The problem of the trained network improvement doesn’t appear in common
feed forward or recurrent neural networks, because in a case of need of the
network’s improvement the trained network can be further ”trained” by another
batch of iterations of the classical algorithm of back propagation of error. This
however doesn’t work in echo state networks, where the standard algorithm with
a pseudoinverse matrix allows only the approaches ”all or nothing”, which means

Merging Echo State and Feedforward Neural Networks 375

that we will, or we will not train the network, nothing in between. A network
trained by this approach can’t be further trained.

We have tried to solve the above mentioned problem in this work, where
the output layer was substituted by feedforward neural network and the original
”one-step” learning algorithm was replaced by backpropagation of error learning
algorithm. Because we didn’t want to work with artificially created examples,
we chose real data to evaluate our algorithms. Those data represent the me-
teorological measurements of air temperature. Our aim was to find out if this
approach is able to increase prediction quality of echo state networks. From the
results shown in the paper, it is clear that this aim has been accomplished.

The combination of echo state neural network and feedforward neural network
can increase the quality of the network’s prediction.

Acknowledgement. This work was supported by Scientific Grant Agency Vega
of Slovak Republic under grant #1/1047/04 and by Grant Agency APVT under
grant APVT-20-002504.

References

1. Haykin, S.: Neural networks - A comprehensive foundation. Macmillian Publishing,
1994.

2. Jaeger, H.: The Echo State Approach to Analysing and Training Recurrent Neural
Net-works. German National Research Center for Information Technology, GMD
report 148, 2001.

3. Jaeger, H.: Short Term Memory in Echo State Networks. German National Research
Center for Information Technology, GMD report 152, 2002.

4. Natschlager, T., Maass, W., Markram, H.: The ”liquid computer”:A novel strategy
for real-time computing on time series. Special Issue on Foundations of Information
Processing of TELEMATIK, 8(1):39-43, 2002.

5. Babinec, S., Pospichal, J.: Optimization in Echo state neural networks by Metropolis
algorithm. In R. Matousek, P. Osmera (eds.): Proceedings of the 10th International
Conference on Soft Copmputing, Mendel’2004. VUT Brno Publishing, 2004, pp.
155-160.

6. Babinec, S., Pospichal, J.: Two approaches to optimize echo state neural networks.
In R. Matousek, P. Osmera (eds.): Proceedings of the 11th International Conference
on Soft Computing, Mendel’2005. VUT Brno Publishing, 2005, pp. 39-44.

7. Goldenholz, D.: Liquid computig: A real effect. Technical report, Boston University
Department of Biomedical Engineering, 2002.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 376 – 385, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Language and Cognition Integration Through Modeling
Field Theory: Category Formation for Symbol

Grounding

Vadim Tikhanoff1, José F. Fontanari2,
Angelo Cangelosi1, and Leonid I. Perlovsky3

1 Adaptive Behaviour & Cognition, University of Plymouth, Plymouth PL4 8AA, UK
2 Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil

3 Air Force Research Laboratory, Hanscom Air Force Base, MA 01731, USA
vadim.tikhanoff@plymouth.ac.uk,

fontanari@ifsc.usp.br, acangelosi@plymouth.ac.uk,
leonid.perlovsky@hanscom.af.mil

Abstract. Neural Modeling Field Theory is based on the principle of
associating lower-level signals (e.g., inputs, bottom-up signals) with higher-
level concept-models (e.g. internal representations, categories/concepts, top-
down signals) avoiding the combinatorial complexity inherent to such a task. In
this paper we present an extension of the Modeling Field Theory neural
network for the classification of objects. Simulations show that (i) the system is
able to dynamically adapt when an additional feature is introduced during
learning, (ii) that this algorithm can be applied to the classification of action
patterns in the context of cognitive robotics and (iii) that it is able to classify
multi-feature objects from complex stimulus set. The use of Modeling Field
Theory for studying the integration of language and cognition in robots is
discussed.

1 Introduction

1.1 Grounding Language in Categorical Representations

A growing amount of research on interactive intelligent systems and cognitive
robotics is focusing on the close integration of language and other cognitive
capabilities [1,3,13]. One of the most important aspects in language and cognition
integration is the grounding of language in perception and action. This is based on the
principle that cognitive agents and robots learn to name entities, individuals and states
in the external (and internal) world whilst they interact with their environment and
build sensorimotor representations of it. For example, the strict relationship between
language and action has been demonstrated in various empirical and theoretical
studies, such as psycholinguistic experiments [10], neuroscientific studies [16] and
language evolution theories [17]. This link has also been demonstrated in compu-
tational models of language [5,21].

 Language and Cognition Integration Through Modeling Field Theory 377

Approaches based on language and cognition integration are based on the principle
of grounding symbols (e.g. words) in internal meaning representations. These are
normally based on categorical representations [11]. Much research has been dedicated
on modeling the acquisition of categorical representation for the grounding
of symbols and language. For example, Steels [19,20] has studied the emergence of
shared languages in group of autonomous cognitive robotics that learn categories
of objects. He uses discrimination tree techniques to represent the formation
of categories of geometric shapes and colors. Cangelosi and collaborators have
studied the emergence of language in multi-agent systems performing navigation and
foraging tasks [2], and object manipulation tasks [6,12]. They use neural networks
that acquire, through evolutionary learning, categorical representations of the objects
in the world that they have to recognize and name.

1.2 Modeling Field Theory

Current grounded agent and robotic approaches have their own limitations. For
example, one important issue is the scaling up of the agents’ lexicon. Present models
can typically deal with a few tens of words (e.g. [20]) and with a limited set of
syntactic categories (e.g. nouns and verbs in [2]). This is mostly due to the use of
computational intelligent techniques, the performance of which is considerably
degraded by the combinatorial complexity (CC) of this problem. The issue of scaling
up and combinatorial complexity in cognitive systems has been recently addressed by
Perlovsky [14]. In linguistic systems, CC refers to the hierarchical combinations of
bottom-up perceptual and linguistic signals and top-down internal concept-models of
objects, scenes and other complex meanings. Perlovsky proposed the neural Modeling
Field Theory (MFT) as a new method for overcoming the exponential growth of
combinatorial complexity in the computational intelligent techniques traditionally
used in cognitive systems design. Perlovsky [15] has suggested the use of MFT
specifically to model linguistic abilities. By using concept-models with multiple
sensorimotor modalities, a MFT system can integrate language-specific signals with
other internal cognitive representations.

Modeling Field Theory is based on the principle of associating lower-level signals
(e.g., inputs, bottom-up signals) with higher-level concept-models (e.g. internal
representations, categories/concepts, top-down signals) avoiding the combinatorial
complexity inherent to such a task. This is achieved by using measures of similarity
between concept-models and input signals together with a new type of logic, so-called
dynamic logic. MFT may be viewed as an unsupervised learning algorithm whereby a
series of concept-models adapt to the features of the input stimuli via gradual
adjustment dependent on the fuzzy similarity measures.

A MFT neural architecture was described in [14]. It combines neural architecture
with models of objects. For feature-based object classification considered here, each
input neuron Ni ,,1= encodes feature values iO (potentially a vector of several

features); each neuron i may contain a signal from a real object or from irrelevant
context, clutter, or noise. We term the set NiOi ,,1, = an input neural field: it is a

378 V. Tikhanoff et al.

set of bottom-up input signals. Top-down, or priming signal-fields to these neurons
are generated by models, ()kk SΜ where we enumerate models by index Mk ,,1= .

Each model is characterized by its parameters kS , which may also be a vector of

several features. In this contribution we will consider the simplest possible case, in
which parameters model represent feature values of object, () kkk SS =Μ . Interaction

between bottom-up and top-down signals is determined by neural weights associating
signals and models as follows. We introduce an arbitrary similarity measure ()k|il

between bottom-up signals iO and top-down signals kS [see equation (2)], and

define the neural weights by

 =
'

)'|()|()|(
k

kilkilikf . (1)

These weights are functions of the model parameters kS , which in turn are

dynamically adjusted so as to maximize the overall similarity between object and
models. This formulation sets MFT apart from many other neural networks.

Recently, MFT has been applied to the problem of categorization and symbol
grounding in language evolution models. Fontanari and Perlovsky [7] use MFT as an
alternative categorization and meaning creation method to that of discrimination trees
used by Steels [19]. They consider a simple world composed of few objects
characterized by real-valued features. Whilst in Steels’s work each object is defined
by 9 features (e.g. vertical position, horizontal, R, G and B color component values),
here each object consists of a real-valued number that identifies only one feature
(sensor). The task of the MFT learning algorithm is to find the concept-models that
best match these values. Systematic simulations with various numbers of objects,
concept-models and object/model ratios, show that the algorithm can easily learn the
appropriate categorical model. This MFT model has been recently extended to study
the dynamic generation of concept-models to match the correct number of distinct
objects in a complex environment [8]. They use the Akaike Information Criterion to
gradually add concept-models until the system settles to the correct number of
concepts, which corresponds to the original number of distinct objects defined by the
experimenter. This method has been applied to complex classification tasks with high
degree of variance and overlap between categories. Fontanari and Perlovsky [9] have
also used MFT in simulations on the emergence of communication. Meanings are
created through MFT categorization, and word-meaning associations are learned
using two variants of the obverter procedure [18], in which the agents may, or may
not, receive feedback about the success of the communication episodes. They show
that optimal communication success is guaranteed in the supervised scheme, provided
the size of the repertoire of signals is sufficiently large, though only a few signals are
actually used in the final lexicon.

1.3 MFT for Categorization of Multi-dimensional Object Feature
Representations

The above studies have demonstrated the feasibility of using MFT to model symbol
grounding and fuzzy similarity-based category learning. However, the model has been

 Language and Cognition Integration Through Modeling Field Theory 379

applied to a very simplified definition of objects, each consisting of one feature.
Simulations have also been applied to a limited number of categories (concept-
models). In more realistic contexts, perceptual representations of objects consist of
multiple features or complex models for each sensor, or result from the integration of
different sensors. For example, in the context of interactive intelligent systems able to
integrate language and cognition, their visual input would consist of objects with a
high number of dimensions or complex models. These could be low-level vision
features (e.g. individual pixel intensities), or some intermediate image processing
features (e.g. edges and regions), or higher-level object features (color, shape, size
etc.). In the context of action perception and imitation, a robot would have to integrate
various input features from the posture of the teacher robot to identify the action or
complex models (e.g. [6]). The same need for multiple-feature objects applies to
audio stimuli related to language/speech. In addition, the interactive robot would have
to deal with hundreds, or thousands, categories, and with high degrees of overlap
between categories.

To address the issue of multi-feature representation of objects and that of the
scaling up of the model we have extended the MFT algorithm to work with multiple-
feature objects. We consider both the cases in which all features are present from the
start, and the case in which the features are dynamically added during learning. For
didactic purposes, first we will carry out simulations on very simple data sets, and
then on data related to the problem of action recognition in interactive robots. Finally,
we will present some results on the scale up of the model, using hundred of objects.

2 The Model

We consider the problem of categorizing N objects Ni ,,1= , each of which

characterized by d features de ,,1= . These features are represented by real
numbers)1,0(∈ieO - the input signals - as described before. Accordingly, we assume

that there are M d-dimensional concept-models Mk ,,1= described by real-valued

fields keS , with de ,,1= as before, that should match the object features ieO . Since

each feature represents a different property of the object as, for instance, color, smell,
texture, height, etc. and each concept-model component is associated to a sensor
sensitive to only one of those properties, we must, of course, seek for matches
between the same component of objects and concept-models. Hence it is natural to
define the following partial similarity measure between object i and concept k

 () ()[]∏
=

− −−=
d

e
keiekeke OSkil

1

222/12 2exp2)|(σπσ (2)

where, at this stage, the fuzziness keσ is a parameter given a priori. The goal is to

find an assignment between models and objects such that the global similarity

 ()=
i k

kilL |log (3)

380 V. Tikhanoff et al.

is maximized. This maximization can be achieved using the MFT mechanism of
concept formation which is based on the following dynamics for the modeling field
components

 []ke
i

ke SkilikfdtdS ∂∂=)|(log)|(, (4)

which, using the similarity (1), becomes

 () 2)|(keieke

i

ke OSikfdtdS σ−−= . (5)

Here the fuzzy association variables)|(ikf are the neural weights defined in

equation (1) and give a measure of the correspondence between object i and concept k
relative to all other concepts k’. These fuzzy associations are responsible for the
coupling of the equations for the different modeling fields and, even more importantly
for our purposes, for the coupling of the distinct components of a same field. In this
sense, the categorization of multi-dimensional objects is not a straightforward
extension of the one-dimensional case because new dimensions should be associated
with the appropriate models. This nontrivial interplay between the field components
will become clearer in the discussion of the simulation results.
 It can be shown that the dynamics (4) always converges to a (possibly local)
maximum of the similarity L [14], but by properly adjusting the fuzziness keσ the

global maximum often can be attained. A salient feature of dynamic logic is a match
between parameter uncertainty and fuzziness of similarity. In what follows we
decrease the fuzziness during the time evolution of the modeling fields according to
the following prescription

 () 222 exp)(bake tt σασσ +−= (6)

with 4105 −×=α , 1=aσ and 03.0=bσ . Unless stated otherwise, these are the

parameters we will use in the forthcoming analysis.

3 Simulations

In this section we will report results from three simulations. The first will use very
simple data sets that necessitate the use of two features to correctly classify the input
objects. We will demonstrate the gradual formation of appropriate concept-models
though the dynamic introduction of features. In the second simulation we will
demonstrate the application of the multi-feature MFT on data related to the
classification of actions from interactive robotics study. Finally, in the third
simulation we will consider the scaling up of the MFT to complex data sets.

To facilitate the presentation of the results, we will interpret both the object feature
values and the modeling fields as d -dimensional vectors and follow the time
evolution of the corresponding vector length

 Language and Cognition Integration Through Modeling Field Theory 381

 () dSS
d

e

kek

=

=
1

2 , (7)

which should then match the object length () dOO
d

e
iei =

=
1

2 .

3.1 Simulation I: Incremental Addition of Feature

Consider the case in which we have the 5 objects, initially with only one-feature
information. For instance, we can consider color information only on Red, the first of
the 3 RGB feature values, as used in Steels’s [19] discrimination-tree implementation.
The objects have the following R feature values: O1 = [0.1], O2 = [0.2], O3 = [0.3], O4
= [0.5], O5 = [0.5].

A first look at the data indicates that these 5 input stimuli belong to four color
categories (concept-models) with Red values respectively 0.1, 0.2, 0.3 and 0.5. As a
matter of fact, the application of the MFT algorithm to the above mono-dimensional
input objects reveal the formation of 4 model fields, even when we start with the
condition in which 5 fields are randomly initialized (Fig. 1).

Fig. 1. Time evolution of the fields with only the first feature being used as input. Only 4 models
are found, with two initial random fields converging towards the same .5 Red concept-model value.

Let us now consider the case in which we add information from the second color
sensor, Green. The object input data will now look like these: O1 = [0.1, 0.4], O2 =
[0.2, 0.5], O3 = [0.3, 0.2], O4 = [0.5, 0.3], O5 = [0.5, 0.1].

The same MFT algorithm is applied with 5 initial random fields. For the first
12500 training cycles (half of the previous training time), only the first feature is
utilized. At timestep 12500, both features are considered when computing the fuzzy
similarities. From timestep 12500, the dynamics of the σ2 fuzziness value is
initialized, following equation (7), whilst σ1 continues1 its decrease pattern started at

1 We have also experimented with the alternative method of re-initializing both σe values, as in

equation (7), whenever a new feature is added. This method produces similar results.

382 V. Tikhanoff et al.

Fig. 2. Time evolution of the fields when the second feature is added at timestep 12500. The
dynamic fuzziness reduction for σ2 starts at the moment the 2nd feature is introduced, and is
independent from σ1. Note the restructuring of 4 fields initially found up to timestep 12500, and
the further discovery of the model. The fields values in the first 12500 cycles is the actual
mono-dimensional field value, whilst from timestep 12500 the equation in (7) is used to plot the
combined fields’ value.

Fig. 3. Evolution of fields in the robot posture classification task. The value of the field
corresponds to equation (7). Although the five fields look very close, in reality the individual
field values match very well the 42 parameters of the original positions.

timestep 0. Results in Fig. 2 show that the model is now able to correctly identify 5
different fields, one per combined RG color type.

3.2 Simulation II: Categorization of Robotic Actions

In the introduction we have proposed the use of MFT for modeling the integration of
language and cognition in cognitive robotic studies. This is a domain where the input

 Language and Cognition Integration Through Modeling Field Theory 383

to the cognitive agent (e.g. visual and auditory input) typically consists of multi-
dimensional data such as images of objects/robots and speech signals. Here we apply

the multi-dimensional MFT algorithm to the data on the classification of the posture of
robots, as in an imitation task. We use data from a cognitive robotic model of symbol
grounding [4,6]. We have collected data on the posture of robots using 42 features.
This consist of the 7 main data (X, Y, Z, and rotations of joints 1, 2, 3, and 4) for each
of the 6 segments of the robot’s arms (right shoulder, right upperarm, right elbow, left
shoulder, left upperarm, left elbow). As training set we consider 5 postures: resting
position with both arms open, left arm in front, right arm in front, both arms in front,
and both arms down. In this simulation, all 42 features are present from timestep 0.
Fig. 3 reports the evolution of fields and the successful identification of the 5 postures.

Fig. 4. Evolution of fields in the case with 1000 input objects and 10 prototypes

3.3 Simulation III: Scaling Up with Complex Stimuli Sets

Finally, we have tested the scaling-up of the multi-dimensional MFT algorithm with a
complex categorization data set. The training environment is composed of 1000
objects belonging to the following 10 2-feature object prototypes: [0.1, 0.8], [0.2,
1.0], [0.3, 0.1], [0.4, 0.5], [0.5, 0.2], [0.6, 0.3], [0.7, 0.4], [0.8, 0.9], [0.9, 0.6] and [1.0,
0.7]. For each prototype, we generated 100 objects using a Gaussian distribution with
standard deviation of 0.05. During training, we used 10 initial random fields.

Fig. 4 reports the time evolution of the 10 concept-models fields. The analysis of
results also shows the successful identification of the 10 prototype models and the
matching between the 100 stimuli generated by each object and the final values of the
fields.

4 Discussion and Conclusion

In this paper we have presented an extension of the MFT algorithm for
the classification of objects. In particular we have focused on the introduction of

384 V. Tikhanoff et al.

multi-dimensional features for the representation of objects. The various simulations
showed that (i) the system is able to dynamically adapt when an additional feature is
introduced during learning, (ii) that this algorithm can be applied to the classification
of action patterns in the context of cognitive robotics and (iii) that it is able to classify
multi-feature objects from complex stimulus set.

Our main interest in the adaptation of MFT to multi-dimensional objects is for its
use in the integration of cognitive and linguistic abilities in cognitive robotics. MFT
permits the easy integration of low-level models and objects to form higher-order
concepts. This is the case of language, which is characterized by the hierarchical
organization of underlying cognitive models. For example, the acquisition of the
concept of “word” in a robot consists in the creation of a higher-order model that
combines a semantic representation of an object model (e.g. prototype) and the
phonetic representation of its lexical entry [15]. The grounding of language into
categorical representation constitutes a cognitively-plausible approach to the symbol
grounding problem [11]. In addition, MFT permits us to deal with the problem of
combinatorial complexity, typical of models dealing with symbolic and linguistic
representation. Current cognitive robotics model of language typically deal with few
tens or hundred of words (e.g. [6,19]). With the integration of MFT and robotics
experiments we hope to deal satisfactory with the combinatorial complexity problem.

Ongoing research is investigating the use of MFT for the acquisition of language in
cognitive robotics. In particular we are currently looking at the use of multi-
dimensional MFT to study the emergence of shared languages in a population of
robots. Agents first develop an ability to categorize objects and actions by building
concept-models of objects prototypes. Subsequently, they start to learn a lexicon to
describe these objects/actions through a process of cultural learning. This is based on
the acquisition of a higher-order MFT.

Acknowledgements

Effort sponsored by the Air Force Office of Scientific Research, Air Force Material
Command, USAF, under grants number FA8655-05-1-3060 and FA8655-05-1-3031.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purpose notwithstanding any copyright notation thereon.

References

[1] Barsalou, L. (1999), Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-
609.

[2] Cangelosi A. (2001). Evolution of communication and language using signals, symbols
and words. IEEE Transactions on Evolutionary Computation. 5(2), 93-101

[3] Cangelosi A., Bugmann G. & Borisyuk R. (Eds.) (2005). Modeling Language, Cognition
and Action: Proceedings of the 9th Neural Computation and Psychology Workshop.
Singapore: World Scientific.

[4] Cangelosi A., Hourdakis E. & Tikhanoff V. (2006). Language acquisition and symbol
grounding transfer with neural networks and cognitive robots. Proceedings of IJCNN2006:
2006 International Joint Conference on Neural Networks. Vancouver, July 2006.

 Language and Cognition Integration Through Modeling Field Theory 385

[5] Cangelosi, A., & Parisi, D. (2004). The processing of verbs and nouns in neural networks:
Insights from synthetic brain imaging. Brain and Language, 89(2), 401-408.

[6] Cangelosi A, Riga T (2006). An Embodied Model for Sensorimotor Grounding and
Grounding Transfer: Experiments with Epigenetic Robots, Cognitive Science, 30(4),
1-17.

[7] Fontanari J.F., Perlovsky L.I. (2005). Meaning creation and modeling field theory. In C.
Thompson & H. Hexmoor (Eds.), IEEE KIMAS2005: International Conference on
Integration of Knowledge Intensive Multi-Agent Systems. IEEE Press, pp. 405-410.

[8] Fontanari J.F., Perlovsky L.I. (2006a). Categorization and symbol grounding in a
complex environment. Proceedings of IJCNN2006: 2006 International Joint Conference
on Neural Networks. Vancouver, July 2006.

[9] Fontanari J.F., Perlovsky L.I. (2006b). Meaning creation and communication in a
community of agents. Proceedings of IJCNN2006: 2006 International Joint Conference
on Neural Networks. Vancouver, July 2006.

[10] Glenberg A., & Kaschak, M. (2002). Grounding language in action. Psychonomic
Bulletin & Review, 9(3), 558-565.

[11] Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335-346.
[12] Marocco, D., Cangelosi, A., & Nolfi, S. (2003). The emergence of communication in

evolutionary robots. Philosophical Transactions of the Royal Society of London – A 361,
2397-2421.

[13] Pecher, D., & Zwaan, R.A., (Eds.). (2005). Grounding cognition: The role of perception
and action in memory, language, and thinking. Cambridge: Cambridge University Press.

[14] Perlovsky L. Neural Networks and Intellect: Using Model-Based Concepts. Oxford
University Press, New York, 2001.

[15] Perlovsky L., “Integrating language and cognition,” IEEE Connections, vol. 2, pp. 8-13,
2004

[16] Pulvermuller F. (2003) The neuroscience of language. On brain circuits of words and
serial order. Cambridge: Cambridge University Press.

[17] Rizzolatti, G., & Arbib, M. (1998). Language within our grasp. Trends in Neuroscience,
21: 188-194.

[18] Smith A. D. M. (2003). Semantic generalization and the inference of meaning,” In: W.
Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, J. Ziegler (Eds.), Proceedings of the 7th
European Conference on Artificial Life, Lecture Notes in Artificial Intelligence, vol.
2801, pp. 499-506.

[19] Steels L (1999) The talking heads experiment (Volume I. Words and meanings).
Antwerpen: Laboratorium.

[20] Steels, L. (2003) Evolving grounded communication for robots. Trends in Cognitive
Sciences, 7(7):308-312.

[21] Wermter, S., Elshaw, M., and Farrand, S., 2003, A modular approach to self-organization
of robot control based on language instruction. Connection Science, 15(2-3): 73-94.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 386 – 395, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Methodology for Estimating the Product Life Cycle
Cost Using a Hybrid GA and ANN Model

Kwang-Kyu Seo∗

Department of Industrial Information and Systems Engineering, Sangmyung University,
San 98-20, Anso-Dong, Chonan, Chungnam 330-720, Korea

kwangkyu@smu.ac.kr
Tel.: +81-41-550-5371; Fax. +81-41-550-5185.

Abstract. Although the product life cycle cost (LCC) is mainly committed by
early design stage, designers do not consider the costs caused in subsequent
phases of life cycle at this phase. The estimation method for the product life cy-
cle cost in early design processes has been required because of both the lack of
detailed information and time for a detailed LCC for a various range of design
alternatives. This paper proposes a hybrid genetic algorithm (GA) and artificial
neural network (ANN) model to estimate the product LCC that allows the
designer to make comparative LCC estimation between the different product
concepts. In this study, GAs are employed to select feature subsets eliminated
irrelevant factors and determine the number of hidden nodes and processing
elements. In addition, GAs are to optimize the connection weights between lay-
ers of ANN simultaneously. Experimental results show that a hybrid GA and
ANN model outperforms the conventional backpropagation neural network and
verify the effectiveness of the proposed method.

1 Introduction

The ability of a company to compete effectively on the increasingly competitive
global market is influenced to a large extent by the cost as well as the quality of its
products and the ability to bring products onto the market in a timely manner. In order
to guarantee competitive pricing of a product, cost estimates are performed repeatedly
throughout the life cycle of many products. In the early phases of the product life
cycle, when a new product is considered, cost estimate analyses are used to support
the decision for product design. Later on when alternative designs are considered, the
best alternative is selected based on its predicted life cycle cost (LCC) and its bene-
fits. Manufacturers usually considered only how to reduce the cost the company
spends for material acquisition, production, and logistics. In order to survive in the
competitive market environment especially resulted from the widespread awareness
of global environmental problems and legislation, manufacturers now have to con-
sider reducing the cost of the entire life cycle of a product. The costs incurred during
life cycle are mostly committed by early design decisions. Studies reported in Dow-
latshahi [1] and by other researchers in design suggest that the design of the product

∗ Corresponding author.

 A Methodology for Estimating the Product Life Cycle Cost 387

influences between 70% and 85% of the total cost of a product. Therefore, designers
can substantially reduce the LCC of products by giving due consideration to life cycle
implications of their design decisions. The research on design methodology to mini-
mize the LCC of a product also becomes very important and valuable [2, 3].

Generally, product designers are being asked to judge the cost of the products to be
developed. Not only is this an additional task for designers, but it is also necessary
something they are qualified to do. Therefore, the cost models created by cost estima-
tors should be integrated with traditional design models, making the parametric cost
results available on demand. However, the use of detailed parametric models is not
well suited to early conceptual design, where ideas are diverse and numerous, details
are very scarce, and the pace is swift. This is unfortunate because early phases of the
design process are widely believed to be the most influential in defining the product
LCC.

This paper proposes a hybrid genetic algorithm (GA) and artificial neural network
(ANN) model to predict the product LCC. In this study, the GA is employed as an
optimization method of relevant feature subsets selection, the determination of the
number of hidden layer and processing elements. In addition, the GA globally
searches and seeks optimal or near-optimal connection weights of ANN to improve
the prediction accuracy.

The rests of the paper are organized as follows. Section 2 shows the overview of
the proposed method. Section 3 presents a description of the hybrid GA and ANN
model. Sections 4 describe the procedures of experiments and experimental results are
shown in section 5. Finally, section 6 discusses the conclusions and future research
issues.

2 Overview of the Proposed Method

In this paper, the possibility of the LCC prediction method based on a hybrid GA and
ANN model is investigated. The proposed method provides useful LCC prediction of
products in terms of product attributes and LCC factors.

The hybrid GA and ANN model based LCC prediction method of products is a dif-
ferent approach to other cost prediction methods. The proposed hybrid model is trained
to generalize on characteristics of product concepts using product attributes and corre-
sponding LCC factors from pre-existing LCC studies. The designer queries the hybrid
GA and ANN model to predict the product LCC with product attributes to quickly
obtain the LCC prediction result for a new product concept as shown in Fig. 1. Design-
ers need to simply provide product attributes of new product concepts to gain LCC
prediction. It has the flexibility to learn and grow as new information becomes avail-
able, but it does not require the creation of a new model to make as LCC prediction for
a new product concept. Also, by supporting the extremely fast comparison of the cost
performance of product concepts, it does not delay product development.

This study proposes a hybrid GA and ANN model to improve the prediction accu-
racy of the product LCC. The GA part of the hybrid model as an optimization method
is proposed to select relevant product attributes and determine the number of hidden
nodes and processing elements. In addition, the hybrid model simultaneously searches

388 K.-K. Seo

the connection weights between layers in ANN. In other words, the GA globally
searches and seeks an optimal or near-optimal ANN topology and connection weights
for the prediction of the product LCC.

Training data
Input :
Identified
product
attributes

Output:
Product LCC

Detailed product
description

data

High-level
product

attributes

LCC
Results

LCC
Results

LCC factors
LCC

aggregation

......
Existing LCC

study data

Identifying
product

attributes

Input :
New product

concept
attributes

Output:
Predicting

LCC of the new
product concept

Hybrid
GA
&

ANN
model

Fig. 1. The structure of the proposed method

There are two key variables that are investigated in order to evaluate the proposed
LCC prediction model. Firstly, the feasible LCC factors as output to predict the prod-
uct LCC are introduced. The LCC factors should be in a form useful to cost estima-
tors and designers. Secondly, a list of reasonable product attributes as inputs is identi-
fied and LCC factors in order to make a set of meaningful attributes. The product
attributes must be meaningful to designers and consist of only product attributes typi-
cally known during conceptual design.

2.1 Life Cycle Cost Factors

The first issue is to identify the feasible LCC factors as outputs for use in the hybrid
model. In order to introduce the LCC factors, all the costs incurred in the product life
cycle are investigated and enumerated. The LCC of a product is determined by aggre-
gating all the LCC factors. The product LCC can be decomposed into cost factors as
shown in table 1 [4, 5].

Table 1. Life cycle stage and LCC factors for use in the hybrid model

Life cycle Cost factor
design market recognition, development
production materials, energy, facilities, wages,

waste, pollution, health damages
usage transportation, storage, waste, breakage, warranty/service, energy,

materials, maintenance, pollution, health damages
disposal/
recycling

disposal/recycling dues, energy, waste, disposal, pollution,
health damages

 A Methodology for Estimating the Product Life Cycle Cost 389

Table 1 provides a list of cost factors for the product life cycle that was adapted to
the feasible LCC factors as useful outputs for predicting the product LCC in the the
hybrid model. This decomposition is by no means the most comprehensive and repre-
sentative of all products or any product for that matter.

The cost factors considered will depend on the stage in which we want to use the
model, the kind of information to be extracted from the model and the product being
designed. While the LCC is the aggregate of all the costs incurred in the product’s
life, it must be pointed out that there are differences between the cost issues that will
be of interest to the designer of the product and the firm developing the product in the
LCC analysis. We show the prediction of the total energy cost during life cycle and
the maintenance cost in usage phase as examples in this study.

2.2 Product Attributes

2.2.1 General Product Attributes
The product attributes need to be both logically and statistically linked to LCC fac-
tors, and also be readily available during product concept design. The attributes must
be sufficient to discriminate between different concepts and be compact so that the
demands on the hybrid model are reasonable. Finally, they must be easily understood
by designers and, as a set, span the scope of the product life cycle. These criteria were
used to guide the process of systematically developing a product attribute list.

With these goals in mind, a set of candidate product attributes, based upon the lit-
erature and the experience of experts was formed [6, 7]. Experts in both product de-
sign and cost estimation discussed as candidate attributes derived from the literature.
The candidate product attributes identified initially are listed in table 2. They are
specified, ranked, binary or not applicable according to their properties such as an
appropriate qualitative or quantitative sense or typically rank order concepts.

This study helped us identify attributes that designers could both understand and
had knowledge of during the conceptual design. Furthermore, we were able to evalu-
ate which attributes are likely to vary significantly from concept to concept.

The maintainability attributes are additionally identified because the purpose of
this study is to predict the maintenance cost of usage phase in conceptual design.

Table 2. Product attribute set as feature subsets grouped for organizational properties

Group name Associated product attributes

general design properties durability, degradability

functional properties mass (mass is represented as the component ratio of 9
materials), volume

manufacturing properties assemblability, process

operational properties lifetime, use time, energy source, mode of operation, power
consumption, flexibility, upgradeability, serviceability,
modularity, additional consumables

end-of-life properties recyclability, reusability, disassemblability

390 K.-K. Seo

2.2.2 Maintainability Attributes
Maintenance is an important aspect of life-cycle concerns and plays significant role
during the usage phase of a product. It is the design attribute of a product which facili-
tates the performance of various maintenance activities. Design characteristics of a
product which facilitate maintainability will be effective factors which support prod-
uct maintenance during usage phase. Maintainability is one of the product design
parameter that has a great impact in terms of ease of maintenance. Maintainability
attributes for products, in general, can be identified by design, personnel and logistics
support properties [8, 9]. The maintainability attributes under design property are only
considered as the product attributes at the early design stage and presented in table 3.
They are also estimated by an appropriate qualitative or quantitative sense.

Table 3. Maintainability attribute set as feature subsets

Property Maintainability attributes
design accessibility, reassemblability, simplicity, identification,

standardization, diagnosability, modularity, tribo-features

3 A Hybrid GA and ANN Model for Estimating the Product LCC

The GA is a general-purpose evolutionary algorithm that can be used for optimiza-
tion. When compared to traditional optimization methods, the GA provides heuristic
near-optimal solutions. The GA uses a parallel search approach for locating the opti-
mal solution. In the GA, each population member is a potential solution. Recently, the
GA has been investigated and shown to be effective in exploring a complex space in
an adaptive way, guided by the biological evolution mechanisms of reproduction,
crossover, and mutation [10, 11].

The first step of the GA is problem representation. The problem must be repre-
sented in a suitable form to be handled by the GA. Thus, the problem is described in
terms of genetic code. The GA often works with a form of binary coding. If the prob-
lems are coded as chromosomes, the populations are initialized. Each chromosome
within the population gradually evolves through biological operations. There are no
general rules for determining the population size. Once the population size is chosen,
the initial population is randomly generated. After the initialization step, each chro-
mosome is evaluated by a fitness function. According to the value of the fitness func-
tion, the chromosome associated with fittest individuals will be reproduced more
often than those associated with unfit individuals [12].

The GA works with three operators that are iteratively used. The selection operator
determines which individuals may survive. The crossover operator allows the search
to fan out in diverse directions looking for attractive solutions and permits chromo-
somal material from different parents to be combined in a single child. In addition, the
mutation operator arbitrarily alters one or more components of a selected chromo-
some. Mutation randomly changes a gene on a chromosome. It provides the means for
introducing new information into the population. Finally, the GA tends to converge
on a near optimal solution through these operators [13].

 A Methodology for Estimating the Product Life Cycle Cost 391

The GA is usually employed to improve the performance of artificial intelligence
(AI) techniques. For ANN, the GA is popularly used to select neural network topol-
ogy including optimizing relevant feature subsets, and determining the optimal num-
ber of hidden layers and processing elements. The feature subsets, the number of
hidden layers, and the number of processing elements in hidden layers are the archi-
tectural factors of ANN to be determined in advance for the modeling process of
ANN. However, determining these factors is still part of the art. These factors were
usually determined by the trial and error approach and the subjectivity of designer.
This may lead a locally optimized solution because it cannot guarantee a global
optimum.

In this paper, we propose the hybrid GA and ANN model to resolve these prob-
lems of the prediction of the product LCC. In this study, the GA is used for the step of
selecting relevant product attributes and optimizing the network topology of ANN.
And then, the GA search near optimal connection weights in ANN. Eventually, the
GA globally searches an optimal or near-optimal ANN topology and connection
weights in the hybrid model.

The overall framework of the hybrid model is shown in Fig. 2.

...

...

X1

X2

Feature subset:
product attributes

...

......

Xk-1

Xk

ANN

Calculate
fitness

GA

GA operators

Reproduction
Crossover
Mutation

GA operators

Reproduction
Crossover
Mutation

Assign connection weights
between input & hidden layer

Assign connection weights
between hidden & output layer

Stage 1-2: Optimized connection weights

Evaluation

Number of
hidden layers &
processing elements

...

...

X1

X2

Feature subset:
product attributes

...

......

Xk-1

Xk

ANN

Calculate
fitness

GA

Stage 1-1: Feature subset selection &
Determination of the No. of hidden layers
and processing elements

GA operators

Reproduction
Crossover
Mutation

GA operators

Reproduction
Crossover
Mutation

Assign connection weights
between input & hidden layer

Assign connection weights
between hidden & output layer

Evaluation

GA operators

Reproduction
Crossover
Mutation

GA operators

Reproduction
Crossover
Mutation

Fig. 2. The structure of the proposed hybrid model

The prediction process of the hybrid model consists of the two stages as follows:

In the first stage, the GA searches optimal or near optimal feature subset and de-
termines the number of hidden nodes and processing elements. The GA also fines
optimal or near optimal connection weights of ANNs. The first stage is divided into
the following two sub-stages.

Stage 1-1 (GA for Feature Subset selection and determination of the number of
Hidden layers and processing elements (GAFSH)): The populations, feature subset,

392 K.-K. Seo

the number of hidden nodes and the processing elements are initialized into random
values before the search process. The feature subset, the number of hidden nodes and
processing elements for searching must be encoded on chromosomes. The chromo-
somes for feature subset are encoded as binary strings stands for some subset of origi-
nal feature set. Each bit of one chromosome represents whether the corresponding
feature is selected or not. 1 in each bit means the corresponding feature is selected
whereas 0 means it is not selected. In this study, the chromosomes for the feature
subsets such as product attributes are encoded as 28-bit string for the energy cost and
36-bit string for the maintenance cost. The number of hidden layer is encoded 2-bit
string and that of hidden nodes is encoded as 8-bit string. The encoded chromosomes
are searched to optimize a fitness function. In this study, the fitness function is the
average deviation between actual and predicted values of the product LCC. The pa-
rameters to be searched use only the information about the training data.

Stage 1-2 (GA for Connection Weights (GACW)): After determining the feature
subset, the number of hidden nodes and processing elements, connection weights are
optimized by GAs. In this study, ANN has one hidden layer and 16 hidden nodes for
the energy cost at stage 1-1. In stage 1-2, GA searches optimal or near-optimal con-
nection weights. The populations for the connection weights are initialized into ran-
dom values before the search process. The parameters for searching must also be
encoded on chromosomes. This study needs two sets of parameters. The first set is the
set of connection weights between the input layer and the hidden layer of the network.
The second set is the set of connection weights between the hidden layer and the out-
put layer. As we know, the above two sets may mitigate the limitation of the gradient
descent algorithm. The strings used in this study have the following encoding. This
study uses 14 input features and employs 16 processing elements in the hidden layer
for predicting the energy cost. Each processing element in the hidden layer receives
16 signals from the input layer. The first 224 bits represent the connection weights
between the input layer and the hidden layer. Each processing element in the output
layer receives a signal from the hidden layer. The next 16 bits indicate the connection
weights between the hidden layer and the output layer. The fitness function is also
used to the average deviation between actual and predicted values of product LCC.
The prediction procedures for the maintenance cost are same to the process for the
energy cost.

In first stage, GA operates the process of crossover and mutation on initial chromo-
somes and iterates until the stopping conditions are satisfied. For the controlling pa-
rameters of the GA search, the population size is set to 100 organisms and the cross-
over and mutation rates are varied to prevent ANN from falling into a local minimum.
The range of the crossover rate is set between 0.7 and 0.9 while the mutation rate
ranges from 0.05 to 0.1. As the stopping condition, only 5,000 trials are permitted.

The second stage, selected product attributes, and optimized or near-optimized
ANN topology and connection weights are applied to the holdout data. This stage is
indispensable to validate the generalizability because ANN has the eminent ability of
learning the known data. If this stage is not carried out, the model may fall into the
problem of over-fitting with the training data.

 A Methodology for Estimating the Product Life Cycle Cost 393

4 Research Data and Experiments

4.1 Research Data

As mentioned earlier, the feasibility test of the proposed method was conducted fo-
cusing on the total energy and maintenance cost components of the LCC factors.
Research data with product attributes and corresponding energy and maintenance
costs were collected for 200 different electronic products. The energy cost was ob-
tained by total energy consumption during the life cycle of products. The maintenance
cost in usage phase was calculated by equation (1). The equation is composed of labor
cost, part replacement cost, and failure rate. The equation is useful in determining the
maintenance cost.

MC = [(LCFixed + (TL × RL) + CR)] × RF (1)
Where:
LCFixed = Fixed labor cost such as the fixed cost when a maintenance representative

visits a customer ($)
TL = Labor time such as mean actual repair time (MART) or mean actual mainte-

nance time (MAMR) (hour)
RL = Labor rate ($/hour)
CR = Mean replacement cost of parts or materials when maintenance occurs ($)
RF = Failure rate
The examples of research data for the hybrid model are shown in table 4.

Table 4. Examples of research data for the hybrid model

Product Mass Ferrous M. Plastics Lifetime Use time(hrs) Power consump. Modularity Energy Maintenance
(kg) (%mass) (%mass) (hours) (hours) … (watt) (0~4) cost($)* cost($)**

1 8.17 32.62 61.58 61320 3041 … 1064 1 596.21 6.00
2 1.04 16.19 77.65 26280 13 … 58 1 20.53 1.79
3 0.18 45.77 32.86 43800 13688 … 0 1 1.65 8.25
4 0.64 22.16 71.09 2160 45 … 13 1 11.47 1.85
5 1.93 2.85 65.54 43800 487 … 616.44 4 83.54 2.75

… … … … … … … … … … …
… … … … … … … … … … …

198 49.78 67.07 27.64 87600 87600 … 13 3 1467.29 18.00
199 40.46 8.83 25.81 87600 11680 … 616 3 2935.2 6.54
200 35.01 24.24 51.75 121764 121764 … 19 4 313.41 12.57

OutputsInputs

* The energy cost is the total cost of energy consumption during product’s life cycle.
** The maintenance cost is the mean cost of product maintenance during usage phase of a product.

4.2 Experiments and Discussion

This study compares GAFSH and GACW to the backpropagation neural network
(BPNN). BPNN uses the gradient descent algorithm to train the network. This is the
conventional approach of previous studies. As mention earlier, GAFSH employs the
GA to select feature subsets and determine the number of hidden layers and process-
ing element of ANN. Using the selected feature subsets and the determined the num-
ber of hidden layers and processing element of ANN, GACW employs the GA to
determine the connection weights of ANN. About 20% (40) of the data is used for

394 K.-K. Seo

holdout and 80% (160) is used for training. The training data is used to search the
optimal or near-optimal parameters and is employed to evaluate the fitness function.
The holdout data is used to test the results with the data that is not utilized to develop
the model.

The GA selects 14 product attributes from 28 product attributes for the energy cost
and 21-product attributes from 36 product attributes for the maintenance cost. In addi-
tion, the GA recommends one hidden layer and 16 processing elements for the energy
cost and one hidden layer and 24 processing elements for the maintenance cost in
ANN. Table 5 presents mean absolute percent error (MAPE) by different models. In
table 5, GACW has higher prediction accuracy than BPNN and GAFSH for the hold-
out data. GAFSH outperforms BPNN with the gradient descent algorithm. The ex-
perimental results show that the prediction accuracy performance of ANN is sensitive
not only to various feature subsets but also to different topology. Thus, this result
shows that simultaneous optimization of the feature subsets and topology is need for
the best prediction. In addition, we concluded that ANN with the genetically evolved
connection weights provides higher prediction results than that of GAFSH.

The McNemar tests are used to examine whether the proposed model shows better
performance than the conventional BPNN. This test is a nonparametric test for two
related samples using the chi-square distribution. This test may be used with nominal
data and is particularly useful with ‘before–and-after’ measurement of the same sub-
jects [14]. The teat results show GAFSH and GACW outperforms the conventional
BPNN at a 5% statistical significance level. Although GACW shows higher accuracy
than that of GAFSH, GACW does not outperforms GAFSH at a 5% statistical signifi-
cance level.

Table 5. Prediction accuracy by conventional ANN and a hybrid model (MAPE)

Hybrid GA & ANN model Conventional BPNN
GAFSH GACW

 Training Holdout Training Holdout Training Holdout
Energy cost 19.57% 28.78% 12.74% 18.56% 11.26% 16.34%
Maintenance

cost
7.38% 11.43% 4.98% 7.56% 4.52% 7.13%

Average 13.48% 20.11% 8.86% 13.06% 7.89% 11.76%

5 Conclusions

The lack of an analytic LCC prediction method motivated the development of the
hybrid GA and ANN model to predict the product LCC. For the proposed method, the
product attributes and LCC factors were identified and used to predict the cost per-
formance of products. In order to resolve the local optimum problem of ANN, the
hybrid GA and ANN model has been proposed. In this study, the GA was used for the
step of selecting relevant feature subsets and determining the number of hidden layers
and processing elements. In addition, the GA genetically evolved connection weights
of ANN. The proposed model outperformed the conventional BPNN. The major ad-
vantage of the proposed model was simultaneous consideration of efficiency and
effectiveness for the prediction of the product LCC.

 A Methodology for Estimating the Product Life Cycle Cost 395

For future work, we intend to apply the GA to other AI techniques to improve the
accuracy and efficiency. We believe that there is great potential for further research
with the optimization using the GA for other AI techniques.

References

1. Dowlatshahi, S.: Product design in a concurrent engineering environment: an optimisation
approach. Journal of Production Research, Vol. 30(8) (1992) 1803-1818

2. .Westkämp, E., Alting, l., Arndt, G.:Life Cycle Management: Approaches and Visions
Towards Sustainable Manufacturing. Annals of the CIRP, Vol. 49(2) (2000) 501-522

3. Westkämp, E., Osten-Sacken, D.v.d.: Product Life Cycle Costing Applied to Manufactur-
ing System. Annals of the CIRP, Vol. 47(1) (1998) 353-356

4. Alting, L.: Life cycle design of products: a new opportunity for manufacturing enterprises.
In Concurrent Engineering: Automation, Tools, and Techniques. A. Kusiak (Ed.) (pp. 1-
17), New York: Wiley (1993)

5. Alting, L., and Legarth, J.: Life cycle Engineering and Design. Annals of the CIRP, Vol.
44(2) (1995) 569-580

6. Park, J. -H. and Seo, K. -K.: Approximate Life Cycle Assessment of Product Concepts us-
ing Multiple Regression Analysis and Artificial Neural Networks. KSME International
Journal, Vol. 17(12) (2003) 1969-1976

7. Seo, K.-K, Min, S.-H. and Yoo, H.-W.: Artificial Neural Network based Life Cycle As-
sessment Model of Product Concepts using Product Classification Method. Lecture Notes
in Computer Science, 3483 (2005) 458-466

8. Takata, S., Hiraoka, H., Asama, H., Yamoka, N., Saito, D.: Facility model for lifecycle
maintenance system, Annals of the CIRP, Vol. 44(1) (1995) 117-121

9. Tarelko, W.: Control model of maintainability level, Reliability Engineering and System
Safety; Vol. 47(2) (1995) 85-91

10. Goldberg, D. E.: Genetic algorithms in search, optimization, and machine learning. Read-
ing, MA: Addison-Wesley (1989)

11. Adeli, H., and Hung, S.: Machine learning: Neural networks, genetic algorithms, and fuzzy
systems. New York: Wiley (1995)

12. Davis, L.: Genetic algorithms and financial applications. In G. J. Deboeck (Ed.), Trading
on the edge (pp. 133–147), New York: Wiley (1994)

13. Wong, F., and Tan, C.: Hybrid neural, genetic, and fuzzy systems. In G. J. Deboeck (Ed.),
Trading on the edge (pp. 243–261), New York: Wiley (1994)

14. Cooper, D. R., & Emory, C. W.: Business research methods, Chicago, IL: Irwin (1995)

Using Self-Organizing Maps to Support
Video Navigation

Thomas Bärecke1, Ewa Kijak1, Andreas Nürnberger2, and Marcin Detyniecki1

1 LIP6, Université Pierre et Marie Curie, Paris, France
thomas.baerecke@lip6.fr

2 Faculty of Computer Science, Otto-von-Guericke Universität Magdeburg, Germany

Abstract. Content-based video navigation is an efficient method for
browsing video information. A common approach is to cluster shots into
groups and visualize them afterwards. In this paper, we present a pro-
totype that follows in general this approach. Unlike existing systems,
the clustering is based on a growing self-organizing map algorithm. We
focus on studying the applicability of SOMs for video navigation sup-
port. We ignore the temporal aspect completely during the clustering,
but we project the grouped data on an original time bar control after-
wards. This complements our interface by providing – at the same time
– an integrated view of time and content based information. The aim is
to supply the user with as much information as possible on one single
screen, without overwhelming him. Special attention is also given to the
interaction possibilities which are hierarchically organized.

1 Introduction

Extremely large digital libraries with all types of multimedia documents are
available today. Efficient methods to manage and access these archives are cru-
cial, for instance, quick search for similar documents or effective summarization
via visualization of the underlying structure.

The prototype presented in this paper implements methods to structure and
visualize video content in order to support a user in navigating within a single
video. We focus on the way video information is summarized in order to improve
content-based navigation. Currently, a common approach is to use clustering
algorithms in order to automatically group similar shots and then to visualize
the discovered groups in order to provide an overview of the considered video
stream [1,2]. Summarization and representation of video sequences are usually
keyframe-based. A keyframe is a representative still image of a video sequence.
The simplest method of extracting a keyframe for a given sequence is to choose
its median frame. The keyframes can be arranged in the form of a temporal list
and hierarchical browsing is then based on the clustered groups. In this paper, we
use one promising unsupervised clustering approach that combines both good
clustering and visualization capabilities: the self-organizing maps (SOMs). In
fact, they have been successfully used for the navigation of text [3,4,5,6] and
image collections [7,8].

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 396–405, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Self-Organizing Maps to Support Video Navigation 397

The visualization capabilities of self-organizing maps provide an intuitive way
of representing the distribution of data as well as the object similarities. As most
clustering algorithms, SOMs operate on numerical feature vectors. Thus, video
content has to be defined by numerical feature vectors that characterize it. A
variety of significant characteristics has been defined for all types of multime-
dia information [9]. From video documents, colour histograms for describing the
keyframes are widely used [1,2,10]. We also followed this simple approach, since
our goal was to investigate the visualisation and interaction capabilities of SOMs
for video structuring and navigation. For this purpose, sophisticated visual de-
scriptors and similarity measures are not necessary. Since we use only colour
features of still images as a model for the video content on which we apply the
clustering algorithm, temporal information is completely ignored. However, after
clustering the grouped images are projected on a time bar tool that is visualizing
the temporal distribution of similar sequences.

Our system is composed of feature extraction, structuring, visualization, and
user interaction components. Structuring and visualization parts are based on
growing SOMs that were developed in previous works and applied to other forms
of interactive retrieval [6,11]. We believe that growing SOMs are particularly
adapted to fit video data. The visualization and user interaction components
were designed with the intention to provide intuitive content-based video brows-
ing functionalities to the user. In the following four sections we describe the
system components and the processing steps. First, we discuss the video feature
extraction process. Then we shortly describe how the data is structured by using
growing self-organizing maps. Afterwards, a detailed description of the visualiza-
tion component of the system is given. Before concluding, the last section deals
with the interaction possibilities of our system.

2 Video Feature Extraction

The video feature extraction component supplies the self-organizing map with
numerical vectors and therefore they form the basis of the system. This process
is shown in Fig. 1. The module consists of two parts: temporal segmentation and
feature extraction.

Fig. 1. Video Feature Extraction

398 T. Bärecke et al.

2.1 Temporal Segmentation

The video stream is automatically segmented into shots by detecting their
boundaries. A shot is a continous video sequence taken from one camera. We
identify shot boundaries by searching for rapid changes of the difference between
colours histograms of successive frames, using a single threshold. It was shown in
[12] that this simple approach performs rather well. The colours are represented
in the IHS (intensity, hue, saturation) space, because of its suitable perceptual
properties and the independence between the three colourspace components. A
simple filtering process allows the reduction of the number of false positives,
i.e. a set of two successive frames which belong to the same shot although the
difference of their colour histograms exceeds the given threshold. The shots with
an insufficient number of frames (usually less than 5), are ignored. However, the
number of false positives does not have a great influence on our approach, since
similar shots will be assigned to the same cluster, as discussed in the following.

2.2 Feature Extraction

In order to obtain good clustering a reasonable representation of the video seg-
ments is necessary. For each shot, one keyframe is extracted (we choose the
median frame of a shot) along with its colour histograms using a specified colour
space. The system currently supports IHS, HSV , and RGB colour models. Apart
from a global colour histogram, histograms for certain regions of the image are
also extracted. Four regions are defined, the top, bottom, left, and right rectan-
gles of the image. Each histogram is described by a numerical feature vector. In
order to be able to train a self-organizing map with the resulting set of vectors,
we use an early fusion strategy by merging all histogram vectors into a single
virtual vector, which is then used to define each shot.

3 Structuring with Growing Self-Organizing Maps

Self-organizing maps (SOMs) [13] are artificial neural networks, well suited for
clustering and visualization of high dimensional information. In fact, they map
high-dimensional data into a low dimensional space (two dimensional map). The
map is organized as a grid of symmetrically connected cells. During learning,
similar high dimensional objects are progressively grouped together into the
cells. After training, objects that are assigned to cells close to each other, in
the low-dimensional space, are also close to each other in the high-dimensional
space.

Our map is based on cells organized in hexagonal form, because the distances
between adjacent cells are always constant on the map (see Fig. 2). In fact, in
the traditional rectangular topology the distance would depend on whether the
two cells are adjacent vertically (or rather horizontally) or diagonally.

The neuronal network structure of SOMs is organized in two layers (Fig. 2).
The neurons in the input layer correspond to the input dimensions, here the

Using Self-Organizing Maps to Support Video Navigation 399

feature vector describing the shot. The output layer (map) contains as many
neurons as clusters needed. The connection weights between input and output
layer of neural network encode positions in the high-dimensional feature space.
Every unit in the output layer represents a prototype, i.e. here the center of a
cluster of similar shots.

Fig. 2. Structure of a Hexagonally Organized Self-Organizing Map: The basic structure
is an artificial neural network with two layers. Each element of the input layer is
connected to every element of the map.

Before the learning phase of the network, the two-dimensional structure of the
output units is fixed and the weights are initialized randomly. During learning,
the sample vectors are repeatedly propagated through the network. The weights
of the most similar prototype ws (winner neuron) are modified such that the
prototype moves towards the input vector wi. To preserve the neighbourhood
relations, prototypes that are close to the winner neuron in the two-dimensional
structure are also moved in the same direction. The strength of the modification
decreases with the distance from the winner neuron. Therefore, the weights ws

of the winner neuron are modified according to the following equation:

∀i : w
′
s = ws + v(c, i).δ.(ws − wi) (1)

where δ is a learning rate. By this learning procedure, the structure in the
high-dimensional sample data is non-linearly projected to the lower-dimensional
topology.

Although the application of SOMs is straightforward, a main difficulty is
defining an appropriate size for the map. Indeed, the number of clusters has to
be defined before starting to train the map with data. Therefore, the size of the
map is usually too small or too large to map the underlying data appropriately,
and the complete learning process has to be repeated several times until an
appropriate size is found. Since the objective is to structure the video data, the
desired size depends highly on the content. An extension of self-organizing maps
that overcomes this problem is the growing self-organizing map [6].

400 T. Bärecke et al.

3.1 The Growing Self-Organizing Map

The main idea is to initially start with a small map and then add during training
iteratively new units, until the overall error – measured, e.g., by the inhomogene-
ity of objects assigned to a unit – is sufficiently small. Thus the map adapts itself
to the structure of the underlying data collection. The applied method restricts
the algorithm to add new units to the external units if the accumulated error of
a unit exceeds a specified threshold value. This approach simplifies the growing
problem (reassignment and internal-topology difficulties) and it was shown in
[6] that it copes well with the introduction of data in low and high dimensional
spaces. The way a new unit is inserted is illustrated in Fig. 3.

xi, yi: weight vectors
xk: weight vector of unit with highest error
m: new unit
α, β: smoothness weights (defaults: α ≈ 0.2, β ≈ 0.5)
Computation of new weight vector for xm for m:

xm = xk + α ∗ (xk − yk) +
n

i=0,i�=k

(xi + β ∗ (xi − yi)) ∗ 1
n + 1

Fig. 3. Insertion of a new Unit: When the cumulated error of a cell exceeds a threshold,
a new unit xm is added to the map. It is placed next to the unit with the highest error
at the border of the map.

3.2 Similarity Between Shots

As in all clustering algorithms the main problem is how to model the similarity
between the objects that are going to be grouped into one cluster. We model the
difference of two video sequences with the Euclidean distance of the two low-level
feature vectors that were extracted from the video. However, this distance does
not necessarily correspond to a perceived distance by a human. In addition,
these features represent only a small part of the video content. In any case,
there remains a semantic gap between the video content and what we see on the
map. However, since for this first prototype study we are mainly interested in
the capabilities of the SOMs, this approach seems sufficient, since we are not
looking at grouping the shots ”purely semantically”, but rather at extracting a
structure based on visual similarities.

4 Visualization

Our system represents a video shot by a single keyframe and constructs higher
level aggregates of shots. The user has the possibility to browse the content in
several ways. The basic idea is to provide as much information as possible on a
single screen, without overwhelming the user. Therefore, we combined elements

Using Self-Organizing Maps to Support Video Navigation 401

Fig. 4. Screenshot of the Interface: The player in the top left corner provides video
access on the lowest interaction level. The time bar and shot list provide an intermediate
level of summarized information while the growing self-organizing map on the right
represents the highest abstraction level.

providing information on three abstraction levels as illustrated in Fig. 4. First,
there is an overview over the whole content provided by the self-organizing map
window, described in section 4.1. On each cell, the keyframe of the shot that is
the nearest to the cluster centre, i.e. the most typical keyframe of a cluster, is
displayed. The second level consists of a combined content-based and time-based
visualization. Furthermore, a list of shots is provided for each grid cell (see Sect.
4.2) and a control (see Sect. 4.3) derived from the time-bar control helps to
identify content that is similar to the currently selected shot.

4.1 Self Organizing Map Window

The self-organizing map window (see Fig. 4.1) contains the visual representation
of the self organizing map where the clusters are represented by hexagonal nodes.
The most typical keyframe of the cluster is displayed on each node. If there are
no shots assigned to a special node no picture is displayed. The background
colors of the grid cells are used to visualize different information about the
clusters. After learning, shades of green indicate the distribution of keyframes:
the brightness of a cell depends on the number of shots assigend to it (see Fig.
4.1a). Later, the background color indicates the similarity of the cluster to a
selected shot as described below. For a thorough discussion of coloring methods
for self-organizing maps we like to refer to [14].

402 T. Bärecke et al.

(a) (b)

Fig. 5. Growing self-organizing map: (a) After training. The brightness of a cell indi-
cates the number of shots assigned to each node. On each node the keyframe of the
shot with the smallest difference to the cluster center is displayed. (b) After a shot
has been selected. The brightness of a cell indicates the distance between each cluster
center and the keyframe of the chosen shot. Notice that sequences in adjacent cells are
similar as intended.

After this first display, a click on a cell opens a list of shots assigned to the
specific cell (see Sect. 4.2). The user can then select a specific shot from the
list. As a result, the colour of the map changes to shades of red (see Fig. 4.1b).
Here, the intensity of the colour depends on the distance between the cluster
centres and the actually selected shot and thus is an indicator for its similarity.
For instance, if we select a shot that has the visual characteristics A and B, all
the nodes with these characteristics will be coloured in bright red and it will
progressively change towards a darker red based on the distance. This implies
in particular that the current node will be automatically coloured in bright red,
since by construction all of its elements are most similar. In fact, objects that
are assigned to cells close to each other, in the low-dimensional space, are also
close to each other in the high-dimensional space.

But this does not mean that objects with a small distance in the high-
dimensional space are necessarily assigned to cells separated by a small distance
on the map. For instance, we can have on one side of the map a node with
shots with the characteristics A and on another the ones with B. And then in
one of both, let’s say A-type, a shot with characteristics A and B. Thanks to
the visualisation schema presented above, starting with a shot A&B, located in
a node A, we will easily identify the nodes in which all the shots are rather of
type B. This improves significantly the navigation possibilities provided by other
clustering schemas.

From user interaction perspective the map is limited to the following actions:
select nodes and communicate cluster assignment and colour information to the

Using Self-Organizing Maps to Support Video Navigation 403

time bar. Nevertheless it is a very powerful tool which is especially useful for
presenting a structured summarization of the video to the user.

4.2 Player and Shot List

The player is an essential part of every video browsing application. Since the
video is segmented into shots, functionalities were added especially for the pur-
pose of playing the previous and the next shot.

A shot list window showing all keyframes assigned to a cell (Fig. 4) is added
to the interface every time a user selects a node from the map. Multiple shot
lists for different nodes can be open at the same time representing each shot
by a keyframe. These keyframes correspond to the actual selected node in the
self-organizing map, as described in section 4.1. When clicking on one of the
keyframes, the system plays the corresponding shot in the video. The button for
playing the current node is a special control, which results in a consecutive play
operation of all shots corresponding to the selected node, starting with the first
shot. This adds another temporal visualization method to the segmented video.

4.3 Time Bar

The time bar of our prototype (Fig. 6) reintroduces the temporal aspect into the
interface which we ignored in the SOM. The colours of the self organizing map
are projected into the temporal axis. With this approach, it is possible to see
within the same view the information about the similarity of keyframes and the
corresponding temporal information. A green double arrow displays the current
temporal position within the video. Additionally, there are black extensions on
the time bar at the places where the corresponding shots of the selected node can
be found. There are two interaction possibilities with our time bar. By clicking
once on any position, the system plays the corresponding shot. Clicking twice,
it forces the self organizing map to change the currently selected node to the
one corresponding to the chosen frame. And therefore, the background colour
schema of the map is recomputed.

Fig. 6. Time Bar Control: The time bar control provides additional information. The
brightness of the colour indicates the distribution of similar sequences on the time
scale. Around the time bar, black blocks visualize the temporal positions of the shots
assigned to the currently selected node. Finally, the two arrows point out the actual
player position.

404 T. Bärecke et al.

5 User Interaction

The four components presented above are integrated into one single screen (Fig.
4) providing a structured view of the video content. The methods for user inter-
action are hierarchically organized (Fig. 7). The first layer is represented by the
video viewer. The shot lists and timebar visualize the data on the second layer.
The self-organizing map provides the highest abstraction level.

Fig. 7. User Interactions: This figure illustrates the main user interactions possible
with our system. All listed elements are visible to the user on one single screen and
always accessible thus providing a summarization on all layers at the same time.

The self-organizing map is situated in the third layer. The user can select
nodes and retrieve their content i.e. the list of corresponding keyframes. The
time bar is automatically updated by visualizing the temporal distribution of
the corresponding shots when the current node is changed. Thus, a direct link
from the third to the second layer is established. Furthermore the user views at
the same time the temporal distribution of similar shots inside the whole video
on the time bar, after a certain shot has been selected. In the other direction
selecting shots using both the time bar and the list of keyframes causes the map
to recompute the similarity values for its nodes and to change the selected node.
The colour of the grid cells is computed based on the distance of its prototype to
the selected shot. The same colours are used inside the time bar. Once the user
has found a shot of interest, he can easily browse through similar shots using
the colour indication on the time bar or map.

Notice that the first layer cannot be accessed directly from the third layer.
Different play operations are activated by the time bar and shot lists. The player
itself gives feedback about its current position to the time bar. The time bar is
actualized usually when the current shot changes.

All visualization components are highly interconnected. In contrast to other
multi-layer interfaces, the user can always use all provided layers simultaneously
within the same view. He can select nodes from the map, keyframes from the
list or from the time bar, or even nodes from the time bar by double-clicking.

Using Self-Organizing Maps to Support Video Navigation 405

6 Conclusions

The structuring and visualization of video information is a complex and chal-
lenging task. In this paper we presented a tool for content-based video navigation
based on a growing self-organizing map. Our interface allows the user to browse
the video content using simultaneously several perspectives, temporal as well as
content-based representations of the video. Combined with the interaction pos-
sibilities between them this allows efficient searching of relevant information in
video content.

References

1. Lee, H., Smeaton, A.F., Berrut, C., Murphy, N., Marlow, S., O’Connor, N.E.: Im-
plementation and analysis of several keyframe-based browsing interfaces to digital
video. In Borbinha, J., Baker, T., eds.: Lecture Notes in Computer Science. Volume
1923. (2000) 206–218

2. Girgensohn, A., Boreczky, J., Wilcox, L.: Keyframe-based user interfaces for digital
video. Computer 34(9) (2001) 61–67

3. Lin, X., Marchionini, G., Soergel, D.: A selforganizing semantic map for informa-
tion retrieval. In: Proc. of the 14th Int. ACM/SIGIR Conference on Research and
Development in Information Retrieval, New York, ACM Press (1991) 262–269

4. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paattero, V., Saarela,
A.: Self organization of a massive document collection. IEEE Transactions on
Neural Networks 11(3) (2000) 574–585

5. Roussinov, D.G., Chen, H.: Information navigation on the web by clustering and
summarizing query results. Inform. Proc. & Management 37(6) (2001) 789–816

6. Nürnberger, A., Detyniecki, M.: Visualizing changes in data collections using grow-
ing self-organizing maps. In: Proc. of Int. Joint Conference on Neural Networks
(IJCANN 2002), IEEE (2002) 1912–1917

7. Laaksonen, J., Koskela, M., Oja, E.: Picsom: Self-organizing maps for content-
based image retrieval. In: Proc. of IEEE Int. Joint Conference on Neural Networks
(IJCNN’99), Washington, DC, IEEE (1999)

8. Nürnberger, A., Klose, A.: Improving clustering and visualization of multimedia
data using interactive user feedback. In: Proc. of the 9th Int. Conf. on Inform. Proc.
and Management of Uncertainty in Knowledge-Based Systems. (2002) 993–999

9. Bimbo, A.D.: Visual Information Retrieval. Morgan Kaufmann (1999)
10. Miene, A., Hermes, T., Ioannidis, G.: Automatic video indexing with the advisor

system. In: Proc. Int. Works. on Content-Based Multimedia Indexing, Brescia,
Italy (2001)

11. Nürnberger, A., Detyniecki, M.: Adaptive multimedia retrieval: From data to user
interaction. In Strackeljan, J., Leivisk, K., Gabrys, B., eds.: Do smart adaptive
systems exist - Best practice for selection and combination of intelligent methods.
Springer-Verlag, Berlin (2005)

12. Browne, P., Smeaton, A.F., Murphy, N., O’Connor, N., Marlow, S., Berrut, C.:
Evaluating and combining digital video shot boundary detection algorithms. In:
Proc. Irish Machine Vision and Image Processing Conf., Dublin, Ireland (2000)

13. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin Heidelberg (1995)
14. Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3

(1999) 111–126

Self-Organizing Neural Networks for Signal Recognition

Jan Koutnı́k and Miroslav Šnorek

Department of Computer Science and Engineering, Czech Technical University, Prague,
Karlovo nam. 13, Czech Republic

koutnij, snorek@fel.cvut.cz

Abstract. In this paper we introduce a self-organizing neural network that is
capable of recognition of temporal signals. Conventional self-organizing neural
networks like recurrent variant of Self-Organizing Map provide clustering of in-
put sequences in space and time but the identification of the sequence itself re-
quires supervised recognition process, when such network is used. In our network
called TICALM the recognition is expressed by speed of convergence of the net-
work while processing either learned or an unknown signal. TICALM network
capabilities are shown on an experiment with handwriting recognition.

1 Introduction

Processing of sequentially dependent data became very important in modern history of
artificial neural networks. An overview of neural networks for temporal data processing
is given in [2] and [11]. The motivation is that many data produced by measurement of
real processes involve time property. Such data we call signals. The signals are produced
by dynamic systems. Our existence in spatio-temporal environment forces us to take the
temporal property of signals into account. A processing system would either ignore the
temporal property and process only a static form of the data, so it will not exploit all
information stored within the data. Or it will use the data as a signal, exploit temporal
property and then it can benefit in various data processing task such as building of the
model, performing recognition of signals or perform prediction task.

Let us have several examples of input data. In handwriting recognition processing of
trajectories - data sequences are more effective than processing of handwriting scanned
images. Writer’s hand dynamics can serve more precise data for e.g. in signature recog-
nition task because one writer always starts the first letter of subscription from the same
side. Handwriting data were used in this work as a testing data. Figure 1 contains 20
cases of four handwritten letters from all letters from a to z used in experiments.

There are more examples where signal recognition takes place instead of static data
recognition. Second good example are medical data. The EEG and ECG signals have
temporal property. Processing of such signals requires usage of a suitable tool. Other
examples can be found in speech processing, video processing etc.

Our objective is a recognition task. Building of the signals’ model only is not satis-
factory. A good model can be used for recognition as it is in case of Hidden Markov
Models, which are used for signal recognition with a success [12]. There are several par-
adigms in the field of artificial neural networks, which can be used for signal processing
as well. Such networks contain recurrent connections between cells, which is one of the
conditions for good signal processing.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 406–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-Organizing Neural Networks for Signal Recognition 407

Fig. 1. Experimental data. Our objective is to teach the self-organizing neural network to recog-
nize handwriting letters. The figure contains 4 examples of 20 cases of handwritten letters a b c
and d.

Since the recurrent connections allow the network to deal with temporal information
stored within a signal, the recurrent neural network models started to appear in 90’s.
There are supervised models like Jordan and Elman [3] networks, spiking neural net-
works [9], which cover the temporal property with leaky integration of an input and
transmission of temporal activation pulses and recent Long Short-Term Memory de-
scribed in [4]. Self-organizing approach to sequence processing can be exploited as
well. One of such important neural networks is the Recurrent Self Organizing Map
(RSOM) [14] because it is an obvious extension of Kohonen’s Self Organizing Map
(SOM) [5] with recurrent connections. Our network explained and tested in sections 2
and 3 has several properties common with RSOM, especially from the point of view of
the self-organization, thus a brief overview of the RSOM is given.

1.1 Recurrent Self-Organizing Map

The Recurrent Self-Organizing Map (RSOM) [14] has been derived from feed-forward
variant of Kohonen’s clustering neural networks called SOM [5]. Behavior of the RSOM
model can be compared to behavior of Hidden Markov Models, because the RSOM
creates an automaton model for and input sequence, but as mentioned in [14] the state
map cannot be competing to Hidden Markov Models since there is no unique winner
(best matching unit) for a particular sequence. In other words the RSOM itself is not
capable of recognition of sequences. But it does not mean that the RSOM could not be
a part of a signal recognition system. It can be, but it plays a role of a preprocessing
neural network. The state map does not provide sequence classification. The map only
reduces dimension of the original signal. The RSOM can be exploited as a preprocessing
tool, which reduces input space dimension and transforms input data to a sequence of
code words.

One of the ideas is to create hierarchical structure of RSOM networks where the
bottom network processes the input signal directly and a sequence of weight vectors
(code words) of the best matching units in the bottom layer is used as a signal passed to

408 J. Koutnı́k and M. Šnorek

the upper layer. The same idea was used in hierarchical SOM networks [8]. Hierarchical
RSOM appeared in 2005 [1].

1.2 Self Organization and Recognition

A question that rose with RSOM – how to find the winner (best matching unit) in RSOM
has to be solved more generally. The best matching unit is found for each data vector
in the input signal. So we have the input signal transformed to same number of code
words. Since there is normally less code words (neurons) in the RSOM map than data
vectors in the input signal, the sequence of code words can be shortened by removing
consequent duplicate code words. Obviously, for the recognition of a signal we have to
look at the whole sequence of the code words. We could not distinguish between signals
from single best matching units. We have to find another output of the model, which
carries information about the recognition of the signal. We introduce a self-organized
neural network that produces the desired output.

This paper is organized as follows. Section 2 briefly introduces the Categorizing
and Learning Module and its proposed extension to the TICALM network. Section 3
contains experimental results, which are discussed in section 4. Section 5 concludes the
contribution.

2 Temporal Information Categorizing and Learning Map

The Temporal Information Categorizing and Learning Map (TICALM) introduced in
[7] solves the sequence recognition problem. In comparison with RSOM it has several
differences and commons. The spatio-temporal map present in RSOM is split into two
maps. The spatial map and temporal map exist separately in TICALM. The TICALM
network is self-organized. The main difference is that the best matching unit is searched
by lateral inhibition. This principle was used in early SOM models but in current SOM
it was replaced by winner-take-all principle best matching unit search. This was be-
cause e.g. only one best matching unit has to win the competition, which the lateral
inhibition in SOM did not ensure. The lateral inhibition runs in iterations in TICALM.
One and only one best matching unit wins the competition. Iterative behavior of the
TICALM may be taken as a performance drawback but it provides our needed feature.
The iterative process does the recognition missed in RSOM model.

The idea is simple. The TICALM model represents the input sequence better, the
less iterations are needed to find the best matching unit. The recognition of a signal is
proportional with a speed of convergence (number of iterations) of TICALM.

2.1 Categorizing and Learning Module

The TICALM is a next generation of Categorizing and Learning Module (CALM) [10].
We briefly introduce original CALM network. The CALM sorts static input vectors
into categories. It uses scalar product of input weights and input and is suitable for
recognition of high dimensional input patterns. The module constructs spatial map of
the input space in its input synapses. It contains a subsystem (consists of two neurons),

Self-Organizing Neural Networks for Signal Recognition 409

which controls the learning rate and distinguishes between new and already learned
input vector. The CALM works in iterations in comparison with conventional SOM.
The best matching unit consists of a pair of neurons, which support each other and
compete among other neuron pairs. Figure 2 shows a structure of the original CALM
with extension to TICALM, where thick lines express the extension to TICALM.

There is a layer of R-neurons, which is connected to input vector using learned input
inter-synapses. Other intra-modular synapses have constant weights, which were set up
by evolutionary algorithm [10]. Each R-neuron has its matching V-neuron. R-neurons
are fully connected to V-neurons layer using cross synapses. The cross synapses setup
induces a topological organization of the spatial map in the CALM. The map organi-
zation can be arbitrary, it is not restricted to be rectangular or linear mesh as in SOM.
Weights (flat) between V-neurons realize competition among V-neurons. The sensitiv-
ity subsystem consists of A-neuron and E-neuron. The system is activated during high
competition activity in V-neurons layer. It means that the input vector is not learned yet.
The Sensitivity subsystem starts to support new randomly chosen R-neuron, which is
chosen as a new category representant. A hard competition can be recognized by longer
module convergence. Practically, unknown input vector is learned in about 30 iterations.
Best matching unit for already learned input vector is found within 5 iterations.

The original CALM was improved in several recent works. First modification that
faced signal processing was introduced in [13]. CALM modules were connected into a
network using time-delay inter-modular connections that allowed to process sequences.
Addition of time-delay connections was inspired by previous models of feed-forward
networks for processing of sequences.

2.2 Temporal Information Categorizing and Learning Map

The current state of improved CALM called TICALM [6] is depicted in figure 2. First,
notice an added M-neurons layer. These neurons (memory neurons) are used to hold
V-neurons activity after iterations over previous input vector has ended. The activity of
V-neurons is copied to M-neurons after the end of the iteration and is diminished by a
coefficient.

The M-neurons are connected back to R-neurons via mem synapses. These synapses
are parallel to cross synapses that carry information from V-neurons. The mem synapses
create the temporal map in TICALM.

The temporal map in mem synapses has also another important property. Besides that
it drives the network to be time-dependent, it can be easily transformed to a probabilities
of transitions of a probabilistic automaton, which can be hidden in a Hidden Markov
Model [6]. The mem are being learned during the learning process. So not only inter-
modular input synapses are being updated during networks iterations.

The TICALM uses a different input metrics than the original CALM. The CALM
used a scalar product. the scalar product of an input vector and input weights could not
distinguish between linear dependent input vectors. So it is not suitable for scalar input
networks (one dimensional signals). We used Euclidean metrics as it is used in SOM.
Other possibility could be also the Manhattan metrics used in RSOM. Other neurons
use standard scalar product as defined in original CALM.

410 J. Koutnı́k and M. Šnorek

Input
Signal

V−neurons

R−neurons

A−neuron

E−neuron

High

Low
Up

AE

Strange

Inter

Flat

M−neurons

Mem

Cross

Input Vector (t=0)

Input Vector (t=1)

Input Vector (t=2)

Input Vector (t=3)

categorization of an input vector in t−1.
Added M−neurons layer that hold activation of V−neurons after

Fig. 2. Temporal Information Categorizing and Learning Map. The mem synapses are drawn
shortened, they create full connection from M-neurons layer to R-neurons layer. The TICALM is
connected to 4 dimensional input signal.

Function of all neurons in TICALM is expressed by excitation of neurons. Output
neuron value is calculated using activation function ai:

ai(t + 1) =
{

(1 − k)ai(t) + ei

1+ei
(1 − (1 − k)ai(t)), ei ≥ 0

(1 − k)ai(t) + ei

1−ei
(1 − k)ai(t), ei < 0 (1)

where ai(t) denotes neuron activation in previous iteration step, k is an activation decay
factor and ei is a neuron excitation:

ei =
∑

j

wijaj(t) (2)

where aj is a selected neuron input and wij is a proper intra-modular weight except R-
neurons where the excitation contains another part - input vector measured by Euclidean
metrics:

ei = l −
∑

j

(aj(t) − wij)2 (3)

where l stands for number of input synapses (input vector dimension) in the case that
input signal is transformed to < 0, 1 >.

Instead of modified Grossberg rule for learning inter-modular synapses used in
CALM we use following rule for inter-modular synapses:

∆wij(t + 1) = µtai(aj − wij(t)) (4)

Self-Organizing Neural Networks for Signal Recognition 411

where wij(t) is an input weight in time previous iteration and µt is a learning coefficient
calculated as follows:

µt = d + wµE(1 − aE − 0.5
0.25

) (5)

where d is a constant with a small value determining base rate learning, wµE controls
the influence of the E-neuron activation aE . Afterwards, a new weight of inter-modular
synapse in time (t + 1) is calculated:

wij(t + 1) = max(min(wij(t) + ∆wij(t + 1), 1), 0) (6)

The mem synapses are learning according to the following rule:

∆mij(t + 1) = µtai(k1aj + k2 −mij) (7)

where mij is a mem synapse between j-th M-neuron and i-th R-neuron, k1 and k2 are
mem synapses boundaries. A new mem weight is calculated:

mij(t + 1) = mij(t) + ∆mij(t + 1) (8)

The mem weights are learned using Hebb’s rule. Synapses between consequently win-
ning best matching units are being forced other synapses are being diminished.

3 Experimental Results

A short experiment that reflects a temporal map creation using TICALM was described
in [6]. Here, we describe another experiment, which demonstrates how the network can
be applied to the recognition task.

The TICALM network recognizes a signal by the speed of it’s convergence. It means
that when the signal was learned into the TICALM, which means that appropriate spa-
tial and temporal maps were created, the TICALM recognizes it by less iteration steps
than if the signal in unknown for the network. So the experiment is divided into two
phases. In the first phase (training) the input signal (a sequence of captured coordinates
of a handwritten letter) is presented to the TICALM and the network uses the built-in
learning algorithms to create spatial and temporal maps. In the second phase (recogni-
tion) the learning algorithms are switched off and the network processes the input signal
in the same way.

In the recognition phase a number of iterations is measured after the best matching
unit is found. If the number of the iterations is low, the signal was recognized otherwise
it was not. This induces an important rule for the experiments. If we have several dif-
ferent input signals, we need the same number of TICALM modules to recognize them
to be trained separately. After the training, in the recognition phase TICALM with the
lowest number of iterations performed recognizes its matching input signal. In this way
the TICALM modules are employed in recognition task in the same way as Hidden
Markov Models are being used.

As a testing data a database of handwritten letters was used1. Figure 1 contains an
example signal used in recognition. The signals were preprocessed to the length of 20
2-dimensional samples.

1 Handwriting data (lowercase letters) are available for public at
http://service.felk.cvut.cz/courses/36NAN/data/other/tablet/letters-20051104.zip

412 J. Koutnı́k and M. Šnorek

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 it

er
at

io
ns

 o
ve

r
th

e
se

qu
en

ce
.

Presentation of the input sequence to the TICALM input.

Sequence being learned
Unknown sequence

Fig. 3. Convergence of the TICALM during learning (solid curve) and presentation of an un-
known input signal (dashed curve). Partially linear interpolation was used only for emphasizing
purposes.

The data were captured using Wacom Tablet. We have chosen only first two dimen-
sions of the data (x and y coordinates). Other dimensions like pressure, azimuth of the
pen etc. were not used.

We trained 26 TICALM networks each to one handwritten letter. More than the
overall performance of the TICALM the behavior of the module is important. Figure 3
shows average cumulative number of iterations over a signal during the learning and the
recognition process. There are two curves in the graph. Solid curve shows the average
convergence (number of iterations) of the network over the input signal. The average
is made of 26 runs for all letters. Dashed curve express average number of iterations
over an unknown input sequence. The average is calculated from presentation of rest 25
letters instead of a letter learned in the TICALM.

If the learning is switched on and the TICALM is in the initial state, it learns the
input signal starting at approximately 250 iterations for 20 input samples. In the 20
consecutive presentations the number of iterations was diminished to approximately
200 iterations per the input signal. Amount of iterations over an unknown signal is
approximately 1.5 times greater. A stochastic behavior of the network being presented
with a non learned signal reflects the stochastic behavior of the TICALM sensitivity
subsystem when an unknown input sequence is presented.

4 Discussion

Experiments demonstrate how the TICALM can recognize temporal sequences – sig-
nals. The TICALM can be directly used for recognition, so there is no need to build
hierarchical structures as it is in case of original CALM network or the RSOM. Besides,

Self-Organizing Neural Networks for Signal Recognition 413

the TICALM preserves several plausible features found in original CALM and adds new
ones. Namely it uses different input space metrics that allows better discrimination of low
dimensional input spaces. It preserves to be a self-organized map by creating a topology
in cross synapses as used in original CALM model. It adds another map, which learns
temporal property of the signal using self-organization and Hebb’s rule. So the result
of the training phase is not only the recognition system as for instance is the case of
Back-propagation Through Time algorithm but we obtain a temporal map as a training
phase side effect. The temporal map stored in mem synapses is important from the other
point of view as well. It can be converted to a transition probability matrix of a Hidden
Markov Model. The synapse weight values have meaning of transition probabilities.

Another difference to RSOM is that recurrent connections exist between all pairs of
M-neurons and R-neuron in TICALM. The RSOM contains recurrent self-connections
in neurons only so conversion of RSOM weights to a probabilistic model is not that
obvious.

The future work deals with intensive testing if the TICALM network and search for a
best setup, which leads to high speed convergence for modeled signals and long conver-
gence for unknown signals, so the recognition process would be more stable. Another
possibility is to have a layered structure of M-neurons instead of one M-neurons layer,
so the short term memory in temporal map covers more than one historical steps of the
TICALM. Such structure may be compared to k-order Hidden Markov Models.

5 Conclusions

We introduced a self-organized neural network called Temporal Information Catego-
rizing and Learning Map, which is capable of recognition of signals that contain time
property. The network itself constructs a self organized space map that reflects spatial
property of a signal as well as temporal map that reflects temporal consequences con-
tained in the signal. In comparison with unsupervised models like RSOM, which only
constructs the spatio-temporal map, the TICALM performs a signal recognition task.
The recognition of the signal or of a part of the signal is proportional to a speed of the
TICALM convergence. A signal, on which the networks was trained to requires less of
network steps than an unknown signal. The TICALM was tested on handwriting letters
database, where it shows a capability of the letter recognition using the convergence
speed measurement.

Acknowledgment

This work has been supported by the Ministry of Education of the Czech Republic
under Project No. MSM6840770012.

References

1. Baier V., Motion Processing and Prediction With a Hierarchical RSOM based Model, in
Proceedings of the IJCNN 2005.

2. Barreto G.A., Araujo A.F.R., Kremer S. A taxonomy for spatiotemporal connectionist net-
works revisited: The unsupervised case, Neural Computation, 15(6), pp. 1255-1320. 2003

414 J. Koutnı́k and M. Šnorek

3. Elman J.L., Finding structure in time. Cognitive Science, 14, pp. 179-211. 1990
4. Gers F.A., Schmidhuber J., LSTM recurrent networks learn simple context free and context

sensitive languages. IEEE Transactions on Neural Networks, 12(6), pp. 1333-1340, 2001.
5. Kohonen T., Self-Organizing Maps, 3rd edition Springer-Verlag, 2001, ISBN 3-540-67921-9
6. Koutnı́k J., Šnorek M., Neural Network Generating Hidden Markov Chain, in Adaptive and

Natural Computing Algorithms - Proceedings of the International Conference in Coimbra.
Wien: Springer, 2005, pp. 518-521. ISBN 3-211-24934-6.

7. Koutnı́k J., Šnorek M., Single Categorizing and Learning Module for Temporal Sequences
In Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE,
2004, pp. 2977-2982. ISBN 0-7803-8360-5.

8. Lampinen J., Oja E., On Clustering Properties of Hierarchical Self-Organizing Maps. Journal
of Mathematical Imaging and Vision, 2(2-3), pp. 261-272 1992.

9. Maass W., Networks of Spiking Neurons: The Third Generation of Neural Network Models,
Neural Networks 10(9), pp. 1659-1671, 1997

10. Murre J.M.J., Phaf R.H., Wolters G., CALM: Categorizing and Learning Module, Neural
Networks, Vol. 5, pp. 55-82, Pergamon Press 1992

11. Principe J., Euliano N.,Garani S., Principles and networks for self-organization in space-time,
Neural Networks, Volume 15, Issues 8-9, pp. 1069-1083. 2002

12. Rabiner L.R., A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition, in Proceedings of the IEEE, vol.77,No.2,Feb 1989.

13. Tijsseling A.G., Sequential Information Processing using Time-Delay Connections in Onto-
genic CALM networks, in IEEE Transactions on Neural Networks, Volume 16, Issue 1, Jan.
2005, pp: 145 - 159, ISSN: 1045-9227

14. Varsta M., Self Organizing Maps in Sequence Processing, Dissertation Thesis, Helsinki Uni-
versity of Technology, 2002, ISBN 951-22-6251-7

An Unsupervised Learning Rule for Class
Discrimination in a Recurrent Neural Network

Juan Pablo de la Cruz Gutiérrez

Infineon Technologies AG, Am Campeon, 85579, Neubiberg, Germany
JuanPablo.delaCruz-Guiterrez@infineon.com

Abstract. A number of well-known unsupervised feature extraction
neural network models are present in literature. The development of
unsupervised pattern classification systems, although they share many
of the principles of the aforementioned network models, has proven to
be more elusive. This paper describes in detail a neural network capable
of performing class separability through self-organizing Hebbian like dy-
namics, i.e., the network is able to autonomously find classes of patterns
without the help from any external agent. The model is built around a
recurrent network performing winner-takes-all competition. Automatic
labelling of input data samples is based upon the induced activity pat-
tern after presentation of the sample. Neurons compete against each
other through recurrent interactions to code the input sample. Result-
ing active neurons update their parameters to improve the classification
process. The learning dynamics are moreover absolutely stable.

1 Introduction

Recurrent neural networks are systems comprised of individual elements, the
neurons, which perform some nonlinear operation based on their inputs and
their recent history. When neurons are linked in a suitable fashion, in these
networks, collective properties (behavior) emerge. These properties can be un-
derstood in terms of resolution of some computational task, for instance, working
as a content addressable memory(CAM) [1]. The interplay between mutual in-
teraction of neurons, and the nonlinear responsiveness to input stimuli, endows
neural networks with the capability of robustly performing complex operations
on large amounts of data. For example, it has been demonstrated how lateral in-
teractions in a Hopfield network can be crafted to solve computational intensive
tasks [2]. Besides, neural networks are also robust against noise, and parameter
variations. A vast number of theoretical analysis of different models and appli-
cations in a wide number of fields have been developed. For the concrete case of
pattern classification problems, there are a number of reviews, e.g. [3] and [4],
addressing the basic questions under current research. They additionally provide
references to significant contributions on the field.

Many unsupervised learning rules for neural networks, like the Principal Com-
ponent Analysis (PCA) networks [11], the Bienenstock, Cooper and Munro

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 415–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

416 J.P. de la Cruz Gutiérrez

(BCM) rule [5], or independent component analysis (ICA) [6], exist for projec-
tion methods. Despite their differences, they share two principles which underlie
most of the models in literature. The first one, and most recalled, is the Hebbian
rule which has the problem of rendering the network unstable if no constraints
are imposed on the dynamics. This rule states that synaptic efficacies among two
neurons is enhanced, if presynaptic and postsynaptic activity are correlated in a
certain fashion. The second states the dynamics of the competition among neu-
rons, so that efficacies do not grow without control, and the neuron’s response
becomes tuned to some specific set of incoming stimuli. The topic is extraordi-
narily extensive, and the reader is referred to [7], and references therein.

The paper at hand presents a self-organizing neural network performing class
separation, which incorporates those general principles. It is built around a re-
current network which adapts to statistics of input data, so that different group
of neurons become selectively active to different data classes. Unlike other ap-
proaches, this model does not require the knowledge of class membership of input
samples at any stage, and all elements in the network operate concurrently.

The paper is structured as follows: the next section reviews existing unsu-
pervised learning rules. Next, the model is presented and described in detail.
Finally, results are analyzed, and possible solutions for remaining open ques-
tions are outlined.

2 Neural Networks for Class Discrimination

The goal of every pattern classification system is: given a training data set
{xi, yi}N

i=1, where N is the number of samples xi, and yi are the labels indi-
cating class membership, find the functional relationship between input samples
and class labels. After training, the system must be able to correctly assign labels
to new ”unseen” samples, drawn from the same distribution of probability. The
analysis of this formal problem has led to the development of different theories
and techniques for its practical implementation, as well as applications. These
techniques are based on the existence of the training set, from which they infer
the statistical properties of the population from which they were drawn.

The focus of interest of this paper lies in unsupervised learning architectures,
i.e., systems whose goal is to determine the statistical properties of input data
without explicit feedback from a teacher. These models have been of interest
in neurocomputation for the modelling of topographical maps in nervous sys-
tems [7,8,9,10]. Nevertheless, the principles employed in those models also lead
to the implementation of tasks first formulated in a formal sense, like the already
mentioned PCA [11] and ICA [6] networks, which implement projection meth-
ods. The attractiveness of these models is manifold: on one side no teacher signals
are required, they adapt continuously to input data, and all elements operate
concurrently. This last trait fostered the implementation of neural networks on
silicon [2].

Feature extraction, dimensional reduction, classification and functional ap-
proximation algorithms are intimately related, as demonstrated in [12,13], where

An Unsupervised Learning Rule for Class Discrimination 417

it is shown that they can be formulated in terms of a canonical generalized eigen-
value problem. This was indeed one of the facts that led to the formulation of
the stochastic adaptative rules in [14] for the estimation of linear discriminant
analysis (LDA). In both cases, previous knowledge about class labels and class
and mixture means of data, respectively, is necessary.

The next section introduces a recurrent neural network which performs fully
unsupervised class discrimation, through a self-organizing learning rules. For
each sample, labels are assigned according to the resulting activity pattern after
presentation. Recurrent connections develop in order to ensure that each neuron
codes for one and only one class.

3 Presentation of the Model

The problem of linear class separation, sketched in figure 1, is the starting point
for the formulation of the new model. In geometrical terms, linear class sep-
aration refers to the problem of finding a hyperplane such that samples from
the two classes, C+ and C−, lie on opposite sides of the plane. In mathemati-
cal terms, this corresponds to finding the vector w and the parameter b, such
that, wT x + b > 0, ∀x ∈ C+, and wT x + b < 0, ∀x ∈ C−. If d+ and d− are the
shortest distances from the plane to the closest samples from classes C+ and C−,
respectively, then, the optimal separating hyperplane will that which maximizes
the amount d+ + d−. Given the labels for the data samples, finding optimal
separating hyperplane is the core idea of Support Vector Machines (SVM) [15].
The name reflects the idea that the separating hyperplane is constructed upon
a small number of vectors lying on the hyperplane itself, the so-called Support
Vectors (SV). Our goal though, is to find such separating hyperplanes without
knowledge of class membership.

Following this description, we can understand how to move on to the general
case of an arbitrary number of classes. Given a sample vector of a given class,
one would take two weight vectors and compare the projections of the sample
vector on them, and then choose the winner. After carrying out the operation
with all pairs of vectors, the sample should be assigned to the weight vector
class who won the highest number of such competitions. All these comparisons
correspond to a set of inequalities which must simultaneously hold. If we sum
up them all up, the condition resulting for a neuron to be the winner is,

NwT
j x −

∑
l �=j

wT
l x +

∑
l

w0jl

{
> 0 if j = argmaxk

{
wT

k x
}

< 0 otherwise (1)

where wj is the weight corresponding to the jth neuron, N is the total number
of neurons in the network, and the matrix W0 = (w0jl)N×N represents the
margins of hyperplanes separating the classes. Condition 1 implies that every
neuron is assumed to code for a different class. In the general case, where we
have more neurons than classes, this is relaxed to allow a set of neurons win for
the same class. This analysis suggests that this goal could be attained through a

418 J.P. de la Cruz Gutiérrez

uk-1 uk uk+1

sk-1 sk sk+1

x

C+

C-

X

W

2b
Mk,k-1 Mk,k+1

Fig. 1. Left. Schematic drawing of the model. Neurons in the first layer respond linearly
to input pattern. Responsiveness of each neuron to input patterns is given by its weight
vector and threshold, which develop according to the activity pattern that they evoke
in the upper layer. See text for details. Right. Linear separation of two classes, whose
samples are represented by stars and circles. Vectors c+ and c− represent the mean of
each class, C+ and C−, respectively. The parameter b represents the margin of the clas-
sifier. As we see, membership of a given sample is decided based upon the projection
of the sample on the difference vector among the two class centers. If such projec-
tion exceeds the threshold (margin), b, then it will be assigned to the corresponding
class.

recurrent network. The weight vector stands for the responsiveness of neuron to
a given input sample. Neurons compare how well they match the input sample
with the rest (recurrent interactions), and only the best tuned are chosen to
represent the given class (remain active).

A recurrent neural model carrying out these ideas, is represented schematically
in figure 1, and its behavior is described by the set of equations,

τuu̇k + uk =
∑

j

Mkjf [uj] + sk(x, t) − h (2)

τMṀij = δij −
∑

k

Mik (f [uk] f [uj] + αδkj) (3)

τwẇk = −εwk + f [uk]x (4)
τ0ẇ0k = f [uk] (f [uk] − w0k) (5)

where s(x, t) = wT
k x − w0k is the input to the recurrent layer, h is the rest

potential, f is a sigmoidal function, f(x) = 1/ (1 + exp(γ(x− θ))), uk is the
average membrane potential of the kth neuron, and α is a small positive constant
whose role will be clarified later on. The time decay constants satisfy the relation
τ0 � τw � τM � τu. The rest of this section is a description of this set of
equations.

An Unsupervised Learning Rule for Class Discrimination 419

The model is composed of two layers. A first layer receives a sample drawn
at random from a density of probability p(x). Every neuron responds to this
pattern in a linear fashion,

sk(x) = wT
k x + w0k (6)

where wk is the weight vector which determines a neuron’s responsiveness to
the input vector, and w0k is the threshold. The goal of the network is to tune
the parameters of each neuron in such a way that the condition wT

k x + w0k > 0
holds only for samples drawn from a given class. When the sample belongs to
a different class, this term becomes negative, thus inhibiting the postsynaptic
neuron.

Weight vectors develop over time according to a simple Hebbian rule, equa-
tion 4, made up of two terms. A correlation term between presynaptic and post-
synaptic activity, and a decay term whose goal is to keep the weights bounded.
The parameter ε plays an important role in the dynamics, and depends on the
chosen recurrent model, as it will be later explained. For this case, this value
must be small, otherwise it overrides the Hebbian term. The thresholds evolve
so that, only samples belonging to the corresponding class will evoke activity
in the neuron. Adaptation of a neuron’s weight vector and threshold occurs at
the slowest time scale, since the system has to first make a decision on which
neurons are representing a given input sample.

The outputs from these layers are fed into an upper layer. This layer consists
of a Hopfield-like network, given by equation 2, which follows a winner-takes-
all (WTA) dynamics. Functionality of recurrent networks is determined by its
recurrent interactions. The study of the computational properties of a recurrent
network in terms of its lateral interactions is, in general, a complex subject.
Different approaches to its study, models, and open questions are reviewed in [7]
and [16]. In our particular case, WTA dynamics ensures that only those neurons
which best match the current input are finally active. The resulting activity in
the steady state is thus understood as a labelling of data. Those neurons which
remain active code for the same class, and adapt their parameters to further
improve classification. Hopfield-like networks are well suited for this task, as
they attain their steady state in a few neural time constant, τu, periods. This
dynamics must necessarily take place at the fastest time scale, as the system
needs to decide who the winner is, before it adapts its parameters.

The general form of the lateral interactions for such networks can be intuitively
anticipated. The winners must strongly inhibit the other neurons, so that finally
it is the only set still active. This is attained with a short-range excitatory
and long-range inhibitory interaction kernel. The stable steady state of learning
rule 3 has that kind of structure. The big differences in time scales of the different
equations allow us to make use of the adiabatic approximation. In other words,
we might average (equation 3) over the input ensemble yielding,

τMṀ = I − M (Q + αI) (7)

in matricial form, where Q = 〈f [u] f [u]T 〉 is the correlation matrix of the neu-
ron’s average firing rate. Its steady state is (Q + αI)−1. The added term αI has

420 J.P. de la Cruz Gutiérrez

two effects on the learning dynamics. First it compensates for very low eigen-
values of the correlation matrix, which are most sensitive to noise. Second, it
speeds up convergence to the steady state.

It is easy to prove that the stationary state is absolutely stable. Consider
a perturbation which shifts the system away from it, M = (Q + αI)−1 + δM.
Substituting back into 7, we find that the perturbation obeys the differential
equation,

τM
˙δM = −δM (Q + αI) (8)

Since Q + αI is a positive definite matrix, δM converges exponentially fast to
the null matrix [17].

The dynamics of the recurrent weights must evolve at a faster pace than the
weight dynamics, for, in order to achieve capability of discriminating classes,
lateral interactions assure that only those neurons whose weight vectors are
closely tuned to input patterns are active.

The adiabatic approximation can also be employed for the analysis of the
development of threshold values in equation 5. Once the dynamics converges to
the stationary state, samples coming from a given class activate a concrete set of
neurons. Again, averaging over the input ensemble, equation 5 is approximated
by,

τ0ẇ0k = 〈f [uk]2〉 − 〈f [uk]〉w0k (9)

Since f [uk] ≥ 0, the dynamics is absolutely stable. Therefore, the stationary
state of the total system is absolutely stable.

There is still an important caveat to point out about this sort of networks.
Recurrent networks do not perform an ideal WTA dynamics, i.e., the most ac-
tive neuron does not always correspond to the best tuned weight vector to the
current input. First of all, its final state depends upon initial conditions, i.e., the
steady state of the network after presentation of a new sample depends upon
the previous state. Besides, if two close by neurons are strongly excited by input
stimuli, the network will interpolate among the two, and choose one neuron in
between. The first effect can be avoided during training by setting initial state
to zero before presentation of a new sample. Nevertheless, for tasks like classifi-
cation of time series, this trait might be advantageous, as it implicitly exploits
temporal correlations present in the data. Second, one has to regard the effect
of the extent of local excitatory connections upon the final solution. The shorter
the excitatory range is, the higher the resolution a network can achieve.

4 Simulations

In order to first test the network toy data was created, so that possible side
effects are avoided, and a good understanding of the dynamics is attainable.
The data consisted of samples picked at random from three Gaussian distrib-
utions of mean (µx, µy) = (2, 0) , (−1, 2) , (−2,−1.5) and variances (σx, σy) =
(0.5, 0.7) , (1.3, 0.4) , (0.4, 0.3), respectively. We chose a small network comprised
of 10 neurons, so that results are easier to visualize. Simulations demonstrate that

An Unsupervised Learning Rule for Class Discrimination 421

0 2 4 6 8 10
0.86

0.88

0.9

0.92

0.94
Neurons’ thresholds

2 4 6 8 10

2

4

6

8

10
Recurrent weights

-10

-5

0

5

10

15

20

25

2 4 6 8 10

2

4

6

8

10
Q

0.005

0.01

0.015

0.02

0.025

0.03

A C

B D

Fig. 2. Panel A shows the position of weight vectors in feature space and linear de-
cision boundaries of each of the neurons (wT

k x + w0k = 0). See also figure 3 and
caption for more details. Panel B displays the matrix representing the recurrent net-
work connections. It corresponds to the recurrent weights of a winner-takes-all like
network. Off-diagonal matrix elements are negative, which translates into inhibitory
connections. Diagonal elements are positive, corresponding to a positive feedback of the
neuron to itself. Panel C displays the threshold values of the neurons. Panel D shows
the correlation matrix of average firing rates of neurons. The block structure of matrix
corresponds to the different groupings of neurons, in terms of response selectivity to
input patterns.

the system converges in a short time frame. Typically, the system requires the
presentation of about 1500 presentations, to be close to the stationary state. Nev-
ertheless, this magnitude also depends on the degree of overlap between classes.
If the overlap is considerable, it can take some more time to some neurons to
”decide” for one of the classes. This problem can be lessened by introducing
some white noise, which does not seriously damage the network’s performance
since the equations 2-5 are structurally stable. Convergence takes place in two
phases though. In a first fast phase, neurons become selective for a given class,
and recurrent weights take display a short-range excitatory, long-range inhibi-
tion distribution. In a second phase, recurrent weights are further adapted, so
that they fully decorrelate neurons responses, and threshold sharply mark the
boundary class.

422 J.P. de la Cruz Gutiérrez

Figure 2 shows an state of the network close to stationary state. Plot B shows
the recurrent weights. It displays the characteristics of a network performing
WTA. Short range excitatory connections are around the diagonal of the matrix
(positive feedback to itself) and strong long range inhibitory lateral connections.
Plot C displays the activity in the recurrent network after presentation of a
sample. Active neurons corresponds to those coding for its corresponding class.
Plot A shows the location of weight vectors in input space. Broken lines represent
the linear decision boundaries given by the relationship wt

kx + w0k = 0. Notice
that the actual decision surfaces are a result of the WTA dynamics and are
nonlinear.

Unlike other neural models employed for the modelling of neuron’s response
in early sensory stages, as retina cells [18] or cells in Lateral Geniculate Nucleus
(LGN) [19], this model develops, in general, no topographical mapping in this
toy example (see figure 3 and caption). The reason lies in that sensory inputs
contain already correlations which are exploited by those models. For example,
in the case of visual stimuli, close by spatial locations tend to have similar
distribution in spatial frequency, contrast and luminosity. This fact is indeed
taken into account in the mathematical formulation and analysis of those models.

1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4
Average response of neural field to different classes

Neuron label

Fig. 3. Output average firing rate of every neuron in the recurrent network in re-
sponse to class samples. Classes are labelled by different line colors. Classes are not
mapped topographically on the neural layer, i.e. neighboring neurons do not represent,
in general, classes that are spatially closest to each other. Every neuron codes samples
originating from a single class. We chose a small number of neurons, so that it is easy
to appreciate the tuning of every neuron in the figure.

5 Conclusions

We have presented a model built around a recurrent neural network which evolves
following an unsupervised learning rule, and performs class separation. The

An Unsupervised Learning Rule for Class Discrimination 423

simplicity of the combined rules makes the system amenable for mathemati-
cal analysis. Indeed, absolute stability of the stationary state of the network has
been proved.

Some limitations of the system have already been commented during the
description of the learning dynamics. For example, the dependency of the class
discrimination capabilities on the lateral connections. When two classes overlap
or are ”very” close, the network tends to interpolate among the two classes. This
can be compensated if we introduce some minimum separation between classes.
This is however not straightforward to implement, since it introduces a baseline
inhibition which specially affects the first stages of the dynamics.

This work is rooted in the model studied in [8], where it was demonstrated
how, given a recurrent network with a Mexican hat like interaction kernel and
fixed threshold, the system is able to develop a cortical map through self-
organization. In our case, we let thresholds and recurrent weight change, so
that the network adapts to differentiate among clusters of input samples with
different statistical properties. We can analyze properties of resulting map, like
its resolution, i.e. how well can this model tell different classes apart, and am-
plification, i.e. the size of the region excited by samples from each class. This
analysis is left for future work.

Another aspect under current consideration is how to enforce a topographical
representation of inputs, even when input patterns, as the one considered in
the simulations, show no correspondence between location in input space and
statistical properties, as is actually the case of natural stimuli, like visual stimuli.
Different possibilities can be considered. On one side, one could introduce an
additional condition in the development of recurrent weights, so that neighboring
neurons have a stronger tendency to fire together. But this could, on the other
hand, also be reinforced by introducing a second term in the dynamic equation
for the weight vectors 4. Adding a term of the form −

∑
l Tklwl, where Tkl =

T|k−l|, enforces the tendency of neighboring neurons to code for the same class.

References

1. Hopfield, J.J.: Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1984)

2. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization prob-
lems. Biological Cybernetics 52 (1985) 141–152

3. Kulkarni, S.R., Lugosi, G., Venkatesh, S.S.: Learning pattern classification – a
survey. IEEE Transactions on Information Theory 44(6) (1998) 2178–2206

4. Zhang, G.P.: Neural networks for classification: A survey. IEEE Transactions on
Systems, Man and Cybernetics–Part C: Applications and Reviews 30(4) (2000)
451–462

5. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in visual cortex.
The Journal of Neuroscience 2(1) (1982) 32–48

6. Hyvärinen, A., Oja, E.: Independent component analysis by general non-linear
hebbian-like learning rules. Signal Processing (1998)

424 J.P. de la Cruz Gutiérrez

7. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. Computational Neuroscience.
MIT press (2001)

8. Amari, S.I.: Dynamic stability for formation of cortical maps. In Arbib, M.A.,
Amari, S.I., eds.: Dynamic Interactions in Neural Networks: Models and Data.
Volume 1 of Research notes in Neural Computing. Springer-Verlag (1989) 15–34

9. Ermentrout, B., Osan, R.: Models for pattern formation in development. In J., S.,
Champneys, A.R., Krauskopf, B., di Bernardo, M., Wilson, R.E., Osinga, H.M.,
Homer, M.E., eds.: Nonlinear Dynamics and Chaos. Where do we go from here ?
Institute of Physics Publishing (2003) 321–347

10. Kohonen, T.: Self-organizing Maps. 3rd edn. Volume 30 of Information Sciences.
Springer (2001)

11. Oja, E.: Principal components, minor components, and linear neural networks.
Neural Networks 5 (1992) 927–935

12. Bie, T.D., Cristianini, N., Rosipal, R.: Eigenproblems in pattern recognition. In:
Handbook of Computational Geometry for Pattern Recognition, Computer Vision,
Neurocomputing and Robotics. E. bayro-corrochano edn. (Springer Verlag)

13. Burges, C.J.C.: Geometric methods for feature extraction and dimensional re-
duction. In Rokach, L., Maimon, O., eds.: Data Mining and Knowledge Discovery
Handbook: A Complete Guide for Practitioners and Researchers. Kluwer Academic
Publishers (2005)

14. Chatterjee, C., Roychowdhury, V.P.: On self-organizing algorithms and networks
for class-separability features. IEEE Transactions on Neural Networks 8(3) (1997)
663–678

15. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2(2) (1998) 121–167

16. Vogels, T.P., Rajan, K., Abbott, L.F.: Neural network dynamics. Annual Reviews
Neuroscience 28 (2005)

17. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Math-
ematics. Springer-Verlag (1991)

18. Atick, J.J., Redlich, A.N.: Predicting ganglion and simple cell receptive field orga-
nizations. International Journal of Neural Systems 1(4) (1990) 305–315

19. Dong, D.W., Atick, J.J.: Temporal decorrelation: A theory of lagged and nonlagged
responses in the lateral geniculate nucleus. Network: Computation in Neural Sys-
tems 6(2) (1990) 159–178

On the Variants of the Self-Organizing Map That Are
Based on Order Statistics

Vassiliki Moschou, Dimitrios Ververidis, and Constantine Kotropoulos

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki 54124, Greece

{vmoshou, jimver, costas}@aiia.csd.auth.gr

Abstract. Two well-known variants of the self-organizing map (SOM) that are
based on order statistics are the marginal median SOM and the vector median
SOM. In the past, their efficiency was demonstrated for color image quantization.
In this paper, we employ the well-known IRIS data set and we assess their per-
formance with respect to the accuracy, the average over all neurons mean squared
error between the patterns that were assigned to a neuron and the neuron’s weight
vector, and the Rand index. All figures of merit favor the marginal median SOM
and the vector median SOM against the standard SOM. Based on the aforemen-
tioned findings, the marginal median SOM and the vector median SOM are used
to re-distribute emotional speech patterns from the Danish Emotional Speech
database that were originally classified as being neutral to four emotional states
such as hot anger, happiness, sadness, and surprise.

1 Introduction

The neural networks constitute a powerful tool in pattern recognition. They have been
an active research area for the past three decades due to their wide range of applications
[1]. The self-organizing map (SOM) establishes a mapping from an input data space
onto a two or three dimensional lattice of nodes so that a number of topologically or-
dered and well defined neuron prototypes is produced. The nodes are organized on a
map and they compete in order to win the input patterns [2]. The SOM is among the
most popular neural networks. A number of 5384 related papers are reported in [4, 5].

We are interested in the class of SOM training algorithms that employ multivariate
order statistics, such as the marginal median and the vector median [8]. These SOM
variants as well as the standard SOM, that is trained with the batch algorithm (to be
referred to as SOM hereafter), are applied to pattern clustering. The novel contribu-
tion of the paper is in the assessment of SOM training algorithms in clustering with
respect to the accuracy, the average over all neurons mean squared error, and the Rand
index. The superiority of the studied SOM variants against the SOM is demonstrated by
experiments carried out using the well-known IRIS data. We also compare the studied
SOM variants with the SOM in the re-distribution of emotional speech patterns from the
Danish Emotional Speech (DES) database [15], that were originally classified as being

� This work has been supported by the project PYTHAGORAS II “Efficient techniques for in-
formation organization, browsing, and retrieval in multimedia”, funded by the Greek Ministry
of Education and the European Union.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 425–434, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

426 V. Moschou, D. Ververidis, and C. Kotropoulos

neutral, into four emotional states such as hot anger, happiness, sadness, and surprise.
The latter experiment is motivated by the following fact. There are emotional facial
expression databases such as the Action-Unit coded Cohn-Kanade database [17] where
the neutral emotional class is not represented adequately. Accordingly, facial expression
feature vectors are not clustered to the neutral emotional class [18]. For the emotional
speech databases, the utterances are regularly classified as neutral. Accordingly, when
the neutral class is not represented in one modality it is difficult to develop multimodal
emotion recognition algorithms (e.g. feature fusion algorithms). Frequently, the ground
truth information related to emotions that is provided by the human evaluators is biased
towards the neutral class. Therefore, the patterns classified as neutral might be needed
to be re-distributed among the non-neutral classes to enable further experimentation.

The outline of this paper is as follows. Section 2 describes briefly the standard SOM
and the batch training algorithm, as well as the SOM variants tested, namely the mar-
ginal median SOM (MMSOM) and the vector median SOM (VMSOM). In section 3,
we define mathematically the evaluation measures employed, i.e. the accuracy, the aver-
age over all neurons mean squared error, and the Rand index. This section also describes
the Kuhn-Munkres algorithm [13] and how it is used to calculate the SOM accuracy. In
section 4, the data, we worked on, are discussed. In section 5, the experimental results
for clustering the IRIS data using the SOM, the MMSOM, and the VMSOM are demon-
strated. Furthermore, figures of merit are presented and discussed for the re-distribution
of neutral patterns into four non-neutral emotional classes using the SOM, the MM-
SOM, and the VMSOM on the DES data. Finally, conclusions are drawn in section 6.

2 Self-Organizing Map and Its Variants

2.1 Self-Organizing Map (SOM)

The SOM forms a nonlinear mapping of an arbitrary D-dimensional input space onto
a two or three dimensional lattice of nodes (the map). Each node is associated with
a weight vector w = (w1, w2, . . . , wD)T in the input space. The SOM is trained it-
eratively and learns the input patterns. The task of the self-organizing (unsupervised)
learning lies to revealing the statistical properties of the input patterns, creating suitable
representations for the features (i.e. weight vectors), and automatically creating new
clusters. The map neurons compete each other in order to be activated by winning the
input patterns. Only one neuron wins at each iteration and becomes the winner or the
best matching unit (BMU) [7].

Let us denote by xj the jth D-dimensional input feature vector and by wi the ith
D-dimensional weight vector. The first step of the algorithm is the weight vector initial-
ization performed using the linear initialization algorithm. The weight vectors wi define
the Voronoi tessellation of the input space [1, 2]. Each Voronoi cell is represented by its
centroid that corresponds to the weight vector wi. Each input pattern xj is assigned to
a Voronoi cell based on the nearest neighbor condition. That is, the BMU index, c(j),
of the input pattern xj is defined by

c(j) = argmin
i
{‖xj − wi‖} (1)

On the Variants of the SOM That Are Based on Order Statistics 427

where ‖.‖ denotes the Euclidean distance. Accordingly, the SOM can be treated as
a vector quantization method [6]. The most important step of the SOM algorithm is
the adaptation of the neuron weight vectors. The neurons are connected to adjacent
neurons by a neighborhood function dictating the structure of the map (topology). It
determines how strongly the neurons are connected to each other [7]. In each training
step, the neurons update depends on the neighborhood function, whose purpose is to
correlate the directions of the weight updates of a large number of neurons around the
BMU [20]. The larger the neighborhood, the more rigid the SOM. In our experiments,
the neighborhood function used is the Gaussian. To update the winner neurons and
their neighbors either a Least Mean Squared (LMS) type adaptation rule [1] or a batch
algorithm can be employed. In this paper, we are interested in the latter. In the batch
training algorithm, for a fixed training set {xj}, we keep record of the weight updates,
but their adjustment is applied only after all samples of the set have been considered.
The learning stops when a pre-determined number of iterations is reached [20]. At each
training iteration, the BMU is determined. Afterwards, all the neurons that belong to
the BMU’s neighborhood are updated. The updating rule of the ith weight vector, wi,
is computed as [7]

wi(t + 1) =

∑N
j=1 α(t) hic(j)(t) xj∑N

j=1 hic(j)(t)
(2)

where N defines the number of patterns xj that have been assigned to the ith neuron
up to the tth iteration and hic(j)(t) denotes the neighborhood function around the BMU
c(j). The learning rate a(t) is a decreasing function of time.

During training, the neighborhood function shrinks through time [2, 7]. At the first
training steps, large initial learning rates and neighborhood radii are used in order to
have a rigid SOM, whereas small initial learning rates and radii are used during the
following training steps. Concerning the neighborhood, as its range is decreased, so
does the number of neurons whose weight update direction is correlated. As a result of
this correlation, neighboring neurons will be specialized for similar input patterns [20].
The topological information of the map ensures that neighboring neurons on the map
possess similar attributes. It must be mentioned that, due to the neighborhood shrinking
and the decreasing learning rate through time, it is usual for a SOM to have “dead” units.
The “dead” units are neurons which subsequently fail to be associated with any of the
input vectors, and, thus, are never organized by the input data. The “dead” neurons have
zero (or very low) probability to be active [20].

2.2 SOM Variants Based on Order Statistics

The standard SOM has some disadvantages, such as lack of robustness against outliers
and against erroneous choices for the winner vector due to the linear estimators [8]. In
order to face these problems, the variants of the standard SOM that employ multivariate
order statistics can be used. The MMSOM and the VMSOM treat efficiently the outliers,
because they inherit the robustness properties of the order statistics [9].

The SOM variants under discussion differentiate in the way they update the weight
vectors. The MMSOM updates the weight vectors using the marginal median, while the
VMSOM applies the vector median [8, 9]. In contrast, the SOM calculates the weighted

428 V. Moschou, D. Ververidis, and C. Kotropoulos

mean value of the input patterns, as can be seen in (2). Although that the MMSOM
and the VMSOM, used in this paper, update only the BMU, while the SOM updates
also the BMU’s neighboring neurons, in principal, such update is not prohibited for
MMSOM and VMSOM as well. The MMSOM and VMSOM updating rules, discussed
here, can be seen as special cases of vector quantizers that employ a generalized centroid
condition [6].

In subsections 2.1 and 2.2, Rc(t) denotes the input patterns assigned to the BMU
until the tth iteration and x(t) denotes the input pattern assigned to the BMU in the tth
iteration.

Marginal Median SOM. The MMSOM calculates the marginal median of all patterns
assigned to the winner neuron and updates only the BMU’s weight vector. The MMSOM
relies on the concept of marginal ordering. The marginal ordering of N input vectors
x1,x2, . . . ,xN , where xj = (x1j , x2j , . . . , xDj)T , is performed by ordering the winner
neuron’s vector components independently along each of the D dimensions [8, 9]:

xq(1) ≤ xq(2) ≤ · · · ≤ xq(N), q = 1, 2, . . . , D (3)

where q denotes the index of the vector component into consideration. The new weight
vector of the BMU emerges from the calculation of the marginal median of all patterns
indexed by the BMU. The calculation of the marginal median is defined by [11]

marginal median {x1,x2, . . . ,xN} =

=
{

(x1(v+1), . . . , xD(v+1))T , N = 2v + 1
(x1(v)+x1(v+1)

2 , . . . ,
xD(v)+xD(v+1)

2)T , N = 2v
(4)

where N denotes the number of patterns assigned to the BMU, wc. The winner neuron
is updated by

wc(t + 1) = marginal median {Rc(t) ∪ x(t)}. (5)

Vector Median SOM. The VMSOM calculates the vector median of all patterns as-
signed to the winner neuron and updates only the BMU’s weight vector. The vector
median operator is the vector that belongs to the set of input vectors indexed by the
BMU, which is the closest one to all the current input vectors. The vector median of N
input vectors x1,x2, . . . ,xN is defined by [10]

vector median {x1,x2, . . . ,xN} =

= xl, where l = argmin
k

N∑
j=1

|xj − xk| (6)

The winner neuron is updated by

wc(t + 1) = vector median {Rc(t) ∪ x(t)}. (7)

3 Clustering Evaluation Measures

Three measures are employed in order to assess the performance of the SOMs under
study, namely the accuracy, the average over all neurons mean squared error (AMSE),
and the Rand index.

On the Variants of the SOM That Are Based on Order Statistics 429

3.1 Accuracy

Let M be the total number of patterns that compose the test set, xj be the jth pattern,
and δ(x, y) be the delta Kronecker which equals 1 if x = y and 0 otherwise. The
accuracy of the assignment performed by the SOM is defined as [12]

AC =
1
M

M∑
j=1

δ(g(xj),map(φ(xj))) (8)

where g(xj) is the true label of the pattern, φ(xj) is the label assigned to the pattern by
the SOM, and map(vi) is the optimal matching, which maps the label assigned to the
pattern by the SOM or its variants onto the ground truth labels. The optimal matching
is needed because SOM is an unsupervised training algorithm. It can be derived by the
Kuhn-Munkres algorithm [13].

The problem solved by the Kuhn-Munkres algorithm is stated as follows. Consider a
complete weighted bipartite graph Γ = (V

⋃
U, V × U). Let us denote V = {vi} and

U = {ui}, where i = 1, 2, . . . ,K and K being the number of nodes. The weight of the
edge (vi, ui) is denoted by ξ(vi, ui). The goal is to find the optimal matching from V
to U , that is the matching with the maximum sum of the edge weights that belong to
it. Mathematically, given a K × K weight matrix Ξ , which represents the graph Γ , a
permutation π of 1, 2, . . . ,K must be found so that the following sum

K∑
i=1

ξ(vi, uπ(i)) (9)

is maximized. The resulted set of edges is the optimal matching. A graph that is not
complete, it must be forced to become complete, by adding zeros in the weight matrix
Ξ for the non-existing edges.

Let us explain the use of the Kuhn-Munkres algorithm in the calculation of the SOM
clustering accuracy. The accuracy of the assignment performed by the SOM is defined
by (8). Let us consider that the patterns must be clustered into K clusters. That is the
number of nodes of the graph Γ equals K . The weight ξ(vi, ui) assigned to the edge
(vi, ui) corresponds to the profit made out, if the label assigned by the SOM is vi and
the ground truth label is ui. The purpose is to maximize the profit. Obviously, if the two
labels are the same, the profit is maximized, since the SOM has assigned the patterns to
the correct ground truth class.

The input of the algorithm is a K × K weight matrix. The weights of the elements
(i, i) with i = 1, 2, . . . ,K are set to be ξ(i, i) = 1, while the weights of the elements
(i, j) with j = 1, 2, . . . ,K and i �= j are set to be 0 (or a very low value). The output of
the algorithm is a K ×K matrix. The (i, j) matrix element equals 1 if the edge (vi, uj)
belongs to the optimal matching, otherwise it equals 0.

3.2 Average over All Neurons Mean Squared Error (AMSE)

In order to set the definition of the AMSE, we must first define the Mean Squared Error
(MSE). The MSE of one neuron is the mean value of the Euclidean distances between
its weight vector and all the patterns assigned to it. Mathematically, the MSE of the
neuron wi is calculated as follows

430 V. Moschou, D. Ververidis, and C. Kotropoulos

MSEi =
1
N

N∑
j=1

‖xj[i] − wi‖2 (10)

where N is the total number of patterns assigned to the ith neuron and xj[i] is the j-th
pattern assigned to this neuron. The average over all neurons MSE, which from now on
will be referred to as AMSE, is the mean value of MSEi for all the neurons of the map:

AMSE =
1
K

K∑
i=1

MSEi (11)

where K is the total number of the map neurons.

3.3 Rand Index

The Rand index is a widely used evaluation measure in clustering applications. The
Rand index indicates the number of input patterns that are either from the same class
but are not grouped into the same cluster, or that are not from the same class but are
grouped into the same cluster. The Rand index is defined as follows [3, p. 173-174]:

γ =
1
2

Nc∑
i=1

n2
i. +

1
2

Nf∑
j=1

n2
.j −

Nc∑
i=1

Nf∑
j=1

n2
ij (12)

where Nc denotes the total number of clusters that are created after training the SOMs,
Nf the total number of classes that the patterns are initially grouped into according to
the ground truth, ni. and n.j the total number of patterns assigned to clusters i and j,
respectively, and nij the total number of patterns assigned to cluster i that belong to
class j. Rand index values lie in the range 0 ≤ γ ≤

(
N
2

)
, with

(
N
2

)
denoting the number

of combinations of two patterns that can be taken out from the total set. The lower the
Rand index, the better the clustering is. A perfect clustering should produce a zero Rand
index [3].

4 Data

The well-known IRIS data was used in order to evaluate the performance of the algo-
rithms for clustering. The IRIS data records information about 150 flower patterns [14].
Each pattern is characterized by 4 features namely the sepal length, the sepal width, the
petal length, and the petal width. The patterns are classified into 3 classes called Setosa,
Versicolor, and Virginica. The most important feature of the IRIS data is the ground
truth of the patterns, i.e. the actual class each pattern is classified to. It must be noted
that the IRIS data set does contain outliers for unsupervised learning. Accordingly, this
data set is appropriate for studying the role of the outliers in clustering. This is not the
case for supervised learning [19, p.346].

Motivated by the observations made on IRIS, we have compared the SOM vari-
ants against the SOM for the redistribution of neutral emotional speech feature vectors
from the DES database [15] into non-neutral emotional speech patterns. We decided
to work on the DES database, because it is easily accessible and well annotated. A

On the Variants of the SOM That Are Based on Order Statistics 431

number of 1160 emotional speech patterns are extracted. Each pattern consists of a 90-
dimensional feature vector [16]. Each emotional pattern is classified into one of the five
primitive emotional states, such as hot anger, happiness, neutral, sadness, and surprise.
The ground truth for all patterns is also available.

5 Experimental Results

The performance of the SOM, the MMSOM, and the VMSOM on clustering are demon-
strated through the accuracy, the AMSE, and the Rand index on the IRIS data. The
training set consists of 120 randomly selected patterns, while the test set is composed
by the 30 remaining patterns. The accuracy, the AMSE, and the Rand index were mea-
sured using 30-fold cross validation. The accuracy should increase, while the AMSE
and the Rand index should decrease for a high quality clustering.

Table 1 summarizes the accuracy, the AMSE, and the Rand index of the three SOMs
using different number of neurons to build the map, respectively, averaged over the 30
cross validations. The best performance concerning the accuracy, the AMSE, and the
Rand index is indicated in boldface. As it can be noticed from Table 1, the MMSOM
yields the best accuracy (97.33%), the VMSOM follows (97.00%), while the SOM has
the worst behavior with respect to the accuracy (91.22%). Table 1 indicates that the
same ordering between the three SOMs stands also with respect to the AMSE. The
smallest AMSE is measured for the MMSOM (0.221). The VMSOM yields a larger
AMSE than the MMSOM (0.238) and, finally, the SOM exhibits the worst performance
with respect to the AMSE (0.441). In addition, the SOM yields the worst Rand index
for every map size compared to both the MMSOM and the VMSOM. The best Rand
index values are 33.866 for a 4× 4 map, 13.233 for a 3× 3 map, and 15.266 for a 3× 3
map, for the SOM, the MMSOM, and the VMSOM, respectively.

As it can be noticed form Table 1 both the MMSOM and the VMSOM have similar
values that do not change significantly with the number of neurons, concerning all the
evaluation measures. In contrast, the SOM values change significantly with the map size

Table 1. Accuracy, AMSE, and Rand index of SOM, MMSOM, and VMSOM averaged over 30
cross validations for different map sizes on the IRIS data

Neurons Average accuracy Average AMSE Average Rand index
SOM MMSOM VMSOM SOM MMSOM VMSOM SOM MMSOM VMSOM

3 (2 × 2) 60.66 89.00 89.67 1.599 0.501 0.557 76.633 51.533 52.533
4 (2 × 2) 82.45 90.67 88.89 1.788 0.516 0.547 98.200 49.800 58.166
5 (3 × 2) 90.56 97.33 95.22 1.592 0.337 0.367 56.133 22.166 25.966
6 (3 × 2) 91.22 96.56 95.11 1.229 0.338 0.371 45.600 23.266 23.366
7 (4 × 2) 90.78 95.56 94.67 0.658 0.321 0.339 48.766 21.266 23.866
8 (4 × 2) 82.89 96.67 94.11 1.189 0.250 0.184 78.966 17.566 16.366
9 (3 × 3) 84.56 97.00 96.67 1.187 0.249 0.298 71.633 17.966 15.266

10 (3 × 3) 84.56 97.11 96.33 1.175 0.266 0.337 68.533 13.233 23.833
11 (4 × 3) 88.78 96.11 94.89 0.496 0.227 0.280 46.266 19.300 18.033
12 (4 × 3) 90.67 97.00 94.33 0.517 0.233 0.272 41.200 18.466 22.233
16 (4 × 4) 91.22 97.33 97.00 0.441 0.221 0.238 33.866 14.933 20.100

432 V. Moschou, D. Ververidis, and C. Kotropoulos

compared to the MMSOM and the VMSOM. This fact can be explained by the number
of “dead” neurons of each SOM. Let us denote by µ the mean number of patterns that
a neuron wins, by σ the standard deviation, and by N the exact number of patterns a
neuron wins during training. The “dead” neurons are those for which the following in-
equality holds: N < µ−σ. Table 2 presents the number of “dead” neurons of each SOM
for different map sizes. It is obvious that for the SOM, the number of “dead” neurons
gets very large with increasing number of neurons, causing the significant difference
of its performance compared to the SOM variants for different map sizes. For both the
MMSOM and the VMSOM, the number of “dead” neurons is small for all map sizes,
which explains their similar behavior and the small range of values they get.

Table 2. Number of “dead” neurons for different map sizes for the SOMs

Neurons 3 4 5 6 7 8 9 10 11 12 16

SOM 1 1 1 0 2 3 3 3 4 5 8
MMSOM 0 0 0 0 1 1 0 0 2 2 4
VMSOM 0 0 0 0 1 0 0 0 1 2 3

The Student t-test for unequal variances has been used to check whether the differ-
ence between the mean accuracies achieved by the following algorithm pairs (SOM,
MMSOM), (SOM, VMSOM), and (MMSOM, VMSOM) is statistically significant at
the 95% level of significance in a 30-fold cross validation experiment with a 4×4 map.
The same assessment has also been performed for the AMSE and the Rand index. The
tests have shown that the performance differences are statistically significant.

The superiority of the MMSOM was expected, because the marginal median is not
affected by the outliers in contrast to the mean. Moreover, the weight vector is not con-
strained to be among the input vectors assigned to a neuron as the vector median does.
Furthermore, the SOM contains many “dead” units and cannot represent data well. Due
to the order statistic properties of the MMSOM and VMSOM, it is expected, though,
that the maps created by the SOM variants are more representative, as demonstrated by
Table 2. The maps created by the MMSOM and the VMSOM have less “dead” units and
the classes defined on the map are well separated. However, “dead” units are inevitable
for a SOM to train a non-stationary data set [20].

The SOMs were also applied to the re-distribution of emotional speech feature vec-
tors extracted from the DES database. The primitive emotional states are anger, happi-
ness, neutral, sadness, and surprise. Our purpose is to re-distribute the emotional speech
patterns that were originally classified as neutral into the other four emotional states.
That is, to find out which class is closer to the neutral one and how each training al-
gorithm acts on the data. The training set consists of the all the non-neutral patterns
and the test set consists of all the neutral patterns. The average assignment ratio was
estimated using 15-fold cross validation.

Table 3 demonstrates the average assignment ratio of the neutral patterns that are la-
beled as angry, happy, sad, and surprised by each SOM. As can be seen, all the algorithms
classify the neutral patterns as sad with a very high percentage. This means that sadness
resembles the neutral state more than the other emotional states. The largest percent-
age is measured for the MMSOM (61.86%), the next larger percentage is provided by

On the Variants of the SOM That Are Based on Order Statistics 433

the VMSOM (61.51%) and, finally, the SOM yields the lowest one (58.27%). It was
expected that the MMSOM would re-distribute the neutral patterns in a better manner
than VMSOM and SOM. Anger is the second closer to neutrality emotion, happiness
follows and, finally, surprise is the least similar to neutrality emotion. All the algorithms
conform to this order.

Table 3. Average ratio of neutral emotional speech patterns assigned to non-neutral emotional
classes using the SOM variants

Emotion Average assignment ratio (%)
SOM MMSOM VMSOM

Sadness 58.27 61.86 61.51
Anger 13.87 14.02 15.00
Happiness 13.56 14.81 13.62
Surprise 13.16 9.59 9.82

The Student t-test for unequal variances has also found that the differences in the
average assignment ratio per emotion are statistically significant for a 15-fold cross
validation experiment.

Figure 1 depicts a partition of the 2D feature domain that has been resulted after
selecting the five best emotional features by the Sequential Forward Selection algorithm
and applying Principal Component Analysis in order to reduce the dimensionality from
five dimensions (5D) to two dimensions (2D) [16]. Only the samples which belong to
the interquartile range of the probability density function for each class are shown. It can
be seen that the neutral emotional class does not possess any overlap with the surprise,
while such an overlap is observed for sadness, anger, and happiness. Therefore, the
results shown in Table 3 comply with the sample space depicted in Figure 1.

−20 0 20 40 60 80 100
1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

Samples after reduction to 2D

PCA 1 dimension

P
C

A
 2

 d
im

en
si

on

Anger
Happiness
Neutral
Sadness
Surprise

Fig. 1. Partition of the 2D domain into five emotional states derived by PCA. The samples which
belong to the interquartile range of each pdf are shown. The big symbols denote the mean of each
class. The ellipses denote the 60% likelihood contours for a 2-D Gauss model.

6 Conclusions

Two variants of the self organizing map, the MMSOM and the VMSOM, that are based
on order statistics, have been studied. These variants have been successfully used in

434 V. Moschou, D. Ververidis, and C. Kotropoulos

color quantization and document organization and retrieval. In this paper, we presented
experimental evidence for their clustering quality by using the accuracy, the average over
all neurons mean squared error, and the Rand index as figures of merit. The assessment
was first conducted on the well-known IRIS data set. Motivated by the superiority of
the SOM variants that are based on order statistics, we investigated their application in
the re-distribution of emotional neutral feature vectors to non-neutral emotional states.
We demonstrated that the re-distribution is consistent with the sample feature space.

References

1. S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, N.Y.:
Prentice-Hall, 1999.

2. T. Kohonen, Self-Organizating Maps, 3/e. Berlin, Germany: Springer-Verlag, 2000.
3. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs, N.J.:

Prentice-Hall, 1988.
4. S. Kaski, J. Kangas, and T. Kohonen, “Bibliography of Self-Organizing Map (SOM) Papers:

1981-1997,” Neural Computing Surveys, vol. 1, pp. 102-350, 1998.
5. M. Oja, S. Kaski, and T. Kohonen, “Bibliography of Self-Organizing Map (SOM) Papers:

1998-2001 Addendum,” Neural Computing Surveys, vol. 3, pp. 1-156, 2003.
6. A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Boston, MA:

Kluwer Academic Publishers, 1992.
7. J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, SOM Toolbox for Matlab 5,

Finland, 2000, www.cis.hut.fi.
8. I. Pitas, C. Kotropoulos, N. Nikolaidis, R.Yang, and M. Gabbouj, “Order statistics learning

vector quantizer”, IEEE Trans. Image Processing, vol. 5, pp. 1048-1053, 1996.
9. C. Kotropoulos and I. Pitas,“Self-organizing maps and their applications in image processing,

information organization, and retrieval,” in Nonlinear Signal and Image Processing: Theory,
Methods, and Applications (K. E. Barner and G. R. Arce, Eds.), Boca Raton, FL: CRC Press,
2004.

10. J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proceedings of the IEEE, vol.
78, no. 4, pp. 678-689, April 1990.

11. I. Pitas and P. Tsakalides, “Multivariate ordering in color image restoration,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 1, no. 3, pp. 247-259, September 1991.

12. W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix factoriza-
tion,” in Proc. ACM SIGIR 03, pp. 267-273, Toronto, Canada, 2003.

13. J. A. McHugh, Algorithmic Graph Theory. Prentice Hall, 1990.
14. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen., vol.

7, pp. 179-188, 1936.
15. I. S. Engberg and A. V. Hansen, Documentation of the Danish Emotional Speech Database

DES, Internal Report, Center for Person Kommunikation, Aalborg University, 1996.
16. D. Ververidis, C. Kotropoulos, and I. Pitas, “Automatic emotional speech classification,” in

Proc. 2004 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. I, pp. 593-596,
Montreal, Canada, May 2004.

17. J. C. T. Kanade and Y. Tian, “Comprehensive database for facial expression analysis,” in
Proc. IEEE Int. Conf. Face and Gesture Recognition, pp. 46-53, March 2000.

18. I. Kotsia and I. Pitas, “Real-time facial expression recognition from image sequences using
support vector machines,” in Proc. Conf. Visual Communications Image Processing, Beijing,
China, July 12-15, 2005.

19. K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis. Academic Press, Harcourt
Brace & Co., New York, 1979.

20. M. M. Van Hulle, Faithful Representations and Topographic Maps. From Distortion- to
Information-Base Self-Organization. N.Y.: J. Wiley, 2000.

On the Basis Updating Rule of Adaptive-Subspace
Self-Organizing Map (ASSOM)�

Huicheng Zheng, Christophe Laurent, and Grégoire Lefebvre

France Telecom R&D – DIH/HDM
4, Rue du Clos Courtel

35512 Cesson Sévigné Cedex, France

Abstract. This paper gives other views on the basis updating rule of the ASSOM
proposed by Kohonen. We first show that the traditional basis vector rotation rule
can be expressed as a correction to the basis vector which is a scaling of compo-
nent vectors in the episode. With the latter form, some intermediate computations
can be reused, leading to a computational load only linear to the input dimension
and the subspace dimension, whereas a naive implementation of the traditional
rotation rule has a computational load quadratic to the input dimension. We then
proceed to propose a batch-mode updating of the basis vectors. We show that the
correction made to each basis vector is a linear combination of component vec-
tors in the input episode. Computations can be further saved. Experiments show
that the proposed methods preserve the ability to generate topologically ordered
invariant-feature filters and that the learning procedure is largely boosted.

1 Introduction

The Adaptive-Subspace Self-Organizing Map (ASSOM) [1] is basically a combination
of the competitive selection and cooperative learning as in the traditional SOM [2] and
a subspace method. The single weight vectors at map units in the SOM are replaced by
modules of basis vectors in the ASSOM that span some linear subspaces. The ASSOM
is an alternative to the standard principal component analysis (PCA) method of feature
extraction. An earlier neural approach for PCA can be found in [3]. The ASSOM can
generate spatially ordered feature filters thanks to spatial interactions among process-
ing units [4]. Each module in the ASSOM can be realized as a neural network which
calculates orthogonal projections of input vectors on its subspace.

The input to an ASSOM array is typically an episode, i.e. a sequence of pattern
vectors supposed to approximately span some linear subspace. These vectors shall also
be referred to as component vectors of the episode in this paper. By learning the episode
as a whole, the ASSOM is able to capture the transformation coded in the episode. The
simulation results in [1] and [4] have demonstrated that the ASSOM can induce ordered
filter banks to account for translation, rotation and scaling. The relationship between the
neurons in the ASSOM architecture and their biological counterparts are reported [4].
The ASSOM has been applied to speech processing [5], texture segmentation [6], image

� This work was carried out during the tenure of a MUSCLE Internal fellowship (http://
www.muscle-noe.org).

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 435–444, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

436 H. Zheng, C. Laurent, and G. Lefebvre

retrieval [7] and image classification [7], [8], etc. in the literature. A supervised variant
of ASSOM, called Supervised Adaptive-Subspace Self-Organizing Map (SASSOM),
was proposed by Ruiz del Solar in [6].

The basis vector rotation rule in the traditional ASSOM implementation takes a form
of matrix multiplication. This rule is hard to understand and more seriously, a naive
implemenation of this rule leads to a computational load which is quadratic to the in-
put dimension, not to mention large amount of memory required by the usually high-
dimensional matrix operations. This deficiency makes the naive implementation of the
basic ASSOM learning very costly for practical applications.

There were efforts in the literature to reduce the computational load associated with
the basic ASSOM learning. De Ridder et al. [7] dropped topological ordering to reduce
the computations involved in the cooperative learning. Furthermore, they performed an
offline batch-mode updating of subspaces with PCA to avoid the time-consuming iter-
ative updating. Similarly, López-Rubio et al. [9] proposed to combine PCA with AS-
SOM, but they realized an online incremental learning while retaining self-organization
of generated features. The resulting algorithm is named PCASOM for Principal Com-
ponent Analysis Self-Organizing Map. According to their report, under similar classi-
fication performance, their algorithm runs about twice faster than the basic ASSOM.
McGlinchey et al. [10] replaced the traditional basis vector updating formula with one
proposed by Oja [11]. According to their paper, the computational load is only linear to
the input dimension, but quadratic to the subspace dimension.

In this paper, we first show that with the traditional basis rotation rule, the correc-
tion made to each basis vector is in fact a scaling of the component vector of the input
episode. With this modified form, some intermediate computations can be reused, lead-
ing to a computational load only linear to both the input dimension and the subspace
dimension. We then proceed to propose a batch-mode updating of the basis vectors,
where the correction made to each basis vector is a linear combination of component
vectors in the episode. This modified rule further accelerates the learning procedure by
saving large amounts of computations.

This paper will be organized as follows: In Sect. 2, we review briefly the basic AS-
SOM learning procedure. The proposed alternative updating rules will be presented in
Sect. 3. Section 4 is dedicated to experiments which demonstrate the performance of
the proposed methods. This paper will be concluded by Sect. 5.

2 The Basic ASSOM Learning

An ASSOM is composed of an array of modules. Each module in the ASSOM can be
realized by a two-layer neural network [4], as shown in Fig. 1. It calculates the orthog-
onal projection of an input vector x on the subspace L of the module. Supposing L is
spanned by a set of basis vectors {b1,b2, . . . ,bH}, where H is the dimension of L,
the neurons in the first layer take the orthogonal projections xTbh of the input vector
x on the individual basis vectors bh. The basis vectors are supposed to be orthonor-
malized. The only quadratic neuron of the second layer sums up the squared outputs of
the first-layer neurons. The output of the module is then ‖x̂L‖2, with x̂L being the pro-
jection of x on L. This output can be regarded as a measure of the matching between

On the Basis Updating Rule of Adaptive-Subspace Self-Organizing Map 437

the input vector x and the subspace L. For an input episode X = {x(s), s ∈ S},
where S is the index set of vectors in the episode, Kohonen proposed to use the energy∑

s∈S ‖x̂L(s)‖2 as the measure of matching between X and L [4].

1

b
2

b
H

b

Q

x

1

T

bx

2

ˆ

L
x

2

T

bx
H

bx

T

Fig. 1. A module of ASSOM realized as a neural network. x is an input vector. {b1,b2, . . . , bH}
is an orthonormal basis of the linear subspace L of the module. Q is a quadratic neuron that sums
up squares of its inputs.

The learning process of ASSOM approximately minimizes an error function in an
iterative way [4]. Supposing x(s), s ∈ S is the input episode at the learning step t, then
the basic ASSOM learning procedure at this step proceeds as follows:

1. Locate the winning module indexed by c = arg maxi∈I

∑
s∈S ‖x̂Li(s)‖2, where I

is the index set of modules in the ASSOM.
2. For each module i in the neighborhood of c, including c itself, update the subspace

Li for each component vector x(s), s ∈ S, that is, update the basis vectors b(i)
h ,

according to the following rules:
(a) Rotate each basis vector according to:

b(i)
h = P(i)

c (x, t)b
′(i)
h , (1)

where b(i)
h is the new basis vector and b

′(i)
h the old one. The matrix P(i)

c (x, t)
is a rotation operator defined by:

P(i)
c (x, t) = I + λ(t)h(i)

c (t)
x(s)xT(s)

‖x̂Li(s)‖‖x(s)‖ , (2)

where I is the identity matrix, λ(t) a learning-rate factor that diminishes with
t. h(i)

c (t) is a neighborhood function defined on the ASSOM lattice.
(b) Dissipate the basis vectors b(i)

h to improve stability of the results [4] and then
orthonormalize these basis vectors.

Through this competitive and cooperative learning procedure, the ASSOM will fi-
nally arrive at a topologically organized status, where nearby modules represent similar
feature subspaces. A naive implementation of (1) requires a matrix multiplication which
needs not only a large amount of memory, but also a computational load quadratic to
the input dimension. It would be costly for practical applications of ASSOM.

438 H. Zheng, C. Laurent, and G. Lefebvre

3 On the Basis Updating Rule of ASSOM

3.1 Insight on the Basis Vector Rotation

In the first place we propose to replace the formulae (1) and (2) through a little math-

ematical deduction. The term b
′(i)
h in (1) can be distributed to the right side of (2),

leading to the current basis vector and a correction to it:

b(i)
h = b

′(i)
h + ∆b(i)

h , (3)

where

∆b(i)
h = λ(t)h(i)

c (t)
x(s)xT(s)b

′(i)
h

‖x̂Li(s)‖‖x(s)‖ . (4)

xT(s)b
′(i)
h is in fact a scalar value. The equation can be rewritten as:

∆b(i)
h = α

(i)
c,h(s, t)x(s) . (5)

Here α
(i)
c,h(s, t) is a scalar value defined by:

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
xT(s)b

′(i)
h

‖x̂Li(s)‖‖x(s)‖ . (6)

This shows that the correction ∆b(i)
h is in fact a scaling of the component vector

x(s), as illustrated in Fig. 2, which seems to have been ignored by many practition-
ers. Equation (5) gives a clearer way to understand the basis vector rotation in ASSOM

learning than the traditional rotation matrix (2). Note that in (6), xT(s)b
′(i)
h is the pro-

jection of the component vector on the basis vectors represented by the neurons of the
first layer, which we have already when computing the projection ‖x̂Li(s)‖ (cf. Fig. 1).
If we calculate the scaling factor α

(i)
c,h(s, t) first, and then scale the component vec-

tor x(s) with this factor, the computations associated with the basis vector updating
will be dramatically reduced. This implementation will be referred to as FL-ASSOM
for fast-learning ASSOM. It is completely equivalent to the basic ASSOM in terms of
generating topologically ordered invariant-feature filters.

Let us compare the computational loads of the basis vector updating in the basic AS-
SOM and the FL-ASSOM by analyzing the respective updating formulae. We assume
the input dimension to be N , and the subspace dimension to be M . We first evaluate the
computations required by naive implementation of the traditional basis vector updating
rule (1). For each component vector x(s), x(s)xT(s) in (2) needs N2 multiplications,
the matrix multiplication in (1) amounts to MN2 multiplications. There are totally
about MN2 + N2 multiplications. Similarly, the number of additions required by (1)
can be shown to be around MN2 +N2. Finally, the computational load of naive imple-
mentation of the traditional updating rule is approximately O(MN2), i.e. quadratic to
the input dimension and linear to the subspace dimension. The replacement proposed
by McGlinchey et al. [10] leads to a computational load of O(M2N), as shown in their
paper, i.e. linear to the input dimension but quadratic to the subspace dimension. Now

On the Basis Updating Rule of Adaptive-Subspace Self-Organizing Map 439

)(i
hb

)(' i
hb

)(),()(
,

)(stsi
hc

i
h xb α=∆

)(sx

Fig. 2. An alternative view of the basis vector updating rule of ASSOM. The correction ∆b(i)
h

is a scaling of the component vector x(s). After updating, b(i)
h represents better the component

vector x(s).

with the proposed updating rule (5), for each component vector x(s), the computations

of ‖x̂Li(s)‖ and ‖x(s)‖ in (6) need about MN+2N multiplications, and α
(i)
c,h(s, t)x(s)

in (5) about MN multiplications. In all (5) needs about 2MN + 2N multiplications.
Similarly, the number of additions can be shown to be about 2MN + 2N . So with (5),
the computational load is approximately O(MN), i.e. linear to both the input dimen-
sion and the subspace dimension. So there is an obvious benefit in using (5) other than
a naive implementation of (1).

3.2 Further Boosting: Batch-Mode Basis Vector Updating

Basis vector updating can be further boosted by working in a batch mode. We can
avoid computing the value of ‖x̂Li(s)‖ in (6) by using the value computed previously
during module competition. However this could not be done inside the framework of
FL-ASSOM since the subspaces are continuously changing in receiving each compo-
nent vector of the episode. To save computation of ‖x̂Li(s)‖, the following batch-mode
rotation operator [4] will be useful:

B(i)
c (t) = I + λ(t)h(i)

c (t)
∑
s∈S

x(s)xT(s)
‖x(s)‖2 . (7)

With this rotation operator, each basis vector in the subspace will be rotated only once
for the whole input episode.

For stability of the solution, we expect the magnitude of the correction made to the
basis vectors to be monotonically decreasing with respect to ‖x̂Li(s)‖. We borrow the

idea from the basic rotation operator P(i)
c (x, t) [4] to divide the learning-rate factor λ(t)

by the scalar value ‖x̂Li(s)‖/‖x(s)‖, which only changes the effective learning rate.
The batch-mode rotation operator then becomes:

B(i)
c (t) = I + λ(t)h(i)

c (t)
∑
s∈S

x(s)xT(s)
‖x̂Li(s)‖‖x(s)‖ . (8)

As was done for the FL-ASSOM, we distribute b
′(i)
h to terms in this operator. With

similar deduction as in the FL-ASSOM, the basis vector updating rule becomes:

440 H. Zheng, C. Laurent, and G. Lefebvre

b(i)
h = b

′(i)
h + ∆b(i)

h , (9)

where
∆b(i)

h =
∑
s∈S

(
α

(i)
c,h(s, t)x(s)

)
. (10)

The correction made to each basis vector is thus a linear combination of the component
vectors in the episode. The difference between the updating rules (3) and (9) is that the
former updates the basis vectors for each component vector one by one while the latter
updates the basis vectors in a batch mode for the whole episode.

The scalar parameter α(i)
c,h(s, t) has the same form as (6) in the FL-ASSOM:

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
xT(s)b

′(i)
h

‖x̂Li(s)‖‖x(s)‖ . (11)

The meaning of this equation is a little different from that of (6), where the subspace
Li(s) should be updated for each component vector x(s) in the episode and thus we
could not reuse the computational results of module competition. Here in (11) the basis
vector updating works in a batch mode, i.e. updating is performed only after the whole

episode has been received. Therefore, ‖x̂Li(s)‖ and xT(s)b
′(i)
h can reuse the results

previously calculated during module competition. What we need to do is only store
the calculated values in registers and fetch them when needed. The computational load
of (11) is thus trivial. Furthermore, the dissipation as well as orthonormalization of basis
vectors can be performed only once for each episode without loosing accuracy since the
basis vectors are not updated during the episode. The computational load can thus be
further reduced. This method will be referred to as BFL-ASSOM for batch-mode fast-
learning ASSOM.

Let us estimate the computational load of BFL-ASSOM. For basis vector updating
with (10), we estimate the computational load averaged on each component vector of
the episode as we did for the basic ASSOM and the FL-ASSOM. As previously men-
tioned, the calculation of α

(i)
c,h(s, t) according to (11) needs only trivial computation.

The majority of computation is in (10). Averaged on each vector in the episode, the
computational load required by basis vector updating with BFL-ASSOM is about MN
multiplications and MN additions. Furthermore, since the dissipation and orthonor-
malization of basis vectors can be performed only once for each episode, the whole
learning time can be further reduced.

4 Experiments

We first show that the BFL-ASSOM can also generate the topologically ordered invari-
ant-feature filters as the basic ASSOM. The results of FL-ASSOM will be shown as the
ground truth since the FL-ASSOM is mathematically equivalent to the basic ASSOM.
One of the most common transformations occurred to images is translation. We will
show that the BFL-ASSOM permits to generate Gabor type filters from episodes subject
to translation.

On the Basis Updating Rule of Adaptive-Subspace Self-Organizing Map 441

The input episodes are constructed from a colored noise image, which is generated
by filtering a white noise image with a second-order Butterworth filter. The cut-off fre-
quency is set to 0.6 times of the Nyquist frequency of the sampling lattice. Each episode
is composed of 6 vectors, each of which is formed on a circular receptive field on the
sampling lattice composed of 349 pixels. The vectors in the same episode have only ran-
dom translation of no more than 5 pixels in both the horizontal and the vertical directions.
The episodes are generated on random locations of the colored noise image. The mean
value of components of each input vector is subtracted from each component of the vec-
tor. In order to symmetrize the filters with respect to the center of the receptive field, the
input samples are weighted by a Gaussian function symmetrically placed at the center
of the receptive field with a full width at half maximum (FWHM) that varies linearly
with respect to the learning step t from 1 to 16 sampling lattice spacings. Each vector
is normalized before entering into the ASSOM array. The ASSOM array is composed
of 9 × 10 modules aligned in a hexagonal lattice with two basis vectors at each mod-
ule. The basis vectors of all the modules are initialized randomly and orthonormalized
at the beginning of the learning process. The radius of the circular neighborhood func-
tion h

(i)
c (t) decreases linearly from 6.73 (= 0.5× (92 + 102)1/2) to 0.9 ASSOM array

spacings with t. The learning-rate factor has the form λ(t) = 0.1 · T/(T + 99t), where
T is the total number of learning steps and set to 30, 000 for the current experiment.

5.1

5.3

5.5

5.7

5.9

0 5 10 15 20 25 30
(×103)

FL-ASSOM

BFL-ASSOM

e

t

(a) (b)

Fig. 3. (a) The Gabor type filters generated by BFL-ASSOM compared to those by FL-ASSOM
on episodes subject to translation. Top: Filters generated by FL-ASSOM; Bottom: Filters gener-
ated by BFL-ASSOM. Left: First basis vectors. Right: Second basis vectors. (b) Change of the
projection error e with the learning step t for the FL-ASSOM and for the BFL-ASSOM.

The translation-invariant filters generated by BFL-ASSOM compared to those by
FL-ASSOM are shown in Fig. 3(a) with a gray scale. We can see that both meth-
ods generated topologically ordered Gabor-like filters. For either method, the two ba-
sis vectors at the same array locations have the same frequencies but 90 degrees of
phase difference. Figure 3(b) shows how the average projection error e changes with the
learning step t for the FL-ASSOM and for the BFL-ASSOM. For each input episode
X = {x(s), s ∈ S}, where the component vectors x(s), s ∈ S are mean-subtracted and

442 H. Zheng, C. Laurent, and G. Lefebvre

Table 1. The timing results for the basic ASSOM, the FL-ASSOM and the BFL-ASSOM. VU
(vector updating time) denotes the time for the basis vector updating. WL (whole learning time)
denotes the time for the whole learning procedure, including module competition, basis vector
dissipation and orthonormalization. All the times are given in seconds.

The basic ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 29.36 41.27 30.44 47.53 32.45 54.72
N=100 134.92 154.95 145.95 172.85 149.91 188.06
N=200 742.34 786.63 769.56 828.47 814.80 895.08
N=400 4529.69 4626.43 4956.64 5090.56 5200.78 5367.35

FL-ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 1.53 13.31 2.31 18.92 3.18 25.03
N=100 2.39 21.09 3.15 30.41 3.86 40.80
N=200 3.30 37.86 4.81 55.44 5.93 73.98
N=400 5.68 70.88 7.51 105.01 9.92 139.25

BFL-ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 0.58 4.83 1.28 6.72 1.33 8.75
N=100 0.87 6.88 1.50 10.01 1.58 13.37
N=200 1.03 11.61 1.67 17.37 2.10 22.86
N=400 1.46 21.02 2.06 31.01 2.99 41.51

normalized, the projection error is calculated according to e(X) =
∑

s∈S ‖x(s) −
x̂(s)‖2, where x̂(s) is the orthogonal projection of x(s) on the subspace of the winning
module. e is the average of e(X) over all the training episodes. We can see that the dif-
ference between the curves of FL-ASSOM and BFL-ASSOM is very tiny in Fig. 3(b),
which reveals that their difference in terms of generating the filters is indeed very little.

In the second experiment, we compare the computational loads of the basic ASSOM,
the FL-ASSOM and the BFL-ASSOM. We designed the experiment by using C++ im-
plementations of all the methods. In this experiment, the input dimension as well as
the subspace dimension vary. We count the elapsed CPU seconds for different methods.
The number of iterations are fixed to 1, 000. Each episode is composed of 6 vectors.
These vectors are generated randomly according to a uniform probability distribution.
The rectangular ASSOM array contains 10 × 10 modules.

The timing results are summarized in Table 1. As was anticipated, the time of up-
dating basis vectors with the basic ASSOM increased sharply with the input dimension
and moderately with the subspace dimension. Basis vector updating is the bottleneck
of the basic learning procedure, especially when the input dimension is high. With FL-
ASSOM, it is clear that the time of updating basis vectors increases much more mod-
erately with the input dimension. The response to the subspace dimension is also quite
mild. Basis vector updating is no longer a bottleneck for the learning procedure. As a

On the Basis Updating Rule of Adaptive-Subspace Self-Organizing Map 443

result, the learning time drops dramatically compared to the basic ASSOM. However
the learning time outside the basis vector updating is not reduced. Now with BFL-
ASSOM, we can observe that the basis vector updating time is further reduced. More-
over, the learning time outside the basis vector updating is also reduced considerably
compared to the basic ASSOM and the FL-ASSOM.

The relationship between the basis vector updating time and the input dimension
or the subspace dimension for the three implementations of ASSOM is visualized in
Fig. 4. The basis vector updating time increases approximately linearly with respect
to the input dimension for the FL-ASSOM and for the BFL-ASSOM, but apparently
nonlinearly for the basic ASSOM. In all the cases, the updating time increases approx-
imately linearly with respect to the subspace dimension.

0

200

400

600

800

1000

1200

50 100 200 400 N

VU(s)

ASSOM

FL-ASSOM

BFL-ASSOM

0

200

400

600

800

1000

1200

2 3 4 M

VU(s)

ASSOM
FL-ASSOM

BFL-ASSOM

Fig. 4. Left: Relationship between the basis vector updating time (VU) and the input dimension N
at the subspace dimension M = 2. Right: Relationship between VU and the subspace dimension
M at the input dimension N = 200. For sake of clarity, the updating times of FL-ASSOM and
BFL-ASSOM are magnified by a factor of 10

5 Conclusions

The focus of this paper is on the basis updating rule of the ASSOM learning. We first
showed that the traditional basis rotation rule amounts to a correction made to the basis
vectors which is a scaling of component vectors in the input episode. This gives us a
better understanding of the basis updating in ASSOM learning. With this modified form
of updating rule, some computations can be saved by reusing some intermediate compu-
tations. The resulting method is referred to as FL-ASSOM. A naive implementation of
the traditional basis updating rule leads to a computational load linear to the subspace
dimension but quadratic to the input dimension. This computational load is reduced
by FL-ASSOM to be linear to both the subspace dimension and the input dimension.
The ability of FL-ASSOM in generating topologically ordered invariant-feature filters
is altogether preserved since the FL-ASSOM is mathematically equivalent to the basic

444 H. Zheng, C. Laurent, and G. Lefebvre

ASSOM. We then proceeded to present the BFL-ASSOM, where the basis vectors are
updated in a batch mode. We showed that the correction made to each basis vector is a
linear combination of the component vectors in the input episode. What’s more, large
amount of computations can be further saved by reusing more of previous computations
and performing only one dissipation and orthonormalization for each episode.

Our experiments showed that the BFL-ASSOM can also generate topologically or-
dered Gabor-like translation-invariant filters and that the bottleneck of the basis vector
updating in the learning procedure is totally removed by FL-ASSOM and BFL-ASSOM.
The proposed methods can be easily adapted to the supervised ASSOM used in [6].
There is an obvious benefit in using the proposed rules instead of naive implementation
of the basic learning rule.

References

1. Kohonen, T.: The Adaptive-Subspace SOM (ASSOM) and its use for the implementation of
invariant feature detection. In Fogelman-Soulié, F., Gallinari, P., eds.: Proc. ICANN’95, Int.
Conf. on Artificial Neural Networks. Volume 1., Paris (1995) 3–10

2. Kohonen, T.: Self-Organizing Maps. 3rd edn. Springer-Verlag, Berlin Heidelberg New York
(2001)

3. Oja, E.: Principal components, minor components, and linear neural networks. Neural Net-
works 5 (1992) 927–935

4. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organized formation of various invariant-
feature filters in the Adaptive-Subspace SOM. Neural Computation 9(6) (1997) 1321–1344

5. Hase, H., Matsuyama, H., Tokutaka, H., Kishida, S.: Speech signal processing using Adap-
tive Subspace SOM (ASSOM). Technical Report NC95-140, The Inst. of Electronics, Infor-
mation and Communication Engineers, Tottori University, Koyama, Japan (1996)

6. Ruiz del Solar, J.: Texsom: texture segmentation using Self-Organizing Maps. Neurocom-
puting 21(1–3) (1998) 7–18

7. De Ridder, D., Lemmers, O., Duin, R.P., Kittler, J.: The Adaptive Subspace Map for image
description and image database retrieval. In Ferri, F., et al., eds.: SSPR&SPR 2000. Volume
1876 of LNCS., Springer-Verlag Berlin Heidelberg (2000) 94–103

8. Zhang, B., Fu, M., Yan, H., Jabri, M.: Handwritten digit recognition by Adaptive-Subspace
Self-Organizing Map (ASSOM). IEEE Transactions on Neural Networks 10(4) (1999) 939–
945

9. López-Rubio, E., Muñoz Pérez, J., Gómez-Ruiz, J.: A Principal Components Analysis Self-
Organizing Map. Neural Networks 17 (2004) 261–270

10. McGlinchey, S., Fyfe, C.: Fast formation of invariant feature maps. In: European Signal
Processing Conference (EUSIPCO’98), Island of Rhodes, Greece (1998)

11. Oja, E.: Neural networks, principal components and subspaces. International Journal of
Neural Systems 1 (1989) 61–68

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 445 – 454, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Composite Algorithm for Adaptive Mesh Construction
Based on Self-Organizing Maps*

Olga Nechaeva

Novosibirsk State University
Pirogova, 2, Novosibirsk, 630090, Russia

nechaeva@ssd.sscc.ru

Abstract. A neural network approach for the adaptive mesh construction based
on Kohonen’s Self-Organizing Maps (SOM) is considered. The approach
belongs to a class of methods in which an adaptive mesh is a result of mapping
of a computational domain onto a physical domain. There are some
imperfections in using the SOM for mesh construction in a pure form. The
composite algorithm to overcome these imperfections is proposed. The
algorithm is based on the idea to alternate mesh construction on the border and
inside the physical domain and includes techniques to control the consistency
between boundary and interior mesh nodes and to provide an appropriate
distribution of boundary nodes along the border of the domain. To increase the
quality and the speed of mesh construction, a number of experiments are held to
improve the learning rate. It has been shown that the quality of meshes
constructed using the proposed algorithm is admissible according to the
generally accepted quality criteria for finite difference meshes.

1 Introduction

Adaptive mesh methods enable us to improve the accuracy of numerical solution of
problems without essential increase in the number of nodes. Nowadays, they have
important applications in a variety of physical and engineering areas such as solid and
fluid dynamics, combustion, heat transfer, material science, etc. [1].

Within the scope of all adaptive mesh methods, there is a class of methods in
which to construct an adaptive mesh is to find a mapping of a computational domain
with a given uniform mesh onto a physical domain with a desired adaptive one. This
class of methods is usually used for problems with finite-difference approximation of
equations. In conventional methods, e.g. the equidistribution method [2], Thompson’s
method [3], such a mapping is determined by solving a complicated system of
nonlinear partial differential equations (PDE).

In this paper, the neural network approach for the construction of adaptive meshes
resulting from the above mapping is considered [4]. The approach is based on
Kohonen’s Self Organizing Maps (SOM) [5]. The SOM is a neural network intended
for topology preserving mapping of high-dimensional data onto a low-dimensional

* This work is supported by Grant of Rosobrazovanie, contract PHΠ.2.2.1.1.3653 and Program

for Basic Research of RAS Presidium No. 14.15-2006.

446 O. Nechaeva

space and used mainly for data analysis and visualization [6]. The property of
topology preserving means that points that are near each other in the input space are
mapped onto the neighboring neurons in the SOM.

The possibility of using the SOM for the adaptive mesh construction was studied
earlier in [7,8]. But two main imperfections were discovered when applying the SOM
in a pure form. The first consists in inaccurate mesh fitting the border of a domain, the
second is associated with the construction of a mesh on non-convex domains. In this
paper, the composite algorithm is proposed, which is originally based on the
proposition [9] to alternate the mesh construction on the border and inside the
domain. The composite algorithm enables one to overcome the first imperfection and
to essentially improve the quality of meshes constructed on non-convex domains.

There are some difficulties in the above-mentioned conventional methods [2,3],
which motivate the development of the new approaches to mesh construction. First,
an efficient parallelization often meets overwhelming difficulties [10] conditioned by
the necessity of numerical solution of nonlinear PDEs, especially, with the
requirement of their compatibility with parallel implementation of a problem to be
solved on the mesh. Second, for different dimensionalities of space and domain,
particular nonlinear PDEs are required. Complexity of their numerical solution
essentially rises with increasing dimensionalities. Finally, the above conventional
methods require a preliminary construction of a good enough initial mesh and fixing
mesh nodes on the border of a domain without changing their positions during the
mesh construction [2].

The main advantages of the proposed approach in comparison with conventional
methods are the following.

- The efficiency of parallelization [10] of the construction algorithm is high due to
the internal parallelism of the SOM. Moreover, parallelization can be done
according to the requirements for parallel implementation of a problem to be
solved on the mesh.

- The approach uses the same algorithm of the mesh construction for different
dimensionalities of both a physical domain and a space, where the domain is
located.

- The algorithm of the mesh construction is able to start with arbitrary initial data
and is simple to implement.

The paper is organized as follows. Section 2 describes the problem statement and
the neural network approach for the adaptive mesh construction. Also, the idea of the
composite algorithm is presented. In Section 3, the composite algorithm is illustrated
in detail for the construction of 2D adaptive meshes on a plane. The learning rate
functions selected based on experiments are proposed in Section 4. Section 5 contains
examples of adaptive meshes constructed using the composite algorithm and the mesh
quality evaluations. Section 6 concludes the paper.

2 Neural Network Approach

Let G be a physical domain in the Euclidean space Rph on which an adaptive mesh GN
is to be constructed. Let Q be a computational domain in the Euclidean space Rc with

 Composite Algorithm for Adaptive Mesh Construction Based on SOM 447

a fixed mesh QN which is usually uniform. Also, the mesh density function
w : G → R+ is given such that the density of a desired adaptive mesh is to be
proportional to the values of w. The problem is to find a mapping of Q onto G which
transforms the mesh QN into the adaptive one GN with the given mesh density. It is
necessary for the mapping to ensure that the boundary nodes of the mesh QN are
transformed into nodes distributed along the border of G.

Dimensionality of the space Rph can be greater or equal to that of the space Rc:
dim(Rph)≥dim(Rc). Also, dimensionalities of the domains G and Q are defined and
considered to be equal to dim(Rc). The border of the domain G has the
dimensionality, which is equal to dim(Rc) –1 and denoted as ∂G.

Let <dim(Rph), dim(Rc)> be a configuration of dimensionalities for a given
problem. The original idea of using the SOM for the mesh construction [7] is as
follows. The SOM consists of two layers of neurons. In [7], it is proposed to use
points selected in a random manner from G in the space Rph as inputs for the first
neuron layer of SOM. Therefore, the number of neurons in the first layer is set equal
to dim(Rph), and each neuron receives a corresponding coordinate of a random point.
The second layer of the SOM is a lattice of neurons. It is convenient to associate this
lattice with the mesh QN in such a way that the lattice structure is the same as that of
the mesh QN, neurons of the lattice corresponding to nodes of QN, and hence, to the
nodes of GN. Each neuron of the second layer is connected by weighted connections
to all the neurons from the first layer. The weights are adjusted during the
unsupervised learning process of the SOM whereas the mesh structure is unchanged.
The final weight values of the second layer neurons are the coordinates of the
corresponding nodes of GN in the space Rph. The density of the obtained mesh GN is
close to the probability distribution used for the random points generation.

The above algorithm is suitable for constructing a mesh strongly inside G, because
the boundary nodes of GN do not accurately reach the border of G during the mesh
stretching over G (during the learning process). However, for solving a problem
numerically, it is necessary for an adaptive mesh to be constructed both inside of the
domain and on its border. To provide this condition, the composite algorithm is
proposed which is based on the following.

The algorithm of the mesh construction inside a physical domain can be used for
different configurations of dimensionalities <dim(Rph), dim(Rc)>. For a given
configuration, it is only necessary to set the number of neurons in the first layer and
the structure of the second layer. Table 1 shows examples of meshes and the
corresponding structures of SOM for some configurations of dimensionalities.
Therefore, the algorithm can be applied for both the mesh construction inside G with
the configuration <dim(Rph), dim(Rc)> and the mesh construction on ∂G with the
configuration <dim(Rph), dim(Rc) −1>. In the second case, the border ∂G is
considered to be a domain of smaller dimensionality, and random points from ∂G are
used for the mesh construction on ∂G.

The composite algorithm is intended to combine, in a special way, the mesh
construction for boundary and interior nodes. This algorithm is to provide the
consistency between boundary and interior nodes during the mesh construction, to
automatically distribute the boundary nodes along the border of G depending on its

448 O. Nechaeva

form so that those positions tend to be optimal, and to improve the quality of meshes
constructed on non-convex domains.

Table 1. Examples of meshes and corresponding structures of SOM for different configurations
of dimensionalities <dim(Rph), dim(Rc)>

<2,1> <2,2> <3,2> <3,3>

3 Composite Algorithm for 2D Adaptive Mesh Construction

In this section, the neural network approach is illustrated for < 2, 2 > configuration of
dimensionalities. Therefore, G is a 2D physical domain in the 2D Euclidean space Rph
with the physical coordinates x = (x1, x2). For simplicity, we will consider the
construction of adaptive meshes obtained by mapping of a uniform rectangular mesh
QN of N1×N2 nodes with a computational domain being a rectangle
Q = [0, N1−1]×[0, N2−1] and QN = {qij = (i, j), i = 0, ..., N1 −1, j = 0, ..., N2 −1}.

The general problem statement is to find a mapping of the computational domain Q
onto the physical domain G transforming a uniform mesh QN into the adaptive one
GN ={xij = (x1

ij, x
2
ij), i = 0, ..., N1 −1, j = 0, ..., N2 −1} with mesh density distribution

given by the positive density function w : G → R+. For the numerical solution of
problems on the mesh, it is sufficient to have only a discrete mapping QN onto GN.
The neural network approach enables one to obtain an inverse mapping G onto QN.
The required mapping QN onto GN is defined by weights of the second layer neurons.

Nodes coordinates of an initial mesh GN(0) can be arbitrary. For example, it is possible
to set the initial positions of mesh nodes randomly or in such a way that they organize a
uniform rectangular mesh. During the construction process, the initial mesh is being
deformed and stretched all along the domain. The probability distribution, which is used
for the random points generation, is to be proportional to values of the density function
w(x). The distribution can be given by the normed density function w(x):

=

G

dxxw

xw
xp

)(

)(
)(.

(1)

To present the composite algorithm for adaptive mesh construction, it is at first
necessary to describe the mesh construction procedure inside G, which directly
follows from the learning algorithm for the SOM. This procedure is denoted by

 Composite Algorithm for Adaptive Mesh Construction Based on SOM 449

MeshConstruction and is listed below. Its parameters are: Dom – a domain, WinnerSet –
a set of indices of the nodes among which the winner is determined, AdjustSet – a set
of indices of the nodes changing their position at adjusting, StartIter – a number of the
iteration, from which the procedure begins, FinalIter – a number of the iteration, at
which the procedure terminates.

Algorithm 1. The body of the procedure MeshConstruction (Dom, WinnerSet,
AdjustSet, StartIter, FinalIter).

Repeat the following operations at each iteration t = StartIter, ..., FinalIter:

1. Point generation. Generate a random point y(t) = (y1(t), y2(t)) ∈ Dom according to
the probability distribution p(x) given in (1).

2. Winner determination. Calculate the Euclidean distances d(⋅,⋅) between y(t) and all
the nodes xij(t) and choose the node xmn(t) which is the closest to y(t), i.e.

)),(),(())(),((txtydtxtyd ijmn ≤ (2)

 for all (i, j)∈WinnerSet. The node xmn(t) is called a winner.
3. Node coordinates correction. Adjust locations of mesh nodes using the following

rule:

xij(t +1) = xij(t) + θmn(t, i, j)(y(t) – xij(t)), (3)

 for all (i, j)∈AdjustSet, where θ (t, i, j) ∈ [0, 1] is a learning rate.

At each iteration t, mesh nodes move towards the generated point y(t). The size of
displacement for each node is defined by the learning rate θmn(t, i, j). The quality and
the speed of the mesh construction depend on the selection of θmn(t, i, j).

Let us denote the subsets of indices: Interior = {(i, j) | i = 1, ..., N1 −2,
j = 1, ..., N2 −2} defines a set of interior mesh nodes, Boundary = {(i, j) | i = 0 ∨ i =
 N1−1 ∨ j = 0 ∨ j = N2−1} defines a set of boundary mesh nodes.

In the composite algorithm, the mesh construction on the border and inside G
alternates. Each stage of the alternation is referred to as macroiteration, whose
number is denoted by s. At each macroiteration, the procedure MeshConstruction is
performed twice – for the boundary and the interior mesh nodes. To set values of the
parameters StartIter and FinalIter of the procedure MeshConstruction, two integer-
valued functions of integer arguments are defined:)(sΦ and)(sΨ .

Algorithm 2. The composite algorithm.

0. Set initial locations of mesh nodes xij(0) = (x1
ij(0), x2

ij(0)), where (i, j)∈
Interior ∪ Boundary.

1. Perform the procedure MeshConstruction with the following parameters:
Dom = G, WinnerSet = Interior ∪ Boundary, AdjustSet = Interior ∪ Boundary,
StartIter = 1, FinalIter =)0(Φ . In other words, all neurons are learned by random

points from the whole domain G during the given number of iterations)0(Φ .

2. Repeat the following operations at each macroiteration s ≥ 1:
a) Perform the procedure MeshConstruction with the following parameters:

Dom = ∂G, WinnerSet = Boundary, AdjustSet = Boundary, StartIter =

450 O. Nechaeva

1)1(+−Ψ s , FinalIter =)(sΨ . In other words, only the neurons corresponding

to the boundary nodes are learned by random points from the border ∂G.
b) Perform the procedure MeshConstruction with the following parameters:

Dom = G, WinnerSet = Interior ∪ Boundary, AdjustSet = Interior, StartIter =
1)1(+−Φ s , FinalIter =)(sΦ . In other words, the winner is determined among

all the neurons, but locations only of the interior mesh nodes are corrected.
3. The process terminates when the condition Ts >Φ)(is satisfied.

Step 1 of the composite algorithm is essential because at this step the whole mesh
roughly takes the form of the domain. After that, the boundary nodes tend to their
optimal position on the border of G, e.g. the corner nodes 00x , 1,0 2 −Nx , 0,11 −Nx and

1,1 21 −− NNx try to be placed on the border of the most convex parts of G.

The consistency between the boundary and the interior mesh nodes is provided at
Step 2, b). Since the winner is determined among all mesh nodes at this step, the
interior nodes follow the boundary nodes that are close to them. This accelerates the
movement of the interior nodes to the domain border and keeps connections between
the interior and the boundary nodes that are close to each other. In particular, this
technique helps one to improve the quality of meshes in the case of the non-convex
domain G in comparison with using the SOM for the mesh construction without
alternating (Fig.1.).

Fig. 1. The process of mesh construction using the composite algorithm

The functions)(sΦ and)(sΨ are chosen as follows.

=+Φ

=Φ
=Φ

=

s

k

sk

s

s

1
0

0

...,2,1),(

0,

)(
ϕ

,
=+Φ

=Φ
=Ψ

=

s

k

sk

s

s

1
0

0

...,2,1),(

0,

)(
ψ

, (4)

where)(kϕ and)(kψ are also integer-valued functions of integer arguments.

Based on the experiments it was found that the best results are obtained when
)(kϕ increases and)(kψ decreases. As a result, the boundary nodes are gradually

frozen giving internal nodes an advantage until the termination of the composite
algorithm. In our investigations, the following functions are used:

))15/2exp(1(*500)(kk −−=ϕ and))200/exp(*500)(2kk −=ψ , where ⋅ is an

integer part. Diagrams of these functions are shown in Fig.2.

 Composite Algorithm for Adaptive Mesh Construction Based on SOM 451

Fig. 2. Diagrams of the functions)(kϕ and)(kψ

4 Learning Rate Selection

The learning rate influences the quality and the speed of mesh construction. The mesh
smoothness and the absence of mesh self-crossings depend on the ratio between a
learning step and a learning radius. The learning rate functions proposed below are
improved in comparison with those in [7]. The strategy of fixed number of iterations
has been chosen so as T is settled before the algorithm starts.

The general form of the function θmn(t, i, j) is usually given as product of two
functions [11]. The first function is responsible for the learning step, the second one
for the learning radius:

θmn(t, i, j) = δ(t)ηmn(t, i, j). (5)

The function δ(t) decreases, thus, reducing all the displacements of mesh nodes.
This guarantees that the iteration process of mesh construction always converges.
Based on the experiments, the function δ(t) has been selected as δ(t) = t –0.2 χ(t),
t = 1, ..., T, where TTtet /)(51)(−−=χ , T is a maximum number of iterations. The

function χ(t) is used to make a power member of δ(t) turn into zero (Fig.3.).
The function ηmn(t, i, j) is responsible for the distribution of the sizes of node

displacements at the iteration t. This function provides the conditions, according to
which the winner receives a maximum displacement, while other nodes change their
locations the less the larger the distance between the nodes qij and qmn in the
computational domain Q. Usually, ηmn(t, i, j) is given by the following exponent [11]:

ηmn(t, i, j) =)(2

),(
2

2

t

qqd mnij

e σ
−

,
(6)

where d(qij, qmn) is the Euclidean distance between the nodes qij and qmn in the space
Rc, and qmn corresponds to the winner node xmn.

Based on the experiments the function σ (t) has been selected as
() 25,0/)(05,0)1()()()(−−+= tTtTt Tt σσχσσ (Fig.3.). In our investigations, the values

of σ (1) and σ (T) were determined in such a way that at the first and at the last
iterations the given number of nodes receive the given displacements:

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40

t

k

ψ(k)

ϕ(k)

452 O. Nechaeva

)05.0ln(2/),()1(1,100 21
−= −− NNqqdσ and)05.0ln(2/),()(2200 −= qqdTσ . These

values were obtained from the equation ηmn(t, i, j) = 0.05 after substitution of the
corresponding nodes in (6).

Fig.3. Diagrams of: a) function χ(t), b) function δ(t), c) function σ (t)

5 Experiments

Fig.4.a) shows an example of the adaptive mesh constructed using the composite
algorithm. In the case of a mesh structure other than quadrilateral, the composite
algorithm is the same. The difference can be only in enumeration of mesh nodes.
Fig.4. shows an example of a hexagonal adaptive mesh constructed using the
composite algorithm.

There are generally used the quality criteria for quadrilateral finite difference meshes
such as the criteria of cell convexity and oblongness, the criterion of mesh lines
orthogonality [12]. The criteria allow obtaining a preliminary information about a mesh
before solving a problem on it and rejecting beforehand the meshes, which are unsuitable

Fig. 4. Examples of adaptive meshes constructed using the composite algorithm with
T = 10000, N1 = 40, N2 = 40. a) quadrilateral mesh, b) hexagonal mesh.

a) b)

0

0.2

0.4

0.6

0.8

1

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0 0

0.2

0.4

0.6

0.8

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

5

10

15

20

25

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

T T T

a) b) c)

 Composite Algorithm for Adaptive Mesh Construction Based on SOM 453

Table 2. Three quality criteria of finite-difference meshes with their possible and admissible
values

Quality criterion Possible
values Admissible values Cell form for particular values

Cell convexity (-∞; 1] [0; 1]
 =1 – parallelogram
 =0 – triangle
 <0 – non-convex cell

Lines orthogonality [-1; 1] [0; 1] =1 – rectangular
 =0 – triangle

Cell oblongness (0; 1] Depending on a
problem =1 – rhomb

with certainty. In Table 2 possible and admissible values of the criteria are shown. The
maximum values of the criteria correspond to high-quality meshes.

The quality of quadrilateral meshes constructed using the composite algorithm has
been evaluated using the above criteria. Table 3 shows the constructed meshes and the
corresponding average and minimum values of the criteria among all the mesh cells.
The values are in the admissible range.

Table 3. Examples of meshes constructed using the composite algorithm and the corresponding
average and maximum values of the quality criteria

 Mesh

Crite-
rion

Convexity
aver.: 0.9325
min.: 0.0424

aver.: 0.9266
min.: 0.0454

aver.: 0.9280
min.: 0.1033

Ortogo-
nality

aver.: 0.8882
min.: 0.0200

aver.: 0.9119
min.: 0.0587

aver.: 0.7214
min.: 0.0196

Oblongness
aver.: 0.6952
min.: 0.3155

aver.: 0.5433
min.: 0.0733

aver.: 0.6304
min.: 0.1732

6 Conclusion

The proposed composite algorithm within the neural network approach enables us to
automatically construct adaptive meshes both inside and on the border of physical
domains with arbitrary initial data. The composite algorithm is the same for different
configurations of dimensionalities and is simple to parallelize. The learning rate,
being thoroughly selected, provides the construction of qualitative adaptive meshes.

In the future, the algorithm for mesh smoothing is to be developed based on the
learning of the SOM with special learning parameters. Also the comparative analysis
between the neural network approach and the equidistribution method is to be made in
terms of numerical solution accuracy and parallelization efficiency of both methods.

454 O. Nechaeva

References

1. Lebedev, A.S., Liseikin, V.D., Khakimzyanov, G.S.: Development of methods for
generating adaptive grids. Vychislitelnye tehnologii, Vol. 7, No. 3. (2002) 29

2. Khakimzyanov, G.S., Shokin, Yu.I., Barakhnin, V.B., Shokina, N.Y.: Numerical
Modelling of Fluid Flows with Surface Waves. SB RAS, Novosibirsk (2001)

3. Thompson, J.F., Warsi Z.U.A., Mastin C.W.: Numerical grid generation, foundations and
applications. North-Holland, Amsterdam (1985)

4. Nechaeva, O. I.: Neural network approach for adaptive mesh construction. Proc. of VIII
National scientific conference "NeuroInformatics-2006". Part 2. MEPhI, Moscow (2006)
172-179

5. Kohonen, T.K.: Self-organization and associative memory. Springer Verlag, New
York (1989)

6. Flexer, A.: On the use of self-organizing maps for clustering and visualization. Intelligent
Data Analysis, Vol 5. IOS Press (2001) 373-384

7. Nechaeva, O. I.: Adaptive curvilinear mesh construction on arbitrary two-dimensional
convex area with applying of Kohonen’s Self Organizing Map. Neuroinformatics and its
applications: The XII National Workshop. ICM SB RAS, Krasnoyarsk (2004) 101-102

8. Manevitz, L., Yousef, M., Givoli, D.: Finite Element Mesh Generation Using Self-
Organizing Neural Networks. Special Issue on Machine Learning of MicroComputers in
Civil Engineering, Vol. 12, No. 4. (1997) 233-250

9. Manevitz, L.: Interweaving Kohonen Maps of Different Dimensions to Handle Measure
Zero Constraints on Topological Mappings. Neural Processing Letters, Vol. 5, No. 2.
(1997) 83-89

10. Nechaeva, O.: Neural Network Approach for Parallel Construction of Adaptive Meshes.
In: V. Malyshkin (ed.): Parallel Computing Technologies 2005. Lecture Notes in
Computer Science, Vol. 3606. Springer, Berlin Heidelberg (2005) 446-451

11. Ghahramani, Z.: Unsupervised Learning. In: Bousquet, O. et al. (eds.): Machine Learning
2003. Lecture Notes in Artificial Intelligence, Vol. 3176. Springer-Verlag, Berlin
Heidelberg (2004) 72–112

12. Prokopov, G. P.: About organization of comparison of algorithms and programs for 2D
regular difference mesh construction. Preprint / Keldysh’s Institute for Applied
Mathematics AS USSA, No. 18. Moscow (1989)

A Parameter in the Learning Rule of SOM That
Incorporates Activation Frequency

Antonio Neme1,2 and Pedro Miramontes2

1 Universidad Autónoma de la Ciudad de México, México, D.F., Department of
Nonlinear Dynamics and Complex Systems, México

neme@nolineal.org.mx
2 Universidad Nacional Autónoma de México, Facultad de Ciencias, México

Abstract. In the traditional self-organizing map (SOM) the best match-
ing unit (BMU) affects other neurons, through the learning rule, as a func-
tion of distance. Here, we propose a new parameter in the learning rule so
neurons are not only affected by BMU as a function of distance, but as
a function of the frequency of activation from both, the BMU and input
vectors, to the affected neurons. This frequency parameter allows non ra-
dial neighborhoods and the quality of the formed maps is improved with
respect to those formed by traditional SOM, as we show by comparing
several error measures and five data sets.

1 Introduction

Self-organizing map (SOM) is presented as a model of the self-organization of
neural connections, what is translated in the ability of the algorithm to produce
organization from disorder [1]. One of the main properties of SOM is its ability
to preserve topographical relations present in input data in the output map [2],
which is a desirable property for data visualization and clustering.

One main feature of the SOM is the ability to transform an incoming signal
pattern of arbitrary dimension into a low-dimensional discrete map (usually of di-
mension one or two) and to adaptively transform data in a topologically ordered
fashion [3, 4]. Each input data is mapped to a single neuron in the lattice, that
with the closest weight vector to the input data, or best matching unit (BMU).
The SOM preserves relationships during training through the neighbourhood
function, which establishes the effect of the BMU to any other neuron. Weight
neurons are updated accordingly to:

wn(t + 1) = wn(t) + αn(t)hn(g, t)(xi − wn(t)) (1)

Where α(t) is the learning rate at time t and hn(g, t) is the neighbourhood
function from BMU neuron g to neuron n at time t. In general, neighbourhood
function decreases monotonically as a function of the distance from neuron g to
neuron n. This decreasing property has been reported to be a necessary condition
for convergence [5, 6]. The SOM tries to preserve relationships of input data by
starting with a large neighbourhood and reducing the neighbourhood size during

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 455–463, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

456 A. Neme and P. Miramontes

the course of training [4]. It has been reported as well that the learning factor α
should be a decreasing function [6].

As pointed out by Ritter [7], SOM and related algorithms share the idea of us-
ing a deformable lattice to transform data similarities into spatial relationships.
The lattice is deformed by applying learning equation (1) to the neurons in the
network. In this work, we propose an additional parameter that quantifies the
influence of a BMU n to the neurons in the network as a function of the number
of times n affects them as well as the influence of each data vector m as a func-
tion of the number of times the BMU for m affects the neurons. This frequency
activation parameter allows non radial neighborhood which, as reported in the
results, forms better maps, in terms of three error measures.

2 Related Work

Altough several modifications have been proposed to the SOM learning rule, they
don’t reflect, at least to our knowledge, the frequency of activation from other
neurons. For example, Lee and Verleyen [8] propose the recursive Fisherman’s
rule and some hybrids from it that reflects an attenuation of the adaptation as
the distance from the BMU to the affected neuron grows. The rules show a non
radial neighborhood in the sense that the BMU pulls the direct neighbors and
these neighbors pull farther neurons and so on, in a recursive manner.

Campoy and Vicente [9] proposed a residual activity memory for each neuron,
so the SOM enlarges its temporal analysis capabilities, whereas one of the first
works that incorporated a concept of memory for each neuron was in Chappell
and Taylor [10], in which is defined an activation memory for each neuron, in
order to define the new active neuron, and a modification of the selection mecan-
ism is presented, so if the memory parameter is high, the previous winner neuron
will win again unless another neuron matches very close the input data.

3 Frequency Function in the SOM’s Learning Rule

In the traditional SOM, the BMU equally affects those neurons within its neigh-
borhood. All neurons at the same distance (for the case of gaussian neighbor-
hood) or inside the hypersphere (for the case of bubble neighborhood) are equally
affected. We propose a modification to this scheme that includes a function of
the relative frequency a given neuron n is affected by each BMU k or by each
input vector m.

If during the learning process n is affected by two or more BMU (for one or
more input vectors), it will not be affected the same by them (independently
from the learning factor): the more a neuron n is affected by k, the larger the
strenght of its influence. A new parameter, the activation frequency, ρn(k,m),
that is a function of the number of times a neuron n is affected by BMU k or by
input vector m is incorporated to eq. (1). The weight modification rule is now:

wn(t + 1) = wn(t) + αn(t)hn(g, t)ρn(k,m)(xi − wn(t)) (2)

A Parameter in the Learning Rule of SOM 457

In this model, every neuron n maintains a record of the relative frequency by
which it has been affected by each BMU k, Ωn(k), defined as the number of
times BMU k has included n in its neighborhood divided by the number of
times n has been affected by any BMU (

∑|N |
j=1 Ωn(j), where N is the number

of neurons in the network). Also, n has a record of the relative frequency it has
been affected by each input vector m, βn(m), defined as the number of times
vector m has affected, through any BMU, n, divided by the number of times n
has been affected by any BMU (which is the same as the the number of times it
has been affected by any input vector). For the gaussian neighborhood, we have
defined n is influenced by k if hn(g, t) > 0.3

Several frequency functions are proposed based on these two quantities and
in the distance between BMU k and neuron n, d(n, k). The frequency parameter
ρn(k,m) varies as a function of Ωn(k) and βn(m). We have found that ρn(k,m)
should be monotonic decreasing function with respect to Ωn(k), as it is shown
in eq. (3)-(6), so the formed maps present a lower error than the formed maps
by eq (1).

(Rule 1) ρn(k,m) = Ωn(k) × 1
d(n, k)

(3)

(Rule 2) ρn(k,m) = Ωn(k) × βn(m) × 1
d(n, k)

(4)

(Rule 3) ρn(k,m) =
1

1 + e−ψΩn(k)× 1
d(n,k)

(5)

(Rule 4) ρn(k,m) = Ωn(k) (6)

As an example of the behaviour of the rules, fig. (1) shows the case for rules (1)
and (3). Two neurons, i and j, such that d(k, i) = d(k, j) will not be affected
the same unless Ωi(k) = Ωj(k). However, when d(k, i) is large, the difference in
the frequency activation woll be small. For low values of d(k, i) the importance
of Ωi(k) becomes clear.

The proposed activation frequency functions modifies the natural neighbor-
hood of BMU. For example, in fig. (2) it is shown the BMU and the affected
neurons in four different time steps for a single data vector. It is observed that
non radial and discontinuos neighborhoods are formed, which are not present in
the traditiobal scheme. This discontinuity resembles the cortex activity patterns
in mammals during several task processing [13].

4 Topological Preservation Quantization

To measure topological preservation, three metrics were applied. Those are the
topographic error (TE) [11], error quantization (EQ) and preservation of original
neighborhoods (VC) [12]. The first is defined as:

TEt = 1
N

∑N
k=1 η(xk), where η(xk) =

{
1, BMU and 2nd. BMU non adjacent
0, otherwise

458 A. Neme and P. Miramontes

Fig. 1. Activation frequency function for rules 1, 3. For two neurons i, j situated at
the same distance, ρi(Ωi(k)) > ρj(Ωj(k)) if Ωi(k) > Ωj(k).

which is simply the proportion of data vector for which the BMU and second
best matching unit are not first-neighbors. The errror quantization is:

EQ = 1
N

∑N
j=1 ||xj − wj ||2

The third metric is based on the neighbohood preservation quantization, which
establishes that an input data vector i has k neighbors in its neighborhood
Vk in the original space and, if neighborhood preservation is complete, then, the
BMU for i has as its first k active neurons those BMU for the data vectors in Vk.

V C = 1 − 2
Nk(2N−3k−1)

∑N
i=1

∑
xj∈Vk(xi)(r(xi, xj) − k)

where N is the number of data vectors and r(xi, xj) is the rank of xj when
data vectors are ordered based on their distance from the data vector xi after
projection. The closer VC is to 1, the better the map is. As VC is a function of
k, we set a value for k as 1

10 of the size of each data set.

5 Results

The experiments were done in a 10x10 network. Two groups of experiments were
done. In the first one, in order to test the sensivity of the proposed frequency
functions to the initial values, several thousands of maps were formed(> 10000),
with different initial neighborhood width h0, learning factor α0 and for a different
number of epochs. Sensitivity results are presented in subsection 5.1. The second
group of experiments establishes the ability of the proposed rules as a good
alternative to form maps with a lower error that the traditional learning rule.
In this group, several hundreds maps were formed, all with 1000 epochs, α0 ∈
{0.1, 0.2, 0.5, 0.7, 0.8, 0.9} and h0 ∈ {8, 9}, and with α1000 ∈ {0.01, 0.001}, for the

A Parameter in the Learning Rule of SOM 459

Fig. 2. BMU and affected neurons at t = 1, t = 2, t = 3 and t = 9 starting at top left
for a given input vector from the spiral data set. Size of circumference is proportional
to ρi(k). In t = 3, there is a discontinuity in the area on influence for the BMU and
for t = 2 there is a non radial neighborhood.

self-organizing stage, with an exponential decrease of the intermediate values for
those parameters. In the second stage, convergence, the number of epochs was
10000, with initial values of α = 0.05 and h = 3, exponentially decreasing until
the final values α = 0.0001 and h = 0. Subsection 5.2 shows convergence results.

5.1 Sensitivity

To test sensitivity to the initial conditions, SOM with several parameters were
formed. Neighborhood width, h0, was placed between 1 and 10, whereas the
initial learning factor, α0, is in the close interval [0.001, 1.0] and the number of
epochs is situated between 1 and 130. The final values for neighborhood width is
1 and for the learning parameter is 0.001. Altough the number of maps may be
insufficient to cover the whole range of combinations for the former parameters
and the choises may be arbitrary, they cover a wide range of combinations.

For each one of the five data sets and for each set of values (α0 and h0),
a SOM were formed by the traditional SOM rule and by SOMs with the acti-
vation frequency functions described in (3) -(6), for both, bubble and gaussian
neighborhood. Two data sets are bidimensional, one is five- dimensional (iris
data set), one is 34-dimensional (ionosphere data set) and one is 64-dimensional
(codon usage data set).

460 A. Neme and P. Miramontes

Fig. 3. Spiral data set. It is shown the SOM approximation for both, traditional rule
(left) and for rule 1 (right, eq. (3)) after 10 epochs.

Table 1. Average TE, EQ and VC for the spiral and Henón data sets over all formed
maps for the proposed frequency functions. Error is presented in pairs: (bubble neigh-
borhood, gaussian neighborhood).

Rule Spiral Henón
TE EQ VC TE EQ VC

Trad. (0.17, 0.17) (0.019, 0.018) (0.71, 0.6) (0.17, 0.29) (0.044, 0.041) (0.83, 0.73)

Rule 1 (0.107, 0.23) (0.010, 0.011) (0.64, 0.66) (0.21, 0.22) (0.031, 0.03) (0.9, 0.75)

Rule 2 (0.106, .24) (0.013, 0.013) (0.64, 0.63) (0.19, 0.31) (0.028, 0.012) (0.91, 0.89)

Rule 3 (0.104, 0.261) (0.012, 0.011) (0.66, 0.62) (0.173, 0.2) (0.025, 0.016) (0.89, 0.89)

Rule 4 (0.102, 0.21) (0.011, 0.015) (0.67, 0.66) (0.176, 0.21) (0.026, 0.018) (0.89, 0.89)

Table 2. Average TE, EQ and VC for the iris and ionosphere data sets over all
formed maps for the proposed frequency functions. Error is presented in pairs: (bubble
neighborhood, gaussian neighborhood).

Rule Iris Ionosphere
TE EQ VC TE EQ VC

Trad. (0.241, 0.21) (0.0673, 0.08) (0.68, 0.715) (0.17, 0.196) (0.08, 0.061) (0.73, 0.74)

Rule 1 (0.206, 0.282) (0.061, 0.079) (0.83, 0.71) (0.113, 0.195) (0.081, 0.054) (0.83, 0.75)

Rule 2 (0.206, 0.272) (0.062, 0.06) (0.82, 0.84) (0.11, 0.195) (0.082, 0.055) (0.83, 0.91)

Rule 3 (0.235, 0.203) (0.07, 0.053) (0.8, 0.82) (0.165, 0.145) (0.082, 0.058) (0.87, 0.89)

Rule 4 (0.228, 0.21) (0.06, 0.054) (0.82, 0.88) (0.165, 0.169) (0.083, 0.0.69) (0.83, 0.85)

A Parameter in the Learning Rule of SOM 461

Table 3. Average TE, EQ and VC for the codon usage data set over all formed maps
for the proposed frequency functions. Error is presented in pairs: (bubble neighborhood,
gaussian neighborhood).

Rule TE EQ VC

Trad. (0.175, 0.12) (0.24, 0.14) (0.72, 0.72)

Rule 1 (0.103, 0.1) (0.22, 0.17) (0.79, 0.77)

Rule 2 (0.1, 0.098) (0.21, 0.17) (0.82, 0.76)

Rule 3 (0.167, 0.256) (0.29, 0.289) (0.83, 0.82)

Rule 4 (0.167, 0.2) (0.19, 0.17) (0.82, 0.71)

As the analysis of data is extensive, only some results are presented (the whole
set is available from the authors). In tables (1) - (3), the average error for all
maps formed by the proposed frequency functions, as well as for those generated
by traditional SOM with both, bubble and gaussian neighborhood, including all
initial conditions for α0, h0 and the number of iterations, are presented, for each
one of the five data sets.

Fig. (4) shows the TE as a function of number of epochs for the traditional
SOM and for SOM’s with the frequency functions proposed in eqs. (3) -(6) for
four of the data sets. It can be seen that the maps formed by the proposed rules
are less sensitive to initial conditions that those formed by eq. (1). From fig. (3),
it is clear that for the spiral data set the proposed functions form maps that
folds more accurately to data than those formed by the traditional SOM.

Fig. 4. TE for rules 1 and 3 and for the traditional learning rules as a function of the
number of iterations for the spiral, Henón, iris and ionosphere data sets

462 A. Neme and P. Miramontes

5.2 Convergence

Once the sensitivity was analyzed, the properties of the proposed rules for maps
suitable for data visualization (low error) were studied. In tables (4) and (5) it is
shown the average error for several maps (> 500) for a larger number of epochs
and two-stages differentiation, in contrast to what was done in the previous
subsection. It is observed that the error measures are, in general, lower for those
maps formed with the proposed rules. Also, a map formed by traditional rule
and another formed by rule 1 are shown in fig.3.

Table 4. Average TE, EQ and VC obtained after two stages of trainning of the SOM,
for the spiral and Henón data sets over all formed maps for the proposed frequency
functions. Error is presented in pairs: (bubble neighborhood, gaussian neighborhood).

Rule Spiral Henón
TE EQ VC TE EQ VC

Trad. (0.01, 0.009) (0.0001, 0.0001) (0.92, 0.93) (0.018, 0.016) (0.0015, 0.0012) (0.91, 0.93)

Rule 1 (0.01, 0.008) (0.00003, 0.00002) (0.94, 0.95) (0.013, 0.005) (0.001, 0.0008) (0.9, 0.91)

Rule 2 (0.02, 0.018) (0.00002, 0.00001) (0.95, 0.96) (0.012, 0.01) (0.001, 0.0004) (0.9, 0.92)

Rule 3 (0.015, 0.019) (0.00001, 0.00001) (0.95, 0.95) (0.013, 0.014) (0.0006, 0.0004) (0.89, 0.92)

Rule 4 (0.018, 0.012) (0.00002, 0.00001) (0.96, 0.96) (0.014, 0.012) (0.001, 0.0003) (0.92, 0.94)

Table 5. Average TE, EQ and VC obtained after two stages of trainning of the SOM,
for the iris and codon usage data sets over all formed maps for the proposed frequency
functions. Error is presented in pairs: (bubble neighborhood, gaussian neighborhood).

Rule Iris Codon usage
TE EQ VC TE EQ VC

Trad. (0.15, 0.105) (0.05, 0.048) (0.85, 0.85) (0.137, 0.231) (0.26, 0.25) (0.79, 0.77)

Rule 1 (0.152, 0.1) (0.035, 0.035) (0.84,0.85) (0.072, 0.045) (0.25, 0.22) (0.72, 0.79)

Rule 2 (0.14, 0.1) (0.04, 0.038) (0.91, 0.91) (0.088, 0.069) (0.27, 0.08) (0.88, 0.87)

Rule 3 (0.129, 0.12) (0.04, 0.038) (0.89, 0.91) (0.085, 0.12) (0.29, 0.29) (0.8, 0.89)

Rule 4 (0.095, 0.114) (0.002, 0.001) (0.93, 0.92) (0.01, 0.012) (0.23, 0.22) (0.94, 0.96)

6 Discussion and Conclusions

An activation frequency parameter for the weight update equation is proposed.
This parameter is a function of the activation frequency from a given BMU as

A Parameter in the Learning Rule of SOM 463

well as from the relative frequency of influence of an input vector, through any
BMU, to neurons within its neighborhood. Distance between BMU and neurons
may also important for this parameter. This parameters add some differential
influence between BMU and equally distant neurons, driven by how much those
neurons are being affected by other BMUs.

The fact that the proposed rules form non radial neighborhoods gives biologi-
cal plausibility, due to the fact that a neuron affects differentially other neurons
not only based on their distance but in the frequency with which one of them
affects the other.

Several experiments show that the error measures in the maps formed with
some of the proposed activation frequency functions are lower than those formed
by the traditional SOM, and, for the two-dimensional data sets, it is observed
that the formed maps fold more accurately to data than those formed by the
traditional SOM rule. However, we believe this results could be improved by
identifying other activation frequency schemes, such as simmulated annealing.
It could be of interest to study the mathematical properties of those functions
as they seem to be important for the map formation.

References

1. Cottrell, M. Fort, J.C., Pagés, G. Theoretical aspects of the SOM algorithm. Neu-
rocomputing 21 (1998) 119-138.

2. Kirk, J. Zurada, J. A two-stage algorithm for improved topography preservation
in self-organizing maps. Int. Con. on Sys., Man and Cyb. 4 (2000) 2527-2532.

3. Haykin, S. Neural Networks, a comprehensive foundation. 2nd. ed. Prentice Hall.
1999.

4. Kohonen, T. Self-Organizing maps. 3rd. ed. Springer-Verlag. 2000.
5. Flanagan, J. Sufficiente conditions for self-organization in the SOM with a decreas-

ing neighborhood function of any width. Conf. of Art. Neural Networks. Conf. pub.
No. 470 (1999)

6. Erwin, Obermayer, K. Schulten, K. Self-organizing maps: Ordering, convergence
properties and energy functions. Biol. Cyb. 67 (1992) 47-55

7. Ritter, H. Self-Organizing Maps on non-euclidean Spaces Kohonen Maps, 97-108,
Eds.: E. Oja and S. Kaski, 1999

8. Lee, J., Verleysen, M. Self-organizing maps with recursive neighborhood adaption.
Neural Networks 15 (2002) 993-1003

9. Campoy, P., Vicente, C. Residual Activity in the Neurons Allows SOMs to Learn
Temporal Order LNCS 3696 (2005) 379-384

10. Chappell, G., Taylor, J. The temporal Kohonen map. Neural Networks 6 (1993)
441-445

11. Kiviluoto, K. Topology preservation in Self-Organizing maps. Proc. ICNN96, IEEE
Int. Conf. on Neural Networks.

12. Venna, J., Kaski, S. Neighborhood preservation in nonlinear projection methods:
An experimental study.

13. Lamm, C. Leodolter, U., Moser, E., Bauer, H. Evidence for premotor cortex activity
during dynamic visuospatial imaginery. Neuroimage 14 (2001) 268-283

Nonlinear Projection Using Geodesic Distances
and the Neural Gas Network

Pablo A. Estévez, Andrés M. Chong, Claudio M. Held, and Claudio A. Perez

Dept. Electrical Engineering, University of Chile,
Casilla 412-3, Santiago, Chile
pestevez@cec.uchile.cl

http://www.die.uchile.cl/˜pestevez

Abstract. A nonlinear projection method that uses geodesic distances and the
neural gas network is proposed. First, the neural gas algorithm is used to obtain
codebook vectors, and a connectivity graph is concurrently created by using com-
petitive Hebbian rule. A procedure is added to tear or break non-contractible cy-
cles in the connectivity graph, in order to project efficiently ‘circular’ manifolds
such as cylinder or torus. In the second step, the nonlinear projection is created
by applying an adaptation rule for codebook positions in the projection space.
The mapping quality obtained with the proposed method outperforms CDA and
Isotop, in terms of the trustworthiness, continuity, and topology preservation mea-
sures.

1 Introduction

Self-organizing feature maps (SOMs) [8] have been widely used for vector quantization
(VQ) and for data projection and visualization. The VQ techniques encode a manifold
of data by using a finite set of reference or “codebook” vectors. An enhancement to
the SOM is the curvilinear component analysis (CCA) [2], which builds a mapping that
preserves well the interpoint distances. In the first step, CCA performs VQ of the data
manifold in input space using SOM. In the second step, CCA makes a nonlinear pro-
jection of the quantizing vectors, which is similar to multidimensional scaling (MDS)
[1], since it minimizes a cost function based on the interpoint distances. However the
computational complexity of CCA is O(N), while MDS is O(N2). Another difference
is that in CCA the output is not a fixed grid but a continuous space that is able to take
the shape of the data manifold. The codebook vectors are projected as codebook po-
sitions in output space, which are updated by a special adaptation rule. An enhanced
version of CCA, called CDA (curvilinear distance analysis), makes use of geodesic or
curvilinear distances instead of Euclidean distances in the input space [11, 13]. In CDA
the geodesic distance is approximated by computing the sum of the Euclidean lengths
of all links in the shortest path of a graph. CDA can outperform CCA in the projec-
tion of highly nonlinear databases like curved manifolds. However, only a few methods
are able to project efficiently ‘circular’ manifolds such as a cylinder or torus. In [10]
a procedure was proposed to tear or cut manifolds with essential loops to make eas-
ier their embedding in a low-dimensional space. The tearing procedure represents the
manifold by a connectivity graph G. An elementary cycle is defined as a ‘circular’ path

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 464–473, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Nonlinear Projection Using Geodesic Distances and the Neural Gas Network 465

in a graph with no more than C edges. A cycle is said to be non-contractible if it can
not be deformed to elementary cycles. The first step of the tearing procedure consists
in removing all cycles in the graph G, by computing a shortest spanning tree (SPT) [3]
or alternatively, a minimum spanning tree (MST) [17]. In the second step, the removed
edges are put back one at a time, but only if they do not generate any non-contractible
cycle. In this way, a maximum subgraph without non-contractible cycles is created.

Another neural method for nonlinear projection is Isotop [12], which focuses on
neighborhood preservation instead of distance preservation. Isotop uses competitive
learning for the VQ step. The second step consists in creating a graph structure by
linking the k-closest prototypes. The third step builds the mapping from the input space
onto the projection space.

The neural gas (NG) is another well-known self-organizing neural network [16]. The
main difference with SOM is that NG does not define an output space. The SOM is able
to obtain good VQ results only if the topology of the output grid matches the topology
of the data manifold. As a consequence, NG can outperform SOM when quantizing
topologically arbitrary structured manifolds. Instead of a neighborhood function in the
output grid, NG utilizes a neighborhood ranking of the codebook vectors within the in-
put space. In addition, the NG adaptation rule for codebook vectors obeys a stochastic
gradient descent of a global cost function, while no cost function exists for the SOM
adaptation rule [15]. The NG algorithm can be combined with the competitive Heb-
bian rule (CHR) for forming connections among neighboring units [14]. The procedure
forms induced Delaunay triangulations of the distribution of codebook vectors.

The authors have proposed elsewhere [5, 6], a nonlinear projection method, called
OVI-NG, that makes use of the VQ results obtained with the NG algorithm. The code-
book positions are adjusted in a continuous output space by using an adaptation rule
that minimizes a cost function that favors the local distance preservation. In [4], an ex-
tension of the previous nonlinear projection method was proposed called GNLP-NG,
that uses geodesic distances instead of the Euclidean ones. This method projects the
codebook vectors, and it uses the competitive Hebbian rule for building a connectivity
graph linking these prototypes. The proposed algorithm outperformed CDA and Isotop,
in terms of several topology preserving measures.

In this paper, we present an extension to the GNLP-NG nonlinear projection method,
that includes tearing or cutting graphs with non-contractible cycles. The performance of
the new algorithm is compared with CDA and Isotop, using two examples of ‘circular’
manifolds that are not easy to project without a tearing procedure.

2 The Geodesic Nonlinear Projection Algorithm

The proposed projection method is called GNLP-NG (Geodesic Nonlinear Projection
Neural Gas).

2.1 Problem Setting

Let {xi : 1 ≤ i ≤ M} and {wj : 1 ≤ j ≤ N} be D-dimensional input and codebook
vectors, respectively. For a given set of input vectors, our problem is to adjust first the

466 P.A. Estévez et al.

codebook vectors in the input space and then their respective codebook positions zj

(j = 1, . . . , N) in a A-dimensional continuous output space, with A << D.
To obtain a distance preserving mapping a cost function is defined, which depends on

the difference between the interpoint distances in both the input and the output spaces.
Let Dj,k be the Euclidean distance defined in the output space, and let δj,k be the
geodesic distance between codebook vectors wj and wk, measured in input space.

In the Neural Gas model, the neighborhood ranking function of the codebook vectors
wj , for j = 1, · · · , N , with respect to a given input vector xi, is defined as follows:

hλ(xi, wj) = e
−r(xi(t), wj(t))

λ(t) , (1)

where rij = r(xi, wj) ∈ {0, 1, . . . , N−1} denotes the rank of the jth codebook vector,
and the parameter λ(t) controls the width of the neighborhood function,

λ(t) = λ0

(
λf

λ0

)(t
tmax

)
, (2)

where tmax is the maximum number of adaptation steps.
Likewise, for projection purposes we introduce a ranking of the codebook vectors in

input space using geodesic distances, with respect to a given input vector xi. The term
r̄ij = r̄(xi, wj) ∈ {0, 1, . . . , N − 1} denotes the rank of the jth codebook vector using
geodesic distances. Here r = 0 and r̄ = 0 are associated with the nearest codebook
vector using Euclidean and geodesic distances in input space, respectively.

2.2 Codebook Position Adaptation Rule

The following global cost function is considered:

E =
1
2

N∑
j=1

∑
k �=j

(Dj,k − δj,k)2F (r̄j,k) =
1
2

N∑
j=1

∑
k �=j

Ej,k, (3)

where the function F is defined as

F (f) = e
−

(
f

σ(t)

)2

(4)

and σ(t) is the width of the neighborhood that decreases with the number of iterations in
the same way as eq. (2). The function F (f) is a bounded and monotonically decreasing
function, in order to favor local topology preservation.

Eq. (3) is minimized with respect to zj , by using a simplified version of gradient
descent. The codebook position associated to the winner unit, z∗j (t), is fixed, and the
N − 1 remaining positions are moved towards the winner’s position, disregarding any
interaction among them. The updating rule for codebook positions is given by Eq. (12).

The complexity of the proposed projection algorithm is O(NlogN), due to the de-
termination of the ranking in input space. Since the computational complexity of NG is
also O(NlogN) [15], the combined algorithm of NG as VQ and our GNLP visualiza-
tion strategy has the same complexity.

Nonlinear Projection Using Geodesic Distances and the Neural Gas Network 467

2.3 NG Learning Algorithm

The learning algorithm combines NG for VQ, with CHR for forming connections be-
tween units. The initial topology of the network is a set of N neurons. Each neuron j
has associated a D-dimensional codebook vector, wj , (j = 1, . . . , N). Let Cin be a con-
nection set, that includes the connections between units in input space. Each connection
j − k has an age (a(jk)) that is defined as the number of adaptation steps without being
refreshed since its creation. A connection is removed if its age exceeds its lifetime T (t).

1. Initialize the codebook vectors, wj , randomly. Set the connection set to the empty
set: Cin = ∅.

2. Present an input vector, xi(t) to the network (i = 1, . . . ,M) at iteration t.
3. Find the best matching unit (BMU), j∗ using:

j∗ = argminj=1...N‖xi(t) − wj(t)‖, (5)

and generate the ranking rij = r(xi(t), wj(t)) ∈ {0, 1, . . . , N − 1} for each code-
book vector wj(t) with respect to the input vector xi(t).

4. Update the codebook vectors:

wj(t + 1) = wj(t) + ε(t)hλ(t)(xi(t) − wj(t)) (6)

where
hλ(t) = hλ(xi, wj) (7)

is the neighborhood ranking function defined in (1) and ε(t) is the learning rate,
which depends on the number of adaptation steps t, in the same way as (2).

5. If a connection between the BMU and the second closest unit does not exist already,
create a connection between units j∗−j∗2: Cin = Cin∪{w∗

j , w
∗2
j }, where the index

of the second nearest unit is:

j∗2 = argminj �=j∗‖xi(t) − wj(t)‖. (8)

6. If the following condition is satisfied

‖w∗k
j − w

∗(k+1)
j ‖ < ‖w∗

j − w
∗(k+1)
j ‖, (9)

for k = 2, . . . ,K , then create a connection between the kth-nearest unit, j∗k,
and the (k+1)th-nearest unit, j∗(k+1), if it does not exist already: Cin = Cin ∪
{w∗k

j , w
∗(k+1)
j }, else create a connection between units j∗ − j∗(k+1): Cin = Cin ∪

{w∗
j , w

∗(k+1)
j }.

Set the age of the connection j∗m − j∗n to zero, for m,n = 1 . . .K (“refresh” the
connection if it exists):

a(j∗m,j∗n) = 0. (10)

7. Increment the age of all edges emanating from w∗k
j , for k = 1 . . .K:

a(j∗,) = a(j∗,) + 1, ∀ ∈ Nw∗k
j

, (11)

where Nw∗k
j

is the set of all direct topological neighbors of w∗k
j . Remove those

connections with an age exceeding the lifetime T , where T (t) has the same depen-
dency on time t as (2).

8. If t < tmax go back to step 2.

468 P.A. Estévez et al.

2.4 GNLP Algorithm

1. Apply Dijkstra’s algorithm [3] to find the shortest path tree (SPT) of the neighbor-
hood graph defined by connection matrix Cin.

2. If necessary, tear or cut non-contractible cycles in the neighborhood graph, follow-
ing the ad-hoc procedure described in 2.5.

3. Initialize the codebook positions, zj , randomly.
4. Present an input vector, xi(t) to the network (i = 1, . . . ,M) at iteration t.
5. Find the best matching unit (BMU), j∗ using eq. (5)
6. Generate the ranking using geodesic distances in input space r̄j∗j = r̄(wj(t),

w∗
j (t)) ∈ {0, 1, . . . , N − 1} for each codebook vector wj(t) with respect to the

BMU.
7. Update the codebook positions:

zj(t + 1) = zj(t) + α(t)F (r̄j,j∗)
(Dj,j∗ − δj,j∗)

Dj,j∗
(zj∗(t) − zj(t)), (12)

where F (r̄j,j∗) is a neighborhood function that depends on the ranking of units in
input space according to the geodesic distance, and α(t) is the learning rate, which
typically decreases with the number of iterations t, in the same way as eq. (2).

8. If t < tmax go back to step 5.

2.5 Tearing Non-contractible Cycles in Graphs

The tearing procedure described below is based on Lee and Verleysen’s method (2005).
The only difference is that they use a simplified search procedure to compute the short-
est distances in a graph, while we use Dijkstra’s algorithm [3].

Let G = (V,E) be the connectivity graph generated by the NG-CHR procedure
described in 2.3, where V is the set of N nodes and E is the set of edges. Let Cin be the
connectivity matrix associated to graph G. Let GT be the shortest path tree (SPT). Let
CT be the connectivity matrix associated to graph GT . Moreover, let GC be a subgraph
of G with no cycles including more than C edges, and CC its corresponding connectivity
matrix.

1. Let U be a N×N auxiliary matrix. Initialize U as the null matrix, and set CC = CT .
2. Sort the nodes of GT , using a breadth-first traversal strategy, and store this order in

an array p∗.
3. Let J be the set of nodes directly connected to the ith node in G. Given the ith node

vi ∈ p∗, find all its neighbors, vj , with j = 1, · · · , J , that have a direct connection
to it in the connectivity graph G. Store the nodes vj in an array p∗∗.

4. For j = 1, · · · , J , consider node vj ∈ p∗∗. If U(i, j) = 0 calculate the shortest
distance, dij , between nodes i and j using Dijkstra’s algorithm in G. Check for
cycles of length less than C. If dij + 1 < C, set CC(i, j) = CC(j, i) = 1 and
U(i, j) = U(j, i) = 1. Go back to step 4 while j ≤ J , else if j > J go to step 3.
Otherwise, if U(i, j) = 1 then the node has already been visited.

5. Stop if i > N , else go back to step 4 if j ≤ J , or to step 3 if j > J .

Nonlinear Projection Using Geodesic Distances and the Neural Gas Network 469

2.6 Mapping Quality

A projection onto an output space is said to be trustworthy if the set of k nearest neigh-
bors of a point in the map are also close by in the original space. Let Uk(i) be the set of
samples that are in the neighborhood of the ith point in the map but not in the original
space. The measure of trustworthiness of the visualization, M1, is defined as [7, 18]:

M1(k) = 1 −A(k)
N∑

i=1

∑
zj∈Uk(i)

(r(wi, wj) − k), (13)

where A(k) = 2/(Nk × (2N − 3k − 1)), and r(wi, wj) is the ranking in input space.
A projection onto an output space is said to be continuous if the set of k closest

neighbors of a point in the original space are also close by in the output space. Let
Vk(i) be the set of samples that are in the neighborhood of the ith point in the original
space but not in the map. The measure of continuity, M2, is defined as:

M2(k) = 1 −A(k)
N∑

i=1

∑
wj∈Vk(i)

(s(zi, zj) − k), (14)

where s(zi, zj) is the ranking in output space.
The topology preservation measure qm [9] is based on an assessment of rank order

in the input and output spaces. The n nearest codebook vectors NNjiw (i ∈ [1, n]) of
each codebook vector j, (j ∈ [1, N]) and the n nearest codebook positions NNjiz of
each codebook position j are computed. The parameter n was set to n = 0.4 × k, and
k was varied from 5 to a maximum value Kq. The qm measure takes values in [0, 1],
where qm = 1 indicates a perfect neighborhood preservation. The global qm measure
is defined as:

qm =
1

3nN

N∑
j=1

n∑
i=1

qmji , (15)

where

qmji =

3, if NNjiw = NNjiz

2, if NNjiw = NNjlz , l ∈ [1, n], i �= l
1, if NNjiw = NNjtz , t ∈ [n, k], n < k
0, else.

(16)

3 Simulation Results

In all simulations the parameters of the NG algorithm were set as follows: ε0 = 0.5,
εf = 0.005, λ0 = 30.0, λf = 0.01, T0 = 20.0, Tf = 100.0, K = 2. Likewise, the
parameters of the GNLP algorithm were set as follows: α0 = 0.3 and αf = 0.001,
σ0 = 0.7 ×N , σf = 0.1, and C = 6, where N is the number of neurons.

Two artificial data sets were considered1: Cylinder and Torus. For each data set 300
codebook vectors were considered.The number of training epochs for NG was 20, the

1 See http://www.dice.ucl.ac.be/˜lee

470 P.A. Estévez et al.

(a) (b)

Fig. 1. (a) Cylinder quantized data set using 300 prototypes and a graph tearing procedure, and
(b) Cylinder data projection with GNLP-NG

5 10 15 20 25 30

0.9970.997

0.9980.998

0.9990.999

1

Tr
us

tw
or

th
in

es
s

k

GNLP−NG
CDA
Isotop

(a)

5 10 15 20 25 30

0.9960.996

0.9970.997

0.9980.998

0.9990.999

1

C
on

tin
ui

ty

k

GNLP−NG
CDA
Isotop

(b)

Fig. 2. (a) Trustworthiness measure and (b) continuity measure as a function of the number of
neighbors k, for the Cylinder data set

5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

qm

k

GNLP−NG
CDA
Isotop

Fig. 3. Topology preservation measure qm as a function of the number of neighbors, k, for the
Cylinder data set

Nonlinear Projection Using Geodesic Distances and the Neural Gas Network 471

(a) (b)

Fig. 4. (a) Torus quantized data using 300 prototypes and a graph tearing procedure, and (b)Torus
data projection with GNLP-NG

5 10 15 20 25 30

0.9970.997

0.9980.998

0.9990.999

1

Tr
us

tw
or

th
in

es
s

k

GNLP−NG
CDA
Isotop

(a)

5 10 15 20 25 30
0.9960.996

0.997

0.998

0.999

1

C
on

tin
ui

ty

k

GNLP−NG
CDA
Isotop

(b)

Fig. 5. (a) Trustworthiness measure and (b) continuity measure as a function of the number of
neighbors k, for the Torus data set

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0.85

qm

k

GNLP−NG
CDA
Isotop

Fig. 6. Topology preservation measure qm as a function of the number of neighbors, k, for the
Torus data set

472 P.A. Estévez et al.

Table 1. CPU time, T, for the different steps of the GNLP-NG algorithm

Cylinder Torus
Algorithm T [s] T [s]
NG-CHR 347 188

SPT+Tearing 17 18
GNLP 472 270

same for GNLP. In the case of CDA, 30 epochs were used for training the competitive
learning, 50 epochs for the nonlinear projection, and the parameter C was set to C = 5.
The same setting was used for Isotop.

The Cylinder data set corresponds to a two-dimensional manifold embedded in a 3D
space, from which 19600 samples were drawn. Due to the circularity of this manifold,
its projection would get deformed or superimposed unless the corresponding connectiv-
ity graph is torn. The Torus data set corresponds to a 3D manifold, from which 10000
samples were drawn.

Fig. 1(a) shows the torn graph of the Cylinder quantized data set using NG and the
tearing procedure. Fig. 1(b) illustrates the projection obtained with GNLP in output
space. Fig. 2 shows (a) the trustworthiness measurement and (b) the continuity mea-
surement, as a function of the number of nearest neighbors, k, for the Cylinder data
set. It can be observed that the GNLP-NG method obtained the best trustworthiness
and continuity measurements for all the k values explored (except one point), outper-
forming both CDA and Isotop. Fig. 3 shows the topology preservation measure qm as a
function of the number of neighbors. Here the GNLP-NG method outperformed CDA
and Isotop for all k values.

Fig. 4(a) shows the torn graph of the Torus quantized data using NG and the tearing
procedure. Fig. 4(b) illustrates the Torus data projection obtained with GNLP. Fig. 5
shows (a) the trustworthiness measurement and (b) the continuity measurement, as a
function of the number of nearest neighbors, k, for the Torus data set. It can be ob-
served that the best trustworthiness and continuity were obtained by GNLP-NG for
k > 6, while CDA obtained a slightly better result for k = 5. Fig. 6 shows the topology
preservation measure qm as a function of the number of neighbors, for the Torus data
set. Again GNLP-NG outperformed CDA and Isotop for all values of k explored.

Table 1 shows the CPU time in seconds for the different steps of the GNLP-NG algo-
rithm, for both the Cylinder and Torus data sets. The algorithms were implemented in
Matlab (except the Dijkstra’s algorithm, which was implemented in C++), and executed
in a Pentium IV 2.4GHz, 1GB RAM.

4 Conclusions

In the proposed GNLP-NG method the neighborhood graph is built online along with
the vector quantization. This procedure allows obtaining a better graph representation
than using competitive learning. A procedure for tearing or cutting graphs with non-
contractible cycles was implemented, in order to make easier the nonlinear projec-
tion of manifolds with essential loops. The method is computationally efficient with

Nonlinear Projection Using Geodesic Distances and the Neural Gas Network 473

O(N logN) complexity. For two artificial data manifolds containing essential loops,
the GNLP-NG method outperformed CDA and Isotop, in terms of the trustworthiness,
continuity, and topology preservation measures.

Acknowledgement

This research was supported by Conicyt-Chile, under grant Fondecyt 1050751. We
thank Dr. John Lee for providing us with a software implementation of CDA and Isotop.

References

1. Cox, T.F. and Cox, M.A.A.: Multidimensional Scaling, 2nd Edition, Boca Raton, Chapman
& Hall/CRC, 2001.

2. Demartines, P., and Hérault, J.: Curvilinear component analysis: A self-organizing neural
network for nonlinear mapping of data sets. IEEE Trans. on Neural Networks, 8 (1997) 148–
154.

3. Dijkstra, F.W.: A note on two problems in connection with graphs. Num. Math., 1 (1959)
269–271.

4. Estévez, P.A., and Chong, A.M.: Geodesic Nonlinear Projection using the Neural Gas Net-
work. Int. Joint Conference on Neural Networks, Vancouver, Canada, 2006 (to appear).

5. Estévez, P.A., and Figueroa, C.J.: Online data visualization using the neural gas network.
Neural Networks, (2006) (in press).

6. Estévez, P.A., and Figueroa, C.J.: Online nonlinear mapping using the neural gas network.
Proceedings of the Workshop on Self-Organizing Maps (WSOM’05), (2005) 299–306.

7. Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., and Castrén, E.: Trustworthiness and
metrics in visualizing similarity of gene expression” BMC Bioinformatics, 4:48, (2003).

8. Kohonen, T.: Self–Organizing Maps, Berlin, Germany, Springer-Verlag, 1995.
9. König, A.: Interactive visualization and analysis of hierarchical neural projections for data

mining. IEEE Trans. on Neural Networks, 11 (2000) 615–624.
10. Lee, J.A., and Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with

essential loops. Neurocomputing, 67 (2005) 29–53.
11. Lee, J.A., Lendasse, A., and Verleysen, M.: Nonlinear projection with curvilinear distances:

Isomap versus curvilinear distance analysis, Neurocomputing, 57 (2004) 49–76.
12. Lee, J.A., and Verleysen, M.: Nonlinear projection with the Isotop method. Proceedings of

the International Conference on Artificial Neural Networks, (2002) 933–938.
13. Lee, J.A., Lendasse, A., Donckers, N., and Verleysen, M.: A robust nonlinear projec-

tion method. Proceedings of the European Symposium on Artificial Neural Networks (ES-
SAN’2000), (2000) 13–20.

14. Martinetz, T.M., and Schulten, K.J.: Topology representing networks. Neural Networks, 7
(1994) 507–522.

15. Martinetz, T.M., Berkovich, S.G., and Schulten, K.J.: ’Neural gas” network for vector quan-
tization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4
(1993) 558–569.

16. Martinetz, T.M., and Schulten, K.J.: A neural gas network learns topologies. Artificial Neural
Networks, (1991) 397–402, Elsevier.

17. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Tech. J., 36
(1957) 1389–1401.

18. Venna, J., and Kaski, S.: Local multidimensional scaling with controlled tradeoff between
trustworthiness and continuity. Proceedings of the Workshop on Self-Organizing Maps
(WSOM’05), (2005) 695–702.

Contextual Learning in the Neurosolver

Andrzej Bieszczad1 and Kasia Bieszczad2

1 Computer Science, California State University Channel Islands
One University Drive, Camarillo CA 93012

aj.bieszczad@csuci.edu
2 Center for the Neurobiology of Learning and Memory, U.C. Irvine

320 Qureshey Research Laboratory, University of California, Irvine, CA 92697
kbies@uci.edu

Abstract. In this paper, we introduce an enhancement to the Neurosolver, a neu-
romorphic planner and a problem solving system. The enhanced architecture en-
ables contextual learning. The Neurosolver was designed and tested on several
problem solving and planning tasks such as re-arranging blocks and controlling a
software-simulated artificial rat running in a maze. In these tasks, the Neurosolver
learned temporal patterns independent of the context. However in the real world
no skill is acquired in vacuum; Contextual cues are a part of every situation, and
the brain can incorporate such stimuli as evidenced through experiments with live
rats. Rats use cues from the environment to navigate inside mazes. The enhanced
architecture of the Neurosolver accommodates similar learning.

1 Introduction

The goal of the research that led to the original introduction of Neurosolver, as re-
ported in [1], was to design a neuromorphic device that would be able to tackle prob-
lems in the framework of the state space paradigm [2]. The research was inspired by
Burnod’s monograph on the work-
ings of the human brain [3]. The
class of systems that employ state
spaces to present and solve prob-
lems has its roots in the early stages
of AI research that derived many
ideas from the studies of human
information processing; e.g., on
General Problem Solver [2]. This
pioneering work led to very interest-
ing problem solving (e.g. SOAR
[4]) and planning systems (e.g.
STRIPS [5]).

1.1 Architecture of the Neurosolver

The Neurosolver is a network of interconnected nodes. Each node is associated with a
state in a problem space. A problem is presented to the Neurosolver by two signals: a

Fig. 1. An artificial cortical column

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 474 – 48 , 2006.
© Springer-Verlag Berlin Heidelberg 2006

4

goal associated with the desired state and a sensory signal associated with the current
state. The goal is delivered through the limbic input to the upper division of the node,
and the percept, through the thalamic input to the lower division of the node. A se-
quence of firing nodes represents a trajectory in the state space. A solution to a prob-
lem is a succession of firing nodes starting with the current node and ending with the
goal node.

The node used in the Neurosolver is based on a biological cortical column (refer-
ences to the relevant neurobiological literature can be found in [1]). It consists of two
divisions: the upper and the lower, as illustrated in Fig. 1. The upper division is a unit
integrating internal signals from other upper divisions and from the control center
providing the limbic input (i.e., a goal or - using more psychological terms - a drive or
desire). The activity of the upper division is transmitted to the lower division where it
is subsequently integrated with signals from other lower divisions and the thalamic
input. The upper divisions constitute a network of units that propagate search activity
from the goal, while the lower divisions constitute a network of threshold units that
integrate search and sensory signals, and generate sequences of firing nodes. The
output of the lower division is the output of the whole node. An inhibition mechanism
prevents cycles and similar chaotic behavior. Simply, a node stays desensitized for a
certain time after firing.

1.2 Learning in the Neurosolver

The Neurosolver learns by receiving instruc-
tional input. Teaching samples representing state
transitions are translated into sequences of firing
nodes corresponding to subsequent states in the
samples. For each state transition, two connec-
tions are strengthened: one, in the direction of
the transition, between the lower divisions of the
two nodes, and another, in the opposite direc-
tion, between the upper divisions (Fig. 2). The
strength of all inter-nodal connections is com-
puted as a function of two probabilities: the
probability that a firing source node will gener-
ate an action potential in this particular connec-
tion and the probability that the target node will fire upon receiving an action potential
from the connection.

To compute the probabilities, each division
and each connection collects statistics (Fig. 3).
The number of transmissions of an action poten-
tial Tout is recorded for each connection. The
total number of cases when a division positively
influenced other nodes Sout is collected for each
division. A positive influence means that an
action potential sent from a division of a firing
node to another node caused that node to fire in
the next cycle. In addition, we also collect

Fig. 2. Learning in the Neuro-
solver is probabilistic

Fig. 3. Statistics collected for
computing connection strengths

Contextual Learning in the Neurosolver 475

statistical data that relate to incoming signals. Tin is the number of times when an
action potential transmitted over the connection contributed to the firing of the target
node and is collected for each connection. Sin, collected for each division, is the total
number of times when any node positively influenced the node. With such statistical
data, we can calculate the probability that an incoming action potential will indeed
cause the target node to fire. The final formula that is used for computing the strength
of a connection (shown in Eq. 1) is the likelihood that a firing source node will induce
an action potential in the outgoing connection, mulitplied by the likelihood that the
target node will fire due to an incoming signal from the connection:

(1)

1.3 Learning equences

As we already mentioned, the
function of the network of upper
divisions is to spread the search
activity along upper-to-upper
connections (Fig. 4) starting at the
original source of activity, the
node associated with the goal state
that receives the limbic input,.
This is a search network, because
the activity spreads in hope that at
some node it will be integrated within the activity of the same lower division that
receives a thalamic input. If the activity exceeds the output threshold, then the node
will fire triggering a resolution. The thalamic input is applied to the node correspond-
ing to the current state. The process of spreading activity in a search tree is called goal
regression [5].

The purpose of the network composed of lower divisions and their connections is
to generate a sequence of output signals from firing nodes (along the connections

shown in Fig. 5). Such a
sequence corresponds to a
path between the current
state and the goal state, so it
can be considered a solution
to the problem. As we said, a
firing of the node represent-
ing the current state triggers
a solution. Each firing node
sends actions potentials
through the outgoing con-
nections of its lower divi-
sion. These signals may
cause another node to fire if
its attention (i.e., the activity
in the upper division) is

Fig. 4. The Neurosolver learn temporal patterns

Fig. 5. A search (upper) and an execution (lower) in the
Neurosolver

S

P = Pout Pin = (Tout/Sout) (Tin/ Sin)

476 A. Bieszczad and K. Bieszczad

sufficiently high. In a way, the process of selecting the successor in the resolution path
is a form of selecting the node that is activated the most. The purpose of inhibiting a
node for some time after firing is to avoid oscillations. The length of the inhibition
determines the length of cycles that can be prevented. The Neurosolver exhibits goal-
oriented behavior similar to that introduced in [6].

2 Simulated Rat Maze

We tested the Neurosolver capabilities on several abstract data sets of various sizes
and have successfully applied the Neurosolver as a planner for rearranging blocks in a
block world. Our analysis of the Neurosolver capabilities in the context of symbolic
planners proves that it is a promising adaptive mechanism for general planning and
problem solving. We collected these and many other ideas from several earlier publi-
cations in a summary article published as [1].

Currently, to explore Neurosolver’s cognitive capabilities, we apply it to control a
rat running in a maze. The Neuroscience and Cognitive Science community com-
monly use rats to gain insight into brain processes. One area of research is concerned
with rats running in several types of mazes (e.g., an excellent Web site on rat behavior
[7]). Evidently, rats are good learners in this domain (e.g., [8]). In one type of maze, a
rat is allowed to explore the maze with food placed in constant locations. In subse-
quent runs, the rat improves its ability to locate the food faster. One of the currently
supported hypotheses says that the rat builds a topology of the maze in its brain (cog-
nitive map) encoded by place cells in hippocampus ([9]).

Rats evidently use topological maps of the maze to construct best possible paths to
food locations. Neurosolver has been constructed on the premise that temporary asso-
ciations are made in cortex. Some researchers hypothesize that the entorhinal cortex is
a link between labile
episodic storage in the
hippocampus to more
permanent and seman-
tic storage in the cor-
tex ([11]).

To conduct experi-
ments, we built a sim-
ulated rat maze. The
user interface is illus-
trated in Fig. 6. The
simulator consists of
the maze area (left
side of the frame1) and
the control area. The
maze area consists of a number of locations separated by walls. Mazes of various
shapes can be built by modifying the walls. The rat can be positioned by dragging its
image to a desired location. Food (illustrated by a piece of cheese) can be placed in

1 We will use just this area in the subsequent illustrations.

Fig. 6. The rat maze simulator

Contextual Learning in the Neurosolver 477

multiple locations also by dragging the image from the location in which it is posted
when the More Food button is pressed. Clicking on the Run button activates the
metabolic system that gradually increases the sensation of hunger. If the motivation to
find food exceeds a certain threshold, the rat's limbic system is activated. The rat
starts to run. The Run button changes to Pause, so the simulator can be stopped and
restarted at will.

The Change Context button changes the color of the floor that is used in experi-
ments on contextual learning. We will discuss the details later in this paper.

The rat is capable of moving in four directions: up, right, down and left. It can
move only if there is no wall between two neighboring locations. The simulated rat
uses an instance of Neurosolver to determine the next move in the maze. Other search
modes such as random, constrained, and depth-first search are implemented to control
the rat if the Neurosolver cannot find a solution .

When the rat finds food its motivation level decreases to below threshold, another
parameter controlled and the rat may stop running. The threshold for this is one of the
parameters that can be controlled during experiments.

Rats use cues from the environment to activate a specific place cell in the brain
([12]). A similar associative mechanism allows a rat to learn and remember where the
food was found ([11]). Similarly, in the simulator, the rat remembers the locations of
successful feedings, so it can use them as goals in the future runs. If the rat finds food
again in the location of a goal, the strength of that goal increases, so the rat is more
likely to pursue this goal in the future. Conversely, if the rat gets to a location that had
food in the past, but the food is not there, the strength of the goal is lowered. If such
negative experience is consistent, the goal will be completely inhibited, a behavioral
process called extinction ([13]). We are planning to examine the goal management
theories to a greater extent in the future.

Using our simulator, we performed a number of tests with the artificial rat running
in various mazes. A T-maze is the simplest type of maze used in experiments with
rats. A passage in a shape of the letter T forces the rat to choose the direction, left or
right, at the crossing as shown in Fig. 6. If food is placed consistently in one arm of
the T, then this is the arm that will be selected by the rats in the subsequent runs. If the
rat obtained food from both arms then it will choose the one that has a better trace in
memory.

In another experi-
ment shown in Fig.
7 (a), there are three
paths leading from
the original position
of the rat to the
food. The rat selects
the shortest path if
the uniform learning
is selected. If prob-
abilistic learning is
chosen, then the
path most often followed in the past and therefore the most probable, will be taken.
This behavior comes from the fundamental characteristics of the Neurosolver. If a

 (a) (b) (c)

Fig. 7. The rat selecting best path (a), the rat pursuing multiple
goals (b) and a rat faced with multiple-T maze (c)

478 A. Bieszczad and K. Bieszczad

wall is created along the shortest path, then the rat reconsiders the plan and selects an
alternate path backtracking as necessary. The rate of degradation can be controlled
from the simulator. Live rats may exhibit abberant behaviors during such stressful
situations that may lower the motivation induced by hunger. As long as the threshold
to search for food is met, the rat will try to get to the goal by any means putting more
effort in recollections of past passages and food locations. Fig. 7 (b) shows a rat in a
maze with four branches (“star-shaped”). The simulated rat trying to get all food
again performs similarly to
live rats. If food is removed
from certain locations, then
the rat will tend to move to
the branches that provided
consistent food-reward.
There is a more complex T-
maze used in tests with rats
as shown in Fig. 7 (c). The
rat is faced with multiple
choices (T’s) on their path to
the food. This is a more
challenging task to live rats.
It also takes a longer training session for the artificial rat to build a map, and higher
motivation to find a path to the food.

3 Applying Context

In spite of these successful experiments, a problem arises if the probability of finding
food is the same in both arms of T-maze as shown in Fig. 8. For example, if the num-
ber of successful feeding in both arms of T-maze is the same, then the rat is confused.
Where should the rat go left or right?

Figure 9 illustrates a top view of the Neurosolver trying to solve the rat’s problem.
The activity spreads from the cells corresponding to both goals (food locations) along
the learned paths. The common segment of the search path is activated a bit more,

because the search
activity from the left
goal is integrated
with the activity
coming from the right
goal. That does not
have much of an
impact on the trigger
in the cell corre-
sponding to the cur-
rent position of the
rat in the maze. The
columns fire along
the common segment,

Fig. 9. The rat selecting best path (left), the rat pursuing multi-
ple goals (center) and a rat faced with multiple-T maze

Fig. 8. The rat selecting best path (left), the rat pursuing
multiple goals (center) and a rat faced with multiple-T
maze

Contextual Learning in the Neurosolver 479

but then there is no clear-cut choice whether the next firing column should be to the
left or to the right from the fork location. The Neurosolver tries to increase the activity
from the goals, but it is increased by the same amount on both sides. The current
version of the Neurosolver has a mechanism that arbitrarily selects one of such alter-
native columns and forces it to fire. The mechanism is not biologically plausible.
Animals – as well as humans – make choices, and the choices are made using context.

Neuroscientists working with rats routinely incorporate context in the learning
process (e.g., [7]). The Morris water maze is used as evidence for spatial contextual
learning. In such a maze, the rat cannot see a hidden platform submerged in white,
opaque water, but it nevertheless learns its position by using visual cues from the
environment. The results (e.g., [16], [17) indicate that rats navigate using direct cues
to the goal (taxon navigation) or memories based on places activated by the environ-
ment clues (praxic navigation), although the true nature of rats’ maze running skills is
still under discussion (e.g., [18]). When the environment changes, or obstacles like
walls are used to obstruct the view, the appropriate place cells do not fire, implying
that the rat is unaware of its true location and needs to re-discover the platform
through more explorations. As we mentioned earlier, our simulator already includes
such a discovery mechanism.

At this stage, we are interested in praxic navigation, because at the moment we do
not experiment with real-time visual information that could be used to guide move-
ments (like in hand-eye coordination). To introduce a context, the color of the maze
floor or the color of the light illuminating the maze might be changed (let’s say yel-
low and red) depend-
ing on the food loca-
tion. This is of course
inspired by experi-
ments with live rats,
as they tend to follow
the paths leading to
goals associated with
the color of the floor
or the color of the
light.

We have extended
the maze simulator, so
a colored floor can be
used in the rat maze simulator as illustrated in Fig. 10. Through the addition of the
color cue, we can conduct experiments involving contextual learning.

4 Architecture for Contextual Reasoning

The new capabilities of the simulated maze amount to just one element of the required
modifications. More fundamentally, the Neurosolver needs new functionality to ac-
commodate context. One way to do this would be to incorporate the contextual infor-
mation as one of the dimensions that determine the place cell – in our jargon, a hyper-
column that corresponds to the location of the rat. In that way, the identical path

Fig. 10. Yellow floor (left; in here it’s white) and red floor
(right; in here it’s grey) might be used for contextual learning

480 A. Bieszczad and K. Bieszczad

Fig. 11. Contextual association with red floor (left) and
yellow floor (right)

learned with red floor would be represented in the Neurosolver separately from the
same path that was learned with yellow light, because the place cells would be differ-
ent2. That solution would be
a waste of the Neurosolver
resources, because each new
cue would lead to yet an-
other space. Therefore, we
propose a different architec-
ture that uses auxiliary con-
textual cells instead. A con-
text cell is activated by
contextual cues3. It is debat-
able which solution is more
biologically plausible, but
the use of contextual (or
snapshot as some research-
ers call them) cells makes sense from a pragmatic perspective, because the storage
requirements are drastically lower in the approach that we have taken.

As illustrated in Fig. 11, the color of the floor results in activation of the context
cell corresponding to that color. At times, the contextual cells will be co-activated
with the firing nodes of the Neurosolver corresponding to the movements of the rat.

As described earlier, the Neurosolver columns fire
in response to the thalamic input reflecting changes
in the rat’s location. Through the use of Hebbian
learning rules, each node in the temporal pattern
becomes gradually associated with the co-activated
context cell as shown in Fig. 12. Similarly to the
connection strengths in the Neurosolver, we apply
statistical learning here. The strength of a connec-
tion is based on the co-activation statistics. If any
given hypercolumn fired S times, and a specific
context cell was co-activated T times, then the
strength of the connection is the co-activation
probability Pc:

Pc = T/S (2)

After the learning, during Neurosolver’s operation, any activity in the context cell is
modulated by that probability and projected into the upper division of the hypercolumn.

With such associations in place, certain nodes of the Neurosolver are activated
even in absence of any search activity (see Fig. 13, upper left). The nodes in the
search path corresponding to a particular learned sequence will now be activated not

2 They would be two different points in the state space that includes a color axis, and the

projections on this axis (“red” or “yellow”) would be different for both paths.
3 For example, it can be selected through a competitive, winner-takes-all network. Creating

such a network is not the objective of the work reported in this paper. Instead, we assume that
a recognizing mechanism is in place, and red color activates one cell, while yellow activates
the other one.

Fig. 12. Computing connec-
tion strength between the
context cell and the upper
division of a node

Contextual Learning in the Neurosolver 481

only by the activity coming from the source
of the search, but also by the activity coming
from the context cell. When two competing
goals are applied, the search progresses as
described earlier, but the nodes in the path
associated with the current context are acti-
vated at a higher level, because the search
activity integrates with the contextual activ-
ity. When the trigger activates a resolution
path, the firing nodes will follow the highest
activity in the neighborhood, so when the
node corresponding to the fork in the T-maze
fires, the next node to fire will more likely be
the one on the path whose nodes are associ-
ated with the currently active context.

Figure 14 illustrates the corresponding
behavior of the rat in the maze with two
different contexts. With the yellow floor, the
rat turns right and is shown just before

consuming the reward after making the
correct choice. In the second run, with
the red floor, the rats turns to the left,
and again is shown just before feeding.

5 Conclusions and Future
Work

In spite of the obvious simplifications,
the Neurosolver used as a brain of the
artificial rat performs analogously to
live rats when tested on similar tasks.
We use the analysis of any discrepan-
cies between the behavior of the Neu-
rosolver and live rats to evolve the
architecture of the Neurosolver. One
difficulty with that arises from the variety of behavioral patterns identified in lab
animals. The problem of studying learning and memory in animals is that we can only
infer memories from their behavior. Careful analysis of the enhanced architecture of
the Neurosolver leads us to the conclusion that it indeed provides the capabilities for
contextual learning. The pragmatic aspect of the new mechanism is evident, so from
the engineering perspective it is a significant improvement. Nevertheless, an interest-
ing generic question to ask is whether the behavioral patterns observed on animals can

Fig. 13. Search and resolution with
contextual cues

Fig. 14. Two different resolution paths in
two runs. A path is selected dependent on
the context – the color of the floor.

482 A. Bieszczad and K. Bieszczad

be replicated by simulated creatures controlled by Neurosolver to the same degree as
the more basic alignment of behaviors reported in our previous papers.

There are plenty of other interesting venues worth pursuing in research with Neu-
rosolver, and in more general terms in computational architectures inspired by pro-
gress in neuroscience. For example, we plan to further analyze the fundamental sim-
plification that we consciously made in the Neurosolver that is the integration of the
functionalities of the prefrontal cortex (where logical sequencing and executive func-
tion takes place) and hippocampus (where place cells are located). A related decision
to map every possible location as a place cell affects the scalability of the Neuro-
solver, so we are exploring ideas to reduce the state space. For example, only the
important places could be mapped (e.g., forks, turns, etc.), but how to modulate such a
mapping is an open question.

Another idea that is very interesting for a computer scientist is “programmability”
in the hippocampus. When an animal learns a new environment, he creates a map of
that space that is encoded by the hippocampus. When he is out of that environment,
the map, the “code”, is transferred elsewhere for “storage”, and the hippocampus is
available for the “encoding” of a new environment. When he returns to the first envi-
ronment, the “code” is “loaded” back into the hippocampus and the place cells are
once again engaged. The idea that there are “grandmother cells” in the hippocampus
is generally not applied in neuroscience circles.

At this moment, the searches that the Neurosolver performs are conducted off-line
with locked knowledge. Allowing for real-time dynamic modifications that may alter
the search or execution process is both appealing and biologically plausible. The ca-
pability to accomplish taxon navigation could be one result of such work. That in turn,
could be the basis for Neurosolver-based controllers (for example, for hand-eye navi-
gation). Another alluring idea is to explore learning by analogy that would require an
association and generalization mechanism. That would allow knowledge re-use in
context that engages concepts similar to those with which the current knowledge was
acquired.

The path optimization capability of the Neurosolver can be viewed both positively
and negatively. At its current incarnation, the Neurosolver cannot store higher order
sequences. That is, for example, a sequence 1-2-3-2-4 is optimized to 1-2-4. Some
applications may need such capability, so we are looking into designing an appropri-
ate mechanism that can provide that.

Numerous technical aspects of the implementation are also worth pursuing. For ex-
ample an alternative to software implementation could accommodate much larger
state spaces. To provide required granularity in finding best paths and simulate analog
workings of the brain, the propagation of activity is very inefficient as implemented in
software. Furthermore, the Neurosolver uses statistical learning, so each of the con-
nected elements is a little processor churning numbers. We plan to experiment with
other types of weight management, perhaps more aligned with the mainstream re-
search on Neural Networks.

Goal management is another interesting research area. How do rats choose where
to go? Do they ever forget the associations between the pleasures of feeding and the
location? Neuroscientists have been feeding us with new data in this area (somewhere
between the amygdala, hippocampus and the cortex), and we are eager to explore the
new findings.

Contextual Learning in the Neurosolver 483

We would like to express our gratitude to the reviewers, who raised many impor-
tant and interesting issues that we tried to address in this section.

References

1. Bieszczad, A. and Pagurek, B. (1998). Neurosolver: Neuromorphic General Problem
Solver, Information Sciences: An International Journal 105: 239--277, Elsevier North-
Holland, New York, NY.

2. Newell, A. and Simon, H. A. (1963). GPS: A program that simulates human thought, in
Feigenbaum, E. A. and Feldman, J. (Eds.), Computer and Thought. New York, NJ:
McGrawHill.

3. Burnod, Y. (1988). An Adaptive Neural Network: The Cerebral Cortex. Paris, France:
Masson.

4. Laird, J. E., Newell, A. and Rosenbloom, P. S. (1987). SOAR: An architecture for General
Intelligence, Artificial Intelligence, 33: 1--64.

5. Nillson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga Publishing
Company.

6. Deutsch, M. (1960). The Effect Of Motivational Orientation Upon Trust And Suspicion,
Human Relations, 13: 123--139

7. http://ratbehavior.org/
8. Hodges, H. (1996). Maze Procedures: The Radial-Arm And Water Maze Compared, Cog-

nitive Brain Research 3 (1996) 167 – 181, Elsevier North-Holland, New York, NY.
9. Fenton, A. A. and Muller, R.U. (1998). Place Cell Discharge Is Extremely Variable Dur-

ing Individual Passes of The Rat Through The Firing Field, Proc. Natl. Acad. Sci. USA,
Vol. 95, pp. 3182–3187.

10. Poucet, B. and Save, E. (2005). Attractors in Memory, Science, 308: 799--800, AAAS
Press.

11. Fyhn, M., Molden, S. and Witter, M. P. (2004). Spatial Representation in the Entorhinal
Cortex Marianne, Science, 305: 1258--1264, AAAS Press.

12. O’Keefe, J. and Dostrovsky, J. (1971). The Hippocampus as a Spatial Map. Preliminary
Evidence from Unit Activity in the Freely-Moving Rat, Brain Research, 34: 171-175.

13. Pavlov, I. P. (1927). Conditioned Reflexes. Routledge and Kegan Paul, London.
14. Bitterman, M. E., Lolordo, V. M., Overmier, J. B. and Rashotte, M. E. (Eds.) (1979).

Animal Learning: Survey And Analysis, New York, NJ: Plenum Press.
15. Charles C. Kemp (2001). Think Like a Rat. Paper for MIT EECS Area Exam

(http://people.csail.mit.edu/cckemp/cckemp_place_cells_area_exam_2001.pdf).
16. Hartley T., Burgess N. (2002) Models Of Spatial Cognition, Encyclopaedia of Cognitive

Science, MacMillan.
17. Burgess, N. and O'Keefe, J. (2002). Spatial Models of the Hippocampus in: The Hand-

book of Brain Theory and Neural Networks, 2nd Edition Ed: Arbib M A, MIT press,
Cambridge MA.

18. Chavarriaga, R., Strösslin, T., Sheynikhovich, D. and Gerstner, W. (2005). Competition
Between Cue Response And Place Response: A Model Of Rat Navigation Behavior, Con-
nection Science, Vol. 17, Nos. 1–2, March–June 2005, 167–183.

484 A. Bieszczad and K. Bieszczad

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 485 – 494, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Computational Model for the Effect of Dopamine on
Action Selection During Stroop Test

Ozkan Karabacak and N. Serap Sengor

Istanbul Technical University, Faculty of Electrical and Electronic Engineering,
Electronics Engineering Department, Maslak, TR-34469, Istanbul, Turkey

{karabacak, neslihan}@ehb.itu.edu.tr

Abstract. Based on a connectionist model of cortex-basal ganglia-thalamus
loop recently proposed by authors, a simple connectionist model realizing the
Stroop effect is established. The connectionist model of cortex-basal ganglia-
thalamus loop is a nonlinear dynamical system and the model is not only capa-
ble of revealing the action selection property of basal ganglia but also is capable
of modelling the effect of dopamine on action selection. While the interpreta-
tion of action selection function is based on solutions of nonlinear dynamical
system, the effect of dopamine is modelled by a parameter. The effect of dopa-
mine in inhibiting the habitual behaviour corresponding to word reading in
Stroop test and letting the novel one occur corresponding to colour naming is
investigated using the model established in this work.

1 Introduction

Computational modelling of cognitive processes began to attract more attention as
benefits of these models in different disciplines are recognized [1-3]. There are differ-
ent approaches in computational modelling, while some consider the problem of mod-
elling at cell level and develop models considering biophysics, others, as those using
symbolic AI techniques, intend to model only behaviours. There are other models not
as complex as realistic models of cell level and not as far away from the neural valid-
ity as symbolic AI techniques; these focus not only on how to get a system behaving
as expected, but also aim to use the model in understanding the ongoing processes.
These are models at behavioural level and while developing these models neural sub-
strates related with the involved behaviour and their interrelations have to be consid-
ered. Thus these models are capable of explaining how the neural substrates provoke
the behaviour without dealing with structures at physiological level [2, 4, 5].

Modelling at behavioural level is not only beneficial at explaining the whys of cog-
nitive processes but also is capable in providing tools for investigating the reasons
behind the abnormal behaviour. This characteristic of behavioural models makes them
especially important in pharmacological studies. As animal models are not sufficient,
and these models provide more flexible applications they are advantageous over mod-
els used nowadays in pharmacology [6]. Still another advantage of behavioural mod-
els is they can be used in engineering applications as designing robots and intelligent
systems [3].

486 O. Karabacak and N.S. Sengor

In this work behavioural approach in modelling will be considered, and previously
proposed model [7] of cortex-basal ganglia-thalamus (C-BG-TH) loop for action
selection will be expanded to model the Stroop task. As the model of C-BG-TH loop
is capable of explaining the effect of neurotransmitter on action selection, the expan-
sion of this model will also exploit the effect of dopamine on Stroop task.

First computational model for C-BG-TH loop will be reviewed and the model will
be discussed considering the other similar models given in the literature, then ex-
panded model of C-BG-TH loop will be established and the effect of dopamine on
Stroop effect will be shown. The simulation results will reveal the effect of the dopa-
mine system dysfunction on action selection.

2 Computational Model for Cortex-Basal Ganglia-Thalamus Loop

The basal ganglia once known for their role in motor movement control, now are also
considered for their part in high order cognitive processes and motivation related acts
as temporal sequence storage and generation, behavioural switching, reward evalua-
tion, goal-directed behaviour, reinforcement learning. These behavioural functions are
possible only through the interrelations of basal ganglia with cortex and thalamus and
these interrelations have been investigated in [8] by means of five basal ganglia-
thalamocortical circuits, which are responsible for generating different behavioural
functions. Different substructures of cortex, basal ganglia and thalamus take part in
each of these circuits. On the other hand the dopamine systems as mesolimbic, meso-
cortical and nigrostriatal systems provide regulation of information transfer through
these neural circuits [9] and dysfunctions of these dopamine systems cause deficits in
behavioural functions. To obtain a biologically plausible computational model of
basal ganglia revealing modulating effect of dopamine, the interrelations of basal
ganglia with related neural structures as cortex and thalamus has to be considered.
These interrelations are considered keeping in mind that our intention is to focus on a
specific cognitive process, action selection, rather than modelling all aspects of basal
ganglia-thalamocortical circuits described in [8] and the model obtained will be a
behavioural one.

In this section, first a simple neural structure of C-BG-TH loop will be investigated
and a mathematical model of this structure will be restated. This model was inspired
from [5] and proposed previously in [7]. Then how this mathematical model is used
for modelling action selection will be introduced. The modification of the mathemati-
cal model for action selection was again previously given in [7] and it was inspired
from [4].

2.1 Neural Substrates and Related Mathematical Model

As a cognitive process, it has been expressed that action selection is a major function
of basal ganglia and is crucial in understanding human behaviour [4]. Action selec-
tion, like other cognitive processes, is initiated at cortex, where anterior cingulate
system responsible for attention takes part in generating a salience signal which initi-
ates the action selection process. Action is also terminated at cortex when the motor
circuits trigger action. The salience signal causes an activation in basal ganglia, which

 A Computational Model for the Effect of Dopamine on Action Selection 487

then via thalamus initiates in cortex relevant structures for action. Thus a feedback
structure, which incorporates cortex, basal ganglia and thalamus, is necessary and so a
loop composed of cortex, basal ganglia and thalamus is formed. This feedback struc-
ture can be expressed as a non-linear dynamical system. The equations of the non-
linear dynamical system corresponding to basic connections of cortex, basal ganglia
and thalamus besides the connections within basal ganglia are given in Eq. 1 and
shown in Fig. 1.

Fig. 1. Cortex-basal ganglia-thalamus (C-BG-TH) loop

() () ()()
() ()() ()()

() ()()
() ()()
() ()() ()()knfkrgkd

kpfkn

kpgkr

kdfkpfkm

kmfkpkp

sel

att

+−=+
=+
=+

−=+
+⋅=+

θ

θ

λ

,1

1

,1

1

1

 (1)

In Eq. 1 g(x,) = 0.5•(1+tanh(3•(x+ -1.5))) and f(x) = g(x,1). att models the effect
of attention and is set to “1” throughout this section. The subsystem given by the Eq.
(1) is rewritten in compact form as follows:

1: () ()()selattkk θθ ,,1 xFx =+ . (2)

Striatum and subthalamic nucleus (STN) are initiated by cortex with excitatory
glutamatergic projections, these are the inputs of basal ganglia and main outputs are
globus pallidus internia (GPi) and substantia nigra pars reticulata (SNr). The output
structures then project inhibitory GABAergic projections to thalamus. Thalamus com-
pletes the loop by excitatory glutamatergic projections to cortex. All these connec-
tions are expressed in Eq. 1, where cortex, thalamus and the substructures in BG,
namely, STR, STN and GPi/SNr are denoted by p(k), m(k), r(k), n(k), and d(k), re-
spectively. While mainly GABAergic and glutamatergic projections convey this in-
formation transfer, dopamine modulates this process [10] and in Eq. 1 the parameter

sel represents the effect of dopamine while the inhibitory and excitatory effects of

488 O. Karabacak and N.S. Sengor

GABAergic and glutamatergic projections are denoted by negative and positive coef-
ficients in the matrix.

Even though two pathways exist in C-BG-TH loop, only the one named “direct
pathway” is considered fully in Fig. 1 and the “indirect pathway “ is simplified since
for the modelling purpose of this work the role of basal ganglia can be expressed
through this simple structure [8]. In this model, as can be followed from Eq. 1 each
substructure is modelled by a single variable. These variables can be thought to denote
a group of neurons that take part during the process. It is shown in [7] that this basic
model of C-BG-TH loop is capable of originating two stable fixed points. These two
fixed points are named “active” and “passive” points and they are interpreted as an
action took place or did not take place, respectively. The attraction domains and how
they depend on parameter sel, so on neurotransmitter dopamine, are investigated in [7].

The model given by Eq. 1 is inspired from [4,5]. In action network of Taylor N.R.
& Taylor J.G. [5], the motivation is to propose a model of C-BG-TH-C especially to
model the temporal sequence storage and generation process, which takes part in
working memory tasks. The proposed model resembles [5] as it has similar simple
non-linear discrete time dynamics as the model of C-BG-TH loop. As our aim is to
model action selection, we used diffusive parallel connections between loops corre-
sponding to different actions. Thus the proposed model does not have a layered struc-
ture for action selection as in [5]. The dynamics of the proposed model also exhibits
saddle point bifurcations. Furthermore the analysis of bifurcations due to a parameter
has been done not for each loop separately as in [5] but for the whole system, which
helps us to reveal the overall effect of dopamine on action selection.

In [4] a model of C-BG-TH loop is given for action selection and the effect of do-
pamine is investigated by changing the weight of connections. Control and selection
loops instead of direct and indirect pathways are utilized for action selection. They
also interpreted their results considering dopamine depletion and excess in relation
with Parkinson’s disease and Huntington’s disease, and discussed that dopamine de-
pletion gives rise to failure in selection and dopamine excess causes inability in ignor-
ing distracts. The competition mechanism of [4], that is the use of diffusive connec-
tions from STN to GPi/SNr, is utilized in [7].

One another work that has to be mentioned is the work of Servan-Schreiber [2].
This work focuses on mesocorical dopaminergic system, but they have not concerned
with C-BG-TH loop. They are more concerned with attention than action selection in
Stroop test as most models deal.

2.2 Computational Model for Action Selection

Action selection depends on competition; to construct this competition using the C-
BG-TH loop model given by system 1 coupling of at least two 1 systems is needed.
Each 1 system will correspond to a competing action. The coupling done is biologi-
cally plausible, as diffusive, excitatory connections from STN to GPi/SNr, which
have disinhibition effect on the other loops as an overall effect, are used as shown in
Fig. 2. The model for action selection is obtained connecting two 1 subsystems as
expressed in Eq. 3.

2:
() ()() ()()
() ()() ()()kkk

kkk

selatt

selatt

122

211

xGxFx

xGxFx

+=+
+=+

θθ
θθ
,,1

,,1
 . (3)

 A Computational Model for the Effect of Dopamine on Action Selection 489

Fig. 2. Model for action selection process

Here, coupling function is G(x) = (0 0 0 0 f(x4)/2)T and stands for the abovemen-
tioned connection between 1 subsystems. Due to coupling of two loops, the maxi-
mum number of the fixed points increases from two to four as shown in Fig. 3. These
fixed points are denoted by x1

*, x2
*, x3

* and x4
* and these respectively correspond to

the following behaviours: both subsystems are passive, only first subsystem is active,
only second subsystem is active and both subsystems are active.

Fig. 3. Attraction domains of 2 for sel = 1.05

Attraction domains of the fixed points are named A for x1
*, B for x2

*, C for x3
* and

D for x4
* and they are illustrated in Fig. 3. For different initial conditions the system

2 converges to different fixed points. For example, if the initial condition is p1 = 0.5,
p2 = 1, it converges to x3

*. Thus the second action is selected. If the initial state of the

490 O. Karabacak and N.S. Sengor

system is in region A or D, the system cannot discriminate competing actions. In the
first case none of the actions and in the second case both actions are selected. If there
exist all of these regions A, B, C and D like in Fig. 3, the system cannot be considered
suitable for action selection. In order to realize action selection properly, 2 should
have larger domains of type B and C. For some values of parameter sel this objective
can be fulfilled [7]. The system with such parameter value is regarded as exploiting
normal action selection behaviour, whereas occurrence of the region D and enlarging
of the domain A corresponds to abnormalities in action selection. These abnormalities
occur due to dopamine level. Dopamine excess/depletion causes both competing sub-
systems to get activated/inhibited for a large area of initial conditions. Thus action
selection fails for these salience values.

3 The Effect of Dopamine on Stroop Test

Stroop test is mostly used as a measure of selective attention. During the test the sub-
jects have to inhibit word reading tendency, which is an automatic process, fast and
do not require attention and follow the novel task of colour naming, which is a con-
trolled process, slow and requires attention [2]. So, while word reading process takes
less time, colour naming takes prolonged time as some time is used to inhibit the
habitual behaviour. Since Stroop test is considered as a measure of focused attention,
dysfunction of attention system, i.e., anterior cingulate system is investigated in most
computational models [2, 11]. Unlike previous works, in this work, effect of ni-
grostriatal dopamine system on Stroop test rather than mesocortical dopamine system
will be investigated. This investigation has a value since behavioural consequences of
nigrostriatal dopamine system in case of occurrence of salient stimuli has also been
discussed [12, 14].

Fig. 4. Proposed model for stroop test

 A Computational Model for the Effect of Dopamine on Action Selection 491

In order to obtain a model to investigate the effect of dopamine on Stroop test, be-
sides the coupled C-BG-TH loops for action selection another loop, which is com-
posed of simple representations of neural substrates responsible for attention and error
detection is needed. Two structures, one the coupled C-BG-TH loops for action selec-
tion, the other cortico-cortico (C1-C2-C3) loop for attention and error detection are
used together but with different time scales. The model of coupled C-BG-TH loops
given by system 2 is utilised in this new structure after some modifications shown
in Fig. 4 are done. To favour habit, one of the coupled loops in 2, which is supposed
to correspond to word reading task, is strengthened by changing weight of the connec-
tion from C to STR as “2”, while the loop for novel task, i.e., colour naming remains
same. This change of connection alters the attraction domains of 2. Even for
some initial values with large colour naming component, the word reading loop
can win.

The error detector (C2) and the attention block (C3) are used to provide the inhibi-
tion of the habitual action and to support the generation of the task related action,
respectively. C1 represents the part of cortex that is in connection with other structures
like BG and TH. The equations of C1-C2-C3 loop are given as follows:

() ()()
()

() ()()
()

() () () ()

()−

=−−−⋅−⋅+−=

−
=−⋅

=

−
=−−

=

otherk

kkkck
k

otherkc

kkcfA
kc

otherkc

kkcft
kc

att

attatt
att

,1

,32,22,12,
1

1
1min211.01

,1

,31,21,11,1

,1

,30,20,10,5

3

3

2
3

2

1
2

θ

θθθ

(4)

In Eq. 4, t represents the input for task and set to (0 1)T for colour naming task. The
matrix A is a two by two matrix with “1”’s on diagonal, “-1”’s on other entries; its
role is to realize both suppression of habitual behaviour and to drive attention to novel
one. The initial values are taken as very small random numbers. These two loops,
namely C-BG-TH and C1-C2-C3, are combined at C1 which corresponds to the vari-
able p in Eq. 1, so C1 is composed of p1 and p2. The nigrostriatal dopamine level is
simulated by changing the parameter sel in C-BG-TH loop. The activation of two
cells in C1, corresponding to word reading and colour naming salience signals are
shown in Fig. 5 for a normal dopamine level. The activation of the task-irrelevant
loop at the first time steps vanishes after a while and the task-relevant loop takes ac-
tion. This result fits the phenomena called Stroop effect. To investigate the effect of

sel simulation results are shown in Table 1. These simulation results are obtained
using the following criteria: If the value of a signal is greater than one plus the other’s
value during 100 time steps and during the following 100 steps it’s value is never less
than the other’s value minus one, then the action corresponding to this signal is re-
garded to be generated at the end of this 200 time steps.

492 O. Karabacak and N.S. Sengor

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time steps

p 1 a
nd

 p
2

Fig. 5. Simulation result for normal dopamine level (sel =1). Dotted line shows the activation
of p1 that corresponds to C1 activation of word reading loop. Solid line shows the activation of
p2 that corresponds to C1 activation of colour naming loop.

Table 1. Simulation results for different sel values

Dopamine Level (sel) Error

Time of the correct re-
sponse

2 no > 30000
1.6 no 1396
1.4 no 1261

D
op

am
in

e
ex

ce
ss

1.2 no 1129
 1 no 396

0.8 no 390
0.6 yes 405

0.55 yes 440

D
op

am
in

e
de

pl
et

io
n

0.5 yes > 30000

In the case of dopamine excess C-BG-TH loops let both actions get activated dur-

ing the first time steps. As a result, error at C2 is less than the error in the case when
C-BG-TH loop select the habitual one. The selection of both actions slows down the
correction process, i.e. the work of C1-C2-C3 loops. On the other hand, the effect of
dopamine depletion is mainly on errors rather than on the prolonged time used for
correction. In this case C1-C2-C3 loops work well but the activation of the task-related
action occurs late because of the low dopamine level. This causes an error according
to our abovementioned criteria.

Dopamine excess corresponds to dysfunction of BG where the subject can not sup-
press irrelevant action and dopamine depletion corresponds to the case where subject
can not perform the action, due to akinesia.

 A Computational Model for the Effect of Dopamine on Action Selection 493

4 Discussion and Conclusion

Quite a number of computational models of basal ganglia, which evaluate the neural
substrates and related neurotransmitter systems responsible for the interested behav-
iour have been developed [4, 5, 7]. There are also connectionist models, exploring the
effect of mesocortical dopamine system on frontal cortex following similar approach
[2,13] and among these [2] considers Stroop task. The objective of this work is to
develop a connectionist model to investigate the role of basal ganglia during Stroop
task. Computational models investigating cognitive behaviour during Stroop task
focus on the dysfunction of attention system and error detection system as Stroop task
is well known as a measure of selective attention. However, in this work, it is pro-
posed that dysfunction of modulatory nigrostriatal dopamine system can impair the
action selection property of basal ganglia and it is shown by simulation results that
this effects the performance of subjects during Stroop task.

This investigation is based on a recently proposed model [7] exploiting the action
selection property of basal ganglia which is utilized in a newly proposed neural struc-
ture, where cortico-cortico loop is considered along with C-BG-TH loop. Even though
the model of C-BG-TH loop is inspired from [4, 5], it is simpler than [4] and still able
to model action selection.

The effect of dopamine is modelled similar to [5] and the obtained simulation re-
sults are consistent with the observed relationship between dopamine excess/depletion
and behaviour. The investigation of basal ganglia dysfunction on Stroop test is valu-
able, since the effect of nigrostriatal dopamine systems on behaviour other than motor
actions is also investigated [12].

References

1. Churchland P.S.: Neurophilosophy. Toward a Unified Science of the Mind-Brain. A Brad-
ford Book. The MIT Press, Cambridge, Massachusetts, London, England (1988)

2. Cohen D., Servan-Schreiber D.: Context, Cortex, and Dopamine: a Connectionist Ap-
proach to Behaviour and Biology in Schizophrenia. Psychological Review 99 (1992)
45–77

3. Doya K.: Reinforcement Learning in Continuous Time and Space. Neural Computation 12
(2000) 219-245

4. Gurney K., Prescott T.J., Redgrave P.: A Computational Model of Action Selection in the
Basal Ganglia. I. A New Functional Anatomy. Biological Cybernetics 84 (2001) 401–410

5. Taylor N.R., Taylor J.G.: Hard-wired Models of Working Memory and Temporal Se-
quence Storage and Generation. Neural Networks 13 (2000) 201-224

6. Ashby F.G., Casale M.B.: A Model of Dopamine Modulated Cortical Activation. Nral
Networks 16 (2003) 973-984

7. Karabacak O., Sengor N.S.: A Dynamical Model of a Cognitive Function: Action Selec-
tion. 16th IFAC congress (2005)

8. Alexander G.E., Crutcher M.D., DeLong M.R.: Basal Ganglia-Thalamocortical Circuits:
Parallel Substrates for Motor, Oculomotor, “Prefrontal” and “Limbic” Functions. Progress
in Brain Research 85 (1990) 119-146

494 O. Karabacak and N.S. Sengor

9. Sagvolden, T., Johansen, E.B., Aase, H., Russel, V.A.: A Dynamic Developmental Theory
of Attention-Deficit/Hyperactivity Disorder (ADHD) Predominantly Hyperactive/ Impul-
sive and Combined Subtypes. Behavioural and Brain Sciences 28 (2005) 397-468

10. Cohen J.D., Braver T.S., Brown J.W.: Computational Perspectives on Dopamine Function
in Prefrontal Cortex. Current Opinion in Neurobiology 12 (2002) 223-229

11. Kaplan G.B., Sengor N.S. Gurvit H., Guzelis C.: Modelling Stroop Effect by a Connec-
tionist Model. Proceedings of ICANN/ICONIP (2003) 457-460

12. Horvitz J.C.: Mesolimbocortical and Nigrostriatal Dopamine Responses to Salient Non-
Reward Events. Neuroscience 96 (2000) 651-656

13. Servan-Schreiber D., Bruno R.M., Carter, C.S., Cohen D.: Dopamine and the Mechanisms
of Cognition: Part1. A Neural Network Model Predicting Dopamine Effects on Selective
Attention. Biological Psychiatry 43 (1998) 713–722

14. Djurfeldt M., Ekeberg Ö., &Graybiel A.M., “Cortex-basal ganglia interaction and attractor
states”. Neurocomputing, 38-40, (2001) 73-579.

A Neural Network Model of Metaphor
Understanding with Dynamic Interaction Based

on a Statistical Language Analysis

Asuka Terai and Masanori Nakagawa

Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan

{asuka, nakagawa}@nm.hum.titech.ac.jp

Abstract. The purpose of this study is to construct a human-like neural
network model that represents the process of metaphor understanding
with dynamic interaction, based on data obtained from statistical lan-
guage analysis. In this paper, the probabilistic relationships between
concepts and their attribute values are first computed from the statis-
tical analysis of language data. Secondly, a computational model of the
metaphor understanding process is constructed, including dynamic in-
teraction among attribute values. Finally, a psychological experiment is
conducted to examine the psychological validity of the model.

1 Introduction

In order to construct a computational model of metaphor understanding, we need
a foundational theory that explains the same process in humans. One well-known
theory in psychology is the ”salience imbalance model” [1]. According to Ortony’s
theory, a metaphor of the form ”A is like B” makes good sense metaphorically
if the high-salient attribute values of a vehicle (term ”B”) match the low-salient
attribute values of a target (term ”A”). It is well known in psychology that
metaphor understanding is influenced by individual differences in terms of knowl-
edge structure. For instance, Kusumi[2] measured knowledge structure using the
Semantic Differential (SD) method and statistically confirmed that individual
differences in knowledge structure influence metaphor understanding.

Iwayama, Tokunaga and Tanaka[3] have proposed a computational model
based on the salience imbalance model. The model is based on the assumption
that each concept has a probabilistic structure of the form (concept: attribute
(attribute value, attribute value probability) ...), for instance, (apple: color
(red, 0.7)(green, 0.3)). In the model, metaphor understanding is represented as
a process in which the high-salient attribute values of the vehicle are matched
to the low-salient attribute values of the target, because the salience of an at-
tribute value is measured in terms of entropy computed from the probabilities
of attribute values. However, the model does not propose a practical method for
computing the probabilistic relationships between concepts and their attribute
values. Moreover, the psychological validity of Iwayama et al.’s model has not

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 495–504, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

496 A. Terai and M. Nakagawa

been verified. It is necessary to investigate the psychological validity of the model
because the metaphor understanding process is influenced by the structures of
human knowledge and human metaphor understanding process can only be clar-
ified by psychological experimentation.

On the other hand, there are a few studies showing that the low-salient at-
tribute values of a target and a vehicle are emphasized within the process of
metaphor understanding and that attribute values play an important part in
metaphor understanding [4],[5],[6]. These attribute values have been referred to
as ”emergent features”. However, feature emergence is not explained within the
salience imbalance model. Attribute values that are closely related to the im-
age of a vehicle and unrelated to the image of a target should be inhibited. In
addition, even though an attribute value is closely related to the image of the
target, in some cases, the attribute value may be inhibited due to an effect of
the vehicle image. When a metaphor makes sense (e.g., ”a ballerina like a but-
terfly”), an attribute value that is closely related to the image of the vehicle and
unrelated to the image of the target (e.g., ”are insects”) is inhibited, while an
attribute value (e.g., ”athletic”) that is closely related to the image of the tar-
get is also inhibited due to the effects of the vehicle image. Thus, there should
be a dynamic interaction among attribute values in metaphor understanding.
Utsumi[6] constructed a model that represents the mechanism of feature emer-
gence in metaphor understanding. However, the model does not represent the
dynamic interaction among attribute values.

Nakagawa, Terai and Hirose[7] constructed a neural network model of meta-
phor understanding with dynamic interaction. The model represents a human-
like process of metaphor understanding based on a psychological experiment.
However, it is not practically feasible to collect sufficient data to construct a
model that adequately covers metaphorical expressions by their psychological
method alone, because participants cannot respond to numerous indices within a
limited time. Accordingly, a model based on only psychological experimentation
cannot be extended to computational systems (e.g., a search engine).

In order to solve these problems, this study proposes a neural network model
that is both based on a statistical analysis of a language corpus and validated
by a psychological experiment.

2 Probabilistic Expression of Meaning Based on a
Statistical Analysis of a Language Corpus

2.1 Statistical Language Analysis

For the statistical analysis of a language corpus, this study applies a statisti-
cal method with a structure similar to Pereira’s method, or Probabilistic latent
semantic indexing (PLSI) [8],[9],[10]. Latent semantic analysis (LSA)[11] is pop-
ular as a method of natural language analysis. In order to determine appropriate
classes using LSA, weighting of terms is indispensable. Although there are var-
ious kinds of weighting methods, all of them are basically ad hoc with little

A Neural Network Model of Metaphor Understanding 497

mathematical support. On the other hand, the statistical analysis of language
is based on probability theory and information theory. The method assumes
that the co-occurrence probabilities of a term Ni and a term Aj , P (Ni,Aj) is
computed using formula (1):

P (Ni, Aj) =
∑

k

P (Ni|Ck)P (Ai|Ck)P (Ck), (1)

where P (Ni|Ck) is the conditional probability of Ni, given Ck, which indicates
a latent semantic class assumed in the method. Each parameter in the method,
P (Ck), P (Aj |Ck) and P (Ni|Ck), is estimated as the value that maximizes the
likelihood of co-occurrence data measured from a language corpus using the EM
algorithm, as follows;

E step

P (Ck|Ni, Aj) =
P (Ni|Ck)P (Aj |Ck)P (Ck)∑
k P (Ni|Ck)P (Ai|Ck)P (Ck)

, (2)

M step

P (Ni|Ck) =

∑
j P (Ck|Ni, Aj)N(Ni, Aj)∑

i,j P (Ck|Ni, Aj)N(Ni, Aj)
, (3)

P (Aj |Ck) =
∑

i P (Ck|Ni, Aj)N(Ni, Aj)∑
i,j P (Ck|Ni, Aj)N(Ni, Aj)

, (4)

where
∑

i P (Ni|Ck) = 1,
∑

j P (Aj |Ck) = 1 and N(Ni,Aj) is the co-occurrence
frequency of the term Ni and the term Aj .

By using these estimated parameters to represent the probabilistic relation-
ship between concepts and their attribute values, the model is capable of simu-
lating the process of metaphor understanding based simply on results obtained
by the statistical analysis of a language corpus.

2.2 Results of the Statistical Language Analysis

Corpus data: Data relating to adjective-noun modifications was extracted from
the Japanese newspaper ”MAINICHI SHINBUN” for the period 1993-2002 us-
ing a modification analysis tool called ”Cabocha”[12]. The original modifica-
tion data is in Japanese, and includes 3,403 adjectives and 21,671 nouns. The
nouns contained in the ”Word List by Semantic Principles, Revised and Enlarged
Edition”[13], a Japanese thesaurus, were selected for the analysis.

In the Japanese thesaurus, nouns are classified into 4 categories at the first
hierarchy level, 43 categories at the second level and 545 categories at the third
rebel. Some of the nouns are also classified as an adjective. Adjectives are classi-
fied into 23 categories at the second level. In this study, the second level classes
are assumed to be basic categories. The number of semantic classes in the statis-
tical analysis was set as 70, based on the number of categories in the thesaurus.

P (Ck), P (Ni|Ck) and P (Aj |Ck) are estimated using the statistical language
analysis and P (Ck|Ni) and P (Ck|Aj) are computed from the Bayesian theorem,
as follows:

498 A. Terai and M. Nakagawa

Table 1. The meaning of the latent classes

Color Class
P (Ccolor|Ai) P (Ccolor|Ni)

1 red 0.994 cap 0.927
2 white 0.987 flower 0.903
3 blue 0.985 helmet 0.879
4 black 0.983 jacket 0.877
5 darkish 0.978 ribbon 0.875
6 crimson 0.972 handkerchief 0.873
7 yellow 0.954 carnation 0.872
8 whitish 0.947 turban 0.869
9 snow-white 0.870 mountain range 0.859

10 pure white 0.844 powder 0.842

P (Ck|Ni) =
P (Ck)P (Ni|Ck)

P (Ni)
=

P (Ck)P (Ni|Ck)∑
h P (Ch)P (Ni|Ch)

, (5)

P (Ck|Aj) =
P (Ck)P (Aj |Ck)

P (Aj)
=

P (Ck)P (Aj |Ck)∑
h P (Ch)P (Aj |Ch)

. (6)

The names of the latent classes were identified from the conditional probability
of the latent class Ck given adjective Ai (P (Ck|Aj)) and the probability of the
latent class Ck given noun Ni (P (Ck|Ni)). For example, the class that can be
labeled ”Color” is shown in Table1. The listed adjectives and nouns that have
relatively strong probabilities, P (Ck|Aj) and P (Ck|Ni), can be regarded as being
more closely related to each class Ck.

3 A Model of Metaphor Understanding

3.1 Estimation of the Relationships Between Nouns and Adjectives

In this study, we computed two types of conditional probabilities. The first type
is computed directly from the co-occurrence data (P ∗(Aj |Ni)) and the other type
is computed using the result of the language statistical analysis (P (Aj |Ni)).

The conditional probability of an adjective given a noun from the co-occurrence
data, P ∗(Aj |Ni), is computed by function(7) using the co-occurrence frequency
N(Aj , Ni) and the noun frequency N(Ni):

P ∗(Aj |Ni) =
N(Aj , Ni)
N(Ni)

. (7)

While the conditional probability from the result from the statistical language
analysis, P (Aj |Ni), is computed by function(8) using P (Aj |Ck), P (Aj |Ck) and
P (Ck):

P (Aj |Ni) =
∑

k P (Ni|Ck)P (Aj |Ck)P (Ck)∑
k P (Ni|Ck)P (Ck)

. (8)

A Neural Network Model of Metaphor Understanding 499

Both of these conditional probabilities represent the relationships between
nouns and adjectives. The conditional probabilities from the co-occurrence data
represent more direct relationships than the probabilities from the language
statistical analysis. However, these probabilities (P ∗(Aj |Ni)) are subject to the
sparseness problem. Even though the co-occurrence frequency between demon
and good is 0, the co-occurrence probability would not be expected to be 0 when
using a much larger scale corpus. Therefore, probabilities need to be computed
based on the statistical language analysis in order to estimate the parameters of
the model.

In this study, we constructed a model concerning the metaphor ”a teacher
like a demon”. In the model, it is assumed that the high-salient attribute values
of a vehicle and the attribute values of a target are related to metaphor under-
standing. The attribute values of the model are chosen referring to P ∗(Aj |Ni)
and P (Aj |Ni). Thus, three adjectives, ”awful”, ”enormous” and ”red” (”de-
mon” means Japanese demon ”ONI” in the metaphor ”a teacher like a demon”,
and the color most frequently associated with Japanese demons is red), which
co-occur frequently with ”demon” are chosen as high-salient attribute values
of ”demon”. Eight adjectives, ”young”, ”gentle”, ”eager”, ”great”, ”horrible”,
”strict”, ”good” and ”wonderful”, which co-occur frequently with ”teacher” are
chosen as attribute values of ”teacher” (see Table2). The co-occurrence prob-
abilities of ”enormous”, ”remarkable”, ”blue”, ”broad” and ”wise” concerning
”demon” have the same value. Comparing the conditional probabilities of these
adjectives given ”demon”, which are computed based on the statistical analy-
sis, the probability of ”enormous” is the highest (P (”enormous”|”demon”) =
0.02520, P (”remarkable”|”demon”) = 0.01568, P (”blue”|”demon”) = 0.01565,
P (”broad”|”demon”) = 0.00623, P (”wise”|”demon”) = 0.00080). Thus, ”aw-
ful”, ”red” and ”enormous” were chosen as high-salient attributes.

Table 2. The conditional probabilities of adjectives given either ”teacher” or ”demon”
computed directly from the co-occurrence data (P ∗(Aj |Ni))

P ∗(Ai|demon) P ∗(Ai|teacher)
1 awful 0.19355 young 0.09670
2 red 0.09677 gentle 0.04326
3 enormous 0.06452 eager 0.04199
4 remarkable 0.06452 great 0.03435
5 blue 0.06452 horrible 0.03053
6 broad 0.06452 strict 0.02926
7 wise 0.06452 good(Chinese character) 0.02672
8 cold-blooded 0.03226 good 0.02163
9 harmless 0.03226 wonderful 0.02036

10 mysterious 0.03226 favorite 0.01908

Thus, P (Aj |”teacher”) and P (Aj |”demon”) are computed in order to deter-
mine the strengths of relationships between the concepts in the metaphor and the

500 A. Terai and M. Nakagawa

Table 3. The probabilities of the attribute values given either ”teacher” or ”demon”
computed from the statistical language analysis(P (Aj |Ni))

Noun
demon teacher

Attribute values awful 0.00818 0.00062
red 0.02085 0.00088
enormous 0.02519 0.00009
young 0.00282 0.09679
gentle 0.00112 0.01104
eager 0.00095 0.00896
great 0.00039 0.00336
horrible 0.01129 0.00303
strict 0.00281 0.02691
good 0.00131 0.03182
wonderful 0.00083 0.00938

attribute values (see Table3). The connection weights of the model are estimated
using these probabilities.

3.2 The Architecture of the Model

The model consists of ”teacher” and ”demon” nodes (concepts nodes) as input
nodes and the attribute value nodes as output nodes (Fig.1). The input weights
from the ”teacher” and ”demon” nodes to the attribute value nodes are estimated
using conditional probabilities of each attribute value given either ”teacher”
or ”demon”. The respective input weights are multiplied by either αteacher or
αdemon, which indicate the influences of ”teacher” and ”demon” on the process of
metaphor understanding respectively (the values of these parameters, αteacher

or αdemon, vary according to relevant vehicle and target functions within the
metaphor, would be different for the two metaphors of ”a teacher like a demon”
and ”a demon like a teacher”).

Every attribute value node has mutual and symmetric connections with the
other attribute value nodes. The weighting of a connection between two attribute
values in a metaphor may differ from the weighting of the connection between
the same two attribute values in another different metaphor. For example, in the
case of ”a dog like a cloud”, the connection between ”white” and ”fluffy” would
be heavily weighted. On the other hand, in the case of ”skin like snow”, the con-
nection between them would not so heavy. Therefore, every weight for mutual
connections between the attribute value nodes is estimated using the correlation
coefficient between the two attribute values in a metaphor. The correlation co-
efficient is computed using the conditional probabilities of each attribute value
given the concept, which are classified into the same category as the target or
the vehicle at the fourth level of the ”Word List by Semantic Principles, Revised
and Enlarged Edition”[13].

A Neural Network Model of Metaphor Understanding 501

Fig. 1. The architecture of the model concerning ”a teacher like a demon”

When a value of 1 is input to the ”teacher” node and a value of 0 is input
to the ”demon” node, the attribute value nodes output the strengths of the
relationships between the attribute values and ”teacher.” Conversely, when a
value of 0 is input to ”teacher” node and a value of 1 is input to the ”demon”
node, the attribute value nodes output the strengths of the relationships between
the attribute values and ”demon”. When a value of 1 is input to both nodes,
the attribute value nodes output the strengths of the relationships between the
attribute values and the metaphorical expression ”a teacher like a demon”.

The dynamics of the network is based on the following system of simultaneous
differential equations:

dxi(t)
dt

= −xi(t) + f(
∑

j

wijxj(t) +
∑

k

αkWikIk)

(k = ”teacher”, ”demon”),

(9)

where xi(t) represents the activation strength of the ith attribute value node at
time t, wij denotes the weight of the connection between the ith attribute value
node and the jth attribute value node, Wik is the input weight from k’s input
node to the ith attribute value node and Ik represents the value of k’s input node.
In this study, the value of αteacher is 1 and the value of αdemon is 0.8. The function
f is the logistic function. Wik is estimated using the conditional probability of
each attribute value given either ”teacher” or ”demon” by formula(10):

Wik =
P (Ai|k)∑
i P (Ai|k)

, (10)

where Ai denotes the meaning of the ith attribute value node and k denotes
a concept as a vehicle or a target.

3.3 Simulation Results of the Model

The simulation results of the model concerning ”a teacher like a demon” are
shown in Fig.2 (the original output values between -1 to 1 have been trans-
formed to a 1 to 7 scale). By comparing the activation strengths of the attribute

502 A. Terai and M. Nakagawa

Fig. 2. The results of the simulation (a teacher likes a demon)

value nodes for ”teacher” and those of the attribute value nodes for ”a teacher
like a demon”, it is clear that the image of ”demon” emphasizes the images
of ”awful”, ”red”, ”enormous” and ”horrible”, while weakening the images of
”young,” ”gentle”, ”eager”, ”great”, ”good” and ”wonderful” for ”teacher” in
the metaphorical expression of ”a teacher like a demon.” Furthermore, the image
of ”strict” for ”teacher” is emphasized through the interaction among attribute
values in the process of metaphor understanding.

4 Psychological Experiment

The model appears to successfully represent human metaphor understanding.
However, the human process of metaphor understanding can only be clarified by
psychological experimentation. In order to examine the psychological validity of
the simulation of the metaphor understanding model, a psychological experiment
was conducted.

4.1 Method

– Participants: 25 undergraduates.
– Metaphorical expression: ”a teacher like a demon”.
– Attribute values: ”horrible”, ”strict”, ”strong”, ”big”, ”red”, ”cold”, ”gen-

tle”, ”great”, ”irritable” and ”noisy”.
– Scale: 7-point scale, from 1 ”Strongly disagree” to 7 ”Strongly agree”.

In pilot studies, the concepts (a target and a vehicle) and a metaphor were pre-
sented to 31 participants and they were asked to express the features of the pre-
sented concepts and the metaphor using adjectives. ”Horrible”, ”strong”, ”big”,
”red” were chosen as features of ”demon”, while ”gentle”, ”horrible”, ”strict”,
”great”, ”noisy” were chosen as features of ”teacher”. ”Horrible”, ”strict”,
”strong” ”cold”, ”irritable” were chosen as features of ”a teacher like a demon”.

The relationships between the attribute values and the concepts, and the
relationships between the attribute values and the metaphor were measured

A Neural Network Model of Metaphor Understanding 503

Fig. 3. The results of the psychological experiment (** p < 0.01, * p < 0.05)

by the Semantic Differential (SD) method. For example, taking the concept of
”teacher” and the attribute value ”horrible”, the participants were asked to
evaluate the extent to which the image evoked by ”horrible” corresponds to the
image evoked by ”teacher”. The participants evaluated the images of ”teacher”,
”demon” and ”a teacher like a demon”.

4.2 The Results of the Psychological Experiment on Metaphor
Understanding

The results of the psychological experiment indicate that for the expression” a
teacher like a demon”, the image of ”demon” emphasizes the impressions of ”red”,
”irritable”, ”horrible” and ”strong” while weakening the impressions of ”great”,
”gentle” at significant levels (Fig.3). The changes from the image of ”teacher” to
the image of ”a teacher like a demon” are consistent with the process of metaphor
understanding. The results from the simulation and from the experiment are
closely matched in terms of the pattern of changes, with both sets of results show-
ing emphasis for the impressions of ”red”, ”horrible” and ”strict” and weakening
of the impressions of ”great” and ”gentle”. In particular, the change for ”strict”
in the experimental results shows an effect of dynamic interaction among the at-
tribute values in the metaphor understanding. These results support the psycho-
logical validity of the model.

5 Discussion

In this study, a computational model of metaphor understanding with dynamic
interaction was constructed based on data obtained through a statistical lan-
guage analysis. In addition, simulations of the dynamic process of metaphor
understanding were conducted with the model. While there is still some room
for improvement with the model in terms of the selection and number of attribute
values and further simulations with a wider range of concepts, the simulation
results are consistent with the results from the present psychological experiment;

504 A. Terai and M. Nakagawa

indicating that the model can be constructed without the need for such exper-
imentation. These findings suggest that the model can be applied to various
computational systems (e.g., search engines).

Acknowledgements. This research is supported by the Tokyo Institute of
Technology 21COE Program, ”Framework for Systematization and Application
of Large-scale Knowledge Resources”.

References

1. Ortony, A.: Beyond Literal Similarity. Psychological Review. 86(3). (1979) 161–
180

2. Kusumi, T.: Hiyu no Syori Katei to Imikozo. Kazama Syobo(1995)
3. Iwayama, M., Tokunaga, T. and Tanaka, H.: The role of Salience in understanding

Metaphors. Journal of the Japanese Society for Artificial Intelligence.6(5). (1991)
674–681

4. Nueckles, M. and Janetzko, D.: The role of semantic similarity in the compre-
hension of metaphor. Proceeding of the 19th Annual Conference of the Cognitive
Science Society. (1997) 578–583

5. Gineste, M., Indurkhya, B. and Scart, V.: Emergence of features in metaphor com-
prehension. Metaphor and Symbol. 15(3).(2000) 117–135

6. Utsumi, A.: Hiyu no ninchi / Keisan Moderu. Computer Today. 96(3). (2000)
34–39

7. Nakagawa, M., Terai, A. and Hirose, S.: A Neural Network Model of Metaphor
Understanding. Proceedings of Eighth International Conference on Cognitive and
Neural Systems (2004) 32

8. Pereira, F., Tishby, N., and Lee, L.: Distributional clustering of English words.
Proceedings of the 31st Meeting of the Association for Computational Linguistics.
(1993) 183–190

9. Hofmann, T.: Probabilistic latent semantic indexing. Proceedings of the 22nd Inter-
national Conference on Research and Development in Information Retrieval :SIGIR
f99. (1999) 50–57

10. Kameya, Y., and Sato, T.: Computation of probabilistic relationship between con-
cepts and their attributes using a statistical analysis of Japanese corpora. Proceed-
ings of Symposium on Large-scale Knowledge Resources: LKR2005.(2005) 65–68

11. Deerwester, S., Dumais, S., Furnas, G., Landauer, T. and Harshman, R.: Indexing
by Latent Semantic Analysis. Journal of the Society for Information Science. 41(6).
(1990) 391–407

12. Kudoh, T., and Matsumoto, Y.: Japanese Dependency Analysis using Cascaded
Chunking. Proceedings of the 6th Conference on Natural Language Learning:
CoNLL 2002. (2002) 63–69

13. The National Institute for Japanese Language: Word List by Semantic Principles,
Revised and Enlarged Edition, Dainippon-Tosho. (2004)

Strong Systematicity in Sentence Processing
by an Echo State Network�

Stefan L. Frank

Nijmegen Institute for Cognition and Information, Radboud University Nijmegen
P.O. Box 9104, 6500 HE Nijmegen, The Netherlands

S.Frank@nici.ru.nl

Abstract. For neural networks to be considered as realistic models of
human linguistic behavior, they must be able to display the level of
systematicity that is present in language. This paper investigates the
systematic capacities of a sentence-processing Echo State Network. The
network is trained on sentences in which particular nouns occur only as
subjects and others only as objects. It is then tested on novel sentences
in which these roles are reversed. Results show that the network displays
so-called strong systematicity.

1 Introduction

One of the most noticeable aspects of human language is its systematicity. Ac-
cording to Fodor and Pylyshyn [1], this is the phenomenon that ‘the ability to
produce/understand some sentences is intrinsically connected to the ability to
produce/understand certain others’ (p. 37). To give an example, any speaker of
English who accepts ‘Capybaras eat echidnas’ as a grammatical sentence, will
also accept ‘Echidnas eat capybaras’, even without knowing what capybaras and
echidnas are.1

The ability of neural networks to behave systematically has been fiercely de-
bated [1, 2, 3, 4]. The importance of this discussion to cognitive science is consid-
erable, because neural networks must be able to display systematicity in order to
be considered viable models of human cognition. Moreover, it has been argued
that, for connectionist systems to explain systematicity, they should not just
be able to behave systematically but do so as a necessary consequence of their
architecture [5, 6].

In a paper investigating sentence processing by neural networks, Hadley [3]
defined systematicity in terms of learning and generalization: A network displays
systematicity if it is trained on a subset of possible sentences and generalizes to
new sentences that are structurally related to the training sentences. The degree

� This research was supported by grant 451-04-043 of the Netherlands Organization
for Scientific Research (NWO).

1 Capybaras are large South-American rodents and echidnas are egg-laying mammals
that live in Australia.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 505–514, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

506 S.L. Frank

of systematicity displayed by the network depends on the size of the discrep-
ancy between training and test sentences the network can handle. In particular,
Hadley distinguishes weak and strong systematicity. A network only shows weak
systematicity if all words in the test sentences occur in the same ‘syntactic posi-
tions’ that they occupied in the training sentences. Christiansen and Chater [7]
correctly note that these ‘syntactic positions’ are not properly defined, but for
the purpose of this paper the term can be taken to refer to a noun’s grammatical
role (subject or object) in the sentence. Unlike weak systematicity, strong sys-
tematicity requires the network to process test sentences with words occurring in
new syntactic positions. Also, these test sentences must have embedded clauses
containing words in new syntactic positions.

An example might clarify this. Suppose a network has only been trained on sen-
tences in which female nouns (‘woman’, ‘girls’) occur as subjects and male nouns
(‘man’, ‘boys’) occur as object. Examples of such sentence are ‘woman likes boys’
and ‘girls see man that woman likes’. The network displays weak systematicity if
it can process untrained sentences that (like the training sentences) have female
subject(s) and male object(s), such as ‘woman likes man’ and ‘girls that like boys
see man’. The network is strongly systematic if it can handle sentences with em-
bedded clauses that have male subject(s) and female object(s), that is, in which
the roles of males and females are reversed. Examples of such sentences are ‘boys
like girls that man sees’ and ‘man that likes woman sees girls’.

In 1994, Hadley [3] argued that the neural networks of that time showed
weak systematicity at best, while strong systematicity is required for process-
ing human language. Since then, there have been several attempts to demon-
strate strong systematicity by neural networks, but these demonstrations were
either restricted to a few specific test items [7] or required representations [8]
or architectures [9] that were tailored specifically for displaying systematicity.
In contrast, this paper demonstrates that strong systematicity on a large num-
ber of test sentences can be accomplished by using only generally applicable
representations and architectures.

Instead of the common Simple Recurrent Network (SRN) [10], an adaptation
to Jaeger’s [11, 12] Echo State Network (ESN) shall be used because it has been
shown to outperform an SRN when weak systematicity is required [13]. Pre-
sumably, this is because fewer network connections are trained in an ESN than
in an SRN. Since this comes down to a smaller number of parameters to fit,
generalization (and thereby systematicity) is improved. It is likely that an ESN
will again be superior to an SRN when the task requires strong rather than just
weak systematicity.

2 Setup of Simulations

In connectionist cognitive models, sentence processing most often comes down
to performing the word-prediction task. In this task, the network processes sen-
tences one word at a time and, after each word, should predict which word will
be the next input. The network is successful if it does not predict any word that
would form an ungrammatical continuation of the input sequence so far.

Strong Systematicity in Sentence Processing by an Echo State Network 507

The word-prediction task has also been used to investigate the issue of sys-
tematicity in neural networks [7, 8, 9, 13, 14], and it shall be used here as well.
Section 2.1 describes the language on which the network is trained. After train-
ing, the network, presented in Sect. 2.2, is tested on a specific set of new sentences
(see Sect. 2.3) to probe its systematic capacities.

2.1 The Language

The network learns to process a language that has a 30-word lexicon, containing
9 singular and 9 plural nouns (N), 5 singular and 5 plural transitive verbs (V),
the relative pronoun ‘that’, and an end-of-sentence marker that is denoted [end]
(and also considered a word).

The training sentences are generated by the grammar in Table 1. There is no
upper limit to sentence length because of relative clauses that can be recursively
embedded in the sentence. Relative clauses, which are phrases beginning with
the word ‘that’, come in two types: subject-relative clauses (SRCs) and object-
relative clauses (ORCs). In a SRC, ‘that’ is followed by a verb phrase (VP),
while in an ORC ‘that’ is followed by a noun. In the training sentences, 20% of
the noun phrases (NP) contains a SRC and 20% contains an ORC. This results
in an average sentence length of 7 words.

Table 1. Production rules for generating training sentences. Variable n denotes num-
ber: singular (sing) or plural (plu). Variable r denotes noun role: subject (subj) or
object (obj).

Head Production

S → Ssing | Splu

Sn → NPn,subj VPn [end]

NPn,r → Nn,r | Nn,r SRCn | Nn,r ORC
VPn → Vn NPsing,obj | Vn NPplu,obj

SRCn → that VPn

ORC → ORCsing | ORCplu

ORCn → that Nn,subj Vn

Nsing,subj → woman | girl | dog | cat | mouse | capybara | echidna
Nplu,subj → women | girls | dogs | cats | mice | capybaras | echidnas
Nsing,obj → man | boy | dog | cat | mouse | capybara | echidna
Nplu,obj → men | boys | dogs | cats | mice | capybaras | echidnas

Vsing → likes | sees | swings | loves | avoids
Vplu → like | see | swing | love | avoid

As can be seen from Table 1, nouns refer to either females, males, or animals.
In training sentences, females (‘woman’, ‘women’, ‘girl’, and ‘girls’) occur only as
subjects while males are always in object position. Animals can occur in either
position. In test sentences, the roles of male and female nouns will be reversed

508 S.L. Frank

(see Sect. 2.3). This means that such sentences are considered grammatical,
they are just not training sentences, which is why they are not generated by the
grammar of Table 1. To define the language in general, the four rewrite rules for
nouns (N) in Table 1 are replaced by:

Nsing → woman | girl | man | boy | dog | cat | mouse | capybara | echidna
Nplu → women | girls | men | boys | dogs | cats | mice | capybaras | echidnas

A note is in place here about the meaning of the terms ‘subject’ and ‘object’,
which can sometimes be unclear. Take, for instance, the sentence ‘girls that
woman likes see boys’. In the main clause of this sentence, ‘girls’ is the subject
(because girls do the seeing) but the same word is object in the subordinate
clause (because girls are being liked). To decide upon the noun’s syntactic po-
sition in such cases, the method by [7] is used. For the sentences used here this
comes down to: Nouns directly following a verb are objects, and all the others
are subjects. Table 2 shows some examples of training sentences and indicates
which nouns are subjects and which are objects.

Table 2. Examples of training sentences. Subscripts ‘subj’ and ‘obj’ indicate the sen-
tences’ subject(s) and object(s), respectively.

Type Example sentence

Simple girlssubj like catobj [end]
catsubj likes boyobj [end]

SRC girlsubj that likes boysobj sees catobj [end]
girlssubj like catsobj that see boyobj [end]

ORC girlssubj that catsubj likes see boysobj [end]
girlssubj like boyobj that catsubj sees [end]

SRC and ORC girlsubj that likes boysobj sees catsobj that mansubj avoids [end]
girlsubj that likes boysobj that catssubj see avoids manobj [end]

2.2 The Network

Network Processing. Sentences are processed by an Echo State Network that
has been extended with an additional hidden layer, resulting in a total of four
layers. These are called the input layer, dynamical reservoir (DR), hidden layer,
and output layer, respectively. The input and output layers have 30 units each,
corresponding to the 30 words of the language. The DR has 1 000 linear units,
and the hidden layer has 10 sigmoidal units. This network is nearly identical
to Frank’s [13], who showed empirically that the extra hidden layer and linear
DR units are needed for successful generalization in the word-prediction task.
The only difference is that the current network has a much larger DR because it
needs to process longer sentences and learn long-distance dependencies between
nouns and verbs.

Strong Systematicity in Sentence Processing by an Echo State Network 509

Sentence processing by this ESN is similar to that of a four-layer SRN. At
each time step (indexed by t), one word is processed. If word i forms the input at
time step t, the input activation vector ain(t) = (ain,1, . . . , ain,30)′ has ain,i = 1
and ain,j = 0 for all j �= i. The output activation after processing the word is
computed from the input according to

adr(t) = W inain(t) + W dradr(t − 1)
ahid(t) = f (W hidadr(t) + bhid)
aout(t) = fsm (W outahid(t) + bout) ,

where ain,adr,ahid,aout are the activation vectors of the input layer, DR (with
adr(0) = 0), hidden layer, and output layer, respectively; W are the correspond-
ing connection-weight matrices; b are bias vectors; f is the logistic activation
function; and fsm is the softmax activation function. As a result of applying fsm,
the total output activation equals 1 and each aout,i can be interpreted as the
network’s estimated probability that the next input will be word i.

Network Performance. The network’s performance is defined as follows: Let
G denote the set of words that can grammatically follow the current input se-
quence, that is, any word i /∈ G would be an incorrect prediction at this point.
Moreover, let a(G) =

∑
i∈G aout,i be the total amount of activation of output

units representing words in G, that is, the total ‘grammatical’ activation.
Ideally, a(G) = 1 when there is no ‘ungrammatical’ output activation. In that

case, the performance score equals +1. Likewise, performance is −1 if a(G) = 0
(there is no grammatical activation). By definition, performance equals 0 if the
network learned nothing except the frequencies of words in the training set. If
fr(G) denotes the total frequency of the words in G, performance equals 0 if
a(G) = fr (G). All in all, this leads to the following definition of performance:

performance =

a(G)−fr(G)

1−fr(G) if a(G) > fr(G)
a(G)−fr(G)

fr(G) otherwise .
(1)

Network Training. The most important difference between the network used
here and an isomorphic SRN is that in ESNs, connection weight matrices W in
and W dr are not trained but keep their initial random values. All other weights
(i.e., those in W hid,W dr, bhid, and bout) were trained using the backpropagation
algorithm, with a learning rate of .01, cross-entropy as error function, and with-
out momentum. All initial weights and biases were chosen randomly from uni-
form distributions in the following ranges: W hid,W out, bhid, bout ∈ [−0.1,+0.1]
and W in ∈ [−1,+1]. Of the DR connections, 85% was given a zero weight.
The other 15% had uniformly distributed random weights such that the spectral
radius of W dr equalled .7.

Ten networks were trained, differing only in their initial connection weight
setting. The training sentences, generated at random, were concatenated into
one input stream, so the network also had to predict the word following [end],

510 S.L. Frank

that is, the next sentence’s first word. During training, the performance score
over a random but fixed set of 100 training sentences was computed after every
1 000 training sentences. As soon as the average performance exceeded .98, the
network was considered sufficiently trained.

2.3 Testing for Strong Systematicity

Test Sentences. For a network to display strong systematicity, it needs to cor-
rectly process new sentences that have embedded clauses with words occurring
in new syntactic positions. Four types of such sentences, listed in Table 3, consti-
tuted the test set. Each has one subject- or object-relative clause that modifies
either the first or second noun. As such, the test-sentence types are labelled
SRC1, SRC2, ORC1, and ORC2.

Table 3. Examples of test sentences of four types

Relative clause Test sentence
Type Position Type Example

subject first SRC1 boy that likes girls sees woman [end]
second SRC2 boy likes girls that see woman [end]

object first ORC1 boys that man likes see girl [end]
second ORC2 boys like girl that man sees [end]

Test sentences were constructed by taking the structures of the examples in
Table 3, and filling the noun and verb positions with all combinations of nouns
and verbs, such that:

– Only male nouns appear in subject positions and only female nouns in object
positions (note that these roles are reversed relative to the training sentences
and that test sentences contain no animal names);

– The resulting sentence is grammatical (i.e., there is number agreement be-
tween a noun and the verb(s) it is bound to);

– The two verbs of SRC2, ORC1, and ORC2 sentences differ in number; In
SRC1 sentences, where the verbs must have the same number, the first two
nouns differ in number;

– The unbound noun (for SRC1 sentences: the third noun) was singular.

This makes a total of 2 (numbers) × 23 (nouns) ×52 (verbs) = 400 test
sentences of each of the four types. Before processing any of these, the network
was given the input [end], putting the DR-units into the right activation state
for receiving the test sentence’s first word.

Generalization Score. The performance measure defined in (1) assigns a score
of 0 to the outputs of a network that has learned nothing but the frequencies of
words in the training set. To rate the network’s systematicity, a similar measure

Strong Systematicity in Sentence Processing by an Echo State Network 511

is used. Instead of using word frequencies as baseline, however, this measure
assigns a score of 0 to the outputs of a hypothetical network that has learned
the training set to perfection but is not systematic at all.

According to Hadley’s [3] definition of systematicity, a complete lack of system-
aticity is the same as the absence of generalization. What can a non-generalizing
network do when confronted with a new input sequence? By definition, it cannot
use the complete sequence for predicting the next input since this would require
generalization. Therefore, the best it can do is to use the most recent part of the
test input that was also present in the training sentences. Assume, for instance,
that the test input is the ORC1 sentence ‘boys that man likes see girl’. After pro-
cessing ‘[end] boys’, the network is faced with an input sequence it was not trained
on because training sentences always begin with a female noun (i.e., ‘boys’ never
follows [end] in the training sentences). All that the network can do is to base its
next-word prediction on the last input only, that is, the word ‘boys’. In the train-
ing sentences, male nouns were followed by [end] in 50% of the cases. Therefore,
the non-generalizing network will, by definition, result in an (incorrect) output
activation aout,[end] = .5 at this point.

When the next word enters the network, the input sequence is ‘[end] boys
that’. The two-word sequence ‘boys that’ has appeared in the training sentences
(see Table 2). By definition, the output activations of the non-generalizing net-
work at this point are exactly the probabilities that each of the 30 words follows
‘boys that’ in the training sentences. Likewise, after the word sequence ‘[end]
boys that man’, the network basis its predictions on ‘man’ only because ‘that
man’ never appears in the training sentences. Again, this results in aout,[end] = .5.

The generalization score is computed by an equation identical to (1) except
that fr(G) is replaced by the total grammatical output activation of the hypo-
thetical non-generalizing network. This means that positive scores indicate some
degree of generalization. If the network scores positively on each word of the four
types of test sentences, it displays strong systematicity.

There are several points in the test sentences were generalization is not re-
quired for making grammatical predictions. For instance, after ‘[end] boys that’,
the next word must be a noun or a plural verb. In the training sentences, ‘boys
that’ is always followed by a plural verb. The non-generalizing network will
therefore make the perfectly grammatical prediction that the next word is a
plural verb. At such points, even a perfectly systematic network does no better
than a non-generalizing one, so the generalization score is not defined. Note that
grammatical predictions are always trivial to make at such points, because gen-
eralization is not needed. Therefore, nothing is lost by the occasional absence of
a generalization score.

3 Results and Conclusion

Generalization scores, averaged over sentences of each type and over the 10
trained networks, are plotted in Fig. 1. The near-perfect performance on the first
word of test sentences is a first indication of systematicity by the network. This

512 S.L. Frank

first word is always a male noun in subject position, which it never occupied in
any of the training sentences. Instead, in 50% of the cases, male nouns in training
sentences occur in sentence-final position, being followed by [end]. To make the
correct prediction that a sentence-initial male noun is not followed by [end],
the network must have learned that it is the position of the noun that matters
and not its particular (male) identity. As is clear from Fig. 1, the network has
succeeded in doing this.

boy that likes girls sees woman
0

0.5

1

SRC1

ge
ne

ra
liz

at
io

n

boys that man likes see girl
0

0.5

1

ORC1

boy likes girls that see woman
0

0.5

1

SRC2

ge
ne

ra
liz

at
io

n

boys like girl that man sees
0

0.5

1

ORC2

Fig. 1. Generalization scores on test sentences of four types, at all words where gen-
eralization is defined (labels on the horizontal axes are only examples of test-sentence
words, the plotted performance scores are averaged over all sentences of a type).

For the systematicity to be considered strong in the sense of [3], it should also
be demonstrated in embedded clauses. The plots in Fig. 1 show that the average
performance is above 0 on all words of each test sentence type, including the
words in relative clauses. Even at the point in the sentence where performance
is minimal, it is still highly significantly positive, as was revealed by sign tests
(p < 10−16 for each of the four sentences types).

Strictly speaking, these results are not yet proof of systematicity because
they could just be an artifact of averaging over networks and sentences. If, for
instance, each individual network scores negatively at one point, but this is not

Strong Systematicity in Sentence Processing by an Echo State Network 513

the same point for the 10 trained networks, the average generalization score can
be positive while none of the networks displays systematicity. The same can
happen if each test sentence results in a negative score at some point, but this
point differs among the sentences. However, this was clearly not the case: Of all
individual generalization scores, only 0.38% was negative.

These results are a clear indication of strong systematicity by the ESN. It
processed test sentences with nouns in syntactic positions they did not appear in
during training, both in the main clause and in relative clauses, and performed
significantly better than a non-systematic network can do. As defined in [3],
successful processing of test sentences that differ this much from the training
sentences requires strong systematicity.

Nevertheless, generalization decreased considerably at some points in the test
sentences. As can be seen from Fig. 1, there are four points at which the gen-
eralization score is quite low (less than .6). At all of these problematic points,
the network must predict a verb after having processed both a singular and a
plural noun. Presumably, the difficulty lies with binding the verb to the correct
noun, that is, predicting whether it is singular or plural. An investigation of the
network’s output vectors supported this interpretation. Nevertheless, the ESN
always does better than a network that is not systematic at all and, therefore,
displays some (but by no means perfect) strong systematicity.

4 Discussion

Echo State Networks can display not only weak but also strong systematicity.
This is a necessary condition for a neural network that is to form a cognitive
model of sentence processing. However, Hadley [15, 16] argued that human lan-
guage is not only systematic with respect to word order in sentences (i.e., syntax)
but also with respect to their meaning. That is, people are semantically system-
atic: They can correctly assign a semantic interpretation to sentences they have
not been exposed to before. Contrary to this, the word-prediction task used in
the simulations presented here is purely syntactic. Recently, however, Frank and
Haselager [17] showed that semantic systematicity is not beyond the abilities of
a neural network. They trained an ESN to transform sentences into distributed
representations of the situations the sentences referred to, and found that the
network could generalize to sentences describing novel situations.

References

1. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: a critical
analysis. Cognition 28 (1988) 3–71

2. Chalmers, D.J.: Connectionism and compositionality: why Fodor and Pylyshyn
were wrong. Philosophical Psychology 6(3) (1993) 305–319

3. Hadley, R.F.: Systematicity in connectionist language learning. Mind & Language
9(3) (1994) 247–272

4. Niklasson, L.F., Van Gelder, T.: On being systematically connectionist. Mind &
Language 9 (1994) 288–302

514 S.L. Frank

5. Fodor, J.A., McLaughlin, B.: Connectionism and the problem of systematicity:
Why Smolensky’s solution does not work. Cognition 35 (1990) 183–204

6. Aizawa, K.: The systematicity arguments. Dordrecht, The Netherlands: Kluwer
Academic Publishers (2003)

7. Christiansen, M.H., Chater, N.: Generalization and connectionist language learn-
ing. Mind & Language 9(3) (1994) 273–287

8. Hadley, R.F., Rotaru-Varga, A., Arnold, D.V., Cardei, V.C.: Syntactic systematic-
ity arising from semantic predictions in a Hebbian-competetive network. Connec-
tion Science 13(1) (2001) 73–94

9. Bodén, M.: Generalization by symbolic abstraction in cascaded recurrent networks.
Neurocomputing 57 (2004) 87–104

10. Elman, J.L.: Finding structure in time. Cognitive Science 14 (1990) 179–211
11. Jaeger, H.: Adaptive nonlinear system identification with echo state networks.

In Becker, S., Thrun, S., Obermayer, K., eds.: Advances in neural information
processing systems. Volume 15. Cambridge, MA: MIT Press (2003)

12. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science 304 (2004) 78–80

13. Frank, S.L.: Learn more by training less: systematicity in sentence processing by
recurrent networks. Connection Science (in press)

14. Van der Velde, F., Van der Voort van der Kleij, G.T., De Kamps, M.: Lack of
combinatorial productivity in language processing with simple recurrent networks.
Connection Science 16(1) (2004) 21–46

15. Hadley, R.F.: Systematicity revisited: reply to Christiansen and Chater and Niklas-
son and van Gelder. Mind & Language 9(4) (1994) 431–444

16. Hadley, R.F.: On the proper treatment of semantic systematicity. 14 (2004) 145–
172

17. Frank, S.L., Haselager, W.F.G.: Robust semantic systematicity and distributed
representations in a connectionist model of sentence comprehension. In Miyake,
N., Sun, R., eds.: Proceedings of the 28th Annual Conference of the Cognitive
Science Society. Mahwah, NJ: Erlbaum (in press)

Modeling Working Memory and Decision
Making Using Generic Neural Microcircuits�

Prashant Joshi

Institute for Theoretical Computer Science
Technische Universität Graz

A-8010 Graz, Austria
joshi@igi.tugraz.at

http://www.igi.tugraz.at/joshi

Abstract. Classical behavioral experiments to study working memory
typically involve three phases. First the subject receives a stimulus, then
holds it in the working memory, and finally makes a decision by compar-
ing it with another stimulus. A neurocomputational model using generic
neural microcircuits with feedback is presented here that integrates the
three computational stages into a single unified framework. The architec-
ture is tested using the two-interval discrimination and delayed-match-
to-sample experimental paradigms as benchmarks.

1 Introduction

Classical experiments in behavioral and experimental neuroscience that are em-
ployed to study the working memory typically involve three phases. First the
subject receives a stimulus, then this stimulus is held in working memory, and
finally a decision is made by comparing it with another incoming stimulus. Two
classical experimental paradigms to test this are the two-interval discrimination
[1] and the delayed-match-to-sample [2] tasks.

A recent study proposed controlled mutual inhibition of neurons in pre-frontal
cortex (PFC) as the neural algorithm behind the working memory and decision
making process [1]. Although the model was successful in integrating the load-
ing, maintenance, and decision making phases, obtaining such precise tuning of
mutual inhibition in cortical circuits in PFC seems biologically implausible. Also,
despite existing evidence that shows synaptic learning as a responsible mecha-
nism for working memory related tasks [2], the model used a static (no learning
involved) neural circuit.

This article demonstrates that simple linear readouts from generic neural mi-
crocircuit models that send their output as a feedback signal to the circuit, can
be used to model decision making process that involves the use of working mem-
ory. The neurocomputational architecture described here integrates the three
crucial stages described above into a single unified framework. These sequential
� The work was partially supported by the Austrian Science Fund FWF, project

#P17229 − N04 and project #FP6 − 015879 (FACETS) of the European Union.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 515–524, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

516 P. Joshi

stages are the initial loading (L) of stimulus into working memory, maintenance
(M) of working memory, and decision (D) making (following the notation used
in [1]). Essentially this model presents a unified computational framework for
working memory and decision making carried out by the neurons in PFC. For
comparison, the unified framework is used to build a spiking neural network
model of two-interval discrimination. Additionally to show that this computa-
tional paradigm is task-independent, we employ the same paradigm to model
the delayed-match-to-sample task.

The core principles behind the working of this model make the assumption
that the cortex can be thought of as an ultra-high dimensional dynamical sys-
tem, where the afferent inputs arriving from thalamus and the recurrent cortical
feedbacks are churned in a non-linear way to obtain a high-dimensional projec-
tion of the low-dimensional input space. Preceding work has demonstrated that
such high dimensional transient dynamics provides the neural circuit with ana-
log fading memory1 that provides the circuit enough computational power for
performing open-loop sensory processing tasks [3, 4].

Analog fading memory by itself is not powerful enough to render the circuits
the power to hold information in working memory. The obvious reason being that
analog fading memory by itself has an upper limit on the order of tens of msec,
depending on the time constants of synapses and neurons in the neural circuit [4],
whereas typically the working memory holds information on the order of seconds.
Recent results show that feedback from trained readout neurons that are part
of generic neural circuit can induce multiple co-existing “partial attractors” in
the circuit dynamics [5, 6]. This result is further extended here to demonstrate
that even in the presence of feedback noise, such “partial attractor” states can
be held by generic neural circuits on the time-scales of several seconds, that is
obviously a requirement for tasks involving working memory.

The neural microcircuit model considered in this article is described in sec-
tion 2, and the results for the two-interval discrimination and delayed-match-
to-sample tasks are presented in sections 3 and 4 respectively. Finally section 5
presents a discussion of the results.

2 Generic Neural Microcircuit Models

For the experiments described in this article, generic cortical microcircuit mod-
els consisting of integrate-and-fire neurons were used, with a high level of noise
that reflects experimental data. Biologically realistic models of dynamic synapses
were used whose individual mixture of pair-pulsed depression and facilitation

1 A map (or filter) F from input- to output streams is defined to have fading memory
if its current output at time t depends (up to some precision ε) only on values of the
input u during some finite time interval [t − T, t]. Formally, F has fading memory if
there exists for every ε > 0 some δ > 0 and T > 0 so that |(Fu)(t)− (F ũ)(t)| < ε for
any t ∈ R and any input functions u, ũ with ‖u(τ) − ũ(τ)‖ < δ for all τ ∈ [t − T, t].
This is a characteristic property of all filters that can be approximated by an integral
over the input stream u, or more generally by Volterra- or Wiener series.

Modeling Working Memory and Decision Making 517

(depending on the type of pre- and postsynaptic neuron) was based on experi-
mental data [7, 8]. These circuits were not created for any specific computational
task. Sparse synaptic connectivity between neurons was generated (with a bio-
logically realistic bias towards short-range connections) by a probabilistic rule2,
and synaptic parameters were chosen randomly from distributions that depended
on the type of pre- and postsynaptic neurons (in accordance with empirical data
from [7, 8])3. The neurons in the generic cortical microcircuit models were placed
on the integer-points of a 3-D grid4, and 20% of these neurons were randomly
chosen to be inhibitory.

Each readout neuron was trained by linear regression to output at any time
t, a particular target value f(t). Linear regression was applied to a set of data
points of the form 〈y(t), f(t)〉, for many time points t, where y(t) is the output
of low-pass filters applied to the spike-trains of pre-synaptic neurons, and f(t)
is the target output. During training, the feedback from readouts performing
diverse computational tasks was replaced by a noisy version of their target out-
put (“teacher forcing”) 5. Note that teacher forcing with noisy versions of target
feedback values trains these readouts to correct errors resulting from imprecision
in their preceding feedback (rather than amplifying errors)[9].

The generic neural microcircuit model received analog input streams from 4
sources for the experiment modeling two-interval discrimination (from 5 sources
in the experiment modeling delayed-match-to-sample). The outcomes of the ex-
periments discussed in this article were all negative if these analog input streams
were directly fed into the circuit (as input current for selected neurons in the
circuit). Apparently the variance of the resulting spike trains were too large to

2 The probability of a synaptic connection from neuron a to neuron b (as well
as that of a synaptic connection from neuron b to neuron a) was defined as
C · exp(−D2(a, b)/λ2), where D(a, b) is the Euclidean distance between neurons a
and b, and λ is a parameter which controls both the average number of connections
and the average distance between neurons that are synaptically connected. Depend-
ing on whether the pre- or postsynaptic neuron were excitatory (E) or inhibitory
(I), the value of C was set according to [8] to 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1
(II). For the experiment modeling a) the two-interval discrimination task, C = 1,
λ = 1.5; b) the delayed-match-to-sample task, C = 1, λ = 1.2.

3 Neuron Parameters: membrane time constant 30 ms, absolute refractory period 3
ms (excitatory neurons), 2 ms (inhibitory neurons), threshold 15 mV (for a resting
membrane potential assumed to be 0), reset voltage drawn uniformly from the in-
terval [13.8, 14.5] mV, constant non-specific background current Ib uniformly drawn
from the interval [13.5, 14.5] nA for each neuron, noise at each time-step Inoise drawn
from a gaussian distribution with mean 0 and SD chosen for each neuron randomly
from a Gaussian distribution over the interval [4.0, 5.0] nA, input resistance 1 MΩ,
the initial condition for each neuron, i.e. its membrane potential at time t = 0, was
drawn randomly (uniform distribution) from the interval [13.5, 14.9] mV.

4 400(500) neurons, arranged on a 20× 5 × 4 (20× 5× 5) grid for the circuit modeling
the two-interval discrimination (delayed-match-to-sample) task.

5 At each time-step t, a different noise value of 0.0001 × ρ × f(t) was added, where ρ
is a random number drawn from a gaussian distribution with mean 0 and SD 1, and
f(t) is the current value of the input signal (signal-dependent noise).

518 P. Joshi

make the information about the slowly varying values of these input streams
readily accessible to the circuit. Therefore the input streams were instead fed
into the circuit with a simple form of spatial coding, where the location of neu-
rons that were activated encoded the current values of the input variables. More
precisely, each input variable is first scaled into the range [0, 1]. This range is lin-
early mapped onto an array of 50 symbolic input neurons. At each time step, one
of these 50 neurons, whose number n(t) ∈ {1, . . . , 50} reflects the current value
in(t) ∈ [0, 1] which is the normalized value of input variable i(t) (e.g. n(t) = 1 if
in(t) = 0, n(t) = 50 if in(t) = 1). The neuron n(t) then outputs at time step t,
the value of i(t). In addition the 3 closest neighbors on both sides of neuron n(t)
in this linear array get activated at time t by a scaled down amount according
to a gaussian function (the neuron number n outputs at time step t the value

i(t) 1
σ
√

2π exp
−(n−n(t))2

2σ2 , where σ = 0.8). Thus the value of each of the 4(5)6 in-
put variables is encoded at any time by the output values of the associated 50
symbolic input neurons (of which at least 43 neurons output at any time the
value 0). The neuron in each of these 4(5) linear arrays are connected with one
of the 4(5) layers consisting of 100 neurons in the previously described circuit of
((20 × 5) × 4) (((20 × 5) × 5)) integrate-and-fire neurons.

The coding scheme used here is similar to the population coding [10], i.e.,
the neurons in the circuit fire maximally for their own preferred stimuli, and
different neurons have different preferred stimuli. This coding scheme is suitable
in context of this article as previous studies demonstrate that neurons in PFC
process information via a labelled-line code [11, 12].

3 Two-Interval Discrimination

In the actual experimental protocol for two-interval discrimination task, a pre-
trained subject is presented with two frequencies f1 and f2, separated by a
certain delay interval. Initially the frequency f1 is loaded into the working mem-
ory, and its value is maintained during the delay phase, and on presenting the
f2 frequency, the subject is required to decide whether “f1 > f2?”. Two kind of
neurons have been observed in PFC which show opposite activities in response to
the above question [1]. The first type of neurons (called “+” neurons from now),
show an increase in their activity during the D phase, when the answer to the
above question is “yes”, and the second type of neurons (called “-” neurons from
now), show an increase in their neural activity when the answer to the above
question is “no”. The information required to carry out the task is present in
the firing activity of “+” and “-” neurons independently, and the reason for the
simultaneous presence of both these sets is till now unknown.

In this setup7, the “+” and “-” neurons have been modeled as simple linear
readouts that send feedback of their activity to the neural circuit (see Figure 1).
6 4 input variables for the two-interval discrimination task, and 5 input variables for

the delayed-match-to-sample task.
7 Total simulation time for one trial 3.5 s, simulation time-step 10 ms, f1 and f2 are

presented for 0.5 s each, during the L and D phases respectively.

Modeling Working Memory and Decision Making 519

f1

ro +(t)

z−1

z−1

f2

ro +(t+1)

ro (t+1)−

ro (t)−

Model
PFC

Fig. 1. Closed-loop setup for the two-interval discrimination task. The model PFC
circuit is made of 400 integrate-and-fire neurons arranged on the integer points of a
20 × 5 × 4 cube. The circuit receives 2 frequencies (f1, f2) as external inputs, and two
feedback signals (ro+(t), ro−(t))from the “+” and “-” readouts. The task is to answer
the question if “f1 > f2?” The “+”(“-”) neurons show an increase in their activity
when the answer to the above question is “yes”(“no”). The notation z−1 denotes a
unit time-step delay in feedback signal.

In addition to the feedback, the circuit receives 2 external inputs (f1 and f2). The
input signals f1 and f2 are presented during the L and D phases respectively
(see Figure 2 A). The training data consisted of 2 noisy versions of each of
the 10 input pairs (f1, f2) (see Figure 2 B). The target functions of “+” and “-”
readouts are as described above. Figure 2 E shows a 200 ms blowup of the circuit
response of 100 randomly chosen neurons (activity of excitatory neurons shown
in black) during one of the closed-loop validation runs (f1 = 18 Hz, f2 = 26
Hz). The panels C and D of figure 2 show the desired (black) and observed
values of the “+” and “-” readouts during this run. Panel F and G show the
response of the “+” and “-” readouts for the 10 pairs of input frequencies, (f1, f2)
(note the similarity to Figure 1, panels C and D in [1], which show the actual
data from “+” and “-” neurons in PFC during the two-interval discrimination
task).

To test the robustness of the neural model, experiments were done where
after the readouts have been trained, a subset κn (κn progressively increased
from 0.5% to 5% in 10 trials such that κn ⊂ κn+1) of synapses converging onto
the “+” readouts were randomly chosen and pruned (synaptic weight set to 0).
The resulting setup was tested with the 10 frequency pairs (f1, f2). Panels H and
I of figure 2 show the result of these robustness tests. Panel H shows the mean
and standard error of correlation values for progressively higher levels of pruned
synapses. Panel I shows the resulting matrix of correlation values, where each
square shows the correlation value for a particular validation run, for a particular
pruning percentage. The control correlation values8 (no pruning) are shown in
the row on the top. Results indicate that the model shows graceful degradation
in presence of suboptimal inputs. This is quite interesting, as traditional models
of attractor based neural computation fail to demonstrate robustness [13].

8 Over 10 validation runs, mean = 0.9556, SD = 0.0206.

520 P. Joshi

10 Hz 34 Hz

10 18 26 34

10

18

26

34

f1(Hz)

f2
(H

z)

f1 > f2 ? Y N

Loading Maintenance Decision

f1 f2

0

0.2

0.4

0.6

"+" neuron: single validation run

target

observed

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1
"−" neuron: single validation run

sec

0

0.5

1

"+" neuron in model

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

"−" neuron in model

sec

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0

20

40

60

80

100
circuit response

sec

1 2 3 4 5
0

0.5

1

pruning (%)

co
rr

el
at

io
n

validation sample no.

pr
un

in
g

(%
)

A

B

C

D

E

F

G

H I

2 4 6 8 10

1

2

3

4

5
−0.5

0

0.5

Fig. 2. (A) The external frequencies f1 (18 Hz), and f2 (26 Hz) presented during the
L and D phase for one of the close-loop validation trials. (B) Stimulus frequencies used
in this study. The target (black) and observed values for the (C) “+” readout, and (D)
the “-” readout. (E) A blowup of 200 ms of resulting firing activity of 100 randomly
chosen neurons in the circuit. Excitatory neurons are shown in black. Responses of
the (F) “+” and (G) “-” readouts for each of the frequency pairs. The colorbar at
upper left indicates the value of f1 used in each trial. (H) Mean and standard error
of correlation values for trials with progressively higher pruning percentage. (I) The
resulting matrix of correlation values where each square shows the correlation value for
a particular validation run, for a particular pruning percentage. The control correlation
values (no pruning) are shown in the row on the top.

4 Delayed-Match-to-Sample

In this task, a pre-trained subject is presented with a cue visual stimulus during
the L phase (for example a small colored square on a predetermined region of
the screen), which is followed by a delay period (M phase), and subsequently
in the D phase two simultaneous probe stimuli are presented at two different

Modeling Working Memory and Decision Making 521

Fig. 3. Closed-loop setup for the delayed-match-to-sample task. The model PFC circuit
is made of 500 integrate-and-fire neurons arranged on the integer points of a 20× 5× 5
cube. The circuit received 3 color stimulus (Ccue, Cleft, Cright) as external inputs,
and 2 feedback signals (roleft(t), roright(t)) from the “left” and “right” readouts. The
“left”(“right”) neurons show an increase in their activity during D phase when Ccue =
Cleft(Cright).

places on the screen. The task is to decide which of the probe stimuli has the
same color as the sample stimulus[2].

Figure 3 shows the setup9 used in this experiment. The model PFC circuit
received 3 external inputs (Ccue, the cue color; Cleft, the left probe color; Cright,
the right probe color), and 2 feedback signals (from the “left” and “right” read-
outs). The cue stimulus was presented during the L phase and the probe stim-
uli were presented during the D phase. The neurons in the model PFC circuit
made projections to two linear readouts (called “left” and “right” readouts from
now on) which had similar functionality as the “+” and “-” readouts in the
two-interval discrimination task. The “left” readout showed high activity if the
answer to the question “Ccue = Cleft?” was “yes”. The “right” readout behaved
exactly opposite to this and showed high amount of activity if the probe stimulus
shown on the right matched the sample stimulus.

For this experiment the training data consisted of 2 noisy versions of each of
the 5 input color triplets (Ccue, Cleft, Cright) (see Figure 4 B). Figure 4 shows the
result of a closed loop validation run. Panel A shows one such external triplet.
The target (black) and observed response of the “left” and “right” readout are
shown in panel C and D respectively. The panels E and F of figure 4 show the
response of the “left” and “right” readouts for the 5 input stimuli (each line
drawn in the color of corresponding cue stimulus).

To test the performance of the setup, we tested the setup in 100 different vali-
dation runs. Panels G and H of figure 4 present the histogram of correlation values
for the “left”10 and “right”11 readouts over the set of these 100 validation runs.

9 Total simulation time for one trial 1.95 s, simulation time-step 10 ms, Ccue is pre-
sented for 0.32 s during the L phase, and Cleft and Cright are presented simultane-
ously for 0.6 s, during the D phase.

10 mean = 0.9962, SD = 0.0018.
11 mean = 0.9942, SD = 0.0018.

522 P. Joshi

Cue

Left

Right

L M D

external inputs

Cue

Left

Right

1
1.2
1.4
1.6
1.8

"left" readout

1

1.5

"right" readout

0.5 1 1.5 2

1

1.5

"left" neuron in model

time (s)
0.5 1 1.5 2

1

1.5

"right" neuron in model

time (s)

0.98 0.985 0.99 0.995 1
0

20

"left" readout

correlation

sa

m
pl

es

0.98 0.985 0.99 0.995 1
0

10

"right" readout

correlation

A B

C D

E F

G H

Fig. 4. (A) The external stimuli to the model PFC circuit during one of the closed
loop validation runs. The cue stimulus is presented during the L phase and the left-
and-right probe stimuli are presented during the D phase. (B) The colors of the cue,
left, and right stimuli used in trials. The target (black) and observed values for the
(C) “left” readout, and (D) the “right” readout. Responses of the (E) “left” and (F)
“right” readouts for each of the color triplets. The performance of the setup was tested
using 100 different closed loop validation runs. Histogram of correlation values for the
(G) “left” and the (H) “right” readout.

5 Discussion

A new neurocomputational paradigm is described that uses synaptic learning
mechanisms to present a unified model for working memory and decision mak-
ing using biologically realistic neural microcircuit models composed of spiking
neurons and dynamic synapses. Additionally results for the two-interval-
discrimination task show that the neural algorithm is task independent. It is
to be noted however that although spiking neural circuits were used to model
the interval-discrimination tasks for added biological realism, it is not a require-
ment, and any recurrent circuit would give similar results, as long as it has the
kernel property.

Readouts make a binary decision by reaching one of the states corresponding
to the decision made by them. The actual point of time when the readout makes
a decision can be thought of as a threshold crossing event, i.e. the first time when
the readout crosses a threshold after the presentation of the probe stimulus in
the D phase.

Modeling Working Memory and Decision Making 523

It was found that using population coding to encode the inputs projecting on
to model PFC circuits was essential to obtain the demonstrated results. Using
a population of neurons to encode each analog input stream is not unrealistic,
as sufficient evidence exists in current literature of its existence. It is however
not claimed here that the precise mechanism of population coding used in this
article is the one used in cortical circuitry of PFC.

The feedback from the trained readouts played an apparently important role
in the neural model described above. Although the generic neural microcircuits
used to simulate the model PFC circuit are endowed with fading memory due to
the kernel property of the circuits, this is not sufficient for holding information in
working memory for longer timespans ranging in the order of seconds. Apparently
the feedback from trained readouts provides the circuit with additional needed
information that falls outside the window of fading memory, hence enhancing
the information present in the circuit dynamics.

Obviously closed-loop applications of generic neural microcircuit models like
the ones discussed in this article present a harder computational challenge than
open-loop sensory processing tasks, since small imprecisions in their output are
likely to be amplified by the plant (e.g. the arm model) to yield even larger
deviations in the feedback, which is likely to further enhance the imprecision
of subsequent outputs. This problem can be solved by teaching the readouts
from the neural microcircuit during training to ignore smaller recent deviations
reported by feedback, thereby making the target trajectory of output torques an
attractor in the resulting closed-loop dynamical system.

This study also demonstrates the ability of generic neural microcircuit models
to hold “partial attractor” states in their circuit dynamics for significantly longer
and biologically relevant time-scales ranging in the order of a couple of seconds, in
presence of noise. Also a point of interest is the robustness of this neurocomputa-
tional model to factors such as synaptic pruning, and feedback noise.

According to the “internal model” hypothesis [14, 15], there exists an internal
model for each of the tasks that we have learned throughout our lives. One
outcome of such a hypothesis would be that a given neuron may participate with
a different synaptic weight in a number of neural assemblies, each supporting
a different internal model. Interestingly, this is reflected in our setup too, as
neurons in the generic neural circuit make synaptic projections to the set of
readouts with different synaptic weights assigned for each task.

The results presented in this article demonstrate the role of feedback in en-
hancing the inherent fading memory of a neural circuit. Further it also shows the
ability of generic neural circuits to model working memory and decision mak-
ing, which happens at significantly longer time-scales. Further work is needed
to explore if this neurocomputational architecture is extensible across diverse
cognitive modalities, e.g. decision making, and motor control.

Acknowledgements

The author is thankful to Wolfgang Maass for critical comments on the draft
version of the manuscript, and anonymous reviewers for helpful suggestions.

524 P. Joshi

References

1. C. K. Machens, R. Romo, and C. D. Brody. Flexible control of mutual inhibition:
A neural model of two-interval discrimination. Science, 307:1121–1124, 2005.

2. G. Rainer, H. Lee, and N. K. Logothetis. The effect of learning on the function of
monkey extrastriate visual cortex. PLoS Biology, 2(2):275–284, 2004.

3. D. V. Buonomano and M. M. Merzenich. Temporal information transformed into a
spatial code by a neural network with realistic properties. Science, 267:1028–1030,
Feb. 1995.

4. W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation, 14(11):2531–2560, 2002.

5. W. Maass, P. Joshi, and E. D. Sontag. Principles of real-time computing with
feedback applied to cortical microcircuit models. NIPS, 2005.

6. W. Maass, P. Joshi, and E. D. Sontag. Computational aspects of feedback in neural
circuits. submitted for publication, 2005.

7. H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon
of neocortical pyramidal neurons. PNAS, 95:5323–5328, 1998.

8. A. Gupta, Y. Wang, and H. Markram. Organizing principles for a diversity of
GABAergic interneurons and synapses in the neocortex. Science, 287:273–278,
2000.

9. P. Joshi and W. Maass. Movement generation with circuits of spiking neurons.
Neural Computation, 17(8):1715–1738, 2005.

10. A. Pouget and P. E. Latham. Population codes. In M. A. Arbib, editor, The
handbook of brain theory and neural networks, pages 893–897. MIT Press, 2003.

11. J. M. Fuster. Unit activity in prefrontal cortex during delayed-response perfor-
mance: neuronal correlates of transient memory. J. Neurophysiol., 36:61–78, 1973.

12. J. M. Fuster, M. Bodner, and J. K. Kroger. Cross-modal and cross-temporal
association in neurons of frontal cortex. Nature, 405:347–351, 2000.

13. H. S. Seung, D. D. Lee, B. Y. Reis, and D. W. Tank. Stability of the memory of
eye position in a recurrent network of conductance-based model neurons. Neuron,
26(1):259–271, 2000.

14. Kenneth J. W. Craik. The Nature of Explanation. Cambridge University Press,
1943.

15. E. Bizzi and F. A. Mussa-Ivaldi. Neural basis of motor control and its cognitive
implications. Trends in Cognitive Sciences, 2(3):97–102, 1998.

A Virtual Machine for Neural Computers

João Pedro Neto

Faculty of Sciences, University of Lisbon, Portugal

Abstract. Neural Networks are mainly seen as algorithmic solutions for
optimization and learning tasks where the ability to spread the acquired
knowledge into several neurons, i.e., the use of sub-symbolic computa-
tion, is the key. We have shown in previous works that neural networks
can perform other types of computation, namely symbolic and chaotic
computations. Here in, we show how these nets can be decomposed into
tuples which can be efficient calculated by software or hardware simpler
than previous neural solutions.

1 Introduction

The initial works of McCulloch and Pitts in the 1940’s presented neural net-
works as computational models for logic operations considering that with some
associated model of memory they could calculate the same computable func-
tions as Turing Machines [1]. The computational equivalence of a linear model
of neural net to Turing Machines was achieved only in the 1990’s by Siegelmann
and Sontag [2], [3].

What happened between these fifty years? Neural Networks at the 1950’s
where seen as models for approximation and learning. Ideas like the Hebb Law,
the Perceptron and, years later, the backpropagation algorithm or Kohonen’s
competitive learning (just to mention a few) imprinted to the scientific commu-
nity what neural networks were.

The common neural architecture by layers is able to split feature space with a
high degree of approximation (if provided good enough algorithms) of the sample
set. If a neuron is deactivated, the represented feature space lose accuracy but
maintains some performance, since the gathered knowledge is spread by the net
(the information kept within a neuron is sub-symbolic, to use Smolensky’s term
[4]). This and other features opened a wealth of possibilities that explains the
righteous success of neural nets.

However, neural networks can also compute symbolic computation, i.e., com-
putation where information has a defined and well specified type (like integers
or floats). If provided a high-level description of an algorithm A, is it possible
to automatically create a neural network that computes the function described
by A?

2 Neural Symbolic Computation

In [5], [6] we gave an affirmative answer to the previous question This section
briefly presents the structure of this answer.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 525–534, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

526 J.P. Neto

The chosen analog recurrent neural net model is a discrete time dynamic
system, x(t + 1) = φ(x(t), u(t)), with initial state x(0) = x0, where t denotes
time, xi(t) denotes the activity (firing frequency) of neuron i at time t, within
a population of N interconnected neurons, and uk(t) denotes the value of input
channel k at time t, within a set of M input channels. The application map φ
is taken as a composition of an affine map with a piecewise linear map of the
interval [0,1], known as the piecewise linear function σ:

σ(x) =

1, if x ≥ 1
x, if 0 < x < 1
0, if x ≤ 0

(1)

The dynamic system becomes,

xj(t + 1) = σ
(N∑

i=1

aji · xi(t) +
M∑

k=1

bjk · uk(t) + cj

)
(2)

where aji, bjk and cj are rational weights. Fig. 1 displays a graphical representa-
tion of equation (2), used throughout this paper. When aji (or bjk or ajj) takes
value 1, it is not displayed in the graph.

cj

ajixi xj uk
bjk

ajj

Fig. 1. Graphical notation for neurons, input channels and their interconnections

Using this model, we designed a high-level programming language, called
NETDEF, to hard-wire the neural network model in order to perform sym-
bolic computation. Programs written in NETDEF can be converted into neural
nets through a compiler available at www.di.fc.ul.pt/ jpn/netdef/netdef.htm.

NETDEF is an imperative language and its main concepts are processes and
channels. A program can be described as a collection of processes executing
concurrently, and communicating with each other through channels or shared
memory. The language has assignment, conditional and loop control structures
(fig. 2 presents a recursive and modular construction of a process), and it sup-
ports several data types, variable and function declarations, and many other
processes. It uses a modular synchronization mechanism based on handshaking
for process ordering (the IN/OUT interface in fig. 2). A detailed description of
NETDEF may be found at www.di.fc.ul.pt/biblioteca/tech-reports (report 99-5).

The information flow between neurons, due to the activation function σ, is
preserved only within [0, 1], implying that data types must be coded in this
interval. The real coding for values within [-a, a], where ’a’ is a positive integer,
is given by α(x) = (x+ a)/2a, which is an one to one mapping of [-a, a] into set
[0, 1].

A Virtual Machine for Neural Computers 527

Input channels ui are the interface between the system and the environment.
They act as typical NETDEF blocking one-to-one channels. There is also a
FIFO data structure for each ui to keep unprocessed information (this happens
whenever the incoming information rate is higher than the system processing
capacity).

-1

OUTIN

Module

G

b RES

xG1 xG2

xG3

-3/2

OUT

IN

x�(1)

Module

E

2
RESxE1 xE2

xE3

xE4

x

IN
OUT

-1

E

RES

Module

P

IN OUTxP1 xP2

xP3

-1

OUT

OUT

OUT

-1
2

-1

IN G
ININ

RES

P

Main

Net

xM1 xM2

xM3 xM4

Fig. 2. Process construction of: IF b THEN x := x-1

The compiler takes a NETDEF program and translates it into a text descrip-
tion defining the neural network. Given a neural hardware, an interface would
translate the final description into suitable syntax, so that the neural system may
execute. The use of neural networks to implement arbitrary complex algorithms
can be then handled through compilers like NETDEF.

528 J.P. Neto

As illustration of a symbolic module, fig. 2 shows the process construction for
IF b THEN x := x-1. Synapse IN sends value 1 (by some neuron xIN) into xM1
neuron, starting the computation. Module G (denoted by a square) computes
the value of boolean variable ’b’ and sends the 0/1 result through synapse RES.
This module accesses the value ’b’ and outputs it through neuron xG3. This is
achieved because xG3 bias 1.0 is compensated by value 1 sent by xG1, allowing
value ’b’ to be the activation of xG3. This result is synchronized with an output
of 1 through synapse OUT. The next two neurons (on the Main Net) decide
between entering module P (if ’b’ is true) or stopping the process (if ’b’ is false).
Module P makes an assignment to the real variable ’x’ with the value computed
by module E. Before neuron x receives the activation value of xP3, the module
uses the output signal of E to erase its previous value. In module E the decrement
of ’x’ is computed (using α(1) for the code of real 1). The 1/2 bias of neuron
xE2 for subtraction is necessary due to coding α.

The dynamics of neuron x is given by (3). However, if neuron x is used in
other modules, the compiler will add more synaptic links to its equation.

x(t + 1) = σ(x(t) + xP3(t) − xE3(t)) (3)

This resulting neural network is homogenous (all neurons have the same ac-
tivation function) and the system is composed only by linear, i.e., first-order
neurons. The network is also an independent module, which can be used in
some other context. Regarding time and space complexity, the compiled nets are
proportional to the respective algorithm complexity.

3 Neural Computers

Most work with neural nets uses software applications. Computers are fast, cheap
and, for most tasks, the flexibility of these applications is more than enough. But
this is also a consequence of the traditional vision of neural nets: fixed archi-
tecture schemes performing specialized algorithms. This vision also reflects on
most hardware neural networks [7], [8]. Hardware for sub-symbolic computation
is often constructed to execute (with much more speed and reliability) a set of
algorithms on a set of topologies (e.g., layered networks), however flexible the
hardware turns out to be. Solutions usually provide only for the implementation
of a defined set of techniques, like backpropagation or competitive learning, to
be run on dedicated hardware. But a typical neural hardware will not be able to
compute a list with the first hundred prime numbers just by using these tools.

But is this necessary? Can we just use our standard von-Neumann computer
to execute symbolic computations, and use a neural software or hardware to
perform sub-symbolic computations? Yes, but then we are one step shorter for
a fully definition of a neural computer. A neural computer is a system able to
perform computations, any computations, in a stand alone mode. It is not just
an extra component for specialized learning computations. A neural computer
should be able to perform any algorithm, not just a defined set of classic sub-
symbolic algorithms. A neural computer is more than an attachable module for
an Intel-like CPU, it is a replacement of that CPU.

A Virtual Machine for Neural Computers 529

4 Vector and Tuple Representation

We noted, in section 2, the existence of a compiler which translates high-level
algorithmic descriptions into neural nets.

It is easy to simulate the execution of these nets using a regular computer (our
software can compile and execute its resulting nets). But, what kind of hardware
is needed in order to calculate them? The NETDEF language produces modules
which communicate via a small number of channels, but nonetheless these re-
sulting nets are highly non-planar with very complex topologies. It would not be
feasible to translate this into a 3-D hardware of neurons and synapses. Besides,
every algorithm produces a different network, so a fixed architecture would be
useful just for a specific problem. It is theoretically possible to implement a uni-
versal algorithm, i.e., to implement a neural network that codes and executes
any algorithm, but there are easier solutions.

Neural nets are massive parallel models of computation. In this model, every
neuron computes its output value in a synchronized way but independently from
each other’s future value. This feature is used at NETDEF in two ways: (a) it
exists a parallel block constructor, where several processes are started at the same
time, and (b) primitive type operations are automatically executed in parallel
(e.g., to calculate ’x+y’ the network evaluates ’x’ and ’y’ at the same time). So,
our system should use the parallel characteristic of neural models.

Neural networks can be seen as vector machines. Assume a neural network Ψ
with n neurons. The neurons activation at time t can be represented by vector
xt = (x1(t), x2(t) . . . xn(t), 1). This vector includes all the relevant data to define
Ψ ’s state. The topology of Ψ is given by a (n+1)×(n+1) matrix M containing all
synaptic weight’s (the extra row/column is for biases). So, the network dynamics
is given by:

x0 = (x1(0), x2(0) . . . xn(0), 1) (4)
xt+1 = MΨ · xt

which, afterwards, apply function σ to every element of the resulting vector (see
figure 3).

The implementation of this type of machine is direct and it uses just sums,
products and the σ function. However there are disadvantages. The typical

xt+1=

�

xtM�

Fig. 3. Updating the network state

530 J.P. Neto

NETDEF networks produce sparse matrixes MΨ and even using known results
to reduce their calculation (cf. [9], [10]) it results on unnecessary space quadratic
complexity. Also, when optimized it is difficult to change the matrix values. If
MΨ has fixed values, no learning is possible (since the synaptic values are not
able to change). If MΨ is variable, the network may adapt its own structure and
be able to perform learning and adaptation, which is possible with NETDEF
networks, thus mixing symbolic and sub-symbolic computations (read [11] for
proper details).

xt+1=

�

xtM�

Fig. 4. Updating the network state with a changeable topology

Our proposed solution is to split the matrix into smaller tokens of information,
namely triples, looking at a neural network as a list of synapses. A classic synapse
has three attributes: (a) the reference to the output neuron (or 1 if it is a bias
synapse), (b) its synaptic value, and (c) the reference to the input neuron.

c

a
x y

b

Fig. 5. This neural net translates to [(x,a,y), (y,b,y), (1,c,y)]

As stated in [11], an extended model of these networks (with no greater com-
puting power but easier to describe network adaptation) is able to change dynam-
ically the values of some special synapses, called synaptic-synapses. Although we
are not concerned with biological plausibility, the existence of neuron-synaptic
connections in the brain is known to exist in the complex dendritic trees of gen-
uine neural nets (see [16] for details). In our model their main task is to convey
values and use them to update and change other synaptic weights. Fig. 6 displays
a diagram of a neuron-synaptic connection, linking neuron z to the connection
between neurons x and y. Semantically, synapse of weight wxy receives the previ-
ous activation value of z. The dynamics of neuron z is defined by the high order
dynamic rule

y(t + 1) = σ(2a.z(t).x(t) − a(z(t) + x(t)) + 0.5a + 0.5) (5)

A Virtual Machine for Neural Computers 531

Expression (5) is the result of α(α−1(z(t)) × α−1(x(t))). This calculation is
necessary because the data flow values are encoded through coding α. To avoid
ambiguities, the first argument refers to the neuron synapse connection, and the
second, to the input neuron. To identify this synaptic type, the triple consists
of (a) the output neuron reference, (b) the neuron reference keeping the actual
synaptic value, and (c) the input neuron reference.

z

x y

Fig. 6. This neural net translates to [(x,z,y)]

It is the type of the terms that defines the type of synapse. For typical
synapses, there is a synaptic weight in the middle term. For biases, the number
1 is in the first term. And for synaptic-synapses, the middle term is a neuron id.

We may translate MΨ into a list of tuples, LΨ . The list LΨ size is proportional
to the number of synapses. On the worst case (a totally connected network) it
has space quadratic complexity (the same as the matrix approach). But the usual
NETDEF network is highly sparse, making it, in practice, proportional to the
number of neurons.

Notice there is no need to keep detailed information about each neuron; they
are implicitly defined at LΨ . This list, herein, has a fixed size: it is possible
to change the synaptic values dynamically but is not possible to create new
neurons or delete existing ones. There is, however, the possibility of deactivating
a neuron by assigning zero values to its input and output synapses. With some
external process of neuron creation/destruction, it would be straightforward to
insert/delete the proper triples at LΨ .

5 Executing the Network

In the last section we showed how to represent a complex neural network with
a list of triples. These lists can be executed by software, by sequential or by
parallel hardware and yet the list textual representation is independent of this
choice. This description can be computed by very different hardware via virtual
machines. We now present what that virtual machine for a real system should
perform. A system able to process this model of neural network consists of:

1. A vector x with the current system state.
2. A triple list LΨ with the current net topology.
3. A vector x+ with the next system state.

532 J.P. Neto

By convention, when x1 (i.e., the first component of x) is 1 the system starts
processing, and stops processing when x2 is 1. These do not represent neurons
from the actual network, but are used, respectively, to activate the input signal
of the main neural module and to receive its output signal. The system initializes
with the following steps:

1. Download the net topology into LΨ .
2. Initialize x and x+ to 0.
3. Partition LΨ into the available P processors.
4. Update x1 to 1.

The third step focuses on parallelization. The computation of each triple de-
pends only at the access of x, which has two simple solutions: the vector is kept
on some shared memory available to all processors, or before each execution, x
is copied into the local memory of every processor. There is a similar writing
problem with x+. In this case, using a single shared memory would imply mutual
exclusion for writing, creating traffic problems for neurons with high fan-ins. On
the other hand, using local copies would mean that all copies should be added
before the execution of the next cycle. Abstracting this problem, the typical step
of execution at each processor is:

1. Get x.
2. For each triple (a,b,c), if it is a:

(a) synapse: x+[c] = x+[c] + b ∗ x[a]
(b) bias: x+[c] = x+[c] + b
(c) synaptic-synapse: x+[c] = x+[c] + x[b] ∗ x[a]

3. Update x+.

The list LΨ is never explicitly changed. The system dynamics adapts through
the neuron’s value changes associated with synaptic-synapses. These special neu-
rons do not directly alter other neurons activations but indirectly change them
by the synaptic changes they promote. So, while the implicit network may suffer
changes due to learning, the triples representing it do not suffer any alteration.
A fixed LΨ helps the task of optimizing the initial distribution of tuples to the
available processors.

When all processors end, the system updates x using x+:

1. For each i, x[i] = σ(x+[i])
2. If x2 �= 1 then x+ = 0; activate processors else halt

Notice that x keeps the current state, i.e., all the current neural activations,
and thus acts as the system memory. LΨ is the algorithm specified by the neural
network dynamics. Since these neural networks are (discrete) dynamical systems,
the algorithmic flow is the orbit of that system through time. This connection
between computation and dynamic systems is discussed by Chris Moore at [12].
If dynamical systems of sufficient complexity perform computational tasks, the
results from theory of computation (like the Halting Problem) are inherited by
dynamical system. On the other hand, a computational system with chaotic fea-
tures (like neural networks) can use them to perform new types of computation
(cf. [12]–[15]).

A Virtual Machine for Neural Computers 533

6 Conclusion

Neural networks are more than nice data structures to apply optimization and
learning algorithms. They can be used to perform symbolic computations. It has
already been proven that every computable function can be exactly calculated
by a discrete analog neural network with a piece-wise linear activation function.

Neural networks can, this way, be used to perform sub-symbolic and symbolic
algorithms, and mix both within a homogenous architecture. In [11] it was shown
how to use symbolic modules to control sub-symbolic tasks. In this way, neural
nets can act as stand alone computers without the need of a von-Neumann
computer.

This paper focused on how to translate neural networks into an abstract
description based on tuples making it possible to execute them with simpler
software or hardware solutions.

References

1. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity Bulletin of Mathematical Biophysics. 5 (1943) 115–133.

2. Siegelmann, H., Sontag, E.: Analog Computation via Neural Networks”, Theoret-
ical Computer Science, Elsevier. 131 (1994) 331–360

3. Siegelmann, H.: Neural Networks and Analog Computation, Beyond the Turing
Limit, Birkhuser. (1999)

4. Smolensky, P.: ”On the proper treatment of connectionism”, Behavioral and Brain
Sciences, Cambridge Univ. Press. 11 (1988) 1–74

5. Neto, J., Siegelmann, H., Costa, J.: On the Implementation of Programming Lan-
guages with Neural Nets, First International Conference on Computing Anticipa-
tory Systems, CHAOS. 1 (1998) 201–208

6. Neto, J., Costa, J., Siegelmann, H.: Symbolic Processing in Neural Networks, Jour-
nal of Brazilian Computer Society. 8-3 (2003) 58–70

7. Lindsey, C.: Neural Networks in Hardware, Architectures, Products and Applica-
tions, www.particle.kth.se/ lindsey/HardwareNNW/Course, (2002)

8. Duong, T., Eberhardt, S., Daud, T., Thakoor, A.: Learning in Neural Networks:
VLSI Implementation Strategies, Fuzzy Logic and Neural Network Handbook, C.
Chen (ed.), McGraw-Hill. (1996)

9. Sangiovanni-Venticelli, A.: Optimization for Sparse Systems, Sparse Matrix Com-
putations, D. Rose (ed.), Academic Press. (1976) 97–110

10. Pan, V.: How to Multiply Matrices Faster, Lecture Notes in Computer Science 179,
Springer Verlag. (1982) 31–45

11. Neto, J., Costa, J., Ferreira, A.: Merging Sub-symbolic and Symbolic Computation
in H. Bothe and R. Rojas (eds), Proceedings of the Second International ICSC
Symposium on Neural Computation (NC’2000), ICSC Academic Press. (2000) 329–
335

12. Moore, C.: Unpredictability and Undecidability in Dynamical Systems, Phys. Rev.
Lett. 64-20 (1990) 2354–2357

13. Sinha, S., Ditto, W.: Computing with distributed chaos, Phys. Rev. E. 60-1 (1998)
363–377

534 J.P. Neto

14. Munakata, T., Sinha, S., Ditto, W.: Computing: Implementations of Fundamental
Logical Gates by Chaotic Elements, IEEE Trans. Circuits Syst. 49-11 (2002) 1629–
1633

15. Neto, J., Ferreira, A., Coelho, H.: On Computation over Chaos using Neural Net-
works Application to Blind Search and Random Number Generation, Journal of
Bifurcation and Chaos in Applied Sciences and Engineering. 16-1 (2006) to be
published.

16. Shepherd, G. M.: Neurobiology, 3rd ed., Oxford University Press. (1994)

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 535 – 542, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Machine Cognition and the EC Cognitive Systems
Projects: Now and in the Future

John G Taylor

King’s College London, Department of Mathematics, The Strand,
London, U.K. WC2R 2LS

john.g.taylor@kcl.ac.uk

Abstract. 'The strong support for the development of cognitive machines by the
EC (under INFSO E5 - Cognition) will be reviewed, covering the main ideas of
the 23 projects in this unit funded under FP6. The variety of approaches to cog-
nition contained in these will be summarized, and future developments in FP7
considered. Conclusions on the future of the development of cognitive machine
seen from this European perspective will conclude the paper.

1 Introduction

Machine cognition is now becoming a research area in which important new devel-
opments are expected to occur. This is because of a number of coinciding develop-
ments: the growth of ever larger computing systems, able to handle teraflops of data;
the increased sensitivity and subtlety of robotic embodiment platforms; the increased
sophistication of methods of machine intelligence for handling the various compo-
nents suspected to be present in cognition; and last but not least the advances being
made in brain science in understanding the neural components involved in cognitive
processes and the dynamic flow of activity during such cognitive processing. This
helps explain why the EC has funded 23 new projects on machine cognition in the
latest FP6 round of projects. It has also set up the Unit IFSO E5 for cognition, under
the acronym of ACS, denoting artificial cognitive systems (with the same underlying
concepts as ‘machine cognition’) [1].

In this paper we will briefly survey these projects, and in the process extract what
are regarded in the European scene as the fundamental components of a cognitive
machine or ACS. The brief survey of the projects is given in the next section, and
possible principles underpinning human cognition in the following section. How this
relates to those involved in the EC projects is considered in section four. Section five
considers possible futures (as in FP7) as well as possible further questions as to how
cognitive machines could develop. We conclude the paper with a discussion.

2 The FP6 ACS Machine Cognition Projects

From the EC Unit E5 website [1] the objectives and focus of the projects are stated as:

‘To develop artificial systems that can interpret data arising from real-world events
and processes (mainly in the form of data-streams from sensors of all types and in

536 J.G. Taylor

particular from visual and/or audio sources); acquire situated knowledge of their
environment; act, make or suggest decisions and communicate with people on human
terms, thereby supporting them in performing complex tasks.
 Focus is on research into ways of endowing artificial systems with high-level
cognitive capabilities, typically perception, understanding, learning, knowledge
representation and deliberation, thus advancing enabling technologies for scene
interpretation, natural language understanding, automated reasoning and problem-
solving, robotics and automation, that are relevant for dealing with complex real-
world systems. It aims at systems that develop their reasoning, planning and
communication faculties through grounding in interactive and collaborative
environments, which are part of, or connected to the real world.
 These systems are expected to exhibit appropriate degrees of autonomy and also to
learn through "social" interaction among themselves and/or through human-agent
cooperation; in a longer term perspective, research will explore models for cognitive
traits such as affect, consciousness or theory of mind.’
 The content of this program is therefore ambitious, with even the mention of
consciousness and theory of mind. We note that similarly ambitious aims have been
expressed as the foundation of several new adventures in cognitive research, such as
at the Brain Sciences Institute (BSI) in Tokyo. This latter has made enormous
progress towards its aims, so the fact that these may be highly ambitious need not
cause a negative reaction; it should make for careful assessment of the overall project
and results being obtained, however, with realisation that some of the goals are harder
than initially thought.
 To be able to assess the realism of the aims of the EC Cognitive Projects then, let
us consider the projects further.

The 23 ACS projects are listed below: (in alphabetical order):

1) BACS: Bayesian Approach to Cognitive Systems
2) CASBLIP: Cognitive Aid System for Blind People
3) CLASS: Cognitive-Level Annotation using Latent Statistical Structure
4) COSPAL: Cognitive Systems using Perception-Action Learning
5) COSY: Cognitive Systems for Cognitive Assistants
6) DECISIONS-IN-MOTION: Neural Decision-Making in Motion
7) DIRAC: Detection and Identification of Rare Audio-visual Cues
8) eTRIMS: eTraining for Interpreting Images of Man Made Scenes
9) euCOGNITION: European Network for the Advancement of Artificial

Cognitive Systems
10) GNOSYS: An Abstraction Architecture for Cognitive Agents
11) HERMES: Human-Expressive Representations of Motion and their

Evaluation in Sequence
12) ICEA: Integrating Cognition, Emotion and Autonomy
13) JAST: Joint-Action Science and Technology
14) MACS: Multisensory Autonomous Cognitive Systems
15) MATHESIS: Observational Learning in Cognitive Agents
16) MindRaces: Mind RACES: from Reactive to Anticipatory Cognitive

Embodied Systems
17) PACO-PLUS: Perception, Action and Cognition through Learning of Object-

Action Complexes

 Machine Cognition and the EC Cognitive Systems Projects: Now and in the Future 537

18) PASCAL: Pattern Analysis, Statistical Modelling and Computational Learning
19) POP: Perception On Purpose
20) RASCALLI: Responsive Artificial Situated Cognitive Agents Living and

Learning on the Internet
21) ROBOT-CUB: Robotic Open-architecture Technology for Cognition, Under-

standing and Behaviours
22) SENSOPAC: SENSOrimotor structuring of Perception and Action for

emerging Cognition
23) SPARK:Spatial-temporal patterns for action-oriented perception in roving

robots
How can we begin to appreciate this vast range of ideas and approaches to
cognition? To begin with, we can gather the projects together under several
headings, emphasisng various approaches to cognition::

a) Embodiment driven (# 13, 21),
b) Applications-driven (# 2, 5, 7, 8, 20)
c) Machine-intelligence driven (# 1, 3, 18)
d) Neural-based (# 15)
e) Cognitive science based (symbolic: #5)
f) Hybrid (# 10)
g) Dynamic systems (# 23)

The above clustering of the projects is broad, but sufficient for the analysis to
follow; we will not go into further details of the projects, but refer the reader to the
appropriate web-site. These various approaches need not, however, be the most effec-
tive to achieve a breakthrough in the creation of an autonomous cognitive machine. In
order to appreciate better the task facing the creation of a cognitive machine, and the
necessary criteria, we develop a general model of human cognition and then relate the
model to the projects.

3 The Nature of Human Cognition

There are numerous definitions of human cognition, such as: 1) ‘The conscious proc-
ess of knowing or being aware of thoughts or perceptions, including understanding
and reasoning’; 2) ‘The mental process or faculty of knowing, including aspects such
as awareness, perception, reasoning, and judgment’; 3) ‘High level functions carried
out by the human brain, including comprehension and use of speech, visual perception
and construction, calculation ability, attention (information processing), memory, and
executive functions such as planning, problem-solving, and self-monitoring.’ These
definitions cover a multitude of functions. Here the basic components of cognition
will be taken to be: awareness, thinking, knowing, reasoning and executive functions.

Awareness presents an enormous difficulty, since there is no universally accepted
model of its nature or any accepted model of its possible creation by the brain. A
model of awareness, developed from a control model of attention using engineering
control ideas [1, 6] has some claim for reality, with support coming from a range of
paradigms in brain science. The claim that awareness is properly included in such a
model has been argued in detail elsewhere [6, 7]; some such indication is needed for
any self-respecting model of cognition to be worth its salt.

538 J.G. Taylor

At last year’s ICANN05 a set of sub-component processes and resulting principles
of cognitive processing were suggested [2]. These arose from looking more closely at
the sub-components of cognitive processing being carried out by specific regions in
the brain: 1) Storage and retrieval of memories in hippocampus (HC) and related
areas; 2) Rehearsal of desired inputs in working memory; 3) Comparison of goals
with new posterior activity;.4) Transformation of buffered material into a new, goal-
directed form (such as spatial rotation of an image held in the mind); 5) Inhibition of
pre-potent responses; 6) The development of forward maps of attention in both sen-
sory and motor modalities, so that possibly consequences of attended actions on the
world can be imagined; 7) Determination of the value of elements of sequences of
sensory-motor states as they are being activated in forward model recurrence; 8)
Learning of automatic sequences (chunks) so as to speed up the cognitive process

The resulting principles of cognition deduced from these sub-components were [2]:

P1: There is overall control by attention of the cognitive process, using attention-
based control signals to achieve suitable transformations to solve cognitive tasks;
P2: Fusion of attention control (in parietal lobe and PFC) and long-term learning in

HC occurs to achieve an expanding state space of stimuli and actions, and of corre-
sponding attention control;
P3: The creation of a valuation of goals occurs in PFC to handle reward prediction

biasing of the processes 1) to 6) above;
P4: Transformations on buffered stimuli is achieved by creation of suitable PFC

goals associated with the required transformations being carried out on existing buff-
ered activities, under the control of attention;
P5: Forward models (along the lines of equation (1) in section 2)) are created under

attention control so that, by their recurrence, sequential passage through sequences of
attended sensory-motor states is achieved (as in thinking), possibly to reach a desired
goal (as in reasoning) or valued states that may even correspond to new ways of look-
ing at a problem (as in creativity);
P6: There is creation of, and ability to access, automated ‘chunks’ of knowledge, so

they can be inserted into forward model sequences under P4. These automated chunks
are initially created by effortful attention at an earlier time (using error-based learning
in cerebellum) but are then gradually transferred to automatic mode by suitably long
rehearsal (through reinforcement training by a reward signal based on the neuro-
modulator dopamine);
P7: Attention is employed as a gateway to consciousness, with consciousness providing

an overarching control function of speed-up of attention, thereby giving consciousness
overall guidance over ongoing processes (plus other features still to be defined).

How much overlap occurs between theses principles and those being explicated in
the EC ACS Cognitive Machine projects listed above? We turn to that in the next
section.

4 The Relation of Human Cognition to EC-Based Cognition

The possible approaches to cognition extracted from the set of EC Cognitive Systems
projects at the end of section 2 are broad, and certainly cover the range of principles

 Machine Cognition and the EC Cognitive Systems Projects: Now and in the Future 539

presented in the previous section in a general manner. As expected the brain-based
projects, such as GNOSYS and MATHESIS are closest to the thrust of these princi-
ples, the former project being heavily guided by the nature of brain processing, the
latter involving both brain imaging experiments and experiments on children to create
a model of motor action learning by example by means of neural network systems.
Similarly the projects involving embodiment also are well related to some of the as-
pects of human cognitive principles, although not necessarily following them through
to the higher level especially of consciousness. Such relationship is unclear in some of
the other projects, particularly those involved with symbolic processing styles, so
these need to be considered further. But also GNOSYS possesses a certain degree of
ambivalence to symbols, since it does not use them heavily but does have a symbolic
goal tree structure, and similar symbolic components in drive and emotion driven
responses.
 The main problem these features lead us to is the existence of a symbolic-sub-
symbolic divide in approaches to cognition. That does not mean that the more theoreti-
cal approaches (Bayesian or dynamical systems theory, for example) should be
neglected (nor are they in the EC Cognitive Systems projects list), but it would appear
that there is still a problem in how to bridge this symbolic-sub-symbolic gap which is
still to be properly explored. The other theoretical approaches are undoubtedly impor-
tant in any analysis of human cognition: the dynamical system properties of neural
networks in the brain are being analyzed ever more successfully by numerous tools,
and are leading to increased insights into such aspects as the binding problem, capacity
limits on memory systems, and so on. Similarly Bayesian approaches have been found
to be of great value in understanding and modeling pattern analysis and decision mak-
ing in the brain, as well as various aspects of motor control. However it is the gap
between such projects as COSY and GNOSYS that are at issue. There is an enormous
power in the symbolic approach, although CYC and related projects have run into
severe overload problems when trying to make progress in common-sense reasoning
by collecting millions of examples of facts about the world.
 Returning to the problem of the existence of a gap between symbolic processing
and neural network-based sub-symbolic processing, it is clear that the extreme of
universal grammar of Chomsky, and the associated LAD (for Language acquisition
device he proposed to be genetically based in the brain of the infant) are not the
mechanisms by which language is learnt in the brain. This learning process takes
several years, and is developmentally complex. The codes for nouns and for actions
are inextricably intertwined in the brain with representations for stimuli. So is it nec-
essary to understand the details of brain-based language abilities, and especially at-
tempt to implement them in a neural network framework, in order to build a proper
basis for understanding human cognition?
 Much can be done by means of linguistic reasoning, as is well known from recent
researches into different forms of reasoning that humans use to solve problems. But
there is always the symbol grounding problem: how do the symbols in the brain gain
their basis of meaning so as to refer to objects in the world? It is that a purely sym-
bolic system cannot achieve without addition of the sub-symbolic representations of
objects and actions which are described by words at the symbolic level.
 The mechanism by which this language grounding is achieved in the brain is being
explored assiduously, especially by the use of brain imaging systems to enable

540 J.G. Taylor

dissociations between various brain areas involved in language processing to be
made, as well as to descry their functionality in such processing. At the same time
developmental aspects are being carefully explored so as to be able to track the learn-
ing processes involved in learning a language.
 It would seem that there are at least two main aspects of this learning process,
which develop sequentially one after the other. The first is the creation of a vocabu-
lary of semantically well-defined words, related to the various stimuli an infant may
see as it grows up. This semantic definition needs a set of teachers, so that through
joint attention of the child and the teacher to a given stimulus the word for it can be
heard and ultimately learnt by the child; this allows ever increasingly precise classifi-
cation of the world in terms first of basic categories (dog, cup,…) and then increas-
ingly of refined super-ordinate categories, such as terrier, Yorkshire terrier, and so on.
This semantic process undoubtedly goes on throughout life but has a special spurt at
about 2 – 4 years of age.
 The second, much harder aspect of language learning is that of syntax and the re-
lated agent semantics. Verbs are learnt in far fewer in number in the first few years,
and the concept of agent (subject) acting on an object is thereby more difficult to com-
prehend for the developing child. There may be a number of reasons for this slower
growth of syntactic power: the frontal lobes where action goals are stored takes time to
myelinate in the growing child, the working memory sites able to store increasingly
long sequences of words involved in syntactically complex sentences may not also be
available for young children, a model of the causal nature of actions on objects does
not develop till late in children, and so on. But for whatever reason there is a difficulty
in getting syntax right and the associated agent semantic model of the world.
 It is correspondingly difficult to create an artificial model of the processes involved
in semantic analysis, especially of complex sentences. However this problem needs to
be solved before a machine system can be created to be able to be said to ‘understand’
language inputted to it; the problems of encoding and outputting a stream of words
are not of the same level of difficulty. It is how the string of words is analyzed, not
only by the semantic net assumedly learnt by the methods of joint attention of teacher
and pupil, but more especially by the syntactic analysis system of the brain, that will
determine the level of understanding of the system to the word string.
 There are numerous recurrent net systems that have been developed to model vari-
ous more detailed aspects of syntactic analysis. However there still has to be devel-
oped a more complete approach to language understanding and learning which can
hopefully lead us forward to a machine capable of understanding language at the level
of a 5-year old.

The present gap between sub-symbolic and symbolic processing, and especially in
the lack of suitably powerful models able to bridge that gap, indicates a serious lacuna
in modern cognitive systems research. The sub-symbolic approaches will thereby
have to proceed without language, so that they are cut off from those projects using
symbolic techniques.

The only level of reasoning for the sub-symbolic systems will be that of non-
human animals. Their reasoning powers are now being realized as more powerful than
appreciated heretofore. So it is possible to attempt to create a reasoning or thinking
system that is solely based on sub-symbolic processing. In this way cognition can be
analyzed up to a certain depth.

 Machine Cognition and the EC Cognitive Systems Projects: Now and in the Future 541

5 The Future of Machine Cognition

The future of machine cognition in general will depend on how successful are the
various projects of section 2 above, as well as of the many projects around the world
of a similar nature. Thus it is early days yet to speak to this question with any cer-
tainty. It may be that it is necessary, on order to obtain cognition at the level of hu-
mans, to include three aspects of the program in developing machine cognition which
so far I have neglected or left to one side:

1) Providing suitable computing power. There are now a variety of large parallel
computers throughout the world; one of these (Deep Blue of IBM) is being applied at
EPFL, Lausanne to build a mini-column of ten thousand neurons by means of com-
puting the dynamics of each neuron on a dedicated computing unit. The present re-
cord of such machines is of 250,000 such nodes at Los Alamos (apparently dedicated
to defense work). It is clear that the computing demands are high for learning suitably
precise lower-level representations, say as in the brain’s V1 or V2, that are able to be
used as a basis for more developed higher level representations of objects. It is these
representations to which object words are to be attached by attention; that gives a
solid basis for semantics. Syntax needs models of prefrontal cortices to enable se-
quencing and chunking to occur, so as to allow causal models of the world to be cre-
ated (as internal control models) and thereby provide a firm syntactic basis for the
analysis of word strings. But here again a large amount of computing power is
needed. Such provision of a dedicated parallel computer for such learning processes
should be considered as a serious priority in future many-project work.

2) Properly understand the nature of consciousness and its presence in the cogni-
tive process. If the CODAM model of consciousness is correct (as arising from a
control signal equal to the efference copy of the attention movement signal generated
in parietal areas to move attention) then consciousness will play an important role in
any cognitive processing. It will enable faster and more error-free processing to occur,
as well as allow the scaling problem to be handled of how to live effectively in a
complex world (by removing distracters through careful attention control, as in the
CODAM approach).

3) The development of a language system able to learn continuously by means of
increasingly complex sub-symbolic modules guided by human speech development.
To solve this ambitious task will require a multi-disciplinary team working across
brain science, linguistics, neural network modeling, parallel computing and ancillary
disciplines. Much is being learnt in all these fields; it is increasingly appropriate to
attempt to fuse this knowledge by the production of a truly brain-based LAD.

It is these two aspects and their future exploration which need to be developed as
part of future EC support.

6 Discussion

In this paper I have briefly surveyed the various projects involved in creating cogni-
tive systems in the EC Cognitive Systems Unit. It has been recognized that these
cover a broad area, and are making important progress in attacking basic problems in
the area, both at a fundamental and at an applied level. The relevant members of the

542 J.G. Taylor

EC should be congratulated on their forward-looking approach to the topic. At the
same time a set of principles were presented in this paper on which cognitive systems
appear to be based in the normal usage of ‘cognitive’. These principles were deduced
form analysis of some of the fundamental components of cognitive processing. The
relation between the two sets of approaches - between the EC Cognitive Systems
projects and the cognitive principles –are then seen to be somewhat consistent.
 However several problems were thrown up by this analysis:

1) The need to bridge the gap between sub-symbolic and symbolic processing
styles;

2) The need to provide a much greater level of processing power;
3) The need to bring in consciousness as a working component of cognition, as is

recognized in all the main discussions on the subject.

There are obvious (although highly non-trivial) solutions to the above problems:

1) To the first problem, it is necessary to attack the sub-symbolic basis of language
by creating linguistically defined object and action representations, so that the
semantic aspects of language are correctly sub-symbolically founded. This struc-
ture then needs to be extended to a similar founding of syntax and agent seman-
tics. Small parts of this program have been attempted, but only a concerted and
interdisciplinary attempt will be successful.

2) Create a central parallel large-scale computer (upwards of 100,000 nodes) so as
to enable the very large-scale computations to be achieved for learning connec-
tion weights in multi-modular models of components of the human brain;

3) Finally attack the problem of consciousness using developed models of attention
(such as CODAM [3], although other models would be relevant here). These
would enable a more powerful system, endowed with some of the powers carried
by consciousness, to allow the system to move beyond lower-level attention
control

All of these routes to the future could be followed; the more assiduously they are
developed and solved the sooner will we begin to move towards a future that is mind!

Acknowledgements

I would like to thank the EC, under the GNOSYS project and more recently
MATHESIS, for support to carry out this work.

References

[1] http://cordis.europa.eu.int/ist/cognition/index.html
[2] Taylor JG (2005) The Principles of Cognitive Systems. Proc ICANN2005, Warsaw.
[3] Taylor JG (2005) Mind and Consciousness: Towards a Final Answer? Physics of Life Re-

views 2:1-45

A Complex Neural Network Model for Memory
Functioning in Psychopathology

Roseli S. Wedemann1, Luı́s Alfredo V. de Carvalho2, and Raul Donangelo3

1 Instituto de Matemática e Estatı́stica, Universidade do Estado do Rio de Janeiro
Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, RJ, Brazil

roseli@ime.uerj.br
2 Eng. Sistemas e Computação, COPPE - Universidade Federal do Rio de Janeiro,

Caixa Postal 68511, 21945-970, Rio de Janeiro, RJ, Brazil
LuisAlfredo@ufrj.br

3 Instituto de Fı́sica, Universidade Federal do Rio de Janeiro
Caixa Postal 68528, 21941-972, Rio de Janeiro, RJ, Brazil

donangel@if.ufrj.br

Abstract. In an earlier paper [1], we described the mental pathology known
as neurosis in terms of its relation to memory function. We proposed a mech-
anism whereby neurotic behavior may be understood as an associative memory
process in the brain, and the symbolic associative process involved in psychoan-
alytic working-through can be mapped onto a process of reconfiguration of the
neuronal network. Memory was modeled by a Boltzmann machine represented
by a complete graph. However, it is known that brain neuronal topology is se-
lectively structured. Here, we further develop the memory model, by including
known mechanisms that control synaptic properties, showing that the network
self organizes to a hierarchical, clustered structure. Two modules corresponding
to sensorial and declarative memory interact, producing sensorial and symbolic
activity, representing unconscious and conscious mental processes. This exten-
sion of the model allows an evaluation of the idea of working-through in a hier-
archical network structure.

1 Introduction

Psychoanalytic research regarding the transference neuroses has found that traumatic
and repressed memories are knowledge which is present in the subject, but which is
symbolically inaccessible to him. It is therefore considered unconscious knowledge [2].
Freud observed that neurotic patients systematically repeated symptoms in the form of
ideas and impulses, and called this tendency a compulsion to repeat [3]. He related
the compulsion to repeat to repressed or traumatic memory traces, caused by a conflict
associated with libidinal fixation and frustration [2].

Neurotic analysands have been able to obtain relief and cure of painful symptoms
through a mechanism called working-through. This procedure aims at developing know-
ledge regarding the causes of symptoms by accessing unconscious memories, and un-
derstanding and changing the way in which the analysand obtains satisfaction, i.e.,
changing his compulsion to repeat [3].

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 543–552, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

544 R.S. Wedemann, L.A.V. de Carvalho, and R. Donangelo

Although inconclusive, psychodynamic theories seem to suggest correlations be-
tween creativity, psychopathology and unconsciousness [2,3,4,5]. We explored these
commonalities and proposed, in a previous paper [1], a schematic functional model
for some concepts associated with neurotic mental processes, as described by Sigmund
Freud [2,3]. Our description is based on the current view that the brain is a cognitive
system composed of neurons, interconnected by a network of synapses, that cooperate
locally among themselves to process information in a distributed fashion. Mental states
thus appear as the result of the global cooperation of the distributed neural cell activity
in the brain [6,7]. We also consider that the emergence of a global state of the neural
network of the brain generates a bodily response which we call an act.

As a first approximation, in [1] memory was modeled by a Boltzmann machine rep-
resented by a complete graph. It is known, however, that brain neuronal topology is
selectively structured. Neurons interact mainly with spatially close neighbors, having
fewer long-range synapses connecting them to other neurons farther away [8,6]. In this
paper, we further develop the memory model, by including some known microscopic
mechanisms that control synaptic properties, and show that the network self organizes
to a hierarchical, clustered structure. We propose a memory organization, where two
hierarchically structured modules corresponding to sensorial and declarative memo-
ries interact, producing sensorial and symbolic activity, representing unconscious and
conscious mental processes. In proposing this organization, we followed Freud’s idea
that unconscious memories are those that we cannot access symbolically, i.e. cannot
talk about [2,3]. An organization involving language processing brain areas, derived
from a neurophysiological point of view, can be found in [9]. A model emphasizing
brain mechanisms for attention involved in conscious activity can be found in [10]. Our
main contribution is to propose a neuronal mechanism, based on known microscopical,
biological brain mechanisms, to describe conscious and unconscious mental activity
involved in neurotic behavior and psychoanalytic therapy by memory functioning, as
described by Freud. We thus represent brain mechanisms involved in neurosis, as a
complex system, based on a neural network model and analyse it according to recent
methods developed for the study of complex networks.

In the next section, we review our functional and computational model for neurosis.
In Section 3, we describe a self-organizing model for generating hierarchically clustered
memory modules, representing sensorial and declarative memories. We then show re-
sults from computer simulations with some mathematical properties of these complex
networks. In the last section, we draw some conclusions and perspectives for future
work.

2 Functional and Computational Model for the Neuroses

In this section, we review the model described in [1]. There we proposed that the neu-
roses manifest themselves as an associative memory process, a mechanism where the
network returns a stored pattern when it is shown another input pattern sufficiently sim-
ilar to the stored one [11]. We modeled the compulsion to repeat neurotic symptoms by
supposing that such a symptom is acted when the subject is presented with a stimulus
which resembles, at least partially, a repressed or traumatic memory trace. The stimulus

A Complex Neural Network Model for Memory Functioning in Psychopathology 545

causes a stabilization of the neural net onto a minimal energy state, corresponding to the
memory trace that synthesizes the original repressed experience, which in turn gener-
ates a neurotic response (an act). The neurotic act is not a result of the stimulus as a new
situation but a response to the repressed memory trace. Repression can be accounted for
in part by a mechanism which inhibits formation of certain synaptic connections, in the
cortical map formation process, thus inhibiting symbolic representation.

We mapped the linguistic, symbolic associative process involved in psychoanalytic
working-through into a corresponding process of reinforcing synapses among memory
traces in the brain. These connections should involve declarative memory, leading to
at least partial transformation of repressed memory to consciousness. This has a rela-
tion to the importance of language in psychoanalytic sessions and the idea that uncon-
scious memories are those that cannot be expressed symbolically. We propose that as
the analysand symbolically elaborates manifestations of unconscious material through
transference in psychoanalytic sessions, he is reconfiguring the topology of his neural
net, by creating new connections and reinforcing or inhibiting older ones. The network
topology which results from this reconfiguration process will stabilize onto new energy
minima, associated with new acts. The process of slowly and repeatedly reconfiguring
synaptic connections to elaborate knowledge accounts for the long durations of psycho-
analytic processes, where repetition is specially important.

Memory functioning is modeled by a Boltzmann machine, where node states take
binary values [11]. Pattern retrieval on the net is achieved by a standard simulated an-
nealing process, in which the network temperature parameter is gradually lowered by
a factor α. We considered that the network initially had random symmetric connec-
tion weights, and was divided into two weakly linked subsets, representing conscious
and unconscious parts of memory. These parts should correspond to a map formation
described in [12], representing neurotic memory states.

To simulate the working-through process, we stimulate the net by means of a change
in a randomly chosen node ni belonging to the “unconscious” section of a neurotic
memory pattern. This stimulus is then presented to the network and, if the Boltzmann
machine retrieves a pattern with conscious configuration different than that of the neu-
rotic pattern, we interpret this as a new conscious association, and enhance all weights
from ni to the changed nodes in the conscious subset. The increment values are pro-
portional to the products of the states of the neurons connected by the synapse and
the learning parameter β. New knowledge is learned only when the stimulus from the
analyst is not similar to the neurotic memory trace. This procedure must be repeated
for various reinforcement iterations in an adaptive learning process, and also each set
of reinforcement iterations must be repeated for various initial annealing temperature
values.

3 Hierarchical Memory Model

In a further refinement of our model, we now consider that neurons belong to two dif-
ferent subsets, corresponding to sensorial and declarative memories. Memory traces
stored in sensorial memory represent mental images of stimuli received by sensory
receptors (located in eyes, ears, skin and other parts of the body). Sensorial memory

546 R.S. Wedemann, L.A.V. de Carvalho, and R. Donangelo

represents brain structures such as the amygdala, cerebellum, reflex pathways, hip-
pocampus, and prefrontal, limbic and parieto-occipital-temporal cortices that synthe-
size visual, auditory and somatic information. A trace in sensorial memory may “be-
come conscious” if associated to a pattern in declarative memory. Declarative memory
stores representations of memory traces stored in sensorial memory, i. e. symbols, and
represents brain structures such as areas of the medial temporal lobe, hippocampus,
Broca’s and Wernicke’s areas and areas of the frontal cortex. These latter areas are as-
sociated with language and, because of them, we can associate a word such as “red”
to the visual sensation of seeing a red object. With declarative memory we represent
Freud’s concept of conscious memory traces (in some of his works this is referred to
as the preconscious). Attentional mechanisms, which we did not model, select stim-
uli to sensorial memory and allow them to become conscious if associated to a trace in
declarative memory. Here we concentrate on the relations between sensorial and declar-
ative memories and the possibility of becoming conscious. We thus consider that, when
a stimulus S that retrieves a pattern in sensorial memory stimulates also retrieval of
an associated pattern in declarative memory, it becomes conscious. Stimuli of sensor-
ial memory which do not cause activation of declarative memory remain unconscious.
This mechanism is similar to ideas proposed by Edelman in [9], and strongly reflects
Freud’s concepts of conscious and unconscious mental processes and the role of lan-
guage in psychoanalysis.

In order to model the structure of the topology of each of the two memories, we
consider the following microscopic biological mechanisms. Brain cells in many ani-
mals have a structure called on-center/off-surround, in which a neuron is in coopera-
tion, through excitatory synapses, with other neurons in its immediate neighborhood,
whereas it is in competition with neurons that lay outside these surroundings. Competi-
tion and cooperation are found statically hardwired, and also as part of many neuronal
dynamical processes, where neurons compete for certain chemicals [6]. In synaptoge-
nesis, for example, substances generically called neural growth factors are released by
stimulated neurons and, spreading through diffusion, reach neighboring cells, promot-
ing synaptic growth. Cells that receive neural growth factors make synapses and live,
while cells that have no contact with these substances die [6]. A neuron that releases
neural growth factor guides the process of synaptic formation in its tri-dimensional
neighborhood, becoming a center of synaptic convergence. When neighboring neu-
rons release different neural growth factors in different amounts, many synaptic con-
vergence centers are generated and a competition is established between them through
the synapses of their surroundings. A signaling network is thus established to control
development and plasticity of neuronal circuits. Since this competition is started and
controlled by environmental stimulation, it is possible to have an idea of the way envi-
ronment represents itself in the brain.

Based on these microscopic mechanisms, we developed the following clustering al-
gorithm to model the self-organizing process which controls synaptic plasticity, result-
ing in a structured topology of each of the two memories.

Step 1. Neurons are uniformly distributed in a square bi-dimensional sheet.
Step 2. To avoid the unnecessary and time-consuming numerical solution of the dif-

fusion equation of the neural growth factors for simulation of synaptic growth, we

A Complex Neural Network Model for Memory Functioning in Psychopathology 547

assume a Gaussian solution. Therefore, a synapse is allocated to connect a neuron
ni to a neuron nj according to a Gaussian probability, given by eq. 1

Pij = exp(−(rj − ri)2/(2σ2))/
√

2πσ2 , (1)

where rj and ri are the positions of nj and ni in the bi-dimensional sheet and σ is
the standard deviation of the distribution and is considered here a model parameter.
If a synapse is allocated to connect ni and nj , its strength is proportional to Pij .

Step 3. We verified in [12] that cortical maps representing different stimuli are formed
such that each stimulus activates a group of neurons spatially close to each other,
and that these groups are uniformly distributed along the sheet of neurons repre-
senting memory. We thus now randomly choose m neurons which will each be a
center of the representation of a stimulus. The value of m should be chosen consid-
ering the storage capacity of the Boltzmann machine [11].

Step 4. For each of the m centers chosen in Step 3, reinforce adjacent synapses ac-
cording to the following criteria. If ni is a center, define sumni =

∑
j |wij |, where

wij is the weight of the synapse connecting nj to ni. For each nj adjacent to ni,
increase |wij | by ∆wij , with probability Probnj = |wij |/sumni , where ∆wij =
ηProbnj and η ∈ � is a model parameter chosen in [0, 1]. After incrementing
|wij |, decrement ∆wij from the weights of all the other neighbors of ni, according
to: ∀k �= j, |wik| = |wik| −∆wik , where ∆wik = (1 − |wik|/

∑
k �=j |wik|)∆wij .

Step 5. Repeat step 4 until a clustering criterion is met.

In the above clustering algorithm, steps 2 and 3 are justified in the algorithm’s de-
scription. Step 4 regulates synaptic intensities, i. e. plasticity, by strengthening synapses
within a cluster and reducing synaptic strength between clusters (disconnects clusters).
By cluster, we mean a group of neurons that are spatially close, with higher probability
of being adjacent by stronger synapses. This step represents a kind of preferential at-
tachment criterion with some conservation of energy (neurosubstances) among neurons,
controlling synaptic plasticity. Neurons that have received stronger sensorial stimulation
and are therefore more strongly connected, will stimulate their neighborhoods and pro-
mote still stronger connections. This is in agreement with the microscopic biological
mechanisms we mentioned above.

The growth of long-range synapses is energetically more costly than short-range
synaptic growth, and therefore the former are less frequent in the brain than the latter.
For allocating long-range synapses which connect clusters, we should consider the basic
learning mechanism proposed by Hebb [6,9,11], based on the fact that synaptic growth
among two neurons is promoted by simultaneous stimulation of the pair. This also sug-
gests a mechanism through which the external world, culture and language, reflects
itself in the brain. Memory traces stored by configurations of certain states of neuronal
groups, which receive simultaneous stimuli, should enhance synaptic growth among
the neuronal groups representing these traces, allowing association among traces. Since
memory traces represent both sensorial information and concepts (declarative memo-
ries), we are also representing association of ideas or symbols by long-range synapses.
This may suggest a way in which basic language structure (and maybe Chomsky’s con-
cept of Universal Grammar [13]) is mapped onto brain topology.

548 R.S. Wedemann, L.A.V. de Carvalho, and R. Donangelo

We are studying these processes and, since we are still not aware of the synaptic dis-
tributions that result in such topologies, as a first approximation, we allocate synapses
randomly among clusters. Within a cluster C, a neuron ni is chosen to receive a con-
nection with probability Pi =

∑
j |wij |/

∑
nj∈C

∑
k |wjk|. If the synapse connects

clusters in different memory sheets (sensorial and declarative memories), its randomly
chosen weight is multiplied by a real number κ in the interval [0, 1], reflecting the fact
that, in neurotic patterns, sensorial information is weakly accessible to consciousness,
i.e. repressed.

Mechanisms of memory storage and retrieval by the Boltzmann machine and simu-
lation of the working-through psychoanalytical process are then carried on as reviewed
in Section 2 and described in [1].

4 Simulation Illustration and Network Properties

We illustrate the model with a preliminary simulation experiment for a network with
N = 32 neurons, such that Nsens = 16 of them belong to the sensorial memory subset.
We are aware that this number of neurons is extremely small for realistic brain studies.
However, in this first approach, the purpose of our simulations is to illustrate these basic
concepts and mechanisms at a semantic level. The short range microscopic mechanisms
are scalable and, since our algorithms are based on microscopic biological mechanisms,
we do expect that this level should be amenable to mapping to a biological substratum.
Some simulations of system configurations resistant to learning have taken more than
one day, on a sequential processor, even for this small system. In the future, we plan to
parallelize these algorithms in order to simulate significantly larger systems. Synapses
connecting different memories are multiplied by κ = 0.5, square memory sheets have
size 1.5 × 1.5, σ = 0.58, β = 0.3, η = 0.1 and the other parameters for the annealing
process in the Boltzmann Machine are attributed the same values we have presented
in [1].

In Fig. 1, we show one of the topologies generated after executing only the clustering
algorithm and, in Fig. 2, the corresponding topology after long-range synaptic genera-
tion. Although the number of neurons is still quite small, it suffices to illustrate the fact
that the algorithm self organizes the network in a clustered and hierarchical manner.
Fig. 3 gives a more quantitative view.

We generated 1000 different topologies from the same initial system parameter val-
ues mentioned above and measured the average node degree (k) distribution, to evaluate
the effects of competitive and cooperative mechanisms on network structure. In Fig. 3,
the cross symbols represent the values found in our simulations and the curve a fit of a
Poisson distribution kλ exp(−k)/λ!. It is known that random graphs follow the Poisson
distribution of node degrees [14]. Our graphs are not random, but the spatially homoge-
neous allocation of synapses of the clustering algorithm may explain the close fit of the
distribution for smaller values of k. The deviation from Poisson distribution for higher
values of k may be attributed to the competitive associative biological mechanisms we
described in the previous section, which introduce some structure to the topology.

The average clustering coefficient as defined in [15,14] for the topology in Fig. 2 is
0.43. This is higher than the value of 0.28 which was measured for the neural network

A Complex Neural Network Model for Memory Functioning in Psychopathology 549

 0

 1

 2

 3

 4

 5

 0 1 2 3 4

y
co

or
di

na
te

x coordinate

’positions_sensorial_memory’
’positions_declarative_memory’

’clustered_synapses_in_memory’

Fig. 1. Network topology after clustering

 0

 1

 2

 3

 4

 5

 0 1 2 3 4

y
co

or
di

na
te

x coordinate

’positions_sensorial_memory’
’positions_declarative_memory’

’synapses_connecting_memories’

Fig. 2. Network topology with long range synapses

of the worm C. Elegans (the clustering coefficient of this worm’s network would be
0.049, if it were a random graph) [14].

For the initial topology shown in Fig. 2, the network stored 13 memory patterns be-
fore working-through. Of these, 38.4% were still stored after working through, which
shows that the network does adapt with the simulation of working-through, freeing itself
from some of the “neurotic” states. For smaller values of κ the network has learning dif-
ficulties, which suggests a difficulty in associating unconscious memory traces among
themselves and with declarative memory.

In neural network modeling, temperature is inspired by the fact that real neurons fire
with variable strength, and there are delays in synapses, random fluctuations from the
release of neurotransmitters, and so on. These are effects that we can loosely think of
as noise [11,6]. So temperature in Boltzmann machines controls noise. In our model,
temperature allows associativity among memory configurations, lowering synaptic

550 R.S. Wedemann, L.A.V. de Carvalho, and R. Donangelo

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10

av
er

ag
e

nu
m

be
r

of
 n

od
es

 w
ith

 k
 li

nk
s

number of links (k)

’node_degree_distribution’
26.7*4.8**x*exp(-4.8)/gamma(x+1.)

Fig. 3. Node degree distribution in logarithmic scale. Cross symbols represent values found in
our simulations and the curve a fit of a Poisson distribution.

inhibition, in an analogy with the idea that freely talking in analytic sessions, and stim-
ulation from the analyst lower resistances and allow greater associativity.

It is also possible to relate Boltzmann machine functioning with the model described
in [12], where the signal-to-noise ratio at the neuronal level, induced by the cate-
cholamines (dopamine, norepinephrine, etc.), alters the way the brain performs asso-
ciations of ideas. Increases or decreases in the catecholaminergic levels have behavioral
consequences in arousal, attention, learning, memory, and motor responses [4]. It is still
not clearly verified, but it seems plausible to assume that catecholamines affect the neu-
ronal ability to discern what is information from what is noise in a signal. According to
some of these hypotheses, an increase of dopamine (hyperdopaminergy) promotes an
enhancement of the signal and therefore of the signal-to-noise ratio [4,5,12]. Since noise
is responsible for more free association of ideas, its reduction weakens associativity re-
sulting in fixation to certain ideas. On the other hand, a decrease in dopamine increases
noise which permits a broader association of ideas. Excessive noise may disorganize
thought by permitting the association of distantly correlated ideas and breaking the
logic of thought. We can thus relate temperature and noise in our Boltzmann machine
to associativity of thought as in [12].

We have not yet thoroughly explored the parameter space of the model. This task
will be continued in future work. We show some results from preliminary simulations,
for different values of σ (see Equation 1), in Table 1. In our algorithms, associativity
is sensitive to values of σ in cluster formation. If σ is too low, the network is more
resistant to associativity and learning. For larger values of σ, associativity, represented
by interactions among neurons, is higher and the network associates more loosely. In
Table 1, Tlearn is the temperature value for the first learning event during working-
through, and the third column shows the percentage of original (neurotic) patterns that
are still stored after working-through. These results are still not conclusive because they
also depend on other model parameters, which we are still studying. In these cases,
lower values of σ require larger temperatures for associativity that leads to learning.

A Complex Neural Network Model for Memory Functioning in Psychopathology 551

Table 1. System behavior for different values of σ

σ Tlearn % Original Clustering
Patterns Coefficient

0.465 0.530 100 0.452
0.520 0.031 41.4 0.439
0.578 0.001 38.4 0.430

Psychoanalysis promotes new thought associations and learning, and this cannot
be carried through if catacholamine levels are either too high or too low. We sug-
gest that psychoanalytic working-through explores the neurophysiologic potentialities
of the subject, inducing network reconfiguration. When these potentialities are limited
by chemical alterations, such as in strong psychotic cases, working-through should be
limited or even impossible.

5 Conclusions

We have further developed the memory model presented in [1] to include microscopic
biological neuronal mechanisms, and verified that the memory complex network self
organizes into a hierarchical clustered structure. We have proposed a memory orga-
nization, where two hierarchically structured modules corresponding to sensorial and
declarative memories interact, producing sensorial and symbolic activity, representing
unconscious and conscious mental processes. This memory structure and functioning
along with an adaptive learning process is used to explain a possible mechanism for
neurotic behavior and psychoanalytical working-through.

The model is in agreement with psychoanalytic experience that working-through
is a slow process, where the individual slowly elaborates knowledge by re-associating
weakly connected memory traces and new experiences. This repetitive self-reconfigura-
tion process, which we represent in the model by a change in network connectivity, will
correspond to new outcomes in the subjects life history.

We are proceeding in further model refinement and analysis. It is still necessary to
test the dependence of model behavior on various parameters such as temperature and
κ. We are very interested in trying to map language structure and processing into net-
work topology and dynamics, although we are not yet sure whether this is possible. Our
main contribution is to propose a neuronal mechanism, based on known microscopical,
biological brain mechanisms, that describes conscious and unconscious memory activ-
ity involved in neurotic behavior, as described by Freud. However, we do not sustain
or prove that this is the actual mechanism that occurs in the human brain. Although
biologically plausible, in accordance with many aspects described by psychodynamic
and psychoanalytic clinical experience, and experimentally based on simulations, the
model is very schematic. It nevertheless seems to be a good metaphorical view of facets
of mental phenomena, for which we seek a neuronal substratum, and suggests directions
of search.

We finish with a quote from the Introduction of [16], Freud’s early work from late
1890’s, first published only in 1950: “The intention is to furnish a psychology that shall

552 R.S. Wedemann, L.A.V. de Carvalho, and R. Donangelo

be a natural science: that is, to represent psychical processes as quantitatively determi-
nate states of specifiable material particles, thus making those processes perspicuous
and free from contradiction.” Although Freud stopped work on his model for lack of
instruments at the time, these ideas pervaded all of his work, and it impresses one to see
how his ideas regarding the unconscious give strong insight into contemporary models
of consciousness, such as those in [9] arrived at by neurophysiological investigation.

This research was developed with grants from the Brazilian National Research Coun-
cil (CNPq), the Rio de Janeiro State Research Foundation (FAPERJ) and the Brazilian
agency which funds graduate studies (CAPES).

References

1. Wedemann, R.S., Donangelo, R., Carvalho, L.A.V., Martins, I.H.: Memory Functioning in
Psychopathology. In: Sloot, P.M.A. et al. (Eds.): Lecture Notes in Computer Science 2329.
Springer-Verlag, Berlin Heidelberg (2002) 236–245

2. Freud, S.: Introductory Lectures on Psycho-Analysis. Standard Edition. W. W. Norton and
Company, New York - London (1966). First German edition (1917)

3. Freud, S.: Beyond the Pleasure Principle. Standard Edition. The Hogarth Press, London
(1974). First German edition (1920)

4. Spitzer, M.: A Cognitive Neuroscience View of Schizophrenic Thought Disorder.
Schizophrenia Bulletin, 23 no. 1 (1997) 29–50

5. Servan-Schreiber, D., Printz, H., Cohen, J.: A Network Model of Catecholamine Effects:
Gain, Signal-to-Noise Ratio, and Behavior. Science, 249 (1990) 892–895

6. Kandel, E.R., Schwartz, J.H., Jessel, T.M. (Eds.): Principles of Neural Science. MacGraw
Hill, USA (2000)

7. Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind. The MIT Press, Cambridge, MA
(1997)

8. Ganong, W.F.: Review of Medical Physiology. MacGraw Hill, USA (2003)
9. Edelman, G.M.: Wider than the Sky, a Revolutionary View of Consciousness. Penguin

Books, London (2005)
10. Taylor, J.G.: The Codam Model and Deficits of Consciousness I & II. In: Palade, V. et

al. (Eds.): Lecture Notes in Artificial Intelligence 2774. Springer-Verlag, Berlin Heidelberg
(2003) 1130–1148

11. Hertz, J.A., Krogh, A., Palmer, R.G. (ed.): Introduction to the Theory of Neural Computa-
tion. Lecture Notes, Vol. I, Santa Fe Institute, Studies in the Science of Complexity. Perseus
Books, Cambridge, MA (1991)

12. Carvalho, L.A.V., Mendes, D.Q., Wedemann, R.S.: Creativity and Delusions: The Dopamin-
ergic Modulation of Cortical Maps. In: Sloot, P.M.A. et al. (Eds.): Proceedings of ICCS
2003. Lecture Notes in Computer Science 2657. Springer-Verlag, Berlin Heidelberg (2003)
511–520

13. Chomsky, N.: On Nature and Language. Cambridge University Press, UK (2002)
14. Newman, M.E.J.: Random Graphs as Models of Networks. In: Bornholdt, S. et al. (Eds.):

Proceedings of the International Conference on Dynamical Networks in Complex Systems,
Handbook of Graphs and Networks, from the Genome to the Internet. Wiley-VCH, USA
(2003)

15. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature 393
(1998) 440–442

16. Freud, S.: Project for a Scientific Psychology. Standard Edition. Volume I, The Hogarth
Press, London (1966). First German edition (1950)

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 553 – 562, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modelling Working Memory Through
Attentional Mechanisms

John Taylor, Nickolaos Fragopanagos, and Nienke Korsten

1 Department of Mathematics, King’s College London, Strand, London, WC2R 2LS,
United Kingdom

{john.g.taylor, nickolaos.fragopanagos,
nienke.korsten}@kcl.ac.uk

Abstract. Recent studies of working memory have shown that the network of
brain areas that supports working memory function overlaps heavily with the
well studied network of selective attention. It has thus been suggested that
working memory may operate by means of a repeated focusing of attention on
the internal representations of the items that need to be maintained. We have
employed our CODAM model of attention to simulate a specific working
memory paradigm based on precisely this concept of ‘refreshing’ internal
representations using attention. We propose here that the well known capacity
limit of working memory can be attributed to the ‘scarceness’ of attentional
resources. The specific mechanism of CODAM for modelling such scarceness
is used in the paradigm to explain the behavioural and brain imaging data. This
and related paradigms allow us to extend the specification of CODAM sites and
functions to more detailed executive functions under executive control.

Keywords: Working memory, Attention, Refreshing, Computational model.

1 Introduction

Traditionally working memory has been viewed as being distinct from other cognitive
functions as well as being mostly supported by prefrontal cortical areas [1,2,3].
Recent working memory research however is building up a body of evidence that
challenges this view. On the one hand, posterior and parietal cortical areas appear to
be heavily involved in the maintenance of information in working memory tasks
[4,5,6,7] and, on the other, considerable overlap is observed between areas activated
under spatial working memory and those under spatial attention [8,9,10]. The latter
finding suggests that there may also be a functional overlap of working memory and
attention. This has led Awh and colleagues [8,9,11,12] to suggest that, in fact, it is
spatial attention that supports rehearsal in spatial working memory. Drawing from this
concept of attention-based rehearsal we present here an extension of our CODAM
attention model[13] that is able to model working memory as a repeated (but limited)
focusing of attention on items to be remembered.

Numerous studies of attention have shown that, when attention is focused on a
specific item from the external world, then the activity of the neuronal populations
coding for this item is modulated by a signal arising from a network of frontoparietal

554 J. Taylor, N. Fragopanagos, and N. Korsten

cortical areas [14,15,16]. More recent studies have shown that attention can be
applied not only to ‘online’ representations but also to ‘offline’ representations -held
in working memory- according to task goals. This has been shown to occur, for
instance, using cues presented during the maintenance period of a working memory
task (retro-cues) that direct attention to specific locations [17,18,19] or objects [20]
held in working memory. Retro-cues have been shown to improve performance
considerably in a working memory task very similar to the one being modelled below
[21] although the maintenance period in this paradigm is quite short (<1500ms) and
thus is unlikely to involve rehearsal mechanisms. Nevertheless, it offers further
support to the ability of attention to modulate representations even when these are no
longer externally supported.

Computational models of working memory so far have not employed any
attention-based maintenance mechanisms. Most of them use self-excitatory PFC units
or recurrent loops between PFC and basal ganglia structures to achieve stable delay-
period states by means of bifurcation [22,23,24,25,26,27,28]. Deco and Rolls [29]
attempt to merge a working memory model with an attention model but this is only
within the PFC and so it fails to account for the more recent evidence of posterior-
parietal-sited working memory maintenance. Moreover, it does not involve attentional
modulation as a mechanism of refreshing working memory representations but only
as a biasing signal of the competition for further processing. The limitation of the
existing computational models of working memory mentioned above is that they
usually include an ad-hoc signal (typically linked to dopamine) that initiates (and
terminates) the required maintenance. On the contrary, our maintenance mechanism is
based on the attention system reboosting representations held in a buffer as soon as a
monitor detects that these representations have decayed beyond a critical level. In that
sense our proposed mechanism is more ‘natural’ and benefits from using the same
system as the one used to attend to the external world.

2 Simulations

In order to clarify this issue, we have modeled a WM task as presented by Pessoa et al
[30] and Pessoa & Ungerleider [10], where subjects maintain a visual stimulus
consisting of eight simple, rectangular bars at four possible different orientations. The
subjects are asked to remember these orientations over a delay period of 6 seconds,
then to indicate if the subsequent test stimulus, also consisting of eight bars, is the
same or different. Their fMRI results indicate differential, preformance-related
activations for different brain areas during different phases of the experiment
(encoding, delay, test). We have modelled the neural (fMRI) activation during the
delay phase, as well as the behavioral results of this paradigm.

This model is based on the CODAM (COrollary Discharge of Attention Model)
[31] which has been successfully used to model the AB in [13]. This is a model of
attentional processing, including WM functionality, with such features as graded
neurons and intra-module mutual inhibition in object representing sites.

The CODAM model is based on the well-attested fact that attention is created by a
signal sited in parietal lobe which amplifies target stimulus representations in lower

 Modelling Working Memory Through Attentional Mechanisms 555

Fig. 1. An outline of the model

cortex at the same time reducing the activation of stimuli representing distracters.
This attention movement control signal, generated by the inverse model controller
(IMC) in engineering control terms, sends its amplification/inhibition effects to lower
level cortices by what is very likely some form of contrast gain, although that is
controversial [32]. This attention control signal is itself guided by signals from a
prefrontal goal site, such as in ventro-lateral or dorso-lateral prefrontal cortex: this is
the origin of the Goals site in figure 1. In the original CODAM model [31,13] it was
suggested that there was a corollary discharge of the attention movement signal (from
whence the acronym CODAM arose) which was used, as in many engineering control
models and in control models of motor action in the brain, to speed up the movement
of attention as well as to help it reduce errors in guidance.

We have adapted this model to the paradigm of Pessoa & Ungeleider [30,10] as
outlined in figure 1. As shown in this figure, the corollary discharge module has been
discarded from the original model, since its functionality – balancing endogenous and
exogenous movement of attention – was obsolete in the current paradigm. Instead, a
monitor module (MONITOR maintain) has been added to guide the movement of the
attentional signal and thereby create long-term (>1.5 sec) maintenance. Another
addition is the comparator module (MONITOR compare) which was added for the
purpose of comparing the remembered output of WM to the new, probe input of the
object map. These new modules were added on the basis of their functional necessity
(which is further elaborated below) and an attempt to match their activities to the
activity of specific areas observed experimentally was also made.

Each node in any module is coding for a particular representation. The connections
between the modules are one on one, i.e. a node dedicated to one particular stimulus
is connected to nodes in other modules that represent this same stimulus. All weights
between modules are 1, except for the INPUT – OBJECT MAP, which is 0.5. Several
modules contain lateral inhibition between all neurons in the module, as described
below. Single neurons are graded with a sigmoid response function (unless otherwise
indicated for separate modules) as in the original CODAM model (see appendix of
[13] for equations). We present an outline of the function of and structure within the
various modules, with their possible associated brain sites. Modules contain eight
nodes, one for each initially activated combination of location and orientation, unless
otherwise indicated. We have chosen to only include eight nodes and eliminate the

556 J. Taylor, N. Fragopanagos, and N. Korsten

nodes representing the alternative locations x orientations since they would not be
activated at any point throughout the simulation.

GOALS endogenous. This module contains three nodes, coding for the task rules
which are ‘encode sample set of stimuli’ (0.5 s.) then ‘remember sample set of
stimuli until test set appears’ (6 s.) then ‘compare sample set to test’ (0.5 s.); these
three signals are multiplied with appropriate WM inputs (OBJECT MAP or IMC) at
the encode, delay and test phases, where they allow or deny encoding/maintenance
activity, as well as prevent maintenance activity in the maintenance MONITOR
during the encode and test phases.

GOALS exogenous. This module codes for the bias-weights associated with the
reactive (or exogenous) attentional modulation of the stimuli representations.
IMC. This module is the controller of attention involved in all three phases of the
paradigm; during the encode and test phases it amplifies (sigma-pi) representations in
OBJ for the sample set of stimuli; during the delay phase it amplifies (sigma-pi)
recurrent connections in WM for the sample set of stimuli (as attention-based
rehearsal). Within this module, each node receives excitatory input from MONITOR
maintain and GOALS exogenous, and inhibitory input from all other nodes in the
module (with a 0.2 gain).

WM. This is the sensory working memory for the sample and the test stimuli; the
conjunctions of features coded in object maps and locations coded in spatial maps are
coded and maintained in this module for the sample stimuli to be later compared to
the test stimuli. This module contains an internal maintenance system with a decay
time of approximately 3.5 s. (from an activation of 1.7 to 0.2). This is reached through
bifurcation with an additional ‘parasite’ node to each node in the module, which can
be modulated by the IMC (see figure 2). Weights to and from the parasite nodes are
0.9 and 0.8, respectively. IMC input is multiplied by 2.3.

OBJ. Formally, this module should consist of a separate feature and a spatial map for
the stimuli but for puposes of simplicity we will take this to be a conjoined map; this
module is responsible for the perceptual/categorical processing of the stimuli that then
activates the appropriate WM nodes for further maintenance. Each node in the module
is inhibited by the other nodes, with a 0.1 gain. Since, strictly speaking, this function
should be represented by two modules, there are two associated brain areas.

Fig. 2. Sigma-pi mod

 ulation within WM

MONITOR maintain. This modules function is to monitor
the level of activations in WM and trigger a change of
attentional focus to a less activated node when refreshing of
the attended node is complete. The nodes in this module do
not contain the standard sigmoidal transfer functions, but
instead one node at a time is activated with a permanent
output of 1. When this nodes WM membrane potential
reaches its upper threshold of 1.6, a separate ‘trigger’ system
within the module assigns attention to a different node, which
is then activated if its WM membrane potential is between 0.2
(above noise level) and 0.6. See below for a more extensive
explanation of the maintenance system.

 Modelling Working Memory Through Attentional Mechanisms 557

MONITOR compare. This monitor module is used for comparison between the
sample set of stimuli (in WM) and the test set (in OBJ) and generate an output
(change/no change). For each node, if the activation of the corresponding WM node is
nonzero, this activation is multiplied with the activation of the corresponding OBJ
node. It will therefore give a nonzero output if both the encode and test stimulus
correspond to the orientation x location represented by this node, and the encode
stimulus is remembered (the WM has remained active). If the WM input is zero (i.e. if
the encode stimulus is not remembered), a random output will be generated for this
node. In order to generate a ‘no-change’ response, all outputs need to be 1. Otherwise
a ‘change’ response is generated.

We now present a table showing our proposed module-to-brain area associations.
For further elaboration on these associations and experimental support see [13, 31].

Table 1. Overview of modules with their function and proposed corresponding brain sites

Module Function Suggested brain site
GOALS endogenous maintain task goals DLPFC
GOALS exogenous attentional boosting of input MFG
IMC attention control SPL/IPS
WM stim maintenance during

delay
SPL/IPS

OBJECT MAP perceptual processing of
input

DOC/IT

MONITOR maintain monitor WM activations FEF
MONITOR compare compare WM & probe Cb/pulv

Fig. 3. Membrane potentials of the WM nodes for a typical trial illustrating the sequential
attentional reboosting

558 J. Taylor, N. Fragopanagos, and N. Korsten

We finish off this section by elaborating somewhat further on the maintenance
system: The maintenance MONITOR module contains a control system for the
boosting of the WM by the IMC, through sigma-pi modulation of the recurrent
connections inside WM by the IMC. This monitor system only allows for one of its
eight nodes to be active at a particular time, thereby allowing one IMC node to
increase activation in one WM node. This ‘refreshing’ continues until this one
attended WM nodes activation reaches its upper threshold (1.6), at which point the
attentional focus switches, i.e. the monitor activates a different IMC node to boost
WM activation. This boosting signal can only switch to a node with a WM activation
lower than 0.6 and higher than 0.2. This nodes activation is then increased until it
reaches threshold etc. etc, until the end of the delay phase. This sequential attentional
reboosting of the WM representations is very clearly illustrated in the figure above
(Fig. 3) where the WM nodes’ membrane potentials are plotted for a typical trial.

Let us close this section by stating that the values of the various parameters were
chosen so that the best fit to the experimental data was obtained. The ‘refreshing’
mechanism specifically is particularly sensitive to the values of the parameters that
control it such as the thresholds used in the maintenance MONITOR module and the
strength of the sigma-pi modulation of the WM representations by the IMC.

3 Results

The behavioural results of Pessoa et al. [30] report a mean performance across
subjects of 71.4% correct for high-confidence trials, which dropped to 60.8% correct
for the low-confidence trials. Distinguishing between high- and low-confidence trials
is beyond the scope of this paper, so we have averaged over the two types of trials and
taken a performance grand average of about 65%. We have been able to reproduce
this result with our model by running as many simulated trials as experimental ones
(160). We have assumed that a ‘correct’ trial is one where all the nodes of the
MONITOR/compare have correctly identified a change or a non-change (as
applicable). For each node of the MONITOR/compare a correct outcome can be
produced when either the corresponding WM representation of the sample set was
successfully maintained or when maintenance failed but the randomly generated
orientation for this node matched the one that had decayed. To obtain an average of
correct responses similar to the experimental data, according to this mechanism of
deciding the overall change/non-change response, the weights that control the
modulation of the WM pair recurrence (i.e. the ‘refreshing’ strength) were set to a
high value. This results in an average of about 2 nodes of the WM decaying before the
test set is presented. Or, conversely, about 6 items are on average perfectly
maintained in WM throughout the required delay period. This result, in turn, could be
interpreted as a WM capacity of about 6 items.

In order to model the neuroimaging results of the paper, we followed a
methodology of relating synaptic activity to fMRI BOLD responses that is becoming
more and more popular in the computational neuroscience literature. Logothetis and
colleagues [33] analyzed simultaneously recorded neuronal and fMRI responses from
the visual cortex of monkeys and found it was local field potentials (LPFs) that
correlated most highly with the BOLD signals. This suggests that the BOLD signal

 Modelling Working Memory Through Attentional Mechanisms 559

reflects the synaptic input activity of the observed area and not its firing output. Thus,
to obtain the simulated BOLD signal for a given module we convolve the total
synaptic input to its neurons (excitatory and inhibitory) with a suitable model of a
hemodynamic response function (HRF) such as the one from [34].

The main thrust of the Pessoa et al. [30] study is that one can predict the outcome
of a trial (correct/incorrect) just by looking at the levels of fMRI activations of
specific areas. In other words, the activations of certain areas (as measured by fMRI)
were found to correlate with behavioural performance in the task. Our aim is to firstly
show that once we have assigned a certain function to each area for which BOLD
signals where obtained and, by implication, a certain module of our model to that
area, we can reproduce the BOLD signals recorded experimentally using the synaptic
activity of the module that corresponds to each area. Secondly, we aim to show that
the deterioration or the limited operation of certain critical modules of our model (that
would manifest as a reduced BOLD signal) leads to behavioural performance
impairment (calculated by the MONITOR/compare described above).

The correspondence of functional components of our model with brain areas was
presented in the previous section. So we present our first results of the simulated
BOLD signals from the IMC as they relate to the experimentally recorded signals
from the right IPS in Fig. 4.

Fig. 4. Left-hand side: simulated BOLD responses (bold lines) from the model’s IMC and the
MONITOR/Maintain plotted against the experimental BOLD signals (light lines) from the right
IPS. Right-hand side: simulated BOLD responses (bold lines) from the model’s MONITOR/
Maintain plotted against the experimental BOLD signals (light lines) from the right FEF. Solid
lines in both cases correspond to correct trials and dashed lines to incorrect ones.

As we can see on the left hand side of figure 4 we have managed to reproduce the
timecourse of the activation of the right IPS (model’s IMC) satisfactorily both for the
correct and the incorrect trials. The difference between correct and incorrect trials in
our model corresponds to having the MONITOR/maintain on or off. When the
MONITOR/maintain is off no WM maintenance takes place and so all decisions at the
test phase are at chance level. In the same way we have modelled the correct/incorrect

560 J. Taylor, N. Fragopanagos, and N. Korsten

activation difference in the right FEF which corresponds to our model’s MONITOR
maintain. The resulting BOLD signals are shown on the right hand side of figure 4.

Finally we present the simulated BOLD responses for the model’s Object Map
which corresponds to the experimental DOC/IT areas (figure 5, LHS). Note that our
simulated BOLD signals do not differ between correct and incorrect trials as the
Object Map does not participate in the delay period where we set the
MONITOR/maintain on or off accordingly. Instead the difference observed during the
encode phase experimentally may have to do with some attentional or perceptual
failure during encoding which causes erroneous representations to be encoded and
maintained thus leading to incorrect responses at test.

Fig. 5. Left-hand side: simulated BOLD responses (bold lines) from the model’s Object Map
plotted against the experimental BOLD signals (light lines) from the DOC/IT. Right-hand side:
simulated BOLD responses (bold lines) from the model’s Working Memory. Solid lines in both
cases correspond to incorrect trials and dashed lines to correct ones.

 The figure plotted on the right hand side of figure 5 shows the simulated BOLD
responses (bold lines) from the model’s Working Memory. We couldn’t match these
BOLD signals to any of the experimental ones from the Pessoa et al. paper as not all
of the areas that exhibited behavioural performance predictiveness were plotted.

4 Conclusions

In the paper we have presented simulation results, based on the CODAM engineering
control model of attention [13, 31] to explain recent behavioural and brain imaging
results on maintaining information in subjects in working memory sites from [10, 30].
Our model used a simplified form of buffer working memory site (by recurrence of
activity between two neurons), and used a comparator to determine when refreshing
of the buffer activity should occur (using contrast gain feedback of attention). We
suggested identification of the functional modules in our simulation with various of
those observed in the experiment [10, 30] with considerable success. These

 Modelling Working Memory Through Attentional Mechanisms 561

identifications support those arrived at earlier [30, 31, 13], and in particular through
the similarity of the temporal flow of activity reported in [10, 30] in comparison with
that reported here. Finally we note there are numerous questions we have not been
able to discuss in any depths here: the detailed nature of working memory buffer
refreshment, the predictions of our model for single cell activity, the nature of
attention feedback itself. We hope to turn to these elsewhere.

Acknowledgements. This work has been partially supported by the HUMAINE EC
Network of Excellence and the Biotechnology and Biological Sciences Research
Council (BBSRC), UK; one of us (JGT) would like to thank the EC for financial
support under the GNOSYS cognitive robot project (FP6-IST-2-003835) to allow him
to pursue this work.

References

1. Goldman-Rakic, P.S.: Development of Cortical Circuitry and Cognitive Function. Child
Dev. 58 (1987) 601-622

2. Smith, E.E., Jonides, J.: Storage and Executive Processes in the Frontal Lobes. Science
283 (1999) 1657-1661

3. Courtney, S.M.: Attention and Cognitive Control As Emergent Properties of Information
Representation in Working Memory. Cogn Affect. Behav. Neurosci. 4 (2004) 501-516

4. Fuster, J.M., Alexander, G.E.: Neuron Activity Related to Short-Term Memory. Science
173 (1971) 652-654

5. D'Esposito, M., Postle, B.R., Rypma, B.: Prefrontal Cortical Contributions to Working
Memory: Evidence From Event-Related FMRI Studies. Exp. Brain Res. 133 (2000) 3-11

6. Petrides, M.: Dissociable Roles of Mid-Dorsolateral Prefrontal and Anterior
Inferotemporal Cortex in Visual Working Memory. J. Neurosci. 20 (2000) 7496-7503

7. Passingham, D., Sakai, K.: The Prefrontal Cortex and Working Memory: Physiology and
Brain Imaging. Curr. Opin. Neurobiol. 14 (2004) 163-168

8. Awh, E., Jonides, J., Reuter-Lorenz, P.A.: Rehearsal in Spatial Working Memory. J. Exp.
Psychol. Hum. Percept. Perform. 24 (1998) 780-790

9. Awh, E., Gehring, W.J.: The Anterior Cingulate Cortex Lends a Hand in Response
Selection. Nat. Neurosci. 2 (1999) 853-854

10. Pessoa, L., Ungerleider, L.G.: Neural Correlates of Change Detection and Change
Blindness in a Working Memory Task. Cereb. Cortex 14 (2004) 511-520

11. Awh, E., Jonides, J.: Overlapping Mechanisms of Attention and Spatial Working Memory.
Trends Cogn Sci. 5 (2001) 119-126

12. Postle, B.R., Awh, E., Jonides, J., Smith, E.E., D'Esposito, M.: The Where and How of
Attention-Based Rehearsal in Spatial Working Memory. Brain Res. Cogn Brain Res. 20
(2004) 194-205

13. Fragopanagos, N., Kockelkoren, S., Taylor, J.G.: A Neurodynamic Model of the
Attentional Blink. Brain Res. Cogn Brain Res. 24 (2005) 568-586

14. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R., Ungerleider, L.G.: Increased
Activity in Human Visual Cortex During Directed Attention in the Absence of Visual
Stimulation. Neuron 22 (1999) 751-761

15. Kastner, S., Ungerleider, L.G.: The Neural Basis of Biased Competition in Human Visual
Cortex. Neuropsychologia 39 (2001) 1263-1276

16. Corbetta, M., Shulman, G.L.: Control of Goal-Directed and Stimulus-Driven Attention in
the Brain. Nat. Rev. Neurosci. 3 (2002) 201-215

562 J. Taylor, N. Fragopanagos, and N. Korsten

17. Griffin, I.C., Nobre, A.C.: Orienting Attention to Locations in Internal Representations. J.
Cogn Neurosci. 15 (2003) 1176-1194

18. Lepsien, J., Griffin, I.C., Devlin, J.T., Nobre, A.C.: Directing Spatial Attention in Mental
Representations: Interactions Between Attentional Orienting and Working-Memory Load.
Neuroimage. 26 (2005) 733-743

19. Nobre, A.C., Coull, J.T., Maquet, P., Frith, C.D., Vandenberghe, R., Mesulam, M.M.:
Orienting Attention to Locations in Perceptual Versus Mental Representations. J. Cogn
Neurosci. 16 (2004) 363-373

20. Lepsien, J., Nobre, A.C.: Attentional Modulation of Object Representations in Working
Memory . in preparation (2006)

21. Lamme, V.A.: Separate Neural Definitions of Visual Consciousness and Visual Attention;
a Case for Phenomenal Awareness. Neural Netw. 17 (2004) 861-872

22. Durstewitz, D., Kelc, M., Gunturkun, O.: A Neurocomputational Theory of the
Dopaminergic Modulation of Working Memory Functions. J. Neurosci. 19 (1999) 2807-
2822

23. Tagamets, M.A., Horwitz, B.: A Model of Working Memory: Bridging the Gap Between
Electrophysiology and Human Brain Imaging. Neural Netw. 13 (2000) 941-952

24. Frank, M.J., Loughry, B., O'Reilly, R.C.: Interactions Between Frontal Cortex and Basal
Ganglia in Working Memory: a Computational Model. Cogn Affect. Behav. Neurosci. 1
(2001) 137-160

25. Brunel, N., Wang, X.J.: Effects of Neuromodulation in a Cortical Network Model of
Object Working Memory Dominated by Recurrent Inhibition. J. Comput. Neurosci. 11
(2001) 63-85

26. Deco, G., Rolls, E.T., Horwitz, B.: "What" and "Where" in Visual Working Memory: a
Computational Neurodynamical Perspective for Integrating FMRI and Single-Neuron
Data. J. Cogn Neurosci. 16 (2004) 683-701

27. Ashby, F.G., Ell, S.W., Valentin, V.V., Casale, M.B.: FROST: a Distributed
Neurocomputational Model of Working Memory Maintenance. J. Cogn Neurosci. 17
(2005) 1728-1743

28. Chadderdon, G.L., Sporns, O.: A Large-Scale Neurocomputational Model of Task-
Oriented Behavior Selection and Working Memory in Prefrontal Cortex. J. Cogn
Neurosci. 18 (2006) 242-257

29. Deco, G., Rolls, E.T.: Attention and Working Memory: a Dynamical Model of Neuronal
Activity in the Prefrontal Cortex. Eur. J. Neurosci. 18 (2003) 2374-2390

30. Pessoa, L., Gutierrez, E., Bandettini, P., Ungerleider, L.: Neural Correlates of Visual
Working Memory: FMRI Amplitude Predicts Task Performance. Neuron 35 (2002) 975-
987

31. Taylor, J.G.: Mind and Consciousness: Towards a Final Answer? Physics of Life Reviews
2 (2005) 1-45

32. Taylor, N., Hartley, M., Taylor, J.G.: Analysing Attention at Neuron Level. BICS 2006
(2006)

33. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological
Investigation of the Basis of the FMRI Signal. Nature 412 (2001) 150-157

34. Glover, G.H.: Deconvolution of Impulse Response in Event-Related BOLD FMRI.
Neuroimage. 9 (1999) 416-429

A Cognitive Model of Multi-objective
Multi-concept Formation

Toshihiko Matsuka1, Yasuaki Sakamoto1,
Jeffrey V. Nickerson1, and Arieta Chouchourelou2

1 Stevens Institute of Technology, Hoboken, NJ 07030, USA
2 Rutgers University, Newark, NJ 07102, USA

Abstract. The majority of previous computational models of high-order human
cognition incorporate gradient descent algorithms for their learning mechanisms
and strict error minimization as the sole objective of learning. Recently, however,
the validity of gradient descent as a descriptive model of real human cognitive
processes has been criticized. In the present paper, we introduce a new framework
for descriptive models of human learning that offers qualitatively plausible inter-
pretations of cognitive behaviors. Specifically, we apply a simple multi-objective
evolutionary algorithm as a learning method for modeling human category learn-
ing, where the definition of the learning objective is not based solely on the ac-
curacy of knowledge, but also on the subjectively and contextually determined
utility of knowledge being acquired. In addition, unlike gradient descent, our
model assumes that humans entertain multiple hypotheses and learn not only by
modifying a single existing hypothesis but also by combining a set of hypotheses.
This learning-by-combination has been empirically supported, but largely over-
looked in computational modeling research. Simulation studies show that our new
modeling framework successfully replicated observed phenomena.

1 Introduction

The ability to categorize plays a central role in high-order human cognition. By com-
pressing the vast amount of available information, categorization allows humans (and
other intelligent agents) to process, understand, and communicate complex thoughts
and ideas by efficiently utilizing salient information while ignoring other types. Given
the importance of categories as the building units of human knowledge [1], researchers
in cognitive science and related fields have shown a great deal of interest in understand-
ing and explaining human category learning.

Human category learning research has been strongly associated with computational
modeling as a means to test various theories of how humans encode, organize, and
use knowledge. Previous modeling efforts, however, have limited emphases because
their principal focus was on describing categorization processes (i.e., forward algo-
rithm specifying how various types of information are integrated to classify items to
proper categories), largely overlooking the learning processes (i.e., backward algorithm
specifying how category representations are modified based on experiences). In fact, a
central debate in the categorization discourse is on how categories are represented (e.g.,
[2] [3]). The majority of modeling work employed a single learning method, namely

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 563–572, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

564 T. Matsuka et al.

gradient descent (e.g., [2] [3]) with strict (categorization) error minimization as the sole
objective of learning.

Recently, Matsuka [4] raised a concern that the lack of emphasis on learning
processes will lead to a limited understanding of the nature of human concept formation.
One limitation of using the traditional learning algorithms in human category learning
research is that it assumes that every human learner modifies his or her category knowl-
edge by local optimization to reduce misclassification irrespective of the contextual
factors (e.g., the learner’s goals). The result is little variability in learning among the
simulated learners. A typical gradient descent optimization method can be considered
a normative rather than descriptive account of human learning processes [4].

Unlike a typical gradient descent method, human learning is variable, not based ex-
clusively on error minimization. For example, humans tend to develop simpler category
representations instead of complex representations that are slightly more diagnostic in
discriminating members of different categories [5]. Moreover, given two stimulus di-
mensions or features (e.g., size and color) that are equally diagnostic in distinguishing
across categories, humans learn to attend to a single, randomly selected diagnostic di-
mension when making a classification judgment. They ignore the other dimension that
is redundant but equally diagnostic [5], leading to individual differences in learning. Un-
like human learning, which is often arbitrary and tends to be biased toward simplicity,
the gradient descent algorithm always “correctly” updates the category representations,
resulting in allocating attention to the two diagnostic dimensions.

The purpose of this work is to introduce a new framework for descriptive models
of human learning that offers qualitatively plausible interpretations of cognitive be-
haviors. We apply a simple evolutionary algorithm as a learning method for modeling
human category learning. Here, we show that the evolutionary algorithm can account
for variations in human attention allocation during category learning that existing gradi-
ent descent models cannot. We conclude with a discussion of how our new framework
might be extended to incorporate sensitivity to various contextual factors, such as learn-
ers’ goals, that humans display.

2 Modeling Category Learning with Evolutionary Algorithm

Our new framework is called CLEAR for Category Learning with Evolutionary Al-
goRithm. CLEAR models human learning processes by evolutionary processes where
multiple chromosomes compete with one another for survival (i.e., optimization). Each
chromosome, consisting of a set of genes, is a particular solution to a problem. The
interpretation of each gene is model specific. For example, as in the current modeling
approach, a gene may represent a coefficient that corresponds to an attention weight
allocated to a stimulus dimension.

CLEAR assumes that human learning involves consideration of multiple solutions
(i.e., chromosomes) according to their usefulness in a given task. Each of these solutions
determines which aspects of the categories are psychologically salient and which can be
ignored. The use of a population of solutions in CLEAR is an innovative contribution
to cognitive modeling as virtually all previous categorization models have optimized a
single solution using gradient descent on prediction errors (e.g. [2]).

A Cognitive Model of Multi-objective Multi-concept Formation 565

The assumption that humans entertain a range of solutions is consistent with the re-
sults from human laboratory experiments [6]. For example, Anderson and Pichert [6]
asked people to read a story about a house from the perspective of either a burglar or
home-buyer. The story contained pieces of information relevant to one perspective but
irrelevant to the other. For example, a color television set was relevant to the burglar
but not to the home-buyer. Alternatively, a leaking roof was relevant to the home-buyer
but not the burglar. In a free recall task conducted after learning about the story, people
recalled more information relevant to the perspective they took than irrelevant informa-
tion. More important, shifting people’s perspective after the initial recall allowed people
to recall information that they could not recall previously, suggesting that people indeed
have multiple solutions that activate different pieces of information.

Although CLEAR always has multiple solutions in its mind, CLEAR, like the par-
ticipants in Anderson and Pichert [6], opts for and applies a single solution with the
highest predicted utility (e.g., accuracy, score, etc.) to make one response at a time
(e.g., categorize an input instance). The functions for estimating the utility for each so-
lution is described in a later section. In the next section, we describe the processes that
evolve into solutions in CLEAR.

2.1 Learning Via Evolutionary Algorithm

CLEAR utilizes the Evolution Strategy (ES) method (e.g. [7]) for its learning processes.
CLEAR, as in a typical ES application, assumes three key processes in learning:
crossover, mutation, and (survivor) selection. In the crossover process, the randomly
selected chromosomes form a pair and exchange gene information, creating a new pair
of chromosomes. In human cognition, the crossover process can be interpreted as con-
ceptual combination, in which new solutions are created based on merging ideas from
existing solutions that are useful (e.g., creative discovery). In the mutation process, each
gene (i.e., coefficient) is randomly altered. A mutation can be considered as a modifi-
cation of a solution by randomly creating a new hypothesis. In the selection process, a
certain number of solutions are deterministically selected on the basis of their fitness in
relation to the environment for survival. Those selected solutions (i.e., chromosomes)
will be kept in CLEAR’s memory trace (i.e., population space), while non-selected so-
lutions become obsolete or are forgotten.

Unlike previous modeling approaches to category learning research which modify
a single solution (i.e., a single set of coefficients), CLEAR maintains, modifies, and
combines a set of solutions. The idea of having a population of solutions (as opposed
to having an individual solution) is important because it allows not only the selec-
tion and concept combination (i.e., crossover processes) in learning, but also the cre-
ation of diverse solutions, making learning more robust. Thus, unlike previous models,
CLEAR assumes that humans have the potential to maintain a range of solutions and
are able to apply a solution most suitable for a particular set of situational character-
istics. To our knowledge, these capabilities (i.e., using diverse solutions and learning-
by-combination) have not been addressed in the category learning modeling discourse.
This may warrant future research. The utility of having homogeneous versus heteroge-
neous solutions likely depends on situational factors (e.g., a motivation to test a range
of strategies) that will vary from one context to another [8].

566 T. Matsuka et al.

Another important feature of CLEAR is that it allows the hypothetical error sur-
face to be non-smooth or discontinuous. This characteristic has not been successfully
incorporated in cognitive modeling using the gradient descent optimization method.
CLEAR, because of the stochastic nature of its optimization method, can incorporate
multi-objective functions in learning that are consistent with the complexity of human
learning and the possibly discontinuous nature of knowledge utility hypersurface.

Finally, another significant contribution of CLEAR to cognitive modeling is adaptive
search strategies, which can be interpreted as analogous to learning rate. As in many re-
cent ES, CLEAR incorporates a self-adoption mechanism for modifying solutions (i.e.,
coefficient mutation), dynamically altering range of search areas. This mechanism al-
lows CLEAR to be sensitive to the topology of knowledge utility hypersurface (e.g.,
searching within a smaller area if solutions are close to an optimum). This, in turn,
makes CLEAR sensitive to changes in learning objectives. Virtually all previous cogni-
tive models incorporate either static or time-decreasing learning rate.

2.2 Categorization Processes in CLEAR

Rather than introducing new forward algorithms, we apply CLEAR’s learning processes
to ALCOVE’s [2] categorization processes. ALCOVE is a computational model of cat-
egory learning that assumes that humans store every studied instance or exemplar in
memory. We chose ALCOVE because of its popularity and demonstrated predictive
capability using relatively simple mechanisms in perceptual classification research.

In ALCOVE, categorization decision is based on the activations of stored exemplars.
As shown in Equation 1, each exemplar’s activation in ALCOVE, scaled by specificity,
c (which determines generalization gradient), is based on the inverse distance between
an input, x, and a stored exemplar, ψj , in multi-dimensional representational space,
scaled by dimensional selective attention weights, α. The exemplar activations are then
fed forward to the k-th output node (e.g., output for category k), Ok, weighted by w,
which determines the strength of association between each exemplar j and each output
node k:

Om
k (x) =

∑
j
wm

kj

[
exp

(
−c ·

∑
i
αm

i |ψji − xi|
)]

(1)

where superscript m indicates m-th solution being utilized.
The probability of categorizing input instance x to category C is based on the activa-

tion of output node C relative to the activations of all output nodes:

P (C) =
exp(φ ·Oo

c(x))∑
k exp(φ ·Oo

k(x))
. (2)

where φ controls decisiveness of classification response, and superscript o indicates the
solution adopted to make a categorization response.

In the traditional ALCOVE model, attention (α) and association weights (w) are
updated by gradient descent that minimizes the actual and the predicted value (i.e.,
Eq. 2). In the current work, a solution consists of these coefficients (i.e., attention and
association weights). CLEAR optimizes a set of these solutions. We now describe the
functions for estimating the utility of a solution (i.e., attention and association weights).

A Cognitive Model of Multi-objective Multi-concept Formation 567

2.3 Learning Process in CLEAR

Since CLEAR is based on Evolutionary Strategy, its genotype space is identical to
its phenotype space, except the genes (coefficients) for self-adapting strategy, σ. In
CLEAR, there are two coefficients for self-adaptation;σw for defining search area for w,
and σα for α. For the sake of simplicity, we use the following notation (wm,αm) ∈ θm.

Hypotheses Combinations. In CLEAR, randomly selected pairs of solutions are ex-
changing information to combine knowledge. In particular, CLEAR utilizes discrete
recombination of ALCOVE coefficients and intermediary recombination of the coeffi-
cient for self-adaptation. Thus, parent solutions θp1 and θp2 would produce a child so-
lution θc, where θc

i = θp1
i if UNI ≤ 0.5 or θp2

i otherwise, where UNI is a random number
drawn from the Uniform distribution. For self-adapting strategy, σc

i = 0.5 · (σp1
i +σp2

i).
This combination process continues until the number of children solutions produced
reaches the memory capacity of CLEAR.

Hypotheses Modifications. After the recombination process, CLEAR randomly mod-
ifies its solutions, using a self-adapting strategy. Thus,

σm
w (t + 1) = σm

w (t) · exp(N(0, γ)) wm
kj(t + 1) = wm

kj(t) + N(0, σm
w (t + 1)) (3)

σm
α (t + 1) = σm

α (t) · exp(N(0, γ)) αm
i (t + 1) = αm

i (t) + N(0, σm
α (t + 1)) (4)

where t indicates time, γ defines search width (via σ’s), and N(0.σ) is a random number
drawn from the Normal distribution with the corresponding parameters.

Selection of Surviving Hypotheses. After creating new sets of solutions, CLEAR se-
lects a limited number of solutions to be maintained in its memory. In CLEAR, the
survivor selection is done deterministically, selecting best solutions on the basis of es-
timated utility of concepts or knowledge. The function defining utility of knowledge is
described in the next section.

2.4 Estimating Utility

The utility of each solution or a set of coefficients determines the selection process
in CLEAR, which takes place twice. During categorization, CLEAR selects a single
solution with the highest predicted utility to make a categorization response (referred
to as concept utility for response or UR hereafter). During learning, CLEAR selects
best fit solutions to update its knowledge (utility for learning or UL hereafter). In both
selection processes, the solution utility is subjectively and contextually defined, and a
general function is given as:

U(θm) = Υ (E(θm), Q1(θm), ..., QL(θm)) (5)

where Υ is a function that takes concept inaccuracy (i.e., E) and L contextual factors
(i.e., Q) and returns an estimated solution utility value (Note that CLEAR’s learning is
framed as a minimization problem). There are virtually infinite contextual functions ap-
propriately defined for Eq. 5 (e.g. concept abstraction, domain expertise and knowledge

568 T. Matsuka et al.

commonality). For example, in ordinary situations, humans prefer simpler solutions
(e.g. requiring a smaller amount of diagnostic information to be processed) to complex
ones, as long as both are sufficiently accurate, whereas in highly critical tasks (e.g. med-
ical diagnosis), many might choose a solution with the highest accuracy disregarding
complexity.

Note that functions for UR and UL do not have to be the same. For example, do-
main experts often know multiple approaches to categorize objects and such an ability
appears to be a very important characteristic and thus be a part of their UL. However,
”knowledge diversity” is only relevant for selecting a population of solutions (for sur-
vival), but not for selection of a particular solution to make a categorization response.
Thus, knowledge diversity should not be considered for UR.

In CLEAR, the predicted (in)accuracy of a solution during categorization is esti-
mated based on a retrospective verification function [9], which assumes that humans
estimate the accuracies of the solutions by applying the current solutions to previously
encountered instances with a memory decay mechanism. Thus,

E(θm) =
G∑

g=1

∑
∀i|x(i)=x(g)

(τ (i) + 1)−D

∑
g

∑
∀i|x(i)=x(g)

(τ (i) + 1)−D

 K∑
k

[
d
(g)
k −Om

k

(
x(g)

)]2

 (6)

where g indicates particular training exemplars, G is the number of unique training
exemplars, the last term is the sum of squared error with d being the desired output,
and the middle term within a parenthesis is the (training) exemplar retention function
defining the strength of the retaining training exemplar x(g). Memory decay parameter,
D, in the exemplar retention function controls speed of memory decay, and τ indicates
how many instances were presented since x(g) appeared, with the current training be-
ing represented with “0.” Thus, τ = 1 indicates x(g) appeared one instance before the
current trial. The denominator in the exemplar retaining function normalizes retention
strengths, and thus it controls the relative effect of training exemplar, x(g), in evaluating
the accuracy of knowledge or concept. E(θ) is strongly influenced by more recently
encountered training exemplars in early training trials, but it evenly accounts for vari-
ous exemplars in later training trials, simultaneously accounting for the Power Law of
Forgetting and the Power Law of Learning.

3 Simulations

In order to investigate the capability of CLEAR to replicate observed empirical data,
a simulation study was conducted. In particular, we simulated an empirical study that
suggests that human concept formation might be driven by more than minimization
of classification error [5]. Table 1 shows the schematic representation of the stimulus
used in the empirical study and the present simulation study. (Note: Dimensions 1 and
2 are redundant and are also perfectly correlated with the category membership, each
being a necessary and sufficient diagnostic dimension). The left column of Fig. 1 shows
the observed data. The majority of subjects in the empirical study [5] chose to pay
attention primarily if not exclusively to either one of them, as shown in Fig.1 (bottom

A Cognitive Model of Multi-objective Multi-concept Formation 569

Table 1. Schematic representation of stimulus set used in Simulation Study

Stimulus Set
Category Dim1 Dim2 Dim3 Dim4

A 1 1 3 4
A 1 1 4 1
A 1 1 1 2
B 2 2 2 1
B 2 2 3 2
B 2 2 4 3
C 3 3 1 3
C 3 3 2 4
C 3 3 3 1
D 4 4 4 2
D 4 4 2 3
D 4 4 1 4

left), where the amount of attention allocated to each feature was operationally defined
by the feature viewing time. Thus, the majority of subjects seemed to have at least two
learning objectives: (1) to minimize categorization error and (2) to minimize knowledge
complexity. In the present study we simulated this multi-objective learning phenomenon
with CLEAR.

Another interesting phenomenon reported in that study is that some subjects who
learned to pay attention to either dimension exclusively reported that they realized that
there was another diagnostic dimension, indicating the possibility of possessing multi-
ple concepts or solutions. Although it is uncertain whether these subjects were deliber-
ately acquiring multiple solutions or not, we simulated this type of learners as well.

Methods: There were two types of CLEAR learners involved in the present simulation
study, namely SA who tries to acquire simple accurate classes of knowledge, and MSA
whose learning objective is to acquire multiple simple accurate class of knowledge.
Equations 7 and 8 describe knowledge utility functions for learning (UL) for SA and
MSA, respectively. For both models, Eq.7 is used for their UR, as knowledge diversity
should have no effect in selecting a solution to make a response. The knowledge utility
for SA (and UR of MSA) is given as:

Ua+s(θm) = E(θm) + λw

∑
k

∑
j
w2

kj + λα

∑
i

[
1 + α−2

i ·
∑I

l
α2

l

]−1

(7)

where the first term is defined as in Eq.6, the second term is a weight decay function reg-
ularizing w, the third term is relative attention elimination function reducing the number
of dimensions attended, and λ’s are scalars weighting different contextual factors. The
knolwedge utility for learning (UL) for MSA is given as:

Ua+s+d(θm) = Ua+s(θm) ·
[
1 +

∑
n
ξ(δ(m,n))

]
(8)

570 T. Matsuka et al.

where the last term controls diversity (penalizing having ”similar” concepts), δ indicates
the distance between solution m and n, and ξ is defined as

ξ(δ(m,n)) =

{
1 −

(
r−1 ·

√∑
i(θ

m
i − θn

i)2
)2

, if
√∑

i(θ
m
i − θn

i)2 ≤ r

0, otherwise.
(9)

where r is a parameter defining the penalizing radius. The diversity controlling function
is an application of a modified version of the fitness sharing method [7].

Both models were run in a simulated training procedure to learn the correct classifi-
cation responses for the stimuli with corrective feedback. The basic training procedures
followed that of the original study [5]. There were a total of 8 training blocks, each
of which was organized as a random presentation of 12 unique exemplars. The model
parameters were selected arbitrarily; c = 1.25, φ = 5,D = 1,γ = 0.5, λw = 0.01, λα =
0.75, r = 1.5. Note that the same parameter values were used for SA and MSA, except
r, which was only applicable for MSA. The memory sizes for the two models were 10
(i.e., possessing 10 solutions at a time). There were a total of 500 simulated subjects for
both models.

Results & Discussion: Figure 1 shows the results of the simulation study. Both SA
and MSA successfully replicated the observed learning curve and aggregated attention
learning curves (Fig. 1 top row). In replicating individual attention allocation patterns,
SA seemed more consistent with the empirical data than MSA, indicating that (the
majority of) human subjects in that study might have had simplicity and accuracy as
their learning objectives, but not concept diversity.

To test if MSA had acquired diverse solutions, we investigated all solutions in MSA’s
memory trace and compared them with those of SA’s. Let us define the diagnostic fea-
ture dimension selected to be attended by the manifesting concept (i.e., concept or so-
lution whose UR value was the lowest) as a dominant dimension and the other as a
recessive dimension. For MSA, the average difference in the relative amount of at-
tention to be allocated to a recessive and dominant dimensions was 0.24 in the latent
concepts (i.e., solutions whose UR values are not lowest), whereas that for SA was 0.01.
The maximum differences were 0.67 and 0.21 for MSA and SA, respectively. While the
differences may not be great, MSA successfully acquired more diverse solutions than
SA. Although with different parameter configurations, we observed greater degrees of
differences, there were too much attentional shifts, exhibiting too much alternation of
the dominant and recessive dimensions than empirical data.

Possible reasons for the smaller degree of difference was that the solution diver-
sity in MSA took into account both association and attention weights. We might have
achieved a greater degree of diversity in attention allocation, if we only controlled atten-
tion distribution patterns. But, there was no clear empirical or theoretical justification
for embedding such a cognitive mechanism, and thus we did not test the possibility. Fur-
thermore, more explicit diversity control learning mechanisms, such as Pareto-optimal
search methods, would find more diverse effective solutions, we are uncertain about
their empirical or theoretical justification for such learning mechanisms as cognitive
processes.

A Cognitive Model of Multi-objective Multi-concept Formation 571

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Block

D1
D2
D3
D4
Acc

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Block

D1
D2
D3
D4
Acc

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Block

D1
D2
D3
D4
Acc

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
im

en
si

o
n

 2

Dimension 1
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Dimension 1

D
im

en
si

on
 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Dimension 1

D
im

en
si

on
 2

Fig. 1. Left column: Observed empirical results. Middle column: SA, Right Column MSA. The
graphs in the top row show classification accuracies and the amounts of relative attention allo-
cated to the four feature dimensions. The scatter plots compare relative attention allocated to
Dimensions 1 and 2 for the last 3 blocks for empirical data and the last block for SA and MSA.

4 Conclusion

We introduced a CLEAR framework, which used an evolutionary algorithm as a learn-
ing method for computational models of human category learning. CLEAR, unlike gra-
dient descent, uses multiple solutions (e.g., attention and association weights). Each so-
lution can be regarded as a filtering device that determines which aspects of the stored
information become salient and which should be ignored. The use of multiple solutions
allows CLEAR to have a diverse set of solutions. Because different solutions filter dif-
ferent pieces of information, CLEAR can account for variability across learners and
tasks that gradient descent method cannot.

As an initial step, we applied CLEAR to ALCOVE’s categorization processes. AL-
COVE is an exemplar model of category learning that assumes that humans store every
previously encountered example in memory. CLEAR optimized multiple solutions,
each of which highlighted different aspects of the stored exemplars. CLEAR was able
to correctly replicate observed category learning phenomena that were characterized as
multi-objective optimization. In addition, CLEAR was able to acquire diverse solutions
during such multi-objective learning processes.

Future Directions. Future research might address how different tasks and goals are
linked to different solutions in CLEAR. Research on this issue involves specifying the
contextual factor in CLEAR’s utility calculation. Human cognitive processing is greatly
affected by situational factors, such as goals and motivations, and thus the contextual
factor in CLEAR likely plays an important role in modeling human cognition. For ex-
ample, even when people are learning about the same categories, their knowledge about
the categories can vary when they engage in different tasks and have different goals

572 T. Matsuka et al.

(e.g., [8]). Specifying the contextual factor in CLEAR to incorporate sensitivity to dif-
ferent tasks and goals may allow CLEAR to form ad hoc categories to achieve tempo-
rary goals, such as things to sell at a garage sale to dispose of unwanted possessions,
like humans do [10].

Final Note. Most previous category learning models have used the gradient descent
optimization method, which can be regarded as a normative rather than a descriptive
account of human learning processes [4]. Unlike the gradient descent method, human
learning varies across individuals and contexts, and is based on factors other than mis-
classification. The present work is an initial attempt to develop a more descriptive ac-
count of human learning by applying a simple evolutionary algorithm. More rigorous
research in descriptive models of human learning is indispensable in the structural elu-
cidation of cognitive information flow and, more generally, in the advancement in cog-
nitive science.

Acknowledgements

This research was supported in part by the Office of Naval Research, Grant # N00014-
05-1-00632.

References

1. Solomon, K. O., Medin, D. L., Lynch, E.: Concepts Do More Than Categorize. Trends in
Cognitive Sciences 3 (1999) 99–105

2. Kruschke, J. K.: ALCOVE: An Exemplar-Based Connectionist Model of Category Learning.
Psychological Review 99 (1992) 22–44

3. Love, B. C., Medin, D. L., Gureckis, T. M.: SUSTAIN: A Network Model of Human Cate-
gory Learning. Psychological Review 111 (2004) 309–332

4. Matsuka, T.: Simple, Individually Unique, and Context-Dependent Learning Method for
Models of Human Category Learning. Behavior Research Methods 37 (2005) 240–255

5. Matsuka, T., Corter, J. E.: Process Tracing of Attention Allocation in Category Learning.
(2006) Under review.

6. Anderson, R. C., Pichert, J. W: Recall of Previously Unrecallable Information Following a
Shift in Perspective. Journal of Verbal Learning and Verbal Behavior 17 (1978) 1–12

7. Eiben, A. E., Smith, J. E: Introduction to Evolutionary Computing, Berlin: Springer-Verlag
(2003)

8. Markman, A. B., Baldwin, G. C., Maddox, W. T.: The Interaction of Payoff Structure and
Regulatory Focus in Classification. Psychological Science 16 (2005) 852–855

9. Matsuka T., Chouchourelou, A.: A Model of Human Category Learning with Dynamic Multi-
Objective Hypotheses Testing with Retrospective Verifications. In Proc. IJCNN 2006. (2006)
Forthcoming.

10. Barsalou, L. W.: Ad Hoc Categories. Memory and Cognition 11 (1983) 211–227

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 573 – 582, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Basis for Cognitive Machines

J.G. Taylor, S. Kasderidis, P. Trahanias, and M. Hartley

Dept of Mathematics, King’s College London UK
Institute of Computer Science, FORTH, Heraklion, Crete

Abstract. We propose a general attention-based approach to thinking and cogni-
tion (more specifically reasoning and planning) in cognitive machines as based
on the ability to manipulate neural activity in a virtual manner so as to achieve
certain goals; this can then lead to decisions to make movements or to no actions
whatever. The basic components are proposed to consist of forward/inverse
model motor control pairs in an attention-control architecture, in which buffers
are used to achieve sequencing by recurrence of virtual actions and attended
states. How this model can apply to various reasoning paradigm will be de-
scribed and first simulations presented using a virtual robot environment.

1 Introduction

We will consider in this paper reasoning, and planning as advanced components of
cognition. We leave out speech since non-linguistic reasoning occurs in non-human
animals. We also leave out consciousness/awareness as an important but subtle com-
ponent of cognition. We note here, however, that consciousness has been proposed as
a feature arising out of working memory activations controlled by attention, for ex-
ample as through the CODAM approach [1], [2]. However although we consider the
role of attention we will not pursue it up to consciousness.

Various approaches have been developed for reasoning and planning. Among them
we single out three that have recently proved important:

 a) Symbolic, using logical inference embedded in linguistic/symbolic structures;
 b) Probabilistic, using cognition as defined as probabilistic inference;
 c) Connectionist, with numerous discussions of how inference can be obtained

from low-level neural network structures. We will discuss here only the third of the
above approaches since it fits in most naturally to the neural systems relevant to the
consideration of animal cognition, more specifically animal reasoning. Cues on
higher cognition from brain-based systems possessed by animals could be impor-
tant is helping us better understand how such feats are achieved in humans.

The most important components of our approach to cognition will be based on (i)
forward models, to be used as a basis of encoding the causality of the world; (ii)
working memory modules, for imagining future events when combined with forward
models (this process is termed ‘prospection’ in [3]), (iii) attention control, enabling
the selection of only one of numerous distracters in lower level cortices to be evalu-
ated or transformed to enable certain goals to be attained. These components have
already been included in the CODAM model [1], [2], although we must be careful to
differentiate between a state estimator and a forward model. Here we need to do so: a
state estimator is one that estimates the state of the plant being controlled at a given

574 J.G. Taylor et al.

time, whereas a forward model makes a prediction of a future state of the plant. Such
a prediction can arise from building a state estimator not for the state now but for that
one second (or whenever, after recurrent running of the predictor) time ahead. This
would therefore require an efference copy of the control signal to update the state
estimate to that for the next time step.

That such forward models occur in the brain in the parallel case of the motor con-
trol system has been demonstrated experimentally by numerous authors. For example
in [4] it has been shown how adaptation to novel force fields by humans is only expli-
cable in terms of both an inverse controller and a learnable forward model. More
recent work has proposed methods by which such forward models can be used in
planning (where motor action is inhibited during the running of the forward model) or
in developing a model of the actions of another person [5]. Such planning has been
analysed in those references and numerous other publications for motor control and
actions, but not for more general thinking, especially including reasoning. Nor has the
increasingly extensive literature on imagining motor actions been appealed to: it is
important to incorporate how motor actions are imagined as taking place on imagined
objects, so as to ‘reason’ as to what will be optimally rewarded possible actions. In
order to proceed with this aspect of reasoning we need to extend various aspects of
attention control:

1) To create and use forward models under sensory attention (as in the CODAM
model);

2) To fuse a sensory attention with a motor attention architecture, as already con-
structed in one way in [6];

3) To determine how the ‘virtual’ running of motor actions on stimuli (through
imagination) can be used to achieve specific goals (as already suggested in [5]);

4) To extend this to include the influence of reward-value maps on the biasing of
actions to determine the optimally rewarded set of actions (as in the actor-
critic type of reward model), but now with attention included to handle dis-
tracters in complex domains;

5) To attempt to insert some low-level creativity by means of activation of a pre-
viously learnt pair of forward and inverse models by associative connections
so as to achieve the desired goal, as would occur in arguing by analogy.
We will consider further aspects of these points now.

Under point 1), we have only defined the working memory, the proposed crucial
site for imagination, as composed of a buffer site, which functions as an estimate of
the attended state of the world inside the head. Where would a forward model for
such an estimated state reside in the brain? It produces an estimate of the attended
state from that previously obtained and a copy of the action control signal. Function-
ally it will be expected to be a component of the overall working memory system, so
reside in the prefrontal cortex, in the parietal cortex, or in both sites. We have already
considered the PFC, as in the ACTION net model [7], as a storage system for recur-
rent states of the system, so as a TSSG (temporal sequence storage and generation
unit). Sequences of states can thus be glued together by the ACTION net, as ‘chunks’
or schemata (involving sensory/response sequences in general, sewn together possibly
by the hippocampus). How can these structures be used to help achieve reason-
ing/thinking powers?

 A Basis for Cognitive Machines 575

The schemata of the PFC are intrinsically forward models of sensory/response se-
quences: starting at the initial state of the sequence, the further ones will be generated
sequentially, using if necessary further buffer capacity to become aware of the various
states of the sequence, or the final one. Thinking through the consequences of an
action on a stimulus could thus be achieved in that way, by running through a given
schemata from an initial state. Planning would require some final goal state being
active, and comparison with the various states in a sequence generated in the above
manner made to check if the goal was yet reached. In the process all response patterns
would be inhibited from making any real actions (as observed in over-activity of stria-
tum when imagining motor actions). Various strategies for good planning (such as
back-tracking, etc) would need to be used; however these appear only to be second
order features of the basic architecture, so will be presently neglected. This overall
architecture provides, then, a principled approach to reasoning and planning in neural
systems. The corresponding architecture for achieving this is shown schematically in
figure 1. We add finally that the forward models provided by the ACTION-network
style of the PFC may be an extension of more time-limited forward models in parietal
cortex, as proposed in terms of parietal deficits.

Fig. 1. The ACTION networks contain a system of forward models (fused sensory-and-action
based) for running a possible stimulus input forward to a later possible goal state. This is fused
with the CODAM attention system, being checked by comparing the produced state to the goal
state in a CODAM architecture (with a suitable monitor module), at the same time determining
its reward value (by the limbic value reward system). TSSG module = Temporal Sequence
Storage and Generation Module.

2 Low-Level Reasoning in Animals

Reasoning is considered by some to be the sole prerogative of humans, but this is now
clearly negated by observations on animal reasoning processes. These processes are
increasingly well known in chimpanzees, such as in tool use or in imitation [8], [9].
However an ever larger circle of animals appears to be involved in some form of
reasoning, such as the corvids (including crows, etc) [3]). Components of intelligent
response are observed in the powers of pigeons, for example, to develop classificatory

TSSG
modules
(ACTION
Nets) PFC

CODAM
Attention
Model Parie-
tal/PFC

Value
system for
reward of
goals OFC

576 J.G. Taylor et al.

powers for sets of stimuli, such as houses versus trees, or in apes in terms of the re-
sults of language learning experiments, such as those involving the chimpanzee
Washoe. Even more powerful appears to be the reasoning powers of crows, such as
Betty, who can fashion tools appropriate for extracting food from receptacles by
means of bending pieces of wire into suitable hooked shapes so as to be able to re-
trieve the food. We note that corvids (crows, jays, ravens, jackdaws) have excessively
large brains for their body weight, at about the same ratio of brain volume/body
weight as primates. They also possess similar reasoning powers, especially of a social
nature (such as reburying food in a different site if they see that they have been ob-
served by another of their species when caching the food in the first instance). As
noted in [3] these reasoning powers are most likely involved in handling complex
social interactions, as in the re-caching powers mentioned above or in the ability to
construct dominance hierarchies with inheritance powers.

The detailed nature of the mental sub-processes involved in animal reasoning was
teased out by [10]. They ran a set of experiments on orang-utans and gorillas. One was
to ascertain if they could choose the most appropriate length of stick, placed initially
out of their reach, to draw food to themselves using only one of two sticks of different
lengths placed in front of them; both species were successful at this task A second
experiment used a barrier between the food table and the table for the sticks, so that
direct perception could not alone be used to solve the task; again there was success.

To prevent the animals from only selecting the longer tool at every instance, a third
experiment was run in which the tools were presented sequentially and not simultane-
ously, so as to avoid the simple rule of ‘always choose the longer tool by direct per-
ceptual comparison’, regardless of its appropriateness (in some cases the shorter tool
would have done just as well as the longer one in retrieving the food). However the
animals could still have used the simple rule ‘always choose the longer tool’, using a
form of working memory to hold the first tool in memory and then comparing with
the percept of the second tool, so a fourth experiment added a cost to the longer tool.
This was achieved by placing the longer tool on the table flush with the mesh, but at a
distance from it so that it could only be retrieved by use of the shorter tool. Finally
sequential presentation of the tools was combined with separate views of the reward
and the tool table. In that case both species tended to use the safer strategy of going
for the longer tool (by using the short one to draw the longer one to them) rather than
choosing the length of tool most appropriate for the task. However when offered a
tool that was too short to be successful they refused to make any attempt to retrieve
the food significantly more times than when the tool was long enough, in conditions
when both tool and reward were visible or when they were only available sequen-
tially. We conclude that in this case only a limited understanding of the tools (sticks)
was available to the animals.

From [9] and the references therein, there is a development of causal reasoning
powers as one proceeds from capuchin monkey -> chimpanzee -> human child. The
capuchin monkey is only able to create a simple rule for the ‘food in tube’ task (where
sticks are available to retrieve from form inside a transparent tube, open at each end):
R1 ‘push stick into end of tube farthest from food’. Chimpanzees can develop a more
general rule R2: ‘push stick into end closer to the trapping tube (created buy joining a
vertical tube to the horizontal one) than food’. R2 is more complex since it requires
the need to evaluate the relation between the trapping tube and the food before the end
to push the stick into can be deduced. From the comments in [9] it would appear that

 A Basis for Cognitive Machines 577

children have a deeper understanding of the nature of a stick and its causal relation to
the food and the trapping tube than either monkey or chimpanzee. They may well be
able to develop a predictive model of the effect of the stick pushing the food and the
effect of the trap on the food. The most complete reasoning approach would be to
activate a visual imagery model of the tube, the food and the stick, and use manipula-
tions on that by imagined actions on the stick to imagine where the food will go under
various sorts of pushes by the stick. Rules could be formulated from such imagining,
although it is more likely, especially in the child’s case, that the flexibility of the
imagining model does not need a rule-based intermediate step to work out how to
gain the food by use of the stick.

3 An Architecture for Reasoning

One form of a neural network model needed to achieve the above causal reasoning by
imagery was already given in figure 1. A more specific form (extending [5]) is given
in figure 2: This shows the visual input (from parietal lobe) proceeding to an inverse
model controller to generate a suitable action to achieve the desired (goal) from the
visual state arising from the visual input. There is a corollary discharge of the IMC
motor control signal (whose main output will generate motor responses in motor cor-
tex/Cerebellum/spinal chord) fed to a forward model, and so allow a prediction to be
made of the next sensory (visual) input. This process can be speeded up by use of
prefrontal ‘chunking’ of sequences of actions (such as from the initial position of the
bent stick at the top of the tube to its touching the handle of the food bucket at the
bottom of the tube).

Fig. 2. Basic Architecture for Reasoning. This is a standard motor reasoning system, where the
input to the Inverse Model Controller (IMC) in the recurrent mode is solely that arising from the
FM from a previous step, with no input being used from the Visual Input module. The output (the
dashed arrow) of the error monitor (which compares visual input to that predicted by the FM) can
be used to train the FM and IMC. The output from the IMC is sent not only to the FM (as an
efference copy) but mainly to the motor system (motor cortex, Cerebellum, basal ganglia, spinal
chord) to move the muscles, and thence cause action on the stimulus generating the visual input.

Sensory
Goals IMC

Forward
Model (FM)

Visual
Input

Error
monitor

578 J.G. Taylor et al.

There is no attention control system present in the system of figure 2, so leaving
the system vulnerable to distracters. This can be remedied by including a CODAM
form of attention control, as shown in figure 3.

Fig. 3. Attention-controlled Forward/Inverse Model Paris for Reasoning. Note that the visual
input to the forward model is assumed to be under the control of the attended visual output, as
from the visual working memory (WM), and the FM feeds back to update the WM, as occurs in
mental imagery involving transformations of imagined objects. The goals module has been
labelled ‘visual’, to emphasise that it involves the final visual states of objects to be manipu-
lated. See text for further explanation.

The extension from fig 2 to fig 3 is by the addition of two further modules. One of
these is a motor attention IMC module, applying an attention signal to the motor
‘plant’ (consisting of the IMC for motor responses, supposedly sited in motor CX, Cb,
BG, etc) to pick out the desired action signal; this motor attention IMC is known
present in the left angular gyrus [11], [12]. It uses as input the goal position and the
actual visual input from the WM (visual) module in the Visual CODAM system. Thus
only the attended visual state is used to guide the motor attention IMC, and is fed
back from it to update it.

The other extra module is a set of CODAM-like modules for visual attention, con-
sisting of a visual attention IMC, a WM(visual), a WM(corollary discharge) and an
error monitor; this latter is different from the explicit monitor in fig 3 imported from
fig 2, which is purely for training the sensory FM and the motor attention IMC. Thus
we have a full CODAM-type model for visual processing (so as to avoid visual dis-
tracters by the full use of attention, and for which there is experimental evidence for
each component) whilst we have taken only a ballistic attention model for motor at-
tention (although there may also be the CODAM-type extensions, these only compli-
cate an already complicated figure).

Sensory
Goals Motor

Attention
IMC

Forward
Model
(Visual FM)

Visual
Input

Error
monitor

IMC/
Plant for
motor
response

IMC+W
M CODAM
System for
Vision

 A Basis for Cognitive Machines 579

We note that the goal module in figures 2 and 3 have been taken as that of the final
sensory state to be achieved by the movement. This is different from suggestions in
[6] for example, where actual motor actions were taken to be represented in prefrontal
goal modules. However there is considerable simplification achieved by considering
prefrontal goal states only as desired states of external stimuli, such as objects or
components of the body. This choice is consistent with the usage of goal states con-
sidered in motor planning in [5] and in motor control in [13], who define the goal as a
particular desired state of a given external stimulus. This is also consistent with more
general remarks on goals in motor control as corresponding to effector final states
[14] There is also direct experimental evidence of this assumption [15]. Thus goal
states in general are not specific actions themselves, but are in the sensory domain.
They generate the requisite actions by use of the control apparatus (motor attention
IMC and lower level motor IMC). This is also consistent with coding in the highest
areas of PFC which are sensory in content, as compared to motor codes in the lower
non-primary motor areas (PMC, SMA, and related areas).

The crucial mode of action of the visual FM is to accept input from the motor at-
tention planner and from the attended visual output of the WM(visual) site, possibly
accompanied by the lower level codes for object and feature maps if necessary (these
also arise from the CODAM-type visual module in figure 3). These two sets of inputs
provide an update of the visual activation by the FM, as a new sensory state arrived at
by the action input to the FM. The new sensory state then can lead, in combination
with the desired state goal in the goal module to an action produced by the motor IMC
that will cause the new visual state to be transformed to the desired goal state if the
specific action is taken. The resulting motor action is then, in the reasoning mode, not
taken in actuality but is fed back to the FM (visual), to be either used for further up-
dating of the FM (as in continued planning or imagining of a sequence of visual stim-
uli) or (in the acting mode) to provide a specific external motor action by updating the
IMC (motor attention). Also, in the reasoning mode there is associated inhibition of
the lower level motor apparatus when the overall motor attention IMC and the visual
FM are used in reasoning (imaging sequences of actions on sequences of visual
stimuli).

From several lines of evidence the visual FM of figure 3 may be regarded as a
point of contact between the two CODAM networks, one for motor attention and the
other for visual attention, that have been proposed in [6], [16]. It has been suggested
as being in the posterior parietal lobe and/or cerebellum [13].

4 Learning the FM/IMC Pairs

The main question we have not yet discussed is as to the creation of the FM/IMC
pairs used above. We take to heart the criticism of the standard use of feedback-error-
learning, and the related training of the IMC so that it becomes so accurate that the
IMC is all that is needed in control and the feedback used by the FM becomes super-
fluous [17], [18]. In particular the results of [17] show that this is not the case in hu-
man tracking data, where loss of sensory feedback shows up the errors in the IMC,
which are especially considerable at low frequency, whereas it would be expected by
other approaches that there would be no such error present.

580 J.G. Taylor et al.

The method used by [17] was to construct a good model of the FM by training on
the error it produces, by comparing sensory prediction with actual sensory feedback,
whilst using an approximate version of the actual IMC as a linear IMC (as a PID
controller, initially with high gain). The same approach can be used in the construc-
tion of the FM/IMC pairs needed above. Thus the IMC for moving a stick to a point
would use a linear IMC, with initial and final end points of the stick leading to an
approximate motor control to move there. It would have a non-linear FM, trained on
the error in the final stick end-point. The FM in a number of reasoning cases can be
created by using the IMC to generate sensory effects of the response and then using
this sensory feedback to create the error in reaching the goal set in the IMC, and
thence to use error- based learning to achieve a suitably trained FM (with no resulting
error) . This is shown in figure 2, this being a general architecture for achieving effec-
tive learning of the FM, with some parameter modification of the IMC after the FM
has been created, as suggested in [17] is possible to relate the architecture of figure 2
to that of the Cerebellum, which is supposedly the most-well studied error learning
system in the brain [19].

There is presently data that supports the existence of the FM/IMC pair in motor at-
tention. In particular we can make the identification that the motor attention IMC is in
the supramarginal gyrus (SMG) in the inferior parietal lobe, especially in the left
hemisphere, and composed of areas BA7b and AIP (in the intrapareital sulcus); the
motor attention FM is in the Parietal Reach region (PRR) in the SPL and IPS. The
evidence for the placing of the IMC(am) as above is given in [11], [12], and arises
from data on the deficit caused by TMS applied to SMG(L) for incorrectly cued stim-
uli in the motor Posner paradigm. The evidence for FM in the PRR is of a variety of
sorts, but the strongest seems to be that for the updating of the body map by tool use,
and resulting difficulties with tools in the case of damage to the relevant PRR area
[12]. More generally the presence of forward (state updating) models in the IPS for
both eye movements, attention orienting and motor movement preparations are sup-
ported by predictive updating of stimulus responses in single neurons in these regions.

At the same time there are good connections observed between SMG and PMCx,
relevant for the movement selection processing known to be carried out by the PMCx,
and thereby helped in the plan selection by SMG (as required for an IMC-type of
module), whereas the PRR is better connected to visual and somato-sensory inputs, as
well as those from the IMC in SMG [20] Finally we conclude that the IMC(am) acts
on the PMC, itself identified with the IMC(m) used in more general unattended motor
control, but guided for by the specific motor attention control signal from the
IMC(am) to which the PMC is well-connected [20].

We note that the FM carries a map of the body of the animal/system it represents.
This is now known to be used in tool use by animals, there being an extension of the
body map when a tool is learnt to be used; thus on using a hammer to drive in a nail,
the user does not still hit the nail with their hand/extremity, but with the hammer as an
extension of their hand. This extension (or addition of a new FM) to the old FM needs
careful modeling for GNOSYS.

 A Basis for Cognitive Machines 581

5 The Simulation

We have developed a virtual robot, through the webots simulator [21 so as to enable a
software simulation of the above architectures (from fig 2 through ultimately to fig 4).
We have designed a software version of the forward and backward models for the
control of a gripper designed for the webot. This gripper has 3 DoFs, denoted by 1,
2, 3. The relation between these and the 3-d co-ordinates of the end of the gripper r

are known algebraically, and the corresponding forward and inverse model controller
in fig 2 can be designated as

r’ = F(r,) (1a)

 = G(r’, r) (1b)

where r and in (1a) are the start 3-d position and the angle of change of the gripper
to determine the new 3-d position r’, and r, r’ are the original and desired 3-d position
of the end of the gripper to be achieved by the turn angle in (1b).
The pair of forward and inverse models of equation (1a), (1b), together with infor-

mation on the visual input (such as from a hierarchical architecture like that of
GNOSYS) fills in all of the modules of figure 2 except for the monitor (which would
be training an artificial neural network version of the pair of models). The overall
architecture can be extended by adding a working memory buffer, as in figure 3, to
allow for recurrence in the sequences INPUT -> IMC ->FM -> WMbuffer ->IMC -
>.& so recurrently until the goal state in the IMC is attained and the sequence stops
(where the WMbuffer is needed to hold the previous output of the forward model till
it is updated by the next output from the forward model). This system can be used for
reasoning about use of a stick, for example (in the case of chimpanzees or crows) if
there is a set of (2L) nodes, one for each length L observed for a stick, where L runs
over a suitable discrete set. The action of the node 2L, when active, is: GOTO stick of
length L; grasp stick; change forward/inverse model pairs to hose for a gripper with
extra length L. This process allows reasoning about use of the extended gripper in
dragging food reward towards itself. Thus it can run through mentally such manipula-
tions to determine if a particular stick would be successful to help it obtain the food.
The purpose of this simulation is to be able to test the paradigm described earlier [10]

in which primates must sequentially use different lengths of stick to be able to attain a
food reward. The system may then also be extended to further reasoning paradigms.

6 Conclusions

It is seen that recent ideas in animal reasoning are very relevant to guide how we may
develop primitive reasoning powers in the GNOSYS software. The four basic compo-
nents in animal reasoning proposed in [3] of causality, imagination, prospection and
flexibility are all developed as part of the CODAM attention control system and used
in the above suggested paradigms: causality in terms of forward models (for example
used to run through how a stick of a suitable length would or would not be able to
retrieve the distant reward), imagination (in terms of buffer working memory and its
activation by imagined situations as part of running through the forward model),

582 J.G. Taylor et al.

prospection (in terms of using the forward model in conjunction with the buffer, as
just mentioned) and flexibility (in terms of rapid re-activation of past memories or
rapid encoding for use of new ones relevant to the situation).

The approach to training the basic FM/IMC pairs of internal models is developed
using the approach of [17] were the FM is non-linear and trained using an approxi-
mate IMC; at a later stage of usage the parameters in the IMC can be modified to give
more accurate response.

References

1. Taylor JG (2003) Paying Attention to Consciousness. Progress in Neurobiology 71:305-335
2. Taylor JG (2005) From Matter to Consciousness: Towards a Final Solution? Physics of

Life Reviews 2:1-44
3. Emery NJ & Clayton NS (2004) The Mentality of Crows: Convergent Evolution of Intelli-

gence in Corvids and Apes. Science 306: 1903-1907
4. Bhushan N & Shadmehr R (1999) Computational nature of human adaptive control during

learning of reaching movements in force fields. Biol Cybern, 81:39
5. Oztop et al (2005) Mental state inference using visual control parameters. Brain Res Cogn

Brain Res 22:129
6. Taylor JG & Fragopanagos N (2003) Simulations of Attention Control Models in Sensory

and Motor Paradigms.Proc ICANN03, Istanbul
7. Taylor NR & Taylor JG (2000) Hard-wired models of working memory and temporal se-

quence storage and generation. Neural Netw. 12:201
8. McGrew WC (1992) Chimpanzee Material Culture. Cambridge: Cambridge University Press.
9. Boysen ST & Himes GT (1999) Current Issues and Emerging Theories in Animal Cogni-

tion. Annual Reviews of Psychology 50:683-705
10. Mulcahy NJ, Call J & Dunbar RIM (2005) Gorillas and Orang Utans Encode Relevant

Problem Features in a Tool Using Task. Journal of Comparative Psychology 119:23-32
11. Rushworth MFS, Ellison A & Walsh V (2001) Complementary localization and lateraliza-

tion of orienting and motor attention. Nature Neuroscience 4(6):656-661
12. Rushworth MFS, Johansen-Berg H, Gobel SM & Devlin JT (2003): The left parietal and

premotor cortices: motor attention and selection. NeuroImage 20:S89-S100
13. Desmurget M, Grafton S (2000): Forward modeling allows feedback control for fast reach-

ing movements. Trends Cogn Sci 4:423
14. Wise SP & Shadmehr R (2002) Motor Control. Vol 3:1-21 in Encyclopedia of the Brain:

USA: Elsevier.
15. Morasso, P (1981) Spatial control of arm movements. Experimental Brain Research, 42,

223-227.
16. Taylor JG & Fragopanagos N (2004) Modelling Human Attention and Emotions. Proc

IJCNN04, Budapest
17. Davidson PR, Jones RD, Andreae JH & Sirisena HR (2002) Simulating Closed and Open-

Loop Voluntary Movement: A Nonlinear Control-Systems Approach. IEEE Trans Bio-
medical Engineering 49:1242-1252

18. Neilson PD & Neilson MD (1999) A neuroengineering solution to the optimal tracking
problem. Human Movement Science 18:155-183

19. Ohyama T, Nores WL, Murphy M & Mauk MD (2003) What the cerebellum computes.
Trends in Neuroscience 26(4):222-6

20. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M & Luppino G
(2005) Cortical Connections of the Parietal Cortical Convexity of the Macaque Monkey.
Cerebral Cortex (Nov 23, 2005)

21. Webots. http://www.cyberbotics.com. Commercial Mobile Robot Simulation Software

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 583 – 591, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Neural Model of Dopaminergic Control of Arm
Movements in Parkinson’s Disease Bradykinesia

Vassilis Cutsuridis

Computational Intelligence Laboratory, Institute of Informatics and Telecommunications,
National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens GR-15310

vcut@iit.demokritos.gr

Abstract. Patients suffering from Parkinson’s disease display a number of
symptoms such a resting tremor, bradykinesia, etc. Bradykinesia is the hallmark
and most disabling symptom of Parkinson’s disease (PD). Herein, a basal
ganglia-cortico-spinal circuit for the control of voluntary arm movements in PD
bradykinesia is extended by incorporating DAergic innervation of cells in the
cortical and spinal components of the circuit. The resultant model simulates
successfully several of the main reported effects of DA depletion on neuronal,
electromyographic and movement parameters of PD bradykinesia.

1 Introduction

The most severe symptom of Parkinson’s disease is bradykinesia (i.e. slowness of
movement). It is not known what causes bradykinesia because there are many
pathways from the sites of neuronal degeneration to the muscles (see Figure 1). The
most important pathways are: (1) the pathway from the substantia nigra pars
compacta (SNc) and the ventral tegmental area (VTA) to the striatum and from the
striatum to the substantia nigra pars reticulata (SNr) and the globus pallidus internal
segment (GPi) and from there to the thalamus and the frontal cortex, (2) the pathway
from the SNc and the VTA to the striatum and from the striatum to the SNr and the
GPi and from there to the brainstem, and (3) the pathway from the SNc/VTA to
cortical areas such as the supplementary motor area (SMA), the parietal cortex, and
the primary motor cortex (M1), and from there to the spinal cord. [12]

The currently accepted view of what causes bradykinesia is that cortical motor
centers are not activated sufficiently the basal ganglia (BG) circuits. As a result,
inadequate facilitation is provided to motor cortical and spinal neuron pools and
hence movements are small and weak [1]. The implication of this view is that cells in
the cortex and spinal cord are functioning normally. This paper suggests otherwise.

In this paper, I integrate experimental data on the anatomy and neurophysiology of
the globus pallidus internal segment [19], the cortex [10] and the spinal cord
structures, as well as data on PD psychophysics [16, 17, 18, 20] to extend a neural
model of basal ganglia–cortex–spinal cord interactions during movement production
[2, 3, 4, 5, 6, 7, 8]. Computer simulations show that disruptions of the BG output and
of the SNc’s DA input to frontal and parietal cortices and spinal cord may be
responsible for delayed movement initiation. The main hypothesis of the model is that

584 V. Cutsuridis

Fig. 1. Schematic diagram of dopaminergic innervation of basal ganglia and sensory-motor
cortex. Arrow-ending solid lines, excitatory projections; Dot-ending solid lines, inhibitory
projections; Diamond-ending dotted lines, dopamine (DA) modulatory projections; STN,
subthalamic nucleus; GPi, globus pallidus internal segment; GPe, globus pallidus external
segment; SNr, substantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA,
ventral tegmental area; PPN, pedunculopontine nucleus.

elimination of DA modulation from the SNc disrupts, via several pathways, the build-
up of the pattern of movement-related responses in the primary motor and parietal
cortex, and results in a loss of directional specificity of reciprocal and bidirectional
cells in the motor cortex as well as in a reduction in their activities and their rates of
change. These changes result in delays in recruiting the appropriate level of muscle
force sufficiently fast and in an inappropriate scaling of the dynamic muscle force to
the movement parameters. A repetitive triphasic pattern of muscle activation is
sometimes needed to complete the movement. All of these result in an increase of
mean reaction time and a slowness of movement (i.e. bradykinesia). This work has
been published in [12, 13, 14, 15].

2 Materials and Methods

2.1 Basis of the Model

Figure 2 schematizes the basal ganglio-cortico-spinal network model. As a basal
ganglio-cortical network, the VITE (Vector Integration To-End point) model of [3]
was chosen, which is here extended. In my proposed version of the VITE model, the
types and properties of the cortically identified neurons are extended and the effects
of dopamine depletion on key cortical cellular sites are studied. Briefly in the model,
an arm movement difference vector (DV) is computed in parietal area 5 from a
comparison of a target position vector (TPV) with a representation of the current
position called perceived position vector (PPV). The DV signal then projects to area

 Neural Model of Dopaminergic Control of Arm Movements 585

Fig. 2. Neural network representation of the cortico-spinal control system. (Top) The VITE
model for variable-speed trajectory generation. (Bottom) the FLETE model of the opponent
processing spinomuscular system. Arrow lines, excitatory projections; solid-dot lines,
inhibitory projections; diamond dashed lines, dopamine modulatory inputs; dotted arrow lines,
feedback pathways from sensors embedded in muscles; DA, dopamine modulatory signal; GO,
basal ganglia output signal; P, bi-directional co-contractive signal; T, target position command;
V, DV activity; GV, DVV activity; A, current position command; M, alpha motoneuronal
(MN) activity; R, renshaw cell activity; X, Y, Z, spinal inhibitory interneuron (IN) activities; Ia,
spinal type a inhibitory IN activity; S, static gamma MN activity; D, dynamic gamma MN
activity; 1,2, antagonist cell pair (adapted from [12]).

4, where a desired velocity vector (DVV) and a non-specific co-contractive signal (P)
[9] are formed. A voluntarily scalable GO signal multiplies (i.e. gates) the DV input
to both the DVV and P in area 4, and thus volitional-sensitive velocity and non-
specific co-contractive commands are generated, which activate the lower spinal
centers. In my model, the DVV signal represents the activity of reciprocal neurons
[10], and it is organized for the reciprocal activation of antagonist muscles, whereas
the P signal represents the activity of bidirectional neurons (i.e. neurons whose
activity decreases or increases for both directions of movement [10]), and it is
organized for the co-contraction of antagonist muscles.

The spinal recipient of my model is the FLETE (Factorization of LEngth and
Tension) model [2, 3, 4, 5, 6]. Briefly, the FLETE model is an opponent processing
muscle control model of how spinal circuits afford independent voluntary control of
joint stiffness and joint position. It incorporates second-order dynamics, which play a
large role in realistic limb movements. I extended the original FLETE model by
incorporating the effect of the now cortically controlled co-contractive signal (in the
original FLETE model, the co-contraction signal was simply a parameter) onto its
spinal elements. Finally, I studied the effects that dopamine depletion on key spinal
centers has on voluntary movements.

586 V. Cutsuridis

2.2 Architecture

The mathematical formalism of the basal ganglio-cortico-spinal model has been
described elsewhere [12].

3 Results

3.1 Dopamine Depletion Effects on the Discharge of Globus Pallidus Internal
Segment Neurons

Figure 3 shows a qualitative comparison of abnormal cellular responses of GPi
neurons to striatal stimulation in MPTP-treated monkeys [19] and simulated long
duration of late inhibitions (B) and oscillatory (D) GPi neuronal responses. I propose
that GPi responses similar to figure 3B are used to complete small amplitude

Fig. 3. Comparison of (A) peristimulus histograms (PSTH) of neuronal responses of GPi cells
to striatal stimulation in MPTP-treated monkeys (adapted from Tremblay et al., 1989, Fig. 2, p.
23), (B) simulated dopamine depleted GPi neuronal response, (C) peristimulus histograms
(PSTH) of abnormal oscillatory responses of GPi neurons to striatal stimulation in MPTP-
treated monkeys (adapted from Tremblay et al., 1989, Fig. 2, p. 23), and (D) simulated
oscillatory disrupted GPi responses. Time units in ms.

movements, whereas GPi responses similar to figure 3D are used to complete large
amplitude movements.

3.2 Dopamine Depletion Effects on the Discharge of Cells in the Primary Motor
and Posterior Parietal Cortices

Figure 4 depicts a composite schematic of simulated discharges of neurons in the
primary motor and posterior parietal cortices in normal and dopamine depleted
conditions. An increase in baseline activity of area’s 4 bidirectional and reciprocal
cells is evident as it has been observed experimentally [10]. Also, a significant
reduction of peak activity of the bidirectional and reciprocal cells in the dopamine

A B

C D

 Neural Model of Dopaminergic Control of Arm Movements 587

depleted case [10]. Finally, a disinhibition of reciprocally activated cells is observed
in column 2 of figure 4D.

3.3 Dopamine Depletion Effects on the Discharge of Cells in the Spinal Cord

Figure 5 depicts a qualitative comparison of alpha-MN activity in normal and
dopamine depleted conditions for small and large amplitude movements. In the
dopamine depleted case, a significant decrease in the peak alpha-MN activity of both
agonist and antagonist muscles is observed [20]. What is also evident is the absence
of a co-contractive activation of antagonist muscles as it has been observed in monkey
stimulation studies [21], but not in human studies [20].

Fig. 4. Model dopamine depleted cell responses of primary motor and posterior parietal cortices
in normal (column 1 of A, B, C, and D) and dopamine depleted (column 2 of A, B, C, and D)
conditions. P: bidirectional neuronal response; DV: posterior area 5 phasic cell response; PPV:
area 4 tonic cell response; DVV: area 4 reciprocal (phasic) cell response. Time (x-axis) in ms.

 Also, a repetitive biphasic agonist-antagonist muscle activation can be observed as
in [22]. The GO signal used to simulate such repetitive muscle activation is the one
from figure 3B.

3.4 Dopamine Depletion Effects on Movement Variables

Figure 6 depicts the position, velocity and force profiles produced in the dopamine
depleted condition of a large-amplitude movement. The GO signal used for these

A B

C D

588 V. Cutsuridis

A B C

Fig. 5. Comparison of (A) simulated triphasic alpha motorneuronal (MN) activation under
normal conditions, (B) simulated disrupted a-MN activation under dopamine depleted
conditions, and (C) simulated repetitive biphasic a-MN activity in a dopamine depleted
movement. The agonist a-MN activity is scaled down by 1.6 marks, so that a clearer repetitive
biphasic pattern of muscle activation is shown. The GO signal used in (B) is the same as in
figure 3B, whereas the GO signal used in (C) is the same as in figure 6A. Time (x-axis) in ms.

A

BC D

B

Fig. 6. Simulated repetitive GO signal (A), velocity (B), position (C) and muscle force (D)
profiles in a large amplitude movement in dopamine-depleted condition. Down pointing arrows
indicate sub-movements needed to complete the movement.

simulated is shown in figure 6A. They are evident the two sub-movements required to
complete the movement. Figure 7 depicts the position, velocity and force profiles
produced in the dopamine depleted condition of a small-amplitude movement. The
GO signal used for these simulated is shown in figure 7A. For this movement a single
motor command produced by the DVV cells is needed to complete it.

 Neural Model of Dopaminergic Control of Arm Movements 589

A B

C
D

Fig. 7. Simulated GO signal (A), velocity (B), position (C) and muscle force (D) profiles in a
small amplitude movement in dopamine-depleted condition

4 Conclusion

The present model is a model of voluntary movement and proprioception that offers
an integrated interpretation of the functional roles of the diverse cell types in
movement related areas of the primate cortex. The model is based on known cortico-
spinal neuroanatomical connectivity (see Tables 1 and 2 of [8]). The model is
successful at providing an integrative perspective on cortico-spinal control of
parkinsonian voluntary movement by studying the effects of dopamine depletion on
the output of the basal ganglia, cortex and spinal cord. It can account for the many
known empirical signatures of Parkinsonian willful action such as

• Reduction of firing intensity and firing rate of cells in primary motor cortex
Abnormal oscillatory GPi response

• Disinhibition of reciprocally tuned cells
• Repetitive bursts of muscle activation
• Reduction in the size and rate of development of the first agonist burst of

EMG activity
• Asymmetric increase in the time-to-peak and deceleration time
• Decrease in the peak value of the velocity trace
• Increase in movement duration
• Substantial reduction in the size and rate of development of muscle

production

These findings provide enough evidence to support the main hypothesis of the model
reported earlier in the paper. A much larger set of experimental evidence that the
model successfully simulated are shown in [12].

590 V. Cutsuridis

References

1. Albin, R. L., Young, A. B., & Penney, J. B.: The functional anatomy of basal ganglia
disorders. Trends in Neurosciences. 12 (1989) 366–375

2. Bullock, D., & Contreras-Vidal, J. L.: How spinal neural networks reduce discrepancies
between motor intention and motor realization. In K. Newel, & D. Corcos (Eds.),
Variability and motor control (pp. 183–221). Champaign, IL: Human Kinetics Press, 1993.

3. Bullock, D., Grossberg, S.: Neural dynamics of planned arm movements: Emergent
invariants and speed-accuracy properties during trajectory formation. Psychological
Review. 95 (1988) 49–90.

4. Bullock, D., Grossberg, S.: VITE and FLETE: Neural modules for trajectory formation
and tension control. In W. Hershberger (Ed.), Volitional action (pp. 253–297).
Amsterdam, The Netherlands: North-Holland, 1992.

5. Bullock, D., Grossberg, S.: Adaptive neural networks for control of movement trajectories
invariant under speed and force rescaling. Human Movement Science. 10 (1991) 3–53.

6. Bullock, D., Grossberg, S.: Emergence of triphasic muscle activation from the nonlinear
interactions of central and spinal neural networks circuits. Human Movement Science. 11
(1992) 157–167.

7. Bullock, D., Cisek, P., Grossberg, S.: Cortical networks for control of voluntary arm
movements under variable force conditions. Cerebral Cortex. 8 (1998) 48–62.

8. Contreras-Vidal, J. L., Grossberg, S., Bullock, D.: A neural model of cerebellar learning
for arm movement control: Cortico-spino-cerebellar dynamics. Learning and Memory.
3(6) (1997) 475–502.

9. Humphrey, D. R., & Reed, D. J.: Separate cortical systems for control of joint movement
and joint stiffness: Reciprocal activation and coactivation of antagonist muscles. In J. E.
Desmedt (Ed.), Motor control mechanisms in health and disease. New York: Raven Press,
1983.

10. Doudet, D. J., Gross, C., Arluison, M., Bioulac, B.: Modifications of precentral cortex
discharge and EMG activity in monkeys with MPTP induced lesions of DA nigral lesions.
Experimental Brain Research. 80 (1990) 177–188.

11. Dormand, J. R., & Prince, P. J.: A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics. 6 (1980) 19–26.

12. Cutsuridis, V., Perantonis, S. (in press): A Neural Model of Parkinson's Disease
Bradykinesia. Neural Networks.

13. Cutsuridis, V.: A neural network model of normal and Parkinsonian EMG activity of fast
arm movements. Book of abstracts of the 18 Conference of Hellenic Society for
Neuroscience, Athens, Greece, October 17-19, 2003.

14. Cutsuridis, V., Bullock, D.: A Neural Circuit Model of the Effects of Cortical Dopamine
Depletion on Task-Related Discharge Patterns of Cells in the Primary Motor Cortex.
Rethymnon, Crete, Book of abstracts of the 17th Conference of Hellenic Society for
Neuroscience, Poster 3, p. 39, October 4-6, 2002.

15. Cutsuridis, V., Bullock, D.: A Neural Circuit Model of the Effects of Cortical Dopamine
Depletion on Task-Related Discharge Patterns of Cells in the Primary Motor Cortex.
Poster Session II: Sensory-Motor Control and Robotics, Book of abstracts of the 6th
International Neural Network Conference, Boston, MA, May 30 - June 1, 2002.

16. Stelmach, G.E., Teasdale, N., Phillips, J., Worringham, C.J.: Force production
characteristics in Parkinson's disease. Exp Brain Res. 76 (1989) 165-172.

17. Rand, M.K., Stelmach, G.E., Bloedel, J.R.: Movement Accuracy Constraints in
Parkinson's Disease Patients. Neuropsychologia. 38 (2000) 203-212.

 Neural Model of Dopaminergic Control of Arm Movements 591

18. Camarata, P.J., Parker, P.G., Park, S.K., Haines, S.J., Turner, D.A., Chae, H., Ebner, T.J.:
Effects of MPTP induced hemiparkinsonism on the kinematics of a two-dimensional,
multi-joint arm movement in the rhesus monkey. Neuroscience. 48(3) (1992) 607-619.

19. Tremblay, L., Filion, M., & Bedard, P. J.: Responses of pallidal neurons to striatal
stimulation in monkeys with MPTP-induced parkinsonism. Brain Research. 498(1) (1989)
17–33.

20. Godaux, E., Koulischer, D., & Jacquy, J.: Parkinsonian bradykinesia is due to depression
in the rate of rise of muscle activity. Annals of Neurology. 31(1) (1992) 93–100.

21. Benazzouz, A., Gross, C., Dupont, J., Bioulac, B.: MPTP induced hemiparkinsonism in
monkeys: Behavioral, mechanographic, electromyographic and immunohistochemical
studies. Experimental Brain Research. 90 (1992) 116–120.

22. Hallett, M., Khoshbin, S.: A physiological mechanism of bradykinesia. Brain. 103 (1980)
301–314.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 592 – 601, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Occlusion, Attention and Object Representations

Neill R. Taylor1, Christo Panchev2, Matthew Hartley1,
Stathis Kasderidis3, and John G. Taylor1

1 King’s College London, Department of Mathematics, The Strand,
London, WC2R 2LS, U.K.

{neill.taylor, john.g.taylor}@kcl.ac.uk,
mhartley@mth.kcl.ac.uk

2 Sunderland University, School of Computing and Technology, St. Peter’s Campus,
Sunderland SR6 0DD, U.K.

 christo.panchev@sunderland.ac.uk
3 Foundation for Research & Technology Hellas, Institute of Computer Science,

Vassilika Vouton, 71110 Heraklion, Greece
stathis@ics.forth.gr

Abstract. Occlusion is currently at the centre of analysis in machine vision. We
present an approach to it that uses attention feedback to an occluded object to ob-
tain its correct recognition. Various simulations are performed using a hierarchi-
cal visual attention feedback system, based on contrast gain (which we discuss as
to its relation to possible hallucinations that could be caused by feedback). We
then discuss implications of our results for object representations per se.

1 Introduction

In any complex visual scene there will be many occluded objects. It has proved a
challenging problem for machine vision to see how occluded shapes can be seg-
mented and identified in such scenes [1], though has been dealt with by a number of
models notably the Neocognitron [2]. Here we consider the use of attention as a tech-
nique to help the recognition problem. We do that on the basis of a hierarchical set of
neural modules, as is known to occur in the brain. Brain guidance of this form has
been much used in the past to deduce pyramidal vision architectures. We add to that
hierarchy an additional processing system in the brain, that of attention. This is also
well known to act as a filter on inputs, with those stimuli succeeding to get through
the filter being singled out for further high-level processing involving prefrontal corti-
cal executive functions.

In this paper we propose to employ both hints from the brain: hierarchy and atten-
tion feedback, to help resolve the problem of occlusion. In particular we will show
that attention helps to make an object representation of the occluded stimulus more
separate from that of the occluder, so helping improve the recognition of the occluded
object. At the same time the position of the occluded object can be better specified.
We also show that the process of attending to an occluded object does not cause it to
become a hallucination, so that it regains all of its components in the internal image of
the stimulus in the brain. This is achieved partly by an approach using attention feed-
back defined as contrast gain on the inputs to a neuron from the attended stimulus.

 Occlusion, Attention and Object Representations 593

In that way inputs that are zero (due to occlusion) will not become increased at all,
whereas special constraints would have to be imposed to prevent other sorts of
feedback from eliciting posterior activation of the whole of the encoded occluded
stimulus.

The paper starts in the next section with a description of the hierarchical neural ar-
chitecture. It continues in section 3 with a description of the results obtained on simu-
lating an occluded shape by another different one and the activations in the network
arising from attention to the stimulus or elsewhere. In section 4 we use these results
to characterize object representations in the brain. Section 5 is a concluding discus-
sion section.

2 Visual Architecture

The visual system in the brain is hierarchical in nature. We model that by a sequence
of neural network modules forming two hierarchies, one dorsal for spatial representa-
tions and one ventral for object representations. Both of these are well known to occur
in the brain. We take a simplified model composed of leaky-integrate-and-fire neu-
rons, with the hierarchies as shown in fig. 1, table 1 shows the sizes of all modules.

The model is composed of the ventral ‘what’ stream and the dorsal ‘where’ stream.
The ventral stream is trained from V2 upwards in a cumulative process, whilst the
dorsal stream is hard-wired. The retinal input undergoes edge detection and orienta-
tion detection (4 orientations 0º, 45º, 90º, 135º) to provide the input to the ventral
stream lateral geniculate nucleus (LGN). Above LGN all regions are composed of a
topographically related excitatory layer and an inhibitory layer of neurons that are
reciprocally connected, both layers receive excitatory input from other regions; and
there are lateral excitatory connections in the excitatory layer.

The ventral ‘what’ stream via hard-wired and trained connections has a progression
of combining object features from oriented bars, to angles formed by 2 bars, to arc
segments composed of 3 and 4 bars and finally to objects. At each level there is a loss
of spatial information due to the reduction in layer size until at the modelled anterior
part of the inferotemporal cortex (area TE) and above representations are spatially
invariant. The ventral primary visual cortex (V1 ventral) is composed of 4 excitatory
layers, one for each orientation, which are interdigitated in 2-dimensions to provide a
pin-wheel structure such that neurons responding to the 4 orientations for the same
spatial position are grouped together. V2 is known to preferentially respond to angles
formed by pairs of oriented bars [3], so the model V2 is trained using guided spike-
time dependent plasticity (STDP) to give similar responses. More specifically, V2 is
trained on pairs of bars forming single angles that are present in the objects (square,
triangle and circle), and for each single pattern at the input only the neurons assigned
to represent that angle are allowed to fire and thereby adapt to the stimulus. V4 re-
ceives input from V1 and V2; those to the excitatory neurons are trained using STDP.

Experimental results [4] indicate that V4 responds preferentially to arc segments
composed of 3-4 lines; we train V4 on a random selection of length 5 arcs from our
object group (square, triangle and circle). TEO (within posterior inferotemporal
cortex) receives inputs from V2 and V4; only those connections to excitatory TEO

594 N.R. Taylor et al.

Retina

LGN
(ventral)

V1
(ventral)

V2

V4

TEO

TE

IFG

IFG_no_goal

TPJ

LGN
(dorsal)

V1
(dorsal)

V5

LIP

FEF

FEF_2

FEF_2_no_goal

SPL

Object 1

Object 2

Space 1

Space 2

Spatial goal signal
Object goal signal

VENTRAL DORSAL

Fig. 1. Hierarchical Neural Model Architecture. Open arrow heads indicate excitatory connec-
tions, closed-arrow heads are inhibitory connections, and closed-diamond connections indicate
sigma-pi weights. We only show the general hierarchical structure, the internal structure of
each region is described in the text.

neurons undergo learning. Inputs are complete objects (square, triangle and circle)
and use the previously trained V4. TE is also trained on complete objects, with inputs
from V4 and TEO. The inferior frontal gyrus (IFG) modules, IFG and IFG_no_goal,
are exactly the same and composed of 3 neurons, each one of which represents one of
our objects and is hardwired to the TE neurons that preferentially respond to that
object. The IFG module can receive inputs from an object goal site such that the
system can have its attention directed to a particular object group, where the goal is
currently externally determined. This attentional process occurs through sigma-pi
weights from temporal–parietal junction (TPJ), the generator of attention movement
control signals, onto the V2 V4 (excitatory nodes) connections. Normally when
there is no object goal TPJ is kept inhibited by high spontaneous firing of a node
termed Object 2; when a goal is setup, this node is itself inhibited by the Object 1
node, which allows TPJ nodes to become active. The sigma-pi weights connect TPJ

 Occlusion, Attention and Object Representations 595

object nodes to V2 V4 connections that have been identified as being important for
developing representations for that object at the higher levels (TE, IFG modules).
Hence when the goal ‘square’ is set-up, say, we see an increase in the firing rate of the
neurons that represent arc segments of squares in V4 (only for neurons that have V2
‘square’ inputs since this attentional process is modulatory not additive), and via this
increased activity to TEO, TE and IFG_no_goal site. The IFG_no_goal module indi-
cates the results of the attentional process; the IFG module does not show the results
of attention since it is where the object goal is formed and hence the majority of its
activation is goal related.

The dorsal ‘where’ stream is hard-wired to refine spatial representations as infor-
mation is passed upwards via V1 dorsal, V5, and frontal eye field (FEF) modules:
FEF_1 and FEF_2. Spatial goals can be set-up in the dorsal stream with a particular
location being excited in FEF_2. Superior parietal lobule (SPL) is the dorsal equiva-
lent of the ventral TPJ as the generator of the movement of spatial attention signals to
posterior sites; SPL receives input from FEF_2 but can only fire if a spatial goal is set
allowing for disinhibition via the Space 1 and Space 2 nodes. The spatial goal posi-
tion is currently determined externally. Sigma-pi weights connect SPL to the
V5 lateral intraparietal area (LIP) connections, only the weights between excitatory
nodes are affected. A spatial goal can, via the sigma-pi connections, modulate the
inputs to LIP nodes from V5; an increased firing rate for nodes in this region results
for LIP and higher dorsal modules if an input exists at the same spatial location as the
goal. We use the FEF_2_no_goal module to view the affects of spatial attention. We
have previously shown, using a similar dorsal route architecture, that attention can
highlight a particular spatial location [5].

Table 1. The sizes of modules

Module Size
LGN 38*28
V1 ventral 76*56
V2 76*56
V4 30*20
TEO 15*10
TE 5*5
IFG, IFG_no_goal, TPJ 3*1
V1 dorsal, V5. LIP, FEF_1, FEF_2, FEF_2_no_goal, SPL 19*14

Lateral connections between V4 and LIP allow for the passage of information be-
tween the 2 streams [6, 7]. When an object is attended to (object goal set) these con-
nections lead to increased firing in the location of the attended object in LIP which
then through processing at higher dorsal levels indicates the position of the object.
Alternatively spatial attention in the dorsal stream increases firing rates of V4 nodes
at that location; via TEO and TE the activations in IFG_no_goal indicate which object
is located at that spatial location.

Parameter searches are performed at each level such that useful partial object rep-
resentations and object representations are found at TEO and TE, respectively.

596 N.R. Taylor et al.

A more detailed look at the way that the three figures are encoded into the various
modules is shown in fig. 2, where the preference maps are shown in a) for V4 and in
b) for TE. These maps assign the colours: grey, black and white for square, triangle or
circle, respectively, to each of the neurons in the relevant module according to the
stimulus shape to which it is most responsive. As we see in fig. 2, in V4 the prefer-
ence map has a semi-topographic form, with clusters of nodes preferring a given
stimulus in their nearby area; in TE there is no topography and the representations are
spatially invariant.

a) V4 preference map b) TE preference map

Fig. 2. Preference maps in V4 and TE for the shapes: triangle, square and circle

We now turn to consider in the next section what happens when we present an oc-
cluded stimulus.

3 Occlusion with Attention

The total image we investigate here is shown in fig. 3. It consists of a square and a
triangle. Of course it is problematic which of the two figures is occluding the other in
fig. 3, since it is two dimensional with no hint of three-dimensionality (to which the
resolution of occlusion can contribute). We will discuss that question later, but con-
sider here that we are looking at either figure as occluding the other, and ask the ques-
tion as to how one might extract a clearer recognition of each figure in the presence of
the distorting second figure. This task is thus more general and difficult, we suspect,
than occlusion, where one figure is to be taken as the occluding figure in the fore-
ground and the other (the occluded figure) as background or ground (as detected by
the three-dimensional clues).

The activities in several of the modules are shown in figures 4, 5 and 6. Of these
some entries have negative values, these being where the change between two differ-
ent conditions has been calculated. In particular the figure 4a, denoted ‘V4 Square-
Away’ shows the firing rates for V4 neurons where the results for attend triangle have
had the attend-away results subtracted from them to show the overall difference that
attending the square causes. A similar result holds for fig. 4b.

 Occlusion, Attention and Object Representations 597

Fig. 3. Occluded input, composed of a square and a triangle. Left figure shows the complete
input, right the edge detected input.

In particular we see from fig. 4a that when attention is turned to the square, in com-
parison with the case when no attention feedback is used at all, then there is consider-
able increase in the firing rates of V4 neurons preferring the square, as seen from the
V4 preference map of fig. 3a. Symmetrically, the triangle-representing neurons in-
crease their firing considerably when attention is directed towards the triangle, to the
detriment to those neurons preferring the square.

a) V4 square-away b) V4 triangle-square

Fig. 4. V4 responses. Scale in Hz. We plot a) V4 response to attend square of composite
object minus response to composite image without attention.; b) is the response when the trian-
gle of the composite object is attended to minus the attend away firing rate.

A similar situation occurs for the neurons in TE as seen in fig. 5. In fig. 5a it is ex-
actly those neurons preferring the square that are boosted, with an average firing rate
increase of about 64 Hz. In the same manner, the attention feedback to the triangle-
causes the triangle-preferring nodes in TE to increase their firing rates by above
100Hz on average.

These results indicate that either figure becomes more strongly represented in V4
and TE when attention is turned to it. This is in general to the detriment of the other
figure, as is to be expected.

598 N.R. Taylor et al.

a) TE Square-Away b) TE Triangle Away

Fig. 5. TE responses. Scale in Hz. Where a) is the TE firing rate response when the square is
attended to minus the response in the no attention case; b) is the TE response to attend triangle
minus the attend away response.

The IFG_no_goal module shows the affects of object attention. When there is no
attention the square representation is the most highly activated having a stable firing
rate of 49Hz, whilst the triangle representation has a firing rate of only 9Hz. With
attention directed to the square, the firing rate for the square increases to 118Hz, and
the triangle reduces to 1Hz, but when attention is focused on the triangle the firing
rates become 12Hz for the square representing node and 123Hz for the triangle.
These results agree with the previous ones described for activities residing in lower-
level modules under the affect of attention to one or other of the shapes - square or
triangle (as shown in figures 4 and 5).

4 Object Representation

As previously mentioned the lateral connections between the ventral and dorsal
streams allow for activations modulated by attention to be transferred from stream to
stream. We see from fig. 6 the change in FEF responses when attention is directed to
the square or triangle (within the ventral stream) versus the no attention condition. In
both cases firing rates increase by up to 40-50Hz, highlighting the centres of the ob-
jects as well as parts of the overlap region, there are also decreases near the centre of
the non-attended object in range of 20-30Hz. The highest firing rates occur near the
overlap regions, but overall the firing rates are higher for the spatial location of the
attended object.

Such results indicate that a neural ‘object representation’ in our architecture is de-
pendent on where attention is directed. If it is directed at the stimulus providing acti-
vation of the learnt object representation in the brain then there are two aspects of the
representation which are different from the set of neurons activated when there is no
attention to the object or attention is directed to another object in the visual field.
These effects are

1) An extension of the representation into the other stream (from ventral to dorsal
stream activations if objects are being attended to, or from spatial position to object,
so from dorsal to ventral streams, if positions are being attended to. This extension is

 Occlusion, Attention and Object Representations 599

not as strong if there is no attention to one or other of space or object, with attention
in the ventral stream there are increases in LIP firing rates at the location of the at-
tended object of up to 100Hz, in FEF_no_goal module the increases are up to 50Hz in
attention cases as against the no attention cases.
2) A lateral extension of the representation in each module when attention is in-
volved. Such a lateral extension, for example in V4, is due to the lateral excitatory
connections in the module itself, which allow for the spread of activity due to the
increased firing of central neurons to the object representation when attention is being
used. Whilst there is little change in the numbers and positions of active V4 excita-
tory neurons, an increase of ~8% in the number of neurons with most of these having
low firing rates (<10Hz), there is a large increase in the firing rates of neurons that are
active and showing a preference to the attended object (up to 80Hz), and a decrease in
firing rates of active nodes showing a preference for the unattended object caused by
increased inhibition. The spreading of activity at the excitatory layer is prevented by
an increase in numbers and firing rates of the V4 inhibitory neurons, from 3 neurons
in the non-attentive case to 16 for the attentive case and firing rates increasing by up
to 20Hz.

a) FEF Square-Away b) FEF Triangle-Away

Fig. 6. FEF responses, with the perimeter of the input scaled and superimposed on the neuron
firing rate changes. Scale in Hz. The plots are a) FEF response to attend square minus re-
sponse to attend away; and b) is the response to attend triangle minus the attend away result.

We conclude that an object representation can only be specified when the attention
state of the system is itself known. This corresponds to the statement that when feed-
back is present then not only do the afferent synaptic weights to the neurons of a mod-
ule specify the unattended representations it carries, but the feedback weights are also
needed to specify how these representations are modified by the attention state.

It can be commented that this feature of attention-dependent object representations
is well known. However we are here indicating, beyond the feature itself of attention-
dependence, that this feature is important to help resolve the question of occlusion,
and to separate out components of an occluded/occluding set of objects which the
objects are. Such a process needs, as a base to start from, the object representations of
the unattended figures. The resolution of the occluded figures into its component

600 N.R. Taylor et al.

objects can then be achieved by using the slightly activated classifier neurons in IFG
(without attention) so as to return to their component attended object representations
sequentially to check that these objects are indeed present. Without attention the
firing rates in the IFG_no_goal module are: triangle 4Hz, square 64Hz, circle 0Hz for
our occluded input (fig. 2).

5 Discussion

We have shown using a hierarchical visual model how attention, modelled as contrast
gain, can be used to recognise occluded objects. By activating object goals in the
ventral visual stream the components of an occluded object can be recognised, in this
case a square and a triangle. Additionally the increased activation due to this atten-
tional process can be transferred into the dorsal stream to cause increased activations
in the spatial location of the attended object. Indeed, though not shown here, results
have shown that with lateral connectivity at the V4 – LIP level spatial attention can
lead in the ventral to the identification of the object at the attended location. Contrast
gain attention, as modelled here, does not cause hallucination of the occluded part of
an object, since the occluded parts have zero activation and cannot be increased by the
attentive modulation. Additive attention could lead to the occluded parts of the ob-
ject becoming active, as the feedback from higher levels travels down the visual
stream. We are not necessarily talking here about ‘filling-in’ since it is clear that
looking at figure 2 we can attend to the part of the object that resembles a square
without ‘seeing’ the occluded vertex. We have yet to include in a comprehensive
manner the known feedback connections in the visual cortex. Limited additions of
these weights have shown that small weight values help attention as contrast gain to
distinguish between attended and unattended objects, as well as helping to refine
representations at higher levels in the attend away cases.
 Certain attention results [8] have so far only successfully been modelled using
attention as multiplicative for graded and spiking neurons in a variety of architectures
[8, 9, 10, 11]. Visual models using additive attention include [12] and recent models
[13] have suggested that a multiplicative component of attention can be the result of
additive attention, though they did not investigate whether the model gave similar
results to the experimental studies [8].

There is the question of what is occlusion in a 2-dimensional image in a monocular
system. Here, we have both objects the same colour and perhaps this is not occlusion
but a composite object that attention can be moved around via goals to find which
parts resemble the system’s learnt objects (square, triangle). This could be a harder
problem than dealing with occlusion in 3-dimensions with a binocular system and the
aid of extra information such as depth, and our results on the 2-dimensional problem
give good grounds for claiming that attention will be crucial in resolving 3-
dimensional occlusion.

Finally, attention-dependent object representations are important in resolving oc-
clusion, by the separation of the composite object into component objects, using the
unattended object representations.

 Occlusion, Attention and Object Representations 601

Acknowledgments

One of us (NRT) would like to thank EPSRC, others (JGT, CP, & SK) would like to thank the
EC, under the GNOSYS (FP6-003835) project, and another (MH) would like to thank the EC,
under the MATHESIS project for support to carry out this work.

References

1. Zitnick C. L. & Kanade T.: ‘A Cooperative Algorithm for Stereo Matching and Occlusion
Detection’, IEEE Trans. Patt. Anal. Mach. Intel. (2000) 22: 675-684

2. Fukushima K.: "Recognition of partly occluded patterns: a neural network model", Biol
Cybern (2001) 84: 251-259.

3. Ito M. & Komatsu H.: Representation of Angles Embedded within Contour Stimuli in
Area V2 of Macaque Monkeys. J Neuroscience (2004) 24: 3313-3324.

4. Pasupathy A. & Connor C.E.: Shape Representation in Area V4: Position-Specific Tuning
for Boundary Configuration. J Neurophysiol (2001) 86:2505-2519.

5. Taylor J.G., Hartley M., & Taylor N.R. ‘Attention as Sigma-Pi controlled ACh-based
feedback’, Proc. of IJCNN’05 (2005).

6. Lanyon L. J. & Denham S.L.: ‘A model of active visual search with object-based attention
guiding scan paths’, Neural Netw. (2004) 17: 873-97.

7. van der Velde F. & de Kamps M.: ‘From Knowing What to Knowing Where: Modeling
Object-Based Attention with Feedback Disinhibition of Activation’, J. Cog. Neurosci.
(2001) 13: 479-491.

8. Reynolds J.H., Chelazzi L. & Desimone R.: ‘Competitive mechanisms subserve attention
in Macaque areas V2 and V4’, J. Neurosci. (1999) 19: 1736-53.

9. Taylor J.G. & Rogers M.: ‘A control model of the movement of attention’ Neural Netw.
(2002) 15:309-326.

10. Taylor N.R., Hartley M. & Taylor J.G. ‘The Micro-Structure of Attention’, accepted for
CNS’06 (2006).

11. Taylor N.R., Hartley M. & Taylor J.G. ‘Analysing Attention at Neuron level’ accepted for
BICS’06 (2006).

12. Grossberg S. & Raizada R. D. ‘Contrast-sensitive perceptual grouping and object-based at-
tention in the laminar circuits of primary visual cortex’, Vision Res. (2000) 40: 1413-32.

13. Deco G. & Rolls E.T.: ‘Neurodynamics of biased competition and cooperation for atten-
tion: a model with spiking neurons’, J. Neurophysiol. (2005) 94: 295-313.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 602 – 611, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Forward / Inverse Motor Controller
for Cognitive Robotics*

Vishwanathan Mohan1,2 and Pietro Morasso1

1 Neurolab, DIST, University of Genova,Via Opera Pia 13, Genova 16145 Italy.
morasso@dist.unige.it

 www.biomedica.laboratorium.dist.unige.it/morasso.html
2 Doctoral School on Humanoid Technologies, Italian Institute of Technology,

Genova, Italy
vishwanathan.mohan@unige.it

Abstract. Before making a movement aimed at achieving a task, human beings
either run a mental process that attempts to find a feasible course of action (at the
same time, it must be compatible with a number of internal and external
constraints and near-optimal according to some criterion) or select it from a
repertoire of previously learned actions, according to the parameters of the task.
If neither reasoning process succeeds, a typical backup strategy is to look for a
tool that might allow the operator to match all the task constraints. A cognitive
robot should support a similar reasoning system. A central element of this
architecture is a coupled pair of controllers: FMC (forward motor controller: it
maps tentative trajectories in the joint space into the corresponding trajectories of
the end-effector variables in the workspace) and IMC (inverse motor controller:
it maps desired trajectories of the end-effector into feasible trajectories in the
joint space). The proposed FMC/IMC architecture operates with any degree of
redundancy and can deal with geometric constraints (range of motion in the joint
space, internal and external constraints in the workspace) and effort-related
constraints (range of torque of the actuators, etc.). It operates by alternating two
basic operations: 1) relaxation in the configuration space (for reaching a target
pose); 2) relaxation in the null space of the kinematic transformation (for
producing the required interaction force). The failure of either relaxation can
trigger a higher level of reasoning. For both elements of the architecture we
propose a closed-form solution and a solution based on ANNs.

1 Introduction

Humans exhibit an enormous repertoire of motor behaviour which enables us to
effectively interact with many different objects under a variety of environmental
conditions. Modelling the way in which humans learn to coordinate their movements
in daily life or in more demanding activities is an important scientific topic from
many points of view, such as medical, psychological, kinesiological, and cybernetic.
The ability to perform in such a varying and often uncertain environment is also a
feature which is conspicuously absent from most robotic control, as robots tend to be

* This research was partly supported by the EU FP6 project GNOSYS.

 A Forward / Inverse Motor Controller for Cognitive Robotics

603

designed to operate within rather limited environmental situations. Cognitive
problems have been explored in recent years from the point of view of the design of
robots or the development of humanoid technologies. The research has clustered
around broad and related concepts: developmental robotics, epigenetic robotics, bio
robotics [5, 6]. In this context, the idea that perception is not a passive mechanism for
receiving and interpreting sensory data but is the active process of anticipating the
sensory consequences of an action provides a computational alternative to the
conventional view based on a segregation of perceptual, motor and cognitive
processes in different parts of the brain, according to some kind of hierarchical
organization. This implies that adaptive behaviour can best be understood within the
context of the (biomechanics of the) body, the (structure of the organism’s)
environment, and the continuous exchange of signals/energy between the nervous
system, the body and the environment. In other words the appropriate question to ask
is not what the neural basis of adaptive behaviour is but what the contributions of all
components of the coupled system to adaptive behaviour and their mutual interactions
are. The brain has a body and the body has its constraints and affordances.
 Our ability to execute movements using different end effector systems and on
different scales (writing on a paper and a black board for example), makes it plausible
that a level of representation of movement may exist independent of how the
movement will be performed [7]. In order to complete the specification of motor plan,
the task description must be bound to the specific end effector, which on its turn, must
be translated into the proximal space, thus completing the desired kinematic picture of
movement. The transformation form distal space to body space requires inversion of
the forward kinematic mapping x=f(q), which is usually redundant both in terms of
structure and task [1]. Consider the ‘stick paradigm’ requiring a use of an appropriate
tool for obtaining a goal that is not achievable by direct use of end effector: the
robot’s body imposes specific constraints on the range of attributes (physical
dimensions, weight, moment of inertia, surface characteristics etc) of sticks that can
be grasped and effectively used by the robot. This description is independent of the
specific task, but the task may impose additional constraints on the stick attributes
that must be taken into account when reasoning about the task and eventually
planning a course of actions. In general, it is very difficult to formalize a priori the
constraints that qualify an effective “stick” in the context of a given task and thus only
a very approximate schema can be formulated in terms of explicit rules and structural
descriptions: the crucial part is best represented in terms of experiments, either
“mental experiments” (carried out by means of an internal model of the body and the
environment) or “actual experiments”, which require a corresponding sequence of
virtual or actual movements for achieving the task. In addition, it is essential to reach
a reasonable solution which also takes into account internal and external constraints
and the fact that in general a “target position” is associated with a “target effort”.
 In this framework, we propose a general biomimetic system for the coordination of
body/arm/tool movements that operates with any degree of redundancy, for any
configuration of limbs, and can deal with geometric constraints (range of motion in
the joint space, internal and external constraints in the workspace) and effort-related

604 V. Mohan and P. Morasso

constraints (range of torque of the actuators, etc.).The crux of this architecture
implements the Passive Motion Paradigm: the “virtual stiffness” determines an
attractive force field to the target. However, this field can be distorted in order to take
into account external constraints or obstacles. The pair of transformations, determined
by the Jacobian and the transpose Jacobian, solve “the transfer from the end-point
trajectory to a requisite motor plan” or also the inverse kinematic transformation in
the general redundant case. In other words, this is a method to generate end-effector
movements according to a plan. At the end of the simulation if the residual error is
null, we can say that the target is reachable. If it is not, the residual error is an
estimate of the size of the required tool. However, we should also consider that the
final position at the end of the relaxation to desx is a local minimum of an energy
function and given the redundancy of the system it may well be that another better
equilibrium configuration exists, for example a configuration with a smaller residual
error that then requires a tool of smaller size. How to search for such better
configurations? One possibility is to carry out null-space movements i.e. movements
that exploit the redundancy of the transformation (the fact that for each position of the
end effector there is an infinity of arm configurations that are consistent with it). The
equilibrium configurations can be memorized and rewarded/punished according to
performance measures. In sum, the proposed FMC/IMC pair integrates end-effector
movements and null-space movements in the same computational mechanism that
becomes a generator of potential solutions or a reporter of general impossibility to
achieve the goal.

2 The FMC/IMC Pair

Let x be the vector that identifies the pose of the end-effector of a robot in the
workspace and q the vector that identifies the configuration of the robot in the joint

space:)(qfx = is the kinematic transformation or, for each time instant of a

planning process,

qqJx ⋅=)((1)

where J is the Jacobian matrix of the kinematic transformation. In general we shall
consider a redundant robot, i.e. a robot in which the dimensionality of q is (much)

greater than the dimensionality of x . Even a 5 or 6 DOFs manipulator becomes
redundant if you mount it on a mobile platform. An inverse motor controller is one
that, given a desired law of motion to a target in the workspace, computes a
coordinated joint rotation pattern that implements it. We build the IMC by using the
passive motion paradigm (PMP: Mussa Ivaldi et al 1988) that consists of the
following steps:

1) Define a virtual attractive force field to a designated target

Tx :)(xxKF Tx −= (2)

 A Forward / Inverse Motor Controller for Cognitive Robotics

605

2) Map the force vector into an equivalent torque vector (principle of virtual works):

 FJT T= (3)

3) Relax the arm configuration in the applied field:

 TBq ⋅= (4)

4) Map the arm movement into the workspace:

 qJx ⋅= (5)

where xK is a stiffness matrix and B is a viscosity matrix. Fig. 1 illustrates the

method:

Fig. 1. FMC/IMC Pair

The algorithm always converges to a “reasonable” equilibrium state, whatever the
degree of redundancy of the robot: if the target is within the workspace of the robot, it
is reached; if it is not reachable, the robot fully extends the arm to a position that is at
a minimum distance from the target. Moreover, the timing of the relaxation process
can be controlled by using a time base generator (Tsuji et al 2002) and the concept of
terminal attractor dynamics (Zak 1991): this can be simply implemented by
substituting the relaxation equation (4) with the following one:

 TBtq ⋅⋅Γ=)((6)

where a possible form of the time-varying gain that implements the terminal attractor
dynamics is the following one (it uses a minimum-jerk time base generator with
duration τ):

() () ()

−=Γ

+−⋅=

)1()(

/10/15/6)(345

ξ
ξ

τττξ

t

tttt
 (7)

606 V. Mohan and P. Morasso

The model above can be further extended in order to deal with a variety of internal
and external constraints and the fact that in general a “target position” is associated
with a “target effort”, i.e. the fact that after the target pose Tx has been reached (and

possibly an object has been grasped, but the analysis of grasping is outside the scope
of this paper) a force vector TF has to be applied to some object. Figure 2 shows how

we can incorporate in the model the following two requirements that both exploit the
redundancy of the system:

1) Keep the robot away from the joint limits (an internal constraint): this can be
expressed by adding an attractive force field in the joint space)(qqK refq − ,

where refq is the set of joint rotation values in the middle of the range of motion

(an alternative implementation would be a repulsive field from the joint limits);

Fig. 2. First relaxation: to the target pose in agreement with the joint limits. Second
relaxation (dashed line): in the null space in order to produce the target effort in agreement with
the actuator limits.

2) After reaching the target pose, perform a movement in the null space of the
kinematic transformation1 in such a way that for a given desired effort TF the

torque required of each actuator is within the allowed limits: this is implemented
by introducing TF as an additional force drive in the IMC and saturating the

computed torque vector according to the actuator constraints.

1 The null space of the kinematic transformation)(qfx = is characterized by the equation:

.0)(=⋅ qqJ

 A Forward / Inverse Motor Controller for Cognitive Robotics

607

The scheme of fig. 2 can be implemented in a neural way by training a multi-layer
feed forward network to learn the kinematic transformation)(qfx = . From this

trained network it is possible to extract the Jacobian matrix in a simple way.

Suppose for example that we use a three-layer network (fig. 3):

Fig. 3. Three-layer feed forward neural network trained to learn the kinematic transformation

=

=

=

=

j
jjkk

jj

i
iijj

zwx

hgz

qwh

qfx)(')(

(8)

 After training, we can extract the Jacobian matrix from the network in the
following way:

=
∂
∂

∂
∂

∂
∂

=
∂
∂

=
j

ijjjk
i

j

j

j

j j

k

i

k
ki whgw

q

h

h

z

z

x

q

x
J)(' (9)

The procedure can be easily generalized to a network with more than 1 hidden layer.

3 Implementation and Simulation Results

The FMC/IMC pair was implemented with respect to a planar robot with three
revolute joints and link lengths of one for each link. Assuming for each joint a range
of motion of ±90o we sampled the configuration space with 60K samples and after a
few trials we chose a (3, 30, 15, 2) network which tracked the targets reasonably well
to an error of 10-3 . The MLN was trained using the Levenberg-Marquardt algorithm
designed to approach second-order training speed without having to compute the

608 V. Mohan and P. Morasso

Hessian matrix [Hagan et al, 1994].The Jacobians and torques can be computed using
the trained two layer MLP as follows :

=⋅=
i

iij
j

jjl
l

llk
i

iki qwhgwpgwqJqJx).('.).('.

 =⋅=
k

kiki
T FJTFJT

(10)

Where g(.) is the tansig function for the hidden layers, j and l are the first and second
hidden layers respectively.
 Figure 4 illustrates the reaching trajectories obtained by the FMC/IMC pair
without application of Joint reference fields and the external force drive (for Null
Space movements), starting form an initial configuration of (/4, /4, 0). Of the four
different targets are presented, three are within the workspace and one (-3, 4) was not
reachable. Note that in this case, the robot fully extends the arm to a position that is at
a minimum distance from the target. The timing of the relaxation process is controlled
by using a neural time base generator.

The next step was to perform a coordinated body/arm/gripper virtual movement
that brings the gripper to the target according to some optimality criterion which takes

Fig. 4. Relaxation to target pose using FMC/IMC pair

 A Forward / Inverse Motor Controller for Cognitive Robotics

609

into account internal constraints. We considered the case of joint limits as an imposed
internal constraint, which were set to rotation values in the middle of the range of
motion. Figure 5 shows the solutions reached after attractive force field in the joint
space was added, target to be reached is (-1,1).

Fig. 5. Relaxation to target pose after application of attractive force field in joint space

 Finally, we simulated virtual movements in the null-space in such a way to
minimize the overall effort required of all the actuators while satisfying the required
target effort. These are coordinated movements of the body/arm/gripper that keep the
same pose and are characterized by equation .0)(=⋅ qqJ Note that this is only

possible for a redundant system and the effort constraint Ft is turned on only after
target Xt has been reached. Figure 6 and 7 show the final trajectories reached by the
FMC/ IMC pair after performing null space movements.
 Hence, for an arm that is mounted on a mobile robot which includes in its
geometric/kinematic description, the position/orientation of the mobile platform
(3 dofs) as well as the 5 dofs of the arm and the 2 dofs of the gripper, the proposed
FMC/ IMC pair provides a dynamic approach to integrate motor redundancy, internal
constraints (as regards to geometry, self-interference, and range of forces/torques) and
external constraints (obstacles). If the forward simulation is successful then
the movement is executed, otherwise the residual "error" or measure of inconsistency
can be taken as a starting point for breaking the action plan into a sequence of sub
actions.

610 V. Mohan and P. Morasso

Fig. 6 & 7. Relaxation to target pose after virtual movement in the null-space

Fig. 6.

Fig. 7.

 A Forward / Inverse Motor Controller for Cognitive Robotics

611

4 Concluding Remarks

The reasoning system of a cognitive robot must incorporate a scheme for imagination
of motor actions, taking place on imagined objects, so as to ‘reason’ possible
optimally rewarded actions, at the same time satisfying a range of internal constraints
(joint limits), external constraints (obstacles for the body/arm/gripper) and effort
related constraints (range of torques of actuators etc). Using a coupled pair of
controllers FMC/IMC, we provide a computational frame work to perform the motor
cognitive functions of trajectory determination, coordinate transformations and
generation of motor commands implicitly knowledgeable of geometric constraints as
well as effort-related constraints. While the FMC predicts trajectories of the end-
effector variables in the workspace based on trajectories in joint space, the IMC
calculates necessary motor commands from desired trajectories in workspace.

The mental simulation using the proposed framework can run as follows:
a) Reaching the positional target according to some optimality criterion b) Performing
movements in the null field to reach the effort target. In the case that the goal is
satisfied, the selected configuration is memorized and actual movement is initiated. A
failure of either relaxation triggers a higher level of reasoning based on the residual
“mismatches” in order to decide on two possible outcomes: a) abort the task because
it cannot be possibly executed; b) evaluate the geometric/physical parameters of a tool
(within a given repertoire) that might be useful for solving the task; In the case of
outcome ‘b’, a sub goal can be instantiated so as to fetch the tool, grasp it and, if
appropriate, perform some babbling movements to update the arm/gripper/tool
kinematics. In this case, a given task can then be broken down to a sequence of target
positions (assembled in correct order), to be attained independently by the use of the
proposed relaxation dynamics, with the especially important components of the
memory, recalibration and influence of rewards.

References

1. Mussa Ivaldi FA, Morasso P, Zaccaria R (1988) Kinematic Networks. A Distributed Model
for Representing and Regularizing Motor Redundancy. Biological Cybernetics, 60, 1-16.

2. Tsuji T, Tanaka Y, Morasso P, Sanguineti V, Kaneko M (2002) Bio-Mimetic Trajectory
Generation of Robots via Artificial Potential Field with Time Base Generator. IEEE
Transactions on Systems, Man, and Cybernetics, Part C - Applications, 88, 4, 426-439.

3. Zak M (1991) Terminal chaos for information processing in neurodynamics. Biological
Cybernetics 64, 343-351.

4. Z.: Hagan, M. T., and M. Menhaj, (1994) "Training feed forward networks with the
Marquardt algorithm," IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989-993.

5. Beer, R.D., Quinn, R.D., Chiel, H.J., and Ritzmann, R.E. (1997). Biologically- inspired
approaches to robotics. Communications of the ACM 40(3):30-38.

6. Weng J (2004). Developmental Robotics: Theory and Experiments. International Journal of
Humanoid Robotics.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 612 – 622, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Computational Model for Multiple Goals

Stathis Kasderidis

Foundation for Research and Technology - Hellas
Institute of Computer Science, Computational Vision and Robotics Laboratory

Science and Technology Park of Crete
Vassilika Vouton, P.O. Box 1385, 71110 Heraklion, Greece

stathis@ics.forth.gr

Abstract. The paper discusses a computational model suitable for the monitor-
ing and execution of multiple co-existing goals inside an autonomous agent.
The model uses a number of mechanisms to calculate dynamically goal priority.
We provide an overview of the model, a discussion of a Cognitive Agent
architecture that includes it and we provide results that support the current de-
sign. We conclude with a discussion of the results, points of interest and future
work.

1 Introduction

There has been in the past decade great interest and advancements for planning algo-
rithms in the AI literature [1] (and references therein). The main focus of such algo-
rithms is the development of a suitable plan that will achieve a target state. For
autonomous agents, with arbitrary long lifetimes, situated in a dynamic environment
the above approach was extended with execution monitoring and re-planning facili-
ties. Usually the framing of the problem took the form of Hierarchical Task Networks
[1], or that of Abstraction and Hierarchical Planning [2, 3].

However, while the above approaches clearly attack an important aspect of the
overall problem, they do not attack the full problem. For this reason we suggest that
the whole planning problem be decomposed into distinct but interwoven sub-
problems: i. The problem of ‘reasoning’, ii. The problem of ‘execution’. The first
problem deals mainly with the development of a suitable plan which will achieve a
target state, while the second one is related to the monitoring of the plan and the pro-
vision of re-planning requests to the ‘reasoning’ component dynamically.

This paper will discuss the ‘execution’ component of the planning process inside
the agent. The paper is structured as follows: in section 2 we will provide a concise
overview of the Cognitive Architecture and of the links of the execution component
(which we call the Computational Model) with the Reasoning, Motivation, Concept
System and Goal Generation modules of the architecture. In section 3 we present the
Computational Model and justify our motivation. In section 4 we provide results that
support the current work. Section 5 concludes with a discussion on various points of
interest and future work.

 A Computational Model for Multiple Goals 613

2 A Cognitive Architecture

The GNOSYS Architecture aims to control robotic agents in arbitrary complex, novel
and unstructured environments. It consists of a number of high-level modules that
provide the basic cognitive capabilities of the agent. For the purposes of this paper,
figure 1 provides a reduced version, including modules only necessary for the discus-
sion of our Computational Model.

The information flow starts with the request for the achievement of a target state.
This request comes from two primary sources. It is either a User request or a request
from the Motivational System. The realisation of the request takes the form of Goal
object, which is generated by the Goal Generation System. The Goal includes a plan
and a number of parameters (for definition see section 2.1). The necessary plan is
provided by the Reasoning System, while initial values of the parameters are given by
the Concept System and corresponding Value Maps. After the Goal object is created
and appropriately parameterised inside the Goal Generation module it is sent to the
Goal Space. There it becomes active and starts its life as a self-contained execution
entity. In effect the Goal Space corresponds to the notion of the ‘core execution loop’
for our architecture.

Fig. 1. Components of the GNOSYS Architecture and relations to Goal Space (which imple-
ments the Computational Model)

The Goal object and the Goal Space constitute our structural decomposition of the
Computational Model while the functional decomposition corresponds to the actual
mechanisms that control the lifetime and priority of a given goal; they will be dis-
cussed in sections 2 and 3 respectively.

2.1 Definition of a Goal

A Goal object is a self-contained entity (an execution scope). It encapsulates the fol-
lowing components: A goal state; A plan which will provide the sequence of actions
needed in order to achieve the goal state; Various parameters that control the lifetime
and priority of the Goal. This type of encapsulation might seem strange at first but the
justification behind this definition follows a number of ideas:

614 S. Kasderidis

i. Partition of Output Space in disjoint action domains;
ii. To keep statistics about the utility of a plan for reaching a target state

iii. To allow for the case of Hierarchical Plans for the Reasoning System
iv. To allow the representation of a Goal as a concept.

2.1.1 Partition of the Output Space
The Output Space is the space of actions produced by the agent. These actions might
be directed to the agent’s environment or internally to the agent itself. The main idea
for handling and monitoring the complexity of generated action is to use a divide-and-
conquer strategy. This leads naturally to the division of the output space in mutually
exclusive domains of ‘action’. Goals in a given domain compete with a WTA strategy
for the right of realising their actions in the current processing step. They are organised
as a set of competing families. Each family represents a plan with a specific structure.
This will be discussed further in section 3.2. This approach allows the overall architec-
ture to scale efficiently with the dimensionality of the problem and to accept distrib-
uted implementation so as to bring in more computational resources as needed.

2.1.2 Goals and Reinforcement Learning
So far we have not explicitly mentioned any Learning process that takes place inside
our agent. Indeed such functionality is present. The Value Maps module stores maps
that associate states with actions using a RL learning paradigm. However, while the
RL framework is very clear on how to build these associations when one uses primi-
tive actions and states, complications arise when we have ‘abstract actions’ (and ab-
stract states), where we use a hierarchical planner to decompose a high-level task to
finer and finer plans up to the level of primitive actions. Care is needed when abstract
actions and states are involved. This is due to the context that initiated the related
primitive actions. The same primitive action can be evoked by a number of more
abstract plans, so the action should not be treated only as a simple action but as primi-
tive Goal; in this way it can be linked to information regarding the actual hierarchical
plan that is member of. The standard RL framework can be extended in this way to
include the effects of internal context (created by the processing of multiple co-
existing Goals) The utility of a plan (schema) depends not only on the sum of utilities
of its primitive actions, but also on the contextual information related to the utilities of
other co-executing plans.

2.1.3 Reasoning and Hierarchical Plans
While it is not the purpose of this paper to discuss the actual problem of development
of a Reasoning system, we have hinted so far that such a system is based partially in a
hierarchical planner. Our primary concern is to treat a plan that as a whole that must
compete and evaluate its priority. For this reason it is more natural, to our opinion, to
call the plan and its goal state a Goal and then take the view that a Reasoning system
needs to define a ‘meta-plan’ (a decomposition pattern) that decomposes a high-level
goal into a sequence of sub-goals. Having said that we do not want to be more spe-
cific as to the nature of the ‘meta-plan’. A brief discussion will be given in section
3.2. Independent of the form of the actual meta-plan we can design mechanisms that
are mostly independent of the decomposition pattern used and are based on general
ideas.

 A Computational Model for Multiple Goals 615

2.1.4 Goals as Concepts
In the GNOSYS Architecture all internal representations are treated as concepts at a
suitable level of abstraction. For example Object, Schema & Belief concepts exists. A
schema is an abstract plan that is parameterised with appropriate concrete target states
and a set of allowable primitive actions, constraints, etc. These aspects constitute
features of the concept, which take specific values with a given instantiation. To treat
schemas as concepts the Concept System represents them as feature sets and creates
links from one schema to another due to shared sub-plans, value maps, or other such
features. Thus one can easily imagine semantic-style networks of concepts that relate
Goals with each other in the same or different abstraction levels. These semantic
networks are built through agent experience and are updated dynamically. The end
result is that when we search appropriate initial values for the parameterisation of a
Goal (by the Goal Generation System), we can retrieve appropriate information by the
use of stored information in the Concept System.

2.1.5 Goal Attributes
Attributes of a Goal can be separated into a number of classes according to their use.
A high-level classification is as follows:

 Identification Flags (includes ID, Parent ID, Goal class (i.e. concept),
Owner, Domain ID)

 Type Flags (includes Mode and Type (Primitive or Complex))
 Importance Flags (includes Weight, Emotional Weight)
 Action-Attention Flags (Action Index, Sensory Attention Index, Motor At-

tention index, Boundary Attention Index)
 Drive Flags (includes Commitment, Engagement)
 Termination Flags (Termination Probability, Elimination Probability, Exe-

cution Count, User Termination Flag)
 Resource Flags (includes the IDs of the corresponding action domains that

the Goal executes in as well as IDs of input modalities)

Most of the above classes are self-explanatory. It suffices to say that Identification
Flags cover also the Goal class (as a concept), the Owner (which could be the ‘Self’
concept or the agent’s user) and the Domain ID. The latter is used to denote the do-
main that the Goal competes into. A Goal can exist and compete independently into
multiple domains. For example a high-level Goal of ‘fetch the cup from the table’ can
be translated into a plan of moving from an initial point to a point closer to the table
(one action domain – BodyMove) and start a combined sub-plan of movement and
grasping actions such as to position the robot body in a suitable pose so as the robotic
Arm to grasp the target object. In this sub-plan we have the appearance of a second
action domain (that of the Robotic Arm). In the case of the sub-plan the actual high-
level command of Fetch (CupOnTheTable), exists concurrently in both domains and
acts as a family leader that spawns children sub-goals. For the BodyMove domain
these might be Goals such as Move, Rotate, etc, and for the Arm domain these might
be Goals such as MoveArm, Grasp, Open/Close Fingers, etc. The importance, drive,

616 S. Kasderidis

action-attention and termination flags are used by the various mechanisms that consti-
tute the functional decomposition of the Computational Model. They will be dis-
cussed in section 3. Finally the Resource Flags provide the IDs of the Action Domains
that the Goal will be registered with to compete into and the IDs of the input modali-
ties. The notion of the input modalities corresponds to the partition of the input space
(an analogous case to the Output space discussed above) into separate and mutually
exclusive sources of input information. The set of input modalities provide the State
Vector of the agent in a given time. The input modalities include both environmental
and internal sources of information.

2.1.6 Goal Structure
Figure 2 shows the internal structure of goal as a set of modules. Each module corre-
sponds to a sub-process that executes in the scope of the Goal.

Fig. 2. Components of a Goal Object. See text for description.

Sensors correspond to input modalities. The State Module transforms the native
(raw signals) state into perceptual representations (i.e. set of features). The perceptual
state is transformed to a conceptual one by recognition of present object concepts in
the sensory input. If novel objects exist new concepts are formed in the concept sys-
tem. In either case, instances of the concepts are activated in the working memory
module. This information is used next by the plan execution module. The plan is
provided by the reasoning system and it is executed by the plan execution component.
It is the module that implements the selected action in the current processing step.
After an action is executed a new cycle begins. Erroneous plan execution is indicated
by motor attention events. The target state module provides a representation of the
goal state. The observer module builds a model of the environment / internal state as
needed. The monitor module provides a comparison of the current state with the tar-
get state so as to signal the termination of the plan. It also measures discrepancies
between the expected state (coming from the observer) and the actual state so as to
raise sensory attention events. The attention events include sensory, motor and
boundary attention events. These are stored in the attention controller module, which

 A Computational Model for Multiple Goals 617

implements a conceptual queue. Attention events might request re-planning through
the reasoning system. Part of the plan may be the change of the resolution of the state
information through the input modalities (this aims to either enhance information
about particular objects, goal-based attention, or to better sample novel signals,
sensory attention). If there are discrepancies in the prediction of the observer the
monitor module initiates an on-line learning phase of the current observer models.
The learning module implements an RL mechanism, which learns utilities of
state/action pairs. These are stored in value maps in the concept system. At the termi-
nation of the Goal the various models are stored back to the concept system as fea-
tures of the current Goal and are associated with the Goal’s parents as an indication of
the computational context that produced them.

The internal operation of a Goal is shown schematically in figure 2. A Goal object
terminates in two ways:

i. By achieving its Target State;
ii. By elimination from the Goal Space.

The actual definition of reaching the target state is included in the Monitor module
of fig. 2 and obviously depends on the state representation. In our case the states are
considered to live in continuous spaces and we use a Euclidean distance between the
current state and the target one. In practice we compare this distance with another
attribute (not described in section 2.1.5) to determine if the target state has been ap-
proached within an -neighbourhood.

2.2 Definition of the Goal Space

The Goal Space acts as the highest-level container of the Goal objects in our architec-
ture. It is divided in a number of action-domains that correspond to the actual output
modalities. However the active number of action domains at any given time depends
on the classes of Goals that are currently executed. Figure 3 provides a schematic
representation of the Goal Space of our agent and the legend provides an explanation
of the concept.

Fig. 3. Goal Space of the GNOSYS Agent architecture. Two action domains are currently
active. In both domains three family trees compete for access to actual output. This is called
Global Attention Control and the winning family will produce actual results. The outputs from
both domains are executed in parallel as they represent mutually exclusive sub-sets of the ac-
tion space.

618 S. Kasderidis

2.2.1 Action Domains
The concept of the Action Domain has already been explained above. It suffices to
add that the actual grouping of the competing Goals takes place as a tree of Goals (see
fig. 3), which we call GoalTree. The actual process of calculating the priorities is by
the use of the Action Index concept. It will be discussed in section 3 more fully. It is a
real-valued variable bounded in the interval [0,1]. The actual process of priority cal-
culation has the following high-level steps: Termination Check; Process; Action In-
dex Calculation; Elimination; Output.

The first step checks the termination conditions of a Goal object and if they are sat-
isfied, it is deleted from the current GoalTree. The remaining Goals (if any) continue
to the Process phase where they calculate their responses for the current state input.
Their responses are added in a list of virtual actions that is maintained by the domain.
In the next step the Action Index Calculation takes place in a recursive manner from
the Family Parent to its children and so forth. In the fourth step, the winning family is
identified and the suggested virtual actions of the losing families are eliminated from
the virtual actions list. The determination of the winning family is based on the value
of the highest action index. Finally the virtual actions are sent to the actuators to be
realised as output. Another processing step starts again. Steps should be taken so as to
terminate Goal families that do not seem to converge to their target state. This issue
will be discussed next in section 3.

3 A Computational Model

In this section we provide a description of the actual mechanisms that underlie our
computational model. Two distinct issues must be discussed. The first one relates to
the calculation of the goal priority and termination conditions. The second one relates
to the Goal/sub-Goal dependencies and how these affect the computation of schedul-
ing priorities. These issues are discussed next in their corresponding sections.

3.1 Goal Priority and Termination

A Goal’s priority is effectively given by the value of its Action Index. The actual
formula is given by (1):

Let us explain the main components of formula (1). We assume that each Goal has
an extrinsic value (W) that comes either by the User or by experience (built by RL
and it is thus stored in the value maps). This weight, as all other terms in (1), is suita-
bly scaled in the interval [0, 1]. The term EW represents the intrinsic value of the
Goal. This value is updated in every processing step by the Motivation System and
captures the influence of the Goal to the agent’s well being. This idea allows us to
assign different value on a Goal even when the agent faces the same external state. In
this case the value of a Goal will depend critically on the importance that the Motiva-
tion places on the Goal in comparison with other co-existing Goals. The Termination
Probability is discussed below. The terms S-AI, M-AI and B-AI correspond to three

Action Index=(W + EW + TermProb + S-AI + M-AI + B-AI + j δ(j, contribut.)) /
(6+# Contributing Children)

(1)

 A Computational Model for Multiple Goals 619

different (local) attention mechanisms that capture complimentary aspects. S-AI cor-
responds to sensory attention, which captures novelty in the environment. M-AI cap-
tures related motor attention events. This idea roughly corresponds to the fact that in a
real system, actions might not be performed perfectly, or that they will not terminate
in the expected time. A motor attention event does not necessarily imply a need for
re-planning; it might simply indicate the need for a second attempt to achieve the
current plan action. However after a number of unsuccessful re-trials this will indicate
a need for re-planning. The B-AI captures attention events coming from the internal
agent environment; more specifically the deviation of one or more homeostatic vari-
ables from their equilibrium state. It is called boundary attention. Suitable definitions
and concrete example definitions of these concepts can be found in [4, 5]. The last
contribution comes from a Goal’s children and corresponds to the idea that an atten-
tion event, which might be raised in any level of a Goal hierarchy, might influence the
execution of the high-level Goals as well. For this reason it is prudent to raise the
whole family’s priority. The actual mechanism in (1) uses the number of contributing
children for a given goal. A goal is called contributing if it produces an attention
event or it has a child that produces such an event.

Normally a Goal is terminated if it converges to its target state, if it is executed a
set number of times, or it is stopped by the User. However there is the pathological
case where Goals might not converge to their targets, due to environment changes,
interference from other Goals’ plans or otherwise. In such case the actual Termination
Check in 2.2.1 evaluates first the formal termination conditions for a Goal. If these
are not satisfied, it generates a random number in the range [0, Elimination Probabil-
ity] and compares this against the Termination Probability. If the Termination Prob-
ability is less than the random number, the Goal is eliminated from the GoalTree. In
our current implementation the Termination Probability is a function of the distances
between the current and the target states when sampled in appropriate intervals, e.g.
every 5 secs. The Elimination Prob. is a more complex concept. In every processing
step a Goal receives from the Motivational System updates for the Commitment and
Engagement variables. Commitment in our architecture captures the persistence that
the agent places to the Goal. Engagement captures higher-order effects that indicate
agent withdrawal due to a prolonged period of low emotional importance (EW) or of
suspended execution. Thus it is a function of EW and Termination Probability. We do
not provide here formulas for Commitment and Engagement as these are actually
components of the Motivational System and will be discussed there in a different
paper. For the current paper it suffices to say that the Elimination Probability has been
defined as in (2).

During Goal initialisation the corresponding values of Commitment and Engagement
are set to 0.9. They are both bounded in [0, 1].

3.2 Goals, Plans and Priorities

So far we have mentioned that the Reasoning System uses partially a hierarchical /
abstraction approach to planning. Without actually going to the details of how this

ElimProb=1.0-Commitment*Engagement (2)

620 S. Kasderidis

might be achieved it is useful to identify the decomposition classes that might exist in
our architecture. These include the following:

A. Independent sub-Goals (a. Sequential steps, b. Concurrent Cooperative, c.
Concurrent Competitive)

B. Dependent sub-Goals (a. Serialisable, b. Block Serialisable, c. High-order
dependence)

Let us offer some examples of the above patterns. Case A.a corresponds to a set of
movement commands to a robot to visit points of interest in a room. Case A.b corre-
sponds to the case of concurrent robot movements to achieve a pose against a table in
order to lift an occluded object, while at the same time moves its robotic arm. Case
A.c corresponds to an example of movement where we take care of collision avoid-
ance with other objects in the environment. Serialisable Goals are those which a spe-
cific sequence of commands must be carried out in a given order, e.g. as in cooking a
meal (case B.a). Block serialisable, B.b, is a sub-set of Goals that are not pair- wise
independent either with goals in the same sub-set or with any other Goal. However, as
a set are serialisable with other Goals that might exist, but themselves form a non-
decomposable problem. The general non-decomposable problem is shown in B.c. We
have not yet established how best to handle the priorities of a set of non-
decomposable Goals. However, for the case of concurrent cooperative Goals the cur-
rent model will be augmented to increase the priority of all goals in the set if any of
the goals is a winner in its respective action-domain. This fact comes from the recog-
nition that it does not make sense to try to approach a table in a suitable pose while
the corresponding Grasp Goal in the Arm domain might be suppressed by another
domain Goal, for example WaveHand. The Movement and Grasping commands, even
though independent in a pair-wise manner, still form a group with dependencies in
order to achieve the final Goal of Grasping an object from the table. In this case this
Goal might be considered as an emergent Goal.

4 Results

The Computational Model in this paper has been tested both in a simulated and in a
real robotic agent. Results on the priority of competing Goal families are shown in
figure 4. The scenario used is the following: We provide the real robotic agent with a
set of spatial goals in a grid [-1,1] x [-1,1] using consecutive commands of the type
MoveTo (x,y) (SP1-4). We have used four spatial commands corresponding roughly
to the four corners of the grid. After the second MoveTo command a MoveArm (AP1)
command was issued asking the robotic arm to be extended in a forward direction as
the robot starts executing the movement towards the third goal. While the robot was
in transit a series of obstacles were placed in front of the third spatial goal so as to
make this inaccessible. All goals of the scenario had equal Commitment, Engage-
ment, EW and W values, so as the Motivation system did not affect them in the
observed time scale. We see that goals SP1 and SP2 are executed and terminate se-
quentially as expected. When SP1 terminates, the Global Attentional competition
assumes SP2 as the winner. The interest in this experiment lies in the behaviour

 A Computational Model for Multiple Goals 621

Fig. 4. Goal priorities for spatial goal SP1-4 and arm goal AP1. Duration of experiment is 25
secs for all goals to complete. The duration of each goal reflects the time that takes for the
robotic agent to other move into space or extend the arm.

of goal SP3. After the termination of SP2, SP3 assumes execution and in parallel AP1
is executed as well. While the robot is in transit we place some obstacles in front of
the SP3 location. The robot remains in the vicinity of SP3 for a while. After some
seconds have passed the SP3 termination probability is lowered, thus resulting in SP4
becoming active. SP4 is now normally executed. After termination of SP4, SP3 is
resumed again at which point we remove the obstacles and allow the Goal to be
achieved and terminate. The interest in this case is the ability of the system to ‘re-
member’ given goals and react according to a changing environment. Goals may be
suspended and re-activated again without being terminated (in a sensible time-scale).
Repeating the experiment a second time with obstacles’ removed after a longer time
(360 secs) resulted in the constancy of the rate of target convergence and the corre-
sponding lowering of the Termination Probability. Eventually the Termination Prob-
ability became smaller then the Elimination Probability and the Goal was deleted
from the GoalSpace as it should be expected for a goal that does not achieve any
progress.

5 Discussion

We have presented a Computational Model that corresponds to the execution compo-
nent of our Cognitive Architecture. We made a distinction between a plan coming
from the Reasoning System and its actual run-time monitoring which raises re-plan
and learning requests among other things. We have discussed in detail the concept of
Goal for our architecture and we provided our justification for this approach. We also
discussed numerous Goal attributes that influence Goal priority and termination.
These attributes provide the necessary integration links with other components of the
Cognitive Architecture. Finally we discussed the problem of priorities for classes of
plan decompositions. There is still future work in this direction so as to cover all iden-
tifiable classes. Finally there is one more issue regarding priority. One can imagine a
case where a losing goal can very speedily be satisfied; thus to allow opportunistic
execution. In this way we will maximise the throughput of the agent. However, one

622 S. Kasderidis

should investigate further if this increased processing throughput will lead actually to
a higher motivational level, which is the ultimate cost function that must be opti-
mised. This idea is already implemented in (1) but it needs further work to test its
value. One has to make more concrete the expected gain of the approach by studying
in concert the computational model together with the motivational system.

Acknowledgements

We would like to acknowledge the support of the European Union through the IST
GNOSYS project (FP6-003835) of the Cognitive Systems Initiative to our work.

References

1. Rusell, S., Norving, P. Artificial Intelligence: A Modern Approach, Prentice Hall, 2nd Ed.,
(2003).

2. Korf, R. ‘Planning as Search: A Quantitative approach’, Artificial Intelligence 33, 65-88,
(1987).

3. Knoblock, C. ‘Learning Abstraction Hierarchies for Problem Solving’, In Proc. of the
Eighth National Conf. on Artificial Intelligence, Boston, MA, (1990).

4. Kasderidis S. & Taylor J. G., ‘Attentional Agents and Robot Control’, International Jour-
nal of Knowledge-based and Intelligent Systems 8, 69-89, (2004).

5. Kasderidis, S., Taylor, J.G. ‘Combining Attention & Value Maps’, In Proc. of 15th Int.
Conf. on Artificial Neural Networks (ICANN 2005), Warsaw, Poland, Vol. I, Ed. W. Duch et
al, Lect. Notes in Comp. Sci, Vol 3696, pp. 79-84.

Detection of a Dynamical System Attractor from
Spike Train Analysis

Yoshiyuki Asai1,2, Takashi Yokoi1, and Alessandro E.P. Villa2,3,4

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba, Japan

{yoshiyuki.asai, takashi-yokoi}@aist.go.jp,
2 NeuroHeuristic Research Group, INFORGE Institute of Computer Science and

Organization, University of Lausanne, Switzerland
{oyasai, avilla}@neuroheuristic.org

3 INSERM U318, Laboratoire db Neurosciences Précliniques, Grenoble, France
4 Laboratoire de Neurobiophysique, University Joseph Fourier, Grenoble, France

alessandro.villa@ujf-grenoble.fr
http://openadap.net:8080/oan/

Abstract. Dynamics of the activity of neuronal networks have been
intensively studied from the view point of the nonlinear dynamical sys-
tem. The neuronal activities are recorded as multivariate time series of
the epochs of spike occurrences–the spike trains–which are often effected
by intrinsic and measuring noise. The spike trains can be considered as a
mixture of a realization of deterministic and stochastic processes. Within
this framework we considered several simulated spike trains derived from
the Zaslavskii map with additive noise. The ensemble of all preferred fir-
ing sequences detected by the pattern grouping algorithm (PGA) in the
noisy spike trains form a new time series that retains the dynamics of
the original mapping.

1 Introduction

Neurons can be considered as nonlinear gating elements, and the activity of
each neuron propagates through the entire neural network. The electrophysi-
ological recordings of neural activity usually generate multivariate time series
corresponding to the timing of spike discharges. These time series, often referred
to as spike trains, can be considered as observed realizations of dynamics with
high degree of freedom embedded in a small subspace. The dynamical system
theory provides powerful tools to exploit such time series, to infer the underlying
system. The recorded time series are often affected by random noise such that
some realizations are missed by the observer and some observations are not asso-
ciated to the dynamical system but correspond to the realizations of a stochastic
process that depends on the method of measurement. The possibility to filter
out the noisy components from the time series observed in nature may be a clue
to ascertain the deterministic feature of the underlying dynamical process and
to study the topological characteristics of the attractor.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 623–631, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

624 Y. Asai, T. Yokoi, and A.E.P. Villa

In a previous study we showed the main idea of a noise filtering procedure
based on the pattern grouping algorithm (PGA) (Villa and Tetko, 1999; Tetko
and Villa, 2001). The algorithm was able to detect temporal patterns of events
that repeated more frequently than expected by chance. It was developed to de-
tect preferred firing sequences from simultaneously recorded multivariate time
series of neural activities (Villa and Tetko, 1999). The detection of patterns of
firing within a noisy time series may be exploited to reconstruct a time series
related to the generating attractors, if any. In this article we investigate the per-
formance of denoising by PGA depending on two parameters, i.e., the maximum
duration of a pattern and time jitter in a simulated spike train generated from
the Zaslavskii map.

2 Methods

2.1 Simulated Spike Train

We consider the Zaslavskii map (Zaslavskii, 1978), which is well-known as a
discrete dynamical system exhibiting chaotic behavior, to produce the simulated
spike train. Let us consider the following equations{

xn+1 = xn + v(1 + µyn) + εvµ cosxn (mod. 2π)
yn+1 = e−γ(yn + ε cosxn) ,

(1)

where x, y ∈ R, the parameters are real numbers with µ = 1−e−γ

γ , v = 4
3 · 100.

With this parameter set, the system exhibits a chaotic behavior. The initial
conditions were set to x0 = 0.3 and y0 = 0.3. By iterative calculation, we get
the time series {xn}. A new time series {wn} is derived by taking the difference
between two adjacent values of {xn}, and adding a constant C to make all values
positive, i.e. , wn = xn+1 − xn + C, where C = min{(xn+1 − xn)} + 0.1. The
time series {wn} are assumed to correspond to the sequence of the inter-spike-
intervals. In order to let the time series be comparable to the observed dynamics
in usual neurophysiological experiments, the simulated time series was rescaled in
time, and had 3 events/s (i.e., 3 spikes/s in neurophysiological terms) on average,
and the unit time corresponded to “ms”. Ten thousand points (N = 10, 000)
were generated in each series. The plot of wn+1 against wn–return map–of the
simulated spike train, without noise, is shown in Fig. 1(a).

2.2 Noise

Let us consider two types of the observational noises: (i), an additive noise cor-
responding to the random insertion and deletion of points in the original time
series; (ii), a jitter noise corresponding to a slight shift in time of the points
of the time series. Let us consider an original time series of 10,000 points. The
procedure to introduce the noise in the time series is the following. At first, Pd

% of the total amount of points was chosen stochastically according to a uni-
form distribution and deleted from {wn}. As a result, the time series ({w′

n})

Detection of a Dynamical System Attractor from Spike Train Analysis 625

Fig. 1. (a) Return maps of original time series, and (b) one with additive noise (with
Pd = 20%, Pa = 20%) and jitter noise (J = 5)

includes (10, 000 − 100 × Pd) events. Secondly, the jitter noise was applied to
{w′

n}. The time of occurrence of each point in {w′
n} was shifted ∆t in time,

where the amount of jitter ∆t was a value in [−J, J] uniformly distributed. The
total counts of points in the noisy time series {w′′

n} remained the same of {w′
n}.

Thirdly, we added new points to {w′′
n} following a uniform distribution without

any overlapping to any existing point. The percentage of newly inserted points
is Pa % of the total number of points of {wn}. This overall procedure produces a
noisy simulated spike train, referred to as {vn}, with (10, 000 + 100× (Pa−Pd))
points. The return map of a noisy simulated spike train is shown in Fig. 1(b).

2.3 Detection of Temporal Patterns

Preferred firing sequences are temporal patterns defined as sequences of spikes
(formed by three or more) with high temporal precision of the order of millisec-
onds. The pattern detection algorithm begins with finding all single or multineu-
ron sequences of intervals that repeat two or more times within a record. Sec-
ondly, the “pattern grouping algorithm (PGA)” (Villa and Tetko, 1999; Tetko
and Villa, 2001) computes how many of such sequences of intervals can be ex-
pected by chance, clusterizes into one group those sequences of intervals with
slight difference in spike timing, and provides confidence limits for this estima-
tion. The general notation describes the timing features of a triplet as follows:
< a, b, c ; t1 ±∆t1, t2 ±∆t2 >. This means that the pattern starts with a spike
of unit #a, then t1 ± ∆t1 ms later a spike of unit #b and a third spike of unit
#c t2±∆t2 ms from pattern start. In this article, since we considered univariate
time series, all events had the same label “1” (i.e., a = b = c = 1).

The algorithm is controlled by two main parameters. The window duration de-
termines the maximal duration of the temporal pattern, i.e., the interval between
the first and the last event in a pattern, to be considered in the analysis. The
jitter determines the time precision of the events within the temporal pattern.
In the current study the jitter of detection was set ±5 ms for all analyses.

626 Y. Asai, T. Yokoi, and A.E.P. Villa

5 [s]

original

reconstructed

quadruplets

triplets B

triplets A

Fig. 2. The top line shows the original time series. The second line shows a triplet
occurring 3 times in the original series. The third line shows a triplet occurring 2 times
and the fourth line shows a quadruplet occurring 3 times. If these patterns were the
only ones that were detected, then the reconstructed time series would correspond to
the ensemble of points that belonged to the patterns, as shown in the bottom line.

2.4 Reconstruction of Time Series

The procedure of time series reconstruction by using the PGA algorithm as a
denoising filter can be easily illustrated as follows. Firstly, the PGA algorithm
detects a number of temporal patterns that repeated above the chance level.
Secondly, the points belonging to all repetitions of those patterns are sorted out
from the original series and grouped into a new series, which is actually a subset
of the original (Fig. 2).

3 Results

In the absence of noise {wn} and with window parameter 800 ms PGA found
105 types of quadruplet patterns and 154 types of triplets patterns The overall
amount of points that belonged to the distinct 259 temporal patterns was 7,321
(about 73% of the points of {wn}). Such reconstructed time series, in the absence
of noise, is labelled R0. Fig. 3a shows a quadruplet of R0.

The quadruplet is denoted < 1, 1, 1, 1; 423± 1.0, 705± 4.5, 789± 5.5 >, mean-
ing that the first event at time 0, the second 423 ms later with ±1.0 ms time
precision, the third 705 ± 4.5 ms later of the first event, and the last one oc-
curred 789 ± 5.5 ms after the start of the pattern. We found 33 repetitions of
this specific temporal pattern. It is interesting to notice a fifth occurrence in Fig.
3a, with a latency of 1,359 ms from pattern start. Because of the limitation of
the window parameter to 800 ms the pentaplet was not detected as such. The
same procedure is applied to different conditions of noise. Fig. 3b shows a triplet
pattern detected in noisy time series {vn} (with Pd = 20%, Pa = 20% and J =
5), which is described as < 1, 1, 1; 423± 5.5, 786± 5.5 > and recurred 26 times.
The triplet shown in the figure matches one of the possible subpatterns produced
by the quadruplet of Fig. 3a. It is of interest to notice that two events, the third
and the fifth, belonging to the temporal pattern detected in the absence of noise
were less preserved, but still visible by naked eye in the raster display of Fig. 3b.

The performance of PGA as a function of window duration was studied with
fixed jitter of detection of ±5ms. The reconstructed time series R0 in absence of
noise with window durations of 800, 1200 and 1600 ms, from {wn} are illustrated
by Fig. 4a-c. The oblique line is a bias due to the size of window duration, which

Detection of a Dynamical System Attractor from Spike Train Analysis 627

300 [ms]

(a)

(b)

0 423 1356

4230 786

705

#106

#73

<1,1,1,1; 423 ± 1.0, 705 ± 4.5, 789 ± 5.5>

<1,1,1; 423 ± 5.5, 786 ± 5.5>

789

Fig. 3. Raster display of patterns aligned by their first event at time 0 which were
found by PGA with window parameter 800 ms and fixed time accuracy at ±5 ms. (a)
Quadruplets (n=33) denoted as < 1, 1, 1, 1; 423±1.0, 705±4.5, 789±5.5 >. (b) Triplets
(n = 26) denoted as < 1, 1, 1; 423 ± 5.5, 786 ± 5.5 >.

is expressed as rn+1 = −rn + D, where D ∈ [800, 1200, 1600]. The window
duration effect is also illustrated by the return maps at Fig. 4d-f in noisy time
series {vn} with parameters Pd = 20%, Pa = 20% and J = 5.

The points included in any reconstructed time series R as well as in the
original time series {wn}, are denoted using the logical expression as W ∩ R.
The points belonging to this intersection are interesting as they are related to
the original deterministic process found in {vn}. The number of points in R0,
i.e., the reconstructed time series in the absence of noise can be considered as the
maximum number of detectable points in W given fixed parameters of PGA. The
reconstruction index (RI) is defined as a ratio of the number of points in W ∩R
to the number of points of R0. A larger RI means better detection of the original
dynamics masked by noise. R ∩W c, where W c represents a complementary set
of W , is a set of events in R but not included in W , i.e., elements in this set are
events either added as noise to {wn} or events which were in {wn} and shifted
by the jitter noise. The size of R ∩W c also provides an indication of the ability
of the reconstruction (smaller set, better reconstruction).

Table 1 summarizes the sample sizes of the reconstructed series and corre-
sponding RI as a function of the window duration. Notice that RI increased
as the window duration became longer but the efficacy of the increment of RI
decreased for larger windows. For example, the difference between RIs for win-
dow parameter 800 and 1200 ms was 10.3 (=43.7 - 33.4). This difference was 5.8
between RIs with window parameter 1400 and 1600 ms.

The robustness of the denoising property of PGA to reconstruct the original
time series was investigated with nine types of noisy time series determined
by the combination of three additive noise (Pd, Pa) ∈ [(20, 20), (10, 20), (20, 10)]
and three levels of jitter noise J ∈ [2, 3, 5]. The return maps of the nine noisy

628 Y. Asai, T. Yokoi, and A.E.P. Villa

Fig. 4. (a-c) The return maps of the reconstructed time series from {wn} shown in
Fig. 1(a) by PGA with window parameter = 800, 1200 and 1600 ms, respectively. (d-e)
The return map of the reconstructed time series from {vn} with Pd = 20%, Pa = 20%
and J = 5 shown in Fig. 1b.

Table 1. Number of events in reconstructed time series by PGA with various window
parameters and fixed time accuracy of 5 ms. P3: triplets; P4:quadruplets. See text for
definition of the other symbols.

Window Points in the time series N
Duration [ms] W, V R0 R V ∩ Rc W ∩ R R ∩ W c RI P4 P3

800 10000 7321 2711 7289 2444 267 33.4 17 48
1000 10000 9336 4556 5444 4078 478 43.7 39 76
1200 10000 9723 5614 4386 5002 612 51.5 84 99
1400 10000 9907 6496 3504 5722 774 57.8 178 137
1600 10000 9966 7256 2744 6330 926 63.6 292 173

time series are shown at Fig. 5. The reconstruction of the noisy time series was
performed by applying a 1,000 ms window duration. The corresponding return
maps of the reconstructed time series are shown at Fig. 6. For example, a panel
at left top corner in Fig. 6 shows the reconstructed time series from the time
series with noise of Pd = 20%, Pa = 20% and J = 2 shown in panel at left top
corner in Fig. 5.

Table 2 summarizes the sample sizes of the reconstructed series and corre-
sponding RI as a function of the parameters (Pd, Pa) and J used to generate
the noisy series. For any type of additive noise, larger level of jitter noise pro-
voked a decrease in performance as measured by RI, in particular with jitter
noise J = 8, which is larger than the jitter accuracy of PGA (±5ms) used in this

Detection of a Dynamical System Attractor from Spike Train Analysis 629

Fig. 5. The return maps of the original time series after insertion of various noise. We
tested three combination of additive noise, as noted left side of figure in order Pd% / Pa%.
For each additive noise, three levels of jitter noise were considered as shown top of figure.

Table 2. Number of events in the reconstructed time series including various noise
by PGA with a fixed window duration at 1,000 ms and time precision of 5 ms. P3:
triplets; P4:quadruplets. See text for definitions of the other symbols.

Noise Points in the time series N
Pd, Pa J W, V R0 R V ∩ Rc W ∩ R R ∩ W c RI P4 P3

2 10000 5831 4169 5271 560 56.5 87 109
20%, 20% 5 10000 9336 4556 5444 4078 478 43.7 39 76

8 10000 3887 6113 2252 1635 24.1 27 68
2 11000 7589 3411 6851 738 67.0 153 123

10%, 20% 5 11000 10218 6307 4693 5725 581 56.0 88 92
8 11000 5318 5682 3199 2119 31.3 60 74
2 9000 5812 3188 4982 830 59.2 90 144

20%, 10% 5 9000 8420 4442 4558 3809 628 45.2 45 94
8 9000 3623 5377 2070 1550 24.6 24 81

analysis. It interesting to notice that the sample size of R∩W c is minimal with
jitter noise J = 5 regardless the type of additive noise. This is due to the fact
that the jitter noise matches the jitter accuracy of PGA. It is also interesting to
notice that adding 10 or 20% points at random had little influence on the final
performance with regard to an identical rate of 20% of deletion.

630 Y. Asai, T. Yokoi, and A.E.P. Villa

Fig. 6. The return maps of the reconstructed time series from the time series inserted
various noise shown in Fig. 5 by PGA with window duration = 1, 000 ms and time
precision of 5 ms. The positions of panels correspond to those of Fig. 5.

4 Discussion

The result presented here show that the PGA algorithm could efficiently detect a
significant amount of events belonging to an attractor of a deterministic process
out of a noisy spike train characterized by deterministic and stochastic processes.
The efficiency of the reconstruction depended on the parameter related to the
algorithm as well as that of noise. The dependency of denoising by PGA on
the parameter of the window duration (Fig. 4) suggested that the longer the
duration of the window the better is the performance. However, the amount
of noisy points (R ∩ W c) also increased with an increase in window duration,
thus suggesting that there might be a compromise to select an optimal window
duration. The goal of this study was to determine the suitability of this technique
to search for dynamical system attractors embedded in the spike trains and not
at seeking the most appropriate parameters of PGA. It is clear from Fig. 6
that the denoising performance of PGA is depending on the nature of noise,
and, as reported previously, on the kind of deterministic dynamics. This means
that there might be no fixed suitable parameters for PGA to provide the best
performance in all cases.

We have been trying to apply PGA algorithm to detect recurrent patterns
from the electrophysiologically obtained time series (Villa and Tetko, 1999). It

Detection of a Dynamical System Attractor from Spike Train Analysis 631

has been proposed that sequences of synchronous activity (“synfire chain”) prop-
agate through the cortical network assuming diverging/converging feed-forward
links with high temporal fidelity (Abeles and Gerstein, 1988). According to this
theory, the reactivation of the same chain would produce the repetitions of pre-
cise spatio-temporal firing patterns. If such chains exist, it is supposed that
PGA algorithm can detect those patterns. In this manuscript we demonstrated
that PGA can successfully detect patterns from the chaotic process generated
by discrete deterministic dynamical system with presence of noise. This may
open the way not merely to the detection of dynamical systems (Celletti and
Villa, 1996; Segundo, 2003) in neural activity but even to the reconstruction of
the generating attractor. The presence of preferred firing sequences and the pres-
ence of dynamical systems may represent two faces of the same coin as recently
suggested (Villa, 2000).

References

Abeles, M. and Gerstein, G. (1988). Detecting spatiotemporal firing patterns among
simultaneously recorded single neurons, J. Neurophysiol. 60: 909–924.

Celletti, A. and Villa, A. E. P. (1996). Low dimensional chaotic attractors in the rat
brain, Biological Cybernetics 74: 387–394.

Segundo, J. P. (2003). Nonlinear dynamics of point process systems and data, Inter-
national Journal of Bifurcation and Chaos 13: 2035–2116.

Tetko, I. V. and Villa, A. E. P. (2001). A pattern grouping algorithm for analysis of
spatiotemporal patterns in neuronal spike trains. 1. detection of repeated patterns,
J. Neurosci. Meth. 105: 1–14.

Villa, A. E. P. (2000). Empirical evidence about temporal structure in multi-unit
recordings, in R. Miller (ed.), Time and the Brain, Harwood Academic Publishers,
chapter 1, pp. 1–51.

Villa, A. E. P. and Tetko, I. V. (1999). Spatiotemporal activity patterns detected from
single cell measurements from behaving animals, Proceedings SPIE 3728: 20–34.

Zaslavskii, G. M. (1978). The simplest case of a strange attractor, Phys. Let. 69A: 145–
147.

Recurrent Neural Networks Are
Universal Approximators

Anton Maximilian Schäfer1,2 and Hans Georg Zimmermann1

1 Information & Communications, Learning Systems
Siemens AG, Corporate Technology, 81739 Munich, Germany

{Schaefer.Anton.ext, Hans Georg.Zimmermann}@siemens.com
2 Department Optimisation and Operations Research, University of Ulm, 89069 Ulm, Germany

Abstract. Neural networks represent a class of functions for the efficient identi-
fication and forecasting of dynamical systems. It has been shown that feedforward
networks are able to approximate any (Borel-)measurable function on a compact
domain [1,2,3]. Recurrent neural networks (RNNs) have been developed for a
better understanding and analysis of open dynamical systems. Compared to feed-
forward networks they have several advantages which have been discussed ex-
tensively in several papers and books, e.g. [4]. Still the question often arises if
RNNs are able to map every open dynamical system, which would be desirable
for a broad spectrum of applications. In this paper we give a proof for the uni-
versal approximation ability of RNNs in state space model form. The proof is
based on the work of Hornik, Stinchcombe, and White about feedforward neural
networks [1].

1 Introduction

Recurrent neural networks (RNNs) allow the identification of dynamical systems in
form of high dimensional, nonlinear state space models. They offer an explicit modeling
of time and memory [5].

In previous papers, e.g. [6], we discussed the modeling of open dynamical systems
based on time-delay recurrent neural networks which can be represented in a state space
model form. We solved the system identification task by finite unfolding in time, i.e., we
transferred the temporal problem into a spatial architecture [6], which can be handled
by error backpropagation through time [7]. Further we enforced the learning of the
autonomous dynamics in an open system by overshooting [6]. Consequently our RNNs
not only learn from data but also integrate prior knowledge and first principles into the
modeling in form of architectural concepts. However, the question arises if the outlined
RNNs are able to identify and approximate any open dynamical system, i.e., if they
hold an universal approximation ability.

In 1989 Hornik, Stinchcombe, and White [1] could show that any Borel-measurable
function on a compact domain can be approximated by a three-layered feedforward net-
work, i.e., a feedforward network with one hidden layer, with an arbitrary accuracy. In
the same year Cybenko [2] and Funahashi [3] found similar results, each with different
methods. Whereas the proof of Hornik, Stinchcombe, and White [1] is based on the
Stone-Weierstrass theorem, Cybenko [2] makes in principle use of the Hahn-Banach

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 632–640, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Recurrent Neural Networks Are Universal Approximators 633

und Riesz theorem. Funahashi [3] mainly applies the Irie-Miyake and the Kolmogorov-
Arnold-Sprecher theorem.

Some work has already been done on the capability of RNN to approximate measur-
able functions, e.g. [8]. In this paper we focus on open dynamical systems and prove
that those can be approximated by RNNs in state space model form with an arbitrary
accuracy. We start with a short introduction on open dynamical systems and RNNs in
state space model form (sec. 2). We further recall the basic results of the universal ap-
proximation theorem of Hornik, Stinchcombe, and White [1] (sec. 3). Subsequent we
show that these results can be extended to RNNs in state space model form and we con-
sequently give a proof for their universal approximation ability (sec. 4). We conclude
with a short summary and an outlook on further research (sec. 5).

2 Open Dynamical Systems and Recurrent Neural Networks

Figure 1 illustrates an open dynamical system in discrete time which can be described
as a set of equations, consisting of a state transition and an output equation [5,6]:

st+1 = g(st, ut) state transition
yt = h(st) output equation

(1)

The state transition is a mapping from the present internal hidden state of the system
st and the influence of external inputs ut to the new state st+1. The output equation
computes the observable output yt.

Dynamical
System

u

y

s

Fig. 1. Open dynamical system with input u, hidden state s and output y

The system can be viewed as a partially observable autoregressiv dynamic state tran-
sition st → st+1 that is also driven by external forces ut. Without the external inputs
the system is called an autonomous system [5]. However, most real world systems are
driven by a superposition of an autonomous development and external influences.

If we assume that the state transition does not depend on st, i.e., yt = h(st) =
h(g(ut−1)), we are back in the framework of feedforward neural networks [6]. How-
ever, the inclusion of the internal hidden dynamics makes the modeling task much
harder, because it allows varying inter-temporal dependencies. Theoretically, in the

634 A.M. Schäfer and H.G. Zimmermann

recurrent framework an event st+1 is explained by a superposition of external inputs
ut, ut−1, . . . from all the previous time steps [5].

In previous papers, e.g. [6], we proposed to map open dynamical systems (eq. 1) by
a recurrent neural network (RNN) in state space model form

st+1 = f(Ast + But + θ) state transition
yt = Cst output equation

(2)

where A, B, and C are weight matrices of appropriate dimensions and θ is a bias, which
handles offsets in the input variables ut [5,6]. f is the so called activation function of
the network which is typically sigmoidal (def. 3) like e.g., the hyperbolic tangent.

A major advantage of RNNs written in form of a state space model (eq. 2) is the
explicit correspondence between equations and architecture. It is easy to see, that the
set of equations (2) can be directly transferred into a spatial neural network architecture
using so called finite unfolding in time and shared weight matrices A, B, and C [5,7].
Figure 2 depicts the resulting model [6].

ut−1ut−2ut−3

s t−2 s t−1

ut

s t+1s t

y
t

yt+1

B B B

C

B

A A
C

y

C

y

C

t−1t−2

A

θ θ θ θθ
(...)

(...)

(...)

B

C
A

Fig. 2. Recurrent neural network unfolded in time

A more detailed description about RNNs in state space model form can be found in
[4] or [6].

3 Universal Approximation Theorem for Feedforward Neural
Networks

Our proof for RNNs in state space model form (sec. 4) is based on the work of Hornik,
Stinchcombe und White [1]. In the following we therefore recall their definitions and
main results:

Definition 1. Let AI with I ∈ N be the set of all affine mappings A(x) = w · x − θ
from RI to R with w, x ∈ RI and θ ∈ R. ‘·’ denotes the scalar product.

Transferred to neural networks x corresponds to the input, w to the network weights
and θ to the bias.

Recurrent Neural Networks Are Universal Approximators 635

Definition 2. For any (Borel-)measurable function f(·) : R → R and I ∈ N be
∑I(f)

the class of functions

{NN : RI → R : NN(x) =
J∑

j=1

vjf(Aj(x)), x ∈ RI , vj ∈ R, Aj ∈ AI , J ∈ N}.

(3)

Here NN stands for a three-layered feedforward neural network, i.e., a feedforward
network with one hidden layer, with I input-neurons,J hidden-neurons and one output-
neuron. vj denotes the weights between hidden- and output-neurons. f is an arbitrary
activation function (sec. 2).

Remark 1. The function class
∑I(f) can also be written in matrix form

NN(x) = vf(Wx− θ) (4)

where x ∈ RI , v, θ ∈ RJ and W ∈ RJ×I .
In this context the computation of the function f(·) : RJ → RJ be defined component-

wise, i.e.,

f(Wx− θ) :=

f(W1 · x− θ1)

...
f(Wj · x− θj)

...
f(WJ · x− θJ)

 (5)

where Wj (j = 1, . . . , J) denotes the j − th row of the matrix W .

Definition 3. A function f is called a sigmoid function, if f is monotonically increasing
and bounded, i.e.,

f(a) ∈ [α, β], whereas lim
a→−∞

f(a) = α and lim
a→∞

f(a) = β (6)

with α, β ∈ R and α < β. In the following we define α = 0 and β = 1 which bounds
the sigmoid function on the interval [0, 1].

Definition 4. Let CI and MI be the sets of all continuous and respectively all Borel-
measurable functions from RI to R. Further denote BI the Borel-σ-algebra of RI and
(RI ,BI) the I-dimensional Borel-measurable space.

MI contains all functions relevant for applications. CI is a subset of it. Consequently,
for every Borel-measurable function f the class

∑I(f) belongs to the set MI and for
every continuous f to its subset CI .

Definition 5. A subset S of a metric space (X, ρ) is ρ-dense in a subset T , if there
exists, for any ε > 0 and any t ∈ T , s ∈ S, such that ρ(s, t) < ε.

This means that every element of S can approximate any element of T with an arbitrary
accuracy. In the following we replace T and X by CI and MI respectively and S by∑I(f) with an arbitrary but fixed f . The metric ρ is chosen accordingly.

636 A.M. Schäfer and H.G. Zimmermann

Definition 6. A subset S of CI is uniformly dense on a compact domain in CI , if, for
any compact subset K ⊂ RI , S is ρK-dense in CI , where for f, g ∈ CI ρK(f, g) ≡
supx∈K |f(x) − g(x)|.

Definition 7. Given a probability measure µ on (RI ,BI), the metric ρµ : MI×MI →
R+ be defined as follows

ρµ(f, g) = inf{ε > 0 : µ{x : |f(x) − g(x)| > ε} < ε}. (7)

Theorem 1. (Universal Approximation Theorem for Feedforward Networks)
For any sigmoid activation function f , any dimension I and any probability measure
µ on (RI ,BI),

∑I(f) is uniformly dense on a compact domain in CI and ρµ-dense in
MI .

This theorem states that a three-layered feedforward neural network, i.e., a feedforward
neural network with one hidden layer, is able to approximate any continuous function
uniformly on a compact domain and any measurable function in the ρµ-metric with
an arbitrary accuracy. The proposition is independent of the applied sigmoid activation
function f (def. 3), the dimension of the input space I , and the underlying probabil-
ity measure µ. Consequently three-layered feedforward neural networks are universal
approximators.

Theorem 1 is only valid for feedforward neural networks with I input-, J hidden- and
a single output-neuron. Accordingly, only functions from RI to R can be approximated.
However with a simple extension it can be shown that the theorem holds for networks
with a multiple output (cor. 1).

For this, the set of all continuous functions from RI to Rn, I, n ∈ N, be denoted by
CI,n and the one of (Borel-)measurable functions from RI to Rn by MI,n respectively.
The function class

∑I gets extended to
∑I,n by (re-)defining the weights vj (j =

1, . . . , J) in definition 2 as n × 1 vectors. In matrix-form the class
∑I,n is then given

by
NN(x) = V f(Wx− θ) (8)

with x ∈ RI , θ ∈ RJ ,W ∈ RJ×I and V ∈ Rn×J . The computation of the function
f(·) : RJ → RJ be once more defined component-wise (rem. 1).

In the following, function g : RI → Rn has got the elements gk, k = 1, . . . , n.

Corollary 1. Theorem 1 holds for the approximation of functions in CI,n and MI,n

by the extended function class
∑I,n. Thereby the metric ρµ is replaced by ρn

µ :=∑n
k=1 ρµ(fk, gk).

Consequently three-layered multi-output feedforward networks are universal approxi-
mators for vector-valued functions.

4 Universal Approximation Theorem for RNNs

The universal approximation theorem for feedforward neural networks (theo. 1) proves,
that any (Borel-)measurable function can be approximated by a three-layered feedfor-
ward neural network. We now show, that RNNs in state space model form (eq. 2) are

Recurrent Neural Networks Are Universal Approximators 637

also universal approximators and able to approximate every open dynamical system
(eq. 1) with an arbitrary accuracy.

Definition 8. For any (Borel-)measurable function f(·) : RJ → RJ and I, n ∈ N be
RNN I,n(f) the class of functions

st+1 = f(Ast + But − θ)
yt = Cst .

(9)

Thereby be ut ∈ RI , st ∈ RJ and yt ∈ Rn, with t = 1, . . . , T . Further be the matrices
A ∈ RJ×J , B ∈ RJ×I , and C ∈ Rn×J and the bias θ ∈ RJ . In the following,
analogue to remark 1, the calculation of the function f be defined component-wise, i.e.,

st+1j = f(Ajst + Bjut − θj), (10)

where Aj and Bj (j = 1, . . . , J) denote the j − th row of the matrices A and B
respectively.

It is obvious, that the class RNN I,n(f) is equivalent to the RNN in state space model
form (eq. 2). Analogue to its description in section 2 as well as definition 2, I stands for
the number of input-neurons, J for the number of hidden-neurons and n for the number
of output-neurons. ut denotes the external inputs, st the inner states and yt the outputs
of the neural network. The matrices A,B, and C correspond to the weight-matrices
between hidden- and hidden-, input- and hidden- and hidden- and output-neurons re-
spectively. f is an arbitrary activation function.

Theorem 2. (Universal Approximation Theorem for Recurrent Neural Networks)
Let g : RJ × RI → RJ be measurable and h : RJ → Rn be continuous, the external
inputs ut ∈ RI , the inner states st ∈ RJ , and the outputs yt ∈ Rn (t = 1, . . . , T).
Then, any open dynamical system of the form

st+1 = g(st, ut)
yt = h(st)

(11)

can be approximated by an element of the function class RNN I,n(f) (def. 8) with an
arbitrary accuracy, where f is a continuous sigmoide activation function (def. 3).

Proof. The proof is given in two steps. Thereby the equations of the dynamical system
are traced back to the representation by a three-layered feedforward network.

In the first step, we conclude that the state space equation of the open dynamical
system, st+1 = g(st, ut), can be approximated by a neural network of the form s̄t+1 =
f(As̄t + But − θ) for all t = 1, . . . , T .

Let now be ε > 0 and f : RJ̄ → RJ̄ be a continuous sigmoid activation func-
tion. Further let K ∈ RJ × RI be a compact set, which contains st, s̄t and ut for
all t = 1, . . . , T . From the universal approximation theorem for feedforward networks
(theo. 1) and the subsequent corollary (cor. 1) we know, that for any measurable func-
tion g(st, ut) : RJ × RI → RJ and for an arbitrary δ > 0, a function

NN(st, ut) = V f(Wst + But − θ̄), (12)

638 A.M. Schäfer and H.G. Zimmermann

with weight matrices V ∈ RJ×J̄ , W ∈ RJ̄×J and B ∈ RJ̄×I and a bias θ̄ ∈ RJ̄ exists,
such that

sup
st,ut∈K

|g(st, ut) −NN(st, ut)| < δ ∀ t = 1, . . . , T. (13)

As f is continuous and T finite, there exists a δ > 0, such that according to the ε-δ-
criterion we get out of equation (13), that for the dynamics

s̄t+1 = V f(Ws̄t + But − θ̄) (14)

the following condition holds

|st − s̄t| < ε ∀ t = 1, . . . , T. (15)

Further let
s′t+1 := f(Ws̄t + But − θ̄) (16)

which gives us, that
s̄t = V s′t. (17)

With the help of a variable transformation from s̄ to s′t and the replacement A :=
WV (∈ RJ̄×J̄), we get the desired function on state s′:

s′t+1 = f(As′t + But − θ̄) (18)

Remark 2. The transformation from s to s′ might involve an enlargement of the inter-
nal state space dimension.

In the second step we show, that the output equation yt = h(st) can be approximated
by a neural network of the form ȳt = Cs̄t. Thereby we have to cope with the additional
challenge, to approach the nonlinear function h(st) of the open dynamical system by a
linear equation Cs̄t.

Let ε̃ > 0. As h is continuous per definition, there exist an ε > 0, such that (accord-
ing to the ε-δ-criterion) out of |st − s̄t| < ε (eq. 15) follows, that |h(st) − h(s̄t)| < ε̃.
Consequently it is sufficient to show, that ŷt = h(s̄t) can be approximated by a function
of the form ȳt = Cs̄t with an arbitrary accuracy. The proposition then follows out of
the triangle inequality.

Once more we use the universal approximation theorem for feedforward networks
(theo. 1) and the subsequent corollary (cor. 1), which gives us that equation

ŷt = h(s̄t) (19)

can be approximated by a feedforward neural network of the form

ȳt = Nf(Ms̄t − θ̂) (20)

where N ∈ Rn×Ĵ and M ∈ RĴ×J be suitable weight matrices, f : RĴ → RĴ a sigmoid
activation function, and θ̂ ∈ RĴ a bias. According to equation (17) and equation (18)
we know that s̄t = V s′t and s′t+1 = f(As′t + But − θ̄). By insertion we get

ȳt = Nf(Ms̄t − θ̂)

= Nf(MV s′t − θ̂)

= Nf(MV f(As′t−1 + But−1 − θ̄) − θ̂) . (21)

Recurrent Neural Networks Are Universal Approximators 639

Using again theorem 1 equation (21) can be approximated by

ỹt = Df(Es′t−1 + Fut−1 − θ̃) , (22)

with suitable weight matrices D ∈ Rn× ¯̄J , E ∈ R
¯̄J×J̄ , and F ∈ R

¯̄J×I , a bias θ̃ ∈ R
¯̄J ,

and a (continuous) sigmoid activation function f : R
¯̄J → R

¯̄J .
If we further set

rt+1 := f(Es′t + Fut − θ̃) (∈ R
¯̄J) (23)

and enlarge the system equations (18) and (22) about this additional component, we
achieve the following form(

s′t+1
rt+1

)
= f

((
A 0
E 0

)(
s′t
rt

)
+

(
B
F

)
ut −

(
θ̄

θ̃

))
ỹt = (0 D)

(
s′t
rt

)
. (24)

Their equivalence to the original equations (18) and (22) is easy to see by a component-
wise computation.

Finally out of

J̃ := J̄ + ¯̄J, s̃t :=
(

s′t
rt

)
∈ RJ̃ ,

Ã :=
(

A 0
E 0

)
∈ RJ̃×J̃ , B̃ :=

(
B
F

)
∈ RJ̃×I ,

C̃ := (0 D) ∈ Rn×J̃ and θ :=
(

θ̄

θ̃

)
∈ RJ̃ ,

follows
s̃t+1 = f(Ãs̃t + B̃ut − θ)
ỹt = C̃s̃t .

(25)

Equation (25) is apparently an element of the function class RNN I,n(f). Thus the
theorem is proven.

q. e. d.

5 Conclusion

In this paper we gave a proof for the universal approximation ability of RNNs in state
space model form. After a short introduction into open dynamical systems and RNNs
in state space model form we recalled the universal approximation theorem for feedfor-
ward neural networks. Based on this result we proofed that RNNs in state space model
form are able to approximate any open dynamical system with an arbitrary accuracy.

The proof can be seen as a basis for future work on RNNs in state space model form
as well as a justification for their use in many real-world applications. It also underlines
the good results we achieved by applying RNNs to various time-series problems.

640 A.M. Schäfer and H.G. Zimmermann

Nevertheless further research is done on a constant enhancement of RNNs for a
more efficient use in different practical questions and problems. In this context it is
important to note that for the application of RNNs to real-world problems an adaption
of the model to the respective task is advantageous as it improves its quality. Besides
that we will continue our work on high-dimensional and dynamical consistent neural
networks [4].

References

1. Hornik, K., Stinchcombe, M., White, H.: Multi-layer feedforward networks are universal
approximators. Neural Networks 2 (1989) 359–366

2. Cybenko, G.: Approximation by superpositions of a sigmoidal function. In: Mathematics of
Control, Signals and Systems. Springer, New York (1989) 303–314

3. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks.
Neural Networks 2 (1989) 183–192

4. Zimmermann, H.G., Grothmann, R., Schaefer, A.M., Tietz, C.: Identification and forecast-
ing of large dynamical systems by dynamical consistent neural networks. In Haykin, S.,
J. Principe, T.S., McWhirter, J., eds.: New Directions in Statistical Signal Processing: From
Systems to Brain. MIT Press (2006)

5. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)
6. Zimmermann, H.G., Neuneier, R.: Neural network architectures for the modeling of dynami-

cal systems. In Kolen, J.F., Kremer, S., eds.: A Field Guide to Dynamical Recurrent Networks.
IEEE Press (2001) 311–350

7. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In Rumelhart, D.E., et al., J.L.M., eds.: Parallel Distributed Processing: Explo-
rations in The Microstructure of Cognition. Volume 1. MIT Press, Cambridge (1986) 318–362

8. Hammer, B.: On the approximation capability of recurrent neural networks. In: International
Symposium on Neural Computation. (1998)

A Discrete Adaptive Stochastic Neural Model
for Constrained Optimization

Giuliano Grossi

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

Via Comelico 39, I-20135 Milano, Italy
grossi@dsi.unimi.it

Abstract. The ability to map and solve combinatorial optimization
problems with constraints on neural networks has frequently motivated
a proposal for using such a model of computation.

We introduce a new stochastic neural model, working out for a specific
class of constraints, which is able to choose adaptively its weights in order
to find solutions into a proper subspace (feasible region) of the search
space.

We show its asymptotic convergence properties and give evidence of
its ability to find hight quality solution on benchmark and randomly
generated instances of a specific problem.

1 Introduction

The reputation of neural networks for combinatorial optimization, widely doc-
umented in over two decades of research, has known varies degrees of success.
In some cases they showed they were not competitive with ad-hoc heuristics
designed for a specific problem, nevertheless almost every type of combinatorial
problem has been tackled by neural networks and many approaches result in
behaviour comparable to alternative techniques in terms of solution quality (for
a review see [1]).

With the aim to deal with a wide class of problems, we propose here a neural
computing model which is promising when applied to the optimization of a
particular class of NP-hard constrained combinatorial optimization problems
([2,3]). More precisely, we consider problems having quadratic pseudo-boolean
constraint functions, i.e., mappings from the family of subsets of a finite ground
set to the set of integers. We focus on such functions because there is a large
number of combinatorial optimization problems which arise naturally or can be
easily formulated as pseudo-boolean optimization problems [4].

The idea in our architecture, based on a stochastic state transition mecha-
nism, is to adaptively choose network connections in such a way that the energy
function associated with the network is optimized for a set of desired network
states corresponding to the admissible solutions. Unfortunately, because of its
nonlinear character, the network can also exhibit non-desirable, local minima.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 641–650, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

642 G. Grossi

A common approach to handle constraints in neural optimization is to apply
a penalty function to bias the search toward a feasible solution. Among many
examples [1], one was introduced in [5], in which a discrete-time Hopfield model
[6] was proposed for solving the maximum clique problem on undirected graphs.
The method builds a finite sequence of discrete Hopfield networks in which the
energy function of the (t+1)-th network is the energy function of the t-th network
augmented by a penalty factor depending on the violations.

The model proposed here is based on a similar network evolution strategy,
but adopts stochastic units. A penalization strategy is applied to adaptively
modify the weights in such a way that the probability to find non-admissible
solutions continuously decreases up to negligible values. The network performs
a constraint-satisfaction search process that begins with “weak” constraints and
then proceeds by gradually strengthening them until a feasible state is found.

The algorithm has been analyzed and tested on benchmark and random
graphs of different size and density, generally showing better results than that
proposed in [5].

2 Constrained Pseudo-boolean Optimization

A family of functions that often plays an important role in optimization models
are the so-called pseudo-boolean functions [4]. Their polynomial representation,
with particular regard to the quadratic and symmetric one, corresponds in a nat-
ural way to the objective (or cost) function of many optimization problems. Our
aim here is twofold: to use these functions as cost but also to discriminate ad-
missible solutions from non-admissible ones introducing suitable pseudo-boolean
penalty functions. To this end, we will use equality quadratic constraints based
on two independent variables and expressed as boolean functions.

Let Bn be a vector space of n-tuples of elements from B = {0, 1}. We shall
consider functions in n boolean (binary) variables x1, . . . , xn, and denote with
x = (x1, . . . , xn) ∈ Bn binary vectors. The variables xi (1 ≤ i ≤ n) together
their complements x̄i = 1 − x1 form the set of literals L = {x1, x̄1, . . . , xn, x̄n}.
Let V = {1, . . . , n} and let S denote an arbitrary subset of V , then there is a
unique vector xS ∈ Bn representing the characteristic vector of S.

Mappings f : Bn → R are called pseudo-boolean functions. Since there is
a one-to-one correspondence between the subsets of V and the binary vectors
of Bn, these functions are set functions, that is, mappings that associate a real
value to every subset S of V .

In the following, we will represent such pseudo-boolean functions by means of
multi-linear polynomials having the form:

f(x1, . . . , xn) =
∑
S⊆V

cS

∏
k∈S

xk ,

where cS are integer coefficients and, by convention,
∏

k∈∅
xk = 1. The size of

the largest subset S ⊆ V for which cS �= 0 is called the degree of f , and is denoted
by deg (f). Naturally, a pseudo-boolean function f is quadratic if deg (f) ≤ 2.

A Discrete Adaptive Stochastic Neural Model 643

2.1 Constraint Definition and Objective Function

For many optimization problems P the set of admissible solutions SolP is a
proper subset of the search space Bn on which the pseudo-boolean functions are
defined, i.e., SolP ⊂ Bn. In order to use our space-independent general technique
to find optima, we need to introduce constraints as base ingredients to succeed
in finding an admissible solution.

Frequently the constraints are given in terms of boolean functions g : B2 → B
and a constraint g is satisfied by an input b ∈ B2 if g(b) = 1. An admissible
solution S ∈ SolP must then satisfy a finite collection {g1, . . . , gm} of pseudo-

boolean functions, i.e.,
m∧

k=1

gk = 1, which is equivalent to satisfy the equality∑m
k=1 gk(li, lj) = m, with li, lj ∈ L.
In order to illustrate the feasibility of mapping a broad class of combinatorial

problems into a discrete neural model, we formalize a minimization problem
with the following general form

minimize
n∑

i=1

xi

subject to
m∑

k=1

gk(li, lj) = m .

(1)

The same can be easily derived for maximization problems.
To derive an energy function whose minimum value corresponds to the “best”

solution for P , we combine both the cost and the penalty function in the same
objective function, obtaining the general form

f(x1, . . . , xn) = α

n∑
i=1

xi −
m∑

k=1

γkgk(li, lj)

=
n∑

i=1

λixi −
∑
i<j

wijxixj + C , (2)

where α,γ1, . . . , γm are positive integer parameters useful in finding better so-
lutions (we will explain their role later) while preserving optima,

(
wij

)
n×n

is
an integer symmetric matrix with null diagonal, λ an integer vector and C an
integer constant. We will interpret

(
wij

)
n×n

and λ as weigths and tresholds
respectively of the the neural network used to find optimal solutions.

2.2 Examples

In this section we recall some combinatorial optimization problems, which arise
naturally in the area of algorithmic graph theory, and can be easily formulated
as pseudo-boolean optimization problems.

All graphs G = 〈V,E〉 considered are arbitrary undirected graphs, where
V = {1, . . . , n} is the set of vertices and E ⊆ V ⊕ V (not ordered pairs) is

644 G. Grossi

the set of edges. Two distinct vertices i and j are called adjacent if they are
connected by an edge; the set N (i) denotes the neighbours of vertex i, i.e., the
vertices that are adjacent to i.

Max Clique (Max Independent Set). It consists in finding the largest cardi-
nality subset of vertices which are pairwise connected, i.e., adjacent. This prob-
lem can be formulated as

maximize α
∑
i∈V

xi, subject to
∑

{i,j}∈Ec

(x̄i ∨ x̄j) = |Ec| , (3)

where Ec denotes the complement of E.

Min Independent Dominating Set. It is to find the minimum cardinality
subset of independent vertices (all pairwise not connected) such that every vertex
non in the subset is adjacent to one in the subset. It is equivalent to

minimize α
∑
i∈V

xi, subject to
∑

{i,j}∈E

(xi ∧ xj) = 0 . (4)

Min Vertex Cover. A vertex cover for a graph G is a subset of vertices such
that each edge has at least one end-point in the subset. The objective function
of this problem is:

minimize α
∑
i∈V

xi, subject to
∑

{i,j}∈E

(xi ∨ xj) = |E| . (5)

Max k-colorable Induced Subgraph. This problem can be translated into
the search of a maximum independent set (problem (3)) on an expanded graph
G̃ = 〈Ṽ , Ẽ〉 in which for each i ∈ V the set {i1, . . . , ik} ⊆ Ṽ and for each
{i, j} ∈ E the sets {{ip, jp} | 1 ≤ p ≤ k} and {{ip, iq} | 1 ≤ p, q ≤ k ∧ p �= q}
belong to Ẽ.

3 A Stochastic Neural Model

In this section we introduce and briefly analyze a stochastic recurrent network
model to find admissible (approximate) solutions of the problem whose objective
function has the form given in (2).

The network architecture is derived from the problem (for instance, the graph
topology), with the set of neurons (or units) isomorphic to the set of binary
variables representing the solutions and the connections between neurons derived
according the logical dependencies between variable pairs. The absence of such
a connection between a variable pair, implies neither strength in the synaptic
connection between neurons nor constraint between the variables themselves.

A Discrete Adaptive Stochastic Neural Model 645

Each unit i (1 ≤ i ≤ n) is stochastic, assuming the state xi = 1 with proba-
bility φ(hi) and xi = 0 with probability 1 − φ(hi), where

hi = λi −
∑

j∈N (i)

wijxj and φ(h) =
1

1 + e−h
, (6)

which is the usual Glauber [7] or logistic sigmoid-shaped function.
Note that we do not introduce into the function the parameter representing

an analogue of the temperature as in the annealing algorithms [8,9] and used
to control the gain (or slope) of the activation function. Instead, we will simply
let the system adaptively choose its weights to lead the search toward a feasible
solution.

Solving a combinatorial optimization problem on a neural net requires a map-
ping of the problem onto this system in such a way that one can decipher a so-
lution from the output of the neurons. In particular the energy function of such
a network must be related to the objective function of the problem. Under this
preamble, we adopt as energy the quadratic function expressed in (2), we use
the stochastic activation function described above in order to derive a stochastic
dynamic able to lead the system status in the saturation region of the sigmoid
function.

We can therefore interpret the pseudo-boolean quadratic function

E(x1, . . . , xn) =
∑
i∈V

λixi −
∑
i<j

wijxixj (7)

as energy of the network. Moreover, the energy has to satisfy two fundamental
properties:
1. by multiplying the linear term

∑
i∈V xi by a positive constant α, the optima

are preserved. In this way, since the linear term contrasts the quadratic one
(penalty factor) during the network’s evolution, lower values of the linear
term should lead towards stable states with lower energy (better solutions).

2. the quadratic form − 1
2x ·W · xT + (λ − α) · xT appearing in (2) is easy to

maximize (in polynomial time) because the coefficients are all positive or all
negative (they are obtained from the set of identical quadratic function gk,
with 1 ≤ k ≤ m, as showed in Section 2).

By adopting the saturated-nonlinear activation function (6) and letting the
network evolve with asynchronous dynamics, the resulting dynamic system lo-
cally minimizes the network energy with high probability. However, we are in-
terested in a process that, while minimizing the energy, also guarantees that the
final stable state correspond to a valid solution. For this reason, the proposed
process alternates the following two phases called units updating and weights
strengthening:
Units updating (Phase 1.). Asynchronously update the units with the follow-

ing stochastic dynamics:

xi =

{
1, with probability φ(hi)
0, with probability 1 − φ(hi)

for each unit i ∈ [1, . . . , n] ;

646 G. Grossi

Weights strengthening (Phase 2.). Increase the weights wij and the thresh-
olds λi, λj of the connections between the units i and j that violate the
problem constraints g(li, lj). Many different penalization strategies can be
defined: here we update only those connections that cause violations in the
current state. This strategy can be formalized as follows:

∀k if gk(li, lj) = 0 ⇒ γk = γk + 1 . (8)

Since for each i, the relationship between the (6) and the (7) is expressed by

hi(x1, . . . , xn) = ∆Ei =
∂

∂xi
E(x1, . . . , xn)

= E(x1, . . . , xi−1, 1, xi+1, . . . , xn)
− E(x1, . . . , xi−1, 0, xi+1, . . . , xn) .

thus, flipping the state of the unit i produces a variation of energy ∆Ei =
hi(x1, . . . , xn), which does not depend on xi. This energy dependency from hi

is just used to force the convergence toward feasible solution, because hi is a
function of those constraints gk containing the variable xi. Thus, changing the
absolute value of γk (as in (8)) result in a changing of the sign of hi.

The algorithm ASNM (Adaptive Stochastic Neural Model) that iterates the
simulation of the neural network behaviour and the selective penalization is
sketched in the Algorithm 1. The algorithm takes in input the adjacency matrix

Algorithm 1. ASNM
Require: An initial matrix W , a vector λ and an integer α > 0

while (there are violations) do
for all i = 1 to n do

hi = λi −
k∈N (i)

wik xk;

xi =
1, with probability φ(hi)
0, with probability 1 − φ(hi)

end for
for all k = 1 to m do

if (gk not satisfied) then
γk = γk + 1

end if
end for

end while
Ensure: admissible solution (characteristic vector) x

of a graph and the threshold α. It has to be proved that this algorithm stops
when a stable state of a suitable network is reached, where the related subset of
vertices is a maximal independent one therefore representing a solution of the
maximum independent set problem.

A Discrete Adaptive Stochastic Neural Model 647

This statement is summarized in the following

Theorem 1. Let x(t) be the state found by the algorithm at time t and let Z(t)
be the random variable denoting the number of violations at the same time. Then,

lim
t→+∞

E[Z(t)] = 0 ,

where E[·] denotes the expectation of a random variable.

Moreover, regarding the optimality of the feasible solution found it can be stated
that:

Corollary 1. Let x be the stable state of the network found by the ASNM al-
gorithm. Then x represents, with high probability, an optimal solution, i.e., a
suboptimal solution but not subset of another one.

Contrarily to neural systems based on the Ising model with Glauber dynamics
[7], like the Boltzmann machines ([10,11]) and the stochastic Hopfield networks
[12], the proposed model does not provide a control parameter like temperature.
Nevertheless, for minimization (maximization) problems, this system naturally
moves in the direction of decreasing (increasing) energy but it allows to move
in the opposite direction. The probability of such a move is initially high, but it
decreases during the system evolution (the argument of the activation function
gets far away from zero, in the regions of saturation). In other words, the prob-
ability of making a contrary move depends on the absolute value of (6), which
is proportional to the number of violations.

4 Experimental Results

To give an idea of the performances (solution quality and time) of the ASNM
heuristic we chose the Max Clique problem and did two kinds of experiments:
the first based on a widely used reference benchmark and the second on randomly
generated graphs of various size.

First experiment. The instances examined here consist on graphs of different
sizes (from 16 to 1000 vertices) selected among those collected in the benchmark
of the second DIMACS challenge (held in 1993 with the purpose of finding effi-
cient approximation algorithms for Max Clique, Graph Coloring, and Sat-
isfiability) and widely used subsequently by various researchers for heuristic
testing purpose.

For this test we set the parameter α = 10 (sufficiently little but without a
particular meaning), we run the algorithm 10 times and take the best value (in
many cases the variance is zero), The results obtained by ASNM on DIMACS
graphs are presented in Table 4.

The first column (Graph) contains the name of the instances; the second
(|V|) reports the number of vertices; the third (ASNM) gives the size of the

648 G. Grossi

Table 1. Results on the DIMACS benchmark instances. The second column reports
the size of the graph, the third column gives the clique size found by ASNM, while the
last column lists the best results of all participants (with star if optimality is proved).
We write in bold the values of the second column if they coincide with the best achieved
in the challenge.

Graph 〈V,E〉 |V| ASNM Best Graph 〈V,E〉 |V| ASNM Best

MANN9 16 16 16∗ Johnson8-2-4 28 4 4∗

MANN27 378 126 126∗ Johnson8-4-4 70 14 14∗

MANN45 1035 343 345∗ Johnson16-2-4 120 8 8∗

Hamming6-2 64 32 32∗ Johnson32-2-4 496 16 16

Hamming6-4 64 4 4∗ c-fat200-1 200 12 12∗

Hamming8-2 256 128 128∗ c-fat200-2 200 24 24∗

Hamming8-4 256 16 16∗ c-fat200-5 200 58 58∗

Hamming10-2 1024 512 512∗ c-fat500-1 500 14 14∗

Hamming10-4 1024 40 40 c-fat500-2 500 26 26∗

p.hat300-1 300 8 8∗ c-fat500-5 500 64 64∗

p.hat300-2 300 25 25∗ san200-0.7.1 200 30 30∗

p.hat300-3 300 36 36∗ san200-0.7.2 200 18 18∗

p.hat500-1 500 9 9∗ san200-0.9.1 200 70 70∗

p.hat500-2 500 36 36∗ san200-0.9.2 200 60 60∗

p.hat500-3 500 50 50 san200-0.9.3 200 44 44∗

p.hat700-1 700 11 11∗ san400-0.7.1 400 40 40∗

p.hat700-2 700 44 44∗ san400-0.7.2 400 30 30∗

p.hat700-3 700 61 62∗ san400-0.9.1 400 100 100∗

p.hat1000-1 1000 10 10 sanr200-0.7 200 18 18∗

p.hat1000-2 1000 46 46 sanr200-0.9 200 42 42∗

p.hat1000-3 1000 68 66 sanr400-0.5 400 13 13∗

keller4 171 11 11∗ sanr400-0.7 400 21 21

keller5 776 27 27∗ san1000 1000 10 10

r100-0.5 100 9 9∗ r200-0.5 200 11 11∗

r300-0.5 300 12 12∗ r400-0.5 400 13 13∗

cliques found by ASNM, and the fourth (Best) gives the best results obtained
in the challenge over all heuristics.

Second experiment. In this experiment we take the so-called p-random graphs
into account. They are represented by the pair 〈V,E〉, where V = {1, . . . , n} and
E is obtained selecting {i, j} as edge with probability p (1 ≤ i < j ≤ n). To
show the behaviour of the algorithm on this kind of instances we give a direct

A Discrete Adaptive Stochastic Neural Model 649

Table 2. Clique average size with relative standard deviation at confidence level 95%
obtained by ASNM and IHN (columns 4 and 5) on p-random graphs for various values
of n and p (column 1). Column 2 gives the expected size C(n, p) of the maximum clique
while column 3 reports the average time (in seconds) spent by ASNM to converge.

Average ± stdev
n-p C(n,p) Av. time ASNM IHN

200-0.2 6.2 2.15 5.76 ± 0.07 5.53 ± 0.09
200-0.5 11.6 0.96 10.73 ± 0.09 10.23 ± 0.11
200-0.8 26.6 0.25 24.13 ± 0.12 22.96 ± 0.12

400-0.2 7.0 29.14 6.20 ± 0.07 6.06 ± 0.04
400-0.5 13.3 13.84 12.30 ± 0.08 11.83 ± 0.10
400-0.8 31.7 3.48 28.70 ± 0.14 26.80 ± 0.17

600-0.2 7.4 135.7 6.96 ± 0.03 6.76 ± 0.07
600-0.5 14.2 69.48 13.10 ± 0.05 12.53 ± 0.10
600-0.8 34.6 17.11 31.40 ± 0.10 29.83 ± 0.14

comparison with the meta-heuristic IHN presented and tested in [5], which is
in some sense the deterministic version of ASNM. It builds a finite sequence
of discrete Hopfield networks in which the energy function of the (t + 1)-th
network is the energy function of the t-th network augmented by a penalty
factor depending on the violations. We choose such a meta-heuristic because its
performances has been already shown good in [5,13], in which it was compared
with many other well known heuristics for Max Clique presented at DIMACS.
Also in this case we set the parameter α = 10, run the algorithm 10 times for
each instance graph and take the best value obtained.

In Table 2 (column 4) we report, for some values of n and p, the clique average
size (on 30 graphs randomly generated for each pair n and p) found by ASNM at
confidence level 95%. Observe that the average values found by ASNM are always
better than those found by IHN (column 5). These results are also compared with
the theoretical evaluation of the expected maximum clique for p-random graphs
of size n, obtained according to an asymptotic result (column 2)1.

Summarizing, both Table 4 and Table 2 show that the quality of the solutions
found by ASNM are good. On all but one (MANN45) instances of the DIMACS
challenge, ASNM found the best value. On p-random graphs the clique sizes
found by ASNM are always better than those found by IHN and they are at least
90% of the optimal estimate C(n, p).

1 The expected number of cliques of size k in a p-random graph of size n is n
k

p(k
2).

For p fixed (0 < p < 1) and sufficiently large n, let C(n, p) be the real number k

such that n
k

p(k
2) = 1; it was shown in [14] that, for n → ∞, the probability that a

p-random graph of size n has a clique of size C(n, p) approaches 0. Therefore, C(n, p)
estimates quite well the expected size of the maximum clique.

650 G. Grossi

References

1. Smith, K.: Neural networks for combinatorial optimization: A review of more than
a decade of research (1999)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., San Francisco, CA (1979)

3. Karp, R.M. Complexity of Computer Computations. In: Reducibility among Com-
binatorial Problems. Plenum Press, New York (1972) 85–103

4. Boros, Hammer: Pseudo-boolean optimization. DAMATH: Discrete Applied Math-
ematics and Combinatorial Operations Research and Computer Science 123 (2002)

5. Bertoni, A., Campadelli, P., Grossi, G.: A neural algorithm for the maximum
clique problem: Analysis, experiments and circuit implementation. Algoritmica
33(1) (2002) 71–88

6. Hopfield, J.J.: Neurons with graded response have collective computational prop-
erties like those of two-state neurons. In: Proceedings of the National Academy of
Sciences. Number 81, NAS (1984) 3088–3092

7. Glauber, R.J.: Time-dependent statistics of the Ising model. Journal of Mathe-
matical Physics 4(2) (1963) 294–307

8. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220 (1983) 671–680

9. Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications.
Mathematics and its Applications. Reidel Publisching Company (1987)

10. Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for boltzmann ma-
chines. Cognitive Science 9 (1985)

11. Aarts, E., Korst, J.: Simulated annealing and Boltzmann machines: a stochastic
approach to combinatorial optimization and neural computing. John Wiley & Sons,
Inc., New York, NY, USA (1989)

12. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Compu-
tation. Addison-Wesley (1991)

13. Grossi, G., Posenato, R.: A distributed algorithm for max independent set problem
based on Hopfield networks. In Marinaro, M., Tagliaferri, R., eds.: Neural Nets:
13th Italian Workshop on Neural Nets (WIRN 2002). LNCS 2486, Springer-Verlag
(2002) 64–74

14. Matula, D.: On the complete subgraph of a random graph. Combinatory Mathe-
matics and its Applications (1970) 356–369

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 651 – 657, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Quantum Perceptron Network

Rigui Zhou1,2 , Ling Qin1, and Nan Jiang1

1Department of Computer Science and Technology,Nanjing University of Aeronautics
and Astronautics, Nanjing, Jiangsu, 210016, China

riguizhou@nuaa.edu.cn
2.Nanchang Institute of Aeronautical Technology, Nanchang, Jiangxi, 330034, China

Abstract. A novel neural network,quantum perceptron network(QPN),is pre-
sented built upon the combination of classical perceptron network and quantum
computing.This quantum perceptron network utilizing quantum phase
adequately has the computing power that the conventional perceptron is unable
to realize. Through case performance analysis and simulation,a quantum
perceptron with only one neuron can realize XOR function unrealizable with a
classical perceptron having a neuron. Simple network structure can achieve
comparatively complicated network function,which will throw heavy influence
on the field of artificial intelligence and control engineering.

1 Introduction

In 1995,Kak firstly presented the concept of Quantum Neural Computation[1] that is
one of the young and outlying science. In 1997,Tohru Nitta extended the Back-
Propagation Algorithm to Complex Numbers fields[2]. Recently,researchers from
around the world have also begun considering the implications of quantum
computation for the fields such as neural networks (both biological and artificial), so
the studies in quantum computation have been enriched by new works addressing the
idea of developing quantum neural networks. Quantum Artificial Neural Network
(QANN) produced from this is a new paradigm based on the combination of classical
neural computation and quantum computing and it has the high value for theoretic
study and the potential application. These QANNs have many promising
characteristics, both in the case of supervised and unsupervised learning. In 1998, A
first systematic and deep examination of QANN was done by T Menneer in his
Ph.D.thesis[3]. At the same time,many QANN models were presented. For
example,in 1995, Quantum Inspired Neural Nets[4] and Entangled Neural Nerworks
[5]were proposed by Narayanan et al;In particular,an associative memory[6,7,8]
based on the use of Grover's quantum search algorithm has been introduced by
Ventura and Martinez. This associative memory network can solve the completion
problem, that is, it can restore the full pattern when initially presented with just a part
of that pattern. Besides, one of the most attractive properties of it is its exponential
capacity,which may have distinct adventages over its classical cousin.

In 2001, M.V.Altaisky[9] developed a simple quantum perceptron that realizes
perceptron function by selecting different operators, but he did not at all make use of
quantum phase.This paper presented quantum perceptron network utilizing quantum
phase adequately, it, having the computing power unrealizable with a classical
perceptron, is very different from M.V.Altaisky’s network.

652 R. Zhou, L. Qin, and N. Jiang

The remainder of this paper is organized as follows:In the section 2, quantum
theory is briefly introduced; Section 3 presents quantum perceptron and its learning;In
the section 4, the case analysis is discussed; In the last, this paper concludes with final
remarks and future work.

2 Quantum Theory

Quantum compution is based upon physical principles from the theory of quantum
mechanics(QM), which in many ways is counterintuitive. In quantum compute- r,
”qubits” are the counterparts of “bits” in classical computers. Qubit has two basis

quantum states, 0 and 1 . 0 corresponds to the bit 0 of classical computers, and

1 to the bit 1. Several necessary quantum concepts that form the basis for the study

of QPN are briefly reviewed here.

2.1 Linear Superposition[10]

Quantum systems are described by a wave function ϕ that exists in a Hilbert

space.The state ϕ of a general quantum system can be described by the linear

superposition of the basis states iφ as i i
i

cϕ φ= ,where ic is a probability

amplitudes and meets
2

1i
i

c = . and
2

ic gives the probability of ϕ collapsing

into state iφ if it decoheres.Note that the wave function ϕ describes a real

physical system that must collapse to exactly one basis state.Use is made here of the

Dirac bracket notation, where the ket • is analogous to a column vector, and the bra

• is analogous to the complex conjugate transpose of the ket • . In the same,the

probability that a quantum state ϕ will collapse into an eigenstate iφ can be

written
2

iφ ϕ too.

2.2 Quantum Gates and Their Representations

In two state quantum system, a quantum state can be expressed as

1 20 1c cϕ = + (see 2.1 section), where c1,c2 are complex numbers, this shows

quantum state can be in 1 state, 0 state or simultaneously in both (superposition).

That is,when qubit state ϕ collapses into either the 0 state or the 1 state, it

does so with probabilities
2 2

1c 2and c , respectively, where
2 2

1 1c =2+ c .

 Quantum Perceptron Network 653

It is possible to construct any arbitrary quantum logic gate using the 1-bit rotation
gate and the 2-bit controlled NOT gate as primitive elements [10].Based on the Bloch
sphere, formula (2) can be act as another way to express the formula (1).

1 20 1c cϕ = + (1)

cos 0 sin 1
2 2

ie φθ θϕ = + (2)

() co s s inif e iφϕ φ φ= = + (3)

Where i is the imaginary unit and φ is the phase that describes the quantum state.

Formula(3) is used to simplify formula (2) for the convenience of operating quantum
state.

3 Quantum Perceptron(QP)

3.1 Structure and Learning of QP

On the basis of creationary work done by Kouda[11-14] et al, we design a quantum
perceptron showed in the Fig.1. (For simpleness,we only draw two input nodes P1, P2
and a output node). Quantum computer is still used only in the lab, therefore the range
of input of quantum perceptron is (0,1), which can be simulated in the classical
computer.

Fig. 1. quantum perceptron

In Fig.1., the output of quantum perceptron equals to 1 or 0 with probabilities

2
Im(t) or

2
Re(t) respectively.

()t f y=
1

()
1 x

sigmoid x
e−=

+
 (4)

654 R. Zhou, L. Qin, and N. Jiang

() arctan(Im() / Re())
2

y sigmoid
π σ ϕ ϕ= − (5)

1 1 2 2() () () () (1) ()
2 2 2

f P f f P f f f
π π πϕ θ θ λ= + − ⋅ (6)

Where 1 2θ θ� and λ are phase parameters in the form of weight connection and

threshold, respectively, and σ is the phase control gene, P1, P2 are input data.
How does the network learn in the work process? We define a quantum version of

the well-known perceptron algorithm.This rule is represented by the following
equations:

n e w o ld
l l

n e w o ld

n e w o ld

e in p u t

e in p u t

e in p u t

θ θ α
λ λ α
σ σ α

= +

= +

= +

(7)

Where e T output= − , T is a target output(it is a real number, not complex

number); (1, 2)l ∈ ,α is a learning rate and within the range 0.0—1.0, in usual. Of

course α can adopt
1

k
α = , here k is a iteration numbers, thus α can decrease step

by step with iteration number increases, which quickens convergence process of
network.

3.2 Convergence Prove[9]

For the sake of convergence prove of quantum perceptron,we still adopt the form of

quantum state, such as 1 20 1c cϕ = + which is entirely equal to formula

(2), (3):
2 2

2

1 1

T (1) T (1) () T () (())
L L

output k k k
k k

x k W k x k W k x T x kα
= =

− + = − + = − + −

1k kx x = is used in the formula, namely, kx is a normalized input states:

2
2 22T (1) T () (()) (1) ()

L

output output
k

x k x k T x k L T x kα α− + = − − − = − −

Where L is the input number of quantum neuron,i.e. 1 2P P . For small α (0<α <1/L),

the result of iteration converges to the desired state T , especially, quantum

perceptron converges the quickest when
1

L
α = .

 Quantum Perceptron Network 655

4 Case Analysis

There is a case called XOR function whose input/output is:

1 1 2 2 3 3 4 4

1 0 1 0
{ , 0}{ , 1}{ , 1}{ , 0}

1 1 0 0
x T x T x T x T= = = = = = = =

From this, we can meet input/output condition with single-layer quantum
perceptron with two inputs(see Fig.1.).But classical one-neuron perceptron unable to
accomplish this line-impartibility problem. Can quantum perceptron with a neuron

accomplish this? Supposing connection weight kθ k=1,2 threshold λ and phase

control gene σ are all equal to zero,i.e.f(kθ)=f(λ)=sigmoid(σ)=1. The network

carry through iteration computing for the first time as follows:

1. The quantum perceptron computes with the first input/output pair:f(
2

π
P1)=i,

f(
2

π
P2)=i, evolving according to (4),(5),(6), =i 1+i 1-i 1=iϕ ∗ ∗ ∗ ,

1
y ar () 0

2 0
ctan

π= − = ,

1t = , so the probability of output equaling to 0 is 100%, which corresponds to

classical “o” and is consistent with the goal 1 0T = , this network realizes the goal

and need not to adjust parameter kθ , λ , σ .

2. As above, network computes with the second input/output:f(
2

π
P1)=1,f(

2

π
P2)=i,

=1 1+i 1-i 1=1ϕ ∗ ∗ ∗ y arctan(0)
2 2

π π= − = , t i= , the probability of

output= 1 is 100% and is consistent with the goal 1 1T = , need not to adjust

parameter.

3. The network computes with the third input/output: f(
2

π
P1)=i,f(

2

π
P2)=1,

1 1+i 1-i 1=1ϕ = ∗ ∗ ∗ , y arctan(0)
2 2

π π= − = , t i= , the output is consistent

with the goal 3() ()
2 2

f T f i
π π= = ,not adjusting parameter.

4. At last, network computes with the fourth input/output: f(
2

π
P1)=1,f(

2

π
P2)=1,

=1 1+1 1-i 1=2-iϕ ∗ ∗ ∗ y arctan(0.5) 2.0344
2

π= − − = , 0.4472 0.8944t i= − + ,

656 R. Zhou, L. Qin, and N. Jiang

the output collapses in the state 0 with the probability of
2

Re() 20%output t= = ,

which isn’t entirely consistent with the goal 4 0T = ,namely,the output is identical

with the goal only with the probability of 20%.Network completes the first iteration

compution after adjusting the parameter kθ , λ , σ following formula (7).

The quantum perceptron with one neuron goes along the second iteration
compution as the same fashion.From the result of simulation,the network can realize
XOR function only by 16 iterations.

5 Conclusion and Expectation

quantum perceptron network with only one neuron can realize XOR function
unrealizable with a classical perceptron having a neuron.Through case analysis
|and simulation,it proves that quantum perceptron network designed can solve
line-impartibility problem which must be performed by the two-layer classical
artificial neural network(CANN).This shows ulteriorly that the size of quantum
perceptron may be less or simpler than that of its conventional counterpart when they
encounter the same task. The results suggest that the excellent learning performance
of our quantum perceptron is not simply due to the complex-valued neuron
parameters or the introduction of the restricted polar radius, but to the quantum
characteristics, i.e., the quantum superposition quantum phsae and the probability
interpretation.But, it is left for future study to clarify this efficiency in mathematical
terms. Other future work will focus on the use of the quantum perceptron in more
practical applications.

In a word,the research of QPN includes not only investigating a kind of new
algorithm, but also exploring a novel computing architecture and model, science
problems containing in this network and research into these problems will drive the
research of neural network quantum computing and other correlative field to a new
development.

Acknowledgement

This work is supported by the Grand Fundamental Advanced Research of Chinese
National Defense under Grant No.S0500A001 and the Science and Technology
Foundation of the Education Department of Jiangxi Province under Grant
No.2005169

References

1. Kak S. C.: On Quantum Neural Computing.Information Sciences, 1995, 83:143-160
2. Tohru Nitta.:An Extension of the Back-Propagation Algorithm to Complex Numbers.

Neural Networks, Vol.10, No.8, pp.1391-1415, 1997.

 Quantum Perceptron Network 657

3. Menneer T.: Quantum Artificial Neural Networks. Ph. D. thesis of The Univ. of Exeter,
UK, 1998.

4. Menneer T,Narayanan A.:Quantum-inspired Neural Networks.Tech. Rep. R329, Univ. of
Exeter, 1995

5. Li Wei-gang: Entangled Neural Networks.http://www.cic.unb.br/~weifang/qc/enn2000.pdf
6. Ventura D, Martinez T R.: Quantum Associative Memory.Information Sciences,2000,

124:273-296.
7. A.A. Ezhov a, A.V. Nifanova, Dan Ventura:Quantum associative memory with distributed

queries, Information Sciences,128 (2000),271-293
8. Ventura D,Martinez T R.:Quantum Associative Memory.Information Sciences, 2000,

124:273-29
9. M.V. Altaisky.Quantum neural network.Technical report, 2001.http://xxx.lanl.gov/

quantph/0107012
10. M.Nielsen and I.Chuang:Quantum Computation and Quantum Information,Cambridge

University Press, Cambridge,2000.
11. Kouda,N., Matsui, N., Nishimura, H. and Peper, F:Qubit Neural Network and Its

Efficiency In:Proceedings of Knowledge- Based Intelligent Information Engineering
Systems (KES2003), LNAI-2774, pp. 304–310, Springer-Verlag, 2003.

12. Kouda, N., Matsui, N., Nishimura, H. and Peper, F.: Qubit Neural Network and Its
Learning Efficiency, Neural Computing and Applications,Springer-Verlag,DOI:10.1007/
s00521-004 -0446-8, 2005

13. Kouda, N., Matsui, N., Nishimura, H. and Peper, F.:An Examination of Qubit Neural
Network in Controlling an Inverted Pendulum.Neural Processing Letters (2005) 22:277–
290 . Springer 2005

14. Kouda, N.,Matsui, N. and Nishimura, H.: Image compression by layered quantum neural
networks, Neural Processing Letters, 16 (1) (2002), 67–80.

15. BobRicks, Dan Ventura:Training a Quantum Neural network, http://books.nips.cc/
papers /files/nips16/NIPS2003_ET05.pdf

16. Li Fei, Zhao Shengmei, Zheng Baoyu:Performance of a single quantum neuron.Chinese
Journal of Electronics, Vol.14, No.1, Jan.2005:111-114.

17. Xie Guangjun,Zhang Zhenquan:A Quantum Computitive Learning Algorithm.Chinese
Journal Of Quantum Electronics, Vol.20, No.1, Feb., 2003 (in Chinese).

Critical Echo State Networks

Márton Albert Hajnal and András Lőrincz

Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, Hungary, H-1117,
ouraborous@ludens.elte.hu, andras.lorincz@elte.hu

http://nipg.inf.elte.hu/

Abstract. We are interested in the optimization of the recurrent con-
nection structure of Echo State Networks (ESNs), because their topology
can strongly influence performance. We study ESN predictive capacity
by numerical simulations on Mackey-Glass time series, and find that a
particular small subset of ESNs is much better than ordinary ESNs pro-
vided that the topology of the recurrent feedback connections satisfies
certain conditions. We argue that the small subset separates two large
sets of ESNs and this separation can be characterized in terms of phase
transitions. With regard to the criticality of this phase transition, we in-
troduce the notion of Critical Echo State Networks (CESN). We discuss
why CESNs perform better than other ESNs.

Keywords: time series, prediction, echo state network, phase transition,
critical point.

1 Introduction

Motivation: We are interested in learning the dynamics of deterministic non-
linear systems with artificial neural networks. It is relevant for us that (i) the
network captures and represents the dynamical properties, (ii) learning should
be fast, and (iii) learning has a neural form.

The Echo State Network (ESN) is an important candidate for such efforts.
Despite of its simplicity, it shows immense representation capacity for nonlinear-
dynamical systems. Further, the speed of learning is unique amongst Recurrent
Neural Networks (RNNs) due to its fast Linear Mean Squared Error (LMSE)
tuning algorithm. Finally, the on-line form of any LMSE algorithm corresponds
to the well known local Delta-rule that can be implemented in neural networks.

We shall show by numerical experiments that under certain conditions, ESN
can gain more than an order of magnitude for Mackey-Glass (MG) time series
in terms of prediction length. We provide a set of conditions that achieve this
gain. The basic finding is that such ESNs correspond to a critical condition. We
describe a framework to measure if an ESN exhibits phase transition and critical
behavior. The framework also helps us provide an interpretation.

The paper is built as follows. First, we briefly review background information
about ESNs (Section 2.1) and about critical phenomena (Sect. 2.2). We describe
our methods in Sect. 3. We study ‘macroscopic behavior’, optimize the topology,

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 658–667, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Critical Echo State Networks 659

and test prediction capacities. Section 4 is about our results on the critical point
of ESN phase transition and about the predictive potential of some critical ESNs
(CESNs). Discussion can be found in Sect. 5. We close with a short summary.

2 Preliminaries

2.1 Echo State Networks

Echo State Network was first introduced by Jaeger [1,2]. We study simple ESNs
that contain all necessary components. The ESN has a hidden layer that holds
the hidden representation a ∈ Rl. It receives input x ∈ Rk and provides output
y ∈ Rm (Fig. 1). Network dynamics is governed by the following equations:

at = (1 − µ)at−1 + σ(Fat−1 + Wxt−1) (1)
yt = Hat (2)

where W and H are the input and output mappings, respectively, F represents
the recurrent feedback connections of the hidden layer, σ(·) is a component-wise
non-linearity that we set to tanh(·), and µ is the parameter of leaky integration.
In the ESN approach, a large number of neurons is used with random recurrent
connections at the hidden layer (l � k). They seem to play the role of a ‘dynamic
reservoir’. We shall consider the configuration when the output of network is an
estimation of the next input, that is, xt+1 = yt (and k = m) at every time step
t > t0. In this mode, and upon tuning, the network is capable of approximating
the continuation of the experienced time series in the absence of further inputs.

Fig. 1. Structure of the Echo State Network. x: input, a: hidden representation, y:
output, W, F, H linear transformations, σ: nonlinearity.

ESNs are special RNNs: only the hidden-to-output connections (matrix H)
are trained. Training is a simple linear regression task that minimizes the time
averaged mean squared error between the output and training signal, which is
the input itself in our case :

J =
1
2

∑
t

ε(t) =
1
2

∑
t

|yt − xt|2. (3)

660 M.A. Hajnal and A. Lőrincz

Usually, random initialization is used for matrices W and F. It has been
found that the so called echo states may not appear, unless the ESN satisfies
the following constraints [3]: Matrix F should be sparse; only a few percent of
its elements is non-zero and thus connectivity p is low. Also, matrix F should be
contractive: the magnitude of singular values should not exceed 1. More details
on the operation and tuning of ESNs can be found in the literature, see, e.g.
[1,3,4,5]. There are studies about performance and alteration of ESNs [6,7,8]. It
has been noted that the nature of the dynamical reservoir is not understood yet
[9]. Our work aims to shed light on this issue.

2.2 Critical Phenomena

Critical phenomena are notable concepts in physics. The notion refers to many-
body interactions, where ‘body’ is meant in a very general sense. Critical phe-
nomena appear in second order phase transitions and percolation processes,
among others. In general, critical phenomena may occur in the transition re-
gion that separates ‘phases’, which may differ in their symmetry properties, in
the macroscopic parameters, in their structure, i.e., in their long range order. It
is typical to define the order parameter of the transition that appears or disap-
pears in one of the phases. The transition between the phases can be a function
of the size of the system. The change of the order parameter becomes infinitely
sharp in the limit of infinite size. This singular value of the parameter is called
the transition point of the phase transition. Chaotic behavior is typical for tem-
poral changes at the transition point. These concepts are sufficient for us to
proceed. For further details about critical phenomena and for a review of the
vast literature of the subject, see, e.g., [10] and references therein.

Below, we define an order parameter for ESNs and present computer simula-
tions. They show that the transition of the network becomes sharp by increasing
the size of the network. We also find that at around the transition point predic-
tive capabilities of ESNs can be much better than those of ordinary ESNs.

3 Methods

In this section we describe how the long term behavior of the hidden layer
was studied. We establish conditions for finding ESNs with better hidden layer
recurrent connections. Our efforts lead to an order parameter and a test that
captures the essence of chaotic time series.

3.1 Time Evolving Properties

We are to describe and quantify the special condition mentioned in Sect. 2.
Consider the long term behavior of the components of the hidden layer, ai,t,
i = 1, . . . , l. We would like to eliminate the effects of the input x and we set
W ≡ 0. Under this condition, qualitative description of the time evolution of
the components aj,t can be provided, because activity propagation that starts at
time 0 and ends at time t is determined solely by Ft apart from non-linearities.

Critical Echo State Networks 661

The proportion of non-zero elements in Ft will be called time evolving con-
nectivity and we denote it by pt. Similarly, let qt denote the number of non-zero
matrix elements of Ft. Thus qt = l2pt, where l is the number of neurons at the
hidden layer. Quantities pt and qt are macroscopic measures of the connectivity
structure that – in a broad sense – characterize information transfer from a0
to at through the non-zero elements of matrix Ft. In the limit t → ∞, pt may
converge. In this case, pt may increase, decrease, or even vanish. Alternatively, it
is easy to find cases, when pt may keep changing for all times around its average
value. In this case, we take this average as p∞. In line with this note, we shall
see that o = p∞

p0
is an appropriate order parameter for us.

The activities of the hidden layer are also subject to temporal changes. For µ =
1, Eq. (1) can be rewritten as at ≈ σ((F + WH)at−1). Upon optimizing matrix
H for objective (3), the largest eigenvalue of F̂ = F + WH will approximate 1
for non-vanishing deterministic processes.

3.2 Prediction Test

We tested ESNs on Mackey-Glass (MG) [11] time series, derived by means of
the delayed parameter differential equation:

ẋ(t) = −γx(t) +
αx(t − τ)

1 + x(t − τ)β
, (4)

where parameter β influences bifurcation, whereas delay parameter τ influences
the complexity of the time series. We used α = 0.2 and γ = 0.1, which are
widespread in the literature.

Mean squared error is the typical measure of accuracy in the ESN literature.
However, if networks are tested on MG time series that may exhibit chaotic
patterns depending on the delay parameter, a peculiar effect occurs: prediction
estimates usually follow the original trajectory accurately for some time, but –
apparently – the network looses the dynamics suddenly. This phenomenon is a
general property of chaotic systems, because the divergence of individual trajec-
tories can be exponential. Predictive capacity for chaotic systems is thus better
described by the exponent of the divergence of trajectories or by thresholds.

For the comparison of different networks, we introduce a measure of predictive
capacity: successful prediction length, ζ. Prediction is called ‘θ-successful’ for time
τ with parameters tp and T , or ‘successful’, for short, if starting to predict at
time tp and predicting for time durations t ≤ τ , the average of the squared
prediction error ε(t) over time interval T does not exceed θ, but it does if t > τ :

ζ(tp) = argmax
τ

(
〈ε(tp + τ + i)〉i=1,...,T < θ

)
, (5)

where τ is the growing length of attempted predictions, 〈·〉 denotes averaging,
and i is the running index of averaging.

Should 〈ε〉 exceed θ, we consider that the system can not keep the predicted
output close to the true input trajectory x(t) any further. Measure ζ captures
the essence of chaotic dynamics [12].

662 M.A. Hajnal and A. Lőrincz

In numerical experiments, different transformations F and W, starting point
tp, and training lengths were used to learn the distributions of ζ(tp) for one-
dimensional MG time series. Parameters of this study are provided in Table 1.
It may be worth noting that training length and network sizes are much smaller
than those of [1]. Now, we describe our experimental findings.

Table 1. Experimental parameters

size of hidden layer l in the range 20 − 400
value of elements of W randomly chosen; ≈ ±0.07
value of non-zero elements of F equal and positive
max. eigenvalue of F (scale factor) 0.9
value of leaky integrator, µ 0.7
Mackey-Glass parameters as in [1] α = 0.2, γ = 0.1, β = 10
Mackey-Glass delay parameters τ = 17 & 30
training length 1500 (with sub sampling 10)
threshold and averaging window in Eq. (5) θ = 0.2, T = 10

4 Results

First, we shall show that a sharp transition appears in time evolving connectivity
and describe how the final phase depends on the initialization. After measuring
the value of the critical point we shall conclude that permutation matrices, or or-
thogonal matrices in general, satisfy the critical condition. We shall demonstrate
the superior performance of permutation matrices.

4.1 ESN Phase Transition and the Critical Point

We have created a large number of networks of various sizes. The connectivity
structure of the hidden layer was set randomly. We have determined p∞ for all of
them. We have plotted p∞ against p0 (Fig. 2a) for different inner layer sizes. Two
phases emerged with a transition interval between them. By increasing the size
of the network, the position of the interval underwent a monotone shift towards
lower values and the width of the interval became narrower (Fig. 2b).

According to our original critical point conjecture sharp phase transition
emerges with a critical point that separates the two phases at around pt ≈ p0.
We define the critical point of ESNs as pc = p0 = p∞ (but see also Sect. 5).
Figure 2b shows that a pc ≈ 1/l relation is apparent for larger network sizes
with a few percent relative standard error. Thus, according to Section 3.1, we
have qc ≈ l, because qt = l2pt and pc ≈ 1/l. For a critical network subject to our
choices detailed in Table 1, the number of equal and non-zero elements in F is
equal to the dimension of the hidden layer.

In the next section we introduce exact critical structures for the hidden matrix.
We shall see that critical structure often exhibits superior performance.

Critical Echo State Networks 663

0 0.025 0.05
0

0.5

1

 6
0

12
0

20
0

40
0

p
0

p ∞

(a) Connectivity in the limit p∞
versus initial connectivity p0

0 200 400
0

0.02

l

p c

(b) Critical ‘point’ pc versus net-
work size l

0 1 2
0

100

200

p∞/p
0

ζ 10
0

(c)

0 1 2
0

0.005

0.01

p∞/p
0

M
S

E
10

0

(d)

0 1 2
0

100

200

p∞/p
0

ζ 40
0

(e)

0 1 2
0

0.005

0.01

p∞/p
0

M
S

E
40

0

(f)

Fig. 2. Phase transition and improved performance around the critical point.
(a): Phase transition in time evolving connectivity. Zero phase: connections of the
hidden layer disappear for sufficiently large, but finite times. Saturated phase: (almost)
all connections contribute after sufficiently large times. Transition between the phases
becomes sharp for larger hidden layers. (b): Position of pc shifts to lower values as hid-
den layer size l increases. Dashed line: fit by assuming pc = 1/l. (c) and (e): estimated
successful prediction length ζ, (d) and (f): MSE of ζ, (c) and (d): size of hidden
network is 100, (e) and (f): size of hidden network is 400. Solid lines: approximate
(indicative) ‘boundaries’ that show improvements around the critical point p∞/p0 = 1.

4.2 Critical Echo State Networks

Condition qc = l for matrix Ft is satisfied e.g., if every row and every column of
Ft contains one non-zero element in the limit. Such structure will be called exact
critical structure. For example, ESNs with permutation matrices in the hidden
layer (PESNs) have exact critical structure.

Before proceeding, we conclude for the general case: according to our numeri-
cal studies, there is a critical region for networks. In this region, the time evolving
hidden layer connectivity may not loose all connections (may not enter the zero
phase) or may not get close to full connectivity (the saturation phase). See also

664 M.A. Hajnal and A. Lőrincz

Fig. 2a and the caption of Fig. 2. Such networks will be called Critical Echo
State Networks (CESNs).

There are special cases that belong to CESNs. For example, if the eigenvalues
of matrix F are bounded by the unit sphere, two of them are on this sphere,
and these two do not form a diagonal sub-matrix, that is they mix elements of
the internal representation, then Ft will not belong to the zero phase nor to
the saturation phase. Also, ESNs with hidden orthogonal matrices are CESNs,
because their connectivity structure neither vanishes nor saturates in the limit.

In our investigations we shall turn to hidden permutation matrices, because
otherwise the relative number of critical structures generated randomly may
be very low, especially for large hidden layers. A particular l × l permutation
matrix contains 1 ≤ lν ≤ l number of cycles. A cycle of length lν exchanges the
corresponding elements of a vector in lν steps. Similarly, orthogonal matrices
mix subspaces.

Now, we present results for hidden permutation matrices, i.e., for PESNs and
we set

F = P , (6)

where P is a permutation matrix.

4.3 Prediction Gain over Ordinary ESNs

In this section we compare the performance of ESNs with PESNs on Mackey-
Glass time series with delay parameters 17 (MG17) and 30 (MG30).

Figures 3a and 3b show distributions of successful prediction length ζ for 4,000
ordinary ESNs. The distributions are compact. The same figures depict the dis-
tributions for 4,000 PESNs with randomly generated input matrix, hidden per-
mutation matrix, and optimized output matrix. PESNs show more asymmetric
distributions for ζs. The average and the median are about the same for the two
distributions, but the ESN distributions are much narrower. A large proportion
of PESNs are very successful, whereas we have barely encountered significantly
better than average randomly initialized ESNs, in agreement with the results
reported in the literature. In Figs. 3a and 3b, the decrease of the PESN distrib-
ution is slower than that of the ESN distribution; the PESN distribution seems
to have a long tail. For the more difficult MG30 time series prediction length is
shorter for both networks.

Figures 3c and 3d compare the number of occasions that a particular successful
prediction length was achieved by ESNs and PESNs for MG17 (Fig. 3c) and for
MG30 (Fig. 3d). Performances were evaluated over 2500 different starting points
and two comparisons were made. The best PESN out of 4000 randomly chosen
PESN networks was compared to (a) the average ESN out of 4000 randomly
chosen ESN networks and (b) the best ESN out of the same 4000 randomly
chosen ESN networks. For high ratios, i.e., when the performance of the PESN is
much better than that of the ESN, the curves become similar for both MG17 and
MG30. Results indicate that for large successful prediction lengths, performances
of the average and the best ESNs out of 4000 randomly generated networks are
poor and are very similar. Thus, high performance ESNs are rare compared to

Critical Echo State Networks 665

0 200 400 600 800

10
-3

10
-2

10
-1

10
0

ζ

hi
st

og
ra

m
 fo

r
M

G
17

(a) Performance distributions over
2500 starting points for randomly
generated ESN and PESN networks
for MG17.

0 50 100 150 200 250 300

10
-3

10
-2

10
-1

10
0

ζ

hi
st

og
ra

m
 fo

r
M

G
30

(b) Performance distributions over
2500 starting points for randomly
generated ESN and PESN networks
for MG30.

10
0

10
1

0

0.1

0.2

ζ
pesn

/ζ
esn

hi
st

og
ra

m
 fo

r
M

G
17

(c) Ratios of numbers of occasions
of successful predictions length of
PESNs and ESNs for 2500 starting
points for MG17.

10
0

10
1

10
2

0

0.1

0.2

ζ
pesn

/ζ
esn

hi
st

og
ra

m
 fo

r
M

G
30

(d) Ratios of numbers of occasions
of successful predictions length of
PESNs and ESNs for 2500 starting
points for MG30.

Fig. 3. Comparisons of ESNs and PESNs for MG17 and MG30 time series. (a) and
(b): Dashed lines: ESN, solid lines: PESN, network size: l = 60, (c) and (d): Dashed
lines: average ESN (out of 4000) and best PESN (out of 4000), solid lines: best ESN
(out of 4000) and best PESN (out of 4000), network size: l = 60, vertical line at value
1 (at 100): ‘curve’ for identical distributions.

high performance PESNs: PESNs form a highly efficient subgroup within ESN
networks – at least for MG chaotic time series.

We found that matrix W had an effect on the performance of PESNs. For
example, W with similar elements had a negative effect. Uneven averages and
variances for elements of W belonging to different cycles improved performance.

5 Discussion

We studied critical ESNs with single inputs. PESN performances have broader
distributions than ESN ones. For PESNs, the probability that extremely good

666 M.A. Hajnal and A. Lőrincz

ESN is found is dramatically increased. One can quickly find extremely good
PESNs, whereas good ESNs are rare amongst ordinarily initialized ESNs.

Why do we find high performance PESNs significantly more often? Consider
the permutation matrix in the hidden layer of the PESN. In general, it connects
disjoint sets of elements, that is, we have disjoint cycles. We found that neither
the single cycle case, nor the case of a large number but small cycles exhibited
good performances. This was expected because of the following reason. For a
single cycle of size n, identical representation arises after n steps. However, if
there are more cycles, the identical representation appears after mLCM steps,
where mLCM is the least common multiple of the sizes of the cycles. LCM is
small if all cycles are equal, if cycles are small, or if there are single cycles. Such
PESNs, show poor performances, but form only a small subset of randomly
generated PESNs.

Now, consider general orthogonal matrices in the hidden layer. They belong to
the class of CESNs, because their time evolving connectivity can neither saturate
nor disappear for large times. It is possible that connectivity structure does not
converge: periodic or never repeating structures may occur. We have studied
CESNs starting from good PESNs. For example, we changed the sign of one or
more non-zero elements of a permutation matrix. In all cases, the good predictive
performance dropped to average. We also tried to modify different non-diagonal
2 × 2 sub-matrices defined by two non-zero elements of the permutation matrix
to a rotation matrix. Performance decreased in most cases unless the angle of
rotation was small. Note that permutation corresponds to rotation by 900 and
a reflection, whereas 1800 rotation corresponds to the change of the sign of one
of the components. Combinations of these changes also spoiled performance in
an overwhelming majority of the experiments.

The hidden permutation matrix is able to approximate non-periodic dynam-
ical systems, because the hidden layer is embedded by the input matrix W and
the output matrix H, and they can modify finite cycles; matrix F̂ = F + WH
counts in this respect. Note however, that matrix WH, which can modify the
permutation matrix, has limited capabilities, because the rank of this matrix is 1.
Chances are high that changes of permutation matrices of good PESNs destroy
performance, thus such changes seem to be out of reach for the optimization
procedure of matrix H of the PESN.

Identification capabilities of general CESNs for dynamical systems beyond
MG time series deserve further studies. A rich repertoire of phenomena may
appear for input dimensions larger than 1.

6 Summary

We have shown that ESNs undergo sharp phase transition depending on the
connectivity properties at the hidden layer. We have introduced and studied
critical echo state networks. We found – by means of a large number of numerical
simulations – that a large proportion of exact critical structures exhibit highly
superior performance as opposed to ordinary ESNs, at least for MG time series.

Critical Echo State Networks 667

We have argued that CESNs with permutation matrices in the hidden layer can
identify both periodic and aperiodic time series, because the permutation matrix
is complemented by other structures of the ESN.

References

1. Jaeger, H.: The Echo State Approach to Analysing and Training Recurrent Neural
Networks. Technical Report 148, Fraunhofer Institute for Autonomous Intelligent
Systems (2001)

2. Maas, W., Natschläger, T., Markram, H.: Real-Time Computing Without Stable
States: A New Framework for Neural Computation Based on Perturbations. Neural
Computation 14 (2002) 2531–2560

3. Jaeger, H.: Short Term Memory in Echo State Networks. Technical report, German
National Research Center for Information Technology (2002)

4. Jaeger, H., Haas, H.: Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication. Science 304 (2004) 78–80

5. Ishii, K., Zant, T., Becanovic, V., Plöger, P.: Identification of Motion with Echo
State Network. In: Proc. Oceans. (2004) 1205–1230

6. Baier, N., De Feo, O.: Chaotic Model Identification Using a Biologically Inspired
Algorithm. Aperest, Universidad Complutense de Madrid (2004)

7. Mayer, N., Browne, M.: Echo State Networks and Self-Prediction. In: Lecture
Notes in Computer Science. Volume 3141., Springer Berlin / Heidelberg (2004) 40

8. Fette, G., Eggert, J.: Short Term Memory and Pattern Matching with Simple Echo
State Networks. In: Lecture Notes in Computer Science. Volume 3696., Springer
Berlin / Heidelberg (2005) 13

9. Jaeger, H.: Reservoir Riddles: Suggestions for Echo State Network Research (Ex-
tended Abstract). In: Proceedings of International Joint Conference on Neural
Networks, Montreal, Canada. (2005)

10. Sornette, D.: Critical Phenomena in Natural Sciences. Springer Series in Syner-
getics. Springer, Berlin, Germany (2003)

11. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197 (1977) 287–289

12. Cvitanovic, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G., Whelan, N.,
Wirzba, A.: Chaos: Classical and Quantum. Niels Bohr Institue, Copenhagen,
chaosbook.org version 11 (2004)

Rapid Correspondence Finding
in Networks of Cortical Columns

Jörg Lücke1,2 and Christoph von der Malsburg2,3,4

1 Gatsby Computational Neuroscience Unit, UCL, London WC1N 3AR, UK
2 Institut für Neuroinformatik, Ruhr-Universität, 44780 Bochum, Germany

3 Frankfurt Institute for Advanced Studies, 60438 Frankfurt a. M., Germany
4 Computer Science Dept. , University of Southern California, LA 90089-2520, USA

Abstract. We describe a neural network able to rapidly establish cor-
respondence between neural fields. The network is based on a cortical
columnar model described earlier. It realizes dynamic links with the help
of specialized columns that evaluate similarities between the activity
distributions of local feature cell populations, are subject to a topol-
ogy constraint, and gate the transfer of feature information between
the neural fields. Correspondence finding requires little time (estimated
to 10-40 ms in physiological terms) and is robust to noise in feature
signals.

1 Introduction

For various purposes it is necessary for the brain to find point-to-point corre-
spondences between structured neural arrays. Among these is stereo vision and
visual motion extraction. There are good reasons to assume that the brain also
performs correspondence-based invariant object recognition [1]. In the technical
domain, this represents state-of-the-art object and face recognition technology
[2,3].

Objects can be recognized in less then 100ms, see e.g. [4], and after each
saccade a new system of correspondences needs to be established, making it
clear that the mechanism must be very fast. A previous neural model of cor-
respondence-based recognition [5] had problems with the evaluation of feature
similarity and with speed. The model [6] is fast but did not attempt to cope
with different feature types.

2 Columnar Network Model

The central element of our model is the cortical column. As discussed in [7] our
column corresponds approximately to what in neuroscience is called a hypercol-
umn or macrocolumn and in primary visual cortex comprises all neurons that
are activated from one point in visual space. A column contains sub-units called
minicolumns or simply units that comprise on the order of one hundred neurons
which are connected by mutual excitation. The activity of a unit is described

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 668–677, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rapid Correspondence Finding in Networks of Cortical Columns 669

collectively by a variable p, and the units of one column mutually inhibit each
other. The coupling coefficient ν of this inhibition is cyclically driven (ν-cycle),
such that when ν is low all units are on, and when ν approaches a critical value
some units switch off in sequence, thus reflecting the relative strengths of their
afferent input. The dynamics of columns is described in the next section.

A simple model setting for the process of correspondence finding (see Fig. 1B)
consists of an input domain I, left column of large shaded ellipses, and a model
domain M, right column. Both domains consist of neural sheets that represent
images by the activity distribution of fields of local feature detectors. (Corre-
spondingly they should be two-dimensional, but for simplicity we limit ourselves
here to one-dimensional chains. And the model domain should contain many
such sheets to represent objects in memory, but for the time being we focus on
just one.)

In each point of the two domains there are two columns, one to represent
local features (horizontal ellipses within the shaded regions of Fig. 1B) and one
to control links between the two domains (vertical ellipses). This double column
(shaded ellipse in Fig. 1B) is called a node. Feature columns represent, with their
activity, the local texture of the image or model, usually represented by units that
are excited by different local spatial frequencies and orientations of the image’s
gray-level distribution. Typical feature distributions as used on our simulations
are shown in Fig. 1A, where each row corresponds to one feature column, index
i, and each column to one feature type, index α.

The domains communicate through links, which connect feature columns by
as many fibers as there are feature types. In a link control column each unit
stands for one link entering the node and does three things. One, it compares
the activity distributions of the feature columns at the two ends of the link,
two, it tries to be consistent with activities of units controlling parallel links,
and three, by its activity it keeps open its link. The situation is shown in more
detail in Fig. 2. At the end of a ν-cycle, when only one control unit is left active,
all but one of the links into the node are switched off. This unit or link is
selected by a combination of two criteria. One is feature similarity, the other is a
topology constraint. The latter is to favor those link arrangements that connect
neighbors in one domain with neighbors in the other domain, and is implemented
by connections between control units in neighboring nodes (symbolized at the
extreme right of Fig. 1B).

3 System Dynamics

The dynamics of the system is described by a set of coupled stochastic dif-
ferential equations. We first introduce some notation. Let L ∈ {I,M} and
L′ ∈ {I,M}\{L} be indices for the two domains, i.e., (L,L′) = (I,M) or
(M, I). Further, let pLi

α stand for the activity of the feature unit α in node i of
domain L. We assume α runs from 1 to k and i from 1 to N . Let us designate by
WLi,L′j the activity of the control unit with index j in node i of domain L (each

670 J. Lücke and C. von der Malsburg

α α

J I1

J I2

J I3

J M2

B

(J Ii
α)

i

(JMi
α)

i

A

pI2
3

W I3,M3

J M1

W M2,I3

J M3

T

column W M1

node M1

Fig. 1. A A collection of feature vectors (rows) with k = 20 entries. Model feature
vectors on the right-hand-side are iid and uniformly distributed in [0, 1]. The input
feature vectors on the lhs are noisy copies of the vectors on the rhs. B Network of
columns for correspondence finding. The network consists of an input domain and a
model domain with nodes I1 to I3 and M1 to M3, respectively. Each node consists
of a feature column with k = 4 minicolumns and of a control column with N = 3
minicolumns. Each node in the input layer receives input from each node in the model
layer, and vice versa. The inputs to a node are modulated by its control column ac-
cording to the interconnectivity as displayed in Fig. 2. The control columns receive
input from the units of feature columns of both layers and from neighboring control
columns.

control column must contain as many control units as there are nodes in the
other domain, in order to control as many links). As introduced and discussed
in [7], the dynamics of the feature columns is then described by

Rapid Correspondence Finding in Networks of Cortical Columns 671

J I1

J I3

J Mi

J I2

W Mi,I2

W Mi,I3

pMi
4

W Mi,I1

pI2
3

link (Mi, I3)

link (Mi, I1)

control column W Mi

link (Mi, I2)

Fig. 2. Detailed connectivity of one node. On the input side three feature columns
I1, I2 and I3 are shown, which by their activity distribution represent three in-
put feature vectors. On the model side, one node Mi consisting of feature and con-
trol column is shown. For one control unit, W Mi,Ij , the connection details are in-
dicated by bold lines. On its input side, the unit evaluates the similarity of feature
vectors in terms of their scalar product (multiplicative interactions indicated by ar-
rowheads touching connecting fibers) and with its output gates the incoming link it
stands for. Connectivity with neighboring control columns is not shown. Small circles
represent neurons which by their inhibition subtract the mean of incoming feature
vectors.

d

dt
pLi

α = f(pLi
α , ν max

β=1,...,k
{pLi

β }) + κELi
α , (1)

where ELi
α is input to the unit, controlled in its strength by parameter κ, and

where
f(p, h) = a p (p − h − p2) + σηt (2)

is a control function in the form of a polynomial of third degree, including the
Gaussian noise term σηt with variance σ2. The inhibition is determined by the
most active unit in the column, modulated by the inhibitory coefficient ν, which,
as stated above, is controlled cyclically:

672 J. Lücke and C. von der Malsburg

ν(t) =

{
0 if t̃ < Tinit

(νmax − νmin) t̃−Tinit
T−Tinit

+ νmin if t̃ ≥ Tinit
, (3)

where t̃ = t mod T , which is t − nT , with n the greatest integer satisfying
t− nT ≥ 0.

To specify the input ELi
α in (1) we first have to define a few quantities.

The feature input to feature unit α in node Li is designated as J̃ Li
α = J Li

α −
1
k

∑k
β=1 J Li

β , where the mean is subtracted from the raw feature inputs. The
momentary coupling strength from node j in domain L′ to node i in domain L
is set equal to the mean-free activity of the control unit of that link, W̃Li,L′j =
WLi,L′j − 1

N

∑N
l=1 WLi,L′l. We then define the input into feature unit pLαi in (1)

as

ELi
α = CE J̃ Li

α + (1 − CE)
N∑

j=1

k∑
β=1

W̃Li,L′j RLi,L′j
αβ pL

′j
β , (4)

where the parameter CE ∈ [0, 1] controls the relative strength of the two sources
of input. The matrix RLi,L′j

αβ defines feature-preserving interconnections between

feature columns in the two domains: RLi,L′j
αβ = δαβ − 1

k . Here finally are the
dynamic equations of the control units:

d

dt
WLi,L′j = f(WLi,L′j , ν max

l=1,...,N
{WLi,L′l}) + κ ILi,L′j , (5)

ILi,L′j = CI

k∑
α,β=1

pLi
α RLi,L′j

αβ pL
′j

β +

topology term︷ ︸︸ ︷
(1 − CI)

N∑
a,b=1

TLi,L′j
ab W̃La,L′b, (6)

where CI ∈ [0, 1] controls the relative influence of the two terms in (6). The first
term evaluates feature similarity. It resembles a scalar product with Euclidean
metric between the activity vectors pLi and pL′j (other choices of RLi,L′j would
correspond to other metrics). However, the situation is somewhat more compli-
cated, as the activities of feature units do reflect feature values more in terms of
the timing of their switching off in the course of the ν-cycle (later for stronger
values) than by their firing strength at any moment.

The topology term in (6) implements link-to-link interactions. With vanish-
ing topology term, CI = 1, dynamics (1) to (6) would converge to a one-to-one
connectivity that connected the most similar feature vectors in the model and
input domains. Unfortunately it turns out that if there are non-trivial differences
between model and image of the same object many nodes find their most similar
feature vector in non-corresponding points of the other domain [8]. To remedy
this problem, system dynamics should favor link arrangements that preserve
neighborhood relationships. Accordingly, we structure the intra-layer connec-
tions (TLi,L′j

ab) such that parallel links excite each other:

Rapid Correspondence Finding in Networks of Cortical Columns 673

TLi,L′j
ab =

L∑
c,d=−L

Ac,d δa,i+c δb,i+d − 1
N ,

(Ac,d) =

0 0
0.3 0.4 0.3

0.1 0.8 0.1
0 1 0

0 0 0
0 1 0

0.1 0.8 0.1
0.3 0.4 0.3

0 0

(7)

Here, all empty entries are meant to be zero. To understand the interactions
of control columns consider the simpler limiting case Ac,d = δc,d − δc,0δd,0 and
N = ∞. If we inserted the resulting (TLi,L′j

ab) into (6), the topology term would
take the form (1−CI)

∑L
c=−L

c �=0
W̃L(i+c),L′(j+c) , and only exactly parallel links in

the range [−L,+L] would excite each other. We use instead (7) in the following
because we want links to excite each other also if they are only approximately
parallel. For the two-dimensional case, (TLi,L′j

ab) will have to be generalized ap-
propriately.

4 Simulations

For numerical simulations of the differential equations we use the Euler method
with time steps ∆t = 1

100ms. As domains we use chains of N = 30 nodes and
cyclic boundary conditions, so that the last and the first nodes of the one-
dimensional chain are neighbors. We choose the parameters κ = 1.0 ms−1 and
σno. = 0.01 ms−1. The parameter a of the function f in (5) is chosen as in [9],
a = 200 ms−1. The system is operated with oscillating inhibition coefficient ν,
cf. (3), with period length T = 25 ms, Tinit = 2 ms, νmin = 0.4 and νmax = 0.52
(a value slightly above the critical value νc = 0.5, see [7]).

The influence of the topology term in (6) is best studied by setting CI to zero,
which lets the system ignore feature similarities and consider only the topology
interactions within each layer. This results in decoupling the feature column
dynamics, (1) and (4), from that of the link control columns, (5) and (6), which
therefore can be simulated in isolation. A typical time course of the minicolumn
activities (WLi,L′j) during a ν-cycle is shown in Fig. 3. As can be seen, the
system converges to a shifted diagonal connectivity matrix (WLi,L′j), i.e., to
a neighborhood-preserving one-to-one connectivity pattern. To which diagonal
the system converges is decided by spontaneous symmetry breaking induced by
noise when ν approaches a critical value.

If we choose an intermediate value for CI , link dynamics is influenced by both
neighborhood relationships and feature similarities. Both influences are essential
to find the right correspondences and their relative strengths can be chosen using
CI . We simulate dynamics (1) to (7) with CE = 0.6, so that feature columns
are slightly more sensitive to their own feature vector than to input from the
other layer, and with CI = 0.5, giving equal weight to feature similarities and

674 J. Lücke and C. von der Malsburg

A B C

i
j

0.490

(W Li,L′j)

0.470
ν =

0.510

Fig. 3. Time course of network activities (W Li,L′j) during a ν-cycle for CI = 0.
In a ν-cycle, ν increases from 0.4 to 0.52 in about 25ms. In the beginning all mini-
columns (W Li,L′j) of all columns are equally active (light grey). A For 0.45 < ν ≤ 0.47
minicolumns start to be deactivated. B Because of the special choice of (T Li,L′j

ab), di-
agonally arranged minicolumns are exciting each other and survive the increasing inhi-
bition longer. Note that diagonals in (W Li,L′j) correspond to neighborhood-preserving
connectivity patterns between input and model domain. C Finally just one minicol-
umn per control column survives and the connectivity matrix (W Li,L′j) is a shifted
diagonal.

neighborhood relationships in the control of links. As input and model we use
feature vectors (J Ii) and (J Mi) as given in Fig. 1A. The input feature vectors
are noisy versions of the model feature vectors1. In Fig. 4 the result of a sim-
ulation with these feature vectors and parameters is shown for one ν-cycle. As
can be observed, the dynamics converges to a symmetric one-to-one connectiv-
ity pattern between input and model layer. For visualization purposes we have
chosen input feature vectors that were not translated w.r.t. the model feature
vectors. For translated input feature vectors (J ′Ii) = (J I(i+const)) (respecting
the cyclic boundary conditions) the system converges the corresponding shifted
diagonal. For input generated as above the system reliably finds the right cor-
respondences for noise levels up to about σ = 0.6 which shows a remarkably
high noise tolerance. For k > 20 results improve and for k < 20 the error rate
increases. Note in this context that in our technical applications feature vectors
typically have k ≥ 40 entries [2,3] and that cortical columns in primary sensory
areas are estimated to contain about k = 80 minicolumns [10].

1 We use N = 30 model and N = 30 feature vectors, each with k = 20 entries.
Correspondingly, the numbers of nodes per layer is N and the number of minicolumns
per feature column is k. The model feature vectors consist of randomly ordered
copies of 10 different feature vectors whose entries contain equally, identically, and
independently distributed random values between zero and one. An input feature
vector (J Ii) is generated from the model vector by adding Gaussian white noise with
σ = 0.6 to the values (J Mi). Subsequently, the set of all values (J Ii) is rescaled
such that all feature vector entries lie in the interval [0, 1] again. The resulting
image (J Ii) has on average smaller component deviations from the mean, due to
the rescaling after adding noise.

Rapid Correspondence Finding in Networks of Cortical Columns 675

(W Ii,Mj) (W Mi,Ij) (pMi
α)(pIi

α)

i
α

i i
j j

i
α

A

D

C

B

0.45

0.455

0.46

0.49

ν =

Fig. 4. Time course of the dynamical variables of the system displayed in Fig. 1B if
feature vectors Fig. 1A are used. During a ν-cycle, ν increases from 0.4 to 0.52 in about
25ms. In the beginning of the ν-cycle all minicolumns are active (high gray values) and
start deactivating at about ν = 0.45 (see A). Note that the feature columns start
first to deactivate their minicolumns because the input they get from their feature
vectors is patterned. Feature vectors on the model side have inputs of higher variance
and deactivate their minicolumns earlier. B-C Minicolumns of the control columns are
deactivated according to similarities in feature columns and activities of other control
columns. D Finally, control minicolumns remain active that correspond to diagonals
in (W Ii,Mj) and (W Mi,Ij). The system has found the right correspondences as a
neighborhood preserving mapping between similar features.

676 J. Lücke and C. von der Malsburg

On the basis of feature similarities alone, CI = 1, a system with otherwise the
same parameters and noise level σ = 0.6 converges to one-to-one connectivities
which are not neighborhood preserving and in which 80 − 90% of the surviving
links connect non-corresponding points.

5 Conclusion

Finding homomorphic, that is, structure-preserving, mappings between neural
fields —the correspondence problem— is a capability of fundamental importance
for the brain, not only for the visual system (stereo matching, motion field ex-
traction) or perceptual systems in general (invariant pattern recognition), but
more fundamentally for the application of abstract schemas to concrete situa-
tions and analogical thinking, and thus for intelligence on all levels. By its very
nature, correspondence requires for its establishment and expression neural im-
plementation media for the formulation of structural relationships and for the
expression of dynamic links.

Both roles are played in our system by control columns, whose implementation
turned out to be possible with fairly standard neurons. Our model describes
minicolumn activity by abstract continuous variables, but as shown in previous
work [9] this is capturing the essential properties of a more direct modeling of
a system of spiking neurons [11]. Our model makes essential use of sigma-pi
neurons, requiring sums of products of signals, cf. the second term in (4) and
the first term in (6). Both cases involve control neurons, on the input side in one
case, the output side in the other.

The activity of control columns and of feature columns is described here by
the same type of stochastic differential equation (equations 1 and 5), but feature
neurons and control neurons are probably of a different nature, the two types of
columns playing very different roles. Control columns evaluate the similarity of
local structure expressed by feature columns (this similarity being defined by the
R-matrices in equations 4 and 6) and define, by interactions with each other, the
homomorphy aspect of the correspondence (topology term). Feature columns, on
the other hand, express local structure and are able to transmit it over distance.
The handling of feature columns as integrated entity in the evaluation of similar-
ities makes it possible to represent whole feature spaces, instead of single sample
points in such spaces, as are represented by the combination-coding neurons that
are conventionally used to represent higher features.

Our system solves several problems with previous models. One of them is
the evaluation of feature similarities, which was a problem for [1], [6] and [5].
Another is excessive time requirement in [5]. As we demonstrate here, neural
correspondence finding is possible in time-scales well below 100 ms because of
the use of population rates. In fact, our simulations show that convergence to
the right correspondences is possible within a critical period of a single ν-cycle of
a few tens of ms (25 ms for our simulations) which would correspond to gamma
range oscillations. During the critical phase (see Fig. 4) neurons typically spike
only few times (<10) as discussed in [11]. In the limit of short period lengths

Rapid Correspondence Finding in Networks of Cortical Columns 677

with still reliable convergences (≈10 ms) neurons have time to spike only 1 to 2
times in this period.

There are some challenges ahead of us. A full visual object recognition system
will need a two-dimensional version and a model domain with many dozens
of thousands of models. This threatens to require excessive numbers of control
units. However, by using the maplet idea [1] and intermediate layers between
the image domain and the model domain [6] this dragon could likely be tamed.
Another, more formidable challenge concerns the ontogenetic development of the
highly specific network structures involved in our model.

Acknowledgments. We thank J. D. Bouecke in helping us aquiring simulation
results and gratefully acknowledge funding by the Gatsby Charitable Founda-
tion, the Hertie Foundation, and by the EU project FP6-2005-015803.

References

1. J. Zhu and C. von der Malsburg. Maplets for correspondence-based object recog-
nition. Neural Networks, Special Issue ‘New Developments in Self-Organizing
Systems’, 17/8–9:1311 – 1326, 2004.

2. P. Jonathan Philips, Hyeonjoon Moon, Syed A. Rizvi, and Patrick J. Rauss. The
FERET evaluation methodology for face-recognition algorithms. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

3. Kieron Messer et al. Face authentication test on the BANCA database. In Pro-
ceedings of ICPR 2004, Cambridge, volume 4, pages 523 – 532, 2004.

4. S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system.
Nature, 381:520–522, June 1996.

5. Laurenz Wiskott and Christoph von der Malsburg. Face recognition by dynamic
link matching. In J. Sirosh, R. Miikkulainen, and Y. Choe, editors, Lateral
Interactions in the Cortex: Structure and Function, chapter 4. WorldWideWeb,
www.cs.utexas.edu/users/nn/book/bwdraft.html, 1995. ISBN 0-9647060-0-8.

6. B. A. Olshausen, C. H. Anderson, and D. C. Van Essen. A neurobiological model
of visual attention and invariant pattern recognition based on dynamic routing of
information. The Journal of Neuroscience, 13(11):4700–4719, 1993.

7. J. Lücke. Dynamics of cortical columns – sensitive decision making. In Proc.
ICANN, LNCS 3696, pages 25 – 30. Springer, 2005.

8. L. Wiskott. The role of topographical constraints in face recognition. Pattern
Recognition Letters, 20(1):89–96, 1999.

9. J. Lücke and J. D. Bouecke. Dynamics of cortical columns – self-organization of
receptive fields. In Proc. ICANN, LNCS 3696, pages 31 – 37. Springer, 2005.

10. V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120:701 –
722, 1997.

11. J. Lücke and C. von der Malsburg. Rapid processing and unsupervised learning in
a model of the cortical macrocolumn. Neural Computation, 16:501 – 533, 2004.

Adaptive Thresholds for Layered Neural
Networks with Synaptic Noise

D. Bollé and R. Heylen

Institute for Theoretical Physics
Katholieke Universiteit Leuven, Celestijnenlaan 200 D

B-3001, Leuven, Belgium

Abstract. The inclusion of a macroscopic adaptive threshold is studied
for the retrieval dynamics of layered feedforward neural network models
with synaptic noise. It is shown that if the threshold is chosen appro-
priately as a function of the cross-talk noise and of the activity of the
stored patterns, adapting itself automatically in the course of the recall
process, an autonomous functioning of the network is guaranteed. This
self-control mechanism considerably improves the quality of retrieval, in
particular the storage capacity, the basins of attraction and the mutual
information content.

1 Introduction

As is common knowledge by now, layered feedforward neural network models
are the workhorses in many practical applications in several areas of research
and, therefore, any new insight in their capabilities and limitations should thus
be welcome. In view of the fact that in many of these applications, e.g., pattern
recognition in general, information is mostly encoded by a small fraction of bits
and that also in neurophysiological studies the activity level of real neurons is
found to be low, any reasonable network model has to allow variable activity
of the neurons. The limit of low activity, i.e., sparse coding is then especially
interesting. Indeed, sparsely coded models have a very large storage capacity
behaving as 1/(a ln a) for small a, where a is the activity (see, e.g., [1,2,3,4]
and references therein). However, for low activity the basins of attraction might
become very small and the information content in a single pattern is reduced
[4]. Therefore, the necessity of a control of the activity of the neurons has been
emphasized such that the latter stays the same as the activity of the stored
patterns during the recall process. This has led to several discussions imposing
external constraints on the dynamics of the network. However, the enforcement of
such a constraint at every time step destroys part of the autonomous functioning
of the network, i.e., a functioning that has to be independent precisely from such
external constraints or control mechanisms. To solve this problem, quite recently
a self-control mechanism has been introduced in the dynamics of networks for
so-called diluted architectures [5]. This self-control mechanism introduces a time-
dependent threshold in the transfer function [5,6]. It is determined as a function
of both the cross-talk noise and the activity of the stored patterns in the network,

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 678–687, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Thresholds for Layered Neural Networks with Synaptic Noise 679

and adapts itself in the course of the recall process. It furthermore allows to reach
optimal retrieval performance both in the absence and in the presence of synaptic
noise [5,6,7,8]. These diluted architectures contain no common ancestors nodes,
in contrast with feedforward architectures. It has then been shown that a similar
mechanism can be introduced succesfully for layered feedforward architectures
but, without synaptic noise [9].

The purpose of the present contribution is to generalise this self-control mech-
anism for layered architectures when synaptic noise is allowed, and to show that
it leads to a substantial improvement of the quality of retrieval, in particular the
storage capacity, the basins of attraction and the mutual information content.

2 The Model

Consider a neural network composed of binary neurons arranged in layers, each
layer containing N neurons. A neuron can take values σi(t) ∈ {0, 1} where
t = 1, . . . , L is the layer index and i = 1, . . . , N labels the neurons. Each neu-
ron on layer t is unidirectionally connected to all neurons on layer t + 1. We
want to memorize p patterns {ξµ

i (t)}, i = 1, . . . , N, µ = 1, . . . , p on each layer t,
taking the values {0, 1}. They are assumed to be independent identically dis-
tributed random variables (i.i.d.r.v.) with respect to i, µ and t, determined by
the probability distribution: p(ξµ

i (t)) = aδ(ξµ
i (t)−1)+(1−a)δ(ξµ

i (t)). From this
form we find that the expectation value and the variance of the patterns are
given by E[ξµ

i (t)] = E[ξµ
i (t)2] = a . Moreover, no statistical correlations occur,

in fact for µ �= ν the covariance vanishes.
The state σi(t+1) of neuron i on layer t+1 is determined by the state of the

neurons on the previous layer t according to the stochastic rule

P (σi(t + 1) | σ1(t), . . . , σN (t)) = {1 + exp[2(2σi(t + 1) − 1)βhi(t)]}−1. (1)

The right hand side is the logistic function. The “temperature” T = 1/β con-
trols the stochasticity of the network dynamics, it measures the synaptic noise
level [10]. Given the network state {σi(t)}; i = 1, . . . , N on layer t, the so-called
“local field” hi(t) of neuron i on the next layer t + 1 is given by

hi(t) =
N∑

j=1

Jij(t)(σj(t) − a) − θ(t) (2)

with θ(t) the threshold to be specified later. The couplings Jij(t) are the synaptic
strengths of the interaction between neuron j on layer t and neuron i on layer
t + 1. They depend on the stored patterns at different layers according to the
covariance rule

Jij(t) =
1

Na(1 − a)

N∑
µ=1

(ξµ
i (t + 1) − a)(ξµ

j (t) − a) . (3)

These couplings then permit to store sets of patterns to be retrieved by the
layered network.

680 D. Bollé and R. Heylen

The dynamics of this network is defined as follows (see [11]). Initially the
first layer (the input) is externally set in some fixed state. In response to that,
all neurons of the second layer update synchronously at the next time step,
according to the stochastic rule (1), and so on.

At this point we remark that the couplings (3) are of infinite range (each
neuron interacts with infinitely many others) such that our model allows a so-
called mean-field theory approximation. This essentially means that we focus
on the dynamics of a single neuron while replacing all the other neurons by
an average background local field. In other words, no fluctuations of the other
neurons are taken into account. In our case this approximation becomes exact
because, crudely speaking, hi(t) is the sum of very many terms and a central
limit theorem can be applied [10].

It is standard knowledge by now that mean-field theory dynamics can be
solved exactly for these layered architectures (e.g., [11,12]). By exact analytic
treatment we mean that, given the state of the first layer as initial state, the state
on layer t that results from the dynamics is predicted by recursion formulas. This
is essentially due to the fact that the representations of the patterns on different
layers are chosen independently. Hence, the big advantage is that this will allow
us to determine the effects from self-control in an exact way.

The relevant parameters describing the solution of this dynamics are the main
overlap of the state of the network and the µ-th pattern, and the neural activity
of the neurons

Mµ(t) =
1

Na(1 − a)

N∑
i=1

(ξµ
i (t) − a)(σi(t) − a), q(t) =

1
N

N∑
i=1

σi(t) . (4)

In order to measure the retrieval quality of the recall process, we use the mu-
tual information function [5,6,13,14]. In general, it measures the average amount
of information that can be received by the user by observing the signal at the
output of a channel [15,16]. For the recall process of stored patterns that we
are discussing here, at each layer the process can be regarded as a channel with
input ξµ

i (t) and output σi(t) such that this mutual information function can be
defined as [5,15]

I(σi(t); ξ
µ
i (t)) = S(σi(t)) − 〈S(σi(t)|ξµ

i (t))〉ξµ(t) (5)

where S(σi(t)) and S(σi(t)|ξµ
i (t)) are the entropy and the conditional entropy

of the output, respectively

S(σi(t)) = −
∑
σi

p(σi(t)) ln[p(σi(t))] (6)

S(σi(t)|ξµ
i (t)) = −

∑
σi

p(σi(t)|ξµ
i (t)) ln[p(σi(t)|ξµ

i (t))] . (7)

These information entropies are peculiar to the probability distributions of the
output. The quantity p(σi(t)) denotes the probability distribution for the neu-
rons at layer t and p(σi(t)|ξµ

i (t)) indicates the conditional probability that the

Adaptive Thresholds for Layered Neural Networks with Synaptic Noise 681

i-th neuron is in a state σi(t) at layer t given that the i-th site of the pattern
to be retrieved is ξµ

i (t). Hereby, we have assumed that the conditional prob-
ability of all the neurons factorizes, i.e., p({σi(t)}|{ξi(t)}) =

∏
j p(σj(t)|ξj(t)),

which is a consequence of the mean-field theory character of our model explained
above. We remark that a similar factorization has also been used in Schwenker
et al. [17].

The calculation of the different terms in the expression (5) proceeds as follows.
Because of the mean-field character of our model the following formula hold for
every neuron i on each layer t. Formally writing (forgetting about the pattern
index µ) 〈O〉 ≡ 〈〈O〉σ|ξ〉ξ =

∑
ξ p(ξ)

∑
σ p(σ|ξ)O for an arbitrary quantity O the

conditional probability can be obtained in a rather straightforward way by using
the complete knowledge about the system: 〈ξ〉 = a, 〈σ〉 = q, 〈(σ − a)(ξ − a)〉 =
M, 〈1〉 = 1.

The result reads

p(σ|ξ) = [γ0ξ + (γ1 − γ0)ξ]δ(σ − 1) + [1 − γ0 − (γ1 − γ0)ξ]δ(σ) (8)

where γ0 = q−aM and γ1 = (1−a)M + q, and where the M and q are precisely
the relevant parameters (4) for large N . Using the probability distribution of the
patterns we obtain

p(σ) = qδ(σ − 1) + (1 − q)δ(σ) . (9)

Hence the entropy (6) and the conditional entropy (7) become

S(σ) = − q ln q − (1 − q) ln(1 − q) (10)
S(σ|ξ) = − [γ0 + (γ1 − γ0)ξ] ln[γ0 + (γ1 − γ0)ξ]

− [1 − γ0 − (γ1 − γ0)ξ] ln[1 − γ0 − (γ1 − γ0)ξ] . (11)

By averaging the conditional entropy over the pattern ξ we finally get for the
mutual information function (5) for the layered model

I(σ; ξ) = −q ln q − (1 − q) ln(1 − q) + a[γ1 ln γ1 + (1 − γ1) ln(1 − γ1)]
+(1 − a)[γ0 ln γ0 + (1 − γ0) ln(1 − γ0)] . (12)

3 Adaptive Thresholds

It is standard knowledge (e.g., [11]) that the synchronous dynamics for layered
architectures can be solved exactly following the method based upon a signal-
to-noise analysis of the local field (2) (e.g., [4,12,18,19] and references therein).
Without loss of generality we focus on the recall of one pattern, say µ = 1,
meaning that only M1(t) is macroscopic, i.e., of order 1 and the rest of the
patterns causes a cross-talk noise at each step of the dynamics.

We suppose that the initial state of the network model {σi(1)} is a collection
of i.i.d.r.v. with average and variance given by E[σi(1)] = E[(σi(1))2] = q0 . We
furthermore assume that this state is correlated with only one stored pattern,
say pattern µ = 1, such that Cov(ξµ

i (1), σi(1)) = δµ,1 M1
0 a(1 − a) .

682 D. Bollé and R. Heylen

Then the full recall proces is described by [11,12]

M1(t + 1) =
1
2

{∫
Dx tanh

[
β((1 − a)M1(t) − θ(t) +

√
αD(t)x)

]
+

∫
Dx tanh

[
β(−aM1(t) − θ(t) +

√
αD(t)x)

]}
(13)

q(t + 1) = aM1(t + 1)

+
1
2

{
1 +

∫
Dx tanh

[
β(−aM1(t) − θ(t) +

√
αD(t) x)

]}
(14)

D(t + 1) = Q(t + 1)

+
β

2

{
1 − a

∫
Dx tanh2 β

[
(1 − a)M1(t) − θ(t) +

√
αD(t)x

]
− (1 − a)

∫
Dx tanh2 β

[
−aM1(t) − θ(t) +

√
αD(t)x

]}2

D(t) (15)

where α = p/N , Dx is the Gaussian measure Dx = dx(2π)−1/2 exp(−x2/2),
where Q(t) = [(1 − 2a)q(t) + a2] and where D(t) contains the influence of the
cross-talk noise caused by the patterns µ > 1. As mentioned before, θ(t) is an
adaptive threshold that has to be chosen.

In the sequel we discuss two different choices and both will be compared for
networks with synaptic noise and various activities. Of course, it is known that
the quality of the recall process is influenced by the cross-talk noise. An idea is
then to introduce a threshold that adapts itself autonomously in the course of
the recall process and that counters, at each layer, the cross-talk noise. This is
the self-control method proposed in [5]. This has been studied for layered neural
network models without synaptic noise, i.e., at T = 0, where the rule (1) reduces
to the deterministic form σi(t + 1) = Θ(hi(t)) with Θ(x) the Heaviside function
taking the value {0, 1}. For sparsely coded models, meaning that the pattern
activity a is very small and tends to zero for N large, it has been found [9] that

θ(t)sc = c(a)
√

αD(t), c(a) =
√
−2 lna (16)

makes the second term on the r.h.s of Eq.(14) at T = 0, asymptotically vanish
faster than a such that q ∼ a. It turns out that the inclusion of this self-control
threshold considerably improves the quality of retrieval, in particular the storage
capacity, the basins of attraction and the information content.

The second approach chooses a threshold by maximizing the information con-
tent, i = αI of the network (recall Eq. (12)). This function depends on M1(t),
q(t), a, α and β. The evolution of M1(t) and of q(t) (13), (14) depends on the
specific choice of the threshold through the local field (2). We consider a layer
independent threshold θ(t) = θ and calculate the value of (12) for fixed a, α,
M1

0 , q0 and β. The optimal threshold, θ = θopt, is then the one for which the
mutual information function is maximal. The latter is non-trivial because it is
even rather difficult, especially in the limit of sparse coding, to choose a thresh-
old interval by hand such that i is non-zero. The computational cost will thus be

Adaptive Thresholds for Layered Neural Networks with Synaptic Noise 683

larger compared to the one of the self-control approach. To illustrate this we plot
in Figure 1 the information content i as a function of θ without self-control or
a priori optimization, for a = 0.005 and different values of α. For every value of

0 0.2 0.4 0.6 0.8 1
θ

0

0.05

0.1

0.15

0.2

i

Fig. 1. The information i = αI as a function of θ for a = 0.005, T = 0.1 and several
values of the load parameter α = 0.1, 1, 2, 4, 6 (bottom to top)

α, below its critical value, there is a range for the threshold where the informa-
tion content is different from zero and hence, retrieval is possible. This retrieval
range becomes very small when the storage capacity approaches its critical value
αc = 6.4.

Concerning then the self-control approach, the next problem to be posed
in analogy with the case without synaptic noise is the following one. Can one
determine a form for the threshold θ(t) such that the integral in the second term
on the r.h.s of Eq.(14) at T �= 0 vanishes asymptotically faster than a?

In contrast with the case at zero temperature where due to the simple form
of the transfer function, this threshold could be determined analytically (recall
Eq. (16)), a detailed study of the asymptotics of the integral in Eq. (14) gives
no satisfactory analytic solution. Therefore, we have designed a systematic nu-
merical procedure through the following steps:

– Choose a small value for the activity a′.
– Determine through numerical integration the threshold θ′ such that∫ ∞

−∞

dx e−x2/2σ2

σ
√

2π
Θ(x − θ) ≤ a′ for θ > θ′ (17)

for different values of the variance σ2 = αD(t).
– Determine as a function of T = 1/β, the value for θ′T such that∫ ∞

−∞

dx e−y2/σ2

2σ
√

2π
[1 + tanh[β(x − θ)]] ≤ a′ for θ > θ′ + θ′T . (18)

684 D. Bollé and R. Heylen

The second step leads precisely to a threshold having the form of Eq. (16). The
third step determining the temperature-dependent part θ′T leads to the final
proposal

θt(a, T) =
√
−2 ln(a)αD(t) − 1

2
ln(a)T 2. (19)

This dynamical threshold is again a macroscopic parameter, thus no average
must be taken over the microscopic random variables at each step t of the recall
process.

We have solved these self-controlled dynamics, Eqs.(13)-(15) and (19), for
our model with synaptic noise, in the limit of sparse coding, numerically. In
particular, we have studied in detail the influence of the T -dependent part of
the threshold. Of course, we are only interested in the retrieval solutions with
M > 0 (we forget about the index 1) and carrying a non-zero information i = αI.
The important features of the solution are illustrated, for a typical value of a in
Figures 2-4. In Figure 2 we show the basin of attraction for the whole retrieval

0 2 4 6 8
α

0

0.2

0.4

0.6

0.8

1

M

Fig. 2. The basin of attraction as a function of α for a = 0.005 and T =
0.2, 0.15, 0.1, 0.05 (from left to right) with (full lines) and without (dashed lines) the
T -dependent part in the threshold (19)

phase for the model with threshold (16) (dashed curves) compared to the model
with the noise-dependent threshold (19) (full curves). We see that there is no
clear improvement for low T but there is a substantial one for higher T . Even
near the border of critical storage the results are still improved such that also
the storage capacity itself is larger.

This is further illustrated in Figure 3 where we compare the evolution of the
retrieval overlap M(t) starting from several initial values, M0, for the model with
(Figure 3 (a)) and without (Figure 3 (b)) the T -correction in the threshold and
for the optimal threshold model (Figure 3 (c)). Here this temperature correction
is absolutely crucial to guarantee retrieval, i.e., M ≈ 1. It really makes the
difference between retrieval and non-retrieval in the model. Furthermore, the
model with the self-control threshold with noise-correction has even a wider
basin of attraction than the model with optimal threshold.

Adaptive Thresholds for Layered Neural Networks with Synaptic Noise 685

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

M

(a)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

(b)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

(c)

Fig. 3. The evolution of the main overlap M(t) for several initial values M0 with
T = 0.2, q0 = a = 0.005, α = 1 for the self-control model (19) without (a) and with
T -dependent part (b) and for the optimal threshold model (c)

In Figure 4 we plot the information content i as a function of the temperature
for the self-control dynamics with the threshold (19) (full curves), respectively
(16) (dashed curves). We see that a substantial improvement of the information
content is obtained.

0 0.05 0.1 0.15 0.2 0.25
T

0

0.01

0.02

0.03

0.04

0.05

0.06

i

= 2.0α

α

α

= 1.0

= 0.5

Fig. 4. The information content i = αI as a function of T for several values of the
loading α and a = 0.005 with (full lines) and without (dashed lines) the T -correction
in the threshold

Finally we show in Figure 5 a T − α plot for a = 0.005 (a) and a = 0.02
(b) with (full line) and without (dashed line) noise-correction in the self-control
threshold and with optimal threshold (dotted line). These lines indicate two
phases of the layered model: below the lines our model allows recall, above the
lines it does not. For a = 0.005 we see that the T -dependent term in the self-
control threshold leads to a big improvement in the region for large noise and
small loading and in the region of critical loading. For a = 0.02 the results for the
self-control threshold with and without noise-correction and those for the optimal

686 D. Bollé and R. Heylen

0 2 4 6 8
α

0

0.1

0.2

0.3

0.4

T

(a)

0 0.5 1 1.5 2 2.5 3
α

0

0.1

0.2

0.3

0.4

0.5

T

(b)

Fig. 5. Phases in the T − α plane for a = 0.005 (a) and a = 0.02 (b) with (full line)
and without (dashed line) the temperature correction in the self-control threshold and
with optimal threshold (dotted line)

thresholds almost coincide, but we recall that the calculation with self-control is
autonomously done by the network and less demanding computationally.

4 Conclusions

In this work we have studied the inclusion of an adaptive threshold in sparsely
coded layered neural networks with synaptic noise. We have presented an an-
alytic form for a self-control threshold, allowing an autonomous functioning of
the network, and compared it with an optimal threshold obtained by maximizing
the mutual information which has to be calculated externally each time one of
the network parameters (activity, loading, temperature) is changed. The conse-
quences of this self-control mechanism on the quality of the recall process have
been studied.

We find that the basins of attraction of the retrieval solutions as well as the
storage capacity are enlarged. For some activities the self-control threshold even
sets the border between retrieval and non-retrieval. This confirms the consider-
able improvement of the quality of recall by self-control, also for layered network
models with synaptic noise.

This allows us to conjecture that self-control might be relevant for other ar-
chitectures in the presence of synaptic noise, and even for dynamical systems in
general, when trying to improve, e.g., basins of attraction .

Acknowledgment

This work has been supported by the Fund for Scientific Research- Flanders
(Belgium).

Adaptive Thresholds for Layered Neural Networks with Synaptic Noise 687

References

1. Willshaw D J, Buneman O P, and Longuet-Higgins H C, Nonholographic associa-
tive memory, Nature 222 (1969) 960.

2. Palm G, On the storage capacity of an associative memory with random distributed
storage elements, Biol. Cyber. 39 (1981) 125.

3. Gardner E, The space of interactions in neural network models, J. Phys. A: Math.
Gen. 21 (1988) 257.

4. Okada M, Notions of associative memory and sparse coding, Neural Networks 9
(1996) 1429.

5. Dominguez D R C and Bollé D, Self-control in sparsely coded networks, Phys. Rev.
Lett. 80 (1998) 2961.

6. Bollé D, Dominguez D R C and Amari S, Mutual information of sparsely coded as-
sociative memory with self-control and ternary neurons, Neural Networks 13(2000)
455.

7. Bollé D and Heylen R, Self-control dynamics for sparsely coded networks with
synaptic noise, in 2004 Proceedings of the IEEE International Joint Conference on
Neural Networks, p.3195

8. Dominguez D R C, Korutcheva E, Theumann W K and Erichsen Jr. R, Flow
diagrams of the quadratic neural network, Lecture Notes in Computer Science,
2415, (2002) 129.

9. Bollé D and Massolo G, Thresholds in layered neural networks with variable ac-
tivity, J. Phys. A: Math. Gen. 33 (2000) 2597.

10. Hertz J, Krogh A and Palmer R G, Introduction to the Theory of Neural Compu-
tation, Addison-Wesley, Redwood City (1991).

11. Domany E, Kinzel W and Meir R, Layered Neural Networks, J.Phys. A: Math.
Gen. 22 (1989) 2081.

12. Bollé D, Multi-state neural networks based upon spin-glasses: a biased overview, in
Advances in Condensed Matter and Statistical Mechanics eds. Korutcheva E and
Cuerno R., Nova Science Publishers, New-York,(2004 p. 321-349.

13. Nadal J-P, Brunel N and Parga N, Nonlinear feedforward networks with stochastic
outputs: infomax implies redundancy reduction, Network: Computation in Neural
Systems 9 (1998) 207.

14. Schultz S and Treves A, Stability of the replica-symmetric solution for the infor-
mation conveyed by a neural network. Phys. Rev. E 57 (1998) 3302.

15. Blahut R E, Principles and Practice of Information Theory, Reading, MA:
Addison-Wesley (1990).

16. Shannon C E, A mathematical theory for communication, Bell Systems Technical
Journal 27 (1948) 379.

17. Schwenker F, Sommer F T and Palm G, Iterative retrieval of sparsely coded asso-
ciative memory patterns, Neural Networks 9 (1996) 445.

18. Amari S, Neural theory and association of concept information, Biol. Cyber. 26
(1977) 175.

19. Amari S and Maginu K, Statistical neurodynamics of associative memory, Neural
Networks 1 (1988) 63.

Backbone Structure of Hairy Memory

Cheng-Yuan Liou

Department of Computer Science and Information Engineering
National Taiwan University
cyliou@csie.ntu.edu.tw

Abstract. This paper presents a new memory of the Hopfield model
that fixes many drawbacks of the model, such as loading capacity, limit
cycle and error tolerance. This memory is derived from the hairy model
[15]. This paper also constructs a training process to further balance the
vulnerable memory parts and improve the memory.

Keywords: hairy model, neural network, associative memory, Hopfield
network, modular biology.

1 Introduction

This paper presents a new memory derived from the hairy model [15]. This mem-
ory is the backbone of the Hopfield memory [7] that can balance the vulnerable
parts of memory patterns. It enlarges the memory basins in order to resist cor-
ruption. We briefly review associative memory (AM) and notations. The hairy
model and memory basin are also reviewed.

Associative memory
Auto-AM is used to store patterns: when a reasonable subset of a certain pattern
is received with another corrupted part, it has the ability to recover that pattern.
There are many models for training auto-AM that can improve its accuracy,
efficiency and capacity. One of these is the famous model proposed by Hopfield
(1982). It applies Hebb’s postulate to generate weights collectively. This model
carries very rich meaning in both biology and physics. But it has drawbacks in
loading capacity, limit cycles and error tolerance with respect to noisy patterns.
Many designs aimed at remedying these drawbacks have achieved varying degrees
of success [5][13][15].

Auto-AM is a connected network with N neurons. Each neuron i has N neural
weights connecting it to all the neurons j, including itself, a threshold θi and a
state value vi. The state value is updated according to the formula

vi(t + 1) = sgn

 N∑
j=1

wijvj(t) − θi

 , (1)

or in matrix form,
V (t + 1) = sgn

[
WTV (t) − θ

]
, (2)

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 688–697, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Backbone Structure of Hairy Memory 689

where W is an N×N neural weight matrix, θ is an N×1 threshold vector, V (t) is
an N×1 state vector representing the state at iteration (or evolution) time t, and
sgn() is the signum function returning 1 with input greater than or equal to zero
and -1 with negative input. During the learning phase, the network is trained
by P memory patterns Xk, k = 1, . . . , P, using any training algorithm. During
the retrieving phase, the input is presented to the network as V (0). The network
operates repeatedly according to Eq.(1) or Eq.(2) until evolution converges to
a stable state or falls into a limit cycle. A stable state (memory pattern) meets
the requirement

V (t) = sgn
[
WTV (t) − θ

]
(3)

no matter whether the network is operating in the synchronous mode or asyn-
chronous mode.

Each neuron has a bipolar state (a bit), and there are 2N states in total.
Therefore, we view the network as an N -dimensional (N -D) hypercube with
each state located at a cube corner [10]. The current state is located at a corner
and serves as the next input to the network. After evolution proceeds according
to Eq.(1) or Eq.(2), the current state either moves to another corner or stays
at the original corner. Corners that remain unchanged are stable states. The
memory patterns we intend to save are located at certain stable corners. The
goal of AM is to evolve an arbitrary initial state to a nearby stable corner where
a pattern is stored. Figure 1 shows a 3-D cube corresponding to a network with
three neurons (three bits). In this figure, a neuron represents a plane (the shaded
plane) dividing the cube into positive and negative regions (sides). In Fig. 1(a),
states (1,1,1)T , (1,-1,1)T , (1,1,-1)T and (-1,1,1)T are in the positive region, while
the other corners are in the negative region. The memory patterns denoted by
black dots are: (a). (1,1,1)T , (-1,-1,-1)T ; (b). (1,1,1)T , (-1,-1,-1)T , (1,-1,-1)T , (-
1,1,-1)T ; (c). (-1,1,1)T , (1,-1,1)T , (1,1,-1)T , (-1,-1,-1)T ; (d). (1,1,1)T , (-1,1,1)T ,
(1,-1,-1)T , (-1,-1,-1)T ; (e). (-1,1,1)T , (-1,1,-1)T , (1,1,-1)T .

The state of each neuron i is determined by an (N −1)-D decision hyperplane
(the shaded surfaces in Fig.1) with the following equation:

wi1v1 + wi2v2 + wi3v3 + · · · + wiNvN − θi = 0, i = 1, . . . , N. (4)

The N × 1 weight vector Wi = (wi1, wi2, , wiN)T of neuron i is the nor-
mal vector of the corresponding hyperplane, and this hyperplane divides the
hypercube into a positive region (side) to which the normal vector points and a
negative region. The length of vector Wi, |Wi|, is normalized to one. The hairy
learning adjusts the hyperplane to make all the P patterns stable. That is, when
the ith bit of a pattern is equal to 1, this stable pattern should be located in the
positive region of the ith hyperplane; on the other hand, if its ith bit is equal to
-1, it should be located in the negative region.

Since each decision hyperplane can be trained separately in the hairy model,
we will discuss the hyperplane for neuron i only. For neuron i, we have P equa-
tions, k = 1, . . . , P :

690 C.-Y. Liou

{
wi1X

k
1 + wi2X

k
2 + · · · + wiNXk

N − θi = WT
i Xk − θi > 0, if Xk

i = 1
wi1X

k
1 + wi2X

k
2 + · · · + wiNXk

N − θi = WT
i Xk − θi < 0, if Xk

i = −1 .

(5)
We discard the case in Eq.(5), where WT

i Xk − θi = 0, because it rarely happens
in analog operation. For computational convenience, we multiply every element
in Eq.(5) by Xk

i and obtain a compact formula:{
sk

i = {wi2X
k
2 + · · · + wiNXk

N − θi}Xk
i

= {WT
i Xk − θi}Xk

i > 0, for both cases Xk
i = 1 and Xk

i = −1,
k = 1, . . . , P.

(6)
Whenever we say that the ith hyperplane is stable, we mean that all P patterns
in the correct (stable) regions of the hyperplane satisfy Eq.(6). This hyperplane
is not stable whenever there is a pattern in the wrong region.

The hairy model provides biologically plausible (Hebb’s postulate) solutions
to increase the memory basin without using any hidden neurons or anneal-
ing process. Note that this basin (basin-λ) is defined for perfect recalls in the
model. It successfully remedies the drawbacks of the Hopfield model. It explores
the flexible space in between the two pattern sets, Ui,1 = {Xk; k = 1, . . . , P,
and Xk

i = 1} and Ui,−1 = {Xk; k = 1, . . . , P, and Xk
i = −1}, in order to

locate the decision hyperplane under the stability conditions in Eq.(5). It is
consistent with Hopfield model and Hebb’s postulate. It somehow reveals the
mysterious underlying mechanics of the postulate. This means that the postu-
late increases the distance, sk

i , indirectly.

The idea of the backbone memory
The idea of the proposed new memory comes from a condition in (Eq.(9) in [13];
Eq.(14) in [15]). This condition says that one selects a nearest pair of patterns
{ci,p, ci,n} from each of the two sets, Ui,1 and Ui,−1, where ci,p is a pattern in
Ui,1 and ci,n is a pattern in Ui,−1. We suppose that both sets, Ui,1 and Ui,−1,
are not empty. This pair is the nearest pair (in terms of the Euclidean distance)
among all the pairs across the two sets (see Fig. 1(a,e)). These two nearest
patterns are most vulnerable to each other’s corrupted patterns. The weights of
the hyperplane (Eq. (14) in [15]) are set as

wij = ci,p,j − ci,n,j , normalize Wi , (7)

θi =
N∑

j=1

wij

(
ci,p,j + ci,n,j

2

)
.

This hyperplane is right in the middle between the two nearest patterns. It is
perpendicular to the line section connecting the two patterns {ci,p, ci,n} and
passes through the center of this section. ci,p− ci,n is the direction of the normal
vector of this hyperplane. From our evidence, this condition may not be useful
when there are multiple minima (see Fig. 1(b,c,d)). In other words, many pat-
terns across the two sets will share the same minimum distance. There are many
equally vulnerable pair patterns. To keep the balance of such multiple minima,
we devised a memory to balance the hyperplane among all the minimal pair

Backbone Structure of Hairy Memory 691

Fig. 1. 3-D cube network with three neurons. Black dots denote memory patterns.
The shaded plane is the decision plane corresponding to the third neuron (bit) studied
in this paper. This plane separates the memory patterns on the two sides (regions)
according to the third bit of each pattern. A stable pattern on the positive (negative)
side will have a +1 (-1) value in its third bit. The patterns connected by dashed lines
are used to determine the position of the decision plane.

patterns. We expect that this memory can effectively resolve the drawbacks of
the Hopfield model.

2 Backbone Memory

For the multiple minima, we save those patterns which have the same minimum
pair distance in two sets, Ui,p and Ui,n, where Ui,p = {Xk; pattern Xk with
the minimum distance, k = 1, . . . , P, and Xk

i = 1} and Ui,n = {Xk; pattern

692 C.-Y. Liou

Xk with the minimum distance, k = 1, . . . , P, and Xk
i = −1}. Suppose there

are Ni,p patterns in set Ui,p and Ni,n patterns in Ui,n. In Fig. 1(b), there are
two nearest pairs: N3,p = 1, N3,n = 2, U3,p = U3,1 = {(1, 1, 1)T}, U3,n =
{(1,−1,−1)T , (−1, 1,−1)T}, U3,−1={(1,−1,−1)T , (−1, 1,−1)T , (−1,−1,−1)T};
in Fig. 1(c), there are four nearest pairs: N3,p = 2, N3,n = 2, U3,p = U3,1
= {(−1, 1, 1)T , (1,−1, 1)T}, U3,n = U3,−1 = {(1, 1,−1)T , (−1,−1,−1)T}; in
Fig 1(d), there are two pairs: N3,p = 2, N3,n = 2, U3,p = U3,1 = {(1, 1, 1)T ,
(−1, 1, 1)T}, U3,n = U3,−1 = {(1,−1,−1)T , (−1,−1,−1)T}.

We prefer a hyperplane which evenly balances these minimum distance pat-
terns. We place the hyperplane right in the middle between the center of the
patterns in Ui,p and the center of the patterns in Ui,n. That is,

Ci,p,j =
1

Ni,p

∑
Xk∈Ui,p

Xk
j ,

Ci,n,j =
1

Ni,n

∑
Xk∈Ui,n

Xk
j ,

wij = Ci,p,j − Ci,n,j , normalize Wi,

θi =
N∑

j=1

wij

(
Ci,p,j + Ci,n,j

2

)
, (8)

where Ci,p and Ci,n are the centers of the patterns in Ui,p and the patterns in
Ui,n, respectively. Accordingly, we rewrite the above weights as that in Hopfield
model

wij =
1

Ni,p

∑
Xk∈Ui,p

Xk
i X

k
j +

1
Ni,n

∑
Xk∈Ui,n

Xk
i Xk

j , (9)

where the summation is over all the minimal distance patterns in each set. These
patterns sustain the Hopfield memory and are backbones (or supports) of the
memory. Eq.(9) is exactly the same as Eq.(8) with zero threshold θi = 0. The
planes in Fig. 1(a,c,d,e) are also those obtained by Eq.(9).

Experiments on associative memory
We performed experiments (also see those in [13] and [15]), to compare the
performance of the Little model (LM) [16], the error-correction rule (ECR) [19],
et-AM [13] and e-AM [15].

Initial condition
The initial wij(0) and θi(0) are set so as to make all the patterns stable [10] in
order to ensure positivity. They are set as follows:

wij =
{

1, if i = j
0, if i �= j

, (10)

θi = 0.

Backbone Structure of Hairy Memory 693

These initial weights can store stable patterns up to the network limit, 2N ,
without any error tolerance. Below, we briefly review the Hopfield model for
reference purposes.

Hopfield model
The Hopfield Model is constructed by using the outer product rule to compute
the weights as follows:

wij =

1
N

∑P
k=1 Xk

i X
k
j

= 1
N

∑
Xk∈Ui,1

Xk
i X

k
j + 1

N

∑
Xk∈Ui,−1

Xk
i X

k
j ,

if i �= j;

0, if i = j.
(11)

Experimental Results
Table 1 lists experimental results for (N=10, P=5). In this case the storage
parameter α = P

N = 0.5. In each experiment, we presented 10 sets of randomly
produced patterns to the networks and then got the averaged results. The net-
works in Eq.(8) and Eq.(9) are labeled as ‘bθ-AM’ and ‘bθ=0-AM’ in Tabel 1,
respectively. We explain each row item below:

SP (# of Stored Patterns (/P)): given P patterns, the number of pat-
terns successfully stored;

SS (# of Stable States (/2N)): the number of stable states;
TS (# of States to Stable (/2N)): the number of transient states converg-

ing to all stable states;
C (# of Cycles): the number of limit cycles;
IC (# of States in Cycles (/2N)): the number of states involved in all

limit cycles. (≥ 2C);
TC (# of States to Cycles (/2N)): the number of transient states falling

into limit cycles;
R (Recovery (/NP)): given NP 1-bit-error patterns, the

number of patterns converging to the
original stored patterns.

Table 1. Comparison among LM, ECR, et-AM, e-AM, bθ=0-AM, bθ-AM, gθ=0-AM
and gθ-AM

N = 10, P = 5, α = (5/10) = 0.5
LM ECR et-AM e-AM bθ=0-AM bθ-AM gθ=0-AM gθ-AM

SP (/5) 1.9 5 5 5 2.9 4.4 5.0 5.0
SS (/1024) 5.0 43.9 60.0 52.7 29.9 15.8 371.4 40.8
TS (/1024) 744.8 978.4 964.0 971.3 994.1 1008.2 652.6 983.2
C 44.3 0.2 0 0 0 0 0 0
IC (/1024) 88.6 0.4 0 0 0 0 0 0
TC(/1024) 185.6 1.3 0 0 0 0 0 0
R (/50) 12.1 13.5 38.9 39.6 15.7 36.2 20.8 40.1

694 C.-Y. Liou

From Table 1, LM has rather limited capacity; it could not even store five
patterns in a ten-neuron network, and neither could the Hopfield model. ECR
produces cycles. We will not discuss LM and ECR with regard to further ex-
periments. bθ=0-AM and bθ-AM have better performance than the LM does.
Their spurious stable states have very small basins and cannot withstand ther-
mal pertubation. Note that 100 hyperplanes were trained in this experiment:
100 = 10(hyperplanes/set)×10(sets). Among them, 46 hyperplanes had multiple
minimal distance pairs.

bθ=0-AM and bθ-AM produce large basins for the stored patterns and gener-
ate no cycle. Their cycle performances are better than those of LM and ECR.
They cannot store five patterns. To fix their storage capacity, we construct a
simple training to tune their weights. In the construction, bθ=0-AM is used as a
reference to train the all-stable hyperplane Eq.(10) linearly toward its reference
hyperplane in Eq.(9). This means that the initial weights and reference weights
are set according to Eq.(10) and Eq.(9) separately, that is, wij(0) = Eq.(10) and
wref

ij =Eq.(9). Calculate
wij = ε[wref
ij −wij(0)]. Update all weights according

to wij(t) = wij(0) + t
wij . ε is a small number. We set ε = 0.001 in all ex-
periments. Note that this updation increases sk

i indirectly and does not follow
the steepest ascent direction and its dynamics does not follow the hairy model.
The training is stopped just at iteration t = T . In this iteration, SPt=T = P
and after this iteration, SPt=T+1 < P . The performances are listed in Table 1
under the label ‘gθ=0-AM’. It can store all patterns, tolerate noisy patterns, and
generate no cycle. This training remedies the storage capacity of bθ=0-AM and
still keeps Hebb’s postulate.

The experiment in this table under the label ‘gθ-AM’ is obtained by training
the all-stable hyperplane toward the reference hyperplane Eq.(8). This means
that the initial weights and reference weights are set according to Eq.(10) and
Eq.(8) separately, that is, wij(0) = Eq.(10) and wref

ij =Eq.(8). Calculate
wij =
ε[wref

ij −wij(0)]. Update all weights according to wij(t) = wij(0)+ t
wij . Both
methods ‘gθ=0-AM’ and ‘gθ-AM’ have similar performance. All methods et-AM,
e-AM, b-AM and g-AM produced no limit cycles, as we expected. In almost all
of our experiments, the evolution of noisy states converged in a single iteration
during recall after learning. This is very different from the evolutionary recall
process in many other models.

In Table 2 we did experiments for a large network with twenty neurons N = 20
and twenty patterns P = 20. In this case α = 1.

In Tables 2 and 3, we presented 30 sets of randomly produced patterns to
the network and then got the averaged results. We also did experiments on the
pseudo-inverse learning rule under the label ‘PsdoInv’ [17][8]. This rule can store
N linearly independent patterns and cannot generate any basins for patterns.
Table 3 shows two experimentals with more patterns, P = 25 and P = 45. In
Table 3, α = 25

20 = 1.25 > 1 and α = 45
20 = 2.25 > 2, respectively.

Note that the loading capacity α under various conditions has been studied
[3], α = 0.14 [7]; α < (1/[2(lnN)]) [18]; α = 0.16 [2]; α = 1 [8]. The bound
α < 2 has been derived in [4] based on thermal statistic average. All of them are

Backbone Structure of Hairy Memory 695

Table 2. Simulations for N = 20, P = 20 using PsdoInv, gθ=0-AM, and gθ-AM

P = 20 PsdoInv gθ=0-AM gθ-AM
SP (/20) 20 20 20
SS (/220) 1048576.0 559983.7 324250.8
TS (/220) 0 488592.3 724325.2
C 0 0 0
IC (/220) 0 0 0
TC(/220) 0 0 0
R (/400) 0 68.2 93.4

Table 3. Simulations for N = 20, P = 25 and P = 45 using gθ=0-AM, and gθ-AM

P = 25 gθ-AM gθ−0-AM P = 45 gθ-AM gθ=0-AM
SP (/25) 25 25 SP (/45) 45 45
SS (/220) 542919.1 730262.3 SS (/220) 823705.8 864453.8
TS (/220) 505656.9 318313.7 TS (/220) 224870.2 184122.2
C 0 0 C 0 0
IC (/220) 0 0 IC (/220) 0 0
TC(/220) 0 0 TC(/220) 0 0
R (/500) 72.5 51.0 R (/900) 38.3 35.3

derived for imperfect recalls. The methods, et-AM, e-AM and g-AM are designed
for perfect recalls.

Next, we tested the error tolerance of the method gθ-AM by using the P = 25
case in Table 3. For each pattern, we randomly generated 1000 noisy patterns
with 2, 4, 6 and 8 error bits, respectively. We used gθ-AM to recover them. The
numbers shown in Table 4 are the total numbers of patterns in the 75000 noisy
patterns, 75000 = 1000(noisy patterns/pattern)×25(patterns/set)×30(sets),
that can be restored by the method according to restoration iterations in both
synchronous and asynchronous modes. These results show that many noisy pat-
terns with 2 or 4 errors can be recovered by gθ-AM. Also, we found that for all
75000 patterns, none of them fell into a limit cycle.

Table 4. Error Tolerance using gθ-AM in different recall modes. Label ’Iteration t’
denotes the number of iterations for a noisy state evolving to its memory pattern.

N=20,P=25 gθ-AM, Synchronous Eq.(2) gθ-AM, Asynchronous Eq.(1)
Iteration t t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5
2 error bits 13897 7944 0 0 0 29529 8357 0 0 0
4 error bits 170 459 282 60 0 376 841 169 3 0
6 error bits 3 16 20 11 5 0 20 24 4 1
8 error bits 0 0 0 1 1 0 0 0 0 0

696 C.-Y. Liou

3 Discussion

The idea of the backbone memory leads us to design the g-AM and b-AM. They
can serve as a foundation for exploring physiological implications [9][12], such
as cell-cell-adhesion [14] and modular biology [6]. The patterns in Ui,p and Ui,n

resemble the selective adhesion proteins with adhesion features.
The computational cost is linearly proportional to the network size, N , and the

number of patterns, P . In gθ-AM and gθ=0-AM, each hyperplane is independent
of all others during tuning. This is beneficial for learning in asynchronous mode.
This is very different from correlation matrix designs, such as the pseudo-inverse
method. All methods et-AM, e-AM and g-AM can accommodate stable patterns
up to the network limit, 2N .

Finally, the hidden neurons in the Boltzmann machine [1][11] can be designed
according to et-AM, e-AM, or gθ-AM. One can add additional neurons (bits)
as hidden neurons to the memory patterns, which are states of visible neurons.
These added neurons serve as hidden neurons and can further stabilize the visible
neurons. There is no need to use the noise clamping technique or annealing
process. With such designed hidden neurons, the visible memory patterns can
tolerate catastrophic corruption, when all N bits of a memory pattern could be
corrupted. The extra neurons provide hidden coupling, hologram-like contents,
for restoring the memory. We think that the apparently non-working sections of
DNA may have a function that is somehow similar to that of hidden neurons,
in that they maintain the integrity of the working DNA. We are still working in
this issue.

Acknowledgement

This work was supported by the National Science Council under projects NSC
93-2213-E-002-034&-105.

References

1. Ackley, D.H., Hinton, G.E. and Sejnowski, T.J.: A learning algorithm for Boltz-
mann machine. Cognitive Science 9 (1985) 147-169

2. Amari, S.I. and Maginu, K.: Statistical Neurodynamics of Associative Memory.
Neural Networks, 1(1) (1988) 63-73

3. Amit, D.J.: Modeling brain function: The world of attractor neural networks. Cam-
bridge University Press (1989)

4. Gardner, E. and Derrida, B.: Optimal storages properties of neural network models.
Journal of Physics A 21 (1988) 271-284

5. Gardner, E.: Optimal basins of attraction in randomly sparse neural network mod-
els. Journal of Physics A 22(12) (1989) 1969-1974

6. Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W.: From molecular to
modular cell biology. Nature, Suppl. 402 (1999) C47-C52

7. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational ability. Proceedings of the National Academy of Sciences of the United
States of America 79 (1982) 2554-2558

Backbone Structure of Hairy Memory 697

8. Kanter, I. and Sompolinsky, H.: Associative recall of memory without errors. Phys-
ical Review A 35(1) (1987) 380-392

9. Kauffman, S.A.: Antichaos and adaptation. Scientific American, August (1991)
64-70

10. Li, J., Michel, A.N. and Porod, W.: Analysis and synthesis of a class of neural
networks: linear systems operating on a closed hypercube. IEEE Transactions on
Circuits and Systems 36(11) (1989) 1405-1422

11. Liou, C.-Y. and Lin, S.-L.: The other variant Boltzmann machine. Proceedings of
International Joint Conference on Neural Networks, Washington DC (1989) 449-
454

12. Liou, C.-Y. and Wu, J.-M.: Self-organization using Potts models. Neural Networks
9(4) (1996) 671-684

13. Liou, C.-Y. and Yuan, S.-K.: Error tolerant associative memory. Biological Cyber-
netics 81 (1999) 331-342

14. Liou, C.-Y. and Yang, H.-C.: Selective feature-to-feature adhesion for recognition
of cursive handprinted characters. IEEE Transactions on Pattern Analysis and
Machine Intelligence 21(2) (1999) 184-191

15. Liou, C.-Y. and Lin, S.-L.: Finite memory loading in hairy neurons. Natural Com-
puting 5(1) (2006) 15-42

16. Little, W.A.: The existence of persistent states in the brain. Mathematical Bio-
sciences 19 (1974) 101-120

17. Personnaz L., Guyon, I. and Dreyfus, G.: Information storage and retrieval in spin-
glass like neural networks. Journal Physique Lett. 46 (1985) 359-365

18. Weisbuch, G. and Fogelman-Soulie, F.: Scaling laws for the attractors of Hopfield
networks. Journal De Physique Lett. 46 (1985) 623-630

19. Widrow, B. and Hoff, M.E. Jr.: Adaptive switching circuits. IRE WESCON Con-
vention Record (1960) 96-104

Dynamics of Citation Networks

Gábor Csárdi1,2

1 Department of Biophysics, KFKI Research Institute for Particle and Nuclear
Physics of the Hungarian Academy of Sciences, Budapest, Hungary

2 Center for Complex Systems Studies, Kalamazoo College, Kalamazoo, MI 49006,
USA

csardi@rmki.kfki.hu

Abstract. The aim of this paper is to give theoretical and experimental
tools for measuring the driving force in evolving complex networks. First
a discrete-time stochastic model framework is introduced to state the
question of how the dynamics of these networks depend on the properties
of the parts of the system. Then a method is presented to determine this
dependence in the possession of the required data about the system.
This measurement method is applied to the citation network of high
energy physics papers to extract the in-degree and age dependence of
the dynamics. It is shown that the method yields close to “optimal”
results.

1 Introduction

The network concept is an abstract representation. A simple network (or graph,
the two are the same for our purposes) is simply a homogeneous relation over
a set. The relation can be symmetric (undirected networks) or asymmetric (di-
rected networks). While this is an adequate definition of a network, usually we
imagine a network as an interconnected set of vertices (also called nodes), while
the connections are called edges or arcs. In a neural network the vertices repre-
sent neurons and the edges the synapses between them; this network is clearly
asymmetric, the synapse ‘leads’ from the presynaptic cell to the postsynaptic
one. In a citation network, the vertices represent (‘are’) scientific papers pub-
lished in journals and the edges are citations from one paper to another, forming
again a directed network. In a collaboration network two vertices representing
researchers are connected by an edge if they have published at least (say) one
joint paper in a journal, this network is an undirected one.

There has been an upsurge in the field of complex networks recently;
networked representations of various complex systems have shed light to a num-
ber of structural and dynamical phenomena. The main advantage of the net-
work schema is that its simplicity makes it universal: every large enough system
consists of many – structurally, dynamically and/or functionally interconnected
parts. For recent reviews written by researchers in different fields see [1,2,3,4].

In this work we address evolving networks, and study the dynamical process of
adding and removing vertices and edges to/from the the network. Particularly we

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 698–709, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Dynamics of Citation Networks 699

are interested in the question of how the structural and non-structural properties
on the vertices determine the place of the next edge addition.

There have been a number of network evolution models in the literature re-
cently, the most successful being the preferential attachment model proposed by
Barabási and Albert [5]. They suggest a simple mechanism in which the rate for
attaching new edges to a node is proportional to its number of adjacent edges
at each time step. This model is thought to be valid for very different kinds of
networks (showing the ease of the universal network representation) based on
indirect evidence: the scale-free degree distribution. It is observed that in many
networks the distribution of the vertex degree (which is simply the number of
adjacent edges for a vertex) is a power-law distribution; and the BA-model is
known to generate power-law degree distributions [6], so it is likely (or at least
possible) that this simple mechanism is at work in many networks. It is shown
however that the scale-free degree distribution can be obtained without prefer-
ential attachment, by assuming vertex intrinsic fitness, see [7]. It is also true
that there may be several underlying causes producing preferential attachment
[8,9]. Only a few studies addressed the direct observation, ie. somehow measur-
ing the actual attachment probabilities in the evolving network as a function of
the vertex degree or vertex fitness, see [10,11,12] for examples.

This neglect is partially caused by the lack of data. For calculating the actual
degree distribution of a network we only need to know the current structure
of it, ie. the binary relation defining which vertices a given vertex connects to.
For studying the process of vertex and edge addition and deletion however we
need to know the structure of the network at any time in the past. (At least this
would be the ideal case.) It comes not as a surprise that we usually don’t have
this data, except in a few cases. This indicates that the rare dynamical data is
very important and can be used to validate various network evolution models.
Our work discussed here serves as an example for such a study.

This paper is organized as follows. In Sect. 2 we introduce a model frame-
work and a measuring method for extracting the dependence of the network
dynamics on the hypothetical dynamical parameters. In Sect. 3 we show two
applications for the model and method: measuring the dynamics of scientific
citation networks, and predicting the number of future citations for scientific
citation networks. Finally in Sect. 4 we discuss our results and other possible
applications.

2 Methods

The networked representation of a dynamic complex system is an evolving graph:
vertices join to the system, they form new connections, some old connections
break and perhaps some vertices are removed from the network. In each time step
the network has a configuration in which the vertices and edges exhibit various
structural properties. Further on, the vertices and edges may also exhibit some
intrinsic properties we don’t intend to ignore: in a neural network some neurons

700 G. Csárdi

are pyramidal cells, others are interneurons and this distinction is important for
most purposes.

A very natural question is the following: what structural and/or intrinsic
properties determine the evolution of a given network? Another question coming
hand in hand with this: how is it possible to describe the form of the dependence?
(If it is possible at all.) In the rest of this section we will give a model framework
and method for answering these questions in some special cases.

Let us focus on the simplest kind of evolving networks first: citation networks.
We do this for two reasons. First, citation networks are simple in the sense that
all outgoing edges of a vertex are added to the network right after adding the
vertex itself, in the same time step. Second, there is data available for citation
networks of scientific papers.

A number of important structural properties may play significant roles in the
evolution of a particular citation network: the in-degree of the vertices, their
transitivity (ie. if every vertex citing vertex v also cites vertex w so far, then it is
likely that this will happen in the future as well). Some intrinsic properties of the
vertices are also thought to be important: the topic of a paper, since it is likely
that two topically close papers will cite each other; or the age of the papers since
it is a reasonable assumption that out-of-date (or common knowledge) papers
are not or only rarely cited.

2.1 Preferential Attachment

Let us now define the framework in which our questions can be stated formally.
The first structural property we will address is the in-degree of the vertices.

Let us assume that the probability that at time step t an outgoing edge (e) of a
newly added v vertex will cite a given w vertex depends on the in-degree of w,
and the in-degree of other vertices in the network:

P [e cites w](t) =
A(dw(t))∑

i∈V (t) A(di(t))
. (1)

Here dw(t) is the in-degree of vertex w in time step t and V (t) is the set of all
vertices in time step t. The A(·) attachment kernel function defines the depen-
dence of the network dynamics on the in-degree of the vertices. In this simple
framework this function stochastically governs the network evolution. The prefer-
ential attachment model suggests that for many networks this function is simply
A(k) = k + 1. There are also other models which fit into this framework, see
[13,14,15].

Similarly, the probability that in time step t an e edge of a newly added v
vertex cites any other vertex with in-degree k is given by:

P [e cites a k in-degree vertex](t) = Pe(k) =
Nk(t)A(k)∑

i∈V (t) A(di(t))
. (2)

Nk(t) is the number of k-degree nodes in the network at time step t.

Dynamics of Citation Networks 701

From this formula we can extract A(k):

A(k) =
Pe(k)S(t)

Nk(t)
(3)

by using the notation S(t) =
∑

i∈V (t) A(di(t)). From the data we can estimate
Pe(k), so if we manage to determine S(t) then A(k) can be estimated as well.
For S(t) we can use the following simple iterative approach: first we assume that
S(t) is constant and estimate A(k) for each k. Then by using this estimation we
calculate the next approximation of S(t) which in turn allows us to better esti-
mate A(k). While the convergence of this iteration is hard to prove, in practice
it converges fast.

In Sect.3 we show applications for the in-degree dependence of the network
dynamics in scientific citation networks.

2.2 Preferential Attachment and Aging

Let us now assume that an additional intrinsic vertex property, the age of the
vertex, also contributes to the network evolution. For simplicity from now on
we measure “time” by the addition of the new vertices, ie. in each time step a
single vertex is added to the network; we denote vertices by the time step of
their addition, ie. vertex 1 is added in the first time step, vertex 2 in the second,
etc. This implies that in time step t the age of vertex i is simply t − i.

Similarly to the previous section the probability that edge e of vertex v added
in time step t cites vertex w is given by

P [e cites w] =
A(dw(t), lw(t))∑

i∈V (t) A(di(t), li(t))
. (4)

The probability that edge e of vertex v added in time step t cites some vertex
with in-degree k and age l is

P [e cites a k in-degree, l age vertex] =
A(k, l)Nk,l(t)

S(t)
. (5)

Using the data for estimating Pe(k, l) and the iteration technique introduced in
the previous section we can extract A(k, l), the function governing the evolution
of the network.

2.3 Validating the Method

For validating this measurement method and software, we’ve applied it to various
toy networks generated by different attachment rules, ie. different built-in A(k)
and A(k, l) functions.

To validate the in-degree based method we’ve generated networks by the
Barabási-Albert model and compared the measured A(k) function to the ex-
pected linear dependence. These test networks had 300,000 nodes each having

702 G. Csárdi

0 50000 100000 150000 200000 250000

2e
-0

6
4e

-0
6

6e
-0

6
8e

-0
6

ci
ta

ti
on

re
la

ti
ve

fr
eq

ue
nc

y

300000

age [node number difference]

0 50000 100000 150000 200000 250000 300000

0
2

4
6

8
10

12

age [node number difference]

at
ta

ch
m

en
t

ke
rn

el
fu

nc
ti
on 0 2 4

Fig. 1. The naive (upper) and non-naive (lower) methods for measuring the age depen-
dence of the A(k, l) function. The network was generated according to the Barabási-
model, has 300,000 nodes and the out-degree of each node is 2. The age axes are binned
into 70 units. The lower plot shows the measured A(k, l) functions for various k values.
The horizontal lines were added by least square fitting the data points, they can be
considered as the “correct” values of the A(k, l) function.

out-degree two. The measurement yielded the expected 1.0 exponent with min-
imal error (±0.05).

Next we’ve checked the in-degree and age based method and software by sim-
ilar toy networks. The measurement method very well reproduced the expected
attachment rules. These experiments however have also shown that the method
cannot predict the “rare” events in the evolution. As there are almost never any
young nodes with high in-degree in the network, the A(k, l) function for large k
and small l values cannot be estimated well.

Although one might argue that for the age dependence of the A(k, l) function
a simpler approach could be used, we show here that this is not the case. A naive
approach would simply consider the distribution of the age differences (citation
lags) between the citing and the cited node as the age dependent component of
A(k, l), however this is clearly biased: small citation lags are overrepresented in

Dynamics of Citation Networks 703

the network because of two reasons. The first is that young nodes are more likely
to be cited when the network is still small because there is less competition in
the network. If older nodes are also present then the competition in higher as
the network is also bigger. Second, young nodes have simply more chance to get
cited, as they are present in small and big networks as well.

Figure 1 shows the two types of measurement of the age dependence of A(k, l)
for a simple Barabási network. While it is clear that there is no age dependence
in this model, the histogram of the citation lags does not show a horizontal line.
Our proposed measurement method correctly finds that A(k, l) is independent
of the age of the nodes.

3 Applications

3.1 The Pace of Science

In this section we apply the method described in the previous one to a scientific
citation network, consisting of 28632 high energy physics papers with 367790 di-
rected edges among them. This data is available online from the homepage of the
2003 KDD Cup (http://www.cs.cornell.edu/projects/kddcup/datasets.
html).

First we’ve cleared up the dataset by removing forward citations. A forward
citation means that a paper cites a more recent one. This is possible either
because of errors in the database or because some papers were updated (with new
citations) after their first submission without changing their original submission
date.

Then the dynamics of the network (ie. the A(·) function) was measured in
terms of the in-degree and the age of the nodes. The age of the papers was
simply defined by assigning numbers to them in the order their first submission
date and binning these numbers into 70 units.

After the extraction of the A(k, l) function the measured data has shown that
the effects of k and l can be separated, and A(k, l) can be written in the form

A(k, l) = Ak(k) ·Al(l) . (6)

This separation supports the assumptions made by various network models with
aging, see works by [16] and [17]. The measured Ak(k) and Al(l) functions can be
seen in Figs. 2 and 3. They can be well fitted by Al(l) = l−β and Ak(k) = kα +1,
with α = 1.11 and β = 1.13. This α value is close to the celebrated linear
preferential attachment phenomenon, thought to be universal, although rarely
measured directly.

The fact that the β exponent is close to one shows that ceteris paribus the
“importance” of a paper is inversely proportional to its age. This defines the
“pace” of science.

3.2 Citation Prediction

The ACM Special Interest Group on Knowledge Discovery and Data Mining
organizes a conference each year and together with the conference they also

704 G. Csárdi

0 5000 10000 15000 20000 25000

0
1

2
3

4
5

age [paper number]

at
ta

ch
m

en
t

ke
rn

el
fu

nc
ti
on 0

4
9

5000 10000 15000 20000 30000

0.
00

5
0.

05
0

0.
50

0
5.

00
0

age [paper number]

at
ta

ch
m

en
t

ke
rn

el
fu

nc
ti
on 0 4 9

Fig. 2. The age dependence of the attachment kernel function of the high energy physics
network for various in-degrees. The upper plot has linear, the lower one logarithmic
axes. The lower plot clearly shows that the aging is well described by a power-law
decrease independently of the degree.

host a data mining competition called KDD Cup. In 2003 the first task of the
KDD Cup was to predict the citations to the papers in the high energy physics
database. This database contains high energy papers submitted to the arXiv
e-print archive between 1992 and July 31, 2003. The deadline for the KDD Cup
submission was before April 30, 2003 and the citations made by papers in the
next three months had to be predicted.

The evaluation of the prediction algorithms was done by considering only
papers receiving at least six citations during the period February 1, 2003 – April
30, 2003. For these papers first the target vector, the difference between the
citations received between May and August and between February and May
were calculated. The specific task was the prediction of this vector. The error
of the prediction was simply defined by the sum of the absolute value of the
difference of the prediction and the target vector.

Dynamics of Citation Networks 705

in-degree

at
ta

ch
m

en
t

ke
rn

el
fu

nc
ti
on

1 10 100 1000

0.
1

1
10

10
0

10
00 0

2000
12000

Fig. 3. The degree dependence of the attachment kernel function for various node ages.
The lines are simple least square fits for the data points. The axes are logarithmic. The
plot shows that the in-degree dependent part of the A(k, l) function can be reasonable
well estimated by an increasing power-law function, independently of the age of the
nodes.

While the method in the previous section is not developed for citation predic-
tion, is can be used for that in the following way. We can measure the dynamics
(ie. the A(·) function) of the network up to now and assuming that this func-
tion will be the same in the future we can simulate the growth of the network
according to the measured dynamics and see a possible realization of how the
network will look like (say) three months later. By generating many realizations
and taking the average number of citations a node received in these realizations
we can predict the “average” expected evolution of the network.

Another important reason to do the prediction task with our proposed method
is that we can compare the error of the measured A(·) function to other A(·)
functions to evaluate it. If a given A1(·) function proves to be a better predictor
than another A2(·) attachment kernel that would mean that the former one is
based on more relevant properties than the latter.

At the 2003 KDD Cup, the error of the winner algorithm was 1329. The
totally random network evolution, when each new node connects to a number of
randomly selected nodes yields on the average an error of 3463. This value was
obtained by averaging hundred totally random realizations. These error values
can be used as baselines to place the error of the predictions of our method.

First we measured the A(·) function based on the in-degree of the nodes solely
and found that the

A(k) = kα + 1 (7)

form gives a reasonable good fit with the measured data. We fitted this form
by a simple weighted least square method and got α ≈ 0.85. The prediction
with this A(k) function yielded an error about 2473.51(±4.39). These values
were obtained by generating 100 realizations five times, the error is simply the
standard deviation of the five predictions.

706 G. Csárdi

0.6 0.7 0.8 0.9 1.0 1.1

26
00

28
00

30
00

32
00

preferential attachment exponent

pr
ed

ic
ti
on

er
ro

r

0.8497126

Fig. 4. Prediction error for different α values in (7). The plot was obtained by running
five times 100 realizations for each α value, the error bars show the standard deviation
of the five predictions. The measured 0.85 exponent is close to the optimal 0.89 value.

To evaluate our dynamics measurement method we’ve calculated predictions
with other α exponents as well, and found that the α = 0.85 value is very close
to the “optimal” exponent, optimal in terms of the error of this prediction.

Instead if using solely the in-degree as the predictor, now we will also add
the age of the nodes, and by applying the measurement method described in the
previous section we measure the A(k, l) function (as before k being the in-degree
and l being the age of a node) governing the dynamics of the network. The
measured A(k, l) function can be reasonably well fitted by the following form:

A(k, l) = (kα + 1) l−β . (8)

This form assumes that the effect of in-degree and age can be separated, our
data supports this assumption. By fitting this form using weighted least square
fits we arrive to the exponents: α ≈ 1.14 and β ≈ 1.14. By using these values in
generating possible realizations of the HEP network for the prediction we get a
prediction error 1732.76±6.19. The fact that this prediction is much better than
the “in-degree-only” one, indicates that the age of the nodes makes an important
contribution to the edge-dynamics of the evolving network.

Note that the exponent of the preferential attachment is lower if we don’t use
the age of the papers as a property, αk ≈ 0.85 versus αk,l ≈ 1.14. This is clearly
because in the former the effect of the aging is “built in” into the preferential
exponent and since aging works against preferential attachment it makes the ex-
ponent smaller. Some works suggest that the preferential attachment mechanism
can be present even in network not showing the scale-free degree distribution be-
cause there is another, opposite effect working in the system, such as limits for
the number of edges a node can acquire or because the nodes lose their “at-
tractiveness” by getting older, ie. aging, see [18]. To our knowledge the work

Dynamics of Citation Networks 707

0.9 1.0 1.1 1.2 1.3 1.4

20
00

25
00

30
00

preferential attachment exponent

pr
ed

ic
ti
on

er
ro

r

1.137433

0.9 1.0 1.1 1.2 1.3 1.4

18
00

22
00

26
00

aging exponent

pr
ed

ic
ti
on

er
ro

r

1.141277

Fig. 5. Prediction error for different preferential attachment exponents (α, upper plot)
and aging exponents (β, lower plot). For both exponents the dynamics measurement
method gives solutions close to the optimal ones.

presented in this paper is the first one giving experimental evidence for this
assumption.

4 Discussion

We have presented a model framework and a measurement method for defining
and determining the dynamics of citation networks based on the properties of
their nodes.

We’ve applied this method to a network of high energy physics papers and
extracted the A(k, l) function which stochastically governs the evolution of the
network in terms of the in-degree and age of the nodes. Without assuming any
favored form for this function we found that it can be estimated as the product

708 G. Csárdi

of the in-degree dependent Ak(k) and the age-dependent Al(l) function. The in-
degree dependent part shows slightly superlinear preferential attachment while
the age-dependent part shows power-law decrease.

We’ve evaluated the results given by the measurement method by predict-
ing the citations received by important papers in the last three months of the
high energy physics papers database and found that the measured preferential
attachment and aging exponents are close to the “optimal”.

We believe that the framework and method presented in this paper is a useful
tool for researchers of any field interested in the evolution of complex systems.
Also, it can be generalized for general evolving networks with node and edge
additions and deletions, our experiments show promising results in this direction.

The citation prediction study presented here can be a general way for eval-
uating the description of a system based on various properties, just like we’ve
shown that adding the age of the nodes to the considered properties resulted a
much better citation prediction.

Acknowledgement

The authors would like to thank Jan Tobochnik, Katherine J. Strandburg, Péter
Érdi, László Zalányi and Tamás Kiss for their cooperation. This work was funded
in part by the EU FP6 Programme under grant numbers IST-4-027173-STP and
IST-4-027819-IP and by the Henry R. Luce Foundation.

References

1. Newman, M.E.J.: The structure and function of complex networks. SIAM Review
45 (2003) 167–256

2. Watts, D.J.: The “new” science of networks. Annual Review of Sociology 30 (2004)
243–270

3. Barabási, A.L., Oltvai, Z.N.: Network biology: Understanding the cells’s functional
organization. Nature Reviews Genetics 5 (2004) 101–113

4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex net-
works: Structure and dynamics. Physics Reports 424 (2006) 175–308

5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439) (1999) 509–512

6. Mitzenmacher, M.: A brief history of generative models for power law and lognor-
mal distributions. Internet Mathematics 1 (2004) 226–251

7. Caldarelli, G., Capocci, A., Rios, P., Muñoz, M.: Scale-free networks from varying
vertex intrinsic fitness. Physical Review Letters 89 (2002) 258702

8. Kleinberg, J.M., R., K.S., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web
as a graph: Measurements, models and methods. In: Proceedings of the Interna-
tional Conference on Combinatorics and Computing, no. 1627 in Lecture Notes in
Computer Science, Springer (1999)

9. Berger, N., Borgs, C., Chayes, J.T., D’Souza, R.M., Kleinberg, R.D.: Competition-
induced preferential attachment. In: Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming. (2004) 208–221

Dynamics of Citation Networks 709

10. Jeong, H., Néda, Z., Barabási, A.L.: Measuring preferential attachment for evolving
networks. Europhys. Lett. 61 (2003) 567–572

11. Redner, S.: Citation statistics from 110 years of physical review. Physics Today
58 (2005) 49

12. Roth, C.: Measuring generalized preferential attachment in dynamic social net-
works. arxiv:nlin.AO/0507021 (2005)

13. Krapivsky, P.L., Redner, S.: Organization of growing random networks. Phyisical
Review E 63 (2001) 066123

14. Ergun, G., Rodgers, G.J.: Growing random networks with fitness. Physica A 303
(2002) 261–272

15. G., B., Barabási, A.L.: Competition and multiscaling in evolving networks. Euro-
physics Letters 54 (2001) 436–442

16. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks with aging of sites. Phys.
Rev. E 62(2) (2000) 1842–1845

17. Zhu, H., Wang, X., Zhu, J.Y.: Effect of aging on network structure. Phys. Rev. E
68 (2003) 056121

18. Amaral, L.A.N., Scala, A., Barhélémy, M., Stanley, H.E.: Classes of small-world
networks. Proc. Natl. Acad. Sci. USA 97(21) (2000) 11149–11152

Processing of Information in Synchroneously
Firing Chains in Networks of Neurons

Jens Christian Claussen

Institut für Theoretische Physik und Astrophysik
Christian-Albrechts-Universität zu Kiel, Leibnizstr.15,

D-24098 Kiel, Germany
claussen@theo-physik.uni-kiel.de

http://www.theo-physik.uni-kiel.de/~claussen/

Abstract. The Abeles model of cortical activity assumes that in ab-
sence of stimulation neural activity in zero order can be described by
a Poisson process. Here the model is extended to describe information
processing by synfire chains within a network of activity uncorrelated to
the synfire chain. A quantitative derivation of the transfer function from
this concept is given.

Two seminal concepts were introduced by Abeles [1,2,3]: A quantitative model
for uncorrelated activity in the cortex in absence of external stimulation, and the
concept of the synfire chain, a spatiotemporal pattern of synchroneous activity
of neurons being active in the same cortical task.

Synchroneous spiking, as a refinement of averaged firing rates, has been used
as an equivalent mathematical basis for neural models [4,5]. The experimental
and theoretical aspects of synfire chains remain a field of active research [6,7] and
also provide a conceptual basis for neural computing architectures [8]. This paper
analyzes the extension to formulate processing and propagation of information
in such a network.

1 The Abeles Model of Cortical Activity

The model of uncorrelated cortical activity given by Abeles [1], here referred
to as Abeles Model, is a direct approach to understand why randomly firing by
self-excitation can be a stationary and robust firing mode in a neural network.
The underlying experiments are interpreted in the following way: Even if the
cortex is not excited by sensory input, the neurons are firing randomly (Poisson
process) and excite each other. Obviously, this is to be interpreted as a “ground
state” of the cortical network. An interesting question is whether random firing
is a stable mode of a network or not. Because 99% of the inputs to the cortex
are coming from the same or other cortical areas [9], we shall at first neglect the
1% (sensory) input and therefore consider a network with 100% feedback.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 710–717, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Processing of Information in Synchroneously Firing Chains 711

2 Definition of the Abeles Model

The defining assumptions to the Abeles Model are [1]:

(i) Each postsynaptic potential has the shape of a falling exponential (for
t ≥ 0):

(+A)e−t/τ for excitatory inputs,

or,

(−A)e−t/τ for inhibitory inputs.

This assumption does not only include an idealization of the waveform, it
also includes that the values of synaptic strength A and the time constants
τ are the same for all neurons.

(ii) All postsynaptic potentials sum up in a linear fashion giving the intra-
cellular potential; the neuron generates a spike if the intracellular poten-
tial reaches a threshold T .

(iii) All neurons are firing independently. This, however, is eqivalent to: No
information is processed.

(iv) Each neuron has N synaptic inputs which can be excitatory or inhibitory
in any proportion.

(v) The neurons fire at an average rate of λ spikes per second.

3 The Self-consistence Equation for the Average Firing
Rate

For high rates of inputs, the input spikes add up to nearly random fluctuations
of the intracellular potential; the probability density of the intracellular poten-
tial therefore is Gaussian. This means: The firing rate of a cell is proportional
to the probability for the intracellular potential to be above threshold:

λ =
1
σ
· K√

2π
·
∫ ∞

T

e−
x2

σ2 dx =
K√
2π

·
∫ ∞

T
σ

e−y2
dy (1)

where K is an unknown constant and σ2 is the variance of the intracellular
potential, which can be calculated as follows:

Each postsynaptic potential contributes a variance of∫ ∞

0
((±A)e−t/τ)2dt = A2 τ

2
.

Nota bene, excitatory and inhibitory connections here contribute equally.
The independent linear superposition of N · λ spikes (per second) gives the

total variance

σ2 = (Nλ) · (A2 τ

2
),

712 J.C. Claussen

or

σ

A
=

√
Nλ

τ

2
. (2)

This means: For random firing at a constant average firing rate we have to satisfy
a self-consistence-equation

λ =
K√
2π

·
∫ ∞

T

A
√

Nλ τ
2

e−y2
dy (3)

which still has K and T/A as free parameters to be fitted to the experimental
data. Abeles’ estimation for T/σ is as follows: If the neuron fires at a rate λ
and each spike is generated if the membrane potential is approximately 1ms
(≈ 0.4τ) above threshold, the probability of the intracellular potential for being
above threshold is approximately λ·1ms = 0.005, which is numerically equivalent
to T/σ being 2.58. Therefore only one parameter (K) is free, it can be evaluated
by solving equation (3) for K.

The main results of the Abeles Model are quantitative estimations of network
parameters from realistic neurophysiological properties. Using N = 20000, λ =
5s−1, τ = 2.5ms, K = 1000s−1, one obtains [2]:

(i) σ/A =
√

125 ∼= 11: The variance of the intracellular potential is 11 times
bigger than the amplitude of a single spike.

(ii) T/A = T/σ · σ/A ∼= 2.58 · 11 ∼= 29: Only 29 synchroneous excitatory
spikes will lift the membrane potential to threshold. (This is a small value
compared with Nλ = 100000 spikes that every cell receives per second.)

(iii) A single spike has no detectable effect on the output rate: The firing rate
increases from 5 per second to 6.4 per second, but relaxes back to 5 per
second with the time constant τ . This causes only 0.003 extra output spikes.

To conclude, synaptic strength seems weak for detecting a single spike, but
fairly strong for detecting coincidence inputs. This is a consequence of the highly
nonlinear error function, which determines by (1) the firing rate λ. As analyzed
in the appendix, below a critical firing rate λc random firing is unstable, so that
a certain level of activity is required to transmit information.

4 How Can We Describe Processing of Information? –
Extension of the Abeles Model

As one of the fundamental assumptions of the Abeles model is the randomly
firing of all neurons, which means that all spikes are completely uncorrelated, it
is a priori unable to describe information transfer.

If the number of spikes carrying the information is much less than the number
of random spikes (N ·λ ≈ 100000), the probability density of the intracellular po-
tential can be assumed to be approximately Gaussian, so that the mechanism is

Processing of Information in Synchroneously Firing Chains 713

still the same: The fluctuations converging to each neuron raise the intracellular
potential to threshold. Remarkably this condition does not explicitely restrict
the correlated activity of a single neuron, so it can be involved constantly in
information processing.

How can we understand simple processing of information in a real network,
whose ‘ground state’ is randomly firing at a rather low rate? The concept given
by Abeles is the ‘synfire chain’: Groups of synchroneously firing neurons are
carrying the information; their number must be sufficiently high (at least 10–20)
to excite the following neurons.

A possible quantitative description of processing of information within this
concept is given by the model described in the remainder of this paper. The
basic properties of the extended model [10] are defined as follows:

(i) All input spikes –same as in the Abeles model– are assumed to share the
common waveform of a falling exponential,
xi(t) = Aie−(t−t0)/τ (for t ≥ 0), which may idealize the signal through the
axon.

(ii) The synaptic strength, which was a constant A in the Abeles model, may be
inhibitory (Ai < 0) or excitatory (Ai > 0), and is assumed to have different
values for each neuron. In general, we may assume the synaptic weights
also to be time-dependent, so that synaptic plasticity can be described.
However, this time-dependence takes place on a much larger time-scale
than the spike dynamic.

(iii) All postsynaptic (episynaptic) potentials are assumed to sum up to the
intracellular potential:

I(t) =
∑

i

Aixi(t). (4)

(iv) In addition to the Abeles Model we consider synchroneous and random
inputs seperately:

I(t) =
∑

i(sync)

Aixi(t) +
∑

i(async)

Aixi(t). (5)

As the number of randomly firing inputs is large, the difference in synaptic
strength will not disturb the Gaussian distribution, and we can write for
the second sum

Ā
∑

i(async)

xi(t). (6)

This is the same property as in the Abeles Model, although the firing rate
may have a slightly different value.

For the synchroneous inputs, we now only consider one group of firing neurons,
so all these inputs have the same t0, so we can assume t0 = 0, and we have,
writing xi(t) = Xi · e−t/τ :∑

i(sync)

Aixi(t) =
∑

i(sync)

AiXi · e−t/τ = e−(t−t0)/τ
∑

i(sync)

AiXi, (7)

714 J.C. Claussen

where the Xi are ‘digital’ values (0 for no spike, 1 for a spike correlated with
the synfire chain). Hence we can interprete the synchroneous inputs converging
to the cell as a time-dependent lowering of the potential threshold T :

I(t) − e−t/τ
∑

i(sync)

AiXi = Ā
∑

i(async)

xi(t). (8)

Therefore, the firing rate is given by (all sums in the following text are sums
only over the synfire chain inputs):

λ(t) =
K√
2π

∫ ∞

(T − Aixi(t))
σ

e−y2
dy, (9)

where xi(t) = Xi · e−t/τ . We shall write for the input sum:

X :=
∑

AiXi. (10)

If we ask: What is the total number of extra spikes, generated by an input
X �= 0, i.e., ∆λ(t) := λX �=0(t)− λX=0(t)? – We have to integrate the firing rate,∫ ∞

0
∆λ(t)dt=

K√
2π

∫ ∞

0
dt

[∫ ∞

(T − Aixi(t))
σ

dye−y2−
∫ ∞

T
σ

dye−y2

]
, (11)

but this expression counts all extra spikes from t = 0 to t = ∞. However, if the
output shows too much time delay, it will not be correlated to the synfire chain
any more. As the time constant of the exponential is τ, we only take into account
the outputs between t = 0 and t = ∆t, where ∆t is a time constant which may
have a similar or smaller value than τ.So the average number of correlated output
spikes 〈Y〉 to a given input X is given by:

〈Y(X)〉 =
K√
2π

∫ ∆t

0
dt

∫ ∞

T −Xe−t/τ

σ

dye−y2
. (12)

Here we have not subtracted the accidental output spikes, for their value is finite
and rather small in this short time interval. For X → (−∞) the average output
vanishes, which is the limit of strong inhibitory inputs. For X → (+∞), which
is equivalent to strong excitation, we obtain:

lim
X→∞

〈Y(X)〉 =
K√
2π

∫ ∆t

0
dt

∫ ∞

−∞
dye−y2

=
K√
2π

∫ ∆t

0
dt
√
π =

K√
2
·∆t. (13)

If we choose our free parameter ∆t :=
√

2/K, the function f(x) := 〈Y(X)〉,
as defined by equation (12), is a function of sigmoid type and describes the
probability that an output spike is generated. For X = 0 we have the probability
of 0.005, which is the probability of accidental output spikes.

Processing of Information in Synchroneously Firing Chains 715

We recognize this result as the McCulloch-and-Pitts [11] Neuron Model, but
in a fairly new light: Patterns of synchroneously firing neurons can be transferred
and processed in a quasi-digital manner even in a randomly firing network, and
the fluctuations are necessary to understand the sigmoidal character of the re-
sponse function.

5 Conclusions and Outlook

Within the framework based on the activity model [2] and the concept of synfire
chains, it has been shown how processing of information can be described quanti-
tatively. Considering correlated and uncorrelated neural activity seperately, it is
possible to describe information processing by synfire chains through a network
of (in ground state) randomly firing neurons in a quantitative manner.

The crudest idealizations concern the waveform of the spikes. The stochastic
description of the firing process and the representation of ‘one bit’ by more than
one neuron are essential in the network for error-tolerance and the ability to
generalization.

For synchroneously firing groups of neurons the ‘quasi-digital’ McCulloch-
and-Pitts neuron Model is valid; the fluctuations of the other neurons determine
the input-output characteristic to be sigmoidal.

The extended model can be generalized in a straightforward manner to de-
scribe also inhibitiory synapses and spatio-temporal aspects of real networks by
use of (on larger time-scales) time-dependent values Ai(t) of synaptic strength.

Acknowledgment. The author gratefully acknowledges partial financial sup-
port by Deutsche Forschungsgemeinschaft (DFG) within SFB 654.

References

1. M. Abeles. The role of the cortical neuron: Integrator or coincidence detector?
Israel Journal of Medical Sciences 18 (1982) 83-92

2. M. Abeles, Local Cortical Circuits, Springer, Berlin (1982)
3. M. Abeles. Corticonics, Cambridge University Press (1991)
4. W. Gerstner, R. Ritz, J. L. van Hemmen. Why spikes? Hebbian learning and

retrieval of time-resolved excitation patterns, Biological Cybernetics 69 (1993)
503-515

5. M. Herrmann, J. A. Hertz, A. Prügel-Bennett. Analysis of synfire chains, Network
6 (1995) 403-414

6. Kazushi Ikeda. A synfire chain in layered coincidence detectors with random synap-
tic delays, Neural Networks 16 (2003) 39-46

7. J. P. Sougne, A learning algorithm for synfire chains. In R. M. Franch and J. P.
Sougne (eds.): Connectionist Models of Learning, Development and Evolution, p.
23-32, Springer, London (2001)

8. S. Wermter, C. Panchev. Hybrid preference machines based on inspiration from
neuroscience. Cognitive Systems Research 3 (2002) 255-270

716 J.C. Claussen

9. V. Braitenberg. Cortical architectonics: general and areal. In: M. A. B. Brazier,
H. Petche (eds.), Architectonics of the cerebral cortex. Raven Press, New York, p.
443-465 (1978)

10. J. C. Claussen (born Gruel). p. 89–92 in: Diploma thesis, Kiel, Germany (1992)
11. W. S. McCulloch and W. H. Pitts. A Logical Calculus of the Ideas Immanent in

Nervous Activity. Bulletin of Mathematical Biophysics 5 (1943) 115-133

Appendix: Stability Analysis of the Abeles Model

We now investigate whether the fixed point satisfying the self-consistence-
equation (3) is stable or instable. Although we do not know the exact dynamical
properties of the network, we can answer this question. A small change in λ will
lead to a change in σ, the variance of the intracellular potential, where σ(λ(t), t)
is given by (2). The changed variance of the intracellular potential will cause a
change in the firing rate, given by (1). However, this will need a certain delay ∆t,
so that the stationary equation (1) has to be modified to the iterative expression

λ(σ(t), t + ∆t) =
K√
2π

·
∫ ∞

T
σ(t)

e−y2
dy. (14)

Therefore we can approximate the real dynamics by the iteration

λ(λ(t), t + ∆t) =
K√
2π

·
∫ ∞

T

A
√

Nλ(t)τ/2

e−y2
dy (15)

and we obtain the answer to an increase of λ by the amount of ∆λ :

∆λ(t + ∆t) = λ(σ(λ(t) + ∆λ), t + ∆t) − λ(σ(λ(t)), t)

=
∂λ(σ(λ(t)), t)

∂σ(t)
· ∂σ(λ(t), t)

∂λ(t)
·∆λ(t),

which means that every iteration stretches ∆λ by the factor

α(λ) =
∆λ(t + ∆t)

∆λ(t)
=

∂λ(σ(λ(t)), t)
∂σ(t)

· ∂σ(λ(t), t)
∂λ(t)

. (16)

Since
∂

∂λ (A
√

Nλτ/2) = σ
2λ , and

∂

∂σ
(

K√
2π

∫ ∞

T
σ(t)

e−y2
dy) =

K√
2π

(−e−(T/σ)2) · (− T

σ2),

we obtain
α =

K

λ

1
2
√

2π
T

σ
e−(T/σ)2 . (17)

For sufficiently small ∆λ the iteration values λi are close to the start value λ0, so
that the Liapunov exponent of the iteration is given by L = ln|α(λ0)|. Obviously

Processing of Information in Synchroneously Firing Chains 717

the fixed point, which is assumed to represent a ‘ground state’ of randomly firing,
is a stable one if and only if the Liapunov exponent is negative, which means
that |α| < 1. Using the experimental values given by Abeles for the cortex of the
cat, T/σ = 2.58, K = 1000s−1, and λ = 5s−1, we obtain the Liapunov exponent
L = −2.02 or α = 0.13, which is much less than 1. In this fixed point the network
gives strong damping to both fluctuations and external stimulus. This includes
also sufficient stability of the ‘Randomly Firing Mode’: Neither a fade-out nor a
collective ‘explosion’ of the firing can be generated by small perturbations. To
understand the effects of strong perturbations, we will take a short view on the
stability function α(T/σ). Using equation (17), we have to remember that λ/K
is a function of T/σ, so that we can use the expression (x := T/σ) :

α(x) =
x
2 e−x2∫∞

x
e−y2dy

. (18)

Two limiting cases can be considered: For x → 0, which is the limes of very
high firing rates, α(x) is asymptotic to x/

√
π, so that α(x) decreases to zero.

This expresses the damping of avalanche effects. For x → ∞, which is the limes
of very low firing rates, the integral is asymptotic to 1

2xe−x2
, therefore α(x) is

asymptotic to x2. As α(x) is continuous, there must exist a critical firing rate λc,
where α(λc) = 1. It is the point where the Liapunov exponent changes its sign.
If the firing rate is higher than λc, we still have damping, same as in the ground
state itself. If the firing rate is lower than the critical value, the cortical feedback
amplifies any fluctuations of the firing rate, so that the fluctuations lead to a
fade-out of the network. To conclude, if the firing rate is lower than a critical
firing rate λc, randomly firing cannot be a stable mode of a neural network.

Phase Precession and Recession
with STDP and Anti-STDP

Răzvan V. Florian1,2,4 and Raul C. Mureşan1,3

1 Center for Cognitive and Neural Studies (Coneural),
Str. Saturn nr. 24, 400504 Cluj-Napoca, Romania

2 Babeş-Bolyai University, Institute for Interdisciplinary Experimental Research,
Str. T. Laurian nr. 42, 400271 Cluj-Napoca, Romania

3 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University
Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

4 florian@coneural.org,
http://www.coneural.org/florian

Abstract. We show that standard, Hebbian spike-timing dependent
plasticity (STDP) induces the precession of the firing phase of neurons
in oscillatory networks, while anti-Hebbian STDP induces phase reces-
sion. In networks that are subject to oscillatory inhibition, the intensity
of excitatory input relative to the inhibitory one determines whether
the phase can precess due to STDP or whether the phase is fixed. This
phenomenon can give a very simple explanation to the experimentally-
observed hippocampal phase precession. Modulation of STDP can lead,
through precession and recession, to the synchronization of the firing of
a trained neuron to a target phase.

1 Introduction

Spike-timing dependent plasticity (STDP) is the dependence of synaptic changes
on the relative timing of pre- and postsynaptic action potentials, a phenomenon
that has been experimentally observed in biological neural systems [1,2,3]. The
type of STDP that has been mostly studied is characterized by the potentiation
of a synapse when the postsynaptic spike follows the presynaptic spike within a
time window of a few tens of milliseconds, and the depression of the synapse when
the order of the spikes is reversed. This type of STDP is sometimes called Heb-
bian, because it is consistent with the original postulate of Hebb that predicted
the strengthening of a synapse when the presynaptic neuron causes the postsy-
naptic neuron to fire. Experiments have also found synapses with anti-Hebbian
STDP (also called anti-STDP), where the sign of the changes is reversed, in
comparison to Hebbian STDP [4,5,6,7].

Many studies have investigated the computational properties of Hebbian
STDP, and have shown its function in neural homeostasis, unsupervised and
supervised learning [8,9,10,11,12,13,14,15,16,17,18]. Anti-Hebbian STDP is, at a
first glance, not as interesting as the Hebbian mechanism, as it leads, by itself, to
an overall depression of the synapses towards zero efficacy [19]. We have recently

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 718–727, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Phase Precession and Recession with STDP and Anti-STDP 719

shown that modulating STDP with a reward signal (i.e., having both Hebbian
and anti-Hebbian STDP) leads to reinforcement learning [20,21]. None of these
studies have specifically investigated the consequences of STDP in oscillatory
networks.

Here we study through computer simulations the effects of Hebbian and anti-
Hebbian STDP in networks of neurons that fire periodically with a common
period. This has biological relevance because there is such rhythmical activity in
the brain, for example the hippocampal theta rhythm [22,23]. We first describe
our model (Section 2) and then demonstrate some general effects induced by
STDP in oscillatory networks (Section 3). Afterwards we study the interplay
between these effects and oscillatory inhibition (Section 4) and how the effects
can be used to teach a neuron to fire at a given phase (Section 5).

2 Methods

We study an integrate-and-fire neuron driven by Ne excitatory and Ni inhibitory
input neurons. The excitatory synapses are plastic, while the inhibitory ones are
static. This setup is similar to the one in [10]. We model the network’s rhythmic
activity by considering that input neurons fire periodically with a common pe-
riod T = 125 ms (corresponding to the 8 Hz theta hippocampal rhythm). In the
brain, neurons sometimes skip cycles, while still firing at a constant phase, but
we ignore this possibility here, for the sake of simplicity, and consider that each
of the input neurons fires once per period, at a predetermined phase φk. These
phases are generated randomly at the beginning of the experiments. The phases
of excitatory neurons are generated uniformly between 0 and 2π. In experiments
where we use inhibitory neurons, the total inhibition is considered to be mod-
ulated by the global oscillation, as in other models of the hippocampal theta
rhythm [26,27], and thus their phases are generated with a probability density
p(φk) = [cos(φk) + 1]/(2π) (see also Fig. 2e-g).

The dynamics of the postsynaptic integrate-and-fire neuron is given by the
following equation:

τm
dV (t)

dt
= −(V − V0) +

Ne+Ni∑
k=1

gk(t) [Ek − V (t)] , (1)

where V is the membrane potential, V0 =-70 mV is the resting potential, τm =20
ms is the decay time constant, gk are synaptic conductances and Ek are reversal
potentials. When the membrane potential reaches a threshold of -54 mV, the
neuron fires and V is reset to -60 mV. We consider Ek=0 mV for excitatory
synapses and Ek=-70 mV for inhibitory ones (parameters from [10,24]).

Each presynaptic spike determines an instantaneous rise in the synaptic con-
ductance, which decays then exponentially. Thus, the dynamics of the synaptic
conductances is given by

dgk(t)
dt

= −gk(t)
τg

+ gs
k(t) Φk(t), (2)

720 R.V. Florian and R.C. Mureşan

where τg = 5 ms, gs
k are the peak synaptic conductances, and Φk(t) represents

the firing train of input neuron k as a sum of Dirac functions:

Φk(t) =
∞∑

n=0

δ (t − (n T + φk)) . (3)

For inhibitory synapses, gs
k is constant and is generated randomly at the

beginning of the experiment, with an uniform distribution, between 0 and gs
max.

For excitatory synapses, gs
k is also initialized randomly between 0 and gs

max, but
varies in time due to STDP. As in previous studies [10,25], we use an exponential
dependence of plasticity on the relative spike timings, we consider that the effect
of different spike pairs is additive, and we limit the range of possible synaptic
strengths with hard bounds, between 0 and gs

max. To model Hebbian as well as
anti-Hebbian STDP, we consider that plasticity is modulated by a variable r(t)
that can be positive as well as negative. Hence, the dynamics of the excitatory
synaptic conductances is given by

dg0
k(t)
dt

=

r(t)

Φ0(t) A+

∑
Ft

k

exp

(
− t− tfk

τ+

)
+ Φk(t) A−

∑
Ft

0

exp

(
− t− tf0

τ−

) , (4)

with the additional hard bounds. We noted with F t
k the set of firing times tfk

previous to t of input neuron k, and F t
0 is the analogue for the postsynaptic

neuron. Φ0(t) is the spike train of the postsynaptic neuron; A± are constant
parameters that determine the magnitude of synaptic changes, A+ = 0.005 gs

max,
A− = −A+; τ± are the decay time constants of the exponential STDP windows,
τ+ = τ− = 20 ms.

Following [10], we use a set of variables P+
k that track the influence of presy-

naptic spikes and P−
0 that tracks the influence of postsynaptic spikes on the

synapses. These variables simplify the simulation and may also have biochemi-
cal counterparts in biological neurons. We then have:

dP+
k

dt
= −P+

k

τ+
+ A+ Φk(t) (5)

dP−
0

dt
= −P−

0

τ−
+ A− Φ0(t) (6)

dg0
k(t)
dt

= r(t)
[
Φ0(t) P+

k + Φk(t) P−
0

]
(7)

In some of the experiments, we use a homeostatic mechanism [28] that scales
up or down the synapses in order to keep the postsynaptic firing rate constant,
at one spike per oscillation period T . We estimate the postsynaptic firing rate ν
by using a leaky accumulator (equivalent to an integration with an exponential
kernel),

Phase Precession and Recession with STDP and Anti-STDP 721

a)

b)

c)

d)

Time (periods)
0 1000

0

2π

Ph
as

e

0

2π

Ph
as

e

0

2π

Ph
as

e

0

2π
Ph

as
e

Fig. 1. The evolution in time of the phase of postsynaptic spikes relative to the input
oscillation. The graphs illustrate the first 1000 periods of the experiments. All exper-
iments start with identical conditions. a), c): Hebbian STDP. b), d): Anti-Hebbian
STDP. a), b): Without homeostasis. c), d): With homeostasis.

dν(t)
dt

= −ν(t)
τν

+
1
τν

Φ0(t), (8)

with τν = 500 ms. We then scale all excitatory synapses according to

dg0
k

dt
= α g0

k

[
1
T

− ν(t)
]
, (9)

with α = 0.04. This mechanism is applied additionally to the plasticity mecha-
nisms already mentioned.

The network is simulated with a timestep of 0.5 ms.

3 Precession and Recession

We first consider a setup with Ne = 1000 excitatory input neurons and no in-
hibitory input. We use gs

max = 0.014 and no homeostasis. If we set r(t) = 1, i.e.
Hebbian STDP, and let the network run, we observe that the phase of the post-
synaptic spikes relative to the input oscillation precesses, i.e. has a tendency to
occur earlier in the cycle (Fig. 1a). This is consistent with previous observations
that STDP tends to reduce the latency of postsynaptic firing in response to the
same stimulus (input) [10,29] and that STDP allows the postsynaptic neuron
to predict its input [12]. These properties of STDP also make inputs that fire
before the postsynaptic neuron to become more and more effective in causing
the postsynaptic neuron to fire, and eventually increase the total excitation that
this neuron receives. This means that the neuron may start to fire more spikes
per period, a phenomenon that can be seen in Fig. 1a.

722 R.V. Florian and R.C. Mureşan

If we set r(t) = −1, i.e. we have anti-Hebbian STDP, we observe the oppo-
site, namely that the phase of the postsynaptic spikes recesses (has a tendency
to occur later in the cycle), and that the excitation that the neuron receives
diminishes, eventually leading the neuron to stop firing (Fig. 1b). This is con-
sistent with the previous observation that anti-Hebbian STDP leads to a global
weakening of the synapses [19].

However, if we also introduce the previously mentioned homeostatic mecha-
nism that keeps the postsynaptic neuron firing once per period, we observe that
the precession/recession corresponding to Hebbian/anti-Hebbian STDP becomes
a stable behavior of the neuron (Fig. 1c,d).

4 Precession Control Through Oscillatory Inhibition

We now add to the previously described setup Ni = 1000 inhibitory input neu-
rons, that provide an oscillatory inhibitory input current to the postsynaptic
neuron (each inhibitory neuron fires once per cycle, and the number of neurons
that fire at a particular phase oscillates as a function of phase). We use r(t) = 1,
gs

max = 0.015 and homeostasis. The phase precession is not disturbed by the os-
cillatory inhibition (Fig. 2a). Precession is stopped, however, by a much stronger
inhibition, for example if we reduce the number of excitatory inputs from 1000 to
500 (Fig. 2b), as the neuron can fire only at phases where excitation overcomes
inhibition.

This means that by modulating the ratio of excitation versus oscillatory in-
hibition, in conjunction with STDP, we may switch from precession to a state
of constant phase firing. This is illustrated in Fig. 2c-d, where, after the firing
phase stabilizes because oscillating inhibition dominates excitation, we increase
the excitation received by the output neuron, by adding extra excitatory inputs.
Until t1 = 1200T , the postsynaptic neuron is driven by 500 excitatory neurons.
From t1 to t2 = 1500T , we constantly add new excitatory inputs to the postsy-
naptic neuron until their number reaches 1000 at t2. With greater excitation, the
phase starts to precess. From t2 to t3 = 1800T , we gradually remove the newly
added excitatory inputs; excitation decreases and then phase stabilizes again to
a value close to the one previous to the increase in excitation.

This very simple model is thus capable to explain the basic features of hip-
pocampal phase precession. It has been observed that when a rat moves through
the receptive field of a place cell, the firing rate of the neuron correlates with
the position in the place field, and the firing phase of the neuron precesses as
the animal traverses the place field. The initial phase at which the neuron starts
firing when the animal enters the place field is constant for every traversal of the
field [30]. The simple model presented here is consistent with these observations:
as the excitation of the place cell increases because the animal enters into its
receptive field, its firing phase precesses simply because of STDP and because
excitation overcomes the phase locking by the oscillatory inhibition.

Among the many computational models that tried to explain phase precession,
only two others used STDP. The first one used STDP to explain the skewness

Phase Precession and Recession with STDP and Anti-STDP 723

a)

b)

c)

d)

Time (periods)

0

2π
Ph

as
e

e) f) g)

0 2π
Phase

N
e

In
p

u
t

in
te

n
si

ty
(s

p
ik

es
 /

 m
s)

0 1000

1000 2000

Time (periods)

1200 1500 1800

1000

500

0

2π

Ph
as

e

0

2π

Ph
as

e

0 2π
Phase 0 2π

Phase

Fig. 2. a)-c) Effect of oscillatory inhibition on the dynamics of the phase of postsynaptic
spikes relative to the input rhythm. All experiments start with identical conditions. a)
1000 excitatory inputs, 1000 inhibitory inputs. b) 500 excitatory inputs, 1000 inhibitory
inputs. c) 500–1000 excitatory inputs, 1000 inhibitory inputs. d) The evolution in time
of the number of the excitatory inputs for the experiment presented in c). e)-f) Intensity
of the total excitatory and, respectively, inhibitory inputs (number of spikes per time
unit) as a function of phase. The smooth line represents the average number of input
spikes per timestep corresponding to the probability with which they were generated,
the rugged line represents the actual histogram of the input spikes as a function of
phase, corresponding to the experiments illustrated here. e) Excitatory input intensity
for the experiment presented in a). f) Excitatory input intensity for the experiment
presented in b). g) Inhibitory input intensity for all experiments. In the experiment
presented in c), the input intensity varies between the one presented in f) and the one
presented in e).

of the place fields, which, at its turn, explained phase precession, through in-
teraction with the inhibitory oscillation [31]. The second one takes from STDP
only the idea of temporally asymmetric interactions between neurons, as it uses

724 R.V. Florian and R.C. Mureşan

π−θ
-1

0

1

2π−θ3π/2−θπ/2−θ
ϕ(t)

r(
t)

=
co

s(
ϕ(

t)
+θ

)
2π

Fig. 3. The phase φ0 precesses if r(t) > 0 and recesses if r(t) < 0, as indicated by the
arrows. If r(t) = cos(ϕ(t) + θ), the phase converges to φ0 = 3π/2 − θ because this is a
stable point for the dynamics of φ0; φ0 = π/2 − θ is an unstable equilibrium point

neurons with continuous activations instead of spiking neurons [32]. The model
presented here is much simpler than these previous models, yet it captures the
essential features of hippocampal phase precession.

5 Controlling the Firing Phase by Modulating STDP

Since the firing phase can be manipulated by STDP and anti-STDP, it is straight-
forward to devise a mechanism for moving it to a target phase, by modulating
STDP. Modulation of STDP by a global reward signal proved to be a robust
reinforcement learning mechanism for generic spiking neural networks and could
be implemented in the brain by a neuromodulator [20,21]. Here we may use a
similar modulation, but with a form that depends on the target phase at which
we want the postsynaptic neuron to fire, instead of an external reward.

For example, if the variable r(t) that modulates STDP oscillates as a function
of the input oscillation phase, with the same period, and the STDP temporal
constants τ± are smaller than the oscillation period, the output neuron will al-
ways decrease its phase if the phase is in certain intervals, and increase it in
others. If an oscillatory r(t) is a continuous function of input oscillation phase
ϕ = 2π t/T , and has both positive and negative values, the phase of the post-
synaptic neuron will have at least two points of equilibrium (r = 0), among
which one will be stable and one unstable. For example, if r(t) = cos(ϕ(t) + θ),
the equilibrium point will be φ0 = 3π/2 − θ (see Fig. 3). The firing phase of a
postsynaptic neuron with synapses featuring STDP modulated by an r(t) of this
form will thus move to the phase of stable equilibrium. This means that we can
train a neuron or a population of (independent) neurons to fire at a particular
phase by using STDP in conjunction to an appropriate form of r(t). The efficacy
of this approach is illustrated in Fig. 4. The neuron learns the target firing phase
within 200 periods (25 s). The same signal r(t) may train an arbitrary number
of neurons to fire at the same phase, thus synchronizing them.

Phase Precession and Recession with STDP and Anti-STDP 725

726 R.V. Florian and R.C. Mureşan

Acknowledgements

R.V.F. was partly supported by Arxia SRL and by a grant of the Romanian
Government (MEdC-ANCS). R.C.M. acknowledges the partial support of Hertie
Foundation.

References

1. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic effi-
cacy by coincidence of postsynaptic APs and EPSPs. Science 275 (1997) 213–215

2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons:
Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal
of Neuroscience 18 (1998) 10464–10472

3. Dan, Y., Poo, M.M.: Spike timing-dependent plasticity of neural circuits. Neuron
44 (2004) 23–30

4. Dan, Y., Poo, M.M.: Hebbian depression of isolated neuromuscular synapses in
vitro. Science 256 (1992) 1570–1573

5. Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-
like structure depends on temporal order. Nature 387 (1997) 278–281

6. Egger, V., Feldmeyer, D., Sakmann, B.: Coincidence detection and changes of
synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature Neuroscience
2 (1999) 1098–1105

7. Roberts, P.D., Bell, C.C.: Spike timing dependent synaptic plasticity in biological
systems. Biological Cybernetics 87 (2002) 392–403

8. Kempter, R., Gerstner, W., van Hemmen, J.L.: Hebbian learning and spiking
neurons. Physical Review E 59 (1999) 4498–4514

9. Kempter, R., Gerstner, W., van Hemmen, J.L.: Intrinsic stabilization of output
rates by spike-based Hebbian learning. Neural Computation 13 (2001) 2709–2742

10. Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-
timing-dependent synaptic plasticity. Nature Neuroscience 3 (2000) 919–926

11. Roberts, P.: Computational consequences of temporally asymmetric learning rules:
I. Differential Hebbian learning. Journal of Computational Neuroscience 7 (1999)
235–246

12. Rao, R.P.N., Sejnowski, T.J.: Spike-timing-dependent Hebbian plasticity as tem-
poral difference learning. Neural Computation 13 (2001) 2221–2237

13. Toyoizumi, T., Pfister, J.P., Aihara, K., Gerstner, W.: Spike-timing dependent
plasticity and mutual information maximization for a spiking neuron model. In
Saul, L., Weiss, Y., Bottou, L., eds.: Advances in Neural Information Processing
Systems. Volume 17., MIT Press (2005) 1409–1416

14. Bell, A.J., Parrara, L.C.: Maximising sensitivity in a spiking network. In Saul, L.K.,
Weiss, Y., Bottou, L., eds.: Advances in Neural Information Processing Systems.
Volume 17., Cambridge, MA, MIT Press (2004)

15. Chechik, G.: Spike time dependent plasticity and information maximization.
Neural Computation 15 (2003) 1481–1510

16. Bohte, S.M., Mozer, C.: Reducing spike train variability: A computational theory
of spike-timing dependent plasticity. In Saul, L.K., Weiss, Y., Bottou, L., eds.:
Advances in Neural Information Processing Systems. Volume 17., Cambridge, MA,
MIT Press (2004)

Phase Precession and Recession with STDP and Anti-STDP 727

17. Hopfield, J.J., Brody, C.D.: Learning rules and network repair in spike-timing-
based computation networks. Proceedings of the National Academy of Sciences
101 (2004) 337–342

18. Legenstein, R., Naeger, C., Maass, W.: What can a neuron learn with spike-timing-
dependent plasticity? Neural Computation 17 (2005) 2337–2382

19. Abbott, L.F., Gerstner, W.: Homeostasis and learning through spike-timing de-
pendent plasticity. In Gutkin, B., Hansel, D., Meunier, C., Dalibard, J., Chow,
C., eds.: Methods and Models in Neurophysics: Proceedings of the Les Houches
Summer School 2003. Elsevier Science (2005)

20. Florian, R.V.: A reinforcement learning algorithm for spiking neural networks. In
Zaharie, D., Petcu, D., Negru, V., Jebelean, T., Ciobanu, G., Cicortaş, A., Abra-
ham, A., Paprzycki, M., eds.: Proceedings of the Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005),
IEEE Computer Society (2005) 299–306

21. Florian, R.V.: Reinforcement learning through modulation of spike-timing depen-
dent plasticity. Neural Computation (2006) In press.

22. Buzsaki, G.: Theta oscillations in the hippocampus. Neuron 33 (2002) 325–340
23. Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304

(2004) 1926–1929
24. Troyer, T.W., Miller, K.D.: Physiological gain leads to high ISI variability in a

simple model of a cortical regular spiking cell. Neural Computation 9 (1997) 971–
983

25. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neuro-
science 3 (2000) 1178–1183

26. Tsodyks, M.V., Skaggs, W.E., Sejnowski, T.J., McNaughton, B.L.: Population
dynamics and theta rhythm phase precession of hippocampal place cell firing: A
spiking neuron model. Hippocampus 6 (1996) 271–280

27. Mehta, M.R., Lee, A.K., Wilson, M.A.: Role of experience and oscillations in
transforming a rate code into a temporal code. Nature 417 (2002) 741–746

28. Turrigiano, G.G., Nelson, S.B.: Homeostatic plasticity in the developing nervous
system. Nature Reviews Neuroscience 5 (2004) 97–107

29. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press,
Cambridge, UK (2002)

30. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and
the EEG theta rhythm. Hippocampus 3 (1993) 317–330

31. Mehta, M.R., Quirk, M.C., Wilson, M.A.: Experience-dependent asymmetric shape
of hippocampal receptive fields. Neuron 25 (2000) 707–715

32. Scarpetta, S., Marinaro, M.: A learning rule for place fields in a cortical model:
Theta phase precession as a network effect. Hippocampus 15 (2005) 979–989

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 728 – 739, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Visual Pathways for Detection of Landmark Points

Konstantinos Raftopoulos, Nikolaos Papadakis, and Klimis Ntalianis

Dept. of Electrical and Computer Engineering, National Technical University of Athens,
9 Heroon Polytechneiou Str., 157 73 Zografou, Athens, Greece

raftop@image.ntua.gr

Abstract. We describe a neuron multi-layered architecture that extracts
landmark points of high curvature from 2d shapes and resembles the visual
pathway of primates. We demonstrate how the rotated orientation specific
receptive fields of the simple neurons that were discovered by Hubel and
Wiesel can perform landmark point detection on the 2d contour of the shape
that is projected on the retina of the eye. Detection of landmark points of high
curvature is a trivial task with sophisticated machine equipment but we
demonstrate how such a task can be accomplished by only using the hardware
of the visual cortex of primates abiding to the discoveries of Hubel and Wiesel
regarding the rotated arrangements of orientation specific simple neurons. The
proposed layered architecture first extracts the 2dimensional shape from the
projection on the retina then it rotates the extracted shape in multiple layers in
order to detect the landmark points. Since rotating the image about the focal
origin is equivalent to the rotation of the simple cells orientation field, our
model offers an explanation regarding the mystery of the arrangement of the
cortical cells in the areas of layer 2 and 3 on the basis of shape cognition from
its landmark points.

Keywords: Visual cortex, Landmark points, Shape encoding, Curvature
detection.

1 Introduction

Our first knowledge about cortical neurons and their receptive fields we owe to Hubel
and Wiesel. The Nobel Prize winners made a remarkable progress during their 25
years of collaboration in elucidating the responses of cortical neurons by using stimuli
of great relevance to vision. In their papers they define the ways in which area VI
receptive fields differ from LGN receptive fields. The qualitative methods they used
for studying the cortex continue to dominate experimental physiology (Hubel and
Wiesel, 1959, 1962, 1968, 1977; Hubel, 1982).

Hubel and Wiesel recorded the activity of cortical neurons while displaying
patterned stimuli, mainly line segments and spots, on a screen that was imaged
through the animal's cornea and lens onto the retina. As the microelectrode penetrated
the visual cortex, they presented line segments whose width and length could be
adjusted. First, they varied the position of the stimulus on the screen, searching for the
neuron's receptive field. Once the receptive-field position was established, they

 Visual Pathways for Detection of Landmark Points 729

measured the response of the neuron to lines, bars and spots presented individually.
From Hubel’s Nobel lecture we quote:

“Our first indication of the beauty of the arrangements of cell groupings came in
1961 in one of our first recordings from striate cortex of monkey, a spider monkey
named George. In one penetration, which went into the cortex at an angle of about
45° and was 2.5 mm long, we were struck right away by something we had only seen
hints of before: as the electrode advanced the orientations of successively recorded
cells progressed in small steps, of about 10° for every advance of 50 µm. We began
the penetration around 8:00 p.m.; five hours later we had recorded 53 successive

orientations without a single large jump in orientation. During the entire time, in
which I wielded the slide projector and Torsten mapped the fields, neither of us
moved from our seats. Fortunately our fluid intake that day had not been excessive!”
Hubel, Nobel Lecture, December 1981.

In this paper we show how these specific arrangements of the cortical cell
groupings can lead to the extraction of landmark points of high curvature on a 2d
shape contour that is projected on the retina of the eye. We describe an artificial
neural architecture that abides to the described by Hubel arrangements of cell
groupings and achieves landmark points extraction, we therefore imply that the
specific arrangements of the cell groupings in the visual cortex of primates perform
landmark point extraction in a way similar to our artificial model. Our purpose in this
paper is to describe how what we know about the cortical cells of the primates can be
used to perform landmark extraction from shapes.

The rest of the paper is organized as follows: First we present related work from
both fields of neuropsychology and computer science that support the concept of
landmark points in shape perception. Our specific layered architecture is presented in
the next section where first we properly define the term “landmark point’ and
“landmark region” that will be used hereinafter and then we explain how our
proposed architecture simulates the way the specific arrangements of the cortical cells
are likely used to extract landmark points and regions.

2 Related Work

The concept of landmark points for shape summarization has been appreciated by
many researchers in many different areas of neuropsychology and computer science.
The importance of landmark points of high curvature in the way that humans perceive
shapes is apparent in the work of Goodale et al [Goodale, 1994], [Goodale 1991]. In
this study patients with unilateral or bilateral lesions of the visual cortex are “unable
to calibrate their grasp according to the best “grasp lines” made up from points of
maximum convexity or concavity along the boundary of an object where the most
stable grip should be expected”. Other patients with damages in the visual cortex are
unable to discriminate from different shapes and orientations. Goodale concludes that
“The brain damage that the patient suffered as a consequence of anoxia appears to
have interrupted the normal flow of shape and contour information into her
perceptual systems”.

730 K. Raftopoulos, N. Papadakis, and K. Ntalianis

Leslie G. Ungerleider et al [Ungerleider, 1998] report that the visual processing
pathways in primates:

“….appear to be organized hierarchically, in the sense that low-level inputs are
transformed into progressively more integrated representations through successive
stages of processing. Within the ventral stream, for example, the processing of object
features begins with simple spatial filtering by cells in V1, but by the time the inferior
temporal cortex (area TE) is activated, the cells respond to global object features,
such as shape …. Thus, much of the neural mechanism for both object vision and
spatial vision can be viewed as a bottom-up process subserved by feed-forward
projections within a pathway”.

A. Dobbins, S.W. Zucker and M.S. Cynader presented evidence that the curvature
detection is related to end-stopping neurons, they also presented a supporting
mathematical model [Dobbins, 1987]. Our work is very similar to theirs but our model
is faster since it calculates the curvature in terms of simplest parallel calculations.

In the field of human cognition systematic work has been done in systems of human
psychology and learning [Drigas, 2005]. Further research has revealed that the
extraction of landmark points is a critical process in human perception and the basis
for potential mechanisms of shape identification and recognition [Biederman, 1987],
[Kayaert, Biederman 2003].

In biology biometrics Bookstein was among the first to define landmark points on
various biological shape for species classification [Bookstein 1996].

At the same time many researchers in various fields of computer science have been
studying shape representation techniques and many have appreciated the use of
landmark points as the most compatible to the human cognition method of
representing and encoding shape information. Berreti introduces a decomposition of
the shape into primitives based on the curvature [Berreti, 2000]. Attneave et al and
Pomerantz et al notice that the curvature of a curve has salient perceptual
characteristics [Attneave, 1954], [Pomerantz, 1977] and has proven to be useful for
shape recognition [Pavlidis, 1980]–[Wang, 1999]. Asada and Brandy have developed
the “curvature primal sketch” descriptor [Asada, 1986], a multiscale structure based
on the extraction of changes in curvature. From curvature features, a description of
the contour in terms of structural primitives (e.g., ends, cranks, etc.) is constructed.
Mokhtarian and Mackworth [Mokhtarian, 1986], [Mokharian, 1992] showed that
curvature inflection points extracted using a Gaussian scale space can be used to
recognize curved objects. Dudek and Tsotsos [Dudek, 1997] presented a technique for
shape representation and recognition of objects based on multiscale curvature
information. Another technique based on the landmark points of high curvature, is
also introduced by [Super, 2004].

In this paper we realize an inherit advantage of the similar to [Shams,1997] and
[Fukusmima, 1982] neuron based architectures in implementing the allocation of
landmarks on shapes by proposing a hierarchical model that incorporates visual
acquisition and landmark allocation in distinct layers emulating the visual pathway of
primates.

 Visual Pathways for Detection of Landmark Points 731

3 Detection of Landmark Points

David H. Hubel mentions in his Nobel lecture:

“Orientation-specific simple or complex cells “detect” or are specific for the
direction of a short line segment. The cells are thus best not thought of as “line
detectors”: they arc no more line detectors than they are curve detectors. If our
perception of a certain line or curve depends on simple or complex cells it
presumably depends on a whole set of them, and how the information from such sets
of cells is assembled at subsequent stages in the path, to build up what we call
“percepts” of lines or curves (if indeed anything like that happens at all), is still a
complete mystery.” Hubel, Nobel Lecture, December 1981.

Simple cells have oriented receptive fields, and hence they respond to stimuli in
some orientations better than others. This receptive field property is called orientation
selectivity. The orientation of the stimulus that evokes the most powerful response is
called the cell's preferred orientation. Orientation selectivity of cortical neurons is a
critical receptive-field property. LGN and retinal neurons have circularly symmetric
receptive fields, and they respond almost equally well to all stimulus orientations.
Orientation-selective neurons are found throughout layers 2 and 3, though they are
relatively rare in the primary inputs within layer 4C.

In the rest of this paper we will present our model for shape encoding from
landmark points. We will show that continuous successive orientations by 10 degrees
of an orientation selective filter, like the ones discovered by Hubel and Wiesel in the
visual cortex of primates, can be a mechanism of landmark point detection. We will
describe the mechanism and the neuron connectivity model that under the above
assumptions encodes the shape of a 2d contour on the basis of connected landmark
points of high curvature.

3.1 The Proposed Landmark Points

Let X be a planar curve parameterized on the scalar t, the parametric representation of
X is then))(),(()(tytxtc = , where x(t) and y(t) the coordinate functions. We need

a way to identify landmark points of high curvature on the curve X and be consistent
to the functionality of the cortical cells. We know from Hubel and Wiesel that the
cortical cells in layers 2 and 3 have orientation selective receptive fields and that this
orientation changes direction continuously in successive layers. We show now that
with successive rotations of an orientation selective filter we can indeed measure the
curvature at every point on the curve. The idea is to use the orientation selectivity to
locate the direction which is tangent to the curve at a specific point and at the same
time measure the curvature at this point by accumulating the firings of the successive
layers in which the rotated field keeps being close to the direction of the tangent. This
way we use the rotation operation that we know happens in the visual cortex cells in
successive layers and the orientation selectivity to perform curvature detection in a
way that is compatible to our best knowledge regarding the functionality of the visual
cortex cells of layers 2 and 3. Let))(),(()(tytxtc = a point on the curve.

732 K. Raftopoulos, N. Papadakis, and K. Ntalianis

Curvature of A Curvature of B

A
B

Summation of outputs

Summation of outputs

a b c

)()(BA γγ <

)(Aγ)(Bγ

Fig. 1. Curvature detection by rotating an orientation selective receptive field. The curvature is
proportional to the sum of the outputs of the rotated receptive fields. In (c) we see the
orientation selective receptive field as a rectangular area and the respective outputs as arrows
for several orientations from 0 to 90 degrees. The length of the arrow is proportional to the
output strength for the given orientation. In (a) and (b) we illustrate the calculation of the
curvature for two points A and B. In both cases the orientation selective receptive field is
rotated form 0 to 90 degrees with step 10 degrees and the output for each step of rotation is
proportional to the degree of the approximation of the curve on the direction permitted by the
receptive field for this rotation. The outputs in case (b) will be stronger than the outputs in
case (a) for most of the rotations since the change of the orientation of the receptive field
approximates better the change of the direction of the tangent of the curve at the neighborhood
of B.

If we rotate the axis this point will become))(),(()(tytxtc RRR = where

)cos()()sin()()(,)sin()()cos()()(θθθθ txtytytxtytx RR +=−= and

the angle of rotation.
Let us look now at the second coordinate function yR(t). Its first derivative is

)sin()()cos()()(θθ txtytyR −= and when it becomes zero we get

)(

)(
)tan()sin()()cos()(0)sin()()cos()(0)(

tx

ty
txtytxtytyR =⇔=⇔=−⇔= θθθθθ (1)

This result is consistent to our intuition that the derivative of the second coordinate
function at some point t becomes zero when the axis are rotated at an angle equal to

 Visual Pathways for Detection of Landmark Points 733

the angle of the tangent to the curve at the point)(tc . An orientation selective

receptive field will emit the strongest output at this angle since the direction of the
tangent best approximates the curve at this point. Now recall that the curvature at this

point is defined as
ds

dθ
, the rate of change of the angle of the tangent to the curve at

the specific point per unit arc length. A rotation of the orientation selective receptive
field corresponds to a step in tangent direction and arc length. If therefore we rotate
the orientation selective receptive field and the respective neurons keep firing it
means that we are still approximating the curve by being on the direction of the
tangent even if we have moved by a unit of arc length. The more we keep
approximating the curve by rotating the tangent direction and moving on the arc by a
unit of length, the more is the curvature at the specific point and we can measure this
curvature by accumulating the firings of all the layers, each layer corresponding to a
rotation of the receptive field by 10 degrees. Just to illustrate the simplicity of the just
described method we recall that in analytical terms the curvature is calculated as:

dt

ds
dt

d

ds

d
θ

θ = where
dt

dθ
 can be calculated by (1) where:

2
)(

)()()()(
)(

)(

)(
arctan)(

)(

)(
))(tan(

tc

txtytytx
t

tx

ty
t

tx

ty
t

−=⇔=⇔= θθθ

and)(tc
dt

ds = thus the curvature of the curve at the point))(),(()(tytxtc = is

given by:

(2)
)(

)()()()(
)(

3
tc

tytxtytx
t

−=γ

We see that the analytical calculation of the curvature at each point on the curve
involves the first and second derivatives of the coordinate functions but we manage to
describe the calculation of the curvature of a planar curve through a series of
operations that are consistent to our knowledge regarding the functionality of the
cortical cells. In fact we explain that rotating an orientation selective two dimensional
receptive field is the nature’s suggestion for measuring the curvature at each of the
points of a planar curve. In Fig. 1 we can see an orientation selective receptive field
and its successive rotations in two scenarios of different curvatures. In the case of
high curvature the field approximates better the direction of the tangent to the curve
for several successive rotations.

We call each one of these rotations, a view from that angle of rotation. We call
interesting point, a point on the contour at which the first derivative of yR(t) becomes
zero. We call strength of an interesting point the curvature at this point. We call
landmark point, an interesting point on the contour that has strength more than a
given threshold S.

734 K. Raftopoulos, N. Papadakis, and K. Ntalianis

A Landmark region is made out of interesting points (on the contour) that fail to
qualify as landmark points according to the definition above thus a landmark region is
a collection of neighboring points on the contour that have strength less then S. The
term landmark for the region can be justified if we think that quantity can compensate
for quality. We call width of the landmark region the number of points included in the
region.

Landmark points and regions partition the contour in a morphological meaningful
way while at the same time they are defined through native quantitative methods.
Notice that according to our definitions above the property of a point in being a
landmark for the contours shape is defined through local measures. A higher layer in
which landmark points and regions are combined to provide a global descriptor that
depends on the contours whole shape is described in the extended version of this paper.

3.2 The Proposed Architecture

We propose a layered architecture as a visual pathway model for detecting landmark
points of high curvature. The idea that we are going to implement here is the

successive rotations of the orientation
selective receptive field as was
explained in the previous section.

The lowest layer L0 is made out of
perceptual units that we call L0-neurons
and will play the role of the retinal
photosensitive cells. These neurons
receive the image intensity input and
they become active on large intensity
changes. We use these L0-neurons to
detect the contour that outlines the
shape of the presented object. The L0-
neurons feed the inputs of the L1-
neurons in layer 1.

The L1-layer is consisted of a pack of
sub-layers. Every L0-neuron sends its
output to the corresponding L1-neuron
in each L1-sub-layer. We can imagine
all the layers staggered and aligned and
the connections are only across neurons
that correspond to the same coordinates
in their respective layers. An image
containing a given random shape is
captured through the sensitivity of the
L0-neurons to the image's intensity
differences. When a L0 neuron is
adequately stimulated sends an active
output to all the corresponding
staggered neurons in layer L1, this way
once an image is presented to layer L0

Fig. 2. The pictures above demonstrate
landmark detection for the presented shape in
two L1-sublayers. The same receptive field is
rotated by 10° in the second image. The
landmark point is detected in both the sub-
layers, despite the rotation of the receptive field.

 Visual Pathways for Detection of Landmark Points 735

after a while all of the L1 sub-layers receive an active input from the L0 neurons that
happened to be located on the boundary contour of the shape.

The L1-sublayers in our architecture act as directional oriented interesting point
detectors. Recall that landmark points are interesting points above a threshold and
they are defined through local shape characteristics of curvature. In this layer, we will
detect the contour's landmark points of high curvature. Each L1-sublayer consists of
neurons with the necessary receptive field to detect interesting points for a given
orientation. The orientation bias of the receptive field of the neurons varies smoothly
form L1-sublayer to the next and spans a complete angle of at least 90 degrees of
rotation. Our L1-sublayers are the analogous to the hyper-columns of the human
visual cortex [Hubel, 1981].

Fig. 3. The proposed layered architecture for extracting landmark points. The layers together
with a graphical high level description are shown.

L1-neurons fire whenever an interesting point is present at their receptive field. The
receptive field necessary to cause firing under interesting point conditions can be
constructed by combining simple orientation specific receptive fields. The computational
equivalent of this is a two dimensional filter with adjusted weights so as to penalize non
horizontal straight segments. For the other directions the same receptive field rotated to
the appropriate angle can be assumed. In figure 2 you can see a landmark-receptive field
for two different L1-sublayers detecting interesting points on a given shape.

The same interesting point will cause firing in some L1 sub-layers but not in
others, depending on the rotation of the receptive field of the layer's L1-neurons, but
the bigger the strength of the interesting point is, the more are the L1-sublayers it will
be visible from, where visibility of point A form layer B is defined as the fact of at
least one neuron firing at sub-layer B because of the interesting edge point A.

The L2-cells receive the firings that were caused from contour's interesting points
at layer L1. A strong interesting point will be visible after many consecutive rotation
steps and will therefore cause a series of L1-firings in subsequent L1-sublayers that
will drive the same L2-neuron. The magnitude, therefore of the input of an L2-neuron
resembles the strength of the respective interesting point. Since every point is an

736 K. Raftopoulos, N. Papadakis, and K. Ntalianis

interesting point from one view, the L2-layer will receive a complete copy of the
contour but with different input magnitude for each point depending on the point’s
landmark potential. Morphological properties of the closed contour have been
therefore transformed to equivalent differences in the stimulation of the L2-neurons,
without loosing the spatial correspondence of the respective L0-neurons.

The functionality of the L2-neurons just described is consistent to the curvature
detection observed in higher layer cortical neurons since it is clear that the magnitude

of the input signal of the L2-neurons indicate interesting
points of the analogous strength while the location of the
landmark neurons describe the relative location of the
landmark points on the contour.

A landmark on the contour will cause firings in several
consecutive L1-sublayers at the same location and
therefore will accumulate a stronger stimulus to the
respective L2-neuron. On the other hand a landmark region
made of weaker points will cause many neighboring L2-
neurons to receive weaker input. The wider the landmark
region is the more neighboring L2-neurons will be
stimulated because to its increased visibility at different
neighboring locations across several rotations.

The task for the L2-layer is to collect the firings caused
by the landmark points and regions on the contour and

encode the shape from the strength of its landmark features. In figure 3 the layered
architecture for curvature detection is illustrated graphically.

4 Experimental Results

We have described a biological inspired neural architecture that performs landmark
point detection on the closed contour of an arbitrary shape. Here we demonstrate
experimental results by using the above described methodology to detect points of
high curvature.

The L0-layer that performs capturing and edge detection is trivial to implement
with a capturing device and a direction-less edge detector, applied on the captured
raster image. The resulting edge image plays the role of the signals sent from the L0-
layer to all the L1-sublayers. The directional oriented, interesting and landmark point
detection for each L1-sublayer corresponds to a filtering with the appropriately
rotated landmark filter. A receptive field for the L2-neurons suitable to detect
interesting points on the shape's boundary can be implemented by an actual digital
filter that we call landmark filter. Instead of rotating the landmark filter, we
equivalently use the same filter but rotate the edge image for each step. The result of
the landmark detection for each step of rotation above corresponds to the task of
a single L1-sublayer. These results, if superimposed, correspond to the Layer-L2
input coming from the L1-layer. In Figure 4 we use the landmark filter defined by the
stencil shown in Table 1 to demonstrate the detection of a landmark point and its
morphological strength, on a simple ellipsoidal shape.

Table 1. A landmark filter.
It detects horizontal high
curvatures on the
boundary. The amount of
locality that we accept for
the formation depends on
the size of the filter.

0 0 0 0 0

4 4 4 4 4

1 1 1 1 1

1 1 1 1 1

1 1 4 1 1

− − − − −
− −
− −

−

 Visual Pathways for Detection of Landmark Points 737

By super-positioning the interesting
point images we accumulate the strength
of these points in the intensities of a
single image. Points with high intensity
values correspond to morphological
significant (landmark) points on the
contour where clusters of points of low
intensity correspond to regions that
connect the landmark points. A ranking
therefore of the contour points according
to their intensity at this stage, corres-
ponds to their morphological signifi-
cance on the contour.

A significant contribution in our
approach of measuring and detecting
curvature is that it can be performed
with rotated filters on a single image
simultaneously and in parallel,
therefore the curvature detection can be
performed in just the time it takes to
filter a single curve image, assuming
that the superposition of the filtering
results happens instantly.

Further treatment regarding shape
recognition and classification is not
the intention of this paper but it is
apparent that our representation not
only abides to the physical and
psychological discoveries regarding the
perceptional tasks in primates but
also presents a feature extraction
technique that combined with standard
computational techniques leads to state
of the art performance and recognition
capability.

5 Conclusion

We have offered an explanation regarding the rotated orientation selective receptive
fields of the cortical neurons in layers 2 and 3 of the visual cortex of primates that
were first discovered by Hubel and Wiesel. We have shown that by means of this
specific arrangement of neurons it is possible to perform detection of landmark points
of high curvature. We appreciated the completeness and performance superiority of
our approach compared to other curvature detection methods since our model
provides the fastest possible mechanism for curvature measurement of planar curves.

Fig. 4. In this picture we demonstrate the
persistence of a landmark point to be detected by
the landmark filter despite successive rotations
of the image. In the upper left corner we have the
original image of two ellipses that we want to
detect the landmark points of their shape. The
rest of the pictures correspond to the original
image rotated by 0°,10°,20° respectively (left to
right first) and filtered by the landmark filter that
is defined in Table 1. We see that for this range
of rotation the same strong landmark points of
the left ellipsis are detected by the same filter in
all the rotated images. On the other hand the
detected points on the right ellipsis depend
strongly on the rotation of the image a fact that
indicates their low landmark potential.

738 K. Raftopoulos, N. Papadakis, and K. Ntalianis

References

[Asada, 1986] H. Asada and M. Brady, “The curvature primal sketch,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. PAMI-8, no. 1, pp. 2–14, Jan. 1986.

[Attneave, 1954] F. Attneave, “Some informational aspects of visual perception,” Psychol.
Rev., vol. 61, pp. 183–193, 1954.

[Berreti, 2000] Stefano Berretti, Alberto Del Bimbo and Pietro Pala, “Retrieval by Shape
Similarity with Perceptual Distance and Effective Indexing”, IEEE Trans on Multimedia,
vol. 2, no. 4, pp. 225-239, Dec. 2000.

[Biederman, 1987] Biederman, I. (1987). Recognition-by-Components: A Theory of Human
Image Understanding. Psychological Review, 94, 115-147.

[Bookstein, 1996] F.L. Bookstein. Landmark methods for forms without landmarks:
morphometrics of group differences in outline shape. Med. Im. Anal., 1(3):225–243, 1996.

[Brenner, 1996] Brenner, E. & Smeets, J.B.J. (1996). Size illusion influences how we lift but
not how we grasp an object. Experimental Brain Research, 111, 473-476.

[Dudek, 1997] G. Dudek and J. K. Tsotsos, “Shape representation and recognition from
multiscale curvature,” Comput. Vis. Image Understand., vol. 68, pp. 170–189, 1997.

[Drigas, 2005] S. Drigas, G. Koukianakis and V. Papagerasimou, “A System For Hybrid
Learning And Hybrid Psychology”, 2nd International Conference on Cybernetics and
Information Technologies, Systems and Applications: CITSA 2005, Orlando, Florida..

[Fukushima, 1982] K. Fukushima, S. Miyake: "Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition", Competition and
Cooperation in Neural Nets, Lecture Notes in Biomathematics 45, eds.: S. Amari, M. A.
Arbib, pp. 267-285, Berlin, Heidelberg, New York: Springer-Verlag (1982).

[Goodale, 1994] Goodale, M.A., Meenan, J.P., Buelthoff, H.H., Nicolle, D.A., Murphy, K.J.,
& Racicot, C.I. (1994b). Separate neural pathways for the visual analysis of object shape in
perception and prehension. Current Biol., 4, 604-610.

[Goodale 1991] Goodale, M.A., Milner, A.D., Jakobson, L.S., & Carey, D.P. (1991). A
neurological dissociation between perceiving objects and grasping them. Nature, 349, 154-
156.

[Hubel, 1981] David H. Hubel, Evolution of ideas on the primary visual cortex, 1955-1978: A
biased historical account, Nobel lecture, 8 December 1981, Harvard Medical School,
Department of Neurobiology, Boston, Massachusetts, U.S.A., Nature, 299:515-524.

[Hubel D.H, Wiesel T., 1990] Brain mechanisms of vision, In I. Rock (ed.) The Perceptual
world , pp. 3-24. W. H. Freeman NY.

[Hubel D.H, Wiesel T., 1968] Receptive fields and functional architecture of monkey striate
cortex, J. Physiol., 195:215-243.

[Hubel D.H, Wiesel T.N., Stryker M. 1978] Anatomical demonstration of orientation columns
in macaque monkey, J. Comp. Neurol., 177:361-380.

[Jalba, 2006] Andrei C. Jalba, Michael H. F. Wilkinson, Jos B. T. M. Roerdink, “Shape
Representation and Recognition Through Morphological Curvature Scale Spaces” IEEE
Trans. Image Proc., vol. 15, no. 2,pp. 331-341 ,Feb. 2006.

[Kayaert, 2003] Greet Kayaert, Irving Biederman and Rufin Vogels, “Shape Tuning in
Macaque Inferior Temporal Cortex”, the Journal of Neuroscience, April 1, 2003 • 23(7), pp.
3016 –3027.

[Milner, 1993] Milner, A.D. & Goodale, M.A. (1993). Visual pathways to perception and
action. In T.P. Hicks, S. Molotchnikoff & T. Ono (Eds.) Progress in Brain Research, Vol. 95
(pp. 317-337). Amsterdam: Elsevier.

 Visual Pathways for Detection of Landmark Points 739

[Mokhtarian, 1986] F. Mokhtarian and A. K. Mackworth, “Scale-based description and
recognition of planar curves and two-dimensional shapes,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-8, no. 1, pp. 34–43, Jan. 1986.

[Mokharian, 1992] , “A theory of multiscale, curvature-based shape representation for planar
curves,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 6, pp. 789–805, Jun. 1992.

[Pomerantz, 1977] J. R. Pomerantz, L. C. Sager, and R. J. Stoever, “Perception of wholes and
their component parts: Some configural superiority effects,” J. Exp. Psychol., vol. 3, pp.
422–435, 1977.

[Pavlidis, 1980] T. Pavlidis, “Algorithms for shape analysis of contours and waveforms,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, no. 3, pp. 301–312, Mar. 1980.

[Shams, 1997] Soheil Shams, "Affine Invariant Object Recognition through Self Organi-
zation", Hughes Research Laboratories, 1997.

[Super, 2004] B.J Super. Fast correspondence-based system for shape-retrieval. Patt. Recog.
Lett., 25:217–225, 2004.

[Ungerleider, 1998] L. G. Ungerleider, S. M. Courtney and J. V. Haxby, “A neural system for
human visual working memory”, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 883–890, Feb.
1998.

[Wang, 1999] S. L. Y.-P. Wang and K. T. Lee, “Multiscale curvature based shape represent-
tation using b-spline wavelets,” IEEE Trans. Image Process., vol. 8, no. 10, pp. 1586–1592,
Oct. 1999.

A Model of Grid Cells Based on a
Path Integration Mechanism

Alexis Guanella1,
 and Paul F.M.J. Verschure1,2

1 Institute of Neuroinformatics, University and ETH Zürich,
CH-8057 Zürich, Switzerland
guanella@ini.phys.ethz.ch

2 ICREA and Technology Department, University Pompeu Fabra
E-08002 Barcelona, Spain

Abstract. The grid cells of the dorsocaudal medial entorhinal cortex
(dMEC) in rats show higher firing rates when the position of the animal
correlates with the vertices of regular triangular tessellations covering
the environment. Strong evidence indicates that these neurons are part
of a path integration system. This raises the question, how such a sys-
tem could be implemented in the brain. Here, we present a cyclically
connected artificial neural network based on a path integration mecha-
nism, implementing grid cells on a simulated mobile agent. Our results
show that the synaptic connectivity of the network, which can be rep-
resented by a twisted torus, allows the generation of regular triangular
grids across the environment. These tessellations share same spacing and
orientation, as neighboring grid cells in the dMEC. A simple gain and
bias mechanism allows to control the spacing and the orientation of the
grids, which suggests that these different characteristics can be generated
by a unique algorithm in the brain.

Keywords: grid cells, entorhinal cortex, path integration, twisted torus.

1 Introduction

Found in the dorsocaudal medial entorhinal cortex (dMEC) of rats, grid cells [1,2]
show increased firing frequency when the animal visits regularly distributed
regions in an environment. It has been shown, using auto-correlative maps,
that these regions (so-called subfields) form regular triangular tessellations, or
grids [1]. It is possible to describe these tessellations, and, thus, the characteris-
tics of a grid cell, with only a few parameters: the orientation and the phase of the
grid, and the spacing (minimal inter-subfields distance, i.e. d in this study) and
the size of its subfields. Using these parameters, it was shown that grid cells are
topographically organized in the dMEC: first, neighboring cells share common
orientation and spacing. Second, the spacing of the grid increases isometrically
along the dorsoventral axis (in [1], d varies between 39 to 73 cm). Third, the
similitude of neighboring grid cells of different layers of the entorhinal cortex,
sharing common orientations and spacing, suggests that they are organized in
cortical columns [3].
� Corresponding author.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 740–749, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Model of Grid Cells Based on a Path Integration Mechanism 741

In spite of these observations, the role of grid cells is still poorly understood.
Briefly, it has been proposed that grid cells may be part of a generalized path
integration system [1,4], and could be the basis of a metric of spatial relation-
ships [5]. Many arguments verify this hypothesis. First, the grid cell activity
and its regular patterns persist after the deprivation of external landmarks (e.g.
in the dark [1]). Second, entorhinal lesions disrupt the return path of rats [6].
Third and fourth, suggesting also hard wired mechanisms, the grid structure
is expressed instantaneously in novel environments and the spacing parameter
seems to be universal (the grid spacing remains constant when increasing the size
of the arena) [1]. Fifth, the periodicity of the grid implies a covering of arbitrary
big environments. These arguments raise thus the question, how grid cells could
be incorporated into a path integration system.

The goal of this article is to describe an artificial neural network implementing
grid cells based on a path integration mechanism. In our model, the activity of
rate coded neurons is shifted by asymmetric synaptic connections. These con-
nections are modulated by the velocity of the animal, represented by a simulated
mobile agent exploring randomly a square arena. The neurons of the network
represent a population of neighboring grid cells of the dMEC, whose grids share
thus same orientation and spacing, but have different phases. A simple gain and
bias mechanism allows the control of the spacing and the orientation of the grid
(suggesting that exactly the same algorithm may be used to generate grid cells
along the dorsoventral locations of the dMEC). The synaptic connectivity of the
network is organized cyclically, and can be represented by a twisted torus. This
topology is shown to exactly generate the same regular triangular tessellations of
space as grid cells. Stability and robust activity is ensured by attractor dynamics
and normalization mechanisms.

2 Methods

2.1 Neurons

We construct a population of N neurons organized in a matrix covering the
repetitive rectangular structure of the subfields of grid cells (Fig. 1a). In order
to conserve the ratio between the height and the side of an equilateral triangle
(which is the core element of a regular triangular tessellation) and in order to
have the same density of cells along both x- and y-axes, the number of cells in
each row is approximately 2/

√
3 times bigger than the number of cells in each

column (Fig. 1b).

Activity and Stabilization. The neurons of the network are initialized with
a random activity uniformly distributed between 0 and 1/

√
N . The activity of

a cell i at time t + 1, i.e. Ai(t + 1) is defined using a linear transfer function
Bi(t + 1) given by

Bi(t + 1) = Ai(t) +
N∑

j=1

Aj(t)wji , (1)

742 A. Guanella and P.F.M.J. Verschure

Fig. 1. (a) Repetitive rectangular structure (gray filled rectangle) of the subfields (gray
circles) of grid cells defining a regular triangular tessellation of space. (b) Matrix of
a population of 10×9 grid cells. Neighboring relationships between cells on the side of
the structure are represented by gray arrows. For instance, neurons at two opposite
vertical sides are neighbors.

where N is the number of cells in the network, wji is the synaptic weight con-
necting cell j to cell i, with i, j ∈ {1, 2, ..., N}. A floating average normalization
mechanism over the cells activity ensures the stability of the network. Thus,
Ai(t + 1) is defined by

Ai(t + 1) = Bi(t + 1) + τ

(
Bi(t + 1)

< Bj(t) >N
j=1

−Bi(t + 1)

)
, (2)

where the function < . >N
j=1 is the mean over the cells of the network, and the

parameter τ determines the stabilization strength. To implement this mechanism
locally, we use an additional cell (cell N + 1, which is not a grid cell), that
computes the sum of all activities of the grid cells. Normalized by N , the activity
of this external cell < Bj(t) >N

j=1 is transferred back to the cells of the network.
In order to prevent negative cell activities, we set Ai(t + 1) = 0 when Ai(t + 1)
is smaller than zero.

2.2 Synapses

The synapses of the network can be divided into two distinct populations. The
first population is formed by the synapses which are used to compute the mean
activity of the network and to stabilize the cells activity. They connect in both
directions all the cells of the network and the external cell N +1 (Fig. 2a). Their
synaptic weights are all constant and set to 1.

The second population is formed by the synapses implementing the attractor
dynamics of the network. These synapses connect each cell i to each cell j,
with i, j ∈ {1, 2, ..., N} . As we will see, their synaptic weights are computed

A Model of Grid Cells Based on a Path Integration Mechanism 743

as a Gaussian function of the distance between cells (exciting neighboring and
inhibiting distal cells (Fig. 2b and 2c)). They are furthermore modulated by the
input of the network (i.e. the speed of the mobile agent), which allows to shift
the activity packet of the grid cells when the mobile agent is moving.

Fig. 2. (a) First population of synaptic weights connecting in both directions all the
cells of the network with an external cell used to compute the mean activity. (b) Ex-
ample of synaptic weights of the second population, connecting the neuron ci to all
the cells of the network (including itself). The dark gray color represents a high synap-
tic weight (e.g. the connection from ci to itself) and a light gray color a low synaptic
weight. The topology of the network implies that cj and ck are neighbors. (c) Synaptic
weights of the cell ci along an horizontal axis (represented by the dashed line in (b)).
Their intensity, shift and width are parametrized respectively by I , T and σ, defining
excitatory and inhibitory connections.

Attractor Dynamics. The synaptic patterns connecting grid cells in the net-
work are defined by a Gaussian weight function. We have

wij = I exp
(
−|| ci − cj ||2tri

σ2

)
− T , (3)

where ci = (cix , ciy) is the position of the cell i, defined respectively by cix =
(ix − 0.5)/Nx and by ciy =

√
3

2 (iy − 0.5)/Ny (with ix ∈ {1, 2, ..., Nx} and
iy ∈ {1, 2, ..., Ny}), and where Nx and Ny are the number of columns and rows
in the cells matrix (Fig. 1) and ix and iy the column and the row numbers of
cell i. I is the intensity parameter, defining the overall strength of the synapses,

744 A. Guanella and P.F.M.J. Verschure

σ regulates the size of the Gaussian and T is the shift parameter determining
excitatory and inhibitory zones (Fig. 2c). The norm || . ||tri defines the induced
metric disttri(. , .) of the network. To obtain the repetitive rectangular structure
of the grid subfields, the cells at the border of the layer have to be neighbors
of the cells at the opposite border (as an example, the two grid cells j and k
on Fig. 2a should be neighbors). This can be seen as a torus topology. However,
this is not sufficient to form a triangular grid, since a simple torus would lead,
in our model, to a rectangular tessellation of space. The regular triangular tes-
sellation is generated by twisting the torus. This is represented in the definition
of the distance disttri(. , .) or the norm || . ||tri which permits to obtain regular
triangular tessellations:

disttri(ci, cj) := || c1 − c2 ||tri =
7

min
j=1

|| c1 − c2 + sj || , (4)

where

s1 := (0, 0) , (5)

s2 := (−.5,
√

3
2

) , (6)

s3 := (−.5,−
√

3
2

) , (7)

s4 := (.5,
√

3
2

) , (8)

s5 := (.5,−
√

3
2

) , (9)

s6 := (−1, 0) , (10)
s7 := (1, 0) , (11)

and where || . || is the Euclidean norm.

Modulation. The input of the network is the speed vector v := (vx, vy), which
represents the speed of the mobile agent. This input doesn’t depend on any
absolute information about location. The maximum velocity of the mobile agent
is given by the parameter vmax such as || v || is always smaller than vmax.

It is possible to increase or decrease the size and the spacing of the subfields,
as well as changing the orientation of the grid by changing only two parameters
in the model, i.e. the gain α ∈ IR+ and bias β ∈ [0, π/3]. The input of the
network is thus modulated and biased by the gain and the bias parameters, with

v �−→ αRβv , (12)
where Rβ is the rotation matrix of angle β defined by

Rβ =
(

cos(β) − sin(β)
sin(β) cos(β)

)
. (13)

The activity pattern is stable when the mobile agent stays immobile. However,
when the agent moves, the synaptic connections of the network shift in the

A Model of Grid Cells Based on a Path Integration Mechanism 745

direction of the speed vector of the robot (Fig. 3). When expressing the synaptic
weight as a function of time, we have

wij(t + 1) = I exp
(
−|| ci − cj + αRβ v(t) ||2tri

σ2

)
− T . (14)

Fig. 3. Modulation of the synaptic connections of cell i. (a) Before modulation, the
synaptic pattern of the cell i is centered around ci. (b) After modulation, the synaptic
pattern is shifted proportionally in the direction of the speed v of the mobile agent.

2.3 Mobile Agent and Environment

The experiments are performed using a simulated Khepera robot (K-Team, Yver-
don, Switzerland), which randomly explores a square arena. When approaching
a wall, a Braitenberg control algorithm [7] is activated to avoid collisions. The
size of the square arena is 1×1 meter, such as one arena side is approximately
18 times bigger than a robot diameter (.055 meter).

2.4 Parameters

The values of the parameters used in this study are given in table 1. These values
have to satisfy two criteria. First, they have to ensure the stability of the cells of
the network. This means for instance that the cells activity should not be growing
endlessly. Second, they must induce the attractor dynamics of the network, and

Table 1. Values of the parameters used in this study

Parameter Value Unit
N = 90 [cell]
Nx = 10 [cell]
Ny = 9 [cell]
τ = 0.8 [no unit]
I = 0.3 [no unit]
σ = 0.24 [meter]
T = 0.05 [no unit]

vmax = 0.0275 [meter/time step]

746 A. Guanella and P.F.M.J. Verschure

therefore a single and stable activity packet should be continuously observed in
the cell population. These criteria have to be tested over a large number of time
steps. Since no objective or cost function is given in this study, no parameter
search for optimization is computed.

3 Results

To analyze the activity of the neurons of the network, we first computed their
mean activity maps, i.e. the mean activity of a cell as a function of the position
of the mobile agent (Fig. 4). These maps show the coherent and stable activity
of the multiple grid subfields. To determine if these subfields were organized in
a regular triangular tessellation, we fitted the mean activity maps to regular
triangular tessellations composed of Gaussian subfields. We computed the mean
square residuals over all the network cells, and found the value of 0.0028 +/-
0.0004 (mean +/- standard deviation (std.)). The mean square residuals for
each cell were always smaller than 0.005. These results strongly suggest that our
model generates regular triangular tessellating subfields. Note that in order to
get coherent results for this computation, we normalized the mean activity maps
such as the maximum and the minimum intensity of these maps were respectively
1 and 0. The stability of the network was assessed by running experiments over
an extended number of time steps (repetitively stable when tested over 1 million
time steps).

Gain and Bias. An interesting feature of the network is the possibility to
vary the spacing and the orientation of the grids by just varying the gain and
bias parameters. As shown in Figs. 4 and 5, higher gain values lead to denser
grids (and therefore smaller spacing between subfields) whereas higher bias val-
ues rotate the grids. We made a regression analysis to model and determined
the relationship between the gain and the bias parameters and respectively the
spacing and the orientation of the grids. For the gain, we found y = a+ b log2(x)
with a = −0.90 and b = −0.39, with mean least square residuals of 0.00016, and
where x and y are respectively gain and grid spacing. For the bias, we found
y = a + bx with a = 0.00 and b = 1.00, with mean least square residuals of
0.00004, and where x and y are respectively bias and grid orientation.

4 Discussion

In this article, we have presented a model of grid cells based on path a integration
mechanism, embedded on a simulated mobile agent. We have shown that the
neural activity of the network generates regular triangular tessellations of the
environment, as grid cells in the dMEC. In our model, the grids cells share
same orientation and spacing, as neighboring grid cells in the dMEC, and, as
suggested in [3], as grid cells in cortical columns of the dMEC. A simple gain
and bias mechanism on the input allows to vary, respectively in a log-linear and
a linear relationship, the spacing and the orientation of the grids. Our model

A Model of Grid Cells Based on a Path Integration Mechanism 747

Gain 0.05 Gain 0.06 Gain 0.07 Gain 0.08 Gain 0.09

Cell 14/90

Gain 0.05 Gain 0.06 Gain 0.07 Gain 0.08 Gain 0.09

Cell 61/90

a

Bias 0.00 [rad] Bias 0.22 [rad] Bias 0.44 [rad] Bias 0.66 [rad] Bias 0.88 [rad]

Cell 25/90

Bias 0.00 [rad] Bias 0.22 [rad] Bias 0.44 [rad] Bias 0.66 [rad] Bias 0.88 [rad]

Cell 74/90

b

Fig. 4. (a) Mean activity maps of two grid cells with different gain values (here, the
bias value is set to zero). Dark regions and light regions represent respectively high and
low mean activity. These maps were computed over 50000 time steps. The discretization
of the arena correspond to 40×40 bins. (b) Mean activity maps of two grid cells with
different bias values (here, the gain value is set to 0.11).

gives thus a concrete example of a cortical circuit which can implement in a
same algorithm grid cells with different spacings and orientations. In the dMEC,
the spacing of the grid isometrically increases along the dorsoventral axis, which
could thus suggest an exponential increase of the rat velocity gain along this
axis.

Many studies present the implementation of path integration mechanisms
based on attractor dynamics [8,9,10,11]. The idea to apply these methods for
grid cells was first presented in [1] and described further in [4]. It has been
implemented first in [12], as a symmetric locally connected neural network. Here,
it is the first time that an implementation of such a system is explicitly described
and implemented on a cyclically connected map. This synaptic architecture,
which can be represented by a twisted torus, is new, and was shown in this study
to be able to generate effectively grid cells with regular triangular tessellating
subfields. The advantages of such a system is that it allows to implement in a
relatively small population of cells a representation of space covering arbitrary
big environments. Moreover, because of this particular synaptic connectivity, all
the network cells have regular triangular tessellating subfields.

Our model of grid cells may be used as the proprioceptive element of a ro-
bust, modulatory and biologically based navigational system combining idio-
thetic (internal) and allocentric (external) sensory inputs. On the first hand, one
of the classical problem of path integration mechanisms is the accumulation of

748 A. Guanella and P.F.M.J. Verschure

0.05 0.06 0.07 0.08 0.09 0.1

0.4

0.6

0.8

1

gain [no unit] (log scale)

sp
ac

in
g

[m
]

mean spacing
std spacing

a

0 0.2 0.4 0.6 0.8
0

0.5

1

bias [rad]

or
ie

nt
at

io
n

[r
ad

]

mean orientation
std orientation

b

Fig. 5. (a) Spacing of the grid as a function of the gain parameter. (b) Orientation of
the grid as a function of the bias parameter.

proprioceptive errors over time. For instance, in our model, the mean activity
maps of grid cells would collapse if we would introduce noise in the speed input.
On the other hand, one of classical problem of allocentric systems is their inabil-
ity to disambiguate between two similar inputs. For instance, realistic models of
place cells [13,14] of the hippocampus, based on visual inputs (e.g. [15]) are not
able to distinguish between two visually similar places. A combination of these
two approaches would be useful to deal with their respective weaknesses. Allo-
centric place cells (e.g. based on vision) would be used to recalibrate the activity
of the grid cells in case of path integration errors, and, in turn, the activity of
grid cells could be used to generate place cells (using simple a simple Hebbian
mechanism as proposed in [4]), able to disambiguate between two visually simi-
lar places. The location of the dMEC, upstream the hippocampus, which is, in
turn, an afferent of the entorhinal cortex, provides an anatomical basis for such
a modulatory system.

Acknowledgments

This research was supported by the Swiss National Science Foundation (grant nr.
205321-100604). The authors thank Reto Wyss for providing the artificial neural
networks simulation software wSim and Paul Rogister for useful comments.

References

1. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a
spatial map in the entorhinal cortex. Nature 436(7052) (2005) 801–6

2. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representa-
tion in the entorhinal cortex. Science 305(5688) (2004) 1258–64

3. Moser, M., Sargolini, F., Fyhn, M., Hafting, T., Witer, M., Moser, E.: Grid cells
in medial entorhinal cortex: indications of columnar organization. Soc Neurosci
Abstr 198(4) (2005)

A Model of Grid Cells Based on a Path Integration Mechanism 749

4. O’Keefe, J., Burgess, N.: Dual phase and rate coding in hippocampal place cells:
theoretical significance and relationship to entorhinal grid cells. Hippocampus
15(7) (2005) 853–66

5. Jeffery, K.J., Burgess, N.: A metric for the cognitive map: found at last? Trends
Cogn Sci 10(1) (2006) 1–3

6. Parron, C., Save, E.: Evidence for entorhinal and parietal cortices involvement in
path integration in the rat. Exp Brain Res 159(3) (2004) 349–59

7. Braitenberg, V.: Vehicles, experiments in synthetic psychology. MIT Press (1984)
8. McNaughton, B., Barnes, C., Gerrard, J., Gothard, K., Jung, M., Knierim, J.,

Kudrimoti, H., Qin, Y., Skaggs, W., Suster, M., Weaver, K.: Deciphering the
hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol
199 (1996) 173–85

9. Samsonovich, A., McNaughton, B.: Path integration and cognitive mapping in a
continuous attractor neural network model. J Neurosci 17(15) (1997) 5900–20

10. Stringer, S., Rolls, E., Trappenberg, T., de Araujo, I.: Self-organizing continuous
attractor networks and path integration: two-dimensional models of place cells.
Comput Neural Syst 13(4) (2002) 429–46

11. Conklin, J., Eliasmith, C.: A controlled attractor network model of path integration
in the rat. J Comput Neurosci 18(2) (2005) 183–203

12. Fuhs, M.C., Touretzky, D.S.: A spin glass model of path integration in rat medial
entorhinal cortex. J Neurosci 26(16) (2006) 4266–76

13. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evi-
dence from unit activity in the freely-moving rat. Brain Res 34(1) (1971) 171–5

14. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press,
Oxford (1978)

15. Wyss, R., König, P., Verschure, P.F.M.J.: A model of the ventral visual system
based on temporal stability and local memory. PLoS Biol 4(5) (2006) e120

Temporal Processing in a Spiking Model of the
Visual System

Christo Panchev

School of Computing and Technology
St. Peter’s Campus, University of Sunderland

Sunderland SR6 0DD, United Kingdom
christo.panchev@sunderland.ac.uk

Abstract. Increasing amount of evidence suggests that the brain has
the necessary mechanisms to and indeed does generate and process tem-
poral information from the very early stages of sensory pathways. This
paper presents a novel biologically motivated model of the visual system
based on temporal encoding of the visual stimuli and temporally precise
lateral geniculate nucleus (LGN) spikes. The work investigates whether
such a network could be developed using an extended type of integrate-
and-fire neurons (ADDS) and trained to recognise objects of different
shapes using STDP learning. The experimental results contribute fur-
ther support to the argument that temporal encoding can provide a
mechanism for representing information in the visual system and has the
potential to complement firing-rate-based architectures toward building
more realistic and powerful models.

1 Introduction

Recent experiments have shown that in response to stimuli, populations of neu-
rons in the primary visual areas could keep their mean firing rate constant while
increasing the correlation of the single spikes [1]. This suggest that beginning
from the primary areas, the brain could be using the timing of the individual
spikes to represent external or internal stimuli, while preserving the mean fir-
ing rate of the neural populations [2, 3]. Theoretical analysis of spike trains has
also shown that the individual spike timings are much more reliable than those
in a random spike train with the same mean and variance [4], suggesting that
the brain does have the necessary mechanisms to generate and operate with
temporally precise encoding schemes.

The processing of visual information involves several stages with increasing
complexity from the eye to the visual cortex along two main routes, the ventral
and dorsal streams. Most experimental and modelling work suggest that the
information in the visual pathways is carried in the firing rate of the neurons
[5, 6]. However, there is an increasing amount of evidence that the temporal
structure of the neural responses in the visual system is much more precise and
reliable than previously thought [3, 7, 8, 9, 10, 1, 11], opening the possibilities for
a new range of paradigms and models of the visual cortex.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 750–759, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Temporal Processing in a Spiking Model of the Visual System 751

Different aspects of the visual system have been studied in a number of com-
putational models. The LISSOM model [12, 13, 14] implements the organisation
and functionality of the primary visual cortex V1. Their work shows that the
organisation and connectivity of V1 can be achieved through the combination of
lateral competition and activity driven modification of afferent connections.

The model of visual processing presented by Thorpe et. al. [15, 16, 17] is based
on the fast response times observed in the visual system, e.g. selective IT neuron
responses to faces at about 80-100 ms after stimulus onset [18], and points that
in order to achieve such fast response timings, the visual system has time for no
more that a few spikes per neuron at each stage of a forward visual processing
pathway [19]. The models are developed using large scale networks of rank-coding
spiking neurons and one-shot learning [20].

The VisNet and VisNet2 models presented in [21] have been built as four
hierarchically organised maps of competitive layers with firing rate neurons.
These networks model the functionality, organisation and connectivity of the
ventral stream of the visual cortex. Forward connections between the consecutive
layers are assigned within receptive fields with radial Gaussian distribution of
connection probability. The sizes of the receptive fields are such that neurons
on the top layer can potentially be influenced by activity in the most distant
parts of the input. The model achieves shape recognition via gradual bottom-up
integration of features.

The study presented in this paper extends the contributions of those models
by incorporating a network of spiking neurons, Spike-Timing-Dependent Plas-
ticity (STPD) and processing of temporally encoded visual stimuli in a task of
recognising objects of different shapes. The developed network is based on the
integrate-and-fire spiking neuron with active dendrites and dynamic synapses
(ADDS) and its STDP learning protocol [22, 23, 24, 25]. Following the successful
simulation results, the visual model was also tested in a robot control system
for local navigation in tasks like finding, approaching and manipulating target
objects.

2 Motivation and Basis for Modelling Temporal Coding
in the Visual System

Neural activity from the retinal cells reaches the lateral geniculate nucleus (LGN)
of the thalamus. The LGN cells have narrow isotropic (i.e. without orientation
selectivity) receptive fields and perform a type of edge detection by responding
primarily at the borders between areas with different colours and shades. LGN
responses are non-linearly proportional to the contrast between the areas and
have firing patterns which are highly reproducible between trials and temporally
precise - with the timing of the spikes considered meaningful with a precision as
high as 1 msec [11, 10].

The visual information enters the cerebral cortex at the area of the primary vi-
sual cortex (V1). Neurons in V1 selectively respond to local features of the object
in the visual field, such as spatial disparity or edges with particular orientation

752 C. Panchev

[26, 27]. V1 responses to contrast are highly non-linear, with the mean firing
rate of the neurons having a sigmoid form [28]. While most of the past studies
of V1 responses to contrast have concentrated on the firing rate of the neu-
rons, more recent studies have indicated that important part of the information
about the contrast may be encoded in the temporal structure of neurons’ re-
sponses [29, 30, 31]. There can be as much or more contrast-related information
encoded in the temporal structure of V1 neural activity as in the firing rate [1].
Most of this information is encoded in the latency of the onset of spike train
responses relative to the stimulus onset, which can vary independently of the
overall firing rate.

Several stages further in the ventral pathway, the visual information reaches
V4 - an area of neurons with larger receptive fields than those in V1, that respond
to complex shapes in the visual scene [21, 32]. Here, objects in the visual scene are
believed to be represented by distributed assemblies where individual neurons
encode specific shapes constituting parts of the overall figure [33].

The final stage of visual processing considered here is the inferotemporal cor-
tex (IT). Neurons in this area perform object recognition by selectively respond-
ing to objects in the visual scene independent of their size and position [34].
IT neurons have been found to interpret visual information beyond the simple
grouping of perceptual input, exhibiting activity which also reflects the internal
representations of objects [35, 36].

The work presented in this paper is based on the above experimental evidence
and aims at building a neural network model of ADDS integrate-and-fire neurons,
and train it to recognise objects in a realistic environment using STDP type
learning.

3 Biologically Motivated Model of the Visual System

3.1 ADDS Neuron and STDP Learning Algorithm

This section briefly describes the model of the Active-Dendrites-and-Dynamic-
Synapses (ADDS) neuron and implementation of the Spike-Timing-Dependent
Plasticity algorithm. More detailed description and analysis of the models has
been presented in [24]. Experimental work showed that spiking neurons incor-
porating the active properties of the dendrites and the dynamics of the synapse
provide the computational mechanisms for processing temporal codes in a num-
ber of tasks and different time scales, including the precise selective responses in
the millisecond range that is relevant for the processing tasks considered in this
paper. Furthermore, the learning algorithm used here goes beyond the explicit
simple dependency on the relative timing between a pair if single pre- and post-
synaptic spikes following much closer the experimental evidence, and has been
shown to effectively train the ADDS spiking neurons toward responses selective
to the spatio-temporal distribution of input spike patterns [22, 23, 24, 25].

The ADDS spiking neuron is described as follows: For a synapse i ∈ D with
strength wi attached to an active dendrite, the total post-synaptic current Ii

d is
defined by:

Temporal Processing in a Spiking Model of the Visual System 753

τ i
d

d

dt
Ii
d(t) = −Ii

d(t) + Ri
dw

iδ(t − ti(f)) (1)

where ti(f) ∈ F i is the set of pre-synaptic spike times filtered as Dirac δ-pulses.
Here, the time constant τ i

d and resistance Ri
d define the active properties of the

artificial dendrite as a function of the synaptic strength.
The neuron also has a set S of somatic synapses feeding close to or directly

to the soma. The post-synaptic current generated by those synapses is described
by:

τs
d

dt
Is(t) = −Is(t) +

∑
i∈S

wiδ(t − ti(f)) (2)

where τs is a fixed time constant for all such synapses, and synapse i has synaptic
strength wi and pre-synaptic spike times ti(f) ∈ F i.

Finally, the soma membrane potential um is:

τm
d

dt
um(t) = −um(t) + Rm(Id(t) + Is(t)) (3)

where Id(t) =
∑

i I
i
d(t) is the total current from the dendritic tree, τm is the

membrane time constant at the soma, and Rm is the somatic resistance. Upon
crossing the firing threshold θ from below, the neuron emits a spike and its
potential is reset to ureset. Following that event, the potential is clamped to
ureset for an absolute refractory period trefr and is then released into a relative
refractory period during which it recovers to the resting potential urest.

The current from dendrite i produces a membrane potential change at the
soma, which is referred to as partial membrane potential and annotated as ui

m.
The total partial membrane potential ud

m =
∑

i u
i
m is the somatic membrane

potential change generated from all dendrites.
The STDP learning is governed by the following algorithm: Immediately fol-

lowing a post-synaptic spike at time t̂, synapse i, which has received a recent
pre-synaptic spike, is sent a weight correction signal:

∆wi =
{

∆wi
d if d

dtu
d
m(t̂) ≤ ε

∆wm otherwise
where
∆wi

d = Ri
dI

i
d(t̂) − ui

m(t̂) and ∆wm = ud
m(t̂) −RmId(t̂)

(4)

The learning rule has two main elements: ∆wi
d which depends on the state of

the dendrite at the time of post-synaptic spike and ∆wm which depends on the
state of the soma potential and total dendritic input at the time of post-synaptic
spike. Depending on the gradient of the partial somatic membrane potential at
the time of the post-synaptic spike (relative to a predefined constant ε) one of
these two elements dominates in the determination of direction and magnitude
of change in the synaptic strength.

3.2 Network Architecture

The task of the model is to recognise objects with 3 different shapes (ball, box
and cone). 320 × 220 pixel images are collected from a robot’s camera and

754 C. Panchev

preprocessed on a dedicated workstation. The preprocessing involves identify-
ing areas of interest in the visual scene, segmenting and extracting information
for each area and sending it to the input (LGN) layer of the vision module
network. An area of interest is defined as the bounding box of a part of the
visual scene and includes either an object that can be recognised by the robot
or another feature of the the environment which has a different colour from the
wall and floor. For each area of the visual input, the following information is
extracted: a resized grey scale image of the segment (30×20 pixels), horizontal
position of the segment relative to the centre of the current camera image and
the colour of the central point of the segment. The extracted segments are sent
to the vision module in a sequence. The architecture models parts of the ventral

Fig. 1. Network architecture of the vision module

stream: LGN-V1-V4-IT. In order to reduce the computational requirements of
the visual system, colour processing has been removed from the ventral stream,
which receives as input grey-scale images with the task of recognising the shape
of the object in the image.

The input layer of the network, LGN (figure 1), contains 30×20 spiking neurons
driven by a LoG type ON-centre OFF-surround edge detection filter with a 3×3
mask. Each LGN neuron responds with a single spike with latency relative to the
stimulus onset and proportional to the contrast difference within the area covered
by the mask. Lower contrast causes higher latency of the neuron’s response.

Temporal Processing in a Spiking Model of the Visual System 755

The next layer, V1, contains a map of 28×36 map simple orientation cells
which receive input from LGN with a receptive field 3×3 over the neurons in
LGN. Each V1 neuron selectively responds to the firing of a combination of LGN
neurons forming a line with orientation of either 0, 45, 90 or 135 degrees. Such
orientations are sufficient for the V1 neurons to respond to edges generated by
the three different shapes of objects which the robot has to recognise: the lines
from boxes and cones, and arcs from the balls.

The neurons in the next layer, V4, formed a 20×12 map and are trained to
respond to a combination of spikes from the orientation cells in V1. Each V4
neuron receives input connections from V1 with a receptive field of 9×7 cells.
Lateral inhibitory connections are also created between the V4 neurons with
overlapping receptive fields.

The IT layer contains 200 neurons receiving excitatory input from all V4
neurons and lateral inhibition from all other IT neurons. IT neuron(s) who have
learnt a spatio-temporal pattern closest to the current activity in V4 will respond
first and inhibit other IT neurons. Thereby, only IT neuron(s) presenting the
shape of the figure at the input respond.

All afferent connections are implemented as synapses attached to active den-
drites and are subject to synaptic plasticity, and all lateral connections are im-
plemented as synapses attached to the soma and have fixed strength.

3.3 Training and Results

V1 was trained over a set of collected and preprocessed images containing the
three possible shapes of objects in the environment. For all layers, the afferent
connections were trained using the ADDS neuron’s STDP synaptic plasticity
algorithm. The V1 neurons were competitively trained off-line with single lines
plotted at various positions on LGN. The competitive learning was supported by
lateral inhibitory connections between the V1 neurons with radius equal to their
receptive field. The V4 neurons were trained using collected and preprocessed
images of the 9 objects. IT neurons were trained using a form of guided learning
- that is, for each training pattern only the neurons representing the figure at
the input were allowed to fire and therefore learn the spatio-temporal patter
generated by that figure. As with the previous layers, the competition between
the neurons plays a critical role in the correct response of the neurons. Each IT
neuron is trained to recognise a particular shape (ball, box or cone) by selectively
responding to a combination of features detected in V4. 120 neurons are trained
to recognise ball, 20 neurons are trained on box and 60 on cone. The number of
neurons necessary for each figure was dictated by the noise resulting from the
preprocessing of the images and was determined empirically.

The network was able to learn and later recognise the objects under different
view angles and viewing conditions. The successful results confirmed the thesis
that temporal encoding alone can provide sufficient information for the training
of a spiking neural network and recognising simple objects in a realistic robot
environment.

756 C. Panchev

135 Degrees

90 Degrees

45 Degrees

0 Degrees

No preference

Fig. 2. Orientation selectivity map of the V1 cells

IT

V4

V1

0.046 sec0.0230

LGN

Fig. 3. Visual areas activity in processing an image of a ball. The grey scale indicates
the response times relative to the onset of the image.

Figure 2 presents the orientation selectivity map of V1 after training. The
target of the design and training of this layer was to achieve neurons respond-
ing to all four orientations within each small area of the image. As a result,

Temporal Processing in a Spiking Model of the Visual System 757

the orientation selectivity map of V1 achieved here is organised in singulari-
ties/pinwheel structures distributed across the layer.

Figure 3 presents the activation of the LGN, V1 and V4 layers for the process-
ing of an image containing a ball. The time taken to recognise an object in IT
is within 25-50 ms with V1 responding in the interval of 10-20 ms, and V4
responding in 20-40 ms.

4 Conclusion

The paper presented a novel biologically motivated computational model of the
visual system. The model is build of integrate-and-fire ADDS spiking neurons
and trained using an STDP learning algorithm and a combination of competitive
and guided training strategies. The network implemented parts of the ventral
stream of the visual system (LGN-V1-V4-IT) and its input comprises of tempo-
rally encoded patterns extracted from the input stimuli - proportional to local
contrast latency of the LGN responses. The neurons are trained to recognise
the shape of the objects in the visual field based on the temporally encoded
information at LGN (figure 3). After training, V1 developed a self-organised
orientation selectivity map (figure 2). Considering the relatively low resolution
of this layer, continuous and periodic organisation of the V1 neurons could not
have been computationally affordable for the performance of the visual module
required for testing it on a mobile robot. The target of the design and training
of this layer was to achieve neurons responding to all four orientations within
each small area of the image. As a result, the orientation selectivity map of V1
achieved here is organised in singularities distributed across the layer. Finally,
the network model can recognise the 9 real objects in a robot’s environment,
and in further experiments was successfully tested as part of a robot’s control
architecture for navigation and object manipulation [24].

Complimentary to recent experimental neurobiological evidence on spatio-
temporal codes used by the brain in the visual areas, the results from the model
further confirm that the temporal information derived from input sensory stim-
uli can provide sufficient information for the discrimination and recognition of
real visual patterns. Of course, the real brain also employs firing rate codes in
processing information in these modalities. Future development in the work pre-
sented here will focus on integrating and taking advantages from both firing rate
and temporal encoding schemes in the processing of visual information.

References

1. Reich, D.S., Mechler, F., Victor, J.D.: Temporal coding of contrast in primary
visual cortex: When, what, and why. Journal of Neurophysiology 85(3) (2001)
1039 – 1050

2. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen,
A.: Dynamics of neuronal interaction in monkey cortex in relation to behavioural
events. Nature 373 (1995) 515–518

758 C. Panchev

3. Mainen, Z.F., Sejnowski, T.: Reliability of spike timing in neocortical neurons.
Science 268 (1995) 1503–1506

4. de Ruyter van Steveninck, R.R., Lewen, G., Strong, S., Koberle, R., Bialek, W.:
Reproducibility and variability in neural spike trains. Science 275 (1997) 1805–
1808

5. Adorján, P., Levitt, J.B., Lund, J.S., Obermayer, K.: A model for the intra-cortical
origin of orientation preference and tuning in macaque striate cortex. Visual Neu-
roscience 16 (1999) 303–318

6. Hirsch, J.A., Alonso, J.M., Reid, R.C., Martinez, L.M.: Synaptic integration in
striate cortical simple cells. Journal of Neuroscience 18(22) (1998) 9517–9528

7. Bair, W., Koch, C.: Temporal precision of spike trains in extrastriate cortex of the
behaving macaque monkey. Neural Computation 8(6) (1996) 1185–1202

8. Buracas, G., Zador, A., DeWeese, M., Albright, T.: Efficient discrimination of
temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron
20(5) (1998) 959–969

9. Bair, W.: Spike timing in the mammalian visual system. Current Opinion in
Neurobiology 9 (1999) 447–453

10. Reinagel, P., Reid, R.C.: Temporal coding of visual information in the thalamus.
Journal of Neuroscience 20(14) (2000) 5392–5400

11. Reinagel, P., Reid, R.: Precise firing events are conserved across neurons. Journal
of Neuroscience 22(16) (2002) 6837–6841

12. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Self-organisation, plasticity,
and low-level visual phenomena in a laterally connected map model of the primary
visual cortex. In Goldstine, R., Schyns, P., Medin, D., eds.: Perceptual Learning.
Volume 36 of Psychology of Learning and Motivation. Academic Press, San Diego,
CA (1997) 257–308

13. Sirosh, J., Miikkulainen, R.: Cooperative self-organisation of afferent and lateral
connections in cortical maps. Biological Cybernetics 71(1) (1994) 65–78

14. Sirosh, J.: A Self-Organizing Neural Network Model of the Primary Visual Cortex.
PhD thesis, The University of Texas, Austin, TX (1995)

15. Delorme, A., Thorpe, S.: Face identification using one spike per neuron: resistance
to image degradations. Neural Networks 14(6-7) (2000) 795–803

16. VanRullen, R., Delorme, A., S.J., T.: Feed-forward contour integration in primary
visual cortex based on asynchronous spike propagation. Neurocomputing 38-40(1-
4) (2001) 1003–1009

17. Delorme, A.: Early cortical orientation selectivity: How fast shunting inhibition
decodes the order of spike latencies. Journal of Computational Neuroscience 15
(2003) 357–365

18. Jeffreys, D.: Evoked potential studies of face and object processing. Visual Cogni-
tion 3 (1996) 1–38

19. Perrinet, L., Delorme, A., Thorpe, S.: Network of integrate-and-fire neurons using
rank order coding a: how to implement spike timing dependant plasticity. Neuro-
computing 38-40(1-4) (2001) 817–822

20. Delorme, A., Thorpe, S.: Spikenet: An event-driven simulation package for mod-
elling large networks of spiking neurons. Network: Computation. Neural Systems
14 (2003) 613:627

21. Rolls, E.T., Deco, G.: Computational neuroscience of vision. Oxford University
Press, Oxford (2002)

22. Panchev, C., Wermter, S.: Spike-timing-dependent synaptic plasticity from single
spikes to spike trains. Neurocomputing 58-60 (2004) 365–371

Temporal Processing in a Spiking Model of the Visual System 759

23. Panchev, C., Wermter, S., Chen, H.: Spike-timing dependent competitive learning
of integrate-and-fire neurons with active dendrites. In: Lecture Notes in Computer
Science. Proceedings of the International Conference on Artificial Neural Networks,
Madrid, Spain, Springer (2002) 896–901

24. Panchev, C.: Spatio-Temporal and Multimodal Processing in a Spiking Neural
Mind of a Robot. PhD thesis, University of Sunderland (2005)

25. Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons:
towards recognizing robot language instructions. Connection Science 18(1) (2006)
1–22

26. Shapley, R.: A new view of the primary visual cortex. Neural Networks 17 (2004)
615 623

27. Ringach, D.L., Hawken, M.J., Shapley, R.: Dynamics of orientation tuning in
macaque primary visual cortex. Nature 387 (1997) 281 – 284

28. Albreght, D.G., Hamilton, D.B.: Striate cortex of monkey and cat: contrast re-
sponse function. Journal of Neurophysiology 48 (1982) 217–237

29. Gawne, T.J., Kjaer, T.W., Richmond, B.J.: Latency: another potential code for
feature binding in striate cortex. Journal of Neurophysiology 76 (1996) 1356–1360

30. Mechler, F., Victor, J.D., Purpura, K.P., Shapley, R.: Robust temporal coding
of contrast by V1 neurons for transient but not steady-state stimuli. Journal of
Neuroscience 18 (1998) 6583–6598

31. Purpura, K., Chee-Orts, M.N., Optican, L.M.: Temporal encoding of texture prop-
erties in visual cortex of awake monkey. Society of Neuroscience Abstracts 19
(1993) 315

32. Gallant, J.L., Shoup, R.E., Mazer, J.A.: A human extrastriate area functionally
homologous to macaque V4. Neuron 27 (2000) 227–235

33. Pasupathy, A., Connor, C.E.: Shape representation in area V4: Position-specific
tuning for boundary conformation. Journal of Neurophysiology 86(5) (2001) 2505–
2519

34. Ito, M., Tamura, H., Fujita, I., Tanaka, K.: Size and position invariance of neuronal
responses in monkey inferotemporal cortex. Journal of Neurophysiology 173(1)
(1995) 218–226

35. Bruce, C., Desimone, R., Gross, C.G.: Visual properties of neurons in a polysensory
area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46(2)
(1981) 369–384

36. Kobatake, E., Wang, G., Tanaka, K.: Effects of shape-discrimination training on
the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology
80(1) (1998) 324–330

Accelerating Event Based Simulation
for Multi-synapse Spiking Neural Networks

Michiel D’Haene
, Benjamin Schrauwen

, and Dirk Stroobandt

Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
{Michiel.DHaene, Benjamin.Schrauwen, Dirk Stroobandt}@ugent.be

http://www.elis.ugent.be/SNN

Abstract. The simulation of large spiking neural networks (SNN) is still a very
time consuming task. Therefore most simulations are limited to rather unrealistic
small or medium sized networks (typically hundreds of neurons). In this paper,
some methods for the fast simulation of large SNN are discussed. Our results
equally amongst others show that event based simulation is an efficient way of
simulating SNN, although not all neuron models are suited for an event based ap-
proach. We compare some models and discuss several techniques for accelerating
the simulation of more complex models. Finally we present an algorithm that is
able to handle multi-synapse models efficiently.

1 Introduction

Despite the ever increasing computational power in computer systems, there is still a
huge demand for more computational power, especially in the field of spiking neural
networks (SNN). Spiking neurons are biologically inspired neurons that communicate
by using spikes. Because here the timing of the spikes is considered, SNN are able to
handle temporal problems more efficiently (for example speech recognition [18]) and
have more computational power than artificial neural networks [9] which use the aver-
age firing rate of neurons as inputs. Furthermore, they communicate through discrete
spikes instead of analog values which significantly reduces the communication costs
between neurons. This makes them particularly better suited for hardware implementa-
tions [13][14].

The behaviour of a spiking neuron can be represented by an internal membrane po-
tential which is influenced by incoming spikes. When the potential of the membrane
reaches a certain threshold value, the membrane potential will be reset to a lower value
and a spike is emitted. It is important to note that each neuron operates independently,
except when a spike is communicated between neurons.

An obvious way of implementing SNN in hardware is a one to one placement of
the neurons into physical components. This approach benefits from the inherent paral-
lel nature of spiking neural networks and allows extremely fast simulations (orders of

� Michiel D’Haene is sponsored by the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen)

�� Benjamin Schrauwen is funded by FWO Flanders project G.0317.05

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 760–769, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Accelerating Event Based Simulation for Multi-synapse SNN 761

magnitude faster than realtime). Unfortunately it has to deal with some important draw-
backs. First, the size of the networks is limited by the amount of hardware available on
the chip. In current FPGA’s1, one can implement a couple of thousand simplified spik-
ing neurons in a direct manner [15]. By combining several chips, one should be able
to create larger networks, however this is a very cost inefficient method. Another im-
portant drawback of this approach lies in the low activity, which is for a typical spiking
neural network less than 1% ([5]). This means that generally most of the synapses and
neurons are inactive (i.e. potential on its restpotential) and thus occupy costly space in
hardware. Direct hardware implementations are thus very space inefficient.

Therefore, in practice, large SNN are simulated using more conventional architec-
tures. There are essentially two ways of simulating SNN: time-step driven and event
based simulation. The first one divides the simulation into fixed time-steps. At each
time-step, the complete network is evaluated and the new state of each neuron is calcu-
lated. The precision of the simulation depends on the size of each time-step, which also
affects the simulation time. Although this is a very simple approach, the asynchronous
nature of the spikes requires small time-steps (≤ 1 ms) in order to achieve accurate
simulation results [16].

Usually we are only interested in the external behaviour of a neuron (i.e. emitted
spikes) due to incoming spikes instead of the internal membrane changes. Event based
simulation takes advantage of this. Instead of evaluating the whole network on regular
time intervals, the membrane potential of each neuron is evaluated only when necessary,
i.e. when a neuron receives a spike, or when it will fire.

In the next section, we compare time-step driven simulation with event based sim-
ulation using two accurate simulation environments. In Section 3 we briefly discuss
different models of spiking neurons and show why some of them can be simulated effi-
ciently in an event driven manner while very biological realistic models are much more
difficult to simulate. We show the results of some accelaration techniques for more com-
plex models. Finally, because existing simulators do not support multi-synapse models
efficiently, we present an algorithm that handle these models efficiently.

2 Event Based Simulation Versus Time-Step Driven Simulation

In order to compare event based simulation with time-step driven simulation, we cre-
ated a random network consisting of 500 neurons with an interconnection fraction of
0.1 (i.e. each neuron has on average 50 input connections). Input spikes are generated
through one input neuron. The neuron model used is developed by Olaf Booij (personal
communication). It is a special case of a leaky integrate and fire neuron with exponential
synapses where τm = 2τs (this will be explained in Section 3.1).

For the time-step driven simulator, we used CSIM2 which is a well known open
source C++ simulator, optimized for speed by calculating only the active synapses. The
resolution (time-step) was set to 0.1 ms.

The event-based simulator used is ESSpiNN, a simulator developed at our research
group. The core of this simulator is based on MVASpike, a general event based C++

1 Field Programmable Gate Array.
2 http://www.lsm.tugraz.at/csim

762 M. D’Haene, B. Schrauwen, and D. Stroobandt

simulator for SNN from Olivier Rochel [12]. We have adapted this simulator to our
goals, and extended it in order to allow more general neuron models (e.g. SRM0) to be
simulated. Besides a broad range of neuron models, it can simulate different types of
(delayed) connections such as STDP, dynamic synapses, etc. The time resolution for
the neuron model used in this example is only limited by the resolution of the double
precision floating point numbers, which results in very accurate simulations compared
to time-step driven methods.

In Table 1 we measured the execution time of both simulators for different numbers
of input spikes (on the same platform, i.e. AMD Athlon 64 3400+). We can see that the
average speedup of the event driven simulator is 60 times for a relatively high neuron
activity (on average 100 spikes per neuron per second). For 100 and 1000 input spikes,
we used a simulation time of 1s, which means that the incoming spike activity is a
factor 10 higher for the second case. When we look at CSIM, we can see that despite
the 10 times lower activity, its execution speed is only a factor 3.75 faster. This is due to
its time-step driven nature: time-step based simulation scales in the first place with the
simulated time, while event-based simulation scales mainly with the number of spikes.

Table 1. Comparison between CSIM and ESSpiNN for a network of 500 neurons, interconnection
fraction of 0.1 and 1 input neuron. The neuron model is Booij’s integrate and fire neuron where
τm = 2τs.

Number of spikes Simulated time Execution time CSIM Execution time ESSpiNN
100 1 sec 14.6 sec 0.10 sec

1 000 1 sec 55.0 sec 0.80 sec
10 000 10 sec 451 sec 7.13 sec

100 000 100 sec / 72.8 sec

3 Event Simulation of Different Spiking Neuron Models

In event based simulation, a new calculation will be performed only when an event
occurs. An event-simulator has to keep track of all events in the system. This can be
done with a queue that keeps all generated events in chronological order (the event-
queue). The simulator takes the event with the smallest time stamp from this event
queue, processes it and adds new events to the queue if necessary. Then it takes the next
event with the smallest time stamp, etc.

An obvious requirement for event simulation of SNN is that incoming and outgoing
pulses can be considered as discrete events. However, not all neural models fulfill this
condition. Some models are very easy to simulate in an event driven fashion, while oth-
ers are much harder. Below, we discuss some important models and their applicability
to event simulation. Then we give some results measured on our event simulator for
different neuron models.

3.1 Some Common Neuron Models

Hodgkin Huxley model. The model of Hodgkin and Huxley [7] is a very good im-
itation of a certain type of biological neuron (Fig. 1a). It consists of a collection of

Accelerating Event Based Simulation for Multi-synapse SNN 763

Fig. 1. Some popular spiking neural models a) example of a Hodgkin-Huxley-model, b) the Leaky
IF-neuron and c) an approximation with SRM (0th order) model

differential equations that model the internal processing. It is an important model for
the detailed study of the biological behaviour of neurons that deals with ion channels,
different types of synapses and geometry of individual neurons. This model is in essence
a continuous model, which makes it very difficult to simulate in an event driven fashion
without making certain concessions [8]. However it is an important reference model for
more simple models.

(Leaky) Integrate and Fire model (IF model). IF models are one of the best known ex-
amples of the so-called threshold model neurons, which means that a pulse is generated
as soon as the membrane potential reaches a certain threshold. Pulses are stereotypi-
cal events which are completely characterized by their firing time stamp. After firing,
the neuron optionally has a refractory period during which it stays inactive for a cer-
tain amount of time. In Fig. 1b, an example of a Leaky IF model is shown (without a
synapse model). Because firing happens only when an incoming spike arrives, the event
based simulation of this model is simple. However, this property also drastically limits
the expression power of this model [10].

Spike Response Model (SRM). The SRM [4] can be seen as a generalization of the
Leaky IF model. One of the differences however is that the membrane potential is ex-
pressed as a function of the time passed since the last fire event, instead of a function of
itself. A special case of the SRM is the 0th order SRM or SRM0. All incoming pulses
now have the same shape, independent of the time since the last incoming event and
the state of the membrane. A simple example is shown in Fig. 1c. The model shown is
an exponential Leaky IF model with exponential synapses. For most applications, the
SRM0 is still sufficient and has been used for example for the analysis of the computa-
tional power of neurons [10], studies of collective phenomena in local coupled networks
[4] and in the Liquid State Machine (LSM) [6].

There exist a number of event based simulators specially built for a specific type of IF
neurons (most without synapse model) and networks. These simulators allow fast simu-
lations but –given the simplicity of the neuron model– they have limited applicabilities
and are often built with a specific application in mind. A totally different approach is to
try to create a biological very realistic simulator [8]. However the aim of our work is not
to create a biological very realistic simulator, but to allow efficient emulations of huge

764 M. D’Haene, B. Schrauwen, and D. Stroobandt

networks of powerful spiking neurons. The LIF with a synapse model is a good starting
point for such a simulator, but it involves some difficulties when we try to simulate it in
an event-based manner. In the next subsection, we briefly explain these difficulties and
show some techniques and optimisations to solve them efficiently.

3.2 A Simple SRM0 Neuron

To show the problems of simulating a more general IF model, we consider the expo-
nential Leaky IF model with exponential synapses (Fig. 1c). The postsynaptic potential
ui (t) of neuron i with n inputs at time t can be written as [4]

ui (t) =
∑

f

ηi

(
t− t

(f)
i

)
+

∑
j

wij

∑
f

εi,j

(
t− t

(f)
i

)
(1)

with kernels (after convolution of ε0 (s))

ηi(s) = − (θ − urest) exp
(
− s

τm,i

)
H (s) (2)

εi,j (s) =
1

maxi,j

[
exp

(
− s

τm,i

)
− exp

(
− s

τs,i,j

)]
H (s) (3)

with θ the threshold, urest the restpotential and τm and τs,j the decay constants of the
membrane and the synapse. maxi,j is a rescaling constant to assure that a weight of
1 generates a pulse of the same height. To schedule the next update-time of a neuron,
the event-simulator must be able to predict the next fire-time stamp of a neuron, i.e. the
time stamp when ε0 reaches the threshold θ.

Therefore equation (1) with ui (t) = θ must be solved for t. However for non-natural
values of τm and τs,j this can not be solved analytically. There exists different solutions
for this problem which we divide roughly into tree classes: using a restricted model
which can be solved very efficiently, using look-up tables, or using iterative techniques
to approximate the fire-time stamp.

A good example of the first solution is the neuron model developed by Olaf Booij
(personal communication). He assumes that each input synapse has the same τs, and
that τm = 2τs. Now, the solution for t is reduced to a quadratic equation which can be
solved analytically very quickly.

The use of lookup tables is a well known method to estimate the fire-time stamp
which offers high speed with (depending on the size of the table) sufficient accuracy [1].
Some researchers even replaced all calculations with precalculated lookup tables [2]. An
important drawback of lookup tables however is the memory size that grows more than
exponentially with the desired accuracy. Also, separate lookup tables are required for
each τs. Therefore, most researchers limit their models to a single synapse model.

An example of the last type of solution is developed by Makino [11]. His simulator
is able to estimate the fire time stamp of an arbitrary continuous membrane function by
dividing the function into linear envelopes where each envelope containes at most one
threshold crossing. Inside each envelope, a Newton-Rhapson based method is used to
estimate the fire-time stamp.

Accelerating Event Based Simulation for Multi-synapse SNN 765

It is clear that most techniques are developed to be used with one or a very restricted
number of synapse constants. When extending these techniques to neurons with sev-
eral synaptic time constants (multi-synapse neurons, in the most common case, each
input has its own synaptic time constant), they have to deal with the calculation of
each synapse for each update of their state, which quickly decreases their efficienty.
Therefore, we developed an efficient technique that can handle several synaptic time
constants, which we will describe briefly below.

3.3 Efficient Processing of Multi-synapse Neurons

An obvious optimisation for the simulation of multi-synapse models that has also been
used in e.g. CSIM is to separate inactive synapses from active synapses and to consider
only the active synapses of a neuron in the computations. Due to the typical low activity
of spiking neural networks, this results already in a significant speedup (a factor 2).

Another optimisation follows from the observation that a neuron generally has to
receive several spikes before it will emit a spike itself. However, estimating if a the
membrane potential will reach the threshold, is a time consuming process itself when
using several synaptic constants.

Therefore, we developed a simple but fast membrane-value estimation function.
Whenever the neuron receives a spike, we consider the (updated) maximum influence
of the current synapse on the membrane potential by adding it to the total approximated
membrane maximum (Fig. 2). When a spike enters, we only update the synapse poten-
tial of the input that receives the spike. When there is a possibility for the membrane
potential to reach its threshold (i.e. the approximated membrane maximum reaches the
threshold), we start updating the total membrane potential by calculating the exact po-
tential of each synapse at the current time stamp.

Fig. 2. Maximum approximation of the membrane potential. On time 3, the approximated maxi-
mum reaches the threshold. After updating synapse 2, we see already that the threshold will not
be reached.

In many cases, after updating just a couple of synapses, the approximated membrane
potential will drop below the threshold, so we can stop updating and wait for the next

766 M. D’Haene, B. Schrauwen, and D. Stroobandt

spike to enter. By updating the synapses with the oldest update-time first, we have the
highest likelihood that only a couple of updates are sufficient to see that the threshold
will not be reached because the maximum drops below the threshold. Therefore, we
keep the synapses ordered by their update-time. We implemented this in an efficient
way by placing them in a circular doubly linked list. Due to the algorithm, when the
oldest synapse needs to be updated (to the current time stamp), only the start-pointer of
the list needs to be updated, which involves no sorting actions (Fig. 3). As soon as the
influence of a synapse on the membrane potential becomes negligable, we remove the
synapse from the active synapse list.

Fig. 3. A circular doubly linked list is used to keep synapses ordered by their update time, thus
eliminating a sorting action. Also an index structure allows fast random access of synapses.

When the threshold is still reached after updating all synapses, we apply a Newton-
Rhapson (NR) method to estimate the exact fire-time stamp. Measurements show that
we have a high accuracy after only a few NR iteration steps. A drawback of our ap-
proach however is that for very high activity (spike-frequency ∼kHz, which is very
unrealistic), the maximum membrane approximation becomes almost useless and in-
troduces an overhead to the simulation.

3.4 Results

In order to be able to compare the simulation speed of our model with other models,
we used Booij’s restrictions to the multi-synapse neurons (i.e. each synapse τs,i was
set to τm,i/2) and compared the execution-times for several implementations. We used
multi-synapse neurons with a separate synapse constant for each input and neglected of
course the fact that the synapses can be actually combined to one synapse (because they
all have the same time constant, and can thus be calculated more efficiently).

In Figure 4 (top), we compare the execution time of several implementations of the
general LIF model for different network activities. The first optimization (calculating

Accelerating Event Based Simulation for Multi-synapse SNN 767

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

Comparison

number of events

ex
ec

ut
io

n
tim

e
[s

]

All synapses
Active synapses
Our model
Booij model
No synapse model

10
4

10
5

10
6

10
710

−2

10
−1

10
0

10
1

10
2

All synapses

number of events

ex
ec

ut
io

n
tim

e
[s

]

10 synapses
50 synapses
100 synapses

10
4

10
5

10
6

10
710

−2

10
−1

10
0

10
1

10
2

Our model

number of events

ex
ec

ut
io

n
tim

e
[s

]

10 synapses
50 synapses
100 synapses

Fig. 4. Simulations performed on a AMD athlon 64 3400+ based system. We used a network of
1000 neurons and one input neuron. Neurons are randomly interconnected to each other with
a spectral radius of 0.9 (this is the absolute value of the highest eigen-value of the connection
matrix). The input neuron is randomly connected to the network with an interconnection fraction
of 10% and fixed weights of 0.9. Each internal connection has a random delay between 0 and
10 ms and a random weight which is rescaled afterwards according to the spectral radius of
the network [17]. Inputs are generated by a Poisson process within the simulated interval [0,10]
seconds. The horizontal axis shows the total number of spikes (external and internal) processed
by the simulator in the simulated interval (∼ the network activity).

Figure top: comparison between Booij’s model and several optimizations of our common LIF
model with exponential synapses. All simulations use exact the same network with on average
100 synapse inputs per neuron.

Figure left: scaling of the not optimized common LIF model according to the average number
of synapses per neuron. Figure right: the same but for the optimized model.

768 M. D’Haene, B. Schrauwen, and D. Stroobandt

only active synapses) improves the performance of the simulator with approximately
a factor 2, dependent on the activity of the network. The membrane-value estimation
function further improves the performance with another factor 2. To show the efficienty
of Booij’s simulation model, we also plotted the execution time of a simple no-synapse
LIF model. We see that the performance of both models is almost the same, although
the computation power of Booij’s model is much higher [10]!

A second advantage of our algorithm is that the simulation of multi-synapse neurons
becomes less dependent of the interconnection density of the network, i.e. the average
number of input connections of each neuron. This is shown in Figures 4 (left) and
(right). We can see that for the unoptimized version of the algorithm, the execution
time is highly dependent of the number of inputs, because for each incoming spike,
all synapses have to be updated. In the optimized version however, it appears that the
influence of the average number of synapses per neuron has decreased significantly.
We did not plot the results for Booij’s model, but we found that the time to calculate
a number of events does not depend on the number of inputs of each neuron, as was
expected (because each input shares the same synapse).

4 Future Work

The event based principle discussed in this paper is a sequential process: events must
be handled one by one in the correct time-order. Although this allows yet for much
faster simulations compared to time-step based simulation, it is still much to slow to be
interesting for many applications (e.g. realtime simulations on modern architectures are
still limited to networks of order of magnitude 10.000 neurons [3]).

An obvious way to accelerate this sequential process is the use of more processing
units in parallel or through pipelining. Unfortunately the intense memory interaction of
event simulation creates an important memory bottleneck. Also the inherent parallelism
of SNN remains unused.

Our ultimate goal is to implement an event based simulator in parallel hardware.
Therefore, we are building a SystemC framework for parallel discrete event simulation
of SNN. It will allow us to investigate and optimize different synchronization mecha-
nisms for parallel event based simulation (discribed in [3]) in order to build an efficient
parallel SNN emulator. An important aspect is a hardware-friendly design: in a later sta-
dium, the simulator will be implemented in digital hardware (FPGA) in order to benefit
optimally from the inherent parallelism of SNN.

5 Conclusions

In this paper, we have shown that event based simulation is a good candidate for efficient
simulation of SNN, characterized by discrete pulses and very low activity. However, not
all neuron models are suited for such an event driven approach. A good compromise be-
tween complexity and possibilities is offered by the SRM0 model. We discussed several
techniques to efficiently implement a simple SRM0 with exponential membrane func-
tion and synapse model. Because these techniques do not support multi-synapse models

Accelerating Event Based Simulation for Multi-synapse SNN 769

efficiently, we presented an algorithm that handles multi-synapse models much more ef-
ficient. It provides a significant speedup of the simulations and moreover it improves
the scalability of the simulator with regard to the number of synapses.

References

1. R. Brette. Exact simulation of integrate-and-fire models with synaptic conductances. Sub-
mitted, 2005.

2. R. Carrillo, E. Ros, E. Ortigosa, B. Barbour, and R. Agis. Lookup table powered neural
event-driven simulator. In Proceedings of the 8th International Work-Conference on Artificial
neural Networks, IWANN 2005, pages 168–175, 2005.

3. M. D’Haene. Parallelle event-gebaseerde simulatietechnieken en hun toepassing binnen
gepulste neurale netwerken. Technical report, Universiteit Gent, 2005.

4. W. Gerstner and W. M. Kistler. Spiking Neuron Models. Cambridge University Press, 2002.
5. C. Grassmann and J. Anlauf. Distributed, event driven simulation of spiking neural networks.

In Proceedings of the International ICSC /IFAC Symposium on Neural Computation, pages
100–105, 1998.

6. A. Graves, D. Eck, N. Beringer, and J. Schmidhuber. Biologically plausible speech recogni-
tion with LSTM neural nets. In Proceedings of Bio-ADIT, pages 127–136, 2004.

7. A. L. Hodgkin and A. F. Huxley. A quantitative description of ion currents and its applica-
tions to conduction and excitation in nerve membranes. J. Physiol. (London), 117:500–544,
1952.

8. C. Lobb, Z. Chao, R. Fujimoto, and S. Potter. Parallel event-driven neural network simulation
using the Hodgkin-Huxley neuron model. In Proceedings of the 19th Workshop on Principles
of Advanced and Distributed Simulation, 2005.

9. W. Maass. Lower bounds for the computational power of networks of spiking neurons.
Neural Computation, 8(1):1–40, 1996.

10. W. Maass. Computation with spiking neurons. In The Handbook of Brain Theory and Neural
Networks. The MIT Press, 2001.

11. T. Makino. A discrete-event neural network simulator for general neural models. Neural
Computing & Applications, 11:210–223, 2003.

12. O. Rochel and D. Martinez. An event-driven framework for the simulation of networks
of spiking neurons. In Proceedings of the 11th European Symposium on Artifical Neural
Networks, ESANN 2003, pages 295–300, 2003.

13. B. Schrauwen. Embedded spiking neural networks. In Doctoraatssymposium Faculteit
Toegepaste Wetenschappen, pages on CD–ROM. Universiteit Gent, Gent, December 2002.

14. B. Schrauwen and M. D‘Haene. Compact digital hardware implementations of spiking neural
networks. In J. Van Campenhout, editor, Sixth FirW PhD Symposium, page on CD, 1 2005.

15. B. Schrauwen and J. Van Campenhout. Parallel hardware implementation of a broad class of
spiking neurons using serial arithmetic. In Proceedings of ESANN’06, 2006. To be published.

16. W. R. Softky. Simple codes versus efficient codes. Current opinion in neurobiology, 5:239–
247, 1995.

17. D. Verstraeten, B. Schrauwen, and D. Stroobandt. Reservoir-based techniques for speech
recognition. 2006. Accepted for publication at WCCI’06.

18. D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout. Isolated word recog-
nition with the liquid state machine: a case study. Information Processing Letters, 95(6):521–
528, 2005.

A Neurocomputational Model of an Imitation
Deficit Following Brain Lesion

Biljana Petreska and Aude G. Billard

Learning Algorithms and Systems Laboratory (LASA)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Station 9, CH-1015 Lausanne, Switzerland
biljana.petreska@epfl.ch, aude.billard@epfl.ch

Abstract. This paper investigates the neural mechanisms of visuo-motor
imitation in humans through convergent evidence from neuroscience. In
particular, we consider a deficit in imitation following callosal brain le-
sion, based on the rational that looking at how imitation is impaired can
unveil its underlying neural principles. We ground the functional architec-
ture and information flow of our model in brain imaging studies and use
findings from monkey brain neurophysiological studies to drive the choice
of implementation of our processing modules. Our neural model of visuo-
motor imitation is based on self-organizing maps with associated activi-
ties. Patterns of impairment of the model, realized by adding uncertainty
in the transfer of information between the networks, account for the scores
found in a clinical examination of imitation [1]. The model also allows sev-
eral interesting predictions.

1 Introduction

Apraxia is generally defined as the inability to perform voluntary movements
that cannot be explained by elementary motor, sensory or cognitive deficits (not
caused by weakness, ataxia, akinesia, deafferentation, inattention to commands
or poor comprehension). A standard test for clinical examinations of apraxia
is imitation of meaningless gestures which is believed to test the integrity of a
direct route from visual perception to motor control, not mediated by semantic
representations or verbal concepts [2]. Goldenberg has shown that knowledge
about body parts is also relevant, as apraxic patients were unable to map body
configurations to their own body nor to a mannikin [3]. Kinematic studies of
apraxia show spatial parapraxias (i.e., normal kinematic profiles with abnormal
final positions) that seem to arise from a basic deficit that concerns the mental
representation of the target position [4].

Goldenberg’s study. A seminal study of imitation of meaningless gestures ex-
amines a patient with callosal brain lesion (disconnected hemispheres) [1]. The
patient was asked to imitate a set of visual stimuli that present different positions
of the hand relative to the head (see Fig. 1). To disentangle the contribution of
each hemisphere the patient was tested tachistoscopically (i. e., the stimulus was

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 770–779, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Neurocomputational Model of an Imitation Deficit Following Brain Lesion 771

presented either to the left or right visual field) in a left- or right-hand imita-
tion condition. As shown on the figure (upper right) the pattern of errors varies
as a function of the visual field to which the stimuli were displayed and the
hand used to execute the imitative movement. The schema in Figure 1 shows
the hypothesized non-uniform information flow across the two hemispheres in
the different conditions, related to regions in the brain based on brain imaging
and lesion studies [5, 6, 7]. The stimulus is visually processed in the hemisphere
contralateral to the visual field (due to optic chiasm) and the motor command
is prepared in the hemisphere contralateral to the hand. The arrows show the
necessary transfer of information between the two hemispheres, thus a possible
source of spatial errors in the imitation (as the patient suffers from disconnected
hemispheres). Imitation was perfect only in the right visual field - right hand
condition, indicating a lateralization of the processing to the left hemisphere and
a necessary computational process in the brain area shown in dark grey.

RightLeft

Visual Field

RightLeft

 Hand

Hemispheres

RightLeft

Visual Field

RightLeft

 Hand

RightLeft

Visual Field

RightLeft

 Hand

EBA and MT/V5 (BA 19/37)

Intraparietal Sulcus (BA 40)

Dorsal Premotor (BA 6) & Motor

RightLeft

Visual Field

RightLeft

 Hand

Fig. 1. Upper left Goldenberg’s experiment of imitation of meaningless gestures, an
example of a visual stimulus to imitate and the errors made by the patient. Upper
right the patient’s score of success in the four conditions (several trials, in white control
data), taken from [1]. In the lower part, schema of information flow through the left
and right hemispheres of the brain in the four conditions, see the text for explanation.

2 Neurocomputational Model of Imitation

In this paper, we investigate impaired imitation of meaningless gestures, namely
hand postures relative to the head as the one shown in Figure 1. This work
follows from a general effort in our group to decipher the neural mechanisms of
visuo-motor imitation [8, 9]. In order to model the behavioral data reported in
Goldenberg’s study, we developed a neural network architecture that accounts for

772 B. Petreska and A.G. Billard

the transformations required to translate the observation of the visual stimulus
to imitate to the corresponding tactile and proprioceptive information that will
guide the imitative gesture. We simulate a callosal lesion by impairing the trans-
fer of information between the networks and observe the occurrence of spatial
parapraxias. Next, we describe the model.

2.1 Description of the Model

The model is composed of three neural networks, see Fig. 2: a face visual network
in Brodmann Area BA 19/37 at the level of the occipito-temporal junction, a
face somatic network in area BA 40 in the parietal cortex and a hand position
network probably in dorsal premotor area BA 6. As it is the case in imitation
of meaningless gestures we have implemented a visuo-motor route mediated by
somatic knowledge of body parts. The face visual network receives geometrical
properties of the visual stimulus to imitate (such as the position and angle of
the hand relative to the nose, see Fig. 2. The face somatic network receives input
from the face visual network and somatic input from tactile sensors of the face.
The hand position network receives visuo-somatic input from the face somatic
network and proprioceptive input from the arm. The neurons in our model are
leaky integrator neurons in order to account for variations of the membrane
potential in time and to have integrating properties.

Face visual network. The face visual network encodes geometrical properties of
the stimulus to imitate. The network receives the two-dimensional input xH

composed of the distance dH ∈ IR[0, 9] and angle φH ∈ IR[0, 2π] of the hand
relative the nose (shown on Fig. 2). We decided to use these two properties as
they univocally define the stimulus to imitate and are quantities easy to process
visually. It is certain that the brain uses also other quantities when imitating
a hand posture relative to the head (position relative to the eye may be more
appropriate in some cases), however we decided to limit the number of visual
properties for simplicity. It was important that the visual and somatic networks
rely on completely different representations.

The membrane potential mi of the visual neuron i is governed by a first order
differential equation modulated by a gaussian input:

τV d

dt
mV

i = −mV
i + e

−(
|wH

i
−xH |

2σ2
V

)
(1)

where τV is a time constant, wH
i are the synaptic weights that connect the

neuron i to the input xH = {dH , φH} and σV corresponds to the "sensitivity"
of the neuron to the input (a neuron with a large σV responds to a larger interval
of inputs values).

The firing rate is a sigmoid function of the membrane potential with slope a
and offset b:

g(mV
i) =

1
(1 + ea(−mV

i +b))
(2)

A Neurocomputational Model of an Imitation Deficit Following Brain Lesion 773

dH

φH

dH φH

Face Visual Network
EBA, MT/V5 Areas (BA 19/37)

Face Somatic Network
Left Intraparietal Sulcus (BA 40) Hand Position Network

Dorsal Premotor Area (BA 6)

x y z

Visual Input

Face Tactile Input

x

y

z

Arm Proprioceptive Input

WT

WH WP

WS
WV

} Reaching Command

Fig. 2. Schema of the neurocomputational model. The model is composed of three
neural networks that receive visual, tactile and proprioceptive input: a face visual
network that corresponds to Brodmann Area BA 19/37 at the level of the occipito-
temporal junction, a face somatic network that corresponds to area BA 40 in the
parietal cortex and a hand position network in dorsal premotor area BA 6.

Face somatic Network. The face somatic network is a somatotopically organized
network principally processing tactile information from the face. It receives input
xT ∈ IRNT

[0, 1] from NT = 1500 tactile sensors non-uniformly distributed on the
face (with a preponderant number of sensors around the eyes, nose and mouth).
It also receives visual input from the face visual network described previously.
The membrane potential mS

j of a somatic neuron with index j is equal to:

τS d

dt
mS

j = −mS
j +

NT∑
k=1

wT
jke

(−
|xP −rT

k
|

2σ2
T

)
+

NV∑
i=1

wV
jig(m

V
i) (3)

where τS is a time constant, wT
ik is the synaptic weight of the neuron to the

tactile sensor with index k and wV
ij is the synaptic weight to the visual neuron

with index i, NT and NV are the numbers of tactile sensors and visual neurons
respectively, rT

k ∈ IR3 is the position of the tactile sensor k in space, xP ∈ IR3 is
the center position of the hand-face contact and σT is the width of the contact.
Note that the face somatic network integrates inputs of different types, namely

774 B. Petreska and A.G. Billard

somatic input from the tactile sensors and visual input preprocessed by the face
visual network.

Three layers of the hand position network encode proprioceptive information
from the arm. Each layer encodes a different coordinate of the position of contact
xP ∈ IR3 of the hand and the face, expressed in head-centered cartesian coor-
dinates. Our motivations were the following: there is no "real" proprioceptive
information from the face and we hypothesized that this information could be
learned from correlations between the face tactile sensory activity and arm pro-
prioceptive activity during reaching movements toward the face. A "positional
code" may well be used in the brain where different coordinates are processed in
segregated neural substrates, possibly in Cartesian coordinates [10]. The frame
of reference is centered in the head to maximize the invariance of the positions
of the tactile sensors (which would not be the case in a body-centered frame of
reference because of the rotation of the head).

The neurons in the hand position network each have a preferred coordinate
value ck, preferred values were uniformly distributed in a volume that contains
the head IR3[-8,8]. The membrane potential mP

k integrates over the propriocep-
tive input xP and the visuo-somatic input g(mS

j) from the face somatic network
(the vectorial notation expresses the three layers of the hand position network):

τP d

dt
mP

k = −mP
k + e

−((xP −ck)2

2σ2
P

)
+

NS∑
j=1

wS
kjg(m

S
j) (4)

where wS
kj are the weights between a somatic neuron j and a position neuron

k, σP is the width of the receptive field of the position neuron and NS is the
number of neurons in the face somatic network. The activation function is the
same as in equation 2. The output of the hand position network is decoded
using a weighted average of NP (number of position neurons) firing rates which
corresponds to the position p on the face:

p =
∑NP

k=1 ckg(mP
k)∑NP

k=1 g(mP
k)

(5)

The decoded activity of the hand position network is used as a target for the
imitation of a visual stimulus.

2.2 Training the Weights

The synaptic weights between the networks and their sensory inputs (i. e.,
weights WH between the face visual network and the extracted visual para-
meters and weights WT between the face somatic network and the face tactile
input) have been trained with Kohonen’s algorithm [11]. Thus our networks are
self-organizing maps (SOM) whose weights preserve the topology of the input.
The unsupervised learning algorithm consists of randomly choosing a sensory
input x and determining the "winning neuron" with index j∗ whose weights

A Neurocomputational Model of an Imitation Deficit Following Brain Lesion 775

are closest to the input. It then updates the synaptic weights of the "winning"
neuron and neurons in its neighborhood by the following rule:

∆wi(j∗) = ε · e
− |i−j∗|

2σ2
K [x − wi] (6)

where ε is the learning rate, wi are the synaptic weights of the neuron with
index i and σK corresponds to the size of the neighborhood1. In the end stimuli
close in the input space are also close in the 2D neural space and more frequent
inputs yield larger neural activities.

The synaptic weights between the networks (i. e., weights WV between the
visual and the face somatic network and weights WS between the face somatic
and hand position network) were trained with a presynaptic gating anti-hebbian
learning rule:

∆wi,j = η · xj [2
∑

wi,kxk −mi] (7)

where wi,j is the synaptic weight between a presynaptic neuron xj and a post-
synaptic neuron with membrane potential mi and η is the learning rate. The
learning process associates correlated activities of two networks. The connecting
weights learn a mapping between the neural activity of one input and one output
network for a given stimulus. In other words the weights organize in order to
have the sensory activity in the input network represent the sensory activity in
the output network. Both WV and WS were trained during the same process
of self-observation, which simulates sensory input during reaching movements
toward the face in front of a mirror. For example, the activity in the face visual
network is associated to the somatic activity due to touching the face and is

Table 1. Parameter values

NV = 400 τV = 35ms σV = 0.6 σV K = 8 lV = 0.97 εV = 1 nV = 0.98
NS = 1225 τS = 35ms σS = 0.3 σSK = 22 lS = 0.9996 εS = 1 nS = 0.99999
NP = 3x100 τP = 35ms σP = 0.3
a = 15 b = 0.5 σ = lσ ε = nε η = −0.02

associated with a position in space through proprioceptive information from the
arm. In the end presentation of the visual stimulus to imitate alone yields the
corresponding neural activities in the face somatic and position networks thus
guiding a correct imitative action. The values used for the parameters of the
model were selected by trial and error and are shown in Table 12.

1 The weights were initialized with random values between 0 and 1 and the parameters
ε and σK were decreased at each step according to the functions in Table 1.

2 The inputs selected in the learning processes form a random uniform distribution in
the input space. For a faster convergence all the time constants were set to 1. The
Kohonen algorithm was run 100 times for the face visual network, 9000 times for the
face somatic network and the anti-hebbian learning process was iterated 5000 times.

776 B. Petreska and A.G. Billard

2.3 Simulation of the Lesion

For simulating the lesion of the corpus callosum (i. e., impaired transfer of in-
formation across the two hemispheres) we have taken into account two obser-
vations. First, some of the visual information must cross the callosum since the
patient succeeds to imitate some hand positions when he/she visually processes
the stimulus in one hemisphere and prepares the motor command in the other
hemisphere. Second, interestingly enough, time is a very important variable. If
the patient was given "unlimited time" he/she imitated correctly [12]. To model
the observation that some of the information crosses, we introduce a probabil-
ity of information transfer ρ . The impairing function is either applied at the
level of the connection (model 1) or at the level of the input of the neuron
(model 2). To model the improvement of the patient’s performance with time
we hypothesized an integrating factor greater than the decay factor. We added
a constant λ ∈ IR[0, 1], which slows down the membrane decay. The dynamics of
the membrane potential m of one neuron for the two models is then expressed
by:

1) τ
d

dt
m = −λm + Wf(I) 2) τ

d

dt
m = −λm + f(WI) m < f(WI) ⇒ λ = 0

(8)
where W is the weights matrix, I is the membrane input and f is the impairment
function such as f(x) = x with probability ρ and f(x) = 0 otherwise, see Figure
3. Therefore even if the neuron receives bits of information from time to time,
the membrane potential is no more precisely tuned to the input but continues
to integrate. As the face somatotopic network is situated in the left parietal
cortex,we impair the connecting weights WV in condition "left visual field" and
the weights WS in condition "left hand".

3 Results

To analyze the performance of our impairment models we have trained the
weights once, then quantified the spatial parapraxias as the distance E between
the desired end-target position r and the position p computed from the hand
position network under different patterns of impairment3.

A property of the model is to always converge to the right response given
unlimited time no matter how impaired the transfer of information is, as long as
some information does transfer (ρ > 0) and λ is small. As you can see in Figure 4
even for a probability of information transfer as small as ρ = 0.1 at the level of
a single connection, the model converges to the correct position over time given
a sufficiently small λ (0.1 in model 1 and 0.03 in model 2). The presence of λ
deteriorates the performance in the unimpaired situation (ρ = 1) in model 1 (see
Fig. 4) as the neuron membrane "overintegrates" in the first model, as shown
3 For a simpler analysis of the results we have impaired all the connections equally,

but our implementation allows variations of the percentage of impairment or location
and size of the lesion.

A Neurocomputational Model of an Imitation Deficit Following Brain Lesion 777

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

t (ms)

m
em

br
an

e
po

te
nt

ia
l

λ = 0.1

λ = 0.2

λ = 0.3

λ = 1

0 50 100 150 200 250 300
0

0.5

1

1.5

t (ms)

λ = 0.1

λ = 0.2

λ = 0.3

λ = 1

m

Fig. 3. The dynamics of the membrane potential of one neuron in model 1 which
impairs the connection (on the left) and in model 2 where the impairment occurs at
the neuron’s input (on the right). Input I = 0.5 was applied during 100ms and τ was
set to 30ms.

on Figure 3. Another drawback is that small values of λ render adaptation to
a novel stimulus slower. However a longer decay time presents the advantage of
having a "fading memory" of the stimulus, the stimulus remains represented in
the brain after the presentation time, which is compatible with the occurrence of
perseveration errors observed in experimental studies. Several predictions can be
made on the basis of these models. With severe lesions, the patient needs more
time to do a correct imitation, shown in Figure 4. It suggests that it is possible
to obtain a measure of severity of the lesion based on the time needed by the
patient to do the imitation. Small λ values would enable a correct processing
even at very high impairment rates, but would depreciate the reaction time.

0 200 400 600 800 1000
0

1

2

3

4

t(ms)

E
 =

 |r
−

p|

ρ = 0.1 λ = 0.1
ρ = 0.5 λ = 0.6
ρ = 0.9 λ = 0.9
ρ = 1 λ = 0.9

0 200 400 600 800 1000
0

1

2

3

4

t(ms)

ρ = 0.1 λ = 0.03
ρ = 0.5 λ = 0.3
ρ = 0.9 λ = 0.9
ρ = 1

Fig. 4. The error in imitation computed as the distance between the desired and sim-
ulated end-target position for different values of ρ and λ according to model 1 (on the
left) and model 2 (on the right). The observation that the patient required 180ms of
visual stimulus presentation time to be able to imitate motivated the choice for the pa-
rameters of the activation function and of τ (τ = 35). The starting position is the same
throughout the trials and corresponds to the origin of the head-centered coordinate
axis. We observe that more severe lesions necessitate longer processing time.

778 B. Petreska and A.G. Billard

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

t (ms)

E
 (

cm
)

impaired, chin

unimpaired, chin

impaired, eye

unimpaired, eye

Fig. 5. Left, comparison of the results of the Goldenberg’s study (light grey histograms)
to the results of the simulations using the impairment model 2 (dark grey, τ = 30ms,
ρ = 0.5, and λ = 0.3) and model 1 (black, τ = 30ms, ρ = 0.4, and λ = 0.4) respectively.
The imitation was considered correct if the error distance was lower than 2.5/1.3.
Right, inhomogeneities in the precision and processing time of imitation gestures toward
different parts of the face, dependent on how well represented they are in the face
somatic network (in our case the eye has a larger representation than the chin).

We compared the results of the simulations to the scores in Goldenberg’s
study with some adaptation. As we consider only the end-target spatial errors
and not errors in the hand posture (such as orientation of the hand or finger
configuration), we took the upper bound of the score used in the study (2 points
for a correct imitation). We replicated the same experimental conditions (i. e.,
same visual stimuli, 180ms of stimulus presentation and weights impairment
coherent with the four conditions as described in the study). A set of values
could explain the scores in the Goldenberg study, as shown in Figure 5. The
second model shows slightly better results, however this was not significant.

The representation of parts of the face in the "face somatic" network is non-
uniform, some face parts such as the eyes or the mouth are overrepresented in
contrast with the cheek or the chin. This is due to the non-uniform distribution
of the tactile sensors. Therefore we observe inhomogeneities in the precision of
the imitation task and in the processing times (shown in Fig. 5). Interesting
predictions can be made from focal rather than diffuse lesions (i. e., stroke vs
degenerative lesions). If only one part of the information transfer in weights
WV connecting the visual and somatic networks is impaired, then one should
observe deficits in imitation only in some parts of the face and not in others.
Specific local impairment of the weights WS connecting the somatic and position
networks could provoke errors in only one coordinate. For example, if the brain
really uses a Cartesian representation in a head-centered frame of reference,
then the position of the hand when reaching for the final target would be shifted
only along one coordinate axis around the head. Spatial errors made by stroke
patients should be used to test the plausibility of the model. However, because of
brain reorganization, one should look at the impairment in imitation immediately
after the lesion. As our model has learning properties, the model could possibly
account for some of the effects of brain organization.

A Neurocomputational Model of an Imitation Deficit Following Brain Lesion 779

3.1 Conclusion

We presented a neural network architecture that could reproduce the deficits in
visuo-motor imitation of meaningless gestures, reported in Goldenberg’s seminal
study [1]. We modelled two types of lesions that would affect either the integra-
tive computation of the neuron or the connectivity across the neurons, leading to
different predictions. Further, the model makes hypotheses on the type of repre-
sentation used for the stimuli, for which there is as yet no neurological evidence.
Further behavioral studies will be required to validate or invalidate the model’s
hypotheses and predictions.

References

1. Goldenberg, G., Laimgruber, K., Hermsdörfer, J.: Imitation of gestures by discon-
nected hemispheres. Neuropsychologia 39 (2001) 1432–43

2. Poeck, K., Kerschensteiner, M.: Ideomotor apraxia following right-sided cerebral
lesion in a left-handed subject. Neuropsychologia 9 (1971) 359–361

3. Goldenberg, G.: Imitating gestures and manipulating a mannikin – the represen-
tation of the human body in ideomotor apraxia. Neuropsychologia 33(1) (1995)
63–72

4. Hermsdörfer, J., Mai, N., Spatt, J., Marquardt, C., Veltkamp, R., Goldenberg, G.:
Kinematic analysis of movement imitation in apraxia. Brain 119 (1996) 1575–1586

5. Decety, J., Grèzes, J., Costes, N., Jeannerod, M., Procyk, E., Grassi, E., Fazio, F.:
Brain activity during observation of actions. Brain 120 (1997) 1763–1777

6. Mühlau, M., Hermsdörfer, J., Goldenberg, G., Wohlschläger, A.M., Castrop, F.,
Stahl, R., Röttinger, M., Erhard, P., Haslinger, B., Ceballos-Baumann, A.O., Con-
rad, B., Boecker, H.: Left inferior parietal dominance in gesture imitation: an fMRI
study. Neuropsychologia 43 (2005) 1086–1098

7. Haaland, K.Y., Harrington, D.L., Knight, R.T.: Spatial deficits in ideomotor limb
apraxia. A kinematic analysis of aiming movements. Brain 122 (1999) 1169–1182

8. Sauser, E., Billard, A.: Parallel and distributed neural models of the ideomotor
principle: An investigation of imitative cortical pathways. Neural Networks, Special
Issue on The Brain Mechanisms of Imitation Learning 19(3) (2006)

9. Billard, A.: Imitation: In M. A. Arbib (ed.). Handbook of Brain Theory and Neural
Networks (2002) 566–569

10. Lacquaniti, F., Guignon, E., Bianchi, L., Ferraina, S., Caminiti, R.: Representing
spatial information for limb movement: role of area 5 in the monkey. Cerebral
Cortex 5 (1995) 391–409

11. Kohonen, T.: Self-Organizing Maps. 3. ed., Springer-Verlag (2001)
12. Zaidel, D., Sperry, R.W.: Some long term motor effects of cerebral commissurotomy

in man. Neuropsychologia 15 (1977) 193–204

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 780 – 789, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Temporal Data Encoding and SequenceLearning with
Spiking Neural Networks

Robert H. Fujii and Kenjyu Oozeki

School of Computer Science and Engineering
University of Aizu

Fukushima Prefecture, Aizu-Wakamatsu
fujii@u-aizu.ac.jp

Abstract. Sequence Learning using a Spiking Neural Network (SNN) was
performed. An SNN is a type of Artificial Neural Network (ANN) that uses
input signal arrival time information to process temporal data. An SNN can
learn not only combinational inputs but also sequential inputs over some limited
amount of time without using a recurrent network. Music melodies were
encoded using unit amplitude spikes having various inter-spike interval times.
These spikes were then fed into an SNN learning system. The SNN learning
system was able to recognize various melodies after learning. The SNN could
identify the original and noise-added melody versions properly in most cases.

Keywords: Spiking Neural Network, sequence learning, temporal data
processing.

1 Introduction

Intensive research in the neuro-computational area is currently taking place in many
parts of the world with the goal of understanding how the brain processes complex
information quickly and seemingly without effort. Brain research has uncovered
biophysical evidence that various types of neurons with specialized capabilities are
involved in the information processing that occurs in the brain and the spinal cord.
Artificial Neural Networks (ANNs) are simplified models of the kinds of neural
networks used in the brain. An artificial neuron model is shown in Figure 1. The
input, the output, the response function, and the weight of the ANN model correspond
respectively to the biological neuron’s dendrite, axon, soma response function, and
synapse weight. A dendrite receives inputs from other neurons through its synapses.
An axon corresponds to the output terminal of a neuron. A soma is the main body of a
neuron. A synapse ties one neuron with other neurons; the transmission efficiency of
a synapse is dependent on how much the input signal is attenuated at the synapse.
 Traditional neural networks [2] constructed using neurons based on the ANN
model, process input data (analog amplitude or digital 1 or 0 data) at discrete times
and it is generally assumed that all neurons in a large network work synchronously
(i.e. a global clock is needed). Such neural networks have been used mainly to process
combinational inputs (rate-code processing). For sequential input processing using the

 Temporal Data Encoding and SequenceLearning with Spiking Neural Networks 781

traditional neural networks, a feedback connection from the neuron output to its input
is used; neural networks that use feedback connections are called recurrent neural
networks [4]. The problem with recurrent networks for sequence recognition has been
that past sequence information gradually gets “forgotten” as new information is input.

x

x

x

x

f(X) y=f(X)

w

w

w

w

1

2

3

4

1

2

3

4

ww w w
1 2 3 4
x x x x

1 2 3 4
X= ++ +Inputs

output

f : a response function

Fig. 1. ANN Model

 A different type of artificial neuron is the spiking neuron model shown in Figure 2.
Although a spiking neuron with only a single synaptic input is shown in Figure 2, a
spiking neuron can have multiple synapses.

t t t t1n i
j

n

w
i

input output

Spiking
Neuron

Fig. 2. Spiking Neuron with Spike Train Input

 The inputs into a spiking neuron synapse consist of a sequence of unit amplitude
digital spikes of very short duration. A sequence of spike inputs entering a synapse is
called a spike train. The inter-spike times in a spike train are real valued and can take
an infinite number of values within some specified range. Thus, information can be
carried by the inter-spike times as well as by their sequence. This neuron’s response
function is based on the Leaky Integrator Fire Neuron model [3].
 A spiking neuron has the following characteristics that differentiate it from the
traditional ANN model: a) although it can process combinational inputs, its response
function makes it easier to process inter-spike temporal information; and b) only a
local timing reference is needed. There is a neurological basis to the spiking neuron
model; recent neurological research has shown that in addition to the average firing
frequency (rate code), biological neurons utilize the temporal information contained
in the sequence of inter-spike times. The inter-spike interval (ISI) time information

782 R.H. Fujii and K. Oozeki

encoding space can be much larger than the one provided by the rate code used in
traditional neural networks as was shown in [7]. Thus, the rich bandwidth for ISI
information coding can lead to efficient neural networks. For further background on
SNNs and their computational capabilities the reader is referred to [1, 3]. Spiking
neural networks have been used for applications such as sound recognition and
function approximation [5, 6].
 In this paper, learning sequential data using an SNN is proposed. Past approaches
for learning sequences using neural net like structures have included recurrent
networks such as those described in [4]. The sequence learning method proposed in
this paper uses spiking neurons connected in a feed-forward neural network structure
and does not have the “forgetting“ problem associated with recurrent networks. To
test the efficacy of the proposed sequence learning method, short sequences (six to
eight measures) of musical notes forming sub-sections of musical melodies were used
as sequential data to be learned by an SNN learning system. The melody data
consisting of note pitches and note time duration information was encoded into spike
trains; these spike trains were then converted into a simpler form that could be more
easily learned by the SNN learning stage. The SNN learning system was able to
distinguish various melodies with and without added noise. An advanced version of
this system could be used as a music database search machine.

2 Sequence Learning Using a Spiking Neural Network

The learning algorithm described in this paper utilizes two models of the spiking
neuron: 1) the Leaky Integrate and Fire Neuron (LIFN) model [3] used for the
coincidence detection neuron in the Learning Unit; and 2) a simplified version of the
LIFN model used for the Mapping and Learning Units. The Mapping and Learning
Units are described in section 3 of this paper. The structure of the learning system is
shown in Figure 5.
 The internal potential function of an LIFN spiking neuron [1] is defined as follows:

 () ()W1
nt tx j ii t iαβ= −= (1)

Wi is the ith synaptic weight variable. ()j tx is the jth neuron’s internal potential at

time t. β is a weight scaling parameter. α (t) is the spike neuron’s internal potential

function

 1() .
tt

t e τα
τ

−= (2)

τ is a time constant parameter that determines the rate of decay.
 For the simplified LIFN model spiking neuron, the internal neuron potential
function (2) was changed from an exponential function with decay to a linear
integrator function with no decay as shown in (3). The exponential function in the
LIFN model was changed to a linear)(tα function by letting tτ . The simplified

LIFN model makes the theoretical analysis of a spiking neural network more

 Temporal Data Encoding and SequenceLearning with Spiking Neural Networks 783

manageable. The simplified LIFN model based spiking neuron has the following
()tα and ()tjx functions:

 () ; () 1 .nt tj i
ie tt exα β

ττ= = = (3)

In the melody learning experiments, it was assumed that the inter- spike time could be
any real value 3≥ ms. The 3 ms minimum inter-spike time value was selected to

reflect the fact that a biological brain does not appear to be able to distinguish inter-
spike times that are smaller than approximately 3ms. A much smaller minimum inter-
spike time can be selected if the spike train processing is carried out using a spiking
neural network implemented in hardware (e.g. as an integrated circuit) or in the case
of software-based computer simulations.

2.1 Mapping of Spike Train Data

Twenty -five music note pitches (from C4 to C6, two octaves) and the time duration
of the notes were used to represent the notes of a melody. Note duration time
encoding examples are shown in Figure 3. A sixteenth note was represented by two
spikes spaced 6 ms apart (first row of Figure 3, spikes at time 0 and 6 ms). The end of
a note was represented by a spike 3ms after the last spike representing a given note
duration (first row of Figure 3, spike at time 9 ms).

(ms)3 6

(ms)6 12 18 24

(ms)12 6 18 30 36

12

21 30

4224

(ms)12 6 18 30 36 4224

21

36

45

 9 18

40 43

48 54 60 66 69

Fig. 3. Spike Train Encoding of Note Duration

 For the second sixteenth note, spikes occurred at times 12 ms and 18 ms followed
by a spike at time 21ms (first row of Figure 3). The separation between two notes that
were to be heard as two distinct sounds was encoded using: a 3 ms delay after the end
of a note spike. Two sixteenth notes connected by a slur (i.e. the two sixteenth notes
are to be sounded continuously for a one eighth time duration), were represented with
four spikes having inter-spike times of 6 ms (refer to row 2 of Figure 3, spikes at
times 0, 6 ms, 12 ms, and 18 ms followed by a note separation spike at time 21 ms) .

784 R.H. Fujii and K. Oozeki

The eighth note, fourth note, and the dotted fourth note representations are also shown
in Figure 3.
 Instead of trying to directly learn the complex characteristics of the spike trains that
represented a musical melody, spike train data was first converted (mapped) into a
simpler form using mapping units. A mapping unit receiving a spike train and
producing two output firing times from the spiking neurons labeled ISI1 and ISI2 is
shown in Figure 4. A particular aspect of the melody (e.g. a certain note pitch and its
time duration) was assigned its own mapping unit. A mapping unit received the spike
train data and then mapped it into the output firing times of the ISI1 and ISI2 neurons.
Thus, an almost ideal one-to-one mapping between a spike train and the output firing
times of two neurons could be achieved. However, realizing a unique one-to one
mapping was not possible because the inter-spike times were real valued numbers

3≥ ms. An attempt was hence made to use a spike train mapping scheme that would
have a very low probability of producing the same output firing times for different
spike trains. Two kinds of Inter-Spike Interval (ISI) spiking neurons having different
weight assignment functions were selected to perform the spike train mapping: ISI1
and ISI2 neurons. The ISI neurons are based on the simplified LIFN model.
 The ISI1 neuron dynamically assigns a synaptic weight to an incoming spike input
depending on the spike’s arrival time with respect to a local reference time. The

synaptic weight Wi = tiτ

β1 (i.e. proportional to the spike arrival time) when 1≠i and

W1 when i =1 in (4) for the ISI1 neuron.

 For the ISI2 neuron the synaptic weight Wi = 2β τ (i.e. a constant weight) when

1≠i and W1 when i =1 in (4). It should be noted that the weight assignment for ISI2

does not depend on the input time as in ISI1 but the ISI2 neuron output firing time is
still dependent on the input time of the spikes in a spike train.

W 2

W W

W

2
1

1
2

2

w() ()

w() ()

.

o u t

o u t n
n

t to u t

t t t o u t

ti i

x t t

n
i

i
n

i

β

β
β

β

τ

τ τ

τ

+ + ⋅ ⋅ ⋅ +

+

−

− +
=

=

=

= −

− (4)

x (t) = Internal Potential of neuron; w1 = constant weight for fist spike
wi = Weight for ith spike; ti = ith spike time; tout = output spike time
τ = time constant parameter; n = nth spike; β = Weight scaling parameter

 The ISI1 or ISI2 neuron internal potential function is shown in (4). When x (t) in
(4) reaches a specified threshold voltage v from below, the neuron fires a spike at
time tout. W1 is the weight assigned for the first spike at the input of the ISI neuron.
For the ISI1 neuron, the Wi weights are proportional to the ith spike input time. For
the ISI2 neuron, the Wi weight is a constant.

 Temporal Data Encoding and SequenceLearning with Spiking Neural Networks 785

 The threshold voltage of an ISI neuron can be derived from (4) as follows:

21 1
1

2 2

n n
1 v1: (()) () .out i

i i
ISI tt W it

β β
τ τ= =

= + − (5)

2
2 1

2
2: () (-).v

n
out out i

i
ISI t W t t

=
= + τ

β (6)

v1 and v2 are the threshold voltages for the ISI1 and ISI2 neurons respectively. The
neuron fires at time tout when the threshold voltage is reached. The W1 weight value

used for ,t 01= was assigned a constant value of 0.7 based on experimental data. n is

the number of spikes in a spike train.

Fig. 4. Spike Train Data Mapped by ISI1 and ISI2 into output times tj and tk

2.2 Determining the β Parameter Value

The β parameter value used in equations (1, 3 – 6) for the ISI units in the mapping

and learning units has to be determined appropriately in order for the SNN learning
system to work accurately and quickly. When β is set too small, the neuron firing

time becomes long and thus the overall processing speed slows down; when β is set

too high, not all input spikes may be accounted for because some of the spiking
neurons will fire before having received all the spikes. The β values for the mapping

and learning units have to be set separately because the number of spikes entering
these units is different. Some assumptions were made: 1) the threshold voltages (v1
and v2 in (5) and (6)) for the ISI1 and ISI2 neurons were set to 0.8V assuming that the
learning system would be implemented in some VLSI technology with transistors that
have a threshold voltage in the 0.8 V range; and 2) in order to account for all spike
inputs within a spike train, the spiking neuron’s firing time was made to occur after a
pre-specified input time window (e.g. one second). To account for the worst case

inputs that cause the neuron to fire at the earliest time, the β1
 parameter for the ISI1

neuron was computed by assuming that all spikes in a spike train arrive at
2

tinp
,

786 R.H. Fujii and K. Oozeki

where t inp was either the mapping or the learning unit’s input time window + 3ms

(the minimum inter-spike time tδ). A spike train in which spikes arrive at the earliest

possible input times makes the ISI2 neuron fire the earliest.
1β and

2β were

computed as follows:

1 1
1 2

(()
1: .

()
()(1) (1)

2 2

ISI
)inp

inp t ttinp
t n ntinp

t Wv t

t

τ

δ δ
δ

δ
β

−
=

+ +
+ − − −

+
(7)

2 1
2

2

(())
2 : .

1
() (1)

2

inp

n
inpi

t
ISI

t t n n

Wv t

t

τ δ

δ δ
β

=

−
=

+ − −

+
(8)

Using the β values computed using (7) and (8), the ISI1 and ISI2 neurons fired only

after receiving all input spikes in a spike train. The value of n, the maximum number
of spikes in a spike train, was set arbitrarily to 100 for the mapping unit and to 50 for
the learning unit. For the mapping unit, six to eight measures of a musical melody line
were assumed to have on the average up to 32 notes and that not all the notes in the
melody were identical; hence, a spike train representing the note durations for one
note pitch would most likely have less than 100 spikes. For the learning unit, the
maximum number of spikes was set to 50 because there were 25 mapping units (one
mapping unit for each note pitch) and two neuron output firings times for each
mapping unit. For the mapping and learning units, the actual number of spikes in a
spike train could vary from 0 to 100 and from 2 to 50 respectively depending on the
melody. The maximum number n of spikes can be set to a different value provided
various parameters such as β are adjusted properly.

 It should be noted that there is no guarantee of a one-to-one input-output mapping
result despite the fact that two types of ISI neurons are used to map one spike train.
However, the choice of these two particular ISI1 and ISI2 neurons can be shown to
have a low probability of generating identical ISI1 and ISI2 output times for two
different input spike trains.

3 Melody Learning System

The structure of the learning system is shown in Figure 5. The system is comprised of
the Mapping stage and the Learning stage. The Mapping stage and the Learning stage
consist respectively of Mapping Units (MUs) and Learning Units (LUs). The
learning system was simulated using MATLAB [8].

3.1 Mapping Stage

The Mapping stage is composed of MUs as shown in Figure 5. Each MU is composed
of one ISI1neuron and one ISI2 neuron as described in Section 2 and shown in Figure
4. 25 music note pitches (from C4 to C6, two octaves) and the time duration of the

 Temporal Data Encoding and SequenceLearning with Spiking Neural Networks 787

notes were used to represent a melody. One MU unit was assigned to one note pitch
(e.g. note C4 was assigned to MU1). Therefore, altogether 25 MUs were used in the
Mapping stage. The melody data consisting of notes of various pitches and of various
durations were encoded into spike trains (as described in section 2) and were then fed
into the mapping stage where each spike train data was converted to two neuron
output times (ISI1 and ISI2 output times) in each MU. Thus, if 25 spike train inputs
are fed into the 25 Mapping units, 50 output spikes are output by the ISI neurons. .
 The 50 output spikes from all the MUs formed the encoding (mapping) of the
melody’s 25 spike trains. All 50 output spikes from the Mapping stage were fed into
the Leaning stage LUs as shown in Figure 5.

output

Mapping Stage Learning Stage

n spike trains 2n spikes

Mapping Unit Learning Unit

ISI1

ISI2

ISI1

ISI2

Fig. 5. Mapping and Learning System

3.2 Learning Stage

The Learning stage is composed of Learning Units (LUs) as shown in Figure 5. Each
LU is composed of one ISI1 and one ISI2 neuron. Each ISI neuron receives 50 inputs
from the mapping stage. Supervised learning is performed.
 Initially there are no LUs. When learning starts, the first LU is generated; the
synaptic weights for this LU are determined by the output firing times produced by
the Mapping stage for a particular melody. In an LU, once the synaptic weights have
been determined, the weights remain fixed so that a particular melody can be
recognized by the output firing times of the ISI1 and ISI2 neurons in the LU. Thus,
unlike the MU’s ISI1 synaptic weights that dynamically change every time a spike is
input, the LU’s ISI1 synaptic weights remain fixed after learning. The supervised
learning algorithm is as follows:

1) Select one original noise-free melody (e.g. melody 1) and assign weights to the LU
(e.g. LU1) that is to represent this melody. The weights may be re-adjusted later in
order to accommodate noisy versions of the same melody. 2) Select a noisy version of
the original noise-free melody chosen in step 1. Apply the mapping stage outputs for
this noisy version to the LU for which weights were assigned in step 1. 3) Compare

788 R.H. Fujii and K. Oozeki

the output firing times of the LU for the original noise-free melody and the noisy
version. If the output times differ by less than some ε time, the noisy version of the
melody can be recognized using the same LU assigned for the original noise-free
melody. If the output firing times differ by more than some ε time, a new LU is
assigned for the noisy version of the melody. 4) Repeat steps 2 and 3 until all noisy
versions of the original noise-free melody have been selected. 5) Repeat from step 1
for the remaining original noise-free melodies. At least one LU is needed for each
melody. Additional LU units were sometimes needed to recognize a noisy version of
the original noise-free melody.

3.3 Music Melody Data

Five different melodies and their noisy versions were used. Noise consisted of adding/
deleting a note, changing the time duration of a note, changing the pitch of a note, and
shifting the times of the spikes slightly. Altogether fifty melody patterns were used
for the learning simulations. Melody patterns 1 – 5 were the five original noise-free
melodies. Melody patterns 6 and 11were made by adding one unused note pitch to the
original melody 1. Melody pattern 7 was made by interchanging two spike trains
representing two different pitches in melody 2. Melody pattern 8 was made by
prolonging the duration of one note in melody 3. Melody pattern 9 was made by
shortening the duration value of one note in melody 4. Melody pattern 10 was
melody pattern 5 with one of the notes removed. Random spike time shifting noise
was added to these eleven patterns in order to make 39 additional patterns. Ideally,
five LUs should have been sufficient to distinguish the five melodies and their noisy
versions as shown in Table 1. However, nine LUs were needed because some of the
noisy versions could not be grouped together into the same LU that had been assigned
for the original noise-free melody.

Table 1. Ideal Melody Learning Table 2. Actual Learning Results

 Nine LUs were needed to group the 50 melody patterns. Depending on the type of
noise, more than one LU was needed to recognize a melody; for example, LU1, LU6,
and LU9 were needed for pattern 1 and its noisy versions. After learning, a test of the

 Temporal Data Encoding and SequenceLearning with Spiking Neural Networks 789

SNN system was performed to ascertain that the system did not cause more than one
LU unit to fire at the same time for one melody.
 Two problems occurred during the learning of melodies:

1) Noisy versions of the original melodies required additional LUs. One way to solve
this problem is to re-adjust the already “fixed” weights of the LUs so that additional
noisy versions of the melodies can also be included in order to reduce the number of
LUs.
2) An LU that was supposed to respond to only one melody group can incorrectly
respond to a melody belonging to a different group with nearly the same LU output
times. There are several ways in which this problem can be solved: a) coincidence
detection neurons, based on the Leaky Integrate and Fire spiking neuron model
described in the introduction, can be used to distinguish slightly different LU output
times; b) delay one of the output times with respect to the other by modifying β ; c)

sub-divide the 50 inputs of the offending LU into groups of smaller number of inputs
by using two or more LUs.

4 Conclusions

The recognition of temporal sequential data using a spiking neural network was
carried out. Simple musical melodies were used as examples of temporal sequential
data
 The proposed Mapping-Learning SNN was able to recognize various melodies and
their noise added versions properly. However, areas that remain to be further
developed include: a) longer sequence learning; b) good algorithm for the
minimization of Learning Units; and c) an unsupervised learning scheme.

References

[1] W. Maass and C. M. Bishop, “Pulsed Neural Networks,” MIT Press, Cambridge,
Massachusetts, 1999.

[2] S. Haykin, “Neural Networks,” Prentice-Hall Publishers, 1999.
[3] W. Gerstner and W. Kistler, “Spiking Neuron Models,” Cambridge University Press,

2002.
[4] Deliang Wang and Michael A. Arbib, “Complex Temporal Sequence Learning Based on

Short-term Memory,” Proceedings of the IEEE, Vol. 78, No. 9, Sept. 1990, pp. 1536-1543.
[5] H. H. Amin and R. H. Fujii, “Spike Train Decoding Scheme for a Spiking Neural

Network,” Proceedings of the 2004 International Joint Conference on Neural Networks
(IJCNN ’04), IEEE, pp.477-482, 2004.

[6] H. H. Amin and R. H. Fujii, “Spike Train Learning Algorithm, Applications, and
Analysis,” 48th IEEE Int’l Midwest Symposium on Circuits and Systems, Ohio, 2005.

[7] W. Maass, “Lower Bounds for the Computational Power of Networks of Spiking
Neurons,” Neural Computation, Vol. 8, No. 1, pp. 1-40, 1996.

[8] MATLAB,< http://www.cybernet.co.jp/matlab/>.

Optimal Tuning of Continual Online Exploration
in Reinforcement Learning

Youssef Achbany, Francois Fouss, Luh Yen, Alain Pirotte, and Marco Saerens

Information Systems Research Unit (ISYS)
Place des Doyens 1, Université de Louvain, Belgium

{youssef.achbany, francois.fouss, luh.yen, alain.pirotte,
marco.saerens}@ucLouvain.be

Abstract. This paper presents a framework allowing to tune contin-
ual exploration in an optimal way. It first quantifies the rate of ex-
ploration by defining the degree of exploration of a state as the
probability-distribution entropy for choosing an admissible action. Then,
the exploration/exploitation tradeoff is stated as a global optimiza-
tion problem: find the exploration strategy that minimizes the expected
cumulated cost, while maintaining fixed degrees of exploration at same
nodes. In other words, “exploitation” is maximized for constant “ex-
ploration”. This formulation leads to a set of nonlinear updating rules
reminiscent of the value-iteration algorithm. Convergence of these rules
to a local minimum can be proved for a stationary environment. Inter-
estingly, in the deterministic case, when there is no exploration, these
equations reduce to the Bellman equations for finding the shortest path
while, when it is maximum, a full “blind” exploration is performed.

1 Introduction

One of the specific challenges of reinforcement learning is the tradeoff between ex-
ploration and exploitation. Exploration aims to continually try new ways of solv-
ing the problem, while exploitation aims to capitalize on already well-established
solutions. Exploration is especially relevant when the environment is changing,
i.e. nonstationary. In this case, good solutions can deteriorate over time and
better solutions can appear. Without exploration, the system sends agents only
along the up-to-now best path without exploring alternative paths. The system
is therefore unaware of the changes and its performance inevitably deteriorates
with time. One of the key features of reinforcement learning is that it explicitly
addresses the exploration/exploitation issue as well as the online estimation of
the probability distributions in an integrated way [18].

This work makes a clear distinction between “preliminary” or “initial explo-
ration”, and “continual online exploration”. The objective of preliminary ex-
ploration is to discover relevant goals, or destination states, and to estimate a
first optimal policy for exploiting them. On the other hand, continual online
exploration aims to continually explore the environment, after the preliminary
exploration stage, in order to adjust the policy to changes in the environment.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 790–800, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimal Tuning of Continual Online Exploration in Reinforcement Learning 791

In the case of preliminary exploration, two further distinctions are often made
[19,20,21,22]. A first group of strategies uses randomness for exploration and
is often referred to as undirected exploration. Control actions are selected with
a probability distribution, taking the expected cost into account. The second
group, referred to as directed exploration, uses domain-specific knowledge for
guiding exploration [19,20,21,22]. Usually, directed exploration provides better
results in terms of learning time and cost.

On the other hand, “continual online exploration” can be performed by, for
instance, re-exploring the environment either periodically or continually [6,15]
by using a ε-greedy or a Boltzmann exploration strategy. For instance, joint
estimation of the exploration strategy and the state-transition probabilities for
continual online exploration can be performed within the SARSA framework
[14,16,18].

This work presents a unified framework integrating exploitation and explo-
ration for undirected, continual, exploration. Exploration is formally defined as
the association of a probability distribution to the set of admissible control ac-
tions in each state (choice randomization). The rate of exploration is quantified
with the concept of degree of exploration, defined as the (Shannon) entropy
[10] of the probability distribution for the set of admissible actions in a given
state. If no exploration is performed, the agents are routed on the best path with
probability one – they just exploit the solution. With exploration, the agents con-
tinually explore a possibly changing environment to keep current with it. When
the entropy is zero in a state, no exploration is performed from this state, while,
when the entropy is maximal, a full, blind exploration with equal probability of
choosing any action is performed.

The online exploration/exploitation issue is then stated as a global opti-
mization problem: learn the exploration strategy that minimizes the expected
cumulated cost from the initial state to the goal while maintaining a fixed de-
gree of exploration. In other words, “exploitation” is maximized for constant
“exploration”. This problem leads to a set of nonlinear equations defining the
optimal solution. These equations can be solved by iterating them until conver-
gence, which is proved for a stationary environment and a particular initialization
strategy. They provide the action policy (the probability distribution of choosing
an action in a given state) that minimizes the average cost from the initial state
to the destination states, given the degree of exploration in each state. Interest-
ingly, when the degree of exploration is zero in all states, which corresponds to
the deterministic case, the nonlinear equations reduce to the Bellman equations
for finding the shortest path from the initial state to the destination states. The
main drawback of this method is that it is computationally demanding since it
relies on iterative algorithms like the value-iteration algorithm.

For the sake of simplicity, we first concentrate here on “deterministic shortest-
path problem”, as defined for instance in [5], where any chosen control action
deterministically drives the agent to a unique successor state. On the other
hand, if the actions have uncertain effects, the resulting state is given by a
probability distribution and one speaks of “stochastic shortest-path problems”.

792 Y. Achbany et al.

In this case, a probability distribution on the successor states is introduced and it
must be estimated by the agents; stochastic shortest-path problems are studied
in Section 4.

Section 2 introduces the notations, the standard deterministic shortest-path
problem, and the management of continual exploration. Section 3 describes our
procedure for solving the deterministic shortest-path problem with continual
exploration, while the stochastic shortest-path problem is discussed in Section
4. Section 5 is the conclusion.

2 Statement of the Problem and Notations

2.1 Statement of the Problem

During every state transition, a finite cost c(k, u) is incurred when leaving state
k ∈ {1, 2, . . . , n} while executing a control action u selected from a set U(k)
of admissible actions, or choices, available in state k. The cost can be positive
(penalty), negative (reward), or zero provided that no cycle exists whose total
cost is negative. This is a standard requirement in shortest-path problems [8];
indeed, if such a cycle exists, then traversing it an arbitrary large number of
times would result in a path with an arbitrary small cost so that a best path
could not be defined. In particular, this implies that, if the graph of the states
is nondirected, all costs are nonnegative.

The control action u is chosen according to a policy Π that maps every state
k to the set U(k) of admissible actions with a certain probability distribution,
πk(u), with u ∈ U(k). Thus the policy associates to each state k a probability dis-
tribution on the set of admissible actions U(k): Π ≡ {πk(u), k = 1, 2, . . . , n}. For
instance, if the admissible actions in state k are U(k) = {u1, u2, u3}, the distrib-
ution πk(u) specifies three probabilities πk(u1), πk(u2), and πk(u3). The degree
of exploration is quantified as the entropy of this probability distribution (see
next section). Randomized choices are common in a variety of fields, for instance
decision sciences [13] or game theory, where they are called mixed strategies (see,
e.g., [12]). Thus, the problem tackled in this section corresponds to a randomized
shortest-path problem.

Moreover, we assume that once the action has been chosen, the next state
k′ is known deterministically, k′ = fk(u) where f is a one-to-one mapping be-
tween (states, actions) and resulting state. We assume that different actions lead
to different states. This framework corresponds to a deterministic shortest-path
problem. A simple modeling of this problem would do without actions and di-
rectly defined state-transition probabilities. The more general formalism fits full
stochastic problems for which both the choice of actions and the state transitions
are governed by probability distributions (see Section 4).

We assume, as in [5], that there is a special cost-free destination or goal
state; once the system has reached that state, it remains there at no further
cost. The goal is to minimize the total expected cost VΠ(k0) (Equation (2.1))

Optimal Tuning of Continual Online Exploration in Reinforcement Learning 793

accumulated over a path k0, k1, ... in the graph starting from an initial (or source)
state k0:

VΠ(k0) = EΠ

[∞∑
i=0

c(ki, ui)

]
(2.1)

The expectation EΠ is taken on the policy Π that is, on all the random choices
of action ui in state ki.

Moreover, we consider a problem structure such that termination is guaran-
teed, at least under an optimal policy. Thus, the horizon is finite, but its length
is random and it depends on the policy. The conditions for which termination
holds are equivalent to establishing that the destination state can be reached in
a finite number of steps from any potential initial state; for a rigorous treatment,
see [3,5].

2.2 Controling Exploration by Defining Entropy at Each State

The degree of exploration Ek at each state k is defined by

Ek = −
∑

i∈U(k)

πk(i) log πk(i) (2.2)

which is simply the entropy of the probability distribution of the control actions
in state k [9,10]. Ek characterizes the uncertainty about the choice at state k. It
is equal to zero when there is no uncertainty at all (πk(i) reduces to a Kronecker
delta); it is equal to log(nk), where nk is the number of admissible choices at node
k, in the case of maximum uncertainty, πk(i) = 1/nk (a uniform distribution).

The exploration rate Er
k = Ek/ log(nk) is the ratio between the actual value

of Ek and its maximum value. It takes its values in the interval [0, 1]. Fixing the
entropy at a state sets the exploration level out of this state; increasing the
entropy increases exploration up to the maximal value, in which case there is no
more exploitation since the next action is chosen completely at random, with a
uniform distribution, without taking the costs into account. This way, the agents
can easily control their exploration by adjusting the exploration rates.

3 Optimal Policy Under Exploration Constraints for
Deterministic Shortest-Path Problems

3.1 Optimal Policy and Expected Cost

We turn to the determination of the optimal policy under exploration con-
straints. More precisely, we will seek the policy Π ≡ {πk(u), k = 1, 2, . . . , n},
for which the expected cost VΠ(k0) from initial state k0 is minimal while main-
taining a given degree of exploration at each state k. The destination state is
an absorbing state, i.e., with no outgoing link. Computing the expected cost
(2.1) from any state k is similar to computing the average first-passage time
in the associated Markov chain [11]. The problem is thus to find the transition

794 Y. Achbany et al.

probabilities leading to the minimal expected cost, V ∗(k0) = min
Π

(VΠ(k0)). It

can be formulated as a constrained optimization problem involving a Lagrange
function.

In [1], we derive the optimal probability distribution of control actions in state
k, which is a logit distribution:

π∗
k(i) =

exp [−θk (c(k, i) + V ∗(k′
i))]∑

j∈U(k)
exp

[
−θk

(
c(k, j) + V ∗(k′

j)
)] , (3.1)

where k′
i = fk(i) is a following state and V ∗ is the optimal (minimum) expected

cost given by{
V ∗(k) =

∑
i∈U(k)

π∗
k(i) [c(k, i) + V ∗(k′

i)], with k′
i = fk(i) and k �= d

V ∗(d) = 0, for the destination state d
(3.2)

The control actions probability distribution (3.1) is often called “Boltzmann
distributed exploration”. In Equation (3.1), θk must be chosen in order to satisfy∑

i∈U(k)

πk(i) log πk(i) = −Ek (3.3)

for each state k and given Ek. It takes its values in [0,∞]. Of course if, for
some state, the number of possible control actions reduces to one (no choice), no
entropy constraint is introduced. Since Equation (3.3) has no analytical solution,
θk must be computed numerically in terms of Ek. This is in fact quite easy since
it can be shown that the function θk(Ek) is strictly monotonic decreasing, so
that a line search algorithm (such as the bisection method, see [2]) or a simple
binary search can efficiently find the θk value corresponding to a given Ek value.

Equation (3.1) has a simple appealing interpretation: choose preferably (with
highest probability) action i leading to state k′

i of lowest expected cost, including
the cost of performing the action, c(k, i) + V ∗(k′

i). Thus, the agent is routed
preferably to the state which is nearest (on average) to the destination state.

The same necessary optimality conditions can also be expressed in terms of
the Q-values coming from the popular Q-learning framework [18,23,24]. Indeed,
in the deterministic case, the Q-value represents the expected cost from state k
when choosing action i, Q(k, i) = c(k, i) + V (k′

i). The relationship between Q
and V is thus simply V (k) =

∑
i∈U(k) πk(i)Q(k, i); we thus easily obtain{

Q∗(k, i) = c(k, i) +
∑

i∈U(k′
i)
π∗

k′
i
(i)Q∗(k′

i, i), with k′
i = fk(i) and k �= d

Q∗(d, i) = 0, for the destination state d
(3.4)

and the π∗
k(i) are given by

π∗
k(i) =

exp [−θkQ
∗(k, i)]∑

j∈U(k)
exp [−θkQ∗(k, j)]

(3.5)

Optimal Tuning of Continual Online Exploration in Reinforcement Learning 795

which corresponds to a Boltzmann exploration involving the Q-value. Thus, a
Boltzmann exploration involving the Q-value may be considered as “optimal”
since it provides the best expected performances for fixed degrees of exploration.

3.2 Computation of the Optimal Policy

Equations (3.1) and (3.2) suggest an iterative procedure very similar to the well-
known value-iteration algorithm for the computation of both the expected cost
and the policy.

More concretely, we consider that agents are sent from the initial state and
that they choose an action i in each state k with probability distribution πk(u =
i). The agent then performs the chosen action, say action i, and incurs the
associated cost, c(k, i) (which, in a non-stationary environment, may vary over
time), together with the new state, k′. This allows the agent to update the
estimates of the cost, of the policy, and of the average cost until destination;
these estimates will be denoted by ĉ(k, i), π̂k(i) and V̂ (k) and are known (shared)
by all the agents.

1. Initialization phase

– Choose an initial policy, π̂k(i), ∀i, k, satisfying the exploration rate con-
straints (3.3) and

– Compute the corresponding expected cost until destination V̂ (k) by us-
ing any procedure for solving the set of linear equations (3.2) where we
substitue V ∗(k), π∗

k(i) by V̂ (k), π̂k(i). The π̂k(i) are kept fixed in the
initialization phase. Any standard iterative procedure (for instance, a
Gauss-Seidel like algorithm) for computing the expected cost until ab-
sorption in a Markov chain could be used (see [11]).

2. Computation of the policy and the expected cost under exploration
constraints
For each visited state k, do until convergence:

– Choose an action i with current probability estimate π̂k(i), observe the
current cost c(k, i) for performing this action, update its estimate ĉ(k, i),
and jump to the next state, k′

i

ĉ(k, i) ← c(k, i) (3.6)

– Update the probability distribution for state k as:

π̂k(i) ←
exp

[
−θ̂k

(
ĉ(k, i) + V̂ (k′

i)
)]

∑
j∈U(k)

exp
[
−θ̂k

(
ĉ(k, j) + V̂ (k′

j)
)] , (3.7)

where k′
i = fk(i) and θ̂k is set in order to respect the given degree of

entropy (see Equation (3.3)).

796 Y. Achbany et al.

– Update the expected cost of state k: V̂ (k) ←
∑

i∈U(k)
π̂k(i) [ĉ(k, i) + V̂ (k′

i)], with k′
i = fk(i) and k �= d

V̂ (d) ← 0, where d is the destination state
(3.8)

The convergence of these updating equations is proved for a stationary envi-
ronment in [1]. However, the described procedure is computationally demanding
since it relies on iterative procedures like the value-iteration algorithm in Markov
decision processes.

Thus, the above procedure allows to optimize the expected cost V (k0) and
to obtain a local minimum of this criterion. It does not guarantee to converge
to a global minimum, however. Whether V (k0) has only one global minimum or
many local minima remains an open question.

Notice also that, while the initialization phase is necessary in our convergence
proof, other simpler initialization schemes could also be applied. For instance,
set initially ĉ(k, i) = 0, π̂k(i) = 1/nk, V̂ (k) = 0, where nk is the number of
admissible actions in state k; then proceed by directly applying updating rules
(3.7) and (3.8). While convergence is not proved in this case, we observed that
this updating rule works well in practice; in particular, we did not observe any
convergence problem. This rule is used in the experiments presented in [1].

3.3 Some Limit Cases

We will now show that when the degree of exploration is zero for all states, the
nonlinear equations reduce to Bellman’s equations for finding the shortest path
from the initial state to the destination state.

Indeed, from Equations (3.7)-(3.8), if the parameter θ̂k is very large, which
corresponds to a near-zero entropy, the probability of choosing the action with
the lowest value of (ĉ(k, i) + V̂ (k′

i)) dominates all the others. In other words,
π̂k(j) & 1 for the action j corresponding to the lowest average cost (including
the action cost), while π̂k(i) & 0 for the other alternatives i �= j. Equations (3.8)
can therefore be rewritten as{

V̂ (k) ← min
i∈U(k)

[ĉ(k, i) + V̂ (k′
i)], with k′

i = fk(i) and k �= d

V̂ (d) ← 0, where d is the destination state
(3.9)

which are Bellman’s updating equations for finding the shortest path to the
destination state [4,5]. In terms of Q-values, the optimality conditions reduce to{

Q∗(k, i) = c(k, i) + min
i∈U(k)

Q∗(k′
i, i), with k′

i = fk(i) and k �= d

Q∗(d, i) = 0, for the destination state d
(3.10)

On the other hand, when θ̂k = 0, the choice probability distribution reduces
to π̂k(i) = 1/nk, and the degree of exploration is maximum for all states. In this

Optimal Tuning of Continual Online Exploration in Reinforcement Learning 797

case, the nonlinear equations reduce to the linear equations allowing to compute
the average cost for reaching the destination state from the initial state in a
Markov chain with transition probabilities equal to 1/nk. In other words, we then
perform a “blind” random exploration, for the choice probability distribution.

Any intermediary setting 0 < Ek < log(nk) leads to an optimal exploration
vs. exploitation strategy minimizing the expected cost, and favoring short paths
to the solution. In [1], we further show that, if the graph of states is directed
and acyclic, the nonlinear equations can easily be solved by performing a single
backward pass from the destination state.

Experimental simulations illustrating the behaviour of the algorithm, as well
as comparisons with a naive Boltzmann and a ε-greedy exploration strategy, are
provided in [1].

4 Optimal Policy Under Exploration Constraints for
Stochastic Shortest Path Problems

We now consider stochastic shortest path problems for which, once an
action has been performed, the transition to the next state is no longer deter-
ministic but stochastic [5]. More precisely, when an agent chooses action i in
state k, it jumps to state k′ with a probability P(s = k′|u = i, s = k) = pkk′ (i)
(transition probabilities). Notice that there are now two different probability
distributions associated to the system: the probability of choosing an action i
within the state k, πk(i), and the probability of jumping to a state s = k′ after
having chosen the action i within the state k, pkk′(i).

By first-step analysis (see [1]), the recurence relations allowing to compute
the expected cost VΠ(k), given policy Π are easily found:VΠ(k) =

∑
i∈U(k)

πk(i) [c(k, i) +
n∑

k′=1
pkk′ (i)VΠ(k′)],

VΠ(d) = 0, where d is the destination state
(4.1)

Furthermore, by defining the average cost when having chosen control action
i in state k by V

Π
(k, i) =

∑
k′ pkk′ (i)VΠ(k′), Equation (4.1) can be rewritten as{

VΠ(k) =
∑

i∈U(k)
πk(i) [c(k, i) + V

Π
(k, i)],

VΠ(d) = 0, where d is the destination state
(4.2)

Thus, the optimal policy is obtained by substituting VΠ(k′
i) by V

∗
(k, i) in

both (3.1) and (3.2):

π∗
k(i) =

exp
[
−θk

(
c(k, i) + V

∗
(k, i)

)]
∑

j∈U(k)
exp

[
−θk

(
c(k, j) + V

∗
(k, j)

)] (4.3)

798 Y. Achbany et al.

The details are provided in [1]. The additional difficulty here, in comparison
with a deterministic problem, is that the probability distributions pkk′(i), if un-
known, have to be estimated on-line, together with the costs and the distribution
of the randomized control actions [18].

4.1 On-Line Estimation of the Transition Probabilities

The transition probabilities pkk′ (i) might be unknown and, consequently, should
be estimated on-line, together with the costs and the distribution of the ran-
domized control actions [18]. An alternative solution is to directly estimate
the average cost V Π(k, i) =

∑
k′ pkk′(i)VΠ(k′) based on the observation of

the value of VΠ in the next state k′. There is a large range of potential tech-
niques for solving this issue, depending on the problem at hand (see for exam-

ple [7]). One could simply use an exponential smoothing, leading to V̂ (k, i) ←
αV̂ (k′)+(1−α)V̂ (k, i), or a stochastic approximation scheme, V̂ (k, i) ← V̂ (k, i)+

α
[
V̂ (k′) − V̂ (k, i)

]
, which converges for a suitable decreasing policy of α [17].

This leads to the following updating rules:
For each visited state k, do until convergence:

– Choose an action i with current probability estimate π̂k(i), observe the cur-
rent cost c(k, i) for performing this action, update its estimate ĉ(k, i) by

ĉ(k, i) ← c(k, i) (4.4)

– Perform the action i and observe the current value V̂ (k′) of the next state
k′. Update V̂ (k, i) accordingly (here, we choose the exponential smoothing
scheme),

V̂ (k, i) ← αV (k′) + (1 − α)V̂ (k, i) (4.5)

– Update the probability distribution for state k as:

π̂k(i) ←
exp

[
−θ̂k

(
ĉ(k, i) + V̂ (k, i)

)]
∑

j∈U(k)
exp

[
−θ̂k

(
ĉ(k, j) + V̂ (k, j)

)] , (4.6)

where θ̂k is set in order to respect the prescribed degree of entropy (see
Equation (3.3)).

– Update the expected cost of state k asynchronously: V̂ (k) =
∑

i∈U(k)
πk(i) [ĉ(k, i) + V̂ (k, i)],

V̂ (d) = 0, where d is the destination state
(4.7)

This iterative scheme is closely linked to the SARSA on-policy control algo-
rithm [14,16,18]; a discussion of these relationships is provided in [1].

Optimal Tuning of Continual Online Exploration in Reinforcement Learning 799

5 Conclusions

We have presented a model integrating continual exploration and exploitation
in a common framework. The exploration rate is controlled by the entropy of
the choice probability distribution defined on the states of the system. When no
exploration is performed (zero entropy on each node), the model reduces to the
common value-iteration algorithm computing the minimum cost policy. On the
other hand, when full exploration is performed (maximum entropy on each node),
the model reduces to a “blind” exploration, without considering the costs. The
main drawback of the present approach is that it is computationally demanding
since it relies on iterative procedures such as the value-iteration algorithm.

Further work will investigate the relationships with SARSA, as well as alter-
native cost formulations, such as the “average cost per step”. We also plan to
exploit the proposed exploration framework in Markov games.

Acknowledgments

Part of this work has been funded by projects with the “Région wallonne” and
the “Région de Bruxelles-Capitale”.

References

1. Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens. Tuning continual
exploration in reinforcement learning. Technical report, http://www.isys.ucl.ac.be/
staff/francois/Articles/Achbany2005a.pdf, 2005.

2. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory
and algorithms. John Wiley and Sons, 1993.

3. D. P. Bertsekas. Neuro-dynamic programming. Athena Scientific, 1996.
4. D. P. Bertsekas. Network optimization: continuous and discrete models. Athena

Scientific, 1998.
5. D. P. Bertsekas. Dynamic programming and optimal control. Athena sientific, 2000.
6. J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks:

A reinforcement learning approach. Advances in Neural Information Processing
Systems 6 (NIPS6), pages 671–678, 1994.

7. R. G. Brown. Smoothing, forecasting and prediction of discrete time series.
Prentice-hall, 1962.

8. N. Christofides. Graph theory: An algorithmic approach. Academic Press, 1975.
9. T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley and

Sons, 1991.
10. J. N. Kapur and H. K. Kesavan. Entropy optimization principles with applications.

Academic Press, 1992.
11. J. G. Kemeny and J. L. Snell. Finite markov chains. Springer-Verlag, 1976.
12. M. J. Osborne. An introduction to game theory. Oxford University Press, 2004.
13. H. Raiffa. Decision analysis. Addison-Wesley, 1970.
14. G. Rummery and M. Niranjan. On-line q-learning using connectionist systems.

Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Departement, 1994.

800 Y. Achbany et al.

15. G. Shani, R. Brafman, and S. Shimony. Adaptation for changing stochastic envi-
ronments through online pomdp policy learning. In Workshop on Reinforcement
Learning in Non-Stationary Environments , ECML 2005, pages 61–70, 2005.

16. S. Singh and R. Sutton. Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123–158, 1996.

17. J. C. Spall. Introduction to stochastic search and optimization. Wiley, 2003.
18. R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. The MIT

Press, 1998.
19. S. Thrun. Efficient exploration in reinforcement learning. Technical report, School

of Computer Science, Carnegie Mellon University, 1992.
20. S. Thrun. The role of exploration in learning control. In D. White and D. Sofge,

editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive Approaches.
Van Nostrand Reinhold, Florence, Kentucky 41022, 1992.

21. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
22. K. Verbeeck. Coordinated exploration in multi-agent reinforcement learning. PhD

thesis, Vrije Universiteit Brussel, Belgium, 2004.
23. J. C. Watkins. Learning from delayed rewards. PhD thesis, King’s College of

Cambridge, UK, 1989.
24. J. C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 801 – 810, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Vague Neural Network Controller and Its Applications

Yibiao Zhao1, Rui Fang2, Shun Zhang1, and Siwei Luo2

1 Beijing Jiaotong University, School of Traffic and Transportation
100044 Beijing, China

Yibiao_zhao@ieee.org
2 Beijing Jiaotong University, School of Computer and Information Technology

100044 Beijing, China

Abstract. Fuzzy neural network is a promising intelligence system that
combines the artificial neural network and fuzzy logic. However fuzzy neural
network has its shortages: fuzzy membership function has only one single
value, it cannot get more reasonable classified and cognizable results. While,
vague sets theory is a generalization of fuzzy sets theory, its’ distinguishing
feature is having a truth-membership function and a false-membership function.
It presents both of the opposite factors to deal with nonlinearities and uncertain
of control system in the control fields. this paper has been accomplished the
controller of vague neural networks based on the vague set theory, this
controller combines the advantage of vague set in handling uncertain
information and the capability of artificial neural networks in learning process.
Moreover, in the application of inverted pendulum, the character of vague
neural network controller was expressed.

Keywords: Vague set, vague neural network, fuzzy neural network, inverted
pendulum.

1 Introduction

On the basis of fuzzy theory, Fuzzy Neural Network—FNN is the combination of
fuzzy logic system and Artificial Neural Network (ANN), whose essential is the dual-
simulation of the structure and thought function of human’s brain, namely, the
simulation of topological structure of human’s brain neural network and the function
of dealing with ambiguous data. FNN has the advantages of both fuzzy logic system
and ANN, moreover, it also supplies the gap of them. Neural networks have
extensively been used as associative memory and optimization. They have many well
known advantages such as error tolerant and self-learning capacity. The base idea of
the composition method of the fuzzy neural network is to realize the process of fuzzy
reasoning by the structure of neural network and to make the parameters of fuzzy
reasoning be expressed by the connection weights of neural network. However, Fuzzy
theory has it’s shortages as pointed out by Daniel J.Buehrer and Wen-Lung Gun in
[5]: fuzzy neural network has its shortages: fuzzy membership function has only one
single value, it cannot get more reasonable classified and cognizable results. The

802 Y. Zhao et al.

vague set theory is a new extended form fuzzy set: it’s truth and false membership
function present both of the opposite factors to deal with nonlinearities and uncertain
of control system in the control fields. It overcomes the disadvantage of membership
function in fuzzy set which cannot characterize both the similarity and dissimilarity
between pairs of objects.

Therefore, it has been conceived as a new effective tool to deal with ambiguous
data and applied successfully in different fields. In this paper, vague neural network
controller is proposed. It is a new extended form of FNNC. On the basis of that, we
present an optimal scheme for the design of a vague neural network as a controller.
And then we discussed the application of inverted pendulum.

2 Vague Set

2.1 Fuzzy Set

A fuzzy set A of the universe of discourse 1 2{ , ,... ,}nU x x x=
 can be represented by:

A 1 1 A 2 2 A n nA= (u)/u + (u)/u +...+ (u)/u

(1)

Where Aµ
is the membership function of the fuzzy set

: [0,1]A Uµ →
,

()A iuµ
is a single

value and it indicates the grade of membership of iu
 to the fuzzy set A

2.2 Vague Set

Let U be the universe of discourse, 1 2{ , ,... }nU x x x= and let, ()vt x and, ()vf x be the

truth-membership function and false-membership function of the Vague set V. ()vt x

is a lower bound on the membership degree of x derived from the evidence for x,

and ()vf x is a lower bound on the negation of x derived from the evidence against x.

()vf x and ()vf x both associate a real number in the interval [0,1]with each x in U,

where ()vt x + ()vf x ≤1. This approach bounds the membership degree of x to a

subinterval [()vt x , 1- ()vf x] of [0, 1] A vague set in the universe of discourse U is

illustrated in Fig.1
The precision of our knowledge about x is immediately clear, with our uncertainty

characterized by the difference 1- ()vt x - ()vf x If this is small, our knowledge about x

is relatively precise; If it is large, we know correspondingly little; if1- ()vf x is equal

to ()vt x ,our knowledge about x is exact, and the theory reverts back to that of fuzzy

sets; If 1- ()vf x and ()vt x are both equal to 1 or 0,our knowledge about x is very

exact and the theory revert back to that of ordinary set.

 Vague Neural Network Controller and Its Applications 803

Fig. 1. Vague set

With the relationship between vague sets intuitionistic fuzzy sets, and interval-
valued fuzzy sets that, vague neural network can be extended to interval-valued vague
neural network by replacing the point membership degree to interval-valued

membership degree. We can see that the membership degree of an element iu U∈ in

a fuzzy set is represented a by single value which combines the evidence for iu U∈

and the evidence against iu U∈ , and without indicating how much there is of each.
Furthermore, it tells us nothing about its accuracy. Thus, the concept of vague sets is
proposed to solve the problem effectively. Vague set contains precise information of a
pattern and can characterize the pattern more accurately. And, the author proposed a
new neural network based on vague set theory.

3 Fuzzy Neural Networks

Fig.2 shows the architecture of the fuzzy neural network, it composes of input,
fuzzification, inference, defuzzification layer and the output layer.

Fig. 2. The structure of FNN

 Layer 1, the input layer, consists of ix , 1,2,...i N= . Each neuron in the fuzzifi-
cation layer represents a fuzzy membership function for one of the input variables.

804 Y. Zhao et al.

Layer 2 comprises the term neurons which correspond to the linguistic variables
such as NM, NS, NZ, Z, PZ, PS, PM, etc. each neuron in this layer performs the
computation of a membership function. A bell-shaped function is usually used to
compute the membership degree as:

2

2

()
exp j ji

ji
ji

x c
µ

δ
− −

=

(2)

Where ijc
, and

2
ijδ

 denotes the centre and the width of the membership function
corresponding to the jth linguistic variable of xi and Ni is the number of linguistic
variable terms.

Layer 3 is the rule layer. each neuron in this layer corresponds to a knowledge
based. rule ,Generally, a fuzzy rule can be described as:

IF 1x
is 1iA

…and mx
is miA

THEN y is iB

Where (1, 2 . . .)ix i = are input variables, ''and'' is logic operator " "∧ . jiA
and iB

are linguistic terms characterized by two fuzzy sets on domain of ix
 and y,

respectively. The total number of neurons in this layer depends on the number of
match neuron constituting in layer 2.the neuron performs the fuzzy AND operation,
which is a minimum operation to obtain the firing strength of rules.

1 1min{ , ,..., }r i j nkα µ µ µ=

(3)

11, 2...i N=
, 21, 2...j N=

,
1,2... nk N=

,
1,2... Ar N=

, 1

n

A i
i

N N
=

= ∏

rα
 degree of match between the fuzzy linguistic variables occurring as one of the

antecedents of the rule;

1 2... nN N N
 number of the linguistic variables corresponding to input ix

AN
 number of the fuzzy rules

Generally, only the linguistic variables near the input value have significant
memberships. Only a small number of the neurons have significant outputs and most
of the neuron’s outputs are 0 or almost 0.

Layer 4 and Layer 5 are the defuzzification layer and output layer of the FNN,
which perform the normalization computation of the firing strengths.

 1

A

r
Nr

i
i

αα
α

=

=

1,2... Ar N=

(4)

rα
 denotes the normalized firing string strength for the r th rule.

 Vague Neural Network Controller and Its Applications 805

4 Vague Neural Network Controller

The fuzzy neural networks are achieved by adding a fuzzification layer to a
conventional feed forward neural network. The difference between fuzzy neural
networks and conventional neural networks lies in how they estimate sampled input-
output relationships [10]. They differ in the kind of samples used, how they represent
and store those samples, and how they associatively “inference” or map inputs to
outputs. Here VNN extends FNN and estimates functions with vague set samples, it
can handle real inputs as well as fuzzy inputs.

4.1 Vague IF-THEN Control Rules

In VNN, The fuzzy if-then rules are extended to vague if-then rules described as:

IF tx
is

(1)tX
and fx

is
(1)fX

 THEN ty
 is

(1)tY
and fy

 is
(1)fY

;

IF tx
is

(2)tX
and fx

is
(2)fX

 THEN ty
 is

(2)tY
and fy

 is
(2)fY

;
……

IF tx
is

()tX n
and fx

is
()fX n

 THEN ty
 is

()tY n
and fy

 is
()fY n

.
There are n rules in all. Vague logical is represented as a rule relation matrix R:

1

[(() ()) (() ())]
n

t f t f
i

R X i X i Y i Y i
=

= × → ×

(5)

After the structure analysis and approximate process, above-mentioned dual-input
and dual-output vague controller could be represented as:

1

n

i
i

Y Y
=

=

(6)

() () () ()k t f t f kY Y k Y k X k X k R= = ×

(7)

Where
()tx k

()fx k

are input variables in the kth second, ''and'' is logic

operator" "∧ .
()tX i

,
()fX i

,
()tY i

and
()fY i

 are linguistic terms characterized by

two vague sets on domain of ix
 and y respectively.

4.2 “Vaguefication” in Controller

Compared with the term of “fuzzification” in fuzzy theory, The process of changing
precise value to vague value is call” vaguefication” in this paper, and it is the key of
internal value controller design. The easy and efficient vaguefication method will be
given next.

806 Y. Zhao et al.

universe of discourse E={e1, e2, , en}, “A” is a vague set{the biggest}, then, A

can be described as a true membership function At and a false membership function

Af
:

2

1
()

1 ()A i
i

t e
e a a

=
+ −

(8)

2

2

() (1)
()

1 () (1)
i

A i
i

e a a
f e

e a a

− +=
+ − +

(9)

Where, () [0,1], () [0,1]A i A it e f e∈ ∈ , 0 () () 1A i A it e f e≤ + ≤ , max{ | (1,2, ,)}ia e i n= =

In these expressions, ()A it e is the lower of the vague membership degree, which

expresses the degree for ,
ie s belonging to A; 1 ()A if e− is the upper of the vague

membership degree; 1 () ()A i A it e f e− − denotes uncertain information, then, the

vague set A can be denoted as:

1

([(),1 ()])
n

A i A i
i

A t e f e
=

= −

(10)

Fig. 3. True and false membership degree

5 Applications

Inverted pendulum is recognized as typical equipment in automatic control theory,
also a rare typical physical model in control theory teaching and researches. Inverted
pendulum is a natural unstable object, it reflects many pivotal questions in controlling
process such as nonlinear issues, system's robustness, tracking problems, grave issue
and etc. Its terminal aim is to make inverted pendulum object become a stable system

 Vague Neural Network Controller and Its Applications 807

by introducing a proper control method. Usually, the fuzzy control rule of fuzzy logic
control algorithm in multivariable input is hard to complete for complex calculation.
Comparing with this, the combination of ANN and Vague Set has many merits when
multivariable input is needed, like high precision, quick convergence, easy
calculation, good robustness etc. which meet system's need.
When applying VNN as a controller, the overall structure of our control system may
be chosen as shown in Fig.4. In two cases, there are two input signals and one output.
They are cart position x, axis angle phi, and system output power y.

Fig. 4. Vague neural network controller

In order to compare simulation result with conventional fuzzy neural networks, we
just change the biggest linguistic variable into vague set with true and false
membership degree .With the proposed method, we set the Linguistic variable
membership function and control rules as shown in Table.1 and Table.2 respectively.

Table 1. Linguistic variable membership function

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
NB 1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NM 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NS 0.0 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0
NZ 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.6 0.1 0.0 0.0 0.0 0.0
PZ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0
PS 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.1 0.7 0.3 0.1 0.0
PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3

PB t 0.11 0.12 0.13 0.14 0.15 0.18 0.21 0.25 0.31 0.41 0.56 0.80 1.0
f 0.79 0.78 0.77 0.75 0.72 0.69 0.64 0.58 0.49 0.37 0.33 0.07 0.0

Table 2. VNN control rules

 NB NM NS ZE PS PM PB
NB NB NB NB NB NM ZE ZE
NM NB NB NB NB NM ZE ZE
NS NM NM NM NM ZE PS PS
NZ NM NM NS ZE PS PM PM
PZ NM NM NS ZE PS PM PM
PS NS NS ZE PM PM PM PM
PM ZE ZE PM PB PB PB PB
PB ZE ZE PM PB PB PB PB

808 Y. Zhao et al.

Fig. 5. Curve of training error

After 202 epochs, the network converged with training error reduced to 10-3. And
the training result is shown in Fig.6 and Fig.7.

Fig. 6. Training result of VNNC

 Vague Neural Network Controller and Its Applications 809

Fig. 7. Results of simulink

Through the figures above, we can see that the result meets the need of inverted
pendulum control. In contract with traditional fuzzy neural network, the vague neural
network considers more aspects of the input data before forwarding them into the
inner of the network.

6 Conclusion

Based on vague set theory, in this paper, intelligent control system based on Vague
Neural Network is put forward. According to the advantages of VNN, we utilize
genetic algorithm and adapted controlling to experiment. Actually, VNN can have the
same structure as a specified FNN, it can also adopt FNN’s training and learning
algorithm. For some real applications, FNN can be easily extended to VNN by
replacing the single membership function of fuzzy set and the fuzzy if-then rule with
vague set. As the discussion mentioned above, intelligent control system based on
Vague Neural Network is tried and true. Its performance is better, and the result is
efficient and valid.

References

1. HORIKAWA,S. FURUHASHI,T., and UCHIKAWA, Y: On fuzzy modeling using fuzzy
neural network with the back-propagation algorithm, IEEE Trans., 1992, NN-3,(5),pp.801-
806;

810 Y. Zhao et al.

2. HASEGAWA,T.,HORIKAWA,S.,FURUHASHI,T.,UCHIKAWA,Y.,SHIMAMURA,S.,Y
AMADA,T,KUNITAKE,O., AND OTSUKA,S.: An application of fuzzy neural network
to fuzzy modeling of a basic oxygen furnace. Proceedings of IEEE International workshop
on neural-fuzzy control, 1993. (Muroran , Japan),pp.133-138;

3. Mori,H. Fuzzy neural network applications to power systems. Power Engineering Society
Winter Meeting,2000 IEEE:2,23-27;

4. Hon Keung, Kwan,Yaling Cai, A Fuzzy Neural Network and its Application to Pattern
Recognition, IEEE Trans on Fuzzy System.Vol.2,NO.3,1994;

5. Gau W L, Buehrer D J.Vague sets[J].IEEE Transactions on Systems, Man, and
Cybernetics,1993,23(2):610-614;

6. Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems
1996, 79(1): 403~405;

7. Hong D H,Choi C H. Multicriteria fuzzy decision making problems based on Vague set
theory Fuzzy Set and System,2000, 114:103-113;

8. Chen,S.M. Fuzzy system reliability analysis based on vague set theory. 1997 IEEE
International Conference on Computational Cybernetics and Simulation.1997,2:1650-
1655.

9. Hong D H,Choi CH.Multi-criteria fuzzy decision-making problems based on vague set
theory.Fuzzy Sets and Systems, 2000,114:103-113;

10. B.Kosko,Neural Networks and Fuzzy Systems-A Dynamic System Approach to Machine
Intelligence,Englewood Cliffs, NJ:Prentice Hall, 1992;

11. R.P.Brent, Fast training algorithm for multilayer neural network, IEEE Trans.Neural
Networks,vol.2,pp.346-354,May,1991;

12. R.Fletcher,C.M.Reeves, Function Minimization by Conjugate Gadients, Computer
Journal,7,1964,p149-154.;

13. Holland,J,Adaptation in Natural and Artificial systems, MIT Press, 1975;
14. Goldberg,E,Genetic Algorithms in Search Optimization and Machine Learning Addison-

Wesley. 1989;
15. K.Atanassov. Intuitionistic Fuzzy set[J].Fuzzy Set and Systems,1986,20(2);87-96;
16. L.A.Zadeh, The concept of a linguistic variable and its application to approximate

reasoning-I.Inform.Sci. (1975)199-249;
17. Madan M Gupta, Jerzy B Kiszka, G M Trojan.Multicaziable Straucture of Fuzzy Control

System. IEEE Transations on System, Man and Cybernetics. 1993.23(4);
18. Ahmed Rubaai Daniel Ricketts,Development and Implementation of an Adaptive Fuzzy-

Neural-Network Controller for Brushless Drives Industry Applications, IEEE Transactions
on Volume 38, Issue 2, March-April 2002 Page(s):441 – 447;

19. Cheng-Zhi Cao, Guang-Hua Wei, Qedong Zhang, Xin Wang, Optimization Design Of
Fuzzy Neural Network Controller In Direct Torque Control System, Proceedings of the
Third International Conference on Machine Learning and Cybemetics,2004,378-382;

20. Wu jin-pei, Xiao jian-hua, Intelligence fault diagnose and Expert system, science press,
1997;

21. Xuezhong Guan, Xiaoyu Zhao, Yong Guan, Liang Dong, A Controller Design Based on
Vague marching reasoning. Control Engineering of China, Vol.13, No.1, Jan 2006

22. Rong-Jong Wai, and Li-Jung Chang, Stabilizing and Tracking Control of Nonlinear Dual-
Axis Inverted-Pendulum System Using Fuzzy Neural Network, IEEE TRANSACTIONS
ON FUZZY SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2006

Parallel Distributed Profit Sharing
for PC Cluster

Takuya Fujishiro, Hidehiro Nakano, and Arata Miyauchi

Musashi Institute of Technology
1-28-1 Tamazutsumi,

Setagayaku, Tokyo, 158-8557 Japan
{fujisiro, nakano, miyauchi}@ic.cs.musashi-tech.ac.jp

Abstract. This paper presents a parallel reinforcement learning method
considered communication cost. In our method, each agent communicates
only action sequences with a constant episode interval. As the communi-
cation interval is longer, communication cost is smaller, but parallelism
is lower. Implementing our method on PC cluster, we investigate such
trade-off characteristics. We show that computation time to learning can
be reduced by properly adjusting the communication interval.

1 Introduction

Reinforcement learning is one of the machine learning methods which do not need
supervisors. A learning agent repeats an interaction to target environments, and
updates own value function. The agent can learn without prior knowledge on
the target environments. Therefore, reinforcement learning can be applied eas-
ily to various tasks. However, reinforcement learning requires long computation
time. In order to overcome such a drawback, parallel distributed processing is
an efficient method to accelerate reinforcement learning. There have been some
parallel reinforcement learning methods by using multiple agents [1],[2]. Since
multiple agents learn independently, the learning can be accelerated by prop-
erly sharing and combining information which each agent has. However, as these
methods are implemented on actual PC cluster, long computation time tends to
be required. This is due to large communication cost.

This paper presents a parallel reinforcement learning method considered com-
munication cost. In the conventional method, each agent communicates value
functions as shared and combined information. Considering communication cost,
in our method, each agent communicates only action sequences with a con-
stant episode interval. As the communication interval is longer, communica-
tion cost is smaller, but parallelism is lower. Implementing our method on PC
cluster, we investigate such trade-off characteristics. We show that computa-
tion time to learning can be reduced by properly adjusting the communication
interval.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 811–819, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

812 T. Fujishiro, H. Nakano, and A. Miyauchi

Fig. 1. Parallel Reinforcement Learning

2 Parallel Reinforcement Learning

Ref. [1] has proposed the method which can accelerate reinforcement learning
by using multiple agents. Each agent learns the same task independently, and
shares and combines each own value function (see Fig. 1).

In Ref. [1], the learning algorithm is based on Q-Learning [3]. Each agent
updates own value function in parallel, and shares the value function to each
other in the learning process. The shared value functions are combined by the
following equation.

Q1 =
Q1 ∗ k1 + Q2 ∗ k2

k1 + k2
, (1)

where Q1 is own value function, k1 is own learning times, Q2 is other agent’s
value function and k2 is other agent’s learning times.

Ref. [1] has shown the advantage of the above method by using multiple
agents, and Ref. [2] has presented experimental results for various tasks. These
papers have shown effectiveness of parallel reinforcement learning. However, they
have not been implemented on actual parallel computer systems and/or multi-
processor systems. As we implement these methods on actual PC cluster, long
computation time is required. This is due to communication cost between each
cluster node. In general, communication cost is a problem in implementing on
parallel computer systems.

3 Parallel Distributed Reinforcement Learning Method
Considered Communication Cost

This paper proposes a parallel distributed reinforcement learning method con-
sidered the communication cost for implementing PC cluster.

Parallel Distributed Profit Sharing for PC Cluster 813

Fig. 2. Flowchart of Profit Sharing

3.1 Algorithm

1. Multiple agents learn the same task independently.
2. Each agent updates own value function in parallel.
3. Each agent shares the value function to each other in learning process.
4. Shared value functions are combined by adding to each value function.

We use Profit Sharing [4] as the reinforcement learning method. Fig. 2 shows
the flowchart of Profit Sharing. Generally, in Profit Sharing, the following geo-
metric decreasing function is used as the reinforcement function.

fi =
1
S
fi−1, i = 1, 2, · · · ,W − 1, (2)

where W is the length of an episode, and i is the number of steps from a goal
state to the ith state. fi is reward value to the ith rule, and 1/S is a decreasing
ratio in the reinforcement function. If the parameter S is set to the number
of executable actions, Profit Sharing can realize rational learning such that an
agent must achieve a goal state.

The combining method is to simply add other agent’s value function to own
value function. In Profit Sharing, experiences which each agent obtains are accu-
mulated by repeating episode. It should be noted that there are many parameters
in Q-Learning. It is necessary to keep those parameters in combining the value
function based on Eq. (1). Accordingly, Parallel Distributed Profit Sharing can
keep rational learning by simply adding experiences. Therefore, Profit Sharing is
more suitable for Parallel Distributed Reinforcement Learning than Q-Learning.

3.2 Implementation

Fig. 3 shows an implementation example of Parallel Distributed Profit Sharing
on PC cluster. Each agent is assigned to each node in the PC cluster. Each agent

814 T. Fujishiro, H. Nakano, and A. Miyauchi

Fig. 3. Implementing PC cluster

Fig. 4. Communication between nodes

updates own value function stored in the memory on own node. Synchronization
and communication are repeated with a constant episode interval. Share of ex-
perience data is realized by communicating as follows (see Fig. 4):

t0, t1: Nodes 2 and 3 (slave node) send experience data to Node 1 (master node).
Node 1 receives those experience data.
t2: Node 1 broadcasts the combined new value function data to all slave nodes.

3.3 Reduction of the Communication Cost

In order to reduce the communication cost, the communication data size and
the communication frequency should be reduced.

For reduction of the communication data size, we propose the method in which
only action sequences are sent. In the conventional methods the value functions
are sent as shared information. However, the data size of a value function is large

Parallel Distributed Profit Sharing for PC Cluster 815

Fig. 5. The value function and the action sequences

as communication data. Therefore, as the conventional method are implemented
on actual PC cluster, long computation time tends to be required. In contrast,
the action sequences from the initial state to the goal state can be smaller data
size than value functions (see Fig. 5). From all slave nodes, master node receives
action sequences from the initial state to the goal state. The value function is
combined when reward is distributed based on received action sequences.

The communication between each node has a large overhead. Therefore, the
communication frequency should be reduced. In the proposed method each node
communicates to each other with a constant episode interval. Then, the communi-
cation frequency can be reduced, and the calculation load of a master node can be
reduced. Because, action sequences are sent only at the communication timing. A
master node combines a value function based on the received action sequences, ap-
plying a weight parameter ω. We consider that the last received action sequence is
repeated until the next communication timing. The value of the weight parameter
ω is set to be equal to the communication interval. As the communication interval
is longer, communication cost is smaller, but parallelism is lower. Implementing
our method on PC cluster, we investigate such trade-off characteristics.

4 Numerical Experiments

A maze problem as shown in Fig. 6 is used for the task of an experiment. The
agents learn actions from the initial state S to the goal state G. There exist plural
effective rules to achieve a goal state. Each state has four executable actions: UP,
DOWN, LEFT, RIGHT. The minimum steps to the goal state is 4. In order to
guarantee rational learning, the parameter of reinforcement function, S, is set to
4 which is equal to the number of executable actions. The action selection rule
is roulette selection. The initial reward of each rule is 107 The reward obtained
at each episode is 107 Each experimental result represents the average values

816 T. Fujishiro, H. Nakano, and A. Miyauchi

Fig. 6. A maze problem with plural effective rules

Table 1. Specification of PC cluster

CPU Pentium III 866MHz
Memory 512MByte

LAN 100Base-TX
OS Linux 2.4.21
MPI MPICH 1.2.5

for 5000 trials with diffrent random sequences. The random sequences for each
agent are also different. Table 1 shows specification of PC cluster.

Table 2 and Fig. 7 show typical experimental results for the methods with
every episode communication. Here, convergence episodes mean the number of
episodes at which the learning curve converge. We regard that learning curve
converges if slope of learning curve is sufficiently small (|slope|<10−5). The ex-
perience number is given by the following equation.

Experience number =
n∑

x=1

f(x), (3)

n: Convergence Episodes f(x): Learning Curve x: Episodes.

That is, experience number represents the total number of executed actions
until the learning curve converges. Computation time is the time to convergence
episodes. These values represent summation of computation time for 100 trials
with different random sequences. 1 node means to use common Profit Sharing
without parallelization. As shown in Table 2 and Fig. 7, convergence episodes
and experience number decreases as the number of nodes increases.

Fig. 8 shows the improvement factor of number of experiences. As the number
of nodes increases, this factor increases linearly. These results show that Parallel
Distributed Profit Sharing can accelerate the learning. However, computation
time is longer than common Profit Sharing without parallelization as shown in
Table 2. This is due to the communication cost between each node.

Parallel Distributed Profit Sharing for PC Cluster 817

Table 2. Experimental results for the method with every episode communication

Number of nodes Convergence episodes Experience number Computation time [sec]
1 15398 85443.59 7.003
2 6800 38854.21 274.955
3 4644 26393.34 257.066
4 3528 19982.51 264.282
5 2842 16056.47 255.712

Fig. 7. Learning curves for the method with every episode communication

Fig. 8. Improvement factor of experience number

Fig. 9 shows the learning curves for the method with a communication inter-
val. The learning curve for the method with 400 episode communication inter-
val stepwise decreases at every communication timing. Also, this learning curve

818 T. Fujishiro, H. Nakano, and A. Miyauchi

Fig. 9. Learning curves with a communication interval

 0.5

 1

 1.5

 2

 2.5

 3

 100 1000

Im
pr

ov
em

en
t f

ac
to

r

Communications interval [episode]

2node
4node
5node

common PS

Fig. 10. Improvement factor of computation time

Table 3. The best computation time in the experimental results

Convergence episodes Computation time [sec] Speed-up rate
2 node every 400 episode 9640 5.475 1.28
4 node every 400 episode 4588 3.379 2.07
5 node every 500 episode 3453 2.723 2.57

common PS 15398 7.003 1.00

approaches to the learning curve for the method with every episode commu-
nication. Fig. 10 shows the improvement factor of computation time. As the
communication interval is longer, communication cost is smaller, but parallelism

Parallel Distributed Profit Sharing for PC Cluster 819

is lower. We can confirm such trade-off characteristics. Table 3 shows the best
computation time in the experimental results. We can confirm that our method
can reduce computation time to reinforcement learning by properly adjusting
communication interval.

5 Conclusions

In this paper, we have proposed the parallelization method of Profit Sharing
considered communication cost. In our method, each agent communicates only
action sequences with a constant episode interval. We have investigated trade-off
characteristics between parallelism and communication cost. We have confirmed
that our method can reduce computation time to reinforcement learning by
properly adjusting communication interval.

Future works include application to large-scale problems, detailed examina-
tion of the calculation load in a master node, and consideration of the optimal
communication interval and its task dependency.

References

1. R. Matthew Kretchmar, “Parallel Reinforcement Learning”, Proc. of the 6th World
Conference on Systemics, Cybernetics and Informatics, vol.6, pp.114-118 (2002).

2. Daria Antonova, “Parallel Reinforcement Learning - Extending the Concept to Con-
tinuous Multi-State Tasks”, thesis, Denison University (2003).

3. Watkins, C. J. H., and Dayan, P. Technical note: Q-learning. Machine Learning,
Vol.8: 55-68, (1992).

4. Grefenstette J. J. Credit Assignment in Rule Discovery Systems Based on Genetic
Algorithms, Machine Learning, Vol.3, pages 225-245 (1988).

Feature Extraction for Decision-Theoretic
Planning in Partially Observable Environments

Hajime Fujita, Yutaka Nakamura, and Shin Ishii

Graduate School of Information Science,
Nara Institute of Science and Technology (NAIST)

8916-5 Takayama, Ikoma, 630-0192, Japan
{hajime-f, yutak-na, ishii}@is.naist.jp

Abstract. In this article, we propose a feature extraction technique for
decision-theoretic planning problems in partially observable stochastic
domains and show a novel approach for solving them. To maximize an
expected future reward, all the agent has to do is to estimate a Markov
chain over a statistic variable related to rewards. In our approach, an
auxiliary state variable whose stochastic process satisfies the Markov
property, called internal state, is introduced to the model with the as-
sumption that the rewards are dependent on the pair of an internal state
and an action. The agent then estimates the dynamics of an internal state
model based on the maximum likelihood inference made while acquiring
its policy; the internal state model represents an essential feature nec-
essary to decision-making. Computer simulation results show that our
technique can find an appropriate feature for acquiring a good policy,
and can achieve faster learning with fewer policy parameters than a con-
ventional algorithm, in a reasonably sized partially observable problem.

1 Introduction

A Markov decision process (MDP) is a framework for describing agents that
act and learn in a stochastic environment, and decision-making problems for-
mulated as MDPs can be solved by algorithms based on dynamic programming
(DP) [1] or reinforcement learning (RL) [2]. These learning models have been
studied as an approach to obtain an optimal solution of decision-theoretic plan-
ning problems, and have widespread applications in machine learning problems;
for example, real robot control [3, 4], game playing [5, 6] and multi-agent control
[7, 8] have been achieved as realistic applications. Since the environments often
have partial observability (the agents cannot directly access real states of the
environment but can get only observations which contain partial information
about the state), RL researchers are now devoting much attention to partially
observable problems, which can be formulated as partially observable Markov
decision processes (POMDPs) [9]. Many approaches to acquire a good policy in
a partially observable world, therefore, have been studied recently [10, 11], but
several long-standing issues still remain.

First, learning of the value function over the belief space is difficult even
with an effective approximation [12]; optimization of the value function requires

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 820–829, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Feature Extraction for Decision-Theoretic Planning 821

heavy computation, because its input is a continuous probability distribution
and usually has high dimensionality. Second, an environmental model and the
number of real states are required for explicit estimation of unobservable states;
environmental information is used to calculate the belief state. These difficulties
thus make dealing with various POMDP problems infeasible.

In this article, we propose a feature extraction technique for decision-theoretic
planning problems in partially observable stochastic domains and show a novel
approach for solving such problems. The main idea of our method is that all the
agent has to do for solving the problems is to estimate the Markov chain over a
statistic variable related to rewards. Our model includes an auxiliary variable,
called internal state [13], whose stochastic process has the Markov property, and
we assume that the rewards are dependent not only on the action but also on the
internal state. The agent, therefore, estimates the dynamics of the internal state
based on the maximum likelihood inference, given reward sequences obtained
by interactions with the environment while acquiring its policy. An essential
feature necessary to decision-making can be found with implicit learning of the
environmental model and estimation of unobservable states; the environmental
model of the target system is not required for the decision-making. The agent
selects its action based on a current internal state, and learns its policy which
maps an internal state into an action; the agent can then learn its policy with-
out having to make an optimization over a continuous belief space. We applied
our method to a reasonably sized problem with partial observability. Computer
simulation results show that our technique can estimate an appropriate internal
model for acquiring a good policy and achieve faster learning with fewer pol-
icy parameters than a conventional POMDP algorithm, in a reasonably sized
partially observable problem.

2 Preliminary

A POMDP [9] is a framework to make an agent learn and act in a partially ob-
servable environment, and consists of (1) a set of real states S = {s1, s2, · · · , s|S|},
which cannot be determined with complete certainty, (2) a set of observation states
O = {o1, o2, · · · , o|O|}, which can be perceived by the agents, (3) a set of actions
A = {a1, a2, · · · , a|A|}, which can be executed by the agents, and (4) a reward
function R : S × A → R, which maps the pair of a state and an action into a nu-
merical reward. The dynamics of the model is represented as transition probability
P (st+1|st, at) and observation probabilityP (ot|st, at). The objective of each agent
is to acquire the policy which maximizes an expected future reward in the par-
tially observable world. The state st is not observable for each agent; only the ob-
servation ot, which contains partial information about the state, is available. Fig-
ure 1(left) represents the dynamic Bayesian network of the conventional POMDP
framework. The circles denote unobservable variables and the squares denote ob-
servable ones to the agent. If the policy is determined only from an immediate
observation, without estimating an unobservable state explicitly or implicitly, the
policy does not usually converge to a global optimum [14], because the observation

822 H. Fujita, Y. Nakamura, and S. Ishii

Fig. 1. The dynamic Bayesian networks which represent the two models
left: The conventional belief state MDP model. According to the incremental Bayes
inference with the environmental model, the agent calculates a belief state b(st) in every
time step, and its policy is defined over the continuous belief space, π ≡ P (at|bt).
right: The proposed model with internal states. The real state st can be removed by
the assumption that rewards are dependent on a pair of an internal state yt and an
action at; the agent does not have to make an explicit state estimation. It estimates an
internal state model, P (yt+1|yt, at, ot) and P (rt|yt, at), and its policy is defined over
the discrete internal state space, π ≡ P (at|yt).

does not satisfy the Markov property. The simplest way to overcome this prob-
lem is to use a history of the agent’s experience: Ht = {(ot,−), (ot−1, at−1), · · · ,
(o1, a1)}. Because it is difficult to maintain such a naive history with a limited
memory, however, a belief state b(st) ≡ P (st|Ht) is often used, which summa-
rizes the history as a probability distribution over S. Since the belief state is a
sufficient statistic for the history and has the Markov property, the optimal policy
that maps a belief state into an action P (at|bt) becomes a solution of a continu-
ous space “belief state MDP”. Although this formulation can solve a POMDP, an
exact solution is hard to achieve because of the requirement for computing a pol-
icy over the entire belief space, the cost of which increases exponentially with the
increase in state number of the underlying MDP. In addition, to compute a belief
state in every time step, the environmental model, P (st+1|st, at) and P (ot|st, at),
is required by the agent. These limitations make it difficult for realistic agents to
deal with general POMDP problems.

In this study, we use internal state representation; our model consists of (5) a
set of internal states Y = {y1, y2, · · · , y|Y|}, in addition to the four constituents in
the conventional POMDP model described above. The stochastic processes over
the internal states are represented as transition probability P (yt+1|yt, at, ot) and
reward (observation) probability P (rt|yt, at). Figure 1(right) represents the dy-
namic Bayesian network of our proposed model. The agent based on our method
estimates these processes of the internal state based on the maximum likelihood
inference, given reward sequences; the reward sequence is regarded as the series of
observations, and the expectation-maximization (EM) inference is carried out to

Feature Extraction for Decision-Theoretic Planning 823

estimate their dynamics. By assuming that all variables take discrete values, we
use the multinomial model; the EM inference is then done by the input/output
hidden Markov model (HMM) [15]. Note that, in this study, the number of pos-
sible internal states is assumed to be given to the agent in advance.

3 Method

In this article, we use the following notations: sequence of internal states, actions
taken by the agent, rewards and observations obtained from the environment
are denoted by y = {y1, . . . , yT+1}, a = {a1, . . . , aT }, r = {r1, . . . , rT } and
o = {o1, . . . , oT }, respectively, where T is the termination time. The likelihood
function is here given as an HMM:

P (r|a,o; θ,σ) =
∑

y

P (y, r|a,o; θ,σ)

=
∑

y

P (y1)
T∏

t=1

P (rt|yt, at)P (yt+1|yt, at, ot). (1)

Our aim is to obtain the parameters θ and σ, related to the internal state tran-
sition and observation processes, respectively, based on the maximum likelihood
inference so that the likelihood function in equation (1) is maximized. More con-
cretely, θ ≡ {θij = P (yt+1 = j|yt = i, at, ot)|i = 1, . . . , |Y|, j = 1, . . . , |Y|},σ ≡
{σik = P (rt = k|yt = i, at)|i = 1, . . . , |Y|, k = 1, . . . , |R|}. Note that the initial
internal state y1 is fixed; P (y1) is 1 for a particular internal state, otherwise 0.
Since our model is based on a discrete-space HMM (that is, it is a multinomial
model), the following maximum likelihood estimates can be obtained:

θij =
〈Nij〉∑
j〈Nij〉

, σik =
〈Nik〉∑
k〈Nik〉

, (2)

where Nij and Nik denote the number of appearances of {yt = i, yt+1 = j, rt = k}
in the sequences, and 〈·〉 denotes an expectation with respect to the posterior
probability P (y|r,a,o). Note that we use the forward-backward algorithm for
the input/output HMM model to calculate the expectation, because direct sum-
mation over all sequences of the internal state

∑
y requires heavy computation.

Once an internal state model is established according to the above method,
the remaining processes for solving a problem are to select an action and to learn
a policy with the model. These are achieved by the following three steps: the
first step is to determine a current internal state yt according to the probability
P (yt+1|yt, at, ot); the second step is to select an action based on a current policy
P (at|yt); and the last step is to learn the policy based on an RL algorithm.
Since a POMDP can become a quasi-equivalent MDP by our technique, various
algorithms are available to acquire a good policy in a simple MDP environment
[16]; our method thus requires many fewer policy parameters than other POMDP
algorithms.

824 H. Fujita, Y. Nakamura, and S. Ishii

4 Computer Simulation

To evaluate the performance of our feature extraction technique, we applied our
method to a partially observable problem, “The Tiger Problem”, introduced by
Kaelbling et al. [9]. An agent is standing in front of two closed doors; behind one
of the doors is a treasure box (reward) and behind the other is a tiger (penalty).
The agent cannot perceive the real position of the tiger, but can listen to sounds
from behind the closed doors with incomplete accuracy; there is a chance that the
agent hears the tiger’s roar from the wrong door. A = {LEFT, RIGHT, LISTEN}
are executable actions for the agent, and O = {LEFT, RIGHT} are observations
obtained by taking the LISTEN action. The rewards rt for opening the door with
the treasure box, for opening the door with the tiger and for taking the LISTEN
action are +10, −100 and −1, respectively. The LISTEN action does not change
the tiger’s position, but the LEFT and RIGHT actions, that is, opening either
door, are followed by a state transition with a uniform probability; in other
words, the episode is terminated by opening a door, and then another episode is
initialized randomly. The probability that the agent can get a correct observation
is p = 0.85. In this experiment, the agent estimated an internal state model using
the data generated from 500 episodes in an environment where an action was
selected randomly at each time step. To improve the policy, the REINFORCE
algorithm [17], which is a type of policy-gradient-based RL algorithm, was used.
We restricted the maximum number of actions to ten so that the agent could not
take the LISTEN action for all time, and assumed that the number of internal
states was five: |Y| = 5.

Fig. 2. The state transition when the agent takes the LISTEN action, yt+1 =
argmax yt+1

P (yt+1|yt, at = LISTEN, ot), in the Tiger Problem with p = 0.85

Figure 2 represents an internal state model estimated by the agent. Arrows
represent transitions with a maximum probability when the agent selects the LIS-
TEN action; each arrow is pointing toward yt+1 = argmax yt+1

P (yt+1|yt, at =
LISTEN, ot). LEFT and RIGHT in the figure represent observations obtained by
taking the LISTEN action. Table 1 shows action selection probabilities acquired
by the RL algorithm for the estimated model. Note that the performance of the

Feature Extraction for Decision-Theoretic Planning 825

Table 1. Action selection probability acquired by the agent in the Tiger Problem with
p = 0.85

yt

at LISTEN LEFT RIGHT

1 0.999992 0.000003 0.000005
2 0.997126 0.000003 0.002871
3 0.999746 0.000000 0.000254
4 0.009600 0.000000 0.990400
5 0.003291 0.996709 0.000000

agent has two factors: validity of the internal state model and performance of
the policy acquired for the model. Figure 3 represents learning curves for one
agent based on our method and for three types of agents based on history-based
methods, which learn a policy based on a k-length history defined as an obser-
vation sequence consisting of the past k observations: hk

t = {ot, · · · , ot−k+1};
the agent based on k-length history solves the MDP problem with

∑k
i=0 |O|i

states. Note that this Tiger Problem with p = 0.85 can be optimally solved by
using 4-length history. Since the transition in Fig. 2 has the same representation
ability as 2-length history, the agent based on our method could not achieve the
exact optimal solution but only a sub-optimal one. The averaged reward of this

10
3

10
4

−6

−4

−2

0

2

4

Proposed method

2−length

3−length

4−length

number of episodes

av
er

ag
ed

 r
ew

ar
d

Fig. 3. Learning curves of four agents based on our method and three types of history-
based methods with 2, 3 and 4-length observation history. The abscissa denotes the
number of episodes in log scale and the ordinate denotes the averaged reward. We
executed 20 learning runs, each consisting of 20,000 episodes. Each point represents
the moving average for 400 episodes over the 20 runs. The horizontal line represents
the optimal averaged reward.

826 H. Fujita, Y. Nakamura, and S. Ishii

Fig. 4. The state transition when the agent takes the LISTEN action, yt+1 =
argmax yt+1

P (yt+1|yt, at = LISTEN, ot), in the Tiger Problem with p = 0.80

agent, however, increased at the fastest speed, because it has the fewest policy
parameters. In the history-based method, the number of policy parameters in-
creased exponentially as the history length increased; the exponential growth
of the computational cost for acquiring a policy has been essentially inevitable
in most conventional POMDP algorithms, even those with effective approxima-
tions, and this intractability can make problem-solving infeasible. In our method,
on the other hand, the number of parameters increases linearly as the number
of internal states increases; our feature extraction technique allows us to re-
duce the number of parameters by finding an essential structure of the reward
delivery in POMDPs. The simulation result shows that our method can solve
the intractability in the conventional POMDP formulation and provide us with
possibilities to deal with various partially observable problems.

We also applied our technique to the Tiger Problem with p = 0.80, after as-
suming that the number of internal states is seven: |Y| = 7. Note that, in this
setting, the problem can be optimally solved by using 7-length history. Figure 4
represents an internal state model estimated by the agent, which has the same

Table 2. Action selection probability acquired by the agent in the Tiger Problem with
p = 0.80

yt

at LISTEN LEFT RIGHT

1 0.999896 0.000002 0.000102
2 0.999417 0.000568 0.000015
3 0.999985 0.000011 0.000004
4 1.000000 0.000000 0.000000
5 0.999992 0.000008 0.000000
6 0.000539 0.000000 0.999461
7 0.006082 0.993917 0.000000

Feature Extraction for Decision-Theoretic Planning 827

representation ability as 4-length history. Table 2 shows action selection proba-
bilities acquired by the RL algorithm for the estimated model. The agent based
on our method could achieve many faster learning than a conventional algo-
rithm, which is similar to Fig. 3, because the agent has much fewer parameters;
it requires only 1/4 of the parameters of the 4-length history-based agent.

5 Discussion

Kaelbling et al. proposed an exact algorithm for solving POMDP problems off-
line and articulated a limitation for acquiring an optimal solution [9]. Many
studies have since devised methods to reduce the computational effort by using
approximate approaches. Although various applications in diverse fields have
been demonstrated, with effective methods, few studies can solve the exponen-
tial growth of the computational cost due to the increase of policy parameters
over the entire belief space; this fact implies that the formulation based on the
belief-state MDP has a serious limitation, because the exponential increase is
essentially inevitable and few approximations can follow this intractable growth.
New approaches based on other formulations, therefore, are required. In this
article, we proposed a novel method for solving partially observable problems
which is not based on the conventional POMDP formulation.

Chrisman [18] proposed an HMM-based algorithm; it estimated unobservable
states using an HMM, which is similar to our method because the maximum
likelihood inference over a discrete space is used for solving partially observ-
able problems. The algorithm, however, was formulated as a belief state MDP,
namely, the agent based on the HMM-based method made an explicit estimation
by calculating a belief state using the forward-backward algorithm and learned
a policy over the belief space. In contrast, the agent in our method does not re-
quire any information about the real state space S, because it does not estimate
unobservable states but instead an internal state model and can learn a policy
over the internal feature space. Once an appropriate feature space is found, the
computation for acquiring a policy can be achieved in polynomial time, because
the original POMDP problem is converted to a quasi-equivalent MDP in the fea-
ture space. Our new approach can solve the complexity of partially observable
problems and should be able to make many difficult problems tractable.

Boutilier et al. proposed a factored representation technique for making a
model structure tractable by introducing dynamic Bayesian networks [19], and
McAllester and Singh extended this method to be applicable to POMDPs [20].
In these methods, when an action was executed, the resulting value of a state
variable usually depended only on a subset of state variables; the agent could
avoid exhaustive state enumeration by taking advantage of local dependencies
among stochastic variables. Kitakoshi et al. used a mixture model consisting
of multiple Bayesian networks to represent prior knowledge of an environment
and showed that it had a better performance than a naive approach [21]. The
framework of Bayesian networks is available to the RL field; we also used it to
consider the variable structure in Fig. 1.

828 H. Fujita, Y. Nakamura, and S. Ishii

Two issues still remain for our future work. First, the number of internal states
should be estimated; in this work, the number of internal states |Y| is given to the
agent in advance, but it should be possible to estimate with the model estimation
process. An appropriate number of internal states can be gradually estimated by
increases or decreases in the state number with decision-making processes, or al-
ternatively mixture models such as a Dirichlet process, non-parametric Bayesian
inference, may be beneficial for this issue; application of such techniques is our
future work. Second, the two separate phases, the model estimation phase by
the maximum likelihood inference and the policy acquisition phase by an RL
algorithm, should be unified; there are two objective functions optimized sep-
arately. Since this separation may prevent acquisition of an optimal solution,
the internal model should be estimated with reinforcement learning of a policy
on-line. We also plan to explore this method in our future work.

6 Concluding Remarks

In this article, we proposed a feature extraction technique for decision-theoretic
planning problems in partially observable stochastic domains and showed a novel
approach for solving the problems. To acquire a good policy, all the agent has to
do is to estimate a Markov chain over a statistic variable related to rewards. We
added an auxiliary state variable, called internal state, whose stochastic process
has the Markov property, and assumed that the rewards are determined by a pair
of an internal state and an action. The agent, therefore, estimated the process
based on the maximum likelihood inference, given reward sequences obtained by
interactions with the environment. An essential feature necessary to decision-
making could be found with implicit learning of the environmental model and
estimation of unobservable states. Computer simulation results showed that our
technique could estimate an appropriate internal model for acquiring a good
policy and achieve faster learning with fewer policy parameters than conventional
POMDP algorithms.

References

1. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific
(1996)

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

3. Morimoto, J., Doya, K.: Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems 36 (2001)
37–51

4. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on
passive dynamic walkers. Science Magazine 307 (2005) 1082–1085

5. Tesauro, G.: TD-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation 6 (1994) 215–219

6. Ishii, S., Fujita, H., Mitsutake, M., Yamazaki, T., Matsuda, J., Matsuno, Y.: A re-
inforcement learning scheme for a partially-observable multi-agent game. Machine
Learning 59 (2005) 31–54

Feature Extraction for Decision-Theoretic Planning 829

7. Singh, S., Bertsekas, D.: Reinforcement learning for dynamic channel allocation in
cellular telephone systems. In: Advances in Neural Information Processing Systems.
Volume 9. (1996) 974–980

8. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of the 15th National Conference on Artificial
Intelligence. (1998) 746–752

9. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101 (1998) 99–134

10. Thrun, S.: Monte Carlo POMDPs. In: Advances in Neural Information Processing
Systems. Volume 12. (2000) 1064–1070

11. Yoshimoto, J., Ishii, S., Sato, M.: System identification based on on-line variational
Bayes method and its application to reinforcement learning. In: Proceedings of the
International Conference on Artificial Neural Networks and Neural Information
Processing. Volume 2714. (2003) 123–131

12. Hauskrecht, M.: Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research 13 (2000) 33–94

13. Nakamura, Y., Mori, T., Ishii, S.: An off-policy natural gradient method for a
partially observable Markov decision process. In: Proceedings of the International
Conference on Artificial Neural Networks. Volume 3697. (2005) 431–436

14. Chrisman, L., Littman, M.L.: Hidden state and short-term memory. Presentation
at Reinforcement learning workshop, Machine Learning Conference (1993)

15. Bengio, Y., Frasconi, P.: Input-output HMM’s for sequence processing. IEEE
Transactions on Neural Networks 7 (1996) 1231–1249

16. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4 (1996) 237–285

17. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8 (1992) 229–256

18. Chrisman, L.: Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In: Proceedings of the 10th National Conference on Artificial
Intelligence. (1992) 183–188

19. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy con-
struction. In: Proceedings of the 14th International Joint Conference on Artificial
Intelligence. (1995) 1104–1111

20. McAllester, D., Singh, S.: Approximate planning for factored POMDPs using belief
state simplification. In: Proceedings of the 15th Annual Conference on Uncertainty
in Artificial Intelligence. (1999) 409–416

21. Kitakoshi, D., Shioya, H., Nakano, R.: Analysis for adaptability of policy-improving
system with a mixture model of bayesian networks to dynamic environments. In:
Proceedings of the 9th International Conference on Knowledge-based Intelligent
Information & Engineering Systems (KES’05). (2005) 730–737

Reinforcement Learning with Echo State
Networks

István Szita, Viktor Gyenes, and András Lőrincz

Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, Hungary, H-1117
{szityu@eotvos.elte.hu, gyenesvi@inf.elte.hu, andras.lorincz@elte.hu}

http://nipg.inf.elte.hu/

Abstract. Function approximators are often used in reinforcement
learning tasks with large or continuous state spaces. Artificial neural net-
works, among them recurrent neural networks are popular function ap-
proximators, especially in tasks where some kind of of memory is needed,
like in real-world partially observable scenarios. However, convergence
guarantees for such methods are rarely available. Here, we propose a
method using a class of novel RNNs, the echo state networks. Proof of
convergence to a bounded region is provided for k-order Markov decision
processes. Runs on POMDPs were performed to test and illustrate the
working of the architecture.

1 Introduction

Reinforcement learning (RL) has become a popular method for training com-
puter agents how to behave in complex scenarios, based on rewards and penalties
received from the environment. As opposed to supervised learning, no explicit
training examples are needed, instead, the agent is let to explore its environ-
ment. The trainer only needs to provide feedback on whether the actions had a
positive or negative outcome in the form of possibly delayed rewards.

Traditional RL frameworks focus on Markov decision problems (MDPs) [1];
here, the state representation that forms the basis of an agent’s decisions has
the Markov property. The Markov property means that state signals retain all
information relevant for decision making. An ideal state signal would summarize
the past sensations compactly and yet, it would keep all relevant information.

Most learning methods in MDPs are concerned with learning a mapping from
state-action pairs to values [1], which reflect the expected long term reward
gained by choosing specific actions. In case of large state spaces that are in-
tractable for tabular methods, function approximators are used to maintain the
value mapping. Artificial neural networks are popular function approximators,
and recurrent neural networks are spreading to be used in tasks which require
memory, since they naturally retain information about previous states. However,
proofs of convergence are only available in some special cases, like linear function
approximators. Gordon’s results about linear function approximators [2] ensure
� Corresponding author.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 830–839, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reinforcement Learning with ESNs 831

convergence to a bounded region when the Sarsa(λ) method is used. As far as
we know, no positive result about ANNs have been reported so far.

In this paper, we propose a novel method utilizing echo state networks (ESN)
[3] as function approximators in reinforcement learning. ESNs are novel kind of
recurrent neural networks proposed by Jaeger. These networks were found to be
particularly well suited for learning and predicting time series [4]. This way, ESNs
are promising candidates for partially observable problems where information
about the past may improve performance (e.g. k-order Markov processes).

An important aspect of these networks compared to other RNNs is that they
are relatively easy to train. ESNs have random recurrent connections, and only
feedforward output connections are trained in a supervised, least squares manner.
Since ESNs are effectively linear function approximators acting on the internal
state representation built from the previous observations, Gordon’s results about
linear function approximators [2] can be transferred to the ESN architecture.
Building on this, we provide proof of convergence to a bounded region for ESN
training in the case of k-order Markov decision processes. To the best of our
knowledge, this is the first positive result about the convergence of artificial
neural networks used for value prediction in reinforcement learning tasks.

2 Related Work

Artificial neural networks have widely been used as function approximators in
RL for maintaining the value function of an agent [5, 6]. On the contrary, only
limited work has already been done using recurrent neural networks, probably
because of difficulties in training such networks. RNNs have the ability to retain
state over time, because of their recurrent connections, and they are promising
candidates for compactly storing moments of series of observations.

One of the first results with RNNs used for RL was achieved with Elman-
style recurrent networks [7]. An Elman network [8] differs from a multi-layer
feedforward neural network in that it has context units, which hold copies of the
hidden unit activations of the previous time step. Because the hidden unit acti-
vations are partly determined by the context unit activations, the context units
can, in principle, retain information from many time steps ago. Elman networks
have also been used for RL-like tasks by Glickman et. al. [9]. They utilized an
evolutionary algorithm to train the connection weights of the networks.

Perhaps the most similar work to ours is the work of Bakker [10, 11], who used
two types of RNNs for RL tasks that require memory, focusing on tasks that are
not fully observable, and investigated tasks with long term dependencies between
events. He emphasizes the difficulty in discovering the correlation between a piece
of information and the moment at which that information becomes relevant. As
a solution, he introduced long short-term memory networks [10].

Various other recurrent neural network approaches have also been proposed.
The interested reader is referred to a detailed review of Schmidhuber [12], whose
work in the field precedes Bakker’s work considerably. However, it must be noted,
that none of these works provide convergence guarantees.

832 I. Szita, V. Gyenes, and A. Lőrincz

3 Short Introduction to ESNs

Recurrent neural networks are efficient black-box models of nonlinear systems.
Their feedback connections are able to maintain an ongoing activation even in
the absence of inputs. In principle, general RNNs can learn to mimic a target
system with arbitrary accuracy. However, training methods available for RNNs
(back-propagation through time, real-time recurrent learning, extended Kalman-
filtering, etc., [3]) have not been widely employed in technical applications be-
cause of their slow convergence.

In the ESN approach, a larger-than-normal layer of neurons is used with
random recurrent connections. They are not modified during training, they serve
as a dynamic ‘reservoir’. The network has an output layer, and may also have
an input layer. Input-to-hidden layer connections are randomly generated and
are not modified during training. The hidden-to-output connections are trained
and training becomes a simple linear regression task. Upon tuning, the output
weights minimize the squared error on the training sequence.

The idea behind the ESN approach is that the activations in the hidden layer
will mimic systematic variations of the teacher sequence: traces of the hidden
layer activations echo spatial and temporal combinations of the previous inputs.
It is important that the ‘echo’ signals be richly varied. This is ensured by a
sparse connectivity in the hidden layer, the reservoir. For more details, see [3].

4 Reinforcement Learning with ESNs

A large family of RL algorithms uses value function estimation: they estimate
how good it is for the agent to perform a given action in a given state. The
notion of ‘how good’ is defined in terms of expected cumulated future rewards.
Value functions are defined with respect to particular policies. The value of
taking action a ∈ A in state s ∈ S under policy π = π(s, a) is the expected
return starting from s, taking action a, and thereafter following policy π and it
is denoted by Qπ(s, a):

Qπ(s, a) = Eπ{Rt|st = s, at = a}, (1)

where policy π(s, a) is a probability distribution function π : S × A → R that
determines the probability of each action in each state, rt is the immediate reward
received in time step t, Rt =

∑∞
k=0 γkrt+k+1 is the cumulated discounted reward

received after time step t, and γ is the discount factor.
Agents can either use value tables, or parameterized function approximators

to maintain the value function. A popular update method in RL is the so called
SARSA update [1], in which the value function is updated by bootstrapping,
using the immediate reward and our estimate for the next step:

Q(st, at) ← (1 − α)Q(st, at) + α[rt+1 + γQ(st+1, at+1)], (2)

The temporally extended version of the update is the SARSA(λ) update,
which virtually looks ahead more than one steps to incorporate future rewards

Reinforcement Learning with ESNs 833

discounted by λ into the immediate reward. For λ = 0, it yields the SARSA
update, whereas for λ = 1, it yields the Monte Carlo update, which takes a
whole episode into account. For details, see [1]. Equations for training linear
function approximators of the form V̂t(s) = θt

T φs by gradient descent are also
available:

θt+1 ← θt + αt(qt −Qt(st, at))φst , (3)

where θt is the weight vector to be tuned, αt is a learning rate, qt is the tth

training example, Qt(st, at) is our estimated value as a function of θt and φst

is the vector of features corresponding to state st.
ESNs can be viewed as linear function approximators acting on an internal

state developed from a series of previous inputs, thus incorporating the past into
the state representation. The observation at time step t alone is not sufficient
to choose an optimal action, but the internal representation should be more
adequate since it is more likely to have the Markov property.

For a formal description, let xt be the input to the ESN, and let ut be the
internal representation of the network at time step t. Let G be the input weight
matrix, and F be the recurrent matrix of the ESN, which are defined to be
random sparse matrices with a spectral radius less than one [3]. Then the internal
state is calculated by the following equation:

ut = σ(Fut−1 + Gxt), (4)

where σ is some nonlinearity, usually the tanh function. Suppose we have k
actions a1, ..., ak to choose from. Then the network will have k outputs, one
corresponding to each of the actions. We want to train an output matrix H , so
that the ith output yields the Q value of the ith action in state u:

Q(u,Ai) = Hiu (5)

where Hi denotes the ith row of H . To achieve this, from (3) we can derive the
following update rule:

Ht+1
i ← Ht

i + αt(training_valuet − esn_outputti)ut. (6)

5 Theoretical Results

Although proofs of convergence are available for many tabular RL algorithms,
the case of function approximators seems to be somewhat more problematic.
Even in the simplest linear function approximator case, learning may diverge
[13]. The use of neural networks seems even more difficult.

There is a positive result about linear function approximators: the TD(λ)
method can be used in a convergent manner to evaluate a fixed strategy. If the
strategy is adapted (instead of evaluating a fixed strategy), then care must be
taken, because even Q-learning, the simplest extension of the TD method, may
diverge [14]. On the other hand, Gordon had shown [15] that using the SARSA
algorithm, the value function converges to a bounded region. At the same time,

834 I. Szita, V. Gyenes, and A. Lőrincz

Fig. 1. Value learning with ESN. G is the input matrix, F is the matrix of recurrent
weights, which are random sparse matrices. The output matrix H is tuned by the least
square method to yield the Q-values.

he showed [2], that using a linear function approximator with SARSA, the value
function may oscillate, and also gave a sufficient condition for the algorithm to
converge.

Building on these results, we show that using an ESN as a nonlinear function
approximator with the SARSA(λ) algorithm, the value function also converges
to a bounded region, if the task to learn is an MDP. What is more, we also show
that this result holds for k-order MDPs, too. This extension is made available
by the memory present in the ESN representation. As far as we know, this is the
first such result for (recurrent) neural networks.

Theorem 1 (Gordon). Assume that a finite MDP is given and SARSA(λ)
learning is being used with a linear function approximator. If the learning rates
satisfy the Robbins-Monro conditions (αt > 0,

∑∞
t=0 αt = ∞,

∑∞
t=0 α2

t < ∞),
then the weight vector sequence generated by the algorithm converges to some
bounded region R with probability 1.

We note that the proof for finite MDPs can trivially be extended for continuous
state space. Now, let us consider what the ESN-SARSA algorithm does: (1) the
observations xt are nonlinearly mapped to the continuous internal representation
ut, (2) on this representation a linear function approximator is trained using the
SARSA method. This means that if the process ut has the Markov property,
Gordon’s theorem can be applied.

Let us suppose that the input vectors xt only contain ±1 entries.

Definition 2 (k-step unambiguous ESN). Given is an ESN with initial state
u0. Let us suppose, that the input sequence x0, . . . , xt results in an internal state
u, and the input sequence x′

0, . . . , x
′
t′ results in an internal state u′. We say,

that the ESN is k-step unambiguous, if u = u′ implies that xt−i = x′
t′−i for all

i = 0 . . . k − 1.

Definition 3 (unambiguous input matrix). The matrix G of size n×m is
said to be an unambiguous input matrix, if for any nonzero vector z ∈ Rm such
that zi ∈ {−1, 0, 1} (i ∈ {1, . . . ,m}), Gz is also nonzero.

Reinforcement Learning with ESNs 835

Lemma 4. Let G be a matrix of size n×m (n > m), whose entries are uniform
random values from the set {−C, 0, C}. The probability that G is an unambiguous
input matrix, is at least 1 − (1/3)n−m.

Proof. Let z be a fixed vector with entries 0 or ±1, and let us suppose that its
first entry is nonzero. Let the ith row of G be denoted by Gi. The first entry
of the row can have three possible values (0 or ±C), from which at most one
makes Giz = 0. This means that at most one third of the row’s possible settings
make Giz = 0. Having n rows, the probability that for all i, Giz = 0 is at
most (1/3)n. Finally z can take 3m−1 different values, thus the probability that
for any of these values, Gz = 0 for a randomly selected matrix G, is at most
(1/3)n · (3m − 1) < (1/3)n−m.

The following lemma states that if the input weights are significantly greater
than the recurrent weights, then the x → u mapping is unambiguous.

Lemma 5. Let the entries of the G matrix of the ESN be randomly chosen
uniformly from the set {0,±C}, where C >

√
n. Let the recurrent matrix F be a

sparse random matrix with ‖F‖ < 1. Then the ESN is 1-step unambiguous with
probability 1 − (1/3)n−m.

Proof. The input matrix is unambiguous with probability 1 − (1/3)n−m, so let
us suppose for now that G is unambiguous. Indirectly, let us suppose that there
exists two input series whose last elements are different, but they transfer the
ESN to the same internal state. This boils down to the existence of such x1 �= x2
and u1, u2 that

ut = σ(Fu1 + Gx1) = σ(Fu2 + Gx2).

Then
F (u1 − u2) = G(x2 − x1),

and by denoting z = (x2 − x1)/2

F
u1 − u2

2
= Gz.

G is an unambiguous input matrix, thus at least one component of Gz is nonzero.
However, the nonzero terms of Gz have the form (±C) · (±1), so ‖Gz‖ ≥ C. On
the other hand, the entries of ui are real values between −1 and 1, thus∥∥F u1 − u2

2

∥∥ ≤ ‖F‖
∥∥u1 − u2

2

∥∥ < 1 ·
√
n,

which is a contradiction.

Lemma 6. If the ESN is 1-step unambiguous, then it is k-step unambiguous for
all k ≥ 1.

Proof. We proceed by induction on k: for k = 1 the lemma holds, and by sup-
posing that it holds for all n < k, we show that it also holds for k + 1. For
j = 0, 1, . . . , t, let

836 I. Szita, V. Gyenes, and A. Lőrincz

ut−j = σ(Fut−j−1 + Gxt−j),
and similarly, for j = 0, 1, . . . , t′, let

u′
t′−j = σ(Fut′−j−1 + Gxt′−j),

and let us suppose that ut = u′
t′ . Since the ESN is 1-step unambiguous, then

xt = x′
t′ , and this implies ut−1 = u′

t′−1. Using our supposition that the ESN is
k-step unambiguous, it must hold for the previous k observations that xt−1 =
x′

t′−1, . . . , xt−k = x′
t′−k, which means that the ESN is k + 1-step unambiguous.

Definition 7 (induced ESN decision process). Given is the following de-
cision process, denoted by M : X is the finite state space, A is the finite action
space, (X×A)∗ denotes the space of series made of elements of X×A, R : X → R
is the reward function, P : (X × A)∗ × X → [0, 1] is the transition probability
function, that gives the probabilities of the next states based on the trajectory of
states travelled and actions applied so far. The ESN-decision process induced by
the decision process M is the following: U = Rn ∪ Z is the state space, where
Z is an abstract terminal state, A is the action space; and P ′ : U × U → [0, 1],
R′ : U → R. P ′ and R′ are defined as follows: for any u ∈ Rn let us observe the
sequence set

S(u)={s=(x0, a0, x1, . . . , at−1, xt, at) |ESN input s results in internal state u}.
The following three cases must be treated separately:

– S(u) = ∅: then let P ′(Z|u, a) := 1, P ′(v|u, a) := 0 and R′(u) := 0 for all a
and v �= Z.

– for all s ∈ S(u) the probabilities P (.|s) are all the same. Then

P ′(v|u, at) :=
{

P (x|s), if ∃x : v = σ(Fu + Gx)
0, otherwise.

– if the value of P is ambiguous on the elements of S(u), then let P ′(Z|u, a) :=
1, P ′(v|u, a) := 0 and R′(u) := 0 for all a and v �= Z.

If the last case does not occur for any u ∈ Rn, then the induced decision
process is said to be well defined.

The previous lemmas imply our main theorem:

Theorem 8. Given is a k-step unambiguous ESN, and given is an
M := (X,A, P,R, x0) k-order MDP, then the decision process induced by the
ESN is well defined, furthermore, the decision process is an MDP, on which the
value function sequence generated by the ESN-SARSA algorithm converges to a
bounded region.

Note: The theorem gives the important result that the ESN-SARSA algorithm
is convergent to a region (that is, the algorithm cannot diverge) for any k. This is
because it only states that the algorithm is convergent, it does not tell anything
about the speed of convergence and how good the resulting value function will
be. As k is increased, the effect of earlier steps decreases exponentially, which
means that the temporal resolution of the function approximator about the far
past will become poorer.

Reinforcement Learning with ESNs 837

6 Test Runs

There are several benchmark tasks to test RL algorithms for partially observed
environments. These tasks typically require some amount of memory. We have
tested the ESN-RL architecture on some of these tasks. In these tests, the ESN
was always trained ‘on-line’.

The first problem was described by Littman et al. [16]. You stand in front of
two doors: behind one door is a tiger and behind the other is a vast reward. You
may open either door, receiving a large penalty if you chose the one with the
tiger and a large reward if you chose the other. You have the additional option
of simply listening. If the tiger is on the left, then with probability 1 ≥ p > 0.5
you will hear the tiger on your left and with probability (1 − p) you will hear it
on your right; symmetrically for the case in which the tiger is on your right. If
you listen, you will pay a small penalty. The problem is this: How long should
you stand and listen before you choose a door?

By varying the value of p the difficulty of the task varies; as p decreases,
the task gets more difficult, more listening is needed to safely determine the
position of the tiger (note, that at p = 0.5, one can not do better than to guess
randomly). Figure 2 shows our results on the tiger problem. It can be seen, that
as p increases, the ESN learns that less listening is needed, and its performance
also increases up to 1, when the task becomes deterministic. In this case, the
ESN learns to answer after 1 round of listening. The number of listenings learned
by the ESN is similar to the results in [16]. At p = 0.85, their system learned
to listen until it hears two more roars from one side then the other. This is
comparable to the ESN’s result of listening 2.37 times on average.

0.75 0.8 0.85 0.9 0.95 1
0.85

0.9

0.95

1

p (roar probability)

pe
rf

or
m

an
ce

0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

p (roar probability)

nu
m

be
r

of
 li

st
en

in
gs

Fig. 2. Results on the tiger problem. Left: performance, right: number of listenings
needed to safely open the right door. Results are averages of 100 runs

The second problem was a simple 4x3 maze example proposed by Russell
and Norvig [17]. The maze has an obstacle in the middle, and has two special
states, one which gives a reward of +1, one which gives a penalty of -1. The
actions, N, S, E, W, have the expected result 80% of the time, and transition in a

838 I. Szita, V. Gyenes, and A. Lőrincz

direction perpendicular to the intended with a 10% probability for each direction.
Observation is limited to two wall detectors that can detect when a wall is to the
left or right. The task is to find the +1 state repeatedly and avoid the -1 state,
starting from a random position. As Figure 3 shows, the ESN was also able to
learn this navigation problem. It must be noted that adding the agent’s own
previous action to the observations in the next time step increased the stability
of the ESN, which might be because of the heavy partially observable nature of
the task, probably being compensated by considering the previous moves.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

number of episodes

average number of steps
performance percentage

Fig. 3. An example run on the 4x3 maze problem. The performance goes up to
90 percent, and the average number of steps of the agent is around 5: the agent has
learned the routes to the goal

We also tested the architecture on a T-maze problem well suited to test the
state retaining properties in memory required tasks [10]. At the beginning of a
T-shaped maze, the agent is shown a sign indicating whether it should to turn
left or right at the end. By varying the length of the T-shape, an algorithm
can be tested how long it is able to retain previous observations. Whether the
ESN approach was able to learn the task seemed to depend on the randomly
generated G and F matrices. With proper matrices, the agent easily learned the
task. The matrices are thought to be proper, if due to the random connections,
the activation resulting from observing the sign is maintained long enough to
effect the decision at the end. The larger the k in the Markov process, the less
probable that the random matrices will be proper. For k < 10, almost 100% of
the matrices were proper; training was always successful. As k was increased,
this percentage slowly fell, and reached 0 at k = 25, being around 50% at k = 20.

7 Conclusions

An echo state network approach for maintaining the value function of an agent
in reinforcement learning tasks was proposed. In principle, the ESN is able to

Reinforcement Learning with ESNs 839

compactly summarize recent observations in an internal state, upon which the
networks output weights can be trained to act as a linear function approximator.
Theoretical results ensure convergence to a bounded region when the task is a
k-order MDP. Tests of the architecture on artificial problems predict that the
ESN approach may be a simple method for partially observable MDP tasks.

References

[1] Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

[2] Gordon, G.J.: Chattering in SARSA(lambda) - a CMU Learning Lab Internal
Report (1996)

[3] Jaeger, H.: Tutorial on training recurrent neural networks, covering BPTT, RTRL,
EKF and the ’echo state network’ approach. Technical Report GMD Report 159,
German National Research Center for Information Technology (2002)

[4] Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless telecommunication. Science (2004) 78–80

[5] Tesauro, G., Sejnowski, T.J.: A parallel network that learns to play backgammon.
Artificial Intelligence 39 (1989) 357–390

[6] Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA (1996)

[7] Lin, L.J., Mitchell, T.M.: Memory approaches to reinforcement learning in non-
markovian domains. Technical Report CMU-CS-92-138, Carnegie Mellon Univer-
sity, Pittsburgh, PA (1992)

[8] Elman, J.L.: Finding structure in time. Cognitive Science 14 (1990) 179–211
[9] Glickman, M.R., Sycara, K.: Evolution of goal-directed behavior from limited

information in a complex environment. In: Proc. of the Genetic and Evol. Comp.
Conf., Orlando, Florida, USA, Morgan Kaufmann (1999) 1281–1288

[10] Bakker, B.: Reinforcement learning with long short-term memory. Advances in
Neural Information Processing Systems 14 (2002) 1475–1482

[11] Bakker, P.B.: The State of Mind - Reinforcement Learning with Recurrent Neural
Networks. PhD thesis, Universiteit Leiden (2004)

[12] Schmidhuber, J.: Making the world differentiable. Technical Report TR-FKI-126-
90, Institut für Informatik, Technische Universität München (1990)

[13] Baird, L.C.: Residual algorithms: Reinforcement learning with function approxi-
mation. In: International Conference on Machine Learning. (1995) 30–37

[14] Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, UK (1989)

[15] Gordon, G.J.: Reinforcement learning with function approximation converges to
a region. In: Advances in Neural Information Processing Systems. Volume 13.,
Cambridge, MA, MIT Press (2001) 1040–1046

[16] L. P. Kaelbling, A.R.C., Littman, M.L.: Acting optimally in partially observable
stochastic domains. In: Proc. of the 12th Nat’l Conf. on Artif. Intell. (1994)

[17] Russell, S.J., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice-Hall,
Englewood Cliffs, New Jersey (1994)

Reward Function and Initial Values:
Better Choices for Accelerated Goal-Directed

Reinforcement Learning

Laëtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat

Laboratoire d’Automatique de Besançon UMR CNRS 6596,
24 rue Alain Savary, 25000 Besançon, France

{laetitia.matignon, guillaume.laurent, nadine.piat}@ens2m.fr

Abstract. An important issue in Reinforcement Learning (RL) is to
accelerate or improve the learning process. In this paper, we study the
influence of some RL parameters over the learning speed. Indeed, al-
though RL convergence properties have been widely studied, no precise
rules exist to correctly choose the reward function and initial Q-values.
Our method helps the choice of these RL parameters within the context
of reaching a goal in a minimal time. We develop a theoretical study and
also provide experimental justifications for choosing on the one hand the
reward function, and on the other hand particular initial Q-values based
on a goal bias function.

1 Introduction

The reinforcement learning (RL) paradigm [1] provides techniques in which an
agent can optimize environmental payoff for the autonomous resolution of tasks.
A RL agent tries to learn a policy, i.e. it learns by trial-and-error to select
actions that maximize its expected discounted future rewards for state-action
pairs, represented by the action values. Q-learning [2] is a commonly form of RL
where the optimal policy is learned implicitly in the form of a Q-function.

One of the main limitations of RL is the slowness in convergence. Thus, several
methods have been proposed to speed up RL. They involve the incorporation
of prior knowledge or bias into RL. [3] proposed a methodology for designing
reward functions that take advantage of implicit domain knowledge. It involves
the use of continuous reward functions and progress estimators. Likewise, with
reward shaping, the rewards from the environment are augmented with addi-
tional rewards [4]. However, reward shaping can lead the agent into learning
suboptimal policies and so, traps the system. [5] completed the reward shaping
study and moreover, proved certain similarities between potential-based shaping
and initial Q-values. Indeed, the most elementary method for biasing learning is
to choose the initial Q-values [6]. So [7] studied various representations of reward
functions and the complexity of Q-learning methods depending on the choice of
RL representation. Finally, concerning imitative reinforcement, [8] proposed to
give the learning agent access to the Q-values of the experienced agent.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 840–849, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reward Function and Initial Values 841

Thus, reward function and initial Q-values play an important part in RL. Nev-
ertheless, although RL has been studied extensively and its convergence prop-
erties are well known, in practice, people often choose reward function on one’s
intuition and initial Q-values arbitrarily [1]. In this paper, we discuss the effects
of RL parameters on the policy in order to suggest a generic analysis. We vali-
date our analysis with Q-learning algorithm. The main issue is to shed light on
how to correctly initialize RL parameters in order to obtain the desired optimal
behavior in a minimal time within the context of a goal directed task.

2 Reinforcement Learning

The framework of most of RL algorithms is a Markov Decision Process (MDP),
defined as a finite set of states, S, a finite set of actions, A, and a transition
function T : S × A × S → [0; 1] giving for each state and action a probability
distribution over states. R : S × A × S → R is a reward function giving the
expected immediate reward or reinforcement received under each transition.
The goal is to learn a mapping from states to actions, called a policy, π.

In this work, we have validated our analysis with Q-learning [2] algorithm.
In Q-learning, an action-value function Qπ(s, a) is estimated over the learning
process and stored in a tabular representation. An action-value represents the
expected sum of rewards 1 the agent expects to receive by executing the action
a from state s and following the policy π . The optimal action-value function Q∗

is known to be the unique solution to the Bellman equation,

Q∗(s, a) =
∑

∀s′∈S

T (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

]
. (1)

Q-learning is an off-policy method and its updating rule is :

Q(s, a) ← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′) −Q(s, a)

]
(2)

where r is the reward received for the transition from the state s to the new state
s′ by executing the action a. α ∈]0; 1] is the learning-rate parameter and γ ∈ [0; 1[
the discount factor. Under some cases [9], Q-learning algorithm is guaranteed to
converge to the optimal value function. The Q-Learning algorithm chooses the
action according to an exploration/exploitation criteria. We used the ε-greedy
method, in which the probability of taking a random action is ε and, otherwise,
the selected action is the one with the largest Q-value in the current state 2.

3 Choice of Uniform Initial Q-Values with Binary
Rewards

We make the assumption that two general trends stand out : the global policy
and a specific behavior at the beginning of the learning process. In this section,
1 The rewards are discounted by a discount factor γ that controls the balance between

the significance of immediate rewards and future rewards.
2 If several values are identical, the choice will be random among greedy actions.

842 L. Matignon, G.J. Laurent, and N. Le Fort-Piat

we are going to set out that these both tendencies depend on the shape of the
reward function and on the initialization of the action-value function. We first
considered a binary reward function which has the advantage to include a lot of
cases and it is possible to extrapolate.

3.1 Optimal Policy

The binary reward function is such as the reward received is always r∞ except
if the new state is the goal state and then, the reward is rg. It’s given by :

∀s ∈ S ∀a ∈ A, R(s, a, s′) =
{

rg if s′ = sg

r∞ else (3)

where s′ is the state obtained by executing the action a from s, and sg the goal
state. In case of all rewards are identical (rg = r∞), the solution of the Bellman
equation (1) is a constant noted Q∞,

∀s ∀a Q∗(s, a) = Q∞ =
r∞

1 − γ
. (4)

That is to say that during the learning process, Q-values for all state-action val-
ues converge to Q∞. Nevertheless, if rg �= r∞, Q∞ is the limit of the action-value
function Q∗(s, a) when the distance between s and sg tends toward infinity. So,
toward the goal, states are more and more or less and less attractive depend-
ing on rg and Q∞. On the one hand, if rg > Q∞, the Q-value of state-action
pairs moving to the goal state will be more and more attractive than Q∞. So
the global optimal policy is the shortest way toward sg. On the other hand, if
rg < Q∞, the optimal policy is random everywhere except a local repulsion of
sg.

As a matter of course, the shortest way toward the goal is the sought optimal
policy concerning goal-directed tasks. So rg must always be superior to Q∞.

3.2 Behavior at the Beginning of the Learning Process

As well as the reward function, the initial value Qi of the action-value function
has an effect on the policy, but only at the beginning of the learning process.
We believe that a global trend can be underscored during the first trials of the
learning process.

Let’s examine what the Q-values are expected to be at the beginning. If we
calculate the first updating of a state-action pair (s, a) thanks to (2), such as
the next state s′ is not the goal state and has not been updated, we have :

Q(s, a) ← Qi + α [r∞ + (γ − 1)Qi]
← Qi + α(1 − γ)(Q∞ −Qi) . (5)

So the discriminating value of Qi is also Q∞. According to the value of Qi

compared to Q∞, states already visited will be more or less attractive as long as
the agent has not reached plenty of times the goal state.

Reward Function and Initial Values 843

– If Qi > Q∞ : states which have already been visited will have a value lower
than the value of states which haven’t yet been visited (Q(s, a) < Qi). In
other words, states which haven’t yet been visited will be more attractive.
It induces the agent to explore more systematically at the beginning of the
learning than a random exploration. We called it systematic exploration be-
havior.

– If Qi < Q∞ : states which have already been visited will have a value
superior to the value of states which haven’t yet been visited (Q(s, a) > Qi).
That’s to say states which have already been visited will be more attractive.
It leads the agent into less exploration at the beginning, which considerably
slows down the learning. We named this behavior “moving round in circles”.
Of course, it’s better to avoid it.

– If Qi = Q∞ : states which have already been visited will have the same value
than states which haven’t yet been visited (Q(s, a) = Qi). So we obtain at
the beginning a pure random behavior.

3.3 Gridworld Experiments

We have discussed how traditional reward functions and arbitrary initial Q-
values may slow down the learning of an interesting policy. At this point, we are
going to validate this previous analysis and we have chosen for simplicity and
clarity to use at first a non-deterministic gridworld domain to demonstrate how
the behavior is influenced by using binary rewards and different initial Q-values.

Benchmark. The system is represented by a mouse going around a maze
(Fig. 1a). Each mouse’s position is a discrete state. When the mouse reaches
the goal state, the trial ends. The mouse chooses from four actions, representing
an intention to move in one of the four cardinal directions (N,E,S,W). An action
that would move the mouse in a wall instead leaves the mouse in its current
position. Any movement moves the mouse in the intended direction with proba-
bility 0.6, and otherwise in a random state of the four neighboring states of the
expected state. All trials use Q-learning with a learning-rate α of 0.1, a discount
factor γ of 0.9, a tabular Q-table initialized uniformly Qi and follow a policy
where the greedy action is taken with a probability 0.9 (ε = 0.1).

Binary Reward Function. Our reward function replicates the function given
in (3), with rg = 1 and r∞ = 0. With such a reward function, the optimal
policy is the shortest way toward the goal and the discriminating value of Qi

is 0 (Q∞=0). Fig. 1b illustrates our previous analysis. As can be readily seen,
using the systematic exploration behavior helped speed up learning during the
first trials. The agent visited every nook and cranny of the complex maze and
the goal state sg was discovered faster than in case of a random exploration.
But given that the agent was always spurred on to explore, it always took more
steps to reach the goal after some trials. Besides, we used different values of Qi

for the systematic exploration and we notice the more Qi was superior to Q∞,

844 L. Matignon, G.J. Laurent, and N. Le Fort-Piat

(a) Gridworld

0 20 40 60 80 100

10
2

10
3

10
4

Trial Number
St

ep
s

to
 g

oa
l

Random Behavior : Qi=0
Systematic Exploration: Qi=0.001
Systematic Exploration: Qi=0.1
Systematic Exploration: Qi=10

(b) Experiments

Fig. 1. On the left, non-deterministic 20× 20 gridworld with a single start state (state
[2, 2]) and a goal state (cheese) (state [14, 14]). On the right, gridworld experiments
with different Qi averaged over 50 independent runs. Steps to goal vs. trial number.

the more the agent explored. So, the more the difference between Qi and Q∞ is
important, the more the general behavior is underlined.

Concerning the moving round in circles behavior (Qi < 0), we do not sub-
mit any experiments because the agent took too much time to reach the goal.
Anyway, this behavior has to be avoided.

3.4 Conclusion

This shed light on the importance of initial Q-values. The choice of Qi is not
trivial and must be done according to the desired behavior. When the system
naturally goes away from the goal, a systematic exploration should be preferred
in order to speed up learning at the beginning. Indeed, systematic exploration
forces the controller to explore unvisited states, and so to approach the goal.

4 Choice of Continuous Reward Function and
Heterogeneous Initial Q-Values

In order to broaden the scope of our study, we propose henceforth to use first
two different continuous reward functions with uniform initial Q-values, and
secondly to initialize the action value function with a goal bias function.

4.1 Reward Function Using Progress Estimators

First, we propose to study the use of a continuous reward function instead of bi-
nary rewards. Thus, some authors introduce reward functions by using progress
estimators [3] or potential-based shaping [5]. Progress estimators provide a mea-
sure of improvement relative to an objective. They do not supply a complete

Reward Function and Initial Values 845

information but only partial, goal-specific “advice”. For instance, concerning
the gridworld, the progress estimator can be an assessment of the expected
number of steps needed to get to the goal from the new state s′, defined as
ϕ(s′, a) = d(s′, sg). d is the manhattan distance between s′ and sg. The aim of
the agent in the gridworld is to minimize this function and the parameters could
be then : {

r(s, a, s′) = −ϕ2 = −d2(s′, sg)
Qi = 0 (6)

This way, the agent is less and less punished by approaching the goal. The global
policy is the shortest way toward the goal. Given our maze, this reinforcement
is spurious as there are plenty of walls between the initial state and the goal. In
particular, it entails an unlearning phenomenon after few trials. Indeed, if the
agent was taken off toward a dead end (that moves the agent closer to the goal),
it would get out of the trap only thanks to exploration because states are more
and more attractive toward the goal. At the beginning, Q-values are near 0 so
systematic exploration is strong : going out of the trap is possible. But after few
trials, turning back is tantamount to choosing a less attractive Q-value and will
happen only if several exploration actions follow one another, i.e. seldom.

So progress estimators and potential-based shaping are risky. It’s better to use
cautiously these approaches insofar as they may lead to a pernicious behavior.

4.2 Continuous Reward Function Inspired by Gaussian Function

Consequently, we propose a continuous reward function such that on the one
hand, r is uniform for some states far from the goal in order to avoid the un-
learning phenomenon, and on the other hand, there is a reward gradient in a
zone around the goal. We suggest the reward function inspired by the gaussian
function :

r(s, a, s′) = βe−
d(s′,sg)2

2σ2 . (7)

Qi values are uniform, β adjusts the amplitude of the function and σ, the
standard deviation, specifies the reward gradient influence area. As a matter
of course, “moving round in circles” behavior must be avoided, i.e. Qi ≥ β

1−γ .
For the gridworld task, we have chosen Qi = 100 and β = 10. Fig. 2a shows

the unlearning phenomenon as from 80 trials with σ = 3.5 3. Indeed, the reward
gradient influence area is too large and includes few dead ends. On the contrary,
if the reward gradient influence area is only 6 steps around the goal (σ = 2), there
won’t be any unlearning phenomenons and the learning process is accelerated.

Such a continuous reward function is adjustable so as to avoid a harmful be-
havior. Anyway, the best approach would be to influence fleetingly the learning.

4.3 Goal Bias

In view of the importance of the action-value function initialization, we pro-
pose to be inspired by progress estimators in order to initialize the action-value
3 i.e. states 10 steps away from the goal have uniform r.

846 L. Matignon, G.J. Laurent, and N. Le Fort-Piat

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

Trial Number

St
ep

s
to

 g
oa

l

Binary Rewards: Rinf=0 Rg=1 Qi=0
Progress estimators: Qi=100 Sigma=2
Progress estimators: Qi=100 Sigma=3.5

(a) Continuous reward

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

Trial Number

St
ep

s
to

 g
oa

l

Random behavior
Goal Bias

(b) Goal bias

Fig. 2. Gridworld experiments averaged over 20 independent runs. Steps to goal
vs. trial number. On the left, reward function inspired by gaussian function .

Qi = 100 ; r(s, a, s′) = 10e
− d(s′,sg)2

2σ2 . On the right, goal bias function with binary re-

wards. Random test is Qi = 0. Goal bias function is Qi(s, a) = 0.001e
− d(s,sg)2

2×132 .

function with more precise information. In this section, the reward function is
the binary one given by (3) with r∞ = 0 and rg = 1.

We are going to settle a correct goal bias function thanks to our previous
analysis. An interesting bias shall achieve an adjustable state gradient and in
addition, must avoid the “moving round in circles” behavior. We suggest for
instance a gaussian goal bias function :

Qi(s, a) = βe−
d(s,sg)2

2σ2 + δ + Q∞ . (8)

δ fixes the level of systematic exploration far away from the goal, β the amplitude
of the bias and σ the bias influence area.

Concerning the gridworld, the bias is such that states near the goal are more
and more interesting a priori than states far away from the goal. So δ and β must
be chosen very small compared to one (in order to avoid too much systematic
exploration). Fig. 2b presents goal bias results on the previous gridworld which
are unambiguous. The goal bias leads to a much faster learning process. It is
worth noticing that there is no problem concerning dead ends even if the bias is
wrong. Contrary to Sect. 4.2, the effect of the goal bias function is transient. It
advises the agent only at the beginning of the learning process.

4.4 Conclusion

Both progress estimators and potential-based shaping methods must be used
cautiously to design a continuous reward function. Consequently, we have pro-
posed a continuous reward function inspired by a gaussian function and whose
reward gradient influence area is adjustable in order to deal with risks. Anyway,

Reward Function and Initial Values 847

the best solution is to choose a suitable goal bias function that does not lead to
any problems. Our analysis helps the choice of a correct goal bias function.

5 Experiments with the Pendulum Swing-Up Problem

Last of all, we validate our results on the continuous space control task of a
pendulum swinging upwards with limited torque [10] (Fig. 3a). The control of
this one degree of freedom system is non-trivial if the maximal output torque
umax is smaller than the maximal load torque mgl. The controller has to swing
the pendulum several times to build up enough momentum to bring it upright
and has to decelerate the pendulum early enough to prevent it from falling over.

We have chosen a two-dimensional state space x = (θ, ω). 30×30×9 bases were
used for the state-action space (θ, ω, u). Each trial was started from an initial
state x(0) = (π, 0.1) and lasted 20 seconds. The sample time is 0.03 seconds. As
a measure of the swing-up performance, we have chosen tup as the time in which
the pendulum stayed up (|θ| < π/4). A trial was regarded as “successful” when
tup is superior to the tup average of the 1000 last trials.

We tested the performance of the Q-Learning algorithm depending on the
shape of the reward function and initial Q-values (Fig. 3b). In all cases, the tup

average after 10000 trials is around 14 seconds.
We tested first the binary reward function

R(x, u,x′) =
{

1 if |θ′| < π/4
0 otherwise (9)

with different uniform initial Q-values. With Qi = 0, the task was really difficult
to learn (bar1) because the behavior far from the goal is random. A better perfor-
mance concerning the binary reward and uniform Qi was observed with Qi > 0
(bar2), i.e. the followed behavior when |θ| > π/4 is systematic exploration. The
policy drives the agent to unexplored areas which are assigned higher Q-values,
i.e. the controller is spurred on to swing the pendulum upwards. Systematic
exploration is the best strategy in this specific case.

Then, we tested goal bias with binary rewards : Qi(x) = βe−
θ2

2σ2 +δ. Given our
previous results, it is obvious that the goal bias function shall favor systematic
exploration when |θ| > π/4, so we chose δ = 0.1, β = 1 and σ = 0.25 (bar3).
Goal bias does not improve obviously the learning.

The system is a continuous space control task so the classical reward [10] is
given by the height of the tip of the pendulum, i.e. R(x, u,x′) = cos(θ′) and
the arbitrary Qi value is 0 (bar4). Thus, the pendulum moves round in circles
when |θ| < π/2 and explores systematically when |θ| > π/2 at the beginning.
The result is disappointing.

We applied our gaussian reward function (7) with Qi = 10 and β = 1. The
distance is defined as d(x’,xup) = θ′ with x’ the new state and xup the goal
state. So the continuous reward function is

R(x, u,x′) = e−
θ′2
2σ2 . (10)

848 L. Matignon, G.J. Laurent, and N. Le Fort-Piat

(a) A pendulum
0 1 2 3 4 5 6 7

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r

of
 tr

ia
ls

 b
ef

or
e

on
e

su
cc

es
sf

ul
 tr

ia
l

(b) Experiments

Fig. 3. On the right, comparison of number of trials before one successful trial. The
simulation lasted 10000 trials averaged over 10 independent runs.
bar1: {binary reward ; Qi(x) = 0} bar2: {binary reward ; Qi(x) = 0.1}
bar3: {binary reward and goal bias } bar4: {R(x, u, x′) = cos(θ′) ; Qi(x) = 0}
bar5: {continuous reward and Qi(x)=10 } bar6: {continuous reward and goal bias}

σ = 0.25 so that the reward gradient influence area is only around |θ| < π/4.
Results (bar5) are near the case of a binary reward and systematic exploration.

Lastly, we tried goal bias with continuous reward function. The reward func-
tion (10) is the continuous equivalent to the binary one so we have kept this one.
The reward function is continuous, it is the same for Qi which must be higher

than R(x)
1−γ . So goal bias is Qi(x) = β(1 + 1

1−γ)e−
d2

2σ2 + δ. We have kept previous
choices: δ = 0.1, β = 1 and σ = 0.25. This last simulation (bar6) is the better
performance concerning the pendulum.

6 Conclusion

In this paper, we have called into question the arbitrary choice of the reward func-
tion and initial Q-values within the context of goal directed tasks. Our analysis
has resulted in rules to correctly evaluate rewards and initial Q-values accord-
ing to the desired behavior. Notably, some values of Qi lead to a detrimental
behavior that must be avoided. Thanks to our experiments, we have confirmed
the presence of bounds which mark out diverse behaviors. It is worth noticing
that the farther Qi is from the bounds, the more the characteristic behaviors
are distinguished.

Moreover, we advise to be wary of progressive estimators or potential-based
shaping that may entail pernicious behavior. A safer adjustable continuous re-
ward function is also suggested. At last, thanks to our conditions on the initial
Q-values, we developed a generic goal bias function, whose main feature is to be
transient. This method turns out to be an effective way to improve the learning
performance of goal-directed tasks. Table 1 recapitulates the better choices.

Reward Function and Initial Values 849

Table 1. Better choices of reward function and initial Q-values for goal-directed RL

Binary reward function for
discrete state space

Continuous reward function for
continuous state space

r(s, a, s′) =
{

rg if s′ = sg

r∞ else
Choice of rg and r∞ : rg ≥ r∞

1−γ
r(s, a, s′) = βe

− d(s′,sg)2

2σ2

Choice of uniform initial Q-values :
Qi = r∞

1−γ
+ δ

Choice of uniform initial Q-values :
Qi = β

1−γ

Choice of goal biased initial Q-values :

Qi(s) = βe
− d(s,sg)2

2σ2 + δ + r∞
1−γ

Choice of goal biased initial Q-values :

Qi(s) = β(1 + 1
1−γ

)e− d(s,sg)2

2σ2 + δ

δ ≥ 0 fixes the level of systematic exploration far away from the goal, β > 0 adjusts

the amplitude of the gradient, σ specifies the gradient influence area and γ is the discount factor

s is the previous state, s′ the new state, sg the goal state

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

2. Watkins, C.: Learning from Delayed Rewards. PhD thesis, Cambridge University,
Cambridge, England (1989)

3. Mataric, M.J.: Reward functions for accelerated learning. In: Proc. of the 11th
ICML. (1994) 181–189

4. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
theory and application to reward shaping. In: Proc. of the 16th ICML. (1999)
278–287

5. Wiewiora, E.: Potential-based shaping and Q-value initialization are equivalent.
Journal of Artificial Intelligence Research 19 (2003) 205–208

6. Hailu, G., Sommer, G.: On amount and quality of bias in reinforcement learning.
In: Proc. of the IEEE International Conference on Systems, Man and Cybernetics,
Tokyo (1999) 1491–1495

7. Koenig, S., Simmons, R.G.: The effect of representation and knowledge on goal-
directed exploration with reinforcement-learning algorithms. Machine Learning
22(1-3) (1996) 227–250

8. Behnke, S., Bennewitz, M.: Learning to play soccer using imitative reinforcement.
In: Proc. of the ICRA Workshop on Social Aspects of Robot Programming through
Demonstration, Barcelona (2005)

9. Watkins, C., Dayan, P.: Technical note: Q-learning. Machine Learning 8 (1992)
279–292

10. Doya, K.: Reinforcement learning in continuous time and space. Neural Compu-
tation 12(1) (2000) 219–245

Nearly Optimal Exploration-Exploitation
Decision Thresholds

Christos Dimitrakakis �

IDIAP Research Institute, 4 Rue de Simplon, Martigny CH 1920, Switzerland
dimitrak@idiap.ch

Abstract. While in general trading off exploration and exploitation in
reinforcement learning is hard, under some formulations relatively simple
solutions exist. Optimal decision thresholds for the multi-armed bandit
problem, one for the infinite horizon discounted reward case and one for
the finite horizon undiscounted reward case are derived, which make the
link between the reward horizon, uncertainty and the need for exploration
explicit. From this result follow two practical approximate algorithms,
which are illustrated experimentally.

1 Introduction

In reinforcement learning, the dilemma between selecting actions to maximise
the expected return according to the current world model and to improve the
world model such as to potentially be able to achieve a higher expected return is
referred to as the exploration-exploitation trade-off. This has been the subject of
much interest before, one of the earliest developments being the theory of sequen-
tial sampling in statistics, as developed by [1]. This dealt mostly with making
sequential decisions for accepting one among a set of particular hypotheses, with
a view towards applying it to jointly decide the termination of an experiment and
the acceptance of a hypothesis. A more general overview of sequential decision
problems from a Bayesian viewpoint is offered in [2].

The optimal, but intractable, Bayesian solution for bandit problems was given
in [3], while recently tight bounds on the sample complexity of exploration have
been found [4]. An approximation to the full Bayesian case for the general rein-
forcement learning problem is given in [5], while an alternative technique based
on eliminating actions which are confidently estimated as low-value is given in
[6].

The following section formulates the intuitive concept of trading exploration
and exploitation as a natural consequence of the definition of the problem of
reinforcement learning. After the problem definitions which correspond to either
extreme are identified, Sec. 3 derives a threshold for switching from exploratory
to greedy behaviour in bandit problems. This threshold is found to depend on the
� Thanks to M. Keller and R. Chavarriaga, for comments and interesting discussions.

This work has received financial support from the Swiss NSF under the MULTI
project (2000-068231.021/1) and from IDIAP.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 850–859, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Nearly Optimal Exploration-Exploitation Decision Thresholds 851

effective reward horizon of the optimal policy and on our current belief distribu-
tion of the expected rewards of each action. A sketch of the extension to MDPs
is presented in Sec. 4. Section 5 uses an upper bound on the value of exploration
to derive practical algorithms, which are then illustrated experimentally in Sec.
6. We conclude with a discussion on the relations with other methods.

2 Exploration Versus Exploitation

Let us assume a standard multi-armed bandit setting, where a reward distribu-
tion p(rt+1|at) is conditioned on actions in at ∈ A, with rt ∈ R. The aim is to
discover a policy π = {P (at = i)|i ∈ A}, where P (at = i) is the probability that
action i is chosen at time t, which maximises E[rt+1|π], the expected value of the
reward at the following time-step under the distribution defined by the policy
π. It follows that the optimal gambler, or oracle, for this problem would be a
policy which always chooses i ∈ A such that E[rt+1|at = i] ≥ E[rt+1|at = j] for
all j ∈ A. Given the conditional expectations, implementing the oracle is trivial.
However this tells us little about the optimal way to select actions when the
expectations are unknown. As it turns out, the optimal action selection mech-
anism will depend upon the problem formulation. We initially consider the two
simplest cases in order to illustrate that the exploration/exploitation tradeoff is
and should be viewed in terms of problem and model definition.

In the first problem formulation the objective is to discover a parameterized
probabilistic policy π =

{
P (at|θt)

∣∣ at ∈ A
}
, with parameters θt, for selecting

actions such that E[rt+1|π] is maximised. If we consider a model whose para-
meters are the set of estimates θt =

{
qi = Êt[rt+1|at = i]

∣∣ i ∈ A
}
, then the

optimal choice is to select at for which the estimated expected value of the re-
ward is highest, because according to our current belief any other choice will
necessarily lead to a lower expectation. Thus, stating the bandit problem in this
way does not allow the exploration of seemingly lower, but potentially higher
value actions and it results in a greedy policy.

In the second formulation, we wish to minimise the discrepancy between our
estimate qi and the true expectation. This could be written as the following
minimisation problem: ∑

i∈A
E
[
‖rt+1 − qi‖2

∣∣ at = i
]
.

For point estimates of the expected reward, this requires sampling uniformly
from all actions and thus represents a purely exploratory policy. If the problem
is stated as simply minimising the discrepancy asymptotically, then uniformity
is not required and it is only necessary to sample from all actions infinitely often.
This condition holds when P (at = i) > 0 ∀i ∈ A, t > 0 and can be satisfied
by mixing the optimal policies for the two formulations, with a probability ε of
using the uniform action selection and a probability 1 − ε of using the greedy
action selection. This results in the well-known ε-greedy policy (see for example
[7]), with the parameter ε ∈ [0, 1] used to control exploration.

852 C. Dimitrakakis

This formulation of the exploration-exploitation problem, though leading to
an intuitive result, does not lead to an obvious way to optimally select actions. In
the following section we shall consider bandit problems for which the functional
to be maximised is

E

[N∑
k=0

g(k)rt+k+1

∣∣∣∣π], g(k) ∈ [0, 1], N ≥ 0,

with
∑∞

k=0 g(k) < ∞. In this formulation of the problem we are not only in-
terested in maximising the expected reward at the next time step, but in the
subsequent N steps, with the g(·) function providing another convenient way
to weigh our preference among short and long-term rewards. Intuitively it is
expected that the optimal policy for this problem will be different depending
on how long-term are the rewards that we are interested in. As will be shown
later, by lengthening the effective reward horizon through manipulation of g
and N , i.e. by changing the definition of the problem that we wish to solve, the
exploration bias is increased automatically.

3 Optimal Exploration Threshold for Bandit Problems

We want to know when it is a better decision to take action i rather than some
other action j, with i, j ∈ A, given that we have estimates qi, qj for E[rt+1|at = i]
and E[rt+1|at = j] respectively1. We shall attempt to see under which conditions
it is better to take an action different than the one whose expected reward is
greatest. For this we shall need the following assumption:

Assumption 1 (Expected rewards are bounded from below). There ex-
ists b ∈ R such that

E[rt+1|at = i] ≥ b ∀ i ∈ A, (1)

The above assumption is necessary for imposing a lower bound on the expected
return of exploratory actions: no matter what action is taken, we are guaranteed
that E[rt] > b. Without this condition, exploratory actions would be too risky
to be taken at all.

Given two possible actions to take, where one action is currently estimated
to have a lower expected reward than the other, then it might be worthwhile to
pursue the lower-valued action if the following conditions are true: (a) there is a
degree of uncertainty such that the lower-valued action can potentially be better
than the higher-valued one, (b) we are interested in maximising more than just
the expectation of the next reward, but the expectation of a weighted sum of
future rewards, (c) we will be able to accurately determine whether one action
is better than the other quickly enough, so that not a lot of resources will be
wasted in exploration.

1 For bandit problems with states in a state space S , similar arguments can be made
by considering i, j ∈ S × A.

Nearly Optimal Exploration-Exploitation Decision Thresholds 853

We now start viewing qi as random variables for which we hold belief distri-
butions p(qi), with q̄i = E[qi] = Ê[rt+1|at = i]. The problem can be defined as
deciding when action i, is better than taking action j, under the condition that
doing so allows us to determine whether qi > qj + δ with high probability after
T ≥ 1 exploratory actions. For this reason we will need the following bound on
the expected return of exploration.

Lemma 1 (Exploration bound). For any return of the form Rt =
∑N

k=0
g(k)rt+k+1, with g(k) ≥ 0, assuming (1) holds, the expected return of taking
action i for T time-steps and following a greedy policy thereafter, when q̄i > q̄j,
is bounded below by

U(i, j, T, δ, b) =
N∑

k=T

g(k)
(
(q̄j + δ)P (qi > qj + δ) + q̄jP (qi ≤ qj + δ)

)
+

T−1∑
k=0

g(k)
(
(q̄j + δ)P (qi > qj + δ) + bP (qi ≤ qj + δ)

)
(2)

for some δ > 0.

This follows immediately from Assumption 1. The greedy behaviour supposes
we are following a policy where we continue to perform i if we know that P (qi >
qj + δ) ≈ 1 after T steps and switch back to j otherwise.

Without loss of generality, in the sequel we will assume that b = 0 (If expected
rewards are bounded by some b �= 0, we can always subtract b from all rewards
and obtain the same). For further convenience, we set pi = P (qi ≥ qj + δ). Then
we may write that we must take action i if the expected return of simply taking
action j is smaller than the expected return of taking action i for T steps and
then behaving greedily, i.e. if the following holds:

N∑
k=0

g(k)q̄j <
N∑

k=T

g(k)
(
(q̄j + δ)pi+q̄j(1 − pi)

)
+

T−1∑
k=0

g(k)(q̄j + δ)pi

(3)
T−1∑
k=0

g(k)
(
q̄j − (q̄j + δ)pi

)
<

N∑
k=T

g(k)
(
δpi

)
(4)

Let g(k) = γk, with γ ∈ [0, 1]. In this case, any choice of T can be made
equivalent to T = 1 by dividing everything with

∑T−1
k=0 γk. We explore two

cases: γ < 1, N → ∞ and γ = 1, N < ∞. In the first case, which corresponds
to infinite horizon exponentially discounted reward maximisation problems, we
obtain the following:

q̄j − (q̄j + δ)pi <

∞∑
k=1

γkδpi (5)

q̄j − (q̄j + δ)pi

(1 − pi)q̄j
< γ. (6)

854 C. Dimitrakakis

It is possible to simplify this expression considerably. When P (qi ≥ q̄j+δ) = 1/2,
it follows from (6) that

γ >
q̄j − (q̄j + δ)/2

q̄j/2
=

q̄j − δ

q̄j
. (7)

Thus, for infinite horizon discounted reward maximisation problems, when it is
known that the all expected rewards are non-negative, all we need to do is find
δ such that P (qi ≥ qj + δ) = 1/2. Then (7) can be used to make a decision on
whether it is worthwhile to perform exploration. Although it might seem strange
that qi is omitted from this expression, its distribution is implicitly expressed
through the value of δ.

In the second case, finite horizon cumulative reward maximisation problems,
exploration should be performed when the following condition is satisfied:

Nδpi > q̄j − (q̄j + δ)pi (8)

Here the decision making function is of a different nature, since it depends on
both estimates. However, in both cases, the longer the effective horizon be-
comes and the larger the uncertainty is, the more the bias towards exploration
is increased. We furthermore note that in the finite horizon case, the backward
induction procedure can be used to make optimal decisions (see [2] Sec. 12.4).

3.1 Solutions for Specific Distributions

If we have a specific form for the distribution P (qi > qj + δ) it may be possible
to obtain analytical solutions. To see how this can be achieved, consider that
from (6), we have:

γq̄j > q̄j − δ
pi

1 − pi

0 < δ
P (qi > qj + δ)

1 − P (qj > qj + δ)
− (1 − γ)q̄j , (9)

recalling that all mean rewards are non-negative.
If this condition is satisfied for some δ then exploration must be performed. We

observe that if the first term is maximised for some δ∗ for which the inequality
is not satisfied, then there is no δ �= δ∗ that can satisfy it. Thus, we can attempt
to examine some distributions for which this δ∗ can be determined. We shall
restrict ourselves to distributions that are bounded below, due to Assumption 1.

3.2 Solutions for the Exponential Distribution

One such distribution is the exponential distribution, defined as

P (X > δ) =
∫ ∞

δ

βe−β(x−µ)dx = e−β(δ−µ)

if δ > µ, 1 otherwise. We may plug this into (9) as follows

Nearly Optimal Exploration-Exploitation Decision Thresholds 855

f(δ) = δ
P (qi > qj + δ)

1 − P (qi > qj + δ)
= δ

e−βi(µj+δ−µi)

1 − e−βi(µj+δ−µi)
=

δ

eβi(µj+δ−µi) − 1

Now we should attempt to find δ∗ = argmaxδ f(δ). We begin by taking the
derivative with respect to δ. Set g(δ) = eh(δ) − 1, h(δ) = βi(q̄j + δ − µi)

∇f(δ) =
g(δ) − δ∇g(δ)

g(δ)2
=

g(δ) − δβi∇hg(δ)
g(δ)2

=
eh(δ)(1 − δβi) − 1

(eh(δ) − 1)2

Necessary and sufficient conditions for some point δ∗ to be a local maximum for
a continuous differentiable function f(δ) are that ∇δf(δ∗) = 0 and ∇2

δf(δ∗) < 0.
The necessary condition for δ results in

eβi(qk+δ−µi)(1 − δβi) = 1. (10)

Unfortunately (10) has no closed form solution, but it is related to the Lambert
W function for which iterative solutions do exist [8]. The found solution can then
be plugged into (9) to see whether the conditions for exploration are satisfied.

4 Extension to the General Case

In the general reinforcement learning setting, the reward distribution does not
only depend on the action taken but additionally on a state variable. The state
transition distribution is conditioned on actions and has the Markov property.
Each particular task within this framework can be summarised as a Markov
decision process:

Definition 1 (Markov decision process). A Markov decision process is de-
fined by a set of states S, a set of actions A, a transition distribution T(s′, s, a) =
P (s′t+1|st = s, at = a) and a reward distribution R(s′, s, a) = p(rt+1|st+1 =
s′, st = s, at = a).

The simplest way to extend the bandit case to the more general one of MDPs
is to find conditions under which the latter reduces to the former. This can be
done for example by considering choices not between simple actions but between
temporally extended actions, which we will refer to as options following [9]. We
shall only need a simplified version of this framework, where each possible option
x corresponds to some policy πx : S ×A → [0, 1]. This is sufficient for sketching
the conditions under which the equivalence arises.

In particular, we examine the case where we have two options. The first option
is to always select actions according to some exploratory principle, such picking
them from a uniform distribution. The second is to always select actions greedily,
i.e. by picking the action with the highest expected return.

We assume that each option will last for time T . One further necessary com-
ponent for this framework is the notion of mixing time

Definition 2 (Exploration mixing time). We define the exploration mixing
time for a particular MDP M and a policy π Tε(M, π) as the expected number

856 C. Dimitrakakis

of time steps after which the state distribution is close to the stationary state
distribution of π after we have taken an exploratory action i at time step t, i.e.
the expected number of steps T such that the following condition holds:

1
‖S‖

∑
s

‖P (st+T = s|st, π) − P (st+T = s|at = i, st, π)‖ < ε

It is of course necessary for the MDP to be ergodic for this to be finite. If we only
consider switching between options at time periods greater than Tε(M, π), then
the option framework’s roughly corresponds to the bandit framework, and Tε in
the former to T in the latter. This means that whenever we take an exploratory
action i (one that does not correspond to the action that would have been
selected by the greedy policy π), the distribution of states would remain to be
significantly different from that under π for Tε(M, π) time steps. Thus we could
consider the exploration to be taking place during all of Tε, after which we would
be free to continue exploration or not. Although there is no direct correspondence
between the two cases, this limited equivalence could be sufficient for motivating
the use of similar techniques for determining the optimal exploration exploitation
threshold in full MDPs.

5 Optimistic Evaluation

In order to utilise Lemma 1 in a practical setting we must define T in some sense.
The simplest solution is to set T = 1, which results in an optimistic estimate for
exploratory actions as will be shown below. By rearranging (2) we have

U(i, j, T, δ, b) =
N∑

k=0

g(k)q̄j +
N∑

k=0

g(k)δpi + (1 − pi)

(
T−1∑
k=0

g(k)(b − q̄j))

)
(11)

from which it is evident, since qj ≥ b and g(k) ≥ 0, that U(i, j, T1, δ, b) ≥
U(i, j, T2, δ, b) when T1 < T2, thus U(i, j, 1, δ, b) ≥ U(i, j, T, δ, b) for any T ≥ 1.
This can now be used to obtain Alg. 1 for optimistic exploration.

Nevertheless, testing for the existence of a suitable δ can be costly since,
barring an analytic procedure it requires an exhaustive search. On the other
hand, it may be possible to achieve a similar result through sampling for different
values of δ. Herein, the following sampling method is considered: Firstly, we
determine the action j with the greatest q̄j . Then, for each action i we take a
sample x from the distribution p(qi) and set δ = x− q̄j . This is quite an arbitrary
sampling method, but we may expect to obtain a δ > 0 with high probability
if i has a high probability to be significantly better than j. This method is
summarised in Alg. 2.

An alternative exploration method is given by Alg. 3, which samples each
action with probability equal to the probability that its expected reward is the
highest. It can perhaps be viewed as a crude approximation to Alg. 2 when γ → 1
and has the advantage that it is extremely simple.

Nearly Optimal Exploration-Exploitation Decision Thresholds 857

Algorithm 1. Optimistic exploration
if ∃ δ : U(i, j, 1, δ, b) > N

k=0 g(k)q̄j then
a ⇐ i

else
a ⇐ j

end if

Algorithm 2. Optimistic stochastic exploration
j ⇐ arg maxi q̄i.
uj = N

k=0 g(k)q̄j .
for all i �= j do

δ ⇐ x − q̄j , x ∼ p(qi)
ui ⇐ U(i, j, 1, δ, b)

end for
a ⇐ arg maxi ui

6 Experiments

A small experiment was performed on a n-armed bandit problem with rewards
rt ∈ {0, 1} drawn from a Bernoulli distribution. Alg. 2 was used with g(k) = γk

and b = 0, which is in agreement with the distribution. This was compared with
Alg. 3, which can be perhaps viewed as a crude approximation to Alg. 2 when
γ → 1. The performance of ε-greedy action selection with ε = 0.01 was evaluated
for reference.

The ε-greedy algorithm used point estimates for q̄i, which were updated with
gradient descent with a step size of α = 0.01, such that for each action-reward
observation tuple (at = i, rt+1), q̄i ⇐ α(rt+1 − q̄i), with initial estimates being
uniformly distributed in [0, 1]. In the other two cases, the complete distribution
of qi was maintained via a population {pk

i }K
k=0 of point estimates, with K = 16.

Each point estimate in the population was maintained in the same manner as the
single point estimates in the ε-greedy approach. Sampling actions was performed
by sampling uniformly from the members of the population for each action.

The results for two different bandit tasks, one with 16 and the other with
128 arms, averaged over 1,000 runs, are summarised in Fig. 1. For each run, the
expected reward of each bandit was sampled uniformly from [0, 1].

As can be seen from the figure, the ε-greedy approach performs relatively
well when used with reasonable first initial estimates. The sampling greedy ap-
proach, while having the same complexity, appears to perform better asymp-
totically. More importantly, Alg. 2 exhibits better long-term versus short-term
performance when the effective reward horizon is increased as γ → 1.

Algorithm 3. Sampling-greedy
a ⇐ i with probability P (a = i) = P (qi > qj) ∀j �= i

858 C. Dimitrakakis

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

r

t

Average reward in a 16-armed bandit task

e-greedy
sampling

opt 0.5
opt 0.9

opt 0.99

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

r

t

Average reward in a 128-armed bandit task

e-greedy
sampling

opt 0.5
opt 0.9

opt 0.99

Fig. 1. Average reward in an multi-armed bandit task averaged over 1,000 experiments,
smoothed with a moving average over 10 time-steps. Results are shown for ε-greedy
(e-greedy), sampling-greedy (sampling) and Alg. 2 (opt) with γ ∈ {0.5, 0.9, 0.99}.

7 Discussion and Conclusion

This paper has presented a formulation of an optimal exploration-exploitation
threshold for in a n-armed bandit task, which links the need for exploration to
the effective reward horizon and model uncertainty. Additionally, a practical al-
gorithm, based on an optimistic bound on the value of exploration, is introduced.
Experimental results show that this algorithm exhibits the expected long-term
versus short-term performance trade-off when the effective reward horizon is
increased.

While the above formulation fits well within a reinforcement learning frame-
work, other useful formulations may exist. In budgeted learning, any exploratory
action results in a fixed cost. Such a formulation is used in [10] for the bandit
problem (see also [11] for the active learning case). Then the problem essentially
becomes that of how to best sample from actions in the next T moves such that
the expected return of the optimal policy after T moves is maximised and corre-
sponds to g(k) = 0 ∀k < T in the framework presented in this paper. A further
alternative, described in [6], is to stop exploring those parts of the state-action
space which lead to sub-optimal returns with high probability.

When a distribution or a confidence interval is available for expected returns,
it is common to use the optimistic side of the confidence interval for action
selection [12]. This practice can be partially justified through the framework
presented herein, or alternatively, through considering maximising the expected
information to be gained by exploration, as proposed by [13]. In a similar man-
ner, other methods which represent uncertainty as a simple additive factor to
the normal expected reward estimates, acquire further meaning when viewed
through a statistical decision making framework. For example the Dyna-Q+ al-
gorithm (see [7] chap. 9) includes a slowly increasing exploration bonus for state-
action pairs which have not been recently explored. From a statistical viewpoint,
the exploration bonus corresponds to a model of a non-stationary world, where
uncertainty about past experiences increases with elapsed time.

Nearly Optimal Exploration-Exploitation Decision Thresholds 859

In general, the conditions defined in Sec. 3 require maintaining some type
of belief distribution over the expected return of actions. A natural choice for
this would be to use a fully analytical Bayesian framework. Unfortunately this
makes it more difficult to calculate P (qi > d), so it might be better to consider
simple numerical approaches from the outset. We have previously considered
some simple such estimates in [14], where we relied on estimating the gradient of
the expected return with respect to the parameters. The estimated gradient was
then used as a measure of uncertainty. Further research on the use of population-
based methods for explicitly representing a distribution of estimates is currently
under way.

References

1. Wald, A.: Sequential Analysis. John Wiley & Sons (1947) Republished by Dover
in 2004.

2. DeGroot, M.H.: Optimal Statistical Decisions. John Wiley & Sons (1970) Repub-
lished in 2004.

3. Bellman, R.E.: A problem in the sequential design of experiments. Sankhya 16
(1957) 221–229

4. Mannor, S., Tsitsiklis, J.N.: The sample complexity of exploration in the multi-
armed bandit problem. Journal of Machine Learning Research 5 (2004) 623–648

5. Dearden, R., Friedman, N., Russell, S.J.: Bayesian Q-learning. In: AAAI/IAAI.
(1998) 761–768

6. Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions
for the multi-armed and reinforcement learning problems. Journal of Machine
Learning Research (2006) to appear.

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

8. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the
lambert W function. Advances in Computational Mathematics 5 (1996) 329–359

9. Sutton, R.S., Precup, D., Singh, S.P.: Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence
112(1-2) (1999) 181–211

10. Madani, O., Lizotte, D.J., Greiner, R.: The budgeted multi-armed bandit problem.
In: Learning Theory: 17th Annual Conference on earning Theory, COLT 2004.
Volume 3120 of Lecture Notes in Computer Science., Springer-Verlag (2004) 643–
645

11. Madani, O., Lizotte, D.J., Greiner, R.: Active model selection. In: Proceedings of
the 20th Conference on Uncertainty in Artificial Intelligence, Banff, Canada, AUAI
Press, Arlington, Virginia (2004) 357–365

12. Auer, P.: Models for trading exploration and exploitation using upper confidence
bounds. In: PASCAL workshop on principled methods of trading exploration and
exploitation, PASCAL Network (2005)

13. Bernardo, J.M.: Expected information as expected utility. In: The Annals of
Statistics. Volume 7., Institute of Mathematical Statistics (1979) 686–690

14. Dimitrakakis, C., Bengio, S.: Gradient estimates of return. IDIAP-RR 05-29,
IDIAP (2005)

Dual Adaptive ANN Controllers Based
on Wiener Models for Controlling Stable

Nonlinear Systems

D. Sbarbaro�

Department of Electrical Engineering, Universidad de Concepción, Chile
dsbarbar@udec.cl

Abstract. This paper presents two nonlinear adaptive predictive algo-
rithms based on Artificial Neural Network (ANN) and a Wiener structure
for controlling asymptotically stable nonlinear plants. The first algorithm
is based on the minimization of a cost function taking into account the
future tracking error and the Certainty Equivalence (CE) principle, un-
der which the estimated parameters are used as if they were the true
parameters. In order to improve the performance of the adaptive algo-
rithm, we propose to use a cost function, considering not only the future
tracking error, but also the effect of the control signal over the estimated
parameters. A simulated chemical reactor example illustrates the perfor-
mance and feasibility of both approaches.

1 Introduction

Adaptive control of discrete nonlinear systems, using flexible nonlinear parame-
terization like Artificial Neural Networks, have received a great deal of attention
[1]. Most of these works have relied on the use of inverse model approach assum-
ing that the system has a stable inverse and is affine in the control signal. These
assumptions have limited their range of applications. The adaptive algorithms
can be classified, in general, as indirect or direct ones. The former adapts the
parameter of the controller with respect to some performance index, while the
latter calculates the parameter of the controller based on an identified model of
the plant. Adaptive controllers that are based on the CE principle completely
ignore the uncertainty associated to the parameters. This may lead to inade-
quate transient and poor parameter convergence. Some authors have addressed
these problems, in the context of inverse control, by modelling the parameters as
random variables and taking into account their uncertainty in the control law [2]
[3]. An algorithm that takes into account not only the control objective, but also
the effect of the control signal on the convergence of the estimation algorithm is
called adaptive dual control system [4].

In order to overcome the limitation of inverse control approaches, nonlinear
predictive strategies have been proposed. As any control design tool, it requires

� This work was supported by Fondecyt project 1040486.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 860–867, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Dual Adaptive ANN Controllers Based on Wiener Models 861

dynamical models of the nonlinear systems to be controlled; if these models are
not available, then some empirical ones, such as: Neural Networks, NARMAX,
Volterra [5], and Wiener [6], can be considered. The latter are particularly useful
in representing open loop stable nonlinear processes; without introducing the
stability problems associated to general recursive nonlinear models.

Adaptive Predictive controllers based on Wiener type of models and the Cer-
tainty Equivalence principle, have been proposed by several authors [6][7]. In
addition, Wiener structure can be combined with ANN to provide a powerful
modelling framework [8].

In general, if the parameters are modelled as random variables, then the prob-
lem posed by the predictive controllers cannot even be solved numerically, be-
cause it requires the prediction of the posterior densities. These densities can
not be evaluated, since the estimated mean depends on the future output. It
has been suggested, in [9], to approximate these densities by only propagating
the covariance matrix. This approximation has given good results in the linear
context. Hence, in this work, we explore the use of a Wiener structure combined
with an ANN model, to design a dual adaptive non-linear predictive controller
for stable unknown linear system, with a stochastic additive disturbance act-
ing at the output. The dual characteristic means that the controller is able to
cautiously track the desired reference signal; and at the same time, it excites
the system to improve its identification, so that the performance of the overall
controller can be improved in future time intervals.

The paper is organized as follows: section 2 describes the characteristic of
the nonlinear model to be considered in the design of the predictive controller.
Section 3 introduces the adaptive model based on ANNs, and section 4 the design
of the adaptive controllers based on the CE principle and the prediction of the
posterior densities. Section 5 illustrates the performance of both algorithms.
Finally, in section 6 some conclusions are drawn.

2 The Nonlinear Model

The general model considered in this work can be represented by the following
state space representation

x(k + 1) = Ax(k) + bu(k) (1)
y(k) = h(x(k)) (2)

where y(k) is the measured variable, u(k) is the input variable, x(k) is a vector
of dimension N and h(x(k)) a continuous function. The matrix A and vector
b define the dynamic of the models. It has been demonstrated that this type
of structure can approximate any stable nonlinear system with any degree of
accuracy [10][6]. There are two popular choices for the matrix A and vector b:
orthonormal filters, which are suitable for process modelling [10], and gamma
filters more suitable for signal processing [11]. This approach leads naturally
to a Wiener model, as it was originally proposed by Wiener [12]. The general

862 D. Sbarbaro

structure of the Wiener model, using Laguerre filters, can be described in state
space equations, as eq. (1) with :

Ac = −µ

1 0 . . . 0
2 1 . . . 0
...

...
...

...
2 . . . 2 1

 ,bc =
√

(2µ)

1
1
...
1]

 (3)

where µ is the scale factor. The discrete parameters are:

A = eAcTm ,b = (A − I)A−1
c bc, (4)

where Tm is the sampling time.

3 An ANN Model

Let’s consider that the unknown nonlinear function h(x(k)) can be represented
as a parameterized nonlinear function:

h(x(k)) = n(x(k), θ) (5)

where θ represents a vector of unknown parameters. The nonlinear function is
approximated by a two layer neural network as follows :

y(k) = W1σ(V1x(k) + v0) + w0. (6)

where σ is a sigmoidal function. The parameters are collected in a vector of
parameters θ.

Thus, the system (1) can be described by:

x(k + 1) = Ax(k) + bu(k) (7)
y(k) = n(x(k), θ) + η(k) (8)

where θ is the unknown vector of parameter, and η(k) is an independent, identi-
cally distributed Gaussian random variable, with a distribution given byN(0, σ2).
We will assume that the parameters are modelled as a random variable with a
normal prior distribution given by N(θ(0),P(0)) , where θ(0) and P(0) define the
initial mean and covariance matrix respectively. The on-line computation of the
conditional mean and covariance of θ can be carried out by the followingExtended-
Kalman filter:

θ(k + 1) = θ(k) +
m(k)′P(k)e(k)

1 + m(k)′P(k)m(k)
(9)

P(k + 1) = P(k) − Pm(k)m(k)′P(k)
1 + m(k)′P(k)m(k)

(10)

where m(k) = ∇θn(x(k), θ). Note that the covariance matrix depends only on
the input signal, u(k), through the variables m(k).

Dual Adaptive ANN Controllers Based on Wiener Models 863

4 The Predictive Control Strategies

Predictive control can be seen as a dynamic programming problem [13]. Thus,
the general predictive control in the stochastic dynamic programming setting,
finds a set of future control signals u(k) = [u(k) . . . u(k+T)]′, so that, Bellman’s
equations are satisfied:

Jk,k+T (�k) = minu(k)E q0(w(k + 1) − n(x(k), θ))2 + r0u(k)2 + Jk,k+T (�k+1)|�k

(11)
where (k = {y(0), . . . , y(k), n(x(0)), . . . , n(x(k))} defines the information vector
at time k, Jk+T

k ((k) is the optimal cost to go at step k, with Jk+T+1
k+T ((T) = 0.

Once the solution is obtained, only the first value is applied to the process, and
the minimization is carried out each sampling time. The problem posed by (11)
can not be solved, because it requires the knowledge about the future values of
the posterior densities, which depend on the future control signals and future
output of the process. The solution of (11) gives as a result a control signal that
not only takes into account the control objective, but also the effect of the input
over the parameter estimation algorithm. Several approximations to (11) can be
formulated in order to obtain some practical solutions.

4.1 Certainty Equivalence Controller

The predictive controller based on the CE assumption calculates a set of future
control signals without considering the uncertainty in the parameters; so that:

minu(k)J
k,k+T
CE (�k) = E

T

i=0

qi(w(k + i + 1) − n(x(k + i + 1), θ))2 + riu(k + i)2 ,

(12)
where qi and ri are weighting factors, and w(k) is the reference signal. Under
the receding horizon principle, only the first control is applied to the system. As
all signals are deterministic, the expectation is just:

minu(k)J
k,k+T
CE ((k) =

T∑
i=0

qi(w(k+ i+1)−n(x(k+ i+1), θ))2 +riu(k+ i)2 (13)

subject to the system equations. To reduce the dimension of the optimization
problem several approaches can be applied. For instance, if the future control
signal is assumed constant [14]; i.e. u(k) = u(k + 1) . . . = u(k + T) , then the
problem is reduced to one dimensional optimization problem by considering the
predictions as follows:

n(k + j) = n(Ajx(k) +
j−1∑
i=0

Aj−ibu(k), θ(k)) (14)

.

864 D. Sbarbaro

In addition, if we consider ri = qi = 0, i = 0, .., T − 1 and qT = 1, rT = 1, the
final index will be:

minu(k)J
k,k+T
CE ((k) = (w(k + 1 +T)−n(Ajx(k)+

j−1∑
i=0

Aj−ibu(k), θ(k)))2 (15)

In general, a simple line search algorithm can be used to obtain the solution
to this optimization problem.

4.2 An Approximate Dual Controller

The dual strategy has associated the cost function (11), which in order to be
optimized in terms of u(k) requires the knowledge of the posterior densities
N(θ(k + i),P(k + i)) . Unfortunately, these densities can not be evaluated since
the estimated mean depends on the future output. In [9] has been suggested to
approximate these densities by N(θ(k),P(k + i)). Thus, taking the expectation,
the following approximation can be found:

minu(k)J
k,k+T
CE ((k) =

∑T
i=0 qi(w(k + i + 1) − n(x(k + i + 1), θ))2 + ...

riu(k + i)2 + qim(k + 1 + i)′P(k + 1 + i)m(k + 1 + i)(16)

The above cost function subject to the system model equations (8) and the co-
variance equation (10) can be minimized with respect to the future control signal
u(k). An active strategy is obtained, since the future values of the covariance
matrix, are included in the index. In this way, the control signal will also try to
bring the uncertainty of the parameters to some low level.

5 Simulation Results

In this section, the algorithms are applied to control two reactions in series
(A → B → C) in a Continuous Stirred Tank Reactor [10]. The desired product
is the intermediate product B. The differential equations describing the system
are given by :

ẋ1 = 1 − x1 − E3e
−E1/x3x1 + E4e

−E2/x3x2 (17)
ẋ2 = −x2 + E3e

−E1/x3x1 − E4e
−E2/x3x2 (18)

ẋ3 = u− x3 + .005(E3e
−E1/x3x1 − E4e

−E2/x3x2) (19)

with E1 = 50, E2 = 70, E3 = 300000, and E4 = 60 · 106; where x1 and x2 are
dimensionless concentrations of A and B, x3 is the dimensionless temperature of
the jacket surrounding the reactor. In order to model the relationship between
the concentration of the desired product; i.e. x2, and the control signal, we have
considered a scale factor µ = .6, sampling time Tm = 1, and six Laguerre filters.
A neural network with 6 inputs and 4 hidden units, was trained on line. The
measured concentration,y(kT), considered a zero mean noise signal, η(kT),

y(kT) = x2(kT) + η(kT). (20)

Dual Adaptive ANN Controllers Based on Wiener Models 865

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

2

4

6

8

10

12

14

16

I

H

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

2

4

6

8

10

12

14

16

I
H

Fig. 1. Distribution of the cost function: CE controller and Dual controller

As a measure of the control performance the following index is estimated for
different realizations of the noise signal:

I =

√√√√ 1
N

N∑
k=0

(yd(kTm) − y(kTm))2, (21)

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

e(
k)

k

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

y(
k)

/w
(k

)

k

0 50 100 150 200 250 300 350 400
3

3.5

4

4.5

5

u(
k)

k

Fig. 2. A CE predictive controller

866 D. Sbarbaro

0 50 100 150 200 250 300 350 400
−0.5

0

0.5
e(

k)

k

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

y(
k)

/w
(k

)

k

0 50 100 150 200 250 300 350 400
3

3.5

4

4.5

5

u(
k)

k

Fig. 3. A Dual predictive controller

where N is the number of samples considered in the cost function, yd(kT) and
y(kT) are the desired set-point and measured concentration respectively. The
controller prediction horizon was set to T = 5 and the same initial conditions
were used for all the simulations. Performing Monte Carlo simulations, the index
I was evaluated for 100 realizations of the measurement noise. Figure 1 shows the
distribution of the cost function for both controllers, clearly the dual controller
shifts the distribution toward smaller values of the cost function. Figure 2 shows
the behavior of the controller based on the CE principle, and figure 3 the one
of the dual controller, both figures were obtained for the same noise realization.
By comparing both figures, we can see that the latter provides larger excitation
signals, but without compromising tracking performance. This extra excitation,
at initial stages of the adaptive process, means smaller identification errors and
better tracking performance in future time instants.

6 Final Remarks

We have presented a methodology to design an adaptive predictive controller
based on an Artificial Neural Network model, considering the minimization of
a cost function taking into account the future tracking errors and the effect of
the control signal on the parameter estimation algorithm. The parameters of
the ANN are considered as random variables and the network training algo-
rithm is based on an Extended Kalman-filter. The obtained result shows that
this controller provides more excitation to the system at initial stages than a

Dual Adaptive ANN Controllers Based on Wiener Models 867

controller based on the CE principle. This key feature gives as a result a better
control performance in future time intervals. Future works consider the real-time
implementation of this type of controllers.

References

1. Special issue on neural network feedback control. Automatica 37(8), 2001.
2. S. Fabri and V. Kadirkamanathan, ”Dual Adaptive Control of Nonlinear Stochastic

Systems using Neural Networks”, Automatica, Vol. 34, No. 2, February 1998, pp.
245-253.

3. D. Sbarbaro, N. Filatov and H. Unbehauen, ”Adaptive dual controller for a class
of nonlinear systems”, Preprints of the 1998 IFAC Workshop on Adaptive Systems
in Control and Signal Processing, pp. 28-33, Scotland, August 1998.

4. N. Filatov and H. Hunbeauen,”Adaptive dual control”, Springer, New York, 2004.
5. Y. Chikkula, J.H. Lee, and B. A. Ogunnaike, ”Robust model predictive control of

nonlinear systems using input-output models”, Proceedings of the ACC, Seattle,
pp. 2205-2209, 1995.

6. G. Sentoni, O. Agamennoni, A. Desages, and J. Romagnoli, ”Approximate models
for nonlinear process control”, AIChE Journal, Vol 42, no 8, pp. 2240-2250, 1996.

7. B.R. Maner, F.J. Doyle III, B.A. Ogunnaike, and R. K. Pearson, ”Nonlinear predic-
tive control of a simulated multivariable polymerization reactor using second-order
Volterra models”, Automatica, Vol 32, no 9, pp. 1285-1301, 1996.

8. G. Sentoni, L. Biegler, J.Guiver, and H. Zaho, ”State Space Nonlinear modeling:
Identification and Universality”, AIChE Journal, Vol 44, no 10, pp. 2229-2239,
1998.

9. C. Kulcsar, L. Pronzato and E. Walter, ”Dual Control of linearly parametrised
models via prediction of posterior densities”, European Journal of Control, no.2,
pp 135-143., 1996.

10. Q. Zheng and E. Zafiriou, ” Nonlinear Identification for control using volterra-
Laguerre expansion ”, Proceedings of the ACC, Seattle, pp. 2195-2199, 1995.

11. B. deVries and J. Principe. The gamma model - a new neural model for temporal
processing. Neural Networks, 5(4):565-576, 1992.

12. M Schetzen, ”The Volterra and Wiener theory of non-linear systems”, Wiley, New
York, 1980.

13. N. Filatov and H. Hunbeauen, ”Survey of Adaptive dual control methods”, IEE
Proc.-Control Theory Appl., Vol 147, no 1, pp 118-128, 2000.

14. G. Dumont, and Y. Fu, ”Non-linear adaptive control via laguerre expansion of
volterra kernels”, International Journal of Adaptive Control and Signal Processing,
vol. 7, 367-382. 1993.

Online Stabilization of Chaotic Maps Via
Support Vector Machines Based Generalized

Predictive Control

Serdar Iplikci

Pamukkale University, Department of Electrical and Electronics Engineering,
Kinikli Campus, 20040, Denizli, Turkey

iplikci@pamukkale.edu.tr

Abstract. In this study, the previously proposed Online Support Vector
Machines Based Generalized Predictive Control method [1] is applied to
the problem of stabilizing discrete-time chaotic systems with small pa-
rameter perturbations. The method combines the Accurate Online Sup-
port Vector Regression (AOSVR) algorithm [2] with the Support Vector
Machines Based Generalized Predictive Control (SVM-Based GPC) ap-
proach [3] and thus provides a powerful scheme for controlling chaotic
maps in an adaptive manner. The simulation results on chaotic maps
have revealed that Online SVM-Based GPC provides an excellent on-
line stabilization performance and maintains it when some measurement
noise is added to output of the underlying map.

1 Introduction

Existence of strange attractors and sensitive dependence on initial conditions and
parameter perturbations are some peculiar properties of chaotic behavior, which
are undesirable from the control engineering point of view. However, these prop-
erties can be exploited to achieve a desirable motion [4], e.g. stabilized motion to
one of the unstable equilibrium points (UEPs). In order to stabilize the chaotic
maps to their UEPs by applying judiciously chosen tiny perturbations, we em-
ployed in this study an advanced control algorithm that relies on a well-known
control approach: Generalized Predictive Control (GPC) [5,6]. GPC belongs to
the class of Model-Based Predictive Control (MPC) or Receding Horizon Con-
trol (RHC) techniques that have been applied to a wide spectrum of areas [7].
Since the model of the unknown plant plays very crucial role in the GPC ar-
chitecture, many linear and nonlinear modeling techniques have been proposed
in the literature. Moreover, in the last decade, some computationally intelligent
tools such as neural networks [8], fuzzy systems [9], neuro-fuzzy hybrids [10]
and, most recently, Support Vector Machines [11] have been utilized to obtain
accurate models of the chaotic systems in the GPC loop. However, obtained
models in these approaches are fixed and they cannot adapt to the changes in
the plant dynamics and/or operating conditions, which may become as a major
disadvantage when the changes are not negligible. The aim of this study is to

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 868–877, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Stabilization of Chaotic Maps Via Support Vector Machines 869

show the applicability of the previously proposed adaptive online method [1] to
discrete-time chaotic systems. This paper is organized as follows. In the next
section, the GPC approach is reviewed by introducing its components. Then,
in the first subsection of Section 3, SVMs and AOSVR have been discussed
very briefly. In the next subsections, the SVM-Based GPC scheme is formulated
for the RBF kernels, and then the Online SVM-Based GPC algorithm is ex-
plained. Finally, investigated chaotic maps and the simulation results are given in
Section 4.

2 Generalized Predictive Control

By following [3,11], consider a chaotic map represented by the NARX model

yn = f(pn, ..., pn−np , yn−1, ..., yn−ny), (1)

where pn is the control parameter applied to the plant at the time index n, yn

is corresponding output of the plant, and np and ny denote the number of lags
in the control and the output signals involved in the model, respectively.

Fig. 1. The GPC architecture

Fig. 1 illustrates the architecture of the GPC scheme, where ŷn is the output
of the model at the time index n and ỹ is the reference trajectory which is desired
to be followed by the plant. In the GPC scheme, model of the plant accounts
for the prediction of future behavior of the plant in response to the candidate
control vector p, and also it is used to obtain some gradient information that
will be required in the CFM block, which is the other component of GPC. The
aim of CFM is to minimize the performance index J in (2) with respect to the
candidate control vector p.

870 S. Iplikci

J =
N2∑

j=N1

(ỹn+j − ŷn+j)2 +
Nu∑
j=1

λj(∆pn+j)2

+
Nu∑
j=1

(
µ

pn+j + ρ
2 − ϑ

+
µ

ρ
2 + ϑ− pn+j

− 4
ρ

)
,

(2)

where N1 is the minimum costing horizon, N2 is the maximum costing hori-
zon, Nu is the control horizon, λ is the weighting factor, µ is the sharpness
of the constraint function for the control signal, ρ is the range of the control
signal, ϑ is the offset to the range and ∆pn+j is ∆pn+j = pn+j − pn+j−1 [8].
In the CFM algorithm, the entries of the candidate control vector p, where
p =

[
pn+1 pn+2 . . . pn+Nu

]T
, are altered within the allowable range according

to the general update rule, p ← p + sz, where z is the search direction and s is
the step-length. In this work, we have adopted the Modified Newton’s method(
z = −H−1g

)
for computation of z and the Golden Section algorithm to obtain

the best possible step-length s, where g is the gradient vector as in (3),

g =
∂J
∂p

=
[

∂J
∂pn+1

∂J
∂pn+2

. . . ∂J
∂pn+Nu

]T

, (3)

and H is the Hessian matrix given as

H =
∂2J
∂p2 =

∂2J

∂pn+1pn+1

∂2J
∂pn+1pn+2

· · · ∂2J
∂pn+1pn+Nu

∂2J
∂pn+2pn+1

∂2J
∂pn+2pn+2

· · · ∂2J
∂pn+2pn+Nu

...
... · · ·

...
∂2J

∂pn+Nupn+1

∂2J
∂pn+Nupn+2

· · · ∂2J
∂pn+Nupn+Nu

 . (4)

In order to obtain the hth element (∂J
∂pn+h

) of the gradient vector g, we have to

calculate the first order terms (∂ŷn+j

∂pn+h
)’s, while the mth, hth element (∂2J

∂pn+mpn+h
)

of the Hessian matrix H necessitates the calculation of the second order terms
(∂2ŷn+j

∂pn+mpn+h
)’s. Once the optimum search direction is determined, to find the

optimum step-length becomes a one-dimensional problem that can be solved by
one of the line-search techniques [12,13].

3 The Online SVM-Based GPC Method

3.1 Support Vector Machines

The SVM algorithms [14,15,16] achieve global solution by transforming the re-
gression problem into a quadratic programming (QP) problem and then solving
it by a QP solver. Finding global solution and possessing higher generalization
capability constitute the major advantages of the SVM algorithms over other
regression techniques. In the last decade, SVM-Based algorithms have been de-
veloped very rapidly and have been applied to many areas [17,18]. Consider a

Online Stabilization of Chaotic Maps Via Support Vector Machines 871

training set T = {xk, yk}k=N
k=1 , where xk ∈ X ⊆ Rn is the kth input data point

in input space and yk ∈ Y ⊆ R is corresponding output value. It is desired to
model the relationship between the input and output data points by a Support
Vector Machines regression model (5), which is linear in a higher dimensional
feature space F.

ŷ(x) = 〈w,Φ(x)〉 + b, (5)

where w is a vector in feature space F , Φ(x) is a mapping from input space
to the feature space, b is the bias term and 〈·, ·〉 stands for the inner product
operation in F . When a linear ε-insensitive loss function L(ε, y, ŷ) is employed,
one can obtain the dual form of the regression model as

ŷ(x) =
#SV∑
j=1

j∈SV

αiK(x,xj) + b, (6)

where #SV denotes the number of support vectors in the model and K(xi,xj)
is a kernel function given by K(xi,xj) = Φ(xi)T Φ(xj) = Kij . For more details,
refer to [17,18,19].

The AOSVR algorithm [2] proceeds with optimization of the Lagrangian of
dual form, and then puts the Karush-Kuhn-Tucker (KKT) optimality conditions
to another form by introducing an error function. In the incremental algorithm,
when a new training point xc is received, the largest possible αc value is calcu-
lated providing that the system is at the equilibrium with respect to the KKT
conditions. The process is repeated until the KKT conditions are satisfied for all
data points including the most recent one. When any previously used training
point is desired be removed from the training set, one can use the decremental
algorithm, which is totally opposite of the incremental one.

3.2 The SVM-Based GPC Formulation

In this subsection, formulation of the SVM-Based GPC approach is given as in
[11]. If the current state vector is formed as

cn =
[
pn pn−1 . . . pn−np yn−1 yn−2 . . . yn−ny

]T
, (7)

then the corresponding output of the model becomes, ŷn =
∑#SV

j=1 αjK(cn,xj)+
b. In SVM-Based GPC, the Radial Basis Function-RBF (8) is adopted as the
kernel function.

Kij = K(xi,xj) = exp
(
− (xi − xj)T (xi − xj)

2σ2

)
, (8)

where σ is the width parameter. If djn is defined as the Euclidean distance
between the jth support vector xj and the current state vector cn as in (9),

djn = (cn − xj)T (cn − xj) =
np∑
i=0

(xj,i+1 − pn−i)2 +
ny∑
i=1

(xj,np+i+1 − yn−i)2, (9)

872 S. Iplikci

then the kernel function can be rewritten as K(cn,xj) = exp
(
− djn

2σ2

)
and the

regression model becomes ŷn =
∑#SV

j=1 αj exp
(
− djn

2σ2

)
+ b. Now, the SVM re-

gression model can be used to predict future trajectory of the plant as in (10).

ŷn+k =
#SV∑
j=1

αj exp
(
−dj,n+k

2σ2

)
+ b, k = N1, N1 + 1, . . . , N2, (10)

where

dj,n+k =
min(k,ny)∑

i=1

(xj,np+i+1 − ŷn+k−i)2 +
ny∑

i=k+1

(xj,np+i+1 − ŷn+k−i)2

+
np∑
i=0

{
(xj,i+1 − pn+k−i)2, k −Nu < i

(xj,i+1 − pn+Nu)2, k −Nu ≥ i

(11)

Thus, the first order partial derivatives can be written as

∂ŷn+k

∂pn+h
=

#SV∑
j=1

αj

∂ exp(− dj,n+k

2σ2)
∂pn+h

, (12)

where

∂ exp(− dj,n+k

2σ2)
∂pn+h

=
∂ exp(− dj,n+k

2σ2)
∂dj,n+k

∂dj,n+k

∂pn+h
= − 1

2σ2 exp(
−dj,n+k

2σ2)
∂dj,n+k

∂pn+h
(13)

and

∂dj,n+k

∂pn+h
=

min(k,ny)∑
i=1

(−2)(xj,np+i+1 − ŷn+k−i)
∂ŷn+k−i

∂pn+h
δ1(k − i− 1)

+
np∑
i=0

{
(−2)(xj,i+1 − pn+k−i)δk−i,h, k −Nu < i

(−2)(xj,i+1 − pn+Nu)δNu,h, k −Nu ≥ i

(14)

where δi,j is the Kronecker Delta function and δ1(·) stands for the unit step
function. The second order partial derivatives are

∂2ŷn+k

∂pn+h∂pn+m
=

#SV∑
j=1

αj

∂2 exp(− dj,n+k

2σ2)
∂pn+h∂pn+m

, (15)

where

∂2 exp(− dj,n+k

2σ2)
∂pn+h∂pn+m

=
∂ exp(− dj,n+k

2σ2)
∂dj,n+k

∂2dj,n+k

∂pn+h∂pn+m

+
∂2 exp(− dj,n+k

2σ2)
∂d2

j,n+k

∂dj,n+k

∂pn+h

∂dj,n+k

∂pn+m

(16)

Online Stabilization of Chaotic Maps Via Support Vector Machines 873

and

∂2dj,n+k

∂pn+h∂pn+m
=

min(k,ny)∑
i=1

(−2)
∂ŷn+k−i

∂pn+h

∂ŷn+k−i

∂pn+m
δ1(k − i − 1)

+
min(k,ny)∑

i=1

(−2)
(

(xj,np+i+1 − ŷn+k−i)
∂2ŷn+k−i

∂pn+h∂pn+m

)
δ1(k − i− 1).

(17)

3.3 The Online SVM-Based GPC Algorithm

The algorithm starts with an empty SVM model as can be seen from the flow-
chart in Fig. 2. The accuracy of the model is determined by checking whether
the one-step-ahead prediction error (OSAPE) of the model at the previous iter-
ation is less than ε or not, where OSAPE=|yn − ŷn|. At every iteration, if the
model is accepted as accurate, then a parameter value is produced by the SVM-
Based GPC mechanism and then it is applied to the plant, otherwise a control
parameter of random magnitude within allowable range is generated and then
applied to the plant. After the response of the plant is obtained, the accuracy
of the model is determined for the next iteration. If the model is accurate, then
no update action is performed. Otherwise, if the model is not accurate, then the
output of the plant is used to form a new training point and then the model
is updated by Incremental Learning Algorithm. If the number of training data
exceeds L, then Decremental Unlearning Algorithm is activated to remove the
oldest training point from training data in order to keep the memory usage of
the algorithm as low as possible.

4 Example Systems and the Simulation Results

In the simulations, the kernel parameter is fixed as σ = 2, C is set to 1000,
the maximum number of training points used by AOSVR is chosen as L=100
and some GPC parameters appeared in the performance index (2) are chosen
as N1=1 and µ=10−20. For the sake of robustness, the prediction horizon and
the control horizon are chosen as N2=3, Nu=3, respectively. Furthermore, in
order to determine the robustness of the method with respect to measurement
noise, the measured output of the underlying system is contaminated by additive
zero mean Gaussian noise for which the signal-to-noise ratio SNR is given by
SNR = 10 log10(σ

2
y/σ

2
υ) dB, where σ2

y and σ2
υ are the variances of the measured

output and the additive noise, respectively.
In order to test the efficiency of the proposed method in a statistically con-

vincing sense, we have repeated the simulations for 1000 times starting from
different initial conditions. For each initial condition, we recorded the number
of iterations beyond which the controller is able to keep the chaotic plant at
the equilibrium point forever. Thus, we have obtained the average number of
iterations necessary for the proposed controller to be able to stabilize the map
under investigation.

874 S. Iplikci

Fig. 2. Flowchart of the online control algorithm

4.1 The Logistic Map

The Logistic map is a well-known one-dimensional chaotic system governed by
yn+1 = pnyn(1 − yn), where pn denotes the value of the parameter at the
time index n. The map exhibits chaotic behavior for pn ∈ [3.8, 4.0], which is
the allowable parameter range. For the nominal parameter value pnom = 3.9,
the map has an unstable equilibrium point at y∗ = 0.7436, which is chosen as
the target. The NARX parameters are determined as np=1 and ny=1, whereas
the SVM parameter is chosen as ε=0.002 for the noiseless case and ε=0.007 for
the noisy case. The simulation results for the map are illustrated in Fig. 3a and
Fig. 3b for the noiseless and noisy conditions, respectively. For the Logistic map,
the average number of iterations necessary for the proposed controller to be able
to stabilize the map is 61 and 63 for noiseless and noisy conditions, respectively.

4.2 The Henon Map

The Henon map is a second-order chaotic map and governed by yn+2 = pn −
y2

n+1 + 0.3yn, where pn is the value of the parameter at the time index n. It

Online Stabilization of Chaotic Maps Via Support Vector Machines 875

Fig. 3. Simulation results for the Logistic map: (a) noiseless and (b) noisy conditions

exhibits chaotic behavior for pn ∈ [1.34, 1.40], which is the allowable parameter
range. For the nominal parameter value pnom = 1.37, one of the unstable equi-
librium points is y∗ = 0.8717, which is chosen as the target. While the SVM
parameter is chosen as ε=0.003 for the noiseless case and ε=0.012 for the noisy
case, the NARX parameters are determined as np=2 and ny=2. The simulation
results can be seen Fig. 4a and in Fig. 4b for the noiseless and noisy conditions,
respectively. The proposed controller requires averagely 180 iterations to stabi-
lize the Henon map in the absence of noise, while averagely 189 iterations are
required in the existence of measurement noise.

For both chaotic systems, it is observed from the simulation results that the
stabilization performance of Online SVM-Based GPC is very poor at the begin-
ning since the SVM models are initially empty. However, as the model of the
underlying map is updated with the training data obtained when the model is
inaccurate, the accuracy of the model is gradually improved and, after a short
transient, the map can be stabilized to its UEP with very small steady-state er-
ror. Similar observations can be made in the presence of additive measurement
noise. The proposed method maintain its performance when the output of the
system is contaminated by zero mean Gaussian noise up to a certain level. As
can be seen from the results, the investigated chaotic maps can be stabilized
to their UEPs successfully by Online SVM-Based GPC applying tiny parameter

876 S. Iplikci

Fig. 4. Simulation results for the Henon map: (a) noiseless and (b) noisy conditions

perturbations within the allowable range. In the long run, if we proceed with
the simulations for a long period, we observe that the method keeps the output
of the underlying map very close to its UEP with very small steady-state error.

5 Conclusions

This study presents the applicability of the previously proposed control ap-
proach, Online SVM-Based GPC, to online stabilization of discrete-time chaotic
systems. The controller performs modeling and stabilization tasks simultane-
ously and provides very efficient and robust online control performance by ex-
ploiting outstanding advantages of GPC and SVM techniques. In the method,
the SVM model of the map is adaptive to the variations in operating conditions
in the sense that the model is updated whenever it is regarded as inaccurate.
Moreover, stabilization of the investigated chaotic maps is carried out by only
tiny parameter perturbations within the allowable parameter range for which the
maps are in their chaotic regimes. The simulation results have confirmed that
the Online SVM-Based GPC structure can provide an acceptable stabilization
quality for both noiseless and noisy conditions. In other words, the unknown
map stabilized by online trained SVM-Based GPC can be kept at its UEP with

Online Stabilization of Chaotic Maps Via Support Vector Machines 877

very small transient and steady-state errors. In conclusion, the Online SVM-
Based GPC scheme carries out the desired stabilization task with an acceptable
performance for both noiseless and noisy conditions. Moreover, the proposed
controller can further be developed as the SVM techniques are improved.

References

1. Iplikci, S.: Online trained support vector machines based generalized predictive
control of nonlinear systems. under review.

2. Ma J., Theiler J., Perkins S.: Accurate online support vector regression. Neural
Computation 15 (2003) 2683–2703.

3. Iplikci S.: Support vector machines based generalized predictive control, under
review.

4. Ott E., Grebogi C., Yorke J.A.: Controlling chaos. Phy. Rev. Lett. 64 (1990) 1196–
1199.

5. Clarke D.W., Mohtadi C., Tuffs P.C.: Generalized predictive control - part 1: the
basic algorithm. Automatica 23 (1987) 137–148.

6. Clarke D.W., Mohtadi C., Tuffs P.C.: Generalized predictive control - part 2: the
basic algorithm. Automatica 23 (1987) 149–163.

7. Qin S.J., Badgwell T.A.: A survey of industrial model predictive control technology.
Control Engineering Practice 11 (2003) 733–764.

8. Soloway D., Haley P.J.: Neural generalized predictive control: a Newton-Raphson
algorithm. Proc. of the IEEE Int’l Sym. on Int. Cont., MI, (1996) 277–282.

9. Chen L., Chen G.: Fuzzy modeling, prediction, and control of uncertain chaotic
systems based on time series. IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications 47 (2000) 1527–1531.

10. Choi J.T., Choi Y.H.: Fuzzy neural network based predictive control of chaotic
nonlinear systems. IEICE Transactions on Fundamentals of Electronics Communi-
cations and Computer Sciences E87A(5), (2004) 1270–1279.

11. Iplikci S.: Support Vector Machines based generalized predictive control of chaotic
systems. accepted for publication.

12. Nocedal J., Wright S.J.: Numerical Optimization. Springer Series in Op. Res.,
Springer-Verlag, New York, 1999.

13. Venkataraman P.: Applied optimization with MATLAB programming. John Wiley
and Sons, New York, 2002.

14. Vapnik V.: The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
15. Vapnik V.: Statistical Learning Theory. John Wiley, New York, 1998.
16. Vapnik V.: The Support Vector Method of Function Estimation. Nonlinear Model-

ing Advanced Black Box Techniques, Kluwer Academic Publishers, Boston, 1998.
17. Cristianini N., Taylor J.S.: An Introduction to Support Vector Machines and other

kernel-based learning methods. Cambridge University Press, New York, 2000.
18. Schölkopf B., Burges C.J.C., Smola A.J.: Advances in kernel methods: Support

Vector Learning. The MIT Press, Cambridge MA, 1999.
19. Smola A.J., Schölkopf B.: A tutorial on support vector regression. NeuroCOLT

Tech. Rep. No. NC-TR-98-030. Royal Holloway College, Univ. of London, 1998.

Morphological Neural Networks and Vision Based
Mobile Robot Navigation

I. Villaverde, M. Graña, and A. d’Anjou�

Dept. CCIA, UPV/EHU, Apdo. 649, 20080 San Sebastian, Spain
ccpgrrom@si.ehu.es

Abstract. Morphological Associative Memories (MAM) have been proposed for
image denoising and pattern recognition. We have shown that they can be ap-
plied to other domains, like image retrieval and hyperspectral image unsupervised
segmentation. In both cases the key idea is that Morphological Autoassociative
Memories (MAAM) selective sensitivity to erosive and dilative noise can be ap-
plied to detect the morphological independence between patterns. The convex
coordinates obtained by linear unmixing based on the sets of morphological in-
dependent patterns define a feature extraction process. These features may be
useful either for pattern classification. We present some results on the task of
visual landmark recognition for a mobile robot self-localization task.

1 Introduction

Navigation is the ability of an agent to move around its environment with a specific
purpose [2]. It implies some knowledge of the environment, be it topological or not.
A needed ability for navigation is self-localization: the capacity of the robot to ascer-
tain, more or less accurately, where it is from the information provided by its sensors.
This knowledge makes possible other navigation related tasks like planning. The ba-
sic self-localization procedure is odometry: self-sensing and keeping track of motion
commands. However the uncertainties related to the environment and the robot internal
status call for sensor based external confirmation of the position internal estimation.
Self-localization based on low range external sensors has been formulated in a prob-
abilistic framework [4]. Vision based [3] and mixed [17,28] systems are proposed
to increase the sensing range and self-localization robustness. Visual self-localization
methods usually are based on landmark recognition [18,1,27,13,14,16,10,29,22]. For
instance, the system described in [1] computes for each stored view a graph model rep-
resentation of salient points in the image as measured by the information content of a
neighborhood of the point in a gradient image. To recognize the view, the salient points
in the current image are compared to the stored models. Model matching as performed
in [1] is not invariant or robust against translations and rotations. Therefore each view is
only recognized when the robot is within a small neighborhood of the physical position
and orientation where the landmark was detected originally. Recognition in this case is
not continuous, unless the stored views built up a dense map. Our approach based on

� The Spanish Ministerio de Educacion y Ciencia supports this work through grants DPI2003-
06972 and VIMS-2003-20088-c04-04.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 878–887, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Morphological Neural Networks and Vision Based Mobile Robot Navigation 879

Morphological Autoassociative Memories (MAAM) [24,23], falls within the class of
holistic approaches. The stated goal is to recognize, with some degree of robustness,
several predetermined robot placements and orientations based on the recognition of
the visual information captured by the robot. We can associate to each position an area
of the physical environment where the robot recognizes this position, like in [1],[14].
The robot is supposed to wander looking forward, taking images at a steady rate. Each
image corresponds to a view of the world, characterized by a physical position and ori-
entation. Images are analyzed continuously and when a scene is recognized a certain
spatial position is assumed for the robot. Robustness implies that the recognition must
cope with some variations in lighting and small rotations and translations of the camera
due to the uncertainty of the robot position, which, in its turn, is due to the uncertainties
in the motion of the robot. This paper departs from previous work [19,20,32] where
we first proposed Morphological Associative Memories to solve the self-localization
problem, although we continue working on the same platform: a Pioneer 2DX (Activ-
Media, Ma.). The approach we follow is to characterize the data by a convex region that
encloses them or most of them. The features extracted are the relative coordinates of
the data points in this region, the convex coordinates. These convex coordinates are the
result of the linear unmixing relative to the vertices of this convex region. Therefore the
dimensionality reduction depends on the degree of detail of the definition of this convex
region: the number of vertices that describe it.

The Morphological Associative Memories (MAM) [24], [23], [25] were thought of
as the morphological counterpart of the well known Hopfield Associative Memories
[11]. AMM’s are constructed as correlation matrices computed by either Min or Max
matrix product. Dual constructions can be made using the dual Min and Max oper-
ators. The AMM selective sensitivity to specific types of noise (erosive and dilative
noise) is of special interest to us. It was established that AMM are able to store and
recall morphologically strongly independent sets of patterns. The notion of morpholog-
ical independence and morphological strong independence was introduced in [25] to
study the construction of AMM robust to general noise. When the input pattern is mor-
phologically independent of the stored patterns, the result of recall is a morphological
polynomial on the stored patterns [30]. We construct the erosive and dilative memories
to store the patterns. Any input patters whose recalled output corresponds to one of
the stored patterns in both kind of memories lies inside the convex region already de-
fined by the stored patterns. Otherwise the pattern is a new vertex of the convex region
enclosing the data. The data patterns are filtered dilatively and erosively before being
binarized to construct and test the MAM’s.

The early application focus of our approach was the unsupervised analysis of hyper-
spectral images [6,7] to obtain salient image regions that may deserve further analysis
and search for labeled data. The approach we favored is that of linear filtering for target
detection [15] and the ”spectral unmixing” [12] model. In [8,9] we have done the next
step assuming that the convex coordinates of the pixel spectra can be used as feature
vectors for classification, with surprising good results. Here we try to extend this ap-
proach to the visual recognition of landmark views for mobile robot self-localization.
We compare our approach with a well known linear feature extraction algorithms, Prin-
cipal Component Analysis (PCA) [5].

880 I. Villaverde, M. Graña, and A. d’Anjou

In the following sections we will review the definition of the linear mixing model, the
basics on Morphological Associative Memories, some experimental results and, finally,
some conclusions and directions for further work.

2 Linear Mixing Model and Spectral Unmixing

The linear mixing model [12] can be expressed as follows:

x =
M∑
i=1

aisi + w = Sa + w, (1)

where x is the d-dimension pattern vector, S is the d×M matrix whose columns are the
d-dimension vertices of the convex region covering the data si, i = 1, ..,M, a is the M -
dimension fractional abundance vector, and w is the d-dimension additive observation
noise vector. The linear mixing model is subjected to two constraints on the abundance
coefficients. First, to be physically meaningful, all abundance coefficients must be non-
negative ai ≥ 0, i = 1, ..,M. Second, to account for the entire composition, they must
be fully additive

∑M
i=1 ai = 1. Once the convex region vertices have been determined

the unmixing is the computation of the matrix inversion that gives the coordinates of
the point inside the convex region. The simplest approach is the unconstrained least
squared error estimation given by:

â =
(
ST S

)−1
ST x. (2)

The coefficients that result from this computation do not necessarily fulfill the non-
negativity and full additivity conditions. It is possible to enforce each condition sepa-
rately, but rather difficult to enforce both simultaneously [12]. The added complexity
may render the whole approach impractical, therefore we will use unconstrained esti-
mation to compute them. These coefficients are our convex coordinates which we will
use as features for pattern classification.

3 Morphological Associative Memories

The work on Morphological Associative Memories stems from the consideration of
an algebraic lattice structure (R,∨,∧,+) as the alternative to the algebraic (R,+, ·)
framework for the definition of Neural Networks computation [24] [23]. The opera-
tors ∨ and ∧ denote, respectively, the discrete max and min operators (resp. sup and
inf in a continuous setting), which correspond to the morphological dilation and ero-
sion operators, respectively. Given a set of input/output pairs of pattern (X,Y) ={(

xξ,yξ
)
; ξ = 1, .., k

}
, an heteroassociative neural network based on the pattern’s

cross correlation [11] is built up as W =
∑

ξ yξ ·
(
xξ

)′
. Mimicking this construction

procedure [24], [23] propose the following constructions of Heteroassociative Morpho-
logical Memories (HMM’s):

WXY =
k∧

ξ=1

[
yξ ×

(
−xξ

)′]
and MXY =

k∨
ξ=1

[
yξ ×

(
−xξ

)′]
, (3)

Morphological Neural Networks and Vision Based Mobile Robot Navigation 881

where× is any of the ∨� or ∧� operators. Here ∨� and ∧� denote the max and min matrix
product, respectively defined as follows:

C = A ∨� B = [cij] ⇔ cij =
∨

k=1..n

{aik + bkj} , (4)

C = A ∧� B = [cij] ⇔ cij =
∧

k=1..n

{aik + bkj} . (5)

If X = Y then the HMM memories are Autoassociative Morphological Memories
(AMM). Conditions of perfect recall by the HMM’s and AMM’s of the stored patterns
are proved in [24],[23]. In the continuous case, the AMM’s are able to store and recall
any set of patterns:

WXX ∨� X = X = MXX ∧� X, (6)

for any X .
These results hold when we try to recover the output patterns from the noise-free

input pattern. Let it be x̃γ a noisy version of xγ . If x̃γ ≤ xγ then x̃γ is an eroded
version of xγ , alternatively we say that x̃γ is corrupted by erosive noise. If x̃γ ≥ xγ

then x̃γ is a dilated version of xγ , alternatively we say that x̃γ is corrupted by dilative
noise.

Morphological memories are selectively sensitive to these kinds of noise. The condi-
tions of robust perfect recall are proven in [24], [23]. Here we will remember them for
the sake of the reader, because they are on the basis of the proposed algorithm. Given
patterns X , the equality

WXX ∨� x̃γ = xγ (7)

holds when the noise affecting the pattern is erosive x̃γ ≤ xγ and the following relation
holds:

∀i∃ji; x̃
γ
ji

= xγ
ji
∨

∨
ξ �=γ

(
xγ

i − xξ
i + xξ

ji

) . (8)

Similarly, the equality

MXY ∧� x̃γ = xγ (9)

holds when the noise affecting the pattern is dilative x̃γ ≥ xγ and the following relation
holds:

∀i∃ji; x̃
γ
ji

= xγ
ji
∧

∧
ξ �=γ

(
xγ

i − xξ
i + xξ

ji

) . (10)

Therefore, the AMM will fail to recall the pattern if the noise is a mixture of erosive
and dilative noise. In [21] we have proposed a morphological scale space method to
increase the robustness of AMM.

882 I. Villaverde, M. Graña, and A. d’Anjou

Other approach to obtain general noise robustness is based on the so-called kernel
patterns [23], [25], [30] . Related to the construction of the kernels, [25] introduced
the notion of morphological independence. Here we distinguish erosive and dilative
versions of this definition: Given a set of pattern vectors X =

(
x1, ...,xk

)
, a pat-

tern vector y is said to be morphologically independent of X in the erosive sense if
y � xγ ; γ = {1, .., k} , and morphologically independent of X in the dilative sense
if y � xγ ; γ = {1, .., k} . The set of pattern vectors X is said to be morphologically
independent in either sense when all the patterns are morphologically independent of
the remaining patterns in the set. For the current application we want to use AMM
as detectors of the set extreme points, to obtain a rough approximation of the mini-
mal simplex that covers the data points. We note that given a set of pattern vectors
X =

(
x1, ...,xk

)
, and the erosive WXX and dilative MXX memories constructed

from it, and a test pattern y /∈ X, if y is morphologically independent of X in the
erosive sense, then WXX ∨� y /∈ X. Also, if y is morphologically independent of X in
the dilative sense, then MXX ∧� y /∈ X. Therefore the AMM’s can be used as detectors
of morphological independence.

The vector patterns that we are searching for define a high dimensional box cen-
tered at the origin of the high dimensional space (the data mean is shifted to the ori-
gin). They are morphologically independent vectors both in the erosive and dilative
senses, and they enclose the remaining vectors. Working with integer valued vectors,
given a set of pattern vectors X =

(
x1, ...,xk

)
and the erosive WXX and dilative

MXX memories constructed from it, if a test pattern y < xγ for some γ ∈ {1, .., k}
then WXX ∨� y /∈ X. Also, if the test pattern y > xγ for some γ ∈ {1, .., k} then
MXX ∧� y ≥/∈ X. Therefore, working with integer valued patterns the AMM will
be useless for the detection of morphologically independent patterns. However, if we
consider the binary vectors obtained as the sign of the vector components, then mor-
phological independence would be detected as suggested above: The already detected
endmembers are used to build the erosive and dilative AMM. If the output recalled by
a new pattern does not coincide with any of the endmembers, then the new pattern is a
new endmember. Those endmembers are selected from the data following the algorithm
presented in [33].

4 Experimental Results

The experimental setup is as follows. First a path was defined from our laboratory to the
stairs hall on 3d floor of our building. The mobile robot platform was guided manually
seven times following this path. In each of those trips, the odometry was recorded and
the images taken from the camera, at an average of 10 frames per second, were also
recorded.

In the computational experiments that follow, the first trip was used to train the sys-
tem parameters, and the six other trips were used as test sequences, simulating a real
trip. The task to perform is to recognize a given set of map positions from their land-
mark views. The positions were selected on the floor plane, selecting places of practical

Morphological Neural Networks and Vision Based Mobile Robot Navigation 883

relevancy, like doors to other laboratories, and the corresponding landmark views were
selected from the first trip image sequence based on odometry readings. Figure 1 shows
the map position landmark views as extracted from the image sequence.

Classes are composed for each of the selected landmark position, assigning the im-
ages in the sequences to the closest map position according to its odometry reading.
Therefore the task becomes the classification of the images into one of the map classes,
where each class is composed of images taken in robot path positions before and after
the map position for which it is the closest map position. The clasification was done
using k-NN. Each of the images of the training trip was assigned to a class, using them
as a cluster of images representing each selected position. For the test trips, each image
was classified on those classes using 3-NN.

¿From the image sequence of the first trip a PCA transformation consisting of 230
eigenvectors was computed. All the following computations were done on the PCA co-
efficients of the images. We apply the algorithm described in [33] several times to the
different image sequences, after their transformation by the 230 eigenvector PCA. The
noise tolerance parameter with best results was set, after some tuning, to α = 5 An
instance of the extrema selected with this value is given in figure 2. Despite their simi-
larity to the collection of images shown in figure 1, these are obtained from a completely
unsupervised process, while those in figure 1 correspond to a human made selection.
An interesting question is whether our approach could be used as an automatic map
position determination whose landmark views correspond to the extrema found by our
algorithm.

Fig. 1. The landmark views corresponding to the positions selected to build up the map

884 I. Villaverde, M. Graña, and A. d’Anjou

Fig. 2. The views corresponding to the extrema selected in one instance of the execution of the
algorithm described in [33]

As the algorithm described in [33] has a random start, different runs of it may give
different results. In tables 2 and 3 we present the classification success ratios for each
of the sequences on the convex coordinates computed from the extrema found by the
algorithm after each run, with different values of α. The last column shows the num-
ber of extrema found at each run. Notice that the success ratio decreases as the image
sequence is farther in time from the initial one used for training. Notice also that the
number of extrema is in the order of 10 for the best results, meaning a dimension re-
duction from 230 to O(10). The Av. column shows the average success for each image
sequence, including the training image sequence. For comparison we perform some
further dimension reduction on the PCA coefficient vectors selecting the most signifi-
cant eigenvectors for the transformation. The average results of the image classification
are given in table 1, the average being computed as in the last column of the other
tables.

The comparison of the results in tables 2, 3 and 1 shows that there is at least an
instance of the convex coordinates features which improves the best results of the PCA,
and that the convex coordinates are comparable or improve the results of the PCA with
a the samo or much stronger dimensionality reduction. Although these results are much
less spectacular than the ones reported in [8,9], they confirm the trend that points to
the usefulness of convex coordinates as a feature selection algorithm. We are trying
to recompute the results using the original images as inputs to the extrema selection
algorithm, in the hope of improving the results of our algorithm relative to the PCA.
When applied to the PCA coefficient vectors, our algorithm may be greatly restricted
by the data transformation already performed.

Morphological Neural Networks and Vision Based Mobile Robot Navigation 885

Table 1. Landmark recognition success rate based on the PCA representation of the navigation
images for several sets of eigenvectors selected, using 3-nn

Set Train Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Av.
PCA 197 0,95 0,95 0,84 0,76 0,65 0,79 0,77 0,82
PCA 150 0,95 0,95 0,84 0,76 0,65 0,78 0,76 0,81
PCA 100 0,95 0,95 0,85 0,76 0,65 0,79 0,76 0,82
PCA 50 0,95 0,94 0,85 0,76 0,65 0,78 0,78 0,81
PCA 30 0,96 0,94 0,87 0,77 0,64 0,78 0,78 0,82
PCA 10 0,96 0,94 0,86 0,78 0,66 0,76 0,73 0,81

Av. 0,96 0,94 0,85 0,76 0,65 0,78 0,76 0,82

Table 2. Landmark recognition success rate based on the convex coordinates representation of
the navigation images for several runs of the extrema extraction algorithm with α = 6 and using
3-nn

Run Train Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Av. #extrema
1 0,92 0,91 0,78 0,74 0,66 0,68 0,62 0,76 8
2 0,95 0,93 0,77 0,73 0,74 0,72 0,62 0,78 7
3 0,95 0,93 0,83 0,73 0,67 0,72 0,64 0,78 8
4 0,94 0,93 0,78 0,71 0,67 0,69 0,64 0,77 7
5 0,93 0,90 0,76 0,71 0,65 0,67 0,62 0,75 7
6 0,93 0,91 0,77 0,72 0,69 0,68 0,57 0,75 8
7 0,95 0,93 0,78 0,70 0,61 0,66 0,62 0,75 8
8 0,95 0,93 0,78 0,69 0,58 0,69 0,62 0,75 8
9 0,93 0,92 0,80 0,73 0,70 0,73 0,63 0,78 8

10 0,94 0,94 0,80 0,73 0,65 0,69 0,67 0,77 9

Av. 0,94 0,92 0,79 0,72 0,66 0,69 0,62 0,76

Table 3. Landmark recognition success rate based on the convex coordinates representation of
the navigation images for several runs of the extrema extraction algorithm with α = 5 and using
3-nn

Run Train Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Av. #extrema
1 0,94 0,93 0,81 0,76 0,72 0,73 0,67 0,79 13
2 0,94 0,93 0,85 0,77 0,69 0,78 0,71 0,81 14
3 0,94 0,93 0,84 0,75 0,70 0,75 0,74 0,81 13
4 0,94 0,93 0,83 0,71 0,63 0,73 0,67 0,78 14
5 0,94 0,93 0,85 0,79 0,69 0,78 0,72 0,81 12
6 0,93 0,93 0,80 0,70 0,67 0,69 0,70 0,77 12
7 0,94 0,93 0,83 0,71 0,59 0,70 0,66 0,77 12
8 0,93 0,93 0,82 0,76 0,69 0,74 0,66 0,79 12
9 0,94 0,93 0,79 0,73 0,64 0,70 0,63 0,77 14

10 0,92 0,92 0,79 0,70 0,63 0,65 0,60 0,75 12

Av. 0,94 0,93 0,82 0,74 0,67 0,73 0,68 0,78

886 I. Villaverde, M. Graña, and A. d’Anjou

5 Conclusions and Further Work

We claim that we can use the convex coordinates of the data points based on the ver-
tices of a convex region covering the data as features for pattern classification. The con-
vex region vertices are selected using MAM to detect the morphologically independent
sets. Mobile robot self-localization is stated as a classification of images taken from
the camera. We use the PCA and the convex coordinates based on the MAM detected
endmembers as the features for classification. We found that our approach improves
the PCA approach in some runs, while on average performs similar than most PCA
eigenvector selections tried. One possible future line of work could be to use the detec-
tion of endmembers as an automatic landmark selection tool, applying it to the SLAM
problem.

References

1. C. Balkenius, L. Kopp, (1997) Robust Self-Localization Using Elastic Templates, in T. Lind-
berg (ed.), Proceedings of Swedish Symposium on Image Analysis,.

2. R. Chatila, (1995) Deliberation and Reactivity in Autonomous Mobile Robots, Robotics and
Autonomous Systems, 16, pp. 197-211

3. DeSouza, G. N., Kak, A. C. (2002). Vision for Mobile Robot Navigation: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(2), pp. 237-267.

4. D. Fox, Markov Localization: A Probabilistic Framework for Mobile Robot Localization and
Navigdation, Ph. D. Thesis, University of Bonn, Germany, December 1998

5. Fukunaga K., Introduction to statistical pattern recognition, Academic Press, Boston, MA
1990

6. Graña M., J. Gallego, “Associative Mophological Memories for endmember induction”,
Proc. IGARSS’2003, Tolouse, France.

7. Graña M., P. Sussner, G. Ritter, “Associative Morphological Memories for Endmember De-
termination in Spectral Unmixing”, Proc. FUZZ-IEEE’03

8. M. Graña, A. d’Anjou (2004) “Feature Extraction by Linear Spectral Unmixing” in M. Ne-
goita, R.J. Howlett, L.C. Jain (eds) Knowledge-Based Intelligent Information and Engineer-
ing Systems. Part I, Springer Verlag 2004, LNAI 3213, pp:692-697

9. Manuel Graña, Alicia d’Anjou, Xabier Albizuri (2005) Morphological memories for fea-
ture extraction in hyperspectral imagesMichael Verleysen, (ed.) ESANN 2005, dFacto press,
2005, pp.497-502

10. H. M. Gross, A. Koening, H. J. Boehme and Ch. Schroeter, (2002) Vision-based Monte Carlo
Self-localization for a Mobile Service Robot Acting as Shopping Assistant in a Home Store,
Proceedings of the IEEE Intl. Conference on Intelligent Robots and Systems.

11. Hopfield J.J., (1982) “Neural networks and physical systems with emergent collective com-
putational abilities”, Proc. Nat. Acad. Sciences, vol. 79, pp.2554-2558,

12. Keshava N., J.F. Mustard “Spectral unimixing”, IEEE Signal Proc. Mag. 19(1) pp:44-57
(2002)

13. S. Livatino, C. Madsen, (1999) Optimization of Robot Self-Localization Accuracy by Auto-
matic Visual-Landmark Selection, Proceedings of 11th Scabdinavian Conference on Image
Analysis (SCIA), pp. 501-506

14. S. Livatino, C. Madsen, (1999) Autonomous Robot Navigation with Automatic Learning of
Visual Landmarks, International Symposium of Intelligent Robotic Systems (SIRS99), 1999.

15. Manolakis D., G. Shaw “Detection algorithms for hyperspectral imaging applications”, IEEE
Signal Proc. Mag. 19(1) pp:29-43 (2002)

Morphological Neural Networks and Vision Based Mobile Robot Navigation 887

16. F. Marando, M. Piaggio and A. Scalzo, (2001) Real Time Self Localization Using a Single
Frontal Camera, International Symposium of Intelligent Robotic Systems (SIRS01)

17. Ohya, A., Kosaka, A., Kak, A. C. (1998) Vision-Based Navigation by a Mobile Robot with
Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing. IEEE Journal of
Robotics and Automation, 14(6), pp. 969-978.

18. C.F. Olson, (2000) Landmark Selection for Terrain Matching, Proceedings ICRA2000.
19. Raducanu B., M. Graa, P. Sussner, Morphological Neural Networks for vision based self-

localization, Proc. ICRA2001
20. Raducanu B., M. Graa, P. Sussner, Steps towards one-shot vision-based self-localization pp

265-294 in Biologically inspired robot behavior engineering; Richard Duro, Jose Santos,
Manuel Graa (eds) Springer Verlag, 2002

21. Raducanu B., M. Graña, X. Albizuri (2003) “Morphological scale spaces and associative
morphological memories: results on robustness and practical applications”, J. Math. Imaging
and Vision 19(2):113-122

22. J. Reuter, (2000) Mobile Robot Self-Localization Using PDAB, Proceedings of International
Conference on Robotics and Automation (ICRA)

23. Ritter G. X., J. L. Diaz-de-Leon, P. Sussner. (1999) “Morphological bidirectional associative
memories”. Neural Networks, Volume 12, pages 851-867,

24. Ritter G. X., P. Sussner, J. L. Diaz-de-Leon. (1998) “Morphological associative memories”.
IEEE Trans. on Neural Networks, 9(2):281-292,

25. Ritter G.X., G. Urcid, L. Iancu, (2003) “Reconstruction of patterns from moisy inputs using
morphological associative memories”, J. Math. Imaging and Vision 19(2):95-112

26. Ritter GX, G Urcid (2003) “Lattice algebra approach to single-neuron computation”. IEEE
Trans Neural Networks 14(2): 282-295.

27. A. Rizzi, D. Duina, S. Inelli, R. Cassinis, (2002) Unsupervised Matching of Visual Land-
marks for Robotic Homing using Fourier-Mellin Transform, Robotics and Autonomous Sys-
tems, 40, pp. 131-138.

28. A. Saffiotti and L. P. Wesley, (1996) Perception-Based Self-Localization Using Fuzzy Lo-
cation, in L. Dorst, M. Van Lambalgen and F. Voorbraak (eds.), Lecture Notes in Artificial
Intelligence 1093, Springer-Verlag, pp. 368-385

29. D. Sekimori, T. Usui, Y. Masutani and F. Miyazaki, (2002) High-Speed Obstacle Avoidance
and Self-Localization for Mobile Robots Based on Omni-Directional Imaging of Floor Re-
gion, IPSJ Transactions on Computer Vision and Image Media, 42 NoSIG13-012.

30. Sussner P., (2001) “Observations on Morphological Associative Memories and the Kernel
Method”, Proc. IJCNN’2001, Washington DC, July

31. Sussner P., (2003) “Generalizing operations of binary autoassociative morphological memo-
ries using fuzzy set theory”, J. Math. Imaging and Vision 19(2):81-94

32. I. Villaverde, S. Ibañez, F. X. Albizuri, M. Graña, (2005)Morphological neural networks
for real-time vision based self-localizationAjith Abrham, Y. Dote, T. Furuhashi, M. Köpen,
A. Ohuchi, Y. Ohsawa (eds) Soft Computing as transdisciplinary Science and Techonology,
Proc. WSTST’05 Springer Verlag, Advances in Soft Computing, 2005, pp.70-79

33. I. Villaverde, M. Graña and A. D’Anjou, ”Morphological Neural Networks for Localization
and Mapping”. Proceedings of the IEEE International Conference on Computational Intelli-
gence for Measurement Systems and Applications (CIMSA’06), July 12-14, 2006, La Coruña
(Spain), On Print.

Position Control Based on Static Neural
Networks of Anthropomorphic Robotic Fingers

Juan Ignacio Mulero-Mart́ınez, Francisco Garćıa-Córdova,
and Juan López-Coronado

Department of System Engineering and Automatic
Polytechnic University of Cartagena

Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain
{juan.mulero, francisco.garcia, jl.coronado}@upct.es

Abstract. A dynamic neurocontroller for positioning robot manipula-
tors with a tendon-driven transmission system has been developed al-
lowing to track desired trajectories and reject external disturbances. The
controller is characterised as providing motor torques rather than joint
torques. In this sense, the redundant problem regarded with the tendon-
driven transmission systems is solved using neural networks that are
able to learned the linear transformation that maps motor torques into
joint torques. The neurocontroller not only learn the dynamics associ-
ated with the robot manipulator but also the parameters attached to
the transmission system such as pulley radii. A theorem relying on the
Lyapunov theory has been developed, guaranteeing the uniformly ulti-
mately bounded stability of the whole system and providing both the
control laws and weight updating laws.

1 Introduction

The calculation of tendon forces is an indeterminate problem, see [1], because
of the different dimension of the space of joint torques (n-dimensional) and the
dimension of the space of tendon forces (m-dimensional). The inputs of the
dynamic model are the motor torques whereas the controller provides control
actions based on the joint torques. Thus, a redundant system (m>n) is managed
in order to get a total control according to the Morecki’s property and this implies
to solve a system of equations where the number of unknown variables is greater
than the number of equations. In this sense, the relationship between the joint
space and the tendon space is stated by a linear transformation, called structural
matrix with more columns than rows. Therefore, the solution of forces for a given
torque is not unique. In fact, a solution for this equation in terms of the tendon
force can be expressed as the summation of an homogeneous solution and a
particular solution. The particular solution minimizes the norm of the solution
whereas the homogeneous is physically associated with the tendon forces that
do not work but provide an increasing of tension for the tendon wrapping the

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 888–897, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Position Control Based on Static Neural Networks 889

pulley. In contrast, the particular solution generates work onto the system and
as a result becomes the most important component for being cause of motion.
All the proposed methods in the literature try to minimize the homogeneous
solution since implies an energetic consume which is not used for the motion. A
solution for the problem exists if and only if the structure matrix is full rank,
see [2], [3].

The objective of the control of a tendon-driven transmission system is to track
the position and force of the end-effector by means of a set of input variables such
as motor torques from the actuators. The control of tendon-driven manipulators
has been investigated by a few researchers. The main contribution of this paper
is the design and implementation of an adaptive neural network controller that
tracks desired trajectories and reject disturbances with abilities of picking up
parametric structured uncertainties in a tendon-driven transmission system. The
neurocontroller learns not only the non-linear terms regarding to the dynamics,
such as inertial, coriolis/centripetal and gravitational terms, but also the tendon
routing and dimensions of pulleys in the transmission system. The use of tendons
adds challenges to the controller design because the tendons can exert force in
only one direction. A functional link neural network (FLNN) is developed to
estimate the non-linear terms in the filtered error dynamics. The touchstone
of this work is a theorem relying on the Lyapunov theory guaranteeing the
uniformly ultimately bounded stability of the whole system and providing both
the control laws and weight updating laws. In this scheme no preliminary off-
line learning stage is required, so that the weights are initialised to zero with
the exception of those regarding to the structural matrix that are initialised
according to the tendon routing matrix wich items adopting discrete values of
−1, 0 or 1.

The paper is organized as follows. In section II, the closed-loop error dynamics
is derived using functional-link neural networks (FLNN). Section III is devoted
to present the design of the neural network controller in terms of a control law
and an usupervised version of the continuous-time backpropagation for weight
updating law. This section concludes with a theorem which plays a central role in
this theory and guarantees the ultimately uniformly boundedness for the whole
system and is based in the Lyapunov energy. In section IV, the control law
has been applied to an anthropomorfic finger that looks like the Standford/JPL
finger with a tendon-driven transmission system. The concluding remarks are
discussed in section V.Closed-loop error dynamics.

2 Closed-Loop Error Dynamics

The dynamics of an n-link robot manipulator with a tendon-driven transmission
system may be expressed from the Lagrange or Hamilton formulation, see [4](

M (Θ) + M̃
)
Θ̈ + B̃Θ̇ + C

(
Θ, Θ̇

)
Θ̇ + G (Θ) = RTBTR−1

m τm = τ (1)

890 J.I. Mulero-Mart́ınez, F. Garćıa-Córdova and J. López-Coronado

where B stands for the tendon-routing matrix, R is a diagonal matrix for the
pulley radii, Rm a matrix of radii of driver pulleys, M (Θ) a matrix of inertias
and τm the motor torques, M̃ and B̃ represent respectively the rotor inertia and
the motor damping matrix reflected onto the joint space. By using a filtered
error variable r = ė + Λe, the error dynamic equation is derived.

−M̄ (Θ) ṙ − C̄
(
Θ, Θ̇

)
r + RTBTR−1

m f (x) + τd = RTBTR−1
m τm (2)

where the function f (x) collects all the non-linear terms of the system and
M̄ (Θ) =

(
M (Θ) + M̃

)
and C̄

(
Θ, Θ̇

)
=

(
C

(
Θ, Θ̇

)
+ B̃

)
. The operator ()†

stands for the Pseudo-inverse of Penrose-Moore, see [5]. The linear transforma-
tion RTBTR−1

m mapping motor torques into joint torques, is approximated by a
neural network providing nominal weights V ∈ Rm×n and reconstruction error
εV ,

RTBT R−1
m f (x) = V T f (x) + εV (3)

Instead of using joint torques, τ = RTBT R−1
m τm approximations τ̂ = V̂ T τm are

proposed so that the torque deviations ετ are defined as

ετ = τ − τ̂ =
(
RTBTR−1

m − V̂ T
)
τm (4)

Using the FLNN as defined in (3), the filtered error dynamics turns into

−M̄ (Θ) ṙ − C̄
(
Θ, Θ̇

)
r + RTBT R−1

m f (x) + τd = V̂ T τm (5)

3 Controller Structure, Control Law and Updtating Law

The controller consists of three terms: a PD-controller to guarantee a good track-
ing performance, τpd = KvV̂ r

‖V̂ r‖ = KvV̂

‖V̂ r‖ (ė + Λe), a compensator of non-linearities,

τnl = f̂ and a robust controller τr to absorbe no modelling dynamics,

τm =
KvV̂ r∥∥∥V̂ r

∥∥∥ + f̂ + τr (6)

where Kv = KT
v > 0 is a gain matrix and f̂ is an approximation of the non-

linear function f (x). An important remark is that the exact control action is
expressed as motor torques instead of joint torques. Replacing the control law
given by equation (6) into the plant described by (5) the closed-loop error dy-
namics becomes(
M (Θ) + M̃

)
ṙ = −

(
C

(
Θ, Θ̇

)
+ B̃

)
r+V T f (x)−V̂ TKvV̂ r−V̂ T f̂−V̂ T τr +τd

(7)

Position Control Based on Static Neural Networks 891

In the next proposition the functional estimation error f̃ (x) = f (x) − f̂ (x)
and the weight estimation error Ṽ = V − V̂ are related to the term V T f (x) −
V̂ T f̂ (x) in the filtered error dynamic equation (7).

Proposition 1. Let define the continous function f : Ωx → Rm where Ωx ⊆
R5n is a compact set and smooth enough to a certain degree α over Ωx, i.e.
f ∈ Cα (Ωx). The term V T f (x) − V̂ T f̂ (x) can be written as follows

V T f (x) − V̂ T f̂ (x) = Ṽ T ŴT γ (x) + V̂ T W̃Tγ (x) + w (t) (8)

where w (t) stands for a modelling disturbance given as

w (t) = V T ε + Ṽ T W̃Tγ (x) (9)

V ∈ Rm×n are the nominal weights for the linear transformation RTBT R−1
m f (x)

= V T f (x) + εV , W ∈ RL×m are the ideal weights in the approximation of
the nonlinear function f (x) and f̃ (x) = f (x) − f̂ (x) represents the functional
estimation error.

Using the proposition (1) the closed-loop system becomes(
M (Θ) + M̃

)
ṙ = −

(
C

(
Θ, Θ̇

)
+ B̃

)
r + Ṽ T ŴTγ (x) + V̂ T W̃Tγ (x) +

w (t) − V̂ TKvV̂ r

‖r‖ − V̂ T τr + τd (10)

The next lemma is very important in order to overbound the disturbance term
w1 (t) at each time by a known computable function. Previously some assump-
tions on the boundedness of the weights and the activation functions must be
considered

Lemma 1 (Bounds on the disturbance term w (t)). The disturbance term
w as given by the equation (9) is bounded according to the expression

‖w (t)‖ ≤ C0 + C1

∥∥∥Ŵ∥∥∥
F

+ C2

∥∥∥Ŵ∥∥∥
F

∥∥∥V̂ ∥∥∥
F

+ C3

∥∥∥V̂ ∥∥∥
F

(11)

where C0, C1, C2 and C3 are computable positive constants defined as

C0 = VB (WBγB + εB) (12)
C1 = VBγB

C2 = γB

C3 = WBγB

The complete control scheme appeared in the figure 1. The next theorem relies
on the Lyapunov theory guaranteeing the uniformly ultimately bounded of the
equilibrium point, where the uniform property means that the time interval T
does not depend on t0. A practical notion of stability is the ultimately uniformly

892 J.I. Mulero-Mart́ınez, F. Garćıa-Córdova and J. López-Coronado

Fig. 1. Neural net control structure

boundedness (UUB) who allows to guarantee the boundedness of the signals for
the closed system. The UUB is a pragmatic criterium to be applied to closed-
loop systems containing unknown disturbunces, which are often be bounded by
some account or modelling errors. As it is claimed in [6], the UUB is guaranteed
if the Lyapunov derivative is negative outside some bounded region or Rn.

Theorem 1. Let the desired trajectory Θd (t) bounded by ΘB. and the initial
condition for r (t) satisfying ‖r (0)‖ < bx−ΘB

c0+c2
where bx is an upper bound for x,

c0 = 1+σmax(Λ)
σmin(Λ) and c1 = (1 + σmax (Λ)) ‖e0‖ + qB. Suppose that the approxi-

mation error ε and unmodeled disturbances τd (t) are upper bounded by εN and
dB respectively. In the ideal case, εN = dB = 0. Let the control law given by
equation (6) with a robust term

τr = Kz

(∥∥∥Ŵ∥∥∥
F

+ WB

) V̂ r∥∥∥V̂ ∥∥∥
F
‖r‖

(13)

where Kz = diag (kzii) > 0 with kzii ≥ γB. Let the next weight updating laws be
provided by ̂̇V = GŴT γ (x) rT (14)̂̇W = Fγ (x) rT V̂ T − Fκ ‖r‖ Ŵ (15)

with Γm = Γ T
m > 0, Γg = Γ T

g > 0 and Γf = Γ T
f > 0 symmetric positive-definite

constant matrices. The filtered error r (t) and the weight estimates Ŵm, Ŵc and
Ŵg are UUB. The bounds are

Position Control Based on Static Neural Networks 893

‖r‖ >

1
4κ

(
WB + VBγB

κ

)2
+ VB (εB + WBγB)

Bmin
≡ br

∥∥∥V̂ ∥∥∥
F

>

1
4κ

(
WB + VBγB

κ

)2
+ VB (εB + WBγB)

Kvmin

≡ bV

∥∥∥Ŵ∥∥∥
F

>
1
2

(
WB +

VBγB

κ

)
+

√
1
4

(
WB +

VBγB

κ

)2

+
VB (εB + WBγB)

κ
≡ bW

The filtered error can be as small as desired increasing the gain κ.

The weight tuning is carried out on-line causing an unsupervised version of the
continuous-time backpropagation algorithm and the weights are tuned using the
filtered error instead of the output of the plant. The weights Ŵ are initialised to
zero and the weights V̂ to the routing values, i.e. a matrix consisting of elements
−1, 0 or 1. As a result, there is no preliminary off-line phase and in the first
steps the controller behaves just as a PD-controller. The main benefit of this
approach is that it is not necessary to choose initial weights to make stable the
system.

4 Ilustrative Design and Simulation

The effectiveness of the neurocontroller is tested on a three-link anthropomorphic
arm widely used in literature for illustration purposes. The dynamic equations
are given in [1] and it is assumed that the links have uniform density so that the
center of mass is located in the midpoint of the link. The dynamic parameters
of the anthropomorfic robot are m1 = 90 10−3 Kg, m2 = m3 = 100 10−3 Kg,
l1 = 30 mm, l2 = l3 = 40 mm, Izz = 2.7 10−5Kg m2, rm = 8 mm, B =

−1 1 −1
−1 −1 1
1 −1 −1
1 1 1

 8 mm and a reduction ratio=1/12.

In order to design the FLNN controller, previously it is necessary to choose a
basis set of activation functions φ (x). Generally, it is difficult to select a set of
activation functions providing a basis, however it is possible to accomplish this
problem by selecting scaling and shift parameters randomly. This kind of nets
are called random vector functional link (RVFL) nets and were introduced by [7].
In this case the activation functions take the form φ (x) = σ

(
V Tx

)
where V is

an arbitrary matrix of parameters. In our work, the system’s own functions have
been selected as basis functions providing a network referred to as parametric
network, see [8], [9] and [10], or functional layer network,see [11].

The matrix of weights Wm ∈ RnL×m is upper bounded. The Frobenius norm
depends on the numerical radius of the inertia matrix, the number of degrees of
freedom and the lower bound of the activation functions φm (x). If all the pulleys

894 J.I. Mulero-Mart́ınez, F. Garćıa-Córdova and J. López-Coronado

have the same radius and the isotropy property is assumed for the transmission
system, the next bound is obtained

‖Wm‖F ≤ 2n2r (M (q)) = 18 0.0011 = 0.0198 (16)

For the adaptive parametric controller the adaptation gains were selected as
Kv = 10−3 I4×4,Gm = Gc = Gg = Λ = 10 I4×4, κ = 20, Kz = 10−2 I4×4,
WB = 0.1, Wg = 10 I4×6, Wc = 10−4 I4×17, Wm = 10−3 I4×9

The desired trajectory is chosen as a periodic sinusoid with amplitude 1 and
frequency 2π rad/seg. Thus, all the joints has been excited with sinusoid signals
providing phase displacements of 0, π

2 and π rad. This provides bounded signals
for position, velocity and acceleration. It is assumed that initially there is no
knowledged about the system so that all the weights are initialized to zero.
The system was simulated in SIMULINK using Runge-Kutta method with an
integration fixed step of ∆t = 10−3 sec and a simulation range from 0 to 3 sec.
The response of the controller with weight tuning (e.g. Theorem 1) appears in

Time (seconds)

A
ct

ua
l a

nd
 D

es
ir

ed
 P

os
it

io
ns

 (
ra

d)

Backpropagation Controller

q
1

q
2

q
3

q
d

1q
d

2q
d

3

(a)

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

Time (seconds)

T
ra

ck
in

g
er

ro
r

(r
ad

ia
ns

)

Traking error for the first joint

Bound B

(b)

Fig. 2. (a) Response of NN controller with backprop weight tuning. Actual and desired
joint angles. (b) Representation of the tracking error for the first joint with κ = 20.

figure 2 (a). The figure 3 (a) shows the tracking errors for the three joints. The
tracking error remains bounded for all time as it can be observed in the figure
2 (b), where the signal is swinging upwards and downwards inside a ball of
radius less than 10−3 rad. It is possible to improve the tracking performance
by increasing the gains of the controller. In 3 (b) the tracking error for the first
joint has been plotted with k = 20, 23, 26, 29, 33. As it can be observed, varying
the parameter k the error is bounded for all time. Therefore, it is concluded that
the designed neurocontroller provides a good tracking of desired trajectories.The
dynamic evolution of the weight estimations have been plotted in the figure 4,
in a time range of [0, 10] sec. The induced euclidean norm for matrices defined
as ‖A‖2 = maxi

√
σi (A) where σi (A) is a singular value of A has been used. As

it can be observed all the estimations are bounded for all time. Indeed as shown

Position Control Based on Static Neural Networks 895

0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (seconds)

T
ra

ck
in

g
er

ro
rs

 (
ra

di
an

s)

Tracking errors for joint 1, joint 2 and joint 3

e
1

e
2

e
3

(a)

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

5

6

Time (seconds)

T
ra

ck
in

g
er

ro
rs

 (
ra

di
an

s)

Tracking error for the first joint

κ=20
κ=23

κ=26

κ=29
κ=33

(b)

Fig. 3. (a) Response of NN controller with backprop weight tuning. Representation
of tracking errors (b) Tracking error for the first joint with κ=20,23,26,29,33.

in the figure 4, the larger the design gain κ the larger the norm of the weights
W . Yet, increasing the design parameter κ the convergence radius bW decreases.
This is a consequence of the dependence between the convergence radius bW

and κ. Indeed, the radius bW tends asymptotically to WB since lim
κ→∞

bW (κ) =
1
2WB + 1

2WB.

5 Conclusion

The main advantage of this adaptive control law is that provides adequate robot
manipulator performance as compared to other non-adaptive control schemes.
Indeed, the tracking errors are much smaller than those obtained from non-
adaptive control laws because of the learning mechanism. Another benefit of
this neural network controller is that the models are valid for all the robot
manipulators belonging to the same configuration class, i.e. having the same
sequence of joint types and the same number of degrees of freedom.

A neural network controller based on the passivity properties of the robot
manipulators has been developed to properly drive a mechanical system with a
tendon-driven transmission system. The main problem of these tendon transmis-
sions, according to the Morecki’s property, is that of the different dimension of
the tendon space and torque space resulting in a redundant system. A new con-
trol strategy has been developed in order to afford the problem of redundancy.
Not only the dynamic parameters of the mechanical system such as masses or
inertias are learned by the adaptive scheme but also all the dimensions of the
spooler and drving pulleys are learned.

Both tuning and control laws were derived from a theorem that plays a central
role in this paper guaranteeing good tracking and boundedness of the weights
and signals. Lastly, the control law has been implemented and applied to an

896 J.I. Mulero-Mart́ınez, F. Garćıa-Córdova and J. López-Coronado

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

In
du

ce
d

E
uc

li
de

an
 N

or
m

 o
f t

he
 w

ei
gh

ts

Evolution of the Coriolis/Centripetal Weights

κ=20

κ=23

κ=26

κ=29

κ=33

(a)

0 1 2 3 4 5 6 7 8 9 1
−0.5

0

0.5

1

1.5

2

2.5

3

Time (seconds)

In
du

ce
d

E
uc

li
de

an
 N

or
m

 o
f t

he
 w

ei
gh

ts

Evolution of the Inertia weights

κ=20

κ=33 κ=29 κ=26

κ=23

(b)

0 0.5 1 1.5 2 2.5 3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time (seconds)

Evolution of the gravitational weights

E
uc

li
de

an
In

du
ce

d
N

or
m

 o
f t

he
 w

ei
gh

ts

κ=20
κ=23

κ=26 κ=29
κ=33

(c)

Fig. 4. (a) Evolution of the coriolis/centripetal weight estimations (b) Evolution of
the inertia weight estimations. (c) Evolution of the gravitational weight estimations.
The parameter κ varies in the range κ=20,23,26,29,33.

anthropomorfic finger that looks like the Standford/JPL finger with a tendon-
driven transmission system. The reference signals were selected as sinoidal excit-
ing signals to get experimental proof of the stability of the system. A sensibility
analysis was made to show the influence of some design parameters in the con-
vergence raidus of the weights and filtered error signal and then, getting proof
of the assumptions and validity conditions of the theorem.

Acknowledgement

This work is supported by the project TIC2003-08164-C03-03. The authors
would like to thank the Spanish Research Foundation (CICYT) by the support
given to this project.

Position Control Based on Static Neural Networks 897

References

1. Lee, J.J.: Tendon-Driven Manipulators: Analysis, Sysnthesis and Control. PhD
thesis, Harvard University and Systems Research Center (1991)

2. Morecki, A., Busko, Z., Gasztold, H., Jaworek, K.: Synthesis and control of the
anthropomorphic two-handed manipulator, Proceedings of the 10th International
Symposium on Industrial Robots (1980) 461–474

3. Lee, J.J., Tsai, L.W.: On the structural synthesis of tendon-driven manipulators
having pseudo-triangular matrix. International Journal of Robotics Research 10
(1991) 255–262

4. Lee, J.J., Tsai, L.W.: Dynamic simulation of tendon-driven manipulators. Tech-
nical Report TR 91-53, Harvard (1991)

5. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press
(1999)

6. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot
Manipulators and Nonlinear Systems. Taylor and Francis Ltd. (1999)

7. Igelnik, B., Pao, Y.H.: Stochastic choice of basis functions in adaptive funtion
approximation and the functional-link net. IEEE Trans. Neural Networks 6 (1995)
1320–1329

8. Ge, S.S., Hang, C.C., Woon, L.C.: Experimental studies of network-based adaptive
control of robot manipulators,. Journal of the Institution of Engineers Singapore
37 (1997) 40–48

9. Ge, S.S., Hang, C.C.: Network modelling of rigid body robots. Proceedings of the
2nd Asian Control Conference (AsCC), Seoul, South Korea 3 (1997.) 251–254

10. Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic
Manipulators. World Scientific, London (1998)

11. Lewis, F.L., Liu, K., Yesildirek, A.: Neural net robot controller with guaranteed
tracking performance. IEEE Transactions on Neural Networks 6 (1995) 703–716

Learning Multiple Models of Non-linear Dynamics for
Control Under Varying Contexts

Georgios Petkos�, Marc Toussaint, and Sethu Vijayakumar

Institute of Perception, Action and Behaviour, School of Informatics
University of Edinburgh EH9 3JZ

Abstract. For stationary systems, efficient techniques for adaptive motor control
exist which learn the system’s inverse dynamics online and use this single model
for control. However, in realistic domains the system dynamics often change de-
pending on an external unobserved context, for instance the work load of the
system or contact conditions with other objects. A solution to context-dependent
control is to learn multiple inverse models for different contexts and to infer the
current context by analyzing the experienced dynamics. Previous multiple model
approaches have only been tested on linear systems. This paper presents an ef-
ficient multiple model approach for non-linear dynamics, which can bootstrap
context separation from context-unlabeled data and realizes simultaneous online
context estimation, control, and training of multiple inverse models. The approach
formulates a consistent probabilistic model used to infer the unobserved context
and uses Locally Weighted Projection Regression as an efficient online regressor
which provides local confidence bounds estimates used for inference.

1 Introduction

Learning dynamics for control is essential in situations where analytical derivation of
the plant dynamics is not feasible. This can be either due to the complexity of the system
or due to lack of or inaccurate knowledge of the physical properties of the system being
controlled. Adaptive control is an established research area that has offered a multitude
of methods that can be used in such cases. However, the dynamics of the environment
that the system has to interact with or even of the system itself are often changing in a
rapid or discontinuous fashion. For example, a robot arm may be required to manipulate
objects of different weights – an instantiation of control under multiple contexts. In
these cases, classic adaptive control methods are inadequate since they result in large
errors and instability during the period of adaptation. Furthermore, if the dynamics
change back and forth, readapting everytime is a suboptimal and inefficient strategy.

Humans do not have difficulty controlling their limbs under different contexts. It
has been suggested that they achieve this by using not just one model that is constantly
adapted to new environments, but a set of models, each of which is appropriate for a dif-
ferent environment [1]. The key issue that needs to be resolved for this multiple model
paradigm is that at any time the current context needs to be determined; this will be re-
ferred to as the context estimation problem and is central to this work. Context estimates
are needed both during training and control, i.e., for deciding which model should be

� Supported by the Greek State Scholarships Foundation.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 898–907, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Multiple Models of Non-linear Dynamics 899

Command

Context 1

Context 2

Dynamics models

Context n

Control Learning

Commands

Switch / Mix

Context
Estimates

Context estimator

Dynamics
Predictions

Context
Estimates

System

State

State

Applied

Fig. 1. Typical setup of a multiple model paradigm for control

used for control and which model should be trained with the data experienced. Biologi-
cal systems (e.g. humans) estimate contexts using a variety of sensory information like
vision or tactile input. In artificial systems though, the available sensory information
may be much poorer and the context has to be estimated from the experienced dynam-
ics only. Our approach will formulate a proper probabilistic model that represents the
context as a latent switching variable. This model allows us to estimate the context
online based only on the learned inverse models using a Markovian filtering. Further,
an Expectation-Maximization procedure is used to bootstrap the distinction of contexts
from context-unlabeled data.

There are some existing paradigms that implement the multiple model approach:
Multiple Model Switching and Tuning (MMST) [4,5], Multiple Paired Forward and In-
verse Models (MPFIM) [3] and Modular Selection and Identification for Control (MO-
SAIC) [2]. Fig. 1 shows the typical setup of a multiple model paradigm, where a set of
different context dynamics models is maintained. In most existing approaches, the dy-
namics models for each context is a pair consisting of a forward and an inverse model.
Context estimation is performed by comparing the observed dynamics of the system
with the dynamics predicted by each context’s forward model. For control purposes,
one can either switch between commands predicted by the most likely context or mix
them. Similarly, context estimates can be used for ‘hard’ or ‘soft’ assignment of data for
training the most likely contexts. The most general of the mentioned paradigms is MO-
SAIC, which is an extension of MPFIM. MOSAIC uses mixing instead of switching,
with the hope that more contexts can be handled with a smaller number of models. This
seems plausible in the case of linear dynamics and indeed MOSAIC has been realized
only for linear systems. Real robotic systems are highly non-linear, requiring the ability
to learn online and adjust model complexity in a data-driven manner. Existing multi-
ple model approaches are, therefore, not scalable. In this paper we present a non-linear
multiple model approach to control based on an efficient non-linear online learning
algorithm (LWPR) that addresses these requirements. To the best of our knowledge,
this is the first multiple model study that manages to learn non-linear dynamics under
multiple contexts with online separation of contextual data.

900 G. Petkos, M. Toussaint, and S. Vijayakumar

2 Adaptive Non-linear Control with LWPR

Let us first consider the single context scenario of learning the dynamics of a system
(e.g., a robot) and using them for control. At time step t, let Θt be the state of the
system (which include the position and velocity components) and τt the control signal.
A deterministic forward model f describes the discrete-time system dynamics as

Θt+1 = f(Θt, τt) . (1)

Learning a forward model f of the dynamics is useful for predicting the behavior of the
system. However, for control purposes, an inverse model is needed. The inverse model
g maps from transitions between states to the control signal that is needed to achieve
this transition:

τt = g(Θt, Θt+1) . (2)

A probabilistic graphical model representation of the forward and inverse model is
shown in Fig. 2(a) and Fig. 2(c), respectively.

Idealistically, an accurate inverse model can be used to exactly follow a sequence of
transitions that form a desired trajectory of the system. However, given only an approx-
imate inverse model, the error in following the trajectory may accumulate and become
unacceptably large. A standard approach for control with an approximate inverse model
is to combine it with a conventional linear feedback controller that counteracts the de-
viation from the desired trajectory. Given a desired trajectory Θ∗

1:T and the true state
Θt, the composite control command at time t is

τt = g(Θ∗
t , Θ

∗
t+1) + A (Θ∗

t −Θt) , (3)

where A is a gain matrix. We will use this composite control with gains based on the
Proportional Derivative (PD) control law. One effect of the composite control approach
is that the more accurate the inverse model g, the smaller are the errors and the error-
correcting PD control signals. Thus, the total amount of feedback control is a measure
of the accuracy of the inverse ’predictive’ model.

To learn the inverse dynamics we need a non-linear, online regression technique
which also provides error bounds that we may use for context separation. We use the
Locally Weighted Projection Regression (LWPR) [6] – an algorithm which is extremely
robust and efficient for incremental learning of non-linear models in high dimensions.
A LWPR model consists of a set of local linear models that come paired with a kernel
that defines the locality of the model. For a given input x, the kernel of the k-th local
model determines a weighting wk(x) while the local linear model predicts an output
ψk(x). The combined prediction of LWPR is

φ(x) =
1
W

∑
k

wk(x) ψk(x) , W =
∑

k

wk(x) . (4)

Each locality kernel wk(x) has a parametric Gaussian form and the distance metric is
adapted during learning in a data driven manner. The local models are trained using an
online variant of Partial Least Squares using the collected sufficient statistics. LWPR
is incremental and non-parametric in the sense that new local models are added online

Learning Multiple Models of Non-linear Dynamics 901

Fig. 2. Graphical model representation of the: (a) Forward model (c) Inverse model and (b,d) their
respective context augmented models

on an as-needed basis when training proceeds and new areas of the input domain are
explored. The update of LWPR scales with O(n), n being the input dimensionality [7].

The role of LWPR in the probabilistic inverse model of Fig. 2 can be summarized in
the equation:

P (τ |Θt+1, Θt) = N (φ(Θt+1, Θt), σ(Θt+1, Θt)), (5)

whose φ(Θt+1, Θt) is a learned LWPR regression mapping desired state transitions to
torques. Here, we have two options for choosing the variance: (1) we can assume a
fixed noise level independent of the context and the input; (2) we can use the confi-
dence bounds provided by each LWPR model which also depends on the current input
(Θt+1, Θt). We will test both cases in our experiments. Please see [6] for more details
on LWPR and the input dependent variance estimate.

3 Learning Multiple Models for Multiple Contexts

In the multiple context scenario, we assume that instead of having a single forward and
inverse dynamics (Fig. 2(a,c)), the dynamics depend on an unobserved random variable
ct, the context. Fig. 2(b,d) illustrates this situation as augmented graphical models for
the forward and inverse models. We assume a discrete context variable and maintain
separate LWPR models to represent the inverse dynamics for each context. Thus, Eq. (5)
becomes:

P (τ |Θt+1, Θt, ct = i) = N (φi(Θt+1, Θt), σi(Θt+1, Θt)) . (6)

The problem we face in the context of adaptive online control is twofold: (1) Given
a batch of yet unlabeled data and a set of yet untrained inverse models, we have to
bootstrap the specialization of inverse models to different parts of the data while at the
same time associating different data points to different contexts– we call this problem
data separation; (2) Given a set of already trained inverse models and previous observa-
tions, we have to estimate the current context in order to choose the right inverse model
in calculating the control signal– we call this problem context estimation. These prob-
lems are very closely related. We first address the simpler context estimation problem
before discussing data separation.

902 G. Petkos, M. Toussaint, and S. Vijayakumar

(a) (b) (c)

Forward model Inverse model

Fig. 3. Multiple model with temporal contextual dependencies using: (a) forward model or (b)
inverse model for context estimation. (c) Schematic of the simulated 3-link robot arm

3.1 Context Estimation

In general, context estimation with a given set of models is performed comparing the
predictions of each model with the observed dynamics. Usually this is done by compar-
ing a set of trained forward models with the observed dynamics. However, the predic-
tions of inverse models can equally be compared with the observed dynamics and thus,
there is no need to learn additional forward models. Our viewpoint is that at each time
step t we “observe” a state transition and an applied torque signal summarized in the
triplet (Θt, Θt+1, τt), i.e., we have access to the true applied control command (which
was generated via composite control) as part of the observation. To estimate the latent
context variable ct (without yet exploiting the temporal dependency) we can compute
P (ct |Θt, Θt+1, τt), i.e., the probability of being in a context given the observed tran-
sition between two consecutive states and the command that resulted in this transition.
Using Bayes rule, we get

P (ct = i |Θt, Θt+1, τt) = P (τt | ct = i, Θt, Θt+1)
P (ct = i)

P (τt |Θt, Θt+1)
. (7)

Here, we used P (ct = i |Θt, Θt+1) = P (ct = i), which is the context prior. Assuming
a uniform prior, the RHS quotient is a normalization factor independent of the context
i. Hence, the responsibility P (ct = i |Θt, Θt+1, τt) is proportional to the i-th model
likelihood (Eq. (6)).

It is straight-forward to extend this to take a Markovian dependency between con-
texts into account: intuitively, we would expect that in most practical cases, the context
would stay the same most of the time and switch only occasionally. For instance, in our
current experiments we apply control signals at 100Hz and we expect that the frequency
of context switches will be much lower. Thus, including the temporal dependency be-
tween contexts P (ct+1 | ct), the graphical models in Fig. 2(b,d) can be reformulated as
the Dynamic Bayesian Networks shown in Fig. 3(a,b). Application of standard Hidden
Markov Model (HMM) techniques is straightforward by using Eq. (7) as the observa-
tion likelihood in the HMM, given the hidden state ct = i.

Learning Multiple Models of Non-linear Dynamics 903

A low transition probability penalizes too frequent transitions and using smoothing
or Viterbi alignment produces more stable context estimates. In the experiments, we
will assume a fixed transition matrix P (ct = j | ct = i) with high value .999 for i = j
and .001 otherwise and use the HMM model only for filtering or smoothing, depending
on whether we investigate an online or batch estimation scenario, respectively.

3.2 Data Separation

In existing multiple model approaches, separation of data for learning happens online.
The predictions of the models are compared with the observed behaviour of the system
to give context estimates and train the models online. However, to get these context esti-
mates we need a mechanism for getting relatively accurate (initial) models to bootstrap
the context estimation procedure. Most of the existing multiple model paradigms do not
give a satisfying answer to this issue. MMST assumes that relatively good models are
available from the beginning, whereas MPFIM does not address this issue at all.

The problem of bootstrapping the context separation from context-unlabeled data is
very similar to clustering problems using mixture of Gaussians. In fact, the context vari-
able can be interpreted as a latent mixture indicator and each inverse model contributes
a mixture component to give rise to the mixture model of the form P (τt |Θt, Θt+1) =∑

i P (τt |Θt, Θt+1, ct = i) P (ct = i). Clustering with mixtures of Gaussians is usually
trained using Expectation-Maximization (EM), where initially the data are labeled with
random responsibilities (are assigned randomly to the different mixture components).
Then every mixture component is trained on its assigned (weighted) data (M-step) and
afterwards the responsibilities for each data point is recomputed by setting them propor-
tional to the likelihoods for each mixture component (E-step). Iterating this procedure,
each mixture component will specialize on different parts of the data and the responsi-
bilities encode the learned cluster assignments.

We will apply a common variant of the EM-algorithm where responsibilities are
computed greedily, i.e., where the data is hard assigned to the mixture component with
maximal likelihood instead of weighted continuously with the component’s likelihood
in the M-step. In our case, the likelihood of a data triplet (Θt, Θt+1, τt) under the ith
inverse model is P (τt |Θt, Θt+1, ct = i), which is a Gaussian with either fixed vari-
ance or the variance given by LWPR’s confidence bounds. This approach is similar to
MOSAIC’s approach to data separation except that it is based on the inverse models,
accounts for the possibility of non-linear models, and allows us to use the correct con-
fidence bounds predicted by LWPR.

4 Experiments

The methods proposed earlier were tested on a simulated1 3 joint arm, with 3 degrees of
freedom (see Fig. 3(c)). The first joint allows up and down movements and the next two
allow left and right movements. The target trajectories for the arm were a superposition
of different phase-shifted sinusoidal trajectories for each joint:

θ∗i = ai cos(αi
2π
T

t) + bi cos(βi
2π
T

t) , (8)

1 Robot arm simulation modeled in dynamical physics engine ODE/OpenGL.

904 G. Petkos, M. Toussaint, and S. Vijayakumar

0 10 20
10

−3

10
−2

10
−1

10
0

Iteration

nM
SE

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Ra
tio

 o
f f

ee
db

ac
k

to
 c

om
po

sit
e

co
m

m
an

d

0 10 20
0

0.2

0.4

0.6

0.8

1

Iteration

Tr
ac

kin
g

er
ro

r

0

50

100

150

200

250

G
ai

ns

 Joints 1,2,3
Averaged

 Joints 1,2,3
Averaged

 Joints 1,2,3
Averaged
Deriv.Gains
Prop.Gains

Fig. 4. Control performance of online trained LWPR on a single context over the training cycles.
Left: normalized MSE on the test data. Middle: contribution of the error-correcting feedback PD
control. Right: tracking error under decreasing PD gains.

where T = 4000 is the total length of the target trajectory, ai, bi ∈ [−1, 1] are dif-
ferent amplitudes and αi, βi ∈ {1, .., 15} parameterize different frequencies. Different
contexts are simulated by changing the weight of the third body of the arm. This is
equivalent to varying work loads held by the arm.

4.1 Learning Single Context Dynamics and Using Them for Control

We will first demonstrate that LWPR can learn an accurate inverse model of the arm
dynamics online and use it for control. Training was repeated independently for six
different contexts. Twenty iterations of the trajectory were executed. In the first 3 iter-
ations, a pure PD controller is used, whereas, after that a composite controller with the
model being learnt is used. Every second sample of the dynamics experienced is used
for training the inverse model online and every other sample is kept to test the accuracy
of the inverse model. Fig. 4 (left) shows how the normalised mean square error (nMSE)
on the test data drops as training proceeds through the 20 iterations, indeed, converging
to very low nMSE for all joints.

The accuracy of the inverse model learned can also be judged based on the contribu-
tion of the feedback command to the total composite command. The smaller the con-
tribution of the feedback command, the more accurate the inverse model learnt is. The
average contribution of the feedback command through the 20 iterations can be seen
in Fig. 4(middle). Already from the fourth iteration, when we switch from PD control
to composite control, the contribution is quite low and drops further – in accordance
to the behaviour of the nMSE. In Fig. 4(right), we can also see how the tracking error

Learning Multiple Models of Non-linear Dynamics 905

No Hmm,

constant

variance

No Hmm,

with conf.

Bounds

Hmm,

constant

variance

HMM,

withconf.

Bounds

Viterbi

alignment

6

5

4

3

2

1

Fig. 5. Online context estimation and control in the case of six different contexts. Left: Con-
text estimation accuracy using different estimation methods. Middle: example of random context
switches and its estimate using HMM filtering over time. Right: The inverse model predictions
of the six contexts along with the ideal and actual generated target command

decreases as the model becomes more accurate while, at the same time, we decrease the
gains of the feedback controller.

4.2 Experiments with Context Estimation

The context estimation methods described in Section 3.1 were used for online estimation
and control with the six contexts learnt. Random switches between the six contexts were
performed in the simulation, where at every time step we switch to a random context
with probability .001 and stay in the current context otherwise. The context estimates
were used online for selecting the model that will provide the feed-forward commands.

We have two classes of experiments, one is where we are not using HMM filtering
of the contextual variable and the other is where we use it. Also, we have two choices
for the variance of the observation model, one is where we use a constant (found empir-
ically) and the other is where we use the more principled confidence bounds provided
by LWPR. The simulation was run for 10 iterations. The percentage of accurate online
context estimates for the four cases along with offline Viterbi alignment can be seen in
the Fig. 5(left).

Fig. 5(middle) gives an example of how the best context estimation method that we
have, the HMM filtering using LWPR’s confidence bounds, performs when used for
online context estimation and control. Sometimes the context estimation lags behind
a few time steps when there are context switches, which is a natural effect of online
filtering (as opposed to retrospect smoothing).

The performance of online context estimation and control is close to the control
performance we achieved for the single context displayed in Fig. 4. Using the HMM

906 G. Petkos, M. Toussaint, and S. Vijayakumar

Fig. 6. The evolution of the data separation from unlabeled data over six iterations of the EM-
procedure. Left: without exploiting temporal modelling of the context variable. Right: using a
Viterbi alignment according to the temporal modelling. Both methods use LWPR’s confidence
bounds as local variance estimate. The first column displays the initial random assignment of
datapoints to contexts. The last column displays the correct context for each datapoint.

filtering based on LWPR’s confidence bounds, the average tracking error over the 10
cycles was 0.0019 and the ratio of feedback PD control was 0.074.

4.3 Experiments with Data Separation

Finally, we investigate the bootstrapping of data separation from unlabeled data. Here,
when generating the data, we switched between two different contexts (work loads)
with probability .001 at each time step. We first collected a batch of context-unlabeled
data from 4 cycles through the target trajectory where the arm was controlled by pure
feedback PD control. The EM procedure for data separation (Section 3.2) was tested
on this data with and without temporal modelling (always using LWPR’s confidence
bounds as a basis). In the temporal case, Viterbi alignment was used to assign data-
points to contexts rather than filtered estimates. Fig. 6 compares the evolution of the
data separation for the two methods over six EM-iterations. Using the temporal context
performs much better, i.e., 84% of the datapoints were assigned to the correct context.

The bootstrapping of the context separation from unlabeled data gives rise to two
separate inverse models for the two different contexts. To further improve these models,
we then used them for online context estimation and control, just as investigated in the
previous Section, for another 12 cycles through the target trajectory. Simultaneously,
the context estimates were used for selecting data for further training of the models.
The accuracy of context estimation was 88% while the tracking error was 0.0051 and
the ratio of feedback PD control was 0.23. The errors are slightly higher than in the case

Learning Multiple Models of Non-linear Dynamics 907

where models were trained using labeled data, but this is satisfying considering the fact
that we started with unlabeled data.

5 Discussion

In this paper we presented an efficient multiple model paradigm for the general case of
non-linear control. The approach is based on a probabilistic model of multiple-context
dynamics, using LWPR as an efficient online regressor for each inverse model. We have
demonstrated that it is possible to bootstrap multiple models of non-linear dynamics
from context-unlabeled data and use them for simultaneous online context estimation,
control, and training.

In comparison to previous multiple model approaches, most notably MOSAIC, our
approach is the first to handle the case of non-linear dynamics. Further, we showed that
it is unnecessary to maintain pairs of forward and inverse models. Context estimation
can more efficiently be based solely on the learned inverse models for each context. We
have seen that including a Markovian model of context switching greatly enhances the
context estimation performance. If additional knowledge about the context is available,
for instance, if it is related to sensory information, one can easily extend our framework
by augmenting the likelihood term in the Markovian model.

An issue yet unaddressed by any existing method is that of determining the num-
ber of separate contexts based on data only, if it is not known a priori. As detailed in
Section 3.2, our formulation of data separation is very similar to that of clustering using
mixture of Gaussians. Hence, existing techniques for determining the necessary number
of clusters in mixtures of Gaussians literature can directly be exploited. More specifi-
cally, a common approach is to incrementally add new mixture components when the
new data cannot, with sufficient likelihood, be explained with existing mixture compo-
nents [8]. This can also be realized online, which will be the subject of future research
to extend the presented approach.

References

1. Imamizu H. Osu R. Yoshioka T. Flanagan R., Nakano E. and Kawato M. Composition and
decomposition of internal models in motor learning under altered kinematic and dynamic
environments. The Journal of Neuroscience, 19, 1999.

2. Wolpert D. M. Haruno M. and Kawato M. Mosaic model for sensorimotor learning and con-
trol. Neural Computation, 13:2201–2220, 2001.

3. Wolpert D. M. and Kawato M. Multiple paired forward and inverse models for motor control.
Neural Networks, 11:1317–1329, 1998.

4. K. S. Narendra and J. Balakrishnan. Adaptive control using multiple models. IEEE Transac-
tions in automatic control, 42:171–187, 1997.

5. K. S. Narendra and C. Xiang. Adaptive control of discrete-time systems using multiple mod-
els. IEEE Transactions in automatic control, 45:1669–1686, 2000.

6. Aaron D’Souza Sethu Vijayakumar and Stefan Schaal. Incremental online learning in high
dimensions. Neural Computation, 17:2602–2634, 2005.

7. Tomohiro Shibata Jorg Conradt Sethu Vijayakumar, Aaron D’Souza and Stefan Schaal. Sta-
tistical learning for humanoid robots. Autonomous Robots, 12:55–69, 2002.

8. J. J. Verbeek, N. Vlassis, and B. J. A. Kröse. Efficient greedy learning of gaussian mixture
models. Neural Computation, 15(2):469–485, 2003.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 908 – 917, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Study on Optimal Configuration for the Mobile
Manipulator: Using Weight Value and Mobility

Jin-Gu Kang1 and Kwan-Houng Lee2

1 Dept. Visual Broadcastion Media Keukdong College DanPyung-Ri 154-1,Gamgog
Myun, Eumsung Gun Chungbuk, 467-900, Republic of Korea,

 jgukang@kdc.ac.kr
2 School of Electronics & Information Engineering, Cheongju University, Naedok-Dong

Sangdang-Gu Cheongju-City, Chungbuk, 360-764, Republic of Korea,
khlee368@cju.ac.kr

Abstract. A Mobile Manipulator is redundant by itself. Using it’s redundant
freedom, a mobile manipulator can perform various task. In this paper, to
improve task execution efficiency utilizing the redundancy, optimal
configurations of the mobile manipulator are maintained while it is moving to a
new task point. And using a cost function for optimality defined as a
combination of the square errors of the desired and actual configurations of the
mobile robot and of the task robot, the job which the mobile manipulator
performs is optimized. Here, The proposed algorithm is experimentally verified
and discussed with a mobile manipulator, PURL-II.

Keywords: Weight Value, Mobility, Gradient Method, Mobile robot.

1 Introduction

While a mobile robot can expand the size of the work space but does no work, a
vertical multi-joints robot or manipulator can’t move but it can do work. And at
present, there has been a lot of research on the redundant robot which has more
degrees of freedom than non-combination robots in the given work space, so it can
have optimal position and optimized job performance[1][2]. While there has been a
lot of work done on the control for both mobile robot navigation and the fixed
manipulator motion, there are few reports on the cooperative control for a robot with
movement and manipulation ability[3]. Different from the fixed redundant robot, the
mobile manipulator has the characteristic that with respect to the given working
environments, it has the merits of abnormal movement avoidance, collision
avoidance, efficient application of the corresponding mechanical parts and
improvement of adjustment. Because of these characteristics, it is desirable that one
uses the mobile manipulator with the transportation ability and dexterous handling in
difficult working environments[4]. This paper explains the mobile manipulator
PURL-II which is a combination in series of a mobile robot that has 3 degrees of
freedom for efficient job accomplishment and a task robot that has 5 degrees of

 A Study on Optimal Configuration for the Mobile Manipulator 909

freedom. We have analyzed the kinematics and inverse kinematics of each robot to
define the 'Mobility' of the mobile robot as the most important feature of the mobile
manipulator. We researched the optimal position and movement of robot so that the
combined robot can perform the task with minimal joint displacement and adjust the
weighting value using the this 'Mobility'. When the mobile robot performed the job
with the cooperation of the task robot, we investigated the optimizing criteria of the
task using the 'Gradient Method' to minimize the movement of the whole robots. The
results that we acquired by implementing the proposed algorithm through computer
simulation and the experiment using PURL-II are demonstrated.

2 Mobile Manipulator

2.1 Kinematics Analysis of the Mobile Manipulator

Each robot which is designed to accomplish each independent objective concurrently
should perform its corresponding movement to complete the task. The trajectory is
needed for kinematics analysis of the whole system, so that we can make the
combination robot perform the task efficiently using the redundant degree of freedom
generated by the combination of the two robots[5][6]. From Fig. 1, We can see the
Cartesian coordinate of the implemented mobile/task robot system and the link
coordinate system of each joint in space. This system is an independent mobile
manipulator without wire. The vector q of the whole system joint variables can be
defined []54321 tttttt qqqqqq = and []9876 mmmmm qqqqq = that represents the

joint variable vector of the task robot. That is shown as

[]Tmmmmttttt
m

t qqqqqqqqq
q

q
q 987654321== (1)

The linear velocity, and angular velocity of mobile robot in Cartesian space with
respect to the fixed frame of the world frame can be expressed as (2).

mmm

m

vm

m

m
m qJq

J

JV
P 0

,
0

,
0

0

0
0 ===

ωω
 (2)

In view of Fig. 1, let us represent the Jacobian of vector tq (task robot joint variable)

with respect to frame (1). These results are shown in (3) as follows[12] .

tt
m

t

t
m

vt
m

t
m

t
m

t
m qJq

J

JV
P ===

ωω ,

,
 (3)

Given the Jacobians, mJ0 and t
mJ , for each robot, if we express the Jacobian of the

mobile manipulator as tJ0 ; the linear velocity. Then angular velocity

[]T

ttt VP ω000 = from the end-effector to the world frame is represented as (4).

910 J.-G. Kang and K.-H. Lee

+
+==

t

tm

m

m

t

t
t

R

VRVV
P

ω
ω

ωω 1
1

0

1
1

00

0

0

0

0
0

[]=+=
t

m
tmttmm q

q
JJqJqJ 0000

(4)

Here 1
0R is rotational transformation from world frame to the base frame of the task

robot. Namely, in view of (2)-(4), the movements of mobile robot and task robot are
involved with the movement of end-effector.

WZ
WY

WX

}{W

PX

PZ

}{P

BZ

BY

EZ

}{E

X

EY

PY

}{B

BX

Fig. 1. Coordinate system of the mobile manipulator

3 Algorithm for System Application

3.1 Task Planning for Minimal Movement

Because the position of base frame of task robot varies according to the movement of
mobile robot, through inverse kinematics, the task planning has many solutions with
respect to the robot movement. and we must find the accurate solution to satisfy both
the optimal accomplishment of the task and the efficient completion of the task.
 In this paper, we have the objective of minimization of movement of the whole
robot in performing the task, so we express the vector for mobile manipulator states
as (5).

=
t

m

q

q
q (5)

where []T
mmmmm zyxq θ= and [] T

tq 54321 θθθθθ= .Here, q is the vector for

the mobile manipulator and consists of mq representing the position and direction of

mobile robot in Cartesian space and tq , the joint variable to each n link of the task

robot. Now to plan the task to minimize the whole movement of mobile manipulators,
a cost function, L , is defined as

)()(if
T

if
T qqqqqqL −−=∆∆=

)()()()(,,,,,,,, itft
T

itftimfm
T

imfm qqqqqqqq −−+−−=

(6)

 A Study on Optimal Configuration for the Mobile Manipulator 911

Here, [] T
itimi qqq ,,= represents the initial states of the mobile manipulator, and

[] T
ftfmf qqq ,,= represents the final states after having accomplished the task. In the

final states, the end-effector of the task robot must be placed at the desired position

dtX , . For that, equation (7) must be satisfied. In (7), we denote as)(, fmR θ and)(, ftqf ,

respectively, the rotational transformation to YX − plane and kinematics equation of
task robot[7].

fmftfmdt XqfRX ,,,,)()(+= θ (7)

where dtX , represents the desired position of task robot, and fmX , is the final position

of mobile robot. We can express the final position of the mobile robot fmX , as the

function of the desired coordinate dtX , , joint variables fm,θ and ftq , , then the cost

function that represents the robot movement is expressed as the 1×n space function
of fm,θ and ftq , as (8).

}{}{

})()({})()({

,,,,

,,,,,,,,

itft
T

itft

imftfmdt
T

imftfmdt

qqqq

XqfRXXqfRXL

−−+

−−−−= θθ
 (8)

In the equation (8), fm,θ and ftq , which minimize the cost function L must satisfy the

condition in (9).

0

,

, =

∂
∂

∂
∂

=∇

ft

fm

q

L

L

L
θ

 (9)

Because the cost function is nonlinear, it is difficult to find analytically the optimum
solution that satisfies (9). So in this papers, we find the solution through the numeric
analysis using the gradient method described by (10) .

)(,)(, ,
)(,

)(,

)1(,

)1(,

kftkfm q
kft

kfm

kft

kfm
L

qq θ
η

θθ
∇−=

+

+

 (10)

This recursive process will stop, when 0≈<∇ εL . That is,)(, kfmθ and)(, kftq are

optimum solutions. Through the optimum solutions of fm,θ and ftq , the final robot

state fq can be calculated as (11).

−
==

ft

ftfmdt

ft

fm

f q

qfRX

q

q
q

,

,,,

,

,)()(θ
 (11)

There are several efficient searching algorithms. However, the simple gradient
method is applied for this case.

912 J.-G. Kang and K.-H. Lee

3.2 Mobility of Mobile Robot

In this research, we define “mobility of the mobile robot” as the amount of movement
of the mobile robot when the input magnitude of the wheel velocity is unity. That is,
the mobility is defined as the corresponding quality of movement in any direction[8].
The mobile robot used in this research does move and rotate because each wheel is
rotated independently under the control. The robot satisfies (12) with remarked
kinematics by denoting left, right wheel velocities (rmlm qq ,, ,) and linear velocity and

angular velocity (ω,mv).

2
,, rmlm

m

qq
rv

+
=

(12a)

2
,, rmlm qq

l

r −
=ω

(12b)

Rewriting (12a), (12b), we get (13a) and (13b).

r

lv
q m

rm

ω+
=,

(13a)

r

lv
q m

lm

ω−
=,

(13b)

Mobility is the output to input ratio with a unity vector, 1=mv , or 1,
2

,
2 =+ rmlm qq

and the mobility mv in any angular velocity ω is calculated by (14).

2

2
2

2

1

r

l
rv m ω−=

(14)

When the mobile robot has the velocity of unity norm, the mobility of mobile robot is
represented as Fig. 2. It shows that the output, v and ω in workspace for all direction
inputs that are variance of robot direction and movement. For any input, the direction
of maximum movement is current robot direction when the velocities of two wheels
are same[9]. At the situation, there does not occur any angular movement of the robot.

mv
0mv

rmq ,

1mv

lmq ,

Fig. 2. Motion generation efficiency

 A Study on Optimal Configuration for the Mobile Manipulator 913

3.3 Assigning of Weighting Value Using Mobility

From the mobility, we can know the mobility of robot in any direction, and the
adaptability to a given task in the present posture of mobile robot. If the present
posture of mobile robot is adaptable to the task, that is, the mobility is large to a
certain direction. we impose the lower weighting value on the term in the cost
function of (15) to assign large amount of movement to the mobile along the
direction. If not, by imposing the higher weighting value on the term we can make the
movement of mobile robot small. Equation (15) represents the cost function with
weighting value

}{}{

})()({})()({

,,,,

,,,,,,,,

itftt
T

itft

imftfmdtm
T

imftfmdt

qqWqq

XqfRXWXqfRXL

−−+

−−−−= θθ
 (15)

Here, mW and tW are weighting matrices imposed on the movement of the mobile

robot and task robot, respectively. In the cost function, the mobility of mobile robot is
expressed in the Cartesian coordinate space, so the weighting matrix mW of the

mobile robot must be applied. after decomposing each component to each axis in
Cartesian coordinate system as shown in Fig. 3 and is represented as (16).

=

θω
ω

ω
ω

000

000

000

000

z

y

x

mW (16)

Where,
ev

x +⋅
=

)cos()cos(

1

αφ
ω ,

evy +⋅
=

)sin()sin(

1

αφ
ω ,

2
1

))((tzd

z qfz

k

−
=ω , and 1=θω .

Fig. 3. Decomposing mobility

3.4 Mobile Robot Control

The mobile robot carries the task robot to the reachable boundary to the goal position,
i.e., within the reachable workspace. We establish the coordinate system as shown in
Fig. 4 so that the robot can take the desired posture and position movement from the
initial position according to the assignment of the weighting value of the mobile robot

914 J.-G. Kang and K.-H. Lee

to the desired position. After starting at the present position,),(ii yx , the robot reaches

the desired position,),(dd yx . Here the current robot direction φ , the position error α

from present position to the desired position, the distance error e to the desired
position, the direction of mobile robot at the desired position θ are noted [9].

αcosve −= (17a)

e

v αωα sin+−= (17b)

e

v αθ sin= (17c)

A Lyapunov candidate function is defined as in (18).

)(22
2
12

2
1

21 θαλ heVVV ++=+= (18)

where 1V means the error energy to the distance and 2V means the error energy in the

direction. After differentiating both sides in equation (18) in terms of time, we can
acquire the result as in equation (19).

()θθααλ heeVVV ++=+= 21 (19)

Let us substitute equation (17) into the corresponding part in equation (19), it results
in equation (20).

+⋅+−+−=
e

hv
veV

)(sin
cos

. θα
α

αωααλ (20)

),(ii yx X

Y

e

),(dd yx

v

Fig. 4. Position movement of mobile robot by imposed weighting value

Note that 0<V is required for a given V to be a stable system. On this basis, we can
design the nonlinear controller of the mobile robot as in (21).

)0(,)cos(>= γαγ ev (21a)

 A Study on Optimal Configuration for the Mobile Manipulator 915

)0,(,)(
sincos >++= hkhk θα

α
ααγαω (21b)

Therefore, using this controller for the mobile robot, V approaches to zero as ∞→t ;
e and α also approach almost to zero as shown in (22).

4 Simulation

For verifying the proposed algorithm, simulations were performed with PURL-II. Fig.
5 shows the simulation results with a 3 DOF task robot and a 3 DOF mobile robot.
The goal is positioning the end-effect to (1, 0.5, 0.7), while initial configuration of
mobile robot is (-1.0, -1.0, 1.3, 60°) and that of task robot is (18°, 60°, 90°). The
optimally determined configuration of mobile robot is (0.0368, -0.497, 1.14, 44.1°)
and that of task robot is (1.99°, 25.57°, 86.63°). Fig. 5 shows movements of the task
robot in different view points.

Fig. 5. The optimal position planning to move a point of action of a robot to (1, 0.5, 0.7)

0)cos(222 ≤−−= ααγλ keV (22)

916 J.-G. Kang and K.-H. Lee

5 Experiment

Before the real experiments, assumptions for moving manipulators operational
condition are set as follows: 1. In the initial stage, the object is in the end-effect of the
task robot. 2. The mobile robot satisfies the pure rolling and non-slippage conditions. 3.
There is no obstacle in the mobile robot path. 4. There is no disturbance of the total
system. And the task robot is configured as the joint angles of (18°, 60°, 90°), then the
coordinate of the end-effect is set up for (0.02, 0.04, 1.3). From this location, the mobile
manipulator must bring the object to (1, 1.5, 0.5). An optimal path which is calculated
using the algorithm which is stated in the previous section has xW = 10.0, yW = 10.0,

and zW = 2.66. And at last the mobile robots angle is 76.52° from the X axis; the

difference is coming from the moving of the right wheels 0.8m and the moving of the
left wheels 1.4m. Next time, the mobile robot is different with the X axis by 11.64°with
right wheels 0.4m moving and the left wheels 0.5m moving. Hence, the total moving
distance of mobile robot is (1.2m, 1.9m), the total angle is 88.16°, and the each joint
angle of task robot are (-6.45°, 9.87°, 34.92°). The experimental results are shown by
the photography in Fig. 6. For the real experiment, the wheel pure rolling condition is
not satisfied, also by the control the velocity through the robot kinematics, the distance
error occurs from the cumulative velocity error. Using a timer in CPU for estimating
velocity, timer error also causes velocity error. Hence consequently, the final position
of end-effect is placed at (1.2, 1.5, 0.8) on object.

(a) Simulation (b) Experiment

Fig. 6. Response of robot posture

6 Conclusion

A new redundancy resolution scheme for a mobile manipulator is proposed in this
paper. While the mobile robot is moving from one task (starting) point to the next task

 A Study on Optimal Configuration for the Mobile Manipulator 917

point, the task robot is controlled to have the posture proper to the next task, which
can be pre-determined based upon TOMM[11]. Minimization of the cost function
following the gradient method leads a mobile manipulator an optimal configuration at
the new task point. These schemes can be also applied to the robot trajectory
planning. The efficiency of this scheme is verified through the real experiments with
PURL-II. The different of the result between simulation and experiment is caused by
the error between the control input and the action of the mobile robot because of the
roughness of the bottom, and is caused by the summation of position error through
velocity control. In further study, it is necessary that a proper control algorithm should
be developed to improve the control accuracy as well as efficiency in utilizing
redundancy.

References

1. Tsuneo Yoshikawa.: Manipulability of Robotic Mechan- isms. The International Journal
ofRobotics Robotics Research, Vol.4. No.2(1994) pp.3-9

2. Stephen L. Chiu.:Task Compatibility of Manipulator Postures. The International Journal of
Robotics Research, Vol.7. No.5(1998) pp.13-21.

3. Francois G. Pin.:Using Minimax Approaches to Plan Optimal Task Commutation
Configuration for Combined Mobile Platform-Manipulator System. IEEE Transaction on
Robotics and Automation, Vol.10. No.1(1994) pp.44-53

4. F. L. Lewis.:Control of Robot Manipulators. Macmillan Publishing(1993) pp.136-140
5. Jin-Hee Jang, and Chang-Soo Han.:The State Sensitivity Analysis of the Front Wheel

Steering Vehicle: In the Time Domain. KSME International Journal, Vol.11. No.6(1997)
pp. 595-604

6. Keum-Shik Hong, Young-Min Kim, and Chiutai Choi.:Inverse Kinematics of a Reclaimer
Closed-Form Solution by Exploiting Geometric Constraints. KSME International Journal,
Vol.11. No.6.(1997) pp.629-638

7. Sam-Sang You, and Seok-Kwon Jeong.:Kinematics and Dynamic Modeling for
Holonomic Constrained Multiple Robot System through Principle of Workspace
Orthogonalization. KSME International Journal, Vol. 12. No. 2 (1998) pp.170-180

8. M. T. Mason.:Compliance and Force Control for Computer Controlled Manipulators.
IEEE Transaction on Systems Man Cybernetics, Vol. 11. No. 6 (1981) pp.418-432

9. M. Aicardi.:Closed-Loop Steering of Unicycle-like Vehicles via Lyapunov Techniques.
IEEE Robotics and Automation Magazine, Vol. 10. No.1(1995) pp.27-35

10. N. Hare and Y. Fing.:Mobile Robot Path Planning and Tracking an Optimal Control
Approach. International Conference on Control Automation Robotics and Vision(1997)
pp. 9-11

11. Sukhan Lee and Jang M. Lee.:Task-Oriented Dual-Arm Manipulability and Its Application
to Configuration Optimization. Proceeding 27th IEEE International Conference on
Decision and Control Austin TX (1988)

12. Sam-Sang You.:A Unified Dynamic Model and Control System for Robotic Mainpulator
with Geometric End-Effector Constraints. KSME International Journal, Vol. 10.
No.2(1996) pp.203-212

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 918 – 927, 2006.
© Springer-Verlag Berlin Heidelberg 2006

VSC Perspective for Neurocontroller Tuning*

Mehmet Önder Efe

Electrical and Electronics Engineering Department
TOBB Economics and Technology University, Sö ütözü, Ankara, Turkey

onderefe@etu.edu.tr

Abstract. Compact representation of knowledge having strong internal
interactions has become possible with the developments in neurocomputing and
neural information processing. The field of neural networks has offered various
solutions for complex problems, however, the problems associated with the
learning performance has constituted a major drawback in terms of the
realization performance and computational requirements. This paper discusses
the use of variable structure systems theory in learning process. The objective is
to incorporate the robustness of the approach into the training dynamics, and to
ensure the stability in the adjustable parameter space. The results discussed
demonstrate the fulfillment of the design specifications and display how the
strength of a robust control scheme could be an integral part of a learning
system. This paper discusses how Gaussian radial basis function neural
networks could be utilized to drive a mechatronic system’s behavior into a
predefined sliding regime, and it is seen that the results are promising.

Keywords: Gaussian Radial Basis Function Networks, Sliding Mode Control.

1 Introduction

The innovations observed in the field of digital technology particularly in the last few
decades have accelerated the analysis and interpretations of data collected from
physical phenomena, and have made it possible to design and implement the systems
based on the former work. Tools used for this purpose have been refined, and
artificial neural networks, as one of the powerful tools for modeling and
representation of complex mappings, have taken a central role. What make them so
attractive have been their capability of representing inextricably intertwined
dependencies in a large data set with a simple model, the learning and generalization
ability, furthermore, to do all these with a certain degrees of fault tolerance.

When the applications of neural networks are visualized together with the process
of refining the future performance, i.e. the process of learning, several important
issues need to be addressed very carefully. These contain, but are not limited to the
issues related to the parametric stability, generalization versus memorization, setting
up the architectural degrees of freedom and so on.

* This work was supported by TOBB Economics and Technology University, BAP Program,

under contract no ETÜ-BAP-2006/04

 VSC Perspective for Neurocontroller Tuning 919

The first important milestone in the area of training process is the discovery of
Error Backpropagation (EBP) technique [1], which is also known as MIT rule or
gradient descent in the literature. Since the EBP method concerns the first order
partial derivatives of a cost function, the studies appeared later on have focused on the
extraction of a better path to the minimum cost solution by exploiting the information
contained in second order derivatives of the cost measure. Newton’s method [2],
Conjugate Gradient Algorithm [3] and Levenberg-Marquardt (LM) optimization
technique [4] are the most prominent ones used frequently in the neural network
applications. An inherent problem associated with all these schemes has been
the sensitivity of the learning model to the high frequency components additively
corrupting the training pairs. One method that has been discussed in the literature
 is due to Efe et al [5-6], which suggest a dynamic model for the training process
and develop a stabilizing scheme by utilizing Variable Structure Systems
(VSS) theory. VSS theory is a well-formulated framework for designing control
systems particularly for plants having uncertainties in the representative models. The
approach has extensively been used for tracking control of nonlinear systems and a
good deal of VSS and intelligence integration have been discussed in [7-8] also with
the name Variable Structure Control (VSC), which is a VSS theory based control
scheme.

In what follows, we scrutinize the concept of VSS theory use in neurocomputing
from systems and control engineering point of view. For this purpose, we shall use
Gaussian Radial Basis Function Neural Networks (GRBFNNs) introduced in the
second section. The third section is devoted to the extraction of an error critic, which
is to be used in parameter tuning stage. In the fourth section, a simulation example is
considered and the concluding remarks are presented at the end of the paper.

2 Gaussian Radial Basis Function Neural Networks (GRBFNN)

In the literature, GRBFNNs are generally considered as a smooth transition between
Fuzzy Logic (FL) and NNs. Structurally, a GRBFNN is composed of receptive units
(neurons) which act as the operators providing the information about the class to
which the input signal belongs. If the aggregation method, number of receptive units
in the hidden layer and the constant terms are equal to those of a Fuzzy Inference
System (FIS), then there exists a functional equivalence between GRBFNN and FIS
[9]. As illustrated in Fig. 1, the hidden neurons of a GRBFNN possess basis functions
to characterize the partitions of the input space. Each neuron in the hidden layer
provides a degree of membership value for the input pattern with respect to the basis
vector of the receptive unit itself. The output layer is comprised of linear neurons. NN
interpretation makes GRBFNN useful in incorporating the mathematical tractability,
especially in the sense of propagating the error back through the network, while the
FIS interpretation enables the incorporation of the expert knowledge into the training
procedure. The latter is of particular importance in assigning the initial value of the

920 M.Ö. Efe

u1

um

τ

Output Layer
Scalar Output: τ

Input Layer
Vector Output: u

Hidden Layer
Vector Output: o

Fig. 1. Structure of a GRBFNN having m-input and single output

network’s adjustable parameter vector to a vector that is to be sought iteratively.
Expectedly, this results in faster convergence in parameter space.

Mathematically, oi=Πm
j=1Ψij(uj) and the hidden layer activation function is the

Gaussian curve described as Ψij(u)=exp{−(uj−cij)
2/σij

2}, where cij and σij stand for the
center and the variance of the ith neuron’s activation function qualifying the jth input
variable. The output of the network is evaluated through the inner product of the
adjustable weight vector denoted by φ and the vector of hidden layer outputs, i.e. τ =
φ To. Clearly the adjustable parameter set of the structure is composed of {c, σ, φ}
triplet.

3 VSS Theory from a Learning-Strategic Point of View

The pioneering works due to Sanner and Slotine [10] and Sira-Ramirez and Colina-
Morles [11] have demonstrated the first successful results in learning design with
VSS theory. The latter introduced the concept of zero learning error level, which
makes the design of switching manifold comprehensible for first order systems. Since
the design of VSC involves a decision based on a two sided mechanism, the boundary
of which is characterized by the switching manifold, the geometric location of the
manifold for first order systems becomes a point in one dimensional space and is
defined to be the zero level of learning [11]. Although a zero level is postulated
conceptually, the achievement of which is a challenge unless there is a supervision
providing the desired values of the neural network outputs. In [12], an appropriate
measure relating the dynamics of the switching manifold and controller error is
postulated.

In what follows, we briefly explain how an appropriate error measure for control
error could be constructed, and demonstrate how this measure could be used for
control applications. For this purpose, it is assumed that the system is in an ordinary
feedback loop as illustrated in Fig. 2.

 VSC Perspective for Neurocontroller Tuning 921

GRBFNN
CONTROLLER SYSTEM

Σ

Σ

sc τd

τ

x
xd

+

_

+
_

Fig. 2. Structure of the feedback control loop

3.1 Obtaining an Equivalent Control Error

Consider the system () ()τ , xbxxfx += , where ()T, xx is the state vector, τ is the

input vector and f and b are unknown continuous functions. If xd is defined to be the
vector of desired trajectories, one can describe the tracking error vector as e=x−xd and
construct the control signal that derives the system towards the prescribed sliding
regime. The design is based on a two-sided switching mechanism, the argument of
which is defined as sp=de/dt+Λe with Λ being a positive definite diagonal matrix of
appropriate dimensions. The aim is to ensure the negative definiteness of the
Lyapunov function Vp=sp

Tsp/2. The control sequence can now be formulated as

() () ()()dp xsexxfxb −Ξ+Λ+−= − sgn,1τ , where, Ξ is a positive definite diagonal

matrix. The application of the well-known sliding control law above the system
enforces ()pp ss sgnΞ−= , which ensures the reaching to the hyperplane sp=0.

Proposition: Let τd be the vector of control signals that meets the performance
specifications. If sC is defined to be the vector of discrepancies between the target and
evaluated values of the control vector, and if the controller parameters are adjusted
such that the cost function J=sC

TsC/2 is minimized, the tracking error vector is driven
towards the switching manifold. Here, sC is defined to be the error on the control
signal and is computed as given in (1).

()ppC sss sgn: Ξ+= = τ − τd (1)

In reality, one does not know the numerical value of τd, however, within the
context of discussed problem, the set of all control signals forcing the system towards
the sliding manifold can be considered as the target control sequence, which
minimizes sC. Practically, this means 0<pp ss , i.e. all trajectories in the phase space

tend to the sliding manifold and the ideal behavior thereafter takes place in the sliding
subspace. An indirect implication of this is the fact that since ()ppC sss sgnΞ+= =0

is maintained, the parameters of the controller are not adjusted during the sliding
regime. At this point, we dwell the numerical computation of this error measure. The

922 M.Ö. Efe

obvious difficulty is the computation of the time derivative of sp. Our prior tests have
proved that an approximate numerical differentiation works even with the noisy
observations. Introducing a stable linear filter with numerator of order one in Laplace
domain can suitably provide the information needed. The reason why we do not need
the exact value of the derivative stems from the fact that the desired behavior is not
unique. If a trajectory starting from an arbitrary initial point in the space tends to the
sliding manifold then it is one of the desired trajectories, however, the selection of Ξ
uniquely determines the way of approaching the sliding manifold. The information
loss due to the derivative computation can be interpreted as a slight modification of
the reaching dynamics characterized by)sgn(pp ss Ξ−= . The second question is on

the selection of the diagonal positive definite matrix Ξ. If the entries increase in
magnitude, the reaching phase of the control strategy produce large controls in
magnitude and several hittings occur, however, the values close to zero result in slow
reaching to the sliding manifold with relatively less number of hittings. The designer
has to decide on what he/she pursues together with the physical reality regarding the
plant under control. For example, for a cargo ship steering example, enforcing the
convergence to a desired behavior in a few seconds would require unrealistically
large-magnitude control activity, while for a direct drive robotic manipulator the
response could reasonably be fast to fulfill the imposed task. Lastly, the infinite
switching frequency of ideal sliding mode should be addressed. Clearly from

)sgn(pp ss Ξ−= , one should notice that the enforced behavior ultimately converges

to a practically impossible phenomenon. Since the right hand side of the equation is
discontinuous in the vicinity of the origin, the near origin activity is an oscillation
ideally at infinite frequency, called chattering in the terminology of sliding control.
One approach to eliminate the adverse effects of chattering is to introduce a boundary
layer by replacing the discontinuous sign function with a smooth approximate such as

() ()δααα +≅ /sgn , where δ >0 is the parameter determining the accuracy of the

approximation.

3.2 Issues of Parameter Tuning

The quantity described in (1) can be used in several ways. Assume that the system is
under the feedback loop as illustrated in Fig. 2, and the tuning strategy is the EBP
rule. Denoting φ as the vector adjustable parameters of a neural network structure, the
law enforces the following tuning mechanism:

φ
τ

η
φ

ηφ
∂
∂

−=
∂
∂−=

=

jn

j
Cjs

J

1
 (2)

where 2/1
2

== n
j CjsJ and η is the learning rate in the conventional sense. The

similar reasoning can be postulated for other learning algorithms as well.
If the output of a neural network structure is linear in the adjustable parameter

vector (φ), e.g. in the case of GRBFNN with only output weights adjustable,
alternative mechanisms could be proposed. In (3), the tuning law proposed by Sira-
Ramirez et al [11] has been given.

 VSC Perspective for Neurocontroller Tuning 923

()
iCi

ii

i
i

sk sgn
T ΩΩ

Ω
−=φ (3)

In above, ki is the uncertainty bound satisfying
idii

BBBki τφ +> Ω and Ωi is the

vector excitation signals. Setting of ki obviously requires the knowledge on the

following bounds
i

B
i φφ ≤ ,

i
Bi Ω≤Ω

id
Bid ττ ≤ , which are typically unknown,

therefore a compact ki value is set by trial and error. For a detailed discussion on this
adaptation law, one should refer to [7,11-12].

Alternatively, one might suggest the use of tuning strategy in (4), which is
designed to ensure the negative semi-definiteness of the Lyapunov function in (5).

∂

∂

∂∂

∂
+−=

−

i

c
T
ii

c
ii

ii
VV

Ik
φφφ

ρµφ sgn

1
2

(4)

where µ > 0 and ρ > 0 are the free design parameters determining the relative
importance of the terms seen in (5), and

ii
BBBk

ii ΩΩ+>) (ρµ φ .

2

2

1

i

c
c

i
i

V
VV

φ
ρµ

∂

∂
+= with 2

2
1

iCic sV = (5)

Clearly the above law and the Lyapunov function suggest that the parametric
growth is penalized. Further discussion on this approach has been presented in [7].
For the strategy in (3), the zero error learning level is characterized by sCi = 0, while
the latter uses an augmented switching manifold given as in (6). The law of (4)
enforces a motion taking place in the vicinity of 0=iAs .

∂
∂=

i

c

c

iA i

i
V

s

s
φ

 (6)

4 An Illustrative Example

To demonstrate the efficacy of the presented concept, the control of a 2 degrees of
freedom direct drive arm is considered. The dynamics of the manipulator is described
by the following vector differential equation.

() ()()xxCfxMx
c

,1 −−= − τ (7)

where, M(x), C(xx,), τ and fc stand for the state varying inertia matrix, the vector of

Coriolis terms, the applied torque inputs and the Coulomb friction terms respectively.

924 M.Ö. Efe

The plant parameters are given in Table 1 in standard m-kg-s units. If the angular
positions and angular velocities are described as the state variables of the system, four
coupled and first order differential equations can define the model. In (8) and (9), the
terms seen in (7) are given explicitly.

+
++

=
2232

232231

)(cos

)(cos)(cos2
)(

pxpp

xppxpp
xM (8)

() () ()
()

+−
=

23
2
1

23212

sin

sin2
,

xpx

xpxxx
xxV (9)

0 5 10 15 20
-2

-1

0

1

2

x 1d
 (

ra
d)

Time(sec)
0 5 10 15 20

-2

-1

0

1

2

x 2d
 (

ra
d)

Time(sec)

0 5 10 15 20
-2

-1

0

1

2

dx
1d

/d
t

(r
ad

/s
ec

)

Time(sec)
0 5 10 15 20

-2

-1

0

1

2

dx
2d

/d
t

(r
ad

/s
ec

)

Time(sec)

Fig. 3. Reference trajectories for base and elbow links

In the above equations, p1 = 3.31655+0.18648Mp, p2 = 0.1168+0.0576Mp and p3 =
0.16295+0.08616Mp. Here Mp denotes the payload mass. The details of the plant
model can be found in Direct Drive Manipulator R&D Package User Guide [13].

Since the dynamics of such a mechatronic system is modeled by nonlinear and
coupled differential equations, precise output tracking becomes a difficult objective
due to the strong interdependence between the variables involved. Additionally, the
ambiguities on the friction related dynamics in the plant model and the varying
payload conditions make the design much more complicated. Therefore the control
methodology adopted must be capable of handling the difficulties stated.

As the controller, two GRBFNN structures having 2 inputs 9 hidden neurons and
single output are used for each link, and only the weight parameters are adjusted with
the tuning law of (3). Initially, the adjustable parameters have been set to zero and the

 VSC Perspective for Neurocontroller Tuning 925

Table 1. 2D Manipulator parameters

Motor 1 Rotor Inertia 0.2670 Payload Mass (Mp) 2.0000
Arm 1 Inertia 0.3340 Arm 1 Length 0.3590
Motor 2 Rotor Inertia 0.0075 Arm 2 Length 0.2400
Motor 2 Stator Inertia 0.0400 Arm 1 CG Distance 0.1360
Arm 2 Inertia 0.0630 Arm 2 CG Distance 0.1020
Motor 1 Mass 73.000 Axis 1 Friction 4.9000
Arm 1 Mass 9.7800 Axis 2 Friction 1.6700
Motor 2 Mass 14.000 Torque Limit 1 245.00
Arm 2 Mass 4.4500 Torque Limit 2 39.200

uncertainty bounds have been set as k1=10000 and k2=1000. The simulation has been
performed for 20 seconds, and the integration step size has been chosen as 2.5 ms. In
response to the reference trajectories depicted in Fig. 3, the error trends shown in
Fig. 4 are obtained. Clearly the suggested form of tuning and control strategy is
capable of alleviating the nonzero initial errors together with a load of 2 kg grasped at
t=2 sec, released at t=5 sec, and grasped again at t=9 sec and released at t=12 sec. This
clearly introduces an abrupt change in the dynamics of the system and necessitates a
robust controller to compensate the behavioral changes. Although not presented here,
in the phase space, the behavior for each link is maintained on the loci characterized by
λ=1 with tolerably small and convergent spikes in elbow velocity error.
 The control inputs are depicted in the top row of Fig. 5, which reveals that the
produced control signals sufficiently smooth and are of reasonable magnitudes. In the

0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

e 1 (
ra

d)

Time(sec)
0 5 10 15 20

-0.08

-0.06

-0.04

-0.02

0

0.02

e 2 (
ra

d)

Time(sec)

0 5 10 15 20
-0.15

-0.1

-0.05

0

0.05

de
1/d

t
 (

ra
d/

se
c)

Time(sec)
0 5 10 15 20

-0.05

0

0.05

0.1

0.15

de
2/d

t
 (

ra
d/

se
c)

Time(sec)

Fig. 4. State tracking errors

926 M.Ö. Efe

0 5 10 15 20
-50

0

50

τ 1 (
N

m
)

Time(sec)
0 5 10 15 20

-10

-5

0

5

10

τ 2 (
N

m
)

Time(sec)

0 5 10 15 20
0

50

100

150

200

|| φ
1||

Time(sec)
0 5 10 15 20

0

5

10

15

20

25

|| φ
2||

Time(sec)

Fig. 5. Control inputs and parameter norms

bottom row of Fig. 5, the evolution of the Euclidean norm of the adjustable parameter
vectors are shown. The obtained results clearly suggest that the tuning mechanism
stops modifying the values of the parameters right after the sliding regime starts.
Therefore, it can be claimed that the learning dynamics is internally stable for both
controllers and the control system is robust against disturbances such as payload
change as considered in this work.

5 Conclusions

This paper presents the use of VSS theory in training of GRBFNN type controllers.
For this purpose, a novel error critic is discussed, and several tuning laws are
presented. It has been exemplified that a tuning activity minimizing the proposed
error measure drives the system under control into a prespecified sliding mode and
results in robust and precise tracking. A robotic manipulator has been chosen as the
test bed, and the internal stability of the adjustable parameter dynamics has been
visualized. Briefly, the use of VSS theory for parameter tuning purposes introduces
the robustness and invariance properties of the VSC technique, which results in some
desirable features during the control cycle.

References

1. Rumelhart, D.E., Hinton, G.E. and Williams, R.J.: Learning Internal Representations by
Error Propagation, in D. E. Rumelhart and J. L. McClelland, (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, v. 1, MIT Press, Cambridge,
M.A., (1986) 318-362.

 VSC Perspective for Neurocontroller Tuning 927

2. Battiti, R.: First- and Second-order Methods for Learning: Between Steepest Descent and
Newton’s Method, Neural Computation, v.4, (1992) 141-166.

3. Charalombous, C.: Conjugate Gradient Algorithm for Efficient Training of Artificial
Neural Networks, IEE Proceedings, v.139, (1992) 301-310.

4. Hagan, M.T. and Menhaj, M.B.: Training Feedforward Networks with the Marquardt
Algorithm, IEEE Transactions on Neural Networks, v.5, n.6, (1994) 989-993.

5. Efe, M.Ö. and Kaynak, O.: On Stabilization of Gradient Based Training Strategies for
Computationally Intelligent Systems, IEEE Transactions on Fuzzy Systems, v.8, n.5,
(2000) 564-575.

6. Efe, M.Ö. and Kaynak, O.: Stabilizing and Robustifying the Learning Mechanisms of
Artificial Neural Networks in Control Engineering Applications, International Journal of
Intelligent Systems, v.15, n.5 (2000) 365-388.

7. Efe, M.Ö. Kaynak, O. and Yu, X.: Variable Structure Systems Theory in Computational
Intelligence,” in Variable Structure Systems: Towards the 21st Century, Lecture Notes in
Control and Information Sciences, Eds. X. Yu and J.-X. Xu, Springer Verlag, v.274,
(2002) 365-390

8. Kaynak, O., Erbatur, K. and Ertugrul, M.: The Fusion of Computationally Intelligent
Methodologies and Sliding-Mode Control − A Survey, IEEE Transactions on Industrial
Electronics, v.48, n.1, (2001) 4-17.

9. Jang, J.-S.R., Sun, C.-T. and Mizutani, E.: Neuro-Fuzzy and Soft Computing, PTR
Prentice-Hall, (1997).

10. Sanner, R.N. and Slotine, J.J.E.: Gaussian Networks for Direct Adaptive Control, IEEE
Transactions on Neural Networks, v.3, n.6, (1992) 837-863.

11. Sira-Ramirez, H. and Colina-Morles, E.: A Sliding Mode Strategy for Adaptive Learning
in Adalines, IEEE Transactions on Circuits and Systems - I: Fundamental Theory and
Applications, v.42, n.12, (1995) 1001-1012.

12. Efe, M.Ö., Kaynak, O. and Yu, X.: Sliding Mode Control of a Three Degrees of Freedom
Anthropoid Robot by Driving the Controller Parameters to an Equivalent Regime, Trans.
of the ASME: Journal of Dynamic Systems, Measurement and Control, v.122, n.4, (2000)
632-640.

13. Direct Drive Manipulator R&D Package User Guide, Integrated Motions Incorporated,
704 Gillman Street, Berkeley, California 94710, U.S.A., (1992).

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 928 – 935, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Neural Network Module with Pretuning for Search
and Reproduction of Input-Output Mapping

Igor Shepelev

A.B. Kogan Research Institute for Neurocybernetics, Rostov State University
shepelev@krinc.ru

Abstract. A neural network that uses a pretuning procedure for function
approximation is presented. Unlike traditional neural network algorithms in
which changeable parameters are multiplicative weights of connections
between neurons in the network, the pretuning procedure deals with additive
thresholds of interneurons of the proposed neural network and is a dynamical
combinatory inhibition of these neurons. It is shown that in this case the neural
network can combine local approximation and distributed activation. The
usefulness of the neural network with pretuning (NNP) for the tasks of search
and reproduction of sensorimotor mapping of robot is briefly discussed.

Keywords: Neural networks, pretuning, interneurons, combinatory inhibition,
local approximation.

1 Introduction

According to adaptation mechanisms implemented by neural network models one can
distinguish three trends of development of neural network technologies. The training
neural networks are connectionist structures which are characterized by finding the
right set of weights to accomplish a given task. The investigation of this type of
neural networks was initiated by the model of self-organizing adaptive system also
known as the perceptron which was proposed by Rosenblatt in 1958 [1]. The further
development of this area is connected with the works of researchers such as
Rumelhart [2] and others. The following characteristic features of these neural
networks are emphasized. First, the training process always results in an unifunctional
neural network, that is the network which realize a unique function. Secondly, for
these neural networks the global character of approximation lead to slow learning. So
the network has to be retrained if new information is required to learn [3].

The growing neural networks overcome the problem of forgetting the old
information when learning the new by use of principles of local approximation. The
typical example of such neural networks are the networks of adaptive resonance
theory which was developed by Carpenter and Grossberg [4]. A network of this type
adds new neuron if a growing criteria is satisfied. For instance, a new neuron is added
if the current input presents a region of input space that was not previously learned.
So the growing permits to learn new information incrementally without having to

 A Neural Network Module with Pretuning 929

retrain the network. This adaptation mechanism also leads to an unifunctional neural
network.

It may be said that historically, the networks of McCulloch neurons [5] were the
first models of pretuning neural networks. The main difference between the model of
McCulloch neuron and the well-known artificial neuron model also referred to as
threshold gate is the presence of nonlinear synaptic connections. It was shown [6] that
for once established structure and connection weights of the network of such neural
elements in the presence of very small redundancy of neurons one can tune the
network to compute an arbitrary boolean function by means of adjustment the neural
thresholds. In this sense such a neural network is polyfunctional. A threshold is an
additive parameter of neuron model and can be interpreted as an external signal to
neuron. If this external signal is the output of different neural network than we can
say about the pretuning of a neural network by another one. While the latter network
serves for memorization of pretuning signals, the former which is pretuned by this
pretuning signals is used for search and reproduction of required input-output
mapping.

In this paper we concentrate on the study of neural networks to be pretuned.
A neural network module for piecewise-linear approximation of continuous functions
is described in Section 2. The proposed neural network combines local approximation
and distributed activation. This combination provides fast local construction
of functions to be approximated and a high accuracy of approximation while the
 size of the network is relatively small. Alternative adaptation mechanism for function
approximation allows getting the independence of weights and size of the network on
specific approximated functions. Namely, the mapping required is constructed not by
adaptation of connection weights or by growing number of neurons but by a
combinatory inhibition of interneurons which is realized by another network not
described here. Section 3 demonstrates performance of the network for different
numbers of interneurons. In Section 4, the usefulness of the network for the task of
robot behaviour control in changing environment is briefly discussed.

2 Model

2.1 The Basic Functional Unit

The model is based on computational units (modelled neurons) that apply the linear
saturated function Θ with uu =Θ)(for 10 ≤≤ u , 0)(=Θ u for 0<u , 1)(=Θ u for

1>u as the activation function. Let jw be the weight from neuron j,)(jj uy Θ= the

activity of neuron j, h the threshold and x the external input to the neuron. Then the
membrane potential u is given by the following equation:

hywxu
j

jj −+= .

930 I. Shepelev

A basic functional unit of the network is
proposed for piecewise approximation. The
unit consists of hidden neuron 3 and
interneurons 1 and 2 (Fig. 1). Different
values of the weights of inhibitory connec-
tions from interneurons allow realizing
arbitrary output functions of the chosen
class. In this case these are linear functions:

0cxKxy += (for []1;0∈x), (1)

where intin wwK 1−= determines the steep-

ness of the function, intin wwc 20 −= is the

shifting along the y-axis, and 0x denotes the constant unity signal (x0=1).

2.2 Distributed Representation of Output Functions

Suppose that for every subarea of input space of the network are known proper values
of K and c. Then any function can be approximated by switching these values for
different subareas. In turn, these values are determined through the values of weights
of the basic unit. A set of parameter K and c values in (1) for construction of linear
approximation on every subarea is obtained by means of some abundance of
interneurons in the basic unit.

The activation function Θ allows to bring the activity of an interneuron to 0 by
means of the external inhibitory signal p. In other words, this signal turns interneuron
off which is equivalent to increasing the threshold hi of neuron i. The combination of
interneurons turned on and off results in distributed representation of output
functions.

2.3 Piecewise-Linear Approximation

A set of inhibitory combinations allows realizing a set of piecewise-linear functions.
The number of functions is determined by the number of interneurons intn and is

equal to intn2 . The output functions of hidden neuron for different combinations of
interneurons turned off will be the linear approximations on some subareas. Fig. 2
shows that the interneurons are grouped structurally for approximation of the values
of the steepness 1 and the shifting 2 parameters of the function (1).

If the network has several inputs inn then the several subgroups of interneurons are

linked with the corresponding inputs for approximation of every parameter

)..1(ini niK = of approximating function
=

+=
inn

i
ii cxKy

1

. Therefore the network has

1+inn subgroups. All subgroups contain the same number of interneurons '

intn , so

Fig. 1. The basic functional unit

 A Neural Network Module with Pretuning 931

Fig. 2. Piecewise-linear approximation is realized by different combinations of interneurons
turned off on the different subareas. Turned off interneurons are shown by gray circles.

+

=
1inn

'

intint nn . Increasing dimension of task to be solved requires the corresponding

number of equivalent neural networks working in the parallel mode.

2.4 Connection Weights of the Network

The main idea is to construct arbitrary mapping without changing the initially chosen
topology and weights of the network. So the size and the parameters of the network
are chosen to guarantee a necessary range of functions to be realized.

Let the steepness coefficient
dx

dy
k = of the approximated function)(xy be

bounded, []maxmax ; KKk −∈ . This assumption is used for calculation of fixed weights
inw in the network. The weights of inhibitory connections intw are uniformly

distributed random values.

932 I. Shepelev

2.5 Algorithm of Pretuning and Domain Discretization

The neural network is pretuned by inhibitory combination pp on every subarea pΩ to

obtain a reasonable accuracy of approximation py of function y:

p
poptpp QQyy Ω=Ω=<− ,)(,: εεp (2)

The method of random search was chosen to find proper pretuning combinations p.
Once the combination is found, it is stored. The pretuning combination is not changed
until the current output function satisfies some objective function Qopt. From (2), an
important feature of the model follows. The discretization of domain cannot be
carried out in advance because of inaccessibility of data in the task considered. That is
why the discretization is realized directly in approximation constructing.

3 Experiments

3.1 The Number of Interneurons

The dependence of approximation accuracy on the number of interneurons was
studied using a number of test sinusoid functions with different phase shifts ϕ :

5.0)2sin(5.0 ++= ϕπxy . (3)

The approximation of these functions allows to test the neural network in a wide
range of steepness and shifting parameters of the function (1). For the task, 100
randomly selected from]1,0[pairs),(yx formed training set. To compute the

averages, 20 test functions with random phase shifts],[ππϕ −∈ were used. The

accuracy was specified using the absolute error. The experiments show that the
number of iterations needed to find a proper inhibitory combination is much less then

intn2 (Fig. 3). Moreover, when the number of interneurons is increased, the number of
iterations tends to decrease because of the abundance of output functions.

3.2 Approximation of Multivariable Functions

The multiplications of the same sinusoids (3) served as the testing functions to derive
the dependence of the number of searching proper inhibitory combination iterations
on the number of neural network inputs. A scaling coefficient s was introduced as
the ratio of the number of iterations for the multiple input neural network to the
number of iterations for the network with 1 input. Cases of 2, 8, and 32 inputs were
considered. The number of iterations obtained for the each case of the network with
multiple inputs was averaged over 20 different combinations of multiplication of
sinusoids with random phase shifts ϕ . For the task of multivariable functions

approximation, we used 1000 training pairs),(yx randomly selected from

 A Neural Network Module with Pretuning 933

Fig. 3. The dependence of approximation accuracy on the number of iterations of pretuning
(searching steps) needed to find a proper inhibitory combination. (n+n) denotes that equal
numbers of interneurons were chosen for approximation of each parameter of the function (1).

corresponding domain. The experiments were carried out for the network with 6, 8,
10, and 12 interneurons '

intn and for the values of approximation accuracy of 90, 95,

98, and 99 percents. Calculating the scaling coefficients we used the number of
iterations for one-input network from Fig. 3.

Results showed that the scaling coefficient is independent of the number of
interneurons '

intn and approximation accuracy. The average values of the scaling

coefficient were estimated for each considered number of inputs and are shown in
Table 1. The following linear equation

Table 1. The dependence of the scaling coefficient for the number of iterations on the number
of network inputs

Number of inputs Scaling coefficient
1 1
2 1.04
8 1.3

32 2.23

97.004.0 += inns

provides a good fit to the experimental data. The regression equation was obtained
using the method of least squares. The value of determination coefficient of 0.998
proves the adequacy of the model. It is important that increasing the number of inputs
do not increase the number of iterations significantly.

The results obtained can be used to define the size of the network and to estimate the
corresponding computational burden for the task of approximation of arbitrary
functions.

934 I. Shepelev

4 Discussion

The neural network module described here searches and reproduces arbitrary input-
output mapping. The other neural module to be implemented is a learning network
which stores the pretuning vectors.

The neural modules interact with each other by means of the pretuning. This
adaptive technique is based on the random search of inhibitory combinations. The
effectiveness of the random search in comparison with the known neural network
implementations is due to operating in low-dimensional space of binary values of
thresholds rather than high-dimensional space of continuous values of weights.

The division of functions between two neural network modules leads to
polyfunctional properties of considered neural network and the ability of operating
with the objective functions depending on input, output, or other variables. These
peculiarities are valuable for the task of robot behaviour control in partially unknown
and unpredictable environments. Indeed, a great number of attempts have been made
to model sensorimotor relationships in autonomous mobile robots and robot
manipulators by use of famous neural network algorithms. However the main
principles of information processing offered by these neural network algorithms
appear to be inappropriate for construction of mapping between sensory and motor
variables of robots. The typical example of such networks is multilayer perceptron [2]
which employs supervised learning algorithm for the mapping construction. The
supervised learning requires the training set in the form of input and correct output
data. However the data when operating in partially unknown environments are often
not available, and neural network based on objective function sensory variables must
produce appropriate motor responses directly while interacting with environment.

Neural networks that are trained by reinforcement [7] and genetic [8] learning
algorithms are able to operate in the absence of rigorous instructions such as training
input-output pairs and can be applied to generation of robot behaviour [9], [10]. At
the same time, the main obstacle to use them in real-time robotic applications that are
characterized by changing environments is a global approximation. It is compu-
tationally expensive for such networks to adapt every time when the environment is
changed. That is why polyfunctional properties of neural network as control system
are desirable.

Such questions as the performance of the neural network in the presence of noise,
generalization properties of the network remain outside the scope of this paper. An
acceptable implementation of the learning neural network module will allow to
answer these questions, which is the subject of our future studies.

References

1. Rosenblatt F.: The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain. Psychological Review. Vol. 65. (1958) 386-408

2. Rumelhart, D.E., Hinton, G.E., and Williams R.J.: Learning Internal Representations by
Error Propagation. In Parallel distributed processing: Explorations in the Microstructure of
Congnition,, Vol. 1. Cambridge, MA: MIT Press (1986) 318-362

 A Neural Network Module with Pretuning 935

3. Haykin S.: Neural Networks: A Comprehensive Foundation, (2nd Ed.), Prentice Hall.
(1999)

4. Carpenter G.A., Grossberg S., Markuzon N., Reynolds J.H., Rosen D.B.: Fuzzy
ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of
Analog Multidimensional Maps. IEEE Trans. on Neural Networks. Vol. 3. No.5. (1992)
698-714

5. McCulloch W.S.: Agathe Tyche of Nervous Nets - The Lucky Reckoners. Proc.
Symposium on Mechanization of Thought Processes, N.P.L., Teddington. (1958)

6. McCulloch W.S.: Anastomotic Nets Combating Noise. In W.S. Fields and W. Abbott,
Eds., Information Storage and Neural Control. (1963) 283-298

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning, An Introduction. Cambridge, MA:
MIT Press (1998)

8. Jones, A.J.: Genetic Algorithms and Their Applications to The Design of Neural
Networks. Neural Computing and Applications. Vol. 1. No. 1. (1993) 32-45

9. Martin, P., Millan, J.: Learning Reaching Strategies Through Reinforcement for Sensor-
based Manipulator. Neural Neworks. Vol. 11. (1998) 359-376

10. Gullapalli, V., Grupen, R., Barto, A.: Learning Reactive Admittance Control. In
Proceedings IEEE Int. Conf. on Robotics and Automation. (1992) 1475-1480

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 936 – 943, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Physical Mapping of Spiking Neural Networks Models
on a Bio-inspired Scalable Architecture

J. Manuel Moreno1, Javier Iglesias2, Jan L. Eriksson2, and Alessandro E.P. Villa3

1 Technical University of Catalunya, Dept. of Electronic Engineering
Campus Nord, Building C4, c/Jordi Girona 1-3, 08034-Barcelona, Spain

moreno@eel.upc.edu
2 Laboratory of Neuroheuristics, Information Systems Department INFORGE

University of Lausanne, Lausanne, Switzerland
Javier.Iglesias@unil.ch, jan@lhn.unil.ch

3 INSERM U318, University Joseph-Fourier Grenoble 1, Pavillon B
CHUG Michallon, BP217, F-38043 Grenoble Cedex 9, France

Alessandro.Villa@ujf-grenoble.fr

Abstract. The paper deals with the physical implementation of biologically
plausible spiking neural network models onto a hardware architecture with bio-
inspired capabilities. After presenting the model, the work will illustrate the ma-
jor steps taken in order to provide a compact and efficient digital hardware
implementation of the model. Special emphasis will be given to the scalability
features of the architecture, that will permit the implementation of large-scale
networks. The paper will conclude with details about the physical mapping of
the model, as well as with experimental results obtained when applying dy-
namic input stimuli to the implemented network.

1 Introduction

Spiking neural networks models have attracted a considerable research interest during
the last years [1], [2] because of their biological plausibility and their suitability for a
physical hardware implementation. From the different learning mechanisms available
for this neural models Spike Timing Dependent Plasticity (STDP) has received an
increasing interest [3] because of experimental evidence [4] and observations suggest-
ing that synaptic plasticity is based on discrete dynamics [5].

In this paper we shall consider a spiking neural network model whose learning
mechanism is based on discrete variables [6]. After presenting the model the sequence
of steps driving to its physical realization will be explained. Then the implementation
on the model on a scalable hardware architecture with bio-inspired features will be
described. The implementation results show that it is possible to attain real-time proc-
essing capabilities for dynamic visual stimuli.

2 Spiking Neural Network Model

The model consists of Leaky Integrate-and-Fire neuromimes connected by synapses
with variable weight depending on the time correlation between pre- and post-synaptic

 Physical Mapping of Spiking Neural Networks Models 937

spikes. The synaptic potentials are added until their result Vi(t) overcomes a certain
threshold. Then a spike is produced, and the membrane value is reset. The simplified
equation of the membrane value is:

=+⋅

=
=+

0)()()(

1)(0
)1(

tSwhentJtVk

tSwhen
tV

iijimem

i

i
 (1)

where kmem=exp(-∆t/τmem), Vi(t) is the value of the membrane and Si(t) is the state
variable which signals the occurrence of a spike. The value of Jij is the output of each
synapse (ij) where j is the projecting neuron and i is the actual neuron.

When a spike occurs in the pre-synaptic neuron, the actual value of the synaptic
output Jij is added to the weight of the synapse multiplied by an activation variable A.
Conversely, if there is no pre-synaptic spike then the output Jij is decremented by a
factor ksyn. Then, the value of Jij corresponds to the following equation:

=⋅

=⋅+
=+

0)()(

1)())(()(
)1(

tSwhentJk

tSwhentAwtJ
tJ

jijsyn

jRiRjRiRjij

ij
 (2)

where j is the projecting neuron and i is the actual neuron. R is the type of the neuron :
excitatory or inhibitory, A is the activation variable which controls the strength of the
synapse, and ksyn is the kinetic reduction factor of the synapse. If the actual neuron is
inhibitory, this synaptic kinetic factor will reset the output of the synapse after a time
step, but if the actual neuron is excitatory, it will depend on the projecting neuron. If
the projecting neuron is excitatory the synaptic time constant will be higher than if it
is inhibitory. The weight of each synapse also depends on the type of neuron it con-
nects. If the synapse connects two inhibitory neurons, the weight will always be null,
so an inhibitory cell cannot influence another inhibitory cell. If a synapse is connect-
ing two excitatory neurons, it is assigned a small weight value. This value is higher
for synapses connecting an excitatory neuron to an inhibitory one, and it takes its
maximum value when an inhibitory synapse is connected to an excitatory cell.

The changes in strength of an excitatory-excitatory synapse depend on the variable
A which is a function of on an internal variable Lij given by the following equation:

Lij(t+1)=kact·Lij(t) + (YDj(t)·Si(t)) – (YDi(t)·Sj(t)) (3)

where kact is a kinetic activity factor, which is the same for all the synapses and YD is
a “learning” decaying variable that depends on the interval between a pre-synaptic
spike and a post-synaptic spike. When there is a spike, YD reaches its maximum value
at the next time step. In the absence of a spike the value of YD will be decremented by
the kinetic factor klearn, which is the same for all synapses. When a pre-synaptic spike
occurs just before a post-synaptic spike, then the variable Lij is increased and the syn-
aptic strength becomes larger, thus corresponding to a potentiation of the synapse.
When a pre-synaptic spike occurs just after a post-synaptic spike, the variable Lij is
decreased, the synaptic weight is weakened , thus corresponding to a depression of
the synapse. For all kind of synapses, except the excitatory-excitatory, the activation
variable is always is set to 1.

938 J.M. Moreno et al.

3 Hardware Implementation

In this section we shall consider the detailed implementation of the model, as well as
its optimization for an efficient hardware realization.

The overall organization of the neuron model is depicted in Figure 1.

Fig. 1. Overall organization of the neuron model

The description of the neuron block can be divided in three main parts. In the first
part the spikes(s) received from outside (probably from other neurons) are processed
through a block that encompasses two additional sub-blocks, synapse and learning,
which will be explained later. These sub-blocks are used to give appropriate inputs to
the next building blocks of the neuron model.

In a second stage, the inputs are added or subtracted, depending on the nature (r) of
the previous neuron (i.e. excitatory or inhibitory), to the decayed value of the mem-
brane . The result of this final addition is what we call “membrane value” and it is
stored in a flip-flop (FF in Figure 1). This membrane value is always processed
through a decay function which gives the adding value in the next time step. The
registered output of the membrane is compared in the third sub-block with a prede-
fined threshold value. When the membrane value reaches this threshold, a spike is
produced. This spike will be delayed in the final part with a flip-flop which models
the refractory time. When finally the spike goes out from the neuron, it produces a
reset (rst signal in Figure 1) in the flip-flop which stores the value of the membrane.

A major building block in the neuron model is the decay block, since it will be
used both in the synapse and in the learning blocks. This block is aimed to implement
a logarithmic decay of the input; it is obtained with a subtraction and controlling the
time when it is done depending on the input value. The organization of this block is
presented in Figure 2. In this figure the decaying variable is labeled x. A new value of
x will be the input of a shift register which is controlled by the most significant bit
(MSB) of x and by an external parameter mpar. The output of this shift register will be
subtracted from the original value of x. This operation will be done when the time
control indicates it. The time control is implemented by the value of a counter that is

 Physical Mapping of Spiking Neural Networks Models 939

compared with the result of choosing between the external value step and the product
(MSB–mpar)·step. The decay variable τ depends on the input parameters mpar and
step.that is controlled by the time when it is done depending on the input value.

SHIFT
REG

- FF

6

1

load

init_x

MSB

- *

>

mpar step

dec_x

>

counter

rst

Fig. 2. Organization of the decay block

The learning block “measures” the interval between a spike in the projecting neu-
ron j and the actual neuron i. Depending on these timings and the types of the two
neurons, the synaptic strength will be modified. When a spike is produced by the
projecting neuron, the variable YD is set to its maximum value and starts to decay. If a
spike is produced by the actual neuron immediately after the presynaptic neuron the
value of YDj is added to the decaying value of L. Conversely, if a spike is produced at
first in the actual neuron and later in the projecting neuron, then the value of YDi is
subtracted to the decaying value of L. If the L variable overcomes a certain threshold
Lth, positive or negative, then the activation variable A is increased or decreased, re-
spectively, unless the variable had reached its maximum or minimum, respectively.
If the variable A is increased, then L is reset to the value L-2·Lth; if A is decreased,
then L is reset to L+2·Lth. Figure 3 illustrates the organization of the learning block.

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Fig. 3. Organization of the learning block

The synapse block is aimed to set the value of J (analogous to the the sum of all
post-synaptic membrane potentials) and depends on four factors: the activation level
A of the synapse, the spiking state of the projecting neuron Sj and the types of the pre-
and post-synaptic neurons (Ri and Rj).

A given weight is set for each synapse. This weight is multiplied by the activation
variable A by means of a shift register, such that if A=0, the weight is multiplied by 0,
if A=1 it is multiplied by 1, if A=2 it is multiplied by 2, and if A=3 it is multiplied by
4. This weighted output is added to the decaying value of the variable J.

940 J.M. Moreno et al.

This operation depends on the neuronal types (Ri and Rj). In the current case study
there are only two types of neurons, excitatory and inhibitory. If both neurons are
inhibitory the weight of the synapse is set to 0 and the value of J is always 0 and no
decay is implemented. For the other three types of synapses the time constants are
multiplexed, and the multiplexer is controlled by the types of neurons (Ri,Rj). The
value of J is obtained at the output of the decay block controlled by the multiplexer.
Figure 4 shows the organization of the synapse block.

Shift
reg

w

A

+

sj
Jτ

Ri,Rj

20 reg
3
0

Shift
reg

w

A

+

sj
Jτ20 reg

3
0

Fig. 4. Organization of the synapse block

The resolution required to represent the values of the variables and the number of
operations to be performed may pose a serious limitation for the final implementation.
Therefore, an important step consisted in evaluating the model and tuning its parame-
ters in order to get a satisfactory performance. The implementation used in this study
has been based on a neural network of size 15x15 with a connectivity pattern of 24
neurons corresponding to a neighborhood of 5x5. The distribution of the 20% inhibi-
tory cells was random. The weights, w, and the initial activation variables, A, were
also chosen randomly. Dynamic gradient stimuli have been applied to the neural
network. A sequence of vertical bars of gradient intensity move over “strips” of neu-
rons placed in the 2D array of the neural network.

The vertical bars may move at different speeds (i.e. spatial frequency). A neuron
“hit” by the stimulus receives an input that is proportional to the gradient intensity.
The activity of the network has been studied in a “training” condition and in a “test”
condition. During training the spatial frequency of the stimulus has been incremented
by discrete harmonics (2x, 4x, etc.) in one direction (the “forward” direction). During
test, the stimuli were presented in both forward and reverse sense. A Gaussian noise
(Mean 0, SD= 48) is applied to all neurons during all the time. The characteristics of
the input applied to each neuron are the following:

• TCLK: 20 ns. Maximum amplitude: 127.
• Training period: 20 µs. Forward sense
• Test period: 10 µs. Forward and Reverse sense

The results from this experiment demonstrate that the selected structure of our neu-
ral network is able to perform an implicit recognition of dynamic features based on
simple unsupervised STDP rules.

In a first attempt to reduce the complexity of the final hardware implementation the
resolution of the parameters has been reduced by 2 bits. By repeating the simulation
experiments explained previously we could determine that this is the minimum accu-
racy required by the system in order to exhibit discrimination features for dynamic
input stimuli. Table 1 shows the new values of the internal parameters after this opti-
mization process.

 Physical Mapping of Spiking Neural Networks Models 941

Table 1. Resolution of the parameters for an optimized implementation

Parameter New value

Membrane resolution 10 bits

Threshold +160

Input (J) resolution 6 bits

Weights (Ri,Rj) (00, 01, 10, 11) [0:8], [64:128], [128:256], [0:0]

YD resolution 4 bits

L resolution 6 bits

Membrane decay time constant 20

YD decay time constant 20

L decay time constant 4000

JRi,Rj decay time constants
 (Ri,Rj) (00, 01, 10, 11)

 (20, 0, 3, 0)

Once this simplification has been performed a further simplification has been car-

ried out [7] in the design of the constituent building blocks. In this optimization a
serial approach has been used in order to keep the functional units as compact as
possible.

4 Implementation on a Bio-inspired Architecture

The POEtic tissue [8] constitutes a flexible hardware substrate that has been specifi-
cally conceived in order to permit the efficient implementation of bio-inspired mod-
els. The tissue may be constructed as a regular array composed of POEtic chips, each
of them integrating a custom 32-bit RISC microprocessor and a custom FPGA with
dynamic routing capabilities.

The custom FPGA included in the POEtic chip is composed of a bi-dimensional ar-
ray of elementary programmable elements, called molecules. Each molecule contains
a flip-flop, a 16-bit lookup table (LUT) and a switchbox that permits to establish pro-
grammable connections between molecules.

After the optimization carried out on the neural model in order to facilitate its
hardware realization it has been mapped on to the molecules that constitute the PO-
Etic device. The molecule organization shown in Fig. 5 corresponds to the actual
structure of the FPGA present in the POEtic device, which is arranged as an 8x18
array of molecules.

The VHDL models developed for the POEtic tissue have been configured and
simulated to validate the functionality of the neuron model designed above. After this

942 J.M. Moreno et al.

Fig. 5. Molecule-level implementation of the SNN model

validation stage the strategy for the simulation of large-scale SNN models has been
considered. Since in its actual implementation the POEtic chip only allows for the
implementation of a single neuron it will be necessary to use an array of POEtic chips
whose functionality should be time–multiplexed in order to emulate the entire net-
work. This means that every POEtic chip should be able to manage a local memory in
charge of storing the weights and learning variables corresponding to the different
neurons it is emulating in time.

A 16-neurons network organized as a 4x4 array has been constructed using this
principle. This would permit the emulation of a 10,000-neurons network in 625 mul-
tiplexing cycles. Bearing in mind that each neuron is able to complete a time step in
150 clock cycles, this means that the minimum clock frequency required to handle
input stimuli in real time (i.e., to process visual input stimuli at 50 frames/second) is
around 5 MHz far within the possibilities of the actual clock frequency achieved by
the POEtic tissue (between 50 MHz and 100 MHz).

The visual stimuli will come from an OmniVision OV5017 monochrome 384x288
CMOS digital camera. Specific VHDL and C code have been developed in order to
manage the digital images coming from the camera. To test the application, artificial
image sequences have been generated on a display and then captured by the camera
for its processing by the network.

5 Conclusions

In this paper we have presented the detailed translation process of a biologically plau-
sible spiking neural network model onto a physical hardware implementation based
on a scalable architecture with bio-inspired features. During the translation process
special attention has been paid to the accuracy constraints of the implementation, so
as to obtain a compact physical realization. The results of the current implementation
demonstrate that the proposed approach is capable of supporting the real-time needs
of large-scale spiking neural networks models. Our current work is concentrated on
the physical test and qualification of the POEtic chips received from the foundry us-
ing the development boards that have been constructed for the POEtic tissue. After

 Physical Mapping of Spiking Neural Networks Models 943

that the configuration corresponding to the proposed model will be downloaded and
physically tested on the actual chips.

Acknowledgements

The work presented in this paper has been funded by the grant IST-2000-28027 (PO-
Etic) of the European Community and by grant OFES 00.0529-2 of the Swiss gov-
ernment. The information provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

References

1. Maas, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models.
Neural Networks 10 (1997) 1659–1671.

2. Hill, S.L., Villa, A.E.P.: Dynamic transitions in global network activity influenced by the
balance of excitation and inhibition. Network: Computation in Neural Systems 8 (1997)
165-184.

3. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neuroscience 3
(2000) 1178–1183.

4. Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like
structure depends on temporal order. Nature 387 (1997) 278–281.

5. Montgomery, J.M., Madison, D.V.: Discrete synaptic states define a major mechanism of
synapse plasticity. Trends in Neurosciences 27 (2004) 744-750.

6. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Halliday, D., Rosenberg, J.,
Moreno, J.M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue.
Evolvable Systems: From Biology to hardware. Lecture Notes in Computer Science 2606
(2003) 165-173.

7. Torres, O., Eriksson, J., Moreno, J.M., Villa, A.E.P.: Hardware optimization and serial im-
plementation of a novel spiking neuron model for the POEtic tissue. BioSystems 76 (2003)
201–208.

8. Moreno, J.M., Thoma, Y., Sanchez, E., Torres, O., Tempesti, G.: Hardware Realization of a
Bio-inspired POEtic Tissue. Proceedings of the NASA/DoD Conference on Evolvable
Hardware. IEEE Computer Society (2004) 237-244.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 944 – 952, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Time Multiplexing Architecture for Inter-neuron
Communications

Fergal Tuffy1, Liam McDaid1, Martin McGinnity1, Jose Santos1, Peter Kelly1,
Vunfu Wong Kwan2, and John Alderman2

1 University of Ulster, Intelligent Systems Engineering Laboratory, School of Computing
and Intelligent Systems, Faculty of Engineering, Magee Campus, Northland Road, Derry, N.

Ireland, BT48 OLY
{f.tuffy, lj.mcdaid, tm.mcginnity, ja.santos,

pm.kelly}@ulster.ac.uk
2 Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Rep. of Ireland

{vunfu, john.alderman}@tyndall.ie

Abstract. This paper presents a hardware implementation of a Time Multiplex-
ing Architecture (TMA) that can interconnect arrays of neurons in an Artificial
Neural Network (ANN) using a single metal wire. The approach exploits the
relative slow operational speed of the biological system by using fast digital
hardware to sequentially sample neurons in a layer and transmit the associated
spikes to neurons in other layers. The motivation for this work is to develop
minimal area inter-neuron communication hardware. An estimate of the density
of on-chip neurons afforded by this approach is presented. The paper verifies
the operation of the TMA and investigates pulse transmission errors as a func-
tion of the sampling rate. Simulations using the Xilinx System Generator (XSG)
package demonstrate that the effect of these errors on the performance of an
SNN, pre-trained to solve the XOR problem, is negligible if the sampling fre-
quency is sufficiently high.

1 Introduction

Biological research has accumulated an enormous amount of detailed knowledge
about the structure and functionality of the brain. It is widely accepted that the basic
processing units in the brain are neurons which are interconnected in a complex pat-
tern, communicate through pulses and use the timing of the pulses to transmit infor-
mation and perform computations [1-3]. Significant research has focused on “biologi-
cal equivalent” neural network models that can be implemented in hardware and used
to inspire new techniques for real time computations [4-6]. However, the standard
network topologies employed to model the biological networks are proving difficult
to implement in hardware, even for moderately complex networks. Existing inter-
neuron connection schemes are achieved through metallization and thus as the size of
the neuron array increases there is a rapid increase in the ratio of metal to device area
which eventually self-limits the network size [7-8]. Given that the density of the in-
terconnect pathways in the human brain is of the order of 1014 [9], it is inconceivable
that existing interconnect technologies will even remotely approach this order of
magnitude and thus new approaches need to be explored.

 A Time Multiplexing Architecture for Inter-neuron Communications 945

This paper presents a novel Time Multiplexing Architecture (TMA) as a possible
solution to the interconnect problem for Spiking Neural Networks (SNNs) in hard-
ware. A single bus wire is used to transmit the signals between neuron layers, where
timing is guaranteed by using a clocking system that is synchronized to a “global”
clock. This implementation removes the requirement of dedicated metal lines for
every synaptic pathway and therefore a significant saving in the silicon surface area is
achieved. Section 2 of this paper discusses the TMA while section 3 highlights results
that verify the approach. Errors in spike timing “across the TMA” due to the sampling
frequency are investigated in section 4 where a simple SNN is initially trained, using
a supervised approach, to solve the XOR problem. Using the Xilinx System Generator
(XSG) package the output firing times that results from the TMA architecture are
compared with those obtained when conventional metal interconnect is used, and
from the subsequent analysis it is clear that the sampling frequency must be at least
twice the minimal sampling frequency: note the minimal sampling frequency is set by
the duration of the spike and the number of neurons in the sampled layer. Section 5
presents a quantitative analysis underpinning the scalability of the TMA and section 6
makes concluding remarks.

2 Time Multiplexing Architecture (TMA)

This section presents a novel inter-neuron communication architecture where biologi-
cally compatible neuron spikes are represented as digital pulses and connectivity
between neuron layers is achieved using the TMA. Figure 1 shows a two layer neural
network fragment containing two input neurons, I0 and I1, and one output neuron, O0.
The sampling circuit to the left of the bus wire contains two D-type latches in a daisy
chain configuration where one of the latches is preset to logic 1, prior to the applica-
tion of the clock, CK. Effectively the clock input, CK, rotates a logic 1 between the two
latches, switching on transistors M1 and M2 sequentially: M1, M2, M3 and M4 are n-
channel enhancement mode MOSFETs. This sampling to the left of the bus wire is
repeated on the right of the bus wire. Consider the case where the input neuron, I0,
fires a spike, {0, 1, 0}, of duration TP which forms the input to the drain, D, of M1.
The gate terminal, G, of M1 is controlled by the Q output of a D-type latch and when
Q is asserted, I0 is sampled and a logic 1 is placed on the bus wire: note that the gate
of M2 will be held at logic 0 while M1 is on (sampling). Because both sampling cir-
cuits are driven from the same clock input, CK, the bus line is now sampled by M3
ensuring that the pulse from I0 is directed to the correct synapse, Synapse 1. I1 will be
sampled directly after I0 whereby M2 and M4 will be turned on by the sampling cir-
cuits allowing the pulse from I1 (if I1 has fired) to reach Synapse 2. Clearly the sam-
pling frequency is a function of the number of neurons in the sampled layer and the
duration of the spike pulse. In a layer of n neurons which are sampled sequentially, it
can be shown that the minimum sampling frequency FS (Hz) is given by,

P

n
Fs

T
= (1)

946 F. Tuffy et al.

The authors are aware that pulse transmission errors can exist between the time a
neuron in one layer fires and the time required for this pulse to be observed at the
synaptic inputs associated with the neurons in the subsequent layer. These are caused
by the sampling circuitry operating in a synchronous mode while all the neurons that
are sampled will fire in an asynchronous mode. Pulse transmission errors and their
effect on a pre-trained SNN are investigated in section 5.

Fig. 1. TMA for a 2-input 1-output SNN

3 Simulation Results

The proposed TMA was simulated using the Mentor Graphics mixed signal simula-
tion package, System Vision Professional. Figure 2 represents the layout used in the
simulation where the SNN has four input neurons, I0-I3, and two output neurons, O0,
O1 (note that this architecture is modified from that shown in figure 1 in that the
MOSFET transistors at the input to each synapse are replaced by D-latches, D13-
D20). It will be shown later that in order to reduce pulse transmission errors it is
necessary to sample at a rate that is in excess of the minimum sampling frequency
defined by equation (1). However, “gating” these high frequency pulses using MOS-
FETs causes glitches at the input to the synapses. This problem is avoided by the
additional layer of D-latches, D13-D20.

In the simulations, as shown in figures 2 and 3, the pulse length for all neurons, TP,
was set to 1ms and since there are four input neurons, the sampling frequency was
calculated from equation (1) to be 4KHz. Because M1-M4 are not ideal the transitions
from logic 1 to logic 0, and vice versa, are not instantaneous. Therefore, to avoid any
overlap between the turn on transient of one transistor and the turn off of another a
two phase clock system is used where one clock CK1 operates on the sampling circuit
to the left of the bus wire and another clock CK2 operates on the sampling circuit to

 A Time Multiplexing Architecture for Inter-neuron Communications 947

Fig. 2. TMA system layout for 4-input, 2-output NN

the right: note that CK1 and CK2 are in anti-phase but operate at the same frequency
(8 KHz), as shown in figure 3(a). Figure 3 (b) shows random firing of neurons I0 – I3,
and their arrival times at the appropriate synapses. It can be seen that there exists a
time error tIo between I0 firing and the arrival time of the pulse at the appropriate
synapses. Note that from figure 3(b) similar errors exist for all pulses and therefore
while TMA provides inter-neuron communication, transmission errors exist. The
following section analyses these errors to determine their effect on the dynamics of a
pre-trained SNN.

4 Xilinx System Generator Implementation

In order to investigate pulse transmission errors both conventional interconnect and
the TMA were used to interconnect neuron layers in a SNN topology that has been
pre trained to solve the benchmark XOR problem [10]. Both topologies were

948 F. Tuffy et al.

(a)

(b)

Fig. 3. (a) Timing diagram where the clock signal to the output sampling D-latches, D5-D12, is
delayed by 0.25ms, quarter of the sampling pulse period. (b) bus wire signals caused by random
firing neurons I0 - I4, and O0S1 - O0S4, show the time of arrival of pulses at the appropriate
synapses.

simulated using the XSG toolset from Xilinx [11], as illustrated in figure 4. The SNN
was trained off-line by an Evolutionary Strategy (ES) [10].

Table 1 shows three input neurons where neuron 1 is a biasing neuron [10], which
fires at 0ms, and neurons 2 and 3 provide the conventional 2 inputs for the XOR truth
table. Note that column four is the post-trained firing times of the output neuron
where the simulation used conventional metal interconnect. Columns 5 and 6 are the
firing times of the same output neuron where the simulation used the TMA and
clearly transmission errors are appreciable if the minimum sampling rate is used (col-
umn 4), this is the worst case firing times. However, if the sampling frequency is
increased to 2*FS, then satisfactory agreement between column 6 and column 4 is
obtained. Therefore, for effective pulse transmission without significant error the
sampling frequency must be maintained such that

2S
P

n
F

T
≥ (2)

 A Time Multiplexing Architecture for Inter-neuron Communications 949

Fig. 4. SNN for XOR problem containing TMA in XSG simulator

950 F. Tuffy et al.

Table 1. XOR dataset simulation results with and without TMA. Table includes 3 neuron in-
puts where neuron 1 is a biasing neuron and neurons 2 and 3 provide the conventional 2 inputs
for the XOR truth table. The trained firing times (without TMA) is compared with the actual
firing times for a sampling frequency of FS and 2*FS.

Neuron 1
Firing
Time

Neuron 2
Firing
Time

Neuron 3
Firing
Time

Firing time
without TMA

(ms)

Firing Times
with TMA

FS (ms)

Firing Times
with TMA
2FS (ms)

0 0 0 14 15 15
0 0 6 20 15 21
0 6 0 20 15 21
0 6 6 14 22 15

5 TMA Scalability

To demonstrate the scalability of the TMA consider a network where we have n input
neurons and m output neurons. It should be noted that the number of input neurons n,
afforded by the TMA technique, is a function of the maximum possible operating
frequency of the global clock while the theoretical limit on the scale of an n*m
network is determined by the physical size of the sampling circuits. To estimate n,
consider a 1ms spike and assume a realistic sampling frequency FS of 1GHz [12].
Equation (1) is then used to predict the number of neurons that can be accommodated
on the input layer which equates to approximately one million. Even if we sample at
2*FS to minimise pulse transmission errors, then equation (2) predicts an upper limit
for n of half a million. This is an improvement over what is currently achieveable
[13]. However, it is clear that the scale of a SNN implemented using the proposed
TMA is unlikely to be severely limited by the frequency of the global clock, rather
scaleability will be limited by the real estate occupied by circuitry, and the following
is an estimate of this limit.

Consider again the case where we have n input neurons and the number of output
neurons, m, is allowed to increase. If we assume a fully connected feedforward
network then the number of associated synapses increases according to the product
nm. To calculate the limit on the network size, an estimate of the area consumed by
the associated sampling circuits is required. Given that the sampling circuit is domi-
nated by n D-type latches in the transmitting layer and 2*n*m D-type latches in the
receiving layer, then we can write that the total area, AT, occupied by the sampling
circuitry is given by

()2 2T D DA n nm A nmA= + ≈ (3)

for large m where AD is the area of a D-type latch. It has been reported for a 0.18- m
process technology that a D-type latch can be designed to occupy a silicon area of
approximately 4 m2 [14] and if the area occupied by sampling circuitry is restricted
to 10% of the total chip area (assumed to be 1cm2), then a simple calculation (taking n
= m) predicts that the TMA approach permits over three thousand neurons to be fabri-
cated in each layer using a planar submicron process. For a fully connected

 A Time Multiplexing Architecture for Inter-neuron Communications 951

feed-forward NN this equates to 9 million synapses. While this is a significant im-
provement from what is reported elsewhere [13], it will be further enhanced as tech-
nology improvements continue [15]. Furthermore, given that the interconnect density
will be substantially reduced by the proposed TMA then the real estate given over to
the sampling circuitry is expected to be in excess of the 10% estimate. Hence, the
above estimate is viewed as conservative and it is expected that the proposed TMA
approach will advance the synaptic density even further.

6 Conclusion

This paper has proposed a novel time sampling architecture for the hardware imple-
mentations of SNNs. This work has shown that the optimal sampling frequency de-
pends on the number of neurons in the sampled layer and the duration of the “digital
spikes” they emit. However, with on-chip clock frequencies typically in the GHz
range, the limitations placed on this approach by the sampling frequency are negligi-
ble. The TMA has been verified using the Mentor System Vision Pro software pack-
age and issues such as pulse transmission errors have been investigated using the
XSG platform. It has been shown that these errors can be minimized by ensuring that
the sampling frequency is maintain to at least twice the minimum sampling frequency
(2*FS). The authors wish to note that this paper has demonstrated the potential of the
TMA for inter-neuron communication where the target implemented for this approach
is a mixed signal Application Specific Integrated Circuit (ASIC) layout, given the
asynchronous firing nature of neurons. Moreover, the authors are confident that if this
approach is optimized in terms of minimal area circuitry and timing issues are ad-
dressed for large implementations, then this approach has the potential to implement
well over a million inter-neuron pathways using a very simple and compact sampling
architecture. Future work shall involve a comparative analysis with alternative inter-
connect strategies such as Address Event Decoding (AED).

Acknowledgment

This work was part supported by the European Union under the Irish Government
National Development Plan, as part of a Higher Education Authority North-South
program for collaborative research project – Interwave.

The authors would also like to thank Simon Johnston and Brendan Glackin, at the
Intelligent Systems Engineering Laboratory (ISEL), for assistance in the XSG and
Xilinx FPGA simulations and numerous fruitful discussions.

References

1. Roche, B., McGinnity, T.M., Maguire, L.P., McDaid, L.J.: Signalling Techniques and their
Effect on Neural Network Implementation Sizes”, Information Sciences 132, pages 67-82,
NH Elsevier, 2001

2. Murray, F., and Woodburn, R.: The Prospects for Analogue Neural VLSI, International
Journal of Neural Systems, Vol. 8, No. 5 & 6, pages 559-579, Oct/Dec. 1997

952 F. Tuffy et al.

3. Liu, S.C., Kramer, J., Indiveri, G., Delbruck, T., Burg, T., and Douglas, R.: Orientation-
selective VLSI Spiking Neurons, Neural Networks, Special Issue on Spiking Neurons in
Neuroscience and Technology , Vol. 14, Issues 6-7, pages 629-643, July 2001

4. Diorio, C., Hsu, D., and Figueroa, M.: Adaptive CMOS: from biological inspiration to sys-
tems-on-a-chip, Proceedings of the IEEE, Vol. 90, Issue 3, pages 345 – 357, March 2002

5. Goldberg, D.H., Cauwenberghs, G., Andreou, A. G.: Probabilistic Synaptic Weighting in
a Reconfigurable Network of VLSI Integrate-and-Fire Neurons, Neural Networks, Vol. 14,
no. 6–7, pages 781–793, Sept 2001

6. Maass, W.: Computation with Spiking Neurons: the Handbook of Brain Theory and Neu-
ral Networks, MIT Press, 1998.

7. Noory, B., Groza, V.: A Reconfigurable Approach to Hardware Implementation of Neural
Networks, IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engi-
neering, pages 1861 - 1864 Vol. 3, 4-7 May 2003

8. Chun, L., Shi, B., Chen, L.: Hardware Implementation of an Expandable On-chip Learning
Neural Network with 8-Neuron and 64-Synapse, TENCON '02. Proceedings 2002 IEEE
Region 10 Conference on Computers, Communications, Control and Power Engineering,
Vol. 3, pages 1451 – 1454, 28-31 Oct. 2002

9. Miki, T., Editor: Brainware: Bio-Inspired Architectures and its Hardware Implementation,
World Scientific Publishing Co. Ltd, 2001.

10. Johnston, S.P, Prasad, G., Maguire, L. P., McGinnity, T. M.: Comparative Investigation
into Classical and Spiking Neuron Implementations on FPGAs, 15th International Confer-
ence on Artificial Neural Networks, ICANN 2005, Part 1: pages 269-274, 11-15 Sept.
2005

11. http://www.xilinx.com/ise/optional_prod/system_generator.htm
12. Tu, S.-W., Jou, J.-Y., Chang, Y.-W.: RLC Coupling-Aware Simulation for On-Chip Buses

and their Encoding for Delay Reduction, 2005 ISCAS IEEE International Symposium on
Circuits and Systems, 23-26 May 2005 Page(s):4134 - 4137 Vol. 4

13. Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., Fusi, S.
and Del Giudice, P.: A VLSI Recurrent Network of Integrate and Fire Neurons Connected
by Plastic Synapses with Long Term Memory”, IEEE Trans. on Neural Networks, Vol.14,
No.5, Sept. 2003

14. Yamaoka, M., Osada, K., Ishibashi, K.: 0.4-V Logic-Library-Friendly SRAM Array Using
Rectangular-Diffusion Cell and Delta-Boosted-Array Voltage Scheme, IEEE Journal of
Solid-State Circuits, Volume 39, Issue 6, June 2004 Page(s):934 – 940

15. Naeemi, A., Meindl, J.D.: Monolayer Metallic Nanotube Interconnects: Promising Candi-
dates or Short Local Interconnects, IEEE Electron Device Letters, Volume 26, Issue
8, Aug. 2005 Page(s):544 - 546

Neuronal Cell Death and Synaptic Pruning
Driven by Spike-Timing Dependent Plasticity

Javier Iglesias1,2,3 and Alessandro E.P. Villa1,2,3

1 Information Systems Department, University of Lausanne, Switzerland
Javier.Iglesias@unil.ch
http://inforge.unil.ch/

2 Laboratory of Neuroheuristics, University of Lausanne, Switzerland
http://www.nhrg.org/

3 Inserm U318, Laboratory of Neurobiophysics, University Joseph Fourier,
Grenoble, France

Alessandro.Villa@ujf-grenoble.fr

Abstract. The embryonic nervous system is refined over the course of
development as a result of two main processes: apoptosis (programmed
cell death) and selective axon pruning. We simulated a large scale spik-
ing neural network characterized by an initial apoptotic phase, driven by
an excessive firing rate, followed by the onset of spike-timing-dependent
plastiticity (STDP), driven by spatiotemporal patterns of stimulation.
In the apoptotic phase the cell death affected the inhibitory more than
the excitatory units. The network activity stabilized such that recurrent
preferred firing sequences appeared along the STDP phase, thus sug-
gesting the emergence of cell assemblies from large randomly connected
networks.

1 Introduction

Genetic programs are assumed to drive the primordial pattern of neuronal con-
nectivity through the actions of a limited set of trophic factors and guidance
cues, initially forming excessive branches and synapses, distributed somewhat
diffusely [9]. Then, refinement processes act to correct initial inaccuracies by
pruning inappropriate connections while preserving appropriate ones. The em-
bryonic nervous system is refined over the course of development as a result of the
twin processes of cell death and selective axon pruning. Apoptosis – genetically
programmed cell death – and necrosis – pathologic or accidental cell death due
to irreversible damage – are two rough mechanisms for refining embryonic con-
nections. However, the creation of complex connectivity patterns often requires
the pruning of only a selected subset of the connections initially established by
a neuron. Massive synaptic pruning following over-growth is a general feature
of mammalian brain maturation [13]. Pruning starts near time of birth and is
completed by time of sexual maturation. Quantitative analyses of synaptogene-
sis in the rat [1], the Rhesus monkey [3], and human [6] cortex have suggested a
transient phase of high density of synapses during infancy.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 953–962, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

954 J. Iglesias and A.E.P. Villa

Trigger signals able to induce synaptic pruning could be related to dynamic
functions that depend on the timing of action potentials. Spike-timing-dependent
synaptic plasticity (STDP) is a change in the synaptic strength based on the or-
dering of pre- and post-synaptic spikes. This mechanism has been proposed to
explain the origin of long-term potentiation (LTP), i.e. a mechanism for rein-
forcement of synapses repeatedly activated shortly before the occurrence of a
post-synaptic spike [2]. STDP has also been proposed to explain long-term de-
pression (LTD), which corresponds to the weakening of synapses strength when-
ever the pre-synaptic cell is repeatedly activated shortly after the occurrence
of a post-synaptic spike [11]. The relation between synaptic efficacy and synap-
tic pruning [4] suggests that the weak synapses may be modified and removed
through competitive “learning” rules. Competitive synaptic modification rules
maintain the average neuronal input to a post-synaptic neuron, but provoke se-
lective synaptic pruning in the sense that converging synapses are competing for
control of the timing of post-synaptic action potentials [14].

In this study the synaptic modification rule was applied to the excitatory-
excitatory (exc, exc) and excitatory-inhibitory (exc, inh) connections. This plas-
ticity rule might produce the strengthening of the connections among neurons
that belong to cell assemblies characterized by recurrent patterns of firing. Con-
versely, those connections that are not recurrently activated might decrease in
efficiency and eventually be eliminated. The main goal of our study is to de-
termine whether or not, and under which conditions, such cell assemblies may
emerge from a large neural network receiving background noise and content-
related input organized in both temporal and spatial dimensions.

2 Model

The originality of our study stands on the application of an original bio-inspired
STDP modification rule compatible with hardware implementation [5]. The com-
plete neural network model is described in details elsewhere [7]. A sketch descrip-
tion of the model with specific model parameters related to the current study
follows below.

10,000 integrate-and-fire units (80% excitatory and 20% inhibitory) were laid
down on a 100×100 2D lattice according to a space-filling quasi-random Sobol
distribution. Sparse connections between the two populations of units were ran-
domly generated according to a two-dimensional Gaussian density function such
that excitatory projections were dense in a local neighborhood, but probabil-
ity long-range excitatory projections were allowed. Edge effects induced by the
borders were limited by folding the network as a torus.

The state of the unit (spiking/not spiking) was a function of the membrane
potential and a threshold. The states of all units were updated synchronously
and the simulation was performed at discrete time steps corresponding to 1 ms.
After spiking, the membrane potential was reset, and the unit entered an ab-
solute refractory period lasting 3 and 2 time steps for excitatory and inhibitory
units, respectively. For the simulation runs presented here each unit received a

Neuronal Cell Death and Synaptic Pruning Driven by STDP 955

background activity following an independent Poisson process and the “sponta-
neous” mean firing rate of the units was 5 spikes/s.

It is assumed a priori that modifiable synapses are characterized by discrete
activation levels that could be interpreted as a combination of two factors: the
number of synaptic boutons between the pre- and post-synaptic units and the
changes in synaptic conductance. In the current study we attributed a fixed
activation level (meaning no synaptic modification) Aji(t) = 1, to (inh, exc) and
(inh, inh) synapses while activation levels were allowed to take one of Aji(t) =
{0, 1, 2, 4} for (exc, exc) and (exc, inh), Aji(t) = 0 meaning that the projection
was permanently pruned out. For Aji(t) = 1, the post-synaptic potentials were
0.84 mV and -0.8 mV for excitatory and inhibitory units, respectively.

The death of units by means of apoptosis is introduced in here, which is a
major difference with preivous models [7]. A dead unit is characterized by the
absence of any spiking activity. We define two mechanisms inducing cell death:
the first is provoked by an excessive firing rate (apoptosis) and the second by
the loss of excitatory inputs. For each unit at each time step, the mean firing
rate computed over a window of 50 ms preceding the evaluation was compared
to a threshold value of 245 and 250 spikes/s for excitatory and inhibitory units,
respectively. If the rate exceeded the threshold, then the unit had a probability
of entering apoptosis determined by the function

Papoptosis(t) =
0.5 · t2 − 4.5 · 10−6 · t3

44 · (2.5 · 106 + 6 · 10−3 · t2) . (1)

with Papoptosis(t = 100) = 4.5 · 10−5, Papoptosis(t = 700) = 2.2 · 10−3, and
Papoptosis(t = 800) = 2.9 · 10−3. The apoptosis could be induced according to
this mechanism during an initial phase lasting 700 or 800 simulation time steps.
After this intial phase, the timing of the pre- and post-synaptic activity started
driving the synaptic plasticity through the STDP rule. Due to this plasticity, the
projections from and to “dead” units underwent a slow activation level decay
finally leading to their pruning when Aji(t) = 0. “Dead” projections were thus
pruned along with others by the action of STDP and some units were found
without any excitatory input left. The loss of excitatory inputs provoked the cell
death and these units stopped firing (even in presence of background activity)
immediately after the pruning of the last excitatory input synapse.

3 Simulations

Each simulation run lasted 105 discrete time steps (1 ms per time step), corre-
sponding to a duration of about 2 minutes. After a stabilization period of 1000 ms
without any external input, a 100 ms long stimulus was presented every 2000 ms.
Overall this corresponds to 50 presentations of the stimulus along one simula-
tion run. Before the simulation started, two sets of 400 excitatory units were
randomly selected from the 8,000 excitatory units of the network, labeled sets A
and B. Each set was divided into 10 groups of 40 units, A = {A1, A2, . . . , A10}
and B = {B1, B2, . . . , B10}. At each time step during a stimulus presentation,

956 J. Iglesias and A.E.P. Villa

Fig. 1. Example of one AB stimulus presentation

the 40 units of one group received a large excitatory input on their membrane,
leading to their synchronous firing. The 10 groups of a set were stimulated follow-
ing an ordered sequence, thus defining a reproducible spatiotemporal stimulus
composed by the repetition of sequences lasting 10 ms each (see Fig. 1). A ran-
dom, equiprobable mix of the two stimuli composed by either 5× sequence A
followed by 5× sequence B (AB) or 5× sequence B followed by 5× sequence A
(BA) was presented.

At time t=100 s, the units, characterized by more than four active excitatory
input projections that did not belong to the sets of stimulated units A or B, were
selected. For each of these selected units, the spikes produced by the independent
Poisson background process were discarded from their spike trains to extract the
so-called “effective spike trains”. Thus, the effective spike trains correspond to
the true network activity. The first 1000 ms of activity were discarded because
this interval corresponds to the apoptosis phase. These effective spike trains were
searched for the occurrence of spatiotemporal firing patterns [16], as described
in the following section.

3.1 Time Series Analysis

Spatio-temporal firing patterns (often referred to as “preferred firing sequences”)
are defined as sequences of intervals with high temporal precision (of the order
of few ms) between at least 3 spikes (of the same or different units) that recur
at levels above those expected by chance [17]. The pattern detection algorithm
begins with finding all single or multineuron sequences of intervals that repeat
two or more times within a record. Secondly, the algorithm computes how many
of such sequences of intervals can be expected by chance and provides confidence
limits for this estimation. The “pattern grouping algorithm”1 [16] performs clus-
terization into one group of sequences of intervals with slight difference in spike
timing. Figure 2 illustrates the outline of this method. For the present study,
the pattern grouping algorithm was used to find patterns of at least three spikes
(triplets), with a minimal significance level of 10%, repeating at least 7 times in
the interval [1-100] s, provided the entire pattern lasted not more than 800 ms
and was repeated with an accuracy of less than ±5 ms.
1 http://OpenAdap.net/

Neuronal Cell Death and Synaptic Pruning Driven by STDP 957

Fig. 2. Outline of the general procedure followed by pattern detection algorithms.
(a): Analysis of a set of simultaneously recorded spike trains. Three cells, labeled A,
B, and C, participate to a patterned activity. Three occurrences of a precise pattern
are detected. Each occurrence of the pattern has been labeled by a specific marker in
order to help the reader to identify the corresponding spikes. (b): Estimation of the
statistical significance of the detected pattern. (c): Display of pattern occurrences as
a raster plot aligned on the pattern start.

4 Results

4.1 Firing Rate-Induced Apoptosis

Figure 3 shows the evolution of the number of excitatory and inhibitory units
during the first simulated second. For the first 800 time steps, units with mean
firing rates exceeding the threshold entered apoptosis with the probability ex-
pressed by Papoptosis(t). It is possible to linearly fit the cell death dynamics with
the probability function suggesting that the inhibitory units enter the apoptosis
process about 70 ms before the excitatory units. After the end of this initial
phase, STDP-driven synaptic pruning could modify the synaptic weights, thus
inducing cell death due to the loss of excitatory inputs at a longer time-scale
that is not depicted in Figure 3.

The initial apoptosis phase prevented the network from entering overactivity
due to saturation by inducing the death of those units that tended to have an
exceeding activity since the early steps of the simulation. These units are known
to destabilize the network and ignite the saturation. The addition of this feature

958 J. Iglesias and A.E.P. Villa

Fig. 3. Ratio of surviving units as a function of time with respect to initial condi-
tions: 8000 excitatory units (plain line) and 2000 inhibitory units (dotted line). In this
simulation, firing rate-induced apoptosis was stopped after 800 time steps. Thin lines
correspond to the probability function Papoptosis(t) with lags.

to the model greatly improved the stability of the network while maintaning its
ability to produce spatiotemporal firing patterns.

4.2 Spatiotemporal Firing Patterns

In two different simulations, firing rate-induced apoptosis was stopped after 700
or 800 time steps. The first condition lead to a larger number of surviving units
at t=100 s with lower mean firing rates than in the second condition. Spatiotem-
poral firing patterns were searched for in both conditions. Two patterns involving
a single excitatory unit are described in more details in Figure 4 and Figure 5.

The pattern <79,79,79; 453±3.5, 542±2.5> was composed by spikes produced
by a single unit labeled here #79 (Fig. 4a). This notation means that the pattern
starts with a spike of unit #79, followed 453±3.5 ms by a second spike of the
same unit, and followed by a third spike 542±2.5 ms after the first. Between t=1
and t=100 seconds, 51 repetitions of the pattern were observed. The statistical
significance of this pattern was 7.5 ·10−4. No correlation could be found between
the timing of the spatiotemporal pattern and the stimulation onset (Fig. 4b).
Figure 4c shows that the occurrences of the pattern onset along the simulation.
The pattern occurred 23 times between 1 < t < 25 seconds, 13 times between
25 < t < 50 seconds, and 15 times between 50 < t < 100 seconds. This might
suggest that the network dynamics giving rise to the pattern was slowly disrupted
by the continuous STDP-driven pruning.

The pattern <13,13,13; 234±3.5, 466±4.5> was composed by spikes produced
by a single unit labeled here #13 (Fig. 5a). This notation means that the pattern

Neuronal Cell Death and Synaptic Pruning Driven by STDP 959

Fig. 4. Spatiotemporal pattern <79,79,79; 453±3.5, 542±2.5>. (a): Raster plot show-
ing the 51 repetitions of the pattern aligned on the pattern start; (b): Raster plot
showing the activity of unit #79 aligned on the stimulus onset: each start event of
a pattern occurrence is marked by a circle; (c): Pattern occurrence timing plot: each
vertical tick represents the start event of a pattern occurrence.

starts with a spike of unit #13, followed 234±3.5 ms by a second spike of the
same unit, and followed by a third spike 466±4.5 ms after the first. Between t=1
and t=100 seconds, 52 repetitions of the pattern were observed. The statistical
significance of this pattern was 3.4 ·10−3. No correlation could be found between
the timing of the spatiotemporal pattern and the stimulation onset (Fig. 5b).
Figure 5c shows that the pattern occurred 7 times between 1 < t < 25 seconds,
27 times between 25 < t < 50 seconds, 8 times between 50 < t < 75 seconds, and
10 times between 75 < t < 100 seconds. This might suggest that the changes
in the network dynamics induced by the continuous STDP-driven pruning lead
to a transient state between 25 < t < 50 seconds when the appearance of this
pattern is favored.

5 Discussion

We simulated a large scale spiking neural network, with the time resolution of
1 ms, characterized by a brief initial apoptotic phase that extended our previous
model [7]. During this phase the units that exceeded a certain threshold of firing
had an increasing probability to die with the passing of time until 700 (or 800,
depending on the simulation runs) time units. The inhibitory units entered the
apoptosis process about 70 ms before the excitatory units. The death dynam-
ics of both populations followed the probabilty function to die with only minor
deviations. After the stop of the apoptosis, spike-timing-dependent plastiticity

960 J. Iglesias and A.E.P. Villa

Fig. 5. Spatiotemporal pattern <13,13,13; 234±3.5, 466±4.5>. (a): Raster plot show-
ing the 52 repetitions of the pattern aligned on the pattern start; (b): Raster plot
showing the activity of unit #13 aligned on the stimulus onset: each start event of
a pattern occurrence is marked by a circle; (c): Pattern occurrence timing plot: each
vertical tick represents the start event of a pattern occurrence.

(STDP) and synaptic pruning were made active. Selected sets of units were ac-
tivated by regular repetitions of a spatiotemporal pattern of stimulation. During
the STDP phase, the cell death could occur only if a unit became deafferented,
i.e. it looses all its excitatory afferences because of synaptic pruning.

We recorded the spike trains of all excitatory units that were not directly
stimulated and that were surviving at the arbitrary end of the simulation set at
t = 100 seconds. In these spike trains we searched for preferred firing sequences
that occurred beyond random expectation [16] and we found evidence of their ap-
pearance. We suggest that the detection of such preferred firing sequences might
be associated with the emergence of cell assemblies from the initially locally con-
nected random network [8]. The addition of cell death to the model improved
the stability of the network over our previous studies while maintaining its abil-
ity to let emerge cell assemblies associated to preferred firing sequences. The
self-organization of spiking neurons into cell assemblies was recently reported in
other studies of large simulated networks connected by STDP-driven projections
[10]. These authors emphasized the emergence of spontaneously self-organized
neuronal groups, even in absence of correlated input, associated with the spa-
tiotemporal structure of firing patterns, if axonal conduction delays and STDP
were incorporated in the model.

Our simulation results offer also the ground of testing several hypothesis with
respect to neuroanatomical experimental results. Indeed, there is an increasing
interest in investigating the cortical circuits and their synaptic connectivity with

Neuronal Cell Death and Synaptic Pruning Driven by STDP 961

a statistical approach related to the graph theory. Results obtained from layer
5 neurons in the visual cortex of developping rats [15] indicate that many as-
pects of the connectivity patterns differ from random networks. In particular,
the distribution of synaptic connection strength in those cortical circuits show an
overrepresentation of strong synaptic connections correlated with the overrepre-
sentation of some connectivity patterns. The authors [15] suggest that the local
cortical network structure could be viewed as a skeleton of stronger connections
in a sea of weaker ones.

The spike-timing-dependent plasticity rule implemented in our simulation has
already been successfully implemented and tested in the poetic tissue [5]. This
electronic circuit is a flexible hardware substrate showing the basic features that
permit living beings to show evolutionary, developmental or learning capabilities
[12]. In future work, we intend to use the poetic tissue in the investigation
of the role of apoptosis and synaptic pruning in the unsupervised shaping of
large simulated neural networks. The genomic features of the poetic tissue offer
the possibility to implement the programmed cell death in simulations of large
spiking neural networks. It is expected that the computational power of the
dedicated plateform will ease the simulation of larger networks to explore the
impact of their size on the dynamics.

Acknowledgments. This work was partially funded by the European Commu-
nity Future and Emerging Technologies program, grant #IST-2000-28027 (PO-
ETIC), and Swiss grant OFES #00.0529-2 by the Swiss government.

References

1. Aghajanian, G. K. and Bloom, F. E.: The formation of synaptic junctions in
developing rat brain: A quantitative electron microscopic study. Brain Research
6:4 (1967) 716–27

2. Bi, G. Q. and Poo, M. M.: Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J
Neurosci. 18 (1998) 10464-72

3. Bourgeois, J. and Rakic, P.: Changes of synaptic density in the primary visual
cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience
13 (1993) 2801–20

4. Chechik, G., Meilijson, I. and Ruppin, E.: Neuronal Regulation: A Mechanism
for Synaptic Pruning During Brain Maturation. Neural Computation 11 (1999)
2061–80

5. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Rosenberg, J.,
Moreno, J.-M. and Villa, A.E.P.: Spiking Neural Networks for Reconfigurable
POEtic Tissue. Lecture Notes in Computer Science 2606 (2003) 165–74

6. Huttenlocher, P.R.: Synaptic density in human frontal cortex – Developmental
changes and effects of aging. Brain Research 163:2 (1979) 195–205

7. Iglesias, J., Eriksson, J., Grize, F., T., Marco and Villa, A.E.P.: Dynamics of
Pruning in Simulated Large-Scale Spiking Neural Networks. Biosystems 79 (2005)
11–20

962 J. Iglesias and A.E.P. Villa

8. Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M. and Villa, A.E.P.: Stimulus-
Driven Unsupervised Pruning in Large Neural Networks. Lecture Notes in Com-
puter Science 3704 (2005) 59–68

9. Innocenti, G. M.: Exuberant development of connections, and its possible permis-
sive role in cortical evolution. Trends in Neurosciences 18:9 (1995) 397–402

10. Izhikevich, E. M., Gally, J. A. and Edelman, G. M.: Spike-timing Dynamics of
Neuronal Groups. Cerebral Cortex 14 (2004) 933–44

11. Karmarkar, U. R. and Buonomano, D. V.: A model of spike-timing dependent
plasticity: one or two coincidence detectors? J Neurophysiol. 88 (2002) 507–13

12. Moreno, J. M., Eriksson, J. L., Iglesias, J. and Villa A. E. P.: Implementation
of Biologically Plausible Spiking Neural Networks Models on the POEtic Tissue.
Lecture Notes in Computer Science 3637 (2005) 188–97

13. Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. and Goldman-Rakic, P. S.:
Concurrent overproduction of synapses in diverse regions of the primate cerebral
cortex. Science 232 (1986) 232–5

14. Song, S. and Abbott, L.F.: Cortical Development and Remapping through Spike
Timing-Dependent Plasticity. Neuron 32 (2001) 339–50

15. Song, S., Sjöström, P.J., Reigl, M., Nelson, S. and Chklovskii, D.B.: Highly Non-
random Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biology
3:3 (2005) 0507–19

16. Tetko, I. V. and Villa, A. E.: A pattern grouping algorithm for analysis of spa-
tiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns.
Journal of Neuroscience Methods 105 (2001) 1–14

17. Villa, A. E. P.: Empirical Evidence about Temporal Structure in Multi-unit Record-
ings. Time and the Brain, Chapter 1, Editor: R. Miller, Harwood Academic Pub-
lishers (2000) 1–51

Effects of Analog-VLSI Hardware on the
Performance of the LMS Algorithm

Gonzalo Carvajal1, Miguel Figueroa1, and Seth Bridges2

1 Department of Electrical Engineering, Universidad de Concepción, Chile
2 Computer Science and Engineering, University of Washington, USA

gcarvaja@udec.cl, mfigueroa@die.udec.cl, seth@cs.washington.edu

Abstract. Device mismatch, charge leakage and nonlinear transfer func-
tions limit the resolution of analog-VLSI arithmetic circuits and degrade
the performance of neural networks and adaptive filters built with this
technology. We present an analysis of the impact of these issues on the
convergence time and residual error of a linear perceptron using the
Least-Mean-Square (LMS) algorithm. We also identify design tradeoffs
and derive guidelines to optimize system performance while minimizing
circuit die area and power dissipation.

1 Introduction

Modern embedded and portable electronic systems use adaptive signal process-
ing techniques to optimize their performance in the presence of noise, interfer-
ence, and unknown signal statistics. Moreover, these systems are also severely
constrained in size and power dissipation, making custom-VLSI neural network
implementations of these techniques attractive.

Analog VLSI circuits can compute using orders of magnitude less power and
die area than their digital counterparts, thus potentially enabling large-scale,
portable adaptive systems. Unfortunately, device mismatch, charge leakage, and
nonlinear behavior limit the resolution of analog arithmetic circuits so that the
learning performance of even small-scale analog-VLSI neural networks rarely
exceeds 5-6 bits. Traditional circuit-design techniques can reduce these effects,
but they increase power and area and render analog solutions less attractive.

We claim that it is possible to build large-scale neural networks in analog
VLSI with good learning performance at low power and area by combining on-
chip circuit calibration, design techniques, and the natural adaptation of the
algorithm to compensate for the limitations of analog hardware. In this paper,
we present an analysis of the performance of the well-known Least-Mean-Square
(LMS) algorithm under the constraints of analog VLSI arithmetic. Unlike pre-
vious work that uses mainly system simulations [2, 5, 1], we base our analysis
on the mathematical properties of the algorithm, obtaining more general results
that allow us to derive design guidelines and techniques to improve performance
at minimal cost. Using these techniques, we have built a 64-input perceptron
that adapts with 9-10 bits of accuracy, uses 0.25mm2 of die area and dissipates
200µW in a 0.35µm CMOS process [3].

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 963–973, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

964 G. Carvajal, M. Figueroa, and S. Bridges

2 Convergence Properties of the LMS Algorithm

An adaptive linear combiner [8] computes the function yk = xT
k wk, where yk

is the output, and xk = [x1k · · ·xnk]T and wk = [w1k · · ·wnk]T are the n-
dimensional input and weight vectors at time k. The weights are chosen to
minimize a quadratic function of the error εk = dk − yk, where dk is an ex-
ternal reference. Both the inputs and the reference are taken from stationary
zero-mean random distributions. The Mean Square Error (MSE) is defined as:

ξ(w) = E[ε2k] = E[d2
k] − 2pTw + wTRw (1)

where p = E[dkxk] represents the correlation between the reference and the
input, and R = E[xkxT

k] is the input correlation matrix. The MSE defines a
quadratic surface with a single global minimum at the point where its gradient
is equal to zero. The Wiener solution defines the optimal value of the weights as
w∗ = R−1p, which yields a minimal MSE of ξmin = E[d2

k] − pTw∗.
The LMS algorithm uses gradient descent to iteratively compute an approx-

imation of w∗. The algorithm uses an instantaneous estimation of the MSE
gradient ∇k as ∇̂k = 2εkwk = ∇k −Ψk, where Ψk is the zero-mean estimation
noise. An each iteration, the LMS algorithm updates the weights as:

wk+1 = wk − µ∇̂k = wk + 2µεkxk (2)

where the learning rate µ is a parameter which controls stability and convergence
time. Widrow shows [8] that E[∇̂k] = ∇, therefore LMS converges to the Wiener
solution w∗ in its mean value. However, the gradient estimation noise results
in an oscillation around the solution which depends on the learning rate and
the statistics of the input. For a small µ, the MSE at convergence is ξ∞ =
ξmin + E[v∞RvT

∞], where vk = wk − w∗. The misadjustment is defined as:

M =
excess MSE

ξmin
=

ξ∞ − ξmin

ξmin
≈ µ

n∑
p=1

λp = µ tr(R) (3)

where λp are the eigenvalues of R. Eqn. (3) shows that we can control the mis-
adjustment with the learning rate. The MSE decreases as a sum of exponentials,
where the time constant of each mode p is given by τp = 1/(4µλp). Therefore,
decreasing the learning rate also increases the convergence time of the algorithm.

Hardware implementations of LMS requires multiplication and addition to
compute the output (forward path) and weight updates (feedback path), and
memory cells to store the weights. Addition is performed by summing currents
on common wires and is not subject to device mismatch. The following sections
focus on the effects of nonlinear circuits and mismatch on the multipliers, and of
charge leakage and limited resolution on the memory cells and weight updates.

3 Effect of Analog Multipliers

We use the following general expression to model the analog multipliers [2]:

m(i1, i2) = [a1 f1(θ1, i1) + γ1] × [a2 f2(θ2, i2) + γ2] (4)

Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm 965

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

iterations

M
S

E
 (

lo
g

 s
ca

le
)

σ
A
=0

σ
A
=0.2

σ
A
=0.3

(a) LMS learning curves

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

σ
A

S
lo

w
d

o
w

n

Measured
Estimated 2σ
Estimated 3σ

(b) Algorithm slowdown

Fig. 1. Effect of gain mismatch on LMS performance. (a) Mismatch in multiplier gains
do not affect the MSE at convergence, but do increase the convergence time. (b) As-
suming that the minimal gain lies within two standard deviations below the mean
provides a good bound for convergence time.

where i1 and i2 are the inputs to the multiplier, f1(·) and f2(·) are saturating,
monotonic, and odd nonlinear functions, and ap, γp and θp control the gain, off-
set, and linearity of the multiplier. When fp(θ, x) = tanh(θx)

tanh(θ) , Eqn. (4) models the
normalized transfer function of a Gilbert multiplier [6] operating in subthreshold
regime. Device mismatch results in variations in the values of ap, γp and θp for
different multipliers within the same chip. The rest of this section independently
analyzes the impact of each factor on the performance of the algorithm.

3.1 Gain Mismatch

Feedback Path: We first analyze the effect of gain mismatch between ideal
multipliers rewriting Eqn. (4) as mp(i1, i2) = ap i1i2, where ap is the gain as-
sociated with multiplier p. Mismatched gains in the feedback path modify the
gradient estimation implemented by Eqn. (2) to:

wk+1 = wk + 2µAεkxk = wk + 2U′εkxk (5)

where A = diag([a1 · · · an]) is the diagonal matrix that represents the multiplier
gains and U′ = µA represents a synapse-dependent learning rate. Gain mismatch
does not modify εk, therefore ξ′min = ξmin. The new misadjustment is:

M ′ = µ

n∑
p=1

λpap = µ tr(AR) (6)

We assume that the elements of A have a Gaussian distribution of unitary
mean and variance σ2

A, and are uncorrelated with the inputs [7]. In this case,
tr(AR) ≈ tr(R) for a sufficiently large number of inputs, and thus ξ′∞ ≈ ξ∞.

Fig. 1 shows results from a simulated 16-input linear perceptron with mis-
matched gains in the feedback path. Fig. 1(a) shows the evolution of the MSE
for different σA. The graph shows that the gain variation does not affect the

966 G. Carvajal, M. Figueroa, and S. Bridges

MSE after convergence. However, the figure also shows that the convergence
time of the algorithm increases as a function of the gain variance. Indeed, the
time constant of each new mode p is given by τ ′

p = 1/(4µ′
pλp). If we assume that

the MSE follows the slowest mode, the slowdown in convergence time is:

τ ′
conv

τconv
=

maxp[τ ′
p]

maxp[τp]
=

4 minp[µλp]
4 minp[apµλp]

≤ 4µλmin

4µaminλmin
=

1
amin

(7)

The value of amin is unknown at design time, but we can derive a bound based on
the expected distribution of the gains, which in turn can be obtained from pre-
vious experimental data or from statistical models of device mismatch [7]. In a
Gaussian distribution, 95.4% and 99.7% of the gains will lie within 2σA and 3σA
from the mean, respectively. Fig. 1(b) depicts the simulated convergence time,
and the bounds estimated using 2σA and 3σA to estimate amin. In practice, it
is sufficient to assume 2σA, because the bound established in Eqn. (7) conserv-
atively assumes that the convergence time tightly follows the slowest mode, and
that the smallest gain is in turn associated with the smallest eigenvalue of R.

Notice that, if the designer has individual control over the learning rate of
each synapse after fabrication, then setting µp = µ/ap normalizes the effective
learning rate and achieves the same convergence time as the original network.

Forward Path: Gain mismatch in the forward-path multipliers modifies the
error as ε′k = dk − xT

k Aw, leading to the following expression for the MSE:

ξ′ = E[ε′2k] = E[d2
k] − 2ApTw + wTARAw (8)

and the learning rule:

wk+1 = wk + 2µ(dk − xT
k Awk)xk = wk + 2U′(dk − x′T

k wk)x′
k (9)

where U′ = µA−1 and x′
k = Axk, Eqn. (9) has the same form as the original

LMS learning rule, but with nonuniform learning rates and a modified input
with correlation matrix R′ = ARAT. The learning rule of Eqn. (9) converges
in its mean to w′∗ = A−1w∗, and thus from Eqn. (8) ξ′min = ξmin.

In general, it is difficult to determine the misadjustment from the gains. If we
assume that the inputs are decorrelated (R is diagonal), then the eigenvalues of
R′ are λ′

p = a2
pλp, where λp are the eigenvalues of R. The misadjustment is:

M ′ =
n∑

p=1

µ

ap
λ′

p = µ

n∑
p=1

a2
pλp

ap
= µ

n∑
p=1

apλp = µ tr(AR) (10)

which is equivalent to Eqn. (6) for gain mismatch in the learning rules. Therefore,
mismatched gains in the forward path do not affect the MSE, but increase the
learning time as depicted in Eqn. (7). Multiplier gains also modify the Wiener
solution to w′∗ = A−1w∗, so they may also change the effect of initial conditions
on convergence time, although modeling this effect is difficult without knowledge
of the original solution [4].

Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm 967

3.2 Multiplier Offsets

We rewrite Eqn. (4) as mp(i1, i2) = (i1+γ1p)(i2+γ2p), where γ1p and γ2p are the
offsets associated with the inputs to multiplier p. The remainder of this section
analyzes the effect of each offset separately.

Forward Path: Let γw = [γw1 · · · γwn] be the vector of weight offsets in the
multipliers of the forward path. The instantaneous error is ε′k = dk −xT

k w′
k and

the MSE is ξ′ = E[d2
k] − 2pTw′ + w′TRw′T, where w′ = w + γw. A simple

analysis shows that the LMS algorithm converges to the new Wiener solution
w′∗ = w∗ − γw, which compensates for the weight offsets and achieves the
same residual MSE as the original network. The eigenvalues of the input are
not modified, thus the weight variance is the same and M ′ = M . The weight
offsets modify the solution vector w∗, so they also affect convergence time [4].
However, because the distribution of the weight offsets is independent of w∗, it
is not possible to relate the convergence time to the offset variance.

Let now γx = [γx1 · · · γxn] be the input offsets in the multipliers of the forward
path. The error is ε′k = dk − x′T

k wk where x′
k = xk + γx, and ξ′ = ξ + γxγT

x .
Because the learning rule operates with a zero-mean x, E[∇̂′

k] = ∇ and the
mean value of the weight converges to the original solution w∗. The minimal
MSE and the misadjustment quadratically increase with the offset:

ξ′min = ξmin + w∗TγxγT
xw∗ (11)

M ′ = M + µ
n∑

p=1

γ2
xp (12)

The last term in the Eqn. (11) introduces a large increase in the error which
is not controllable with the learning rate. However, we can add bias synapse w0
with offset γ0 and a constant input c to cancel the accumulated offset at the
output. The synapse converges to:

w0 =
−γx

Tw
c + γ0

(13)

which compensates for the accumulated effect of the input offsets, allowing the
weights to converge to the Wiener solution and ξ′min = ξmin.

The bias synapse also affects the weight variance. It can be shown that if
xk has zero mean, then tr(R′) = tr(R) + c2. Therefore, from Eqn. (12) the
misadjustment is M ′ = M + µ(

∑n
p=0 γ2

xp + c2).
Fig. 2(a) shows simulation results for Mγ (which we define as the misadjust-

ment with respect to the original ξmin) as a function of the standard deviation
of the offsets in the forward-path multipliers. As the figure shows, offsets in the
weights do not affect the MSE. Input offsets quadratically increase the MSE,
but the addition of a bias synapse successfully compensates for this effect even
without the reducing learning rate.

968 G. Carvajal, M. Figueroa, and S. Bridges

0 0.05 0.1 0.15 0.2
10

−1

10
0

10
1

10
2

σ
γ

M
γ (

lo
g

 s
ca

le
)

w
x
x (bias synapse)

(a) Mγ vs. offset in forward path

0 0.05 0.1 0.15 0.2

10
0

σ
γ

M
γ (

lo
g

 s
ca

le
)

x
ε
ε, U’
ε, µ’

(b) Mγ vs. offset in learning rule

Fig. 2. Misadjustment versus random multiplier offsets taken from a Gaussian distrib-
ution variance σ2

γ . (a) Forward path: Weight offsets have no effect on the MSE. Input
offsets quadratically increase the MSE, but with a bias synapse the effect is almost
negligible. (b) Feedback path: input offsets have little effect on the MSE, while error
offsets quadratically increase its value. Using learning-rate correction fully compensates
for this effect.

Feedback Path: Adding an offset vector γx to xk in Eqn. (2) yields a new
estimated gradient ∇̂′

k = 2εk(xk + γx), which converges to the original Wiener
solution w∗. The covariance of the new gradient estimation noise is cov[Ψ′

k] =
4ξmin(R+γxγT

x) [8]. For small µ and assuming uncorrelated inputs, the gradient
noise propagates directly into vk, leading to a new misadjustment:

M ′ = M + µ

n∑
p=1

γ2
xp (14)

Eqn. (14) shows that the MSE increases quadratically with the multiplier
offsets but this effect is small and can be compensated with the learning rate.

Adding offsets to the error signal εk at each synapse computing its weight
update results in a new estimated gradient ∇̂′

k = −2(εkI + Γε)xk, where Γε =
diag([γε1 · · · γεn]) is the diagonal matrix of error offsets. Assuming that x has
zero mean, it is easy to show that w′∗ = w∗, and therefore ξ′min = ξmin.

However, the new estimated gradient quadratically increases the covariance of
vk to cov[v′

k] = cov[vk] + µΓ2
ε , where for simplicity we assume that the inputs

are uncorrelated. The misadjustment is:

M ′ = M +
µ
∑n

p=1 λpγ
2
εp

ξmin
(15)

Eqn. (15) shows that M ′ depends quadratically of γεp and linearly of ξ−1
min, so

the effect of offsets is much larger than the previous case. We can define a new
learning rate that compensates for the misadjustment:

U′ = µξmin(ξminI + Γ2
ε)

−1 (16)

Note that Eqn. (16) defines a different learning rate for each synapse and re-
quires knowledge of the offset values. If the circuit does not support individually

Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm 969

programmable learning rates, the following global rate assumes that most offsets
lie within one standard deviation from the mean and yields good results:

µ′ =
µξmin

(ξmin + σ2
γε)

(17)

The simulation results in Fig. 2(b) shows the effects of multiplier offsets in
the feedback path. As expected, the effect of input offsets is almost negligible,
even without modifying the learning rate. Error offsets have a dramatic impact
with the original learning rate. Using Eqns. (16) and (17) to set the learning
rate fully compensates for the effect on the MSE.

3.3 Nonlinear Multipliers

Eqn. (4) models an analog multiplier where the parameter θp, which varies among
multipliers because of device mismatch, modulates the linearity of an odd, satu-
rating, monotonic nonlinear function fp(·). For example, the normalized transfer
function of a Gilbert multiplier [6] is fp(θp, xp) = tanh(θpxp)/ tanh(θp).

Forward Path: Applying a nonlinear function to the weights in the forward
path results in a new error signal ε′k = dk − xT

k f(wk), which yields the MSE:

ξ′k = E[d2
k] − 2pTf(wk) + f(wT

k)Rf(wk) (18)

The LMS algorithm converges to the new Wiener solution w′∗ = f−1(w∗), and
the minimal MSE is ξ′min = ξmin.

Because the learning rate is small, it is possible to estimate the gradient by
linearizing around the Wiener solution:

∇̂′
=

[
dk − xT

k

(
f (w′∗) +

∂f

∂w

∣∣∣
w=w′∗

(wk − w′∗)
)]

xk (19)

Eqn. (19) shows that the estimation noise depends on the values of w′∗ and
[∂f/∂w](w′∗). The worst case occurs when the target weights are at the point
where the slope of fp(·) is maximal, which corresponds to w′∗ = 0 for common
functions such as tanh(·). In that case, the estimated gradient is

∇̂′
= (dk − xT

k Aθwk)xk (20)

where Aθ = diag(∂f/∂w|w=0) is a diagonal matrix representing the slope of
f(·) at the solution. Eqn. (20) reduces the analysis of nonlinear weights to a
problem of mismatched multiplier gains. For a normalized Gilbert multiplier,
[tanh(θx)/ tanh(θ)] > 1, which increases the MSE. We can achieve ξ′∞ = ξ∞ by
normalizing the learning rate to the mean gain:

µ′ =
µ

mean[Aθ]
(21)

970 G. Carvajal, M. Figueroa, and S. Bridges

If the nonlinearity affects the inputs in the forward path, the new error signal
is ε′k = dk − f(xT

k) wk, yielding the new MSE:

ξ′ = E[ε′2k] = E[d2
k] − 2p′Tw + wTR′w (22)

where p′ = E[dkf(xk)] and R′ = E[f(xk)f(xT
k)]. The MSE at the Wiener solution

w′∗ = R′−1p′ is:

ξ′min = E[d2
k] − E[dkf(xT

k)]w′∗ (23)

which is always greater than ξmin when dk is generated by a linear function.
Furthermore, LMS converges to w∞ = (E[xkf(xT

k)])−1E[dkxT
k], which differs

from w′∗ as a function of the nonlinearity of f .

Feedback Path: Applying a nonlinear function f to the inputs in the feedback
path yields the LMS rule wk+1 = wk + 2µεkx′

k with x′
k = f(xk), which still

converges to the Wiener solution in its mean value. Therefore, ξ′min = ξmin, but
the nonlinearity of f affects the variance of wk and increases the residual MSE.
The misadjustment is given by the modified correlation matrix:

M ′ = µ tr(E[f(xk)f(xk)T]) (24)

For nonlinear functions such as [tanh(θx)/ tanh(θ)], f(x) > x and larger values
of θ increase the difference between M ′ and M . In the limit, tanh(θx) saturates
and behaves like sign(x), and we obtain an upper bound for the misadjustment
as M ′ ≤ µn. Note that this also increases the robustness of the algorithm to
outliers.

Applying a nonlinear function to the error at each synapse modifies the learn-
ing rule to wk+1 = wk +2µE′

kxk, with E′
k = diag[f1(εk) · · · fn(εk)]. Because the

error converges to a small value, we can linearize around this point and rewrite
the rule as:

wk+1 = wk + 2µ(Aθεk)xk (25)

where Aθ = diag[∂f1/∂ε|ε=0 · · · ∂fn/∂ε|ε=0]. The expression above is equivalent
to Eqn. (5) for mismatched gains in the feedback path, therefore the misad-
justment increases quadratically with the variance of θp and can be controlled
with the learning rate using Eqn. (21). Also, for saturating functions such as
[tanh(θx)/ tanh(θ)], the nonlinearity also limits the effects of outliers in the per-
formance of the algorithm.

Fig. 3(a) shows the effect of nonlinear multipliers on the MSE. As predicted by
Eqn. (22), nonlinear inputs in the forward path increase the MSE independently
of the learning rate. The effect on the forward-path weights and the feedback-
path inputs and error is much lower and can be further controlled by reducing
the learning rate. Fig. 3(b) shows the effect that this rate reduction has on the
convergence time, which is similar to the case of mismatched multiplier gains.

Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm 971

0 0.5 1 1.5 2 2.5 3

10
0

10
2

var[θ]

M
θ (

lo
g

 s
ca

le
)

x−forward
w−forward
x−feedback
ε−feedback

(a) Misadjustment vs. nonlinearity

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

var[θ]

S
lo

w
d

o
w

n

w−forward
ε−feedback

(b) Algorithm slowdown

Fig. 3. Effects of nonlinear multipliers on the performance of LMS. (a) Nonlinear inputs
in the forward path increase the MSE when the reference is generated by a linear
process, while the effect on the rest of the signals is much lower. (b) It is possible to
control the learning rate to trade residual for convergence speed.

4 Effect of Signal Noise and Limited Resolution

Degradation of signal resolution can arise from system noise, charge leakage in
capacitor-based weight storage, or quantization effects in digital or mixed-mode
implementations. We model the noise ηk as a Gaussian process of zero mean and
variance σ2

η. The analysis is equivalent to Section 3.2 with uncorrelated inputs.

Forward Path: In the presence of zero-mean random noise in the weights and
inputs of the forward path, the LMS algorithm still converges in the mean to
the original Wiener solution w∗. From Section 3.2, we obtain:

ξ
ηw
min = ξmin + E[ηT

k xkxT
k ηk] (26)

ξ
ηx
min = ξmin + w∗T E[ηkηT

k]w∗ = ξmin + σ2
ηw

∗T w∗ (27)
Mηw = M = µtr(R) (28)
Mηx = M + µtr(E[ηkηT

k]) = M + µnσ2
η (29)

Only input-noise modifies M , but both input and weight noise modify ξmin.

Feedback Path: With random noise in the forward-path signals the algorithm
still converges to the Wiener solution and ξmin is not modified because the output
is not directly affected. The new misadjustments are:

Mηx = M + µtr(E[ηkηT
k]) = M + µnσ2

η (30)

Mηε = M + (µ/ξmin)
n∑

p=1

λp var[ηkp] = M + (µ/ξmin)σ2
ηtr (R) (31)

The effect error noise on the misadjustment is large, but we can extend
Eqn. (17) to derive a new learning rate that guarantees that ξηε

∞ ≤ ξ∞:

µ′ =
µξmin

(ξmin + σ2
η)

(32)

972 G. Carvajal, M. Figueroa, and S. Bridges

10
−4

10
−3

10
−1

10
0

10
1

10
2

Normalized σ
η

M
is

ad
ju

st
em

en
t

(l
o

g
 s

ca
le

)

w−forward
x−forward
x−feedback
ε−feedback

(a) M vs. normalized standard deviation

68101214

10
−1

10
0

10
1

10
2

bits

M
is

ad
ju

st
em

en
t

(l
o

g
 s

ca
le

)

w−forward
x−forward
x−feedback
ε−feedback

(b) M vs. bit width

Fig. 4. Simulated effect of signal noise and digital arithmetic. (a) Noise in the forward
path has a strong effect on ξmin and degrades the learning performance of LMS. The
effect of noise in the feedback path is much lower, and can be further reduced with the
learning rate. (b) The same analysis applies to the resolution of digital signals.

Fig. 4(a) shows the simulated misadjustment (with respect to the original
ξmin) versus the standard deviation of the noise, normalized to the signal range.
The simulated plots follow closely the results predicted by the expressions above.
Fig. 4(b) shows the misadjustment versus the resolution of digital arithmetic cir-
cuits. The bit-widths were chosen match the signal-to-noise ratio used in Fig. 4(a)
according to [bits] = log2

(
[signal range]

6ση

)
. The figure shows that the analysis pre-

sented in this section can also be used to predict the performance of digital
arithmetic circuits implementing parts of the algorithm.

5 Conclusions

We presented an analysis of the effects of analog and mixed-signal hardware on
the performance of the LMS algorithm. We derived bounds for the degradation
in MSE and convergence time caused by effects such as multiplier offsets, gain
mismatch, nonlinear transfer functions, noise, and charge leakage. We discussed
design techniques to compensate for these effects such as local and global learning
rate adjustment and bias synapses, and quantified their impact on the perfor-
mance of the algorithm. We are currently extending this work to the design of
dimensionality-reduction networks using Principal Components Analysis.

Acknowledgments

This work was financed in part by a FONDECYT grant No. 1040617.

References

1. H. C. Card, B. K. Dolenko, D. K. McNeill, C. R. Schneider, and R. S. Schneider. Is
VLSI Neural Learning Robust Against Circuit Limitations? In IEEE International
Conference on Neural Networks, volume 3, pages 1889–1893, Miami, FL, USA, 1994.

Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm 973

2. B. Dolenko and H. Card. Tolerance to Analog Hardware of On-Chip Learning in
Backpropagation Networks. IEEE Transactions on Neural Networks, 6(5):1045–
1052, 1995.

3. M. Figueroa, E. Matamala, G. Carvajal, and S. Bridges. Adaptive Signal Processing
in Mixed-Signal VLSI with Anti-Hebbian Learning. In IEEE Computer Society
Annual Symposium on VLSI, pages 133–138, Karlsruhe, Germany, 2006. IEEE.

4. A. Flores and B. Widrow. Assessment of the Efficiency of the LMS algorithm Based
on Spectral Information. In Asilomar Conf. on Signals, Systems and Computers,
volume 1, pages 120–124, Pacific Grove, CA, 2004.

5. D. K. McNeill and H. C. Card. Analog Hardware Tolerance of Soft Competitive
Learning. In IEEE International Conference on Neural Networks, volume 4, pages
2004–2008, Miami, FL, USA, 1994.

6. C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1989.
7. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers. Matching Properties

of MOS Transistors. IEEE Journal of Solid-State Circuits, 24(5):1433–1440, 1989.
8. B. Widrow and E. Walach. Adaptive Inverse Control. Prentice-Hall, Upper Saddle

River, NJ, 1996.

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 974 – 982, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Portable Electronic Nose (E-Nose) System Based
on PDA

Yoon Seok Yang1, Yong Shin Kim2, and Seung-chul Ha3

1 Division of Bionics and Bioinformatics Engineering, College of Engineering,
1 Center for Healthcare Technology Development,

Chonbuk National University, 664-14 Deokjin-dong, Jeonju, 561-756, Korea
ysyang@chonbuk.ac.kr

2 Electronics and Telecommunications Research Institute (ETRI),
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

yongshin@etri.re.kr
3 SENKO, Business Incubation Center 208, 123 Jibyeon-dong, Gangneung, 210-702, Korea

scha@senko.co.kr

Abstract. The electronic nose (e-nose) has been used in food investigation and
quality controls in industry. Recently it finds its applications in medical diagno-
sis and environmental monitoring. Moreover, the use of portable e-nose enables
the on-site measurements and analysis of vapors without extra gas-sampling
units. In this study, a PDA-based portable e-nose was developed using micro-
machined gas sensor array and miniaturized electronic interfaces. The comput-
ing power and flexible interface of the PDA are expected to provide the rapid
and application specific development of the diagnostic devices, and easy con-
nection to other information appliances. For performance verification of the de-
veloped portable e-nose system, Six different vapors were measured using the
system. The results showed the reproducibility of the measured data and the dis-
tinguishable patterns between the vapor species. The application of two differ-
ent artificial neural networks verified the possibility of the automatic vapor rec-
ognition based on the portable measurements.

1 Introduction

The electronic nose (e-nose) system has been mainly used in food industry where it
reduces the amount of the analytical chemistry, i.e., inspection of food quality, control
of cooking process, and checking odors in plastic packaging, etc. due to its ability of
characterizing odors, vapors, and gases [1]. Recently, various composites from car-
bon-black (CB) and organic polymers are developed as gas sensors for portable use
owing to its chemical diversity by the selection of proper organic polymers and im-
proved operability with lower power consumption than the metal oxide gas sensors
[2,3]. With the help of these improvements in portability and ease of use, the e-nose is
widening its potentials in environmental and pollution monitoring i.e., real-time iden-
tification of contaminants, analysis of fuel mixture, detection of oil leaks, testing
ground water for odors, and identification of toxic waste, etc. It also finds its applica-
tions in medical diagnosis, specifically in detection of diabetes, pulmonary or gastro-
intestinal problem, or skin infections by examining odors in the breath or tissues [4].

 A Portable Electronic Nose (E-Nose) System Based on PDA 975

Relatively simple methodology using e-nose also ensures its prospective usages in
point-of-care test (POCT) and telemedicine system.

In this study, we developed a portable embedded e-nose system based on personal
digital assistance (PDA) device and vapor recognition algorithm using backpropaga-
tion neural network (BPNN) and support vector machine (SVM). Compared with the
commercial stand-alone type e-nose like Cyranose320 (Cyrano Sciences), the design
of PDA-based e-nose is flexible so that it can meet various user interface require-
ments for wide variety of application and can also provide additional processing with
the help of its connectivity to many kind of information appliances.

Six different vapor samples were measured using the proposed system. The maxi-
mum sensitivities which is well-known feature in characterizing vapor response was
extracted. The distribution of the vapor patterns was visualized by principal compo-
nent analysis (PCA) [5]. The feasibility of the vapor recognition by intelligence algo-
rithm was tested through the application of the BPNN and SVM.

2 Materials and Methods

2.1 The Minimization of Sensor Interface Circuits

Figure 1 shows a silicon-based gas sensor array [6] and its interface circuits. Eight
different carbon-black (CB) polymer composites in Table 1 were dispensed in micro-
machined sensor array structure.

Table 1. CB polymer composites used for vapor sensor array

Channel Polymer I.D.
1 poly(4-vinyl pyridine)
2 poly(vinyl butyral)-co-vinyl alcohol-co-vinyl acetate
3 poly(vinyl stearate)
4 ethyl cellulose
5 polystyrene-b-polyisoprene-b-polystyrene
6 hydroxypropyl cellulose
7 cellulose acetate

Figure 1-(a) shows the original electronic circuits for driving sensors and obtaining

response signals. For portable measurements, a minimized circuit module was devel-
oped as in Fig. 1-(b). This includes sensing chamber, dc-motor pump for gas flow,
and electronic circuits like voltage regulator and amplifiers. The silicon-based sensor
array and circuit board were connected by pogo pins for reliable contact. Conven-
tional zebra elastomer connector was not suitable because of its varying contacting
resistance which confuses the signal from resistive sensor array. The electrical power
is designed to be supplied from PDA instead of using separate batteries. The power
consumption was about 60 mA, most of which occurs in amplifiers. This implies 40
minutes continuous use with powered by PDA.

976 Y.S. Yang, Y.S. Kim, and S.-c. Ha

 (a) (b)

Fig. 1. Electronic interface circuits for vapor sensing, a) laboratory experimental board, b)
minimized module for portable system

The electronic circuits are shown in Fig. 2. ADM660 provides bipolar voltage sup-
ply for op-amps and MAX603 gives regulated output of 3 volts for dc motor pump.

C3
0.003 u

-

+

U1A

TL064

3

2
1

4
11

R6

1 M

Sensor_out_0

VCC

VDD
VCC

R8

Baseline R

R5

10K AD0

C1
0.1 uF t

VDD

R1

100K

VDD

-

+

U1B

TL064

5

6
7

4
11

C7
0.1 uF t

(a)

C35

10u

SW1

SW PUSHBUTTON-SPDT

C37

10u

VDD

U9

ADM660

1
2
3
4 5

6
7
8

FC
CAP+
GND
CAP- OUT

LV
OSC

V+

VCC

+5V

R66
2K

DAQ_I/O_Power

C33

10u

-5V

+3V

C34

10u

R65
3K

J3

Motor_power

1
2

C36

10u

U10

MAX603/SO

1

2 3

4 5

6 7

8
IN

G
N

D
G

N
D

OFF SETG
N

D
G

N
D

OUT

(b)

Fig. 2. Circuit diagram, a) signal amplifier, b) biopolar voltage converter and 3-volt regulator

2.2 Connection with PDA

The minimized sensor interface module was connected to PDA (iPAQ5550,
COMPAQ) through data acquisition board (DAQ6062E, National Instrument). A
dedicated PDA software for e-nose was developed using Labview 7.0, Labview PDA
module (National Instrument), and Microsoft Embedded Visual Tools. Figure 3

 A Portable Electronic Nose (E-Nose) System Based on PDA 977

shows the PDA and the vapor sensing module connected to it together. The PDA
controls the sensing module and displays the measured response.

The functional specifications of the software are based on the bench-marking of an
e-nose system developed in the previous studies [6,7]. For example, the measured
signal is stored in a PDA file whose name is automatically generated by system to
minimize the user input during portable measurements. The selection of display chan-
nel and sampling frequency is disabled for simplicity.

Fig. 3. The developed PDA-based e-nose, a) PDA controls the minimized vapor sensing mod-
ule via DAQ connection, b) PDA software dedicated for e-nose system displays and stores the
measured sensor response

2.3 Verification of the System by Vapor Measurement

To verify the developed PDA-based e-nose system, six common vapors (acetone,
benzene, chloroform, cyclohexane, ethanol, and methanol) were measured using the
setup shown in Fig. 4. No mass flow control (MFC) was used during measurement to
simulate portable measurement conditions. The liquid samples of these vapors were
prepared in bottles which have one inlet and one outlet for gas flow and measured at
room temperature (about 20) without any temperature control as shown in Fig. 4.
The array responses are displayed on the PDA screen as Fig. 4 and stored in the mem-
ory. All the measurements were repeated twenty times. Figure 5 shows typical re-
sponse signals for each odors. The interactions between the vapor and the sensing
materials determine the shape of the plots. The response time is about tens of seconds.
The maximum sensitivities (maximum change ratio of the sensor resistance) were
calculated at one minute after the start of vapor inhaled by the embedded dc-motor
pump.

2.4 Principal Component Analysis (PCA) and Vapor Recognition Using
Artificial Neural Networks

The signals stored in PDA were gathered in PC to analyze the vapor patterns and to
test the validity of the measured data. The radial plots in Fig. 6 visualize the

978 Y.S. Yang, Y.S. Kim, and S.-c. Ha

Fig. 4. Vapor measurement with the developed PDA-based e-nose. Liquid sample of vapor is
prepared in a bottle. PDA controls the hardware to measure the vapor. The obtained signal is
displayed on PDA screen and stored in memory.

maximum sensitivity patterns obtained from every repeated measurement. The seven
radial axes correspond to seven sensing channels used. Figure 7 shows their clustering
characteristics with the 1st and the 2nd PCA components on two-dimensional space.

Since the goal of this portable e-nose study is an automatic vapor recognition, two
well-known artificial neural networks was applied to the data to test the feasibility of
the pattern recognition algorithm. Firstly, a BPNN was applied. It has two hidden
layers, which have eight and seven hidden nodes, respectively. Secondly, a SVM1 was
tested. Every vapor pattern was separated into two half sets for training and test of the
two neural networks. Both networks were implemented by using Matlab (Mathworks,
USA) on PC. The recognition results are shown in Table 2.

3 Results and Discussions

Sensor response signals in Fig. 5 show slight offsets from zero and baseline drifts,
however, their effects are minimized during calculation of maximum sensitivities.
Since Ch. 8 of the sensor array has unstable characteristics, the signal from it was
discarded in later processing.

Radial plots in Fig. 6 show consistent patterns within a vapor species. This vali-
dates the reproducibility of the vapor sensing system. Although the plot shows a few
large magnitudes of signals since there was no control on vapor concentration, some
consistent patterns were maintained for each vapor group by normalization. For ex-
ample, one large scale pattern in ethanol response yields the same vapor pattern as
others after normalization.

1 Using open source Matlab toolbox by Vapnik.

 A Portable Electronic Nose (E-Nose) System Based on PDA 979

0 2000 4000 6000 8000 10000

-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

acetone

S
en

so
r r

es
po

ns
e

(v
ol

ta
ge

s)

Time (1/10 sec)

 ch.1
 ch.2
 ch.3
 ch.4
 ch.5
 ch.6
 ch.7

0 2000 4000 6000 8000 10000
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

benzene

S
en

so
r r

es
po

ns
e

(v
ol

ta
ge

s)

Time (1/10 sec)

 ch.1
 ch.2
 ch.3
 ch.4
 ch.5
 ch.6
 ch.7

(a) (b)

0 2000 4000 6000 8000 10000

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

chloroform

Se
ns

or
 re

sp
on

se
 (v

ol
ta

ge
s)

Time (1/10 sec)

 ch.1
 ch.2
 ch.3
 ch.4
 ch.5
 ch.6
 ch.7

0 2000 4000 6000 8000 10000
-3

-2

-1

0

1

2

3

4

5

cyclohexane

Se
ns

or
 re

sp
on

se
 (v

ol
ta

ge
s)

Time (1/10 sec)

 ch.1
 ch.2
 ch.3
 ch.4
 ch.5
 ch.6
 ch.7

(c) (d)

0 2000 4000 6000 8000 10000

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ethanol

S
en

so
r r

es
po

ns
e

(v
ol

ta
ge

s)

Time (1/10 sec)

 ch.1
 ch.2
 ch.3
 ch.4
 ch.5
 ch.6
 ch.7

0 2000 4000 6000 8000 10000

-1

0

1

2

3

4

5

methanol

Se
ns

or
 re

sp
on

s
(v

ol
ta

ge
s)

Time (1/10 sec)

 ch.1
 ch.2
 ch.3
 ch.4
 ch.5
 ch.6
 ch.7

(e) (f)

Fig. 5. A typical response signals for each odor obtained by the PDA-based e-nose. a) acetone,
b) benzene, c) chloroform, d) cyclohexane, e) ethanol, f) methanol.

 On the contrary, there are distinguishable patterns among different vapor species in
Fig. 6. The clear distinction of vapor species based on these patterns was shown in
PCA plot in Fig. 7. The coverage of the 1st and the 2nd principal component are

980 Y.S. Yang, Y.S. Kim, and S.-c. Ha

acetone benzene chloroform

cyclohexane ethanol methanol

Fig. 6. Radial plots of the maximum sensitivity patterns of the six vapor species

Fig. 7. The clustering characteristics of the six vapor species are viewed by PCA. The numeric
annotations indicate the orders of the measurements.

70.43% and 24.12 %, respectively, which correspond to 94.5% total coverage. They
are all separated but some overlap between the acetone and the ethanol groups. Con-
sequently, the results of vapor recognition by BPNN and SVM in Table 2 show high
success ratio of 98%.

Though there are many other classification algorithms like minimum distance or
Bayesian classifier, artificial neural network was adopted in the proposed portable e-
nose system. The PDA e-nose gives more convenience in ordinary unregulated meas-
urements than laboratory instruments. Artificial neural network is more suitable

 A Portable Electronic Nose (E-Nose) System Based on PDA 981

Table 2. Vapor recognition results by BPNN and SVM are summarized in confusion matrix.
SVM results are shown in the parenthesises.

Recog..
True actone benzene chloroform cyclohexane ethanol methanol

acetone 8 (9) 0 0 0 1 0
benzene 0 10 (10) 0 0 0 0
chloroform 0 0 10 (10) 0 0 0
cyclohexane 0 0 0 9 (9) 0 0
ethanol 0 0 0 0 9 (9) 0
methanol 0 0 0 0 0 13 (13)

to incorporate a lot of data gathered from the portable measurements into artificial
intelligence quickly.

Furthermore, since this study aims at the development of miniaturized e-nose inte-
grated with a System on Chip (SoC) gas sensor and finally the application of the sys-
tem to medical diagnosis and environmental monitoring, a real-time vapor recognition
software running on PDA was developed and under experimental tests. The BPNN
was implemented on PDA. Figure 8 shows the integrated e-nose software dedicated
for real-time vapor recognition on PDA. Various methods have been developed to
improve the reliability of the vapor recognition in more realistic situation [7].

In vapor measurements, we met several noise sources. Firstly, the sensor perform-
ances are strongly dependent on carbon black (CB) content and an initial sensor resis-
tance. We found empirically that the optimum conditions were the CB content of 12 –
15 weight percent (%) and the sensor resistance of 1 kΩ – 5 MΩ through our earlier
studies for various composite sensor systems [8]. Secondly, the variation in environ-
mental temperature during measurement can distort the vapor response pattern [6].
However, this can be reduced by using micro-heater embedded in gas sensor array as
in our previous study if necessary [6]. Finally, the various extra components in odors
make the correct vapor recognition more difficult. For reliable vapor recognition, we
developed simple and robust pattern recognition techniques in another previous study
[7], which is supposed to be implemented in the portable system in further studies.

Fig. 8. A new PDA based e-nose software for real-time vapor recognition. Fundamentals of
functions are annotated on the figure.

982 Y.S. Yang, Y.S. Kim, and S.-c. Ha

The response of the developed system to mixes of the examined odors is not in-
cluded in this study. However, it was shown that it corresponds to the linear combina-
tions of each response within proper vapor concentration range [9].

4 Conclusions

The analysis of the measured vapor patterns and the application of the neural network
algorithm prove the feasibility of the vapor recognition by artificial neural network as
well as the reliability of the developed PDA-based e-nose system.

The PDA-based e-nose is expected to accelerate the use of e-nose in many applica-
tions owing to its high flexibility and connectivity. Moreover, the minimized vapor
sensing module can be adopted by various embedded systems and digital convergence
devices. The application of e-nose can be expanded to digital accessory in daily life
beyond the laboratory use for experts.

Acknowledgements

This work has been supported in part by the Ministry of Science and Technology of
Korea through the NRL program and in part by research funds of Chonbuk Na-
tional University in 2005.

References

1. Pearce, T.C., Schffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of machine olfaction.
Wiley-Vch, Weinheim (2003)

2. Mo, Y., Okawa, Y., Inoue, K., Natukawa, K.: Low-voltage and low-power optimization of
micro-heater and its on-chip drive circuitry for gas sensor array. Sens. Actuators A Phys.
100 (2002) 94-101

3. Natale, C. D., Macagnano, A., Martinelli, E., Paolesse, R., D’Arcangelo, G., Roscioni, C.,
Finazzi-Agrò, A., D’Amico, A.: Lung cancer identification by the analysis of breath by means
of an array of non-selective gas sensors. Biosensors and Bioelectronics 18 (2003) 1209-1218

4. Gardner, J.W., Shin, H.W., Hines, E.L.: An electronic nose system to diagnose illnesss. Sen-
sors and Actuators B Chem. 70 (2000) 19-24.

5. Doleman, B.J., Lonergan, M.C., Severin, E.J., Vaid, T.P., Lewis, N.S.: Quantitative study of
the resolving power of arrays of carbon black-polymer composites in various vapor-sensing
tasks. Anal. Chem. 70 (1998) 4177-4190

6. Ha, S., Kim, Y.S., Yang, Y., Kim, Y.J., Cho, S., Yang, H., Kim, Y.T.: Integrated and mi-
croheater embedded gas sensor array based on the polymer composites dispensed in micro-
machined wells. Sensors and. Actuators B Chem. 105 (2005) 549-555

7. Yang, Y.S., Ha, S. and Kim, Y.S.: A matched-profile method for simple and robust vapor
recognition in electronic nose (E-Nose) system. Sensors and. Actuators B Chem. 106 (2005)
263-270

8. Briglin, S.M., Freunda, M.S., Tokumarub, P., Lewis, N.S.: Exploitation of spatiotemporal
information and geometric optimization of signal/noise performance using arrays of carbon
black-polymer composite vapor detectors. Sensors and Actuators B Chem. 82 (2002) 54-74

9. Severin, E.J., Doleman, B.J., Lewis, N.S.: An investigation of the concentration dependence
and response to analyte mixtures of carbon black/insulating organic polymer composite va-
por detectors. Anal. Chem. 72 (2000) 658-668

Optimal Synthesis of Boolean Functions by
Threshold Functions

José Luis Subirats, Iván Gómez, José M. Jerez, and Leonardo Franco

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga,

Campus de Teatinos S/N, 29071 Málaga, Spain
{jlsubirats, ivan, jja, lfranco}@lcc.uma.es

http://www.lcc.uma.es/~lfranco/

Abstract. We introduce a new method for obtaining optimal architec-
tures that implement arbitrary Boolean functions using threshold func-
tions. The standard threshold circuits using threshold gates and weights
are replaced by nodes computing directly a threshold function of the
inputs. The method developed can be considered exhaustive as if a so-
lution exist the algorithm eventually will find it. At all stages different
optimization strategies are introduced in order to make the algorithm
as efficient as possible. The method is applied to the synthesis of cir-
cuits that implement a flip-flop circuit and a multi-configurable gate.
The advantages and disadvantages of the method are analyzed.

1 Introduction

In this paper we introduce an algorithm for finding a set of threshold functions
(also called linearly separable functions) that will compute a desired (target)
arbitrary Boolean function. This problem is known as the synthesis problem of
Boolean functions and has been much studied since the 60’s ([1,2,3]). The interest
in using threshold gates or linearly threshold functions instead of standard logical
AND, NOT and OR gates relies on the fact that threshold elements are more
powerful than standard gates and as a consequence, the size of the circuits that
can be constructed to compute the desired functions can be smaller. There is
an extra interest in the study of threshold circuits as they are very close related
to neural networks models, and thus some of the properties and characteristics
of the circuits also apply to neural networks architectures. Our main motivation
for the development of this method is the study of neural networks architectures
[4,5]. The standard practice for the architecture selection process within the
field of artificial neural networks is the trial-and-error method that is very time
consuming. Knowing and characterizing which architectures are best suited for a
given class (or set) of functions can much help to the development and refinement
of existing methods for constructing better neural architectures and also for
gaining further understanding on the learning process. The problem of finding
optimal architectures is relevant also for a more theoretical point of view within

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 983–992, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

984 J.L. Subirats et al.

the area of circuit complexity, as different existing bounds can checked and/or
improved ([6]).

The method introduced in this paper permits the synthesis of Boolean func-
tions in terms of the set of threshold Boolean functions. The standard threshold
circuits, use threshold gates connected by weights that in the present formu-
lation are replaced by threshold functions. Obtaining the whole set of linear
separable functions is a complicate and computationally intensive problem and
the set functions of threshold functions have been only obtained up to N = 10
variables ([3]).

Research in threshold logic synthesis was done mostly in the 1960s ([1,2,3]).
Nowadays, different implementations of circuits by threshold gates are available,
and several theoretical results have been obtained [6,7,8,9] together with different
applications ([10]). The main difference with previous approaches is that the
present work is aimed to find optimal architectures.

2 Synthesis of Boolean Functions by Linearly Separable
Functions

We introduce in this work a new method for finding a set of linearly separate
functions that will compute a given desired Boolean function (the target func-
tion). The method use the linearly separable set of functions as basis functions
(or primitives) and thus assumes that whether a list of the functions is avail-
able or that a method for testing whether a given function is linearly separable
is provided (the first approach is used throughout this work). One important
difference with previous works is that our approach works straightforward with
the set of threshold functions as basis functions and not through their equivalent
representation by threshold gates and weights.

2.1 The Algorithm

Without loss of generality, we will analyze the case of architectures comprising
a single layer of hidden nodes. The algorithm can be straightforwardly extended
to the case of several layers of nodes. The algorithm is aimed to find a set of
linearly separable functions for the hidden nodes and for the output node that
implement a desired target function. The choice of the output function is crucial
for the procedure as once that an output function has been chosen, the algo-
rithm will test all possible solutions and then the choice of the output function
has a multiplicative computational effect. However, the search procedure of the
hidden node functions is the most intensive and complicated step, and different
optimization strategies can be implemented.

Selection procedure for the output function. From first principles, there
are two “logic” choices for the output function: the first one would be to se-
lect an output function as the most similar threshold function to the target
one. This procedure is not straightforward as a measure of similarity between

Optimal Synthesis of Boolean Functions by Threshold Functions 985

the functions is needed, but a simple choice seems to select the closest linearly
separable function in terms of the Hamming distance (number of different bits)
between the outputs of the two functions. The second logic choice could be to
select the output function according to the success rate of the functions (or of
similar functions in lower dimensions) in previous cases. While the two men-
tioned approaches seems to merit consideration, there is also a computationally
effective oriented choice. In this case functions that will generate a shorter node
search procedure will be considered first. This was the approach used in this
work. It will be more clear later in the work after the node search algorithm is
introduced, but the general idea is that as the node search algorithm generate a
tree of possible solutions and as the number of branches at a ramification point
is proportional to the number of solutions, the more computational intensive
cases will occur for output functions with a balanced number of 0’s and 1’s.
Thus, functions with a non-balanced number of 1’ and 0’s will be considered
earlier as candidates for the output function. This choice, even if motivated by
computational efficiency, may be not the more efficient, specially if unbalanced
functions results to be not very good for the synthesis problem. On the contrary,
if almost all functions are more or less equivalent, or if unbalanced functions
are well suited for this task of generating non-threshold functions, then the ap-
proach taken might be the most computationally effective as it was intended.
Some preliminary experiments showed that the unbalanced functions seem to be
good as output functions.

Selection procedure of the hidden nodes function. Once the output func-
tion has been set to a given linearly separable function, the problem translates
into finding a set of linearly separable functions for the hidden nodes that would
make the circuit to implement the target function. The algorithm analyze the
different possibilities of mapping the inputs into a set of recoded inputs for the
output function, in way such that the output function might be able to map
them correctly onto the solution. To exemplify the procedure, we will analyze
the simple case of finding the optimal circuit for the NXOR function. The NXOR
function is a Boolean function of two input bits where the output of the function
is 0 if the sum of the two input bits is 1 and the output is 1 if the sum of the
input bits is even (inputs 0-0 and 1-1). The NXOR function is a classic example
of a non linearly separable function and thus an architecture with two hidden
nodes, at least, is needed for their implementation with threshold functions (it
is known that 2 hidden nodes are enough for implementing this function). For
exemplifying the procedure we use an architecture with two hidden nodes, both
connected to the two inputs. In Fig. 1 such an architecture is shown, where I0
and I1 indicate the input nodes that will feed their values into the hidden nodes.
The hidden nodes will compute two linearly separable functions named f0 and
f1 while the output function is indicated in the figure by fout.

For the example under consideration, we will analyze the situation in which
the output function has been already selected. We consider as output func-
tion the function AND, that produce an output 1 only for input values 1-1. The

986 J.L. Subirats et al.

f

f f 1

I 0 I 1

INPUT

OUTPUT

0

out

Fig. 1. A two hidden node architecture used for showing the procedure of finding
a solution for the NXOR function. The inputs to the network are indicated by I0

and I1. The hidden nodes will compute as a function of the input bits two linearly
separable functions indicated by f0 and f1 that will send their outputs to the output
node function indicated by fout.

functions will be designated according to the outputs that the function produce
in response to the inputs, with values ordered according to their binary value.
For the present case, in which input functions of two bits are considered the order
of the inputs and outputs is as follows: first, the output in response to the input
0-0, second to the input 0-1, third to 1-0 and finally the output corresponding
to the input 1-1. In this way, the AND function is indicated by 0001, while the
NXOR function would be coded as 1001. The procedure for finding the threshold
functions for the node functions f0 and f1 proceeds in a number of steps in which
the possible outputs for f0 and f1 are considered.

Now we consider the first output bit of the target function, that is equal to 1
(in response to the first input 0-0). As the function AND was selected as output
function (fout), and this function produce a 1 in response only to an input 1-1, it
is needed that both node functions, f0 and f1, produce an output 1 in response
to the input pattern 0-0. That is, the node functions have to recode the original
input of the network, the input 0-0, into the input 1-1 for the output node,
otherwise the output function would not coincide with the target one. Now the
procedure continues with the second input bit, 0-1, for which the target output
is 0. The selected output function produce a 0 in response to three input cases
and then there are three possible cases into which the input 0-1 can be recoded
by the node functions. The function fout gives a 0 in response to the inputs 0-0,
0-1 and 1-0 and then we obtain, putting together the results for the first and
second output bits the following tree of possibilities, shown in Fig. 2. The three
cases are indicated in the diagram as branches of the first case on the top, for
which there was a single possibility.

The procedure continues considering the rest of the cases corresponding to
the third and fourth input bits. The whole tree generated as the procedure is

Optimal Synthesis of Boolean Functions by Threshold Functions 987

1 0 0 1

0 0 0 1

1
1

?
?

?
?

?
?

1
0

?
?

?
?

1
1

1
0

?
?

?

?
1
1

0
1

?
?

?
?

1 0 0 1

0 0 0 1

1
1

Target

Output

Target

Output

Fig. 2. The possible cases for the node functions f0 and f1 as the two first input bits
are considered for the case of choosing the NXOR as target function and the AND as
output function. Within the boxes, the 4 pairs of values correspond to the outputs of
the two functions in response to the 4 inputs. The question mark indicates that the
value is still undetermined.

applied is shown in Fig. 3. The nine boxes in the last two bottom rows contain
the nine function candidates for the node functions, but the only possible ones
are those boxes containing two threshold (linearly separable) functions (the two
boxes at the rightmost end of the bottom row containing functions with only
one output bit equal to 1, as all the other boxes contain the function 1001 that
is non-linearly separable).

1
1

?
?

?
?

?
?

1
1

0
0

?
?

?
?

1
1

1
0

?
?

?
?

1
1

0
1

?
?

?
?

1
1

0
0

0
0

?
?

1
1

0
0

1
0

?
?

1
1

0
0

0
1

?
?

1
1

1
0

0
0

?
?

1
1

1
0

1
0

?
?

1
1

1
0

0
1

?
?

1
1

0
1

0
0

?
?

1
1

0
1

1
0

?
?

1
1

0
1

0
1

?
?

1
1

0
0

0
0

1
1

1
1

0
0

1
0

1
1

1
1

0
0

0
1

1
1

1
1

1
0

0
0

1
1

1
1

1
0

1
0

1
1

1
1

1
0

0
1

1
1

1
1

0
1

0
0

1
1

1
1

0
1

1
0

1
1

1
1

0
1

0
1

1
1

Fig. 3. The whole tree of possibilities for the choices of the node functions for the case
of the NXOR target function. The nine boxes in the last two bottom rows are the
nine candidates for the functions but the only possible ones are those in which both
functions are linearly separable functions (See the text for details).

The node searching procedure ends if two linearly separable functions are
found, but if this is not the case, a different output function, fout, is chosen from
the set of threshold functions and the whole procedure is repeated until all the

988 J.L. Subirats et al.

threshold functions with a number of variables equal to the number of nodes are
tested. If a solution is not found, the number of nodes is augmented by one and
the whole procedure repeated, and so on.

2.2 Optimization Steps: Order of Branching and Pruning by
Testing Linear Separability

Several optimization steps were introduced to speed up the computational process.
We will refer here to only the most important ones. The first optimization step
is about the order in which the input bits are considered for the node searching
process. If the output function is unbalanced, it is convenient to analyze first the
inputs of the output function that produce an output that occur less infrequently
as the degeneracy of the output values is related to the number of branches that
are created in the tree of possible choices for threshold functions. The second opti-
mization concern the test of linear separability for the partial defined functions. It
is possible to analyze by previously constructing a tree with all the linearly sepa-
rable functions, whether a partial defined Boolean function will end up producing
some threshold functions. If the partially defined function will not produce any
threshold function, the branching process is ended at that point, and the tree is
pruned. Alternatively, the checking for linear separability can be done by testing
the unateness of the variables, as all threshold functions are unate (but not con-
versely, so the test is a partial one).

3 Application of the Algorithm to the Construction of
Optimal Architectures for a Flip-Flop Circuit and a
Configurable Gate Circuits

We applied the algorithm developed in the previous section to the construction of
threshold circuits that implement in an optimal way (with a minimum number
of nodes in a single hidden layer) a flip-flop circuit and a configurable gate.
The flip-flop circuit (or bistable) is a standard digital circuit in electronics that
incorporates the storage of memory in its functioning.

The resulting architecture obtained by the algorithm has three nodes in the
unique hidden layer and is depicted in Fig. 4.

The three hidden functions receive input from the 4 inputs and then project
into the two outputs units. The “fan-in max” (maximum number of connections
that a node receives) is 4 and thus, the whole set of threshold functions of up to
4 variables was needed. The four inputs of the circuit are the Memory input bit
(M), the Enable bit (EN), the Input bit (IN) and the Read/Write bit (R/W).
The circuit has two output nodes, the first one (fM) feedbacks into the memory
bit permitting the storage of memory and the second one is the true output of
the circuit, designated in the figure as (fout) . When the enable bit is OFF (value
0), the circuit outputs the value of the Input bit (I). When the Enable (EN) bit

Optimal Synthesis of Boolean Functions by Threshold Functions 989

M

EN

IN

R/W

f

f

f

f

f

0

1

2

M

out

Fig. 4. The architecture designed to implement a flip-flop circuit. The architecture has
a single hidden layer containing three nodes and two outputs nodes. One of the output
nodes, indicated as fM , feedbacks the input value to the memory neuron, and the other
output, fout, can be considered as the real output of the network.

is ON the circuit works depending on the value of the R/W bit, reading the
value stored in memory and sending it to the output or by writing the value of
the input into the memory. The truth table for the flip-flop circuit implemented
is shown in Fig. 5.

In Table 1 the output values of the obtained functions that implement the
circuit are shown. The case shown is only one of the 120 cases obtained.

Table 1. The threshold functions obtained for one of the solutions found for the flip-
flop circuit. The node functions are functions of N=4 input bits and then 16 output
values exists, while the output functions have a fan-in of 3 and then 8 binary values
are needed to code them.

Function Output bits

f0 0000000111111111
f1 0011001100111011
f2 1011000011111010
fM 00000111
fout 00010001

Also a circuit to implement a multi-configurable gate was constructed. The
circuit can compute as desired a AND, OR, NXOR or NAND as a function of
the two inputs (IN0 and IN1). The function to be computed is selected by two
extra input bits (C0 and C1), and the truth table of this multi-configurable gate
is shown in Fig. 6.

The architecture implementing the multi-configurable gate is shown in Fig. 7
where it is also shown, close to the nodes, the functions obtained from the

990 J.L. Subirats et al.

M EN IN R\W Out-M OUTPUT
0 0 0 0 0 0

0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 1 0 #
0 1 1 0 0 0
0 1 1 1 1 #
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 0 #
1 1 1 0 1 1
1 1 1 1 1 #

Fig. 5. Truth table of a flip-flop (bistable) circuit. The circuit, when the Enable (EN)
input is activated, can store a value in memory (Write procedure) or transmit the
stored value (Read procedure) depending of the value of the R/W input bit. If the
Enable bit is off, the network simply output the value of the single input (IN).

C0 C1 IN0 IN1 OUTPUT

0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

0 0 0 0 0

Fig. 6. Truth table of a multi-configurable circuit with N=2 inputs. The two selection
bits,(C0 and C1), indicate which function should be computed.

procedure coded by their outputs. It is also shown in the figure, the operation
of the circuit for two inputs, the first and the fourth, showing for the first input
how this is mapped by the node functions to the first bit of the output node
to produce a desired output of 0. For the fourth input, the output of the three
hidden nodes recoded it as 1-0-1 producing a desired output of 1 by the output
node.

Optimal Synthesis of Boolean Functions by Threshold Functions 991

C
0

C
1

IN
0

IN
 1

0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0

0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0

f0

f 1

2f

fout

Fig. 7. The architecture of the circuit computing a multi-configurable gate that can
work depending of the value of the indicator bits (C0 and C1) as a AND, OR, NXOR
or NAND gate. Close to the nodes, the functions that make the circuit to work as
desired are indicated by the value of their outputs in response to the input patterns.
(See the text for more details)

4 Discussion

We have introduced a new method for finding the optimal circuit architecture
that computes an arbitrary Boolean function in terms of linear separable prim-
itives. Starting from different “smart” choices of the output function the algo-
rithm tries to find linearly separable functions for the hidden nodes according
to the values of the output and target function. Eventually if a solution has
not been found, the algorithm searches for all the possible solutions and in that
way does an exhaustive search. Different optimization steps were introduced to
improve the computational efficiency. The method was successfully applied to
the construction of threshold circuits for the flip-flop circuit and for a multi-
configurable gate. For both implementations the whole synthesis procedure took
less than half of a minute, but we are aware that they only involved nodes
with a fan-in max of 4. The worst case complexity of the algorithm is of order
O(2MN2

2M2
), where N is the number of input variables, M is the number of

hidden nodes and the factors of the type 2N2
arise because that is the order

of the number of threshold functions on N variables (It is worth noting, as a
reference value, that the total number of Boolean functions on N variables is
22N

). We are currently computing the average case complexity for the case of all
functions on 4 variables that can be treated exhaustively. We believe that the
algorithm can be of practical application for larger dimensions of up to 8 or 10 in
its present way and it seems also possible to develop from the current algorithm
non-optimal procedures for larger dimensions. We are currently analyzing all the

992 J.L. Subirats et al.

optimal architectures for all the existing Boolean functions of 4 variables, mea-
suring the speed of the algorithm against standard benchmarks and studying
the properties of multi-layer and modular neural network architectures.

Acknowledgements

The authors acknowledge support from CICYT (Spain) through grant TIN2005-
02984 (including FEDER funds). Leonardo Franco acknowledges support from
the Spanish Ministry of Education and Science through a Ramón y Cajal fel-
lowship.

References

1. Winder, R.O. (1962). Threshold Logic, Ph.D. dissertation, Department of Mathe-
matics, Princeton University.

2. Dertouzos, M.L. (1965) Threshold Logic: A Synthesis Approach. Cambridge, MA:
The M.I.T. Press.

3. Muroga, S. (1971).Threshold Logic and its Applications, Wiley, New York
4. Franco, L. (2006). Generalization ability of Boolean functions implemented in feed-

forward neural networks. Neurocomputing. In Press.
5. Franco, L. and Anthony, M. (2006). The influence of oppositely classified exam-

ples on the generalization complexity of Boolean functions. IEEE Transactions on
Neural Networks. In Press.

6. Siu, K.Y., Roychowdhury, V.P., and Kailath, T. (1991). Depth-Size Tradeoffs for
Neural Computation IEEE Transactions on Computers, 40, 1402-1412.

7. Oliveira, A. L. and Sangiovanni-Vincentelli, A. (1991). LSAT: an algorithm for the
synthesis of two level threshold gate networks. In: Proceedings of the ACM/IEEE
International Conference on Computer Aided Design, Santa Clara, CA, IEEE
Computer Society Press, 130-133.

8. Noth, W., Hinsberger, U., and Kolla, R. (1996). TROY: A Tree-Based Approach to
Logic Synthesis and Technology Mapping, In: Proceedings of the 6th Great Lakes
Symposium on VLSI, p. 188.

9. Zhang, R., Gupta, P., Zhong, L. and Jha, N. K. (2005). Threshold Network Synthe-
sis and Optimization and Its Application to Nanotechnologies, IEEE Transactions
on computer-aided design of integrated circuits and systems, 24, 107-118.

10. Beiu, V., Quintana, J.M. and Avedillo, M.J. (2003). LSI implementations of thresh-
old logic - A comprehensive survey, IEEE Trans. Neural Networks, 14, 1217-1243.

Pareto-optimal Noise and Approximation
Properties of RBF Networks�

Ralf Eickhoff and Ulrich Rückert

Heinz Nixdorf Institute
System and Circuit Technology

University of Paderborn, Germany
eickhoff, rueckert@hni.upb.de

Abstract. Neural networks are intended to be robust to noise and tol-
erant to failures in their architecture. Therefore, these systems are par-
ticularly interesting to be integrated in hardware and to be operating
under noisy environment. In this work, measurements are introduced
which can decrease the sensitivity of Radial Basis Function networks to
noise without any degradation in their approximation capability. For this
purpose, pareto-optimal solutions are determined for the parameters of
the network.

1 Introduction

Neural networks are used for classification tasks, recognition, vision process-
ing, optimization and, moreover, for function approximation of any continuous
function [1]. Especially, Radial Basis Function (RBF) networks are utilized to
approximate an unknown function.

Often, neural networks are selected for this task since they are intended to
be robust to noise and tolerant to failures in their structure. Therefore, neural
networks are particularly interesting to be integrated in hardware. Here, noise
always affects the inputs and the parameters of a system and, thus, noise has
not only been considered during training but also during runtime of a neural
network. Therefore, the output of an RBF network is perturbed by noisy inputs
during runtime which additionally contributes to the mean squared error (mse)
at the output.

In this work, an optimization technique is presented to decrease the noise
sensitivity and to enhance the robustness of RBF networks which are affected by
noise in its inputs. Introducing measurement techniques and using these methods
as additional objectives during training the sensitivity of the RBF network can
be improved without any degradation of the approximation capabilities. On
the contrary, the mean squared error can be decreased without affecting the
sensitivity to noise of the RBF network.

� This work was supported by the Graduate College 776 - Automatic Configuration
in Open Systems- funded by the German Research Foundation (DFG).

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 993–1002, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

994 R. Eickhoff and U. Rückert

The remainder is organized as follows. In Section 2 the used neural network is
briefly described. Section 3 introduces two noise measurement techniques which
are used as additional objective functions for learning in Section 4. Here, sim-
ulation results of the proposed methods are presented. The paper ends with a
conclusion in Section 5.

2 Radial Basis Functions

In this section, a short overview of the architecture of an RBF network is given.
The RBF network is often used for local function approximation. Based on reg-
ularization theory the quadratic error is minimized with respect to a stabilizing
term [2]. Due to this stabilizer the interpolation and approximation quality can
be controlled in order to achieve a smooth approximation. Therefore, different
types of Basis Functions depending on the stabilizer can be employed for su-
perposition which are differently weighted and centered in space. Here, only
Gaussian Basis Functions are considered and the network describes a function

fm(x) =
m∑

i=1

αi exp
(
−‖x− ci‖2

2σ2
i

)
(1)

The parameters ci are the individual centers of each Gaussian function, σ2
i re-

semble their variances and αi are the weights from each neuron to the output
neuron, which performs a linear superposition of all Basis Functions. The input
dimension of the RBF network is dim x = n and, at all, m Gaussian functions
are used for superposition.

3 Robustness and Sensitivity Measurements

In technical system, like analog or digital designs, additive noise often corrupts
the inputs and parameters of an RBF network and systems in general. Therefore,
the inputs of an RBF network will be corrupted by noise during its runtime. Con-
sequently, not only noise contaminated training data has to be considered during
learning but also the effects of limited precision in digital hardware and of thermal
or flicker noise processes in analog systems have to be taken into account. Both
effects results in different output behavior of the network as it is expected.

Hence, noise has to be considered during operation phase of an RBF net-
work as well. For the following analysis, it is assumed that the noise processes
affecting the inputs are stochastically independent from each other. Here, two
measurements are presented. The first technique concerns the maximum mse
at the output resulting from noisy inputs, whereas the second method can be
referred as statistical sensitivity of the output to input noise [3].

An important property required to produce a stable approximation is the
equicontinuous property of function sets [4]. Stable approximation means that two
slightly different inputs produce only slightly different output behavior. Therefore,
if noise is present at the inputs of an RBF network and causes perturbations from

Pareto-optimal Noise and Approximation Properties of RBF Networks 995

the desired input vector the output of the network will only slightly differ from
the desired value if the equicontinuous property is fulfilled. A detailed discussion
of this property and its effects on the RBF network is given in [5].

The difference at the output resulting from different (noise corrupted) inputs
can be calculated

|fm(x)− fm(y)| =

∣∣∣∣∣
m∑

i=1

αi exp
(
−‖x− ci‖2

2σ2
i

)
−

m∑
i=1

αi exp
(
−‖y − ci‖2

2σ2
i

)∣∣∣∣∣ (2)

Applying to (2) the mean value theorem, the Cauchy-Schwarz inequality and
the triangle inequality the following result can be determined [5]

|fm(x) − fm(y)| ≤ |∇xf(ξ)| d(x,y) ≤
n∑

k=1

m∑
i=1

|αi|
∣∣∣∣ 1
σi

∣∣∣∣ d(x,y) (3)

= n ·
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣ d(x,y) (4)

where d(x,y) denotes a metric in the input space.
If it is assumed that the inputs are affected by Gaussian noise with zero

mean and finite variance σ2
n the mse at the output of the RBF network can be

evaluated which results from the noise corrupted inputs and this leads to

mse ≤ n2

(
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣
)2

n · σ2
n (5)

As a second sensitive measurement the variance at the output of the network
due to changes at the input can be applied. For relatively small changes at the
input the error at the output can be determined by applying Taylor series and the
means of the variables which is known as the Gaussian error propagation. There-
fore, the variance of the RBF function fm at the output can be expressed as [6,5]

σ2
fm

=
n∑

i=1

(
∂f

∂xi

∣∣∣∣
x=µ

)2

σ2
xi

(6)

where µ is the mean of the inputs x and n is the input dimension.
Since (6) is only valid for slight perturbations at the input the variance is only

approximated by (6) whereas it is exact for linear relations. Thus, considering
(1) the output variance ca be expressed as

σ2
fm

≈
n∑

i=1

(
∂fm(x)

∂xi

∣∣∣∣
x=µ

)2

σ2
xi

(7)

=
n∑

i=1

 m∑
ν=1

−αν
(xi − cνi)

σ2
ν

e
−‖x−cν ‖2

2σ2
ν

∣∣∣∣∣
x=µ

2

σ2
xi

(8)

Moreover, a similar analysis can be applied for the parameters of the network
which are additionally corrupted by noise [5].

996 R. Eickhoff and U. Rückert

4 Robust Training Technique

The training of an RBF network can be accomplished by minimizing an objective
function which measures the discrepancy or loss between the desired output and
the network output [1]. Often, for this purpose the quadratic loss function is
been used. Moreover, the noise property of an RBF network can be used as an
additional objective function or constraint of the optimization problem.

4.1 Multi-objective Optimization Problem

If the noise property of the RBF networks is utilized as an additional objec-
tive function a multi-objective optimization problem (MOP) arises which has
several contradicting objective functions which should be minimized simultane-
ously. Hence, the MOP can be formulated as [7,8].

minimize y = F (w) = (F1(w), F2(w), . . . , FM (w)) (9)
subject to g(w) = (g1(w), g2(w), . . . , gk(w)) ≤ 0

where M is the number of objective functions and the function g(w) describes
the constraints of the parameter vector w which obtains the centers, the vari-
ances and the output weights of the RBF network. The constraints g(w) form
the domain of the parameter vector which results also in a feasible region in the
range.

Since no objective presents a primary goal there exist several optimal points
forming a pareto-optimal front. For the definition of pareto-optimal solutions
and a pareto-optimal set the reader is referred to literature [7,8].

Considering noise sensitivity as second objective the MOP can be rewritten
as

minimize y = F (w) = (F1(w), F2(w)) (10)
subject to g(w) = (g1(w), g2(w), . . . , gk(w)) ≤ 0 (11)

where F1(w) =
1
N

N∑
i=1

(
yi −

m∑
ν=1

αν exp
(
−‖xi − cν‖2

2σ2
ν

))2

F2(w) = n3

(
m∑

ν=1

∣∣∣∣αν

σν

∣∣∣∣
)2

(12)

or F2(w) =
1
N

N∑
i=1

n∑
j=1

(
m∑

ν=1

−αν

(xi
j − cνj)
σ2

ν

e
− ‖xi−cν ‖2

2σ2
ν

)2

(13)

where N denotes the number of training vectors,
(
xi, yi

)
∀i = 1, . . . , N are the

vectors of the training set and xi
j is the j-th entry of the actual training vector.

The constraints of parameters in (11) form the domain where feasible solutions
can be found. E.g., the constraints can determine the upper and lower bounds of
the parameters of the network, such as σ2

i > 0 ∀i = 1, . . . ,m. These constraints

Pareto-optimal Noise and Approximation Properties of RBF Networks 997

form the feasible solutions in the range. Moreover, one can extend the MOP
by using further objective functions, e.g. also minimizing the number of Basis
Functions [9] etc.

To solve the MOP of (10) several methods are presented and employed in Sec-
tion 4.2 to obtain simulation results. First, evolutionary algorithms [10,11] are
used to determine pareto-optimal points where both objectives are minimized
simultaneously. For a pareto-optimal point no solution can be found which is
better in one objective. Since evolutionary algorithms are stochastic search algo-
rithms the determined pareto-optimal points do not necessarily form the exact
pareto-optimal front. Fig. 1 shows this effect where some points are not exact
pareto-optimal points but next to the pareto-optimal front1.

Moreover, the goal attainment method [8] can also be employed to find solu-
tions and this technique optimizes an initial solution in order to achieve specified
goals (see Fig. 1). The algorithm allows objectives to be under- or overachieved
and determines the point where the line between the initial solution and the ob-
jective goals intersects the pareto-optimal front. Thus, this solution will result
into less sensitivity to noise and a reduced mse between the desired output and
the network output. A weighting factor controls the relative degree of under- or
overachievement of the goals. Here, a weighting factor is used which ensures the
same percentage of under- or overattainment of both objectives.

The ε-constraint method minimizes a primary objective of (10) whereas the
other objective is used as additional inequality constraint. If the sensitivity
is used as additional constraint a noise-constraint problem arises and a mse-
constraint problem has to be solved for the mse as additional constraint. In both
cases, the values obtained by the initial solution are used as hard constraints (see
Fig. 1) resulting in additional constraint of

F1(w) ≤ mseinit (mse − constraint) (14)
or F2(w) ≤ noiseinit (noise − constraint) (15)

where mseinit and noiseinit are the corresponding values of the initial solution.
The goal attainment and the ε-constraint method only determine single

pareto-optimal points. However, these solutions outperform the initial results
either in one objective or even in both objectives (see Fig. 1). The improvement
strongly depends on the initial solution. If the initial point is already a pareto-
optimal solution no objective can be improved per definition [8,7].

To find an adequate initial solution the NETLAB toolbox [12] is used to train
the RBF network. Certainly, every training algorithm can be used to obtain
this initial solution. Since most algorithms only minimize the discrepancy at
the output the sensitivity to noise can be improved without any degradation in
approximation capability.

Although there is no essential need to determine an initial value by any train-
ing algorithm convergence speed can be significantly increased if a ”good” initial
1 In Fig. 1 the pareto-optimal points have been determined using evolutionary algo-

rithm for function f3 used in Section 4.2. The pareto-optimal front and the initial
solution are only plotted schematically to present the effect of several techniques.

998 R. Eickhoff and U. Rückert

0.55 0.6 0.65 0.7 0.75 0.8
0

1

2

3

4

5

6

mse

no
is

e
pr

op
.

NETLAB solution

goal

pareto points
feasible solution
pareto−front

noise constraint

mse constraintsearch direction
goal attainment solution mse−constraint

solution noise−constraint

Fig. 1. Solution for the MOP approximating function f3(x, y) and minimizing the
sensitivity of the RBF network

solution is used. The initial solution can also be randomly generated but conver-
gence is decreased and also the training process can be trapped in local minima.

4.2 Simulation Results

The RBF network is employed for function approximation and three target func-
tions are used to verify the proposed technique. As target functions the following
functions are used [9]

f1(x) = 3x(x− 1)(x− 1.9)(x + 0.7)(x + 0.8) x ∈ [−2.1, 2.1] (16)

f2(x, y) = 42.659(0.1 + x(0.05 + x4 − 10x2y2 + 5y4)) x, y ∈ [−0.5, 0.5] (17)

f3(x, y) = 1.9(1.35 + ex sin(13(x− 0.6)2) ey sin(7y)) x, y ∈ [−0, 1] (18)

As stated before, the NETLAB toolbox is used determine an initial solution2

and it is used to investigate robustness of the RBF network. For the scenario
a test and training set is randomly generated within the domain of the target
functions (16). In the case of a three-dimensional target function 1000 vectors for
learning and 5000 for testing are uniformly generated. For the two-dimensional
case, 100 training and 1000 testing examples are used for each task. The number
2 Every other training technique can also be used.

Pareto-optimal Noise and Approximation Properties of RBF Networks 999

of Gaussian Basis function (neurons) of the network are exemplary chosen from
[9]. For the goal attainment technique the goals are chosen to allow an equally
weighted decrease in both objectives.

Table 1. Solutions of the optimization problem using several optimization techniques
with sensitivity of (13) as second objective function

function neurons optimization train mse test mse noise prop.

f1 4 NETLAB 37.0388 43.5619 3.37 · 104

goal attainment 36.2133 43.1464 3.29 · 104

noise-constraint 36.4030 42.9766 3.37 · 104

mse-constraint 37.0388 44.6148 3.22 · 104

f2 8 NETLAB 0.6161 0.5829 981.39
goal attainment 0.5403 0.6083 640.26
noise-constraint 0.2729 0.3316 944.57
mse-constraint 0.6161 0.5829 583.26

f3 6 NETLAB 0.6312 0.6786 5.2542
goal attainment 0.4605 0.5155 3.8333
noise-constraint 0.4536 0.5041 5.2542
mse-constraint 0.6312 0.7095 1.2279

Table 1 shows the obtained results for optimizing the NETLAB solution where
the sensitivity of the inputs in (13) is used as a second objective function. For the
noise property only a pseudo-unit is been used where the absolute values allows
a comparison between two solutions for the same target function. The resulting
mse to the training and testing set are comparable to the results obtained in [9]
where instead of the mse the normalized root mean square error is used. As a
conclusion from Table 1 the solution obtained by NETLAB can be significantly
improved resulting in a lower mse to the test and train data for two test functions.
Moreover, the noise sensitivity can be significantly decreased in several cases.

For the target function f1 the NETLAB solution proximately depicts a pareto-
optimal solution. Therefore, only slight improvements can be provided for this
solution. For the other cases, the solutions are quite far from the pareto-optimal
front. Consequently, the noise property can be improved by a factor of two for
function f2 and for function f3 by a factor of four where no degradation in
approximation capability is observed. The goal attainment method is able to
improve both objectives for target functions f2 and f3 simultaneously. Fig. 2
shows the resulting mse due to noise corrupted inputs for the NETLAB solution
and an mse-constraint solution minimizing the effect of noise of the function
f3. Here, the inputs are contaminated with several noise levels measured by the
Signal-Noise-Ratio (SNR)

SNRdB = 10 log10

(
Ps

N

)
(19)

where Ps is the signal power and N denotes the noise power.

1000 R. Eickhoff and U. Rückert

−10 −5 0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

SNR [dB]

m
se

NETLAB
mse−constraint

Fig. 2. MSE due to noisy inputs for the NETLAB solution and a noise-constraint
optimization for target function f3. Both networks have a similar mse to the training
and test data

The mse due to noise contaminated inputs is approximately two orders of
magnitude lower for the pareto-optimal solution compared to the NETLAB so-
lution. Thus, the network sensitivity to noise can be decreased but guaranteeing
equal approximation capabilities.

Furthermore, the pareto-points3 of the MOP using f3 as target function and
(13) as second objective are determined by using evolutionary algorithms [10]
and shown in Fig. 1. The results are partially consistent with those obtained by
the other optimization techniques. For large dimensions the use of evolutionary
algorithms is limited due to the curse of dimensionality [13] and they do not
necessary find the pareto-optimal front.

Table 2 shows the results of solving the MOP using (12) as second objective
function. As can be concluded from the example of function f2 the NETLAB al-
gorithm already determines a pareto-optimal point. Therefore, the used optimiza-
tion techniques cannot further improve the solution. However, the solution ob-
tained for the target functions f1 and f3 can be significantly improved in noise
sensitivity showing the same approximation capability of the RBF network. More-
over, even the approximation ability can be increased without any degradation of
the mse due to noise contaminated inputs. Using the goal attainment method both

3 The pareto-points in Fig. 1 are obtained by the evolutionary algorithm whereas the
pareto-optimal front is only plotted schematically.

Pareto-optimal Noise and Approximation Properties of RBF Networks 1001

Table 2. Solutions of the optimization problem using several optimization techniques
with the mse due to noisy inputs of (12) as second objective function.

function neurons optimization train mse test mse noise prop.

f1 4 NETLAB 38.4554 55.5408 6.04 · 109

goal attainment 28.2350 41.0862 4.44 · 109

noise-constraint 30.3200 43.7137 5.01 · 109

mse-constraint 38.4535 56.4501 0.08 · 109

f2 8 NETLAB 0.6047 0.6485 1.42 · 109

goal attainment 0.6047 0.6485 1.42 · 109

noise-constraint 0.6047 0.6485 1.42 · 109

mse-constraint 0.6047 0.6485 1.42 · 109

f3 6 NETLAB 0.6426 0.6336 7.13 · 105

goal attainment 0.1761 0.1708 1.94 · 105

noise-constraint 0.6473 0.6422 7.13 · 105

mse-constraint 0.6473 0.6378 535.48

solutions can be significantly improved in both objectives which resembles a more
favorable network.

The benefit of the proposed reliability enhancing method depends on the pre-
viously used training technique. If this algorithm already determines a pareto-
optimal solution of the two objective functions sensitivity and approximation
capability this solution cannot be significantly improved. However, if the train-
ing algorithm neglects noise sensitivity the extension of this algorithm requires
little effort. Which pareto-optimal point is chosen from the pareto-optimal front
depends on the designer’s choice.

5 Conclusion

Artificial neural networks are intended to be robust to noise contaminated inputs
and parameters. However, this property mainly depends on the applied train-
ing algorithm for determining the values of the parameters and the size of the
network. In this work, a method of improving the sensitivity to noise of RBF
networks has been proposed.

Two noise measurement techniques are introduced which are either based on
the impact of one input on the output (5) or based on the output changes arising
from input changes (8). Both methods can be applied as additional objective
functions in the optimization process to determine the parameters of an RBF
network. Usually, only one objective is used in this process to approximate the
test data by the RBF output, e.g. the mean squared or the absolute error.

Introducing a new objective function the learning process of the RBF net-
work can be rewritten as a multi-objective optimization problem. Here, several
techniques to solve this problem are investigated. Simulation results show that
the sensitivity to noise and the approximation capability can be significantly

1002 R. Eickhoff and U. Rückert

improved without any degradation in one of the objectives. Here, the pareto-
optimal points have been determined. However, the achieved results depend on
the predefined initial solution. If this point is a dominating point no further im-
provements are possible. Anyway, many training algorithms neglect the effect of
noisy inputs during runtime of an RBF network. Thus, improving solutions of
other training techniques should be possible.

Future work has to concentrate on determining the exact pareto-optimal front,
e.g., using exact techniques described in [14] in contrast to evolutionary algo-
rithms. Furthermore, a third objective function can be introduced in the opti-
mization process to consider the influence of noise corrupted parameters. More-
over, besides determining the values of the parameters the size of the RBF
network has also a strong impact on the robustness. Here, more investigation on
the number of used Gaussian functions is required.

References

1. Haykin, S.: Neural Networks. A Comprehensive Foundation. Second edn. Prentice
Hall, New Jersey, USA (1999)

2. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks ar-
chitectures. Neural Computation 7(2) (1995) 219–269

3. Bernier, J.L., Diáz, A.F., Fernández, F.J., Cañas, A., González, J., Mart́ın-Smith,
P., Ortega, J.: Assessing the noise immunity and generalization of radial basis
function networks. Neural Processing Letters 18(1) (2003) 35–48

4. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill (1976)

5. Eickhoff, R., Rückert, U.: Robustness of Radial Basis Functions. Neurocomputing
(2006) in press.

6. Bronstein, I.N., Semendyayev, K.A.: Handbook of Mathematics (3rd ed.). Springer-
Verlag (1997)

7. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.
Academic Press, Orlando (1985)

8. Collette, Y., Siarry, P.: Multiobjective Optimization : Principles and Case Studies
(Decision Engineering). Springer (2004)

9. Gonzalez, J., Rojas, I., Ortega, J., Pomares, H., Fernandez, F., Diaz, A.: Multi-
objective evolutionary optimization of the size, shape, and position parameters of
radial basis function networks for function approximation. IEEE Transactions on
Neural Networks 14(6) (2003) 1478–1495

10. Pohlheim, H.: GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with
Matlab. Online resource (2005) www.geatbx.com.

11. Köster, M., Grauel, A., Klene, G., Convey, H.J.: A new paradigm of optimisation by
using artificial immune reactions. In: 7th International Conference on Knowledge-
Based Intelligent Information & Engineering Systems. (2003) 287–292

12. Nabney, I.: NETLAB: algorithms for pattern recognitions. Advances in pattern
recognition. pub-SV, New York, NY, USA (2002)

13. Verleysen, M., François, D.: The Curse of Dimensionality in Data Mining and Time
Series Prediction. In: 8th International Work-Conference on Artificial Neural Net-
works (IWANN). Volume LNCS 3512., Villanove i la Geltrú, Spain (2005) 758–770

14. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel
subdivision techniques. J. Optim. Theory Appl. 124(1) (2005) 113–136

Author Index

Abe, Shigeo II-282
Abiyev, Rahib H. II-191
Acciani, Giuseppe II-913
Achbany, Youssef I-790
Agarwal, Vivek II-701
Aharonson, Vered I-81
Alderman, John I-944
Alexandre, Lúıs A. I-244
Allende, Héctor I-264
Anagnostopoulos, Christos II-104
Anagnostopoulos, Ioannis II-104
Angelides, Marios II-55
Anthopoulos, Yannis II-401
Antoniou, Pavlos II-528
Apolloni, B. II-270
Asai, Yoshiyuki I-623
Ashihara, Masamichi II-282
Assis, João M.C. II-847
Athanaselis, Theologos II-943

Babinec, Štefan I-367
Bacciu, Davide I-130
Bader, Sebastian II-1
Bahi, Jacques M. II-777
Bakamidis, Stelios II-943
Bärecke, Thomas I-396
Baruth, Oliver I-340
Bassis, S. II-270
Bengio, Samy II-24
Benmokhtar, Rachid II-65
Benuskova, Lubica I-61
Bertolini, Lorenzo II-654
Bezerianos, Anastasios II-818
Bieszczad, Andrzej I-474
Bieszczad, Kasia I-474
Billard, Aude G. I-770
Bollé, Désiré I-678
Bougaev, Anton II-701
Brandl, Holger II-508
Bridges, Seth I-963

Çağlar, M. Fatih II-992
Çakar, Tarık II-963
Cangelosi, Angelo I-376

Caridakis, George I-81
Carpinteiro, Otávio A.S. II-717,

II-847, II-856
Carvajal, Gonzalo I-963
Carvalho Jr., Manoel A. II-757
Çetinkaya, Hasan Basri II-767
Chatzis, Sotirios II-94
Chen, Li II-481
Chiarantoni, Ernesto II-913
Cho, Sung-Bae II-884
Choi, Chong-Ho II-451
Choi, Jin Young II-606
Choi, Seungjin II-250, II-837
Chong, Andrés M. I-464
Chortaras, Alexandros II-45
Chouchourelou, Arieta I-563
Christoyianni, Ioanna II-568
Cichocki, Andrzej II-250
Claussen, Jens Christian I-208, I-710
Constantinopoulos, Constantinos I-357
Contassot-Vivier, Sylvain II-777
Cooper, Leon N II-488
Csárdi, Gábor I-698
Cutsuridis, Vassilis I-583
Cyganek, Bogus�law II-558

D’Haene, Michiel I-760
d’Anjou, Alicia I-878
de Aquino, Ronaldo R.B. II-757
de Carvalho, Lúıs Alfredo V. I-543
de Diego, Isaac Mart́ın I-216
de la Cruz Gutiérrez, Juan Pablo I-415
del Carmen Vargas-González, Maŕıa

II-292
Dendek, Cezary II-644
de Pina, Alóısio Carlos II-151
Dermatas, Evangelos II-568
de Sá, J.P. Marques I-244
de Souza, Antonio C. Zambroni

II-717, II-847, II-856
Detyniecki, Marcin I-396
Dimitrakakis, Christos I-850
Dologlou, Ioannis II-943
Donangelo, Raul I-543

1004 Author Index

Dorronsoro, José R. I-169
Doulamis, Anastasios II-94
Downar, Thomas J. II-736
Dragomir, Andrei II-818
Duch, W�lodzis�law I-188
Duffner, Stefan II-14
Dunn, Mark II-508

Eckmiller, Rolf I-340
Efe, Mehmet Önder I-918
Eickhoff, Ralf I-993
Erfidan, Tarık II-767
Eriksson, Jan L. I-936
Eski, Ozgur II-1002
Esseiva, Pierre II-894
Estévez, Pablo A. I-464

Fang, Rui I-801
Fei, Minrui I-140
Feng, Bo-qin II-932
Fernández-Redondo, Mercedes I-293
Ferreira, Aida A. II-757
Figueroa, Miguel I-963
Flórez-Revuelta, Francisco II-578
Florian, Răzvan V. I-718
Fontanari, José Fernando I-376
Fornarelli, Girolamo II-913
Fouss, Francois I-790
Fragopanagos, Nickolaos I-553
Franco, Leonardo I-122, I-983
François, Damien I-11
Frank, Stefan L. I-505
Frossyniotis, Dimitrios II-401
Fujii, Robert H. I-780
Fujishiro, Takuya I-811
Fujita, Hajime I-820
Fyfe, Colin II-302

Galatsanos, Nikolaos II-84
Galván, Inés M. I-198
Gao, Rong II-736
Garcia, Christophe II-14
Garćıa, José II-578
Garćıa, Juan Manuel II-578
Garćıa-Córdova, Francisco I-888
Gellman, Michael I-313
Georgiou, Harris I-284
Georgoulas, George II-568
Giannakou, Iraklis II-528
Gketsis, Zacharias II-746

Glasmachers, Tobias II-827
Goerick, Christian II-508
Goerke, Nils II-123
Gómez, Iván I-122, I-983
Gonźalez, Ana I-169
González de-la-Rosa, Juan-José II-221
Górriz, Juan-Manuel II-221
Götting, Michael II-508
Graña, Manuel I-878
Grangier, David II-24
grosse Deters, Harmen II-798
Grossi, Giuliano I-641
Grothmann, Ralph II-654
Guanella, Alexis I-740
Guillén, Alberto I-41
Güneş, Filiz II-974, II-992
Guo, Ye II-932
Gyenes, Viktor I-830

Ha, Seung-chul I-974
Hajnal, Márton Albert I-658
Hamad, Denis II-321
Han, Sang-Jun II-884
Hartley, Matthew I-573, I-592
Hatziargyriou, N.D. II-726
Hayashi, Akira II-311
Held, Claudio M. I-464
Henaff, Patrick I-93
Hernández-Espinosa, Carlos I-293
Hernández-Lobato, Daniel I-178
Hernández-Lobato, José Miguel II-691
Herrera, Luis Javier I-41
Heylen, Rob I-678
Hilas, Constantinos S. II-872
Hölldobler, Steffen II-1
Hollmén, Jaakko II-161
Honkela, Timo II-75
Howley, Tom II-417
Huet, Benoit II-65
Hulle, Marc M. Van I-31
Húsek, Dušan I-226
Hyvärinen, Aapo II-211

Igel, Christian II-827
Iglesias, Javier I-936, I-953
Ikeguchi, Tohru II-1012
Ioannou, Spiros I-81
Iplikci, Serdar I-868
Isasi, Pedro I-198
Ishii, Shin I-820, II-808

Author Index 1005

Ito, Yoshifusa II-350
Iwata, Kazunori II-311
Izumi, Hiroyuki II-350

Jakša, Rudolf I-103
Jerez, José M. I-122, I-983
Jiang, Nan I-651
Joshi, Prashant I-515
Jung, Tobias II-381

Kacprzyk, Janusz II-171
Kanevski, Mikhail II-894
Kang, Jin-Gu I-908
Karabacak, Ozkan I-485
Karpouzis, Kostas I-81
Kasabov, Nikola I-61
Kasderidis, Stathis I-573, I-592, I-612
Kelly, Peter I-944
Kessous, Loic I-81
Kijak, Ewa I-396
Kim, Byung-Joo II-863
Kim, Chunghoon I-1, II-451
Kim, Il Kon II-863
Kim, Jong Kyoung II-837
Kim, Yong Shin I-974
Kimura, Takayuki II-1012
Kintzios, Spiros II-401
Kirstein, Stephan II-508
Klanke, Stefan II-427
Kocak, Taskin I-321
Kollias, Stefanos I-81
Körner, Edgar II-508
Koroutchev, Kostadin I-234
Korsten, Nienke I-553
Korutcheva, Elka I-234
Kosmopoulos, Dimitrios II-94
Kotropoulos, Constantine I-425
Kotsiantis, S. II-672
Koumanakos, E. II-672
Koutńık, Jan I-406
Koutras, Athanasios II-568
Kouzas, Georgios II-104
Kursin, Andrei I-226
Kurzynski, Marek I-21
Kwak, Nojun I-1, II-340
Kwan, Vunfu Wong I-944

Laaksonen, Jorma II-35, II-75, II-330
Labusch, Kai I-150
Lai, Kin Keung II-682

Laurent, Christophe I-435
Laurent, Guillaume J. I-840
Leander, James I-254
Lee, Hogyun II-616
Lee, Hyekyoung II-250
Lee, Kwan-Houng I-908
Lee, Sang-Chul II-904
Lee, Seungmin II-616
Lee, Sin Wee II-952
Leen, Gayle II-302
Lefebvre, Grégoire I-435
Le Fort-Piat, Nadine I-840
Leme, Rafael C. II-717
Lendasse, Amaury II-161, II-181
Li, Kang I-140
Liitiäinen, Elia II-181
Likas, Aristidis I-357, II-84
Lima, Isáıas II-717, II-847, II-856
Lin, Daw-Tung II-624
Liou, Cheng-Yuan I-688
Lira, Milde M.S. II-757
Litinskii, Leonid B. II-437
Liu, Peixiang I-313
Lloret, I. II-221
Lopez, Roberto I-159
López-Coronado, Juan I-888
López-Rodŕıguez, Domingo II-292,

II-595
López-Rubio, Ezequiel II-292, II-595
Lőrincz, András I-658, I-830
Lücke, Jörg I-668
Ludermir, Teresa I-274
Luo, Siwei I-801

Ma, Jian II-788
Madden, Michael G. II-417
Maglogiannis, Ilias II-104
Makovicka, Libor II-777
Malchiodi, D. II-270
Mańdziuk, Jacek II-644
Marakakis, Apostolos II-84
Maraziotis, Ioannis A. II-818
Marbach, Matthew I-254
Martin, Christian II-798
Martin, Éric II-777
Martinetz, Thomas I-150
Mart́ınez-Muñoz, Gonzalo I-178
Mart́ın-Merino, Manuel II-709
Matignon, Laëtitia I-840
Matsuda, Takeshi I-113

1006 Author Index

Matsuda, Yoshitatsu II-587
Matsuka, Toshihiko I-563
Mavroforakis, Michael I-284
McDaid, Liam I-944
McGinnity, Martin I-944
Meinicke, Peter II-827
Mérida-Casermeiro, Enrique II-292,

II-595
Mersch, Britta II-827
Mikhailova, Inna II-508
Miramontes, Pedro I-455
Miyauchi, Arata I-811
Moffa, Giuseppina II-201
Moguerza, Javier M. I-216
Mohammed, Hussein Syed I-254
Mohan, Vishwanathan I-602
Molle, Fabien I-208
Monteiro, L.H.A. II-444
Moon, Jae-Young II-904
Moraga, Claudio I-264
Morasso, Pietro I-602
Moreira, Edmilson M. II-717, II-847,

II-856
Moreno, J. Manuel I-936
Moschou, Vassiliki I-425
Mujica, Luis Eduardo II-982
Mulero-Mart́ınez, Juan Ignacio I-888
Müller, Klaus-Robert II-371
Muñoz, Alberto I-216
Mureşan, Raul C. I-718

Na, Jin Hee II-606
Nagata, Kenji II-371
Nakagawa, Masanori I-495
Nakajima, Shinichi II-240
Nakamura, Yutaka I-820
Nakano, Hidehiro I-811
Nam, Taekyong II-616
Namoun, Faycal I-93
Ñanculef, Ricardo I-264
Nasr, Chaiban II-321
Nasser, Alissar II-321
Nattkemper, Tim W. II-798
Nechaeva, Olga I-445
Neme, Antonio I-455
Neruda, Roman I-226
Neskovic, Predrag II-488
Neto, João Pedro I-525
Nóbrega Neto, Otoni II-757
Netto, Roberto S. II-856

Neumann, Dirk I-340
Nickerson, Jeffrey V. I-563
Ntalianis, Klimis I-728
Nürnberger, Andreas I-396

Oba, Shigeyuki II-808
Oñate, Eugenio I-159
Oozeki, Kenjyu I-780
Ortiz-de-Lazcano-Lobato, Juan Miguel

II-292, II-595
Ouezdou, Fathi Ben I-93
Öztürk, Semra II-767

Palermo, Marcelo B. II-444
Palmer-Brown, Dominic II-952
Panchev, Christo I-592, I-750
Papadakis, Nikolaos I-728
Park, Myoung Soo II-606
Parmar, Minaz II-55
Pateritsas, Christos II-391
Pedrycz, W. II-270
Peng, Jian Xun I-140
Perdikaris, Antonis II-401
Perez, Claudio A. I-464
Perlovsky, Leonid I. I-376
Petkos, Georgios I-898
Petreska, Biljana I-770
Pinheiro, Carlos A.M. II-717, II-847,

II-856
Piotrkowski, R. II-221
Pirotte, Alain I-790
Pitsillides, Andreas II-528
Polani, Daniel II-381
Polikar, Robi I-254
Pöllä, Matti II-75
Pomares, Héctor I-41
Posṕıchal, Jǐŕı I-367
Prudêncio, Ricardo I-274
Puchala, Edward I-21
Puntonet, Carlos G. II-221

Qin, Ling I-651

Raftopoulos, Konstantinos I-728
Rajman, Martin II-932
Rapantzikos, Konstantinos II-538
Ratle, Frédéric II-894
Rewak, Aleksander I-21
Ribaux, Olivier II-894
Ritter, Helge II-427, II-508

Author Index 1007

Rodellar, José II-982
Rodŕıguez-Sánchez, Antonio J. II-498
Rojas, Ignacio I-41
Román, Jesus II-709
Romanov, Dmitry E. II-437
Rossi, Fabrice I-11
Rothenstein, Albert L. II-518, II-548
Rubino, Gerardo I-303
Rückert, Ulrich I-993

Saerens, Marco I-790
Sagrebin, Maria II-123
Sahalos, John N. II-872
Sakamoto, Yasuaki I-563
Sánchez-Mart́ınez, Aitor I-178
Santos, Jose I-944
Sauget, Marc II-777
Sbarbaro, Daniel I-860
Scesa, Vincent I-93
Schäfer, Anton Maximilian I-71,

I-632, II-654
Schleimer, Jan-Hendrik II-230
Schneegaß, Daniel I-150
Schrauwen, Benjamin I-760
Sengor, N. Serap I-485
Şengül, Mehlika II-767
Seo, Kwang-Kyu I-386
Shepelev, Igor I-928
Shi, Lei I-51, II-260
Shimizu, Shohei II-211
Sideratos, George II-726
Silva, Geane B. II-757
Simine, Evgueni II-498
Sjöberg, Mats II-75
Skourlas, Christos II-113
Šnorek, Miroslav I-406
Sofokleous, Anastasis II-55
Sperduti, Alessandro I-349
Srinivasan, Cidambi II-350
Stafylopatis, Andreas II-45, II-84,

II-391
Stamou, Giorgos II-45
Starita, Antonina I-130
Stavrakakis, George II-746
Steil, Jochen II-508
Stentiford, F.W.M. II-481
Storkey, Amos J. II-634
Stroobandt, Dirk I-760
Suárez, Alberto I-178, II-691
Subirats, José Luis I-122, I-983

Suh, Yung-Ho II-904
Sun, Zengqi II-788
Swain, Emily T. II-736
Szita, István I-830
Szupiluk, Ryszard II-133

Tampakas, V. II-672
Terai, Asuka I-495
Taylor, John G. I-535, I-553, I-573,

I-592, II-461
Taylor, Neill R. I-592
Terrettaz-Zufferey, Anne-Laure II-894
Theodoridis, Sergios I-284
Tietz, Christoph II-654
Tikhanoff, Vadim I-376
Tikka, Jarkko II-161
Tirilly, Pierre I-303
Tokan, Fikret II-923
Torres-Sospedra, Joaqúın I-293
Toussaint, Marc I-898, II-634
Trahanias, Panos I-573
Trentin, Edmondo II-410
Tsapatsoulis, Nicolas II-141, II-538
Tsotsos, John K. II-471, II-498, II-518,

II-548
Tsoukalas, Lefteri H. II-701, II-736
Tuffy, Fergal I-944
Türker, Nurhan II-923, II-974
Tzelepis, D. II-672

Udluft, Steffen I-71
Užák, Matúš I-103

Valle, Carlos I-264
Valls, José M. I-198
Van Dijck, Gert I-31
Varela, Martın I-303
Varvarigou, Theodora II-94
Vassilas, Nikolaos II-113
Vassiliou, Vasos II-528
Veh́ı, Josep II-982
Vellido, Alfredo II-361
Verleysen, Michel I-11, I-41
Verschure, Paul F.M.J. I-740
Ververidis, Dimitrios I-425
Vigário, Ricardo II-230
Viitaniemi, Ville II-35
Vijayakumar, Sethu I-898
Villa, Alessandro E.P. I-623, I-936,

I-953

1008 Author Index

Villaverde, Ivan I-878
Vogiatzis, Dimitrios II-141
von der Malsburg, Christoph I-668

Wang, Hao-ming II-932
Wang, Shouyang II-682
Wang, Yu I-330
Watanabe, Sumio I-113, II-240, II-371
Wedemann, Roseli S. I-543
Wersing, Heiko II-508
Wertz, Vincent I-11
Wilbik, Anna II-171
Williams, Ben H. II-634
Wojewnik, Piotr II-133
Wu, Liang II-488
Wysoski, Simei Gomes I-61

Xu, Lei I-51, II-260
Xu, Yunlin II-736

Yamaguchi, Kazunori II-587
Yamazaki, Keisuke II-371

Yang, Yoon Seok I-974
Yang, Zhirong II-330
Yen, Luh I-790
Yialouris, Constantine P. II-401
Yıldırım, Tülay II-923
Yildiz, Gokalp II-1002
Yokoi, Takashi I-623
Yu, Lean II-682

Za̧bkowski, Tomasz II-133
Zadrożny, S�lawomir II-171
Zaharescu, Andrei II-518
Zapranis, Achilleas II-664
Zaverucha, Gerson II-151
Zervakis, Michalis II-746
Zhang, Shun I-801
Zhao, Yibiao I-801
Zheng, Huicheng I-435
Zhou, Ligang II-682
Zhou, Rigui I-651
Zimmermann, Hans Georg I-71, I-632,

II-654

	Frontmatter
	Feature Selection and Dimension Reduction for Regression (Special Session)
	Dimensionality Reduction Based on ICA for Regression Problems
	A Functional Approach to Variable Selection in Spectrometric Problems
	The Bayes-Optimal Feature Extraction Procedure for Pattern Recognition Using Genetic Algorithm
	Speeding Up the Wrapper Feature Subset Selection in Regression by Mutual Information Relevance and Redundancy Analysis
	Effective Input Variable Selection for Function Approximation
	Comparative Investigation on Dimension Reduction and Regression in Three Layer Feed-Forward Neural Network

	Learning Algorithms (I)
	On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition
	Learning Long Term Dependencies with Recurrent Neural Networks
	Adaptive On-Line Neural Network Retraining for Real Life Multimodal Emotion Recognition
	Time Window Width Influence on Dynamic BPTT(h) Learning Algorithm Performances: Experimental Study
	Framework for the Interactive Learning of Artificial Neural Networks
	Analytic Equivalence of Bayes a Posteriori Distributions

	Learning Algorithms (II)
	Neural Network Architecture Selection: Size Depends on Function Complexity
	Competitive Repetition-suppression (CoRe) Learning
	Real-Time Construction of Neural Networks
	MaxMinOver Regression: A Simple Incremental Approach for Support Vector Function Approximation
	A Variational Formulation for the Multilayer Perceptron

	Advances in Neural Network Learning Methods (Special Session)
	Natural Conjugate Gradient Training of Multilayer Perceptrons
	Building Ensembles of Neural Networks with Class-Switching
	K-Separability
	Lazy Training of Radial Basis Neural Networks
	Investigation of Topographical Stability of the Concave and Convex Self-Organizing Map Variant
	Alternatives to Parameter Selection for Kernel Methods
	Faster Learning with Overlapping Neural Assemblies
	Improved Storage Capacity of Hebbian Learning Attractor Neural Network with Bump Formations
	Error Entropy Minimization for LSTM Training

	Ensemble Learning
	Can AdaBoost.M1 Learn Incrementally? A Comparison to Learn<Superscript> + + </Superscript> Under Different Combination Rules
	Ensemble Learning with Local Diversity
	A Machine Learning Approach to Define Weights for Linear Combination of Forecasts
	A Game-Theoretic Approach to Weighted Majority Voting for Combining SVM Classifiers
	Improving the Expert Networks of a Modular Multi-Net System for Pattern Recognition

	Learning Random Neural Networks and Stochastic Agents (Special Session)
	Evaluating Users' Satisfaction in Packet Networks Using Random Neural Networks
	Random Neural Networks for the Adaptive Control of Packet Networks
	Hardware Implementation of Random Neural Networks with Reinforcement Learning
	G-Networks and the Modeling of Adversarial Agents

	Hybrid Architectures
	Development of a Neural Net-Based, Personalized Secure Communication Link
	Exact Solutions for Recursive Principal Components Analysis of Sequences and Trees
	Active Learning with the Probabilistic RBF Classifier
	Merging Echo State and Feedforward Neural Networks for Time Series Forecasting
	Language and Cognition Integration Through Modeling Field Theory: Category Formation for Symbol Grounding
	A Methodology for Estimating the Product Life Cycle Cost Using a Hybrid GA and ANN Model

	Self Organization
	Using Self-Organizing Maps to Support Video Navigation
	Self-Organizing Neural Networks for Signal Recognition
	An Unsupervised Learning Rule for Class Discrimination in a Recurrent Neural Network
	On the Variants of the Self-Organizing Map That Are Based on Order Statistics
	On the Basis Updating Rule of Adaptive-Subspace Self-Organizing Map (ASSOM)
	Composite Algorithm for Adaptive Mesh Construction Based on Self-Organizing Maps
	A Parameter in the Learning Rule of SOM That Incorporates Activation Frequency
	Nonlinear Projection Using Geodesic Distances and the Neural Gas Network

	Connectionist Cognitive Science
	Contextual Learning in the Neurosolver
	A Computational Model for the Effect of Dopamine on Action Selection During Stroop Test
	A Neural Network Model of Metaphor Understanding with Dynamic Interaction Based on a Statistical Language Analysis
	Strong Systematicity in Sentence Processing by an Echo State Network
	Modeling Working Memory and Decision Making Using Generic Neural Microcircuits
	A Virtual Machine for Neural Computers

	Cognitive Machines (Special Session)
	Machine Cognition and the EC Cognitive Systems Projects: Now and in the Future
	A Complex Neural Network Model for Memory Functioning in Psychopathology
	Modelling Working Memory Through Attentional Mechanisms
	A Cognitive Model of Multi-objective Multi-concept Formation
	A Basis for Cognitive Machines
	Neural Model of Dopaminergic Control of Arm Movements in Parkinson's Disease Bradykinesia
	Occlusion, Attention and Object Representations
	A Forward / Inverse Motor Controller for Cognitive Robotics
	A Computational Model for Multiple Goals

	Neural Dynamics and Complex Systems
	Detection of a Dynamical System Attractor from Spike Train Analysis
	Recurrent Neural Networks Are Universal Approximators
	A Discrete Adaptive Stochastic Neural Model for Constrained Optimization
	Quantum Perceptron Network
	Critical Echo State Networks
	Rapid Correspondence Finding in Networks of Cortical Columns
	Adaptive Thresholds for Layered Neural Networks with Synaptic Noise
	Backbone Structure of Hairy Memory
	Dynamics of Citation Networks

	Computational Neuroscience
	Processing of Information in Synchroneously Firing Chains in Networks of Neurons
	Phase Precession and Recession with STDP and Anti-STDP
	Visual Pathways for Detection of Landmark Points
	A Model of Grid Cells Based on a Path Integration Mechanism
	Temporal Processing in a Spiking Model of the Visual System
	Accelerating Event Based Simulation for Multi-synapse Spiking Neural Networks
	A Neurocomputational Model of an Imitation Deficit Following Brain Lesion
	Temporal Data Encoding and SequenceLearning with Spiking Neural Networks

	Neural Control, Reinforcement Learning and Robotics Applications
	Optimal Tuning of Continual Online Exploration in Reinforcement Learning
	Vague Neural Network Controller and Its Applications
	Parallel Distributed Profit Sharing for PC Cluster
	Feature Extraction for Decision-Theoretic Planning in Partially Observable Environments
	Reinforcement Learning with Echo State Networks
	Reward Function and Initial Values: Better Choices for Accelerated Goal-Directed Reinforcement Learning
	Nearly Optimal Exploration-Exploitation Decision Thresholds
	Dual Adaptive ANN Controllers Based on Wiener Models for Controlling Stable Nonlinear Systems
	Online Stabilization of Chaotic Maps Via Support Vector Machines Based Generalized Predictive Control

	Robotics, Control, Planning
	Morphological Neural Networks and Vision Based Mobile Robot Navigation
	Position Control Based on Static Neural Networks of Anthropomorphic Robotic Fingers
	Learning Multiple Models of Non-linear Dynamics for Control Under Varying Contexts
	A Study on Optimal Configuration for the Mobile Manipulator: Using Weight Value and Mobility
	VSC Perspective for Neurocontroller Tuning
	A Neural Network Module with Pretuning for Search and Reproduction of Input-Output Mapping

	Bio-inspired Neural Network On-Chip Implementation and Applications (Special session)
	Physical Mapping of Spiking Neural Networks Models on a Bio-inspired Scalable Architecture
	A Time Multiplexing Architecture for Inter-neuron Communications
	Neuronal Cell Death and Synaptic Pruning Driven by Spike-Timing Dependent Plasticity
	Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm
	A Portable Electronic Nose (E-Nose) System Based on PDA
	Optimal Synthesis of Boolean Functions by Threshold Functions
	Pareto-optimal Noise and Approximation Properties of RBF Networks

	Backmatter

