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Abstract. In this paper we present a novel information-theoretic measure of spa-
tiotemporal coordination in a modular robotic system, and use it as a fitness func-
tion in evolving the system. This approach exemplifies a new methodology for-
malizing co-evolution in multi-agent adaptive systems: information-driven evo-
lutionary design. The methodology attempts to link together different aspects of
information transfer involved in adaptive systems, and suggests to approximate
direct task-specific fitness functions with intrinsic selection pressures. In particu-
lar, the information-theoretic measure of coordination employed in this work esti-
mates the generalized correlation entropy K2 and the generalized excess entropy
E2 computed over a multivariate time series of actuators’ states. The simulated
modular robotic system evolved according to the new measure exhibits regular
locomotion and performs well in challenging terrains.

1 Introduction

Innovations in distributed sensor and actuator technologies, as well as advances in
multi-agent control theory and studies of self-organization, support rapid growth in ap-
plications of complex adaptive multi-agent systems (MAS), such as modular robotics,
multi-robot teams, self-assembly, etc. In particular, modular robots built of several sim-
ilar building blocks (modules) become more and more attractive due to high versatil-
ity in their shapes, locomotion modes, tasks, and manipulation abilities [3,26,22,21,7].
This multi-faceted versatility increases robustness, adaptability, and scalability required
in practical systems, ranging from search and rescue to space exploration. These re-
quirements are achieved through a distribution of sensing, actuation and computational
capabilities throughout the MAS such as a modular robotic system. This distribution
forms a complex multi-agent network, enabling the desired responses to self-organize
within the system, without central control. However, the main challenge with develop-
ing a self-organizing MAS is a design methodology for systematically inter-connecting
a set of global system-level tasks, functions, etc. with localized sensors, behaviors, and
actuators.

In this paper we further develop such a methodology originally sketched in [14], aim-
ing at formalizing “taskless adaptation” of co-evolving multiple agents (robotic mod-
ules, network nodes, swarm elements, etc.). The co-evolution can be achieved in two
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ways: via task-specific objectives or via generic intrinsic selection criteria. The generic
information-theoretic criteria may vary in their emphasis: for example, we may focus
on maximization of information transfer in perception-action loops [11,12]; minimiza-
tion of heterogeneity in agent states, measured with the variance of the rule-space’s en-
tropy [25,17] or Boltzmann entropy in swarm-bots’ states [1]; stability of multi-agent
hierarchies [17]; efficiency of computation (computational complexity); efficiency of
communication topologies [15,16]; efficiency of locomotion and distributed actuation
[14,6,22,21], etc. The solutions obtained by information-driven evolution can be judged
by their degree of approximation of direct evolutionary computation, where the lat-
ter uses task-specific objectives and depends on hand-crafting fitness functions by hu-
man designers. A good approximation will indicate that the chosen criteria capture the
information-theoretic core of selection pressures. The main theme, however, is that dif-
ferent selection criteria incorporate information transfer within specific channels, and
selecting some of these channels and not the others would guide information-driven
evolutionary design.

Following [14] we apply here an information-theoretic measure of spatiotemporal
coordination in a modular robotic system to an evolution of a sufficiently simple sys-
tem: a modular limbless, wheelless snake-like robot (Snakebot) [22,21] without sensors.
The only design goal of Snakebot’s evolution, reported by Tanev and his colleagues, is
fastest locomotion. Our immediate goal is information-theoretic approximation of this
direct evolution. Specifically, we construct measures of spatiotemporal coordination of
distributed actuators used by a Snakebot in locomotion. The measures are based on the
generalized correlation entropy K2 (a lower bound of Kolmogorov-Sinai entropy) and
its excess entropy E2 computed over a multivariate time series of actuators’ states. The
experiments reported by [14] confirmed that maximal coordination is achieved syn-
chronously with fastest locomotion. In this paper we replace the direct measure with
the information-theoretic measure of spatiotemporal coordination, and use the latter
exclusively in evolving the Snakebot.

The following Section places this methodology in the context of previous studies,
describes the proposed measures, and presents results, followed by conclusions.

2 Information Transfer as an Intrinsic Selection Pressure

An example of an intrinsic selection pressure is the acquisition of information from the
environment: there is evidence that pushing the information flow to the information-
theoretic limit (i.e., maximization of information transfer) can give rise to intricate be-
havior, induce a necessary structure in the system, and ultimately adaptively reshape
the system [11,12]. The central hypothesis of Klyubin et al. is that there exists “a lo-
cal and universal utility function which may help individuals survive and hence speed
up evolution by making the fitness landscape smoother”, while adapting to morphol-
ogy and ecological niche. The proposed general utility function, empowerment, couples
the agent’s sensors and actuators via the environment. Empowerment is the perceived
amount of influence or control the agent has over world, and can be seen as the agents
potential to change the world. It can be measured via the amount of Shannon informa-
tion that the agent can “inject into” its sensor through the environment, affecting future
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actions and future perceptions. Such a perception-action loop defines the agent’s actua-
tion channel, and, technically, empowerment is defined as the capacity of this actuation
channel: the maximum mutual information for the channel over all possible distribu-
tions of the transmitted signal. “The more of the information can be made to appear in
the sensor, the more control or influence the agent has over its sensor” — this is the
main motivation for this local and universal utility function [12].

Heterogeneity in agent states is another generic pressure related to intrinsic coordina-
tion and self-organization. For example, it was measured with the variance of the rule-
space’s entropy [25] and applied to evolve the spatiotemporal stability of multi-cellular
patterns in a sensor/communication network embedded within a self-monitoring impact
sensing test-bed of an aerospace vehicle [9,17,24]. The study of spatiotemporal stability
in evolving impact boundaries — continuously connected multi-cellular circuits, self-
organizing in presence of cell failures and connectivity disruptions around damaged ar-
eas — employs both task-dependent graph-theoretic and generic information-theoretic
measures in separating chaotic regimes from ordered dynamics. The task-dependent
measure captured the impact boundary’s connectivity in terms of the size of the average
connected boundary fragment — an analogue of a largest connected sub-graph and its
standard deviation over time. The intrinsic information-theoretic measure captured the
diversity of transition rules invoked by the network cells during an impact boundary
formation, using the Shannon entropy of the rules’ frequency distribution:

H(Xt) = −
m∑

i=1

Xt
i

n
log

Xt
i

n
,

where n is the system size (the total number of cells), and Xt
i is the number of times the

transition i was used at time t across the system. Both measures concurred in identifying
complex dynamics, pointing to the same phase transition between chaos and order, for
particular regions in a parameter-space. The entropy H(Xt) can also be interpreted as
the joint state transition entropy H(St, St+1), where St is the state of the cell at time t
[17]. This opens a way to consider information transfer

I(St; St+1) = H(St) − H(St, St+1) ,

within the channel between a cell and itself at the next time-step.
An investigation of Baldassarre et al. [1], characterized coordinated motion in a

swarm collective as a self-organized activity, and measured the increasing organization
of the group on the basis of Boltzmann entropy. In particular, the emergent common
direction of motion, with the chassis orientations of the robots spatially aligned, was
observed to allow the group to achieve high coordination. Baldassarre et al. proposed
a method to capture the spatial alignment via Boltzmann entropy by dividing the state
space of the elements of the system into cells (e.g., cells of 45◦ each, corresponding
to chassis orientations), measuring the number of elements in each cell for a given
macrostate m, computing the number wm of microstates that compose m, and calcu-
lating Boltzmann entropy of the macrostate as Em = k ln[wm], where k is a scaling
constant. This constant is set to the inverse of the maximum entropy which is equal to
the entropy of the macrostate where all the elements are equally distributed over the
cells. The results indicate that “independently of the size of the group, the disorganiza-
tion of the group initially decreases with an increasing rate, then tends to decrease with
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a decreasing rate, and finally reaches a null value when all the robots have the same
orientation” [1].

In this work, we advance from a purely spatial characterization (such as Boltzmann
entropy of a macrostate distributing chassis orientations over the cells) to a spatiotempo-
ral measure. The entropy measure proposed in our work is intended not only to capture
spatial alignment of different modules, but also to account for temporal dependencies
among them, such as travelling or standing waves in multi-segment chains observed
by Ijspeert et al.. Importantly, we plan to focus on channels where information transfer
contributes to a selection pressure.

We refer here to one more example of a selection pressure — efficiency of commu-
nication topologies — which can be interpreted as in terms of information transfer. One
feasible average measure of a complex network’s heterogeneity is given by the entropy
of a network defined through the link distribution. The latter can be defined via the sim-
ple degree distribution — the probability Pk of having a node with k links. Similarly,
one can capture the average uncertainty of the network as a whole, using the joint en-
tropy based on the joint probability of connected pairs Pk,k′ . Ultimately, the amount
of correlation between nodes in the graph can be calculated via the mutual information
measure, the information transfer [19], as

I(P ; P ′) = H(P ) − H(P |P ′) =
m∑

k=1

m∑

k′=1

Pk,k′ log
Pk,k′

PkPk′
.

The reviewed examples highlight the possible role of information transfer in guid-
ing selection of efficient perception-action loops, spatiotemporally stable multi-cellular
patterns, and well-connected network topologies. We intend to demonstrate that spa-
tiotemporal coordination in a modular robotic system can also be captured as informa-
tion transfer, and apply such a measure to the system’s evolution.

Before presenting our approach, we briefly review some studies of the relation be-
tween locomotion and rhythmic inter-modular coordination. Dorigo [7] describes an
experiment in swarm robotics (SWARM-BOT) which also complements standard self-
reconfigurability with task-dependent cooperation. Small autonomous mobile robots
(s-bots) aggregate into specific shapes enabling the collective structure (a swarm-bot)
to perform functions beyond capabilities of a single module. The swarm-bot forms as
a result of self-organization “rather than via a global template and is expected to move
as a whole and reconfigure along the way when needed” [7]. One basic ability of a
swarm-bot, immediately relevant to our research, is coordinated motion emerging when
the constituent independently-controlled modules coordinate their actions in choosing
a common direction of motion. Our focus is on how much locomotion can be “pat-
terned” in an aggregated structure. Regardless of an environment (aquatic, terrestrial
or aerial), locomotion is achieved by applying forces generated by the rhythmic con-
traction of muscles attached to limbs, wings, fins, etc. Typically, a locomotory gait is
efficient when all the involved muscles contract and extend with the same frequency
in different phases. For example, Yim et al. [26] investigated a snake-like (serpentine)
sinusoid gait, where forward motion is essentially achieved by propagating a waveform
travelling down the length of the chain. Tanev and his colleagues [22,21] demonstrated
emergence of side-winding locomotion with superior speed characteristics for the given
morphology as well as adaptability to challenging terrain and partial damage.
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3 Spatiotemporal Coordination of Actuators

Snakebot is simulated as a set of identical spherical morphological segments, linked
together via universal joints. All joints feature identical angle limits, and each joint has
two attached actuators. In the initial standstill position of Snakebot, the rotation axes
of the actuators are oriented vertically (vertical actuator) and horizontally (horizontal
actuator). These actuators perform rotation of the joint in the horizontal and vertical
planes respectively. No anisotropic friction between the morphological segments and
the surface is considered. Open Dynamics Engine (ODE) was chosen to provide a re-
alistic simulation of the mechanics of Snakebot. Given this representation, the task of
designing the fastest Snakebot locomotion can be rephrased as developing temporal
patterns of desired turning angles of horizontal and vertical actuators for each joint,
maximizing the overall speed. Previous experiments of evolvable locomotion gaits with
fitness measured as either velocity in any direction or velocity in forward direction [22]
indicated that side-winding locomotion — locomotion predominantly perpendicular to
the long axis of Snakebot (Figures 1 and 2) — provides superior speed characteristics
for the considered morphology. The actuators states (horizontal and vertical turning an-
gles) are constrained by the interactions between segments and the terrain. The actual
turning angles provide an underlying time series for our information-theoretic analysis:
horizontal turning angles {xi

t} and vertical turning angles {yi
t} at time t, where i is the

actuator index, S is the number of joints, 1 ≤ i ≤ S, and T is the considered time
interval, 1 ≤ t ≤ T . Since we deal with actual rather than ideal turning angles, the
underlying dynamics in the phase-space may include both periodic and chaotic orbits.

Fig. 1. Side view of the Snakebot Fig. 2. Top view of the Snakebot

We intend to estimate “irregularity” for each of the multivariate time series {xi
t} and

{yi
t}. Each of these time series, henceforth denoted for generality {vi

t}, contains both
spatial and temporal patterns, and minimizing the irregularity over both space and time
dimensions should ideally uncover the extent of spatiotemporal coordination among
actuator states.

For any given actuator i, a simple characterisation of the “regularity” of the time
series {vt} is provided by the auto-correlation function. However, the auto-correlation
is limited to measuring only linear dependencies. We consider instead a more general



Evolving Spatiotemporal Coordination in a Modular Robotic System 563

approach. One classical measure is the Kolmogorov-Sinai (KS) entropy, also known as
metric entropy [13]: it is a measure for the rate at which information about the state
of the system is lost in the course of time. In other words, it is an entropy per unit
time, an entropy rate or entropy density. Suppose that the d−dimensional phase space
is partitioned into boxes of size rd. Let Pi0...id−1 be the joint probability that a trajectory
is in box i0 at time 0, in box i1 at time Δt, ..., and in box id−1 at time (d−1)Δt, where
Δt is the time interval between measurements on the state of the system (in our case,
we may assume Δt = 1, and omit the limit Δt → 0 in the following definitions). The
KS entropy is defined by

K = − lim
r→0

lim
d→∞

1
dΔt

∑

i0...id−1

Pi0...id−1 ln Pi0...id−1 , (1)

and more precisely, as a supremum of K on all possible partitions. This definition has
been generalized to the order-q Rényi entropies Kq [18]:

Kq = − lim
Δt→0

lim
r→0

lim
d→∞

1
dΔt(q − 1)

ln
∑

i0...id−1

P q
i0...id−1

. (2)

It is well-known that K = 0 in an ordered system, K is infinite in a random system, and
K is a positive constant in a deterministic chaotic system. Grassberger and Procaccia
[10] considered the correlation entropy K2 in particular, and capitalized on the fact
K ≥ K2 in establishing a sufficient condition for chaos K2 > 0. Their algorithm
estimates the entropy rate K2 for a univariate time series. For our analysis we need to
introduce a spatial dimension across multiple Snakebot’s actuators. An estimate of the
spatiotemporal entropy density can be obtained as

K = − lim
ds→∞

lim
dt→∞

1
ds

1
dt

∑

V (ds,dt)

p(V (ds, dt)) ln p(V (ds, dt)) , (3)

where V (ds, dt) are “patterns” of spatial size ds and time length dt [2]. Our objective,
an estimate of spatiotemporal generalized correlation entropy, can be obtained as

K2 = − lim
ds→∞

lim
dt→∞

1
ds

1
dt

ln
∑

V (ds,dt)

p2(V (ds, dt)) . (4)

In achieving this objective, we follow Grassberger-Procaccia method [10] of computing
correlation integrals, but use the multivariate time series with S actuators (joints) and
T time steps in the following approximation:

Kdsdt
2 (S, T, r) = ln

Cdsdt(S, T, r)
Cds(dt+1)(S, T, r)

+ ln
Cdsdt(S, T, r)

C(ds+1)dt
(S, T, r)

, (5)

where correlation integrals are generalized as

Cdsdt(S, T, r) =
1

(T − 1)T (S − 1)S

T∑

l=1

T∑

j=1

S∑

g=1

S∑

h=1

Θ(r − ‖V g
l − V h

j ‖) . (6)
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Here Θ is the Heaviside function (equal to 0 for negative argument and 1 otherwise),
and the vectors V g

l and V h
j contain elements of the observed time series {vi

t} for
each actuator (the spatial dimension), “converting” or “reconstructing” the dynami-
cal information in two-dimensional data to information in the dsdt-dimensional em-
bedding space [20]. More precisely, we use spatiotemporal delay vectors V i

k = (vi
k,

vi+1
k , vi+2

k , . . . , vi+ds−1
k ), whose elements are time-delay vectors vi

k = (vi
k, vi

k+1,

vi
k+2, . . . , v

i
k+dt−1), and the spatial index i is fixed [14]. The norm ‖V g

l − V h
j ‖ is the

distance between the vectors in the dsdt-dimensional space, e.g., the maximum norm:

‖V g
l − V h

j ‖ =
ds−1
max
σ=0

dt−1
max
τ=0

(vg+σ
l+τ − vh+σ

j+τ )

Put simply, correlation integral Cdsdt(S, T, r) computes the fraction of pairs of vectors
in the dsdt-dimensional embedding space that are separated by a distance less than or
equal to r. In order to eliminate auto-correlation effects, the vectors in equation (6)
should be chosen to satisfy |l − j| > L, for an integer L, and |g − h| > M , for an
integer M , in order to exclude auto-correlation effects among temporally close delays
or closely coupled segments [23]. The standard temporal delay reconstruction [20] is
recovered by setting ds = 1 [4].

The correlation entropy K2 (the generalized entropy rate) measures the irregularity
or unpredictability of the system. A complementary quantity is the excess entropy E
[8,5] — it may be viewed as a measure of the apparent memory or structure in the
system. The generalized excess entropy E2 is defined by considering how the finite-
template (finite-delay and finite-extent) entropy rate estimates Kdsdt

2 (S, T, r) (equation
(5)), converge to their asymptotic values K2 (equation (4)). It is estimated for a fixed
spatial extent Ds and a given time range Dt as:

E2(Ds, Dt, S, T, r) =
Ds∑

ds=1

Dt∑

dt=1

(Kdsdt
2 (S, T, r) − K2) . (7)

For regular locomotion the asymptotic values should be zero (while non-zero entropies
would indicate non-periodicity, i.e. deterministic chaos). It was shown that the excess
entropy also measures the amount of historical information stored in the present that is
communicated to the future [5,8]. In other words, it can be represented as asymptotic
mutual information between two adjacent dsdt-dimensional half-planes

lim
ds,dt→∞

I(V g
−dt

; V h
0 ) =

lim
ds,dt→∞

I((vg
−dt

, vg+1
−dt

, vg+2
−dt

, . . . , vg+ds−1
−dt

); (vh
0 , vh+1

0 , vh+2
0 , . . . , vh+ds−1

0 ))

where vi
k = (vi

k, vi
k+1, vi

k+2, . . . , v
i
k+dt−1). This alternative representation establishes

that the proposed measure may estimate information transfer within the space of ac-
tuators: the more information between the spatiotemporal past and the spatiotemporal
future is transferred, the more coordination is achieved. If g = h in the last expression,
the transfer is purely between the temporal past and the temporal future. Otherwise, if
g �= h, we are concerned with how much information contained in the past of one group
of actuators is injected into the future of another group of actuators.
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When dealing with non-zero entropy rates K2, one may consider relative excess
entropy:

e2(Ds, Dt, S, T, r) =
Ds∑

ds=1

Dt∑

dt=1

Kdsdt
2 (S, T, r) − K2

K2 + ε
. (8)

where ε is a small constant (e.g., ε = 0.03), balancing the relative excess entropy e2 for
very small entropy rates K2. The relative excess entropy e2 attempts to “reward” the
structure (coupling) in the locomotion and “penalise” its non-regularity.

4 Results

In this section we present experimental results of Snakebot’s evolution based on esti-
mates of the excess entropy E2 (equation (7)) and the relative excess entropy e2 (equa-
tion (8)). The Genetic Programming (GP) techniques employed in the evolution are de-
scribed elsewhere [22,21]. In particular, the genotype is associated with two algebraic
expressions, which represent the temporal patterns of desired turning angles of both the
horizontal and vertical actuators of each morphological segment. Because locomotion
gaits, by definition, are periodical, we include the periodic functions sin and cos in the
function set of GP in addition to the basic algebraic functions. The selection is based
on a binary tournament with selection ratio of 0.1 and reproduction ratio of 0.9. The
mutation operator is the random subtree mutation with ratio of 0.01. Snakebots evolve
within a population of 200 individuals, and the best performers are selected according
to the excess entropy values, over a number of generations.
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Fig. 3. First offspring: actuator angles
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Figures 3 and 4 contrast (for vertical actuators) actual angles used by the first off-
spring and the final generation. Similarly, Figures 5 and 6 contrast the spatiotemporal
correlation entropies produced by the first offspring and the evolved solution. It can
be easily observed that more regular angle dynamics of the evolved solution manifests



566 M. Prokopenko, V. Gerasimov, and I. Tanev

2 4 6 8 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5

Time DelaysActuators

C
or

re
la

tio
n 

E
nt

ro
py

Fig. 5. First offspring: correlation entropy

2 4 6 8 10
20

30

0

0.5

1

1.5

2

2.5

Time DelaysActuators

C
or

re
la

tio
n 

E
nt

ro
py

Fig. 6. Evolved solution: correlation entropy

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40

E
xc

es
s 

E
nt

ro
py

Generation

Fig. 7. Snakebot fitness over time: the best per-
former in each generation, using excess entropy

5

10

15

20

25

30

0 10 20 30 40 50

R
el

at
iv

e 
E

xc
es

s 
E

nt
ro

py

Generation

Fig. 8. Snakebot fitness over time: the best per-
former in each generation, using relative excess
entropy

itself as more significant excess entropy. Figures 7 and 8 show typical fitness growth
towards higher excess entropies estimated as E2 (equation (7)) and the relative ex-
cess entropies e2 (equation (8)), for two different experiments. It should be noted that
there are well-coordinated Snakebots which are moving not as quickly as the Snakebots
evolved according to the direct velocity-based measure, i.e. the set of fast solutions is
contained within the set of well-coordinated solutions. This means that the obtained
approximation of the direct fitness function by the information-theoretic selection pres-
sure towards regularity is sound but not complete.

In certain circumstances, a fitness function rewarding coordination may be more suit-
able than a direct velocity-based measure: a Snakebot trapped by obstacles may need
to employ a locomotion gait with highly coordinated actuators but near-zero absolute
velocity. In fact, the obtained solutions exhibit reasonable robustness to challenging
terrains, trading-off some velocity for resilience to obstacles. In particular, the evolved
Snakebot shown in Figure 9 is able to traverse ragged terrains with obstacles three
times as high as the segment diameter, move through a narrow corridor (only twice as
wide as the segment diameter), and overcome various extended barriers. In addition, the
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Fig. 9. Snakebot negotiating a terrain with obstacles

Snakebot is robust to failures of individual segments: e.g., it is able to move even when
every third segment is completely incapacitated, albeit with only a half of the normal
speed. Interestingly enough, the relative excess entropy is increased in partially dam-
aged Snakebots, as the amount of transferred information in the coupled locomotion has
to increase. Moreover, there appears to be a strong correlation between the number of
damaged (evenly spread) segments s and the resulting relative excess entropy es

2 ≈ β s,
where the coefficient β of the linear fit is approximately equal to the relative excess
entropy of a non-damaged Snakebot e0

2. This observation opens a way for Snakebot’s
self-diagnostics and adaptation: the run-time value of e2 may identify the number of
damaged segments, enabling a more appropriate response.

5 Conclusions

We modelled a specific step towards a theory of information-driven evolutionary de-
sign, using information-theoretic measures of spatiotemporal coordination in a mod-
ular robotic system (Snakebot). These measures estimate the generalized correlation
entropies K2 computed over a time series of actuators’ states and the spatiotemporal
excess entropies E2. As expected, increased coordination of actuators is achieved by
agents with faster locomotion. However, the set of fast solutions is a subset of the set of
well-coordinated solutions. A more precise approximation of fast locomotion is a sub-
ject of future work. In parallel, we are investigating other tasks adaptation to which may
require a high degree of actuators’ coordination : e.g., rugged terrain traversal, energy-
efficient locomotion, etc. Both directions essentially require identification of channels
through which the information transfer among system’s components is optimized. We
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believe that development of adequate information-theoretic criteria, such as the mea-
sure of spatiotemporal coordination of distributed actuators, will contribute to design
guidelines for co-evolving multi-agent systems.
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18. A. Rényi. Probability theory. North-Holland, 1970.
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